2011-06-22 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
14f9c5c9 60
ccefe4c4 61#include "psymtab.h"
40bc484c 62#include "value.h"
956a9fb9 63#include "mi/mi-common.h"
ccefe4c4 64
4c4b4cd2 65/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 66 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
67 Copied from valarith.c. */
68
69#ifndef TRUNCATION_TOWARDS_ZERO
70#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71#endif
72
d2e4a39e 73static struct type *desc_base_type (struct type *);
14f9c5c9 74
d2e4a39e 75static struct type *desc_bounds_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct value *desc_bounds (struct value *);
14f9c5c9 78
d2e4a39e 79static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 82
556bdfd4 83static struct type *desc_data_target_type (struct type *);
14f9c5c9 84
d2e4a39e 85static struct value *desc_data (struct value *);
14f9c5c9 86
d2e4a39e 87static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 90
d2e4a39e 91static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 92
d2e4a39e 93static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static struct type *desc_index_type (struct type *, int);
14f9c5c9 98
d2e4a39e 99static int desc_arity (struct type *);
14f9c5c9 100
d2e4a39e 101static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 102
d2e4a39e 103static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 104
40658b94
PH
105static int full_match (const char *, const char *);
106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
76a01679 110 struct block *, const char *,
2570f2b7 111 domain_enum, struct objfile *, int);
14f9c5c9 112
4c4b4cd2 113static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 114
76a01679 115static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 116 struct block *);
14f9c5c9 117
4c4b4cd2
PH
118static int num_defns_collected (struct obstack *);
119
120static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 121
4c4b4cd2 122static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 123 struct type *);
14f9c5c9 124
d2e4a39e 125static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 126 struct symbol *, struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
4c4b4cd2
PH
130static char *ada_op_name (enum exp_opcode);
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
aeb5907d
JB
142static enum ada_renaming_category parse_old_style_renaming (struct type *,
143 const char **,
144 int *,
145 const char **);
146
147static struct symbol *find_old_style_renaming_symbol (const char *,
148 struct block *);
149
4c4b4cd2 150static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 151 int, int, int *);
4c4b4cd2 152
d2e4a39e 153static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 154
b4ba55a1
JB
155static struct type *ada_find_parallel_type_with_name (struct type *,
156 const char *);
157
d2e4a39e 158static int is_dynamic_field (struct type *, int);
14f9c5c9 159
10a2c479 160static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 161 const gdb_byte *,
4c4b4cd2
PH
162 CORE_ADDR, struct value *);
163
164static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 165
28c85d6c 166static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 167
d2e4a39e 168static struct type *to_static_fixed_type (struct type *);
f192137b 169static struct type *static_unwrap_type (struct type *type);
14f9c5c9 170
d2e4a39e 171static struct value *unwrap_value (struct value *);
14f9c5c9 172
ad82864c 173static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 174
ad82864c 175static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 176
ad82864c
JB
177static long decode_packed_array_bitsize (struct type *);
178
179static struct value *decode_constrained_packed_array (struct value *);
180
181static int ada_is_packed_array_type (struct type *);
182
183static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 184
d2e4a39e 185static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 186 struct value **);
14f9c5c9 187
50810684 188static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 189
4c4b4cd2
PH
190static struct value *coerce_unspec_val_to_type (struct value *,
191 struct type *);
14f9c5c9 192
d2e4a39e 193static struct value *get_var_value (char *, char *);
14f9c5c9 194
d2e4a39e 195static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 196
d2e4a39e 197static int equiv_types (struct type *, struct type *);
14f9c5c9 198
d2e4a39e 199static int is_name_suffix (const char *);
14f9c5c9 200
73589123
PH
201static int advance_wild_match (const char **, const char *, int);
202
203static int wild_match (const char *, const char *);
14f9c5c9 204
d2e4a39e 205static struct value *ada_coerce_ref (struct value *);
14f9c5c9 206
4c4b4cd2
PH
207static LONGEST pos_atr (struct value *);
208
3cb382c9 209static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 210
d2e4a39e 211static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 212
4c4b4cd2
PH
213static struct symbol *standard_lookup (const char *, const struct block *,
214 domain_enum);
14f9c5c9 215
4c4b4cd2
PH
216static struct value *ada_search_struct_field (char *, struct value *, int,
217 struct type *);
218
219static struct value *ada_value_primitive_field (struct value *, int, int,
220 struct type *);
221
76a01679 222static int find_struct_field (char *, struct type *, int,
52ce6436 223 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
224
225static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
226 struct value *);
227
4c4b4cd2
PH
228static int ada_resolve_function (struct ada_symbol_info *, int,
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab
PH
236
237static void check_size (const struct type *);
52ce6436
PH
238
239static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
243 struct expression *,
244 int *, enum noside);
52ce6436
PH
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
e802dbe0
JB
307 /* Inferior-specific data. */
308
309/* Per-inferior data for this module. */
310
311struct ada_inferior_data
312{
313 /* The ada__tags__type_specific_data type, which is used when decoding
314 tagged types. With older versions of GNAT, this type was directly
315 accessible through a component ("tsd") in the object tag. But this
316 is no longer the case, so we cache it for each inferior. */
317 struct type *tsd_type;
318};
319
320/* Our key to this module's inferior data. */
321static const struct inferior_data *ada_inferior_data;
322
323/* A cleanup routine for our inferior data. */
324static void
325ada_inferior_data_cleanup (struct inferior *inf, void *arg)
326{
327 struct ada_inferior_data *data;
328
329 data = inferior_data (inf, ada_inferior_data);
330 if (data != NULL)
331 xfree (data);
332}
333
334/* Return our inferior data for the given inferior (INF).
335
336 This function always returns a valid pointer to an allocated
337 ada_inferior_data structure. If INF's inferior data has not
338 been previously set, this functions creates a new one with all
339 fields set to zero, sets INF's inferior to it, and then returns
340 a pointer to that newly allocated ada_inferior_data. */
341
342static struct ada_inferior_data *
343get_ada_inferior_data (struct inferior *inf)
344{
345 struct ada_inferior_data *data;
346
347 data = inferior_data (inf, ada_inferior_data);
348 if (data == NULL)
349 {
350 data = XZALLOC (struct ada_inferior_data);
351 set_inferior_data (inf, ada_inferior_data, data);
352 }
353
354 return data;
355}
356
357/* Perform all necessary cleanups regarding our module's inferior data
358 that is required after the inferior INF just exited. */
359
360static void
361ada_inferior_exit (struct inferior *inf)
362{
363 ada_inferior_data_cleanup (inf, NULL);
364 set_inferior_data (inf, ada_inferior_data, NULL);
365}
366
4c4b4cd2
PH
367 /* Utilities */
368
720d1a40 369/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 370 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
371
372 Normally, we really expect a typedef type to only have 1 typedef layer.
373 In other words, we really expect the target type of a typedef type to be
374 a non-typedef type. This is particularly true for Ada units, because
375 the language does not have a typedef vs not-typedef distinction.
376 In that respect, the Ada compiler has been trying to eliminate as many
377 typedef definitions in the debugging information, since they generally
378 do not bring any extra information (we still use typedef under certain
379 circumstances related mostly to the GNAT encoding).
380
381 Unfortunately, we have seen situations where the debugging information
382 generated by the compiler leads to such multiple typedef layers. For
383 instance, consider the following example with stabs:
384
385 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
386 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
387
388 This is an error in the debugging information which causes type
389 pck__float_array___XUP to be defined twice, and the second time,
390 it is defined as a typedef of a typedef.
391
392 This is on the fringe of legality as far as debugging information is
393 concerned, and certainly unexpected. But it is easy to handle these
394 situations correctly, so we can afford to be lenient in this case. */
395
396static struct type *
397ada_typedef_target_type (struct type *type)
398{
399 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
400 type = TYPE_TARGET_TYPE (type);
401 return type;
402}
403
41d27058
JB
404/* Given DECODED_NAME a string holding a symbol name in its
405 decoded form (ie using the Ada dotted notation), returns
406 its unqualified name. */
407
408static const char *
409ada_unqualified_name (const char *decoded_name)
410{
411 const char *result = strrchr (decoded_name, '.');
412
413 if (result != NULL)
414 result++; /* Skip the dot... */
415 else
416 result = decoded_name;
417
418 return result;
419}
420
421/* Return a string starting with '<', followed by STR, and '>'.
422 The result is good until the next call. */
423
424static char *
425add_angle_brackets (const char *str)
426{
427 static char *result = NULL;
428
429 xfree (result);
88c15c34 430 result = xstrprintf ("<%s>", str);
41d27058
JB
431 return result;
432}
96d887e8 433
4c4b4cd2
PH
434static char *
435ada_get_gdb_completer_word_break_characters (void)
436{
437 return ada_completer_word_break_characters;
438}
439
e79af960
JB
440/* Print an array element index using the Ada syntax. */
441
442static void
443ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 444 const struct value_print_options *options)
e79af960 445{
79a45b7d 446 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
447 fprintf_filtered (stream, " => ");
448}
449
f27cf670 450/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 451 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 452 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 453
f27cf670
AS
454void *
455grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 456{
d2e4a39e
AS
457 if (*size < min_size)
458 {
459 *size *= 2;
460 if (*size < min_size)
4c4b4cd2 461 *size = min_size;
f27cf670 462 vect = xrealloc (vect, *size * element_size);
d2e4a39e 463 }
f27cf670 464 return vect;
14f9c5c9
AS
465}
466
467/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 468 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
469
470static int
ebf56fd3 471field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
472{
473 int len = strlen (target);
5b4ee69b 474
d2e4a39e 475 return
4c4b4cd2
PH
476 (strncmp (field_name, target, len) == 0
477 && (field_name[len] == '\0'
478 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
479 && strcmp (field_name + strlen (field_name) - 6,
480 "___XVN") != 0)));
14f9c5c9
AS
481}
482
483
872c8b51
JB
484/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
485 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
486 and return its index. This function also handles fields whose name
487 have ___ suffixes because the compiler sometimes alters their name
488 by adding such a suffix to represent fields with certain constraints.
489 If the field could not be found, return a negative number if
490 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
491
492int
493ada_get_field_index (const struct type *type, const char *field_name,
494 int maybe_missing)
495{
496 int fieldno;
872c8b51
JB
497 struct type *struct_type = check_typedef ((struct type *) type);
498
499 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
500 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
501 return fieldno;
502
503 if (!maybe_missing)
323e0a4a 504 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 505 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
506
507 return -1;
508}
509
510/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
511
512int
d2e4a39e 513ada_name_prefix_len (const char *name)
14f9c5c9
AS
514{
515 if (name == NULL)
516 return 0;
d2e4a39e 517 else
14f9c5c9 518 {
d2e4a39e 519 const char *p = strstr (name, "___");
5b4ee69b 520
14f9c5c9 521 if (p == NULL)
4c4b4cd2 522 return strlen (name);
14f9c5c9 523 else
4c4b4cd2 524 return p - name;
14f9c5c9
AS
525 }
526}
527
4c4b4cd2
PH
528/* Return non-zero if SUFFIX is a suffix of STR.
529 Return zero if STR is null. */
530
14f9c5c9 531static int
d2e4a39e 532is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
533{
534 int len1, len2;
5b4ee69b 535
14f9c5c9
AS
536 if (str == NULL)
537 return 0;
538 len1 = strlen (str);
539 len2 = strlen (suffix);
4c4b4cd2 540 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
541}
542
4c4b4cd2
PH
543/* The contents of value VAL, treated as a value of type TYPE. The
544 result is an lval in memory if VAL is. */
14f9c5c9 545
d2e4a39e 546static struct value *
4c4b4cd2 547coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 548{
61ee279c 549 type = ada_check_typedef (type);
df407dfe 550 if (value_type (val) == type)
4c4b4cd2 551 return val;
d2e4a39e 552 else
14f9c5c9 553 {
4c4b4cd2
PH
554 struct value *result;
555
556 /* Make sure that the object size is not unreasonable before
557 trying to allocate some memory for it. */
714e53ab 558 check_size (type);
4c4b4cd2 559
41e8491f
JK
560 if (value_lazy (val)
561 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
562 result = allocate_value_lazy (type);
563 else
564 {
565 result = allocate_value (type);
566 memcpy (value_contents_raw (result), value_contents (val),
567 TYPE_LENGTH (type));
568 }
74bcbdf3 569 set_value_component_location (result, val);
9bbda503
AC
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
42ae5230 572 set_value_address (result, value_address (val));
14f9c5c9
AS
573 return result;
574 }
575}
576
fc1a4b47
AC
577static const gdb_byte *
578cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
579{
580 if (valaddr == NULL)
581 return NULL;
582 else
583 return valaddr + offset;
584}
585
586static CORE_ADDR
ebf56fd3 587cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
588{
589 if (address == 0)
590 return 0;
d2e4a39e 591 else
14f9c5c9
AS
592 return address + offset;
593}
594
4c4b4cd2
PH
595/* Issue a warning (as for the definition of warning in utils.c, but
596 with exactly one argument rather than ...), unless the limit on the
597 number of warnings has passed during the evaluation of the current
598 expression. */
a2249542 599
77109804
AC
600/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
601 provided by "complaint". */
a0b31db1 602static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 603
14f9c5c9 604static void
a2249542 605lim_warning (const char *format, ...)
14f9c5c9 606{
a2249542 607 va_list args;
a2249542 608
5b4ee69b 609 va_start (args, format);
4c4b4cd2
PH
610 warnings_issued += 1;
611 if (warnings_issued <= warning_limit)
a2249542
MK
612 vwarning (format, args);
613
614 va_end (args);
4c4b4cd2
PH
615}
616
714e53ab
PH
617/* Issue an error if the size of an object of type T is unreasonable,
618 i.e. if it would be a bad idea to allocate a value of this type in
619 GDB. */
620
621static void
622check_size (const struct type *type)
623{
624 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 625 error (_("object size is larger than varsize-limit"));
714e53ab
PH
626}
627
0963b4bd 628/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 629static LONGEST
c3e5cd34 630max_of_size (int size)
4c4b4cd2 631{
76a01679 632 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 633
76a01679 634 return top_bit | (top_bit - 1);
4c4b4cd2
PH
635}
636
0963b4bd 637/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 638static LONGEST
c3e5cd34 639min_of_size (int size)
4c4b4cd2 640{
c3e5cd34 641 return -max_of_size (size) - 1;
4c4b4cd2
PH
642}
643
0963b4bd 644/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 645static ULONGEST
c3e5cd34 646umax_of_size (int size)
4c4b4cd2 647{
76a01679 648 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 649
76a01679 650 return top_bit | (top_bit - 1);
4c4b4cd2
PH
651}
652
0963b4bd 653/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
654static LONGEST
655max_of_type (struct type *t)
4c4b4cd2 656{
c3e5cd34
PH
657 if (TYPE_UNSIGNED (t))
658 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
659 else
660 return max_of_size (TYPE_LENGTH (t));
661}
662
0963b4bd 663/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
664static LONGEST
665min_of_type (struct type *t)
666{
667 if (TYPE_UNSIGNED (t))
668 return 0;
669 else
670 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
671}
672
673/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
674LONGEST
675ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 676{
76a01679 677 switch (TYPE_CODE (type))
4c4b4cd2
PH
678 {
679 case TYPE_CODE_RANGE:
690cc4eb 680 return TYPE_HIGH_BOUND (type);
4c4b4cd2 681 case TYPE_CODE_ENUM:
690cc4eb
PH
682 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
683 case TYPE_CODE_BOOL:
684 return 1;
685 case TYPE_CODE_CHAR:
76a01679 686 case TYPE_CODE_INT:
690cc4eb 687 return max_of_type (type);
4c4b4cd2 688 default:
43bbcdc2 689 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
690 }
691}
692
693/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
694LONGEST
695ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 696{
76a01679 697 switch (TYPE_CODE (type))
4c4b4cd2
PH
698 {
699 case TYPE_CODE_RANGE:
690cc4eb 700 return TYPE_LOW_BOUND (type);
4c4b4cd2 701 case TYPE_CODE_ENUM:
690cc4eb
PH
702 return TYPE_FIELD_BITPOS (type, 0);
703 case TYPE_CODE_BOOL:
704 return 0;
705 case TYPE_CODE_CHAR:
76a01679 706 case TYPE_CODE_INT:
690cc4eb 707 return min_of_type (type);
4c4b4cd2 708 default:
43bbcdc2 709 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
710 }
711}
712
713/* The identity on non-range types. For range types, the underlying
76a01679 714 non-range scalar type. */
4c4b4cd2
PH
715
716static struct type *
717base_type (struct type *type)
718{
719 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
720 {
76a01679
JB
721 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
722 return type;
4c4b4cd2
PH
723 type = TYPE_TARGET_TYPE (type);
724 }
725 return type;
14f9c5c9 726}
4c4b4cd2 727\f
76a01679 728
4c4b4cd2 729 /* Language Selection */
14f9c5c9
AS
730
731/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 732 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 733
14f9c5c9 734enum language
ccefe4c4 735ada_update_initial_language (enum language lang)
14f9c5c9 736{
d2e4a39e 737 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
738 (struct objfile *) NULL) != NULL)
739 return language_ada;
14f9c5c9
AS
740
741 return lang;
742}
96d887e8
PH
743
744/* If the main procedure is written in Ada, then return its name.
745 The result is good until the next call. Return NULL if the main
746 procedure doesn't appear to be in Ada. */
747
748char *
749ada_main_name (void)
750{
751 struct minimal_symbol *msym;
f9bc20b9 752 static char *main_program_name = NULL;
6c038f32 753
96d887e8
PH
754 /* For Ada, the name of the main procedure is stored in a specific
755 string constant, generated by the binder. Look for that symbol,
756 extract its address, and then read that string. If we didn't find
757 that string, then most probably the main procedure is not written
758 in Ada. */
759 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
760
761 if (msym != NULL)
762 {
f9bc20b9
JB
763 CORE_ADDR main_program_name_addr;
764 int err_code;
765
96d887e8
PH
766 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
767 if (main_program_name_addr == 0)
323e0a4a 768 error (_("Invalid address for Ada main program name."));
96d887e8 769
f9bc20b9
JB
770 xfree (main_program_name);
771 target_read_string (main_program_name_addr, &main_program_name,
772 1024, &err_code);
773
774 if (err_code != 0)
775 return NULL;
96d887e8
PH
776 return main_program_name;
777 }
778
779 /* The main procedure doesn't seem to be in Ada. */
780 return NULL;
781}
14f9c5c9 782\f
4c4b4cd2 783 /* Symbols */
d2e4a39e 784
4c4b4cd2
PH
785/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
786 of NULLs. */
14f9c5c9 787
d2e4a39e
AS
788const struct ada_opname_map ada_opname_table[] = {
789 {"Oadd", "\"+\"", BINOP_ADD},
790 {"Osubtract", "\"-\"", BINOP_SUB},
791 {"Omultiply", "\"*\"", BINOP_MUL},
792 {"Odivide", "\"/\"", BINOP_DIV},
793 {"Omod", "\"mod\"", BINOP_MOD},
794 {"Orem", "\"rem\"", BINOP_REM},
795 {"Oexpon", "\"**\"", BINOP_EXP},
796 {"Olt", "\"<\"", BINOP_LESS},
797 {"Ole", "\"<=\"", BINOP_LEQ},
798 {"Ogt", "\">\"", BINOP_GTR},
799 {"Oge", "\">=\"", BINOP_GEQ},
800 {"Oeq", "\"=\"", BINOP_EQUAL},
801 {"One", "\"/=\"", BINOP_NOTEQUAL},
802 {"Oand", "\"and\"", BINOP_BITWISE_AND},
803 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
804 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
805 {"Oconcat", "\"&\"", BINOP_CONCAT},
806 {"Oabs", "\"abs\"", UNOP_ABS},
807 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
808 {"Oadd", "\"+\"", UNOP_PLUS},
809 {"Osubtract", "\"-\"", UNOP_NEG},
810 {NULL, NULL}
14f9c5c9
AS
811};
812
4c4b4cd2
PH
813/* The "encoded" form of DECODED, according to GNAT conventions.
814 The result is valid until the next call to ada_encode. */
815
14f9c5c9 816char *
4c4b4cd2 817ada_encode (const char *decoded)
14f9c5c9 818{
4c4b4cd2
PH
819 static char *encoding_buffer = NULL;
820 static size_t encoding_buffer_size = 0;
d2e4a39e 821 const char *p;
14f9c5c9 822 int k;
d2e4a39e 823
4c4b4cd2 824 if (decoded == NULL)
14f9c5c9
AS
825 return NULL;
826
4c4b4cd2
PH
827 GROW_VECT (encoding_buffer, encoding_buffer_size,
828 2 * strlen (decoded) + 10);
14f9c5c9
AS
829
830 k = 0;
4c4b4cd2 831 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 832 {
cdc7bb92 833 if (*p == '.')
4c4b4cd2
PH
834 {
835 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
836 k += 2;
837 }
14f9c5c9 838 else if (*p == '"')
4c4b4cd2
PH
839 {
840 const struct ada_opname_map *mapping;
841
842 for (mapping = ada_opname_table;
1265e4aa
JB
843 mapping->encoded != NULL
844 && strncmp (mapping->decoded, p,
845 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
846 ;
847 if (mapping->encoded == NULL)
323e0a4a 848 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
849 strcpy (encoding_buffer + k, mapping->encoded);
850 k += strlen (mapping->encoded);
851 break;
852 }
d2e4a39e 853 else
4c4b4cd2
PH
854 {
855 encoding_buffer[k] = *p;
856 k += 1;
857 }
14f9c5c9
AS
858 }
859
4c4b4cd2
PH
860 encoding_buffer[k] = '\0';
861 return encoding_buffer;
14f9c5c9
AS
862}
863
864/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
865 quotes, unfolded, but with the quotes stripped away. Result good
866 to next call. */
867
d2e4a39e
AS
868char *
869ada_fold_name (const char *name)
14f9c5c9 870{
d2e4a39e 871 static char *fold_buffer = NULL;
14f9c5c9
AS
872 static size_t fold_buffer_size = 0;
873
874 int len = strlen (name);
d2e4a39e 875 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
876
877 if (name[0] == '\'')
878 {
d2e4a39e
AS
879 strncpy (fold_buffer, name + 1, len - 2);
880 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
881 }
882 else
883 {
884 int i;
5b4ee69b 885
14f9c5c9 886 for (i = 0; i <= len; i += 1)
4c4b4cd2 887 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
888 }
889
890 return fold_buffer;
891}
892
529cad9c
PH
893/* Return nonzero if C is either a digit or a lowercase alphabet character. */
894
895static int
896is_lower_alphanum (const char c)
897{
898 return (isdigit (c) || (isalpha (c) && islower (c)));
899}
900
29480c32
JB
901/* Remove either of these suffixes:
902 . .{DIGIT}+
903 . ${DIGIT}+
904 . ___{DIGIT}+
905 . __{DIGIT}+.
906 These are suffixes introduced by the compiler for entities such as
907 nested subprogram for instance, in order to avoid name clashes.
908 They do not serve any purpose for the debugger. */
909
910static void
911ada_remove_trailing_digits (const char *encoded, int *len)
912{
913 if (*len > 1 && isdigit (encoded[*len - 1]))
914 {
915 int i = *len - 2;
5b4ee69b 916
29480c32
JB
917 while (i > 0 && isdigit (encoded[i]))
918 i--;
919 if (i >= 0 && encoded[i] == '.')
920 *len = i;
921 else if (i >= 0 && encoded[i] == '$')
922 *len = i;
923 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
924 *len = i - 2;
925 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
926 *len = i - 1;
927 }
928}
929
930/* Remove the suffix introduced by the compiler for protected object
931 subprograms. */
932
933static void
934ada_remove_po_subprogram_suffix (const char *encoded, int *len)
935{
936 /* Remove trailing N. */
937
938 /* Protected entry subprograms are broken into two
939 separate subprograms: The first one is unprotected, and has
940 a 'N' suffix; the second is the protected version, and has
0963b4bd 941 the 'P' suffix. The second calls the first one after handling
29480c32
JB
942 the protection. Since the P subprograms are internally generated,
943 we leave these names undecoded, giving the user a clue that this
944 entity is internal. */
945
946 if (*len > 1
947 && encoded[*len - 1] == 'N'
948 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
949 *len = *len - 1;
950}
951
69fadcdf
JB
952/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
953
954static void
955ada_remove_Xbn_suffix (const char *encoded, int *len)
956{
957 int i = *len - 1;
958
959 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
960 i--;
961
962 if (encoded[i] != 'X')
963 return;
964
965 if (i == 0)
966 return;
967
968 if (isalnum (encoded[i-1]))
969 *len = i;
970}
971
29480c32
JB
972/* If ENCODED follows the GNAT entity encoding conventions, then return
973 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
974 replaced by ENCODED.
14f9c5c9 975
4c4b4cd2 976 The resulting string is valid until the next call of ada_decode.
29480c32 977 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
978 is returned. */
979
980const char *
981ada_decode (const char *encoded)
14f9c5c9
AS
982{
983 int i, j;
984 int len0;
d2e4a39e 985 const char *p;
4c4b4cd2 986 char *decoded;
14f9c5c9 987 int at_start_name;
4c4b4cd2
PH
988 static char *decoding_buffer = NULL;
989 static size_t decoding_buffer_size = 0;
d2e4a39e 990
29480c32
JB
991 /* The name of the Ada main procedure starts with "_ada_".
992 This prefix is not part of the decoded name, so skip this part
993 if we see this prefix. */
4c4b4cd2
PH
994 if (strncmp (encoded, "_ada_", 5) == 0)
995 encoded += 5;
14f9c5c9 996
29480c32
JB
997 /* If the name starts with '_', then it is not a properly encoded
998 name, so do not attempt to decode it. Similarly, if the name
999 starts with '<', the name should not be decoded. */
4c4b4cd2 1000 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1001 goto Suppress;
1002
4c4b4cd2 1003 len0 = strlen (encoded);
4c4b4cd2 1004
29480c32
JB
1005 ada_remove_trailing_digits (encoded, &len0);
1006 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1007
4c4b4cd2
PH
1008 /* Remove the ___X.* suffix if present. Do not forget to verify that
1009 the suffix is located before the current "end" of ENCODED. We want
1010 to avoid re-matching parts of ENCODED that have previously been
1011 marked as discarded (by decrementing LEN0). */
1012 p = strstr (encoded, "___");
1013 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1014 {
1015 if (p[3] == 'X')
4c4b4cd2 1016 len0 = p - encoded;
14f9c5c9 1017 else
4c4b4cd2 1018 goto Suppress;
14f9c5c9 1019 }
4c4b4cd2 1020
29480c32
JB
1021 /* Remove any trailing TKB suffix. It tells us that this symbol
1022 is for the body of a task, but that information does not actually
1023 appear in the decoded name. */
1024
4c4b4cd2 1025 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1026 len0 -= 3;
76a01679 1027
a10967fa
JB
1028 /* Remove any trailing TB suffix. The TB suffix is slightly different
1029 from the TKB suffix because it is used for non-anonymous task
1030 bodies. */
1031
1032 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1033 len0 -= 2;
1034
29480c32
JB
1035 /* Remove trailing "B" suffixes. */
1036 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1037
4c4b4cd2 1038 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1039 len0 -= 1;
1040
4c4b4cd2 1041 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1042
4c4b4cd2
PH
1043 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1044 decoded = decoding_buffer;
14f9c5c9 1045
29480c32
JB
1046 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1047
4c4b4cd2 1048 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1049 {
4c4b4cd2
PH
1050 i = len0 - 2;
1051 while ((i >= 0 && isdigit (encoded[i]))
1052 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1053 i -= 1;
1054 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1055 len0 = i - 1;
1056 else if (encoded[i] == '$')
1057 len0 = i;
d2e4a39e 1058 }
14f9c5c9 1059
29480c32
JB
1060 /* The first few characters that are not alphabetic are not part
1061 of any encoding we use, so we can copy them over verbatim. */
1062
4c4b4cd2
PH
1063 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1064 decoded[j] = encoded[i];
14f9c5c9
AS
1065
1066 at_start_name = 1;
1067 while (i < len0)
1068 {
29480c32 1069 /* Is this a symbol function? */
4c4b4cd2
PH
1070 if (at_start_name && encoded[i] == 'O')
1071 {
1072 int k;
5b4ee69b 1073
4c4b4cd2
PH
1074 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1075 {
1076 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1077 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1078 op_len - 1) == 0)
1079 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1080 {
1081 strcpy (decoded + j, ada_opname_table[k].decoded);
1082 at_start_name = 0;
1083 i += op_len;
1084 j += strlen (ada_opname_table[k].decoded);
1085 break;
1086 }
1087 }
1088 if (ada_opname_table[k].encoded != NULL)
1089 continue;
1090 }
14f9c5c9
AS
1091 at_start_name = 0;
1092
529cad9c
PH
1093 /* Replace "TK__" with "__", which will eventually be translated
1094 into "." (just below). */
1095
4c4b4cd2
PH
1096 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1097 i += 2;
529cad9c 1098
29480c32
JB
1099 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1100 be translated into "." (just below). These are internal names
1101 generated for anonymous blocks inside which our symbol is nested. */
1102
1103 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1104 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1105 && isdigit (encoded [i+4]))
1106 {
1107 int k = i + 5;
1108
1109 while (k < len0 && isdigit (encoded[k]))
1110 k++; /* Skip any extra digit. */
1111
1112 /* Double-check that the "__B_{DIGITS}+" sequence we found
1113 is indeed followed by "__". */
1114 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1115 i = k;
1116 }
1117
529cad9c
PH
1118 /* Remove _E{DIGITS}+[sb] */
1119
1120 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1121 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1122 one implements the actual entry code, and has a suffix following
1123 the convention above; the second one implements the barrier and
1124 uses the same convention as above, except that the 'E' is replaced
1125 by a 'B'.
1126
1127 Just as above, we do not decode the name of barrier functions
1128 to give the user a clue that the code he is debugging has been
1129 internally generated. */
1130
1131 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1132 && isdigit (encoded[i+2]))
1133 {
1134 int k = i + 3;
1135
1136 while (k < len0 && isdigit (encoded[k]))
1137 k++;
1138
1139 if (k < len0
1140 && (encoded[k] == 'b' || encoded[k] == 's'))
1141 {
1142 k++;
1143 /* Just as an extra precaution, make sure that if this
1144 suffix is followed by anything else, it is a '_'.
1145 Otherwise, we matched this sequence by accident. */
1146 if (k == len0
1147 || (k < len0 && encoded[k] == '_'))
1148 i = k;
1149 }
1150 }
1151
1152 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1153 the GNAT front-end in protected object subprograms. */
1154
1155 if (i < len0 + 3
1156 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1157 {
1158 /* Backtrack a bit up until we reach either the begining of
1159 the encoded name, or "__". Make sure that we only find
1160 digits or lowercase characters. */
1161 const char *ptr = encoded + i - 1;
1162
1163 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1164 ptr--;
1165 if (ptr < encoded
1166 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1167 i++;
1168 }
1169
4c4b4cd2
PH
1170 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1171 {
29480c32
JB
1172 /* This is a X[bn]* sequence not separated from the previous
1173 part of the name with a non-alpha-numeric character (in other
1174 words, immediately following an alpha-numeric character), then
1175 verify that it is placed at the end of the encoded name. If
1176 not, then the encoding is not valid and we should abort the
1177 decoding. Otherwise, just skip it, it is used in body-nested
1178 package names. */
4c4b4cd2
PH
1179 do
1180 i += 1;
1181 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1182 if (i < len0)
1183 goto Suppress;
1184 }
cdc7bb92 1185 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1186 {
29480c32 1187 /* Replace '__' by '.'. */
4c4b4cd2
PH
1188 decoded[j] = '.';
1189 at_start_name = 1;
1190 i += 2;
1191 j += 1;
1192 }
14f9c5c9 1193 else
4c4b4cd2 1194 {
29480c32
JB
1195 /* It's a character part of the decoded name, so just copy it
1196 over. */
4c4b4cd2
PH
1197 decoded[j] = encoded[i];
1198 i += 1;
1199 j += 1;
1200 }
14f9c5c9 1201 }
4c4b4cd2 1202 decoded[j] = '\000';
14f9c5c9 1203
29480c32
JB
1204 /* Decoded names should never contain any uppercase character.
1205 Double-check this, and abort the decoding if we find one. */
1206
4c4b4cd2
PH
1207 for (i = 0; decoded[i] != '\0'; i += 1)
1208 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1209 goto Suppress;
1210
4c4b4cd2
PH
1211 if (strcmp (decoded, encoded) == 0)
1212 return encoded;
1213 else
1214 return decoded;
14f9c5c9
AS
1215
1216Suppress:
4c4b4cd2
PH
1217 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1218 decoded = decoding_buffer;
1219 if (encoded[0] == '<')
1220 strcpy (decoded, encoded);
14f9c5c9 1221 else
88c15c34 1222 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1223 return decoded;
1224
1225}
1226
1227/* Table for keeping permanent unique copies of decoded names. Once
1228 allocated, names in this table are never released. While this is a
1229 storage leak, it should not be significant unless there are massive
1230 changes in the set of decoded names in successive versions of a
1231 symbol table loaded during a single session. */
1232static struct htab *decoded_names_store;
1233
1234/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1235 in the language-specific part of GSYMBOL, if it has not been
1236 previously computed. Tries to save the decoded name in the same
1237 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1238 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1239 GSYMBOL).
4c4b4cd2
PH
1240 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1241 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1242 when a decoded name is cached in it. */
4c4b4cd2 1243
76a01679
JB
1244char *
1245ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1246{
76a01679 1247 char **resultp =
afa16725 1248 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1249
4c4b4cd2
PH
1250 if (*resultp == NULL)
1251 {
1252 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1253
714835d5 1254 if (gsymbol->obj_section != NULL)
76a01679 1255 {
714835d5 1256 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1257
714835d5
UW
1258 *resultp = obsavestring (decoded, strlen (decoded),
1259 &objf->objfile_obstack);
76a01679 1260 }
4c4b4cd2 1261 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1262 case, we put the result on the heap. Since we only decode
1263 when needed, we hope this usually does not cause a
1264 significant memory leak (FIXME). */
4c4b4cd2 1265 if (*resultp == NULL)
76a01679
JB
1266 {
1267 char **slot = (char **) htab_find_slot (decoded_names_store,
1268 decoded, INSERT);
5b4ee69b 1269
76a01679
JB
1270 if (*slot == NULL)
1271 *slot = xstrdup (decoded);
1272 *resultp = *slot;
1273 }
4c4b4cd2 1274 }
14f9c5c9 1275
4c4b4cd2
PH
1276 return *resultp;
1277}
76a01679 1278
2c0b251b 1279static char *
76a01679 1280ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1281{
1282 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1283}
1284
1285/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1286 suffixes that encode debugging information or leading _ada_ on
1287 SYM_NAME (see is_name_suffix commentary for the debugging
1288 information that is ignored). If WILD, then NAME need only match a
1289 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1290 either argument is NULL. */
14f9c5c9 1291
2c0b251b 1292static int
40658b94 1293match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1294{
1295 if (sym_name == NULL || name == NULL)
1296 return 0;
1297 else if (wild)
73589123 1298 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1299 else
1300 {
1301 int len_name = strlen (name);
5b4ee69b 1302
4c4b4cd2
PH
1303 return (strncmp (sym_name, name, len_name) == 0
1304 && is_name_suffix (sym_name + len_name))
1305 || (strncmp (sym_name, "_ada_", 5) == 0
1306 && strncmp (sym_name + 5, name, len_name) == 0
1307 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1308 }
14f9c5c9 1309}
14f9c5c9 1310\f
d2e4a39e 1311
4c4b4cd2 1312 /* Arrays */
14f9c5c9 1313
28c85d6c
JB
1314/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1315 generated by the GNAT compiler to describe the index type used
1316 for each dimension of an array, check whether it follows the latest
1317 known encoding. If not, fix it up to conform to the latest encoding.
1318 Otherwise, do nothing. This function also does nothing if
1319 INDEX_DESC_TYPE is NULL.
1320
1321 The GNAT encoding used to describle the array index type evolved a bit.
1322 Initially, the information would be provided through the name of each
1323 field of the structure type only, while the type of these fields was
1324 described as unspecified and irrelevant. The debugger was then expected
1325 to perform a global type lookup using the name of that field in order
1326 to get access to the full index type description. Because these global
1327 lookups can be very expensive, the encoding was later enhanced to make
1328 the global lookup unnecessary by defining the field type as being
1329 the full index type description.
1330
1331 The purpose of this routine is to allow us to support older versions
1332 of the compiler by detecting the use of the older encoding, and by
1333 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1334 we essentially replace each field's meaningless type by the associated
1335 index subtype). */
1336
1337void
1338ada_fixup_array_indexes_type (struct type *index_desc_type)
1339{
1340 int i;
1341
1342 if (index_desc_type == NULL)
1343 return;
1344 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1345
1346 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1347 to check one field only, no need to check them all). If not, return
1348 now.
1349
1350 If our INDEX_DESC_TYPE was generated using the older encoding,
1351 the field type should be a meaningless integer type whose name
1352 is not equal to the field name. */
1353 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1354 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1355 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1356 return;
1357
1358 /* Fixup each field of INDEX_DESC_TYPE. */
1359 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1360 {
1361 char *name = TYPE_FIELD_NAME (index_desc_type, i);
1362 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1363
1364 if (raw_type)
1365 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1366 }
1367}
1368
4c4b4cd2 1369/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1370
d2e4a39e
AS
1371static char *bound_name[] = {
1372 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1373 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1374};
1375
1376/* Maximum number of array dimensions we are prepared to handle. */
1377
4c4b4cd2 1378#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1379
14f9c5c9 1380
4c4b4cd2
PH
1381/* The desc_* routines return primitive portions of array descriptors
1382 (fat pointers). */
14f9c5c9
AS
1383
1384/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1385 level of indirection, if needed. */
1386
d2e4a39e
AS
1387static struct type *
1388desc_base_type (struct type *type)
14f9c5c9
AS
1389{
1390 if (type == NULL)
1391 return NULL;
61ee279c 1392 type = ada_check_typedef (type);
720d1a40
JB
1393 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1394 type = ada_typedef_target_type (type);
1395
1265e4aa
JB
1396 if (type != NULL
1397 && (TYPE_CODE (type) == TYPE_CODE_PTR
1398 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1399 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1400 else
1401 return type;
1402}
1403
4c4b4cd2
PH
1404/* True iff TYPE indicates a "thin" array pointer type. */
1405
14f9c5c9 1406static int
d2e4a39e 1407is_thin_pntr (struct type *type)
14f9c5c9 1408{
d2e4a39e 1409 return
14f9c5c9
AS
1410 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1411 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1412}
1413
4c4b4cd2
PH
1414/* The descriptor type for thin pointer type TYPE. */
1415
d2e4a39e
AS
1416static struct type *
1417thin_descriptor_type (struct type *type)
14f9c5c9 1418{
d2e4a39e 1419 struct type *base_type = desc_base_type (type);
5b4ee69b 1420
14f9c5c9
AS
1421 if (base_type == NULL)
1422 return NULL;
1423 if (is_suffix (ada_type_name (base_type), "___XVE"))
1424 return base_type;
d2e4a39e 1425 else
14f9c5c9 1426 {
d2e4a39e 1427 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1428
14f9c5c9 1429 if (alt_type == NULL)
4c4b4cd2 1430 return base_type;
14f9c5c9 1431 else
4c4b4cd2 1432 return alt_type;
14f9c5c9
AS
1433 }
1434}
1435
4c4b4cd2
PH
1436/* A pointer to the array data for thin-pointer value VAL. */
1437
d2e4a39e
AS
1438static struct value *
1439thin_data_pntr (struct value *val)
14f9c5c9 1440{
df407dfe 1441 struct type *type = value_type (val);
556bdfd4 1442 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1443
556bdfd4
UW
1444 data_type = lookup_pointer_type (data_type);
1445
14f9c5c9 1446 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1447 return value_cast (data_type, value_copy (val));
d2e4a39e 1448 else
42ae5230 1449 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1450}
1451
4c4b4cd2
PH
1452/* True iff TYPE indicates a "thick" array pointer type. */
1453
14f9c5c9 1454static int
d2e4a39e 1455is_thick_pntr (struct type *type)
14f9c5c9
AS
1456{
1457 type = desc_base_type (type);
1458 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1459 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1460}
1461
4c4b4cd2
PH
1462/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1463 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1464
d2e4a39e
AS
1465static struct type *
1466desc_bounds_type (struct type *type)
14f9c5c9 1467{
d2e4a39e 1468 struct type *r;
14f9c5c9
AS
1469
1470 type = desc_base_type (type);
1471
1472 if (type == NULL)
1473 return NULL;
1474 else if (is_thin_pntr (type))
1475 {
1476 type = thin_descriptor_type (type);
1477 if (type == NULL)
4c4b4cd2 1478 return NULL;
14f9c5c9
AS
1479 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1480 if (r != NULL)
61ee279c 1481 return ada_check_typedef (r);
14f9c5c9
AS
1482 }
1483 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1484 {
1485 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1486 if (r != NULL)
61ee279c 1487 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1488 }
1489 return NULL;
1490}
1491
1492/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1493 one, a pointer to its bounds data. Otherwise NULL. */
1494
d2e4a39e
AS
1495static struct value *
1496desc_bounds (struct value *arr)
14f9c5c9 1497{
df407dfe 1498 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1499
d2e4a39e 1500 if (is_thin_pntr (type))
14f9c5c9 1501 {
d2e4a39e 1502 struct type *bounds_type =
4c4b4cd2 1503 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1504 LONGEST addr;
1505
4cdfadb1 1506 if (bounds_type == NULL)
323e0a4a 1507 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1508
1509 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1510 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1511 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1512 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1513 addr = value_as_long (arr);
d2e4a39e 1514 else
42ae5230 1515 addr = value_address (arr);
14f9c5c9 1516
d2e4a39e 1517 return
4c4b4cd2
PH
1518 value_from_longest (lookup_pointer_type (bounds_type),
1519 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1520 }
1521
1522 else if (is_thick_pntr (type))
05e522ef
JB
1523 {
1524 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1525 _("Bad GNAT array descriptor"));
1526 struct type *p_bounds_type = value_type (p_bounds);
1527
1528 if (p_bounds_type
1529 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1530 {
1531 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1532
1533 if (TYPE_STUB (target_type))
1534 p_bounds = value_cast (lookup_pointer_type
1535 (ada_check_typedef (target_type)),
1536 p_bounds);
1537 }
1538 else
1539 error (_("Bad GNAT array descriptor"));
1540
1541 return p_bounds;
1542 }
14f9c5c9
AS
1543 else
1544 return NULL;
1545}
1546
4c4b4cd2
PH
1547/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1548 position of the field containing the address of the bounds data. */
1549
14f9c5c9 1550static int
d2e4a39e 1551fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1552{
1553 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1554}
1555
1556/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1557 size of the field containing the address of the bounds data. */
1558
14f9c5c9 1559static int
d2e4a39e 1560fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1561{
1562 type = desc_base_type (type);
1563
d2e4a39e 1564 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1565 return TYPE_FIELD_BITSIZE (type, 1);
1566 else
61ee279c 1567 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1568}
1569
4c4b4cd2 1570/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1571 pointer to one, the type of its array data (a array-with-no-bounds type);
1572 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1573 data. */
4c4b4cd2 1574
d2e4a39e 1575static struct type *
556bdfd4 1576desc_data_target_type (struct type *type)
14f9c5c9
AS
1577{
1578 type = desc_base_type (type);
1579
4c4b4cd2 1580 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1581 if (is_thin_pntr (type))
556bdfd4 1582 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1583 else if (is_thick_pntr (type))
556bdfd4
UW
1584 {
1585 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1586
1587 if (data_type
1588 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1589 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1590 }
1591
1592 return NULL;
14f9c5c9
AS
1593}
1594
1595/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1596 its array data. */
4c4b4cd2 1597
d2e4a39e
AS
1598static struct value *
1599desc_data (struct value *arr)
14f9c5c9 1600{
df407dfe 1601 struct type *type = value_type (arr);
5b4ee69b 1602
14f9c5c9
AS
1603 if (is_thin_pntr (type))
1604 return thin_data_pntr (arr);
1605 else if (is_thick_pntr (type))
d2e4a39e 1606 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1607 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1608 else
1609 return NULL;
1610}
1611
1612
1613/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1614 position of the field containing the address of the data. */
1615
14f9c5c9 1616static int
d2e4a39e 1617fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1618{
1619 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1620}
1621
1622/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1623 size of the field containing the address of the data. */
1624
14f9c5c9 1625static int
d2e4a39e 1626fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1627{
1628 type = desc_base_type (type);
1629
1630 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1631 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1632 else
14f9c5c9
AS
1633 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1634}
1635
4c4b4cd2 1636/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1637 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1638 bound, if WHICH is 1. The first bound is I=1. */
1639
d2e4a39e
AS
1640static struct value *
1641desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1642{
d2e4a39e 1643 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1644 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1645}
1646
1647/* If BOUNDS is an array-bounds structure type, return the bit position
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
14f9c5c9 1651static int
d2e4a39e 1652desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1653{
d2e4a39e 1654 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1655}
1656
1657/* If BOUNDS is an array-bounds structure type, return the bit field size
1658 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1659 bound, if WHICH is 1. The first bound is I=1. */
1660
76a01679 1661static int
d2e4a39e 1662desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1663{
1664 type = desc_base_type (type);
1665
d2e4a39e
AS
1666 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1667 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1668 else
1669 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1670}
1671
1672/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1673 Ith bound (numbering from 1). Otherwise, NULL. */
1674
d2e4a39e
AS
1675static struct type *
1676desc_index_type (struct type *type, int i)
14f9c5c9
AS
1677{
1678 type = desc_base_type (type);
1679
1680 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1681 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1682 else
14f9c5c9
AS
1683 return NULL;
1684}
1685
4c4b4cd2
PH
1686/* The number of index positions in the array-bounds type TYPE.
1687 Return 0 if TYPE is NULL. */
1688
14f9c5c9 1689static int
d2e4a39e 1690desc_arity (struct type *type)
14f9c5c9
AS
1691{
1692 type = desc_base_type (type);
1693
1694 if (type != NULL)
1695 return TYPE_NFIELDS (type) / 2;
1696 return 0;
1697}
1698
4c4b4cd2
PH
1699/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1700 an array descriptor type (representing an unconstrained array
1701 type). */
1702
76a01679
JB
1703static int
1704ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1705{
1706 if (type == NULL)
1707 return 0;
61ee279c 1708 type = ada_check_typedef (type);
4c4b4cd2 1709 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1710 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1711}
1712
52ce6436 1713/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1714 * to one. */
52ce6436 1715
2c0b251b 1716static int
52ce6436
PH
1717ada_is_array_type (struct type *type)
1718{
1719 while (type != NULL
1720 && (TYPE_CODE (type) == TYPE_CODE_PTR
1721 || TYPE_CODE (type) == TYPE_CODE_REF))
1722 type = TYPE_TARGET_TYPE (type);
1723 return ada_is_direct_array_type (type);
1724}
1725
4c4b4cd2 1726/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1727
14f9c5c9 1728int
4c4b4cd2 1729ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1730{
1731 if (type == NULL)
1732 return 0;
61ee279c 1733 type = ada_check_typedef (type);
14f9c5c9 1734 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1735 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1736 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1737 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1738}
1739
4c4b4cd2
PH
1740/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1741
14f9c5c9 1742int
4c4b4cd2 1743ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1744{
556bdfd4 1745 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1746
1747 if (type == NULL)
1748 return 0;
61ee279c 1749 type = ada_check_typedef (type);
556bdfd4
UW
1750 return (data_type != NULL
1751 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1752 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1753}
1754
1755/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1756 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1757 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1758 is still needed. */
1759
14f9c5c9 1760int
ebf56fd3 1761ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1762{
d2e4a39e 1763 return
14f9c5c9
AS
1764 type != NULL
1765 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1766 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1767 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1768 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1769}
1770
1771
4c4b4cd2 1772/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1773 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1774 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1775 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1776 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1777 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1778 a descriptor. */
d2e4a39e
AS
1779struct type *
1780ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1781{
ad82864c
JB
1782 if (ada_is_constrained_packed_array_type (value_type (arr)))
1783 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1784
df407dfe
AC
1785 if (!ada_is_array_descriptor_type (value_type (arr)))
1786 return value_type (arr);
d2e4a39e
AS
1787
1788 if (!bounds)
ad82864c
JB
1789 {
1790 struct type *array_type =
1791 ada_check_typedef (desc_data_target_type (value_type (arr)));
1792
1793 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1794 TYPE_FIELD_BITSIZE (array_type, 0) =
1795 decode_packed_array_bitsize (value_type (arr));
1796
1797 return array_type;
1798 }
14f9c5c9
AS
1799 else
1800 {
d2e4a39e 1801 struct type *elt_type;
14f9c5c9 1802 int arity;
d2e4a39e 1803 struct value *descriptor;
14f9c5c9 1804
df407dfe
AC
1805 elt_type = ada_array_element_type (value_type (arr), -1);
1806 arity = ada_array_arity (value_type (arr));
14f9c5c9 1807
d2e4a39e 1808 if (elt_type == NULL || arity == 0)
df407dfe 1809 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1810
1811 descriptor = desc_bounds (arr);
d2e4a39e 1812 if (value_as_long (descriptor) == 0)
4c4b4cd2 1813 return NULL;
d2e4a39e 1814 while (arity > 0)
4c4b4cd2 1815 {
e9bb382b
UW
1816 struct type *range_type = alloc_type_copy (value_type (arr));
1817 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1818 struct value *low = desc_one_bound (descriptor, arity, 0);
1819 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1820
5b4ee69b 1821 arity -= 1;
df407dfe 1822 create_range_type (range_type, value_type (low),
529cad9c
PH
1823 longest_to_int (value_as_long (low)),
1824 longest_to_int (value_as_long (high)));
4c4b4cd2 1825 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1826
1827 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1828 {
1829 /* We need to store the element packed bitsize, as well as
1830 recompute the array size, because it was previously
1831 computed based on the unpacked element size. */
1832 LONGEST lo = value_as_long (low);
1833 LONGEST hi = value_as_long (high);
1834
1835 TYPE_FIELD_BITSIZE (elt_type, 0) =
1836 decode_packed_array_bitsize (value_type (arr));
1837 /* If the array has no element, then the size is already
1838 zero, and does not need to be recomputed. */
1839 if (lo < hi)
1840 {
1841 int array_bitsize =
1842 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1843
1844 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1845 }
1846 }
4c4b4cd2 1847 }
14f9c5c9
AS
1848
1849 return lookup_pointer_type (elt_type);
1850 }
1851}
1852
1853/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1854 Otherwise, returns either a standard GDB array with bounds set
1855 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1856 GDB array. Returns NULL if ARR is a null fat pointer. */
1857
d2e4a39e
AS
1858struct value *
1859ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1860{
df407dfe 1861 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1862 {
d2e4a39e 1863 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1864
14f9c5c9 1865 if (arrType == NULL)
4c4b4cd2 1866 return NULL;
14f9c5c9
AS
1867 return value_cast (arrType, value_copy (desc_data (arr)));
1868 }
ad82864c
JB
1869 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1870 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1871 else
1872 return arr;
1873}
1874
1875/* If ARR does not represent an array, returns ARR unchanged.
1876 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1877 be ARR itself if it already is in the proper form). */
1878
720d1a40 1879struct value *
d2e4a39e 1880ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1881{
df407dfe 1882 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1883 {
d2e4a39e 1884 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1885
14f9c5c9 1886 if (arrVal == NULL)
323e0a4a 1887 error (_("Bounds unavailable for null array pointer."));
529cad9c 1888 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1889 return value_ind (arrVal);
1890 }
ad82864c
JB
1891 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1892 return decode_constrained_packed_array (arr);
d2e4a39e 1893 else
14f9c5c9
AS
1894 return arr;
1895}
1896
1897/* If TYPE represents a GNAT array type, return it translated to an
1898 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1899 packing). For other types, is the identity. */
1900
d2e4a39e
AS
1901struct type *
1902ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1903{
ad82864c
JB
1904 if (ada_is_constrained_packed_array_type (type))
1905 return decode_constrained_packed_array_type (type);
17280b9f
UW
1906
1907 if (ada_is_array_descriptor_type (type))
556bdfd4 1908 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1909
1910 return type;
14f9c5c9
AS
1911}
1912
4c4b4cd2
PH
1913/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1914
ad82864c
JB
1915static int
1916ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1917{
1918 if (type == NULL)
1919 return 0;
4c4b4cd2 1920 type = desc_base_type (type);
61ee279c 1921 type = ada_check_typedef (type);
d2e4a39e 1922 return
14f9c5c9
AS
1923 ada_type_name (type) != NULL
1924 && strstr (ada_type_name (type), "___XP") != NULL;
1925}
1926
ad82864c
JB
1927/* Non-zero iff TYPE represents a standard GNAT constrained
1928 packed-array type. */
1929
1930int
1931ada_is_constrained_packed_array_type (struct type *type)
1932{
1933 return ada_is_packed_array_type (type)
1934 && !ada_is_array_descriptor_type (type);
1935}
1936
1937/* Non-zero iff TYPE represents an array descriptor for a
1938 unconstrained packed-array type. */
1939
1940static int
1941ada_is_unconstrained_packed_array_type (struct type *type)
1942{
1943 return ada_is_packed_array_type (type)
1944 && ada_is_array_descriptor_type (type);
1945}
1946
1947/* Given that TYPE encodes a packed array type (constrained or unconstrained),
1948 return the size of its elements in bits. */
1949
1950static long
1951decode_packed_array_bitsize (struct type *type)
1952{
720d1a40 1953 char *raw_name;
ad82864c
JB
1954 char *tail;
1955 long bits;
1956
720d1a40
JB
1957 /* Access to arrays implemented as fat pointers are encoded as a typedef
1958 of the fat pointer type. We need the name of the fat pointer type
1959 to do the decoding, so strip the typedef layer. */
1960 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1961 type = ada_typedef_target_type (type);
1962
1963 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
1964 if (!raw_name)
1965 raw_name = ada_type_name (desc_base_type (type));
1966
1967 if (!raw_name)
1968 return 0;
1969
1970 tail = strstr (raw_name, "___XP");
720d1a40 1971 gdb_assert (tail != NULL);
ad82864c
JB
1972
1973 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1974 {
1975 lim_warning
1976 (_("could not understand bit size information on packed array"));
1977 return 0;
1978 }
1979
1980 return bits;
1981}
1982
14f9c5c9
AS
1983/* Given that TYPE is a standard GDB array type with all bounds filled
1984 in, and that the element size of its ultimate scalar constituents
1985 (that is, either its elements, or, if it is an array of arrays, its
1986 elements' elements, etc.) is *ELT_BITS, return an identical type,
1987 but with the bit sizes of its elements (and those of any
1988 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1989 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1990 in bits. */
1991
d2e4a39e 1992static struct type *
ad82864c 1993constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1994{
d2e4a39e
AS
1995 struct type *new_elt_type;
1996 struct type *new_type;
14f9c5c9
AS
1997 LONGEST low_bound, high_bound;
1998
61ee279c 1999 type = ada_check_typedef (type);
14f9c5c9
AS
2000 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2001 return type;
2002
e9bb382b 2003 new_type = alloc_type_copy (type);
ad82864c
JB
2004 new_elt_type =
2005 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2006 elt_bits);
262452ec 2007 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
2008 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2009 TYPE_NAME (new_type) = ada_type_name (type);
2010
262452ec 2011 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 2012 &low_bound, &high_bound) < 0)
14f9c5c9
AS
2013 low_bound = high_bound = 0;
2014 if (high_bound < low_bound)
2015 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2016 else
14f9c5c9
AS
2017 {
2018 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2019 TYPE_LENGTH (new_type) =
4c4b4cd2 2020 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2021 }
2022
876cecd0 2023 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2024 return new_type;
2025}
2026
ad82864c
JB
2027/* The array type encoded by TYPE, where
2028 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2029
d2e4a39e 2030static struct type *
ad82864c 2031decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2032{
727e3d2e
JB
2033 char *raw_name = ada_type_name (ada_check_typedef (type));
2034 char *name;
2035 char *tail;
d2e4a39e 2036 struct type *shadow_type;
14f9c5c9 2037 long bits;
14f9c5c9 2038
727e3d2e
JB
2039 if (!raw_name)
2040 raw_name = ada_type_name (desc_base_type (type));
2041
2042 if (!raw_name)
2043 return NULL;
2044
2045 name = (char *) alloca (strlen (raw_name) + 1);
2046 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2047 type = desc_base_type (type);
2048
14f9c5c9
AS
2049 memcpy (name, raw_name, tail - raw_name);
2050 name[tail - raw_name] = '\000';
2051
b4ba55a1
JB
2052 shadow_type = ada_find_parallel_type_with_name (type, name);
2053
2054 if (shadow_type == NULL)
14f9c5c9 2055 {
323e0a4a 2056 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2057 return NULL;
2058 }
cb249c71 2059 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2060
2061 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2062 {
0963b4bd
MS
2063 lim_warning (_("could not understand bounds "
2064 "information on packed array"));
14f9c5c9
AS
2065 return NULL;
2066 }
d2e4a39e 2067
ad82864c
JB
2068 bits = decode_packed_array_bitsize (type);
2069 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2070}
2071
ad82864c
JB
2072/* Given that ARR is a struct value *indicating a GNAT constrained packed
2073 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2074 standard GDB array type except that the BITSIZEs of the array
2075 target types are set to the number of bits in each element, and the
4c4b4cd2 2076 type length is set appropriately. */
14f9c5c9 2077
d2e4a39e 2078static struct value *
ad82864c 2079decode_constrained_packed_array (struct value *arr)
14f9c5c9 2080{
4c4b4cd2 2081 struct type *type;
14f9c5c9 2082
4c4b4cd2 2083 arr = ada_coerce_ref (arr);
284614f0
JB
2084
2085 /* If our value is a pointer, then dererence it. Make sure that
2086 this operation does not cause the target type to be fixed, as
2087 this would indirectly cause this array to be decoded. The rest
2088 of the routine assumes that the array hasn't been decoded yet,
2089 so we use the basic "value_ind" routine to perform the dereferencing,
2090 as opposed to using "ada_value_ind". */
df407dfe 2091 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 2092 arr = value_ind (arr);
4c4b4cd2 2093
ad82864c 2094 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2095 if (type == NULL)
2096 {
323e0a4a 2097 error (_("can't unpack array"));
14f9c5c9
AS
2098 return NULL;
2099 }
61ee279c 2100
50810684 2101 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2102 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2103 {
2104 /* This is a (right-justified) modular type representing a packed
2105 array with no wrapper. In order to interpret the value through
2106 the (left-justified) packed array type we just built, we must
2107 first left-justify it. */
2108 int bit_size, bit_pos;
2109 ULONGEST mod;
2110
df407dfe 2111 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2112 bit_size = 0;
2113 while (mod > 0)
2114 {
2115 bit_size += 1;
2116 mod >>= 1;
2117 }
df407dfe 2118 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2119 arr = ada_value_primitive_packed_val (arr, NULL,
2120 bit_pos / HOST_CHAR_BIT,
2121 bit_pos % HOST_CHAR_BIT,
2122 bit_size,
2123 type);
2124 }
2125
4c4b4cd2 2126 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2127}
2128
2129
2130/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2131 given in IND. ARR must be a simple array. */
14f9c5c9 2132
d2e4a39e
AS
2133static struct value *
2134value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2135{
2136 int i;
2137 int bits, elt_off, bit_off;
2138 long elt_total_bit_offset;
d2e4a39e
AS
2139 struct type *elt_type;
2140 struct value *v;
14f9c5c9
AS
2141
2142 bits = 0;
2143 elt_total_bit_offset = 0;
df407dfe 2144 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2145 for (i = 0; i < arity; i += 1)
14f9c5c9 2146 {
d2e4a39e 2147 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2148 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2149 error
0963b4bd
MS
2150 (_("attempt to do packed indexing of "
2151 "something other than a packed array"));
14f9c5c9 2152 else
4c4b4cd2
PH
2153 {
2154 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2155 LONGEST lowerbound, upperbound;
2156 LONGEST idx;
2157
2158 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2159 {
323e0a4a 2160 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2161 lowerbound = upperbound = 0;
2162 }
2163
3cb382c9 2164 idx = pos_atr (ind[i]);
4c4b4cd2 2165 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2166 lim_warning (_("packed array index %ld out of bounds"),
2167 (long) idx);
4c4b4cd2
PH
2168 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2169 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2170 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2171 }
14f9c5c9
AS
2172 }
2173 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2174 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2175
2176 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2177 bits, elt_type);
14f9c5c9
AS
2178 return v;
2179}
2180
4c4b4cd2 2181/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2182
2183static int
d2e4a39e 2184has_negatives (struct type *type)
14f9c5c9 2185{
d2e4a39e
AS
2186 switch (TYPE_CODE (type))
2187 {
2188 default:
2189 return 0;
2190 case TYPE_CODE_INT:
2191 return !TYPE_UNSIGNED (type);
2192 case TYPE_CODE_RANGE:
2193 return TYPE_LOW_BOUND (type) < 0;
2194 }
14f9c5c9 2195}
d2e4a39e 2196
14f9c5c9
AS
2197
2198/* Create a new value of type TYPE from the contents of OBJ starting
2199 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2200 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2201 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2202 VALADDR is ignored unless OBJ is NULL, in which case,
2203 VALADDR+OFFSET must address the start of storage containing the
2204 packed value. The value returned in this case is never an lval.
2205 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2206
d2e4a39e 2207struct value *
fc1a4b47 2208ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2209 long offset, int bit_offset, int bit_size,
4c4b4cd2 2210 struct type *type)
14f9c5c9 2211{
d2e4a39e 2212 struct value *v;
4c4b4cd2
PH
2213 int src, /* Index into the source area */
2214 targ, /* Index into the target area */
2215 srcBitsLeft, /* Number of source bits left to move */
2216 nsrc, ntarg, /* Number of source and target bytes */
2217 unusedLS, /* Number of bits in next significant
2218 byte of source that are unused */
2219 accumSize; /* Number of meaningful bits in accum */
2220 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2221 unsigned char *unpacked;
4c4b4cd2 2222 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2223 unsigned char sign;
2224 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2225 /* Transmit bytes from least to most significant; delta is the direction
2226 the indices move. */
50810684 2227 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2228
61ee279c 2229 type = ada_check_typedef (type);
14f9c5c9
AS
2230
2231 if (obj == NULL)
2232 {
2233 v = allocate_value (type);
d2e4a39e 2234 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2235 }
9214ee5f 2236 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
2237 {
2238 v = value_at (type,
42ae5230 2239 value_address (obj) + offset);
d2e4a39e 2240 bytes = (unsigned char *) alloca (len);
42ae5230 2241 read_memory (value_address (v), bytes, len);
14f9c5c9 2242 }
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 v = allocate_value (type);
0fd88904 2246 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2247 }
d2e4a39e
AS
2248
2249 if (obj != NULL)
14f9c5c9 2250 {
42ae5230 2251 CORE_ADDR new_addr;
5b4ee69b 2252
74bcbdf3 2253 set_value_component_location (v, obj);
42ae5230 2254 new_addr = value_address (obj) + offset;
9bbda503
AC
2255 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2256 set_value_bitsize (v, bit_size);
df407dfe 2257 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2258 {
42ae5230 2259 ++new_addr;
9bbda503 2260 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2261 }
42ae5230 2262 set_value_address (v, new_addr);
14f9c5c9
AS
2263 }
2264 else
9bbda503 2265 set_value_bitsize (v, bit_size);
0fd88904 2266 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2267
2268 srcBitsLeft = bit_size;
2269 nsrc = len;
2270 ntarg = TYPE_LENGTH (type);
2271 sign = 0;
2272 if (bit_size == 0)
2273 {
2274 memset (unpacked, 0, TYPE_LENGTH (type));
2275 return v;
2276 }
50810684 2277 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2278 {
d2e4a39e 2279 src = len - 1;
1265e4aa
JB
2280 if (has_negatives (type)
2281 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2282 sign = ~0;
d2e4a39e
AS
2283
2284 unusedLS =
4c4b4cd2
PH
2285 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2286 % HOST_CHAR_BIT;
14f9c5c9
AS
2287
2288 switch (TYPE_CODE (type))
4c4b4cd2
PH
2289 {
2290 case TYPE_CODE_ARRAY:
2291 case TYPE_CODE_UNION:
2292 case TYPE_CODE_STRUCT:
2293 /* Non-scalar values must be aligned at a byte boundary... */
2294 accumSize =
2295 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2296 /* ... And are placed at the beginning (most-significant) bytes
2297 of the target. */
529cad9c 2298 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2299 ntarg = targ + 1;
4c4b4cd2
PH
2300 break;
2301 default:
2302 accumSize = 0;
2303 targ = TYPE_LENGTH (type) - 1;
2304 break;
2305 }
14f9c5c9 2306 }
d2e4a39e 2307 else
14f9c5c9
AS
2308 {
2309 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2310
2311 src = targ = 0;
2312 unusedLS = bit_offset;
2313 accumSize = 0;
2314
d2e4a39e 2315 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2316 sign = ~0;
14f9c5c9 2317 }
d2e4a39e 2318
14f9c5c9
AS
2319 accum = 0;
2320 while (nsrc > 0)
2321 {
2322 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2323 part of the value. */
d2e4a39e 2324 unsigned int unusedMSMask =
4c4b4cd2
PH
2325 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2326 1;
2327 /* Sign-extend bits for this byte. */
14f9c5c9 2328 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2329
d2e4a39e 2330 accum |=
4c4b4cd2 2331 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2332 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2333 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2334 {
2335 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2336 accumSize -= HOST_CHAR_BIT;
2337 accum >>= HOST_CHAR_BIT;
2338 ntarg -= 1;
2339 targ += delta;
2340 }
14f9c5c9
AS
2341 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2342 unusedLS = 0;
2343 nsrc -= 1;
2344 src += delta;
2345 }
2346 while (ntarg > 0)
2347 {
2348 accum |= sign << accumSize;
2349 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2350 accumSize -= HOST_CHAR_BIT;
2351 accum >>= HOST_CHAR_BIT;
2352 ntarg -= 1;
2353 targ += delta;
2354 }
2355
2356 return v;
2357}
d2e4a39e 2358
14f9c5c9
AS
2359/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2360 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2361 not overlap. */
14f9c5c9 2362static void
fc1a4b47 2363move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2364 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2365{
2366 unsigned int accum, mask;
2367 int accum_bits, chunk_size;
2368
2369 target += targ_offset / HOST_CHAR_BIT;
2370 targ_offset %= HOST_CHAR_BIT;
2371 source += src_offset / HOST_CHAR_BIT;
2372 src_offset %= HOST_CHAR_BIT;
50810684 2373 if (bits_big_endian_p)
14f9c5c9
AS
2374 {
2375 accum = (unsigned char) *source;
2376 source += 1;
2377 accum_bits = HOST_CHAR_BIT - src_offset;
2378
d2e4a39e 2379 while (n > 0)
4c4b4cd2
PH
2380 {
2381 int unused_right;
5b4ee69b 2382
4c4b4cd2
PH
2383 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2384 accum_bits += HOST_CHAR_BIT;
2385 source += 1;
2386 chunk_size = HOST_CHAR_BIT - targ_offset;
2387 if (chunk_size > n)
2388 chunk_size = n;
2389 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2390 mask = ((1 << chunk_size) - 1) << unused_right;
2391 *target =
2392 (*target & ~mask)
2393 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2394 n -= chunk_size;
2395 accum_bits -= chunk_size;
2396 target += 1;
2397 targ_offset = 0;
2398 }
14f9c5c9
AS
2399 }
2400 else
2401 {
2402 accum = (unsigned char) *source >> src_offset;
2403 source += 1;
2404 accum_bits = HOST_CHAR_BIT - src_offset;
2405
d2e4a39e 2406 while (n > 0)
4c4b4cd2
PH
2407 {
2408 accum = accum + ((unsigned char) *source << accum_bits);
2409 accum_bits += HOST_CHAR_BIT;
2410 source += 1;
2411 chunk_size = HOST_CHAR_BIT - targ_offset;
2412 if (chunk_size > n)
2413 chunk_size = n;
2414 mask = ((1 << chunk_size) - 1) << targ_offset;
2415 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2416 n -= chunk_size;
2417 accum_bits -= chunk_size;
2418 accum >>= chunk_size;
2419 target += 1;
2420 targ_offset = 0;
2421 }
14f9c5c9
AS
2422 }
2423}
2424
14f9c5c9
AS
2425/* Store the contents of FROMVAL into the location of TOVAL.
2426 Return a new value with the location of TOVAL and contents of
2427 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2428 floating-point or non-scalar types. */
14f9c5c9 2429
d2e4a39e
AS
2430static struct value *
2431ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2432{
df407dfe
AC
2433 struct type *type = value_type (toval);
2434 int bits = value_bitsize (toval);
14f9c5c9 2435
52ce6436
PH
2436 toval = ada_coerce_ref (toval);
2437 fromval = ada_coerce_ref (fromval);
2438
2439 if (ada_is_direct_array_type (value_type (toval)))
2440 toval = ada_coerce_to_simple_array (toval);
2441 if (ada_is_direct_array_type (value_type (fromval)))
2442 fromval = ada_coerce_to_simple_array (fromval);
2443
88e3b34b 2444 if (!deprecated_value_modifiable (toval))
323e0a4a 2445 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2446
d2e4a39e 2447 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2448 && bits > 0
d2e4a39e 2449 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2450 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2451 {
df407dfe
AC
2452 int len = (value_bitpos (toval)
2453 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2454 int from_size;
d2e4a39e
AS
2455 char *buffer = (char *) alloca (len);
2456 struct value *val;
42ae5230 2457 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2460 fromval = value_cast (type, fromval);
14f9c5c9 2461
52ce6436 2462 read_memory (to_addr, buffer, len);
aced2898
PH
2463 from_size = value_bitsize (fromval);
2464 if (from_size == 0)
2465 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2466 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2467 move_bits (buffer, value_bitpos (toval),
50810684 2468 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2469 else
50810684
UW
2470 move_bits (buffer, value_bitpos (toval),
2471 value_contents (fromval), 0, bits, 0);
52ce6436 2472 write_memory (to_addr, buffer, len);
8cebebb9
PP
2473 observer_notify_memory_changed (to_addr, len, buffer);
2474
14f9c5c9 2475 val = value_copy (toval);
0fd88904 2476 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2477 TYPE_LENGTH (type));
04624583 2478 deprecated_set_value_type (val, type);
d2e4a39e 2479
14f9c5c9
AS
2480 return val;
2481 }
2482
2483 return value_assign (toval, fromval);
2484}
2485
2486
52ce6436
PH
2487/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2488 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2489 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2490 * COMPONENT, and not the inferior's memory. The current contents
2491 * of COMPONENT are ignored. */
2492static void
2493value_assign_to_component (struct value *container, struct value *component,
2494 struct value *val)
2495{
2496 LONGEST offset_in_container =
42ae5230 2497 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2498 int bit_offset_in_container =
2499 value_bitpos (component) - value_bitpos (container);
2500 int bits;
2501
2502 val = value_cast (value_type (component), val);
2503
2504 if (value_bitsize (component) == 0)
2505 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2506 else
2507 bits = value_bitsize (component);
2508
50810684 2509 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2510 move_bits (value_contents_writeable (container) + offset_in_container,
2511 value_bitpos (container) + bit_offset_in_container,
2512 value_contents (val),
2513 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2514 bits, 1);
52ce6436
PH
2515 else
2516 move_bits (value_contents_writeable (container) + offset_in_container,
2517 value_bitpos (container) + bit_offset_in_container,
50810684 2518 value_contents (val), 0, bits, 0);
52ce6436
PH
2519}
2520
4c4b4cd2
PH
2521/* The value of the element of array ARR at the ARITY indices given in IND.
2522 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2523 thereto. */
2524
d2e4a39e
AS
2525struct value *
2526ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2527{
2528 int k;
d2e4a39e
AS
2529 struct value *elt;
2530 struct type *elt_type;
14f9c5c9
AS
2531
2532 elt = ada_coerce_to_simple_array (arr);
2533
df407dfe 2534 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2535 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2536 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2537 return value_subscript_packed (elt, arity, ind);
2538
2539 for (k = 0; k < arity; k += 1)
2540 {
2541 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2542 error (_("too many subscripts (%d expected)"), k);
2497b498 2543 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2544 }
2545 return elt;
2546}
2547
2548/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2549 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2550 IND. Does not read the entire array into memory. */
14f9c5c9 2551
2c0b251b 2552static struct value *
d2e4a39e 2553ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2554 struct value **ind)
14f9c5c9
AS
2555{
2556 int k;
2557
2558 for (k = 0; k < arity; k += 1)
2559 {
2560 LONGEST lwb, upb;
14f9c5c9
AS
2561
2562 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2563 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2564 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2565 value_copy (arr));
14f9c5c9 2566 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2567 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2568 type = TYPE_TARGET_TYPE (type);
2569 }
2570
2571 return value_ind (arr);
2572}
2573
0b5d8877 2574/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2575 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2576 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2577 per Ada rules. */
0b5d8877 2578static struct value *
f5938064
JG
2579ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2580 int low, int high)
0b5d8877 2581{
b0dd7688 2582 struct type *type0 = ada_check_typedef (type);
6c038f32 2583 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2584 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2585 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2586 struct type *index_type =
b0dd7688 2587 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2588 low, high);
6c038f32 2589 struct type *slice_type =
b0dd7688 2590 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2591
f5938064 2592 return value_at_lazy (slice_type, base);
0b5d8877
PH
2593}
2594
2595
2596static struct value *
2597ada_value_slice (struct value *array, int low, int high)
2598{
b0dd7688 2599 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2600 struct type *index_type =
0b5d8877 2601 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2602 struct type *slice_type =
0b5d8877 2603 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2604
6c038f32 2605 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2606}
2607
14f9c5c9
AS
2608/* If type is a record type in the form of a standard GNAT array
2609 descriptor, returns the number of dimensions for type. If arr is a
2610 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2611 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2612
2613int
d2e4a39e 2614ada_array_arity (struct type *type)
14f9c5c9
AS
2615{
2616 int arity;
2617
2618 if (type == NULL)
2619 return 0;
2620
2621 type = desc_base_type (type);
2622
2623 arity = 0;
d2e4a39e 2624 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2625 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2626 else
2627 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2628 {
4c4b4cd2 2629 arity += 1;
61ee279c 2630 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2631 }
d2e4a39e 2632
14f9c5c9
AS
2633 return arity;
2634}
2635
2636/* If TYPE is a record type in the form of a standard GNAT array
2637 descriptor or a simple array type, returns the element type for
2638 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2639 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2640
d2e4a39e
AS
2641struct type *
2642ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2643{
2644 type = desc_base_type (type);
2645
d2e4a39e 2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2647 {
2648 int k;
d2e4a39e 2649 struct type *p_array_type;
14f9c5c9 2650
556bdfd4 2651 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2652
2653 k = ada_array_arity (type);
2654 if (k == 0)
4c4b4cd2 2655 return NULL;
d2e4a39e 2656
4c4b4cd2 2657 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2658 if (nindices >= 0 && k > nindices)
4c4b4cd2 2659 k = nindices;
d2e4a39e 2660 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2661 {
61ee279c 2662 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2663 k -= 1;
2664 }
14f9c5c9
AS
2665 return p_array_type;
2666 }
2667 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2668 {
2669 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2670 {
2671 type = TYPE_TARGET_TYPE (type);
2672 nindices -= 1;
2673 }
14f9c5c9
AS
2674 return type;
2675 }
2676
2677 return NULL;
2678}
2679
4c4b4cd2 2680/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2681 Does not examine memory. Throws an error if N is invalid or TYPE
2682 is not an array type. NAME is the name of the Ada attribute being
2683 evaluated ('range, 'first, 'last, or 'length); it is used in building
2684 the error message. */
14f9c5c9 2685
1eea4ebd
UW
2686static struct type *
2687ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2688{
4c4b4cd2
PH
2689 struct type *result_type;
2690
14f9c5c9
AS
2691 type = desc_base_type (type);
2692
1eea4ebd
UW
2693 if (n < 0 || n > ada_array_arity (type))
2694 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2695
4c4b4cd2 2696 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2697 {
2698 int i;
2699
2700 for (i = 1; i < n; i += 1)
4c4b4cd2 2701 type = TYPE_TARGET_TYPE (type);
262452ec 2702 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2703 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2704 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2705 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2706 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2707 result_type = NULL;
14f9c5c9 2708 }
d2e4a39e 2709 else
1eea4ebd
UW
2710 {
2711 result_type = desc_index_type (desc_bounds_type (type), n);
2712 if (result_type == NULL)
2713 error (_("attempt to take bound of something that is not an array"));
2714 }
2715
2716 return result_type;
14f9c5c9
AS
2717}
2718
2719/* Given that arr is an array type, returns the lower bound of the
2720 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2721 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2722 array-descriptor type. It works for other arrays with bounds supplied
2723 by run-time quantities other than discriminants. */
14f9c5c9 2724
abb68b3e 2725static LONGEST
1eea4ebd 2726ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2727{
1ce677a4 2728 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2729 int i;
262452ec
JK
2730
2731 gdb_assert (which == 0 || which == 1);
14f9c5c9 2732
ad82864c
JB
2733 if (ada_is_constrained_packed_array_type (arr_type))
2734 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2735
4c4b4cd2 2736 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2737 return (LONGEST) - which;
14f9c5c9
AS
2738
2739 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2740 type = TYPE_TARGET_TYPE (arr_type);
2741 else
2742 type = arr_type;
2743
1ce677a4
UW
2744 elt_type = type;
2745 for (i = n; i > 1; i--)
2746 elt_type = TYPE_TARGET_TYPE (type);
2747
14f9c5c9 2748 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2749 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2750 if (index_type_desc != NULL)
28c85d6c
JB
2751 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2752 NULL);
262452ec 2753 else
1ce677a4 2754 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2755
43bbcdc2
PH
2756 return
2757 (LONGEST) (which == 0
2758 ? ada_discrete_type_low_bound (index_type)
2759 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2760}
2761
2762/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2763 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2764 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2765 supplied by run-time quantities other than discriminants. */
14f9c5c9 2766
1eea4ebd 2767static LONGEST
4dc81987 2768ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2769{
df407dfe 2770 struct type *arr_type = value_type (arr);
14f9c5c9 2771
ad82864c
JB
2772 if (ada_is_constrained_packed_array_type (arr_type))
2773 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2774 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2775 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2776 else
1eea4ebd 2777 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2778}
2779
2780/* Given that arr is an array value, returns the length of the
2781 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2782 supplied by run-time quantities other than discriminants.
2783 Does not work for arrays indexed by enumeration types with representation
2784 clauses at the moment. */
14f9c5c9 2785
1eea4ebd 2786static LONGEST
d2e4a39e 2787ada_array_length (struct value *arr, int n)
14f9c5c9 2788{
df407dfe 2789 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2790
ad82864c
JB
2791 if (ada_is_constrained_packed_array_type (arr_type))
2792 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2793
4c4b4cd2 2794 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2795 return (ada_array_bound_from_type (arr_type, n, 1)
2796 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2797 else
1eea4ebd
UW
2798 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2799 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2800}
2801
2802/* An empty array whose type is that of ARR_TYPE (an array type),
2803 with bounds LOW to LOW-1. */
2804
2805static struct value *
2806empty_array (struct type *arr_type, int low)
2807{
b0dd7688 2808 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2809 struct type *index_type =
b0dd7688 2810 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2811 low, low - 1);
b0dd7688 2812 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2813
0b5d8877 2814 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2815}
14f9c5c9 2816\f
d2e4a39e 2817
4c4b4cd2 2818 /* Name resolution */
14f9c5c9 2819
4c4b4cd2
PH
2820/* The "decoded" name for the user-definable Ada operator corresponding
2821 to OP. */
14f9c5c9 2822
d2e4a39e 2823static const char *
4c4b4cd2 2824ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2825{
2826 int i;
2827
4c4b4cd2 2828 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2829 {
2830 if (ada_opname_table[i].op == op)
4c4b4cd2 2831 return ada_opname_table[i].decoded;
14f9c5c9 2832 }
323e0a4a 2833 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2834}
2835
2836
4c4b4cd2
PH
2837/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2838 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2839 undefined namespace) and converts operators that are
2840 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2841 non-null, it provides a preferred result type [at the moment, only
2842 type void has any effect---causing procedures to be preferred over
2843 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2844 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2845
4c4b4cd2
PH
2846static void
2847resolve (struct expression **expp, int void_context_p)
14f9c5c9 2848{
30b15541
UW
2849 struct type *context_type = NULL;
2850 int pc = 0;
2851
2852 if (void_context_p)
2853 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2854
2855 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2856}
2857
4c4b4cd2
PH
2858/* Resolve the operator of the subexpression beginning at
2859 position *POS of *EXPP. "Resolving" consists of replacing
2860 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2861 with their resolutions, replacing built-in operators with
2862 function calls to user-defined operators, where appropriate, and,
2863 when DEPROCEDURE_P is non-zero, converting function-valued variables
2864 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2865 are as in ada_resolve, above. */
14f9c5c9 2866
d2e4a39e 2867static struct value *
4c4b4cd2 2868resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2869 struct type *context_type)
14f9c5c9
AS
2870{
2871 int pc = *pos;
2872 int i;
4c4b4cd2 2873 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2874 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2875 struct value **argvec; /* Vector of operand types (alloca'ed). */
2876 int nargs; /* Number of operands. */
52ce6436 2877 int oplen;
14f9c5c9
AS
2878
2879 argvec = NULL;
2880 nargs = 0;
2881 exp = *expp;
2882
52ce6436
PH
2883 /* Pass one: resolve operands, saving their types and updating *pos,
2884 if needed. */
14f9c5c9
AS
2885 switch (op)
2886 {
4c4b4cd2
PH
2887 case OP_FUNCALL:
2888 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2889 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2890 *pos += 7;
4c4b4cd2
PH
2891 else
2892 {
2893 *pos += 3;
2894 resolve_subexp (expp, pos, 0, NULL);
2895 }
2896 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2897 break;
2898
14f9c5c9 2899 case UNOP_ADDR:
4c4b4cd2
PH
2900 *pos += 1;
2901 resolve_subexp (expp, pos, 0, NULL);
2902 break;
2903
52ce6436
PH
2904 case UNOP_QUAL:
2905 *pos += 3;
17466c1a 2906 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2907 break;
2908
52ce6436 2909 case OP_ATR_MODULUS:
4c4b4cd2
PH
2910 case OP_ATR_SIZE:
2911 case OP_ATR_TAG:
4c4b4cd2
PH
2912 case OP_ATR_FIRST:
2913 case OP_ATR_LAST:
2914 case OP_ATR_LENGTH:
2915 case OP_ATR_POS:
2916 case OP_ATR_VAL:
4c4b4cd2
PH
2917 case OP_ATR_MIN:
2918 case OP_ATR_MAX:
52ce6436
PH
2919 case TERNOP_IN_RANGE:
2920 case BINOP_IN_BOUNDS:
2921 case UNOP_IN_RANGE:
2922 case OP_AGGREGATE:
2923 case OP_OTHERS:
2924 case OP_CHOICES:
2925 case OP_POSITIONAL:
2926 case OP_DISCRETE_RANGE:
2927 case OP_NAME:
2928 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2929 *pos += oplen;
14f9c5c9
AS
2930 break;
2931
2932 case BINOP_ASSIGN:
2933 {
4c4b4cd2
PH
2934 struct value *arg1;
2935
2936 *pos += 1;
2937 arg1 = resolve_subexp (expp, pos, 0, NULL);
2938 if (arg1 == NULL)
2939 resolve_subexp (expp, pos, 1, NULL);
2940 else
df407dfe 2941 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2942 break;
14f9c5c9
AS
2943 }
2944
4c4b4cd2 2945 case UNOP_CAST:
4c4b4cd2
PH
2946 *pos += 3;
2947 nargs = 1;
2948 break;
14f9c5c9 2949
4c4b4cd2
PH
2950 case BINOP_ADD:
2951 case BINOP_SUB:
2952 case BINOP_MUL:
2953 case BINOP_DIV:
2954 case BINOP_REM:
2955 case BINOP_MOD:
2956 case BINOP_EXP:
2957 case BINOP_CONCAT:
2958 case BINOP_LOGICAL_AND:
2959 case BINOP_LOGICAL_OR:
2960 case BINOP_BITWISE_AND:
2961 case BINOP_BITWISE_IOR:
2962 case BINOP_BITWISE_XOR:
14f9c5c9 2963
4c4b4cd2
PH
2964 case BINOP_EQUAL:
2965 case BINOP_NOTEQUAL:
2966 case BINOP_LESS:
2967 case BINOP_GTR:
2968 case BINOP_LEQ:
2969 case BINOP_GEQ:
14f9c5c9 2970
4c4b4cd2
PH
2971 case BINOP_REPEAT:
2972 case BINOP_SUBSCRIPT:
2973 case BINOP_COMMA:
40c8aaa9
JB
2974 *pos += 1;
2975 nargs = 2;
2976 break;
14f9c5c9 2977
4c4b4cd2
PH
2978 case UNOP_NEG:
2979 case UNOP_PLUS:
2980 case UNOP_LOGICAL_NOT:
2981 case UNOP_ABS:
2982 case UNOP_IND:
2983 *pos += 1;
2984 nargs = 1;
2985 break;
14f9c5c9 2986
4c4b4cd2
PH
2987 case OP_LONG:
2988 case OP_DOUBLE:
2989 case OP_VAR_VALUE:
2990 *pos += 4;
2991 break;
14f9c5c9 2992
4c4b4cd2
PH
2993 case OP_TYPE:
2994 case OP_BOOL:
2995 case OP_LAST:
4c4b4cd2
PH
2996 case OP_INTERNALVAR:
2997 *pos += 3;
2998 break;
14f9c5c9 2999
4c4b4cd2
PH
3000 case UNOP_MEMVAL:
3001 *pos += 3;
3002 nargs = 1;
3003 break;
3004
67f3407f
DJ
3005 case OP_REGISTER:
3006 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3007 break;
3008
4c4b4cd2
PH
3009 case STRUCTOP_STRUCT:
3010 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3011 nargs = 1;
3012 break;
3013
4c4b4cd2 3014 case TERNOP_SLICE:
4c4b4cd2
PH
3015 *pos += 1;
3016 nargs = 3;
3017 break;
3018
52ce6436 3019 case OP_STRING:
14f9c5c9 3020 break;
4c4b4cd2
PH
3021
3022 default:
323e0a4a 3023 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3024 }
3025
76a01679 3026 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3027 for (i = 0; i < nargs; i += 1)
3028 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3029 argvec[i] = NULL;
3030 exp = *expp;
3031
3032 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3033 switch (op)
3034 {
3035 default:
3036 break;
3037
14f9c5c9 3038 case OP_VAR_VALUE:
4c4b4cd2 3039 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3040 {
3041 struct ada_symbol_info *candidates;
3042 int n_candidates;
3043
3044 n_candidates =
3045 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3046 (exp->elts[pc + 2].symbol),
3047 exp->elts[pc + 1].block, VAR_DOMAIN,
3048 &candidates);
3049
3050 if (n_candidates > 1)
3051 {
3052 /* Types tend to get re-introduced locally, so if there
3053 are any local symbols that are not types, first filter
3054 out all types. */
3055 int j;
3056 for (j = 0; j < n_candidates; j += 1)
3057 switch (SYMBOL_CLASS (candidates[j].sym))
3058 {
3059 case LOC_REGISTER:
3060 case LOC_ARG:
3061 case LOC_REF_ARG:
76a01679
JB
3062 case LOC_REGPARM_ADDR:
3063 case LOC_LOCAL:
76a01679 3064 case LOC_COMPUTED:
76a01679
JB
3065 goto FoundNonType;
3066 default:
3067 break;
3068 }
3069 FoundNonType:
3070 if (j < n_candidates)
3071 {
3072 j = 0;
3073 while (j < n_candidates)
3074 {
3075 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3076 {
3077 candidates[j] = candidates[n_candidates - 1];
3078 n_candidates -= 1;
3079 }
3080 else
3081 j += 1;
3082 }
3083 }
3084 }
3085
3086 if (n_candidates == 0)
323e0a4a 3087 error (_("No definition found for %s"),
76a01679
JB
3088 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3089 else if (n_candidates == 1)
3090 i = 0;
3091 else if (deprocedure_p
3092 && !is_nonfunction (candidates, n_candidates))
3093 {
06d5cf63
JB
3094 i = ada_resolve_function
3095 (candidates, n_candidates, NULL, 0,
3096 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3097 context_type);
76a01679 3098 if (i < 0)
323e0a4a 3099 error (_("Could not find a match for %s"),
76a01679
JB
3100 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3101 }
3102 else
3103 {
323e0a4a 3104 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3105 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3106 user_select_syms (candidates, n_candidates, 1);
3107 i = 0;
3108 }
3109
3110 exp->elts[pc + 1].block = candidates[i].block;
3111 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3112 if (innermost_block == NULL
3113 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3114 innermost_block = candidates[i].block;
3115 }
3116
3117 if (deprocedure_p
3118 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3119 == TYPE_CODE_FUNC))
3120 {
3121 replace_operator_with_call (expp, pc, 0, 0,
3122 exp->elts[pc + 2].symbol,
3123 exp->elts[pc + 1].block);
3124 exp = *expp;
3125 }
14f9c5c9
AS
3126 break;
3127
3128 case OP_FUNCALL:
3129 {
4c4b4cd2 3130 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3131 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3132 {
3133 struct ada_symbol_info *candidates;
3134 int n_candidates;
3135
3136 n_candidates =
76a01679
JB
3137 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3138 (exp->elts[pc + 5].symbol),
3139 exp->elts[pc + 4].block, VAR_DOMAIN,
3140 &candidates);
4c4b4cd2
PH
3141 if (n_candidates == 1)
3142 i = 0;
3143 else
3144 {
06d5cf63
JB
3145 i = ada_resolve_function
3146 (candidates, n_candidates,
3147 argvec, nargs,
3148 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3149 context_type);
4c4b4cd2 3150 if (i < 0)
323e0a4a 3151 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3153 }
3154
3155 exp->elts[pc + 4].block = candidates[i].block;
3156 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3157 if (innermost_block == NULL
3158 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3159 innermost_block = candidates[i].block;
3160 }
14f9c5c9
AS
3161 }
3162 break;
3163 case BINOP_ADD:
3164 case BINOP_SUB:
3165 case BINOP_MUL:
3166 case BINOP_DIV:
3167 case BINOP_REM:
3168 case BINOP_MOD:
3169 case BINOP_CONCAT:
3170 case BINOP_BITWISE_AND:
3171 case BINOP_BITWISE_IOR:
3172 case BINOP_BITWISE_XOR:
3173 case BINOP_EQUAL:
3174 case BINOP_NOTEQUAL:
3175 case BINOP_LESS:
3176 case BINOP_GTR:
3177 case BINOP_LEQ:
3178 case BINOP_GEQ:
3179 case BINOP_EXP:
3180 case UNOP_NEG:
3181 case UNOP_PLUS:
3182 case UNOP_LOGICAL_NOT:
3183 case UNOP_ABS:
3184 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3185 {
3186 struct ada_symbol_info *candidates;
3187 int n_candidates;
3188
3189 n_candidates =
3190 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3191 (struct block *) NULL, VAR_DOMAIN,
3192 &candidates);
3193 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3194 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3195 if (i < 0)
3196 break;
3197
76a01679
JB
3198 replace_operator_with_call (expp, pc, nargs, 1,
3199 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3200 exp = *expp;
3201 }
14f9c5c9 3202 break;
4c4b4cd2
PH
3203
3204 case OP_TYPE:
b3dbf008 3205 case OP_REGISTER:
4c4b4cd2 3206 return NULL;
14f9c5c9
AS
3207 }
3208
3209 *pos = pc;
3210 return evaluate_subexp_type (exp, pos);
3211}
3212
3213/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3214 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3215 a non-pointer. */
14f9c5c9 3216/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3217 liberal. */
14f9c5c9
AS
3218
3219static int
4dc81987 3220ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3221{
61ee279c
PH
3222 ftype = ada_check_typedef (ftype);
3223 atype = ada_check_typedef (atype);
14f9c5c9
AS
3224
3225 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3226 ftype = TYPE_TARGET_TYPE (ftype);
3227 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3228 atype = TYPE_TARGET_TYPE (atype);
3229
d2e4a39e 3230 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3231 {
3232 default:
5b3d5b7d 3233 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3234 case TYPE_CODE_PTR:
3235 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3236 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3237 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3238 else
1265e4aa
JB
3239 return (may_deref
3240 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3241 case TYPE_CODE_INT:
3242 case TYPE_CODE_ENUM:
3243 case TYPE_CODE_RANGE:
3244 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3245 {
3246 case TYPE_CODE_INT:
3247 case TYPE_CODE_ENUM:
3248 case TYPE_CODE_RANGE:
3249 return 1;
3250 default:
3251 return 0;
3252 }
14f9c5c9
AS
3253
3254 case TYPE_CODE_ARRAY:
d2e4a39e 3255 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3256 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3257
3258 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3259 if (ada_is_array_descriptor_type (ftype))
3260 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3261 || ada_is_array_descriptor_type (atype));
14f9c5c9 3262 else
4c4b4cd2
PH
3263 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3264 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3265
3266 case TYPE_CODE_UNION:
3267 case TYPE_CODE_FLT:
3268 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3269 }
3270}
3271
3272/* Return non-zero if the formals of FUNC "sufficiently match" the
3273 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3274 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3275 argument function. */
14f9c5c9
AS
3276
3277static int
d2e4a39e 3278ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3279{
3280 int i;
d2e4a39e 3281 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3282
1265e4aa
JB
3283 if (SYMBOL_CLASS (func) == LOC_CONST
3284 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3285 return (n_actuals == 0);
3286 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3287 return 0;
3288
3289 if (TYPE_NFIELDS (func_type) != n_actuals)
3290 return 0;
3291
3292 for (i = 0; i < n_actuals; i += 1)
3293 {
4c4b4cd2 3294 if (actuals[i] == NULL)
76a01679
JB
3295 return 0;
3296 else
3297 {
5b4ee69b
MS
3298 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3299 i));
df407dfe 3300 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3301
76a01679
JB
3302 if (!ada_type_match (ftype, atype, 1))
3303 return 0;
3304 }
14f9c5c9
AS
3305 }
3306 return 1;
3307}
3308
3309/* False iff function type FUNC_TYPE definitely does not produce a value
3310 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3311 FUNC_TYPE is not a valid function type with a non-null return type
3312 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3313
3314static int
d2e4a39e 3315return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3316{
d2e4a39e 3317 struct type *return_type;
14f9c5c9
AS
3318
3319 if (func_type == NULL)
3320 return 1;
3321
4c4b4cd2
PH
3322 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3323 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3324 else
3325 return_type = base_type (func_type);
14f9c5c9
AS
3326 if (return_type == NULL)
3327 return 1;
3328
4c4b4cd2 3329 context_type = base_type (context_type);
14f9c5c9
AS
3330
3331 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3332 return context_type == NULL || return_type == context_type;
3333 else if (context_type == NULL)
3334 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3335 else
3336 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3337}
3338
3339
4c4b4cd2 3340/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3341 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3342 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3343 that returns that type, then eliminate matches that don't. If
3344 CONTEXT_TYPE is void and there is at least one match that does not
3345 return void, eliminate all matches that do.
3346
14f9c5c9
AS
3347 Asks the user if there is more than one match remaining. Returns -1
3348 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3349 solely for messages. May re-arrange and modify SYMS in
3350 the process; the index returned is for the modified vector. */
14f9c5c9 3351
4c4b4cd2
PH
3352static int
3353ada_resolve_function (struct ada_symbol_info syms[],
3354 int nsyms, struct value **args, int nargs,
3355 const char *name, struct type *context_type)
14f9c5c9 3356{
30b15541 3357 int fallback;
14f9c5c9 3358 int k;
4c4b4cd2 3359 int m; /* Number of hits */
14f9c5c9 3360
d2e4a39e 3361 m = 0;
30b15541
UW
3362 /* In the first pass of the loop, we only accept functions matching
3363 context_type. If none are found, we add a second pass of the loop
3364 where every function is accepted. */
3365 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3366 {
3367 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3368 {
61ee279c 3369 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3370
3371 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3372 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3373 {
3374 syms[m] = syms[k];
3375 m += 1;
3376 }
3377 }
14f9c5c9
AS
3378 }
3379
3380 if (m == 0)
3381 return -1;
3382 else if (m > 1)
3383 {
323e0a4a 3384 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3385 user_select_syms (syms, m, 1);
14f9c5c9
AS
3386 return 0;
3387 }
3388 return 0;
3389}
3390
4c4b4cd2
PH
3391/* Returns true (non-zero) iff decoded name N0 should appear before N1
3392 in a listing of choices during disambiguation (see sort_choices, below).
3393 The idea is that overloadings of a subprogram name from the
3394 same package should sort in their source order. We settle for ordering
3395 such symbols by their trailing number (__N or $N). */
3396
14f9c5c9 3397static int
4c4b4cd2 3398encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3399{
3400 if (N1 == NULL)
3401 return 0;
3402 else if (N0 == NULL)
3403 return 1;
3404 else
3405 {
3406 int k0, k1;
5b4ee69b 3407
d2e4a39e 3408 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3409 ;
d2e4a39e 3410 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3411 ;
d2e4a39e 3412 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3413 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3414 {
3415 int n0, n1;
5b4ee69b 3416
4c4b4cd2
PH
3417 n0 = k0;
3418 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3419 n0 -= 1;
3420 n1 = k1;
3421 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3422 n1 -= 1;
3423 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3424 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3425 }
14f9c5c9
AS
3426 return (strcmp (N0, N1) < 0);
3427 }
3428}
d2e4a39e 3429
4c4b4cd2
PH
3430/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3431 encoded names. */
3432
d2e4a39e 3433static void
4c4b4cd2 3434sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3435{
4c4b4cd2 3436 int i;
5b4ee69b 3437
d2e4a39e 3438 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3439 {
4c4b4cd2 3440 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3441 int j;
3442
d2e4a39e 3443 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3444 {
3445 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3446 SYMBOL_LINKAGE_NAME (sym.sym)))
3447 break;
3448 syms[j + 1] = syms[j];
3449 }
d2e4a39e 3450 syms[j + 1] = sym;
14f9c5c9
AS
3451 }
3452}
3453
4c4b4cd2
PH
3454/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3455 by asking the user (if necessary), returning the number selected,
3456 and setting the first elements of SYMS items. Error if no symbols
3457 selected. */
14f9c5c9
AS
3458
3459/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3460 to be re-integrated one of these days. */
14f9c5c9
AS
3461
3462int
4c4b4cd2 3463user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3464{
3465 int i;
d2e4a39e 3466 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3467 int n_chosen;
3468 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3469 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3470
3471 if (max_results < 1)
323e0a4a 3472 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3473 if (nsyms <= 1)
3474 return nsyms;
3475
717d2f5a
JB
3476 if (select_mode == multiple_symbols_cancel)
3477 error (_("\
3478canceled because the command is ambiguous\n\
3479See set/show multiple-symbol."));
3480
3481 /* If select_mode is "all", then return all possible symbols.
3482 Only do that if more than one symbol can be selected, of course.
3483 Otherwise, display the menu as usual. */
3484 if (select_mode == multiple_symbols_all && max_results > 1)
3485 return nsyms;
3486
323e0a4a 3487 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3488 if (max_results > 1)
323e0a4a 3489 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3490
4c4b4cd2 3491 sort_choices (syms, nsyms);
14f9c5c9
AS
3492
3493 for (i = 0; i < nsyms; i += 1)
3494 {
4c4b4cd2
PH
3495 if (syms[i].sym == NULL)
3496 continue;
3497
3498 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3499 {
76a01679
JB
3500 struct symtab_and_line sal =
3501 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3502
323e0a4a
AC
3503 if (sal.symtab == NULL)
3504 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3505 i + first_choice,
3506 SYMBOL_PRINT_NAME (syms[i].sym),
3507 sal.line);
3508 else
3509 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3510 SYMBOL_PRINT_NAME (syms[i].sym),
3511 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3512 continue;
3513 }
d2e4a39e 3514 else
4c4b4cd2
PH
3515 {
3516 int is_enumeral =
3517 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3518 && SYMBOL_TYPE (syms[i].sym) != NULL
3519 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3520 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3521
3522 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3523 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3524 i + first_choice,
3525 SYMBOL_PRINT_NAME (syms[i].sym),
3526 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3527 else if (is_enumeral
3528 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3529 {
a3f17187 3530 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3531 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3532 gdb_stdout, -1, 0);
323e0a4a 3533 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3534 SYMBOL_PRINT_NAME (syms[i].sym));
3535 }
3536 else if (symtab != NULL)
3537 printf_unfiltered (is_enumeral
323e0a4a
AC
3538 ? _("[%d] %s in %s (enumeral)\n")
3539 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3540 i + first_choice,
3541 SYMBOL_PRINT_NAME (syms[i].sym),
3542 symtab->filename);
3543 else
3544 printf_unfiltered (is_enumeral
323e0a4a
AC
3545 ? _("[%d] %s (enumeral)\n")
3546 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3547 i + first_choice,
3548 SYMBOL_PRINT_NAME (syms[i].sym));
3549 }
14f9c5c9 3550 }
d2e4a39e 3551
14f9c5c9 3552 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3553 "overload-choice");
14f9c5c9
AS
3554
3555 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3556 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3557
3558 return n_chosen;
3559}
3560
3561/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3562 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3563 order in CHOICES[0 .. N-1], and return N.
3564
3565 The user types choices as a sequence of numbers on one line
3566 separated by blanks, encoding them as follows:
3567
4c4b4cd2 3568 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3569 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3570 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3571
4c4b4cd2 3572 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3573
3574 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3575 prompts (for use with the -f switch). */
14f9c5c9
AS
3576
3577int
d2e4a39e 3578get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3579 int is_all_choice, char *annotation_suffix)
14f9c5c9 3580{
d2e4a39e 3581 char *args;
0bcd0149 3582 char *prompt;
14f9c5c9
AS
3583 int n_chosen;
3584 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3585
14f9c5c9
AS
3586 prompt = getenv ("PS2");
3587 if (prompt == NULL)
0bcd0149 3588 prompt = "> ";
14f9c5c9 3589
0bcd0149 3590 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3591
14f9c5c9 3592 if (args == NULL)
323e0a4a 3593 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3594
3595 n_chosen = 0;
76a01679 3596
4c4b4cd2
PH
3597 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3598 order, as given in args. Choices are validated. */
14f9c5c9
AS
3599 while (1)
3600 {
d2e4a39e 3601 char *args2;
14f9c5c9
AS
3602 int choice, j;
3603
3604 while (isspace (*args))
4c4b4cd2 3605 args += 1;
14f9c5c9 3606 if (*args == '\0' && n_chosen == 0)
323e0a4a 3607 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3608 else if (*args == '\0')
4c4b4cd2 3609 break;
14f9c5c9
AS
3610
3611 choice = strtol (args, &args2, 10);
d2e4a39e 3612 if (args == args2 || choice < 0
4c4b4cd2 3613 || choice > n_choices + first_choice - 1)
323e0a4a 3614 error (_("Argument must be choice number"));
14f9c5c9
AS
3615 args = args2;
3616
d2e4a39e 3617 if (choice == 0)
323e0a4a 3618 error (_("cancelled"));
14f9c5c9
AS
3619
3620 if (choice < first_choice)
4c4b4cd2
PH
3621 {
3622 n_chosen = n_choices;
3623 for (j = 0; j < n_choices; j += 1)
3624 choices[j] = j;
3625 break;
3626 }
14f9c5c9
AS
3627 choice -= first_choice;
3628
d2e4a39e 3629 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3630 {
3631 }
14f9c5c9
AS
3632
3633 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3634 {
3635 int k;
5b4ee69b 3636
4c4b4cd2
PH
3637 for (k = n_chosen - 1; k > j; k -= 1)
3638 choices[k + 1] = choices[k];
3639 choices[j + 1] = choice;
3640 n_chosen += 1;
3641 }
14f9c5c9
AS
3642 }
3643
3644 if (n_chosen > max_results)
323e0a4a 3645 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3646
14f9c5c9
AS
3647 return n_chosen;
3648}
3649
4c4b4cd2
PH
3650/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3651 on the function identified by SYM and BLOCK, and taking NARGS
3652 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3653
3654static void
d2e4a39e 3655replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3656 int oplen, struct symbol *sym,
3657 struct block *block)
14f9c5c9
AS
3658{
3659 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3660 symbol, -oplen for operator being replaced). */
d2e4a39e 3661 struct expression *newexp = (struct expression *)
8c1a34e7 3662 xzalloc (sizeof (struct expression)
4c4b4cd2 3663 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3664 struct expression *exp = *expp;
14f9c5c9
AS
3665
3666 newexp->nelts = exp->nelts + 7 - oplen;
3667 newexp->language_defn = exp->language_defn;
3489610d 3668 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3669 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3670 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3671 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3672
3673 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3674 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3675
3676 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3677 newexp->elts[pc + 4].block = block;
3678 newexp->elts[pc + 5].symbol = sym;
3679
3680 *expp = newexp;
aacb1f0a 3681 xfree (exp);
d2e4a39e 3682}
14f9c5c9
AS
3683
3684/* Type-class predicates */
3685
4c4b4cd2
PH
3686/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3687 or FLOAT). */
14f9c5c9
AS
3688
3689static int
d2e4a39e 3690numeric_type_p (struct type *type)
14f9c5c9
AS
3691{
3692 if (type == NULL)
3693 return 0;
d2e4a39e
AS
3694 else
3695 {
3696 switch (TYPE_CODE (type))
4c4b4cd2
PH
3697 {
3698 case TYPE_CODE_INT:
3699 case TYPE_CODE_FLT:
3700 return 1;
3701 case TYPE_CODE_RANGE:
3702 return (type == TYPE_TARGET_TYPE (type)
3703 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3704 default:
3705 return 0;
3706 }
d2e4a39e 3707 }
14f9c5c9
AS
3708}
3709
4c4b4cd2 3710/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3711
3712static int
d2e4a39e 3713integer_type_p (struct type *type)
14f9c5c9
AS
3714{
3715 if (type == NULL)
3716 return 0;
d2e4a39e
AS
3717 else
3718 {
3719 switch (TYPE_CODE (type))
4c4b4cd2
PH
3720 {
3721 case TYPE_CODE_INT:
3722 return 1;
3723 case TYPE_CODE_RANGE:
3724 return (type == TYPE_TARGET_TYPE (type)
3725 || integer_type_p (TYPE_TARGET_TYPE (type)));
3726 default:
3727 return 0;
3728 }
d2e4a39e 3729 }
14f9c5c9
AS
3730}
3731
4c4b4cd2 3732/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3733
3734static int
d2e4a39e 3735scalar_type_p (struct type *type)
14f9c5c9
AS
3736{
3737 if (type == NULL)
3738 return 0;
d2e4a39e
AS
3739 else
3740 {
3741 switch (TYPE_CODE (type))
4c4b4cd2
PH
3742 {
3743 case TYPE_CODE_INT:
3744 case TYPE_CODE_RANGE:
3745 case TYPE_CODE_ENUM:
3746 case TYPE_CODE_FLT:
3747 return 1;
3748 default:
3749 return 0;
3750 }
d2e4a39e 3751 }
14f9c5c9
AS
3752}
3753
4c4b4cd2 3754/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3755
3756static int
d2e4a39e 3757discrete_type_p (struct type *type)
14f9c5c9
AS
3758{
3759 if (type == NULL)
3760 return 0;
d2e4a39e
AS
3761 else
3762 {
3763 switch (TYPE_CODE (type))
4c4b4cd2
PH
3764 {
3765 case TYPE_CODE_INT:
3766 case TYPE_CODE_RANGE:
3767 case TYPE_CODE_ENUM:
872f0337 3768 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3769 return 1;
3770 default:
3771 return 0;
3772 }
d2e4a39e 3773 }
14f9c5c9
AS
3774}
3775
4c4b4cd2
PH
3776/* Returns non-zero if OP with operands in the vector ARGS could be
3777 a user-defined function. Errs on the side of pre-defined operators
3778 (i.e., result 0). */
14f9c5c9
AS
3779
3780static int
d2e4a39e 3781possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3782{
76a01679 3783 struct type *type0 =
df407dfe 3784 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3785 struct type *type1 =
df407dfe 3786 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3787
4c4b4cd2
PH
3788 if (type0 == NULL)
3789 return 0;
3790
14f9c5c9
AS
3791 switch (op)
3792 {
3793 default:
3794 return 0;
3795
3796 case BINOP_ADD:
3797 case BINOP_SUB:
3798 case BINOP_MUL:
3799 case BINOP_DIV:
d2e4a39e 3800 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3801
3802 case BINOP_REM:
3803 case BINOP_MOD:
3804 case BINOP_BITWISE_AND:
3805 case BINOP_BITWISE_IOR:
3806 case BINOP_BITWISE_XOR:
d2e4a39e 3807 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3808
3809 case BINOP_EQUAL:
3810 case BINOP_NOTEQUAL:
3811 case BINOP_LESS:
3812 case BINOP_GTR:
3813 case BINOP_LEQ:
3814 case BINOP_GEQ:
d2e4a39e 3815 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3816
3817 case BINOP_CONCAT:
ee90b9ab 3818 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3819
3820 case BINOP_EXP:
d2e4a39e 3821 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3822
3823 case UNOP_NEG:
3824 case UNOP_PLUS:
3825 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3826 case UNOP_ABS:
3827 return (!numeric_type_p (type0));
14f9c5c9
AS
3828
3829 }
3830}
3831\f
4c4b4cd2 3832 /* Renaming */
14f9c5c9 3833
aeb5907d
JB
3834/* NOTES:
3835
3836 1. In the following, we assume that a renaming type's name may
3837 have an ___XD suffix. It would be nice if this went away at some
3838 point.
3839 2. We handle both the (old) purely type-based representation of
3840 renamings and the (new) variable-based encoding. At some point,
3841 it is devoutly to be hoped that the former goes away
3842 (FIXME: hilfinger-2007-07-09).
3843 3. Subprogram renamings are not implemented, although the XRS
3844 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3845
3846/* If SYM encodes a renaming,
3847
3848 <renaming> renames <renamed entity>,
3849
3850 sets *LEN to the length of the renamed entity's name,
3851 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3852 the string describing the subcomponent selected from the renamed
0963b4bd 3853 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3854 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3855 are undefined). Otherwise, returns a value indicating the category
3856 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3857 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3858 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3859 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3860 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3861 may be NULL, in which case they are not assigned.
3862
3863 [Currently, however, GCC does not generate subprogram renamings.] */
3864
3865enum ada_renaming_category
3866ada_parse_renaming (struct symbol *sym,
3867 const char **renamed_entity, int *len,
3868 const char **renaming_expr)
3869{
3870 enum ada_renaming_category kind;
3871 const char *info;
3872 const char *suffix;
3873
3874 if (sym == NULL)
3875 return ADA_NOT_RENAMING;
3876 switch (SYMBOL_CLASS (sym))
14f9c5c9 3877 {
aeb5907d
JB
3878 default:
3879 return ADA_NOT_RENAMING;
3880 case LOC_TYPEDEF:
3881 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3882 renamed_entity, len, renaming_expr);
3883 case LOC_LOCAL:
3884 case LOC_STATIC:
3885 case LOC_COMPUTED:
3886 case LOC_OPTIMIZED_OUT:
3887 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3888 if (info == NULL)
3889 return ADA_NOT_RENAMING;
3890 switch (info[5])
3891 {
3892 case '_':
3893 kind = ADA_OBJECT_RENAMING;
3894 info += 6;
3895 break;
3896 case 'E':
3897 kind = ADA_EXCEPTION_RENAMING;
3898 info += 7;
3899 break;
3900 case 'P':
3901 kind = ADA_PACKAGE_RENAMING;
3902 info += 7;
3903 break;
3904 case 'S':
3905 kind = ADA_SUBPROGRAM_RENAMING;
3906 info += 7;
3907 break;
3908 default:
3909 return ADA_NOT_RENAMING;
3910 }
14f9c5c9 3911 }
4c4b4cd2 3912
aeb5907d
JB
3913 if (renamed_entity != NULL)
3914 *renamed_entity = info;
3915 suffix = strstr (info, "___XE");
3916 if (suffix == NULL || suffix == info)
3917 return ADA_NOT_RENAMING;
3918 if (len != NULL)
3919 *len = strlen (info) - strlen (suffix);
3920 suffix += 5;
3921 if (renaming_expr != NULL)
3922 *renaming_expr = suffix;
3923 return kind;
3924}
3925
3926/* Assuming TYPE encodes a renaming according to the old encoding in
3927 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3928 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3929 ADA_NOT_RENAMING otherwise. */
3930static enum ada_renaming_category
3931parse_old_style_renaming (struct type *type,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *name;
3937 const char *info;
3938 const char *suffix;
14f9c5c9 3939
aeb5907d
JB
3940 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3941 || TYPE_NFIELDS (type) != 1)
3942 return ADA_NOT_RENAMING;
14f9c5c9 3943
aeb5907d
JB
3944 name = type_name_no_tag (type);
3945 if (name == NULL)
3946 return ADA_NOT_RENAMING;
3947
3948 name = strstr (name, "___XR");
3949 if (name == NULL)
3950 return ADA_NOT_RENAMING;
3951 switch (name[5])
3952 {
3953 case '\0':
3954 case '_':
3955 kind = ADA_OBJECT_RENAMING;
3956 break;
3957 case 'E':
3958 kind = ADA_EXCEPTION_RENAMING;
3959 break;
3960 case 'P':
3961 kind = ADA_PACKAGE_RENAMING;
3962 break;
3963 case 'S':
3964 kind = ADA_SUBPROGRAM_RENAMING;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
14f9c5c9 3969
aeb5907d
JB
3970 info = TYPE_FIELD_NAME (type, 0);
3971 if (info == NULL)
3972 return ADA_NOT_RENAMING;
3973 if (renamed_entity != NULL)
3974 *renamed_entity = info;
3975 suffix = strstr (info, "___XE");
3976 if (renaming_expr != NULL)
3977 *renaming_expr = suffix + 5;
3978 if (suffix == NULL || suffix == info)
3979 return ADA_NOT_RENAMING;
3980 if (len != NULL)
3981 *len = suffix - info;
3982 return kind;
3983}
52ce6436 3984
14f9c5c9 3985\f
d2e4a39e 3986
4c4b4cd2 3987 /* Evaluation: Function Calls */
14f9c5c9 3988
4c4b4cd2 3989/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
3990 lvalues, and otherwise has the side-effect of allocating memory
3991 in the inferior where a copy of the value contents is copied. */
14f9c5c9 3992
d2e4a39e 3993static struct value *
40bc484c 3994ensure_lval (struct value *val)
14f9c5c9 3995{
40bc484c
JB
3996 if (VALUE_LVAL (val) == not_lval
3997 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 3998 {
df407dfe 3999 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4000 const CORE_ADDR addr =
4001 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4002
40bc484c 4003 set_value_address (val, addr);
a84a8a0d 4004 VALUE_LVAL (val) = lval_memory;
40bc484c 4005 write_memory (addr, value_contents (val), len);
c3e5cd34 4006 }
14f9c5c9
AS
4007
4008 return val;
4009}
4010
4011/* Return the value ACTUAL, converted to be an appropriate value for a
4012 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4013 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4014 values not residing in memory, updating it as needed. */
14f9c5c9 4015
a93c0eb6 4016struct value *
40bc484c 4017ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4018{
df407dfe 4019 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4020 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4021 struct type *formal_target =
4022 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4023 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4024 struct type *actual_target =
4025 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4026 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4027
4c4b4cd2 4028 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4029 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4030 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4031 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4032 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4033 {
a84a8a0d 4034 struct value *result;
5b4ee69b 4035
14f9c5c9 4036 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4037 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4038 result = desc_data (actual);
14f9c5c9 4039 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4040 {
4041 if (VALUE_LVAL (actual) != lval_memory)
4042 {
4043 struct value *val;
5b4ee69b 4044
df407dfe 4045 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4046 val = allocate_value (actual_type);
990a07ab 4047 memcpy ((char *) value_contents_raw (val),
0fd88904 4048 (char *) value_contents (actual),
4c4b4cd2 4049 TYPE_LENGTH (actual_type));
40bc484c 4050 actual = ensure_lval (val);
4c4b4cd2 4051 }
a84a8a0d 4052 result = value_addr (actual);
4c4b4cd2 4053 }
a84a8a0d
JB
4054 else
4055 return actual;
4056 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4057 }
4058 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4059 return ada_value_ind (actual);
4060
4061 return actual;
4062}
4063
438c98a1
JB
4064/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4065 type TYPE. This is usually an inefficient no-op except on some targets
4066 (such as AVR) where the representation of a pointer and an address
4067 differs. */
4068
4069static CORE_ADDR
4070value_pointer (struct value *value, struct type *type)
4071{
4072 struct gdbarch *gdbarch = get_type_arch (type);
4073 unsigned len = TYPE_LENGTH (type);
4074 gdb_byte *buf = alloca (len);
4075 CORE_ADDR addr;
4076
4077 addr = value_address (value);
4078 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4079 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4080 return addr;
4081}
4082
14f9c5c9 4083
4c4b4cd2
PH
4084/* Push a descriptor of type TYPE for array value ARR on the stack at
4085 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4086 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4087 to-descriptor type rather than a descriptor type), a struct value *
4088 representing a pointer to this descriptor. */
14f9c5c9 4089
d2e4a39e 4090static struct value *
40bc484c 4091make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4092{
d2e4a39e
AS
4093 struct type *bounds_type = desc_bounds_type (type);
4094 struct type *desc_type = desc_base_type (type);
4095 struct value *descriptor = allocate_value (desc_type);
4096 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4097 int i;
d2e4a39e 4098
0963b4bd
MS
4099 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4100 i > 0; i -= 1)
14f9c5c9 4101 {
19f220c3
JK
4102 modify_field (value_type (bounds), value_contents_writeable (bounds),
4103 ada_array_bound (arr, i, 0),
4104 desc_bound_bitpos (bounds_type, i, 0),
4105 desc_bound_bitsize (bounds_type, i, 0));
4106 modify_field (value_type (bounds), value_contents_writeable (bounds),
4107 ada_array_bound (arr, i, 1),
4108 desc_bound_bitpos (bounds_type, i, 1),
4109 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4110 }
d2e4a39e 4111
40bc484c 4112 bounds = ensure_lval (bounds);
d2e4a39e 4113
19f220c3
JK
4114 modify_field (value_type (descriptor),
4115 value_contents_writeable (descriptor),
4116 value_pointer (ensure_lval (arr),
4117 TYPE_FIELD_TYPE (desc_type, 0)),
4118 fat_pntr_data_bitpos (desc_type),
4119 fat_pntr_data_bitsize (desc_type));
4120
4121 modify_field (value_type (descriptor),
4122 value_contents_writeable (descriptor),
4123 value_pointer (bounds,
4124 TYPE_FIELD_TYPE (desc_type, 1)),
4125 fat_pntr_bounds_bitpos (desc_type),
4126 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4127
40bc484c 4128 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4129
4130 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4131 return value_addr (descriptor);
4132 else
4133 return descriptor;
4134}
14f9c5c9 4135\f
963a6417 4136/* Dummy definitions for an experimental caching module that is not
0963b4bd 4137 * used in the public sources. */
96d887e8 4138
96d887e8
PH
4139static int
4140lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4141 struct symbol **sym, struct block **block)
96d887e8
PH
4142{
4143 return 0;
4144}
4145
4146static void
4147cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4148 struct block *block)
96d887e8
PH
4149{
4150}
4c4b4cd2
PH
4151\f
4152 /* Symbol Lookup */
4153
4154/* Return the result of a standard (literal, C-like) lookup of NAME in
4155 given DOMAIN, visible from lexical block BLOCK. */
4156
4157static struct symbol *
4158standard_lookup (const char *name, const struct block *block,
4159 domain_enum domain)
4160{
4161 struct symbol *sym;
4c4b4cd2 4162
2570f2b7 4163 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4164 return sym;
2570f2b7
UW
4165 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4166 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4167 return sym;
4168}
4169
4170
4171/* Non-zero iff there is at least one non-function/non-enumeral symbol
4172 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4173 since they contend in overloading in the same way. */
4174static int
4175is_nonfunction (struct ada_symbol_info syms[], int n)
4176{
4177 int i;
4178
4179 for (i = 0; i < n; i += 1)
4180 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4181 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4182 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4183 return 1;
4184
4185 return 0;
4186}
4187
4188/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4189 struct types. Otherwise, they may not. */
14f9c5c9
AS
4190
4191static int
d2e4a39e 4192equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4193{
d2e4a39e 4194 if (type0 == type1)
14f9c5c9 4195 return 1;
d2e4a39e 4196 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4197 || TYPE_CODE (type0) != TYPE_CODE (type1))
4198 return 0;
d2e4a39e 4199 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4200 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4201 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4202 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4203 return 1;
d2e4a39e 4204
14f9c5c9
AS
4205 return 0;
4206}
4207
4208/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4209 no more defined than that of SYM1. */
14f9c5c9
AS
4210
4211static int
d2e4a39e 4212lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4213{
4214 if (sym0 == sym1)
4215 return 1;
176620f1 4216 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4217 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4218 return 0;
4219
d2e4a39e 4220 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4221 {
4222 case LOC_UNDEF:
4223 return 1;
4224 case LOC_TYPEDEF:
4225 {
4c4b4cd2
PH
4226 struct type *type0 = SYMBOL_TYPE (sym0);
4227 struct type *type1 = SYMBOL_TYPE (sym1);
4228 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4229 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4230 int len0 = strlen (name0);
5b4ee69b 4231
4c4b4cd2
PH
4232 return
4233 TYPE_CODE (type0) == TYPE_CODE (type1)
4234 && (equiv_types (type0, type1)
4235 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4236 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4237 }
4238 case LOC_CONST:
4239 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4240 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4241 default:
4242 return 0;
14f9c5c9
AS
4243 }
4244}
4245
4c4b4cd2
PH
4246/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4247 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4248
4249static void
76a01679
JB
4250add_defn_to_vec (struct obstack *obstackp,
4251 struct symbol *sym,
2570f2b7 4252 struct block *block)
14f9c5c9
AS
4253{
4254 int i;
4c4b4cd2 4255 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4256
529cad9c
PH
4257 /* Do not try to complete stub types, as the debugger is probably
4258 already scanning all symbols matching a certain name at the
4259 time when this function is called. Trying to replace the stub
4260 type by its associated full type will cause us to restart a scan
4261 which may lead to an infinite recursion. Instead, the client
4262 collecting the matching symbols will end up collecting several
4263 matches, with at least one of them complete. It can then filter
4264 out the stub ones if needed. */
4265
4c4b4cd2
PH
4266 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4267 {
4268 if (lesseq_defined_than (sym, prevDefns[i].sym))
4269 return;
4270 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4271 {
4272 prevDefns[i].sym = sym;
4273 prevDefns[i].block = block;
4c4b4cd2 4274 return;
76a01679 4275 }
4c4b4cd2
PH
4276 }
4277
4278 {
4279 struct ada_symbol_info info;
4280
4281 info.sym = sym;
4282 info.block = block;
4c4b4cd2
PH
4283 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4284 }
4285}
4286
4287/* Number of ada_symbol_info structures currently collected in
4288 current vector in *OBSTACKP. */
4289
76a01679
JB
4290static int
4291num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4292{
4293 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4294}
4295
4296/* Vector of ada_symbol_info structures currently collected in current
4297 vector in *OBSTACKP. If FINISH, close off the vector and return
4298 its final address. */
4299
76a01679 4300static struct ada_symbol_info *
4c4b4cd2
PH
4301defns_collected (struct obstack *obstackp, int finish)
4302{
4303 if (finish)
4304 return obstack_finish (obstackp);
4305 else
4306 return (struct ada_symbol_info *) obstack_base (obstackp);
4307}
4308
96d887e8
PH
4309/* Return a minimal symbol matching NAME according to Ada decoding
4310 rules. Returns NULL if there is no such minimal symbol. Names
4311 prefixed with "standard__" are handled specially: "standard__" is
4312 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4313
96d887e8
PH
4314struct minimal_symbol *
4315ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4316{
4c4b4cd2 4317 struct objfile *objfile;
96d887e8
PH
4318 struct minimal_symbol *msymbol;
4319 int wild_match;
4c4b4cd2 4320
96d887e8 4321 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4322 {
96d887e8 4323 name += sizeof ("standard__") - 1;
4c4b4cd2 4324 wild_match = 0;
4c4b4cd2
PH
4325 }
4326 else
96d887e8 4327 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4328
96d887e8
PH
4329 ALL_MSYMBOLS (objfile, msymbol)
4330 {
40658b94 4331 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
96d887e8
PH
4332 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4333 return msymbol;
4334 }
4c4b4cd2 4335
96d887e8
PH
4336 return NULL;
4337}
4c4b4cd2 4338
96d887e8
PH
4339/* For all subprograms that statically enclose the subprogram of the
4340 selected frame, add symbols matching identifier NAME in DOMAIN
4341 and their blocks to the list of data in OBSTACKP, as for
4342 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4343 wildcard prefix. */
4c4b4cd2 4344
96d887e8
PH
4345static void
4346add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4347 const char *name, domain_enum namespace,
96d887e8
PH
4348 int wild_match)
4349{
96d887e8 4350}
14f9c5c9 4351
96d887e8
PH
4352/* True if TYPE is definitely an artificial type supplied to a symbol
4353 for which no debugging information was given in the symbol file. */
14f9c5c9 4354
96d887e8
PH
4355static int
4356is_nondebugging_type (struct type *type)
4357{
4358 char *name = ada_type_name (type);
5b4ee69b 4359
96d887e8
PH
4360 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4361}
4c4b4cd2 4362
96d887e8
PH
4363/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4364 duplicate other symbols in the list (The only case I know of where
4365 this happens is when object files containing stabs-in-ecoff are
4366 linked with files containing ordinary ecoff debugging symbols (or no
4367 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4368 Returns the number of items in the modified list. */
4c4b4cd2 4369
96d887e8
PH
4370static int
4371remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4372{
4373 int i, j;
4c4b4cd2 4374
96d887e8
PH
4375 i = 0;
4376 while (i < nsyms)
4377 {
339c13b6
JB
4378 int remove = 0;
4379
4380 /* If two symbols have the same name and one of them is a stub type,
4381 the get rid of the stub. */
4382
4383 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4384 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4385 {
4386 for (j = 0; j < nsyms; j++)
4387 {
4388 if (j != i
4389 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4390 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4391 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4392 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4393 remove = 1;
4394 }
4395 }
4396
4397 /* Two symbols with the same name, same class and same address
4398 should be identical. */
4399
4400 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4401 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4402 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4403 {
4404 for (j = 0; j < nsyms; j += 1)
4405 {
4406 if (i != j
4407 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4408 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4409 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4410 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4411 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4412 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4413 remove = 1;
4c4b4cd2 4414 }
4c4b4cd2 4415 }
339c13b6
JB
4416
4417 if (remove)
4418 {
4419 for (j = i + 1; j < nsyms; j += 1)
4420 syms[j - 1] = syms[j];
4421 nsyms -= 1;
4422 }
4423
96d887e8 4424 i += 1;
14f9c5c9 4425 }
96d887e8 4426 return nsyms;
14f9c5c9
AS
4427}
4428
96d887e8
PH
4429/* Given a type that corresponds to a renaming entity, use the type name
4430 to extract the scope (package name or function name, fully qualified,
4431 and following the GNAT encoding convention) where this renaming has been
4432 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4433
96d887e8
PH
4434static char *
4435xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4436{
96d887e8 4437 /* The renaming types adhere to the following convention:
0963b4bd 4438 <scope>__<rename>___<XR extension>.
96d887e8
PH
4439 So, to extract the scope, we search for the "___XR" extension,
4440 and then backtrack until we find the first "__". */
76a01679 4441
96d887e8
PH
4442 const char *name = type_name_no_tag (renaming_type);
4443 char *suffix = strstr (name, "___XR");
4444 char *last;
4445 int scope_len;
4446 char *scope;
14f9c5c9 4447
96d887e8
PH
4448 /* Now, backtrack a bit until we find the first "__". Start looking
4449 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4450
96d887e8
PH
4451 for (last = suffix - 3; last > name; last--)
4452 if (last[0] == '_' && last[1] == '_')
4453 break;
76a01679 4454
96d887e8 4455 /* Make a copy of scope and return it. */
14f9c5c9 4456
96d887e8
PH
4457 scope_len = last - name;
4458 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4459
96d887e8
PH
4460 strncpy (scope, name, scope_len);
4461 scope[scope_len] = '\0';
4c4b4cd2 4462
96d887e8 4463 return scope;
4c4b4cd2
PH
4464}
4465
96d887e8 4466/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4467
96d887e8
PH
4468static int
4469is_package_name (const char *name)
4c4b4cd2 4470{
96d887e8
PH
4471 /* Here, We take advantage of the fact that no symbols are generated
4472 for packages, while symbols are generated for each function.
4473 So the condition for NAME represent a package becomes equivalent
4474 to NAME not existing in our list of symbols. There is only one
4475 small complication with library-level functions (see below). */
4c4b4cd2 4476
96d887e8 4477 char *fun_name;
76a01679 4478
96d887e8
PH
4479 /* If it is a function that has not been defined at library level,
4480 then we should be able to look it up in the symbols. */
4481 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4482 return 0;
14f9c5c9 4483
96d887e8
PH
4484 /* Library-level function names start with "_ada_". See if function
4485 "_ada_" followed by NAME can be found. */
14f9c5c9 4486
96d887e8 4487 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4488 functions names cannot contain "__" in them. */
96d887e8
PH
4489 if (strstr (name, "__") != NULL)
4490 return 0;
4c4b4cd2 4491
b435e160 4492 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4493
96d887e8
PH
4494 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4495}
14f9c5c9 4496
96d887e8 4497/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4498 not visible from FUNCTION_NAME. */
14f9c5c9 4499
96d887e8 4500static int
aeb5907d 4501old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4502{
aeb5907d
JB
4503 char *scope;
4504
4505 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4506 return 0;
4507
4508 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4509
96d887e8 4510 make_cleanup (xfree, scope);
14f9c5c9 4511
96d887e8
PH
4512 /* If the rename has been defined in a package, then it is visible. */
4513 if (is_package_name (scope))
aeb5907d 4514 return 0;
14f9c5c9 4515
96d887e8
PH
4516 /* Check that the rename is in the current function scope by checking
4517 that its name starts with SCOPE. */
76a01679 4518
96d887e8
PH
4519 /* If the function name starts with "_ada_", it means that it is
4520 a library-level function. Strip this prefix before doing the
4521 comparison, as the encoding for the renaming does not contain
4522 this prefix. */
4523 if (strncmp (function_name, "_ada_", 5) == 0)
4524 function_name += 5;
f26caa11 4525
aeb5907d 4526 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4527}
4528
aeb5907d
JB
4529/* Remove entries from SYMS that corresponds to a renaming entity that
4530 is not visible from the function associated with CURRENT_BLOCK or
4531 that is superfluous due to the presence of more specific renaming
4532 information. Places surviving symbols in the initial entries of
4533 SYMS and returns the number of surviving symbols.
96d887e8
PH
4534
4535 Rationale:
aeb5907d
JB
4536 First, in cases where an object renaming is implemented as a
4537 reference variable, GNAT may produce both the actual reference
4538 variable and the renaming encoding. In this case, we discard the
4539 latter.
4540
4541 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4542 entity. Unfortunately, STABS currently does not support the definition
4543 of types that are local to a given lexical block, so all renamings types
4544 are emitted at library level. As a consequence, if an application
4545 contains two renaming entities using the same name, and a user tries to
4546 print the value of one of these entities, the result of the ada symbol
4547 lookup will also contain the wrong renaming type.
f26caa11 4548
96d887e8
PH
4549 This function partially covers for this limitation by attempting to
4550 remove from the SYMS list renaming symbols that should be visible
4551 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4552 method with the current information available. The implementation
4553 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4554
4555 - When the user tries to print a rename in a function while there
4556 is another rename entity defined in a package: Normally, the
4557 rename in the function has precedence over the rename in the
4558 package, so the latter should be removed from the list. This is
4559 currently not the case.
4560
4561 - This function will incorrectly remove valid renames if
4562 the CURRENT_BLOCK corresponds to a function which symbol name
4563 has been changed by an "Export" pragma. As a consequence,
4564 the user will be unable to print such rename entities. */
4c4b4cd2 4565
14f9c5c9 4566static int
aeb5907d
JB
4567remove_irrelevant_renamings (struct ada_symbol_info *syms,
4568 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4569{
4570 struct symbol *current_function;
4571 char *current_function_name;
4572 int i;
aeb5907d
JB
4573 int is_new_style_renaming;
4574
4575 /* If there is both a renaming foo___XR... encoded as a variable and
4576 a simple variable foo in the same block, discard the latter.
0963b4bd 4577 First, zero out such symbols, then compress. */
aeb5907d
JB
4578 is_new_style_renaming = 0;
4579 for (i = 0; i < nsyms; i += 1)
4580 {
4581 struct symbol *sym = syms[i].sym;
4582 struct block *block = syms[i].block;
4583 const char *name;
4584 const char *suffix;
4585
4586 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4587 continue;
4588 name = SYMBOL_LINKAGE_NAME (sym);
4589 suffix = strstr (name, "___XR");
4590
4591 if (suffix != NULL)
4592 {
4593 int name_len = suffix - name;
4594 int j;
5b4ee69b 4595
aeb5907d
JB
4596 is_new_style_renaming = 1;
4597 for (j = 0; j < nsyms; j += 1)
4598 if (i != j && syms[j].sym != NULL
4599 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4600 name_len) == 0
4601 && block == syms[j].block)
4602 syms[j].sym = NULL;
4603 }
4604 }
4605 if (is_new_style_renaming)
4606 {
4607 int j, k;
4608
4609 for (j = k = 0; j < nsyms; j += 1)
4610 if (syms[j].sym != NULL)
4611 {
4612 syms[k] = syms[j];
4613 k += 1;
4614 }
4615 return k;
4616 }
4c4b4cd2
PH
4617
4618 /* Extract the function name associated to CURRENT_BLOCK.
4619 Abort if unable to do so. */
76a01679 4620
4c4b4cd2
PH
4621 if (current_block == NULL)
4622 return nsyms;
76a01679 4623
7f0df278 4624 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4625 if (current_function == NULL)
4626 return nsyms;
4627
4628 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4629 if (current_function_name == NULL)
4630 return nsyms;
4631
4632 /* Check each of the symbols, and remove it from the list if it is
4633 a type corresponding to a renaming that is out of the scope of
4634 the current block. */
4635
4636 i = 0;
4637 while (i < nsyms)
4638 {
aeb5907d
JB
4639 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4640 == ADA_OBJECT_RENAMING
4641 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4642 {
4643 int j;
5b4ee69b 4644
aeb5907d 4645 for (j = i + 1; j < nsyms; j += 1)
76a01679 4646 syms[j - 1] = syms[j];
4c4b4cd2
PH
4647 nsyms -= 1;
4648 }
4649 else
4650 i += 1;
4651 }
4652
4653 return nsyms;
4654}
4655
339c13b6
JB
4656/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4657 whose name and domain match NAME and DOMAIN respectively.
4658 If no match was found, then extend the search to "enclosing"
4659 routines (in other words, if we're inside a nested function,
4660 search the symbols defined inside the enclosing functions).
4661
4662 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4663
4664static void
4665ada_add_local_symbols (struct obstack *obstackp, const char *name,
4666 struct block *block, domain_enum domain,
4667 int wild_match)
4668{
4669 int block_depth = 0;
4670
4671 while (block != NULL)
4672 {
4673 block_depth += 1;
4674 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4675
4676 /* If we found a non-function match, assume that's the one. */
4677 if (is_nonfunction (defns_collected (obstackp, 0),
4678 num_defns_collected (obstackp)))
4679 return;
4680
4681 block = BLOCK_SUPERBLOCK (block);
4682 }
4683
4684 /* If no luck so far, try to find NAME as a local symbol in some lexically
4685 enclosing subprogram. */
4686 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4687 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4688}
4689
ccefe4c4 4690/* An object of this type is used as the user_data argument when
40658b94 4691 calling the map_matching_symbols method. */
ccefe4c4 4692
40658b94 4693struct match_data
ccefe4c4 4694{
40658b94 4695 struct objfile *objfile;
ccefe4c4 4696 struct obstack *obstackp;
40658b94
PH
4697 struct symbol *arg_sym;
4698 int found_sym;
ccefe4c4
TT
4699};
4700
40658b94
PH
4701/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4702 to a list of symbols. DATA0 is a pointer to a struct match_data *
4703 containing the obstack that collects the symbol list, the file that SYM
4704 must come from, a flag indicating whether a non-argument symbol has
4705 been found in the current block, and the last argument symbol
4706 passed in SYM within the current block (if any). When SYM is null,
4707 marking the end of a block, the argument symbol is added if no
4708 other has been found. */
ccefe4c4 4709
40658b94
PH
4710static int
4711aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4712{
40658b94
PH
4713 struct match_data *data = (struct match_data *) data0;
4714
4715 if (sym == NULL)
4716 {
4717 if (!data->found_sym && data->arg_sym != NULL)
4718 add_defn_to_vec (data->obstackp,
4719 fixup_symbol_section (data->arg_sym, data->objfile),
4720 block);
4721 data->found_sym = 0;
4722 data->arg_sym = NULL;
4723 }
4724 else
4725 {
4726 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4727 return 0;
4728 else if (SYMBOL_IS_ARGUMENT (sym))
4729 data->arg_sym = sym;
4730 else
4731 {
4732 data->found_sym = 1;
4733 add_defn_to_vec (data->obstackp,
4734 fixup_symbol_section (sym, data->objfile),
4735 block);
4736 }
4737 }
4738 return 0;
4739}
4740
4741/* Compare STRING1 to STRING2, with results as for strcmp.
4742 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4743 implies compare_names (STRING1, STRING2) (they may differ as to
4744 what symbols compare equal). */
5b4ee69b 4745
40658b94
PH
4746static int
4747compare_names (const char *string1, const char *string2)
4748{
4749 while (*string1 != '\0' && *string2 != '\0')
4750 {
4751 if (isspace (*string1) || isspace (*string2))
4752 return strcmp_iw_ordered (string1, string2);
4753 if (*string1 != *string2)
4754 break;
4755 string1 += 1;
4756 string2 += 1;
4757 }
4758 switch (*string1)
4759 {
4760 case '(':
4761 return strcmp_iw_ordered (string1, string2);
4762 case '_':
4763 if (*string2 == '\0')
4764 {
052874e8 4765 if (is_name_suffix (string1))
40658b94
PH
4766 return 0;
4767 else
4768 return -1;
4769 }
dbb8534f 4770 /* FALLTHROUGH */
40658b94
PH
4771 default:
4772 if (*string2 == '(')
4773 return strcmp_iw_ordered (string1, string2);
4774 else
4775 return *string1 - *string2;
4776 }
ccefe4c4
TT
4777}
4778
339c13b6
JB
4779/* Add to OBSTACKP all non-local symbols whose name and domain match
4780 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4781 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4782
4783static void
40658b94
PH
4784add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4785 domain_enum domain, int global,
4786 int is_wild_match)
339c13b6
JB
4787{
4788 struct objfile *objfile;
40658b94 4789 struct match_data data;
339c13b6 4790
ccefe4c4 4791 data.obstackp = obstackp;
40658b94 4792 data.arg_sym = NULL;
339c13b6 4793
ccefe4c4 4794 ALL_OBJFILES (objfile)
40658b94
PH
4795 {
4796 data.objfile = objfile;
4797
4798 if (is_wild_match)
4799 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4800 aux_add_nonlocal_symbols, &data,
4801 wild_match, NULL);
4802 else
4803 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4804 aux_add_nonlocal_symbols, &data,
4805 full_match, compare_names);
4806 }
4807
4808 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4809 {
4810 ALL_OBJFILES (objfile)
4811 {
4812 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4813 strcpy (name1, "_ada_");
4814 strcpy (name1 + sizeof ("_ada_") - 1, name);
4815 data.objfile = objfile;
0963b4bd
MS
4816 objfile->sf->qf->map_matching_symbols (name1, domain,
4817 objfile, global,
4818 aux_add_nonlocal_symbols,
4819 &data,
40658b94
PH
4820 full_match, compare_names);
4821 }
4822 }
339c13b6
JB
4823}
4824
4c4b4cd2
PH
4825/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4826 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4827 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4828 indicating the symbols found and the blocks and symbol tables (if
4829 any) in which they were found. This vector are transient---good only to
4830 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4831 symbol match within the nest of blocks whose innermost member is BLOCK0,
4832 is the one match returned (no other matches in that or
4833 enclosing blocks is returned). If there are any matches in or
4834 surrounding BLOCK0, then these alone are returned. Otherwise, the
4835 search extends to global and file-scope (static) symbol tables.
4836 Names prefixed with "standard__" are handled specially: "standard__"
4837 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4838
4839int
4c4b4cd2 4840ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4841 domain_enum namespace,
4842 struct ada_symbol_info **results)
14f9c5c9
AS
4843{
4844 struct symbol *sym;
14f9c5c9 4845 struct block *block;
4c4b4cd2 4846 const char *name;
4c4b4cd2 4847 int wild_match;
14f9c5c9 4848 int cacheIfUnique;
4c4b4cd2 4849 int ndefns;
14f9c5c9 4850
4c4b4cd2
PH
4851 obstack_free (&symbol_list_obstack, NULL);
4852 obstack_init (&symbol_list_obstack);
14f9c5c9 4853
14f9c5c9
AS
4854 cacheIfUnique = 0;
4855
4856 /* Search specified block and its superiors. */
4857
4c4b4cd2
PH
4858 wild_match = (strstr (name0, "__") == NULL);
4859 name = name0;
76a01679
JB
4860 block = (struct block *) block0; /* FIXME: No cast ought to be
4861 needed, but adding const will
4862 have a cascade effect. */
339c13b6
JB
4863
4864 /* Special case: If the user specifies a symbol name inside package
4865 Standard, do a non-wild matching of the symbol name without
4866 the "standard__" prefix. This was primarily introduced in order
4867 to allow the user to specifically access the standard exceptions
4868 using, for instance, Standard.Constraint_Error when Constraint_Error
4869 is ambiguous (due to the user defining its own Constraint_Error
4870 entity inside its program). */
4c4b4cd2
PH
4871 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4872 {
4873 wild_match = 0;
4874 block = NULL;
4875 name = name0 + sizeof ("standard__") - 1;
4876 }
4877
339c13b6 4878 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4879
339c13b6
JB
4880 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4881 wild_match);
4c4b4cd2 4882 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4883 goto done;
d2e4a39e 4884
339c13b6
JB
4885 /* No non-global symbols found. Check our cache to see if we have
4886 already performed this search before. If we have, then return
4887 the same result. */
4888
14f9c5c9 4889 cacheIfUnique = 1;
2570f2b7 4890 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4891 {
4892 if (sym != NULL)
2570f2b7 4893 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4894 goto done;
4895 }
14f9c5c9 4896
339c13b6
JB
4897 /* Search symbols from all global blocks. */
4898
40658b94
PH
4899 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
4900 wild_match);
d2e4a39e 4901
4c4b4cd2 4902 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4903 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4904
4c4b4cd2 4905 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94
PH
4906 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
4907 wild_match);
14f9c5c9 4908
4c4b4cd2
PH
4909done:
4910 ndefns = num_defns_collected (&symbol_list_obstack);
4911 *results = defns_collected (&symbol_list_obstack, 1);
4912
4913 ndefns = remove_extra_symbols (*results, ndefns);
4914
d2e4a39e 4915 if (ndefns == 0)
2570f2b7 4916 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4917
4c4b4cd2 4918 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4919 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4920
aeb5907d 4921 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4922
14f9c5c9
AS
4923 return ndefns;
4924}
4925
d2e4a39e 4926struct symbol *
aeb5907d 4927ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4928 domain_enum namespace, struct block **block_found)
14f9c5c9 4929{
4c4b4cd2 4930 struct ada_symbol_info *candidates;
14f9c5c9
AS
4931 int n_candidates;
4932
aeb5907d 4933 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4934
4935 if (n_candidates == 0)
4936 return NULL;
4c4b4cd2 4937
aeb5907d
JB
4938 if (block_found != NULL)
4939 *block_found = candidates[0].block;
4c4b4cd2 4940
21b556f4 4941 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4942}
4943
4944/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4945 scope and in global scopes, or NULL if none. NAME is folded and
4946 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 4947 choosing the first symbol if there are multiple choices.
aeb5907d
JB
4948 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4949 table in which the symbol was found (in both cases, these
4950 assignments occur only if the pointers are non-null). */
4951struct symbol *
4952ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4953 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4954{
4955 if (is_a_field_of_this != NULL)
4956 *is_a_field_of_this = 0;
4957
4958 return
4959 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4960 block0, namespace, NULL);
4c4b4cd2 4961}
14f9c5c9 4962
4c4b4cd2
PH
4963static struct symbol *
4964ada_lookup_symbol_nonlocal (const char *name,
76a01679 4965 const struct block *block,
21b556f4 4966 const domain_enum domain)
4c4b4cd2 4967{
94af9270 4968 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
4969}
4970
4971
4c4b4cd2
PH
4972/* True iff STR is a possible encoded suffix of a normal Ada name
4973 that is to be ignored for matching purposes. Suffixes of parallel
4974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4975 are given by any of the regular expressions:
4c4b4cd2 4976
babe1480
JB
4977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4979 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4981
4982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4983 match is performed. This sequence is used to differentiate homonyms,
4984 is an optional part of a valid name suffix. */
4c4b4cd2 4985
14f9c5c9 4986static int
d2e4a39e 4987is_name_suffix (const char *str)
14f9c5c9
AS
4988{
4989 int k;
4c4b4cd2
PH
4990 const char *matching;
4991 const int len = strlen (str);
4992
babe1480
JB
4993 /* Skip optional leading __[0-9]+. */
4994
4c4b4cd2
PH
4995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4996 {
babe1480
JB
4997 str += 3;
4998 while (isdigit (str[0]))
4999 str += 1;
4c4b4cd2 5000 }
babe1480
JB
5001
5002 /* [.$][0-9]+ */
4c4b4cd2 5003
babe1480 5004 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5005 {
babe1480 5006 matching = str + 1;
4c4b4cd2
PH
5007 while (isdigit (matching[0]))
5008 matching += 1;
5009 if (matching[0] == '\0')
5010 return 1;
5011 }
5012
5013 /* ___[0-9]+ */
babe1480 5014
4c4b4cd2
PH
5015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5016 {
5017 matching = str + 3;
5018 while (isdigit (matching[0]))
5019 matching += 1;
5020 if (matching[0] == '\0')
5021 return 1;
5022 }
5023
529cad9c
PH
5024#if 0
5025 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5026 with a N at the end. Unfortunately, the compiler uses the same
5027 convention for other internal types it creates. So treating
529cad9c 5028 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5029 some regressions. For instance, consider the case of an enumerated
5030 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5031 name ends with N.
5032 Having a single character like this as a suffix carrying some
0963b4bd 5033 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5034 to be something like "_N" instead. In the meantime, do not do
5035 the following check. */
5036 /* Protected Object Subprograms */
5037 if (len == 1 && str [0] == 'N')
5038 return 1;
5039#endif
5040
5041 /* _E[0-9]+[bs]$ */
5042 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5043 {
5044 matching = str + 3;
5045 while (isdigit (matching[0]))
5046 matching += 1;
5047 if ((matching[0] == 'b' || matching[0] == 's')
5048 && matching [1] == '\0')
5049 return 1;
5050 }
5051
4c4b4cd2
PH
5052 /* ??? We should not modify STR directly, as we are doing below. This
5053 is fine in this case, but may become problematic later if we find
5054 that this alternative did not work, and want to try matching
5055 another one from the begining of STR. Since we modified it, we
5056 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5057 if (str[0] == 'X')
5058 {
5059 str += 1;
d2e4a39e 5060 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5061 {
5062 if (str[0] != 'n' && str[0] != 'b')
5063 return 0;
5064 str += 1;
5065 }
14f9c5c9 5066 }
babe1480 5067
14f9c5c9
AS
5068 if (str[0] == '\000')
5069 return 1;
babe1480 5070
d2e4a39e 5071 if (str[0] == '_')
14f9c5c9
AS
5072 {
5073 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5074 return 0;
d2e4a39e 5075 if (str[2] == '_')
4c4b4cd2 5076 {
61ee279c
PH
5077 if (strcmp (str + 3, "JM") == 0)
5078 return 1;
5079 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5080 the LJM suffix in favor of the JM one. But we will
5081 still accept LJM as a valid suffix for a reasonable
5082 amount of time, just to allow ourselves to debug programs
5083 compiled using an older version of GNAT. */
4c4b4cd2
PH
5084 if (strcmp (str + 3, "LJM") == 0)
5085 return 1;
5086 if (str[3] != 'X')
5087 return 0;
1265e4aa
JB
5088 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5089 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5090 return 1;
5091 if (str[4] == 'R' && str[5] != 'T')
5092 return 1;
5093 return 0;
5094 }
5095 if (!isdigit (str[2]))
5096 return 0;
5097 for (k = 3; str[k] != '\0'; k += 1)
5098 if (!isdigit (str[k]) && str[k] != '_')
5099 return 0;
14f9c5c9
AS
5100 return 1;
5101 }
4c4b4cd2 5102 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5103 {
4c4b4cd2
PH
5104 for (k = 2; str[k] != '\0'; k += 1)
5105 if (!isdigit (str[k]) && str[k] != '_')
5106 return 0;
14f9c5c9
AS
5107 return 1;
5108 }
5109 return 0;
5110}
d2e4a39e 5111
aeb5907d
JB
5112/* Return non-zero if the string starting at NAME and ending before
5113 NAME_END contains no capital letters. */
529cad9c
PH
5114
5115static int
5116is_valid_name_for_wild_match (const char *name0)
5117{
5118 const char *decoded_name = ada_decode (name0);
5119 int i;
5120
5823c3ef
JB
5121 /* If the decoded name starts with an angle bracket, it means that
5122 NAME0 does not follow the GNAT encoding format. It should then
5123 not be allowed as a possible wild match. */
5124 if (decoded_name[0] == '<')
5125 return 0;
5126
529cad9c
PH
5127 for (i=0; decoded_name[i] != '\0'; i++)
5128 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5129 return 0;
5130
5131 return 1;
5132}
5133
73589123
PH
5134/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5135 that could start a simple name. Assumes that *NAMEP points into
5136 the string beginning at NAME0. */
4c4b4cd2 5137
14f9c5c9 5138static int
73589123 5139advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5140{
73589123 5141 const char *name = *namep;
5b4ee69b 5142
5823c3ef 5143 while (1)
14f9c5c9 5144 {
aa27d0b3 5145 int t0, t1;
73589123
PH
5146
5147 t0 = *name;
5148 if (t0 == '_')
5149 {
5150 t1 = name[1];
5151 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5152 {
5153 name += 1;
5154 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5155 break;
5156 else
5157 name += 1;
5158 }
aa27d0b3
JB
5159 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5160 || name[2] == target0))
73589123
PH
5161 {
5162 name += 2;
5163 break;
5164 }
5165 else
5166 return 0;
5167 }
5168 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5169 name += 1;
5170 else
5823c3ef 5171 return 0;
73589123
PH
5172 }
5173
5174 *namep = name;
5175 return 1;
5176}
5177
5178/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5179 informational suffixes of NAME (i.e., for which is_name_suffix is
5180 true). Assumes that PATN is a lower-cased Ada simple name. */
5181
5182static int
5183wild_match (const char *name, const char *patn)
5184{
5185 const char *p, *n;
5186 const char *name0 = name;
5187
5188 while (1)
5189 {
5190 const char *match = name;
5191
5192 if (*name == *patn)
5193 {
5194 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5195 if (*p != *name)
5196 break;
5197 if (*p == '\0' && is_name_suffix (name))
5198 return match != name0 && !is_valid_name_for_wild_match (name0);
5199
5200 if (name[-1] == '_')
5201 name -= 1;
5202 }
5203 if (!advance_wild_match (&name, name0, *patn))
5204 return 1;
96d887e8 5205 }
96d887e8
PH
5206}
5207
40658b94
PH
5208/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5209 informational suffix. */
5210
c4d840bd
PH
5211static int
5212full_match (const char *sym_name, const char *search_name)
5213{
40658b94 5214 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5215}
5216
5217
96d887e8
PH
5218/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5219 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5220 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5221 OBJFILE is the section containing BLOCK.
5222 SYMTAB is recorded with each symbol added. */
5223
5224static void
5225ada_add_block_symbols (struct obstack *obstackp,
76a01679 5226 struct block *block, const char *name,
96d887e8 5227 domain_enum domain, struct objfile *objfile,
2570f2b7 5228 int wild)
96d887e8
PH
5229{
5230 struct dict_iterator iter;
5231 int name_len = strlen (name);
5232 /* A matching argument symbol, if any. */
5233 struct symbol *arg_sym;
5234 /* Set true when we find a matching non-argument symbol. */
5235 int found_sym;
5236 struct symbol *sym;
5237
5238 arg_sym = NULL;
5239 found_sym = 0;
5240 if (wild)
5241 {
c4d840bd
PH
5242 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5243 wild_match, &iter);
5244 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
76a01679 5245 {
5eeb2539
AR
5246 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5247 SYMBOL_DOMAIN (sym), domain)
73589123 5248 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5249 {
2a2d4dc3
AS
5250 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5251 continue;
5252 else if (SYMBOL_IS_ARGUMENT (sym))
5253 arg_sym = sym;
5254 else
5255 {
76a01679
JB
5256 found_sym = 1;
5257 add_defn_to_vec (obstackp,
5258 fixup_symbol_section (sym, objfile),
2570f2b7 5259 block);
76a01679
JB
5260 }
5261 }
5262 }
96d887e8
PH
5263 }
5264 else
5265 {
c4d840bd 5266 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
40658b94 5267 full_match, &iter);
c4d840bd 5268 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
76a01679 5269 {
5eeb2539
AR
5270 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5271 SYMBOL_DOMAIN (sym), domain))
76a01679 5272 {
c4d840bd
PH
5273 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5274 {
5275 if (SYMBOL_IS_ARGUMENT (sym))
5276 arg_sym = sym;
5277 else
2a2d4dc3 5278 {
c4d840bd
PH
5279 found_sym = 1;
5280 add_defn_to_vec (obstackp,
5281 fixup_symbol_section (sym, objfile),
5282 block);
2a2d4dc3 5283 }
c4d840bd 5284 }
76a01679
JB
5285 }
5286 }
96d887e8
PH
5287 }
5288
5289 if (!found_sym && arg_sym != NULL)
5290 {
76a01679
JB
5291 add_defn_to_vec (obstackp,
5292 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5293 block);
96d887e8
PH
5294 }
5295
5296 if (!wild)
5297 {
5298 arg_sym = NULL;
5299 found_sym = 0;
5300
5301 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5302 {
5eeb2539
AR
5303 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5304 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5305 {
5306 int cmp;
5307
5308 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5309 if (cmp == 0)
5310 {
5311 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5312 if (cmp == 0)
5313 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5314 name_len);
5315 }
5316
5317 if (cmp == 0
5318 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5319 {
2a2d4dc3
AS
5320 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5321 {
5322 if (SYMBOL_IS_ARGUMENT (sym))
5323 arg_sym = sym;
5324 else
5325 {
5326 found_sym = 1;
5327 add_defn_to_vec (obstackp,
5328 fixup_symbol_section (sym, objfile),
5329 block);
5330 }
5331 }
76a01679
JB
5332 }
5333 }
76a01679 5334 }
96d887e8
PH
5335
5336 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5337 They aren't parameters, right? */
5338 if (!found_sym && arg_sym != NULL)
5339 {
5340 add_defn_to_vec (obstackp,
76a01679 5341 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5342 block);
96d887e8
PH
5343 }
5344 }
5345}
5346\f
41d27058
JB
5347
5348 /* Symbol Completion */
5349
5350/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5351 name in a form that's appropriate for the completion. The result
5352 does not need to be deallocated, but is only good until the next call.
5353
5354 TEXT_LEN is equal to the length of TEXT.
5355 Perform a wild match if WILD_MATCH is set.
5356 ENCODED should be set if TEXT represents the start of a symbol name
5357 in its encoded form. */
5358
5359static const char *
5360symbol_completion_match (const char *sym_name,
5361 const char *text, int text_len,
5362 int wild_match, int encoded)
5363{
41d27058
JB
5364 const int verbatim_match = (text[0] == '<');
5365 int match = 0;
5366
5367 if (verbatim_match)
5368 {
5369 /* Strip the leading angle bracket. */
5370 text = text + 1;
5371 text_len--;
5372 }
5373
5374 /* First, test against the fully qualified name of the symbol. */
5375
5376 if (strncmp (sym_name, text, text_len) == 0)
5377 match = 1;
5378
5379 if (match && !encoded)
5380 {
5381 /* One needed check before declaring a positive match is to verify
5382 that iff we are doing a verbatim match, the decoded version
5383 of the symbol name starts with '<'. Otherwise, this symbol name
5384 is not a suitable completion. */
5385 const char *sym_name_copy = sym_name;
5386 int has_angle_bracket;
5387
5388 sym_name = ada_decode (sym_name);
5389 has_angle_bracket = (sym_name[0] == '<');
5390 match = (has_angle_bracket == verbatim_match);
5391 sym_name = sym_name_copy;
5392 }
5393
5394 if (match && !verbatim_match)
5395 {
5396 /* When doing non-verbatim match, another check that needs to
5397 be done is to verify that the potentially matching symbol name
5398 does not include capital letters, because the ada-mode would
5399 not be able to understand these symbol names without the
5400 angle bracket notation. */
5401 const char *tmp;
5402
5403 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5404 if (*tmp != '\0')
5405 match = 0;
5406 }
5407
5408 /* Second: Try wild matching... */
5409
5410 if (!match && wild_match)
5411 {
5412 /* Since we are doing wild matching, this means that TEXT
5413 may represent an unqualified symbol name. We therefore must
5414 also compare TEXT against the unqualified name of the symbol. */
5415 sym_name = ada_unqualified_name (ada_decode (sym_name));
5416
5417 if (strncmp (sym_name, text, text_len) == 0)
5418 match = 1;
5419 }
5420
5421 /* Finally: If we found a mach, prepare the result to return. */
5422
5423 if (!match)
5424 return NULL;
5425
5426 if (verbatim_match)
5427 sym_name = add_angle_brackets (sym_name);
5428
5429 if (!encoded)
5430 sym_name = ada_decode (sym_name);
5431
5432 return sym_name;
5433}
5434
2ba95b9b
JB
5435DEF_VEC_P (char_ptr);
5436
41d27058
JB
5437/* A companion function to ada_make_symbol_completion_list().
5438 Check if SYM_NAME represents a symbol which name would be suitable
5439 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5440 it is appended at the end of the given string vector SV.
5441
5442 ORIG_TEXT is the string original string from the user command
5443 that needs to be completed. WORD is the entire command on which
5444 completion should be performed. These two parameters are used to
5445 determine which part of the symbol name should be added to the
5446 completion vector.
5447 if WILD_MATCH is set, then wild matching is performed.
5448 ENCODED should be set if TEXT represents a symbol name in its
5449 encoded formed (in which case the completion should also be
5450 encoded). */
5451
5452static void
d6565258 5453symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5454 const char *sym_name,
5455 const char *text, int text_len,
5456 const char *orig_text, const char *word,
5457 int wild_match, int encoded)
5458{
5459 const char *match = symbol_completion_match (sym_name, text, text_len,
5460 wild_match, encoded);
5461 char *completion;
5462
5463 if (match == NULL)
5464 return;
5465
5466 /* We found a match, so add the appropriate completion to the given
5467 string vector. */
5468
5469 if (word == orig_text)
5470 {
5471 completion = xmalloc (strlen (match) + 5);
5472 strcpy (completion, match);
5473 }
5474 else if (word > orig_text)
5475 {
5476 /* Return some portion of sym_name. */
5477 completion = xmalloc (strlen (match) + 5);
5478 strcpy (completion, match + (word - orig_text));
5479 }
5480 else
5481 {
5482 /* Return some of ORIG_TEXT plus sym_name. */
5483 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5484 strncpy (completion, word, orig_text - word);
5485 completion[orig_text - word] = '\0';
5486 strcat (completion, match);
5487 }
5488
d6565258 5489 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5490}
5491
ccefe4c4 5492/* An object of this type is passed as the user_data argument to the
7b08b9eb 5493 expand_partial_symbol_names method. */
ccefe4c4
TT
5494struct add_partial_datum
5495{
5496 VEC(char_ptr) **completions;
5497 char *text;
5498 int text_len;
5499 char *text0;
5500 char *word;
5501 int wild_match;
5502 int encoded;
5503};
5504
7b08b9eb
JK
5505/* A callback for expand_partial_symbol_names. */
5506static int
5507ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5508{
5509 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5510
5511 return symbol_completion_match (name, data->text, data->text_len,
5512 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5513}
5514
41d27058
JB
5515/* Return a list of possible symbol names completing TEXT0. The list
5516 is NULL terminated. WORD is the entire command on which completion
5517 is made. */
5518
5519static char **
5520ada_make_symbol_completion_list (char *text0, char *word)
5521{
5522 char *text;
5523 int text_len;
5524 int wild_match;
5525 int encoded;
2ba95b9b 5526 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5527 struct symbol *sym;
5528 struct symtab *s;
41d27058
JB
5529 struct minimal_symbol *msymbol;
5530 struct objfile *objfile;
5531 struct block *b, *surrounding_static_block = 0;
5532 int i;
5533 struct dict_iterator iter;
5534
5535 if (text0[0] == '<')
5536 {
5537 text = xstrdup (text0);
5538 make_cleanup (xfree, text);
5539 text_len = strlen (text);
5540 wild_match = 0;
5541 encoded = 1;
5542 }
5543 else
5544 {
5545 text = xstrdup (ada_encode (text0));
5546 make_cleanup (xfree, text);
5547 text_len = strlen (text);
5548 for (i = 0; i < text_len; i++)
5549 text[i] = tolower (text[i]);
5550
5551 encoded = (strstr (text0, "__") != NULL);
5552 /* If the name contains a ".", then the user is entering a fully
5553 qualified entity name, and the match must not be done in wild
5554 mode. Similarly, if the user wants to complete what looks like
5555 an encoded name, the match must not be done in wild mode. */
5556 wild_match = (strchr (text0, '.') == NULL && !encoded);
5557 }
5558
5559 /* First, look at the partial symtab symbols. */
41d27058 5560 {
ccefe4c4
TT
5561 struct add_partial_datum data;
5562
5563 data.completions = &completions;
5564 data.text = text;
5565 data.text_len = text_len;
5566 data.text0 = text0;
5567 data.word = word;
5568 data.wild_match = wild_match;
5569 data.encoded = encoded;
7b08b9eb 5570 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5571 }
5572
5573 /* At this point scan through the misc symbol vectors and add each
5574 symbol you find to the list. Eventually we want to ignore
5575 anything that isn't a text symbol (everything else will be
5576 handled by the psymtab code above). */
5577
5578 ALL_MSYMBOLS (objfile, msymbol)
5579 {
5580 QUIT;
d6565258 5581 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5582 text, text_len, text0, word, wild_match, encoded);
5583 }
5584
5585 /* Search upwards from currently selected frame (so that we can
5586 complete on local vars. */
5587
5588 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5589 {
5590 if (!BLOCK_SUPERBLOCK (b))
5591 surrounding_static_block = b; /* For elmin of dups */
5592
5593 ALL_BLOCK_SYMBOLS (b, iter, sym)
5594 {
d6565258 5595 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5596 text, text_len, text0, word,
5597 wild_match, encoded);
5598 }
5599 }
5600
5601 /* Go through the symtabs and check the externs and statics for
5602 symbols which match. */
5603
5604 ALL_SYMTABS (objfile, s)
5605 {
5606 QUIT;
5607 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5608 ALL_BLOCK_SYMBOLS (b, iter, sym)
5609 {
d6565258 5610 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5611 text, text_len, text0, word,
5612 wild_match, encoded);
5613 }
5614 }
5615
5616 ALL_SYMTABS (objfile, s)
5617 {
5618 QUIT;
5619 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5620 /* Don't do this block twice. */
5621 if (b == surrounding_static_block)
5622 continue;
5623 ALL_BLOCK_SYMBOLS (b, iter, sym)
5624 {
d6565258 5625 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5626 text, text_len, text0, word,
5627 wild_match, encoded);
5628 }
5629 }
5630
5631 /* Append the closing NULL entry. */
2ba95b9b 5632 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5633
2ba95b9b
JB
5634 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5635 return the copy. It's unfortunate that we have to make a copy
5636 of an array that we're about to destroy, but there is nothing much
5637 we can do about it. Fortunately, it's typically not a very large
5638 array. */
5639 {
5640 const size_t completions_size =
5641 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5642 char **result = xmalloc (completions_size);
2ba95b9b
JB
5643
5644 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5645
5646 VEC_free (char_ptr, completions);
5647 return result;
5648 }
41d27058
JB
5649}
5650
963a6417 5651 /* Field Access */
96d887e8 5652
73fb9985
JB
5653/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5654 for tagged types. */
5655
5656static int
5657ada_is_dispatch_table_ptr_type (struct type *type)
5658{
5659 char *name;
5660
5661 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5662 return 0;
5663
5664 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5665 if (name == NULL)
5666 return 0;
5667
5668 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5669}
5670
963a6417
PH
5671/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5672 to be invisible to users. */
96d887e8 5673
963a6417
PH
5674int
5675ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5676{
963a6417
PH
5677 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5678 return 1;
73fb9985
JB
5679
5680 /* Check the name of that field. */
5681 {
5682 const char *name = TYPE_FIELD_NAME (type, field_num);
5683
5684 /* Anonymous field names should not be printed.
5685 brobecker/2007-02-20: I don't think this can actually happen
5686 but we don't want to print the value of annonymous fields anyway. */
5687 if (name == NULL)
5688 return 1;
5689
5690 /* A field named "_parent" is internally generated by GNAT for
5691 tagged types, and should not be printed either. */
5692 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5693 return 1;
5694 }
5695
5696 /* If this is the dispatch table of a tagged type, then ignore. */
5697 if (ada_is_tagged_type (type, 1)
5698 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5699 return 1;
5700
5701 /* Not a special field, so it should not be ignored. */
5702 return 0;
963a6417 5703}
96d887e8 5704
963a6417 5705/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5706 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5707
963a6417
PH
5708int
5709ada_is_tagged_type (struct type *type, int refok)
5710{
5711 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5712}
96d887e8 5713
963a6417 5714/* True iff TYPE represents the type of X'Tag */
96d887e8 5715
963a6417
PH
5716int
5717ada_is_tag_type (struct type *type)
5718{
5719 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5720 return 0;
5721 else
96d887e8 5722 {
963a6417 5723 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 5724
963a6417
PH
5725 return (name != NULL
5726 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5727 }
96d887e8
PH
5728}
5729
963a6417 5730/* The type of the tag on VAL. */
76a01679 5731
963a6417
PH
5732struct type *
5733ada_tag_type (struct value *val)
96d887e8 5734{
df407dfe 5735 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5736}
96d887e8 5737
963a6417 5738/* The value of the tag on VAL. */
96d887e8 5739
963a6417
PH
5740struct value *
5741ada_value_tag (struct value *val)
5742{
03ee6b2e 5743 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5744}
5745
963a6417
PH
5746/* The value of the tag on the object of type TYPE whose contents are
5747 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 5748 ADDRESS. */
96d887e8 5749
963a6417 5750static struct value *
10a2c479 5751value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5752 const gdb_byte *valaddr,
963a6417 5753 CORE_ADDR address)
96d887e8 5754{
b5385fc0 5755 int tag_byte_offset;
963a6417 5756 struct type *tag_type;
5b4ee69b 5757
963a6417 5758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5759 NULL, NULL, NULL))
96d887e8 5760 {
fc1a4b47 5761 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5762 ? NULL
5763 : valaddr + tag_byte_offset);
963a6417 5764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5765
963a6417 5766 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5767 }
963a6417
PH
5768 return NULL;
5769}
96d887e8 5770
963a6417
PH
5771static struct type *
5772type_from_tag (struct value *tag)
5773{
5774 const char *type_name = ada_tag_name (tag);
5b4ee69b 5775
963a6417
PH
5776 if (type_name != NULL)
5777 return ada_find_any_type (ada_encode (type_name));
5778 return NULL;
5779}
96d887e8 5780
963a6417
PH
5781struct tag_args
5782{
5783 struct value *tag;
5784 char *name;
5785};
4c4b4cd2 5786
529cad9c
PH
5787
5788static int ada_tag_name_1 (void *);
5789static int ada_tag_name_2 (struct tag_args *);
5790
4c4b4cd2 5791/* Wrapper function used by ada_tag_name. Given a struct tag_args*
0963b4bd 5792 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
4c4b4cd2
PH
5793 The value stored in ARGS->name is valid until the next call to
5794 ada_tag_name_1. */
5795
5796static int
5797ada_tag_name_1 (void *args0)
5798{
5799 struct tag_args *args = (struct tag_args *) args0;
5800 static char name[1024];
76a01679 5801 char *p;
4c4b4cd2 5802 struct value *val;
5b4ee69b 5803
4c4b4cd2 5804 args->name = NULL;
03ee6b2e 5805 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5806 if (val == NULL)
5807 return ada_tag_name_2 (args);
03ee6b2e 5808 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5809 if (val == NULL)
5810 return 0;
5811 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5812 for (p = name; *p != '\0'; p += 1)
5813 if (isalpha (*p))
5814 *p = tolower (*p);
5815 args->name = name;
5816 return 0;
5817}
5818
e802dbe0
JB
5819/* Return the "ada__tags__type_specific_data" type. */
5820
5821static struct type *
5822ada_get_tsd_type (struct inferior *inf)
5823{
5824 struct ada_inferior_data *data = get_ada_inferior_data (inf);
5825
5826 if (data->tsd_type == 0)
5827 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
5828 return data->tsd_type;
5829}
5830
529cad9c
PH
5831/* Utility function for ada_tag_name_1 that tries the second
5832 representation for the dispatch table (in which there is no
5833 explicit 'tsd' field in the referent of the tag pointer, and instead
0963b4bd 5834 the tsd pointer is stored just before the dispatch table. */
529cad9c
PH
5835
5836static int
5837ada_tag_name_2 (struct tag_args *args)
5838{
5839 struct type *info_type;
5840 static char name[1024];
5841 char *p;
5842 struct value *val, *valp;
5843
5844 args->name = NULL;
e802dbe0 5845 info_type = ada_get_tsd_type (current_inferior());
529cad9c
PH
5846 if (info_type == NULL)
5847 return 0;
5848 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5849 valp = value_cast (info_type, args->tag);
5850 if (valp == NULL)
5851 return 0;
2497b498 5852 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5853 if (val == NULL)
5854 return 0;
03ee6b2e 5855 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5856 if (val == NULL)
5857 return 0;
5858 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5859 for (p = name; *p != '\0'; p += 1)
5860 if (isalpha (*p))
5861 *p = tolower (*p);
5862 args->name = name;
5863 return 0;
5864}
5865
5866/* The type name of the dynamic type denoted by the 'tag value TAG, as
e802dbe0 5867 a C string. */
4c4b4cd2
PH
5868
5869const char *
5870ada_tag_name (struct value *tag)
5871{
5872 struct tag_args args;
5b4ee69b 5873
df407dfe 5874 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5875 return NULL;
76a01679 5876 args.tag = tag;
4c4b4cd2
PH
5877 args.name = NULL;
5878 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5879 return args.name;
5880}
5881
5882/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5883
d2e4a39e 5884struct type *
ebf56fd3 5885ada_parent_type (struct type *type)
14f9c5c9
AS
5886{
5887 int i;
5888
61ee279c 5889 type = ada_check_typedef (type);
14f9c5c9
AS
5890
5891 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5892 return NULL;
5893
5894 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5895 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5896 {
5897 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5898
5899 /* If the _parent field is a pointer, then dereference it. */
5900 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5901 parent_type = TYPE_TARGET_TYPE (parent_type);
5902 /* If there is a parallel XVS type, get the actual base type. */
5903 parent_type = ada_get_base_type (parent_type);
5904
5905 return ada_check_typedef (parent_type);
5906 }
14f9c5c9
AS
5907
5908 return NULL;
5909}
5910
4c4b4cd2
PH
5911/* True iff field number FIELD_NUM of structure type TYPE contains the
5912 parent-type (inherited) fields of a derived type. Assumes TYPE is
5913 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5914
5915int
ebf56fd3 5916ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5917{
61ee279c 5918 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 5919
4c4b4cd2
PH
5920 return (name != NULL
5921 && (strncmp (name, "PARENT", 6) == 0
5922 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5923}
5924
4c4b4cd2 5925/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5926 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5927 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5928 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5929 structures. */
14f9c5c9
AS
5930
5931int
ebf56fd3 5932ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5933{
d2e4a39e 5934 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5935
d2e4a39e 5936 return (name != NULL
4c4b4cd2
PH
5937 && (strncmp (name, "PARENT", 6) == 0
5938 || strcmp (name, "REP") == 0
5939 || strncmp (name, "_parent", 7) == 0
5940 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5941}
5942
4c4b4cd2
PH
5943/* True iff field number FIELD_NUM of structure or union type TYPE
5944 is a variant wrapper. Assumes TYPE is a structure type with at least
5945 FIELD_NUM+1 fields. */
14f9c5c9
AS
5946
5947int
ebf56fd3 5948ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5949{
d2e4a39e 5950 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 5951
14f9c5c9 5952 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5953 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5954 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5955 == TYPE_CODE_UNION)));
14f9c5c9
AS
5956}
5957
5958/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5959 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
5960 returns the type of the controlling discriminant for the variant.
5961 May return NULL if the type could not be found. */
14f9c5c9 5962
d2e4a39e 5963struct type *
ebf56fd3 5964ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5965{
d2e4a39e 5966 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 5967
7c964f07 5968 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
5969}
5970
4c4b4cd2 5971/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5972 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5973 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5974
5975int
ebf56fd3 5976ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5977{
d2e4a39e 5978 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 5979
14f9c5c9
AS
5980 return (name != NULL && name[0] == 'O');
5981}
5982
5983/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5984 returns the name of the discriminant controlling the variant.
5985 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5986
d2e4a39e 5987char *
ebf56fd3 5988ada_variant_discrim_name (struct type *type0)
14f9c5c9 5989{
d2e4a39e 5990 static char *result = NULL;
14f9c5c9 5991 static size_t result_len = 0;
d2e4a39e
AS
5992 struct type *type;
5993 const char *name;
5994 const char *discrim_end;
5995 const char *discrim_start;
14f9c5c9
AS
5996
5997 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5998 type = TYPE_TARGET_TYPE (type0);
5999 else
6000 type = type0;
6001
6002 name = ada_type_name (type);
6003
6004 if (name == NULL || name[0] == '\000')
6005 return "";
6006
6007 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6008 discrim_end -= 1)
6009 {
4c4b4cd2
PH
6010 if (strncmp (discrim_end, "___XVN", 6) == 0)
6011 break;
14f9c5c9
AS
6012 }
6013 if (discrim_end == name)
6014 return "";
6015
d2e4a39e 6016 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6017 discrim_start -= 1)
6018 {
d2e4a39e 6019 if (discrim_start == name + 1)
4c4b4cd2 6020 return "";
76a01679 6021 if ((discrim_start > name + 3
4c4b4cd2
PH
6022 && strncmp (discrim_start - 3, "___", 3) == 0)
6023 || discrim_start[-1] == '.')
6024 break;
14f9c5c9
AS
6025 }
6026
6027 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6028 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6029 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6030 return result;
6031}
6032
4c4b4cd2
PH
6033/* Scan STR for a subtype-encoded number, beginning at position K.
6034 Put the position of the character just past the number scanned in
6035 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6036 Return 1 if there was a valid number at the given position, and 0
6037 otherwise. A "subtype-encoded" number consists of the absolute value
6038 in decimal, followed by the letter 'm' to indicate a negative number.
6039 Assumes 0m does not occur. */
14f9c5c9
AS
6040
6041int
d2e4a39e 6042ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6043{
6044 ULONGEST RU;
6045
d2e4a39e 6046 if (!isdigit (str[k]))
14f9c5c9
AS
6047 return 0;
6048
4c4b4cd2 6049 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6050 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6051 LONGEST. */
14f9c5c9
AS
6052 RU = 0;
6053 while (isdigit (str[k]))
6054 {
d2e4a39e 6055 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6056 k += 1;
6057 }
6058
d2e4a39e 6059 if (str[k] == 'm')
14f9c5c9
AS
6060 {
6061 if (R != NULL)
4c4b4cd2 6062 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6063 k += 1;
6064 }
6065 else if (R != NULL)
6066 *R = (LONGEST) RU;
6067
4c4b4cd2 6068 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6069 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6070 number representable as a LONGEST (although either would probably work
6071 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6072 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6073
6074 if (new_k != NULL)
6075 *new_k = k;
6076 return 1;
6077}
6078
4c4b4cd2
PH
6079/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6080 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6081 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6082
d2e4a39e 6083int
ebf56fd3 6084ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6085{
d2e4a39e 6086 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6087 int p;
6088
6089 p = 0;
6090 while (1)
6091 {
d2e4a39e 6092 switch (name[p])
4c4b4cd2
PH
6093 {
6094 case '\0':
6095 return 0;
6096 case 'S':
6097 {
6098 LONGEST W;
5b4ee69b 6099
4c4b4cd2
PH
6100 if (!ada_scan_number (name, p + 1, &W, &p))
6101 return 0;
6102 if (val == W)
6103 return 1;
6104 break;
6105 }
6106 case 'R':
6107 {
6108 LONGEST L, U;
5b4ee69b 6109
4c4b4cd2
PH
6110 if (!ada_scan_number (name, p + 1, &L, &p)
6111 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6112 return 0;
6113 if (val >= L && val <= U)
6114 return 1;
6115 break;
6116 }
6117 case 'O':
6118 return 1;
6119 default:
6120 return 0;
6121 }
6122 }
6123}
6124
0963b4bd 6125/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6126
6127/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6128 ARG_TYPE, extract and return the value of one of its (non-static)
6129 fields. FIELDNO says which field. Differs from value_primitive_field
6130 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6131
4c4b4cd2 6132static struct value *
d2e4a39e 6133ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6134 struct type *arg_type)
14f9c5c9 6135{
14f9c5c9
AS
6136 struct type *type;
6137
61ee279c 6138 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6139 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6140
4c4b4cd2 6141 /* Handle packed fields. */
14f9c5c9
AS
6142
6143 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6144 {
6145 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6146 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6147
0fd88904 6148 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6149 offset + bit_pos / 8,
6150 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6151 }
6152 else
6153 return value_primitive_field (arg1, offset, fieldno, arg_type);
6154}
6155
52ce6436
PH
6156/* Find field with name NAME in object of type TYPE. If found,
6157 set the following for each argument that is non-null:
6158 - *FIELD_TYPE_P to the field's type;
6159 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6160 an object of that type;
6161 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6162 - *BIT_SIZE_P to its size in bits if the field is packed, and
6163 0 otherwise;
6164 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6165 fields up to but not including the desired field, or by the total
6166 number of fields if not found. A NULL value of NAME never
6167 matches; the function just counts visible fields in this case.
6168
0963b4bd 6169 Returns 1 if found, 0 otherwise. */
52ce6436 6170
4c4b4cd2 6171static int
76a01679
JB
6172find_struct_field (char *name, struct type *type, int offset,
6173 struct type **field_type_p,
52ce6436
PH
6174 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6175 int *index_p)
4c4b4cd2
PH
6176{
6177 int i;
6178
61ee279c 6179 type = ada_check_typedef (type);
76a01679 6180
52ce6436
PH
6181 if (field_type_p != NULL)
6182 *field_type_p = NULL;
6183 if (byte_offset_p != NULL)
d5d6fca5 6184 *byte_offset_p = 0;
52ce6436
PH
6185 if (bit_offset_p != NULL)
6186 *bit_offset_p = 0;
6187 if (bit_size_p != NULL)
6188 *bit_size_p = 0;
6189
6190 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6191 {
6192 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6193 int fld_offset = offset + bit_pos / 8;
6194 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6195
4c4b4cd2
PH
6196 if (t_field_name == NULL)
6197 continue;
6198
52ce6436 6199 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6200 {
6201 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6202
52ce6436
PH
6203 if (field_type_p != NULL)
6204 *field_type_p = TYPE_FIELD_TYPE (type, i);
6205 if (byte_offset_p != NULL)
6206 *byte_offset_p = fld_offset;
6207 if (bit_offset_p != NULL)
6208 *bit_offset_p = bit_pos % 8;
6209 if (bit_size_p != NULL)
6210 *bit_size_p = bit_size;
76a01679
JB
6211 return 1;
6212 }
4c4b4cd2
PH
6213 else if (ada_is_wrapper_field (type, i))
6214 {
52ce6436
PH
6215 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6216 field_type_p, byte_offset_p, bit_offset_p,
6217 bit_size_p, index_p))
76a01679
JB
6218 return 1;
6219 }
4c4b4cd2
PH
6220 else if (ada_is_variant_part (type, i))
6221 {
52ce6436
PH
6222 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6223 fixed type?? */
4c4b4cd2 6224 int j;
52ce6436
PH
6225 struct type *field_type
6226 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6227
52ce6436 6228 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6229 {
76a01679
JB
6230 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6231 fld_offset
6232 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6233 field_type_p, byte_offset_p,
52ce6436 6234 bit_offset_p, bit_size_p, index_p))
76a01679 6235 return 1;
4c4b4cd2
PH
6236 }
6237 }
52ce6436
PH
6238 else if (index_p != NULL)
6239 *index_p += 1;
4c4b4cd2
PH
6240 }
6241 return 0;
6242}
6243
0963b4bd 6244/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6245
52ce6436
PH
6246static int
6247num_visible_fields (struct type *type)
6248{
6249 int n;
5b4ee69b 6250
52ce6436
PH
6251 n = 0;
6252 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6253 return n;
6254}
14f9c5c9 6255
4c4b4cd2 6256/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6257 and search in it assuming it has (class) type TYPE.
6258 If found, return value, else return NULL.
6259
4c4b4cd2 6260 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6261
4c4b4cd2 6262static struct value *
d2e4a39e 6263ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6264 struct type *type)
14f9c5c9
AS
6265{
6266 int i;
14f9c5c9 6267
5b4ee69b 6268 type = ada_check_typedef (type);
52ce6436 6269 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
6270 {
6271 char *t_field_name = TYPE_FIELD_NAME (type, i);
6272
6273 if (t_field_name == NULL)
4c4b4cd2 6274 continue;
14f9c5c9
AS
6275
6276 else if (field_name_match (t_field_name, name))
4c4b4cd2 6277 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6278
6279 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6280 {
0963b4bd 6281 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6282 ada_search_struct_field (name, arg,
6283 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6284 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6285
4c4b4cd2
PH
6286 if (v != NULL)
6287 return v;
6288 }
14f9c5c9
AS
6289
6290 else if (ada_is_variant_part (type, i))
4c4b4cd2 6291 {
0963b4bd 6292 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6293 int j;
5b4ee69b
MS
6294 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6295 i));
4c4b4cd2
PH
6296 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6297
52ce6436 6298 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6299 {
0963b4bd
MS
6300 struct value *v = ada_search_struct_field /* Force line
6301 break. */
06d5cf63
JB
6302 (name, arg,
6303 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6304 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6305
4c4b4cd2
PH
6306 if (v != NULL)
6307 return v;
6308 }
6309 }
14f9c5c9
AS
6310 }
6311 return NULL;
6312}
d2e4a39e 6313
52ce6436
PH
6314static struct value *ada_index_struct_field_1 (int *, struct value *,
6315 int, struct type *);
6316
6317
6318/* Return field #INDEX in ARG, where the index is that returned by
6319 * find_struct_field through its INDEX_P argument. Adjust the address
6320 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6321 * If found, return value, else return NULL. */
52ce6436
PH
6322
6323static struct value *
6324ada_index_struct_field (int index, struct value *arg, int offset,
6325 struct type *type)
6326{
6327 return ada_index_struct_field_1 (&index, arg, offset, type);
6328}
6329
6330
6331/* Auxiliary function for ada_index_struct_field. Like
6332 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6333 * *INDEX_P. */
52ce6436
PH
6334
6335static struct value *
6336ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6337 struct type *type)
6338{
6339 int i;
6340 type = ada_check_typedef (type);
6341
6342 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6343 {
6344 if (TYPE_FIELD_NAME (type, i) == NULL)
6345 continue;
6346 else if (ada_is_wrapper_field (type, i))
6347 {
0963b4bd 6348 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6349 ada_index_struct_field_1 (index_p, arg,
6350 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6351 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6352
52ce6436
PH
6353 if (v != NULL)
6354 return v;
6355 }
6356
6357 else if (ada_is_variant_part (type, i))
6358 {
6359 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6360 find_struct_field. */
52ce6436
PH
6361 error (_("Cannot assign this kind of variant record"));
6362 }
6363 else if (*index_p == 0)
6364 return ada_value_primitive_field (arg, offset, i, type);
6365 else
6366 *index_p -= 1;
6367 }
6368 return NULL;
6369}
6370
4c4b4cd2
PH
6371/* Given ARG, a value of type (pointer or reference to a)*
6372 structure/union, extract the component named NAME from the ultimate
6373 target structure/union and return it as a value with its
f5938064 6374 appropriate type.
14f9c5c9 6375
4c4b4cd2
PH
6376 The routine searches for NAME among all members of the structure itself
6377 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6378 (e.g., '_parent').
6379
03ee6b2e
PH
6380 If NO_ERR, then simply return NULL in case of error, rather than
6381 calling error. */
14f9c5c9 6382
d2e4a39e 6383struct value *
03ee6b2e 6384ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6385{
4c4b4cd2 6386 struct type *t, *t1;
d2e4a39e 6387 struct value *v;
14f9c5c9 6388
4c4b4cd2 6389 v = NULL;
df407dfe 6390 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6391 if (TYPE_CODE (t) == TYPE_CODE_REF)
6392 {
6393 t1 = TYPE_TARGET_TYPE (t);
6394 if (t1 == NULL)
03ee6b2e 6395 goto BadValue;
61ee279c 6396 t1 = ada_check_typedef (t1);
4c4b4cd2 6397 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6398 {
994b9211 6399 arg = coerce_ref (arg);
76a01679
JB
6400 t = t1;
6401 }
4c4b4cd2 6402 }
14f9c5c9 6403
4c4b4cd2
PH
6404 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6405 {
6406 t1 = TYPE_TARGET_TYPE (t);
6407 if (t1 == NULL)
03ee6b2e 6408 goto BadValue;
61ee279c 6409 t1 = ada_check_typedef (t1);
4c4b4cd2 6410 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6411 {
6412 arg = value_ind (arg);
6413 t = t1;
6414 }
4c4b4cd2 6415 else
76a01679 6416 break;
4c4b4cd2 6417 }
14f9c5c9 6418
4c4b4cd2 6419 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6420 goto BadValue;
14f9c5c9 6421
4c4b4cd2
PH
6422 if (t1 == t)
6423 v = ada_search_struct_field (name, arg, 0, t);
6424 else
6425 {
6426 int bit_offset, bit_size, byte_offset;
6427 struct type *field_type;
6428 CORE_ADDR address;
6429
76a01679
JB
6430 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6431 address = value_as_address (arg);
4c4b4cd2 6432 else
0fd88904 6433 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6434
1ed6ede0 6435 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6436 if (find_struct_field (name, t1, 0,
6437 &field_type, &byte_offset, &bit_offset,
52ce6436 6438 &bit_size, NULL))
76a01679
JB
6439 {
6440 if (bit_size != 0)
6441 {
714e53ab
PH
6442 if (TYPE_CODE (t) == TYPE_CODE_REF)
6443 arg = ada_coerce_ref (arg);
6444 else
6445 arg = ada_value_ind (arg);
76a01679
JB
6446 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6447 bit_offset, bit_size,
6448 field_type);
6449 }
6450 else
f5938064 6451 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6452 }
6453 }
6454
03ee6b2e
PH
6455 if (v != NULL || no_err)
6456 return v;
6457 else
323e0a4a 6458 error (_("There is no member named %s."), name);
14f9c5c9 6459
03ee6b2e
PH
6460 BadValue:
6461 if (no_err)
6462 return NULL;
6463 else
0963b4bd
MS
6464 error (_("Attempt to extract a component of "
6465 "a value that is not a record."));
14f9c5c9
AS
6466}
6467
6468/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6469 If DISPP is non-null, add its byte displacement from the beginning of a
6470 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6471 work for packed fields).
6472
6473 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6474 followed by "___".
14f9c5c9 6475
0963b4bd 6476 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6477 be a (pointer or reference)+ to a struct or union, and the
6478 ultimate target type will be searched.
14f9c5c9
AS
6479
6480 Looks recursively into variant clauses and parent types.
6481
4c4b4cd2
PH
6482 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6483 TYPE is not a type of the right kind. */
14f9c5c9 6484
4c4b4cd2 6485static struct type *
76a01679
JB
6486ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6487 int noerr, int *dispp)
14f9c5c9
AS
6488{
6489 int i;
6490
6491 if (name == NULL)
6492 goto BadName;
6493
76a01679 6494 if (refok && type != NULL)
4c4b4cd2
PH
6495 while (1)
6496 {
61ee279c 6497 type = ada_check_typedef (type);
76a01679
JB
6498 if (TYPE_CODE (type) != TYPE_CODE_PTR
6499 && TYPE_CODE (type) != TYPE_CODE_REF)
6500 break;
6501 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6502 }
14f9c5c9 6503
76a01679 6504 if (type == NULL
1265e4aa
JB
6505 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6506 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6507 {
4c4b4cd2 6508 if (noerr)
76a01679 6509 return NULL;
4c4b4cd2 6510 else
76a01679
JB
6511 {
6512 target_terminal_ours ();
6513 gdb_flush (gdb_stdout);
323e0a4a
AC
6514 if (type == NULL)
6515 error (_("Type (null) is not a structure or union type"));
6516 else
6517 {
6518 /* XXX: type_sprint */
6519 fprintf_unfiltered (gdb_stderr, _("Type "));
6520 type_print (type, "", gdb_stderr, -1);
6521 error (_(" is not a structure or union type"));
6522 }
76a01679 6523 }
14f9c5c9
AS
6524 }
6525
6526 type = to_static_fixed_type (type);
6527
6528 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6529 {
6530 char *t_field_name = TYPE_FIELD_NAME (type, i);
6531 struct type *t;
6532 int disp;
d2e4a39e 6533
14f9c5c9 6534 if (t_field_name == NULL)
4c4b4cd2 6535 continue;
14f9c5c9
AS
6536
6537 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6538 {
6539 if (dispp != NULL)
6540 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6541 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6542 }
14f9c5c9
AS
6543
6544 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6545 {
6546 disp = 0;
6547 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6548 0, 1, &disp);
6549 if (t != NULL)
6550 {
6551 if (dispp != NULL)
6552 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6553 return t;
6554 }
6555 }
14f9c5c9
AS
6556
6557 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6558 {
6559 int j;
5b4ee69b
MS
6560 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6561 i));
4c4b4cd2
PH
6562
6563 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6564 {
b1f33ddd
JB
6565 /* FIXME pnh 2008/01/26: We check for a field that is
6566 NOT wrapped in a struct, since the compiler sometimes
6567 generates these for unchecked variant types. Revisit
0963b4bd 6568 if the compiler changes this practice. */
b1f33ddd 6569 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6570 disp = 0;
b1f33ddd
JB
6571 if (v_field_name != NULL
6572 && field_name_match (v_field_name, name))
6573 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6574 else
0963b4bd
MS
6575 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6576 j),
b1f33ddd
JB
6577 name, 0, 1, &disp);
6578
4c4b4cd2
PH
6579 if (t != NULL)
6580 {
6581 if (dispp != NULL)
6582 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6583 return t;
6584 }
6585 }
6586 }
14f9c5c9
AS
6587
6588 }
6589
6590BadName:
d2e4a39e 6591 if (!noerr)
14f9c5c9
AS
6592 {
6593 target_terminal_ours ();
6594 gdb_flush (gdb_stdout);
323e0a4a
AC
6595 if (name == NULL)
6596 {
6597 /* XXX: type_sprint */
6598 fprintf_unfiltered (gdb_stderr, _("Type "));
6599 type_print (type, "", gdb_stderr, -1);
6600 error (_(" has no component named <null>"));
6601 }
6602 else
6603 {
6604 /* XXX: type_sprint */
6605 fprintf_unfiltered (gdb_stderr, _("Type "));
6606 type_print (type, "", gdb_stderr, -1);
6607 error (_(" has no component named %s"), name);
6608 }
14f9c5c9
AS
6609 }
6610
6611 return NULL;
6612}
6613
b1f33ddd
JB
6614/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6615 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6616 represents an unchecked union (that is, the variant part of a
0963b4bd 6617 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6618
6619static int
6620is_unchecked_variant (struct type *var_type, struct type *outer_type)
6621{
6622 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6623
b1f33ddd
JB
6624 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6625 == NULL);
6626}
6627
6628
14f9c5c9
AS
6629/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6630 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6631 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6632 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6633
d2e4a39e 6634int
ebf56fd3 6635ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6636 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6637{
6638 int others_clause;
6639 int i;
d2e4a39e 6640 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6641 struct value *outer;
6642 struct value *discrim;
14f9c5c9
AS
6643 LONGEST discrim_val;
6644
0c281816
JB
6645 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6646 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6647 if (discrim == NULL)
14f9c5c9 6648 return -1;
0c281816 6649 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6650
6651 others_clause = -1;
6652 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6653 {
6654 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6655 others_clause = i;
14f9c5c9 6656 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6657 return i;
14f9c5c9
AS
6658 }
6659
6660 return others_clause;
6661}
d2e4a39e 6662\f
14f9c5c9
AS
6663
6664
4c4b4cd2 6665 /* Dynamic-Sized Records */
14f9c5c9
AS
6666
6667/* Strategy: The type ostensibly attached to a value with dynamic size
6668 (i.e., a size that is not statically recorded in the debugging
6669 data) does not accurately reflect the size or layout of the value.
6670 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6671 conventional types that are constructed on the fly. */
14f9c5c9
AS
6672
6673/* There is a subtle and tricky problem here. In general, we cannot
6674 determine the size of dynamic records without its data. However,
6675 the 'struct value' data structure, which GDB uses to represent
6676 quantities in the inferior process (the target), requires the size
6677 of the type at the time of its allocation in order to reserve space
6678 for GDB's internal copy of the data. That's why the
6679 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6680 rather than struct value*s.
14f9c5c9
AS
6681
6682 However, GDB's internal history variables ($1, $2, etc.) are
6683 struct value*s containing internal copies of the data that are not, in
6684 general, the same as the data at their corresponding addresses in
6685 the target. Fortunately, the types we give to these values are all
6686 conventional, fixed-size types (as per the strategy described
6687 above), so that we don't usually have to perform the
6688 'to_fixed_xxx_type' conversions to look at their values.
6689 Unfortunately, there is one exception: if one of the internal
6690 history variables is an array whose elements are unconstrained
6691 records, then we will need to create distinct fixed types for each
6692 element selected. */
6693
6694/* The upshot of all of this is that many routines take a (type, host
6695 address, target address) triple as arguments to represent a value.
6696 The host address, if non-null, is supposed to contain an internal
6697 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6698 target at the target address. */
14f9c5c9
AS
6699
6700/* Assuming that VAL0 represents a pointer value, the result of
6701 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6702 dynamic-sized types. */
14f9c5c9 6703
d2e4a39e
AS
6704struct value *
6705ada_value_ind (struct value *val0)
14f9c5c9 6706{
d2e4a39e 6707 struct value *val = unwrap_value (value_ind (val0));
5b4ee69b 6708
4c4b4cd2 6709 return ada_to_fixed_value (val);
14f9c5c9
AS
6710}
6711
6712/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6713 qualifiers on VAL0. */
6714
d2e4a39e
AS
6715static struct value *
6716ada_coerce_ref (struct value *val0)
6717{
df407dfe 6718 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6719 {
6720 struct value *val = val0;
5b4ee69b 6721
994b9211 6722 val = coerce_ref (val);
d2e4a39e 6723 val = unwrap_value (val);
4c4b4cd2 6724 return ada_to_fixed_value (val);
d2e4a39e
AS
6725 }
6726 else
14f9c5c9
AS
6727 return val0;
6728}
6729
6730/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6731 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6732
6733static unsigned int
ebf56fd3 6734align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6735{
6736 return (off + alignment - 1) & ~(alignment - 1);
6737}
6738
4c4b4cd2 6739/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6740
6741static unsigned int
ebf56fd3 6742field_alignment (struct type *type, int f)
14f9c5c9 6743{
d2e4a39e 6744 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6745 int len;
14f9c5c9
AS
6746 int align_offset;
6747
64a1bf19
JB
6748 /* The field name should never be null, unless the debugging information
6749 is somehow malformed. In this case, we assume the field does not
6750 require any alignment. */
6751 if (name == NULL)
6752 return 1;
6753
6754 len = strlen (name);
6755
4c4b4cd2
PH
6756 if (!isdigit (name[len - 1]))
6757 return 1;
14f9c5c9 6758
d2e4a39e 6759 if (isdigit (name[len - 2]))
14f9c5c9
AS
6760 align_offset = len - 2;
6761 else
6762 align_offset = len - 1;
6763
4c4b4cd2 6764 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6765 return TARGET_CHAR_BIT;
6766
4c4b4cd2
PH
6767 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6768}
6769
6770/* Find a symbol named NAME. Ignores ambiguity. */
6771
6772struct symbol *
6773ada_find_any_symbol (const char *name)
6774{
6775 struct symbol *sym;
6776
6777 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6778 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6779 return sym;
6780
6781 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6782 return sym;
14f9c5c9
AS
6783}
6784
dddfab26
UW
6785/* Find a type named NAME. Ignores ambiguity. This routine will look
6786 solely for types defined by debug info, it will not search the GDB
6787 primitive types. */
4c4b4cd2 6788
d2e4a39e 6789struct type *
ebf56fd3 6790ada_find_any_type (const char *name)
14f9c5c9 6791{
4c4b4cd2 6792 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6793
14f9c5c9 6794 if (sym != NULL)
dddfab26 6795 return SYMBOL_TYPE (sym);
14f9c5c9 6796
dddfab26 6797 return NULL;
14f9c5c9
AS
6798}
6799
aeb5907d
JB
6800/* Given NAME and an associated BLOCK, search all symbols for
6801 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6802 associated to NAME. Return this symbol if found, return
6803 NULL otherwise. */
6804
6805struct symbol *
6806ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6807{
6808 struct symbol *sym;
6809
6810 sym = find_old_style_renaming_symbol (name, block);
6811
6812 if (sym != NULL)
6813 return sym;
6814
0963b4bd 6815 /* Not right yet. FIXME pnh 7/20/2007. */
aeb5907d
JB
6816 sym = ada_find_any_symbol (name);
6817 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6818 return sym;
6819 else
6820 return NULL;
6821}
6822
6823static struct symbol *
6824find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6825{
7f0df278 6826 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6827 char *rename;
6828
6829 if (function_sym != NULL)
6830 {
6831 /* If the symbol is defined inside a function, NAME is not fully
6832 qualified. This means we need to prepend the function name
6833 as well as adding the ``___XR'' suffix to build the name of
6834 the associated renaming symbol. */
6835 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6836 /* Function names sometimes contain suffixes used
6837 for instance to qualify nested subprograms. When building
6838 the XR type name, we need to make sure that this suffix is
6839 not included. So do not include any suffix in the function
6840 name length below. */
69fadcdf 6841 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6842 const int rename_len = function_name_len + 2 /* "__" */
6843 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6844
529cad9c 6845 /* Strip the suffix if necessary. */
69fadcdf
JB
6846 ada_remove_trailing_digits (function_name, &function_name_len);
6847 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
6848 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 6849
4c4b4cd2
PH
6850 /* Library-level functions are a special case, as GNAT adds
6851 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6852 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6853 have this prefix, so we need to skip this prefix if present. */
6854 if (function_name_len > 5 /* "_ada_" */
6855 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
6856 {
6857 function_name += 5;
6858 function_name_len -= 5;
6859 }
4c4b4cd2
PH
6860
6861 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
6862 strncpy (rename, function_name, function_name_len);
6863 xsnprintf (rename + function_name_len, rename_len - function_name_len,
6864 "__%s___XR", name);
4c4b4cd2
PH
6865 }
6866 else
6867 {
6868 const int rename_len = strlen (name) + 6;
5b4ee69b 6869
4c4b4cd2 6870 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6871 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6872 }
6873
6874 return ada_find_any_symbol (rename);
6875}
6876
14f9c5c9 6877/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6878 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6879 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6880 otherwise return 0. */
6881
14f9c5c9 6882int
d2e4a39e 6883ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6884{
6885 if (type1 == NULL)
6886 return 1;
6887 else if (type0 == NULL)
6888 return 0;
6889 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6890 return 1;
6891 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6892 return 0;
4c4b4cd2
PH
6893 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6894 return 1;
ad82864c 6895 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 6896 return 1;
4c4b4cd2
PH
6897 else if (ada_is_array_descriptor_type (type0)
6898 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6899 return 1;
aeb5907d
JB
6900 else
6901 {
6902 const char *type0_name = type_name_no_tag (type0);
6903 const char *type1_name = type_name_no_tag (type1);
6904
6905 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6906 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6907 return 1;
6908 }
14f9c5c9
AS
6909 return 0;
6910}
6911
6912/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6913 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6914
d2e4a39e
AS
6915char *
6916ada_type_name (struct type *type)
14f9c5c9 6917{
d2e4a39e 6918 if (type == NULL)
14f9c5c9
AS
6919 return NULL;
6920 else if (TYPE_NAME (type) != NULL)
6921 return TYPE_NAME (type);
6922 else
6923 return TYPE_TAG_NAME (type);
6924}
6925
b4ba55a1
JB
6926/* Search the list of "descriptive" types associated to TYPE for a type
6927 whose name is NAME. */
6928
6929static struct type *
6930find_parallel_type_by_descriptive_type (struct type *type, const char *name)
6931{
6932 struct type *result;
6933
6934 /* If there no descriptive-type info, then there is no parallel type
6935 to be found. */
6936 if (!HAVE_GNAT_AUX_INFO (type))
6937 return NULL;
6938
6939 result = TYPE_DESCRIPTIVE_TYPE (type);
6940 while (result != NULL)
6941 {
6942 char *result_name = ada_type_name (result);
6943
6944 if (result_name == NULL)
6945 {
6946 warning (_("unexpected null name on descriptive type"));
6947 return NULL;
6948 }
6949
6950 /* If the names match, stop. */
6951 if (strcmp (result_name, name) == 0)
6952 break;
6953
6954 /* Otherwise, look at the next item on the list, if any. */
6955 if (HAVE_GNAT_AUX_INFO (result))
6956 result = TYPE_DESCRIPTIVE_TYPE (result);
6957 else
6958 result = NULL;
6959 }
6960
6961 /* If we didn't find a match, see whether this is a packed array. With
6962 older compilers, the descriptive type information is either absent or
6963 irrelevant when it comes to packed arrays so the above lookup fails.
6964 Fall back to using a parallel lookup by name in this case. */
12ab9e09 6965 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
6966 return ada_find_any_type (name);
6967
6968 return result;
6969}
6970
6971/* Find a parallel type to TYPE with the specified NAME, using the
6972 descriptive type taken from the debugging information, if available,
6973 and otherwise using the (slower) name-based method. */
6974
6975static struct type *
6976ada_find_parallel_type_with_name (struct type *type, const char *name)
6977{
6978 struct type *result = NULL;
6979
6980 if (HAVE_GNAT_AUX_INFO (type))
6981 result = find_parallel_type_by_descriptive_type (type, name);
6982 else
6983 result = ada_find_any_type (name);
6984
6985 return result;
6986}
6987
6988/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 6989 SUFFIX to the name of TYPE. */
14f9c5c9 6990
d2e4a39e 6991struct type *
ebf56fd3 6992ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6993{
b4ba55a1 6994 char *name, *typename = ada_type_name (type);
14f9c5c9 6995 int len;
d2e4a39e 6996
14f9c5c9
AS
6997 if (typename == NULL)
6998 return NULL;
6999
7000 len = strlen (typename);
7001
b4ba55a1 7002 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7003
7004 strcpy (name, typename);
7005 strcpy (name + len, suffix);
7006
b4ba55a1 7007 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7008}
7009
14f9c5c9 7010/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7011 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7012
d2e4a39e
AS
7013static struct type *
7014dynamic_template_type (struct type *type)
14f9c5c9 7015{
61ee279c 7016 type = ada_check_typedef (type);
14f9c5c9
AS
7017
7018 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7019 || ada_type_name (type) == NULL)
14f9c5c9 7020 return NULL;
d2e4a39e 7021 else
14f9c5c9
AS
7022 {
7023 int len = strlen (ada_type_name (type));
5b4ee69b 7024
4c4b4cd2
PH
7025 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7026 return type;
14f9c5c9 7027 else
4c4b4cd2 7028 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7029 }
7030}
7031
7032/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7033 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7034
d2e4a39e
AS
7035static int
7036is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7037{
7038 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7039
d2e4a39e 7040 return name != NULL
14f9c5c9
AS
7041 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7042 && strstr (name, "___XVL") != NULL;
7043}
7044
4c4b4cd2
PH
7045/* The index of the variant field of TYPE, or -1 if TYPE does not
7046 represent a variant record type. */
14f9c5c9 7047
d2e4a39e 7048static int
4c4b4cd2 7049variant_field_index (struct type *type)
14f9c5c9
AS
7050{
7051 int f;
7052
4c4b4cd2
PH
7053 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7054 return -1;
7055
7056 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7057 {
7058 if (ada_is_variant_part (type, f))
7059 return f;
7060 }
7061 return -1;
14f9c5c9
AS
7062}
7063
4c4b4cd2
PH
7064/* A record type with no fields. */
7065
d2e4a39e 7066static struct type *
e9bb382b 7067empty_record (struct type *template)
14f9c5c9 7068{
e9bb382b 7069 struct type *type = alloc_type_copy (template);
5b4ee69b 7070
14f9c5c9
AS
7071 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7072 TYPE_NFIELDS (type) = 0;
7073 TYPE_FIELDS (type) = NULL;
b1f33ddd 7074 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7075 TYPE_NAME (type) = "<empty>";
7076 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7077 TYPE_LENGTH (type) = 0;
7078 return type;
7079}
7080
7081/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7082 the value of type TYPE at VALADDR or ADDRESS (see comments at
7083 the beginning of this section) VAL according to GNAT conventions.
7084 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7085 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7086 an outer-level type (i.e., as opposed to a branch of a variant.) A
7087 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7088 of the variant.
14f9c5c9 7089
4c4b4cd2
PH
7090 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7091 length are not statically known are discarded. As a consequence,
7092 VALADDR, ADDRESS and DVAL0 are ignored.
7093
7094 NOTE: Limitations: For now, we assume that dynamic fields and
7095 variants occupy whole numbers of bytes. However, they need not be
7096 byte-aligned. */
7097
7098struct type *
10a2c479 7099ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7100 const gdb_byte *valaddr,
4c4b4cd2
PH
7101 CORE_ADDR address, struct value *dval0,
7102 int keep_dynamic_fields)
14f9c5c9 7103{
d2e4a39e
AS
7104 struct value *mark = value_mark ();
7105 struct value *dval;
7106 struct type *rtype;
14f9c5c9 7107 int nfields, bit_len;
4c4b4cd2 7108 int variant_field;
14f9c5c9 7109 long off;
d94e4f4f 7110 int fld_bit_len;
14f9c5c9
AS
7111 int f;
7112
4c4b4cd2
PH
7113 /* Compute the number of fields in this record type that are going
7114 to be processed: unless keep_dynamic_fields, this includes only
7115 fields whose position and length are static will be processed. */
7116 if (keep_dynamic_fields)
7117 nfields = TYPE_NFIELDS (type);
7118 else
7119 {
7120 nfields = 0;
76a01679 7121 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7122 && !ada_is_variant_part (type, nfields)
7123 && !is_dynamic_field (type, nfields))
7124 nfields++;
7125 }
7126
e9bb382b 7127 rtype = alloc_type_copy (type);
14f9c5c9
AS
7128 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7129 INIT_CPLUS_SPECIFIC (rtype);
7130 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7131 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7132 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7133 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7134 TYPE_NAME (rtype) = ada_type_name (type);
7135 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7136 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7137
d2e4a39e
AS
7138 off = 0;
7139 bit_len = 0;
4c4b4cd2
PH
7140 variant_field = -1;
7141
14f9c5c9
AS
7142 for (f = 0; f < nfields; f += 1)
7143 {
6c038f32
PH
7144 off = align_value (off, field_alignment (type, f))
7145 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 7146 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 7147 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7148
d2e4a39e 7149 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7150 {
7151 variant_field = f;
d94e4f4f 7152 fld_bit_len = 0;
4c4b4cd2 7153 }
14f9c5c9 7154 else if (is_dynamic_field (type, f))
4c4b4cd2 7155 {
284614f0
JB
7156 const gdb_byte *field_valaddr = valaddr;
7157 CORE_ADDR field_address = address;
7158 struct type *field_type =
7159 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7160
4c4b4cd2 7161 if (dval0 == NULL)
b5304971
JG
7162 {
7163 /* rtype's length is computed based on the run-time
7164 value of discriminants. If the discriminants are not
7165 initialized, the type size may be completely bogus and
0963b4bd 7166 GDB may fail to allocate a value for it. So check the
b5304971
JG
7167 size first before creating the value. */
7168 check_size (rtype);
7169 dval = value_from_contents_and_address (rtype, valaddr, address);
7170 }
4c4b4cd2
PH
7171 else
7172 dval = dval0;
7173
284614f0
JB
7174 /* If the type referenced by this field is an aligner type, we need
7175 to unwrap that aligner type, because its size might not be set.
7176 Keeping the aligner type would cause us to compute the wrong
7177 size for this field, impacting the offset of the all the fields
7178 that follow this one. */
7179 if (ada_is_aligner_type (field_type))
7180 {
7181 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7182
7183 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7184 field_address = cond_offset_target (field_address, field_offset);
7185 field_type = ada_aligned_type (field_type);
7186 }
7187
7188 field_valaddr = cond_offset_host (field_valaddr,
7189 off / TARGET_CHAR_BIT);
7190 field_address = cond_offset_target (field_address,
7191 off / TARGET_CHAR_BIT);
7192
7193 /* Get the fixed type of the field. Note that, in this case,
7194 we do not want to get the real type out of the tag: if
7195 the current field is the parent part of a tagged record,
7196 we will get the tag of the object. Clearly wrong: the real
7197 type of the parent is not the real type of the child. We
7198 would end up in an infinite loop. */
7199 field_type = ada_get_base_type (field_type);
7200 field_type = ada_to_fixed_type (field_type, field_valaddr,
7201 field_address, dval, 0);
27f2a97b
JB
7202 /* If the field size is already larger than the maximum
7203 object size, then the record itself will necessarily
7204 be larger than the maximum object size. We need to make
7205 this check now, because the size might be so ridiculously
7206 large (due to an uninitialized variable in the inferior)
7207 that it would cause an overflow when adding it to the
7208 record size. */
7209 check_size (field_type);
284614f0
JB
7210
7211 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7212 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7213 /* The multiplication can potentially overflow. But because
7214 the field length has been size-checked just above, and
7215 assuming that the maximum size is a reasonable value,
7216 an overflow should not happen in practice. So rather than
7217 adding overflow recovery code to this already complex code,
7218 we just assume that it's not going to happen. */
d94e4f4f 7219 fld_bit_len =
4c4b4cd2
PH
7220 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7221 }
14f9c5c9 7222 else
4c4b4cd2 7223 {
9f0dec2d
JB
7224 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7225
720d1a40
JB
7226 /* If our field is a typedef type (most likely a typedef of
7227 a fat pointer, encoding an array access), then we need to
7228 look at its target type to determine its characteristics.
7229 In particular, we would miscompute the field size if we took
7230 the size of the typedef (zero), instead of the size of
7231 the target type. */
7232 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7233 field_type = ada_typedef_target_type (field_type);
7234
9f0dec2d 7235 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7236 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7237 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7238 fld_bit_len =
4c4b4cd2
PH
7239 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7240 else
d94e4f4f 7241 fld_bit_len =
9f0dec2d 7242 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7243 }
14f9c5c9 7244 if (off + fld_bit_len > bit_len)
4c4b4cd2 7245 bit_len = off + fld_bit_len;
d94e4f4f 7246 off += fld_bit_len;
4c4b4cd2
PH
7247 TYPE_LENGTH (rtype) =
7248 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7249 }
4c4b4cd2
PH
7250
7251 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7252 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7253 the record. This can happen in the presence of representation
7254 clauses. */
7255 if (variant_field >= 0)
7256 {
7257 struct type *branch_type;
7258
7259 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7260
7261 if (dval0 == NULL)
7262 dval = value_from_contents_and_address (rtype, valaddr, address);
7263 else
7264 dval = dval0;
7265
7266 branch_type =
7267 to_fixed_variant_branch_type
7268 (TYPE_FIELD_TYPE (type, variant_field),
7269 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7270 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7271 if (branch_type == NULL)
7272 {
7273 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7274 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7275 TYPE_NFIELDS (rtype) -= 1;
7276 }
7277 else
7278 {
7279 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7280 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7281 fld_bit_len =
7282 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7283 TARGET_CHAR_BIT;
7284 if (off + fld_bit_len > bit_len)
7285 bit_len = off + fld_bit_len;
7286 TYPE_LENGTH (rtype) =
7287 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7288 }
7289 }
7290
714e53ab
PH
7291 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7292 should contain the alignment of that record, which should be a strictly
7293 positive value. If null or negative, then something is wrong, most
7294 probably in the debug info. In that case, we don't round up the size
0963b4bd 7295 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7296 the current RTYPE length might be good enough for our purposes. */
7297 if (TYPE_LENGTH (type) <= 0)
7298 {
323e0a4a
AC
7299 if (TYPE_NAME (rtype))
7300 warning (_("Invalid type size for `%s' detected: %d."),
7301 TYPE_NAME (rtype), TYPE_LENGTH (type));
7302 else
7303 warning (_("Invalid type size for <unnamed> detected: %d."),
7304 TYPE_LENGTH (type));
714e53ab
PH
7305 }
7306 else
7307 {
7308 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7309 TYPE_LENGTH (type));
7310 }
14f9c5c9
AS
7311
7312 value_free_to_mark (mark);
d2e4a39e 7313 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7314 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7315 return rtype;
7316}
7317
4c4b4cd2
PH
7318/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7319 of 1. */
14f9c5c9 7320
d2e4a39e 7321static struct type *
fc1a4b47 7322template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7323 CORE_ADDR address, struct value *dval0)
7324{
7325 return ada_template_to_fixed_record_type_1 (type, valaddr,
7326 address, dval0, 1);
7327}
7328
7329/* An ordinary record type in which ___XVL-convention fields and
7330 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7331 static approximations, containing all possible fields. Uses
7332 no runtime values. Useless for use in values, but that's OK,
7333 since the results are used only for type determinations. Works on both
7334 structs and unions. Representation note: to save space, we memorize
7335 the result of this function in the TYPE_TARGET_TYPE of the
7336 template type. */
7337
7338static struct type *
7339template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7340{
7341 struct type *type;
7342 int nfields;
7343 int f;
7344
4c4b4cd2
PH
7345 if (TYPE_TARGET_TYPE (type0) != NULL)
7346 return TYPE_TARGET_TYPE (type0);
7347
7348 nfields = TYPE_NFIELDS (type0);
7349 type = type0;
14f9c5c9
AS
7350
7351 for (f = 0; f < nfields; f += 1)
7352 {
61ee279c 7353 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7354 struct type *new_type;
14f9c5c9 7355
4c4b4cd2
PH
7356 if (is_dynamic_field (type0, f))
7357 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7358 else
f192137b 7359 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7360 if (type == type0 && new_type != field_type)
7361 {
e9bb382b 7362 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7363 TYPE_CODE (type) = TYPE_CODE (type0);
7364 INIT_CPLUS_SPECIFIC (type);
7365 TYPE_NFIELDS (type) = nfields;
7366 TYPE_FIELDS (type) = (struct field *)
7367 TYPE_ALLOC (type, nfields * sizeof (struct field));
7368 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7369 sizeof (struct field) * nfields);
7370 TYPE_NAME (type) = ada_type_name (type0);
7371 TYPE_TAG_NAME (type) = NULL;
876cecd0 7372 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7373 TYPE_LENGTH (type) = 0;
7374 }
7375 TYPE_FIELD_TYPE (type, f) = new_type;
7376 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7377 }
14f9c5c9
AS
7378 return type;
7379}
7380
4c4b4cd2 7381/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7382 whose address in memory is ADDRESS, returns a revision of TYPE,
7383 which should be a non-dynamic-sized record, in which the variant
7384 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7385 for discriminant values in DVAL0, which can be NULL if the record
7386 contains the necessary discriminant values. */
7387
d2e4a39e 7388static struct type *
fc1a4b47 7389to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7390 CORE_ADDR address, struct value *dval0)
14f9c5c9 7391{
d2e4a39e 7392 struct value *mark = value_mark ();
4c4b4cd2 7393 struct value *dval;
d2e4a39e 7394 struct type *rtype;
14f9c5c9
AS
7395 struct type *branch_type;
7396 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7397 int variant_field = variant_field_index (type);
14f9c5c9 7398
4c4b4cd2 7399 if (variant_field == -1)
14f9c5c9
AS
7400 return type;
7401
4c4b4cd2
PH
7402 if (dval0 == NULL)
7403 dval = value_from_contents_and_address (type, valaddr, address);
7404 else
7405 dval = dval0;
7406
e9bb382b 7407 rtype = alloc_type_copy (type);
14f9c5c9 7408 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7409 INIT_CPLUS_SPECIFIC (rtype);
7410 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7411 TYPE_FIELDS (rtype) =
7412 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7413 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7414 sizeof (struct field) * nfields);
14f9c5c9
AS
7415 TYPE_NAME (rtype) = ada_type_name (type);
7416 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7417 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7418 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7419
4c4b4cd2
PH
7420 branch_type = to_fixed_variant_branch_type
7421 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7422 cond_offset_host (valaddr,
4c4b4cd2
PH
7423 TYPE_FIELD_BITPOS (type, variant_field)
7424 / TARGET_CHAR_BIT),
d2e4a39e 7425 cond_offset_target (address,
4c4b4cd2
PH
7426 TYPE_FIELD_BITPOS (type, variant_field)
7427 / TARGET_CHAR_BIT), dval);
d2e4a39e 7428 if (branch_type == NULL)
14f9c5c9 7429 {
4c4b4cd2 7430 int f;
5b4ee69b 7431
4c4b4cd2
PH
7432 for (f = variant_field + 1; f < nfields; f += 1)
7433 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7434 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7435 }
7436 else
7437 {
4c4b4cd2
PH
7438 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7439 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7440 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7441 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7442 }
4c4b4cd2 7443 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7444
4c4b4cd2 7445 value_free_to_mark (mark);
14f9c5c9
AS
7446 return rtype;
7447}
7448
7449/* An ordinary record type (with fixed-length fields) that describes
7450 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7451 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7452 should be in DVAL, a record value; it may be NULL if the object
7453 at ADDR itself contains any necessary discriminant values.
7454 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7455 values from the record are needed. Except in the case that DVAL,
7456 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7457 unchecked) is replaced by a particular branch of the variant.
7458
7459 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7460 is questionable and may be removed. It can arise during the
7461 processing of an unconstrained-array-of-record type where all the
7462 variant branches have exactly the same size. This is because in
7463 such cases, the compiler does not bother to use the XVS convention
7464 when encoding the record. I am currently dubious of this
7465 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7466
d2e4a39e 7467static struct type *
fc1a4b47 7468to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7469 CORE_ADDR address, struct value *dval)
14f9c5c9 7470{
d2e4a39e 7471 struct type *templ_type;
14f9c5c9 7472
876cecd0 7473 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7474 return type0;
7475
d2e4a39e 7476 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7477
7478 if (templ_type != NULL)
7479 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7480 else if (variant_field_index (type0) >= 0)
7481 {
7482 if (dval == NULL && valaddr == NULL && address == 0)
7483 return type0;
7484 return to_record_with_fixed_variant_part (type0, valaddr, address,
7485 dval);
7486 }
14f9c5c9
AS
7487 else
7488 {
876cecd0 7489 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7490 return type0;
7491 }
7492
7493}
7494
7495/* An ordinary record type (with fixed-length fields) that describes
7496 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7497 union type. Any necessary discriminants' values should be in DVAL,
7498 a record value. That is, this routine selects the appropriate
7499 branch of the union at ADDR according to the discriminant value
b1f33ddd 7500 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7501 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7502
d2e4a39e 7503static struct type *
fc1a4b47 7504to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7505 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7506{
7507 int which;
d2e4a39e
AS
7508 struct type *templ_type;
7509 struct type *var_type;
14f9c5c9
AS
7510
7511 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7512 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7513 else
14f9c5c9
AS
7514 var_type = var_type0;
7515
7516 templ_type = ada_find_parallel_type (var_type, "___XVU");
7517
7518 if (templ_type != NULL)
7519 var_type = templ_type;
7520
b1f33ddd
JB
7521 if (is_unchecked_variant (var_type, value_type (dval)))
7522 return var_type0;
d2e4a39e
AS
7523 which =
7524 ada_which_variant_applies (var_type,
0fd88904 7525 value_type (dval), value_contents (dval));
14f9c5c9
AS
7526
7527 if (which < 0)
e9bb382b 7528 return empty_record (var_type);
14f9c5c9 7529 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7530 return to_fixed_record_type
d2e4a39e
AS
7531 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7532 valaddr, address, dval);
4c4b4cd2 7533 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7534 return
7535 to_fixed_record_type
7536 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7537 else
7538 return TYPE_FIELD_TYPE (var_type, which);
7539}
7540
7541/* Assuming that TYPE0 is an array type describing the type of a value
7542 at ADDR, and that DVAL describes a record containing any
7543 discriminants used in TYPE0, returns a type for the value that
7544 contains no dynamic components (that is, no components whose sizes
7545 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7546 true, gives an error message if the resulting type's size is over
4c4b4cd2 7547 varsize_limit. */
14f9c5c9 7548
d2e4a39e
AS
7549static struct type *
7550to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7551 int ignore_too_big)
14f9c5c9 7552{
d2e4a39e
AS
7553 struct type *index_type_desc;
7554 struct type *result;
ad82864c 7555 int constrained_packed_array_p;
14f9c5c9 7556
b0dd7688 7557 type0 = ada_check_typedef (type0);
284614f0 7558 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7559 return type0;
14f9c5c9 7560
ad82864c
JB
7561 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7562 if (constrained_packed_array_p)
7563 type0 = decode_constrained_packed_array_type (type0);
284614f0 7564
14f9c5c9 7565 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7566 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7567 if (index_type_desc == NULL)
7568 {
61ee279c 7569 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7570
14f9c5c9 7571 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7572 depend on the contents of the array in properly constructed
7573 debugging data. */
529cad9c
PH
7574 /* Create a fixed version of the array element type.
7575 We're not providing the address of an element here,
e1d5a0d2 7576 and thus the actual object value cannot be inspected to do
529cad9c
PH
7577 the conversion. This should not be a problem, since arrays of
7578 unconstrained objects are not allowed. In particular, all
7579 the elements of an array of a tagged type should all be of
7580 the same type specified in the debugging info. No need to
7581 consult the object tag. */
1ed6ede0 7582 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7583
284614f0
JB
7584 /* Make sure we always create a new array type when dealing with
7585 packed array types, since we're going to fix-up the array
7586 type length and element bitsize a little further down. */
ad82864c 7587 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7588 result = type0;
14f9c5c9 7589 else
e9bb382b 7590 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7591 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7592 }
7593 else
7594 {
7595 int i;
7596 struct type *elt_type0;
7597
7598 elt_type0 = type0;
7599 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7600 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7601
7602 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7603 depend on the contents of the array in properly constructed
7604 debugging data. */
529cad9c
PH
7605 /* Create a fixed version of the array element type.
7606 We're not providing the address of an element here,
e1d5a0d2 7607 and thus the actual object value cannot be inspected to do
529cad9c
PH
7608 the conversion. This should not be a problem, since arrays of
7609 unconstrained objects are not allowed. In particular, all
7610 the elements of an array of a tagged type should all be of
7611 the same type specified in the debugging info. No need to
7612 consult the object tag. */
1ed6ede0
JB
7613 result =
7614 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7615
7616 elt_type0 = type0;
14f9c5c9 7617 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7618 {
7619 struct type *range_type =
28c85d6c 7620 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7621
e9bb382b 7622 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7623 result, range_type);
1ce677a4 7624 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7625 }
d2e4a39e 7626 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7627 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7628 }
7629
ad82864c 7630 if (constrained_packed_array_p)
284614f0
JB
7631 {
7632 /* So far, the resulting type has been created as if the original
7633 type was a regular (non-packed) array type. As a result, the
7634 bitsize of the array elements needs to be set again, and the array
7635 length needs to be recomputed based on that bitsize. */
7636 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7637 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7638
7639 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7640 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7641 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7642 TYPE_LENGTH (result)++;
7643 }
7644
876cecd0 7645 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7646 return result;
d2e4a39e 7647}
14f9c5c9
AS
7648
7649
7650/* A standard type (containing no dynamically sized components)
7651 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7652 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7653 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7654 ADDRESS or in VALADDR contains these discriminants.
7655
1ed6ede0
JB
7656 If CHECK_TAG is not null, in the case of tagged types, this function
7657 attempts to locate the object's tag and use it to compute the actual
7658 type. However, when ADDRESS is null, we cannot use it to determine the
7659 location of the tag, and therefore compute the tagged type's actual type.
7660 So we return the tagged type without consulting the tag. */
529cad9c 7661
f192137b
JB
7662static struct type *
7663ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7664 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7665{
61ee279c 7666 type = ada_check_typedef (type);
d2e4a39e
AS
7667 switch (TYPE_CODE (type))
7668 {
7669 default:
14f9c5c9 7670 return type;
d2e4a39e 7671 case TYPE_CODE_STRUCT:
4c4b4cd2 7672 {
76a01679 7673 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7674 struct type *fixed_record_type =
7675 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7676
529cad9c
PH
7677 /* If STATIC_TYPE is a tagged type and we know the object's address,
7678 then we can determine its tag, and compute the object's actual
0963b4bd 7679 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7680 type (the parent part of the record may have dynamic fields
7681 and the way the location of _tag is expressed may depend on
7682 them). */
529cad9c 7683
1ed6ede0 7684 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7685 {
7686 struct type *real_type =
1ed6ede0
JB
7687 type_from_tag (value_tag_from_contents_and_address
7688 (fixed_record_type,
7689 valaddr,
7690 address));
5b4ee69b 7691
76a01679 7692 if (real_type != NULL)
1ed6ede0 7693 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7694 }
4af88198
JB
7695
7696 /* Check to see if there is a parallel ___XVZ variable.
7697 If there is, then it provides the actual size of our type. */
7698 else if (ada_type_name (fixed_record_type) != NULL)
7699 {
7700 char *name = ada_type_name (fixed_record_type);
7701 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7702 int xvz_found = 0;
7703 LONGEST size;
7704
88c15c34 7705 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7706 size = get_int_var_value (xvz_name, &xvz_found);
7707 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7708 {
7709 fixed_record_type = copy_type (fixed_record_type);
7710 TYPE_LENGTH (fixed_record_type) = size;
7711
7712 /* The FIXED_RECORD_TYPE may have be a stub. We have
7713 observed this when the debugging info is STABS, and
7714 apparently it is something that is hard to fix.
7715
7716 In practice, we don't need the actual type definition
7717 at all, because the presence of the XVZ variable allows us
7718 to assume that there must be a XVS type as well, which we
7719 should be able to use later, when we need the actual type
7720 definition.
7721
7722 In the meantime, pretend that the "fixed" type we are
7723 returning is NOT a stub, because this can cause trouble
7724 when using this type to create new types targeting it.
7725 Indeed, the associated creation routines often check
7726 whether the target type is a stub and will try to replace
0963b4bd 7727 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
7728 might cause the new type to have the wrong size too.
7729 Consider the case of an array, for instance, where the size
7730 of the array is computed from the number of elements in
7731 our array multiplied by the size of its element. */
7732 TYPE_STUB (fixed_record_type) = 0;
7733 }
7734 }
1ed6ede0 7735 return fixed_record_type;
4c4b4cd2 7736 }
d2e4a39e 7737 case TYPE_CODE_ARRAY:
4c4b4cd2 7738 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7739 case TYPE_CODE_UNION:
7740 if (dval == NULL)
4c4b4cd2 7741 return type;
d2e4a39e 7742 else
4c4b4cd2 7743 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7744 }
14f9c5c9
AS
7745}
7746
f192137b
JB
7747/* The same as ada_to_fixed_type_1, except that it preserves the type
7748 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
7749
7750 The typedef layer needs be preserved in order to differentiate between
7751 arrays and array pointers when both types are implemented using the same
7752 fat pointer. In the array pointer case, the pointer is encoded as
7753 a typedef of the pointer type. For instance, considering:
7754
7755 type String_Access is access String;
7756 S1 : String_Access := null;
7757
7758 To the debugger, S1 is defined as a typedef of type String. But
7759 to the user, it is a pointer. So if the user tries to print S1,
7760 we should not dereference the array, but print the array address
7761 instead.
7762
7763 If we didn't preserve the typedef layer, we would lose the fact that
7764 the type is to be presented as a pointer (needs de-reference before
7765 being printed). And we would also use the source-level type name. */
f192137b
JB
7766
7767struct type *
7768ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7769 CORE_ADDR address, struct value *dval, int check_tag)
7770
7771{
7772 struct type *fixed_type =
7773 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7774
96dbd2c1
JB
7775 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7776 then preserve the typedef layer.
7777
7778 Implementation note: We can only check the main-type portion of
7779 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7780 from TYPE now returns a type that has the same instance flags
7781 as TYPE. For instance, if TYPE is a "typedef const", and its
7782 target type is a "struct", then the typedef elimination will return
7783 a "const" version of the target type. See check_typedef for more
7784 details about how the typedef layer elimination is done.
7785
7786 brobecker/2010-11-19: It seems to me that the only case where it is
7787 useful to preserve the typedef layer is when dealing with fat pointers.
7788 Perhaps, we could add a check for that and preserve the typedef layer
7789 only in that situation. But this seems unecessary so far, probably
7790 because we call check_typedef/ada_check_typedef pretty much everywhere.
7791 */
f192137b 7792 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 7793 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 7794 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
7795 return type;
7796
7797 return fixed_type;
7798}
7799
14f9c5c9 7800/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7801 TYPE0, but based on no runtime data. */
14f9c5c9 7802
d2e4a39e
AS
7803static struct type *
7804to_static_fixed_type (struct type *type0)
14f9c5c9 7805{
d2e4a39e 7806 struct type *type;
14f9c5c9
AS
7807
7808 if (type0 == NULL)
7809 return NULL;
7810
876cecd0 7811 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7812 return type0;
7813
61ee279c 7814 type0 = ada_check_typedef (type0);
d2e4a39e 7815
14f9c5c9
AS
7816 switch (TYPE_CODE (type0))
7817 {
7818 default:
7819 return type0;
7820 case TYPE_CODE_STRUCT:
7821 type = dynamic_template_type (type0);
d2e4a39e 7822 if (type != NULL)
4c4b4cd2
PH
7823 return template_to_static_fixed_type (type);
7824 else
7825 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7826 case TYPE_CODE_UNION:
7827 type = ada_find_parallel_type (type0, "___XVU");
7828 if (type != NULL)
4c4b4cd2
PH
7829 return template_to_static_fixed_type (type);
7830 else
7831 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7832 }
7833}
7834
4c4b4cd2
PH
7835/* A static approximation of TYPE with all type wrappers removed. */
7836
d2e4a39e
AS
7837static struct type *
7838static_unwrap_type (struct type *type)
14f9c5c9
AS
7839{
7840 if (ada_is_aligner_type (type))
7841 {
61ee279c 7842 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7843 if (ada_type_name (type1) == NULL)
4c4b4cd2 7844 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7845
7846 return static_unwrap_type (type1);
7847 }
d2e4a39e 7848 else
14f9c5c9 7849 {
d2e4a39e 7850 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 7851
d2e4a39e 7852 if (raw_real_type == type)
4c4b4cd2 7853 return type;
14f9c5c9 7854 else
4c4b4cd2 7855 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7856 }
7857}
7858
7859/* In some cases, incomplete and private types require
4c4b4cd2 7860 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7861 type Foo;
7862 type FooP is access Foo;
7863 V: FooP;
7864 type Foo is array ...;
4c4b4cd2 7865 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7866 cross-references to such types, we instead substitute for FooP a
7867 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7868 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7869
7870/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7871 exists, otherwise TYPE. */
7872
d2e4a39e 7873struct type *
61ee279c 7874ada_check_typedef (struct type *type)
14f9c5c9 7875{
727e3d2e
JB
7876 if (type == NULL)
7877 return NULL;
7878
720d1a40
JB
7879 /* If our type is a typedef type of a fat pointer, then we're done.
7880 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
7881 what allows us to distinguish between fat pointers that represent
7882 array types, and fat pointers that represent array access types
7883 (in both cases, the compiler implements them as fat pointers). */
7884 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7885 && is_thick_pntr (ada_typedef_target_type (type)))
7886 return type;
7887
14f9c5c9
AS
7888 CHECK_TYPEDEF (type);
7889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7890 || !TYPE_STUB (type)
14f9c5c9
AS
7891 || TYPE_TAG_NAME (type) == NULL)
7892 return type;
d2e4a39e 7893 else
14f9c5c9 7894 {
d2e4a39e
AS
7895 char *name = TYPE_TAG_NAME (type);
7896 struct type *type1 = ada_find_any_type (name);
5b4ee69b 7897
05e522ef
JB
7898 if (type1 == NULL)
7899 return type;
7900
7901 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
7902 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
7903 types, only for the typedef-to-array types). If that's the case,
7904 strip the typedef layer. */
7905 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
7906 type1 = ada_check_typedef (type1);
7907
7908 return type1;
14f9c5c9
AS
7909 }
7910}
7911
7912/* A value representing the data at VALADDR/ADDRESS as described by
7913 type TYPE0, but with a standard (static-sized) type that correctly
7914 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7915 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7916 creation of struct values]. */
14f9c5c9 7917
4c4b4cd2
PH
7918static struct value *
7919ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7920 struct value *val0)
14f9c5c9 7921{
1ed6ede0 7922 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 7923
14f9c5c9
AS
7924 if (type == type0 && val0 != NULL)
7925 return val0;
d2e4a39e 7926 else
4c4b4cd2
PH
7927 return value_from_contents_and_address (type, 0, address);
7928}
7929
7930/* A value representing VAL, but with a standard (static-sized) type
7931 that correctly describes it. Does not necessarily create a new
7932 value. */
7933
0c3acc09 7934struct value *
4c4b4cd2
PH
7935ada_to_fixed_value (struct value *val)
7936{
df407dfe 7937 return ada_to_fixed_value_create (value_type (val),
42ae5230 7938 value_address (val),
4c4b4cd2 7939 val);
14f9c5c9 7940}
d2e4a39e 7941\f
14f9c5c9 7942
14f9c5c9
AS
7943/* Attributes */
7944
4c4b4cd2
PH
7945/* Table mapping attribute numbers to names.
7946 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7947
d2e4a39e 7948static const char *attribute_names[] = {
14f9c5c9
AS
7949 "<?>",
7950
d2e4a39e 7951 "first",
14f9c5c9
AS
7952 "last",
7953 "length",
7954 "image",
14f9c5c9
AS
7955 "max",
7956 "min",
4c4b4cd2
PH
7957 "modulus",
7958 "pos",
7959 "size",
7960 "tag",
14f9c5c9 7961 "val",
14f9c5c9
AS
7962 0
7963};
7964
d2e4a39e 7965const char *
4c4b4cd2 7966ada_attribute_name (enum exp_opcode n)
14f9c5c9 7967{
4c4b4cd2
PH
7968 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7969 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7970 else
7971 return attribute_names[0];
7972}
7973
4c4b4cd2 7974/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7975
4c4b4cd2
PH
7976static LONGEST
7977pos_atr (struct value *arg)
14f9c5c9 7978{
24209737
PH
7979 struct value *val = coerce_ref (arg);
7980 struct type *type = value_type (val);
14f9c5c9 7981
d2e4a39e 7982 if (!discrete_type_p (type))
323e0a4a 7983 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7984
7985 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7986 {
7987 int i;
24209737 7988 LONGEST v = value_as_long (val);
14f9c5c9 7989
d2e4a39e 7990 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7991 {
7992 if (v == TYPE_FIELD_BITPOS (type, i))
7993 return i;
7994 }
323e0a4a 7995 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7996 }
7997 else
24209737 7998 return value_as_long (val);
4c4b4cd2
PH
7999}
8000
8001static struct value *
3cb382c9 8002value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8003{
3cb382c9 8004 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8005}
8006
4c4b4cd2 8007/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8008
d2e4a39e
AS
8009static struct value *
8010value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8011{
d2e4a39e 8012 if (!discrete_type_p (type))
323e0a4a 8013 error (_("'VAL only defined on discrete types"));
df407dfe 8014 if (!integer_type_p (value_type (arg)))
323e0a4a 8015 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8016
8017 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8018 {
8019 long pos = value_as_long (arg);
5b4ee69b 8020
14f9c5c9 8021 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8022 error (_("argument to 'VAL out of range"));
d2e4a39e 8023 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
8024 }
8025 else
8026 return value_from_longest (type, value_as_long (arg));
8027}
14f9c5c9 8028\f
d2e4a39e 8029
4c4b4cd2 8030 /* Evaluation */
14f9c5c9 8031
4c4b4cd2
PH
8032/* True if TYPE appears to be an Ada character type.
8033 [At the moment, this is true only for Character and Wide_Character;
8034 It is a heuristic test that could stand improvement]. */
14f9c5c9 8035
d2e4a39e
AS
8036int
8037ada_is_character_type (struct type *type)
14f9c5c9 8038{
7b9f71f2
JB
8039 const char *name;
8040
8041 /* If the type code says it's a character, then assume it really is,
8042 and don't check any further. */
8043 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8044 return 1;
8045
8046 /* Otherwise, assume it's a character type iff it is a discrete type
8047 with a known character type name. */
8048 name = ada_type_name (type);
8049 return (name != NULL
8050 && (TYPE_CODE (type) == TYPE_CODE_INT
8051 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8052 && (strcmp (name, "character") == 0
8053 || strcmp (name, "wide_character") == 0
5a517ebd 8054 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8055 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8056}
8057
4c4b4cd2 8058/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8059
8060int
ebf56fd3 8061ada_is_string_type (struct type *type)
14f9c5c9 8062{
61ee279c 8063 type = ada_check_typedef (type);
d2e4a39e 8064 if (type != NULL
14f9c5c9 8065 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8066 && (ada_is_simple_array_type (type)
8067 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8068 && ada_array_arity (type) == 1)
8069 {
8070 struct type *elttype = ada_array_element_type (type, 1);
8071
8072 return ada_is_character_type (elttype);
8073 }
d2e4a39e 8074 else
14f9c5c9
AS
8075 return 0;
8076}
8077
5bf03f13
JB
8078/* The compiler sometimes provides a parallel XVS type for a given
8079 PAD type. Normally, it is safe to follow the PAD type directly,
8080 but older versions of the compiler have a bug that causes the offset
8081 of its "F" field to be wrong. Following that field in that case
8082 would lead to incorrect results, but this can be worked around
8083 by ignoring the PAD type and using the associated XVS type instead.
8084
8085 Set to True if the debugger should trust the contents of PAD types.
8086 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8087static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8088
8089/* True if TYPE is a struct type introduced by the compiler to force the
8090 alignment of a value. Such types have a single field with a
4c4b4cd2 8091 distinctive name. */
14f9c5c9
AS
8092
8093int
ebf56fd3 8094ada_is_aligner_type (struct type *type)
14f9c5c9 8095{
61ee279c 8096 type = ada_check_typedef (type);
714e53ab 8097
5bf03f13 8098 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8099 return 0;
8100
14f9c5c9 8101 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8102 && TYPE_NFIELDS (type) == 1
8103 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8104}
8105
8106/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8107 the parallel type. */
14f9c5c9 8108
d2e4a39e
AS
8109struct type *
8110ada_get_base_type (struct type *raw_type)
14f9c5c9 8111{
d2e4a39e
AS
8112 struct type *real_type_namer;
8113 struct type *raw_real_type;
14f9c5c9
AS
8114
8115 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8116 return raw_type;
8117
284614f0
JB
8118 if (ada_is_aligner_type (raw_type))
8119 /* The encoding specifies that we should always use the aligner type.
8120 So, even if this aligner type has an associated XVS type, we should
8121 simply ignore it.
8122
8123 According to the compiler gurus, an XVS type parallel to an aligner
8124 type may exist because of a stabs limitation. In stabs, aligner
8125 types are empty because the field has a variable-sized type, and
8126 thus cannot actually be used as an aligner type. As a result,
8127 we need the associated parallel XVS type to decode the type.
8128 Since the policy in the compiler is to not change the internal
8129 representation based on the debugging info format, we sometimes
8130 end up having a redundant XVS type parallel to the aligner type. */
8131 return raw_type;
8132
14f9c5c9 8133 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8134 if (real_type_namer == NULL
14f9c5c9
AS
8135 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8136 || TYPE_NFIELDS (real_type_namer) != 1)
8137 return raw_type;
8138
f80d3ff2
JB
8139 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8140 {
8141 /* This is an older encoding form where the base type needs to be
8142 looked up by name. We prefer the newer enconding because it is
8143 more efficient. */
8144 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8145 if (raw_real_type == NULL)
8146 return raw_type;
8147 else
8148 return raw_real_type;
8149 }
8150
8151 /* The field in our XVS type is a reference to the base type. */
8152 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8153}
14f9c5c9 8154
4c4b4cd2 8155/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8156
d2e4a39e
AS
8157struct type *
8158ada_aligned_type (struct type *type)
14f9c5c9
AS
8159{
8160 if (ada_is_aligner_type (type))
8161 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8162 else
8163 return ada_get_base_type (type);
8164}
8165
8166
8167/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8168 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8169
fc1a4b47
AC
8170const gdb_byte *
8171ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8172{
d2e4a39e 8173 if (ada_is_aligner_type (type))
14f9c5c9 8174 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8175 valaddr +
8176 TYPE_FIELD_BITPOS (type,
8177 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8178 else
8179 return valaddr;
8180}
8181
4c4b4cd2
PH
8182
8183
14f9c5c9 8184/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8185 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8186const char *
8187ada_enum_name (const char *name)
14f9c5c9 8188{
4c4b4cd2
PH
8189 static char *result;
8190 static size_t result_len = 0;
d2e4a39e 8191 char *tmp;
14f9c5c9 8192
4c4b4cd2
PH
8193 /* First, unqualify the enumeration name:
8194 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
8195 all the preceeding characters, the unqualified name starts
8196 right after that dot.
4c4b4cd2 8197 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8198 translates dots into "__". Search forward for double underscores,
8199 but stop searching when we hit an overloading suffix, which is
8200 of the form "__" followed by digits. */
4c4b4cd2 8201
c3e5cd34
PH
8202 tmp = strrchr (name, '.');
8203 if (tmp != NULL)
4c4b4cd2
PH
8204 name = tmp + 1;
8205 else
14f9c5c9 8206 {
4c4b4cd2
PH
8207 while ((tmp = strstr (name, "__")) != NULL)
8208 {
8209 if (isdigit (tmp[2]))
8210 break;
8211 else
8212 name = tmp + 2;
8213 }
14f9c5c9
AS
8214 }
8215
8216 if (name[0] == 'Q')
8217 {
14f9c5c9 8218 int v;
5b4ee69b 8219
14f9c5c9 8220 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8221 {
8222 if (sscanf (name + 2, "%x", &v) != 1)
8223 return name;
8224 }
14f9c5c9 8225 else
4c4b4cd2 8226 return name;
14f9c5c9 8227
4c4b4cd2 8228 GROW_VECT (result, result_len, 16);
14f9c5c9 8229 if (isascii (v) && isprint (v))
88c15c34 8230 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8231 else if (name[1] == 'U')
88c15c34 8232 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8233 else
88c15c34 8234 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8235
8236 return result;
8237 }
d2e4a39e 8238 else
4c4b4cd2 8239 {
c3e5cd34
PH
8240 tmp = strstr (name, "__");
8241 if (tmp == NULL)
8242 tmp = strstr (name, "$");
8243 if (tmp != NULL)
4c4b4cd2
PH
8244 {
8245 GROW_VECT (result, result_len, tmp - name + 1);
8246 strncpy (result, name, tmp - name);
8247 result[tmp - name] = '\0';
8248 return result;
8249 }
8250
8251 return name;
8252 }
14f9c5c9
AS
8253}
8254
14f9c5c9
AS
8255/* Evaluate the subexpression of EXP starting at *POS as for
8256 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8257 expression. */
14f9c5c9 8258
d2e4a39e
AS
8259static struct value *
8260evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8261{
4b27a620 8262 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8263}
8264
8265/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8266 value it wraps. */
14f9c5c9 8267
d2e4a39e
AS
8268static struct value *
8269unwrap_value (struct value *val)
14f9c5c9 8270{
df407dfe 8271 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8272
14f9c5c9
AS
8273 if (ada_is_aligner_type (type))
8274 {
de4d072f 8275 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8276 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8277
14f9c5c9 8278 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8279 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8280
8281 return unwrap_value (v);
8282 }
d2e4a39e 8283 else
14f9c5c9 8284 {
d2e4a39e 8285 struct type *raw_real_type =
61ee279c 8286 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8287
5bf03f13
JB
8288 /* If there is no parallel XVS or XVE type, then the value is
8289 already unwrapped. Return it without further modification. */
8290 if ((type == raw_real_type)
8291 && ada_find_parallel_type (type, "___XVE") == NULL)
8292 return val;
14f9c5c9 8293
d2e4a39e 8294 return
4c4b4cd2
PH
8295 coerce_unspec_val_to_type
8296 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8297 value_address (val),
1ed6ede0 8298 NULL, 1));
14f9c5c9
AS
8299 }
8300}
d2e4a39e
AS
8301
8302static struct value *
8303cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8304{
8305 LONGEST val;
8306
df407dfe 8307 if (type == value_type (arg))
14f9c5c9 8308 return arg;
df407dfe 8309 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8310 val = ada_float_to_fixed (type,
df407dfe 8311 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8312 value_as_long (arg)));
d2e4a39e 8313 else
14f9c5c9 8314 {
a53b7a21 8315 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8316
14f9c5c9
AS
8317 val = ada_float_to_fixed (type, argd);
8318 }
8319
8320 return value_from_longest (type, val);
8321}
8322
d2e4a39e 8323static struct value *
a53b7a21 8324cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8325{
df407dfe 8326 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8327 value_as_long (arg));
5b4ee69b 8328
a53b7a21 8329 return value_from_double (type, val);
14f9c5c9
AS
8330}
8331
4c4b4cd2
PH
8332/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8333 return the converted value. */
8334
d2e4a39e
AS
8335static struct value *
8336coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8337{
df407dfe 8338 struct type *type2 = value_type (val);
5b4ee69b 8339
14f9c5c9
AS
8340 if (type == type2)
8341 return val;
8342
61ee279c
PH
8343 type2 = ada_check_typedef (type2);
8344 type = ada_check_typedef (type);
14f9c5c9 8345
d2e4a39e
AS
8346 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8347 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8348 {
8349 val = ada_value_ind (val);
df407dfe 8350 type2 = value_type (val);
14f9c5c9
AS
8351 }
8352
d2e4a39e 8353 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8354 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8355 {
8356 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8357 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8358 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8359 error (_("Incompatible types in assignment"));
04624583 8360 deprecated_set_value_type (val, type);
14f9c5c9 8361 }
d2e4a39e 8362 return val;
14f9c5c9
AS
8363}
8364
4c4b4cd2
PH
8365static struct value *
8366ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8367{
8368 struct value *val;
8369 struct type *type1, *type2;
8370 LONGEST v, v1, v2;
8371
994b9211
AC
8372 arg1 = coerce_ref (arg1);
8373 arg2 = coerce_ref (arg2);
df407dfe
AC
8374 type1 = base_type (ada_check_typedef (value_type (arg1)));
8375 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8376
76a01679
JB
8377 if (TYPE_CODE (type1) != TYPE_CODE_INT
8378 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8379 return value_binop (arg1, arg2, op);
8380
76a01679 8381 switch (op)
4c4b4cd2
PH
8382 {
8383 case BINOP_MOD:
8384 case BINOP_DIV:
8385 case BINOP_REM:
8386 break;
8387 default:
8388 return value_binop (arg1, arg2, op);
8389 }
8390
8391 v2 = value_as_long (arg2);
8392 if (v2 == 0)
323e0a4a 8393 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8394
8395 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8396 return value_binop (arg1, arg2, op);
8397
8398 v1 = value_as_long (arg1);
8399 switch (op)
8400 {
8401 case BINOP_DIV:
8402 v = v1 / v2;
76a01679
JB
8403 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8404 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8405 break;
8406 case BINOP_REM:
8407 v = v1 % v2;
76a01679
JB
8408 if (v * v1 < 0)
8409 v -= v2;
4c4b4cd2
PH
8410 break;
8411 default:
8412 /* Should not reach this point. */
8413 v = 0;
8414 }
8415
8416 val = allocate_value (type1);
990a07ab 8417 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8418 TYPE_LENGTH (value_type (val)),
8419 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8420 return val;
8421}
8422
8423static int
8424ada_value_equal (struct value *arg1, struct value *arg2)
8425{
df407dfe
AC
8426 if (ada_is_direct_array_type (value_type (arg1))
8427 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8428 {
f58b38bf
JB
8429 /* Automatically dereference any array reference before
8430 we attempt to perform the comparison. */
8431 arg1 = ada_coerce_ref (arg1);
8432 arg2 = ada_coerce_ref (arg2);
8433
4c4b4cd2
PH
8434 arg1 = ada_coerce_to_simple_array (arg1);
8435 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8436 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8437 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8438 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8439 /* FIXME: The following works only for types whose
76a01679
JB
8440 representations use all bits (no padding or undefined bits)
8441 and do not have user-defined equality. */
8442 return
df407dfe 8443 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8444 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8445 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8446 }
8447 return value_equal (arg1, arg2);
8448}
8449
52ce6436
PH
8450/* Total number of component associations in the aggregate starting at
8451 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8452 OP_AGGREGATE. */
52ce6436
PH
8453
8454static int
8455num_component_specs (struct expression *exp, int pc)
8456{
8457 int n, m, i;
5b4ee69b 8458
52ce6436
PH
8459 m = exp->elts[pc + 1].longconst;
8460 pc += 3;
8461 n = 0;
8462 for (i = 0; i < m; i += 1)
8463 {
8464 switch (exp->elts[pc].opcode)
8465 {
8466 default:
8467 n += 1;
8468 break;
8469 case OP_CHOICES:
8470 n += exp->elts[pc + 1].longconst;
8471 break;
8472 }
8473 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8474 }
8475 return n;
8476}
8477
8478/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8479 component of LHS (a simple array or a record), updating *POS past
8480 the expression, assuming that LHS is contained in CONTAINER. Does
8481 not modify the inferior's memory, nor does it modify LHS (unless
8482 LHS == CONTAINER). */
8483
8484static void
8485assign_component (struct value *container, struct value *lhs, LONGEST index,
8486 struct expression *exp, int *pos)
8487{
8488 struct value *mark = value_mark ();
8489 struct value *elt;
5b4ee69b 8490
52ce6436
PH
8491 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8492 {
22601c15
UW
8493 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8494 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8495
52ce6436
PH
8496 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8497 }
8498 else
8499 {
8500 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8501 elt = ada_to_fixed_value (unwrap_value (elt));
8502 }
8503
8504 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8505 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8506 else
8507 value_assign_to_component (container, elt,
8508 ada_evaluate_subexp (NULL, exp, pos,
8509 EVAL_NORMAL));
8510
8511 value_free_to_mark (mark);
8512}
8513
8514/* Assuming that LHS represents an lvalue having a record or array
8515 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8516 of that aggregate's value to LHS, advancing *POS past the
8517 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8518 lvalue containing LHS (possibly LHS itself). Does not modify
8519 the inferior's memory, nor does it modify the contents of
0963b4bd 8520 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8521
8522static struct value *
8523assign_aggregate (struct value *container,
8524 struct value *lhs, struct expression *exp,
8525 int *pos, enum noside noside)
8526{
8527 struct type *lhs_type;
8528 int n = exp->elts[*pos+1].longconst;
8529 LONGEST low_index, high_index;
8530 int num_specs;
8531 LONGEST *indices;
8532 int max_indices, num_indices;
8533 int is_array_aggregate;
8534 int i;
52ce6436
PH
8535
8536 *pos += 3;
8537 if (noside != EVAL_NORMAL)
8538 {
8539 int i;
5b4ee69b 8540
52ce6436
PH
8541 for (i = 0; i < n; i += 1)
8542 ada_evaluate_subexp (NULL, exp, pos, noside);
8543 return container;
8544 }
8545
8546 container = ada_coerce_ref (container);
8547 if (ada_is_direct_array_type (value_type (container)))
8548 container = ada_coerce_to_simple_array (container);
8549 lhs = ada_coerce_ref (lhs);
8550 if (!deprecated_value_modifiable (lhs))
8551 error (_("Left operand of assignment is not a modifiable lvalue."));
8552
8553 lhs_type = value_type (lhs);
8554 if (ada_is_direct_array_type (lhs_type))
8555 {
8556 lhs = ada_coerce_to_simple_array (lhs);
8557 lhs_type = value_type (lhs);
8558 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8559 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8560 is_array_aggregate = 1;
8561 }
8562 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8563 {
8564 low_index = 0;
8565 high_index = num_visible_fields (lhs_type) - 1;
8566 is_array_aggregate = 0;
8567 }
8568 else
8569 error (_("Left-hand side must be array or record."));
8570
8571 num_specs = num_component_specs (exp, *pos - 3);
8572 max_indices = 4 * num_specs + 4;
8573 indices = alloca (max_indices * sizeof (indices[0]));
8574 indices[0] = indices[1] = low_index - 1;
8575 indices[2] = indices[3] = high_index + 1;
8576 num_indices = 4;
8577
8578 for (i = 0; i < n; i += 1)
8579 {
8580 switch (exp->elts[*pos].opcode)
8581 {
8582 case OP_CHOICES:
8583 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8584 &num_indices, max_indices,
8585 low_index, high_index);
8586 break;
8587 case OP_POSITIONAL:
8588 aggregate_assign_positional (container, lhs, exp, pos, indices,
8589 &num_indices, max_indices,
8590 low_index, high_index);
8591 break;
8592 case OP_OTHERS:
8593 if (i != n-1)
8594 error (_("Misplaced 'others' clause"));
8595 aggregate_assign_others (container, lhs, exp, pos, indices,
8596 num_indices, low_index, high_index);
8597 break;
8598 default:
8599 error (_("Internal error: bad aggregate clause"));
8600 }
8601 }
8602
8603 return container;
8604}
8605
8606/* Assign into the component of LHS indexed by the OP_POSITIONAL
8607 construct at *POS, updating *POS past the construct, given that
8608 the positions are relative to lower bound LOW, where HIGH is the
8609 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8610 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8611 assign_aggregate. */
52ce6436
PH
8612static void
8613aggregate_assign_positional (struct value *container,
8614 struct value *lhs, struct expression *exp,
8615 int *pos, LONGEST *indices, int *num_indices,
8616 int max_indices, LONGEST low, LONGEST high)
8617{
8618 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8619
8620 if (ind - 1 == high)
e1d5a0d2 8621 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8622 if (ind <= high)
8623 {
8624 add_component_interval (ind, ind, indices, num_indices, max_indices);
8625 *pos += 3;
8626 assign_component (container, lhs, ind, exp, pos);
8627 }
8628 else
8629 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8630}
8631
8632/* Assign into the components of LHS indexed by the OP_CHOICES
8633 construct at *POS, updating *POS past the construct, given that
8634 the allowable indices are LOW..HIGH. Record the indices assigned
8635 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8636 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8637static void
8638aggregate_assign_from_choices (struct value *container,
8639 struct value *lhs, struct expression *exp,
8640 int *pos, LONGEST *indices, int *num_indices,
8641 int max_indices, LONGEST low, LONGEST high)
8642{
8643 int j;
8644 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8645 int choice_pos, expr_pc;
8646 int is_array = ada_is_direct_array_type (value_type (lhs));
8647
8648 choice_pos = *pos += 3;
8649
8650 for (j = 0; j < n_choices; j += 1)
8651 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8652 expr_pc = *pos;
8653 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8654
8655 for (j = 0; j < n_choices; j += 1)
8656 {
8657 LONGEST lower, upper;
8658 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8659
52ce6436
PH
8660 if (op == OP_DISCRETE_RANGE)
8661 {
8662 choice_pos += 1;
8663 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8664 EVAL_NORMAL));
8665 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8666 EVAL_NORMAL));
8667 }
8668 else if (is_array)
8669 {
8670 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8671 EVAL_NORMAL));
8672 upper = lower;
8673 }
8674 else
8675 {
8676 int ind;
8677 char *name;
5b4ee69b 8678
52ce6436
PH
8679 switch (op)
8680 {
8681 case OP_NAME:
8682 name = &exp->elts[choice_pos + 2].string;
8683 break;
8684 case OP_VAR_VALUE:
8685 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8686 break;
8687 default:
8688 error (_("Invalid record component association."));
8689 }
8690 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8691 ind = 0;
8692 if (! find_struct_field (name, value_type (lhs), 0,
8693 NULL, NULL, NULL, NULL, &ind))
8694 error (_("Unknown component name: %s."), name);
8695 lower = upper = ind;
8696 }
8697
8698 if (lower <= upper && (lower < low || upper > high))
8699 error (_("Index in component association out of bounds."));
8700
8701 add_component_interval (lower, upper, indices, num_indices,
8702 max_indices);
8703 while (lower <= upper)
8704 {
8705 int pos1;
5b4ee69b 8706
52ce6436
PH
8707 pos1 = expr_pc;
8708 assign_component (container, lhs, lower, exp, &pos1);
8709 lower += 1;
8710 }
8711 }
8712}
8713
8714/* Assign the value of the expression in the OP_OTHERS construct in
8715 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8716 have not been previously assigned. The index intervals already assigned
8717 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 8718 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8719static void
8720aggregate_assign_others (struct value *container,
8721 struct value *lhs, struct expression *exp,
8722 int *pos, LONGEST *indices, int num_indices,
8723 LONGEST low, LONGEST high)
8724{
8725 int i;
5ce64950 8726 int expr_pc = *pos + 1;
52ce6436
PH
8727
8728 for (i = 0; i < num_indices - 2; i += 2)
8729 {
8730 LONGEST ind;
5b4ee69b 8731
52ce6436
PH
8732 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8733 {
5ce64950 8734 int localpos;
5b4ee69b 8735
5ce64950
MS
8736 localpos = expr_pc;
8737 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
8738 }
8739 }
8740 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8741}
8742
8743/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8744 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8745 modifying *SIZE as needed. It is an error if *SIZE exceeds
8746 MAX_SIZE. The resulting intervals do not overlap. */
8747static void
8748add_component_interval (LONGEST low, LONGEST high,
8749 LONGEST* indices, int *size, int max_size)
8750{
8751 int i, j;
5b4ee69b 8752
52ce6436
PH
8753 for (i = 0; i < *size; i += 2) {
8754 if (high >= indices[i] && low <= indices[i + 1])
8755 {
8756 int kh;
5b4ee69b 8757
52ce6436
PH
8758 for (kh = i + 2; kh < *size; kh += 2)
8759 if (high < indices[kh])
8760 break;
8761 if (low < indices[i])
8762 indices[i] = low;
8763 indices[i + 1] = indices[kh - 1];
8764 if (high > indices[i + 1])
8765 indices[i + 1] = high;
8766 memcpy (indices + i + 2, indices + kh, *size - kh);
8767 *size -= kh - i - 2;
8768 return;
8769 }
8770 else if (high < indices[i])
8771 break;
8772 }
8773
8774 if (*size == max_size)
8775 error (_("Internal error: miscounted aggregate components."));
8776 *size += 2;
8777 for (j = *size-1; j >= i+2; j -= 1)
8778 indices[j] = indices[j - 2];
8779 indices[i] = low;
8780 indices[i + 1] = high;
8781}
8782
6e48bd2c
JB
8783/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8784 is different. */
8785
8786static struct value *
8787ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8788{
8789 if (type == ada_check_typedef (value_type (arg2)))
8790 return arg2;
8791
8792 if (ada_is_fixed_point_type (type))
8793 return (cast_to_fixed (type, arg2));
8794
8795 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8796 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8797
8798 return value_cast (type, arg2);
8799}
8800
284614f0
JB
8801/* Evaluating Ada expressions, and printing their result.
8802 ------------------------------------------------------
8803
21649b50
JB
8804 1. Introduction:
8805 ----------------
8806
284614f0
JB
8807 We usually evaluate an Ada expression in order to print its value.
8808 We also evaluate an expression in order to print its type, which
8809 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8810 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8811 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8812 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8813 similar.
8814
8815 Evaluating expressions is a little more complicated for Ada entities
8816 than it is for entities in languages such as C. The main reason for
8817 this is that Ada provides types whose definition might be dynamic.
8818 One example of such types is variant records. Or another example
8819 would be an array whose bounds can only be known at run time.
8820
8821 The following description is a general guide as to what should be
8822 done (and what should NOT be done) in order to evaluate an expression
8823 involving such types, and when. This does not cover how the semantic
8824 information is encoded by GNAT as this is covered separatly. For the
8825 document used as the reference for the GNAT encoding, see exp_dbug.ads
8826 in the GNAT sources.
8827
8828 Ideally, we should embed each part of this description next to its
8829 associated code. Unfortunately, the amount of code is so vast right
8830 now that it's hard to see whether the code handling a particular
8831 situation might be duplicated or not. One day, when the code is
8832 cleaned up, this guide might become redundant with the comments
8833 inserted in the code, and we might want to remove it.
8834
21649b50
JB
8835 2. ``Fixing'' an Entity, the Simple Case:
8836 -----------------------------------------
8837
284614f0
JB
8838 When evaluating Ada expressions, the tricky issue is that they may
8839 reference entities whose type contents and size are not statically
8840 known. Consider for instance a variant record:
8841
8842 type Rec (Empty : Boolean := True) is record
8843 case Empty is
8844 when True => null;
8845 when False => Value : Integer;
8846 end case;
8847 end record;
8848 Yes : Rec := (Empty => False, Value => 1);
8849 No : Rec := (empty => True);
8850
8851 The size and contents of that record depends on the value of the
8852 descriminant (Rec.Empty). At this point, neither the debugging
8853 information nor the associated type structure in GDB are able to
8854 express such dynamic types. So what the debugger does is to create
8855 "fixed" versions of the type that applies to the specific object.
8856 We also informally refer to this opperation as "fixing" an object,
8857 which means creating its associated fixed type.
8858
8859 Example: when printing the value of variable "Yes" above, its fixed
8860 type would look like this:
8861
8862 type Rec is record
8863 Empty : Boolean;
8864 Value : Integer;
8865 end record;
8866
8867 On the other hand, if we printed the value of "No", its fixed type
8868 would become:
8869
8870 type Rec is record
8871 Empty : Boolean;
8872 end record;
8873
8874 Things become a little more complicated when trying to fix an entity
8875 with a dynamic type that directly contains another dynamic type,
8876 such as an array of variant records, for instance. There are
8877 two possible cases: Arrays, and records.
8878
21649b50
JB
8879 3. ``Fixing'' Arrays:
8880 ---------------------
8881
8882 The type structure in GDB describes an array in terms of its bounds,
8883 and the type of its elements. By design, all elements in the array
8884 have the same type and we cannot represent an array of variant elements
8885 using the current type structure in GDB. When fixing an array,
8886 we cannot fix the array element, as we would potentially need one
8887 fixed type per element of the array. As a result, the best we can do
8888 when fixing an array is to produce an array whose bounds and size
8889 are correct (allowing us to read it from memory), but without having
8890 touched its element type. Fixing each element will be done later,
8891 when (if) necessary.
8892
8893 Arrays are a little simpler to handle than records, because the same
8894 amount of memory is allocated for each element of the array, even if
1b536f04 8895 the amount of space actually used by each element differs from element
21649b50 8896 to element. Consider for instance the following array of type Rec:
284614f0
JB
8897
8898 type Rec_Array is array (1 .. 2) of Rec;
8899
1b536f04
JB
8900 The actual amount of memory occupied by each element might be different
8901 from element to element, depending on the value of their discriminant.
21649b50 8902 But the amount of space reserved for each element in the array remains
1b536f04 8903 fixed regardless. So we simply need to compute that size using
21649b50
JB
8904 the debugging information available, from which we can then determine
8905 the array size (we multiply the number of elements of the array by
8906 the size of each element).
8907
8908 The simplest case is when we have an array of a constrained element
8909 type. For instance, consider the following type declarations:
8910
8911 type Bounded_String (Max_Size : Integer) is
8912 Length : Integer;
8913 Buffer : String (1 .. Max_Size);
8914 end record;
8915 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
8916
8917 In this case, the compiler describes the array as an array of
8918 variable-size elements (identified by its XVS suffix) for which
8919 the size can be read in the parallel XVZ variable.
8920
8921 In the case of an array of an unconstrained element type, the compiler
8922 wraps the array element inside a private PAD type. This type should not
8923 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
8924 that we also use the adjective "aligner" in our code to designate
8925 these wrapper types.
8926
1b536f04 8927 In some cases, the size allocated for each element is statically
21649b50
JB
8928 known. In that case, the PAD type already has the correct size,
8929 and the array element should remain unfixed.
8930
8931 But there are cases when this size is not statically known.
8932 For instance, assuming that "Five" is an integer variable:
284614f0
JB
8933
8934 type Dynamic is array (1 .. Five) of Integer;
8935 type Wrapper (Has_Length : Boolean := False) is record
8936 Data : Dynamic;
8937 case Has_Length is
8938 when True => Length : Integer;
8939 when False => null;
8940 end case;
8941 end record;
8942 type Wrapper_Array is array (1 .. 2) of Wrapper;
8943
8944 Hello : Wrapper_Array := (others => (Has_Length => True,
8945 Data => (others => 17),
8946 Length => 1));
8947
8948
8949 The debugging info would describe variable Hello as being an
8950 array of a PAD type. The size of that PAD type is not statically
8951 known, but can be determined using a parallel XVZ variable.
8952 In that case, a copy of the PAD type with the correct size should
8953 be used for the fixed array.
8954
21649b50
JB
8955 3. ``Fixing'' record type objects:
8956 ----------------------------------
8957
8958 Things are slightly different from arrays in the case of dynamic
284614f0
JB
8959 record types. In this case, in order to compute the associated
8960 fixed type, we need to determine the size and offset of each of
8961 its components. This, in turn, requires us to compute the fixed
8962 type of each of these components.
8963
8964 Consider for instance the example:
8965
8966 type Bounded_String (Max_Size : Natural) is record
8967 Str : String (1 .. Max_Size);
8968 Length : Natural;
8969 end record;
8970 My_String : Bounded_String (Max_Size => 10);
8971
8972 In that case, the position of field "Length" depends on the size
8973 of field Str, which itself depends on the value of the Max_Size
21649b50 8974 discriminant. In order to fix the type of variable My_String,
284614f0
JB
8975 we need to fix the type of field Str. Therefore, fixing a variant
8976 record requires us to fix each of its components.
8977
8978 However, if a component does not have a dynamic size, the component
8979 should not be fixed. In particular, fields that use a PAD type
8980 should not fixed. Here is an example where this might happen
8981 (assuming type Rec above):
8982
8983 type Container (Big : Boolean) is record
8984 First : Rec;
8985 After : Integer;
8986 case Big is
8987 when True => Another : Integer;
8988 when False => null;
8989 end case;
8990 end record;
8991 My_Container : Container := (Big => False,
8992 First => (Empty => True),
8993 After => 42);
8994
8995 In that example, the compiler creates a PAD type for component First,
8996 whose size is constant, and then positions the component After just
8997 right after it. The offset of component After is therefore constant
8998 in this case.
8999
9000 The debugger computes the position of each field based on an algorithm
9001 that uses, among other things, the actual position and size of the field
21649b50
JB
9002 preceding it. Let's now imagine that the user is trying to print
9003 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9004 end up computing the offset of field After based on the size of the
9005 fixed version of field First. And since in our example First has
9006 only one actual field, the size of the fixed type is actually smaller
9007 than the amount of space allocated to that field, and thus we would
9008 compute the wrong offset of field After.
9009
21649b50
JB
9010 To make things more complicated, we need to watch out for dynamic
9011 components of variant records (identified by the ___XVL suffix in
9012 the component name). Even if the target type is a PAD type, the size
9013 of that type might not be statically known. So the PAD type needs
9014 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9015 we might end up with the wrong size for our component. This can be
9016 observed with the following type declarations:
284614f0
JB
9017
9018 type Octal is new Integer range 0 .. 7;
9019 type Octal_Array is array (Positive range <>) of Octal;
9020 pragma Pack (Octal_Array);
9021
9022 type Octal_Buffer (Size : Positive) is record
9023 Buffer : Octal_Array (1 .. Size);
9024 Length : Integer;
9025 end record;
9026
9027 In that case, Buffer is a PAD type whose size is unset and needs
9028 to be computed by fixing the unwrapped type.
9029
21649b50
JB
9030 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9031 ----------------------------------------------------------
9032
9033 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9034 thus far, be actually fixed?
9035
9036 The answer is: Only when referencing that element. For instance
9037 when selecting one component of a record, this specific component
9038 should be fixed at that point in time. Or when printing the value
9039 of a record, each component should be fixed before its value gets
9040 printed. Similarly for arrays, the element of the array should be
9041 fixed when printing each element of the array, or when extracting
9042 one element out of that array. On the other hand, fixing should
9043 not be performed on the elements when taking a slice of an array!
9044
9045 Note that one of the side-effects of miscomputing the offset and
9046 size of each field is that we end up also miscomputing the size
9047 of the containing type. This can have adverse results when computing
9048 the value of an entity. GDB fetches the value of an entity based
9049 on the size of its type, and thus a wrong size causes GDB to fetch
9050 the wrong amount of memory. In the case where the computed size is
9051 too small, GDB fetches too little data to print the value of our
9052 entiry. Results in this case as unpredicatble, as we usually read
9053 past the buffer containing the data =:-o. */
9054
9055/* Implement the evaluate_exp routine in the exp_descriptor structure
9056 for the Ada language. */
9057
52ce6436 9058static struct value *
ebf56fd3 9059ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9060 int *pos, enum noside noside)
14f9c5c9
AS
9061{
9062 enum exp_opcode op;
b5385fc0 9063 int tem;
14f9c5c9
AS
9064 int pc;
9065 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9066 struct type *type;
52ce6436 9067 int nargs, oplen;
d2e4a39e 9068 struct value **argvec;
14f9c5c9 9069
d2e4a39e
AS
9070 pc = *pos;
9071 *pos += 1;
14f9c5c9
AS
9072 op = exp->elts[pc].opcode;
9073
d2e4a39e 9074 switch (op)
14f9c5c9
AS
9075 {
9076 default:
9077 *pos -= 1;
6e48bd2c
JB
9078 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9079 arg1 = unwrap_value (arg1);
9080
9081 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9082 then we need to perform the conversion manually, because
9083 evaluate_subexp_standard doesn't do it. This conversion is
9084 necessary in Ada because the different kinds of float/fixed
9085 types in Ada have different representations.
9086
9087 Similarly, we need to perform the conversion from OP_LONG
9088 ourselves. */
9089 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9090 arg1 = ada_value_cast (expect_type, arg1, noside);
9091
9092 return arg1;
4c4b4cd2
PH
9093
9094 case OP_STRING:
9095 {
76a01679 9096 struct value *result;
5b4ee69b 9097
76a01679
JB
9098 *pos -= 1;
9099 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9100 /* The result type will have code OP_STRING, bashed there from
9101 OP_ARRAY. Bash it back. */
df407dfe
AC
9102 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9103 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9104 return result;
4c4b4cd2 9105 }
14f9c5c9
AS
9106
9107 case UNOP_CAST:
9108 (*pos) += 2;
9109 type = exp->elts[pc + 1].type;
9110 arg1 = evaluate_subexp (type, exp, pos, noside);
9111 if (noside == EVAL_SKIP)
4c4b4cd2 9112 goto nosideret;
6e48bd2c 9113 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9114 return arg1;
9115
4c4b4cd2
PH
9116 case UNOP_QUAL:
9117 (*pos) += 2;
9118 type = exp->elts[pc + 1].type;
9119 return ada_evaluate_subexp (type, exp, pos, noside);
9120
14f9c5c9
AS
9121 case BINOP_ASSIGN:
9122 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9123 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9124 {
9125 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9126 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9127 return arg1;
9128 return ada_value_assign (arg1, arg1);
9129 }
003f3813
JB
9130 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9131 except if the lhs of our assignment is a convenience variable.
9132 In the case of assigning to a convenience variable, the lhs
9133 should be exactly the result of the evaluation of the rhs. */
9134 type = value_type (arg1);
9135 if (VALUE_LVAL (arg1) == lval_internalvar)
9136 type = NULL;
9137 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9138 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9139 return arg1;
df407dfe
AC
9140 if (ada_is_fixed_point_type (value_type (arg1)))
9141 arg2 = cast_to_fixed (value_type (arg1), arg2);
9142 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9143 error
323e0a4a 9144 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9145 else
df407dfe 9146 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9147 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9148
9149 case BINOP_ADD:
9150 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9151 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9152 if (noside == EVAL_SKIP)
4c4b4cd2 9153 goto nosideret;
2ac8a782
JB
9154 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9155 return (value_from_longest
9156 (value_type (arg1),
9157 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9158 if ((ada_is_fixed_point_type (value_type (arg1))
9159 || ada_is_fixed_point_type (value_type (arg2)))
9160 && value_type (arg1) != value_type (arg2))
323e0a4a 9161 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9162 /* Do the addition, and cast the result to the type of the first
9163 argument. We cannot cast the result to a reference type, so if
9164 ARG1 is a reference type, find its underlying type. */
9165 type = value_type (arg1);
9166 while (TYPE_CODE (type) == TYPE_CODE_REF)
9167 type = TYPE_TARGET_TYPE (type);
f44316fa 9168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9169 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9170
9171 case BINOP_SUB:
9172 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9173 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9174 if (noside == EVAL_SKIP)
4c4b4cd2 9175 goto nosideret;
2ac8a782
JB
9176 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9177 return (value_from_longest
9178 (value_type (arg1),
9179 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9180 if ((ada_is_fixed_point_type (value_type (arg1))
9181 || ada_is_fixed_point_type (value_type (arg2)))
9182 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9183 error (_("Operands of fixed-point subtraction "
9184 "must have the same type"));
b7789565
JB
9185 /* Do the substraction, and cast the result to the type of the first
9186 argument. We cannot cast the result to a reference type, so if
9187 ARG1 is a reference type, find its underlying type. */
9188 type = value_type (arg1);
9189 while (TYPE_CODE (type) == TYPE_CODE_REF)
9190 type = TYPE_TARGET_TYPE (type);
f44316fa 9191 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9192 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9193
9194 case BINOP_MUL:
9195 case BINOP_DIV:
e1578042
JB
9196 case BINOP_REM:
9197 case BINOP_MOD:
14f9c5c9
AS
9198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9199 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9200 if (noside == EVAL_SKIP)
4c4b4cd2 9201 goto nosideret;
e1578042 9202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9203 {
9204 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9205 return value_zero (value_type (arg1), not_lval);
9206 }
14f9c5c9 9207 else
4c4b4cd2 9208 {
a53b7a21 9209 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9210 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9211 arg1 = cast_from_fixed (type, arg1);
df407dfe 9212 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9213 arg2 = cast_from_fixed (type, arg2);
f44316fa 9214 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9215 return ada_value_binop (arg1, arg2, op);
9216 }
9217
4c4b4cd2
PH
9218 case BINOP_EQUAL:
9219 case BINOP_NOTEQUAL:
14f9c5c9 9220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9221 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9222 if (noside == EVAL_SKIP)
76a01679 9223 goto nosideret;
4c4b4cd2 9224 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9225 tem = 0;
4c4b4cd2 9226 else
f44316fa
UW
9227 {
9228 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9229 tem = ada_value_equal (arg1, arg2);
9230 }
4c4b4cd2 9231 if (op == BINOP_NOTEQUAL)
76a01679 9232 tem = !tem;
fbb06eb1
UW
9233 type = language_bool_type (exp->language_defn, exp->gdbarch);
9234 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9235
9236 case UNOP_NEG:
9237 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9238 if (noside == EVAL_SKIP)
9239 goto nosideret;
df407dfe
AC
9240 else if (ada_is_fixed_point_type (value_type (arg1)))
9241 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9242 else
f44316fa
UW
9243 {
9244 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9245 return value_neg (arg1);
9246 }
4c4b4cd2 9247
2330c6c6
JB
9248 case BINOP_LOGICAL_AND:
9249 case BINOP_LOGICAL_OR:
9250 case UNOP_LOGICAL_NOT:
000d5124
JB
9251 {
9252 struct value *val;
9253
9254 *pos -= 1;
9255 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9256 type = language_bool_type (exp->language_defn, exp->gdbarch);
9257 return value_cast (type, val);
000d5124 9258 }
2330c6c6
JB
9259
9260 case BINOP_BITWISE_AND:
9261 case BINOP_BITWISE_IOR:
9262 case BINOP_BITWISE_XOR:
000d5124
JB
9263 {
9264 struct value *val;
9265
9266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9267 *pos = pc;
9268 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9269
9270 return value_cast (value_type (arg1), val);
9271 }
2330c6c6 9272
14f9c5c9
AS
9273 case OP_VAR_VALUE:
9274 *pos -= 1;
6799def4 9275
14f9c5c9 9276 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9277 {
9278 *pos += 4;
9279 goto nosideret;
9280 }
9281 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9282 /* Only encountered when an unresolved symbol occurs in a
9283 context other than a function call, in which case, it is
52ce6436 9284 invalid. */
323e0a4a 9285 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9286 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9287 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9288 {
0c1f74cf 9289 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9290 /* Check to see if this is a tagged type. We also need to handle
9291 the case where the type is a reference to a tagged type, but
9292 we have to be careful to exclude pointers to tagged types.
9293 The latter should be shown as usual (as a pointer), whereas
9294 a reference should mostly be transparent to the user. */
9295 if (ada_is_tagged_type (type, 0)
9296 || (TYPE_CODE(type) == TYPE_CODE_REF
9297 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9298 {
9299 /* Tagged types are a little special in the fact that the real
9300 type is dynamic and can only be determined by inspecting the
9301 object's tag. This means that we need to get the object's
9302 value first (EVAL_NORMAL) and then extract the actual object
9303 type from its tag.
9304
9305 Note that we cannot skip the final step where we extract
9306 the object type from its tag, because the EVAL_NORMAL phase
9307 results in dynamic components being resolved into fixed ones.
9308 This can cause problems when trying to print the type
9309 description of tagged types whose parent has a dynamic size:
9310 We use the type name of the "_parent" component in order
9311 to print the name of the ancestor type in the type description.
9312 If that component had a dynamic size, the resolution into
9313 a fixed type would result in the loss of that type name,
9314 thus preventing us from printing the name of the ancestor
9315 type in the type description. */
b79819ba
JB
9316 struct type *actual_type;
9317
0c1f74cf 9318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9319 actual_type = type_from_tag (ada_value_tag (arg1));
9320 if (actual_type == NULL)
9321 /* If, for some reason, we were unable to determine
9322 the actual type from the tag, then use the static
9323 approximation that we just computed as a fallback.
9324 This can happen if the debugging information is
9325 incomplete, for instance. */
9326 actual_type = type;
9327
9328 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9329 }
9330
4c4b4cd2
PH
9331 *pos += 4;
9332 return value_zero
9333 (to_static_fixed_type
9334 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9335 not_lval);
9336 }
d2e4a39e 9337 else
4c4b4cd2 9338 {
284614f0
JB
9339 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9340 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
9341 return ada_to_fixed_value (arg1);
9342 }
9343
9344 case OP_FUNCALL:
9345 (*pos) += 2;
9346
9347 /* Allocate arg vector, including space for the function to be
9348 called in argvec[0] and a terminating NULL. */
9349 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9350 argvec =
9351 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9352
9353 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9354 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9355 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9356 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9357 else
9358 {
9359 for (tem = 0; tem <= nargs; tem += 1)
9360 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9361 argvec[tem] = 0;
9362
9363 if (noside == EVAL_SKIP)
9364 goto nosideret;
9365 }
9366
ad82864c
JB
9367 if (ada_is_constrained_packed_array_type
9368 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9369 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9370 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9371 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9372 /* This is a packed array that has already been fixed, and
9373 therefore already coerced to a simple array. Nothing further
9374 to do. */
9375 ;
df407dfe
AC
9376 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9377 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9378 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9379 argvec[0] = value_addr (argvec[0]);
9380
df407dfe 9381 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9382
9383 /* Ada allows us to implicitly dereference arrays when subscripting
9384 them. So, if this is an typedef (encoding use for array access
9385 types encoded as fat pointers), strip it now. */
9386 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9387 type = ada_typedef_target_type (type);
9388
4c4b4cd2
PH
9389 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9390 {
61ee279c 9391 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9392 {
9393 case TYPE_CODE_FUNC:
61ee279c 9394 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9395 break;
9396 case TYPE_CODE_ARRAY:
9397 break;
9398 case TYPE_CODE_STRUCT:
9399 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9400 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9401 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9402 break;
9403 default:
323e0a4a 9404 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9405 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9406 break;
9407 }
9408 }
9409
9410 switch (TYPE_CODE (type))
9411 {
9412 case TYPE_CODE_FUNC:
9413 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9414 return allocate_value (TYPE_TARGET_TYPE (type));
9415 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9416 case TYPE_CODE_STRUCT:
9417 {
9418 int arity;
9419
4c4b4cd2
PH
9420 arity = ada_array_arity (type);
9421 type = ada_array_element_type (type, nargs);
9422 if (type == NULL)
323e0a4a 9423 error (_("cannot subscript or call a record"));
4c4b4cd2 9424 if (arity != nargs)
323e0a4a 9425 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9426 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9427 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9428 return
9429 unwrap_value (ada_value_subscript
9430 (argvec[0], nargs, argvec + 1));
9431 }
9432 case TYPE_CODE_ARRAY:
9433 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9434 {
9435 type = ada_array_element_type (type, nargs);
9436 if (type == NULL)
323e0a4a 9437 error (_("element type of array unknown"));
4c4b4cd2 9438 else
0a07e705 9439 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9440 }
9441 return
9442 unwrap_value (ada_value_subscript
9443 (ada_coerce_to_simple_array (argvec[0]),
9444 nargs, argvec + 1));
9445 case TYPE_CODE_PTR: /* Pointer to array */
9446 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9447 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9448 {
9449 type = ada_array_element_type (type, nargs);
9450 if (type == NULL)
323e0a4a 9451 error (_("element type of array unknown"));
4c4b4cd2 9452 else
0a07e705 9453 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9454 }
9455 return
9456 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9457 nargs, argvec + 1));
9458
9459 default:
e1d5a0d2
PH
9460 error (_("Attempt to index or call something other than an "
9461 "array or function"));
4c4b4cd2
PH
9462 }
9463
9464 case TERNOP_SLICE:
9465 {
9466 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9467 struct value *low_bound_val =
9468 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9469 struct value *high_bound_val =
9470 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9471 LONGEST low_bound;
9472 LONGEST high_bound;
5b4ee69b 9473
994b9211
AC
9474 low_bound_val = coerce_ref (low_bound_val);
9475 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9476 low_bound = pos_atr (low_bound_val);
9477 high_bound = pos_atr (high_bound_val);
963a6417 9478
4c4b4cd2
PH
9479 if (noside == EVAL_SKIP)
9480 goto nosideret;
9481
4c4b4cd2
PH
9482 /* If this is a reference to an aligner type, then remove all
9483 the aligners. */
df407dfe
AC
9484 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9485 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9486 TYPE_TARGET_TYPE (value_type (array)) =
9487 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9488
ad82864c 9489 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9490 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9491
9492 /* If this is a reference to an array or an array lvalue,
9493 convert to a pointer. */
df407dfe
AC
9494 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9495 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9496 && VALUE_LVAL (array) == lval_memory))
9497 array = value_addr (array);
9498
1265e4aa 9499 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9500 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9501 (value_type (array))))
0b5d8877 9502 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9503
9504 array = ada_coerce_to_simple_array_ptr (array);
9505
714e53ab
PH
9506 /* If we have more than one level of pointer indirection,
9507 dereference the value until we get only one level. */
df407dfe
AC
9508 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9509 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9510 == TYPE_CODE_PTR))
9511 array = value_ind (array);
9512
9513 /* Make sure we really do have an array type before going further,
9514 to avoid a SEGV when trying to get the index type or the target
9515 type later down the road if the debug info generated by
9516 the compiler is incorrect or incomplete. */
df407dfe 9517 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9518 error (_("cannot take slice of non-array"));
714e53ab 9519
df407dfe 9520 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 9521 {
0b5d8877 9522 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9523 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
9524 low_bound);
9525 else
9526 {
9527 struct type *arr_type0 =
df407dfe 9528 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 9529 NULL, 1);
5b4ee69b 9530
f5938064
JG
9531 return ada_value_slice_from_ptr (array, arr_type0,
9532 longest_to_int (low_bound),
9533 longest_to_int (high_bound));
4c4b4cd2
PH
9534 }
9535 }
9536 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9537 return array;
9538 else if (high_bound < low_bound)
df407dfe 9539 return empty_array (value_type (array), low_bound);
4c4b4cd2 9540 else
529cad9c
PH
9541 return ada_value_slice (array, longest_to_int (low_bound),
9542 longest_to_int (high_bound));
4c4b4cd2 9543 }
14f9c5c9 9544
4c4b4cd2
PH
9545 case UNOP_IN_RANGE:
9546 (*pos) += 2;
9547 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9548 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9549
14f9c5c9 9550 if (noside == EVAL_SKIP)
4c4b4cd2 9551 goto nosideret;
14f9c5c9 9552
4c4b4cd2
PH
9553 switch (TYPE_CODE (type))
9554 {
9555 default:
e1d5a0d2
PH
9556 lim_warning (_("Membership test incompletely implemented; "
9557 "always returns true"));
fbb06eb1
UW
9558 type = language_bool_type (exp->language_defn, exp->gdbarch);
9559 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9560
9561 case TYPE_CODE_RANGE:
030b4912
UW
9562 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9563 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9566 type = language_bool_type (exp->language_defn, exp->gdbarch);
9567 return
9568 value_from_longest (type,
4c4b4cd2
PH
9569 (value_less (arg1, arg3)
9570 || value_equal (arg1, arg3))
9571 && (value_less (arg2, arg1)
9572 || value_equal (arg2, arg1)));
9573 }
9574
9575 case BINOP_IN_BOUNDS:
14f9c5c9 9576 (*pos) += 2;
4c4b4cd2
PH
9577 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9578 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9579
4c4b4cd2
PH
9580 if (noside == EVAL_SKIP)
9581 goto nosideret;
14f9c5c9 9582
4c4b4cd2 9583 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9584 {
9585 type = language_bool_type (exp->language_defn, exp->gdbarch);
9586 return value_zero (type, not_lval);
9587 }
14f9c5c9 9588
4c4b4cd2 9589 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9590
1eea4ebd
UW
9591 type = ada_index_type (value_type (arg2), tem, "range");
9592 if (!type)
9593 type = value_type (arg1);
14f9c5c9 9594
1eea4ebd
UW
9595 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9596 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9597
f44316fa
UW
9598 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9599 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9600 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9601 return
fbb06eb1 9602 value_from_longest (type,
4c4b4cd2
PH
9603 (value_less (arg1, arg3)
9604 || value_equal (arg1, arg3))
9605 && (value_less (arg2, arg1)
9606 || value_equal (arg2, arg1)));
9607
9608 case TERNOP_IN_RANGE:
9609 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9610 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9611 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9612
9613 if (noside == EVAL_SKIP)
9614 goto nosideret;
9615
f44316fa
UW
9616 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9617 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9618 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9619 return
fbb06eb1 9620 value_from_longest (type,
4c4b4cd2
PH
9621 (value_less (arg1, arg3)
9622 || value_equal (arg1, arg3))
9623 && (value_less (arg2, arg1)
9624 || value_equal (arg2, arg1)));
9625
9626 case OP_ATR_FIRST:
9627 case OP_ATR_LAST:
9628 case OP_ATR_LENGTH:
9629 {
76a01679 9630 struct type *type_arg;
5b4ee69b 9631
76a01679
JB
9632 if (exp->elts[*pos].opcode == OP_TYPE)
9633 {
9634 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9635 arg1 = NULL;
5bc23cb3 9636 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9637 }
9638 else
9639 {
9640 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9641 type_arg = NULL;
9642 }
9643
9644 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9645 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9646 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9647 *pos += 4;
9648
9649 if (noside == EVAL_SKIP)
9650 goto nosideret;
9651
9652 if (type_arg == NULL)
9653 {
9654 arg1 = ada_coerce_ref (arg1);
9655
ad82864c 9656 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9657 arg1 = ada_coerce_to_simple_array (arg1);
9658
1eea4ebd
UW
9659 type = ada_index_type (value_type (arg1), tem,
9660 ada_attribute_name (op));
9661 if (type == NULL)
9662 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9663
9664 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9665 return allocate_value (type);
76a01679
JB
9666
9667 switch (op)
9668 {
9669 default: /* Should never happen. */
323e0a4a 9670 error (_("unexpected attribute encountered"));
76a01679 9671 case OP_ATR_FIRST:
1eea4ebd
UW
9672 return value_from_longest
9673 (type, ada_array_bound (arg1, tem, 0));
76a01679 9674 case OP_ATR_LAST:
1eea4ebd
UW
9675 return value_from_longest
9676 (type, ada_array_bound (arg1, tem, 1));
76a01679 9677 case OP_ATR_LENGTH:
1eea4ebd
UW
9678 return value_from_longest
9679 (type, ada_array_length (arg1, tem));
76a01679
JB
9680 }
9681 }
9682 else if (discrete_type_p (type_arg))
9683 {
9684 struct type *range_type;
9685 char *name = ada_type_name (type_arg);
5b4ee69b 9686
76a01679
JB
9687 range_type = NULL;
9688 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 9689 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
9690 if (range_type == NULL)
9691 range_type = type_arg;
9692 switch (op)
9693 {
9694 default:
323e0a4a 9695 error (_("unexpected attribute encountered"));
76a01679 9696 case OP_ATR_FIRST:
690cc4eb 9697 return value_from_longest
43bbcdc2 9698 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 9699 case OP_ATR_LAST:
690cc4eb 9700 return value_from_longest
43bbcdc2 9701 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 9702 case OP_ATR_LENGTH:
323e0a4a 9703 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9704 }
9705 }
9706 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9707 error (_("unimplemented type attribute"));
76a01679
JB
9708 else
9709 {
9710 LONGEST low, high;
9711
ad82864c
JB
9712 if (ada_is_constrained_packed_array_type (type_arg))
9713 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 9714
1eea4ebd 9715 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9716 if (type == NULL)
1eea4ebd
UW
9717 type = builtin_type (exp->gdbarch)->builtin_int;
9718
76a01679
JB
9719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9720 return allocate_value (type);
9721
9722 switch (op)
9723 {
9724 default:
323e0a4a 9725 error (_("unexpected attribute encountered"));
76a01679 9726 case OP_ATR_FIRST:
1eea4ebd 9727 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9728 return value_from_longest (type, low);
9729 case OP_ATR_LAST:
1eea4ebd 9730 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9731 return value_from_longest (type, high);
9732 case OP_ATR_LENGTH:
1eea4ebd
UW
9733 low = ada_array_bound_from_type (type_arg, tem, 0);
9734 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9735 return value_from_longest (type, high - low + 1);
9736 }
9737 }
14f9c5c9
AS
9738 }
9739
4c4b4cd2
PH
9740 case OP_ATR_TAG:
9741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9742 if (noside == EVAL_SKIP)
76a01679 9743 goto nosideret;
4c4b4cd2
PH
9744
9745 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9746 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9747
9748 return ada_value_tag (arg1);
9749
9750 case OP_ATR_MIN:
9751 case OP_ATR_MAX:
9752 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9753 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9754 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9755 if (noside == EVAL_SKIP)
76a01679 9756 goto nosideret;
d2e4a39e 9757 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9758 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9759 else
f44316fa
UW
9760 {
9761 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9762 return value_binop (arg1, arg2,
9763 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9764 }
14f9c5c9 9765
4c4b4cd2
PH
9766 case OP_ATR_MODULUS:
9767 {
31dedfee 9768 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 9769
5b4ee69b 9770 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
9771 if (noside == EVAL_SKIP)
9772 goto nosideret;
4c4b4cd2 9773
76a01679 9774 if (!ada_is_modular_type (type_arg))
323e0a4a 9775 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9776
76a01679
JB
9777 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9778 ada_modulus (type_arg));
4c4b4cd2
PH
9779 }
9780
9781
9782 case OP_ATR_POS:
9783 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9784 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9785 if (noside == EVAL_SKIP)
76a01679 9786 goto nosideret;
3cb382c9
UW
9787 type = builtin_type (exp->gdbarch)->builtin_int;
9788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789 return value_zero (type, not_lval);
14f9c5c9 9790 else
3cb382c9 9791 return value_pos_atr (type, arg1);
14f9c5c9 9792
4c4b4cd2
PH
9793 case OP_ATR_SIZE:
9794 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9795 type = value_type (arg1);
9796
9797 /* If the argument is a reference, then dereference its type, since
9798 the user is really asking for the size of the actual object,
9799 not the size of the pointer. */
9800 if (TYPE_CODE (type) == TYPE_CODE_REF)
9801 type = TYPE_TARGET_TYPE (type);
9802
4c4b4cd2 9803 if (noside == EVAL_SKIP)
76a01679 9804 goto nosideret;
4c4b4cd2 9805 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 9806 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 9807 else
22601c15 9808 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 9809 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9810
9811 case OP_ATR_VAL:
9812 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9813 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9814 type = exp->elts[pc + 2].type;
14f9c5c9 9815 if (noside == EVAL_SKIP)
76a01679 9816 goto nosideret;
4c4b4cd2 9817 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9818 return value_zero (type, not_lval);
4c4b4cd2 9819 else
76a01679 9820 return value_val_atr (type, arg1);
4c4b4cd2
PH
9821
9822 case BINOP_EXP:
9823 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9824 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9825 if (noside == EVAL_SKIP)
9826 goto nosideret;
9827 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9828 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9829 else
f44316fa
UW
9830 {
9831 /* For integer exponentiation operations,
9832 only promote the first argument. */
9833 if (is_integral_type (value_type (arg2)))
9834 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9835 else
9836 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9837
9838 return value_binop (arg1, arg2, op);
9839 }
4c4b4cd2
PH
9840
9841 case UNOP_PLUS:
9842 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9843 if (noside == EVAL_SKIP)
9844 goto nosideret;
9845 else
9846 return arg1;
9847
9848 case UNOP_ABS:
9849 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9850 if (noside == EVAL_SKIP)
9851 goto nosideret;
f44316fa 9852 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9853 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9854 return value_neg (arg1);
14f9c5c9 9855 else
4c4b4cd2 9856 return arg1;
14f9c5c9
AS
9857
9858 case UNOP_IND:
6b0d7253 9859 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9860 if (noside == EVAL_SKIP)
4c4b4cd2 9861 goto nosideret;
df407dfe 9862 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9864 {
9865 if (ada_is_array_descriptor_type (type))
9866 /* GDB allows dereferencing GNAT array descriptors. */
9867 {
9868 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 9869
4c4b4cd2 9870 if (arrType == NULL)
323e0a4a 9871 error (_("Attempt to dereference null array pointer."));
00a4c844 9872 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9873 }
9874 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9875 || TYPE_CODE (type) == TYPE_CODE_REF
9876 /* In C you can dereference an array to get the 1st elt. */
9877 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9878 {
9879 type = to_static_fixed_type
9880 (ada_aligned_type
9881 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9882 check_size (type);
9883 return value_zero (type, lval_memory);
9884 }
4c4b4cd2 9885 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9886 {
9887 /* GDB allows dereferencing an int. */
9888 if (expect_type == NULL)
9889 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9890 lval_memory);
9891 else
9892 {
9893 expect_type =
9894 to_static_fixed_type (ada_aligned_type (expect_type));
9895 return value_zero (expect_type, lval_memory);
9896 }
9897 }
4c4b4cd2 9898 else
323e0a4a 9899 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9900 }
0963b4bd 9901 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9902 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9903
96967637
JB
9904 if (TYPE_CODE (type) == TYPE_CODE_INT)
9905 /* GDB allows dereferencing an int. If we were given
9906 the expect_type, then use that as the target type.
9907 Otherwise, assume that the target type is an int. */
9908 {
9909 if (expect_type != NULL)
9910 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9911 arg1));
9912 else
9913 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9914 (CORE_ADDR) value_as_address (arg1));
9915 }
6b0d7253 9916
4c4b4cd2
PH
9917 if (ada_is_array_descriptor_type (type))
9918 /* GDB allows dereferencing GNAT array descriptors. */
9919 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9920 else
4c4b4cd2 9921 return ada_value_ind (arg1);
14f9c5c9
AS
9922
9923 case STRUCTOP_STRUCT:
9924 tem = longest_to_int (exp->elts[pc + 1].longconst);
9925 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9926 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9927 if (noside == EVAL_SKIP)
4c4b4cd2 9928 goto nosideret;
14f9c5c9 9929 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9930 {
df407dfe 9931 struct type *type1 = value_type (arg1);
5b4ee69b 9932
76a01679
JB
9933 if (ada_is_tagged_type (type1, 1))
9934 {
9935 type = ada_lookup_struct_elt_type (type1,
9936 &exp->elts[pc + 2].string,
9937 1, 1, NULL);
9938 if (type == NULL)
9939 /* In this case, we assume that the field COULD exist
9940 in some extension of the type. Return an object of
9941 "type" void, which will match any formal
0963b4bd 9942 (see ada_type_match). */
30b15541
UW
9943 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
9944 lval_memory);
76a01679
JB
9945 }
9946 else
9947 type =
9948 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9949 0, NULL);
9950
9951 return value_zero (ada_aligned_type (type), lval_memory);
9952 }
14f9c5c9 9953 else
284614f0
JB
9954 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9955 arg1 = unwrap_value (arg1);
9956 return ada_to_fixed_value (arg1);
9957
14f9c5c9 9958 case OP_TYPE:
4c4b4cd2
PH
9959 /* The value is not supposed to be used. This is here to make it
9960 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9961 (*pos) += 2;
9962 if (noside == EVAL_SKIP)
4c4b4cd2 9963 goto nosideret;
14f9c5c9 9964 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9965 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9966 else
323e0a4a 9967 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9968
9969 case OP_AGGREGATE:
9970 case OP_CHOICES:
9971 case OP_OTHERS:
9972 case OP_DISCRETE_RANGE:
9973 case OP_POSITIONAL:
9974 case OP_NAME:
9975 if (noside == EVAL_NORMAL)
9976 switch (op)
9977 {
9978 case OP_NAME:
9979 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9980 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9981 case OP_AGGREGATE:
9982 error (_("Aggregates only allowed on the right of an assignment"));
9983 default:
0963b4bd
MS
9984 internal_error (__FILE__, __LINE__,
9985 _("aggregate apparently mangled"));
52ce6436
PH
9986 }
9987
9988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9989 *pos += oplen - 1;
9990 for (tem = 0; tem < nargs; tem += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, noside);
9992 goto nosideret;
14f9c5c9
AS
9993 }
9994
9995nosideret:
22601c15 9996 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 9997}
14f9c5c9 9998\f
d2e4a39e 9999
4c4b4cd2 10000 /* Fixed point */
14f9c5c9
AS
10001
10002/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10003 type name that encodes the 'small and 'delta information.
4c4b4cd2 10004 Otherwise, return NULL. */
14f9c5c9 10005
d2e4a39e 10006static const char *
ebf56fd3 10007fixed_type_info (struct type *type)
14f9c5c9 10008{
d2e4a39e 10009 const char *name = ada_type_name (type);
14f9c5c9
AS
10010 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10011
d2e4a39e
AS
10012 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10013 {
14f9c5c9 10014 const char *tail = strstr (name, "___XF_");
5b4ee69b 10015
14f9c5c9 10016 if (tail == NULL)
4c4b4cd2 10017 return NULL;
d2e4a39e 10018 else
4c4b4cd2 10019 return tail + 5;
14f9c5c9
AS
10020 }
10021 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10022 return fixed_type_info (TYPE_TARGET_TYPE (type));
10023 else
10024 return NULL;
10025}
10026
4c4b4cd2 10027/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10028
10029int
ebf56fd3 10030ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10031{
10032 return fixed_type_info (type) != NULL;
10033}
10034
4c4b4cd2
PH
10035/* Return non-zero iff TYPE represents a System.Address type. */
10036
10037int
10038ada_is_system_address_type (struct type *type)
10039{
10040 return (TYPE_NAME (type)
10041 && strcmp (TYPE_NAME (type), "system__address") == 0);
10042}
10043
14f9c5c9
AS
10044/* Assuming that TYPE is the representation of an Ada fixed-point
10045 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10046 delta cannot be determined. */
14f9c5c9
AS
10047
10048DOUBLEST
ebf56fd3 10049ada_delta (struct type *type)
14f9c5c9
AS
10050{
10051 const char *encoding = fixed_type_info (type);
facc390f 10052 DOUBLEST num, den;
14f9c5c9 10053
facc390f
JB
10054 /* Strictly speaking, num and den are encoded as integer. However,
10055 they may not fit into a long, and they will have to be converted
10056 to DOUBLEST anyway. So scan them as DOUBLEST. */
10057 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10058 &num, &den) < 2)
14f9c5c9 10059 return -1.0;
d2e4a39e 10060 else
facc390f 10061 return num / den;
14f9c5c9
AS
10062}
10063
10064/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10065 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10066
10067static DOUBLEST
ebf56fd3 10068scaling_factor (struct type *type)
14f9c5c9
AS
10069{
10070 const char *encoding = fixed_type_info (type);
facc390f 10071 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10072 int n;
d2e4a39e 10073
facc390f
JB
10074 /* Strictly speaking, num's and den's are encoded as integer. However,
10075 they may not fit into a long, and they will have to be converted
10076 to DOUBLEST anyway. So scan them as DOUBLEST. */
10077 n = sscanf (encoding,
10078 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10079 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10080 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10081
10082 if (n < 2)
10083 return 1.0;
10084 else if (n == 4)
facc390f 10085 return num1 / den1;
d2e4a39e 10086 else
facc390f 10087 return num0 / den0;
14f9c5c9
AS
10088}
10089
10090
10091/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10092 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10093
10094DOUBLEST
ebf56fd3 10095ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10096{
d2e4a39e 10097 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10098}
10099
4c4b4cd2
PH
10100/* The representation of a fixed-point value of type TYPE
10101 corresponding to the value X. */
14f9c5c9
AS
10102
10103LONGEST
ebf56fd3 10104ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10105{
10106 return (LONGEST) (x / scaling_factor (type) + 0.5);
10107}
10108
14f9c5c9 10109\f
d2e4a39e 10110
4c4b4cd2 10111 /* Range types */
14f9c5c9
AS
10112
10113/* Scan STR beginning at position K for a discriminant name, and
10114 return the value of that discriminant field of DVAL in *PX. If
10115 PNEW_K is not null, put the position of the character beyond the
10116 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10117 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10118
10119static int
07d8f827 10120scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10121 int *pnew_k)
14f9c5c9
AS
10122{
10123 static char *bound_buffer = NULL;
10124 static size_t bound_buffer_len = 0;
10125 char *bound;
10126 char *pend;
d2e4a39e 10127 struct value *bound_val;
14f9c5c9
AS
10128
10129 if (dval == NULL || str == NULL || str[k] == '\0')
10130 return 0;
10131
d2e4a39e 10132 pend = strstr (str + k, "__");
14f9c5c9
AS
10133 if (pend == NULL)
10134 {
d2e4a39e 10135 bound = str + k;
14f9c5c9
AS
10136 k += strlen (bound);
10137 }
d2e4a39e 10138 else
14f9c5c9 10139 {
d2e4a39e 10140 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10141 bound = bound_buffer;
d2e4a39e
AS
10142 strncpy (bound_buffer, str + k, pend - (str + k));
10143 bound[pend - (str + k)] = '\0';
10144 k = pend - str;
14f9c5c9 10145 }
d2e4a39e 10146
df407dfe 10147 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10148 if (bound_val == NULL)
10149 return 0;
10150
10151 *px = value_as_long (bound_val);
10152 if (pnew_k != NULL)
10153 *pnew_k = k;
10154 return 1;
10155}
10156
10157/* Value of variable named NAME in the current environment. If
10158 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10159 otherwise causes an error with message ERR_MSG. */
10160
d2e4a39e
AS
10161static struct value *
10162get_var_value (char *name, char *err_msg)
14f9c5c9 10163{
4c4b4cd2 10164 struct ada_symbol_info *syms;
14f9c5c9
AS
10165 int nsyms;
10166
4c4b4cd2
PH
10167 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10168 &syms);
14f9c5c9
AS
10169
10170 if (nsyms != 1)
10171 {
10172 if (err_msg == NULL)
4c4b4cd2 10173 return 0;
14f9c5c9 10174 else
8a3fe4f8 10175 error (("%s"), err_msg);
14f9c5c9
AS
10176 }
10177
4c4b4cd2 10178 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10179}
d2e4a39e 10180
14f9c5c9 10181/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10182 no such variable found, returns 0, and sets *FLAG to 0. If
10183 successful, sets *FLAG to 1. */
10184
14f9c5c9 10185LONGEST
4c4b4cd2 10186get_int_var_value (char *name, int *flag)
14f9c5c9 10187{
4c4b4cd2 10188 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10189
14f9c5c9
AS
10190 if (var_val == 0)
10191 {
10192 if (flag != NULL)
4c4b4cd2 10193 *flag = 0;
14f9c5c9
AS
10194 return 0;
10195 }
10196 else
10197 {
10198 if (flag != NULL)
4c4b4cd2 10199 *flag = 1;
14f9c5c9
AS
10200 return value_as_long (var_val);
10201 }
10202}
d2e4a39e 10203
14f9c5c9
AS
10204
10205/* Return a range type whose base type is that of the range type named
10206 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10207 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10208 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10209 corresponding range type from debug information; fall back to using it
10210 if symbol lookup fails. If a new type must be created, allocate it
10211 like ORIG_TYPE was. The bounds information, in general, is encoded
10212 in NAME, the base type given in the named range type. */
14f9c5c9 10213
d2e4a39e 10214static struct type *
28c85d6c 10215to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10216{
28c85d6c 10217 char *name;
14f9c5c9 10218 struct type *base_type;
d2e4a39e 10219 char *subtype_info;
14f9c5c9 10220
28c85d6c
JB
10221 gdb_assert (raw_type != NULL);
10222 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10223
1ce677a4 10224 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10225 base_type = TYPE_TARGET_TYPE (raw_type);
10226 else
10227 base_type = raw_type;
10228
28c85d6c 10229 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10230 subtype_info = strstr (name, "___XD");
10231 if (subtype_info == NULL)
690cc4eb 10232 {
43bbcdc2
PH
10233 LONGEST L = ada_discrete_type_low_bound (raw_type);
10234 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10235
690cc4eb
PH
10236 if (L < INT_MIN || U > INT_MAX)
10237 return raw_type;
10238 else
28c85d6c 10239 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10240 ada_discrete_type_low_bound (raw_type),
10241 ada_discrete_type_high_bound (raw_type));
690cc4eb 10242 }
14f9c5c9
AS
10243 else
10244 {
10245 static char *name_buf = NULL;
10246 static size_t name_len = 0;
10247 int prefix_len = subtype_info - name;
10248 LONGEST L, U;
10249 struct type *type;
10250 char *bounds_str;
10251 int n;
10252
10253 GROW_VECT (name_buf, name_len, prefix_len + 5);
10254 strncpy (name_buf, name, prefix_len);
10255 name_buf[prefix_len] = '\0';
10256
10257 subtype_info += 5;
10258 bounds_str = strchr (subtype_info, '_');
10259 n = 1;
10260
d2e4a39e 10261 if (*subtype_info == 'L')
4c4b4cd2
PH
10262 {
10263 if (!ada_scan_number (bounds_str, n, &L, &n)
10264 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10265 return raw_type;
10266 if (bounds_str[n] == '_')
10267 n += 2;
0963b4bd 10268 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10269 n += 1;
10270 subtype_info += 1;
10271 }
d2e4a39e 10272 else
4c4b4cd2
PH
10273 {
10274 int ok;
5b4ee69b 10275
4c4b4cd2
PH
10276 strcpy (name_buf + prefix_len, "___L");
10277 L = get_int_var_value (name_buf, &ok);
10278 if (!ok)
10279 {
323e0a4a 10280 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10281 L = 1;
10282 }
10283 }
14f9c5c9 10284
d2e4a39e 10285 if (*subtype_info == 'U')
4c4b4cd2
PH
10286 {
10287 if (!ada_scan_number (bounds_str, n, &U, &n)
10288 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10289 return raw_type;
10290 }
d2e4a39e 10291 else
4c4b4cd2
PH
10292 {
10293 int ok;
5b4ee69b 10294
4c4b4cd2
PH
10295 strcpy (name_buf + prefix_len, "___U");
10296 U = get_int_var_value (name_buf, &ok);
10297 if (!ok)
10298 {
323e0a4a 10299 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10300 U = L;
10301 }
10302 }
14f9c5c9 10303
28c85d6c 10304 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10305 TYPE_NAME (type) = name;
14f9c5c9
AS
10306 return type;
10307 }
10308}
10309
4c4b4cd2
PH
10310/* True iff NAME is the name of a range type. */
10311
14f9c5c9 10312int
d2e4a39e 10313ada_is_range_type_name (const char *name)
14f9c5c9
AS
10314{
10315 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10316}
14f9c5c9 10317\f
d2e4a39e 10318
4c4b4cd2
PH
10319 /* Modular types */
10320
10321/* True iff TYPE is an Ada modular type. */
14f9c5c9 10322
14f9c5c9 10323int
d2e4a39e 10324ada_is_modular_type (struct type *type)
14f9c5c9 10325{
4c4b4cd2 10326 struct type *subranged_type = base_type (type);
14f9c5c9
AS
10327
10328 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10329 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10330 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10331}
10332
0056e4d5
JB
10333/* Try to determine the lower and upper bounds of the given modular type
10334 using the type name only. Return non-zero and set L and U as the lower
10335 and upper bounds (respectively) if successful. */
10336
10337int
10338ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10339{
10340 char *name = ada_type_name (type);
10341 char *suffix;
10342 int k;
10343 LONGEST U;
10344
10345 if (name == NULL)
10346 return 0;
10347
10348 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10349 we are looking for static bounds, which means an __XDLU suffix.
10350 Moreover, we know that the lower bound of modular types is always
10351 zero, so the actual suffix should start with "__XDLU_0__", and
10352 then be followed by the upper bound value. */
10353 suffix = strstr (name, "__XDLU_0__");
10354 if (suffix == NULL)
10355 return 0;
10356 k = 10;
10357 if (!ada_scan_number (suffix, k, &U, NULL))
10358 return 0;
10359
10360 *modulus = (ULONGEST) U + 1;
10361 return 1;
10362}
10363
4c4b4cd2
PH
10364/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10365
61ee279c 10366ULONGEST
0056e4d5 10367ada_modulus (struct type *type)
14f9c5c9 10368{
43bbcdc2 10369 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10370}
d2e4a39e 10371\f
f7f9143b
JB
10372
10373/* Ada exception catchpoint support:
10374 ---------------------------------
10375
10376 We support 3 kinds of exception catchpoints:
10377 . catchpoints on Ada exceptions
10378 . catchpoints on unhandled Ada exceptions
10379 . catchpoints on failed assertions
10380
10381 Exceptions raised during failed assertions, or unhandled exceptions
10382 could perfectly be caught with the general catchpoint on Ada exceptions.
10383 However, we can easily differentiate these two special cases, and having
10384 the option to distinguish these two cases from the rest can be useful
10385 to zero-in on certain situations.
10386
10387 Exception catchpoints are a specialized form of breakpoint,
10388 since they rely on inserting breakpoints inside known routines
10389 of the GNAT runtime. The implementation therefore uses a standard
10390 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10391 of breakpoint_ops.
10392
0259addd
JB
10393 Support in the runtime for exception catchpoints have been changed
10394 a few times already, and these changes affect the implementation
10395 of these catchpoints. In order to be able to support several
10396 variants of the runtime, we use a sniffer that will determine
10397 the runtime variant used by the program being debugged.
10398
f7f9143b
JB
10399 At this time, we do not support the use of conditions on Ada exception
10400 catchpoints. The COND and COND_STRING fields are therefore set
10401 to NULL (most of the time, see below).
10402
10403 Conditions where EXP_STRING, COND, and COND_STRING are used:
10404
10405 When a user specifies the name of a specific exception in the case
10406 of catchpoints on Ada exceptions, we store the name of that exception
10407 in the EXP_STRING. We then translate this request into an actual
10408 condition stored in COND_STRING, and then parse it into an expression
10409 stored in COND. */
10410
10411/* The different types of catchpoints that we introduced for catching
10412 Ada exceptions. */
10413
10414enum exception_catchpoint_kind
10415{
10416 ex_catch_exception,
10417 ex_catch_exception_unhandled,
10418 ex_catch_assert
10419};
10420
3d0b0fa3
JB
10421/* Ada's standard exceptions. */
10422
10423static char *standard_exc[] = {
10424 "constraint_error",
10425 "program_error",
10426 "storage_error",
10427 "tasking_error"
10428};
10429
0259addd
JB
10430typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10431
10432/* A structure that describes how to support exception catchpoints
10433 for a given executable. */
10434
10435struct exception_support_info
10436{
10437 /* The name of the symbol to break on in order to insert
10438 a catchpoint on exceptions. */
10439 const char *catch_exception_sym;
10440
10441 /* The name of the symbol to break on in order to insert
10442 a catchpoint on unhandled exceptions. */
10443 const char *catch_exception_unhandled_sym;
10444
10445 /* The name of the symbol to break on in order to insert
10446 a catchpoint on failed assertions. */
10447 const char *catch_assert_sym;
10448
10449 /* Assuming that the inferior just triggered an unhandled exception
10450 catchpoint, this function is responsible for returning the address
10451 in inferior memory where the name of that exception is stored.
10452 Return zero if the address could not be computed. */
10453 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10454};
10455
10456static CORE_ADDR ada_unhandled_exception_name_addr (void);
10457static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10458
10459/* The following exception support info structure describes how to
10460 implement exception catchpoints with the latest version of the
10461 Ada runtime (as of 2007-03-06). */
10462
10463static const struct exception_support_info default_exception_support_info =
10464{
10465 "__gnat_debug_raise_exception", /* catch_exception_sym */
10466 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10467 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10468 ada_unhandled_exception_name_addr
10469};
10470
10471/* The following exception support info structure describes how to
10472 implement exception catchpoints with a slightly older version
10473 of the Ada runtime. */
10474
10475static const struct exception_support_info exception_support_info_fallback =
10476{
10477 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10478 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10479 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10480 ada_unhandled_exception_name_addr_from_raise
10481};
10482
10483/* For each executable, we sniff which exception info structure to use
10484 and cache it in the following global variable. */
10485
10486static const struct exception_support_info *exception_info = NULL;
10487
10488/* Inspect the Ada runtime and determine which exception info structure
10489 should be used to provide support for exception catchpoints.
10490
10491 This function will always set exception_info, or raise an error. */
10492
10493static void
10494ada_exception_support_info_sniffer (void)
10495{
10496 struct symbol *sym;
10497
10498 /* If the exception info is already known, then no need to recompute it. */
10499 if (exception_info != NULL)
10500 return;
10501
10502 /* Check the latest (default) exception support info. */
10503 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10504 NULL, VAR_DOMAIN);
10505 if (sym != NULL)
10506 {
10507 exception_info = &default_exception_support_info;
10508 return;
10509 }
10510
10511 /* Try our fallback exception suport info. */
10512 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10513 NULL, VAR_DOMAIN);
10514 if (sym != NULL)
10515 {
10516 exception_info = &exception_support_info_fallback;
10517 return;
10518 }
10519
10520 /* Sometimes, it is normal for us to not be able to find the routine
10521 we are looking for. This happens when the program is linked with
10522 the shared version of the GNAT runtime, and the program has not been
10523 started yet. Inform the user of these two possible causes if
10524 applicable. */
10525
ccefe4c4 10526 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10527 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10528
10529 /* If the symbol does not exist, then check that the program is
10530 already started, to make sure that shared libraries have been
10531 loaded. If it is not started, this may mean that the symbol is
10532 in a shared library. */
10533
10534 if (ptid_get_pid (inferior_ptid) == 0)
10535 error (_("Unable to insert catchpoint. Try to start the program first."));
10536
10537 /* At this point, we know that we are debugging an Ada program and
10538 that the inferior has been started, but we still are not able to
0963b4bd 10539 find the run-time symbols. That can mean that we are in
0259addd
JB
10540 configurable run time mode, or that a-except as been optimized
10541 out by the linker... In any case, at this point it is not worth
10542 supporting this feature. */
10543
10544 error (_("Cannot insert catchpoints in this configuration."));
10545}
10546
10547/* An observer of "executable_changed" events.
10548 Its role is to clear certain cached values that need to be recomputed
10549 each time a new executable is loaded by GDB. */
10550
10551static void
781b42b0 10552ada_executable_changed_observer (void)
0259addd
JB
10553{
10554 /* If the executable changed, then it is possible that the Ada runtime
10555 is different. So we need to invalidate the exception support info
10556 cache. */
10557 exception_info = NULL;
10558}
10559
f7f9143b
JB
10560/* True iff FRAME is very likely to be that of a function that is
10561 part of the runtime system. This is all very heuristic, but is
10562 intended to be used as advice as to what frames are uninteresting
10563 to most users. */
10564
10565static int
10566is_known_support_routine (struct frame_info *frame)
10567{
4ed6b5be 10568 struct symtab_and_line sal;
f7f9143b 10569 char *func_name;
692465f1 10570 enum language func_lang;
f7f9143b 10571 int i;
f7f9143b 10572
4ed6b5be
JB
10573 /* If this code does not have any debugging information (no symtab),
10574 This cannot be any user code. */
f7f9143b 10575
4ed6b5be 10576 find_frame_sal (frame, &sal);
f7f9143b
JB
10577 if (sal.symtab == NULL)
10578 return 1;
10579
4ed6b5be
JB
10580 /* If there is a symtab, but the associated source file cannot be
10581 located, then assume this is not user code: Selecting a frame
10582 for which we cannot display the code would not be very helpful
10583 for the user. This should also take care of case such as VxWorks
10584 where the kernel has some debugging info provided for a few units. */
f7f9143b 10585
9bbc9174 10586 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10587 return 1;
10588
4ed6b5be
JB
10589 /* Check the unit filename againt the Ada runtime file naming.
10590 We also check the name of the objfile against the name of some
10591 known system libraries that sometimes come with debugging info
10592 too. */
10593
f7f9143b
JB
10594 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10595 {
10596 re_comp (known_runtime_file_name_patterns[i]);
10597 if (re_exec (sal.symtab->filename))
10598 return 1;
4ed6b5be
JB
10599 if (sal.symtab->objfile != NULL
10600 && re_exec (sal.symtab->objfile->name))
10601 return 1;
f7f9143b
JB
10602 }
10603
4ed6b5be 10604 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10605
e9e07ba6 10606 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10607 if (func_name == NULL)
10608 return 1;
10609
10610 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10611 {
10612 re_comp (known_auxiliary_function_name_patterns[i]);
10613 if (re_exec (func_name))
10614 return 1;
10615 }
10616
10617 return 0;
10618}
10619
10620/* Find the first frame that contains debugging information and that is not
10621 part of the Ada run-time, starting from FI and moving upward. */
10622
0ef643c8 10623void
f7f9143b
JB
10624ada_find_printable_frame (struct frame_info *fi)
10625{
10626 for (; fi != NULL; fi = get_prev_frame (fi))
10627 {
10628 if (!is_known_support_routine (fi))
10629 {
10630 select_frame (fi);
10631 break;
10632 }
10633 }
10634
10635}
10636
10637/* Assuming that the inferior just triggered an unhandled exception
10638 catchpoint, return the address in inferior memory where the name
10639 of the exception is stored.
10640
10641 Return zero if the address could not be computed. */
10642
10643static CORE_ADDR
10644ada_unhandled_exception_name_addr (void)
0259addd
JB
10645{
10646 return parse_and_eval_address ("e.full_name");
10647}
10648
10649/* Same as ada_unhandled_exception_name_addr, except that this function
10650 should be used when the inferior uses an older version of the runtime,
10651 where the exception name needs to be extracted from a specific frame
10652 several frames up in the callstack. */
10653
10654static CORE_ADDR
10655ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10656{
10657 int frame_level;
10658 struct frame_info *fi;
10659
10660 /* To determine the name of this exception, we need to select
10661 the frame corresponding to RAISE_SYM_NAME. This frame is
10662 at least 3 levels up, so we simply skip the first 3 frames
10663 without checking the name of their associated function. */
10664 fi = get_current_frame ();
10665 for (frame_level = 0; frame_level < 3; frame_level += 1)
10666 if (fi != NULL)
10667 fi = get_prev_frame (fi);
10668
10669 while (fi != NULL)
10670 {
692465f1
JB
10671 char *func_name;
10672 enum language func_lang;
10673
e9e07ba6 10674 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10675 if (func_name != NULL
0259addd 10676 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10677 break; /* We found the frame we were looking for... */
10678 fi = get_prev_frame (fi);
10679 }
10680
10681 if (fi == NULL)
10682 return 0;
10683
10684 select_frame (fi);
10685 return parse_and_eval_address ("id.full_name");
10686}
10687
10688/* Assuming the inferior just triggered an Ada exception catchpoint
10689 (of any type), return the address in inferior memory where the name
10690 of the exception is stored, if applicable.
10691
10692 Return zero if the address could not be computed, or if not relevant. */
10693
10694static CORE_ADDR
10695ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10696 struct breakpoint *b)
10697{
10698 switch (ex)
10699 {
10700 case ex_catch_exception:
10701 return (parse_and_eval_address ("e.full_name"));
10702 break;
10703
10704 case ex_catch_exception_unhandled:
0259addd 10705 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10706 break;
10707
10708 case ex_catch_assert:
10709 return 0; /* Exception name is not relevant in this case. */
10710 break;
10711
10712 default:
10713 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10714 break;
10715 }
10716
10717 return 0; /* Should never be reached. */
10718}
10719
10720/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10721 any error that ada_exception_name_addr_1 might cause to be thrown.
10722 When an error is intercepted, a warning with the error message is printed,
10723 and zero is returned. */
10724
10725static CORE_ADDR
10726ada_exception_name_addr (enum exception_catchpoint_kind ex,
10727 struct breakpoint *b)
10728{
10729 struct gdb_exception e;
10730 CORE_ADDR result = 0;
10731
10732 TRY_CATCH (e, RETURN_MASK_ERROR)
10733 {
10734 result = ada_exception_name_addr_1 (ex, b);
10735 }
10736
10737 if (e.reason < 0)
10738 {
10739 warning (_("failed to get exception name: %s"), e.message);
10740 return 0;
10741 }
10742
10743 return result;
10744}
10745
10746/* Implement the PRINT_IT method in the breakpoint_ops structure
10747 for all exception catchpoint kinds. */
10748
10749static enum print_stop_action
10750print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10751{
956a9fb9 10752 annotate_catchpoint (b->number);
f7f9143b 10753
956a9fb9 10754 if (ui_out_is_mi_like_p (uiout))
f7f9143b 10755 {
956a9fb9
JB
10756 ui_out_field_string (uiout, "reason",
10757 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10758 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
10759 }
10760
956a9fb9
JB
10761 ui_out_text (uiout, "\nCatchpoint ");
10762 ui_out_field_int (uiout, "bkptno", b->number);
10763 ui_out_text (uiout, ", ");
f7f9143b 10764
f7f9143b
JB
10765 switch (ex)
10766 {
10767 case ex_catch_exception:
f7f9143b 10768 case ex_catch_exception_unhandled:
956a9fb9
JB
10769 {
10770 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10771 char exception_name[256];
10772
10773 if (addr != 0)
10774 {
10775 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10776 exception_name [sizeof (exception_name) - 1] = '\0';
10777 }
10778 else
10779 {
10780 /* For some reason, we were unable to read the exception
10781 name. This could happen if the Runtime was compiled
10782 without debugging info, for instance. In that case,
10783 just replace the exception name by the generic string
10784 "exception" - it will read as "an exception" in the
10785 notification we are about to print. */
967cff16 10786 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
10787 }
10788 /* In the case of unhandled exception breakpoints, we print
10789 the exception name as "unhandled EXCEPTION_NAME", to make
10790 it clearer to the user which kind of catchpoint just got
10791 hit. We used ui_out_text to make sure that this extra
10792 info does not pollute the exception name in the MI case. */
10793 if (ex == ex_catch_exception_unhandled)
10794 ui_out_text (uiout, "unhandled ");
10795 ui_out_field_string (uiout, "exception-name", exception_name);
10796 }
10797 break;
f7f9143b 10798 case ex_catch_assert:
956a9fb9
JB
10799 /* In this case, the name of the exception is not really
10800 important. Just print "failed assertion" to make it clearer
10801 that his program just hit an assertion-failure catchpoint.
10802 We used ui_out_text because this info does not belong in
10803 the MI output. */
10804 ui_out_text (uiout, "failed assertion");
10805 break;
f7f9143b 10806 }
956a9fb9
JB
10807 ui_out_text (uiout, " at ");
10808 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
10809
10810 return PRINT_SRC_AND_LOC;
10811}
10812
10813/* Implement the PRINT_ONE method in the breakpoint_ops structure
10814 for all exception catchpoint kinds. */
10815
10816static void
10817print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 10818 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10819{
79a45b7d
TT
10820 struct value_print_options opts;
10821
10822 get_user_print_options (&opts);
10823 if (opts.addressprint)
f7f9143b
JB
10824 {
10825 annotate_field (4);
5af949e3 10826 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
10827 }
10828
10829 annotate_field (5);
a6d9a66e 10830 *last_loc = b->loc;
f7f9143b
JB
10831 switch (ex)
10832 {
10833 case ex_catch_exception:
10834 if (b->exp_string != NULL)
10835 {
10836 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10837
10838 ui_out_field_string (uiout, "what", msg);
10839 xfree (msg);
10840 }
10841 else
10842 ui_out_field_string (uiout, "what", "all Ada exceptions");
10843
10844 break;
10845
10846 case ex_catch_exception_unhandled:
10847 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10848 break;
10849
10850 case ex_catch_assert:
10851 ui_out_field_string (uiout, "what", "failed Ada assertions");
10852 break;
10853
10854 default:
10855 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10856 break;
10857 }
10858}
10859
10860/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10861 for all exception catchpoint kinds. */
10862
10863static void
10864print_mention_exception (enum exception_catchpoint_kind ex,
10865 struct breakpoint *b)
10866{
10867 switch (ex)
10868 {
10869 case ex_catch_exception:
10870 if (b->exp_string != NULL)
10871 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10872 b->number, b->exp_string);
10873 else
10874 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10875
10876 break;
10877
10878 case ex_catch_exception_unhandled:
10879 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10880 b->number);
10881 break;
10882
10883 case ex_catch_assert:
10884 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10885 break;
10886
10887 default:
10888 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10889 break;
10890 }
10891}
10892
6149aea9
PA
10893/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
10894 for all exception catchpoint kinds. */
10895
10896static void
10897print_recreate_exception (enum exception_catchpoint_kind ex,
10898 struct breakpoint *b, struct ui_file *fp)
10899{
10900 switch (ex)
10901 {
10902 case ex_catch_exception:
10903 fprintf_filtered (fp, "catch exception");
10904 if (b->exp_string != NULL)
10905 fprintf_filtered (fp, " %s", b->exp_string);
10906 break;
10907
10908 case ex_catch_exception_unhandled:
78076abc 10909 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
10910 break;
10911
10912 case ex_catch_assert:
10913 fprintf_filtered (fp, "catch assert");
10914 break;
10915
10916 default:
10917 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10918 }
10919}
10920
f7f9143b
JB
10921/* Virtual table for "catch exception" breakpoints. */
10922
10923static enum print_stop_action
10924print_it_catch_exception (struct breakpoint *b)
10925{
10926 return print_it_exception (ex_catch_exception, b);
10927}
10928
10929static void
a6d9a66e 10930print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 10931{
a6d9a66e 10932 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
10933}
10934
10935static void
10936print_mention_catch_exception (struct breakpoint *b)
10937{
10938 print_mention_exception (ex_catch_exception, b);
10939}
10940
6149aea9
PA
10941static void
10942print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
10943{
10944 print_recreate_exception (ex_catch_exception, b, fp);
10945}
10946
f7f9143b
JB
10947static struct breakpoint_ops catch_exception_breakpoint_ops =
10948{
be5c67c1 10949 NULL, /* dtor */
ce78b96d
JB
10950 NULL, /* insert */
10951 NULL, /* remove */
10952 NULL, /* breakpoint_hit */
e09342b5 10953 NULL, /* resources_needed */
9c06b0b4 10954 NULL, /* works_in_software_mode */
f7f9143b
JB
10955 print_it_catch_exception,
10956 print_one_catch_exception,
f1310107 10957 NULL, /* print_one_detail */
6149aea9
PA
10958 print_mention_catch_exception,
10959 print_recreate_catch_exception
f7f9143b
JB
10960};
10961
10962/* Virtual table for "catch exception unhandled" breakpoints. */
10963
10964static enum print_stop_action
10965print_it_catch_exception_unhandled (struct breakpoint *b)
10966{
10967 return print_it_exception (ex_catch_exception_unhandled, b);
10968}
10969
10970static void
a6d9a66e
UW
10971print_one_catch_exception_unhandled (struct breakpoint *b,
10972 struct bp_location **last_loc)
f7f9143b 10973{
a6d9a66e 10974 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
10975}
10976
10977static void
10978print_mention_catch_exception_unhandled (struct breakpoint *b)
10979{
10980 print_mention_exception (ex_catch_exception_unhandled, b);
10981}
10982
6149aea9
PA
10983static void
10984print_recreate_catch_exception_unhandled (struct breakpoint *b,
10985 struct ui_file *fp)
10986{
10987 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
10988}
10989
f7f9143b 10990static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
be5c67c1 10991 NULL, /* dtor */
ce78b96d
JB
10992 NULL, /* insert */
10993 NULL, /* remove */
10994 NULL, /* breakpoint_hit */
e09342b5 10995 NULL, /* resources_needed */
9c06b0b4 10996 NULL, /* works_in_software_mode */
f7f9143b
JB
10997 print_it_catch_exception_unhandled,
10998 print_one_catch_exception_unhandled,
f1310107 10999 NULL, /* print_one_detail */
6149aea9
PA
11000 print_mention_catch_exception_unhandled,
11001 print_recreate_catch_exception_unhandled
f7f9143b
JB
11002};
11003
11004/* Virtual table for "catch assert" breakpoints. */
11005
11006static enum print_stop_action
11007print_it_catch_assert (struct breakpoint *b)
11008{
11009 return print_it_exception (ex_catch_assert, b);
11010}
11011
11012static void
a6d9a66e 11013print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11014{
a6d9a66e 11015 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11016}
11017
11018static void
11019print_mention_catch_assert (struct breakpoint *b)
11020{
11021 print_mention_exception (ex_catch_assert, b);
11022}
11023
6149aea9
PA
11024static void
11025print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11026{
11027 print_recreate_exception (ex_catch_assert, b, fp);
11028}
11029
f7f9143b 11030static struct breakpoint_ops catch_assert_breakpoint_ops = {
be5c67c1 11031 NULL, /* dtor */
ce78b96d
JB
11032 NULL, /* insert */
11033 NULL, /* remove */
11034 NULL, /* breakpoint_hit */
e09342b5 11035 NULL, /* resources_needed */
9c06b0b4 11036 NULL, /* works_in_software_mode */
f7f9143b
JB
11037 print_it_catch_assert,
11038 print_one_catch_assert,
f1310107 11039 NULL, /* print_one_detail */
6149aea9
PA
11040 print_mention_catch_assert,
11041 print_recreate_catch_assert
f7f9143b
JB
11042};
11043
11044/* Return non-zero if B is an Ada exception catchpoint. */
11045
11046int
11047ada_exception_catchpoint_p (struct breakpoint *b)
11048{
11049 return (b->ops == &catch_exception_breakpoint_ops
11050 || b->ops == &catch_exception_unhandled_breakpoint_ops
11051 || b->ops == &catch_assert_breakpoint_ops);
11052}
11053
f7f9143b
JB
11054/* Return a newly allocated copy of the first space-separated token
11055 in ARGSP, and then adjust ARGSP to point immediately after that
11056 token.
11057
11058 Return NULL if ARGPS does not contain any more tokens. */
11059
11060static char *
11061ada_get_next_arg (char **argsp)
11062{
11063 char *args = *argsp;
11064 char *end;
11065 char *result;
11066
11067 /* Skip any leading white space. */
11068
11069 while (isspace (*args))
11070 args++;
11071
11072 if (args[0] == '\0')
11073 return NULL; /* No more arguments. */
11074
11075 /* Find the end of the current argument. */
11076
11077 end = args;
11078 while (*end != '\0' && !isspace (*end))
11079 end++;
11080
11081 /* Adjust ARGSP to point to the start of the next argument. */
11082
11083 *argsp = end;
11084
11085 /* Make a copy of the current argument and return it. */
11086
11087 result = xmalloc (end - args + 1);
11088 strncpy (result, args, end - args);
11089 result[end - args] = '\0';
11090
11091 return result;
11092}
11093
11094/* Split the arguments specified in a "catch exception" command.
11095 Set EX to the appropriate catchpoint type.
11096 Set EXP_STRING to the name of the specific exception if
11097 specified by the user. */
11098
11099static void
11100catch_ada_exception_command_split (char *args,
11101 enum exception_catchpoint_kind *ex,
11102 char **exp_string)
11103{
11104 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11105 char *exception_name;
11106
11107 exception_name = ada_get_next_arg (&args);
11108 make_cleanup (xfree, exception_name);
11109
11110 /* Check that we do not have any more arguments. Anything else
11111 is unexpected. */
11112
11113 while (isspace (*args))
11114 args++;
11115
11116 if (args[0] != '\0')
11117 error (_("Junk at end of expression"));
11118
11119 discard_cleanups (old_chain);
11120
11121 if (exception_name == NULL)
11122 {
11123 /* Catch all exceptions. */
11124 *ex = ex_catch_exception;
11125 *exp_string = NULL;
11126 }
11127 else if (strcmp (exception_name, "unhandled") == 0)
11128 {
11129 /* Catch unhandled exceptions. */
11130 *ex = ex_catch_exception_unhandled;
11131 *exp_string = NULL;
11132 }
11133 else
11134 {
11135 /* Catch a specific exception. */
11136 *ex = ex_catch_exception;
11137 *exp_string = exception_name;
11138 }
11139}
11140
11141/* Return the name of the symbol on which we should break in order to
11142 implement a catchpoint of the EX kind. */
11143
11144static const char *
11145ada_exception_sym_name (enum exception_catchpoint_kind ex)
11146{
0259addd
JB
11147 gdb_assert (exception_info != NULL);
11148
f7f9143b
JB
11149 switch (ex)
11150 {
11151 case ex_catch_exception:
0259addd 11152 return (exception_info->catch_exception_sym);
f7f9143b
JB
11153 break;
11154 case ex_catch_exception_unhandled:
0259addd 11155 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11156 break;
11157 case ex_catch_assert:
0259addd 11158 return (exception_info->catch_assert_sym);
f7f9143b
JB
11159 break;
11160 default:
11161 internal_error (__FILE__, __LINE__,
11162 _("unexpected catchpoint kind (%d)"), ex);
11163 }
11164}
11165
11166/* Return the breakpoint ops "virtual table" used for catchpoints
11167 of the EX kind. */
11168
11169static struct breakpoint_ops *
4b9eee8c 11170ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11171{
11172 switch (ex)
11173 {
11174 case ex_catch_exception:
11175 return (&catch_exception_breakpoint_ops);
11176 break;
11177 case ex_catch_exception_unhandled:
11178 return (&catch_exception_unhandled_breakpoint_ops);
11179 break;
11180 case ex_catch_assert:
11181 return (&catch_assert_breakpoint_ops);
11182 break;
11183 default:
11184 internal_error (__FILE__, __LINE__,
11185 _("unexpected catchpoint kind (%d)"), ex);
11186 }
11187}
11188
11189/* Return the condition that will be used to match the current exception
11190 being raised with the exception that the user wants to catch. This
11191 assumes that this condition is used when the inferior just triggered
11192 an exception catchpoint.
11193
11194 The string returned is a newly allocated string that needs to be
11195 deallocated later. */
11196
11197static char *
11198ada_exception_catchpoint_cond_string (const char *exp_string)
11199{
3d0b0fa3
JB
11200 int i;
11201
0963b4bd 11202 /* The standard exceptions are a special case. They are defined in
3d0b0fa3
JB
11203 runtime units that have been compiled without debugging info; if
11204 EXP_STRING is the not-fully-qualified name of a standard
11205 exception (e.g. "constraint_error") then, during the evaluation
11206 of the condition expression, the symbol lookup on this name would
0963b4bd 11207 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11208 may then be set only on user-defined exceptions which have the
11209 same not-fully-qualified name (e.g. my_package.constraint_error).
11210
11211 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11212 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11213 exception constraint_error" is rewritten into "catch exception
11214 standard.constraint_error".
11215
11216 If an exception named contraint_error is defined in another package of
11217 the inferior program, then the only way to specify this exception as a
11218 breakpoint condition is to use its fully-qualified named:
11219 e.g. my_package.constraint_error. */
11220
11221 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11222 {
11223 if (strcmp (standard_exc [i], exp_string) == 0)
11224 {
11225 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11226 exp_string);
11227 }
11228 }
f7f9143b
JB
11229 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
11230}
11231
11232/* Return the expression corresponding to COND_STRING evaluated at SAL. */
11233
11234static struct expression *
11235ada_parse_catchpoint_condition (char *cond_string,
11236 struct symtab_and_line sal)
11237{
11238 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
11239}
11240
11241/* Return the symtab_and_line that should be used to insert an exception
11242 catchpoint of the TYPE kind.
11243
11244 EX_STRING should contain the name of a specific exception
11245 that the catchpoint should catch, or NULL otherwise.
11246
11247 The idea behind all the remaining parameters is that their names match
11248 the name of certain fields in the breakpoint structure that are used to
11249 handle exception catchpoints. This function returns the value to which
11250 these fields should be set, depending on the type of catchpoint we need
11251 to create.
11252
11253 If COND and COND_STRING are both non-NULL, any value they might
11254 hold will be free'ed, and then replaced by newly allocated ones.
11255 These parameters are left untouched otherwise. */
11256
11257static struct symtab_and_line
11258ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
11259 char **addr_string, char **cond_string,
11260 struct expression **cond, struct breakpoint_ops **ops)
11261{
11262 const char *sym_name;
11263 struct symbol *sym;
11264 struct symtab_and_line sal;
11265
0259addd
JB
11266 /* First, find out which exception support info to use. */
11267 ada_exception_support_info_sniffer ();
11268
11269 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
11270 the Ada exceptions requested by the user. */
11271
11272 sym_name = ada_exception_sym_name (ex);
11273 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11274
11275 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11276 that should be compiled with debugging information. As a result, we
11277 expect to find that symbol in the symtabs. If we don't find it, then
11278 the target most likely does not support Ada exceptions, or we cannot
11279 insert exception breakpoints yet, because the GNAT runtime hasn't been
11280 loaded yet. */
11281
11282 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
11283 in such a way that no debugging information is produced for the symbol
11284 we are looking for. In this case, we could search the minimal symbols
11285 as a fall-back mechanism. This would still be operating in degraded
11286 mode, however, as we would still be missing the debugging information
11287 that is needed in order to extract the name of the exception being
11288 raised (this name is printed in the catchpoint message, and is also
11289 used when trying to catch a specific exception). We do not handle
11290 this case for now. */
11291
11292 if (sym == NULL)
0259addd 11293 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
11294
11295 /* Make sure that the symbol we found corresponds to a function. */
11296 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11297 error (_("Symbol \"%s\" is not a function (class = %d)"),
11298 sym_name, SYMBOL_CLASS (sym));
11299
11300 sal = find_function_start_sal (sym, 1);
11301
11302 /* Set ADDR_STRING. */
11303
11304 *addr_string = xstrdup (sym_name);
11305
11306 /* Set the COND and COND_STRING (if not NULL). */
11307
11308 if (cond_string != NULL && cond != NULL)
11309 {
11310 if (*cond_string != NULL)
11311 {
11312 xfree (*cond_string);
11313 *cond_string = NULL;
11314 }
11315 if (*cond != NULL)
11316 {
11317 xfree (*cond);
11318 *cond = NULL;
11319 }
11320 if (exp_string != NULL)
11321 {
11322 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
11323 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
11324 }
11325 }
11326
11327 /* Set OPS. */
4b9eee8c 11328 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
11329
11330 return sal;
11331}
11332
11333/* Parse the arguments (ARGS) of the "catch exception" command.
11334
11335 Set TYPE to the appropriate exception catchpoint type.
11336 If the user asked the catchpoint to catch only a specific
11337 exception, then save the exception name in ADDR_STRING.
11338
11339 See ada_exception_sal for a description of all the remaining
11340 function arguments of this function. */
11341
11342struct symtab_and_line
11343ada_decode_exception_location (char *args, char **addr_string,
11344 char **exp_string, char **cond_string,
11345 struct expression **cond,
11346 struct breakpoint_ops **ops)
11347{
11348 enum exception_catchpoint_kind ex;
11349
11350 catch_ada_exception_command_split (args, &ex, exp_string);
11351 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
11352 cond, ops);
11353}
11354
11355struct symtab_and_line
11356ada_decode_assert_location (char *args, char **addr_string,
11357 struct breakpoint_ops **ops)
11358{
11359 /* Check that no argument where provided at the end of the command. */
11360
11361 if (args != NULL)
11362 {
11363 while (isspace (*args))
11364 args++;
11365 if (*args != '\0')
11366 error (_("Junk at end of arguments."));
11367 }
11368
11369 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
11370 ops);
11371}
11372
4c4b4cd2
PH
11373 /* Operators */
11374/* Information about operators given special treatment in functions
11375 below. */
11376/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11377
11378#define ADA_OPERATORS \
11379 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11380 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11381 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11382 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11383 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11384 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11385 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11386 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11387 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11388 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11389 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11390 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11391 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11392 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11393 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
11394 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11395 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11396 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11397 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
11398
11399static void
554794dc
SDJ
11400ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11401 int *argsp)
4c4b4cd2
PH
11402{
11403 switch (exp->elts[pc - 1].opcode)
11404 {
76a01679 11405 default:
4c4b4cd2
PH
11406 operator_length_standard (exp, pc, oplenp, argsp);
11407 break;
11408
11409#define OP_DEFN(op, len, args, binop) \
11410 case op: *oplenp = len; *argsp = args; break;
11411 ADA_OPERATORS;
11412#undef OP_DEFN
52ce6436
PH
11413
11414 case OP_AGGREGATE:
11415 *oplenp = 3;
11416 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11417 break;
11418
11419 case OP_CHOICES:
11420 *oplenp = 3;
11421 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11422 break;
4c4b4cd2
PH
11423 }
11424}
11425
c0201579
JK
11426/* Implementation of the exp_descriptor method operator_check. */
11427
11428static int
11429ada_operator_check (struct expression *exp, int pos,
11430 int (*objfile_func) (struct objfile *objfile, void *data),
11431 void *data)
11432{
11433 const union exp_element *const elts = exp->elts;
11434 struct type *type = NULL;
11435
11436 switch (elts[pos].opcode)
11437 {
11438 case UNOP_IN_RANGE:
11439 case UNOP_QUAL:
11440 type = elts[pos + 1].type;
11441 break;
11442
11443 default:
11444 return operator_check_standard (exp, pos, objfile_func, data);
11445 }
11446
11447 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
11448
11449 if (type && TYPE_OBJFILE (type)
11450 && (*objfile_func) (TYPE_OBJFILE (type), data))
11451 return 1;
11452
11453 return 0;
11454}
11455
4c4b4cd2
PH
11456static char *
11457ada_op_name (enum exp_opcode opcode)
11458{
11459 switch (opcode)
11460 {
76a01679 11461 default:
4c4b4cd2 11462 return op_name_standard (opcode);
52ce6436 11463
4c4b4cd2
PH
11464#define OP_DEFN(op, len, args, binop) case op: return #op;
11465 ADA_OPERATORS;
11466#undef OP_DEFN
52ce6436
PH
11467
11468 case OP_AGGREGATE:
11469 return "OP_AGGREGATE";
11470 case OP_CHOICES:
11471 return "OP_CHOICES";
11472 case OP_NAME:
11473 return "OP_NAME";
4c4b4cd2
PH
11474 }
11475}
11476
11477/* As for operator_length, but assumes PC is pointing at the first
11478 element of the operator, and gives meaningful results only for the
52ce6436 11479 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
11480
11481static void
76a01679
JB
11482ada_forward_operator_length (struct expression *exp, int pc,
11483 int *oplenp, int *argsp)
4c4b4cd2 11484{
76a01679 11485 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
11486 {
11487 default:
11488 *oplenp = *argsp = 0;
11489 break;
52ce6436 11490
4c4b4cd2
PH
11491#define OP_DEFN(op, len, args, binop) \
11492 case op: *oplenp = len; *argsp = args; break;
11493 ADA_OPERATORS;
11494#undef OP_DEFN
52ce6436
PH
11495
11496 case OP_AGGREGATE:
11497 *oplenp = 3;
11498 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
11499 break;
11500
11501 case OP_CHOICES:
11502 *oplenp = 3;
11503 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
11504 break;
11505
11506 case OP_STRING:
11507 case OP_NAME:
11508 {
11509 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 11510
52ce6436
PH
11511 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
11512 *argsp = 0;
11513 break;
11514 }
4c4b4cd2
PH
11515 }
11516}
11517
11518static int
11519ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
11520{
11521 enum exp_opcode op = exp->elts[elt].opcode;
11522 int oplen, nargs;
11523 int pc = elt;
11524 int i;
76a01679 11525
4c4b4cd2
PH
11526 ada_forward_operator_length (exp, elt, &oplen, &nargs);
11527
76a01679 11528 switch (op)
4c4b4cd2 11529 {
76a01679 11530 /* Ada attributes ('Foo). */
4c4b4cd2
PH
11531 case OP_ATR_FIRST:
11532 case OP_ATR_LAST:
11533 case OP_ATR_LENGTH:
11534 case OP_ATR_IMAGE:
11535 case OP_ATR_MAX:
11536 case OP_ATR_MIN:
11537 case OP_ATR_MODULUS:
11538 case OP_ATR_POS:
11539 case OP_ATR_SIZE:
11540 case OP_ATR_TAG:
11541 case OP_ATR_VAL:
11542 break;
11543
11544 case UNOP_IN_RANGE:
11545 case UNOP_QUAL:
323e0a4a
AC
11546 /* XXX: gdb_sprint_host_address, type_sprint */
11547 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
11548 gdb_print_host_address (exp->elts[pc + 1].type, stream);
11549 fprintf_filtered (stream, " (");
11550 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
11551 fprintf_filtered (stream, ")");
11552 break;
11553 case BINOP_IN_BOUNDS:
52ce6436
PH
11554 fprintf_filtered (stream, " (%d)",
11555 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
11556 break;
11557 case TERNOP_IN_RANGE:
11558 break;
11559
52ce6436
PH
11560 case OP_AGGREGATE:
11561 case OP_OTHERS:
11562 case OP_DISCRETE_RANGE:
11563 case OP_POSITIONAL:
11564 case OP_CHOICES:
11565 break;
11566
11567 case OP_NAME:
11568 case OP_STRING:
11569 {
11570 char *name = &exp->elts[elt + 2].string;
11571 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 11572
52ce6436
PH
11573 fprintf_filtered (stream, "Text: `%.*s'", len, name);
11574 break;
11575 }
11576
4c4b4cd2
PH
11577 default:
11578 return dump_subexp_body_standard (exp, stream, elt);
11579 }
11580
11581 elt += oplen;
11582 for (i = 0; i < nargs; i += 1)
11583 elt = dump_subexp (exp, stream, elt);
11584
11585 return elt;
11586}
11587
11588/* The Ada extension of print_subexp (q.v.). */
11589
76a01679
JB
11590static void
11591ada_print_subexp (struct expression *exp, int *pos,
11592 struct ui_file *stream, enum precedence prec)
4c4b4cd2 11593{
52ce6436 11594 int oplen, nargs, i;
4c4b4cd2
PH
11595 int pc = *pos;
11596 enum exp_opcode op = exp->elts[pc].opcode;
11597
11598 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11599
52ce6436 11600 *pos += oplen;
4c4b4cd2
PH
11601 switch (op)
11602 {
11603 default:
52ce6436 11604 *pos -= oplen;
4c4b4cd2
PH
11605 print_subexp_standard (exp, pos, stream, prec);
11606 return;
11607
11608 case OP_VAR_VALUE:
4c4b4cd2
PH
11609 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11610 return;
11611
11612 case BINOP_IN_BOUNDS:
323e0a4a 11613 /* XXX: sprint_subexp */
4c4b4cd2 11614 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11615 fputs_filtered (" in ", stream);
4c4b4cd2 11616 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11617 fputs_filtered ("'range", stream);
4c4b4cd2 11618 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11619 fprintf_filtered (stream, "(%ld)",
11620 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11621 return;
11622
11623 case TERNOP_IN_RANGE:
4c4b4cd2 11624 if (prec >= PREC_EQUAL)
76a01679 11625 fputs_filtered ("(", stream);
323e0a4a 11626 /* XXX: sprint_subexp */
4c4b4cd2 11627 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11628 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11629 print_subexp (exp, pos, stream, PREC_EQUAL);
11630 fputs_filtered (" .. ", stream);
11631 print_subexp (exp, pos, stream, PREC_EQUAL);
11632 if (prec >= PREC_EQUAL)
76a01679
JB
11633 fputs_filtered (")", stream);
11634 return;
4c4b4cd2
PH
11635
11636 case OP_ATR_FIRST:
11637 case OP_ATR_LAST:
11638 case OP_ATR_LENGTH:
11639 case OP_ATR_IMAGE:
11640 case OP_ATR_MAX:
11641 case OP_ATR_MIN:
11642 case OP_ATR_MODULUS:
11643 case OP_ATR_POS:
11644 case OP_ATR_SIZE:
11645 case OP_ATR_TAG:
11646 case OP_ATR_VAL:
4c4b4cd2 11647 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11648 {
11649 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11650 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11651 *pos += 3;
11652 }
4c4b4cd2 11653 else
76a01679 11654 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11655 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11656 if (nargs > 1)
76a01679
JB
11657 {
11658 int tem;
5b4ee69b 11659
76a01679
JB
11660 for (tem = 1; tem < nargs; tem += 1)
11661 {
11662 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11663 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11664 }
11665 fputs_filtered (")", stream);
11666 }
4c4b4cd2 11667 return;
14f9c5c9 11668
4c4b4cd2 11669 case UNOP_QUAL:
4c4b4cd2
PH
11670 type_print (exp->elts[pc + 1].type, "", stream, 0);
11671 fputs_filtered ("'(", stream);
11672 print_subexp (exp, pos, stream, PREC_PREFIX);
11673 fputs_filtered (")", stream);
11674 return;
14f9c5c9 11675
4c4b4cd2 11676 case UNOP_IN_RANGE:
323e0a4a 11677 /* XXX: sprint_subexp */
4c4b4cd2 11678 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11679 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11680 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11681 return;
52ce6436
PH
11682
11683 case OP_DISCRETE_RANGE:
11684 print_subexp (exp, pos, stream, PREC_SUFFIX);
11685 fputs_filtered ("..", stream);
11686 print_subexp (exp, pos, stream, PREC_SUFFIX);
11687 return;
11688
11689 case OP_OTHERS:
11690 fputs_filtered ("others => ", stream);
11691 print_subexp (exp, pos, stream, PREC_SUFFIX);
11692 return;
11693
11694 case OP_CHOICES:
11695 for (i = 0; i < nargs-1; i += 1)
11696 {
11697 if (i > 0)
11698 fputs_filtered ("|", stream);
11699 print_subexp (exp, pos, stream, PREC_SUFFIX);
11700 }
11701 fputs_filtered (" => ", stream);
11702 print_subexp (exp, pos, stream, PREC_SUFFIX);
11703 return;
11704
11705 case OP_POSITIONAL:
11706 print_subexp (exp, pos, stream, PREC_SUFFIX);
11707 return;
11708
11709 case OP_AGGREGATE:
11710 fputs_filtered ("(", stream);
11711 for (i = 0; i < nargs; i += 1)
11712 {
11713 if (i > 0)
11714 fputs_filtered (", ", stream);
11715 print_subexp (exp, pos, stream, PREC_SUFFIX);
11716 }
11717 fputs_filtered (")", stream);
11718 return;
4c4b4cd2
PH
11719 }
11720}
14f9c5c9
AS
11721
11722/* Table mapping opcodes into strings for printing operators
11723 and precedences of the operators. */
11724
d2e4a39e
AS
11725static const struct op_print ada_op_print_tab[] = {
11726 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11727 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11728 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11729 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11730 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11731 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11732 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11733 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11734 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11735 {">=", BINOP_GEQ, PREC_ORDER, 0},
11736 {">", BINOP_GTR, PREC_ORDER, 0},
11737 {"<", BINOP_LESS, PREC_ORDER, 0},
11738 {">>", BINOP_RSH, PREC_SHIFT, 0},
11739 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11740 {"+", BINOP_ADD, PREC_ADD, 0},
11741 {"-", BINOP_SUB, PREC_ADD, 0},
11742 {"&", BINOP_CONCAT, PREC_ADD, 0},
11743 {"*", BINOP_MUL, PREC_MUL, 0},
11744 {"/", BINOP_DIV, PREC_MUL, 0},
11745 {"rem", BINOP_REM, PREC_MUL, 0},
11746 {"mod", BINOP_MOD, PREC_MUL, 0},
11747 {"**", BINOP_EXP, PREC_REPEAT, 0},
11748 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11749 {"-", UNOP_NEG, PREC_PREFIX, 0},
11750 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11751 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11752 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11753 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11754 {".all", UNOP_IND, PREC_SUFFIX, 1},
11755 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11756 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11757 {NULL, 0, 0, 0}
14f9c5c9
AS
11758};
11759\f
72d5681a
PH
11760enum ada_primitive_types {
11761 ada_primitive_type_int,
11762 ada_primitive_type_long,
11763 ada_primitive_type_short,
11764 ada_primitive_type_char,
11765 ada_primitive_type_float,
11766 ada_primitive_type_double,
11767 ada_primitive_type_void,
11768 ada_primitive_type_long_long,
11769 ada_primitive_type_long_double,
11770 ada_primitive_type_natural,
11771 ada_primitive_type_positive,
11772 ada_primitive_type_system_address,
11773 nr_ada_primitive_types
11774};
6c038f32
PH
11775
11776static void
d4a9a881 11777ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11778 struct language_arch_info *lai)
11779{
d4a9a881 11780 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 11781
72d5681a 11782 lai->primitive_type_vector
d4a9a881 11783 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 11784 struct type *);
e9bb382b
UW
11785
11786 lai->primitive_type_vector [ada_primitive_type_int]
11787 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11788 0, "integer");
11789 lai->primitive_type_vector [ada_primitive_type_long]
11790 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
11791 0, "long_integer");
11792 lai->primitive_type_vector [ada_primitive_type_short]
11793 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
11794 0, "short_integer");
11795 lai->string_char_type
11796 = lai->primitive_type_vector [ada_primitive_type_char]
11797 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
11798 lai->primitive_type_vector [ada_primitive_type_float]
11799 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
11800 "float", NULL);
11801 lai->primitive_type_vector [ada_primitive_type_double]
11802 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11803 "long_float", NULL);
11804 lai->primitive_type_vector [ada_primitive_type_long_long]
11805 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
11806 0, "long_long_integer");
11807 lai->primitive_type_vector [ada_primitive_type_long_double]
11808 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
11809 "long_long_float", NULL);
11810 lai->primitive_type_vector [ada_primitive_type_natural]
11811 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11812 0, "natural");
11813 lai->primitive_type_vector [ada_primitive_type_positive]
11814 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
11815 0, "positive");
11816 lai->primitive_type_vector [ada_primitive_type_void]
11817 = builtin->builtin_void;
11818
11819 lai->primitive_type_vector [ada_primitive_type_system_address]
11820 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
11821 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11822 = "system__address";
fbb06eb1 11823
47e729a8 11824 lai->bool_type_symbol = NULL;
fbb06eb1 11825 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11826}
6c038f32
PH
11827\f
11828 /* Language vector */
11829
11830/* Not really used, but needed in the ada_language_defn. */
11831
11832static void
6c7a06a3 11833emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11834{
6c7a06a3 11835 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11836}
11837
11838static int
11839parse (void)
11840{
11841 warnings_issued = 0;
11842 return ada_parse ();
11843}
11844
11845static const struct exp_descriptor ada_exp_descriptor = {
11846 ada_print_subexp,
11847 ada_operator_length,
c0201579 11848 ada_operator_check,
6c038f32
PH
11849 ada_op_name,
11850 ada_dump_subexp_body,
11851 ada_evaluate_subexp
11852};
11853
11854const struct language_defn ada_language_defn = {
11855 "ada", /* Language name */
11856 language_ada,
6c038f32
PH
11857 range_check_off,
11858 type_check_off,
11859 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11860 that's not quite what this means. */
6c038f32 11861 array_row_major,
9a044a89 11862 macro_expansion_no,
6c038f32
PH
11863 &ada_exp_descriptor,
11864 parse,
11865 ada_error,
11866 resolve,
11867 ada_printchar, /* Print a character constant */
11868 ada_printstr, /* Function to print string constant */
11869 emit_char, /* Function to print single char (not used) */
6c038f32 11870 ada_print_type, /* Print a type using appropriate syntax */
be942545 11871 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11872 ada_val_print, /* Print a value using appropriate syntax */
11873 ada_value_print, /* Print a top-level value */
11874 NULL, /* Language specific skip_trampoline */
2b2d9e11 11875 NULL, /* name_of_this */
6c038f32
PH
11876 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11877 basic_lookup_transparent_type, /* lookup_transparent_type */
11878 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
11879 NULL, /* Language specific
11880 class_name_from_physname */
6c038f32
PH
11881 ada_op_print_tab, /* expression operators for printing */
11882 0, /* c-style arrays */
11883 1, /* String lower bound */
6c038f32 11884 ada_get_gdb_completer_word_break_characters,
41d27058 11885 ada_make_symbol_completion_list,
72d5681a 11886 ada_language_arch_info,
e79af960 11887 ada_print_array_index,
41f1b697 11888 default_pass_by_reference,
ae6a3a4c 11889 c_get_string,
6c038f32
PH
11890 LANG_MAGIC
11891};
11892
2c0b251b
PA
11893/* Provide a prototype to silence -Wmissing-prototypes. */
11894extern initialize_file_ftype _initialize_ada_language;
11895
5bf03f13
JB
11896/* Command-list for the "set/show ada" prefix command. */
11897static struct cmd_list_element *set_ada_list;
11898static struct cmd_list_element *show_ada_list;
11899
11900/* Implement the "set ada" prefix command. */
11901
11902static void
11903set_ada_command (char *arg, int from_tty)
11904{
11905 printf_unfiltered (_(\
11906"\"set ada\" must be followed by the name of a setting.\n"));
11907 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
11908}
11909
11910/* Implement the "show ada" prefix command. */
11911
11912static void
11913show_ada_command (char *args, int from_tty)
11914{
11915 cmd_show_list (show_ada_list, from_tty, "");
11916}
11917
d2e4a39e 11918void
6c038f32 11919_initialize_ada_language (void)
14f9c5c9 11920{
6c038f32
PH
11921 add_language (&ada_language_defn);
11922
5bf03f13
JB
11923 add_prefix_cmd ("ada", no_class, set_ada_command,
11924 _("Prefix command for changing Ada-specfic settings"),
11925 &set_ada_list, "set ada ", 0, &setlist);
11926
11927 add_prefix_cmd ("ada", no_class, show_ada_command,
11928 _("Generic command for showing Ada-specific settings."),
11929 &show_ada_list, "show ada ", 0, &showlist);
11930
11931 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
11932 &trust_pad_over_xvs, _("\
11933Enable or disable an optimization trusting PAD types over XVS types"), _("\
11934Show whether an optimization trusting PAD types over XVS types is activated"),
11935 _("\
11936This is related to the encoding used by the GNAT compiler. The debugger\n\
11937should normally trust the contents of PAD types, but certain older versions\n\
11938of GNAT have a bug that sometimes causes the information in the PAD type\n\
11939to be incorrect. Turning this setting \"off\" allows the debugger to\n\
11940work around this bug. It is always safe to turn this option \"off\", but\n\
11941this incurs a slight performance penalty, so it is recommended to NOT change\n\
11942this option to \"off\" unless necessary."),
11943 NULL, NULL, &set_ada_list, &show_ada_list);
11944
6c038f32 11945 varsize_limit = 65536;
6c038f32
PH
11946
11947 obstack_init (&symbol_list_obstack);
11948
11949 decoded_names_store = htab_create_alloc
11950 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11951 NULL, xcalloc, xfree);
6b69afc4
JB
11952
11953 observer_attach_executable_changed (ada_executable_changed_observer);
e802dbe0
JB
11954
11955 /* Setup per-inferior data. */
11956 observer_attach_inferior_exit (ada_inferior_exit);
11957 ada_inferior_data
11958 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 11959}
This page took 1.428696 seconds and 4 git commands to generate.