x86-64: Limit PIC check to shared library build
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
61baf725 3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
0259addd 51#include "observer.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ccefe4c4 65
4c4b4cd2 66/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 67 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
68 Copied from valarith.c. */
69
70#ifndef TRUNCATION_TOWARDS_ZERO
71#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72#endif
73
d2e4a39e 74static struct type *desc_base_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct type *desc_bounds_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct value *desc_bounds (struct value *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 83
556bdfd4 84static struct type *desc_data_target_type (struct type *);
14f9c5c9 85
d2e4a39e 86static struct value *desc_data (struct value *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 91
d2e4a39e 92static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static struct type *desc_index_type (struct type *, int);
14f9c5c9 99
d2e4a39e 100static int desc_arity (struct type *);
14f9c5c9 101
d2e4a39e 102static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 103
d2e4a39e 104static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 105
40658b94
PH
106static int full_match (const char *, const char *);
107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 111 const struct block *, const char *,
2570f2b7 112 domain_enum, struct objfile *, int);
14f9c5c9 113
22cee43f
PMR
114static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
116
d12307c1 117static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 120 const struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
d12307c1 124static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
a121b7c1 134static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
a121b7c1 154static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
108d56a4 220static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
d12307c1 232static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab 240
52ce6436
PH
241static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
245 struct expression *,
246 int *, enum noside);
52ce6436
PH
247
248static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
852dff6c
JB
272
273static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
345/* Space for allocating results of ada_lookup_symbol_list. */
346static struct obstack symbol_list_obstack;
347
c6044dd1
JB
348/* Maintenance-related settings for this module. */
349
350static struct cmd_list_element *maint_set_ada_cmdlist;
351static struct cmd_list_element *maint_show_ada_cmdlist;
352
353/* Implement the "maintenance set ada" (prefix) command. */
354
355static void
356maint_set_ada_cmd (char *args, int from_tty)
357{
635c7e8a
TT
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
c6044dd1
JB
360}
361
362/* Implement the "maintenance show ada" (prefix) command. */
363
364static void
365maint_show_ada_cmd (char *args, int from_tty)
366{
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368}
369
370/* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372static int ada_ignore_descriptive_types_p = 0;
373
e802dbe0
JB
374 /* Inferior-specific data. */
375
376/* Per-inferior data for this module. */
377
378struct ada_inferior_data
379{
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
3eecfa55
JB
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
e802dbe0
JB
390};
391
392/* Our key to this module's inferior data. */
393static const struct inferior_data *ada_inferior_data;
394
395/* A cleanup routine for our inferior data. */
396static void
397ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398{
399 struct ada_inferior_data *data;
400
9a3c8263 401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
402 if (data != NULL)
403 xfree (data);
404}
405
406/* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414static struct ada_inferior_data *
415get_ada_inferior_data (struct inferior *inf)
416{
417 struct ada_inferior_data *data;
418
9a3c8263 419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
420 if (data == NULL)
421 {
41bf6aca 422 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427}
428
429/* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432static void
433ada_inferior_exit (struct inferior *inf)
434{
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437}
438
ee01b665
JB
439
440 /* program-space-specific data. */
441
442/* This module's per-program-space data. */
443struct ada_pspace_data
444{
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447};
448
449/* Key to our per-program-space data. */
450static const struct program_space_data *ada_pspace_data_handle;
451
452/* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457static struct ada_pspace_data *
458get_ada_pspace_data (struct program_space *pspace)
459{
460 struct ada_pspace_data *data;
461
9a3c8263
SM
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471}
472
473/* The cleanup callback for this module's per-program-space data. */
474
475static void
476ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477{
9a3c8263 478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483}
484
4c4b4cd2
PH
485 /* Utilities */
486
720d1a40 487/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 488 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514static struct type *
515ada_typedef_target_type (struct type *type)
516{
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520}
521
41d27058
JB
522/* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526static const char *
527ada_unqualified_name (const char *decoded_name)
528{
2b0f535a
JB
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
41d27058
JB
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545}
546
547/* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550static char *
551add_angle_brackets (const char *str)
552{
553 static char *result = NULL;
554
555 xfree (result);
88c15c34 556 result = xstrprintf ("<%s>", str);
41d27058
JB
557 return result;
558}
96d887e8 559
67cb5b2d 560static const char *
4c4b4cd2
PH
561ada_get_gdb_completer_word_break_characters (void)
562{
563 return ada_completer_word_break_characters;
564}
565
e79af960
JB
566/* Print an array element index using the Ada syntax. */
567
568static void
569ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 570 const struct value_print_options *options)
e79af960 571{
79a45b7d 572 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
573 fprintf_filtered (stream, " => ");
574}
575
f27cf670 576/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 578 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 579
f27cf670
AS
580void *
581grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 582{
d2e4a39e
AS
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
4c4b4cd2 587 *size = min_size;
f27cf670 588 vect = xrealloc (vect, *size * element_size);
d2e4a39e 589 }
f27cf670 590 return vect;
14f9c5c9
AS
591}
592
593/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 594 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
595
596static int
ebf56fd3 597field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
598{
599 int len = strlen (target);
5b4ee69b 600
d2e4a39e 601 return
4c4b4cd2
PH
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
61012eef 604 || (startswith (field_name + len, "___")
76a01679
JB
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
14f9c5c9
AS
607}
608
609
872c8b51
JB
610/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
617
618int
619ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621{
622 int fieldno;
872c8b51
JB
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
627 return fieldno;
628
629 if (!maybe_missing)
323e0a4a 630 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 631 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
632
633 return -1;
634}
635
636/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
637
638int
d2e4a39e 639ada_name_prefix_len (const char *name)
14f9c5c9
AS
640{
641 if (name == NULL)
642 return 0;
d2e4a39e 643 else
14f9c5c9 644 {
d2e4a39e 645 const char *p = strstr (name, "___");
5b4ee69b 646
14f9c5c9 647 if (p == NULL)
4c4b4cd2 648 return strlen (name);
14f9c5c9 649 else
4c4b4cd2 650 return p - name;
14f9c5c9
AS
651 }
652}
653
4c4b4cd2
PH
654/* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
14f9c5c9 657static int
d2e4a39e 658is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
659{
660 int len1, len2;
5b4ee69b 661
14f9c5c9
AS
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
4c4b4cd2 666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
667}
668
4c4b4cd2
PH
669/* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
14f9c5c9 671
d2e4a39e 672static struct value *
4c4b4cd2 673coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 674{
61ee279c 675 type = ada_check_typedef (type);
df407dfe 676 if (value_type (val) == type)
4c4b4cd2 677 return val;
d2e4a39e 678 else
14f9c5c9 679 {
4c4b4cd2
PH
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
c1b5a1a6 684 ada_ensure_varsize_limit (type);
4c4b4cd2 685
41e8491f
JK
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
9a0dc9e3 692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 693 }
74bcbdf3 694 set_value_component_location (result, val);
9bbda503
AC
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
42ae5230 697 set_value_address (result, value_address (val));
14f9c5c9
AS
698 return result;
699 }
700}
701
fc1a4b47
AC
702static const gdb_byte *
703cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
704{
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709}
710
711static CORE_ADDR
ebf56fd3 712cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
713{
714 if (address == 0)
715 return 0;
d2e4a39e 716 else
14f9c5c9
AS
717 return address + offset;
718}
719
4c4b4cd2
PH
720/* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
a2249542 724
77109804
AC
725/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
a0b31db1 727static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 728
14f9c5c9 729static void
a2249542 730lim_warning (const char *format, ...)
14f9c5c9 731{
a2249542 732 va_list args;
a2249542 733
5b4ee69b 734 va_start (args, format);
4c4b4cd2
PH
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
a2249542
MK
737 vwarning (format, args);
738
739 va_end (args);
4c4b4cd2
PH
740}
741
714e53ab
PH
742/* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
c1b5a1a6
JB
746void
747ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
748{
749 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 750 error (_("object size is larger than varsize-limit"));
714e53ab
PH
751}
752
0963b4bd 753/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 754static LONGEST
c3e5cd34 755max_of_size (int size)
4c4b4cd2 756{
76a01679 757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 758
76a01679 759 return top_bit | (top_bit - 1);
4c4b4cd2
PH
760}
761
0963b4bd 762/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 763static LONGEST
c3e5cd34 764min_of_size (int size)
4c4b4cd2 765{
c3e5cd34 766 return -max_of_size (size) - 1;
4c4b4cd2
PH
767}
768
0963b4bd 769/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 770static ULONGEST
c3e5cd34 771umax_of_size (int size)
4c4b4cd2 772{
76a01679 773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 774
76a01679 775 return top_bit | (top_bit - 1);
4c4b4cd2
PH
776}
777
0963b4bd 778/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780max_of_type (struct type *t)
4c4b4cd2 781{
c3e5cd34
PH
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786}
787
0963b4bd 788/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
789static LONGEST
790min_of_type (struct type *t)
791{
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
796}
797
798/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
799LONGEST
800ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 801{
c3345124 802 type = resolve_dynamic_type (type, NULL, 0);
76a01679 803 switch (TYPE_CODE (type))
4c4b4cd2
PH
804 {
805 case TYPE_CODE_RANGE:
690cc4eb 806 return TYPE_HIGH_BOUND (type);
4c4b4cd2 807 case TYPE_CODE_ENUM:
14e75d8e 808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
76a01679 812 case TYPE_CODE_INT:
690cc4eb 813 return max_of_type (type);
4c4b4cd2 814 default:
43bbcdc2 815 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
816 }
817}
818
14e75d8e 819/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
820LONGEST
821ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 822{
c3345124 823 type = resolve_dynamic_type (type, NULL, 0);
76a01679 824 switch (TYPE_CODE (type))
4c4b4cd2
PH
825 {
826 case TYPE_CODE_RANGE:
690cc4eb 827 return TYPE_LOW_BOUND (type);
4c4b4cd2 828 case TYPE_CODE_ENUM:
14e75d8e 829 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
76a01679 833 case TYPE_CODE_INT:
690cc4eb 834 return min_of_type (type);
4c4b4cd2 835 default:
43bbcdc2 836 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
837 }
838}
839
840/* The identity on non-range types. For range types, the underlying
76a01679 841 non-range scalar type. */
4c4b4cd2
PH
842
843static struct type *
18af8284 844get_base_type (struct type *type)
4c4b4cd2
PH
845{
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
76a01679
JB
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
4c4b4cd2
PH
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
14f9c5c9 853}
41246937
JB
854
855/* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860struct value *
861ada_get_decoded_value (struct value *value)
862{
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878}
879
880/* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885struct type *
886ada_get_decoded_type (struct type *type)
887{
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892}
893
4c4b4cd2 894\f
76a01679 895
4c4b4cd2 896 /* Language Selection */
14f9c5c9
AS
897
898/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 899 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 900
14f9c5c9 901enum language
ccefe4c4 902ada_update_initial_language (enum language lang)
14f9c5c9 903{
d2e4a39e 904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 905 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 906 return language_ada;
14f9c5c9
AS
907
908 return lang;
909}
96d887e8
PH
910
911/* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915char *
916ada_main_name (void)
917{
3b7344d5 918 struct bound_minimal_symbol msym;
f9bc20b9 919 static char *main_program_name = NULL;
6c038f32 920
96d887e8
PH
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
3b7344d5 928 if (msym.minsym != NULL)
96d887e8 929 {
f9bc20b9
JB
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
77e371c0 933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 934 if (main_program_name_addr == 0)
323e0a4a 935 error (_("Invalid address for Ada main program name."));
96d887e8 936
f9bc20b9
JB
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
96d887e8
PH
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
4c4b4cd2
PH
980/* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
14f9c5c9 983char *
4c4b4cd2 984ada_encode (const char *decoded)
14f9c5c9 985{
4c4b4cd2
PH
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
d2e4a39e 988 const char *p;
14f9c5c9 989 int k;
d2e4a39e 990
4c4b4cd2 991 if (decoded == NULL)
14f9c5c9
AS
992 return NULL;
993
4c4b4cd2
PH
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
14f9c5c9
AS
996
997 k = 0;
4c4b4cd2 998 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 999 {
cdc7bb92 1000 if (*p == '.')
4c4b4cd2
PH
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
14f9c5c9 1005 else if (*p == '"')
4c4b4cd2
PH
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1265e4aa 1010 mapping->encoded != NULL
61012eef 1011 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1012 ;
1013 if (mapping->encoded == NULL)
323e0a4a 1014 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
d2e4a39e 1019 else
4c4b4cd2
PH
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
14f9c5c9
AS
1024 }
1025
4c4b4cd2
PH
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
14f9c5c9
AS
1028}
1029
1030/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
d2e4a39e
AS
1034char *
1035ada_fold_name (const char *name)
14f9c5c9 1036{
d2e4a39e 1037 static char *fold_buffer = NULL;
14f9c5c9
AS
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
d2e4a39e 1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1042
1043 if (name[0] == '\'')
1044 {
d2e4a39e
AS
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1047 }
1048 else
1049 {
1050 int i;
5b4ee69b 1051
14f9c5c9 1052 for (i = 0; i <= len; i += 1)
4c4b4cd2 1053 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1054 }
1055
1056 return fold_buffer;
1057}
1058
529cad9c
PH
1059/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061static int
1062is_lower_alphanum (const char c)
1063{
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065}
1066
c90092fe
JB
1067/* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
29480c32
JB
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
c90092fe 1074
29480c32
JB
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079static void
1080ada_remove_trailing_digits (const char *encoded, int *len)
1081{
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
5b4ee69b 1085
29480c32
JB
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
61012eef 1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1093 *len = i - 2;
61012eef 1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1095 *len = i - 1;
1096 }
1097}
1098
1099/* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102static void
1103ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104{
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
0963b4bd 1110 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119}
1120
69fadcdf
JB
1121/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123static void
1124ada_remove_Xbn_suffix (const char *encoded, int *len)
1125{
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139}
1140
29480c32
JB
1141/* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
14f9c5c9 1144
4c4b4cd2 1145 The resulting string is valid until the next call of ada_decode.
29480c32 1146 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1147 is returned. */
1148
1149const char *
1150ada_decode (const char *encoded)
14f9c5c9
AS
1151{
1152 int i, j;
1153 int len0;
d2e4a39e 1154 const char *p;
4c4b4cd2 1155 char *decoded;
14f9c5c9 1156 int at_start_name;
4c4b4cd2
PH
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
d2e4a39e 1159
29480c32
JB
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
61012eef 1163 if (startswith (encoded, "_ada_"))
4c4b4cd2 1164 encoded += 5;
14f9c5c9 1165
29480c32
JB
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
4c4b4cd2 1169 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1170 goto Suppress;
1171
4c4b4cd2 1172 len0 = strlen (encoded);
4c4b4cd2 1173
29480c32
JB
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1176
4c4b4cd2
PH
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1183 {
1184 if (p[3] == 'X')
4c4b4cd2 1185 len0 = p - encoded;
14f9c5c9 1186 else
4c4b4cd2 1187 goto Suppress;
14f9c5c9 1188 }
4c4b4cd2 1189
29480c32
JB
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
61012eef 1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1195 len0 -= 3;
76a01679 1196
a10967fa
JB
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
61012eef 1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1202 len0 -= 2;
1203
29480c32
JB
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
61012eef 1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1208 len0 -= 1;
1209
4c4b4cd2 1210 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1211
4c4b4cd2
PH
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
14f9c5c9 1214
29480c32
JB
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
4c4b4cd2 1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1218 {
4c4b4cd2
PH
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
d2e4a39e 1227 }
14f9c5c9 1228
29480c32
JB
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
4c4b4cd2
PH
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
14f9c5c9
AS
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
29480c32 1238 /* Is this a symbol function? */
4c4b4cd2
PH
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
5b4ee69b 1242
4c4b4cd2
PH
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
14f9c5c9
AS
1260 at_start_name = 0;
1261
529cad9c
PH
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
61012eef 1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1266 i += 2;
529cad9c 1267
29480c32
JB
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
529cad9c
PH
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1290 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
4c4b4cd2
PH
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
29480c32
JB
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
4c4b4cd2
PH
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
cdc7bb92 1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1355 {
29480c32 1356 /* Replace '__' by '.'. */
4c4b4cd2
PH
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
14f9c5c9 1362 else
4c4b4cd2 1363 {
29480c32
JB
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
4c4b4cd2
PH
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
14f9c5c9 1370 }
4c4b4cd2 1371 decoded[j] = '\000';
14f9c5c9 1372
29480c32
JB
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
4c4b4cd2
PH
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1378 goto Suppress;
1379
4c4b4cd2
PH
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
14f9c5c9
AS
1384
1385Suppress:
4c4b4cd2
PH
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
14f9c5c9 1390 else
88c15c34 1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1392 return decoded;
1393
1394}
1395
1396/* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401static struct htab *decoded_names_store;
1402
1403/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1408 GSYMBOL).
4c4b4cd2
PH
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1411 when a decoded name is cached in it. */
4c4b4cd2 1412
45e6c716 1413const char *
f85f34ed 1414ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1415{
f85f34ed
TT
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
615b3f62 1418 &gsymbol->language_specific.demangled_name;
5b4ee69b 1419
f85f34ed 1420 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1423 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1424
f85f34ed 1425 gsymbol->ada_mangled = 1;
5b4ee69b 1426
f85f34ed 1427 if (obstack != NULL)
224c3ddb
SM
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1430 else
76a01679 1431 {
f85f34ed
TT
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
76a01679
JB
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
5b4ee69b 1439
76a01679
JB
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
4c4b4cd2 1444 }
14f9c5c9 1445
4c4b4cd2
PH
1446 return *resultp;
1447}
76a01679 1448
2c0b251b 1449static char *
76a01679 1450ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1451{
1452 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1453}
1454
8b302db8
TT
1455/* Implement la_sniff_from_mangled_name for Ada. */
1456
1457static int
1458ada_sniff_from_mangled_name (const char *mangled, char **out)
1459{
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492}
1493
14f9c5c9 1494/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
14f9c5c9 1500
2c0b251b 1501static int
40658b94 1502match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1503{
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
73589123 1507 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1508 else
1509 {
1510 int len_name = strlen (name);
5b4ee69b 1511
4c4b4cd2
PH
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
61012eef 1514 || (startswith (sym_name, "_ada_")
4c4b4cd2
PH
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1517 }
14f9c5c9 1518}
14f9c5c9 1519\f
d2e4a39e 1520
4c4b4cd2 1521 /* Arrays */
14f9c5c9 1522
28c85d6c
JB
1523/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546void
1547ada_fixup_array_indexes_type (struct type *index_desc_type)
1548{
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
0d5cff50 1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576}
1577
4c4b4cd2 1578/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1579
a121b7c1 1580static const char *bound_name[] = {
d2e4a39e 1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583};
1584
1585/* Maximum number of array dimensions we are prepared to handle. */
1586
4c4b4cd2 1587#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1588
14f9c5c9 1589
4c4b4cd2
PH
1590/* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
14f9c5c9
AS
1592
1593/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1594 level of indirection, if needed. */
1595
d2e4a39e
AS
1596static struct type *
1597desc_base_type (struct type *type)
14f9c5c9
AS
1598{
1599 if (type == NULL)
1600 return NULL;
61ee279c 1601 type = ada_check_typedef (type);
720d1a40
JB
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1265e4aa
JB
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1609 else
1610 return type;
1611}
1612
4c4b4cd2
PH
1613/* True iff TYPE indicates a "thin" array pointer type. */
1614
14f9c5c9 1615static int
d2e4a39e 1616is_thin_pntr (struct type *type)
14f9c5c9 1617{
d2e4a39e 1618 return
14f9c5c9
AS
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621}
1622
4c4b4cd2
PH
1623/* The descriptor type for thin pointer type TYPE. */
1624
d2e4a39e
AS
1625static struct type *
1626thin_descriptor_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *base_type = desc_base_type (type);
5b4ee69b 1629
14f9c5c9
AS
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
d2e4a39e 1634 else
14f9c5c9 1635 {
d2e4a39e 1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1637
14f9c5c9 1638 if (alt_type == NULL)
4c4b4cd2 1639 return base_type;
14f9c5c9 1640 else
4c4b4cd2 1641 return alt_type;
14f9c5c9
AS
1642 }
1643}
1644
4c4b4cd2
PH
1645/* A pointer to the array data for thin-pointer value VAL. */
1646
d2e4a39e
AS
1647static struct value *
1648thin_data_pntr (struct value *val)
14f9c5c9 1649{
828292f2 1650 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1652
556bdfd4
UW
1653 data_type = lookup_pointer_type (data_type);
1654
14f9c5c9 1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1656 return value_cast (data_type, value_copy (val));
d2e4a39e 1657 else
42ae5230 1658 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1659}
1660
4c4b4cd2
PH
1661/* True iff TYPE indicates a "thick" array pointer type. */
1662
14f9c5c9 1663static int
d2e4a39e 1664is_thick_pntr (struct type *type)
14f9c5c9
AS
1665{
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1669}
1670
4c4b4cd2
PH
1671/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1673
d2e4a39e
AS
1674static struct type *
1675desc_bounds_type (struct type *type)
14f9c5c9 1676{
d2e4a39e 1677 struct type *r;
14f9c5c9
AS
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
4c4b4cd2 1687 return NULL;
14f9c5c9
AS
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
61ee279c 1690 return ada_check_typedef (r);
14f9c5c9
AS
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
61ee279c 1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1697 }
1698 return NULL;
1699}
1700
1701/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
d2e4a39e
AS
1704static struct value *
1705desc_bounds (struct value *arr)
14f9c5c9 1706{
df407dfe 1707 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1708
d2e4a39e 1709 if (is_thin_pntr (type))
14f9c5c9 1710 {
d2e4a39e 1711 struct type *bounds_type =
4c4b4cd2 1712 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1713 LONGEST addr;
1714
4cdfadb1 1715 if (bounds_type == NULL)
323e0a4a 1716 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1717
1718 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1719 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1720 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1722 addr = value_as_long (arr);
d2e4a39e 1723 else
42ae5230 1724 addr = value_address (arr);
14f9c5c9 1725
d2e4a39e 1726 return
4c4b4cd2
PH
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1729 }
1730
1731 else if (is_thick_pntr (type))
05e522ef
JB
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
14f9c5c9
AS
1752 else
1753 return NULL;
1754}
1755
4c4b4cd2
PH
1756/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
14f9c5c9 1759static int
d2e4a39e 1760fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1761{
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763}
1764
1765/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1766 size of the field containing the address of the bounds data. */
1767
14f9c5c9 1768static int
d2e4a39e 1769fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1770{
1771 type = desc_base_type (type);
1772
d2e4a39e 1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
61ee279c 1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1777}
1778
4c4b4cd2 1779/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
4c4b4cd2 1783
d2e4a39e 1784static struct type *
556bdfd4 1785desc_data_target_type (struct type *type)
14f9c5c9
AS
1786{
1787 type = desc_base_type (type);
1788
4c4b4cd2 1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1790 if (is_thin_pntr (type))
556bdfd4 1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1792 else if (is_thick_pntr (type))
556bdfd4
UW
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1799 }
1800
1801 return NULL;
14f9c5c9
AS
1802}
1803
1804/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
4c4b4cd2 1806
d2e4a39e
AS
1807static struct value *
1808desc_data (struct value *arr)
14f9c5c9 1809{
df407dfe 1810 struct type *type = value_type (arr);
5b4ee69b 1811
14f9c5c9
AS
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
d2e4a39e 1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1816 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1817 else
1818 return NULL;
1819}
1820
1821
1822/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1823 position of the field containing the address of the data. */
1824
14f9c5c9 1825static int
d2e4a39e 1826fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1827{
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829}
1830
1831/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1832 size of the field containing the address of the data. */
1833
14f9c5c9 1834static int
d2e4a39e 1835fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1836{
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1841 else
14f9c5c9
AS
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843}
1844
4c4b4cd2 1845/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
d2e4a39e
AS
1849static struct value *
1850desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1851{
d2e4a39e 1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1853 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1854}
1855
1856/* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
14f9c5c9 1860static int
d2e4a39e 1861desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1862{
d2e4a39e 1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1864}
1865
1866/* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
76a01679 1870static int
d2e4a39e 1871desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1872{
1873 type = desc_base_type (type);
1874
d2e4a39e
AS
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1879}
1880
1881/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
d2e4a39e
AS
1884static struct type *
1885desc_index_type (struct type *type, int i)
14f9c5c9
AS
1886{
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
14f9c5c9
AS
1892 return NULL;
1893}
1894
4c4b4cd2
PH
1895/* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
14f9c5c9 1898static int
d2e4a39e 1899desc_arity (struct type *type)
14f9c5c9
AS
1900{
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906}
1907
4c4b4cd2
PH
1908/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
76a01679
JB
1912static int
1913ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1914{
1915 if (type == NULL)
1916 return 0;
61ee279c 1917 type = ada_check_typedef (type);
4c4b4cd2 1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1919 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1920}
1921
52ce6436 1922/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1923 * to one. */
52ce6436 1924
2c0b251b 1925static int
52ce6436
PH
1926ada_is_array_type (struct type *type)
1927{
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933}
1934
4c4b4cd2 1935/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1936
14f9c5c9 1937int
4c4b4cd2 1938ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1939{
1940 if (type == NULL)
1941 return 0;
61ee279c 1942 type = ada_check_typedef (type);
14f9c5c9 1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1947}
1948
4c4b4cd2
PH
1949/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
14f9c5c9 1951int
4c4b4cd2 1952ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1953{
556bdfd4 1954 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1955
1956 if (type == NULL)
1957 return 0;
61ee279c 1958 type = ada_check_typedef (type);
556bdfd4
UW
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1962}
1963
1964/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1965 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1966 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1967 is still needed. */
1968
14f9c5c9 1969int
ebf56fd3 1970ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1971{
d2e4a39e 1972 return
14f9c5c9
AS
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1978}
1979
1980
4c4b4cd2 1981/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1982 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1984 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1987 a descriptor. */
d2e4a39e
AS
1988struct type *
1989ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1990{
ad82864c
JB
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1993
df407dfe
AC
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
d2e4a39e
AS
1996
1997 if (!bounds)
ad82864c
JB
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
14f9c5c9
AS
2008 else
2009 {
d2e4a39e 2010 struct type *elt_type;
14f9c5c9 2011 int arity;
d2e4a39e 2012 struct value *descriptor;
14f9c5c9 2013
df407dfe
AC
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
14f9c5c9 2016
d2e4a39e 2017 if (elt_type == NULL || arity == 0)
df407dfe 2018 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2019
2020 descriptor = desc_bounds (arr);
d2e4a39e 2021 if (value_as_long (descriptor) == 0)
4c4b4cd2 2022 return NULL;
d2e4a39e 2023 while (arity > 0)
4c4b4cd2 2024 {
e9bb382b
UW
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2029
5b4ee69b 2030 arity -= 1;
0c9c3474
SA
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
4c4b4cd2 2034 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
4c4b4cd2 2056 }
14f9c5c9
AS
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060}
2061
2062/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
d2e4a39e
AS
2067struct value *
2068ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2069{
df407dfe 2070 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2071 {
d2e4a39e 2072 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2073
14f9c5c9 2074 if (arrType == NULL)
4c4b4cd2 2075 return NULL;
14f9c5c9
AS
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
ad82864c
JB
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2080 else
2081 return arr;
2082}
2083
2084/* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2086 be ARR itself if it already is in the proper form). */
2087
720d1a40 2088struct value *
d2e4a39e 2089ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2090{
df407dfe 2091 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2092 {
d2e4a39e 2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2094
14f9c5c9 2095 if (arrVal == NULL)
323e0a4a 2096 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2098 return value_ind (arrVal);
2099 }
ad82864c
JB
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
d2e4a39e 2102 else
14f9c5c9
AS
2103 return arr;
2104}
2105
2106/* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2108 packing). For other types, is the identity. */
2109
d2e4a39e
AS
2110struct type *
2111ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2112{
ad82864c
JB
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
17280b9f
UW
2115
2116 if (ada_is_array_descriptor_type (type))
556bdfd4 2117 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2118
2119 return type;
14f9c5c9
AS
2120}
2121
4c4b4cd2
PH
2122/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
ad82864c
JB
2124static int
2125ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2126{
2127 if (type == NULL)
2128 return 0;
4c4b4cd2 2129 type = desc_base_type (type);
61ee279c 2130 type = ada_check_typedef (type);
d2e4a39e 2131 return
14f9c5c9
AS
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134}
2135
ad82864c
JB
2136/* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139int
2140ada_is_constrained_packed_array_type (struct type *type)
2141{
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144}
2145
2146/* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149static int
2150ada_is_unconstrained_packed_array_type (struct type *type)
2151{
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154}
2155
2156/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159static long
2160decode_packed_array_bitsize (struct type *type)
2161{
0d5cff50
DE
2162 const char *raw_name;
2163 const char *tail;
ad82864c
JB
2164 long bits;
2165
720d1a40
JB
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
720d1a40 2180 gdb_assert (tail != NULL);
ad82864c
JB
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190}
2191
14f9c5c9
AS
2192/* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
4c4b4cd2 2208
d2e4a39e 2209static struct type *
ad82864c 2210constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2211{
d2e4a39e
AS
2212 struct type *new_elt_type;
2213 struct type *new_type;
99b1c762
JB
2214 struct type *index_type_desc;
2215 struct type *index_type;
14f9c5c9
AS
2216 LONGEST low_bound, high_bound;
2217
61ee279c 2218 type = ada_check_typedef (type);
14f9c5c9
AS
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
99b1c762
JB
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
e9bb382b 2229 new_type = alloc_type_copy (type);
ad82864c
JB
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
99b1c762 2233 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
4a46959e
JB
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2243 else
14f9c5c9
AS
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2246 TYPE_LENGTH (new_type) =
4c4b4cd2 2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2248 }
2249
876cecd0 2250 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2251 return new_type;
2252}
2253
ad82864c
JB
2254/* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2256
d2e4a39e 2257static struct type *
ad82864c 2258decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2259{
0d5cff50 2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2261 char *name;
0d5cff50 2262 const char *tail;
d2e4a39e 2263 struct type *shadow_type;
14f9c5c9 2264 long bits;
14f9c5c9 2265
727e3d2e
JB
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2274 type = desc_base_type (type);
2275
14f9c5c9
AS
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
b4ba55a1
JB
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
14f9c5c9 2282 {
323e0a4a 2283 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2284 return NULL;
2285 }
f168693b 2286 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
0963b4bd
MS
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
14f9c5c9
AS
2292 return NULL;
2293 }
d2e4a39e 2294
ad82864c
JB
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2297}
2298
ad82864c
JB
2299/* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
4c4b4cd2 2303 type length is set appropriately. */
14f9c5c9 2304
d2e4a39e 2305static struct value *
ad82864c 2306decode_constrained_packed_array (struct value *arr)
14f9c5c9 2307{
4c4b4cd2 2308 struct type *type;
14f9c5c9 2309
11aa919a
PMR
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
828292f2 2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2319 arr = value_ind (arr);
4c4b4cd2 2320
ad82864c 2321 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2322 if (type == NULL)
2323 {
323e0a4a 2324 error (_("can't unpack array"));
14f9c5c9
AS
2325 return NULL;
2326 }
61ee279c 2327
50810684 2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2329 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
df407dfe 2338 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
df407dfe 2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
4c4b4cd2 2353 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2354}
2355
2356
2357/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2358 given in IND. ARR must be a simple array. */
14f9c5c9 2359
d2e4a39e
AS
2360static struct value *
2361value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2362{
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
d2e4a39e
AS
2366 struct type *elt_type;
2367 struct value *v;
14f9c5c9
AS
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
df407dfe 2371 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2372 for (i = 0; i < arity; i += 1)
14f9c5c9 2373 {
d2e4a39e 2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
0963b4bd
MS
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
14f9c5c9 2379 else
4c4b4cd2
PH
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
323e0a4a 2387 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2388 lowerbound = upperbound = 0;
2389 }
2390
3cb382c9 2391 idx = pos_atr (ind[i]);
4c4b4cd2 2392 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
4c4b4cd2
PH
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2398 }
14f9c5c9
AS
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2404 bits, elt_type);
14f9c5c9
AS
2405 return v;
2406}
2407
4c4b4cd2 2408/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2409
2410static int
d2e4a39e 2411has_negatives (struct type *type)
14f9c5c9 2412{
d2e4a39e
AS
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
14f9c5c9 2422}
d2e4a39e 2423
f93fca70 2424/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2426 the unpacked buffer.
14f9c5c9 2427
5b639dea
JB
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
f93fca70
JB
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
14f9c5c9 2433
f93fca70 2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2435
f93fca70
JB
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438static void
2439ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443{
a1c95e6b
JB
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
a1c95e6b
JB
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
4c4b4cd2 2454 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2455 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2456 unsigned char sign;
a1c95e6b 2457
4c4b4cd2
PH
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
f93fca70 2460 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2461
5b639dea
JB
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
14f9c5c9 2468 srcBitsLeft = bit_size;
086ca51f 2469 src_bytes_left = src_len;
f93fca70 2470 unpacked_bytes_left = unpacked_len;
14f9c5c9 2471 sign = 0;
f93fca70
JB
2472
2473 if (is_big_endian)
14f9c5c9 2474 {
086ca51f 2475 src_idx = src_len - 1;
f93fca70
JB
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2478 sign = ~0;
d2e4a39e
AS
2479
2480 unusedLS =
4c4b4cd2
PH
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
14f9c5c9 2483
f93fca70
JB
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
4c4b4cd2
PH
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
086ca51f
JB
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2498 }
14f9c5c9 2499 }
d2e4a39e 2500 else
14f9c5c9
AS
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
086ca51f 2504 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
f93fca70 2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2509 sign = ~0;
14f9c5c9 2510 }
d2e4a39e 2511
14f9c5c9 2512 accum = 0;
086ca51f 2513 while (src_bytes_left > 0)
14f9c5c9
AS
2514 {
2515 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2516 part of the value. */
d2e4a39e 2517 unsigned int unusedMSMask =
4c4b4cd2
PH
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
14f9c5c9 2521 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2522
d2e4a39e 2523 accum |=
086ca51f 2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2525 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2526 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2527 {
db297a65 2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
4c4b4cd2 2533 }
14f9c5c9
AS
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
086ca51f
JB
2536 src_bytes_left -= 1;
2537 src_idx += delta;
14f9c5c9 2538 }
086ca51f 2539 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2540 {
2541 accum |= sign << accumSize;
db297a65 2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2543 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2544 if (accumSize < 0)
2545 accumSize = 0;
14f9c5c9 2546 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
14f9c5c9 2549 }
f93fca70
JB
2550}
2551
2552/* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561struct value *
2562ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565{
2566 struct value *v;
bfb1c796 2567 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2568 gdb_byte *unpacked;
220475ed 2569 const int is_scalar = is_scalar_type (type);
d0a9e810 2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2571 gdb::byte_vector staging;
f93fca70
JB
2572
2573 type = ada_check_typedef (type);
2574
d0a9e810 2575 if (obj == NULL)
bfb1c796 2576 src = valaddr + offset;
d0a9e810 2577 else
bfb1c796 2578 src = value_contents (obj) + offset;
d0a9e810
JB
2579
2580 if (is_dynamic_type (type))
2581 {
2582 /* The length of TYPE might by dynamic, so we need to resolve
2583 TYPE in order to know its actual size, which we then use
2584 to create the contents buffer of the value we return.
2585 The difficulty is that the data containing our object is
2586 packed, and therefore maybe not at a byte boundary. So, what
2587 we do, is unpack the data into a byte-aligned buffer, and then
2588 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2589 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2590 staging.resize (staging_len);
d0a9e810
JB
2591
2592 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2593 staging.data (), staging.size (),
d0a9e810
JB
2594 is_big_endian, has_negatives (type),
2595 is_scalar);
d5722aa2 2596 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2597 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2598 {
2599 /* This happens when the length of the object is dynamic,
2600 and is actually smaller than the space reserved for it.
2601 For instance, in an array of variant records, the bit_size
2602 we're given is the array stride, which is constant and
2603 normally equal to the maximum size of its element.
2604 But, in reality, each element only actually spans a portion
2605 of that stride. */
2606 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2607 }
d0a9e810
JB
2608 }
2609
f93fca70
JB
2610 if (obj == NULL)
2611 {
2612 v = allocate_value (type);
bfb1c796 2613 src = valaddr + offset;
f93fca70
JB
2614 }
2615 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2616 {
0cafa88c 2617 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2618 gdb_byte *buf;
0cafa88c 2619
f93fca70 2620 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2621 buf = (gdb_byte *) alloca (src_len);
2622 read_memory (value_address (v), buf, src_len);
2623 src = buf;
f93fca70
JB
2624 }
2625 else
2626 {
2627 v = allocate_value (type);
bfb1c796 2628 src = value_contents (obj) + offset;
f93fca70
JB
2629 }
2630
2631 if (obj != NULL)
2632 {
2633 long new_offset = offset;
2634
2635 set_value_component_location (v, obj);
2636 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2637 set_value_bitsize (v, bit_size);
2638 if (value_bitpos (v) >= HOST_CHAR_BIT)
2639 {
2640 ++new_offset;
2641 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2642 }
2643 set_value_offset (v, new_offset);
2644
2645 /* Also set the parent value. This is needed when trying to
2646 assign a new value (in inferior memory). */
2647 set_value_parent (v, obj);
2648 }
2649 else
2650 set_value_bitsize (v, bit_size);
bfb1c796 2651 unpacked = value_contents_writeable (v);
f93fca70
JB
2652
2653 if (bit_size == 0)
2654 {
2655 memset (unpacked, 0, TYPE_LENGTH (type));
2656 return v;
2657 }
2658
d5722aa2 2659 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2660 {
d0a9e810
JB
2661 /* Small short-cut: If we've unpacked the data into a buffer
2662 of the same size as TYPE's length, then we can reuse that,
2663 instead of doing the unpacking again. */
d5722aa2 2664 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2665 }
d0a9e810
JB
2666 else
2667 ada_unpack_from_contents (src, bit_offset, bit_size,
2668 unpacked, TYPE_LENGTH (type),
2669 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2670
14f9c5c9
AS
2671 return v;
2672}
d2e4a39e 2673
14f9c5c9
AS
2674/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2675 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2676 not overlap. */
14f9c5c9 2677static void
fc1a4b47 2678move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2679 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2680{
2681 unsigned int accum, mask;
2682 int accum_bits, chunk_size;
2683
2684 target += targ_offset / HOST_CHAR_BIT;
2685 targ_offset %= HOST_CHAR_BIT;
2686 source += src_offset / HOST_CHAR_BIT;
2687 src_offset %= HOST_CHAR_BIT;
50810684 2688 if (bits_big_endian_p)
14f9c5c9
AS
2689 {
2690 accum = (unsigned char) *source;
2691 source += 1;
2692 accum_bits = HOST_CHAR_BIT - src_offset;
2693
d2e4a39e 2694 while (n > 0)
4c4b4cd2
PH
2695 {
2696 int unused_right;
5b4ee69b 2697
4c4b4cd2
PH
2698 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2699 accum_bits += HOST_CHAR_BIT;
2700 source += 1;
2701 chunk_size = HOST_CHAR_BIT - targ_offset;
2702 if (chunk_size > n)
2703 chunk_size = n;
2704 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2705 mask = ((1 << chunk_size) - 1) << unused_right;
2706 *target =
2707 (*target & ~mask)
2708 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2709 n -= chunk_size;
2710 accum_bits -= chunk_size;
2711 target += 1;
2712 targ_offset = 0;
2713 }
14f9c5c9
AS
2714 }
2715 else
2716 {
2717 accum = (unsigned char) *source >> src_offset;
2718 source += 1;
2719 accum_bits = HOST_CHAR_BIT - src_offset;
2720
d2e4a39e 2721 while (n > 0)
4c4b4cd2
PH
2722 {
2723 accum = accum + ((unsigned char) *source << accum_bits);
2724 accum_bits += HOST_CHAR_BIT;
2725 source += 1;
2726 chunk_size = HOST_CHAR_BIT - targ_offset;
2727 if (chunk_size > n)
2728 chunk_size = n;
2729 mask = ((1 << chunk_size) - 1) << targ_offset;
2730 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2731 n -= chunk_size;
2732 accum_bits -= chunk_size;
2733 accum >>= chunk_size;
2734 target += 1;
2735 targ_offset = 0;
2736 }
14f9c5c9
AS
2737 }
2738}
2739
14f9c5c9
AS
2740/* Store the contents of FROMVAL into the location of TOVAL.
2741 Return a new value with the location of TOVAL and contents of
2742 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2743 floating-point or non-scalar types. */
14f9c5c9 2744
d2e4a39e
AS
2745static struct value *
2746ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2747{
df407dfe
AC
2748 struct type *type = value_type (toval);
2749 int bits = value_bitsize (toval);
14f9c5c9 2750
52ce6436
PH
2751 toval = ada_coerce_ref (toval);
2752 fromval = ada_coerce_ref (fromval);
2753
2754 if (ada_is_direct_array_type (value_type (toval)))
2755 toval = ada_coerce_to_simple_array (toval);
2756 if (ada_is_direct_array_type (value_type (fromval)))
2757 fromval = ada_coerce_to_simple_array (fromval);
2758
88e3b34b 2759 if (!deprecated_value_modifiable (toval))
323e0a4a 2760 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2761
d2e4a39e 2762 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2763 && bits > 0
d2e4a39e 2764 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2765 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2766 {
df407dfe
AC
2767 int len = (value_bitpos (toval)
2768 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2769 int from_size;
224c3ddb 2770 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2771 struct value *val;
42ae5230 2772 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2773
2774 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2775 fromval = value_cast (type, fromval);
14f9c5c9 2776
52ce6436 2777 read_memory (to_addr, buffer, len);
aced2898
PH
2778 from_size = value_bitsize (fromval);
2779 if (from_size == 0)
2780 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2781 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2782 move_bits (buffer, value_bitpos (toval),
50810684 2783 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2784 else
50810684
UW
2785 move_bits (buffer, value_bitpos (toval),
2786 value_contents (fromval), 0, bits, 0);
972daa01 2787 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2788
14f9c5c9 2789 val = value_copy (toval);
0fd88904 2790 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2791 TYPE_LENGTH (type));
04624583 2792 deprecated_set_value_type (val, type);
d2e4a39e 2793
14f9c5c9
AS
2794 return val;
2795 }
2796
2797 return value_assign (toval, fromval);
2798}
2799
2800
7c512744
JB
2801/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2802 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2803 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2804 COMPONENT, and not the inferior's memory. The current contents
2805 of COMPONENT are ignored.
2806
2807 Although not part of the initial design, this function also works
2808 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2809 had a null address, and COMPONENT had an address which is equal to
2810 its offset inside CONTAINER. */
2811
52ce6436
PH
2812static void
2813value_assign_to_component (struct value *container, struct value *component,
2814 struct value *val)
2815{
2816 LONGEST offset_in_container =
42ae5230 2817 (LONGEST) (value_address (component) - value_address (container));
7c512744 2818 int bit_offset_in_container =
52ce6436
PH
2819 value_bitpos (component) - value_bitpos (container);
2820 int bits;
7c512744 2821
52ce6436
PH
2822 val = value_cast (value_type (component), val);
2823
2824 if (value_bitsize (component) == 0)
2825 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2826 else
2827 bits = value_bitsize (component);
2828
50810684 2829 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2830 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val),
2833 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2834 bits, 1);
52ce6436 2835 else
7c512744 2836 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2837 value_bitpos (container) + bit_offset_in_container,
50810684 2838 value_contents (val), 0, bits, 0);
7c512744
JB
2839}
2840
4c4b4cd2
PH
2841/* The value of the element of array ARR at the ARITY indices given in IND.
2842 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2843 thereto. */
2844
d2e4a39e
AS
2845struct value *
2846ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2847{
2848 int k;
d2e4a39e
AS
2849 struct value *elt;
2850 struct type *elt_type;
14f9c5c9
AS
2851
2852 elt = ada_coerce_to_simple_array (arr);
2853
df407dfe 2854 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2855 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2856 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2857 return value_subscript_packed (elt, arity, ind);
2858
2859 for (k = 0; k < arity; k += 1)
2860 {
2861 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2862 error (_("too many subscripts (%d expected)"), k);
2497b498 2863 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2864 }
2865 return elt;
2866}
2867
deede10c
JB
2868/* Assuming ARR is a pointer to a GDB array, the value of the element
2869 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2870 Does not read the entire array into memory.
2871
2872 Note: Unlike what one would expect, this function is used instead of
2873 ada_value_subscript for basically all non-packed array types. The reason
2874 for this is that a side effect of doing our own pointer arithmetics instead
2875 of relying on value_subscript is that there is no implicit typedef peeling.
2876 This is important for arrays of array accesses, where it allows us to
2877 preserve the fact that the array's element is an array access, where the
2878 access part os encoded in a typedef layer. */
14f9c5c9 2879
2c0b251b 2880static struct value *
deede10c 2881ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2882{
2883 int k;
919e6dbe 2884 struct value *array_ind = ada_value_ind (arr);
deede10c 2885 struct type *type
919e6dbe
PMR
2886 = check_typedef (value_enclosing_type (array_ind));
2887
2888 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2889 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2890 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2891
2892 for (k = 0; k < arity; k += 1)
2893 {
2894 LONGEST lwb, upb;
aa715135 2895 struct value *lwb_value;
14f9c5c9
AS
2896
2897 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2898 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2899 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2900 value_copy (arr));
14f9c5c9 2901 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2902 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2903 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2904 type = TYPE_TARGET_TYPE (type);
2905 }
2906
2907 return value_ind (arr);
2908}
2909
0b5d8877 2910/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2911 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2912 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2913 this array is LOW, as per Ada rules. */
0b5d8877 2914static struct value *
f5938064
JG
2915ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2916 int low, int high)
0b5d8877 2917{
b0dd7688 2918 struct type *type0 = ada_check_typedef (type);
aa715135 2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2920 struct type *index_type
aa715135 2921 = create_static_range_type (NULL, base_index_type, low, high);
6c038f32 2922 struct type *slice_type =
b0dd7688 2923 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
aa715135
JG
2924 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2925 LONGEST base_low_pos, low_pos;
2926 CORE_ADDR base;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, base_low, &base_low_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 base_low_pos = base_low;
2934 }
5b4ee69b 2935
aa715135
JG
2936 base = value_as_address (array_ptr)
2937 + ((low_pos - base_low_pos)
2938 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2939 return value_at_lazy (slice_type, base);
0b5d8877
PH
2940}
2941
2942
2943static struct value *
2944ada_value_slice (struct value *array, int low, int high)
2945{
b0dd7688 2946 struct type *type = ada_check_typedef (value_type (array));
aa715135 2947 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2948 struct type *index_type
2949 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2950 struct type *slice_type =
0b5d8877 2951 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
aa715135 2952 LONGEST low_pos, high_pos;
5b4ee69b 2953
aa715135
JG
2954 if (!discrete_position (base_index_type, low, &low_pos)
2955 || !discrete_position (base_index_type, high, &high_pos))
2956 {
2957 warning (_("unable to get positions in slice, use bounds instead"));
2958 low_pos = low;
2959 high_pos = high;
2960 }
2961
2962 return value_cast (slice_type,
2963 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2964}
2965
14f9c5c9
AS
2966/* If type is a record type in the form of a standard GNAT array
2967 descriptor, returns the number of dimensions for type. If arr is a
2968 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2969 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2970
2971int
d2e4a39e 2972ada_array_arity (struct type *type)
14f9c5c9
AS
2973{
2974 int arity;
2975
2976 if (type == NULL)
2977 return 0;
2978
2979 type = desc_base_type (type);
2980
2981 arity = 0;
d2e4a39e 2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2983 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2984 else
2985 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2986 {
4c4b4cd2 2987 arity += 1;
61ee279c 2988 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2989 }
d2e4a39e 2990
14f9c5c9
AS
2991 return arity;
2992}
2993
2994/* If TYPE is a record type in the form of a standard GNAT array
2995 descriptor or a simple array type, returns the element type for
2996 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2997 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2998
d2e4a39e
AS
2999struct type *
3000ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
3001{
3002 type = desc_base_type (type);
3003
d2e4a39e 3004 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
3005 {
3006 int k;
d2e4a39e 3007 struct type *p_array_type;
14f9c5c9 3008
556bdfd4 3009 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3010
3011 k = ada_array_arity (type);
3012 if (k == 0)
4c4b4cd2 3013 return NULL;
d2e4a39e 3014
4c4b4cd2 3015 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3016 if (nindices >= 0 && k > nindices)
4c4b4cd2 3017 k = nindices;
d2e4a39e 3018 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3019 {
61ee279c 3020 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3021 k -= 1;
3022 }
14f9c5c9
AS
3023 return p_array_type;
3024 }
3025 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 {
3027 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3028 {
3029 type = TYPE_TARGET_TYPE (type);
3030 nindices -= 1;
3031 }
14f9c5c9
AS
3032 return type;
3033 }
3034
3035 return NULL;
3036}
3037
4c4b4cd2 3038/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3039 Does not examine memory. Throws an error if N is invalid or TYPE
3040 is not an array type. NAME is the name of the Ada attribute being
3041 evaluated ('range, 'first, 'last, or 'length); it is used in building
3042 the error message. */
14f9c5c9 3043
1eea4ebd
UW
3044static struct type *
3045ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3046{
4c4b4cd2
PH
3047 struct type *result_type;
3048
14f9c5c9
AS
3049 type = desc_base_type (type);
3050
1eea4ebd
UW
3051 if (n < 0 || n > ada_array_arity (type))
3052 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3053
4c4b4cd2 3054 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3055 {
3056 int i;
3057
3058 for (i = 1; i < n; i += 1)
4c4b4cd2 3059 type = TYPE_TARGET_TYPE (type);
262452ec 3060 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3061 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3062 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3063 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3064 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3065 result_type = NULL;
14f9c5c9 3066 }
d2e4a39e 3067 else
1eea4ebd
UW
3068 {
3069 result_type = desc_index_type (desc_bounds_type (type), n);
3070 if (result_type == NULL)
3071 error (_("attempt to take bound of something that is not an array"));
3072 }
3073
3074 return result_type;
14f9c5c9
AS
3075}
3076
3077/* Given that arr is an array type, returns the lower bound of the
3078 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3079 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3080 array-descriptor type. It works for other arrays with bounds supplied
3081 by run-time quantities other than discriminants. */
14f9c5c9 3082
abb68b3e 3083static LONGEST
fb5e3d5c 3084ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3085{
8a48ac95 3086 struct type *type, *index_type_desc, *index_type;
1ce677a4 3087 int i;
262452ec
JK
3088
3089 gdb_assert (which == 0 || which == 1);
14f9c5c9 3090
ad82864c
JB
3091 if (ada_is_constrained_packed_array_type (arr_type))
3092 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3093
4c4b4cd2 3094 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3095 return (LONGEST) - which;
14f9c5c9
AS
3096
3097 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3098 type = TYPE_TARGET_TYPE (arr_type);
3099 else
3100 type = arr_type;
3101
bafffb51
JB
3102 if (TYPE_FIXED_INSTANCE (type))
3103 {
3104 /* The array has already been fixed, so we do not need to
3105 check the parallel ___XA type again. That encoding has
3106 already been applied, so ignore it now. */
3107 index_type_desc = NULL;
3108 }
3109 else
3110 {
3111 index_type_desc = ada_find_parallel_type (type, "___XA");
3112 ada_fixup_array_indexes_type (index_type_desc);
3113 }
3114
262452ec 3115 if (index_type_desc != NULL)
28c85d6c
JB
3116 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3117 NULL);
262452ec 3118 else
8a48ac95
JB
3119 {
3120 struct type *elt_type = check_typedef (type);
3121
3122 for (i = 1; i < n; i++)
3123 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3124
3125 index_type = TYPE_INDEX_TYPE (elt_type);
3126 }
262452ec 3127
43bbcdc2
PH
3128 return
3129 (LONGEST) (which == 0
3130 ? ada_discrete_type_low_bound (index_type)
3131 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3132}
3133
3134/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3135 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3136 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3137 supplied by run-time quantities other than discriminants. */
14f9c5c9 3138
1eea4ebd 3139static LONGEST
4dc81987 3140ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3141{
eb479039
JB
3142 struct type *arr_type;
3143
3144 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3145 arr = value_ind (arr);
3146 arr_type = value_enclosing_type (arr);
14f9c5c9 3147
ad82864c
JB
3148 if (ada_is_constrained_packed_array_type (arr_type))
3149 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3150 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3151 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3152 else
1eea4ebd 3153 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3154}
3155
3156/* Given that arr is an array value, returns the length of the
3157 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3158 supplied by run-time quantities other than discriminants.
3159 Does not work for arrays indexed by enumeration types with representation
3160 clauses at the moment. */
14f9c5c9 3161
1eea4ebd 3162static LONGEST
d2e4a39e 3163ada_array_length (struct value *arr, int n)
14f9c5c9 3164{
aa715135
JG
3165 struct type *arr_type, *index_type;
3166 int low, high;
eb479039
JB
3167
3168 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3169 arr = value_ind (arr);
3170 arr_type = value_enclosing_type (arr);
14f9c5c9 3171
ad82864c
JB
3172 if (ada_is_constrained_packed_array_type (arr_type))
3173 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3174
4c4b4cd2 3175 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3176 {
3177 low = ada_array_bound_from_type (arr_type, n, 0);
3178 high = ada_array_bound_from_type (arr_type, n, 1);
3179 }
14f9c5c9 3180 else
aa715135
JG
3181 {
3182 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3183 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3184 }
3185
f168693b 3186 arr_type = check_typedef (arr_type);
aa715135
JG
3187 index_type = TYPE_INDEX_TYPE (arr_type);
3188 if (index_type != NULL)
3189 {
3190 struct type *base_type;
3191 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3192 base_type = TYPE_TARGET_TYPE (index_type);
3193 else
3194 base_type = index_type;
3195
3196 low = pos_atr (value_from_longest (base_type, low));
3197 high = pos_atr (value_from_longest (base_type, high));
3198 }
3199 return high - low + 1;
4c4b4cd2
PH
3200}
3201
3202/* An empty array whose type is that of ARR_TYPE (an array type),
3203 with bounds LOW to LOW-1. */
3204
3205static struct value *
3206empty_array (struct type *arr_type, int low)
3207{
b0dd7688 3208 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3209 struct type *index_type
3210 = create_static_range_type
3211 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3212 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3213
0b5d8877 3214 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3215}
14f9c5c9 3216\f
d2e4a39e 3217
4c4b4cd2 3218 /* Name resolution */
14f9c5c9 3219
4c4b4cd2
PH
3220/* The "decoded" name for the user-definable Ada operator corresponding
3221 to OP. */
14f9c5c9 3222
d2e4a39e 3223static const char *
4c4b4cd2 3224ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3225{
3226 int i;
3227
4c4b4cd2 3228 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3229 {
3230 if (ada_opname_table[i].op == op)
4c4b4cd2 3231 return ada_opname_table[i].decoded;
14f9c5c9 3232 }
323e0a4a 3233 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3234}
3235
3236
4c4b4cd2
PH
3237/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3238 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3239 undefined namespace) and converts operators that are
3240 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3241 non-null, it provides a preferred result type [at the moment, only
3242 type void has any effect---causing procedures to be preferred over
3243 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3244 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3245
4c4b4cd2
PH
3246static void
3247resolve (struct expression **expp, int void_context_p)
14f9c5c9 3248{
30b15541
UW
3249 struct type *context_type = NULL;
3250 int pc = 0;
3251
3252 if (void_context_p)
3253 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3254
3255 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3256}
3257
4c4b4cd2
PH
3258/* Resolve the operator of the subexpression beginning at
3259 position *POS of *EXPP. "Resolving" consists of replacing
3260 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3261 with their resolutions, replacing built-in operators with
3262 function calls to user-defined operators, where appropriate, and,
3263 when DEPROCEDURE_P is non-zero, converting function-valued variables
3264 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3265 are as in ada_resolve, above. */
14f9c5c9 3266
d2e4a39e 3267static struct value *
4c4b4cd2 3268resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3269 struct type *context_type)
14f9c5c9
AS
3270{
3271 int pc = *pos;
3272 int i;
4c4b4cd2 3273 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3274 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3275 struct value **argvec; /* Vector of operand types (alloca'ed). */
3276 int nargs; /* Number of operands. */
52ce6436 3277 int oplen;
14f9c5c9
AS
3278
3279 argvec = NULL;
3280 nargs = 0;
3281 exp = *expp;
3282
52ce6436
PH
3283 /* Pass one: resolve operands, saving their types and updating *pos,
3284 if needed. */
14f9c5c9
AS
3285 switch (op)
3286 {
4c4b4cd2
PH
3287 case OP_FUNCALL:
3288 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3289 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3290 *pos += 7;
4c4b4cd2
PH
3291 else
3292 {
3293 *pos += 3;
3294 resolve_subexp (expp, pos, 0, NULL);
3295 }
3296 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3297 break;
3298
14f9c5c9 3299 case UNOP_ADDR:
4c4b4cd2
PH
3300 *pos += 1;
3301 resolve_subexp (expp, pos, 0, NULL);
3302 break;
3303
52ce6436
PH
3304 case UNOP_QUAL:
3305 *pos += 3;
17466c1a 3306 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3307 break;
3308
52ce6436 3309 case OP_ATR_MODULUS:
4c4b4cd2
PH
3310 case OP_ATR_SIZE:
3311 case OP_ATR_TAG:
4c4b4cd2
PH
3312 case OP_ATR_FIRST:
3313 case OP_ATR_LAST:
3314 case OP_ATR_LENGTH:
3315 case OP_ATR_POS:
3316 case OP_ATR_VAL:
4c4b4cd2
PH
3317 case OP_ATR_MIN:
3318 case OP_ATR_MAX:
52ce6436
PH
3319 case TERNOP_IN_RANGE:
3320 case BINOP_IN_BOUNDS:
3321 case UNOP_IN_RANGE:
3322 case OP_AGGREGATE:
3323 case OP_OTHERS:
3324 case OP_CHOICES:
3325 case OP_POSITIONAL:
3326 case OP_DISCRETE_RANGE:
3327 case OP_NAME:
3328 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329 *pos += oplen;
14f9c5c9
AS
3330 break;
3331
3332 case BINOP_ASSIGN:
3333 {
4c4b4cd2
PH
3334 struct value *arg1;
3335
3336 *pos += 1;
3337 arg1 = resolve_subexp (expp, pos, 0, NULL);
3338 if (arg1 == NULL)
3339 resolve_subexp (expp, pos, 1, NULL);
3340 else
df407dfe 3341 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3342 break;
14f9c5c9
AS
3343 }
3344
4c4b4cd2 3345 case UNOP_CAST:
4c4b4cd2
PH
3346 *pos += 3;
3347 nargs = 1;
3348 break;
14f9c5c9 3349
4c4b4cd2
PH
3350 case BINOP_ADD:
3351 case BINOP_SUB:
3352 case BINOP_MUL:
3353 case BINOP_DIV:
3354 case BINOP_REM:
3355 case BINOP_MOD:
3356 case BINOP_EXP:
3357 case BINOP_CONCAT:
3358 case BINOP_LOGICAL_AND:
3359 case BINOP_LOGICAL_OR:
3360 case BINOP_BITWISE_AND:
3361 case BINOP_BITWISE_IOR:
3362 case BINOP_BITWISE_XOR:
14f9c5c9 3363
4c4b4cd2
PH
3364 case BINOP_EQUAL:
3365 case BINOP_NOTEQUAL:
3366 case BINOP_LESS:
3367 case BINOP_GTR:
3368 case BINOP_LEQ:
3369 case BINOP_GEQ:
14f9c5c9 3370
4c4b4cd2
PH
3371 case BINOP_REPEAT:
3372 case BINOP_SUBSCRIPT:
3373 case BINOP_COMMA:
40c8aaa9
JB
3374 *pos += 1;
3375 nargs = 2;
3376 break;
14f9c5c9 3377
4c4b4cd2
PH
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 case UNOP_IND:
3383 *pos += 1;
3384 nargs = 1;
3385 break;
14f9c5c9 3386
4c4b4cd2
PH
3387 case OP_LONG:
3388 case OP_DOUBLE:
3389 case OP_VAR_VALUE:
3390 *pos += 4;
3391 break;
14f9c5c9 3392
4c4b4cd2
PH
3393 case OP_TYPE:
3394 case OP_BOOL:
3395 case OP_LAST:
4c4b4cd2
PH
3396 case OP_INTERNALVAR:
3397 *pos += 3;
3398 break;
14f9c5c9 3399
4c4b4cd2
PH
3400 case UNOP_MEMVAL:
3401 *pos += 3;
3402 nargs = 1;
3403 break;
3404
67f3407f
DJ
3405 case OP_REGISTER:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407 break;
3408
4c4b4cd2
PH
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411 nargs = 1;
3412 break;
3413
4c4b4cd2 3414 case TERNOP_SLICE:
4c4b4cd2
PH
3415 *pos += 1;
3416 nargs = 3;
3417 break;
3418
52ce6436 3419 case OP_STRING:
14f9c5c9 3420 break;
4c4b4cd2
PH
3421
3422 default:
323e0a4a 3423 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3424 }
3425
8d749320 3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 argvec[i] = NULL;
3430 exp = *expp;
3431
3432 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3433 switch (op)
3434 {
3435 default:
3436 break;
3437
14f9c5c9 3438 case OP_VAR_VALUE:
4c4b4cd2 3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3440 {
d12307c1 3441 struct block_symbol *candidates;
76a01679
JB
3442 int n_candidates;
3443
3444 n_candidates =
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3448 &candidates);
76a01679
JB
3449
3450 if (n_candidates > 1)
3451 {
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3454 out all types. */
3455 int j;
3456 for (j = 0; j < n_candidates; j += 1)
d12307c1 3457 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
76a01679
JB
3462 case LOC_REGPARM_ADDR:
3463 case LOC_LOCAL:
76a01679 3464 case LOC_COMPUTED:
76a01679
JB
3465 goto FoundNonType;
3466 default:
3467 break;
3468 }
3469 FoundNonType:
3470 if (j < n_candidates)
3471 {
3472 j = 0;
3473 while (j < n_candidates)
3474 {
d12307c1 3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3476 {
3477 candidates[j] = candidates[n_candidates - 1];
3478 n_candidates -= 1;
3479 }
3480 else
3481 j += 1;
3482 }
3483 }
3484 }
3485
3486 if (n_candidates == 0)
323e0a4a 3487 error (_("No definition found for %s"),
76a01679
JB
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3490 i = 0;
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3493 {
06d5cf63
JB
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 context_type);
76a01679 3498 if (i < 0)
323e0a4a 3499 error (_("Could not find a match for %s"),
76a01679
JB
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 }
3502 else
3503 {
323e0a4a 3504 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3507 i = 0;
3508 }
3509
3510 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
1265e4aa
JB
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3514 innermost_block = candidates[i].block;
3515 }
3516
3517 if (deprocedure_p
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519 == TYPE_CODE_FUNC))
3520 {
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3524 exp = *expp;
3525 }
14f9c5c9
AS
3526 break;
3527
3528 case OP_FUNCALL:
3529 {
4c4b4cd2 3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3532 {
d12307c1 3533 struct block_symbol *candidates;
4c4b4cd2
PH
3534 int n_candidates;
3535
3536 n_candidates =
76a01679
JB
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3540 &candidates);
4c4b4cd2
PH
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
06d5cf63
JB
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
4c4b4cd2 3550 if (i < 0)
323e0a4a 3551 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
1265e4aa
JB
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3559 innermost_block = candidates[i].block;
3560 }
14f9c5c9
AS
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3585 {
d12307c1 3586 struct block_symbol *candidates;
4c4b4cd2
PH
3587 int n_candidates;
3588
3589 n_candidates =
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3592 &candidates);
4c4b4cd2 3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3594 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3595 if (i < 0)
3596 break;
3597
d12307c1
PMR
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
4c4b4cd2
PH
3601 exp = *expp;
3602 }
14f9c5c9 3603 break;
4c4b4cd2
PH
3604
3605 case OP_TYPE:
b3dbf008 3606 case OP_REGISTER:
4c4b4cd2 3607 return NULL;
14f9c5c9
AS
3608 }
3609
3610 *pos = pc;
3611 return evaluate_subexp_type (exp, pos);
3612}
3613
3614/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3616 a non-pointer. */
14f9c5c9 3617/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3618 liberal. */
14f9c5c9
AS
3619
3620static int
4dc81987 3621ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3622{
61ee279c
PH
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
14f9c5c9
AS
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
d2e4a39e 3631 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3632 {
3633 default:
5b3d5b7d 3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3639 else
1265e4aa
JB
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
14f9c5c9
AS
3654
3655 case TYPE_CODE_ARRAY:
d2e4a39e 3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3657 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3658
3659 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
14f9c5c9 3663 else
4c4b4cd2
PH
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671}
3672
3673/* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3676 argument function. */
14f9c5c9
AS
3677
3678static int
d2e4a39e 3679ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3680{
3681 int i;
d2e4a39e 3682 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3683
1265e4aa
JB
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
4c4b4cd2 3695 if (actuals[i] == NULL)
76a01679
JB
3696 return 0;
3697 else
3698 {
5b4ee69b
MS
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
df407dfe 3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3702
76a01679
JB
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
14f9c5c9
AS
3706 }
3707 return 1;
3708}
3709
3710/* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715static int
d2e4a39e 3716return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3717{
d2e4a39e 3718 struct type *return_type;
14f9c5c9
AS
3719
3720 if (func_type == NULL)
3721 return 1;
3722
4c4b4cd2 3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3725 else
18af8284 3726 return_type = get_base_type (func_type);
14f9c5c9
AS
3727 if (return_type == NULL)
3728 return 1;
3729
18af8284 3730 context_type = get_base_type (context_type);
14f9c5c9
AS
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738}
3739
3740
4c4b4cd2 3741/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3742 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
14f9c5c9
AS
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
14f9c5c9 3752
4c4b4cd2 3753static int
d12307c1 3754ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
14f9c5c9 3757{
30b15541 3758 int fallback;
14f9c5c9 3759 int k;
4c4b4cd2 3760 int m; /* Number of hits */
14f9c5c9 3761
d2e4a39e 3762 m = 0;
30b15541
UW
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3767 {
3768 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3769 {
d12307c1 3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3771
d12307c1 3772 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3773 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
14f9c5c9
AS
3779 }
3780
dc5c8746
PMR
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3785 if (m == 0)
3786 return -1;
dc5c8746 3787 else if (m > 1 && !parse_completion)
14f9c5c9 3788 {
323e0a4a 3789 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3790 user_select_syms (syms, m, 1);
14f9c5c9
AS
3791 return 0;
3792 }
3793 return 0;
3794}
3795
4c4b4cd2
PH
3796/* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
14f9c5c9 3802static int
0d5cff50 3803encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3804{
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
5b4ee69b 3812
d2e4a39e 3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3814 ;
d2e4a39e 3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3816 ;
d2e4a39e 3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
5b4ee69b 3821
4c4b4cd2
PH
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
14f9c5c9
AS
3831 return (strcmp (N0, N1) < 0);
3832 }
3833}
d2e4a39e 3834
4c4b4cd2
PH
3835/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
d2e4a39e 3838static void
d12307c1 3839sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3840{
4c4b4cd2 3841 int i;
5b4ee69b 3842
d2e4a39e 3843 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3844 {
d12307c1 3845 struct block_symbol sym = syms[i];
14f9c5c9
AS
3846 int j;
3847
d2e4a39e 3848 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3849 {
d12307c1
PMR
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
d2e4a39e 3855 syms[j + 1] = sym;
14f9c5c9
AS
3856 }
3857}
3858
d72413e6
PMR
3859/* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861static int print_signatures = 1;
3862
3863/* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868static void
3869ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871{
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900}
3901
4c4b4cd2
PH
3902/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
14f9c5c9
AS
3906
3907/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3908 to be re-integrated one of these days. */
14f9c5c9
AS
3909
3910int
d12307c1 3911user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3912{
3913 int i;
8d749320 3914 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3917 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3918
3919 if (max_results < 1)
323e0a4a 3920 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3921 if (nsyms <= 1)
3922 return nsyms;
3923
717d2f5a
JB
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926canceled because the command is ambiguous\n\
3927See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
323e0a4a 3935 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3936 if (max_results > 1)
323e0a4a 3937 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3938
4c4b4cd2 3939 sort_choices (syms, nsyms);
14f9c5c9
AS
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
d12307c1 3943 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3944 continue;
3945
d12307c1 3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3947 {
76a01679 3948 struct symtab_and_line sal =
d12307c1 3949 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3950
d72413e6
PMR
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
323e0a4a 3954 if (sal.symtab == NULL)
d72413e6 3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3956 sal.line);
3957 else
d72413e6 3958 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
4c4b4cd2
PH
3961 continue;
3962 }
d2e4a39e 3963 else
4c4b4cd2
PH
3964 {
3965 int is_enumeral =
d12307c1
PMR
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3969 struct symtab *symtab = NULL;
3970
d12307c1
PMR
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3973
d12307c1 3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
76a01679 3983 else if (is_enumeral
d12307c1 3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3985 {
a3f17187 3986 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3988 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3990 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3991 }
d72413e6
PMR
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4c4b4cd2 4008 }
14f9c5c9 4009 }
d2e4a39e 4010
14f9c5c9 4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4012 "overload-choice");
14f9c5c9
AS
4013
4014 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4015 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4016
4017 return n_chosen;
4018}
4019
4020/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4021 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4c4b4cd2 4027 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4c4b4cd2 4031 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4034 prompts (for use with the -f switch). */
14f9c5c9
AS
4035
4036int
d2e4a39e 4037get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4038 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4039{
d2e4a39e 4040 char *args;
a121b7c1 4041 const char *prompt;
14f9c5c9
AS
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4044
14f9c5c9
AS
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
0bcd0149 4047 prompt = "> ";
14f9c5c9 4048
0bcd0149 4049 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4050
14f9c5c9 4051 if (args == NULL)
323e0a4a 4052 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4053
4054 n_chosen = 0;
76a01679 4055
4c4b4cd2
PH
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
14f9c5c9
AS
4058 while (1)
4059 {
d2e4a39e 4060 char *args2;
14f9c5c9
AS
4061 int choice, j;
4062
0fcd72ba 4063 args = skip_spaces (args);
14f9c5c9 4064 if (*args == '\0' && n_chosen == 0)
323e0a4a 4065 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4066 else if (*args == '\0')
4c4b4cd2 4067 break;
14f9c5c9
AS
4068
4069 choice = strtol (args, &args2, 10);
d2e4a39e 4070 if (args == args2 || choice < 0
4c4b4cd2 4071 || choice > n_choices + first_choice - 1)
323e0a4a 4072 error (_("Argument must be choice number"));
14f9c5c9
AS
4073 args = args2;
4074
d2e4a39e 4075 if (choice == 0)
323e0a4a 4076 error (_("cancelled"));
14f9c5c9
AS
4077
4078 if (choice < first_choice)
4c4b4cd2
PH
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
14f9c5c9
AS
4085 choice -= first_choice;
4086
d2e4a39e 4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4088 {
4089 }
14f9c5c9
AS
4090
4091 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4092 {
4093 int k;
5b4ee69b 4094
4c4b4cd2
PH
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
14f9c5c9
AS
4100 }
4101
4102 if (n_chosen > max_results)
323e0a4a 4103 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4104
14f9c5c9
AS
4105 return n_chosen;
4106}
4107
4c4b4cd2
PH
4108/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4111
4112static void
d2e4a39e 4113replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 4114 int oplen, struct symbol *sym,
270140bd 4115 const struct block *block)
14f9c5c9
AS
4116{
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4118 symbol, -oplen for operator being replaced). */
d2e4a39e 4119 struct expression *newexp = (struct expression *)
8c1a34e7 4120 xzalloc (sizeof (struct expression)
4c4b4cd2 4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 4122 struct expression *exp = *expp;
14f9c5c9
AS
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
3489610d 4126 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
aacb1f0a 4139 xfree (exp);
d2e4a39e 4140}
14f9c5c9
AS
4141
4142/* Type-class predicates */
4143
4c4b4cd2
PH
4144/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148numeric_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
d2e4a39e 4165 }
14f9c5c9
AS
4166}
4167
4c4b4cd2 4168/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4169
4170static int
d2e4a39e 4171integer_type_p (struct type *type)
14f9c5c9
AS
4172{
4173 if (type == NULL)
4174 return 0;
d2e4a39e
AS
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4c4b4cd2
PH
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
d2e4a39e 4187 }
14f9c5c9
AS
4188}
4189
4c4b4cd2 4190/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4191
4192static int
d2e4a39e 4193scalar_type_p (struct type *type)
14f9c5c9
AS
4194{
4195 if (type == NULL)
4196 return 0;
d2e4a39e
AS
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4c4b4cd2
PH
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
d2e4a39e 4209 }
14f9c5c9
AS
4210}
4211
4c4b4cd2 4212/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4213
4214static int
d2e4a39e 4215discrete_type_p (struct type *type)
14f9c5c9
AS
4216{
4217 if (type == NULL)
4218 return 0;
d2e4a39e
AS
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4c4b4cd2
PH
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
872f0337 4226 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4227 return 1;
4228 default:
4229 return 0;
4230 }
d2e4a39e 4231 }
14f9c5c9
AS
4232}
4233
4c4b4cd2
PH
4234/* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
14f9c5c9
AS
4237
4238static int
d2e4a39e 4239possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4240{
76a01679 4241 struct type *type0 =
df407dfe 4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4243 struct type *type1 =
df407dfe 4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4245
4c4b4cd2
PH
4246 if (type0 == NULL)
4247 return 0;
4248
14f9c5c9
AS
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
d2e4a39e 4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
d2e4a39e 4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
d2e4a39e 4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4274
4275 case BINOP_CONCAT:
ee90b9ab 4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4277
4278 case BINOP_EXP:
d2e4a39e 4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
14f9c5c9
AS
4286
4287 }
4288}
4289\f
4c4b4cd2 4290 /* Renaming */
14f9c5c9 4291
aeb5907d
JB
4292/* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304/* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
0963b4bd 4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323enum ada_renaming_category
4324ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327{
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
14f9c5c9 4335 {
aeb5907d
JB
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
14f9c5c9 4369 }
4c4b4cd2 4370
aeb5907d
JB
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382}
4383
4384/* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388static enum ada_renaming_category
4389parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392{
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
14f9c5c9 4397
aeb5907d
JB
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
14f9c5c9 4401
aeb5907d
JB
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
14f9c5c9 4427
aeb5907d
JB
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
a5ee536b
JB
4441}
4442
4443/* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
52ce6436 4446
a5ee536b
JB
4447static struct value *
4448ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4449 const struct block *block)
a5ee536b 4450{
bbc13ae3 4451 const char *sym_name;
a5ee536b 4452
bbc13ae3 4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
a5ee536b 4456}
14f9c5c9 4457\f
d2e4a39e 4458
4c4b4cd2 4459 /* Evaluation: Function Calls */
14f9c5c9 4460
4c4b4cd2 4461/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4464
d2e4a39e 4465static struct value *
40bc484c 4466ensure_lval (struct value *val)
14f9c5c9 4467{
40bc484c
JB
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4470 {
df407dfe 4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4474
a84a8a0d 4475 VALUE_LVAL (val) = lval_memory;
1a088441 4476 set_value_address (val, addr);
40bc484c 4477 write_memory (addr, value_contents (val), len);
c3e5cd34 4478 }
14f9c5c9
AS
4479
4480 return val;
4481}
4482
4483/* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4486 values not residing in memory, updating it as needed. */
14f9c5c9 4487
a93c0eb6 4488struct value *
40bc484c 4489ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4490{
df407dfe 4491 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4492 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4499
4c4b4cd2 4500 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4502 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4505 {
a84a8a0d 4506 struct value *result;
5b4ee69b 4507
14f9c5c9 4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4509 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4510 result = desc_data (actual);
14f9c5c9 4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
5b4ee69b 4516
df407dfe 4517 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4518 val = allocate_value (actual_type);
990a07ab 4519 memcpy ((char *) value_contents_raw (val),
0fd88904 4520 (char *) value_contents (actual),
4c4b4cd2 4521 TYPE_LENGTH (actual_type));
40bc484c 4522 actual = ensure_lval (val);
4c4b4cd2 4523 }
a84a8a0d 4524 result = value_addr (actual);
4c4b4cd2 4525 }
a84a8a0d
JB
4526 else
4527 return actual;
b1af9e97 4528 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
8344af1e
JB
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
14f9c5c9
AS
4542
4543 return actual;
4544}
4545
438c98a1
JB
4546/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551static CORE_ADDR
4552value_pointer (struct value *value, struct type *type)
4553{
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
224c3ddb 4556 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563}
4564
14f9c5c9 4565
4c4b4cd2
PH
4566/* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
14f9c5c9 4571
d2e4a39e 4572static struct value *
40bc484c 4573make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4574{
d2e4a39e
AS
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4579 int i;
d2e4a39e 4580
0963b4bd
MS
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
14f9c5c9 4583 {
19f220c3
JK
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4592 }
d2e4a39e 4593
40bc484c 4594 bounds = ensure_lval (bounds);
d2e4a39e 4595
19f220c3
JK
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4609
40bc484c 4610 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616}
14f9c5c9 4617\f
3d9434b5
JB
4618 /* Symbol Cache Module */
4619
3d9434b5 4620/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4621 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
ee01b665 4630/* Initialize the contents of SYM_CACHE. */
3d9434b5 4631
ee01b665
JB
4632static void
4633ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634{
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637}
3d9434b5 4638
ee01b665
JB
4639/* Free the memory used by SYM_CACHE. */
4640
4641static void
4642ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4643{
ee01b665
JB
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646}
3d9434b5 4647
ee01b665
JB
4648/* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4650
ee01b665
JB
4651static struct ada_symbol_cache *
4652ada_get_symbol_cache (struct program_space *pspace)
4653{
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4655
66c168ae 4656 if (pspace_data->sym_cache == NULL)
ee01b665 4657 {
66c168ae
JB
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4660 }
4661
66c168ae 4662 return pspace_data->sym_cache;
ee01b665 4663}
3d9434b5
JB
4664
4665/* Clear all entries from the symbol cache. */
4666
4667static void
4668ada_clear_symbol_cache (void)
4669{
ee01b665
JB
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4675}
4676
fe978cb0 4677/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4678 Return it if found, or NULL otherwise. */
4679
4680static struct cache_entry **
fe978cb0 4681find_entry (const char *name, domain_enum domain)
3d9434b5 4682{
ee01b665
JB
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
ee01b665 4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4689 {
fe978cb0 4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4691 return e;
4692 }
4693 return NULL;
4694}
4695
fe978cb0 4696/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4701
96d887e8 4702static int
fe978cb0 4703lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4704 struct symbol **sym, const struct block **block)
96d887e8 4705{
fe978cb0 4706 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
96d887e8
PH
4715}
4716
3d9434b5 4717/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4718 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4719
96d887e8 4720static void
fe978cb0 4721cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4722 const struct block *block)
96d887e8 4723{
ee01b665
JB
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
1994afbf
DE
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
3d9434b5
JB
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
08be3fe3 4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4741 GLOBAL_BLOCK) != block
08be3fe3 4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4743 STATIC_BLOCK) != block)
3d9434b5
JB
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
224c3ddb
SM
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4753 strcpy (copy, name);
4754 e->sym = sym;
fe978cb0 4755 e->domain = domain;
3d9434b5 4756 e->block = block;
96d887e8 4757}
4c4b4cd2
PH
4758\f
4759 /* Symbol Lookup */
4760
c0431670
JB
4761/* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767static int
4768should_use_wild_match (const char *lookup_name)
4769{
4770 return (strstr (lookup_name, "__") == NULL);
4771}
4772
4c4b4cd2
PH
4773/* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4775
4776static struct symbol *
4777standard_lookup (const char *name, const struct block *block,
4778 domain_enum domain)
4779{
acbd605d 4780 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4781 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4782
d12307c1
PMR
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 return sym.symbol;
2570f2b7 4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4787 return sym.symbol;
4c4b4cd2
PH
4788}
4789
4790
4791/* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4794static int
d12307c1 4795is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4796{
4797 int i;
4798
4799 for (i = 0; i < n; i += 1)
d12307c1
PMR
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4803 return 1;
4804
4805 return 0;
4806}
4807
4808/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4809 struct types. Otherwise, they may not. */
14f9c5c9
AS
4810
4811static int
d2e4a39e 4812equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4813{
d2e4a39e 4814 if (type0 == type1)
14f9c5c9 4815 return 1;
d2e4a39e 4816 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 return 0;
d2e4a39e 4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4823 return 1;
d2e4a39e 4824
14f9c5c9
AS
4825 return 0;
4826}
4827
4828/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4829 no more defined than that of SYM1. */
14f9c5c9
AS
4830
4831static int
d2e4a39e 4832lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4833{
4834 if (sym0 == sym1)
4835 return 1;
176620f1 4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838 return 0;
4839
d2e4a39e 4840 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4841 {
4842 case LOC_UNDEF:
4843 return 1;
4844 case LOC_TYPEDEF:
4845 {
4c4b4cd2
PH
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4850 int len0 = strlen (name0);
5b4ee69b 4851
4c4b4cd2
PH
4852 return
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4856 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4857 }
4858 case LOC_CONST:
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4861 default:
4862 return 0;
14f9c5c9
AS
4863 }
4864}
4865
d12307c1 4866/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4868
4869static void
76a01679
JB
4870add_defn_to_vec (struct obstack *obstackp,
4871 struct symbol *sym,
f0c5f9b2 4872 const struct block *block)
14f9c5c9
AS
4873{
4874 int i;
d12307c1 4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4876
529cad9c
PH
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4885
4c4b4cd2
PH
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 {
d12307c1 4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4889 return;
d12307c1 4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4891 {
d12307c1 4892 prevDefns[i].symbol = sym;
4c4b4cd2 4893 prevDefns[i].block = block;
4c4b4cd2 4894 return;
76a01679 4895 }
4c4b4cd2
PH
4896 }
4897
4898 {
d12307c1 4899 struct block_symbol info;
4c4b4cd2 4900
d12307c1 4901 info.symbol = sym;
4c4b4cd2 4902 info.block = block;
d12307c1 4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4904 }
4905}
4906
d12307c1
PMR
4907/* Number of block_symbol structures currently collected in current vector in
4908 OBSTACKP. */
4c4b4cd2 4909
76a01679
JB
4910static int
4911num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4912{
d12307c1 4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4914}
4915
d12307c1
PMR
4916/* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4918
d12307c1 4919static struct block_symbol *
4c4b4cd2
PH
4920defns_collected (struct obstack *obstackp, int finish)
4921{
4922 if (finish)
224c3ddb 4923 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4924 else
d12307c1 4925 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4926}
4927
7c7b6655
TT
4928/* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4c4b4cd2 4933
7c7b6655 4934struct bound_minimal_symbol
96d887e8 4935ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4936{
7c7b6655 4937 struct bound_minimal_symbol result;
4c4b4cd2 4938 struct objfile *objfile;
96d887e8 4939 struct minimal_symbol *msymbol;
dc4024cd 4940 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4941
7c7b6655
TT
4942 memset (&result, 0, sizeof (result));
4943
c0431670
JB
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
61012eef 4951 if (startswith (name, "standard__"))
c0431670 4952 name += sizeof ("standard__") - 1;
4c4b4cd2 4953
96d887e8
PH
4954 ALL_MSYMBOLS (objfile, msymbol)
4955 {
efd66ac6 4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4958 {
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4961 break;
4962 }
96d887e8 4963 }
4c4b4cd2 4964
7c7b6655 4965 return result;
96d887e8 4966}
4c4b4cd2 4967
96d887e8
PH
4968/* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4c4b4cd2 4973
96d887e8
PH
4974static void
4975add_symbols_from_enclosing_procs (struct obstack *obstackp,
fe978cb0 4976 const char *name, domain_enum domain,
48b78332 4977 int wild_match_p)
96d887e8 4978{
96d887e8 4979}
14f9c5c9 4980
96d887e8
PH
4981/* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
14f9c5c9 4983
96d887e8
PH
4984static int
4985is_nondebugging_type (struct type *type)
4986{
0d5cff50 4987 const char *name = ada_type_name (type);
5b4ee69b 4988
96d887e8
PH
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990}
4c4b4cd2 4991
8f17729f
JB
4992/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4994
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4998
4999static int
5000ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001{
5002 int i;
5003
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5008
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5012 return 0;
5013
5014 /* All enumerals should also have the same name (modulo any numerical
5015 suffix). */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 {
0d5cff50
DE
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5022
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 if (len_1 != len_2
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5028 len_1) != 0)
5029 return 0;
5030 }
5031
5032 return 1;
5033}
5034
5035/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5039
5040 For instance, consider the following code:
5041
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5044
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5054
5055static int
d12307c1 5056symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
8f17729f
JB
5057{
5058 int i;
5059
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5066
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
d12307c1 5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5070 return 0;
5071
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
d12307c1 5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5075 return 0;
5076
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5081 return 0;
5082
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
d12307c1
PMR
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5089 return 0;
5090
5091 return 1;
5092}
5093
96d887e8
PH
5094/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
4c4b4cd2 5100
96d887e8 5101static int
d12307c1 5102remove_extra_symbols (struct block_symbol *syms, int nsyms)
96d887e8
PH
5103{
5104 int i, j;
4c4b4cd2 5105
8f17729f
JB
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5109 if (nsyms < 2)
5110 return nsyms;
5111
96d887e8
PH
5112 i = 0;
5113 while (i < nsyms)
5114 {
a35ddb44 5115 int remove_p = 0;
339c13b6
JB
5116
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5119
d12307c1
PMR
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
339c13b6
JB
5122 {
5123 for (j = 0; j < nsyms; j++)
5124 {
5125 if (j != i
d12307c1
PMR
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
a35ddb44 5130 remove_p = 1;
339c13b6
JB
5131 }
5132 }
5133
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5136
d12307c1
PMR
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
96d887e8
PH
5140 {
5141 for (j = 0; j < nsyms; j += 1)
5142 {
5143 if (i != j
d12307c1
PMR
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
a35ddb44 5151 remove_p = 1;
4c4b4cd2 5152 }
4c4b4cd2 5153 }
339c13b6 5154
a35ddb44 5155 if (remove_p)
339c13b6
JB
5156 {
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161
96d887e8 5162 i += 1;
14f9c5c9 5163 }
8f17729f
JB
5164
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5167
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5178 nsyms = 1;
5179
96d887e8 5180 return nsyms;
14f9c5c9
AS
5181}
5182
96d887e8
PH
5183/* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 5187
96d887e8
PH
5188static char *
5189xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5190{
96d887e8 5191 /* The renaming types adhere to the following convention:
0963b4bd 5192 <scope>__<rename>___<XR extension>.
96d887e8
PH
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
76a01679 5195
96d887e8 5196 const char *name = type_name_no_tag (renaming_type);
108d56a4
SM
5197 const char *suffix = strstr (name, "___XR");
5198 const char *last;
96d887e8
PH
5199 int scope_len;
5200 char *scope;
14f9c5c9 5201
96d887e8
PH
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5204
96d887e8
PH
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
76a01679 5208
96d887e8 5209 /* Make a copy of scope and return it. */
14f9c5c9 5210
96d887e8
PH
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 5213
96d887e8
PH
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
4c4b4cd2 5216
96d887e8 5217 return scope;
4c4b4cd2
PH
5218}
5219
96d887e8 5220/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5221
96d887e8
PH
5222static int
5223is_package_name (const char *name)
4c4b4cd2 5224{
96d887e8
PH
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
4c4b4cd2 5230
96d887e8 5231 char *fun_name;
76a01679 5232
96d887e8
PH
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236 return 0;
14f9c5c9 5237
96d887e8
PH
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
14f9c5c9 5240
96d887e8 5241 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5242 functions names cannot contain "__" in them. */
96d887e8
PH
5243 if (strstr (name, "__") != NULL)
5244 return 0;
4c4b4cd2 5245
b435e160 5246 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5247
96d887e8
PH
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249}
14f9c5c9 5250
96d887e8 5251/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5252 not visible from FUNCTION_NAME. */
14f9c5c9 5253
96d887e8 5254static int
0d5cff50 5255old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5256{
aeb5907d 5257 char *scope;
1509e573 5258 struct cleanup *old_chain;
aeb5907d
JB
5259
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261 return 0;
5262
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 5264 old_chain = make_cleanup (xfree, scope);
14f9c5c9 5265
96d887e8
PH
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
1509e573
JB
5268 {
5269 do_cleanups (old_chain);
5270 return 0;
5271 }
14f9c5c9 5272
96d887e8
PH
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
76a01679 5275
96d887e8
PH
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5279 this prefix. */
61012eef 5280 if (startswith (function_name, "_ada_"))
96d887e8 5281 function_name += 5;
f26caa11 5282
1509e573 5283 {
61012eef 5284 int is_invisible = !startswith (function_name, scope);
1509e573
JB
5285
5286 do_cleanups (old_chain);
5287 return is_invisible;
5288 }
f26caa11
PH
5289}
5290
aeb5907d
JB
5291/* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
96d887e8
PH
5296
5297 Rationale:
aeb5907d
JB
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5301 latter.
5302
5303 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
f26caa11 5310
96d887e8
PH
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5322
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
4c4b4cd2 5327
14f9c5c9 5328static int
d12307c1 5329remove_irrelevant_renamings (struct block_symbol *syms,
aeb5907d 5330 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5331{
5332 struct symbol *current_function;
0d5cff50 5333 const char *current_function_name;
4c4b4cd2 5334 int i;
aeb5907d
JB
5335 int is_new_style_renaming;
5336
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
0963b4bd 5339 First, zero out such symbols, then compress. */
aeb5907d
JB
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5342 {
d12307c1 5343 struct symbol *sym = syms[i].symbol;
270140bd 5344 const struct block *block = syms[i].block;
aeb5907d
JB
5345 const char *name;
5346 const char *suffix;
5347
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 continue;
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5352
5353 if (suffix != NULL)
5354 {
5355 int name_len = suffix - name;
5356 int j;
5b4ee69b 5357
aeb5907d
JB
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
d12307c1
PMR
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
aeb5907d
JB
5362 name_len) == 0
5363 && block == syms[j].block)
d12307c1 5364 syms[j].symbol = NULL;
aeb5907d
JB
5365 }
5366 }
5367 if (is_new_style_renaming)
5368 {
5369 int j, k;
5370
5371 for (j = k = 0; j < nsyms; j += 1)
d12307c1 5372 if (syms[j].symbol != NULL)
aeb5907d
JB
5373 {
5374 syms[k] = syms[j];
5375 k += 1;
5376 }
5377 return k;
5378 }
4c4b4cd2
PH
5379
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
76a01679 5382
4c4b4cd2
PH
5383 if (current_block == NULL)
5384 return nsyms;
76a01679 5385
7f0df278 5386 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5387 if (current_function == NULL)
5388 return nsyms;
5389
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5392 return nsyms;
5393
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5397
5398 i = 0;
5399 while (i < nsyms)
5400 {
d12307c1 5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
aeb5907d 5402 == ADA_OBJECT_RENAMING
d12307c1 5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
4c4b4cd2
PH
5404 {
5405 int j;
5b4ee69b 5406
aeb5907d 5407 for (j = i + 1; j < nsyms; j += 1)
76a01679 5408 syms[j - 1] = syms[j];
4c4b4cd2
PH
5409 nsyms -= 1;
5410 }
5411 else
5412 i += 1;
5413 }
5414
5415 return nsyms;
5416}
5417
339c13b6
JB
5418/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5425
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427
5428static void
5429ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5430 const struct block *block, domain_enum domain,
d0a8ab18 5431 int wild_match_p)
339c13b6
JB
5432{
5433 int block_depth = 0;
5434
5435 while (block != NULL)
5436 {
5437 block_depth += 1;
d0a8ab18
JB
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439 wild_match_p);
339c13b6
JB
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5453}
5454
ccefe4c4 5455/* An object of this type is used as the user_data argument when
40658b94 5456 calling the map_matching_symbols method. */
ccefe4c4 5457
40658b94 5458struct match_data
ccefe4c4 5459{
40658b94 5460 struct objfile *objfile;
ccefe4c4 5461 struct obstack *obstackp;
40658b94
PH
5462 struct symbol *arg_sym;
5463 int found_sym;
ccefe4c4
TT
5464};
5465
22cee43f 5466/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
ccefe4c4 5474
40658b94
PH
5475static int
5476aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5477{
40658b94
PH
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504}
5505
22cee43f
PMR
5506/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5510 symbols. */
5511
5512static int
5513ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5515 const char *name,
5516 domain_enum domain,
5517 int wild_match_p)
5518{
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527 int name_match;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 name_match
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 1, NULL);
5557 renaming->searched = 0;
5558 }
5559 return num_defns_collected (obstackp) != defns_mark;
5560}
5561
db230ce3
JB
5562/* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5b4ee69b 5564
40658b94 5565static int
db230ce3
JB
5566compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
40658b94
PH
5568{
5569 while (*string1 != '\0' && *string2 != '\0')
5570 {
db230ce3
JB
5571 char c1, c2;
5572
40658b94
PH
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5575
5576 if (casing == case_sensitive_off)
5577 {
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5580 }
5581 else
5582 {
5583 c1 = *string1;
5584 c2 = *string2;
5585 }
5586 if (c1 != c2)
40658b94 5587 break;
db230ce3 5588
40658b94
PH
5589 string1 += 1;
5590 string2 += 1;
5591 }
db230ce3 5592
40658b94
PH
5593 switch (*string1)
5594 {
5595 case '(':
5596 return strcmp_iw_ordered (string1, string2);
5597 case '_':
5598 if (*string2 == '\0')
5599 {
052874e8 5600 if (is_name_suffix (string1))
40658b94
PH
5601 return 0;
5602 else
1a1d5513 5603 return 1;
40658b94 5604 }
dbb8534f 5605 /* FALLTHROUGH */
40658b94
PH
5606 default:
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5609 else
db230ce3
JB
5610 {
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5613 else
5614 return *string1 - *string2;
5615 }
40658b94 5616 }
ccefe4c4
TT
5617}
5618
db230ce3
JB
5619/* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5621
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624 ... implies...
5625
5626 compare_names (STRING1, STRING2) <= 0
5627
5628 (they may differ as to what symbols compare equal). */
5629
5630static int
5631compare_names (const char *string1, const char *string2)
5632{
5633 int result;
5634
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5639
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 if (result == 0)
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644 return result;
5645}
5646
339c13b6
JB
5647/* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5650
5651static void
40658b94
PH
5652add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5654 int is_wild_match)
339c13b6
JB
5655{
5656 struct objfile *objfile;
22cee43f 5657 struct compunit_symtab *cu;
40658b94 5658 struct match_data data;
339c13b6 5659
6475f2fe 5660 memset (&data, 0, sizeof data);
ccefe4c4 5661 data.obstackp = obstackp;
339c13b6 5662
ccefe4c4 5663 ALL_OBJFILES (objfile)
40658b94
PH
5664 {
5665 data.objfile = objfile;
5666
5667 if (is_wild_match)
4186eb54
KS
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5670 wild_match, NULL);
40658b94 5671 else
4186eb54
KS
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
22cee43f
PMR
5675
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682 is_wild_match))
5683 data.found_sym = 1;
5684 }
40658b94
PH
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 ALL_OBJFILES (objfile)
5690 {
224c3ddb 5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
40658b94
PH
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
ade7ed9e
DE
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 global,
0963b4bd
MS
5697 aux_add_nonlocal_symbols,
5698 &data,
40658b94
PH
5699 full_match, compare_names);
5700 }
5701 }
339c13b6
JB
5702}
5703
22cee43f 5704/* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
4eeaa230 5705 non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5706 matches. Add these to OBSTACKP.
4eeaa230 5707
22cee43f
PMR
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5710 is the one match returned (no other matches in that or
d9680e73 5711 enclosing blocks is returned). If there are any matches in or
22cee43f 5712 surrounding BLOCK, then these alone are returned.
4eeaa230 5713
9f88c959 5714 Names prefixed with "standard__" are handled specially: "standard__"
22cee43f 5715 is first stripped off, and only static and global symbols are searched.
14f9c5c9 5716
22cee43f
PMR
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5719
5720static void
5721ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5723 const char *name,
5724 domain_enum domain,
5725 int full_search,
5726 int *made_global_lookup_p)
14f9c5c9
AS
5727{
5728 struct symbol *sym;
22cee43f 5729 const int wild_match_p = should_use_wild_match (name);
14f9c5c9 5730
22cee43f
PMR
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
339c13b6
JB
5733
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
22cee43f 5741 if (startswith (name, "standard__"))
4c4b4cd2 5742 {
4c4b4cd2 5743 block = NULL;
22cee43f 5744 name = name + sizeof ("standard__") - 1;
4c4b4cd2
PH
5745 }
5746
339c13b6 5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5748
4eeaa230
DE
5749 if (block != NULL)
5750 {
5751 if (full_search)
22cee43f 5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
4eeaa230
DE
5753 else
5754 {
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5757 superblocks. */
22cee43f
PMR
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759 wild_match_p);
4eeaa230 5760 }
22cee43f
PMR
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5762 return;
4eeaa230 5763 }
d2e4a39e 5764
339c13b6
JB
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5767 the same result. */
5768
22cee43f 5769 if (lookup_cached_symbol (name, domain, &sym, &block))
4c4b4cd2
PH
5770 {
5771 if (sym != NULL)
22cee43f
PMR
5772 add_defn_to_vec (obstackp, sym, block);
5773 return;
4c4b4cd2 5774 }
14f9c5c9 5775
22cee43f
PMR
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
b1eedac9 5778
339c13b6
JB
5779 /* Search symbols from all global blocks. */
5780
22cee43f 5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
d2e4a39e 5782
4c4b4cd2 5783 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5784 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5785
22cee43f
PMR
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788}
5789
5790/* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5792 matches.
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5797
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5803
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5806
5807static int
5808ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 domain_enum domain,
5810 struct block_symbol **results,
5811 int full_search)
5812{
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5815 int ndefns;
5816
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
14f9c5c9 5821
4c4b4cd2
PH
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5824
5825 ndefns = remove_extra_symbols (*results, ndefns);
5826
b1eedac9 5827 if (ndefns == 0 && full_search && syms_from_global_search)
22cee43f 5828 cache_symbol (name, domain, NULL, NULL);
14f9c5c9 5829
b1eedac9 5830 if (ndefns == 1 && full_search && syms_from_global_search)
22cee43f 5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5832
22cee43f 5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
14f9c5c9
AS
5834 return ndefns;
5835}
5836
4eeaa230
DE
5837/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5841
5842int
5843ada_lookup_symbol_list (const char *name0, const struct block *block0,
d12307c1 5844 domain_enum domain, struct block_symbol **results)
4eeaa230
DE
5845{
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847}
5848
5849/* Implementation of the la_iterate_over_symbols method. */
5850
5851static void
14bc53a8
PA
5852ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5855{
5856 int ndefs, i;
d12307c1 5857 struct block_symbol *results;
4eeaa230
DE
5858
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5861 {
14bc53a8 5862 if (!callback (results[i].symbol))
4eeaa230
DE
5863 break;
5864 }
5865}
5866
f8eba3c6 5867/* If NAME is the name of an entity, return a string that should
2f408ecb 5868 be used to look that entity up in Ada units.
f8eba3c6
TT
5869
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5873
2f408ecb 5874std::string
f8eba3c6
TT
5875ada_name_for_lookup (const char *name)
5876{
f8eba3c6
TT
5877 int nlen = strlen (name);
5878
5879 if (name[0] == '<' && name[nlen - 1] == '>')
2f408ecb 5880 return std::string (name + 1, nlen - 2);
f8eba3c6 5881 else
2f408ecb 5882 return ada_encode (ada_fold_name (name));
f8eba3c6
TT
5883}
5884
4e5c77fe
JB
5885/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5887 choices.
5888
5e2336be
JB
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5891
5892void
5893ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5894 domain_enum domain,
d12307c1 5895 struct block_symbol *info)
14f9c5c9 5896{
d12307c1 5897 struct block_symbol *candidates;
14f9c5c9
AS
5898 int n_candidates;
5899
5e2336be 5900 gdb_assert (info != NULL);
d12307c1 5901 memset (info, 0, sizeof (struct block_symbol));
4e5c77fe 5902
fe978cb0 5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
14f9c5c9 5904 if (n_candidates == 0)
4e5c77fe 5905 return;
4c4b4cd2 5906
5e2336be 5907 *info = candidates[0];
d12307c1 5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
4e5c77fe 5909}
aeb5907d
JB
5910
5911/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5914 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5916
d12307c1 5917struct block_symbol
aeb5907d 5918ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5919 domain_enum domain, int *is_a_field_of_this)
aeb5907d 5920{
d12307c1 5921 struct block_symbol info;
4e5c77fe 5922
aeb5907d
JB
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
4e5c77fe 5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
fe978cb0 5927 block0, domain, &info);
d12307c1 5928 return info;
4c4b4cd2 5929}
14f9c5c9 5930
d12307c1 5931static struct block_symbol
f606139a
DE
5932ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
76a01679 5934 const struct block *block,
21b556f4 5935 const domain_enum domain)
4c4b4cd2 5936{
d12307c1 5937 struct block_symbol sym;
04dccad0
JB
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5940 if (sym.symbol != NULL)
04dccad0
JB
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
d12307c1
PMR
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
04dccad0
JB
5965 return sym;
5966 }
5967
d12307c1 5968 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5969}
5970
5971
4c4b4cd2
PH
5972/* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5975 are given by any of the regular expressions:
4c4b4cd2 5976
babe1480
JB
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5979 TKB [subprogram suffix for task bodies]
babe1480 5980 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
4c4b4cd2 5986
14f9c5c9 5987static int
d2e4a39e 5988is_name_suffix (const char *str)
14f9c5c9
AS
5989{
5990 int k;
4c4b4cd2
PH
5991 const char *matching;
5992 const int len = strlen (str);
5993
babe1480
JB
5994 /* Skip optional leading __[0-9]+. */
5995
4c4b4cd2
PH
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
babe1480
JB
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
4c4b4cd2 6001 }
babe1480
JB
6002
6003 /* [.$][0-9]+ */
4c4b4cd2 6004
babe1480 6005 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 6006 {
babe1480 6007 matching = str + 1;
4c4b4cd2
PH
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
babe1480 6015
4c4b4cd2
PH
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
9ac7f98e
JB
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
529cad9c
PH
6030#if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
529cad9c 6034 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
0963b4bd 6039 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045#endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
4c4b4cd2
PH
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
d2e4a39e 6066 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
14f9c5c9 6072 }
babe1480 6073
14f9c5c9
AS
6074 if (str[0] == '\000')
6075 return 1;
babe1480 6076
d2e4a39e 6077 if (str[0] == '_')
14f9c5c9
AS
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6080 return 0;
d2e4a39e 6081 if (str[2] == '_')
4c4b4cd2 6082 {
61ee279c
PH
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
4c4b4cd2
PH
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
1265e4aa
JB
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
14f9c5c9
AS
6106 return 1;
6107 }
4c4b4cd2 6108 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6109 {
4c4b4cd2
PH
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
14f9c5c9
AS
6113 return 1;
6114 }
6115 return 0;
6116}
d2e4a39e 6117
aeb5907d
JB
6118/* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
529cad9c
PH
6120
6121static int
6122is_valid_name_for_wild_match (const char *name0)
6123{
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
5823c3ef
JB
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
529cad9c
PH
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138}
6139
73589123
PH
6140/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
4c4b4cd2 6143
14f9c5c9 6144static int
73589123 6145advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6146{
73589123 6147 const char *name = *namep;
5b4ee69b 6148
5823c3ef 6149 while (1)
14f9c5c9 6150 {
aa27d0b3 6151 int t0, t1;
73589123
PH
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
61012eef 6160 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6161 break;
6162 else
6163 name += 1;
6164 }
aa27d0b3
JB
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
73589123
PH
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
5823c3ef 6177 return 0;
73589123
PH
6178 }
6179
6180 *namep = name;
6181 return 1;
6182}
6183
6184/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6187
6188static int
6189wild_match (const char *name, const char *patn)
6190{
22e048c9 6191 const char *p;
73589123
PH
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return 1;
96d887e8 6211 }
96d887e8
PH
6212}
6213
40658b94
PH
6214/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6216
c4d840bd
PH
6217static int
6218full_match (const char *sym_name, const char *search_name)
6219{
40658b94 6220 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
6221}
6222
6223
96d887e8
PH
6224/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 6227 OBJFILE is the section containing BLOCK. */
96d887e8
PH
6228
6229static void
6230ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 6231 const struct block *block, const char *name,
96d887e8 6232 domain_enum domain, struct objfile *objfile,
2570f2b7 6233 int wild)
96d887e8 6234{
8157b174 6235 struct block_iterator iter;
96d887e8
PH
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6240 int found_sym;
6241 struct symbol *sym;
6242
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 if (wild)
6246 {
8157b174
TT
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 6249 {
4186eb54
KS
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
73589123 6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 6253 {
2a2d4dc3
AS
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 continue;
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6257 arg_sym = sym;
6258 else
6259 {
76a01679
JB
6260 found_sym = 1;
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
2570f2b7 6263 block);
76a01679
JB
6264 }
6265 }
6266 }
96d887e8
PH
6267 }
6268 else
6269 {
8157b174
TT
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 6272 {
4186eb54
KS
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
76a01679 6275 {
c4d840bd
PH
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
2a2d4dc3 6281 {
c4d840bd
PH
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
2a2d4dc3 6286 }
c4d840bd 6287 }
76a01679
JB
6288 }
6289 }
96d887e8
PH
6290 }
6291
22cee43f
PMR
6292 /* Handle renamings. */
6293
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295 found_sym = 1;
6296
96d887e8
PH
6297 if (!found_sym && arg_sym != NULL)
6298 {
76a01679
JB
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6301 block);
96d887e8
PH
6302 }
6303
6304 if (!wild)
6305 {
6306 arg_sym = NULL;
6307 found_sym = 0;
6308
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6310 {
4186eb54
KS
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6313 {
6314 int cmp;
6315
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317 if (cmp == 0)
6318 {
61012eef 6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6320 if (cmp == 0)
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322 name_len);
6323 }
6324
6325 if (cmp == 0
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 {
2a2d4dc3
AS
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 {
6330 if (SYMBOL_IS_ARGUMENT (sym))
6331 arg_sym = sym;
6332 else
6333 {
6334 found_sym = 1;
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6337 block);
6338 }
6339 }
76a01679
JB
6340 }
6341 }
76a01679 6342 }
96d887e8
PH
6343
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6347 {
6348 add_defn_to_vec (obstackp,
76a01679 6349 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6350 block);
96d887e8
PH
6351 }
6352 }
6353}
6354\f
41d27058
JB
6355
6356 /* Symbol Completion */
6357
6358/* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6361
6362 TEXT_LEN is equal to the length of TEXT.
e701b3c0 6363 Perform a wild match if WILD_MATCH_P is set.
6ea35997 6364 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
6365 in its encoded form. */
6366
6367static const char *
6368symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6ea35997 6370 int wild_match_p, int encoded_p)
41d27058 6371{
41d27058
JB
6372 const int verbatim_match = (text[0] == '<');
6373 int match = 0;
6374
6375 if (verbatim_match)
6376 {
6377 /* Strip the leading angle bracket. */
6378 text = text + 1;
6379 text_len--;
6380 }
6381
6382 /* First, test against the fully qualified name of the symbol. */
6383
6384 if (strncmp (sym_name, text, text_len) == 0)
6385 match = 1;
6386
6ea35997 6387 if (match && !encoded_p)
41d27058
JB
6388 {
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6395
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6400 }
6401
6402 if (match && !verbatim_match)
6403 {
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6409 const char *tmp;
6410
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 if (*tmp != '\0')
6413 match = 0;
6414 }
6415
6416 /* Second: Try wild matching... */
6417
e701b3c0 6418 if (!match && wild_match_p)
41d27058
JB
6419 {
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425 if (strncmp (sym_name, text, text_len) == 0)
6426 match = 1;
6427 }
6428
6429 /* Finally: If we found a mach, prepare the result to return. */
6430
6431 if (!match)
6432 return NULL;
6433
6434 if (verbatim_match)
6435 sym_name = add_angle_brackets (sym_name);
6436
6ea35997 6437 if (!encoded_p)
41d27058
JB
6438 sym_name = ada_decode (sym_name);
6439
6440 return sym_name;
6441}
6442
eb3ff9a5 6443/* A companion function to ada_collect_symbol_completion_matches().
41d27058 6444 Check if SYM_NAME represents a symbol which name would be suitable
eb3ff9a5
PA
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
41d27058
JB
6447
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6452 completion vector.
c0af1706 6453 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6454 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6455 encoded formed (in which case the completion should also be
6456 encoded). */
6457
6458static void
eb3ff9a5
PA
6459symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
41d27058
JB
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
cb8e9b97 6463 int wild_match_p, int encoded_p)
41d27058
JB
6464{
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6466 wild_match_p, encoded_p);
41d27058
JB
6467 char *completion;
6468
6469 if (match == NULL)
6470 return;
6471
6472 /* We found a match, so add the appropriate completion to the given
6473 string vector. */
6474
6475 if (word == orig_text)
6476 {
224c3ddb 6477 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6478 strcpy (completion, match);
6479 }
6480 else if (word > orig_text)
6481 {
6482 /* Return some portion of sym_name. */
224c3ddb 6483 completion = (char *) xmalloc (strlen (match) + 5);
41d27058
JB
6484 strcpy (completion, match + (word - orig_text));
6485 }
6486 else
6487 {
6488 /* Return some of ORIG_TEXT plus sym_name. */
224c3ddb 6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
41d27058
JB
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6493 }
6494
eb3ff9a5 6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
41d27058
JB
6496}
6497
eb3ff9a5
PA
6498/* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
41d27058 6500
eb3ff9a5
PA
6501static void
6502ada_collect_symbol_completion_matches (completion_tracker &tracker,
6503 const char *text0, const char *word,
6504 enum type_code code)
41d27058
JB
6505{
6506 char *text;
6507 int text_len;
b1ed564a
JB
6508 int wild_match_p;
6509 int encoded_p;
41d27058 6510 struct symbol *sym;
43f3e411 6511 struct compunit_symtab *s;
41d27058
JB
6512 struct minimal_symbol *msymbol;
6513 struct objfile *objfile;
3977b71f 6514 const struct block *b, *surrounding_static_block = 0;
41d27058 6515 int i;
8157b174 6516 struct block_iterator iter;
b8fea896 6517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6518
2f68a895
TT
6519 gdb_assert (code == TYPE_CODE_UNDEF);
6520
41d27058
JB
6521 if (text0[0] == '<')
6522 {
6523 text = xstrdup (text0);
6524 make_cleanup (xfree, text);
6525 text_len = strlen (text);
b1ed564a
JB
6526 wild_match_p = 0;
6527 encoded_p = 1;
41d27058
JB
6528 }
6529 else
6530 {
6531 text = xstrdup (ada_encode (text0));
6532 make_cleanup (xfree, text);
6533 text_len = strlen (text);
6534 for (i = 0; i < text_len; i++)
6535 text[i] = tolower (text[i]);
6536
b1ed564a 6537 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6538 /* If the name contains a ".", then the user is entering a fully
6539 qualified entity name, and the match must not be done in wild
6540 mode. Similarly, if the user wants to complete what looks like
6541 an encoded name, the match must not be done in wild mode. */
b1ed564a 6542 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6543 }
6544
6545 /* First, look at the partial symtab symbols. */
14bc53a8
PA
6546 expand_symtabs_matching (NULL,
6547 [&] (const char *symname)
6548 {
6549 return symbol_completion_match (symname,
6550 text, text_len,
6551 wild_match_p,
6552 encoded_p);
6553 },
6554 NULL,
6555 ALL_DOMAIN);
41d27058
JB
6556
6557 /* At this point scan through the misc symbol vectors and add each
6558 symbol you find to the list. Eventually we want to ignore
6559 anything that isn't a text symbol (everything else will be
6560 handled by the psymtab code above). */
6561
6562 ALL_MSYMBOLS (objfile, msymbol)
6563 {
6564 QUIT;
eb3ff9a5 6565 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6566 text, text_len, text0, word, wild_match_p,
6567 encoded_p);
41d27058
JB
6568 }
6569
6570 /* Search upwards from currently selected frame (so that we can
6571 complete on local vars. */
6572
6573 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6574 {
6575 if (!BLOCK_SUPERBLOCK (b))
6576 surrounding_static_block = b; /* For elmin of dups */
6577
6578 ALL_BLOCK_SYMBOLS (b, iter, sym)
6579 {
eb3ff9a5 6580 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6581 text, text_len, text0, word,
b1ed564a 6582 wild_match_p, encoded_p);
41d27058
JB
6583 }
6584 }
6585
6586 /* Go through the symtabs and check the externs and statics for
43f3e411 6587 symbols which match. */
41d27058 6588
43f3e411 6589 ALL_COMPUNITS (objfile, s)
41d27058
JB
6590 {
6591 QUIT;
43f3e411 6592 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6593 ALL_BLOCK_SYMBOLS (b, iter, sym)
6594 {
eb3ff9a5 6595 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6596 text, text_len, text0, word,
b1ed564a 6597 wild_match_p, encoded_p);
41d27058
JB
6598 }
6599 }
6600
43f3e411 6601 ALL_COMPUNITS (objfile, s)
41d27058
JB
6602 {
6603 QUIT;
43f3e411 6604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6605 /* Don't do this block twice. */
6606 if (b == surrounding_static_block)
6607 continue;
6608 ALL_BLOCK_SYMBOLS (b, iter, sym)
6609 {
eb3ff9a5 6610 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
41d27058 6611 text, text_len, text0, word,
b1ed564a 6612 wild_match_p, encoded_p);
41d27058
JB
6613 }
6614 }
6615
b8fea896 6616 do_cleanups (old_chain);
41d27058
JB
6617}
6618
963a6417 6619 /* Field Access */
96d887e8 6620
73fb9985
JB
6621/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6622 for tagged types. */
6623
6624static int
6625ada_is_dispatch_table_ptr_type (struct type *type)
6626{
0d5cff50 6627 const char *name;
73fb9985
JB
6628
6629 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6630 return 0;
6631
6632 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6633 if (name == NULL)
6634 return 0;
6635
6636 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6637}
6638
ac4a2da4
JG
6639/* Return non-zero if TYPE is an interface tag. */
6640
6641static int
6642ada_is_interface_tag (struct type *type)
6643{
6644 const char *name = TYPE_NAME (type);
6645
6646 if (name == NULL)
6647 return 0;
6648
6649 return (strcmp (name, "ada__tags__interface_tag") == 0);
6650}
6651
963a6417
PH
6652/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6653 to be invisible to users. */
96d887e8 6654
963a6417
PH
6655int
6656ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6657{
963a6417
PH
6658 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6659 return 1;
ffde82bf 6660
73fb9985
JB
6661 /* Check the name of that field. */
6662 {
6663 const char *name = TYPE_FIELD_NAME (type, field_num);
6664
6665 /* Anonymous field names should not be printed.
6666 brobecker/2007-02-20: I don't think this can actually happen
6667 but we don't want to print the value of annonymous fields anyway. */
6668 if (name == NULL)
6669 return 1;
6670
ffde82bf
JB
6671 /* Normally, fields whose name start with an underscore ("_")
6672 are fields that have been internally generated by the compiler,
6673 and thus should not be printed. The "_parent" field is special,
6674 however: This is a field internally generated by the compiler
6675 for tagged types, and it contains the components inherited from
6676 the parent type. This field should not be printed as is, but
6677 should not be ignored either. */
61012eef 6678 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6679 return 1;
6680 }
6681
ac4a2da4
JG
6682 /* If this is the dispatch table of a tagged type or an interface tag,
6683 then ignore. */
73fb9985 6684 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6685 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6686 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6687 return 1;
6688
6689 /* Not a special field, so it should not be ignored. */
6690 return 0;
963a6417 6691}
96d887e8 6692
963a6417 6693/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6694 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6695
963a6417
PH
6696int
6697ada_is_tagged_type (struct type *type, int refok)
6698{
6699 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6700}
96d887e8 6701
963a6417 6702/* True iff TYPE represents the type of X'Tag */
96d887e8 6703
963a6417
PH
6704int
6705ada_is_tag_type (struct type *type)
6706{
460efde1
JB
6707 type = ada_check_typedef (type);
6708
963a6417
PH
6709 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6710 return 0;
6711 else
96d887e8 6712 {
963a6417 6713 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6714
963a6417
PH
6715 return (name != NULL
6716 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6717 }
96d887e8
PH
6718}
6719
963a6417 6720/* The type of the tag on VAL. */
76a01679 6721
963a6417
PH
6722struct type *
6723ada_tag_type (struct value *val)
96d887e8 6724{
df407dfe 6725 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6726}
96d887e8 6727
b50d69b5
JG
6728/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6729 retired at Ada 05). */
6730
6731static int
6732is_ada95_tag (struct value *tag)
6733{
6734 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6735}
6736
963a6417 6737/* The value of the tag on VAL. */
96d887e8 6738
963a6417
PH
6739struct value *
6740ada_value_tag (struct value *val)
6741{
03ee6b2e 6742 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6743}
6744
963a6417
PH
6745/* The value of the tag on the object of type TYPE whose contents are
6746 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6747 ADDRESS. */
96d887e8 6748
963a6417 6749static struct value *
10a2c479 6750value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6751 const gdb_byte *valaddr,
963a6417 6752 CORE_ADDR address)
96d887e8 6753{
b5385fc0 6754 int tag_byte_offset;
963a6417 6755 struct type *tag_type;
5b4ee69b 6756
963a6417 6757 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6758 NULL, NULL, NULL))
96d887e8 6759 {
fc1a4b47 6760 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6761 ? NULL
6762 : valaddr + tag_byte_offset);
963a6417 6763 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6764
963a6417 6765 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6766 }
963a6417
PH
6767 return NULL;
6768}
96d887e8 6769
963a6417
PH
6770static struct type *
6771type_from_tag (struct value *tag)
6772{
6773 const char *type_name = ada_tag_name (tag);
5b4ee69b 6774
963a6417
PH
6775 if (type_name != NULL)
6776 return ada_find_any_type (ada_encode (type_name));
6777 return NULL;
6778}
96d887e8 6779
b50d69b5
JG
6780/* Given a value OBJ of a tagged type, return a value of this
6781 type at the base address of the object. The base address, as
6782 defined in Ada.Tags, it is the address of the primary tag of
6783 the object, and therefore where the field values of its full
6784 view can be fetched. */
6785
6786struct value *
6787ada_tag_value_at_base_address (struct value *obj)
6788{
b50d69b5
JG
6789 struct value *val;
6790 LONGEST offset_to_top = 0;
6791 struct type *ptr_type, *obj_type;
6792 struct value *tag;
6793 CORE_ADDR base_address;
6794
6795 obj_type = value_type (obj);
6796
6797 /* It is the responsability of the caller to deref pointers. */
6798
6799 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6800 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6801 return obj;
6802
6803 tag = ada_value_tag (obj);
6804 if (!tag)
6805 return obj;
6806
6807 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6808
6809 if (is_ada95_tag (tag))
6810 return obj;
6811
6812 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6813 ptr_type = lookup_pointer_type (ptr_type);
6814 val = value_cast (ptr_type, tag);
6815 if (!val)
6816 return obj;
6817
6818 /* It is perfectly possible that an exception be raised while
6819 trying to determine the base address, just like for the tag;
6820 see ada_tag_name for more details. We do not print the error
6821 message for the same reason. */
6822
492d29ea 6823 TRY
b50d69b5
JG
6824 {
6825 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6826 }
6827
492d29ea
PA
6828 CATCH (e, RETURN_MASK_ERROR)
6829 {
6830 return obj;
6831 }
6832 END_CATCH
b50d69b5
JG
6833
6834 /* If offset is null, nothing to do. */
6835
6836 if (offset_to_top == 0)
6837 return obj;
6838
6839 /* -1 is a special case in Ada.Tags; however, what should be done
6840 is not quite clear from the documentation. So do nothing for
6841 now. */
6842
6843 if (offset_to_top == -1)
6844 return obj;
6845
6846 base_address = value_address (obj) - offset_to_top;
6847 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6848
6849 /* Make sure that we have a proper tag at the new address.
6850 Otherwise, offset_to_top is bogus (which can happen when
6851 the object is not initialized yet). */
6852
6853 if (!tag)
6854 return obj;
6855
6856 obj_type = type_from_tag (tag);
6857
6858 if (!obj_type)
6859 return obj;
6860
6861 return value_from_contents_and_address (obj_type, NULL, base_address);
6862}
6863
1b611343
JB
6864/* Return the "ada__tags__type_specific_data" type. */
6865
6866static struct type *
6867ada_get_tsd_type (struct inferior *inf)
963a6417 6868{
1b611343 6869 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6870
1b611343
JB
6871 if (data->tsd_type == 0)
6872 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6873 return data->tsd_type;
6874}
529cad9c 6875
1b611343
JB
6876/* Return the TSD (type-specific data) associated to the given TAG.
6877 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6878
1b611343 6879 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6880
1b611343
JB
6881static struct value *
6882ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6883{
4c4b4cd2 6884 struct value *val;
1b611343 6885 struct type *type;
5b4ee69b 6886
1b611343
JB
6887 /* First option: The TSD is simply stored as a field of our TAG.
6888 Only older versions of GNAT would use this format, but we have
6889 to test it first, because there are no visible markers for
6890 the current approach except the absence of that field. */
529cad9c 6891
1b611343
JB
6892 val = ada_value_struct_elt (tag, "tsd", 1);
6893 if (val)
6894 return val;
e802dbe0 6895
1b611343
JB
6896 /* Try the second representation for the dispatch table (in which
6897 there is no explicit 'tsd' field in the referent of the tag pointer,
6898 and instead the tsd pointer is stored just before the dispatch
6899 table. */
e802dbe0 6900
1b611343
JB
6901 type = ada_get_tsd_type (current_inferior());
6902 if (type == NULL)
6903 return NULL;
6904 type = lookup_pointer_type (lookup_pointer_type (type));
6905 val = value_cast (type, tag);
6906 if (val == NULL)
6907 return NULL;
6908 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6909}
6910
1b611343
JB
6911/* Given the TSD of a tag (type-specific data), return a string
6912 containing the name of the associated type.
6913
6914 The returned value is good until the next call. May return NULL
6915 if we are unable to determine the tag name. */
6916
6917static char *
6918ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6919{
529cad9c
PH
6920 static char name[1024];
6921 char *p;
1b611343 6922 struct value *val;
529cad9c 6923
1b611343 6924 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6925 if (val == NULL)
1b611343 6926 return NULL;
4c4b4cd2
PH
6927 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6928 for (p = name; *p != '\0'; p += 1)
6929 if (isalpha (*p))
6930 *p = tolower (*p);
1b611343 6931 return name;
4c4b4cd2
PH
6932}
6933
6934/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6935 a C string.
6936
6937 Return NULL if the TAG is not an Ada tag, or if we were unable to
6938 determine the name of that tag. The result is good until the next
6939 call. */
4c4b4cd2
PH
6940
6941const char *
6942ada_tag_name (struct value *tag)
6943{
1b611343 6944 char *name = NULL;
5b4ee69b 6945
df407dfe 6946 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6947 return NULL;
1b611343
JB
6948
6949 /* It is perfectly possible that an exception be raised while trying
6950 to determine the TAG's name, even under normal circumstances:
6951 The associated variable may be uninitialized or corrupted, for
6952 instance. We do not let any exception propagate past this point.
6953 instead we return NULL.
6954
6955 We also do not print the error message either (which often is very
6956 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6957 the caller print a more meaningful message if necessary. */
492d29ea 6958 TRY
1b611343
JB
6959 {
6960 struct value *tsd = ada_get_tsd_from_tag (tag);
6961
6962 if (tsd != NULL)
6963 name = ada_tag_name_from_tsd (tsd);
6964 }
492d29ea
PA
6965 CATCH (e, RETURN_MASK_ERROR)
6966 {
6967 }
6968 END_CATCH
1b611343
JB
6969
6970 return name;
4c4b4cd2
PH
6971}
6972
6973/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6974
d2e4a39e 6975struct type *
ebf56fd3 6976ada_parent_type (struct type *type)
14f9c5c9
AS
6977{
6978 int i;
6979
61ee279c 6980 type = ada_check_typedef (type);
14f9c5c9
AS
6981
6982 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6983 return NULL;
6984
6985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6986 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6987 {
6988 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6989
6990 /* If the _parent field is a pointer, then dereference it. */
6991 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6992 parent_type = TYPE_TARGET_TYPE (parent_type);
6993 /* If there is a parallel XVS type, get the actual base type. */
6994 parent_type = ada_get_base_type (parent_type);
6995
6996 return ada_check_typedef (parent_type);
6997 }
14f9c5c9
AS
6998
6999 return NULL;
7000}
7001
4c4b4cd2
PH
7002/* True iff field number FIELD_NUM of structure type TYPE contains the
7003 parent-type (inherited) fields of a derived type. Assumes TYPE is
7004 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
7005
7006int
ebf56fd3 7007ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 7008{
61ee279c 7009 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 7010
4c4b4cd2 7011 return (name != NULL
61012eef
GB
7012 && (startswith (name, "PARENT")
7013 || startswith (name, "_parent")));
14f9c5c9
AS
7014}
7015
4c4b4cd2 7016/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 7017 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 7018 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 7019 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 7020 structures. */
14f9c5c9
AS
7021
7022int
ebf56fd3 7023ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 7024{
d2e4a39e 7025 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7026
dddc0e16
JB
7027 if (name != NULL && strcmp (name, "RETVAL") == 0)
7028 {
7029 /* This happens in functions with "out" or "in out" parameters
7030 which are passed by copy. For such functions, GNAT describes
7031 the function's return type as being a struct where the return
7032 value is in a field called RETVAL, and where the other "out"
7033 or "in out" parameters are fields of that struct. This is not
7034 a wrapper. */
7035 return 0;
7036 }
7037
d2e4a39e 7038 return (name != NULL
61012eef 7039 && (startswith (name, "PARENT")
4c4b4cd2 7040 || strcmp (name, "REP") == 0
61012eef 7041 || startswith (name, "_parent")
4c4b4cd2 7042 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
7043}
7044
4c4b4cd2
PH
7045/* True iff field number FIELD_NUM of structure or union type TYPE
7046 is a variant wrapper. Assumes TYPE is a structure type with at least
7047 FIELD_NUM+1 fields. */
14f9c5c9
AS
7048
7049int
ebf56fd3 7050ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 7051{
d2e4a39e 7052 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 7053
14f9c5c9 7054 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 7055 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
7056 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7057 == TYPE_CODE_UNION)));
14f9c5c9
AS
7058}
7059
7060/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 7061 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
7062 returns the type of the controlling discriminant for the variant.
7063 May return NULL if the type could not be found. */
14f9c5c9 7064
d2e4a39e 7065struct type *
ebf56fd3 7066ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 7067{
a121b7c1 7068 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 7069
7c964f07 7070 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
7071}
7072
4c4b4cd2 7073/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 7074 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 7075 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
7076
7077int
ebf56fd3 7078ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 7079{
d2e4a39e 7080 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 7081
14f9c5c9
AS
7082 return (name != NULL && name[0] == 'O');
7083}
7084
7085/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7086 returns the name of the discriminant controlling the variant.
7087 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7088
a121b7c1 7089const char *
ebf56fd3 7090ada_variant_discrim_name (struct type *type0)
14f9c5c9 7091{
d2e4a39e 7092 static char *result = NULL;
14f9c5c9 7093 static size_t result_len = 0;
d2e4a39e
AS
7094 struct type *type;
7095 const char *name;
7096 const char *discrim_end;
7097 const char *discrim_start;
14f9c5c9
AS
7098
7099 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7100 type = TYPE_TARGET_TYPE (type0);
7101 else
7102 type = type0;
7103
7104 name = ada_type_name (type);
7105
7106 if (name == NULL || name[0] == '\000')
7107 return "";
7108
7109 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7110 discrim_end -= 1)
7111 {
61012eef 7112 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7113 break;
14f9c5c9
AS
7114 }
7115 if (discrim_end == name)
7116 return "";
7117
d2e4a39e 7118 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7119 discrim_start -= 1)
7120 {
d2e4a39e 7121 if (discrim_start == name + 1)
4c4b4cd2 7122 return "";
76a01679 7123 if ((discrim_start > name + 3
61012eef 7124 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7125 || discrim_start[-1] == '.')
7126 break;
14f9c5c9
AS
7127 }
7128
7129 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7130 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7131 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7132 return result;
7133}
7134
4c4b4cd2
PH
7135/* Scan STR for a subtype-encoded number, beginning at position K.
7136 Put the position of the character just past the number scanned in
7137 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7138 Return 1 if there was a valid number at the given position, and 0
7139 otherwise. A "subtype-encoded" number consists of the absolute value
7140 in decimal, followed by the letter 'm' to indicate a negative number.
7141 Assumes 0m does not occur. */
14f9c5c9
AS
7142
7143int
d2e4a39e 7144ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7145{
7146 ULONGEST RU;
7147
d2e4a39e 7148 if (!isdigit (str[k]))
14f9c5c9
AS
7149 return 0;
7150
4c4b4cd2 7151 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7152 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7153 LONGEST. */
14f9c5c9
AS
7154 RU = 0;
7155 while (isdigit (str[k]))
7156 {
d2e4a39e 7157 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7158 k += 1;
7159 }
7160
d2e4a39e 7161 if (str[k] == 'm')
14f9c5c9
AS
7162 {
7163 if (R != NULL)
4c4b4cd2 7164 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7165 k += 1;
7166 }
7167 else if (R != NULL)
7168 *R = (LONGEST) RU;
7169
4c4b4cd2 7170 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7171 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7172 number representable as a LONGEST (although either would probably work
7173 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7174 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7175
7176 if (new_k != NULL)
7177 *new_k = k;
7178 return 1;
7179}
7180
4c4b4cd2
PH
7181/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7182 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7183 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7184
d2e4a39e 7185int
ebf56fd3 7186ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7187{
d2e4a39e 7188 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7189 int p;
7190
7191 p = 0;
7192 while (1)
7193 {
d2e4a39e 7194 switch (name[p])
4c4b4cd2
PH
7195 {
7196 case '\0':
7197 return 0;
7198 case 'S':
7199 {
7200 LONGEST W;
5b4ee69b 7201
4c4b4cd2
PH
7202 if (!ada_scan_number (name, p + 1, &W, &p))
7203 return 0;
7204 if (val == W)
7205 return 1;
7206 break;
7207 }
7208 case 'R':
7209 {
7210 LONGEST L, U;
5b4ee69b 7211
4c4b4cd2
PH
7212 if (!ada_scan_number (name, p + 1, &L, &p)
7213 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7214 return 0;
7215 if (val >= L && val <= U)
7216 return 1;
7217 break;
7218 }
7219 case 'O':
7220 return 1;
7221 default:
7222 return 0;
7223 }
7224 }
7225}
7226
0963b4bd 7227/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7228
7229/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7230 ARG_TYPE, extract and return the value of one of its (non-static)
7231 fields. FIELDNO says which field. Differs from value_primitive_field
7232 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7233
4c4b4cd2 7234static struct value *
d2e4a39e 7235ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7236 struct type *arg_type)
14f9c5c9 7237{
14f9c5c9
AS
7238 struct type *type;
7239
61ee279c 7240 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7241 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7242
4c4b4cd2 7243 /* Handle packed fields. */
14f9c5c9
AS
7244
7245 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7246 {
7247 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7248 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7249
0fd88904 7250 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7251 offset + bit_pos / 8,
7252 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7253 }
7254 else
7255 return value_primitive_field (arg1, offset, fieldno, arg_type);
7256}
7257
52ce6436
PH
7258/* Find field with name NAME in object of type TYPE. If found,
7259 set the following for each argument that is non-null:
7260 - *FIELD_TYPE_P to the field's type;
7261 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7262 an object of that type;
7263 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7264 - *BIT_SIZE_P to its size in bits if the field is packed, and
7265 0 otherwise;
7266 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7267 fields up to but not including the desired field, or by the total
7268 number of fields if not found. A NULL value of NAME never
7269 matches; the function just counts visible fields in this case.
7270
0963b4bd 7271 Returns 1 if found, 0 otherwise. */
52ce6436 7272
4c4b4cd2 7273static int
0d5cff50 7274find_struct_field (const char *name, struct type *type, int offset,
76a01679 7275 struct type **field_type_p,
52ce6436
PH
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
4c4b4cd2
PH
7278{
7279 int i;
7280
61ee279c 7281 type = ada_check_typedef (type);
76a01679 7282
52ce6436
PH
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
d5d6fca5 7286 *byte_offset_p = 0;
52ce6436
PH
7287 if (bit_offset_p != NULL)
7288 *bit_offset_p = 0;
7289 if (bit_size_p != NULL)
7290 *bit_size_p = 0;
7291
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7293 {
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
0d5cff50 7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7297
4c4b4cd2
PH
7298 if (t_field_name == NULL)
7299 continue;
7300
52ce6436 7301 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7302 {
7303 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7304
52ce6436
PH
7305 if (field_type_p != NULL)
7306 *field_type_p = TYPE_FIELD_TYPE (type, i);
7307 if (byte_offset_p != NULL)
7308 *byte_offset_p = fld_offset;
7309 if (bit_offset_p != NULL)
7310 *bit_offset_p = bit_pos % 8;
7311 if (bit_size_p != NULL)
7312 *bit_size_p = bit_size;
76a01679
JB
7313 return 1;
7314 }
4c4b4cd2
PH
7315 else if (ada_is_wrapper_field (type, i))
7316 {
52ce6436
PH
7317 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7318 field_type_p, byte_offset_p, bit_offset_p,
7319 bit_size_p, index_p))
76a01679
JB
7320 return 1;
7321 }
4c4b4cd2
PH
7322 else if (ada_is_variant_part (type, i))
7323 {
52ce6436
PH
7324 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7325 fixed type?? */
4c4b4cd2 7326 int j;
52ce6436
PH
7327 struct type *field_type
7328 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7329
52ce6436 7330 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7331 {
76a01679
JB
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7333 fld_offset
7334 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 field_type_p, byte_offset_p,
52ce6436 7336 bit_offset_p, bit_size_p, index_p))
76a01679 7337 return 1;
4c4b4cd2
PH
7338 }
7339 }
52ce6436
PH
7340 else if (index_p != NULL)
7341 *index_p += 1;
4c4b4cd2
PH
7342 }
7343 return 0;
7344}
7345
0963b4bd 7346/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7347
52ce6436
PH
7348static int
7349num_visible_fields (struct type *type)
7350{
7351 int n;
5b4ee69b 7352
52ce6436
PH
7353 n = 0;
7354 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7355 return n;
7356}
14f9c5c9 7357
4c4b4cd2 7358/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7359 and search in it assuming it has (class) type TYPE.
7360 If found, return value, else return NULL.
7361
4c4b4cd2 7362 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 7363
4c4b4cd2 7364static struct value *
108d56a4 7365ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7366 struct type *type)
14f9c5c9
AS
7367{
7368 int i;
14f9c5c9 7369
5b4ee69b 7370 type = ada_check_typedef (type);
52ce6436 7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7372 {
0d5cff50 7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7374
7375 if (t_field_name == NULL)
4c4b4cd2 7376 continue;
14f9c5c9
AS
7377
7378 else if (field_name_match (t_field_name, name))
4c4b4cd2 7379 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7380
7381 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7382 {
0963b4bd 7383 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7384 ada_search_struct_field (name, arg,
7385 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7386 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7387
4c4b4cd2
PH
7388 if (v != NULL)
7389 return v;
7390 }
14f9c5c9
AS
7391
7392 else if (ada_is_variant_part (type, i))
4c4b4cd2 7393 {
0963b4bd 7394 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7395 int j;
5b4ee69b
MS
7396 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7397 i));
4c4b4cd2
PH
7398 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7399
52ce6436 7400 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7401 {
0963b4bd
MS
7402 struct value *v = ada_search_struct_field /* Force line
7403 break. */
06d5cf63
JB
7404 (name, arg,
7405 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7406 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7407
4c4b4cd2
PH
7408 if (v != NULL)
7409 return v;
7410 }
7411 }
14f9c5c9
AS
7412 }
7413 return NULL;
7414}
d2e4a39e 7415
52ce6436
PH
7416static struct value *ada_index_struct_field_1 (int *, struct value *,
7417 int, struct type *);
7418
7419
7420/* Return field #INDEX in ARG, where the index is that returned by
7421 * find_struct_field through its INDEX_P argument. Adjust the address
7422 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7423 * If found, return value, else return NULL. */
52ce6436
PH
7424
7425static struct value *
7426ada_index_struct_field (int index, struct value *arg, int offset,
7427 struct type *type)
7428{
7429 return ada_index_struct_field_1 (&index, arg, offset, type);
7430}
7431
7432
7433/* Auxiliary function for ada_index_struct_field. Like
7434 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7435 * *INDEX_P. */
52ce6436
PH
7436
7437static struct value *
7438ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7439 struct type *type)
7440{
7441 int i;
7442 type = ada_check_typedef (type);
7443
7444 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7445 {
7446 if (TYPE_FIELD_NAME (type, i) == NULL)
7447 continue;
7448 else if (ada_is_wrapper_field (type, i))
7449 {
0963b4bd 7450 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7451 ada_index_struct_field_1 (index_p, arg,
7452 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7453 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7454
52ce6436
PH
7455 if (v != NULL)
7456 return v;
7457 }
7458
7459 else if (ada_is_variant_part (type, i))
7460 {
7461 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7462 find_struct_field. */
52ce6436
PH
7463 error (_("Cannot assign this kind of variant record"));
7464 }
7465 else if (*index_p == 0)
7466 return ada_value_primitive_field (arg, offset, i, type);
7467 else
7468 *index_p -= 1;
7469 }
7470 return NULL;
7471}
7472
4c4b4cd2
PH
7473/* Given ARG, a value of type (pointer or reference to a)*
7474 structure/union, extract the component named NAME from the ultimate
7475 target structure/union and return it as a value with its
f5938064 7476 appropriate type.
14f9c5c9 7477
4c4b4cd2
PH
7478 The routine searches for NAME among all members of the structure itself
7479 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7480 (e.g., '_parent').
7481
03ee6b2e
PH
7482 If NO_ERR, then simply return NULL in case of error, rather than
7483 calling error. */
14f9c5c9 7484
d2e4a39e 7485struct value *
a121b7c1 7486ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7487{
4c4b4cd2 7488 struct type *t, *t1;
d2e4a39e 7489 struct value *v;
14f9c5c9 7490
4c4b4cd2 7491 v = NULL;
df407dfe 7492 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7494 {
7495 t1 = TYPE_TARGET_TYPE (t);
7496 if (t1 == NULL)
03ee6b2e 7497 goto BadValue;
61ee279c 7498 t1 = ada_check_typedef (t1);
4c4b4cd2 7499 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7500 {
994b9211 7501 arg = coerce_ref (arg);
76a01679
JB
7502 t = t1;
7503 }
4c4b4cd2 7504 }
14f9c5c9 7505
4c4b4cd2
PH
7506 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7507 {
7508 t1 = TYPE_TARGET_TYPE (t);
7509 if (t1 == NULL)
03ee6b2e 7510 goto BadValue;
61ee279c 7511 t1 = ada_check_typedef (t1);
4c4b4cd2 7512 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7513 {
7514 arg = value_ind (arg);
7515 t = t1;
7516 }
4c4b4cd2 7517 else
76a01679 7518 break;
4c4b4cd2 7519 }
14f9c5c9 7520
4c4b4cd2 7521 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7522 goto BadValue;
14f9c5c9 7523
4c4b4cd2
PH
7524 if (t1 == t)
7525 v = ada_search_struct_field (name, arg, 0, t);
7526 else
7527 {
7528 int bit_offset, bit_size, byte_offset;
7529 struct type *field_type;
7530 CORE_ADDR address;
7531
76a01679 7532 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7533 address = value_address (ada_value_ind (arg));
4c4b4cd2 7534 else
b50d69b5 7535 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7536
1ed6ede0 7537 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7538 if (find_struct_field (name, t1, 0,
7539 &field_type, &byte_offset, &bit_offset,
52ce6436 7540 &bit_size, NULL))
76a01679
JB
7541 {
7542 if (bit_size != 0)
7543 {
714e53ab
PH
7544 if (TYPE_CODE (t) == TYPE_CODE_REF)
7545 arg = ada_coerce_ref (arg);
7546 else
7547 arg = ada_value_ind (arg);
76a01679
JB
7548 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7549 bit_offset, bit_size,
7550 field_type);
7551 }
7552 else
f5938064 7553 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7554 }
7555 }
7556
03ee6b2e
PH
7557 if (v != NULL || no_err)
7558 return v;
7559 else
323e0a4a 7560 error (_("There is no member named %s."), name);
14f9c5c9 7561
03ee6b2e
PH
7562 BadValue:
7563 if (no_err)
7564 return NULL;
7565 else
0963b4bd
MS
7566 error (_("Attempt to extract a component of "
7567 "a value that is not a record."));
14f9c5c9
AS
7568}
7569
3b4de39c 7570/* Return a string representation of type TYPE. */
99bbb428 7571
3b4de39c 7572static std::string
99bbb428
PA
7573type_as_string (struct type *type)
7574{
d7e74731 7575 string_file tmp_stream;
99bbb428 7576
d7e74731 7577 type_print (type, "", &tmp_stream, -1);
99bbb428 7578
d7e74731 7579 return std::move (tmp_stream.string ());
99bbb428
PA
7580}
7581
14f9c5c9 7582/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7583 If DISPP is non-null, add its byte displacement from the beginning of a
7584 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7585 work for packed fields).
7586
7587 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7588 followed by "___".
14f9c5c9 7589
0963b4bd 7590 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7591 be a (pointer or reference)+ to a struct or union, and the
7592 ultimate target type will be searched.
14f9c5c9
AS
7593
7594 Looks recursively into variant clauses and parent types.
7595
4c4b4cd2
PH
7596 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7597 TYPE is not a type of the right kind. */
14f9c5c9 7598
4c4b4cd2 7599static struct type *
a121b7c1 7600ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
76a01679 7601 int noerr, int *dispp)
14f9c5c9
AS
7602{
7603 int i;
7604
7605 if (name == NULL)
7606 goto BadName;
7607
76a01679 7608 if (refok && type != NULL)
4c4b4cd2
PH
7609 while (1)
7610 {
61ee279c 7611 type = ada_check_typedef (type);
76a01679
JB
7612 if (TYPE_CODE (type) != TYPE_CODE_PTR
7613 && TYPE_CODE (type) != TYPE_CODE_REF)
7614 break;
7615 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7616 }
14f9c5c9 7617
76a01679 7618 if (type == NULL
1265e4aa
JB
7619 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7620 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7621 {
4c4b4cd2 7622 if (noerr)
76a01679 7623 return NULL;
99bbb428 7624
3b4de39c
PA
7625 error (_("Type %s is not a structure or union type"),
7626 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7627 }
7628
7629 type = to_static_fixed_type (type);
7630
7631 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7632 {
0d5cff50 7633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7634 struct type *t;
7635 int disp;
d2e4a39e 7636
14f9c5c9 7637 if (t_field_name == NULL)
4c4b4cd2 7638 continue;
14f9c5c9
AS
7639
7640 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7641 {
7642 if (dispp != NULL)
7643 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
460efde1 7644 return TYPE_FIELD_TYPE (type, i);
4c4b4cd2 7645 }
14f9c5c9
AS
7646
7647 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7648 {
7649 disp = 0;
7650 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7651 0, 1, &disp);
7652 if (t != NULL)
7653 {
7654 if (dispp != NULL)
7655 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7656 return t;
7657 }
7658 }
14f9c5c9
AS
7659
7660 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7661 {
7662 int j;
5b4ee69b
MS
7663 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7664 i));
4c4b4cd2
PH
7665
7666 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7667 {
b1f33ddd
JB
7668 /* FIXME pnh 2008/01/26: We check for a field that is
7669 NOT wrapped in a struct, since the compiler sometimes
7670 generates these for unchecked variant types. Revisit
0963b4bd 7671 if the compiler changes this practice. */
0d5cff50 7672 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7673 disp = 0;
b1f33ddd
JB
7674 if (v_field_name != NULL
7675 && field_name_match (v_field_name, name))
460efde1 7676 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7677 else
0963b4bd
MS
7678 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7679 j),
b1f33ddd
JB
7680 name, 0, 1, &disp);
7681
4c4b4cd2
PH
7682 if (t != NULL)
7683 {
7684 if (dispp != NULL)
7685 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7686 return t;
7687 }
7688 }
7689 }
14f9c5c9
AS
7690
7691 }
7692
7693BadName:
d2e4a39e 7694 if (!noerr)
14f9c5c9 7695 {
2b2798cc 7696 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7697
7698 error (_("Type %s has no component named %s"),
3b4de39c 7699 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7700 }
7701
7702 return NULL;
7703}
7704
b1f33ddd
JB
7705/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7706 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7707 represents an unchecked union (that is, the variant part of a
0963b4bd 7708 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7709
7710static int
7711is_unchecked_variant (struct type *var_type, struct type *outer_type)
7712{
a121b7c1 7713 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7714
b1f33ddd
JB
7715 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7716 == NULL);
7717}
7718
7719
14f9c5c9
AS
7720/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7721 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7722 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7723 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7724
d2e4a39e 7725int
ebf56fd3 7726ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7727 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7728{
7729 int others_clause;
7730 int i;
a121b7c1 7731 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7732 struct value *outer;
7733 struct value *discrim;
14f9c5c9
AS
7734 LONGEST discrim_val;
7735
012370f6
TT
7736 /* Using plain value_from_contents_and_address here causes problems
7737 because we will end up trying to resolve a type that is currently
7738 being constructed. */
7739 outer = value_from_contents_and_address_unresolved (outer_type,
7740 outer_valaddr, 0);
0c281816
JB
7741 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7742 if (discrim == NULL)
14f9c5c9 7743 return -1;
0c281816 7744 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7745
7746 others_clause = -1;
7747 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7748 {
7749 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7750 others_clause = i;
14f9c5c9 7751 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7752 return i;
14f9c5c9
AS
7753 }
7754
7755 return others_clause;
7756}
d2e4a39e 7757\f
14f9c5c9
AS
7758
7759
4c4b4cd2 7760 /* Dynamic-Sized Records */
14f9c5c9
AS
7761
7762/* Strategy: The type ostensibly attached to a value with dynamic size
7763 (i.e., a size that is not statically recorded in the debugging
7764 data) does not accurately reflect the size or layout of the value.
7765 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7766 conventional types that are constructed on the fly. */
14f9c5c9
AS
7767
7768/* There is a subtle and tricky problem here. In general, we cannot
7769 determine the size of dynamic records without its data. However,
7770 the 'struct value' data structure, which GDB uses to represent
7771 quantities in the inferior process (the target), requires the size
7772 of the type at the time of its allocation in order to reserve space
7773 for GDB's internal copy of the data. That's why the
7774 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7775 rather than struct value*s.
14f9c5c9
AS
7776
7777 However, GDB's internal history variables ($1, $2, etc.) are
7778 struct value*s containing internal copies of the data that are not, in
7779 general, the same as the data at their corresponding addresses in
7780 the target. Fortunately, the types we give to these values are all
7781 conventional, fixed-size types (as per the strategy described
7782 above), so that we don't usually have to perform the
7783 'to_fixed_xxx_type' conversions to look at their values.
7784 Unfortunately, there is one exception: if one of the internal
7785 history variables is an array whose elements are unconstrained
7786 records, then we will need to create distinct fixed types for each
7787 element selected. */
7788
7789/* The upshot of all of this is that many routines take a (type, host
7790 address, target address) triple as arguments to represent a value.
7791 The host address, if non-null, is supposed to contain an internal
7792 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7793 target at the target address. */
14f9c5c9
AS
7794
7795/* Assuming that VAL0 represents a pointer value, the result of
7796 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7797 dynamic-sized types. */
14f9c5c9 7798
d2e4a39e
AS
7799struct value *
7800ada_value_ind (struct value *val0)
14f9c5c9 7801{
c48db5ca 7802 struct value *val = value_ind (val0);
5b4ee69b 7803
b50d69b5
JG
7804 if (ada_is_tagged_type (value_type (val), 0))
7805 val = ada_tag_value_at_base_address (val);
7806
4c4b4cd2 7807 return ada_to_fixed_value (val);
14f9c5c9
AS
7808}
7809
7810/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7811 qualifiers on VAL0. */
7812
d2e4a39e
AS
7813static struct value *
7814ada_coerce_ref (struct value *val0)
7815{
df407dfe 7816 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7817 {
7818 struct value *val = val0;
5b4ee69b 7819
994b9211 7820 val = coerce_ref (val);
b50d69b5
JG
7821
7822 if (ada_is_tagged_type (value_type (val), 0))
7823 val = ada_tag_value_at_base_address (val);
7824
4c4b4cd2 7825 return ada_to_fixed_value (val);
d2e4a39e
AS
7826 }
7827 else
14f9c5c9
AS
7828 return val0;
7829}
7830
7831/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7832 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7833
7834static unsigned int
ebf56fd3 7835align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7836{
7837 return (off + alignment - 1) & ~(alignment - 1);
7838}
7839
4c4b4cd2 7840/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7841
7842static unsigned int
ebf56fd3 7843field_alignment (struct type *type, int f)
14f9c5c9 7844{
d2e4a39e 7845 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7846 int len;
14f9c5c9
AS
7847 int align_offset;
7848
64a1bf19
JB
7849 /* The field name should never be null, unless the debugging information
7850 is somehow malformed. In this case, we assume the field does not
7851 require any alignment. */
7852 if (name == NULL)
7853 return 1;
7854
7855 len = strlen (name);
7856
4c4b4cd2
PH
7857 if (!isdigit (name[len - 1]))
7858 return 1;
14f9c5c9 7859
d2e4a39e 7860 if (isdigit (name[len - 2]))
14f9c5c9
AS
7861 align_offset = len - 2;
7862 else
7863 align_offset = len - 1;
7864
61012eef 7865 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7866 return TARGET_CHAR_BIT;
7867
4c4b4cd2
PH
7868 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7869}
7870
852dff6c 7871/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7872
852dff6c
JB
7873static struct symbol *
7874ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7875{
7876 struct symbol *sym;
7877
7878 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7879 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7880 return sym;
7881
4186eb54
KS
7882 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7883 return sym;
14f9c5c9
AS
7884}
7885
dddfab26
UW
7886/* Find a type named NAME. Ignores ambiguity. This routine will look
7887 solely for types defined by debug info, it will not search the GDB
7888 primitive types. */
4c4b4cd2 7889
852dff6c 7890static struct type *
ebf56fd3 7891ada_find_any_type (const char *name)
14f9c5c9 7892{
852dff6c 7893 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7894
14f9c5c9 7895 if (sym != NULL)
dddfab26 7896 return SYMBOL_TYPE (sym);
14f9c5c9 7897
dddfab26 7898 return NULL;
14f9c5c9
AS
7899}
7900
739593e0
JB
7901/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7902 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7903 symbol, in which case it is returned. Otherwise, this looks for
7904 symbols whose name is that of NAME_SYM suffixed with "___XR".
7905 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7906
7907struct symbol *
270140bd 7908ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7909{
739593e0 7910 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7911 struct symbol *sym;
7912
739593e0
JB
7913 if (strstr (name, "___XR") != NULL)
7914 return name_sym;
7915
aeb5907d
JB
7916 sym = find_old_style_renaming_symbol (name, block);
7917
7918 if (sym != NULL)
7919 return sym;
7920
0963b4bd 7921 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7922 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7923 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7924 return sym;
7925 else
7926 return NULL;
7927}
7928
7929static struct symbol *
270140bd 7930find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7931{
7f0df278 7932 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7933 char *rename;
7934
7935 if (function_sym != NULL)
7936 {
7937 /* If the symbol is defined inside a function, NAME is not fully
7938 qualified. This means we need to prepend the function name
7939 as well as adding the ``___XR'' suffix to build the name of
7940 the associated renaming symbol. */
0d5cff50 7941 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7942 /* Function names sometimes contain suffixes used
7943 for instance to qualify nested subprograms. When building
7944 the XR type name, we need to make sure that this suffix is
7945 not included. So do not include any suffix in the function
7946 name length below. */
69fadcdf 7947 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7948 const int rename_len = function_name_len + 2 /* "__" */
7949 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7950
529cad9c 7951 /* Strip the suffix if necessary. */
69fadcdf
JB
7952 ada_remove_trailing_digits (function_name, &function_name_len);
7953 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7954 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7955
4c4b4cd2
PH
7956 /* Library-level functions are a special case, as GNAT adds
7957 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7958 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7959 have this prefix, so we need to skip this prefix if present. */
7960 if (function_name_len > 5 /* "_ada_" */
7961 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7962 {
7963 function_name += 5;
7964 function_name_len -= 5;
7965 }
4c4b4cd2
PH
7966
7967 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7968 strncpy (rename, function_name, function_name_len);
7969 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7970 "__%s___XR", name);
4c4b4cd2
PH
7971 }
7972 else
7973 {
7974 const int rename_len = strlen (name) + 6;
5b4ee69b 7975
4c4b4cd2 7976 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7977 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7978 }
7979
852dff6c 7980 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7981}
7982
14f9c5c9 7983/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7984 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7985 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7986 otherwise return 0. */
7987
14f9c5c9 7988int
d2e4a39e 7989ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7990{
7991 if (type1 == NULL)
7992 return 1;
7993 else if (type0 == NULL)
7994 return 0;
7995 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7996 return 1;
7997 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7998 return 0;
4c4b4cd2
PH
7999 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8000 return 1;
ad82864c 8001 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8002 return 1;
4c4b4cd2
PH
8003 else if (ada_is_array_descriptor_type (type0)
8004 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8005 return 1;
aeb5907d
JB
8006 else
8007 {
8008 const char *type0_name = type_name_no_tag (type0);
8009 const char *type1_name = type_name_no_tag (type1);
8010
8011 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8012 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8013 return 1;
8014 }
14f9c5c9
AS
8015 return 0;
8016}
8017
8018/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
8019 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8020
0d5cff50 8021const char *
d2e4a39e 8022ada_type_name (struct type *type)
14f9c5c9 8023{
d2e4a39e 8024 if (type == NULL)
14f9c5c9
AS
8025 return NULL;
8026 else if (TYPE_NAME (type) != NULL)
8027 return TYPE_NAME (type);
8028 else
8029 return TYPE_TAG_NAME (type);
8030}
8031
b4ba55a1
JB
8032/* Search the list of "descriptive" types associated to TYPE for a type
8033 whose name is NAME. */
8034
8035static struct type *
8036find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8037{
931e5bc3 8038 struct type *result, *tmp;
b4ba55a1 8039
c6044dd1
JB
8040 if (ada_ignore_descriptive_types_p)
8041 return NULL;
8042
b4ba55a1
JB
8043 /* If there no descriptive-type info, then there is no parallel type
8044 to be found. */
8045 if (!HAVE_GNAT_AUX_INFO (type))
8046 return NULL;
8047
8048 result = TYPE_DESCRIPTIVE_TYPE (type);
8049 while (result != NULL)
8050 {
0d5cff50 8051 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8052
8053 if (result_name == NULL)
8054 {
8055 warning (_("unexpected null name on descriptive type"));
8056 return NULL;
8057 }
8058
8059 /* If the names match, stop. */
8060 if (strcmp (result_name, name) == 0)
8061 break;
8062
8063 /* Otherwise, look at the next item on the list, if any. */
8064 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8065 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8066 else
8067 tmp = NULL;
8068
8069 /* If not found either, try after having resolved the typedef. */
8070 if (tmp != NULL)
8071 result = tmp;
b4ba55a1 8072 else
931e5bc3 8073 {
f168693b 8074 result = check_typedef (result);
931e5bc3
JG
8075 if (HAVE_GNAT_AUX_INFO (result))
8076 result = TYPE_DESCRIPTIVE_TYPE (result);
8077 else
8078 result = NULL;
8079 }
b4ba55a1
JB
8080 }
8081
8082 /* If we didn't find a match, see whether this is a packed array. With
8083 older compilers, the descriptive type information is either absent or
8084 irrelevant when it comes to packed arrays so the above lookup fails.
8085 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8086 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8087 return ada_find_any_type (name);
8088
8089 return result;
8090}
8091
8092/* Find a parallel type to TYPE with the specified NAME, using the
8093 descriptive type taken from the debugging information, if available,
8094 and otherwise using the (slower) name-based method. */
8095
8096static struct type *
8097ada_find_parallel_type_with_name (struct type *type, const char *name)
8098{
8099 struct type *result = NULL;
8100
8101 if (HAVE_GNAT_AUX_INFO (type))
8102 result = find_parallel_type_by_descriptive_type (type, name);
8103 else
8104 result = ada_find_any_type (name);
8105
8106 return result;
8107}
8108
8109/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8110 SUFFIX to the name of TYPE. */
14f9c5c9 8111
d2e4a39e 8112struct type *
ebf56fd3 8113ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8114{
0d5cff50 8115 char *name;
fe978cb0 8116 const char *type_name = ada_type_name (type);
14f9c5c9 8117 int len;
d2e4a39e 8118
fe978cb0 8119 if (type_name == NULL)
14f9c5c9
AS
8120 return NULL;
8121
fe978cb0 8122 len = strlen (type_name);
14f9c5c9 8123
b4ba55a1 8124 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8125
fe978cb0 8126 strcpy (name, type_name);
14f9c5c9
AS
8127 strcpy (name + len, suffix);
8128
b4ba55a1 8129 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8130}
8131
14f9c5c9 8132/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8133 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8134
d2e4a39e
AS
8135static struct type *
8136dynamic_template_type (struct type *type)
14f9c5c9 8137{
61ee279c 8138 type = ada_check_typedef (type);
14f9c5c9
AS
8139
8140 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8141 || ada_type_name (type) == NULL)
14f9c5c9 8142 return NULL;
d2e4a39e 8143 else
14f9c5c9
AS
8144 {
8145 int len = strlen (ada_type_name (type));
5b4ee69b 8146
4c4b4cd2
PH
8147 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8148 return type;
14f9c5c9 8149 else
4c4b4cd2 8150 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8151 }
8152}
8153
8154/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8155 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8156
d2e4a39e
AS
8157static int
8158is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8159{
8160 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8161
d2e4a39e 8162 return name != NULL
14f9c5c9
AS
8163 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8164 && strstr (name, "___XVL") != NULL;
8165}
8166
4c4b4cd2
PH
8167/* The index of the variant field of TYPE, or -1 if TYPE does not
8168 represent a variant record type. */
14f9c5c9 8169
d2e4a39e 8170static int
4c4b4cd2 8171variant_field_index (struct type *type)
14f9c5c9
AS
8172{
8173 int f;
8174
4c4b4cd2
PH
8175 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8176 return -1;
8177
8178 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8179 {
8180 if (ada_is_variant_part (type, f))
8181 return f;
8182 }
8183 return -1;
14f9c5c9
AS
8184}
8185
4c4b4cd2
PH
8186/* A record type with no fields. */
8187
d2e4a39e 8188static struct type *
fe978cb0 8189empty_record (struct type *templ)
14f9c5c9 8190{
fe978cb0 8191 struct type *type = alloc_type_copy (templ);
5b4ee69b 8192
14f9c5c9
AS
8193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8194 TYPE_NFIELDS (type) = 0;
8195 TYPE_FIELDS (type) = NULL;
b1f33ddd 8196 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
8197 TYPE_NAME (type) = "<empty>";
8198 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
8199 TYPE_LENGTH (type) = 0;
8200 return type;
8201}
8202
8203/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8204 the value of type TYPE at VALADDR or ADDRESS (see comments at
8205 the beginning of this section) VAL according to GNAT conventions.
8206 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8207 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8208 an outer-level type (i.e., as opposed to a branch of a variant.) A
8209 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8210 of the variant.
14f9c5c9 8211
4c4b4cd2
PH
8212 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8213 length are not statically known are discarded. As a consequence,
8214 VALADDR, ADDRESS and DVAL0 are ignored.
8215
8216 NOTE: Limitations: For now, we assume that dynamic fields and
8217 variants occupy whole numbers of bytes. However, they need not be
8218 byte-aligned. */
8219
8220struct type *
10a2c479 8221ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8222 const gdb_byte *valaddr,
4c4b4cd2
PH
8223 CORE_ADDR address, struct value *dval0,
8224 int keep_dynamic_fields)
14f9c5c9 8225{
d2e4a39e
AS
8226 struct value *mark = value_mark ();
8227 struct value *dval;
8228 struct type *rtype;
14f9c5c9 8229 int nfields, bit_len;
4c4b4cd2 8230 int variant_field;
14f9c5c9 8231 long off;
d94e4f4f 8232 int fld_bit_len;
14f9c5c9
AS
8233 int f;
8234
4c4b4cd2
PH
8235 /* Compute the number of fields in this record type that are going
8236 to be processed: unless keep_dynamic_fields, this includes only
8237 fields whose position and length are static will be processed. */
8238 if (keep_dynamic_fields)
8239 nfields = TYPE_NFIELDS (type);
8240 else
8241 {
8242 nfields = 0;
76a01679 8243 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8244 && !ada_is_variant_part (type, nfields)
8245 && !is_dynamic_field (type, nfields))
8246 nfields++;
8247 }
8248
e9bb382b 8249 rtype = alloc_type_copy (type);
14f9c5c9
AS
8250 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8251 INIT_CPLUS_SPECIFIC (rtype);
8252 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8253 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8254 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8255 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8256 TYPE_NAME (rtype) = ada_type_name (type);
8257 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8258 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8259
d2e4a39e
AS
8260 off = 0;
8261 bit_len = 0;
4c4b4cd2
PH
8262 variant_field = -1;
8263
14f9c5c9
AS
8264 for (f = 0; f < nfields; f += 1)
8265 {
6c038f32
PH
8266 off = align_value (off, field_alignment (type, f))
8267 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8268 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8269 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8270
d2e4a39e 8271 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8272 {
8273 variant_field = f;
d94e4f4f 8274 fld_bit_len = 0;
4c4b4cd2 8275 }
14f9c5c9 8276 else if (is_dynamic_field (type, f))
4c4b4cd2 8277 {
284614f0
JB
8278 const gdb_byte *field_valaddr = valaddr;
8279 CORE_ADDR field_address = address;
8280 struct type *field_type =
8281 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8282
4c4b4cd2 8283 if (dval0 == NULL)
b5304971
JG
8284 {
8285 /* rtype's length is computed based on the run-time
8286 value of discriminants. If the discriminants are not
8287 initialized, the type size may be completely bogus and
0963b4bd 8288 GDB may fail to allocate a value for it. So check the
b5304971 8289 size first before creating the value. */
c1b5a1a6 8290 ada_ensure_varsize_limit (rtype);
012370f6
TT
8291 /* Using plain value_from_contents_and_address here
8292 causes problems because we will end up trying to
8293 resolve a type that is currently being
8294 constructed. */
8295 dval = value_from_contents_and_address_unresolved (rtype,
8296 valaddr,
8297 address);
9f1f738a 8298 rtype = value_type (dval);
b5304971 8299 }
4c4b4cd2
PH
8300 else
8301 dval = dval0;
8302
284614f0
JB
8303 /* If the type referenced by this field is an aligner type, we need
8304 to unwrap that aligner type, because its size might not be set.
8305 Keeping the aligner type would cause us to compute the wrong
8306 size for this field, impacting the offset of the all the fields
8307 that follow this one. */
8308 if (ada_is_aligner_type (field_type))
8309 {
8310 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8311
8312 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8313 field_address = cond_offset_target (field_address, field_offset);
8314 field_type = ada_aligned_type (field_type);
8315 }
8316
8317 field_valaddr = cond_offset_host (field_valaddr,
8318 off / TARGET_CHAR_BIT);
8319 field_address = cond_offset_target (field_address,
8320 off / TARGET_CHAR_BIT);
8321
8322 /* Get the fixed type of the field. Note that, in this case,
8323 we do not want to get the real type out of the tag: if
8324 the current field is the parent part of a tagged record,
8325 we will get the tag of the object. Clearly wrong: the real
8326 type of the parent is not the real type of the child. We
8327 would end up in an infinite loop. */
8328 field_type = ada_get_base_type (field_type);
8329 field_type = ada_to_fixed_type (field_type, field_valaddr,
8330 field_address, dval, 0);
27f2a97b
JB
8331 /* If the field size is already larger than the maximum
8332 object size, then the record itself will necessarily
8333 be larger than the maximum object size. We need to make
8334 this check now, because the size might be so ridiculously
8335 large (due to an uninitialized variable in the inferior)
8336 that it would cause an overflow when adding it to the
8337 record size. */
c1b5a1a6 8338 ada_ensure_varsize_limit (field_type);
284614f0
JB
8339
8340 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8341 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8342 /* The multiplication can potentially overflow. But because
8343 the field length has been size-checked just above, and
8344 assuming that the maximum size is a reasonable value,
8345 an overflow should not happen in practice. So rather than
8346 adding overflow recovery code to this already complex code,
8347 we just assume that it's not going to happen. */
d94e4f4f 8348 fld_bit_len =
4c4b4cd2
PH
8349 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8350 }
14f9c5c9 8351 else
4c4b4cd2 8352 {
5ded5331
JB
8353 /* Note: If this field's type is a typedef, it is important
8354 to preserve the typedef layer.
8355
8356 Otherwise, we might be transforming a typedef to a fat
8357 pointer (encoding a pointer to an unconstrained array),
8358 into a basic fat pointer (encoding an unconstrained
8359 array). As both types are implemented using the same
8360 structure, the typedef is the only clue which allows us
8361 to distinguish between the two options. Stripping it
8362 would prevent us from printing this field appropriately. */
8363 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8364 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8365 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8366 fld_bit_len =
4c4b4cd2
PH
8367 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8368 else
5ded5331
JB
8369 {
8370 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8371
8372 /* We need to be careful of typedefs when computing
8373 the length of our field. If this is a typedef,
8374 get the length of the target type, not the length
8375 of the typedef. */
8376 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8377 field_type = ada_typedef_target_type (field_type);
8378
8379 fld_bit_len =
8380 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8381 }
4c4b4cd2 8382 }
14f9c5c9 8383 if (off + fld_bit_len > bit_len)
4c4b4cd2 8384 bit_len = off + fld_bit_len;
d94e4f4f 8385 off += fld_bit_len;
4c4b4cd2
PH
8386 TYPE_LENGTH (rtype) =
8387 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8388 }
4c4b4cd2
PH
8389
8390 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8391 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8392 the record. This can happen in the presence of representation
8393 clauses. */
8394 if (variant_field >= 0)
8395 {
8396 struct type *branch_type;
8397
8398 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8399
8400 if (dval0 == NULL)
9f1f738a 8401 {
012370f6
TT
8402 /* Using plain value_from_contents_and_address here causes
8403 problems because we will end up trying to resolve a type
8404 that is currently being constructed. */
8405 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8406 address);
9f1f738a
SA
8407 rtype = value_type (dval);
8408 }
4c4b4cd2
PH
8409 else
8410 dval = dval0;
8411
8412 branch_type =
8413 to_fixed_variant_branch_type
8414 (TYPE_FIELD_TYPE (type, variant_field),
8415 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8416 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8417 if (branch_type == NULL)
8418 {
8419 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8420 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8421 TYPE_NFIELDS (rtype) -= 1;
8422 }
8423 else
8424 {
8425 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8426 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8427 fld_bit_len =
8428 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8429 TARGET_CHAR_BIT;
8430 if (off + fld_bit_len > bit_len)
8431 bit_len = off + fld_bit_len;
8432 TYPE_LENGTH (rtype) =
8433 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8434 }
8435 }
8436
714e53ab
PH
8437 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8438 should contain the alignment of that record, which should be a strictly
8439 positive value. If null or negative, then something is wrong, most
8440 probably in the debug info. In that case, we don't round up the size
0963b4bd 8441 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8442 the current RTYPE length might be good enough for our purposes. */
8443 if (TYPE_LENGTH (type) <= 0)
8444 {
323e0a4a
AC
8445 if (TYPE_NAME (rtype))
8446 warning (_("Invalid type size for `%s' detected: %d."),
8447 TYPE_NAME (rtype), TYPE_LENGTH (type));
8448 else
8449 warning (_("Invalid type size for <unnamed> detected: %d."),
8450 TYPE_LENGTH (type));
714e53ab
PH
8451 }
8452 else
8453 {
8454 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8455 TYPE_LENGTH (type));
8456 }
14f9c5c9
AS
8457
8458 value_free_to_mark (mark);
d2e4a39e 8459 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8460 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8461 return rtype;
8462}
8463
4c4b4cd2
PH
8464/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8465 of 1. */
14f9c5c9 8466
d2e4a39e 8467static struct type *
fc1a4b47 8468template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8469 CORE_ADDR address, struct value *dval0)
8470{
8471 return ada_template_to_fixed_record_type_1 (type, valaddr,
8472 address, dval0, 1);
8473}
8474
8475/* An ordinary record type in which ___XVL-convention fields and
8476 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8477 static approximations, containing all possible fields. Uses
8478 no runtime values. Useless for use in values, but that's OK,
8479 since the results are used only for type determinations. Works on both
8480 structs and unions. Representation note: to save space, we memorize
8481 the result of this function in the TYPE_TARGET_TYPE of the
8482 template type. */
8483
8484static struct type *
8485template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8486{
8487 struct type *type;
8488 int nfields;
8489 int f;
8490
9e195661
PMR
8491 /* No need no do anything if the input type is already fixed. */
8492 if (TYPE_FIXED_INSTANCE (type0))
8493 return type0;
8494
8495 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8496 if (TYPE_TARGET_TYPE (type0) != NULL)
8497 return TYPE_TARGET_TYPE (type0);
8498
9e195661 8499 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8500 type = type0;
9e195661
PMR
8501 nfields = TYPE_NFIELDS (type0);
8502
8503 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8504 recompute all over next time. */
8505 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8506
8507 for (f = 0; f < nfields; f += 1)
8508 {
460efde1 8509 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8510 struct type *new_type;
14f9c5c9 8511
4c4b4cd2 8512 if (is_dynamic_field (type0, f))
460efde1
JB
8513 {
8514 field_type = ada_check_typedef (field_type);
8515 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8516 }
14f9c5c9 8517 else
f192137b 8518 new_type = static_unwrap_type (field_type);
9e195661
PMR
8519
8520 if (new_type != field_type)
8521 {
8522 /* Clone TYPE0 only the first time we get a new field type. */
8523 if (type == type0)
8524 {
8525 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8526 TYPE_CODE (type) = TYPE_CODE (type0);
8527 INIT_CPLUS_SPECIFIC (type);
8528 TYPE_NFIELDS (type) = nfields;
8529 TYPE_FIELDS (type) = (struct field *)
8530 TYPE_ALLOC (type, nfields * sizeof (struct field));
8531 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8532 sizeof (struct field) * nfields);
8533 TYPE_NAME (type) = ada_type_name (type0);
8534 TYPE_TAG_NAME (type) = NULL;
8535 TYPE_FIXED_INSTANCE (type) = 1;
8536 TYPE_LENGTH (type) = 0;
8537 }
8538 TYPE_FIELD_TYPE (type, f) = new_type;
8539 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8540 }
14f9c5c9 8541 }
9e195661 8542
14f9c5c9
AS
8543 return type;
8544}
8545
4c4b4cd2 8546/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8547 whose address in memory is ADDRESS, returns a revision of TYPE,
8548 which should be a non-dynamic-sized record, in which the variant
8549 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8550 for discriminant values in DVAL0, which can be NULL if the record
8551 contains the necessary discriminant values. */
8552
d2e4a39e 8553static struct type *
fc1a4b47 8554to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8555 CORE_ADDR address, struct value *dval0)
14f9c5c9 8556{
d2e4a39e 8557 struct value *mark = value_mark ();
4c4b4cd2 8558 struct value *dval;
d2e4a39e 8559 struct type *rtype;
14f9c5c9
AS
8560 struct type *branch_type;
8561 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8562 int variant_field = variant_field_index (type);
14f9c5c9 8563
4c4b4cd2 8564 if (variant_field == -1)
14f9c5c9
AS
8565 return type;
8566
4c4b4cd2 8567 if (dval0 == NULL)
9f1f738a
SA
8568 {
8569 dval = value_from_contents_and_address (type, valaddr, address);
8570 type = value_type (dval);
8571 }
4c4b4cd2
PH
8572 else
8573 dval = dval0;
8574
e9bb382b 8575 rtype = alloc_type_copy (type);
14f9c5c9 8576 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8577 INIT_CPLUS_SPECIFIC (rtype);
8578 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8579 TYPE_FIELDS (rtype) =
8580 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8581 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8582 sizeof (struct field) * nfields);
14f9c5c9
AS
8583 TYPE_NAME (rtype) = ada_type_name (type);
8584 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8585 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8586 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8587
4c4b4cd2
PH
8588 branch_type = to_fixed_variant_branch_type
8589 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8590 cond_offset_host (valaddr,
4c4b4cd2
PH
8591 TYPE_FIELD_BITPOS (type, variant_field)
8592 / TARGET_CHAR_BIT),
d2e4a39e 8593 cond_offset_target (address,
4c4b4cd2
PH
8594 TYPE_FIELD_BITPOS (type, variant_field)
8595 / TARGET_CHAR_BIT), dval);
d2e4a39e 8596 if (branch_type == NULL)
14f9c5c9 8597 {
4c4b4cd2 8598 int f;
5b4ee69b 8599
4c4b4cd2
PH
8600 for (f = variant_field + 1; f < nfields; f += 1)
8601 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8602 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8603 }
8604 else
8605 {
4c4b4cd2
PH
8606 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8607 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8608 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8609 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8610 }
4c4b4cd2 8611 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8612
4c4b4cd2 8613 value_free_to_mark (mark);
14f9c5c9
AS
8614 return rtype;
8615}
8616
8617/* An ordinary record type (with fixed-length fields) that describes
8618 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8619 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8620 should be in DVAL, a record value; it may be NULL if the object
8621 at ADDR itself contains any necessary discriminant values.
8622 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8623 values from the record are needed. Except in the case that DVAL,
8624 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8625 unchecked) is replaced by a particular branch of the variant.
8626
8627 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8628 is questionable and may be removed. It can arise during the
8629 processing of an unconstrained-array-of-record type where all the
8630 variant branches have exactly the same size. This is because in
8631 such cases, the compiler does not bother to use the XVS convention
8632 when encoding the record. I am currently dubious of this
8633 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8634
d2e4a39e 8635static struct type *
fc1a4b47 8636to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8637 CORE_ADDR address, struct value *dval)
14f9c5c9 8638{
d2e4a39e 8639 struct type *templ_type;
14f9c5c9 8640
876cecd0 8641 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8642 return type0;
8643
d2e4a39e 8644 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8645
8646 if (templ_type != NULL)
8647 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8648 else if (variant_field_index (type0) >= 0)
8649 {
8650 if (dval == NULL && valaddr == NULL && address == 0)
8651 return type0;
8652 return to_record_with_fixed_variant_part (type0, valaddr, address,
8653 dval);
8654 }
14f9c5c9
AS
8655 else
8656 {
876cecd0 8657 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8658 return type0;
8659 }
8660
8661}
8662
8663/* An ordinary record type (with fixed-length fields) that describes
8664 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8665 union type. Any necessary discriminants' values should be in DVAL,
8666 a record value. That is, this routine selects the appropriate
8667 branch of the union at ADDR according to the discriminant value
b1f33ddd 8668 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8669 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8670
d2e4a39e 8671static struct type *
fc1a4b47 8672to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8673 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8674{
8675 int which;
d2e4a39e
AS
8676 struct type *templ_type;
8677 struct type *var_type;
14f9c5c9
AS
8678
8679 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8680 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8681 else
14f9c5c9
AS
8682 var_type = var_type0;
8683
8684 templ_type = ada_find_parallel_type (var_type, "___XVU");
8685
8686 if (templ_type != NULL)
8687 var_type = templ_type;
8688
b1f33ddd
JB
8689 if (is_unchecked_variant (var_type, value_type (dval)))
8690 return var_type0;
d2e4a39e
AS
8691 which =
8692 ada_which_variant_applies (var_type,
0fd88904 8693 value_type (dval), value_contents (dval));
14f9c5c9
AS
8694
8695 if (which < 0)
e9bb382b 8696 return empty_record (var_type);
14f9c5c9 8697 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8698 return to_fixed_record_type
d2e4a39e
AS
8699 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8700 valaddr, address, dval);
4c4b4cd2 8701 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8702 return
8703 to_fixed_record_type
8704 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8705 else
8706 return TYPE_FIELD_TYPE (var_type, which);
8707}
8708
8908fca5
JB
8709/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8710 ENCODING_TYPE, a type following the GNAT conventions for discrete
8711 type encodings, only carries redundant information. */
8712
8713static int
8714ada_is_redundant_range_encoding (struct type *range_type,
8715 struct type *encoding_type)
8716{
8717 struct type *fixed_range_type;
108d56a4 8718 const char *bounds_str;
8908fca5
JB
8719 int n;
8720 LONGEST lo, hi;
8721
8722 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8723
005e2509
JB
8724 if (TYPE_CODE (get_base_type (range_type))
8725 != TYPE_CODE (get_base_type (encoding_type)))
8726 {
8727 /* The compiler probably used a simple base type to describe
8728 the range type instead of the range's actual base type,
8729 expecting us to get the real base type from the encoding
8730 anyway. In this situation, the encoding cannot be ignored
8731 as redundant. */
8732 return 0;
8733 }
8734
8908fca5
JB
8735 if (is_dynamic_type (range_type))
8736 return 0;
8737
8738 if (TYPE_NAME (encoding_type) == NULL)
8739 return 0;
8740
8741 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8742 if (bounds_str == NULL)
8743 return 0;
8744
8745 n = 8; /* Skip "___XDLU_". */
8746 if (!ada_scan_number (bounds_str, n, &lo, &n))
8747 return 0;
8748 if (TYPE_LOW_BOUND (range_type) != lo)
8749 return 0;
8750
8751 n += 2; /* Skip the "__" separator between the two bounds. */
8752 if (!ada_scan_number (bounds_str, n, &hi, &n))
8753 return 0;
8754 if (TYPE_HIGH_BOUND (range_type) != hi)
8755 return 0;
8756
8757 return 1;
8758}
8759
8760/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8761 a type following the GNAT encoding for describing array type
8762 indices, only carries redundant information. */
8763
8764static int
8765ada_is_redundant_index_type_desc (struct type *array_type,
8766 struct type *desc_type)
8767{
8768 struct type *this_layer = check_typedef (array_type);
8769 int i;
8770
8771 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8772 {
8773 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8774 TYPE_FIELD_TYPE (desc_type, i)))
8775 return 0;
8776 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8777 }
8778
8779 return 1;
8780}
8781
14f9c5c9
AS
8782/* Assuming that TYPE0 is an array type describing the type of a value
8783 at ADDR, and that DVAL describes a record containing any
8784 discriminants used in TYPE0, returns a type for the value that
8785 contains no dynamic components (that is, no components whose sizes
8786 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8787 true, gives an error message if the resulting type's size is over
4c4b4cd2 8788 varsize_limit. */
14f9c5c9 8789
d2e4a39e
AS
8790static struct type *
8791to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8792 int ignore_too_big)
14f9c5c9 8793{
d2e4a39e
AS
8794 struct type *index_type_desc;
8795 struct type *result;
ad82864c 8796 int constrained_packed_array_p;
931e5bc3 8797 static const char *xa_suffix = "___XA";
14f9c5c9 8798
b0dd7688 8799 type0 = ada_check_typedef (type0);
284614f0 8800 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8801 return type0;
14f9c5c9 8802
ad82864c
JB
8803 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8804 if (constrained_packed_array_p)
8805 type0 = decode_constrained_packed_array_type (type0);
284614f0 8806
931e5bc3
JG
8807 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8808
8809 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8810 encoding suffixed with 'P' may still be generated. If so,
8811 it should be used to find the XA type. */
8812
8813 if (index_type_desc == NULL)
8814 {
1da0522e 8815 const char *type_name = ada_type_name (type0);
931e5bc3 8816
1da0522e 8817 if (type_name != NULL)
931e5bc3 8818 {
1da0522e 8819 const int len = strlen (type_name);
931e5bc3
JG
8820 char *name = (char *) alloca (len + strlen (xa_suffix));
8821
1da0522e 8822 if (type_name[len - 1] == 'P')
931e5bc3 8823 {
1da0522e 8824 strcpy (name, type_name);
931e5bc3
JG
8825 strcpy (name + len - 1, xa_suffix);
8826 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8827 }
8828 }
8829 }
8830
28c85d6c 8831 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8832 if (index_type_desc != NULL
8833 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8834 {
8835 /* Ignore this ___XA parallel type, as it does not bring any
8836 useful information. This allows us to avoid creating fixed
8837 versions of the array's index types, which would be identical
8838 to the original ones. This, in turn, can also help avoid
8839 the creation of fixed versions of the array itself. */
8840 index_type_desc = NULL;
8841 }
8842
14f9c5c9
AS
8843 if (index_type_desc == NULL)
8844 {
61ee279c 8845 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8846
14f9c5c9 8847 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8848 depend on the contents of the array in properly constructed
8849 debugging data. */
529cad9c
PH
8850 /* Create a fixed version of the array element type.
8851 We're not providing the address of an element here,
e1d5a0d2 8852 and thus the actual object value cannot be inspected to do
529cad9c
PH
8853 the conversion. This should not be a problem, since arrays of
8854 unconstrained objects are not allowed. In particular, all
8855 the elements of an array of a tagged type should all be of
8856 the same type specified in the debugging info. No need to
8857 consult the object tag. */
1ed6ede0 8858 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8859
284614f0
JB
8860 /* Make sure we always create a new array type when dealing with
8861 packed array types, since we're going to fix-up the array
8862 type length and element bitsize a little further down. */
ad82864c 8863 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8864 result = type0;
14f9c5c9 8865 else
e9bb382b 8866 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8867 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8868 }
8869 else
8870 {
8871 int i;
8872 struct type *elt_type0;
8873
8874 elt_type0 = type0;
8875 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8876 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8877
8878 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8879 depend on the contents of the array in properly constructed
8880 debugging data. */
529cad9c
PH
8881 /* Create a fixed version of the array element type.
8882 We're not providing the address of an element here,
e1d5a0d2 8883 and thus the actual object value cannot be inspected to do
529cad9c
PH
8884 the conversion. This should not be a problem, since arrays of
8885 unconstrained objects are not allowed. In particular, all
8886 the elements of an array of a tagged type should all be of
8887 the same type specified in the debugging info. No need to
8888 consult the object tag. */
1ed6ede0
JB
8889 result =
8890 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8891
8892 elt_type0 = type0;
14f9c5c9 8893 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8894 {
8895 struct type *range_type =
28c85d6c 8896 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8897
e9bb382b 8898 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8899 result, range_type);
1ce677a4 8900 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8901 }
d2e4a39e 8902 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8903 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8904 }
8905
2e6fda7d
JB
8906 /* We want to preserve the type name. This can be useful when
8907 trying to get the type name of a value that has already been
8908 printed (for instance, if the user did "print VAR; whatis $". */
8909 TYPE_NAME (result) = TYPE_NAME (type0);
8910
ad82864c 8911 if (constrained_packed_array_p)
284614f0
JB
8912 {
8913 /* So far, the resulting type has been created as if the original
8914 type was a regular (non-packed) array type. As a result, the
8915 bitsize of the array elements needs to be set again, and the array
8916 length needs to be recomputed based on that bitsize. */
8917 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8918 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8919
8920 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8921 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8922 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8923 TYPE_LENGTH (result)++;
8924 }
8925
876cecd0 8926 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8927 return result;
d2e4a39e 8928}
14f9c5c9
AS
8929
8930
8931/* A standard type (containing no dynamically sized components)
8932 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8933 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8934 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8935 ADDRESS or in VALADDR contains these discriminants.
8936
1ed6ede0
JB
8937 If CHECK_TAG is not null, in the case of tagged types, this function
8938 attempts to locate the object's tag and use it to compute the actual
8939 type. However, when ADDRESS is null, we cannot use it to determine the
8940 location of the tag, and therefore compute the tagged type's actual type.
8941 So we return the tagged type without consulting the tag. */
529cad9c 8942
f192137b
JB
8943static struct type *
8944ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8945 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8946{
61ee279c 8947 type = ada_check_typedef (type);
d2e4a39e
AS
8948 switch (TYPE_CODE (type))
8949 {
8950 default:
14f9c5c9 8951 return type;
d2e4a39e 8952 case TYPE_CODE_STRUCT:
4c4b4cd2 8953 {
76a01679 8954 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8955 struct type *fixed_record_type =
8956 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8957
529cad9c
PH
8958 /* If STATIC_TYPE is a tagged type and we know the object's address,
8959 then we can determine its tag, and compute the object's actual
0963b4bd 8960 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8961 type (the parent part of the record may have dynamic fields
8962 and the way the location of _tag is expressed may depend on
8963 them). */
529cad9c 8964
1ed6ede0 8965 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8966 {
b50d69b5
JG
8967 struct value *tag =
8968 value_tag_from_contents_and_address
8969 (fixed_record_type,
8970 valaddr,
8971 address);
8972 struct type *real_type = type_from_tag (tag);
8973 struct value *obj =
8974 value_from_contents_and_address (fixed_record_type,
8975 valaddr,
8976 address);
9f1f738a 8977 fixed_record_type = value_type (obj);
76a01679 8978 if (real_type != NULL)
b50d69b5
JG
8979 return to_fixed_record_type
8980 (real_type, NULL,
8981 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8982 }
4af88198
JB
8983
8984 /* Check to see if there is a parallel ___XVZ variable.
8985 If there is, then it provides the actual size of our type. */
8986 else if (ada_type_name (fixed_record_type) != NULL)
8987 {
0d5cff50 8988 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8989 char *xvz_name
8990 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
4af88198
JB
8991 int xvz_found = 0;
8992 LONGEST size;
8993
88c15c34 8994 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8995 size = get_int_var_value (xvz_name, &xvz_found);
8996 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8997 {
8998 fixed_record_type = copy_type (fixed_record_type);
8999 TYPE_LENGTH (fixed_record_type) = size;
9000
9001 /* The FIXED_RECORD_TYPE may have be a stub. We have
9002 observed this when the debugging info is STABS, and
9003 apparently it is something that is hard to fix.
9004
9005 In practice, we don't need the actual type definition
9006 at all, because the presence of the XVZ variable allows us
9007 to assume that there must be a XVS type as well, which we
9008 should be able to use later, when we need the actual type
9009 definition.
9010
9011 In the meantime, pretend that the "fixed" type we are
9012 returning is NOT a stub, because this can cause trouble
9013 when using this type to create new types targeting it.
9014 Indeed, the associated creation routines often check
9015 whether the target type is a stub and will try to replace
0963b4bd 9016 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9017 might cause the new type to have the wrong size too.
9018 Consider the case of an array, for instance, where the size
9019 of the array is computed from the number of elements in
9020 our array multiplied by the size of its element. */
9021 TYPE_STUB (fixed_record_type) = 0;
9022 }
9023 }
1ed6ede0 9024 return fixed_record_type;
4c4b4cd2 9025 }
d2e4a39e 9026 case TYPE_CODE_ARRAY:
4c4b4cd2 9027 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9028 case TYPE_CODE_UNION:
9029 if (dval == NULL)
4c4b4cd2 9030 return type;
d2e4a39e 9031 else
4c4b4cd2 9032 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9033 }
14f9c5c9
AS
9034}
9035
f192137b
JB
9036/* The same as ada_to_fixed_type_1, except that it preserves the type
9037 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9038
9039 The typedef layer needs be preserved in order to differentiate between
9040 arrays and array pointers when both types are implemented using the same
9041 fat pointer. In the array pointer case, the pointer is encoded as
9042 a typedef of the pointer type. For instance, considering:
9043
9044 type String_Access is access String;
9045 S1 : String_Access := null;
9046
9047 To the debugger, S1 is defined as a typedef of type String. But
9048 to the user, it is a pointer. So if the user tries to print S1,
9049 we should not dereference the array, but print the array address
9050 instead.
9051
9052 If we didn't preserve the typedef layer, we would lose the fact that
9053 the type is to be presented as a pointer (needs de-reference before
9054 being printed). And we would also use the source-level type name. */
f192137b
JB
9055
9056struct type *
9057ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9058 CORE_ADDR address, struct value *dval, int check_tag)
9059
9060{
9061 struct type *fixed_type =
9062 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9063
96dbd2c1
JB
9064 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9065 then preserve the typedef layer.
9066
9067 Implementation note: We can only check the main-type portion of
9068 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9069 from TYPE now returns a type that has the same instance flags
9070 as TYPE. For instance, if TYPE is a "typedef const", and its
9071 target type is a "struct", then the typedef elimination will return
9072 a "const" version of the target type. See check_typedef for more
9073 details about how the typedef layer elimination is done.
9074
9075 brobecker/2010-11-19: It seems to me that the only case where it is
9076 useful to preserve the typedef layer is when dealing with fat pointers.
9077 Perhaps, we could add a check for that and preserve the typedef layer
9078 only in that situation. But this seems unecessary so far, probably
9079 because we call check_typedef/ada_check_typedef pretty much everywhere.
9080 */
f192137b 9081 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9082 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9083 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9084 return type;
9085
9086 return fixed_type;
9087}
9088
14f9c5c9 9089/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9090 TYPE0, but based on no runtime data. */
14f9c5c9 9091
d2e4a39e
AS
9092static struct type *
9093to_static_fixed_type (struct type *type0)
14f9c5c9 9094{
d2e4a39e 9095 struct type *type;
14f9c5c9
AS
9096
9097 if (type0 == NULL)
9098 return NULL;
9099
876cecd0 9100 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9101 return type0;
9102
61ee279c 9103 type0 = ada_check_typedef (type0);
d2e4a39e 9104
14f9c5c9
AS
9105 switch (TYPE_CODE (type0))
9106 {
9107 default:
9108 return type0;
9109 case TYPE_CODE_STRUCT:
9110 type = dynamic_template_type (type0);
d2e4a39e 9111 if (type != NULL)
4c4b4cd2
PH
9112 return template_to_static_fixed_type (type);
9113 else
9114 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9115 case TYPE_CODE_UNION:
9116 type = ada_find_parallel_type (type0, "___XVU");
9117 if (type != NULL)
4c4b4cd2
PH
9118 return template_to_static_fixed_type (type);
9119 else
9120 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9121 }
9122}
9123
4c4b4cd2
PH
9124/* A static approximation of TYPE with all type wrappers removed. */
9125
d2e4a39e
AS
9126static struct type *
9127static_unwrap_type (struct type *type)
14f9c5c9
AS
9128{
9129 if (ada_is_aligner_type (type))
9130 {
61ee279c 9131 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9132 if (ada_type_name (type1) == NULL)
4c4b4cd2 9133 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9134
9135 return static_unwrap_type (type1);
9136 }
d2e4a39e 9137 else
14f9c5c9 9138 {
d2e4a39e 9139 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9140
d2e4a39e 9141 if (raw_real_type == type)
4c4b4cd2 9142 return type;
14f9c5c9 9143 else
4c4b4cd2 9144 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9145 }
9146}
9147
9148/* In some cases, incomplete and private types require
4c4b4cd2 9149 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9150 type Foo;
9151 type FooP is access Foo;
9152 V: FooP;
9153 type Foo is array ...;
4c4b4cd2 9154 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9155 cross-references to such types, we instead substitute for FooP a
9156 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9157 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9158
9159/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9160 exists, otherwise TYPE. */
9161
d2e4a39e 9162struct type *
61ee279c 9163ada_check_typedef (struct type *type)
14f9c5c9 9164{
727e3d2e
JB
9165 if (type == NULL)
9166 return NULL;
9167
720d1a40
JB
9168 /* If our type is a typedef type of a fat pointer, then we're done.
9169 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9170 what allows us to distinguish between fat pointers that represent
9171 array types, and fat pointers that represent array access types
9172 (in both cases, the compiler implements them as fat pointers). */
9173 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9174 && is_thick_pntr (ada_typedef_target_type (type)))
9175 return type;
9176
f168693b 9177 type = check_typedef (type);
14f9c5c9 9178 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9179 || !TYPE_STUB (type)
14f9c5c9
AS
9180 || TYPE_TAG_NAME (type) == NULL)
9181 return type;
d2e4a39e 9182 else
14f9c5c9 9183 {
0d5cff50 9184 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 9185 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9186
05e522ef
JB
9187 if (type1 == NULL)
9188 return type;
9189
9190 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9191 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9192 types, only for the typedef-to-array types). If that's the case,
9193 strip the typedef layer. */
9194 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9195 type1 = ada_check_typedef (type1);
9196
9197 return type1;
14f9c5c9
AS
9198 }
9199}
9200
9201/* A value representing the data at VALADDR/ADDRESS as described by
9202 type TYPE0, but with a standard (static-sized) type that correctly
9203 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9204 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9205 creation of struct values]. */
14f9c5c9 9206
4c4b4cd2
PH
9207static struct value *
9208ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9209 struct value *val0)
14f9c5c9 9210{
1ed6ede0 9211 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9212
14f9c5c9
AS
9213 if (type == type0 && val0 != NULL)
9214 return val0;
d2e4a39e 9215 else
4c4b4cd2
PH
9216 return value_from_contents_and_address (type, 0, address);
9217}
9218
9219/* A value representing VAL, but with a standard (static-sized) type
9220 that correctly describes it. Does not necessarily create a new
9221 value. */
9222
0c3acc09 9223struct value *
4c4b4cd2
PH
9224ada_to_fixed_value (struct value *val)
9225{
c48db5ca
JB
9226 val = unwrap_value (val);
9227 val = ada_to_fixed_value_create (value_type (val),
9228 value_address (val),
9229 val);
9230 return val;
14f9c5c9 9231}
d2e4a39e 9232\f
14f9c5c9 9233
14f9c5c9
AS
9234/* Attributes */
9235
4c4b4cd2
PH
9236/* Table mapping attribute numbers to names.
9237 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9238
d2e4a39e 9239static const char *attribute_names[] = {
14f9c5c9
AS
9240 "<?>",
9241
d2e4a39e 9242 "first",
14f9c5c9
AS
9243 "last",
9244 "length",
9245 "image",
14f9c5c9
AS
9246 "max",
9247 "min",
4c4b4cd2
PH
9248 "modulus",
9249 "pos",
9250 "size",
9251 "tag",
14f9c5c9 9252 "val",
14f9c5c9
AS
9253 0
9254};
9255
d2e4a39e 9256const char *
4c4b4cd2 9257ada_attribute_name (enum exp_opcode n)
14f9c5c9 9258{
4c4b4cd2
PH
9259 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9260 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9261 else
9262 return attribute_names[0];
9263}
9264
4c4b4cd2 9265/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9266
4c4b4cd2
PH
9267static LONGEST
9268pos_atr (struct value *arg)
14f9c5c9 9269{
24209737
PH
9270 struct value *val = coerce_ref (arg);
9271 struct type *type = value_type (val);
aa715135 9272 LONGEST result;
14f9c5c9 9273
d2e4a39e 9274 if (!discrete_type_p (type))
323e0a4a 9275 error (_("'POS only defined on discrete types"));
14f9c5c9 9276
aa715135
JG
9277 if (!discrete_position (type, value_as_long (val), &result))
9278 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9279
aa715135 9280 return result;
4c4b4cd2
PH
9281}
9282
9283static struct value *
3cb382c9 9284value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9285{
3cb382c9 9286 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9287}
9288
4c4b4cd2 9289/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9290
d2e4a39e
AS
9291static struct value *
9292value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9293{
d2e4a39e 9294 if (!discrete_type_p (type))
323e0a4a 9295 error (_("'VAL only defined on discrete types"));
df407dfe 9296 if (!integer_type_p (value_type (arg)))
323e0a4a 9297 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9298
9299 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9300 {
9301 long pos = value_as_long (arg);
5b4ee69b 9302
14f9c5c9 9303 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9304 error (_("argument to 'VAL out of range"));
14e75d8e 9305 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9306 }
9307 else
9308 return value_from_longest (type, value_as_long (arg));
9309}
14f9c5c9 9310\f
d2e4a39e 9311
4c4b4cd2 9312 /* Evaluation */
14f9c5c9 9313
4c4b4cd2
PH
9314/* True if TYPE appears to be an Ada character type.
9315 [At the moment, this is true only for Character and Wide_Character;
9316 It is a heuristic test that could stand improvement]. */
14f9c5c9 9317
d2e4a39e
AS
9318int
9319ada_is_character_type (struct type *type)
14f9c5c9 9320{
7b9f71f2
JB
9321 const char *name;
9322
9323 /* If the type code says it's a character, then assume it really is,
9324 and don't check any further. */
9325 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9326 return 1;
9327
9328 /* Otherwise, assume it's a character type iff it is a discrete type
9329 with a known character type name. */
9330 name = ada_type_name (type);
9331 return (name != NULL
9332 && (TYPE_CODE (type) == TYPE_CODE_INT
9333 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9334 && (strcmp (name, "character") == 0
9335 || strcmp (name, "wide_character") == 0
5a517ebd 9336 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9337 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9338}
9339
4c4b4cd2 9340/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9341
9342int
ebf56fd3 9343ada_is_string_type (struct type *type)
14f9c5c9 9344{
61ee279c 9345 type = ada_check_typedef (type);
d2e4a39e 9346 if (type != NULL
14f9c5c9 9347 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9348 && (ada_is_simple_array_type (type)
9349 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9350 && ada_array_arity (type) == 1)
9351 {
9352 struct type *elttype = ada_array_element_type (type, 1);
9353
9354 return ada_is_character_type (elttype);
9355 }
d2e4a39e 9356 else
14f9c5c9
AS
9357 return 0;
9358}
9359
5bf03f13
JB
9360/* The compiler sometimes provides a parallel XVS type for a given
9361 PAD type. Normally, it is safe to follow the PAD type directly,
9362 but older versions of the compiler have a bug that causes the offset
9363 of its "F" field to be wrong. Following that field in that case
9364 would lead to incorrect results, but this can be worked around
9365 by ignoring the PAD type and using the associated XVS type instead.
9366
9367 Set to True if the debugger should trust the contents of PAD types.
9368 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9369static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9370
9371/* True if TYPE is a struct type introduced by the compiler to force the
9372 alignment of a value. Such types have a single field with a
4c4b4cd2 9373 distinctive name. */
14f9c5c9
AS
9374
9375int
ebf56fd3 9376ada_is_aligner_type (struct type *type)
14f9c5c9 9377{
61ee279c 9378 type = ada_check_typedef (type);
714e53ab 9379
5bf03f13 9380 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9381 return 0;
9382
14f9c5c9 9383 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9384 && TYPE_NFIELDS (type) == 1
9385 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9386}
9387
9388/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9389 the parallel type. */
14f9c5c9 9390
d2e4a39e
AS
9391struct type *
9392ada_get_base_type (struct type *raw_type)
14f9c5c9 9393{
d2e4a39e
AS
9394 struct type *real_type_namer;
9395 struct type *raw_real_type;
14f9c5c9
AS
9396
9397 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9398 return raw_type;
9399
284614f0
JB
9400 if (ada_is_aligner_type (raw_type))
9401 /* The encoding specifies that we should always use the aligner type.
9402 So, even if this aligner type has an associated XVS type, we should
9403 simply ignore it.
9404
9405 According to the compiler gurus, an XVS type parallel to an aligner
9406 type may exist because of a stabs limitation. In stabs, aligner
9407 types are empty because the field has a variable-sized type, and
9408 thus cannot actually be used as an aligner type. As a result,
9409 we need the associated parallel XVS type to decode the type.
9410 Since the policy in the compiler is to not change the internal
9411 representation based on the debugging info format, we sometimes
9412 end up having a redundant XVS type parallel to the aligner type. */
9413 return raw_type;
9414
14f9c5c9 9415 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9416 if (real_type_namer == NULL
14f9c5c9
AS
9417 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9418 || TYPE_NFIELDS (real_type_namer) != 1)
9419 return raw_type;
9420
f80d3ff2
JB
9421 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9422 {
9423 /* This is an older encoding form where the base type needs to be
9424 looked up by name. We prefer the newer enconding because it is
9425 more efficient. */
9426 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9427 if (raw_real_type == NULL)
9428 return raw_type;
9429 else
9430 return raw_real_type;
9431 }
9432
9433 /* The field in our XVS type is a reference to the base type. */
9434 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9435}
14f9c5c9 9436
4c4b4cd2 9437/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9438
d2e4a39e
AS
9439struct type *
9440ada_aligned_type (struct type *type)
14f9c5c9
AS
9441{
9442 if (ada_is_aligner_type (type))
9443 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9444 else
9445 return ada_get_base_type (type);
9446}
9447
9448
9449/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9450 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9451
fc1a4b47
AC
9452const gdb_byte *
9453ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9454{
d2e4a39e 9455 if (ada_is_aligner_type (type))
14f9c5c9 9456 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9457 valaddr +
9458 TYPE_FIELD_BITPOS (type,
9459 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9460 else
9461 return valaddr;
9462}
9463
4c4b4cd2
PH
9464
9465
14f9c5c9 9466/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9467 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9468const char *
9469ada_enum_name (const char *name)
14f9c5c9 9470{
4c4b4cd2
PH
9471 static char *result;
9472 static size_t result_len = 0;
e6a959d6 9473 const char *tmp;
14f9c5c9 9474
4c4b4cd2
PH
9475 /* First, unqualify the enumeration name:
9476 1. Search for the last '.' character. If we find one, then skip
177b42fe 9477 all the preceding characters, the unqualified name starts
76a01679 9478 right after that dot.
4c4b4cd2 9479 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9480 translates dots into "__". Search forward for double underscores,
9481 but stop searching when we hit an overloading suffix, which is
9482 of the form "__" followed by digits. */
4c4b4cd2 9483
c3e5cd34
PH
9484 tmp = strrchr (name, '.');
9485 if (tmp != NULL)
4c4b4cd2
PH
9486 name = tmp + 1;
9487 else
14f9c5c9 9488 {
4c4b4cd2
PH
9489 while ((tmp = strstr (name, "__")) != NULL)
9490 {
9491 if (isdigit (tmp[2]))
9492 break;
9493 else
9494 name = tmp + 2;
9495 }
14f9c5c9
AS
9496 }
9497
9498 if (name[0] == 'Q')
9499 {
14f9c5c9 9500 int v;
5b4ee69b 9501
14f9c5c9 9502 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9503 {
9504 if (sscanf (name + 2, "%x", &v) != 1)
9505 return name;
9506 }
14f9c5c9 9507 else
4c4b4cd2 9508 return name;
14f9c5c9 9509
4c4b4cd2 9510 GROW_VECT (result, result_len, 16);
14f9c5c9 9511 if (isascii (v) && isprint (v))
88c15c34 9512 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9513 else if (name[1] == 'U')
88c15c34 9514 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9515 else
88c15c34 9516 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9517
9518 return result;
9519 }
d2e4a39e 9520 else
4c4b4cd2 9521 {
c3e5cd34
PH
9522 tmp = strstr (name, "__");
9523 if (tmp == NULL)
9524 tmp = strstr (name, "$");
9525 if (tmp != NULL)
4c4b4cd2
PH
9526 {
9527 GROW_VECT (result, result_len, tmp - name + 1);
9528 strncpy (result, name, tmp - name);
9529 result[tmp - name] = '\0';
9530 return result;
9531 }
9532
9533 return name;
9534 }
14f9c5c9
AS
9535}
9536
14f9c5c9
AS
9537/* Evaluate the subexpression of EXP starting at *POS as for
9538 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9539 expression. */
14f9c5c9 9540
d2e4a39e
AS
9541static struct value *
9542evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9543{
4b27a620 9544 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9545}
9546
9547/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9548 value it wraps. */
14f9c5c9 9549
d2e4a39e
AS
9550static struct value *
9551unwrap_value (struct value *val)
14f9c5c9 9552{
df407dfe 9553 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9554
14f9c5c9
AS
9555 if (ada_is_aligner_type (type))
9556 {
de4d072f 9557 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9558 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9559
14f9c5c9 9560 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9561 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9562
9563 return unwrap_value (v);
9564 }
d2e4a39e 9565 else
14f9c5c9 9566 {
d2e4a39e 9567 struct type *raw_real_type =
61ee279c 9568 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9569
5bf03f13
JB
9570 /* If there is no parallel XVS or XVE type, then the value is
9571 already unwrapped. Return it without further modification. */
9572 if ((type == raw_real_type)
9573 && ada_find_parallel_type (type, "___XVE") == NULL)
9574 return val;
14f9c5c9 9575
d2e4a39e 9576 return
4c4b4cd2
PH
9577 coerce_unspec_val_to_type
9578 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9579 value_address (val),
1ed6ede0 9580 NULL, 1));
14f9c5c9
AS
9581 }
9582}
d2e4a39e
AS
9583
9584static struct value *
9585cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9586{
9587 LONGEST val;
9588
df407dfe 9589 if (type == value_type (arg))
14f9c5c9 9590 return arg;
df407dfe 9591 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9592 val = ada_float_to_fixed (type,
df407dfe 9593 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9594 value_as_long (arg)));
d2e4a39e 9595 else
14f9c5c9 9596 {
a53b7a21 9597 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9598
14f9c5c9
AS
9599 val = ada_float_to_fixed (type, argd);
9600 }
9601
9602 return value_from_longest (type, val);
9603}
9604
d2e4a39e 9605static struct value *
a53b7a21 9606cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9607{
df407dfe 9608 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9609 value_as_long (arg));
5b4ee69b 9610
a53b7a21 9611 return value_from_double (type, val);
14f9c5c9
AS
9612}
9613
d99dcf51
JB
9614/* Given two array types T1 and T2, return nonzero iff both arrays
9615 contain the same number of elements. */
9616
9617static int
9618ada_same_array_size_p (struct type *t1, struct type *t2)
9619{
9620 LONGEST lo1, hi1, lo2, hi2;
9621
9622 /* Get the array bounds in order to verify that the size of
9623 the two arrays match. */
9624 if (!get_array_bounds (t1, &lo1, &hi1)
9625 || !get_array_bounds (t2, &lo2, &hi2))
9626 error (_("unable to determine array bounds"));
9627
9628 /* To make things easier for size comparison, normalize a bit
9629 the case of empty arrays by making sure that the difference
9630 between upper bound and lower bound is always -1. */
9631 if (lo1 > hi1)
9632 hi1 = lo1 - 1;
9633 if (lo2 > hi2)
9634 hi2 = lo2 - 1;
9635
9636 return (hi1 - lo1 == hi2 - lo2);
9637}
9638
9639/* Assuming that VAL is an array of integrals, and TYPE represents
9640 an array with the same number of elements, but with wider integral
9641 elements, return an array "casted" to TYPE. In practice, this
9642 means that the returned array is built by casting each element
9643 of the original array into TYPE's (wider) element type. */
9644
9645static struct value *
9646ada_promote_array_of_integrals (struct type *type, struct value *val)
9647{
9648 struct type *elt_type = TYPE_TARGET_TYPE (type);
9649 LONGEST lo, hi;
9650 struct value *res;
9651 LONGEST i;
9652
9653 /* Verify that both val and type are arrays of scalars, and
9654 that the size of val's elements is smaller than the size
9655 of type's element. */
9656 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9657 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9658 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9659 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9660 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9661 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9662
9663 if (!get_array_bounds (type, &lo, &hi))
9664 error (_("unable to determine array bounds"));
9665
9666 res = allocate_value (type);
9667
9668 /* Promote each array element. */
9669 for (i = 0; i < hi - lo + 1; i++)
9670 {
9671 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9672
9673 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9674 value_contents_all (elt), TYPE_LENGTH (elt_type));
9675 }
9676
9677 return res;
9678}
9679
4c4b4cd2
PH
9680/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9681 return the converted value. */
9682
d2e4a39e
AS
9683static struct value *
9684coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9685{
df407dfe 9686 struct type *type2 = value_type (val);
5b4ee69b 9687
14f9c5c9
AS
9688 if (type == type2)
9689 return val;
9690
61ee279c
PH
9691 type2 = ada_check_typedef (type2);
9692 type = ada_check_typedef (type);
14f9c5c9 9693
d2e4a39e
AS
9694 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9695 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9696 {
9697 val = ada_value_ind (val);
df407dfe 9698 type2 = value_type (val);
14f9c5c9
AS
9699 }
9700
d2e4a39e 9701 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9702 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9703 {
d99dcf51
JB
9704 if (!ada_same_array_size_p (type, type2))
9705 error (_("cannot assign arrays of different length"));
9706
9707 if (is_integral_type (TYPE_TARGET_TYPE (type))
9708 && is_integral_type (TYPE_TARGET_TYPE (type2))
9709 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9710 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9711 {
9712 /* Allow implicit promotion of the array elements to
9713 a wider type. */
9714 return ada_promote_array_of_integrals (type, val);
9715 }
9716
9717 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9718 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9719 error (_("Incompatible types in assignment"));
04624583 9720 deprecated_set_value_type (val, type);
14f9c5c9 9721 }
d2e4a39e 9722 return val;
14f9c5c9
AS
9723}
9724
4c4b4cd2
PH
9725static struct value *
9726ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9727{
9728 struct value *val;
9729 struct type *type1, *type2;
9730 LONGEST v, v1, v2;
9731
994b9211
AC
9732 arg1 = coerce_ref (arg1);
9733 arg2 = coerce_ref (arg2);
18af8284
JB
9734 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9735 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9736
76a01679
JB
9737 if (TYPE_CODE (type1) != TYPE_CODE_INT
9738 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9739 return value_binop (arg1, arg2, op);
9740
76a01679 9741 switch (op)
4c4b4cd2
PH
9742 {
9743 case BINOP_MOD:
9744 case BINOP_DIV:
9745 case BINOP_REM:
9746 break;
9747 default:
9748 return value_binop (arg1, arg2, op);
9749 }
9750
9751 v2 = value_as_long (arg2);
9752 if (v2 == 0)
323e0a4a 9753 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9754
9755 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9756 return value_binop (arg1, arg2, op);
9757
9758 v1 = value_as_long (arg1);
9759 switch (op)
9760 {
9761 case BINOP_DIV:
9762 v = v1 / v2;
76a01679
JB
9763 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9764 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9765 break;
9766 case BINOP_REM:
9767 v = v1 % v2;
76a01679
JB
9768 if (v * v1 < 0)
9769 v -= v2;
4c4b4cd2
PH
9770 break;
9771 default:
9772 /* Should not reach this point. */
9773 v = 0;
9774 }
9775
9776 val = allocate_value (type1);
990a07ab 9777 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9778 TYPE_LENGTH (value_type (val)),
9779 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9780 return val;
9781}
9782
9783static int
9784ada_value_equal (struct value *arg1, struct value *arg2)
9785{
df407dfe
AC
9786 if (ada_is_direct_array_type (value_type (arg1))
9787 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9788 {
f58b38bf
JB
9789 /* Automatically dereference any array reference before
9790 we attempt to perform the comparison. */
9791 arg1 = ada_coerce_ref (arg1);
9792 arg2 = ada_coerce_ref (arg2);
9793
4c4b4cd2
PH
9794 arg1 = ada_coerce_to_simple_array (arg1);
9795 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9796 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9797 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9798 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9799 /* FIXME: The following works only for types whose
76a01679
JB
9800 representations use all bits (no padding or undefined bits)
9801 and do not have user-defined equality. */
9802 return
df407dfe 9803 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9804 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9805 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9806 }
9807 return value_equal (arg1, arg2);
9808}
9809
52ce6436
PH
9810/* Total number of component associations in the aggregate starting at
9811 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9812 OP_AGGREGATE. */
52ce6436
PH
9813
9814static int
9815num_component_specs (struct expression *exp, int pc)
9816{
9817 int n, m, i;
5b4ee69b 9818
52ce6436
PH
9819 m = exp->elts[pc + 1].longconst;
9820 pc += 3;
9821 n = 0;
9822 for (i = 0; i < m; i += 1)
9823 {
9824 switch (exp->elts[pc].opcode)
9825 {
9826 default:
9827 n += 1;
9828 break;
9829 case OP_CHOICES:
9830 n += exp->elts[pc + 1].longconst;
9831 break;
9832 }
9833 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9834 }
9835 return n;
9836}
9837
9838/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9839 component of LHS (a simple array or a record), updating *POS past
9840 the expression, assuming that LHS is contained in CONTAINER. Does
9841 not modify the inferior's memory, nor does it modify LHS (unless
9842 LHS == CONTAINER). */
9843
9844static void
9845assign_component (struct value *container, struct value *lhs, LONGEST index,
9846 struct expression *exp, int *pos)
9847{
9848 struct value *mark = value_mark ();
9849 struct value *elt;
5b4ee69b 9850
52ce6436
PH
9851 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9852 {
22601c15
UW
9853 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9854 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9855
52ce6436
PH
9856 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9857 }
9858 else
9859 {
9860 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9861 elt = ada_to_fixed_value (elt);
52ce6436
PH
9862 }
9863
9864 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9865 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9866 else
9867 value_assign_to_component (container, elt,
9868 ada_evaluate_subexp (NULL, exp, pos,
9869 EVAL_NORMAL));
9870
9871 value_free_to_mark (mark);
9872}
9873
9874/* Assuming that LHS represents an lvalue having a record or array
9875 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9876 of that aggregate's value to LHS, advancing *POS past the
9877 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9878 lvalue containing LHS (possibly LHS itself). Does not modify
9879 the inferior's memory, nor does it modify the contents of
0963b4bd 9880 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9881
9882static struct value *
9883assign_aggregate (struct value *container,
9884 struct value *lhs, struct expression *exp,
9885 int *pos, enum noside noside)
9886{
9887 struct type *lhs_type;
9888 int n = exp->elts[*pos+1].longconst;
9889 LONGEST low_index, high_index;
9890 int num_specs;
9891 LONGEST *indices;
9892 int max_indices, num_indices;
52ce6436 9893 int i;
52ce6436
PH
9894
9895 *pos += 3;
9896 if (noside != EVAL_NORMAL)
9897 {
52ce6436
PH
9898 for (i = 0; i < n; i += 1)
9899 ada_evaluate_subexp (NULL, exp, pos, noside);
9900 return container;
9901 }
9902
9903 container = ada_coerce_ref (container);
9904 if (ada_is_direct_array_type (value_type (container)))
9905 container = ada_coerce_to_simple_array (container);
9906 lhs = ada_coerce_ref (lhs);
9907 if (!deprecated_value_modifiable (lhs))
9908 error (_("Left operand of assignment is not a modifiable lvalue."));
9909
9910 lhs_type = value_type (lhs);
9911 if (ada_is_direct_array_type (lhs_type))
9912 {
9913 lhs = ada_coerce_to_simple_array (lhs);
9914 lhs_type = value_type (lhs);
9915 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9916 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9917 }
9918 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9919 {
9920 low_index = 0;
9921 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9922 }
9923 else
9924 error (_("Left-hand side must be array or record."));
9925
9926 num_specs = num_component_specs (exp, *pos - 3);
9927 max_indices = 4 * num_specs + 4;
8d749320 9928 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9929 indices[0] = indices[1] = low_index - 1;
9930 indices[2] = indices[3] = high_index + 1;
9931 num_indices = 4;
9932
9933 for (i = 0; i < n; i += 1)
9934 {
9935 switch (exp->elts[*pos].opcode)
9936 {
1fbf5ada
JB
9937 case OP_CHOICES:
9938 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9939 &num_indices, max_indices,
9940 low_index, high_index);
9941 break;
9942 case OP_POSITIONAL:
9943 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9944 &num_indices, max_indices,
9945 low_index, high_index);
1fbf5ada
JB
9946 break;
9947 case OP_OTHERS:
9948 if (i != n-1)
9949 error (_("Misplaced 'others' clause"));
9950 aggregate_assign_others (container, lhs, exp, pos, indices,
9951 num_indices, low_index, high_index);
9952 break;
9953 default:
9954 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9955 }
9956 }
9957
9958 return container;
9959}
9960
9961/* Assign into the component of LHS indexed by the OP_POSITIONAL
9962 construct at *POS, updating *POS past the construct, given that
9963 the positions are relative to lower bound LOW, where HIGH is the
9964 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9965 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9966 assign_aggregate. */
52ce6436
PH
9967static void
9968aggregate_assign_positional (struct value *container,
9969 struct value *lhs, struct expression *exp,
9970 int *pos, LONGEST *indices, int *num_indices,
9971 int max_indices, LONGEST low, LONGEST high)
9972{
9973 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9974
9975 if (ind - 1 == high)
e1d5a0d2 9976 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9977 if (ind <= high)
9978 {
9979 add_component_interval (ind, ind, indices, num_indices, max_indices);
9980 *pos += 3;
9981 assign_component (container, lhs, ind, exp, pos);
9982 }
9983 else
9984 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9985}
9986
9987/* Assign into the components of LHS indexed by the OP_CHOICES
9988 construct at *POS, updating *POS past the construct, given that
9989 the allowable indices are LOW..HIGH. Record the indices assigned
9990 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9991 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9992static void
9993aggregate_assign_from_choices (struct value *container,
9994 struct value *lhs, struct expression *exp,
9995 int *pos, LONGEST *indices, int *num_indices,
9996 int max_indices, LONGEST low, LONGEST high)
9997{
9998 int j;
9999 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10000 int choice_pos, expr_pc;
10001 int is_array = ada_is_direct_array_type (value_type (lhs));
10002
10003 choice_pos = *pos += 3;
10004
10005 for (j = 0; j < n_choices; j += 1)
10006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10007 expr_pc = *pos;
10008 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10009
10010 for (j = 0; j < n_choices; j += 1)
10011 {
10012 LONGEST lower, upper;
10013 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10014
52ce6436
PH
10015 if (op == OP_DISCRETE_RANGE)
10016 {
10017 choice_pos += 1;
10018 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10019 EVAL_NORMAL));
10020 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10021 EVAL_NORMAL));
10022 }
10023 else if (is_array)
10024 {
10025 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10026 EVAL_NORMAL));
10027 upper = lower;
10028 }
10029 else
10030 {
10031 int ind;
0d5cff50 10032 const char *name;
5b4ee69b 10033
52ce6436
PH
10034 switch (op)
10035 {
10036 case OP_NAME:
10037 name = &exp->elts[choice_pos + 2].string;
10038 break;
10039 case OP_VAR_VALUE:
10040 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10041 break;
10042 default:
10043 error (_("Invalid record component association."));
10044 }
10045 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10046 ind = 0;
10047 if (! find_struct_field (name, value_type (lhs), 0,
10048 NULL, NULL, NULL, NULL, &ind))
10049 error (_("Unknown component name: %s."), name);
10050 lower = upper = ind;
10051 }
10052
10053 if (lower <= upper && (lower < low || upper > high))
10054 error (_("Index in component association out of bounds."));
10055
10056 add_component_interval (lower, upper, indices, num_indices,
10057 max_indices);
10058 while (lower <= upper)
10059 {
10060 int pos1;
5b4ee69b 10061
52ce6436
PH
10062 pos1 = expr_pc;
10063 assign_component (container, lhs, lower, exp, &pos1);
10064 lower += 1;
10065 }
10066 }
10067}
10068
10069/* Assign the value of the expression in the OP_OTHERS construct in
10070 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10071 have not been previously assigned. The index intervals already assigned
10072 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10073 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10074static void
10075aggregate_assign_others (struct value *container,
10076 struct value *lhs, struct expression *exp,
10077 int *pos, LONGEST *indices, int num_indices,
10078 LONGEST low, LONGEST high)
10079{
10080 int i;
5ce64950 10081 int expr_pc = *pos + 1;
52ce6436
PH
10082
10083 for (i = 0; i < num_indices - 2; i += 2)
10084 {
10085 LONGEST ind;
5b4ee69b 10086
52ce6436
PH
10087 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10088 {
5ce64950 10089 int localpos;
5b4ee69b 10090
5ce64950
MS
10091 localpos = expr_pc;
10092 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10093 }
10094 }
10095 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10096}
10097
10098/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10099 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10100 modifying *SIZE as needed. It is an error if *SIZE exceeds
10101 MAX_SIZE. The resulting intervals do not overlap. */
10102static void
10103add_component_interval (LONGEST low, LONGEST high,
10104 LONGEST* indices, int *size, int max_size)
10105{
10106 int i, j;
5b4ee69b 10107
52ce6436
PH
10108 for (i = 0; i < *size; i += 2) {
10109 if (high >= indices[i] && low <= indices[i + 1])
10110 {
10111 int kh;
5b4ee69b 10112
52ce6436
PH
10113 for (kh = i + 2; kh < *size; kh += 2)
10114 if (high < indices[kh])
10115 break;
10116 if (low < indices[i])
10117 indices[i] = low;
10118 indices[i + 1] = indices[kh - 1];
10119 if (high > indices[i + 1])
10120 indices[i + 1] = high;
10121 memcpy (indices + i + 2, indices + kh, *size - kh);
10122 *size -= kh - i - 2;
10123 return;
10124 }
10125 else if (high < indices[i])
10126 break;
10127 }
10128
10129 if (*size == max_size)
10130 error (_("Internal error: miscounted aggregate components."));
10131 *size += 2;
10132 for (j = *size-1; j >= i+2; j -= 1)
10133 indices[j] = indices[j - 2];
10134 indices[i] = low;
10135 indices[i + 1] = high;
10136}
10137
6e48bd2c
JB
10138/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10139 is different. */
10140
10141static struct value *
10142ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10143{
10144 if (type == ada_check_typedef (value_type (arg2)))
10145 return arg2;
10146
10147 if (ada_is_fixed_point_type (type))
10148 return (cast_to_fixed (type, arg2));
10149
10150 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10151 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10152
10153 return value_cast (type, arg2);
10154}
10155
284614f0
JB
10156/* Evaluating Ada expressions, and printing their result.
10157 ------------------------------------------------------
10158
21649b50
JB
10159 1. Introduction:
10160 ----------------
10161
284614f0
JB
10162 We usually evaluate an Ada expression in order to print its value.
10163 We also evaluate an expression in order to print its type, which
10164 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10165 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10166 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10167 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10168 similar.
10169
10170 Evaluating expressions is a little more complicated for Ada entities
10171 than it is for entities in languages such as C. The main reason for
10172 this is that Ada provides types whose definition might be dynamic.
10173 One example of such types is variant records. Or another example
10174 would be an array whose bounds can only be known at run time.
10175
10176 The following description is a general guide as to what should be
10177 done (and what should NOT be done) in order to evaluate an expression
10178 involving such types, and when. This does not cover how the semantic
10179 information is encoded by GNAT as this is covered separatly. For the
10180 document used as the reference for the GNAT encoding, see exp_dbug.ads
10181 in the GNAT sources.
10182
10183 Ideally, we should embed each part of this description next to its
10184 associated code. Unfortunately, the amount of code is so vast right
10185 now that it's hard to see whether the code handling a particular
10186 situation might be duplicated or not. One day, when the code is
10187 cleaned up, this guide might become redundant with the comments
10188 inserted in the code, and we might want to remove it.
10189
21649b50
JB
10190 2. ``Fixing'' an Entity, the Simple Case:
10191 -----------------------------------------
10192
284614f0
JB
10193 When evaluating Ada expressions, the tricky issue is that they may
10194 reference entities whose type contents and size are not statically
10195 known. Consider for instance a variant record:
10196
10197 type Rec (Empty : Boolean := True) is record
10198 case Empty is
10199 when True => null;
10200 when False => Value : Integer;
10201 end case;
10202 end record;
10203 Yes : Rec := (Empty => False, Value => 1);
10204 No : Rec := (empty => True);
10205
10206 The size and contents of that record depends on the value of the
10207 descriminant (Rec.Empty). At this point, neither the debugging
10208 information nor the associated type structure in GDB are able to
10209 express such dynamic types. So what the debugger does is to create
10210 "fixed" versions of the type that applies to the specific object.
10211 We also informally refer to this opperation as "fixing" an object,
10212 which means creating its associated fixed type.
10213
10214 Example: when printing the value of variable "Yes" above, its fixed
10215 type would look like this:
10216
10217 type Rec is record
10218 Empty : Boolean;
10219 Value : Integer;
10220 end record;
10221
10222 On the other hand, if we printed the value of "No", its fixed type
10223 would become:
10224
10225 type Rec is record
10226 Empty : Boolean;
10227 end record;
10228
10229 Things become a little more complicated when trying to fix an entity
10230 with a dynamic type that directly contains another dynamic type,
10231 such as an array of variant records, for instance. There are
10232 two possible cases: Arrays, and records.
10233
21649b50
JB
10234 3. ``Fixing'' Arrays:
10235 ---------------------
10236
10237 The type structure in GDB describes an array in terms of its bounds,
10238 and the type of its elements. By design, all elements in the array
10239 have the same type and we cannot represent an array of variant elements
10240 using the current type structure in GDB. When fixing an array,
10241 we cannot fix the array element, as we would potentially need one
10242 fixed type per element of the array. As a result, the best we can do
10243 when fixing an array is to produce an array whose bounds and size
10244 are correct (allowing us to read it from memory), but without having
10245 touched its element type. Fixing each element will be done later,
10246 when (if) necessary.
10247
10248 Arrays are a little simpler to handle than records, because the same
10249 amount of memory is allocated for each element of the array, even if
1b536f04 10250 the amount of space actually used by each element differs from element
21649b50 10251 to element. Consider for instance the following array of type Rec:
284614f0
JB
10252
10253 type Rec_Array is array (1 .. 2) of Rec;
10254
1b536f04
JB
10255 The actual amount of memory occupied by each element might be different
10256 from element to element, depending on the value of their discriminant.
21649b50 10257 But the amount of space reserved for each element in the array remains
1b536f04 10258 fixed regardless. So we simply need to compute that size using
21649b50
JB
10259 the debugging information available, from which we can then determine
10260 the array size (we multiply the number of elements of the array by
10261 the size of each element).
10262
10263 The simplest case is when we have an array of a constrained element
10264 type. For instance, consider the following type declarations:
10265
10266 type Bounded_String (Max_Size : Integer) is
10267 Length : Integer;
10268 Buffer : String (1 .. Max_Size);
10269 end record;
10270 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10271
10272 In this case, the compiler describes the array as an array of
10273 variable-size elements (identified by its XVS suffix) for which
10274 the size can be read in the parallel XVZ variable.
10275
10276 In the case of an array of an unconstrained element type, the compiler
10277 wraps the array element inside a private PAD type. This type should not
10278 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10279 that we also use the adjective "aligner" in our code to designate
10280 these wrapper types.
10281
1b536f04 10282 In some cases, the size allocated for each element is statically
21649b50
JB
10283 known. In that case, the PAD type already has the correct size,
10284 and the array element should remain unfixed.
10285
10286 But there are cases when this size is not statically known.
10287 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10288
10289 type Dynamic is array (1 .. Five) of Integer;
10290 type Wrapper (Has_Length : Boolean := False) is record
10291 Data : Dynamic;
10292 case Has_Length is
10293 when True => Length : Integer;
10294 when False => null;
10295 end case;
10296 end record;
10297 type Wrapper_Array is array (1 .. 2) of Wrapper;
10298
10299 Hello : Wrapper_Array := (others => (Has_Length => True,
10300 Data => (others => 17),
10301 Length => 1));
10302
10303
10304 The debugging info would describe variable Hello as being an
10305 array of a PAD type. The size of that PAD type is not statically
10306 known, but can be determined using a parallel XVZ variable.
10307 In that case, a copy of the PAD type with the correct size should
10308 be used for the fixed array.
10309
21649b50
JB
10310 3. ``Fixing'' record type objects:
10311 ----------------------------------
10312
10313 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10314 record types. In this case, in order to compute the associated
10315 fixed type, we need to determine the size and offset of each of
10316 its components. This, in turn, requires us to compute the fixed
10317 type of each of these components.
10318
10319 Consider for instance the example:
10320
10321 type Bounded_String (Max_Size : Natural) is record
10322 Str : String (1 .. Max_Size);
10323 Length : Natural;
10324 end record;
10325 My_String : Bounded_String (Max_Size => 10);
10326
10327 In that case, the position of field "Length" depends on the size
10328 of field Str, which itself depends on the value of the Max_Size
21649b50 10329 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10330 we need to fix the type of field Str. Therefore, fixing a variant
10331 record requires us to fix each of its components.
10332
10333 However, if a component does not have a dynamic size, the component
10334 should not be fixed. In particular, fields that use a PAD type
10335 should not fixed. Here is an example where this might happen
10336 (assuming type Rec above):
10337
10338 type Container (Big : Boolean) is record
10339 First : Rec;
10340 After : Integer;
10341 case Big is
10342 when True => Another : Integer;
10343 when False => null;
10344 end case;
10345 end record;
10346 My_Container : Container := (Big => False,
10347 First => (Empty => True),
10348 After => 42);
10349
10350 In that example, the compiler creates a PAD type for component First,
10351 whose size is constant, and then positions the component After just
10352 right after it. The offset of component After is therefore constant
10353 in this case.
10354
10355 The debugger computes the position of each field based on an algorithm
10356 that uses, among other things, the actual position and size of the field
21649b50
JB
10357 preceding it. Let's now imagine that the user is trying to print
10358 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10359 end up computing the offset of field After based on the size of the
10360 fixed version of field First. And since in our example First has
10361 only one actual field, the size of the fixed type is actually smaller
10362 than the amount of space allocated to that field, and thus we would
10363 compute the wrong offset of field After.
10364
21649b50
JB
10365 To make things more complicated, we need to watch out for dynamic
10366 components of variant records (identified by the ___XVL suffix in
10367 the component name). Even if the target type is a PAD type, the size
10368 of that type might not be statically known. So the PAD type needs
10369 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10370 we might end up with the wrong size for our component. This can be
10371 observed with the following type declarations:
284614f0
JB
10372
10373 type Octal is new Integer range 0 .. 7;
10374 type Octal_Array is array (Positive range <>) of Octal;
10375 pragma Pack (Octal_Array);
10376
10377 type Octal_Buffer (Size : Positive) is record
10378 Buffer : Octal_Array (1 .. Size);
10379 Length : Integer;
10380 end record;
10381
10382 In that case, Buffer is a PAD type whose size is unset and needs
10383 to be computed by fixing the unwrapped type.
10384
21649b50
JB
10385 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10386 ----------------------------------------------------------
10387
10388 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10389 thus far, be actually fixed?
10390
10391 The answer is: Only when referencing that element. For instance
10392 when selecting one component of a record, this specific component
10393 should be fixed at that point in time. Or when printing the value
10394 of a record, each component should be fixed before its value gets
10395 printed. Similarly for arrays, the element of the array should be
10396 fixed when printing each element of the array, or when extracting
10397 one element out of that array. On the other hand, fixing should
10398 not be performed on the elements when taking a slice of an array!
10399
10400 Note that one of the side-effects of miscomputing the offset and
10401 size of each field is that we end up also miscomputing the size
10402 of the containing type. This can have adverse results when computing
10403 the value of an entity. GDB fetches the value of an entity based
10404 on the size of its type, and thus a wrong size causes GDB to fetch
10405 the wrong amount of memory. In the case where the computed size is
10406 too small, GDB fetches too little data to print the value of our
10407 entiry. Results in this case as unpredicatble, as we usually read
10408 past the buffer containing the data =:-o. */
10409
10410/* Implement the evaluate_exp routine in the exp_descriptor structure
10411 for the Ada language. */
10412
52ce6436 10413static struct value *
ebf56fd3 10414ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10415 int *pos, enum noside noside)
14f9c5c9
AS
10416{
10417 enum exp_opcode op;
b5385fc0 10418 int tem;
14f9c5c9 10419 int pc;
5ec18f2b 10420 int preeval_pos;
14f9c5c9
AS
10421 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10422 struct type *type;
52ce6436 10423 int nargs, oplen;
d2e4a39e 10424 struct value **argvec;
14f9c5c9 10425
d2e4a39e
AS
10426 pc = *pos;
10427 *pos += 1;
14f9c5c9
AS
10428 op = exp->elts[pc].opcode;
10429
d2e4a39e 10430 switch (op)
14f9c5c9
AS
10431 {
10432 default:
10433 *pos -= 1;
6e48bd2c 10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10435
10436 if (noside == EVAL_NORMAL)
10437 arg1 = unwrap_value (arg1);
6e48bd2c
JB
10438
10439 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10440 then we need to perform the conversion manually, because
10441 evaluate_subexp_standard doesn't do it. This conversion is
10442 necessary in Ada because the different kinds of float/fixed
10443 types in Ada have different representations.
10444
10445 Similarly, we need to perform the conversion from OP_LONG
10446 ourselves. */
10447 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10448 arg1 = ada_value_cast (expect_type, arg1, noside);
10449
10450 return arg1;
4c4b4cd2
PH
10451
10452 case OP_STRING:
10453 {
76a01679 10454 struct value *result;
5b4ee69b 10455
76a01679
JB
10456 *pos -= 1;
10457 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10458 /* The result type will have code OP_STRING, bashed there from
10459 OP_ARRAY. Bash it back. */
df407dfe
AC
10460 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10461 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10462 return result;
4c4b4cd2 10463 }
14f9c5c9
AS
10464
10465 case UNOP_CAST:
10466 (*pos) += 2;
10467 type = exp->elts[pc + 1].type;
10468 arg1 = evaluate_subexp (type, exp, pos, noside);
10469 if (noside == EVAL_SKIP)
4c4b4cd2 10470 goto nosideret;
6e48bd2c 10471 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
10472 return arg1;
10473
4c4b4cd2
PH
10474 case UNOP_QUAL:
10475 (*pos) += 2;
10476 type = exp->elts[pc + 1].type;
10477 return ada_evaluate_subexp (type, exp, pos, noside);
10478
14f9c5c9
AS
10479 case BINOP_ASSIGN:
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10481 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10482 {
10483 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10484 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10485 return arg1;
10486 return ada_value_assign (arg1, arg1);
10487 }
003f3813
JB
10488 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10489 except if the lhs of our assignment is a convenience variable.
10490 In the case of assigning to a convenience variable, the lhs
10491 should be exactly the result of the evaluation of the rhs. */
10492 type = value_type (arg1);
10493 if (VALUE_LVAL (arg1) == lval_internalvar)
10494 type = NULL;
10495 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10496 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10497 return arg1;
df407dfe
AC
10498 if (ada_is_fixed_point_type (value_type (arg1)))
10499 arg2 = cast_to_fixed (value_type (arg1), arg2);
10500 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10501 error
323e0a4a 10502 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10503 else
df407dfe 10504 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10505 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10506
10507 case BINOP_ADD:
10508 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10509 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 if (noside == EVAL_SKIP)
4c4b4cd2 10511 goto nosideret;
2ac8a782
JB
10512 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10513 return (value_from_longest
10514 (value_type (arg1),
10515 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10516 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10517 return (value_from_longest
10518 (value_type (arg2),
10519 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10520 if ((ada_is_fixed_point_type (value_type (arg1))
10521 || ada_is_fixed_point_type (value_type (arg2)))
10522 && value_type (arg1) != value_type (arg2))
323e0a4a 10523 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10524 /* Do the addition, and cast the result to the type of the first
10525 argument. We cannot cast the result to a reference type, so if
10526 ARG1 is a reference type, find its underlying type. */
10527 type = value_type (arg1);
10528 while (TYPE_CODE (type) == TYPE_CODE_REF)
10529 type = TYPE_TARGET_TYPE (type);
f44316fa 10530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10531 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10532
10533 case BINOP_SUB:
10534 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10535 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 if (noside == EVAL_SKIP)
4c4b4cd2 10537 goto nosideret;
2ac8a782
JB
10538 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10539 return (value_from_longest
10540 (value_type (arg1),
10541 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10542 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10543 return (value_from_longest
10544 (value_type (arg2),
10545 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10546 if ((ada_is_fixed_point_type (value_type (arg1))
10547 || ada_is_fixed_point_type (value_type (arg2)))
10548 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10549 error (_("Operands of fixed-point subtraction "
10550 "must have the same type"));
b7789565
JB
10551 /* Do the substraction, and cast the result to the type of the first
10552 argument. We cannot cast the result to a reference type, so if
10553 ARG1 is a reference type, find its underlying type. */
10554 type = value_type (arg1);
10555 while (TYPE_CODE (type) == TYPE_CODE_REF)
10556 type = TYPE_TARGET_TYPE (type);
f44316fa 10557 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10558 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10559
10560 case BINOP_MUL:
10561 case BINOP_DIV:
e1578042
JB
10562 case BINOP_REM:
10563 case BINOP_MOD:
14f9c5c9
AS
10564 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10565 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 if (noside == EVAL_SKIP)
4c4b4cd2 10567 goto nosideret;
e1578042 10568 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10569 {
10570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10571 return value_zero (value_type (arg1), not_lval);
10572 }
14f9c5c9 10573 else
4c4b4cd2 10574 {
a53b7a21 10575 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10576 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10577 arg1 = cast_from_fixed (type, arg1);
df407dfe 10578 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10579 arg2 = cast_from_fixed (type, arg2);
f44316fa 10580 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10581 return ada_value_binop (arg1, arg2, op);
10582 }
10583
4c4b4cd2
PH
10584 case BINOP_EQUAL:
10585 case BINOP_NOTEQUAL:
14f9c5c9 10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10587 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10588 if (noside == EVAL_SKIP)
76a01679 10589 goto nosideret;
4c4b4cd2 10590 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10591 tem = 0;
4c4b4cd2 10592 else
f44316fa
UW
10593 {
10594 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10595 tem = ada_value_equal (arg1, arg2);
10596 }
4c4b4cd2 10597 if (op == BINOP_NOTEQUAL)
76a01679 10598 tem = !tem;
fbb06eb1
UW
10599 type = language_bool_type (exp->language_defn, exp->gdbarch);
10600 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10601
10602 case UNOP_NEG:
10603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10604 if (noside == EVAL_SKIP)
10605 goto nosideret;
df407dfe
AC
10606 else if (ada_is_fixed_point_type (value_type (arg1)))
10607 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10608 else
f44316fa
UW
10609 {
10610 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10611 return value_neg (arg1);
10612 }
4c4b4cd2 10613
2330c6c6
JB
10614 case BINOP_LOGICAL_AND:
10615 case BINOP_LOGICAL_OR:
10616 case UNOP_LOGICAL_NOT:
000d5124
JB
10617 {
10618 struct value *val;
10619
10620 *pos -= 1;
10621 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10622 type = language_bool_type (exp->language_defn, exp->gdbarch);
10623 return value_cast (type, val);
000d5124 10624 }
2330c6c6
JB
10625
10626 case BINOP_BITWISE_AND:
10627 case BINOP_BITWISE_IOR:
10628 case BINOP_BITWISE_XOR:
000d5124
JB
10629 {
10630 struct value *val;
10631
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10633 *pos = pc;
10634 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10635
10636 return value_cast (value_type (arg1), val);
10637 }
2330c6c6 10638
14f9c5c9
AS
10639 case OP_VAR_VALUE:
10640 *pos -= 1;
6799def4 10641
14f9c5c9 10642 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10643 {
10644 *pos += 4;
10645 goto nosideret;
10646 }
da5c522f
JB
10647
10648 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10649 /* Only encountered when an unresolved symbol occurs in a
10650 context other than a function call, in which case, it is
52ce6436 10651 invalid. */
323e0a4a 10652 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10653 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10654
10655 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10656 {
0c1f74cf 10657 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10658 /* Check to see if this is a tagged type. We also need to handle
10659 the case where the type is a reference to a tagged type, but
10660 we have to be careful to exclude pointers to tagged types.
10661 The latter should be shown as usual (as a pointer), whereas
10662 a reference should mostly be transparent to the user. */
10663 if (ada_is_tagged_type (type, 0)
023db19c 10664 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10665 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10666 {
10667 /* Tagged types are a little special in the fact that the real
10668 type is dynamic and can only be determined by inspecting the
10669 object's tag. This means that we need to get the object's
10670 value first (EVAL_NORMAL) and then extract the actual object
10671 type from its tag.
10672
10673 Note that we cannot skip the final step where we extract
10674 the object type from its tag, because the EVAL_NORMAL phase
10675 results in dynamic components being resolved into fixed ones.
10676 This can cause problems when trying to print the type
10677 description of tagged types whose parent has a dynamic size:
10678 We use the type name of the "_parent" component in order
10679 to print the name of the ancestor type in the type description.
10680 If that component had a dynamic size, the resolution into
10681 a fixed type would result in the loss of that type name,
10682 thus preventing us from printing the name of the ancestor
10683 type in the type description. */
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10685
10686 if (TYPE_CODE (type) != TYPE_CODE_REF)
10687 {
10688 struct type *actual_type;
10689
10690 actual_type = type_from_tag (ada_value_tag (arg1));
10691 if (actual_type == NULL)
10692 /* If, for some reason, we were unable to determine
10693 the actual type from the tag, then use the static
10694 approximation that we just computed as a fallback.
10695 This can happen if the debugging information is
10696 incomplete, for instance. */
10697 actual_type = type;
10698 return value_zero (actual_type, not_lval);
10699 }
10700 else
10701 {
10702 /* In the case of a ref, ada_coerce_ref takes care
10703 of determining the actual type. But the evaluation
10704 should return a ref as it should be valid to ask
10705 for its address; so rebuild a ref after coerce. */
10706 arg1 = ada_coerce_ref (arg1);
a65cfae5 10707 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10708 }
10709 }
0c1f74cf 10710
84754697
JB
10711 /* Records and unions for which GNAT encodings have been
10712 generated need to be statically fixed as well.
10713 Otherwise, non-static fixing produces a type where
10714 all dynamic properties are removed, which prevents "ptype"
10715 from being able to completely describe the type.
10716 For instance, a case statement in a variant record would be
10717 replaced by the relevant components based on the actual
10718 value of the discriminants. */
10719 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10720 && dynamic_template_type (type) != NULL)
10721 || (TYPE_CODE (type) == TYPE_CODE_UNION
10722 && ada_find_parallel_type (type, "___XVU") != NULL))
10723 {
10724 *pos += 4;
10725 return value_zero (to_static_fixed_type (type), not_lval);
10726 }
4c4b4cd2 10727 }
da5c522f
JB
10728
10729 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10730 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10731
10732 case OP_FUNCALL:
10733 (*pos) += 2;
10734
10735 /* Allocate arg vector, including space for the function to be
10736 called in argvec[0] and a terminating NULL. */
10737 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10738 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10739
10740 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10741 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10742 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10743 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10744 else
10745 {
10746 for (tem = 0; tem <= nargs; tem += 1)
10747 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10748 argvec[tem] = 0;
10749
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 }
10753
ad82864c
JB
10754 if (ada_is_constrained_packed_array_type
10755 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10756 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10757 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10758 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10759 /* This is a packed array that has already been fixed, and
10760 therefore already coerced to a simple array. Nothing further
10761 to do. */
10762 ;
e6c2c623
PMR
10763 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10764 {
10765 /* Make sure we dereference references so that all the code below
10766 feels like it's really handling the referenced value. Wrapping
10767 types (for alignment) may be there, so make sure we strip them as
10768 well. */
10769 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10770 }
10771 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10772 && VALUE_LVAL (argvec[0]) == lval_memory)
10773 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10774
df407dfe 10775 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10776
10777 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10778 them. So, if this is an array typedef (encoding use for array
10779 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10780 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10781 type = ada_typedef_target_type (type);
10782
4c4b4cd2
PH
10783 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10784 {
61ee279c 10785 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10786 {
10787 case TYPE_CODE_FUNC:
61ee279c 10788 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10789 break;
10790 case TYPE_CODE_ARRAY:
10791 break;
10792 case TYPE_CODE_STRUCT:
10793 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10794 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10795 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10796 break;
10797 default:
323e0a4a 10798 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10799 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10800 break;
10801 }
10802 }
10803
10804 switch (TYPE_CODE (type))
10805 {
10806 case TYPE_CODE_FUNC:
10807 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10808 {
10809 struct type *rtype = TYPE_TARGET_TYPE (type);
10810
10811 if (TYPE_GNU_IFUNC (type))
10812 return allocate_value (TYPE_TARGET_TYPE (rtype));
10813 return allocate_value (rtype);
10814 }
4c4b4cd2 10815 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10816 case TYPE_CODE_INTERNAL_FUNCTION:
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 /* We don't know anything about what the internal
10819 function might return, but we have to return
10820 something. */
10821 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10822 not_lval);
10823 else
10824 return call_internal_function (exp->gdbarch, exp->language_defn,
10825 argvec[0], nargs, argvec + 1);
10826
4c4b4cd2
PH
10827 case TYPE_CODE_STRUCT:
10828 {
10829 int arity;
10830
4c4b4cd2
PH
10831 arity = ada_array_arity (type);
10832 type = ada_array_element_type (type, nargs);
10833 if (type == NULL)
323e0a4a 10834 error (_("cannot subscript or call a record"));
4c4b4cd2 10835 if (arity != nargs)
323e0a4a 10836 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10838 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10839 return
10840 unwrap_value (ada_value_subscript
10841 (argvec[0], nargs, argvec + 1));
10842 }
10843 case TYPE_CODE_ARRAY:
10844 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10845 {
10846 type = ada_array_element_type (type, nargs);
10847 if (type == NULL)
323e0a4a 10848 error (_("element type of array unknown"));
4c4b4cd2 10849 else
0a07e705 10850 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10851 }
10852 return
10853 unwrap_value (ada_value_subscript
10854 (ada_coerce_to_simple_array (argvec[0]),
10855 nargs, argvec + 1));
10856 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 {
deede10c 10859 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10860 type = ada_array_element_type (type, nargs);
10861 if (type == NULL)
323e0a4a 10862 error (_("element type of array unknown"));
4c4b4cd2 10863 else
0a07e705 10864 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10865 }
10866 return
deede10c
JB
10867 unwrap_value (ada_value_ptr_subscript (argvec[0],
10868 nargs, argvec + 1));
4c4b4cd2
PH
10869
10870 default:
e1d5a0d2
PH
10871 error (_("Attempt to index or call something other than an "
10872 "array or function"));
4c4b4cd2
PH
10873 }
10874
10875 case TERNOP_SLICE:
10876 {
10877 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10878 struct value *low_bound_val =
10879 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10880 struct value *high_bound_val =
10881 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 LONGEST low_bound;
10883 LONGEST high_bound;
5b4ee69b 10884
994b9211
AC
10885 low_bound_val = coerce_ref (low_bound_val);
10886 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10887 low_bound = value_as_long (low_bound_val);
10888 high_bound = value_as_long (high_bound_val);
963a6417 10889
4c4b4cd2
PH
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892
4c4b4cd2
PH
10893 /* If this is a reference to an aligner type, then remove all
10894 the aligners. */
df407dfe
AC
10895 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10896 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10897 TYPE_TARGET_TYPE (value_type (array)) =
10898 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10899
ad82864c 10900 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10901 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10902
10903 /* If this is a reference to an array or an array lvalue,
10904 convert to a pointer. */
df407dfe
AC
10905 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10906 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10907 && VALUE_LVAL (array) == lval_memory))
10908 array = value_addr (array);
10909
1265e4aa 10910 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10911 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10912 (value_type (array))))
0b5d8877 10913 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10914
10915 array = ada_coerce_to_simple_array_ptr (array);
10916
714e53ab
PH
10917 /* If we have more than one level of pointer indirection,
10918 dereference the value until we get only one level. */
df407dfe
AC
10919 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10920 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10921 == TYPE_CODE_PTR))
10922 array = value_ind (array);
10923
10924 /* Make sure we really do have an array type before going further,
10925 to avoid a SEGV when trying to get the index type or the target
10926 type later down the road if the debug info generated by
10927 the compiler is incorrect or incomplete. */
df407dfe 10928 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10929 error (_("cannot take slice of non-array"));
714e53ab 10930
828292f2
JB
10931 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10932 == TYPE_CODE_PTR)
4c4b4cd2 10933 {
828292f2
JB
10934 struct type *type0 = ada_check_typedef (value_type (array));
10935
0b5d8877 10936 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10937 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10938 else
10939 {
10940 struct type *arr_type0 =
828292f2 10941 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10942
f5938064
JG
10943 return ada_value_slice_from_ptr (array, arr_type0,
10944 longest_to_int (low_bound),
10945 longest_to_int (high_bound));
4c4b4cd2
PH
10946 }
10947 }
10948 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 return array;
10950 else if (high_bound < low_bound)
df407dfe 10951 return empty_array (value_type (array), low_bound);
4c4b4cd2 10952 else
529cad9c
PH
10953 return ada_value_slice (array, longest_to_int (low_bound),
10954 longest_to_int (high_bound));
4c4b4cd2 10955 }
14f9c5c9 10956
4c4b4cd2
PH
10957 case UNOP_IN_RANGE:
10958 (*pos) += 2;
10959 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10960 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10961
14f9c5c9 10962 if (noside == EVAL_SKIP)
4c4b4cd2 10963 goto nosideret;
14f9c5c9 10964
4c4b4cd2
PH
10965 switch (TYPE_CODE (type))
10966 {
10967 default:
e1d5a0d2
PH
10968 lim_warning (_("Membership test incompletely implemented; "
10969 "always returns true"));
fbb06eb1
UW
10970 type = language_bool_type (exp->language_defn, exp->gdbarch);
10971 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10972
10973 case TYPE_CODE_RANGE:
030b4912
UW
10974 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10975 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10976 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
10979 return
10980 value_from_longest (type,
4c4b4cd2
PH
10981 (value_less (arg1, arg3)
10982 || value_equal (arg1, arg3))
10983 && (value_less (arg2, arg1)
10984 || value_equal (arg2, arg1)));
10985 }
10986
10987 case BINOP_IN_BOUNDS:
14f9c5c9 10988 (*pos) += 2;
4c4b4cd2
PH
10989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10990 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10991
4c4b4cd2
PH
10992 if (noside == EVAL_SKIP)
10993 goto nosideret;
14f9c5c9 10994
4c4b4cd2 10995 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10996 {
10997 type = language_bool_type (exp->language_defn, exp->gdbarch);
10998 return value_zero (type, not_lval);
10999 }
14f9c5c9 11000
4c4b4cd2 11001 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11002
1eea4ebd
UW
11003 type = ada_index_type (value_type (arg2), tem, "range");
11004 if (!type)
11005 type = value_type (arg1);
14f9c5c9 11006
1eea4ebd
UW
11007 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11008 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11009
f44316fa
UW
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11013 return
fbb06eb1 11014 value_from_longest (type,
4c4b4cd2
PH
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019
11020 case TERNOP_IN_RANGE:
11021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024
11025 if (noside == EVAL_SKIP)
11026 goto nosideret;
11027
f44316fa
UW
11028 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11030 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11031 return
fbb06eb1 11032 value_from_longest (type,
4c4b4cd2
PH
11033 (value_less (arg1, arg3)
11034 || value_equal (arg1, arg3))
11035 && (value_less (arg2, arg1)
11036 || value_equal (arg2, arg1)));
11037
11038 case OP_ATR_FIRST:
11039 case OP_ATR_LAST:
11040 case OP_ATR_LENGTH:
11041 {
76a01679 11042 struct type *type_arg;
5b4ee69b 11043
76a01679
JB
11044 if (exp->elts[*pos].opcode == OP_TYPE)
11045 {
11046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11047 arg1 = NULL;
5bc23cb3 11048 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11049 }
11050 else
11051 {
11052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 type_arg = NULL;
11054 }
11055
11056 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11057 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11058 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11059 *pos += 4;
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063
11064 if (type_arg == NULL)
11065 {
11066 arg1 = ada_coerce_ref (arg1);
11067
ad82864c 11068 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11069 arg1 = ada_coerce_to_simple_array (arg1);
11070
aa4fb036 11071 if (op == OP_ATR_LENGTH)
1eea4ebd 11072 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11073 else
11074 {
11075 type = ada_index_type (value_type (arg1), tem,
11076 ada_attribute_name (op));
11077 if (type == NULL)
11078 type = builtin_type (exp->gdbarch)->builtin_int;
11079 }
76a01679
JB
11080
11081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11082 return allocate_value (type);
76a01679
JB
11083
11084 switch (op)
11085 {
11086 default: /* Should never happen. */
323e0a4a 11087 error (_("unexpected attribute encountered"));
76a01679 11088 case OP_ATR_FIRST:
1eea4ebd
UW
11089 return value_from_longest
11090 (type, ada_array_bound (arg1, tem, 0));
76a01679 11091 case OP_ATR_LAST:
1eea4ebd
UW
11092 return value_from_longest
11093 (type, ada_array_bound (arg1, tem, 1));
76a01679 11094 case OP_ATR_LENGTH:
1eea4ebd
UW
11095 return value_from_longest
11096 (type, ada_array_length (arg1, tem));
76a01679
JB
11097 }
11098 }
11099 else if (discrete_type_p (type_arg))
11100 {
11101 struct type *range_type;
0d5cff50 11102 const char *name = ada_type_name (type_arg);
5b4ee69b 11103
76a01679
JB
11104 range_type = NULL;
11105 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11106 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11107 if (range_type == NULL)
11108 range_type = type_arg;
11109 switch (op)
11110 {
11111 default:
323e0a4a 11112 error (_("unexpected attribute encountered"));
76a01679 11113 case OP_ATR_FIRST:
690cc4eb 11114 return value_from_longest
43bbcdc2 11115 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11116 case OP_ATR_LAST:
690cc4eb 11117 return value_from_longest
43bbcdc2 11118 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11119 case OP_ATR_LENGTH:
323e0a4a 11120 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11121 }
11122 }
11123 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11124 error (_("unimplemented type attribute"));
76a01679
JB
11125 else
11126 {
11127 LONGEST low, high;
11128
ad82864c
JB
11129 if (ada_is_constrained_packed_array_type (type_arg))
11130 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11131
aa4fb036 11132 if (op == OP_ATR_LENGTH)
1eea4ebd 11133 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11134 else
11135 {
11136 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11137 if (type == NULL)
11138 type = builtin_type (exp->gdbarch)->builtin_int;
11139 }
1eea4ebd 11140
76a01679
JB
11141 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11142 return allocate_value (type);
11143
11144 switch (op)
11145 {
11146 default:
323e0a4a 11147 error (_("unexpected attribute encountered"));
76a01679 11148 case OP_ATR_FIRST:
1eea4ebd 11149 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11150 return value_from_longest (type, low);
11151 case OP_ATR_LAST:
1eea4ebd 11152 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11153 return value_from_longest (type, high);
11154 case OP_ATR_LENGTH:
1eea4ebd
UW
11155 low = ada_array_bound_from_type (type_arg, tem, 0);
11156 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11157 return value_from_longest (type, high - low + 1);
11158 }
11159 }
14f9c5c9
AS
11160 }
11161
4c4b4cd2
PH
11162 case OP_ATR_TAG:
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
76a01679 11165 goto nosideret;
4c4b4cd2
PH
11166
11167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11168 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11169
11170 return ada_value_tag (arg1);
11171
11172 case OP_ATR_MIN:
11173 case OP_ATR_MAX:
11174 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11175 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 if (noside == EVAL_SKIP)
76a01679 11178 goto nosideret;
d2e4a39e 11179 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11180 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11181 else
f44316fa
UW
11182 {
11183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11184 return value_binop (arg1, arg2,
11185 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11186 }
14f9c5c9 11187
4c4b4cd2
PH
11188 case OP_ATR_MODULUS:
11189 {
31dedfee 11190 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11191
5b4ee69b 11192 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
4c4b4cd2 11195
76a01679 11196 if (!ada_is_modular_type (type_arg))
323e0a4a 11197 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11198
76a01679
JB
11199 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11200 ada_modulus (type_arg));
4c4b4cd2
PH
11201 }
11202
11203
11204 case OP_ATR_POS:
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
76a01679 11208 goto nosideret;
3cb382c9
UW
11209 type = builtin_type (exp->gdbarch)->builtin_int;
11210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (type, not_lval);
14f9c5c9 11212 else
3cb382c9 11213 return value_pos_atr (type, arg1);
14f9c5c9 11214
4c4b4cd2
PH
11215 case OP_ATR_SIZE:
11216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11217 type = value_type (arg1);
11218
11219 /* If the argument is a reference, then dereference its type, since
11220 the user is really asking for the size of the actual object,
11221 not the size of the pointer. */
11222 if (TYPE_CODE (type) == TYPE_CODE_REF)
11223 type = TYPE_TARGET_TYPE (type);
11224
4c4b4cd2 11225 if (noside == EVAL_SKIP)
76a01679 11226 goto nosideret;
4c4b4cd2 11227 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11228 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11229 else
22601c15 11230 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11231 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11232
11233 case OP_ATR_VAL:
11234 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11236 type = exp->elts[pc + 2].type;
14f9c5c9 11237 if (noside == EVAL_SKIP)
76a01679 11238 goto nosideret;
4c4b4cd2 11239 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11240 return value_zero (type, not_lval);
4c4b4cd2 11241 else
76a01679 11242 return value_val_atr (type, arg1);
4c4b4cd2
PH
11243
11244 case BINOP_EXP:
11245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11246 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11250 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11251 else
f44316fa
UW
11252 {
11253 /* For integer exponentiation operations,
11254 only promote the first argument. */
11255 if (is_integral_type (value_type (arg2)))
11256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11257 else
11258 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11259
11260 return value_binop (arg1, arg2, op);
11261 }
4c4b4cd2
PH
11262
11263 case UNOP_PLUS:
11264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11266 goto nosideret;
11267 else
11268 return arg1;
11269
11270 case UNOP_ABS:
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11272 if (noside == EVAL_SKIP)
11273 goto nosideret;
f44316fa 11274 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11275 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11276 return value_neg (arg1);
14f9c5c9 11277 else
4c4b4cd2 11278 return arg1;
14f9c5c9
AS
11279
11280 case UNOP_IND:
5ec18f2b 11281 preeval_pos = *pos;
6b0d7253 11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11283 if (noside == EVAL_SKIP)
4c4b4cd2 11284 goto nosideret;
df407dfe 11285 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11287 {
11288 if (ada_is_array_descriptor_type (type))
11289 /* GDB allows dereferencing GNAT array descriptors. */
11290 {
11291 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11292
4c4b4cd2 11293 if (arrType == NULL)
323e0a4a 11294 error (_("Attempt to dereference null array pointer."));
00a4c844 11295 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11296 }
11297 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11298 || TYPE_CODE (type) == TYPE_CODE_REF
11299 /* In C you can dereference an array to get the 1st elt. */
11300 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11301 {
5ec18f2b
JG
11302 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11303 only be determined by inspecting the object's tag.
11304 This means that we need to evaluate completely the
11305 expression in order to get its type. */
11306
023db19c
JB
11307 if ((TYPE_CODE (type) == TYPE_CODE_REF
11308 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11309 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11310 {
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11312 EVAL_NORMAL);
11313 type = value_type (ada_value_ind (arg1));
11314 }
11315 else
11316 {
11317 type = to_static_fixed_type
11318 (ada_aligned_type
11319 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11320 }
c1b5a1a6 11321 ada_ensure_varsize_limit (type);
714e53ab
PH
11322 return value_zero (type, lval_memory);
11323 }
4c4b4cd2 11324 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11325 {
11326 /* GDB allows dereferencing an int. */
11327 if (expect_type == NULL)
11328 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11329 lval_memory);
11330 else
11331 {
11332 expect_type =
11333 to_static_fixed_type (ada_aligned_type (expect_type));
11334 return value_zero (expect_type, lval_memory);
11335 }
11336 }
4c4b4cd2 11337 else
323e0a4a 11338 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11339 }
0963b4bd 11340 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11341 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11342
96967637
JB
11343 if (TYPE_CODE (type) == TYPE_CODE_INT)
11344 /* GDB allows dereferencing an int. If we were given
11345 the expect_type, then use that as the target type.
11346 Otherwise, assume that the target type is an int. */
11347 {
11348 if (expect_type != NULL)
11349 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11350 arg1));
11351 else
11352 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11353 (CORE_ADDR) value_as_address (arg1));
11354 }
6b0d7253 11355
4c4b4cd2
PH
11356 if (ada_is_array_descriptor_type (type))
11357 /* GDB allows dereferencing GNAT array descriptors. */
11358 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11359 else
4c4b4cd2 11360 return ada_value_ind (arg1);
14f9c5c9
AS
11361
11362 case STRUCTOP_STRUCT:
11363 tem = longest_to_int (exp->elts[pc + 1].longconst);
11364 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11365 preeval_pos = *pos;
14f9c5c9
AS
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
4c4b4cd2 11368 goto nosideret;
14f9c5c9 11369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11370 {
df407dfe 11371 struct type *type1 = value_type (arg1);
5b4ee69b 11372
76a01679
JB
11373 if (ada_is_tagged_type (type1, 1))
11374 {
11375 type = ada_lookup_struct_elt_type (type1,
11376 &exp->elts[pc + 2].string,
11377 1, 1, NULL);
5ec18f2b
JG
11378
11379 /* If the field is not found, check if it exists in the
11380 extension of this object's type. This means that we
11381 need to evaluate completely the expression. */
11382
76a01679 11383 if (type == NULL)
5ec18f2b
JG
11384 {
11385 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11386 EVAL_NORMAL);
11387 arg1 = ada_value_struct_elt (arg1,
11388 &exp->elts[pc + 2].string,
11389 0);
11390 arg1 = unwrap_value (arg1);
11391 type = value_type (ada_to_fixed_value (arg1));
11392 }
76a01679
JB
11393 }
11394 else
11395 type =
11396 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11397 0, NULL);
11398
11399 return value_zero (ada_aligned_type (type), lval_memory);
11400 }
14f9c5c9 11401 else
a579cd9a
MW
11402 {
11403 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11404 arg1 = unwrap_value (arg1);
11405 return ada_to_fixed_value (arg1);
11406 }
284614f0 11407
14f9c5c9 11408 case OP_TYPE:
4c4b4cd2
PH
11409 /* The value is not supposed to be used. This is here to make it
11410 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11411 (*pos) += 2;
11412 if (noside == EVAL_SKIP)
4c4b4cd2 11413 goto nosideret;
14f9c5c9 11414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11415 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11416 else
323e0a4a 11417 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11418
11419 case OP_AGGREGATE:
11420 case OP_CHOICES:
11421 case OP_OTHERS:
11422 case OP_DISCRETE_RANGE:
11423 case OP_POSITIONAL:
11424 case OP_NAME:
11425 if (noside == EVAL_NORMAL)
11426 switch (op)
11427 {
11428 case OP_NAME:
11429 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11430 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11431 case OP_AGGREGATE:
11432 error (_("Aggregates only allowed on the right of an assignment"));
11433 default:
0963b4bd
MS
11434 internal_error (__FILE__, __LINE__,
11435 _("aggregate apparently mangled"));
52ce6436
PH
11436 }
11437
11438 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11439 *pos += oplen - 1;
11440 for (tem = 0; tem < nargs; tem += 1)
11441 ada_evaluate_subexp (NULL, exp, pos, noside);
11442 goto nosideret;
14f9c5c9
AS
11443 }
11444
11445nosideret:
22601c15 11446 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 11447}
14f9c5c9 11448\f
d2e4a39e 11449
4c4b4cd2 11450 /* Fixed point */
14f9c5c9
AS
11451
11452/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11453 type name that encodes the 'small and 'delta information.
4c4b4cd2 11454 Otherwise, return NULL. */
14f9c5c9 11455
d2e4a39e 11456static const char *
ebf56fd3 11457fixed_type_info (struct type *type)
14f9c5c9 11458{
d2e4a39e 11459 const char *name = ada_type_name (type);
14f9c5c9
AS
11460 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11461
d2e4a39e
AS
11462 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11463 {
14f9c5c9 11464 const char *tail = strstr (name, "___XF_");
5b4ee69b 11465
14f9c5c9 11466 if (tail == NULL)
4c4b4cd2 11467 return NULL;
d2e4a39e 11468 else
4c4b4cd2 11469 return tail + 5;
14f9c5c9
AS
11470 }
11471 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11472 return fixed_type_info (TYPE_TARGET_TYPE (type));
11473 else
11474 return NULL;
11475}
11476
4c4b4cd2 11477/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11478
11479int
ebf56fd3 11480ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11481{
11482 return fixed_type_info (type) != NULL;
11483}
11484
4c4b4cd2
PH
11485/* Return non-zero iff TYPE represents a System.Address type. */
11486
11487int
11488ada_is_system_address_type (struct type *type)
11489{
11490 return (TYPE_NAME (type)
11491 && strcmp (TYPE_NAME (type), "system__address") == 0);
11492}
11493
14f9c5c9
AS
11494/* Assuming that TYPE is the representation of an Ada fixed-point
11495 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 11496 delta cannot be determined. */
14f9c5c9
AS
11497
11498DOUBLEST
ebf56fd3 11499ada_delta (struct type *type)
14f9c5c9
AS
11500{
11501 const char *encoding = fixed_type_info (type);
facc390f 11502 DOUBLEST num, den;
14f9c5c9 11503
facc390f
JB
11504 /* Strictly speaking, num and den are encoded as integer. However,
11505 they may not fit into a long, and they will have to be converted
11506 to DOUBLEST anyway. So scan them as DOUBLEST. */
11507 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11508 &num, &den) < 2)
14f9c5c9 11509 return -1.0;
d2e4a39e 11510 else
facc390f 11511 return num / den;
14f9c5c9
AS
11512}
11513
11514/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11515 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
11516
11517static DOUBLEST
ebf56fd3 11518scaling_factor (struct type *type)
14f9c5c9
AS
11519{
11520 const char *encoding = fixed_type_info (type);
facc390f 11521 DOUBLEST num0, den0, num1, den1;
14f9c5c9 11522 int n;
d2e4a39e 11523
facc390f
JB
11524 /* Strictly speaking, num's and den's are encoded as integer. However,
11525 they may not fit into a long, and they will have to be converted
11526 to DOUBLEST anyway. So scan them as DOUBLEST. */
11527 n = sscanf (encoding,
11528 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11529 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11530 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11531
11532 if (n < 2)
11533 return 1.0;
11534 else if (n == 4)
facc390f 11535 return num1 / den1;
d2e4a39e 11536 else
facc390f 11537 return num0 / den0;
14f9c5c9
AS
11538}
11539
11540
11541/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11542 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11543
11544DOUBLEST
ebf56fd3 11545ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11546{
d2e4a39e 11547 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11548}
11549
4c4b4cd2
PH
11550/* The representation of a fixed-point value of type TYPE
11551 corresponding to the value X. */
14f9c5c9
AS
11552
11553LONGEST
ebf56fd3 11554ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11555{
11556 return (LONGEST) (x / scaling_factor (type) + 0.5);
11557}
11558
14f9c5c9 11559\f
d2e4a39e 11560
4c4b4cd2 11561 /* Range types */
14f9c5c9
AS
11562
11563/* Scan STR beginning at position K for a discriminant name, and
11564 return the value of that discriminant field of DVAL in *PX. If
11565 PNEW_K is not null, put the position of the character beyond the
11566 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11567 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11568
11569static int
108d56a4 11570scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11571 int *pnew_k)
14f9c5c9
AS
11572{
11573 static char *bound_buffer = NULL;
11574 static size_t bound_buffer_len = 0;
5da1a4d3 11575 const char *pstart, *pend, *bound;
d2e4a39e 11576 struct value *bound_val;
14f9c5c9
AS
11577
11578 if (dval == NULL || str == NULL || str[k] == '\0')
11579 return 0;
11580
5da1a4d3
SM
11581 pstart = str + k;
11582 pend = strstr (pstart, "__");
14f9c5c9
AS
11583 if (pend == NULL)
11584 {
5da1a4d3 11585 bound = pstart;
14f9c5c9
AS
11586 k += strlen (bound);
11587 }
d2e4a39e 11588 else
14f9c5c9 11589 {
5da1a4d3
SM
11590 int len = pend - pstart;
11591
11592 /* Strip __ and beyond. */
11593 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11594 strncpy (bound_buffer, pstart, len);
11595 bound_buffer[len] = '\0';
11596
14f9c5c9 11597 bound = bound_buffer;
d2e4a39e 11598 k = pend - str;
14f9c5c9 11599 }
d2e4a39e 11600
df407dfe 11601 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11602 if (bound_val == NULL)
11603 return 0;
11604
11605 *px = value_as_long (bound_val);
11606 if (pnew_k != NULL)
11607 *pnew_k = k;
11608 return 1;
11609}
11610
11611/* Value of variable named NAME in the current environment. If
11612 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11613 otherwise causes an error with message ERR_MSG. */
11614
d2e4a39e
AS
11615static struct value *
11616get_var_value (char *name, char *err_msg)
14f9c5c9 11617{
d12307c1 11618 struct block_symbol *syms;
14f9c5c9
AS
11619 int nsyms;
11620
4c4b4cd2 11621 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11622 &syms);
14f9c5c9
AS
11623
11624 if (nsyms != 1)
11625 {
11626 if (err_msg == NULL)
4c4b4cd2 11627 return 0;
14f9c5c9 11628 else
8a3fe4f8 11629 error (("%s"), err_msg);
14f9c5c9
AS
11630 }
11631
d12307c1 11632 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11633}
d2e4a39e 11634
14f9c5c9 11635/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11636 no such variable found, returns 0, and sets *FLAG to 0. If
11637 successful, sets *FLAG to 1. */
11638
14f9c5c9 11639LONGEST
4c4b4cd2 11640get_int_var_value (char *name, int *flag)
14f9c5c9 11641{
4c4b4cd2 11642 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11643
14f9c5c9
AS
11644 if (var_val == 0)
11645 {
11646 if (flag != NULL)
4c4b4cd2 11647 *flag = 0;
14f9c5c9
AS
11648 return 0;
11649 }
11650 else
11651 {
11652 if (flag != NULL)
4c4b4cd2 11653 *flag = 1;
14f9c5c9
AS
11654 return value_as_long (var_val);
11655 }
11656}
d2e4a39e 11657
14f9c5c9
AS
11658
11659/* Return a range type whose base type is that of the range type named
11660 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11661 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11662 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11663 corresponding range type from debug information; fall back to using it
11664 if symbol lookup fails. If a new type must be created, allocate it
11665 like ORIG_TYPE was. The bounds information, in general, is encoded
11666 in NAME, the base type given in the named range type. */
14f9c5c9 11667
d2e4a39e 11668static struct type *
28c85d6c 11669to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11670{
0d5cff50 11671 const char *name;
14f9c5c9 11672 struct type *base_type;
108d56a4 11673 const char *subtype_info;
14f9c5c9 11674
28c85d6c
JB
11675 gdb_assert (raw_type != NULL);
11676 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11677
1ce677a4 11678 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11679 base_type = TYPE_TARGET_TYPE (raw_type);
11680 else
11681 base_type = raw_type;
11682
28c85d6c 11683 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11684 subtype_info = strstr (name, "___XD");
11685 if (subtype_info == NULL)
690cc4eb 11686 {
43bbcdc2
PH
11687 LONGEST L = ada_discrete_type_low_bound (raw_type);
11688 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11689
690cc4eb
PH
11690 if (L < INT_MIN || U > INT_MAX)
11691 return raw_type;
11692 else
0c9c3474
SA
11693 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11694 L, U);
690cc4eb 11695 }
14f9c5c9
AS
11696 else
11697 {
11698 static char *name_buf = NULL;
11699 static size_t name_len = 0;
11700 int prefix_len = subtype_info - name;
11701 LONGEST L, U;
11702 struct type *type;
108d56a4 11703 const char *bounds_str;
14f9c5c9
AS
11704 int n;
11705
11706 GROW_VECT (name_buf, name_len, prefix_len + 5);
11707 strncpy (name_buf, name, prefix_len);
11708 name_buf[prefix_len] = '\0';
11709
11710 subtype_info += 5;
11711 bounds_str = strchr (subtype_info, '_');
11712 n = 1;
11713
d2e4a39e 11714 if (*subtype_info == 'L')
4c4b4cd2
PH
11715 {
11716 if (!ada_scan_number (bounds_str, n, &L, &n)
11717 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11718 return raw_type;
11719 if (bounds_str[n] == '_')
11720 n += 2;
0963b4bd 11721 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11722 n += 1;
11723 subtype_info += 1;
11724 }
d2e4a39e 11725 else
4c4b4cd2
PH
11726 {
11727 int ok;
5b4ee69b 11728
4c4b4cd2
PH
11729 strcpy (name_buf + prefix_len, "___L");
11730 L = get_int_var_value (name_buf, &ok);
11731 if (!ok)
11732 {
323e0a4a 11733 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11734 L = 1;
11735 }
11736 }
14f9c5c9 11737
d2e4a39e 11738 if (*subtype_info == 'U')
4c4b4cd2
PH
11739 {
11740 if (!ada_scan_number (bounds_str, n, &U, &n)
11741 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11742 return raw_type;
11743 }
d2e4a39e 11744 else
4c4b4cd2
PH
11745 {
11746 int ok;
5b4ee69b 11747
4c4b4cd2
PH
11748 strcpy (name_buf + prefix_len, "___U");
11749 U = get_int_var_value (name_buf, &ok);
11750 if (!ok)
11751 {
323e0a4a 11752 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11753 U = L;
11754 }
11755 }
14f9c5c9 11756
0c9c3474
SA
11757 type = create_static_range_type (alloc_type_copy (raw_type),
11758 base_type, L, U);
d2e4a39e 11759 TYPE_NAME (type) = name;
14f9c5c9
AS
11760 return type;
11761 }
11762}
11763
4c4b4cd2
PH
11764/* True iff NAME is the name of a range type. */
11765
14f9c5c9 11766int
d2e4a39e 11767ada_is_range_type_name (const char *name)
14f9c5c9
AS
11768{
11769 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11770}
14f9c5c9 11771\f
d2e4a39e 11772
4c4b4cd2
PH
11773 /* Modular types */
11774
11775/* True iff TYPE is an Ada modular type. */
14f9c5c9 11776
14f9c5c9 11777int
d2e4a39e 11778ada_is_modular_type (struct type *type)
14f9c5c9 11779{
18af8284 11780 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11781
11782 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11783 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11784 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11785}
11786
4c4b4cd2
PH
11787/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11788
61ee279c 11789ULONGEST
0056e4d5 11790ada_modulus (struct type *type)
14f9c5c9 11791{
43bbcdc2 11792 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11793}
d2e4a39e 11794\f
f7f9143b
JB
11795
11796/* Ada exception catchpoint support:
11797 ---------------------------------
11798
11799 We support 3 kinds of exception catchpoints:
11800 . catchpoints on Ada exceptions
11801 . catchpoints on unhandled Ada exceptions
11802 . catchpoints on failed assertions
11803
11804 Exceptions raised during failed assertions, or unhandled exceptions
11805 could perfectly be caught with the general catchpoint on Ada exceptions.
11806 However, we can easily differentiate these two special cases, and having
11807 the option to distinguish these two cases from the rest can be useful
11808 to zero-in on certain situations.
11809
11810 Exception catchpoints are a specialized form of breakpoint,
11811 since they rely on inserting breakpoints inside known routines
11812 of the GNAT runtime. The implementation therefore uses a standard
11813 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11814 of breakpoint_ops.
11815
0259addd
JB
11816 Support in the runtime for exception catchpoints have been changed
11817 a few times already, and these changes affect the implementation
11818 of these catchpoints. In order to be able to support several
11819 variants of the runtime, we use a sniffer that will determine
28010a5d 11820 the runtime variant used by the program being debugged. */
f7f9143b 11821
82eacd52
JB
11822/* Ada's standard exceptions.
11823
11824 The Ada 83 standard also defined Numeric_Error. But there so many
11825 situations where it was unclear from the Ada 83 Reference Manual
11826 (RM) whether Constraint_Error or Numeric_Error should be raised,
11827 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11828 Interpretation saying that anytime the RM says that Numeric_Error
11829 should be raised, the implementation may raise Constraint_Error.
11830 Ada 95 went one step further and pretty much removed Numeric_Error
11831 from the list of standard exceptions (it made it a renaming of
11832 Constraint_Error, to help preserve compatibility when compiling
11833 an Ada83 compiler). As such, we do not include Numeric_Error from
11834 this list of standard exceptions. */
3d0b0fa3 11835
a121b7c1 11836static const char *standard_exc[] = {
3d0b0fa3
JB
11837 "constraint_error",
11838 "program_error",
11839 "storage_error",
11840 "tasking_error"
11841};
11842
0259addd
JB
11843typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11844
11845/* A structure that describes how to support exception catchpoints
11846 for a given executable. */
11847
11848struct exception_support_info
11849{
11850 /* The name of the symbol to break on in order to insert
11851 a catchpoint on exceptions. */
11852 const char *catch_exception_sym;
11853
11854 /* The name of the symbol to break on in order to insert
11855 a catchpoint on unhandled exceptions. */
11856 const char *catch_exception_unhandled_sym;
11857
11858 /* The name of the symbol to break on in order to insert
11859 a catchpoint on failed assertions. */
11860 const char *catch_assert_sym;
11861
11862 /* Assuming that the inferior just triggered an unhandled exception
11863 catchpoint, this function is responsible for returning the address
11864 in inferior memory where the name of that exception is stored.
11865 Return zero if the address could not be computed. */
11866 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11867};
11868
11869static CORE_ADDR ada_unhandled_exception_name_addr (void);
11870static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11871
11872/* The following exception support info structure describes how to
11873 implement exception catchpoints with the latest version of the
11874 Ada runtime (as of 2007-03-06). */
11875
11876static const struct exception_support_info default_exception_support_info =
11877{
11878 "__gnat_debug_raise_exception", /* catch_exception_sym */
11879 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11880 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11881 ada_unhandled_exception_name_addr
11882};
11883
11884/* The following exception support info structure describes how to
11885 implement exception catchpoints with a slightly older version
11886 of the Ada runtime. */
11887
11888static const struct exception_support_info exception_support_info_fallback =
11889{
11890 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11891 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11892 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11893 ada_unhandled_exception_name_addr_from_raise
11894};
11895
f17011e0
JB
11896/* Return nonzero if we can detect the exception support routines
11897 described in EINFO.
11898
11899 This function errors out if an abnormal situation is detected
11900 (for instance, if we find the exception support routines, but
11901 that support is found to be incomplete). */
11902
11903static int
11904ada_has_this_exception_support (const struct exception_support_info *einfo)
11905{
11906 struct symbol *sym;
11907
11908 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11909 that should be compiled with debugging information. As a result, we
11910 expect to find that symbol in the symtabs. */
11911
11912 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11913 if (sym == NULL)
a6af7abe
JB
11914 {
11915 /* Perhaps we did not find our symbol because the Ada runtime was
11916 compiled without debugging info, or simply stripped of it.
11917 It happens on some GNU/Linux distributions for instance, where
11918 users have to install a separate debug package in order to get
11919 the runtime's debugging info. In that situation, let the user
11920 know why we cannot insert an Ada exception catchpoint.
11921
11922 Note: Just for the purpose of inserting our Ada exception
11923 catchpoint, we could rely purely on the associated minimal symbol.
11924 But we would be operating in degraded mode anyway, since we are
11925 still lacking the debugging info needed later on to extract
11926 the name of the exception being raised (this name is printed in
11927 the catchpoint message, and is also used when trying to catch
11928 a specific exception). We do not handle this case for now. */
3b7344d5 11929 struct bound_minimal_symbol msym
1c8e84b0
JB
11930 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11931
3b7344d5 11932 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11933 error (_("Your Ada runtime appears to be missing some debugging "
11934 "information.\nCannot insert Ada exception catchpoint "
11935 "in this configuration."));
11936
11937 return 0;
11938 }
f17011e0
JB
11939
11940 /* Make sure that the symbol we found corresponds to a function. */
11941
11942 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11943 error (_("Symbol \"%s\" is not a function (class = %d)"),
11944 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11945
11946 return 1;
11947}
11948
0259addd
JB
11949/* Inspect the Ada runtime and determine which exception info structure
11950 should be used to provide support for exception catchpoints.
11951
3eecfa55
JB
11952 This function will always set the per-inferior exception_info,
11953 or raise an error. */
0259addd
JB
11954
11955static void
11956ada_exception_support_info_sniffer (void)
11957{
3eecfa55 11958 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11959
11960 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11961 if (data->exception_info != NULL)
0259addd
JB
11962 return;
11963
11964 /* Check the latest (default) exception support info. */
f17011e0 11965 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11966 {
3eecfa55 11967 data->exception_info = &default_exception_support_info;
0259addd
JB
11968 return;
11969 }
11970
11971 /* Try our fallback exception suport info. */
f17011e0 11972 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11973 {
3eecfa55 11974 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11975 return;
11976 }
11977
11978 /* Sometimes, it is normal for us to not be able to find the routine
11979 we are looking for. This happens when the program is linked with
11980 the shared version of the GNAT runtime, and the program has not been
11981 started yet. Inform the user of these two possible causes if
11982 applicable. */
11983
ccefe4c4 11984 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11985 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11986
11987 /* If the symbol does not exist, then check that the program is
11988 already started, to make sure that shared libraries have been
11989 loaded. If it is not started, this may mean that the symbol is
11990 in a shared library. */
11991
11992 if (ptid_get_pid (inferior_ptid) == 0)
11993 error (_("Unable to insert catchpoint. Try to start the program first."));
11994
11995 /* At this point, we know that we are debugging an Ada program and
11996 that the inferior has been started, but we still are not able to
0963b4bd 11997 find the run-time symbols. That can mean that we are in
0259addd
JB
11998 configurable run time mode, or that a-except as been optimized
11999 out by the linker... In any case, at this point it is not worth
12000 supporting this feature. */
12001
7dda8cff 12002 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12003}
12004
f7f9143b
JB
12005/* True iff FRAME is very likely to be that of a function that is
12006 part of the runtime system. This is all very heuristic, but is
12007 intended to be used as advice as to what frames are uninteresting
12008 to most users. */
12009
12010static int
12011is_known_support_routine (struct frame_info *frame)
12012{
4ed6b5be 12013 struct symtab_and_line sal;
55b87a52 12014 char *func_name;
692465f1 12015 enum language func_lang;
f7f9143b 12016 int i;
f35a17b5 12017 const char *fullname;
f7f9143b 12018
4ed6b5be
JB
12019 /* If this code does not have any debugging information (no symtab),
12020 This cannot be any user code. */
f7f9143b 12021
4ed6b5be 12022 find_frame_sal (frame, &sal);
f7f9143b
JB
12023 if (sal.symtab == NULL)
12024 return 1;
12025
4ed6b5be
JB
12026 /* If there is a symtab, but the associated source file cannot be
12027 located, then assume this is not user code: Selecting a frame
12028 for which we cannot display the code would not be very helpful
12029 for the user. This should also take care of case such as VxWorks
12030 where the kernel has some debugging info provided for a few units. */
f7f9143b 12031
f35a17b5
JK
12032 fullname = symtab_to_fullname (sal.symtab);
12033 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12034 return 1;
12035
4ed6b5be
JB
12036 /* Check the unit filename againt the Ada runtime file naming.
12037 We also check the name of the objfile against the name of some
12038 known system libraries that sometimes come with debugging info
12039 too. */
12040
f7f9143b
JB
12041 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12042 {
12043 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12044 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12045 return 1;
eb822aa6
DE
12046 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12047 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12048 return 1;
f7f9143b
JB
12049 }
12050
4ed6b5be 12051 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12052
e9e07ba6 12053 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
12054 if (func_name == NULL)
12055 return 1;
12056
12057 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12058 {
12059 re_comp (known_auxiliary_function_name_patterns[i]);
12060 if (re_exec (func_name))
55b87a52
KS
12061 {
12062 xfree (func_name);
12063 return 1;
12064 }
f7f9143b
JB
12065 }
12066
55b87a52 12067 xfree (func_name);
f7f9143b
JB
12068 return 0;
12069}
12070
12071/* Find the first frame that contains debugging information and that is not
12072 part of the Ada run-time, starting from FI and moving upward. */
12073
0ef643c8 12074void
f7f9143b
JB
12075ada_find_printable_frame (struct frame_info *fi)
12076{
12077 for (; fi != NULL; fi = get_prev_frame (fi))
12078 {
12079 if (!is_known_support_routine (fi))
12080 {
12081 select_frame (fi);
12082 break;
12083 }
12084 }
12085
12086}
12087
12088/* Assuming that the inferior just triggered an unhandled exception
12089 catchpoint, return the address in inferior memory where the name
12090 of the exception is stored.
12091
12092 Return zero if the address could not be computed. */
12093
12094static CORE_ADDR
12095ada_unhandled_exception_name_addr (void)
0259addd
JB
12096{
12097 return parse_and_eval_address ("e.full_name");
12098}
12099
12100/* Same as ada_unhandled_exception_name_addr, except that this function
12101 should be used when the inferior uses an older version of the runtime,
12102 where the exception name needs to be extracted from a specific frame
12103 several frames up in the callstack. */
12104
12105static CORE_ADDR
12106ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12107{
12108 int frame_level;
12109 struct frame_info *fi;
3eecfa55 12110 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 12111 struct cleanup *old_chain;
f7f9143b
JB
12112
12113 /* To determine the name of this exception, we need to select
12114 the frame corresponding to RAISE_SYM_NAME. This frame is
12115 at least 3 levels up, so we simply skip the first 3 frames
12116 without checking the name of their associated function. */
12117 fi = get_current_frame ();
12118 for (frame_level = 0; frame_level < 3; frame_level += 1)
12119 if (fi != NULL)
12120 fi = get_prev_frame (fi);
12121
55b87a52 12122 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
12123 while (fi != NULL)
12124 {
55b87a52 12125 char *func_name;
692465f1
JB
12126 enum language func_lang;
12127
e9e07ba6 12128 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
12129 if (func_name != NULL)
12130 {
12131 make_cleanup (xfree, func_name);
12132
12133 if (strcmp (func_name,
12134 data->exception_info->catch_exception_sym) == 0)
12135 break; /* We found the frame we were looking for... */
12136 fi = get_prev_frame (fi);
12137 }
f7f9143b 12138 }
55b87a52 12139 do_cleanups (old_chain);
f7f9143b
JB
12140
12141 if (fi == NULL)
12142 return 0;
12143
12144 select_frame (fi);
12145 return parse_and_eval_address ("id.full_name");
12146}
12147
12148/* Assuming the inferior just triggered an Ada exception catchpoint
12149 (of any type), return the address in inferior memory where the name
12150 of the exception is stored, if applicable.
12151
45db7c09
PA
12152 Assumes the selected frame is the current frame.
12153
f7f9143b
JB
12154 Return zero if the address could not be computed, or if not relevant. */
12155
12156static CORE_ADDR
761269c8 12157ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12158 struct breakpoint *b)
12159{
3eecfa55
JB
12160 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12161
f7f9143b
JB
12162 switch (ex)
12163 {
761269c8 12164 case ada_catch_exception:
f7f9143b
JB
12165 return (parse_and_eval_address ("e.full_name"));
12166 break;
12167
761269c8 12168 case ada_catch_exception_unhandled:
3eecfa55 12169 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
12170 break;
12171
761269c8 12172 case ada_catch_assert:
f7f9143b
JB
12173 return 0; /* Exception name is not relevant in this case. */
12174 break;
12175
12176 default:
12177 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12178 break;
12179 }
12180
12181 return 0; /* Should never be reached. */
12182}
12183
12184/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12185 any error that ada_exception_name_addr_1 might cause to be thrown.
12186 When an error is intercepted, a warning with the error message is printed,
12187 and zero is returned. */
12188
12189static CORE_ADDR
761269c8 12190ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12191 struct breakpoint *b)
12192{
f7f9143b
JB
12193 CORE_ADDR result = 0;
12194
492d29ea 12195 TRY
f7f9143b
JB
12196 {
12197 result = ada_exception_name_addr_1 (ex, b);
12198 }
12199
492d29ea 12200 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12201 {
12202 warning (_("failed to get exception name: %s"), e.message);
12203 return 0;
12204 }
492d29ea 12205 END_CATCH
f7f9143b
JB
12206
12207 return result;
12208}
12209
28010a5d
PA
12210static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12211
12212/* Ada catchpoints.
12213
12214 In the case of catchpoints on Ada exceptions, the catchpoint will
12215 stop the target on every exception the program throws. When a user
12216 specifies the name of a specific exception, we translate this
12217 request into a condition expression (in text form), and then parse
12218 it into an expression stored in each of the catchpoint's locations.
12219 We then use this condition to check whether the exception that was
12220 raised is the one the user is interested in. If not, then the
12221 target is resumed again. We store the name of the requested
12222 exception, in order to be able to re-set the condition expression
12223 when symbols change. */
12224
12225/* An instance of this type is used to represent an Ada catchpoint
5625a286 12226 breakpoint location. */
28010a5d 12227
5625a286 12228class ada_catchpoint_location : public bp_location
28010a5d 12229{
5625a286
PA
12230public:
12231 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12232 : bp_location (ops, owner)
12233 {}
28010a5d
PA
12234
12235 /* The condition that checks whether the exception that was raised
12236 is the specific exception the user specified on catchpoint
12237 creation. */
4d01a485 12238 expression_up excep_cond_expr;
28010a5d
PA
12239};
12240
12241/* Implement the DTOR method in the bp_location_ops structure for all
12242 Ada exception catchpoint kinds. */
12243
12244static void
12245ada_catchpoint_location_dtor (struct bp_location *bl)
12246{
12247 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12248
4d01a485 12249 al->excep_cond_expr.reset ();
28010a5d
PA
12250}
12251
12252/* The vtable to be used in Ada catchpoint locations. */
12253
12254static const struct bp_location_ops ada_catchpoint_location_ops =
12255{
12256 ada_catchpoint_location_dtor
12257};
12258
c1fc2657 12259/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12260
c1fc2657 12261struct ada_catchpoint : public breakpoint
28010a5d 12262{
c1fc2657 12263 ~ada_catchpoint () override;
28010a5d
PA
12264
12265 /* The name of the specific exception the user specified. */
12266 char *excep_string;
12267};
12268
12269/* Parse the exception condition string in the context of each of the
12270 catchpoint's locations, and store them for later evaluation. */
12271
12272static void
12273create_excep_cond_exprs (struct ada_catchpoint *c)
12274{
12275 struct cleanup *old_chain;
12276 struct bp_location *bl;
12277 char *cond_string;
12278
12279 /* Nothing to do if there's no specific exception to catch. */
12280 if (c->excep_string == NULL)
12281 return;
12282
12283 /* Same if there are no locations... */
c1fc2657 12284 if (c->loc == NULL)
28010a5d
PA
12285 return;
12286
12287 /* Compute the condition expression in text form, from the specific
12288 expection we want to catch. */
12289 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12290 old_chain = make_cleanup (xfree, cond_string);
12291
12292 /* Iterate over all the catchpoint's locations, and parse an
12293 expression for each. */
c1fc2657 12294 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12295 {
12296 struct ada_catchpoint_location *ada_loc
12297 = (struct ada_catchpoint_location *) bl;
4d01a485 12298 expression_up exp;
28010a5d
PA
12299
12300 if (!bl->shlib_disabled)
12301 {
bbc13ae3 12302 const char *s;
28010a5d
PA
12303
12304 s = cond_string;
492d29ea 12305 TRY
28010a5d 12306 {
036e657b
JB
12307 exp = parse_exp_1 (&s, bl->address,
12308 block_for_pc (bl->address),
12309 0);
28010a5d 12310 }
492d29ea 12311 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12312 {
12313 warning (_("failed to reevaluate internal exception condition "
12314 "for catchpoint %d: %s"),
c1fc2657 12315 c->number, e.message);
849f2b52 12316 }
492d29ea 12317 END_CATCH
28010a5d
PA
12318 }
12319
b22e99fd 12320 ada_loc->excep_cond_expr = std::move (exp);
28010a5d
PA
12321 }
12322
12323 do_cleanups (old_chain);
12324}
12325
c1fc2657 12326/* ada_catchpoint destructor. */
28010a5d 12327
c1fc2657 12328ada_catchpoint::~ada_catchpoint ()
28010a5d 12329{
c1fc2657 12330 xfree (this->excep_string);
28010a5d
PA
12331}
12332
12333/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12334 structure for all exception catchpoint kinds. */
12335
12336static struct bp_location *
761269c8 12337allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12338 struct breakpoint *self)
12339{
5625a286 12340 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12341}
12342
12343/* Implement the RE_SET method in the breakpoint_ops structure for all
12344 exception catchpoint kinds. */
12345
12346static void
761269c8 12347re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12348{
12349 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12350
12351 /* Call the base class's method. This updates the catchpoint's
12352 locations. */
2060206e 12353 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12354
12355 /* Reparse the exception conditional expressions. One for each
12356 location. */
12357 create_excep_cond_exprs (c);
12358}
12359
12360/* Returns true if we should stop for this breakpoint hit. If the
12361 user specified a specific exception, we only want to cause a stop
12362 if the program thrown that exception. */
12363
12364static int
12365should_stop_exception (const struct bp_location *bl)
12366{
12367 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12368 const struct ada_catchpoint_location *ada_loc
12369 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12370 int stop;
12371
12372 /* With no specific exception, should always stop. */
12373 if (c->excep_string == NULL)
12374 return 1;
12375
12376 if (ada_loc->excep_cond_expr == NULL)
12377 {
12378 /* We will have a NULL expression if back when we were creating
12379 the expressions, this location's had failed to parse. */
12380 return 1;
12381 }
12382
12383 stop = 1;
492d29ea 12384 TRY
28010a5d
PA
12385 {
12386 struct value *mark;
12387
12388 mark = value_mark ();
4d01a485 12389 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12390 value_free_to_mark (mark);
12391 }
492d29ea
PA
12392 CATCH (ex, RETURN_MASK_ALL)
12393 {
12394 exception_fprintf (gdb_stderr, ex,
12395 _("Error in testing exception condition:\n"));
12396 }
12397 END_CATCH
12398
28010a5d
PA
12399 return stop;
12400}
12401
12402/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12403 for all exception catchpoint kinds. */
12404
12405static void
761269c8 12406check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12407{
12408 bs->stop = should_stop_exception (bs->bp_location_at);
12409}
12410
f7f9143b
JB
12411/* Implement the PRINT_IT method in the breakpoint_ops structure
12412 for all exception catchpoint kinds. */
12413
12414static enum print_stop_action
761269c8 12415print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12416{
79a45e25 12417 struct ui_out *uiout = current_uiout;
348d480f
PA
12418 struct breakpoint *b = bs->breakpoint_at;
12419
956a9fb9 12420 annotate_catchpoint (b->number);
f7f9143b 12421
112e8700 12422 if (uiout->is_mi_like_p ())
f7f9143b 12423 {
112e8700 12424 uiout->field_string ("reason",
956a9fb9 12425 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12426 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12427 }
12428
112e8700
SM
12429 uiout->text (b->disposition == disp_del
12430 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12431 uiout->field_int ("bkptno", b->number);
12432 uiout->text (", ");
f7f9143b 12433
45db7c09
PA
12434 /* ada_exception_name_addr relies on the selected frame being the
12435 current frame. Need to do this here because this function may be
12436 called more than once when printing a stop, and below, we'll
12437 select the first frame past the Ada run-time (see
12438 ada_find_printable_frame). */
12439 select_frame (get_current_frame ());
12440
f7f9143b
JB
12441 switch (ex)
12442 {
761269c8
JB
12443 case ada_catch_exception:
12444 case ada_catch_exception_unhandled:
956a9fb9
JB
12445 {
12446 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12447 char exception_name[256];
12448
12449 if (addr != 0)
12450 {
c714b426
PA
12451 read_memory (addr, (gdb_byte *) exception_name,
12452 sizeof (exception_name) - 1);
956a9fb9
JB
12453 exception_name [sizeof (exception_name) - 1] = '\0';
12454 }
12455 else
12456 {
12457 /* For some reason, we were unable to read the exception
12458 name. This could happen if the Runtime was compiled
12459 without debugging info, for instance. In that case,
12460 just replace the exception name by the generic string
12461 "exception" - it will read as "an exception" in the
12462 notification we are about to print. */
967cff16 12463 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12464 }
12465 /* In the case of unhandled exception breakpoints, we print
12466 the exception name as "unhandled EXCEPTION_NAME", to make
12467 it clearer to the user which kind of catchpoint just got
12468 hit. We used ui_out_text to make sure that this extra
12469 info does not pollute the exception name in the MI case. */
761269c8 12470 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12471 uiout->text ("unhandled ");
12472 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12473 }
12474 break;
761269c8 12475 case ada_catch_assert:
956a9fb9
JB
12476 /* In this case, the name of the exception is not really
12477 important. Just print "failed assertion" to make it clearer
12478 that his program just hit an assertion-failure catchpoint.
12479 We used ui_out_text because this info does not belong in
12480 the MI output. */
112e8700 12481 uiout->text ("failed assertion");
956a9fb9 12482 break;
f7f9143b 12483 }
112e8700 12484 uiout->text (" at ");
956a9fb9 12485 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12486
12487 return PRINT_SRC_AND_LOC;
12488}
12489
12490/* Implement the PRINT_ONE method in the breakpoint_ops structure
12491 for all exception catchpoint kinds. */
12492
12493static void
761269c8 12494print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12495 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12496{
79a45e25 12497 struct ui_out *uiout = current_uiout;
28010a5d 12498 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12499 struct value_print_options opts;
12500
12501 get_user_print_options (&opts);
12502 if (opts.addressprint)
f7f9143b
JB
12503 {
12504 annotate_field (4);
112e8700 12505 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12506 }
12507
12508 annotate_field (5);
a6d9a66e 12509 *last_loc = b->loc;
f7f9143b
JB
12510 switch (ex)
12511 {
761269c8 12512 case ada_catch_exception:
28010a5d 12513 if (c->excep_string != NULL)
f7f9143b 12514 {
28010a5d
PA
12515 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12516
112e8700 12517 uiout->field_string ("what", msg);
f7f9143b
JB
12518 xfree (msg);
12519 }
12520 else
112e8700 12521 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12522
12523 break;
12524
761269c8 12525 case ada_catch_exception_unhandled:
112e8700 12526 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12527 break;
12528
761269c8 12529 case ada_catch_assert:
112e8700 12530 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12531 break;
12532
12533 default:
12534 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12535 break;
12536 }
12537}
12538
12539/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12540 for all exception catchpoint kinds. */
12541
12542static void
761269c8 12543print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12544 struct breakpoint *b)
12545{
28010a5d 12546 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12547 struct ui_out *uiout = current_uiout;
28010a5d 12548
112e8700 12549 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12550 : _("Catchpoint "));
112e8700
SM
12551 uiout->field_int ("bkptno", b->number);
12552 uiout->text (": ");
00eb2c4a 12553
f7f9143b
JB
12554 switch (ex)
12555 {
761269c8 12556 case ada_catch_exception:
28010a5d 12557 if (c->excep_string != NULL)
00eb2c4a
JB
12558 {
12559 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12560 struct cleanup *old_chain = make_cleanup (xfree, info);
12561
112e8700 12562 uiout->text (info);
00eb2c4a
JB
12563 do_cleanups (old_chain);
12564 }
f7f9143b 12565 else
112e8700 12566 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12567 break;
12568
761269c8 12569 case ada_catch_exception_unhandled:
112e8700 12570 uiout->text (_("unhandled Ada exceptions"));
f7f9143b
JB
12571 break;
12572
761269c8 12573 case ada_catch_assert:
112e8700 12574 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12575 break;
12576
12577 default:
12578 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12579 break;
12580 }
12581}
12582
6149aea9
PA
12583/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12584 for all exception catchpoint kinds. */
12585
12586static void
761269c8 12587print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12588 struct breakpoint *b, struct ui_file *fp)
12589{
28010a5d
PA
12590 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12591
6149aea9
PA
12592 switch (ex)
12593 {
761269c8 12594 case ada_catch_exception:
6149aea9 12595 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12596 if (c->excep_string != NULL)
12597 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12598 break;
12599
761269c8 12600 case ada_catch_exception_unhandled:
78076abc 12601 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12602 break;
12603
761269c8 12604 case ada_catch_assert:
6149aea9
PA
12605 fprintf_filtered (fp, "catch assert");
12606 break;
12607
12608 default:
12609 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12610 }
d9b3f62e 12611 print_recreate_thread (b, fp);
6149aea9
PA
12612}
12613
f7f9143b
JB
12614/* Virtual table for "catch exception" breakpoints. */
12615
28010a5d
PA
12616static struct bp_location *
12617allocate_location_catch_exception (struct breakpoint *self)
12618{
761269c8 12619 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12620}
12621
12622static void
12623re_set_catch_exception (struct breakpoint *b)
12624{
761269c8 12625 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12626}
12627
12628static void
12629check_status_catch_exception (bpstat bs)
12630{
761269c8 12631 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12632}
12633
f7f9143b 12634static enum print_stop_action
348d480f 12635print_it_catch_exception (bpstat bs)
f7f9143b 12636{
761269c8 12637 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12638}
12639
12640static void
a6d9a66e 12641print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12642{
761269c8 12643 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12644}
12645
12646static void
12647print_mention_catch_exception (struct breakpoint *b)
12648{
761269c8 12649 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12650}
12651
6149aea9
PA
12652static void
12653print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12654{
761269c8 12655 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12656}
12657
2060206e 12658static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12659
12660/* Virtual table for "catch exception unhandled" breakpoints. */
12661
28010a5d
PA
12662static struct bp_location *
12663allocate_location_catch_exception_unhandled (struct breakpoint *self)
12664{
761269c8 12665 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12666}
12667
12668static void
12669re_set_catch_exception_unhandled (struct breakpoint *b)
12670{
761269c8 12671 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12672}
12673
12674static void
12675check_status_catch_exception_unhandled (bpstat bs)
12676{
761269c8 12677 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12678}
12679
f7f9143b 12680static enum print_stop_action
348d480f 12681print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12682{
761269c8 12683 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12684}
12685
12686static void
a6d9a66e
UW
12687print_one_catch_exception_unhandled (struct breakpoint *b,
12688 struct bp_location **last_loc)
f7f9143b 12689{
761269c8 12690 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12691}
12692
12693static void
12694print_mention_catch_exception_unhandled (struct breakpoint *b)
12695{
761269c8 12696 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12697}
12698
6149aea9
PA
12699static void
12700print_recreate_catch_exception_unhandled (struct breakpoint *b,
12701 struct ui_file *fp)
12702{
761269c8 12703 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12704}
12705
2060206e 12706static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12707
12708/* Virtual table for "catch assert" breakpoints. */
12709
28010a5d
PA
12710static struct bp_location *
12711allocate_location_catch_assert (struct breakpoint *self)
12712{
761269c8 12713 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12714}
12715
12716static void
12717re_set_catch_assert (struct breakpoint *b)
12718{
761269c8 12719 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12720}
12721
12722static void
12723check_status_catch_assert (bpstat bs)
12724{
761269c8 12725 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12726}
12727
f7f9143b 12728static enum print_stop_action
348d480f 12729print_it_catch_assert (bpstat bs)
f7f9143b 12730{
761269c8 12731 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12732}
12733
12734static void
a6d9a66e 12735print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12736{
761269c8 12737 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12738}
12739
12740static void
12741print_mention_catch_assert (struct breakpoint *b)
12742{
761269c8 12743 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12744}
12745
6149aea9
PA
12746static void
12747print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12748{
761269c8 12749 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12750}
12751
2060206e 12752static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12753
f7f9143b
JB
12754/* Return a newly allocated copy of the first space-separated token
12755 in ARGSP, and then adjust ARGSP to point immediately after that
12756 token.
12757
12758 Return NULL if ARGPS does not contain any more tokens. */
12759
12760static char *
a121b7c1 12761ada_get_next_arg (const char **argsp)
f7f9143b 12762{
a121b7c1
PA
12763 const char *args = *argsp;
12764 const char *end;
f7f9143b
JB
12765 char *result;
12766
a121b7c1 12767 args = skip_spaces_const (args);
f7f9143b
JB
12768 if (args[0] == '\0')
12769 return NULL; /* No more arguments. */
12770
12771 /* Find the end of the current argument. */
12772
a121b7c1 12773 end = skip_to_space_const (args);
f7f9143b
JB
12774
12775 /* Adjust ARGSP to point to the start of the next argument. */
12776
12777 *argsp = end;
12778
12779 /* Make a copy of the current argument and return it. */
12780
224c3ddb 12781 result = (char *) xmalloc (end - args + 1);
f7f9143b
JB
12782 strncpy (result, args, end - args);
12783 result[end - args] = '\0';
12784
12785 return result;
12786}
12787
12788/* Split the arguments specified in a "catch exception" command.
12789 Set EX to the appropriate catchpoint type.
28010a5d 12790 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12791 specified by the user.
12792 If a condition is found at the end of the arguments, the condition
12793 expression is stored in COND_STRING (memory must be deallocated
12794 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12795
12796static void
a121b7c1 12797catch_ada_exception_command_split (const char *args,
761269c8 12798 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12799 char **excep_string,
12800 char **cond_string)
f7f9143b
JB
12801{
12802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12803 char *exception_name;
5845583d 12804 char *cond = NULL;
f7f9143b
JB
12805
12806 exception_name = ada_get_next_arg (&args);
5845583d
JB
12807 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12808 {
12809 /* This is not an exception name; this is the start of a condition
12810 expression for a catchpoint on all exceptions. So, "un-get"
12811 this token, and set exception_name to NULL. */
12812 xfree (exception_name);
12813 exception_name = NULL;
12814 args -= 2;
12815 }
f7f9143b
JB
12816 make_cleanup (xfree, exception_name);
12817
5845583d 12818 /* Check to see if we have a condition. */
f7f9143b 12819
a121b7c1 12820 args = skip_spaces_const (args);
61012eef 12821 if (startswith (args, "if")
5845583d
JB
12822 && (isspace (args[2]) || args[2] == '\0'))
12823 {
12824 args += 2;
a121b7c1 12825 args = skip_spaces_const (args);
5845583d
JB
12826
12827 if (args[0] == '\0')
12828 error (_("Condition missing after `if' keyword"));
12829 cond = xstrdup (args);
12830 make_cleanup (xfree, cond);
12831
12832 args += strlen (args);
12833 }
12834
12835 /* Check that we do not have any more arguments. Anything else
12836 is unexpected. */
f7f9143b
JB
12837
12838 if (args[0] != '\0')
12839 error (_("Junk at end of expression"));
12840
12841 discard_cleanups (old_chain);
12842
12843 if (exception_name == NULL)
12844 {
12845 /* Catch all exceptions. */
761269c8 12846 *ex = ada_catch_exception;
28010a5d 12847 *excep_string = NULL;
f7f9143b
JB
12848 }
12849 else if (strcmp (exception_name, "unhandled") == 0)
12850 {
12851 /* Catch unhandled exceptions. */
761269c8 12852 *ex = ada_catch_exception_unhandled;
28010a5d 12853 *excep_string = NULL;
f7f9143b
JB
12854 }
12855 else
12856 {
12857 /* Catch a specific exception. */
761269c8 12858 *ex = ada_catch_exception;
28010a5d 12859 *excep_string = exception_name;
f7f9143b 12860 }
5845583d 12861 *cond_string = cond;
f7f9143b
JB
12862}
12863
12864/* Return the name of the symbol on which we should break in order to
12865 implement a catchpoint of the EX kind. */
12866
12867static const char *
761269c8 12868ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12869{
3eecfa55
JB
12870 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12871
12872 gdb_assert (data->exception_info != NULL);
0259addd 12873
f7f9143b
JB
12874 switch (ex)
12875 {
761269c8 12876 case ada_catch_exception:
3eecfa55 12877 return (data->exception_info->catch_exception_sym);
f7f9143b 12878 break;
761269c8 12879 case ada_catch_exception_unhandled:
3eecfa55 12880 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12881 break;
761269c8 12882 case ada_catch_assert:
3eecfa55 12883 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12884 break;
12885 default:
12886 internal_error (__FILE__, __LINE__,
12887 _("unexpected catchpoint kind (%d)"), ex);
12888 }
12889}
12890
12891/* Return the breakpoint ops "virtual table" used for catchpoints
12892 of the EX kind. */
12893
c0a91b2b 12894static const struct breakpoint_ops *
761269c8 12895ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12896{
12897 switch (ex)
12898 {
761269c8 12899 case ada_catch_exception:
f7f9143b
JB
12900 return (&catch_exception_breakpoint_ops);
12901 break;
761269c8 12902 case ada_catch_exception_unhandled:
f7f9143b
JB
12903 return (&catch_exception_unhandled_breakpoint_ops);
12904 break;
761269c8 12905 case ada_catch_assert:
f7f9143b
JB
12906 return (&catch_assert_breakpoint_ops);
12907 break;
12908 default:
12909 internal_error (__FILE__, __LINE__,
12910 _("unexpected catchpoint kind (%d)"), ex);
12911 }
12912}
12913
12914/* Return the condition that will be used to match the current exception
12915 being raised with the exception that the user wants to catch. This
12916 assumes that this condition is used when the inferior just triggered
12917 an exception catchpoint.
12918
12919 The string returned is a newly allocated string that needs to be
12920 deallocated later. */
12921
12922static char *
28010a5d 12923ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12924{
3d0b0fa3
JB
12925 int i;
12926
0963b4bd 12927 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12928 runtime units that have been compiled without debugging info; if
28010a5d 12929 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12930 exception (e.g. "constraint_error") then, during the evaluation
12931 of the condition expression, the symbol lookup on this name would
0963b4bd 12932 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12933 may then be set only on user-defined exceptions which have the
12934 same not-fully-qualified name (e.g. my_package.constraint_error).
12935
12936 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12937 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12938 exception constraint_error" is rewritten into "catch exception
12939 standard.constraint_error".
12940
12941 If an exception named contraint_error is defined in another package of
12942 the inferior program, then the only way to specify this exception as a
12943 breakpoint condition is to use its fully-qualified named:
12944 e.g. my_package.constraint_error. */
12945
12946 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12947 {
28010a5d 12948 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12949 {
12950 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12951 excep_string);
3d0b0fa3
JB
12952 }
12953 }
28010a5d 12954 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12955}
12956
12957/* Return the symtab_and_line that should be used to insert an exception
12958 catchpoint of the TYPE kind.
12959
28010a5d
PA
12960 EXCEP_STRING should contain the name of a specific exception that
12961 the catchpoint should catch, or NULL otherwise.
f7f9143b 12962
28010a5d
PA
12963 ADDR_STRING returns the name of the function where the real
12964 breakpoint that implements the catchpoints is set, depending on the
12965 type of catchpoint we need to create. */
f7f9143b
JB
12966
12967static struct symtab_and_line
761269c8 12968ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12969 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12970{
12971 const char *sym_name;
12972 struct symbol *sym;
f7f9143b 12973
0259addd
JB
12974 /* First, find out which exception support info to use. */
12975 ada_exception_support_info_sniffer ();
12976
12977 /* Then lookup the function on which we will break in order to catch
f7f9143b 12978 the Ada exceptions requested by the user. */
f7f9143b
JB
12979 sym_name = ada_exception_sym_name (ex);
12980 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12981
f17011e0
JB
12982 /* We can assume that SYM is not NULL at this stage. If the symbol
12983 did not exist, ada_exception_support_info_sniffer would have
12984 raised an exception.
f7f9143b 12985
f17011e0
JB
12986 Also, ada_exception_support_info_sniffer should have already
12987 verified that SYM is a function symbol. */
12988 gdb_assert (sym != NULL);
12989 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12990
12991 /* Set ADDR_STRING. */
f7f9143b
JB
12992 *addr_string = xstrdup (sym_name);
12993
f7f9143b 12994 /* Set OPS. */
4b9eee8c 12995 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12996
f17011e0 12997 return find_function_start_sal (sym, 1);
f7f9143b
JB
12998}
12999
b4a5b78b 13000/* Create an Ada exception catchpoint.
f7f9143b 13001
b4a5b78b 13002 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13003
2df4d1d5
JB
13004 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13005 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13006 of the exception to which this catchpoint applies. When not NULL,
13007 the string must be allocated on the heap, and its deallocation
13008 is no longer the responsibility of the caller.
13009
13010 COND_STRING, if not NULL, is the catchpoint condition. This string
13011 must be allocated on the heap, and its deallocation is no longer
13012 the responsibility of the caller.
f7f9143b 13013
b4a5b78b
JB
13014 TEMPFLAG, if nonzero, means that the underlying breakpoint
13015 should be temporary.
28010a5d 13016
b4a5b78b 13017 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13018
349774ef 13019void
28010a5d 13020create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13021 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 13022 char *excep_string,
5845583d 13023 char *cond_string,
28010a5d 13024 int tempflag,
349774ef 13025 int disabled,
28010a5d
PA
13026 int from_tty)
13027{
13028 struct ada_catchpoint *c;
b4a5b78b
JB
13029 char *addr_string = NULL;
13030 const struct breakpoint_ops *ops = NULL;
13031 struct symtab_and_line sal
13032 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d 13033
4d01a485 13034 c = new ada_catchpoint ();
c1fc2657 13035 init_ada_exception_breakpoint (c, gdbarch, sal, addr_string,
349774ef 13036 ops, tempflag, disabled, from_tty);
28010a5d
PA
13037 c->excep_string = excep_string;
13038 create_excep_cond_exprs (c);
5845583d 13039 if (cond_string != NULL)
c1fc2657
SM
13040 set_breakpoint_condition (c, cond_string, from_tty);
13041 install_breakpoint (0, c, 1);
f7f9143b
JB
13042}
13043
9ac4176b
PA
13044/* Implement the "catch exception" command. */
13045
13046static void
a121b7c1 13047catch_ada_exception_command (char *arg_entry, int from_tty,
9ac4176b
PA
13048 struct cmd_list_element *command)
13049{
a121b7c1 13050 const char *arg = arg_entry;
9ac4176b
PA
13051 struct gdbarch *gdbarch = get_current_arch ();
13052 int tempflag;
761269c8 13053 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 13054 char *excep_string = NULL;
5845583d 13055 char *cond_string = NULL;
9ac4176b
PA
13056
13057 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13058
13059 if (!arg)
13060 arg = "";
b4a5b78b
JB
13061 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13062 &cond_string);
13063 create_ada_exception_catchpoint (gdbarch, ex_kind,
13064 excep_string, cond_string,
349774ef
JB
13065 tempflag, 1 /* enabled */,
13066 from_tty);
9ac4176b
PA
13067}
13068
b4a5b78b 13069/* Split the arguments specified in a "catch assert" command.
5845583d 13070
b4a5b78b
JB
13071 ARGS contains the command's arguments (or the empty string if
13072 no arguments were passed).
5845583d
JB
13073
13074 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13075 (the memory needs to be deallocated after use). */
5845583d 13076
b4a5b78b 13077static void
a121b7c1 13078catch_ada_assert_command_split (const char *args, char **cond_string)
f7f9143b 13079{
a121b7c1 13080 args = skip_spaces_const (args);
f7f9143b 13081
5845583d 13082 /* Check whether a condition was provided. */
61012eef 13083 if (startswith (args, "if")
5845583d 13084 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13085 {
5845583d 13086 args += 2;
a121b7c1 13087 args = skip_spaces_const (args);
5845583d
JB
13088 if (args[0] == '\0')
13089 error (_("condition missing after `if' keyword"));
13090 *cond_string = xstrdup (args);
f7f9143b
JB
13091 }
13092
5845583d
JB
13093 /* Otherwise, there should be no other argument at the end of
13094 the command. */
13095 else if (args[0] != '\0')
13096 error (_("Junk at end of arguments."));
f7f9143b
JB
13097}
13098
9ac4176b
PA
13099/* Implement the "catch assert" command. */
13100
13101static void
a121b7c1 13102catch_assert_command (char *arg_entry, int from_tty,
9ac4176b
PA
13103 struct cmd_list_element *command)
13104{
a121b7c1 13105 const char *arg = arg_entry;
9ac4176b
PA
13106 struct gdbarch *gdbarch = get_current_arch ();
13107 int tempflag;
5845583d 13108 char *cond_string = NULL;
9ac4176b
PA
13109
13110 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13111
13112 if (!arg)
13113 arg = "";
b4a5b78b 13114 catch_ada_assert_command_split (arg, &cond_string);
761269c8 13115 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 13116 NULL, cond_string,
349774ef
JB
13117 tempflag, 1 /* enabled */,
13118 from_tty);
9ac4176b 13119}
778865d3
JB
13120
13121/* Return non-zero if the symbol SYM is an Ada exception object. */
13122
13123static int
13124ada_is_exception_sym (struct symbol *sym)
13125{
13126 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13127
13128 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13129 && SYMBOL_CLASS (sym) != LOC_BLOCK
13130 && SYMBOL_CLASS (sym) != LOC_CONST
13131 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13132 && type_name != NULL && strcmp (type_name, "exception") == 0);
13133}
13134
13135/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13136 Ada exception object. This matches all exceptions except the ones
13137 defined by the Ada language. */
13138
13139static int
13140ada_is_non_standard_exception_sym (struct symbol *sym)
13141{
13142 int i;
13143
13144 if (!ada_is_exception_sym (sym))
13145 return 0;
13146
13147 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13148 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13149 return 0; /* A standard exception. */
13150
13151 /* Numeric_Error is also a standard exception, so exclude it.
13152 See the STANDARD_EXC description for more details as to why
13153 this exception is not listed in that array. */
13154 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13155 return 0;
13156
13157 return 1;
13158}
13159
13160/* A helper function for qsort, comparing two struct ada_exc_info
13161 objects.
13162
13163 The comparison is determined first by exception name, and then
13164 by exception address. */
13165
13166static int
13167compare_ada_exception_info (const void *a, const void *b)
13168{
13169 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13170 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13171 int result;
13172
13173 result = strcmp (exc_a->name, exc_b->name);
13174 if (result != 0)
13175 return result;
13176
13177 if (exc_a->addr < exc_b->addr)
13178 return -1;
13179 if (exc_a->addr > exc_b->addr)
13180 return 1;
13181
13182 return 0;
13183}
13184
13185/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13186 routine, but keeping the first SKIP elements untouched.
13187
13188 All duplicates are also removed. */
13189
13190static void
13191sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13192 int skip)
13193{
13194 struct ada_exc_info *to_sort
13195 = VEC_address (ada_exc_info, *exceptions) + skip;
13196 int to_sort_len
13197 = VEC_length (ada_exc_info, *exceptions) - skip;
13198 int i, j;
13199
13200 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13201 compare_ada_exception_info);
13202
13203 for (i = 1, j = 1; i < to_sort_len; i++)
13204 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13205 to_sort[j++] = to_sort[i];
13206 to_sort_len = j;
13207 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13208}
13209
778865d3
JB
13210/* Add all exceptions defined by the Ada standard whose name match
13211 a regular expression.
13212
13213 If PREG is not NULL, then this regexp_t object is used to
13214 perform the symbol name matching. Otherwise, no name-based
13215 filtering is performed.
13216
13217 EXCEPTIONS is a vector of exceptions to which matching exceptions
13218 gets pushed. */
13219
13220static void
2d7cc5c7
PA
13221ada_add_standard_exceptions (compiled_regex *preg,
13222 VEC(ada_exc_info) **exceptions)
778865d3
JB
13223{
13224 int i;
13225
13226 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13227 {
13228 if (preg == NULL
2d7cc5c7 13229 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13230 {
13231 struct bound_minimal_symbol msymbol
13232 = ada_lookup_simple_minsym (standard_exc[i]);
13233
13234 if (msymbol.minsym != NULL)
13235 {
13236 struct ada_exc_info info
77e371c0 13237 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
13238
13239 VEC_safe_push (ada_exc_info, *exceptions, &info);
13240 }
13241 }
13242 }
13243}
13244
13245/* Add all Ada exceptions defined locally and accessible from the given
13246 FRAME.
13247
13248 If PREG is not NULL, then this regexp_t object is used to
13249 perform the symbol name matching. Otherwise, no name-based
13250 filtering is performed.
13251
13252 EXCEPTIONS is a vector of exceptions to which matching exceptions
13253 gets pushed. */
13254
13255static void
2d7cc5c7
PA
13256ada_add_exceptions_from_frame (compiled_regex *preg,
13257 struct frame_info *frame,
778865d3
JB
13258 VEC(ada_exc_info) **exceptions)
13259{
3977b71f 13260 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13261
13262 while (block != 0)
13263 {
13264 struct block_iterator iter;
13265 struct symbol *sym;
13266
13267 ALL_BLOCK_SYMBOLS (block, iter, sym)
13268 {
13269 switch (SYMBOL_CLASS (sym))
13270 {
13271 case LOC_TYPEDEF:
13272 case LOC_BLOCK:
13273 case LOC_CONST:
13274 break;
13275 default:
13276 if (ada_is_exception_sym (sym))
13277 {
13278 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13279 SYMBOL_VALUE_ADDRESS (sym)};
13280
13281 VEC_safe_push (ada_exc_info, *exceptions, &info);
13282 }
13283 }
13284 }
13285 if (BLOCK_FUNCTION (block) != NULL)
13286 break;
13287 block = BLOCK_SUPERBLOCK (block);
13288 }
13289}
13290
14bc53a8
PA
13291/* Return true if NAME matches PREG or if PREG is NULL. */
13292
13293static bool
2d7cc5c7 13294name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13295{
13296 return (preg == NULL
2d7cc5c7 13297 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13298}
13299
778865d3
JB
13300/* Add all exceptions defined globally whose name name match
13301 a regular expression, excluding standard exceptions.
13302
13303 The reason we exclude standard exceptions is that they need
13304 to be handled separately: Standard exceptions are defined inside
13305 a runtime unit which is normally not compiled with debugging info,
13306 and thus usually do not show up in our symbol search. However,
13307 if the unit was in fact built with debugging info, we need to
13308 exclude them because they would duplicate the entry we found
13309 during the special loop that specifically searches for those
13310 standard exceptions.
13311
13312 If PREG is not NULL, then this regexp_t object is used to
13313 perform the symbol name matching. Otherwise, no name-based
13314 filtering is performed.
13315
13316 EXCEPTIONS is a vector of exceptions to which matching exceptions
13317 gets pushed. */
13318
13319static void
2d7cc5c7
PA
13320ada_add_global_exceptions (compiled_regex *preg,
13321 VEC(ada_exc_info) **exceptions)
778865d3
JB
13322{
13323 struct objfile *objfile;
43f3e411 13324 struct compunit_symtab *s;
778865d3 13325
14bc53a8
PA
13326 /* In Ada, the symbol "search name" is a linkage name, whereas the
13327 regular expression used to do the matching refers to the natural
13328 name. So match against the decoded name. */
13329 expand_symtabs_matching (NULL,
13330 [&] (const char *search_name)
13331 {
13332 const char *decoded = ada_decode (search_name);
13333 return name_matches_regex (decoded, preg);
13334 },
13335 NULL,
13336 VARIABLES_DOMAIN);
778865d3 13337
43f3e411 13338 ALL_COMPUNITS (objfile, s)
778865d3 13339 {
43f3e411 13340 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13341 int i;
13342
13343 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13344 {
13345 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (b, iter, sym)
13350 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13351 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13352 {
13353 struct ada_exc_info info
13354 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13355
13356 VEC_safe_push (ada_exc_info, *exceptions, &info);
13357 }
13358 }
13359 }
13360}
13361
13362/* Implements ada_exceptions_list with the regular expression passed
13363 as a regex_t, rather than a string.
13364
13365 If not NULL, PREG is used to filter out exceptions whose names
13366 do not match. Otherwise, all exceptions are listed. */
13367
13368static VEC(ada_exc_info) *
2d7cc5c7 13369ada_exceptions_list_1 (compiled_regex *preg)
778865d3
JB
13370{
13371 VEC(ada_exc_info) *result = NULL;
13372 struct cleanup *old_chain
13373 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13374 int prev_len;
13375
13376 /* First, list the known standard exceptions. These exceptions
13377 need to be handled separately, as they are usually defined in
13378 runtime units that have been compiled without debugging info. */
13379
13380 ada_add_standard_exceptions (preg, &result);
13381
13382 /* Next, find all exceptions whose scope is local and accessible
13383 from the currently selected frame. */
13384
13385 if (has_stack_frames ())
13386 {
13387 prev_len = VEC_length (ada_exc_info, result);
13388 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13389 &result);
13390 if (VEC_length (ada_exc_info, result) > prev_len)
13391 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13392 }
13393
13394 /* Add all exceptions whose scope is global. */
13395
13396 prev_len = VEC_length (ada_exc_info, result);
13397 ada_add_global_exceptions (preg, &result);
13398 if (VEC_length (ada_exc_info, result) > prev_len)
13399 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13400
13401 discard_cleanups (old_chain);
13402 return result;
13403}
13404
13405/* Return a vector of ada_exc_info.
13406
13407 If REGEXP is NULL, all exceptions are included in the result.
13408 Otherwise, it should contain a valid regular expression,
13409 and only the exceptions whose names match that regular expression
13410 are included in the result.
13411
13412 The exceptions are sorted in the following order:
13413 - Standard exceptions (defined by the Ada language), in
13414 alphabetical order;
13415 - Exceptions only visible from the current frame, in
13416 alphabetical order;
13417 - Exceptions whose scope is global, in alphabetical order. */
13418
13419VEC(ada_exc_info) *
13420ada_exceptions_list (const char *regexp)
13421{
2d7cc5c7
PA
13422 if (regexp == NULL)
13423 return ada_exceptions_list_1 (NULL);
778865d3 13424
2d7cc5c7
PA
13425 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13426 return ada_exceptions_list_1 (&reg);
778865d3
JB
13427}
13428
13429/* Implement the "info exceptions" command. */
13430
13431static void
13432info_exceptions_command (char *regexp, int from_tty)
13433{
13434 VEC(ada_exc_info) *exceptions;
13435 struct cleanup *cleanup;
13436 struct gdbarch *gdbarch = get_current_arch ();
13437 int ix;
13438 struct ada_exc_info *info;
13439
13440 exceptions = ada_exceptions_list (regexp);
13441 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13442
13443 if (regexp != NULL)
13444 printf_filtered
13445 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13446 else
13447 printf_filtered (_("All defined Ada exceptions:\n"));
13448
13449 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13450 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13451
13452 do_cleanups (cleanup);
13453}
13454
4c4b4cd2
PH
13455 /* Operators */
13456/* Information about operators given special treatment in functions
13457 below. */
13458/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13459
13460#define ADA_OPERATORS \
13461 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13462 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13463 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13464 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13465 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13468 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13469 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13470 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13471 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13472 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13473 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13474 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13475 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13476 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13477 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13478 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13479 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13480
13481static void
554794dc
SDJ
13482ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13483 int *argsp)
4c4b4cd2
PH
13484{
13485 switch (exp->elts[pc - 1].opcode)
13486 {
76a01679 13487 default:
4c4b4cd2
PH
13488 operator_length_standard (exp, pc, oplenp, argsp);
13489 break;
13490
13491#define OP_DEFN(op, len, args, binop) \
13492 case op: *oplenp = len; *argsp = args; break;
13493 ADA_OPERATORS;
13494#undef OP_DEFN
52ce6436
PH
13495
13496 case OP_AGGREGATE:
13497 *oplenp = 3;
13498 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13499 break;
13500
13501 case OP_CHOICES:
13502 *oplenp = 3;
13503 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13504 break;
4c4b4cd2
PH
13505 }
13506}
13507
c0201579
JK
13508/* Implementation of the exp_descriptor method operator_check. */
13509
13510static int
13511ada_operator_check (struct expression *exp, int pos,
13512 int (*objfile_func) (struct objfile *objfile, void *data),
13513 void *data)
13514{
13515 const union exp_element *const elts = exp->elts;
13516 struct type *type = NULL;
13517
13518 switch (elts[pos].opcode)
13519 {
13520 case UNOP_IN_RANGE:
13521 case UNOP_QUAL:
13522 type = elts[pos + 1].type;
13523 break;
13524
13525 default:
13526 return operator_check_standard (exp, pos, objfile_func, data);
13527 }
13528
13529 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13530
13531 if (type && TYPE_OBJFILE (type)
13532 && (*objfile_func) (TYPE_OBJFILE (type), data))
13533 return 1;
13534
13535 return 0;
13536}
13537
a121b7c1 13538static const char *
4c4b4cd2
PH
13539ada_op_name (enum exp_opcode opcode)
13540{
13541 switch (opcode)
13542 {
76a01679 13543 default:
4c4b4cd2 13544 return op_name_standard (opcode);
52ce6436 13545
4c4b4cd2
PH
13546#define OP_DEFN(op, len, args, binop) case op: return #op;
13547 ADA_OPERATORS;
13548#undef OP_DEFN
52ce6436
PH
13549
13550 case OP_AGGREGATE:
13551 return "OP_AGGREGATE";
13552 case OP_CHOICES:
13553 return "OP_CHOICES";
13554 case OP_NAME:
13555 return "OP_NAME";
4c4b4cd2
PH
13556 }
13557}
13558
13559/* As for operator_length, but assumes PC is pointing at the first
13560 element of the operator, and gives meaningful results only for the
52ce6436 13561 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13562
13563static void
76a01679
JB
13564ada_forward_operator_length (struct expression *exp, int pc,
13565 int *oplenp, int *argsp)
4c4b4cd2 13566{
76a01679 13567 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13568 {
13569 default:
13570 *oplenp = *argsp = 0;
13571 break;
52ce6436 13572
4c4b4cd2
PH
13573#define OP_DEFN(op, len, args, binop) \
13574 case op: *oplenp = len; *argsp = args; break;
13575 ADA_OPERATORS;
13576#undef OP_DEFN
52ce6436
PH
13577
13578 case OP_AGGREGATE:
13579 *oplenp = 3;
13580 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13581 break;
13582
13583 case OP_CHOICES:
13584 *oplenp = 3;
13585 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13586 break;
13587
13588 case OP_STRING:
13589 case OP_NAME:
13590 {
13591 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13592
52ce6436
PH
13593 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13594 *argsp = 0;
13595 break;
13596 }
4c4b4cd2
PH
13597 }
13598}
13599
13600static int
13601ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13602{
13603 enum exp_opcode op = exp->elts[elt].opcode;
13604 int oplen, nargs;
13605 int pc = elt;
13606 int i;
76a01679 13607
4c4b4cd2
PH
13608 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13609
76a01679 13610 switch (op)
4c4b4cd2 13611 {
76a01679 13612 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13613 case OP_ATR_FIRST:
13614 case OP_ATR_LAST:
13615 case OP_ATR_LENGTH:
13616 case OP_ATR_IMAGE:
13617 case OP_ATR_MAX:
13618 case OP_ATR_MIN:
13619 case OP_ATR_MODULUS:
13620 case OP_ATR_POS:
13621 case OP_ATR_SIZE:
13622 case OP_ATR_TAG:
13623 case OP_ATR_VAL:
13624 break;
13625
13626 case UNOP_IN_RANGE:
13627 case UNOP_QUAL:
323e0a4a
AC
13628 /* XXX: gdb_sprint_host_address, type_sprint */
13629 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13630 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13631 fprintf_filtered (stream, " (");
13632 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13633 fprintf_filtered (stream, ")");
13634 break;
13635 case BINOP_IN_BOUNDS:
52ce6436
PH
13636 fprintf_filtered (stream, " (%d)",
13637 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13638 break;
13639 case TERNOP_IN_RANGE:
13640 break;
13641
52ce6436
PH
13642 case OP_AGGREGATE:
13643 case OP_OTHERS:
13644 case OP_DISCRETE_RANGE:
13645 case OP_POSITIONAL:
13646 case OP_CHOICES:
13647 break;
13648
13649 case OP_NAME:
13650 case OP_STRING:
13651 {
13652 char *name = &exp->elts[elt + 2].string;
13653 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13654
52ce6436
PH
13655 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13656 break;
13657 }
13658
4c4b4cd2
PH
13659 default:
13660 return dump_subexp_body_standard (exp, stream, elt);
13661 }
13662
13663 elt += oplen;
13664 for (i = 0; i < nargs; i += 1)
13665 elt = dump_subexp (exp, stream, elt);
13666
13667 return elt;
13668}
13669
13670/* The Ada extension of print_subexp (q.v.). */
13671
76a01679
JB
13672static void
13673ada_print_subexp (struct expression *exp, int *pos,
13674 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13675{
52ce6436 13676 int oplen, nargs, i;
4c4b4cd2
PH
13677 int pc = *pos;
13678 enum exp_opcode op = exp->elts[pc].opcode;
13679
13680 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13681
52ce6436 13682 *pos += oplen;
4c4b4cd2
PH
13683 switch (op)
13684 {
13685 default:
52ce6436 13686 *pos -= oplen;
4c4b4cd2
PH
13687 print_subexp_standard (exp, pos, stream, prec);
13688 return;
13689
13690 case OP_VAR_VALUE:
4c4b4cd2
PH
13691 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13692 return;
13693
13694 case BINOP_IN_BOUNDS:
323e0a4a 13695 /* XXX: sprint_subexp */
4c4b4cd2 13696 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13697 fputs_filtered (" in ", stream);
4c4b4cd2 13698 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13699 fputs_filtered ("'range", stream);
4c4b4cd2 13700 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13701 fprintf_filtered (stream, "(%ld)",
13702 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13703 return;
13704
13705 case TERNOP_IN_RANGE:
4c4b4cd2 13706 if (prec >= PREC_EQUAL)
76a01679 13707 fputs_filtered ("(", stream);
323e0a4a 13708 /* XXX: sprint_subexp */
4c4b4cd2 13709 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13710 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13711 print_subexp (exp, pos, stream, PREC_EQUAL);
13712 fputs_filtered (" .. ", stream);
13713 print_subexp (exp, pos, stream, PREC_EQUAL);
13714 if (prec >= PREC_EQUAL)
76a01679
JB
13715 fputs_filtered (")", stream);
13716 return;
4c4b4cd2
PH
13717
13718 case OP_ATR_FIRST:
13719 case OP_ATR_LAST:
13720 case OP_ATR_LENGTH:
13721 case OP_ATR_IMAGE:
13722 case OP_ATR_MAX:
13723 case OP_ATR_MIN:
13724 case OP_ATR_MODULUS:
13725 case OP_ATR_POS:
13726 case OP_ATR_SIZE:
13727 case OP_ATR_TAG:
13728 case OP_ATR_VAL:
4c4b4cd2 13729 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13730 {
13731 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13732 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13733 &type_print_raw_options);
76a01679
JB
13734 *pos += 3;
13735 }
4c4b4cd2 13736 else
76a01679 13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13738 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13739 if (nargs > 1)
76a01679
JB
13740 {
13741 int tem;
5b4ee69b 13742
76a01679
JB
13743 for (tem = 1; tem < nargs; tem += 1)
13744 {
13745 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13746 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13747 }
13748 fputs_filtered (")", stream);
13749 }
4c4b4cd2 13750 return;
14f9c5c9 13751
4c4b4cd2 13752 case UNOP_QUAL:
4c4b4cd2
PH
13753 type_print (exp->elts[pc + 1].type, "", stream, 0);
13754 fputs_filtered ("'(", stream);
13755 print_subexp (exp, pos, stream, PREC_PREFIX);
13756 fputs_filtered (")", stream);
13757 return;
14f9c5c9 13758
4c4b4cd2 13759 case UNOP_IN_RANGE:
323e0a4a 13760 /* XXX: sprint_subexp */
4c4b4cd2 13761 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13762 fputs_filtered (" in ", stream);
79d43c61
TT
13763 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13764 &type_print_raw_options);
4c4b4cd2 13765 return;
52ce6436
PH
13766
13767 case OP_DISCRETE_RANGE:
13768 print_subexp (exp, pos, stream, PREC_SUFFIX);
13769 fputs_filtered ("..", stream);
13770 print_subexp (exp, pos, stream, PREC_SUFFIX);
13771 return;
13772
13773 case OP_OTHERS:
13774 fputs_filtered ("others => ", stream);
13775 print_subexp (exp, pos, stream, PREC_SUFFIX);
13776 return;
13777
13778 case OP_CHOICES:
13779 for (i = 0; i < nargs-1; i += 1)
13780 {
13781 if (i > 0)
13782 fputs_filtered ("|", stream);
13783 print_subexp (exp, pos, stream, PREC_SUFFIX);
13784 }
13785 fputs_filtered (" => ", stream);
13786 print_subexp (exp, pos, stream, PREC_SUFFIX);
13787 return;
13788
13789 case OP_POSITIONAL:
13790 print_subexp (exp, pos, stream, PREC_SUFFIX);
13791 return;
13792
13793 case OP_AGGREGATE:
13794 fputs_filtered ("(", stream);
13795 for (i = 0; i < nargs; i += 1)
13796 {
13797 if (i > 0)
13798 fputs_filtered (", ", stream);
13799 print_subexp (exp, pos, stream, PREC_SUFFIX);
13800 }
13801 fputs_filtered (")", stream);
13802 return;
4c4b4cd2
PH
13803 }
13804}
14f9c5c9
AS
13805
13806/* Table mapping opcodes into strings for printing operators
13807 and precedences of the operators. */
13808
d2e4a39e
AS
13809static const struct op_print ada_op_print_tab[] = {
13810 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13811 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13812 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13813 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13814 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13815 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13816 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13817 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13818 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13819 {">=", BINOP_GEQ, PREC_ORDER, 0},
13820 {">", BINOP_GTR, PREC_ORDER, 0},
13821 {"<", BINOP_LESS, PREC_ORDER, 0},
13822 {">>", BINOP_RSH, PREC_SHIFT, 0},
13823 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13824 {"+", BINOP_ADD, PREC_ADD, 0},
13825 {"-", BINOP_SUB, PREC_ADD, 0},
13826 {"&", BINOP_CONCAT, PREC_ADD, 0},
13827 {"*", BINOP_MUL, PREC_MUL, 0},
13828 {"/", BINOP_DIV, PREC_MUL, 0},
13829 {"rem", BINOP_REM, PREC_MUL, 0},
13830 {"mod", BINOP_MOD, PREC_MUL, 0},
13831 {"**", BINOP_EXP, PREC_REPEAT, 0},
13832 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13833 {"-", UNOP_NEG, PREC_PREFIX, 0},
13834 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13835 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13836 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13837 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13838 {".all", UNOP_IND, PREC_SUFFIX, 1},
13839 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13840 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13841 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13842};
13843\f
72d5681a
PH
13844enum ada_primitive_types {
13845 ada_primitive_type_int,
13846 ada_primitive_type_long,
13847 ada_primitive_type_short,
13848 ada_primitive_type_char,
13849 ada_primitive_type_float,
13850 ada_primitive_type_double,
13851 ada_primitive_type_void,
13852 ada_primitive_type_long_long,
13853 ada_primitive_type_long_double,
13854 ada_primitive_type_natural,
13855 ada_primitive_type_positive,
13856 ada_primitive_type_system_address,
13857 nr_ada_primitive_types
13858};
6c038f32
PH
13859
13860static void
d4a9a881 13861ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13862 struct language_arch_info *lai)
13863{
d4a9a881 13864 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13865
72d5681a 13866 lai->primitive_type_vector
d4a9a881 13867 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13868 struct type *);
e9bb382b
UW
13869
13870 lai->primitive_type_vector [ada_primitive_type_int]
13871 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13872 0, "integer");
13873 lai->primitive_type_vector [ada_primitive_type_long]
13874 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13875 0, "long_integer");
13876 lai->primitive_type_vector [ada_primitive_type_short]
13877 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13878 0, "short_integer");
13879 lai->string_char_type
13880 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13881 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13882 lai->primitive_type_vector [ada_primitive_type_float]
13883 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13884 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13885 lai->primitive_type_vector [ada_primitive_type_double]
13886 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13887 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13888 lai->primitive_type_vector [ada_primitive_type_long_long]
13889 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13890 0, "long_long_integer");
13891 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13892 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13893 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13894 lai->primitive_type_vector [ada_primitive_type_natural]
13895 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13896 0, "natural");
13897 lai->primitive_type_vector [ada_primitive_type_positive]
13898 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13899 0, "positive");
13900 lai->primitive_type_vector [ada_primitive_type_void]
13901 = builtin->builtin_void;
13902
13903 lai->primitive_type_vector [ada_primitive_type_system_address]
13904 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13905 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13906 = "system__address";
fbb06eb1 13907
47e729a8 13908 lai->bool_type_symbol = NULL;
fbb06eb1 13909 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13910}
6c038f32
PH
13911\f
13912 /* Language vector */
13913
13914/* Not really used, but needed in the ada_language_defn. */
13915
13916static void
6c7a06a3 13917emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13918{
6c7a06a3 13919 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13920}
13921
13922static int
410a0ff2 13923parse (struct parser_state *ps)
6c038f32
PH
13924{
13925 warnings_issued = 0;
410a0ff2 13926 return ada_parse (ps);
6c038f32
PH
13927}
13928
13929static const struct exp_descriptor ada_exp_descriptor = {
13930 ada_print_subexp,
13931 ada_operator_length,
c0201579 13932 ada_operator_check,
6c038f32
PH
13933 ada_op_name,
13934 ada_dump_subexp_body,
13935 ada_evaluate_subexp
13936};
13937
1a119f36 13938/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13939 for Ada. */
13940
1a119f36
JB
13941static symbol_name_cmp_ftype
13942ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13943{
13944 if (should_use_wild_match (lookup_name))
13945 return wild_match;
13946 else
13947 return compare_names;
13948}
13949
a5ee536b
JB
13950/* Implement the "la_read_var_value" language_defn method for Ada. */
13951
13952static struct value *
63e43d3a
PMR
13953ada_read_var_value (struct symbol *var, const struct block *var_block,
13954 struct frame_info *frame)
a5ee536b 13955{
3977b71f 13956 const struct block *frame_block = NULL;
a5ee536b
JB
13957 struct symbol *renaming_sym = NULL;
13958
13959 /* The only case where default_read_var_value is not sufficient
13960 is when VAR is a renaming... */
13961 if (frame)
13962 frame_block = get_frame_block (frame, NULL);
13963 if (frame_block)
13964 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13965 if (renaming_sym != NULL)
13966 return ada_read_renaming_var_value (renaming_sym, frame_block);
13967
13968 /* This is a typical case where we expect the default_read_var_value
13969 function to work. */
63e43d3a 13970 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
13971}
13972
56618e20
TT
13973static const char *ada_extensions[] =
13974{
13975 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13976};
13977
6c038f32
PH
13978const struct language_defn ada_language_defn = {
13979 "ada", /* Language name */
6abde28f 13980 "Ada",
6c038f32 13981 language_ada,
6c038f32 13982 range_check_off,
6c038f32
PH
13983 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13984 that's not quite what this means. */
6c038f32 13985 array_row_major,
9a044a89 13986 macro_expansion_no,
56618e20 13987 ada_extensions,
6c038f32
PH
13988 &ada_exp_descriptor,
13989 parse,
b3f11165 13990 ada_yyerror,
6c038f32
PH
13991 resolve,
13992 ada_printchar, /* Print a character constant */
13993 ada_printstr, /* Function to print string constant */
13994 emit_char, /* Function to print single char (not used) */
6c038f32 13995 ada_print_type, /* Print a type using appropriate syntax */
be942545 13996 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13997 ada_val_print, /* Print a value using appropriate syntax */
13998 ada_value_print, /* Print a top-level value */
a5ee536b 13999 ada_read_var_value, /* la_read_var_value */
6c038f32 14000 NULL, /* Language specific skip_trampoline */
2b2d9e11 14001 NULL, /* name_of_this */
6c038f32
PH
14002 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14003 basic_lookup_transparent_type, /* lookup_transparent_type */
14004 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14005 ada_sniff_from_mangled_name,
0963b4bd
MS
14006 NULL, /* Language specific
14007 class_name_from_physname */
6c038f32
PH
14008 ada_op_print_tab, /* expression operators for printing */
14009 0, /* c-style arrays */
14010 1, /* String lower bound */
6c038f32 14011 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14012 ada_collect_symbol_completion_matches,
72d5681a 14013 ada_language_arch_info,
e79af960 14014 ada_print_array_index,
41f1b697 14015 default_pass_by_reference,
ae6a3a4c 14016 c_get_string,
43cc5389 14017 c_watch_location_expression,
1a119f36 14018 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 14019 ada_iterate_over_symbols,
a53b64ea 14020 &ada_varobj_ops,
bb2ec1b3
TT
14021 NULL,
14022 NULL,
6c038f32
PH
14023 LANG_MAGIC
14024};
14025
2c0b251b
PA
14026/* Provide a prototype to silence -Wmissing-prototypes. */
14027extern initialize_file_ftype _initialize_ada_language;
14028
5bf03f13
JB
14029/* Command-list for the "set/show ada" prefix command. */
14030static struct cmd_list_element *set_ada_list;
14031static struct cmd_list_element *show_ada_list;
14032
14033/* Implement the "set ada" prefix command. */
14034
14035static void
14036set_ada_command (char *arg, int from_tty)
14037{
14038 printf_unfiltered (_(\
14039"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14040 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14041}
14042
14043/* Implement the "show ada" prefix command. */
14044
14045static void
14046show_ada_command (char *args, int from_tty)
14047{
14048 cmd_show_list (show_ada_list, from_tty, "");
14049}
14050
2060206e
PA
14051static void
14052initialize_ada_catchpoint_ops (void)
14053{
14054 struct breakpoint_ops *ops;
14055
14056 initialize_breakpoint_ops ();
14057
14058 ops = &catch_exception_breakpoint_ops;
14059 *ops = bkpt_breakpoint_ops;
2060206e
PA
14060 ops->allocate_location = allocate_location_catch_exception;
14061 ops->re_set = re_set_catch_exception;
14062 ops->check_status = check_status_catch_exception;
14063 ops->print_it = print_it_catch_exception;
14064 ops->print_one = print_one_catch_exception;
14065 ops->print_mention = print_mention_catch_exception;
14066 ops->print_recreate = print_recreate_catch_exception;
14067
14068 ops = &catch_exception_unhandled_breakpoint_ops;
14069 *ops = bkpt_breakpoint_ops;
2060206e
PA
14070 ops->allocate_location = allocate_location_catch_exception_unhandled;
14071 ops->re_set = re_set_catch_exception_unhandled;
14072 ops->check_status = check_status_catch_exception_unhandled;
14073 ops->print_it = print_it_catch_exception_unhandled;
14074 ops->print_one = print_one_catch_exception_unhandled;
14075 ops->print_mention = print_mention_catch_exception_unhandled;
14076 ops->print_recreate = print_recreate_catch_exception_unhandled;
14077
14078 ops = &catch_assert_breakpoint_ops;
14079 *ops = bkpt_breakpoint_ops;
2060206e
PA
14080 ops->allocate_location = allocate_location_catch_assert;
14081 ops->re_set = re_set_catch_assert;
14082 ops->check_status = check_status_catch_assert;
14083 ops->print_it = print_it_catch_assert;
14084 ops->print_one = print_one_catch_assert;
14085 ops->print_mention = print_mention_catch_assert;
14086 ops->print_recreate = print_recreate_catch_assert;
14087}
14088
3d9434b5
JB
14089/* This module's 'new_objfile' observer. */
14090
14091static void
14092ada_new_objfile_observer (struct objfile *objfile)
14093{
14094 ada_clear_symbol_cache ();
14095}
14096
14097/* This module's 'free_objfile' observer. */
14098
14099static void
14100ada_free_objfile_observer (struct objfile *objfile)
14101{
14102 ada_clear_symbol_cache ();
14103}
14104
d2e4a39e 14105void
6c038f32 14106_initialize_ada_language (void)
14f9c5c9 14107{
6c038f32
PH
14108 add_language (&ada_language_defn);
14109
2060206e
PA
14110 initialize_ada_catchpoint_ops ();
14111
5bf03f13
JB
14112 add_prefix_cmd ("ada", no_class, set_ada_command,
14113 _("Prefix command for changing Ada-specfic settings"),
14114 &set_ada_list, "set ada ", 0, &setlist);
14115
14116 add_prefix_cmd ("ada", no_class, show_ada_command,
14117 _("Generic command for showing Ada-specific settings."),
14118 &show_ada_list, "show ada ", 0, &showlist);
14119
14120 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14121 &trust_pad_over_xvs, _("\
14122Enable or disable an optimization trusting PAD types over XVS types"), _("\
14123Show whether an optimization trusting PAD types over XVS types is activated"),
14124 _("\
14125This is related to the encoding used by the GNAT compiler. The debugger\n\
14126should normally trust the contents of PAD types, but certain older versions\n\
14127of GNAT have a bug that sometimes causes the information in the PAD type\n\
14128to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14129work around this bug. It is always safe to turn this option \"off\", but\n\
14130this incurs a slight performance penalty, so it is recommended to NOT change\n\
14131this option to \"off\" unless necessary."),
14132 NULL, NULL, &set_ada_list, &show_ada_list);
14133
d72413e6
PMR
14134 add_setshow_boolean_cmd ("print-signatures", class_vars,
14135 &print_signatures, _("\
14136Enable or disable the output of formal and return types for functions in the \
14137overloads selection menu"), _("\
14138Show whether the output of formal and return types for functions in the \
14139overloads selection menu is activated"),
14140 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14141
9ac4176b
PA
14142 add_catch_command ("exception", _("\
14143Catch Ada exceptions, when raised.\n\
14144With an argument, catch only exceptions with the given name."),
14145 catch_ada_exception_command,
14146 NULL,
14147 CATCH_PERMANENT,
14148 CATCH_TEMPORARY);
14149 add_catch_command ("assert", _("\
14150Catch failed Ada assertions, when raised.\n\
14151With an argument, catch only exceptions with the given name."),
14152 catch_assert_command,
14153 NULL,
14154 CATCH_PERMANENT,
14155 CATCH_TEMPORARY);
14156
6c038f32 14157 varsize_limit = 65536;
6c038f32 14158
778865d3
JB
14159 add_info ("exceptions", info_exceptions_command,
14160 _("\
14161List all Ada exception names.\n\
14162If a regular expression is passed as an argument, only those matching\n\
14163the regular expression are listed."));
14164
c6044dd1
JB
14165 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14166 _("Set Ada maintenance-related variables."),
14167 &maint_set_ada_cmdlist, "maintenance set ada ",
14168 0/*allow-unknown*/, &maintenance_set_cmdlist);
14169
14170 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14171 _("Show Ada maintenance-related variables"),
14172 &maint_show_ada_cmdlist, "maintenance show ada ",
14173 0/*allow-unknown*/, &maintenance_show_cmdlist);
14174
14175 add_setshow_boolean_cmd
14176 ("ignore-descriptive-types", class_maintenance,
14177 &ada_ignore_descriptive_types_p,
14178 _("Set whether descriptive types generated by GNAT should be ignored."),
14179 _("Show whether descriptive types generated by GNAT should be ignored."),
14180 _("\
14181When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14182DWARF attribute."),
14183 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14184
6c038f32
PH
14185 obstack_init (&symbol_list_obstack);
14186
14187 decoded_names_store = htab_create_alloc
14188 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14189 NULL, xcalloc, xfree);
6b69afc4 14190
3d9434b5
JB
14191 /* The ada-lang observers. */
14192 observer_attach_new_objfile (ada_new_objfile_observer);
14193 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 14194 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
14195
14196 /* Setup various context-specific data. */
e802dbe0 14197 ada_inferior_data
8e260fc0 14198 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14199 ada_pspace_data_handle
14200 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14201}
This page took 2.745748 seconds and 4 git commands to generate.