Remove ALL_OBJFILES_SAFE
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
4c4b4cd2
PH
193static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
14f9c5c9 195
d2e4a39e 196static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 197
d2e4a39e 198static int equiv_types (struct type *, struct type *);
14f9c5c9 199
d2e4a39e 200static int is_name_suffix (const char *);
14f9c5c9 201
73589123
PH
202static int advance_wild_match (const char **, const char *, int);
203
b5ec771e 204static bool wild_match (const char *name, const char *patn);
14f9c5c9 205
d2e4a39e 206static struct value *ada_coerce_ref (struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static LONGEST pos_atr (struct value *);
209
3cb382c9 210static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 211
d2e4a39e 212static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 213
4c4b4cd2
PH
214static struct symbol *standard_lookup (const char *, const struct block *,
215 domain_enum);
14f9c5c9 216
108d56a4 217static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
218 struct type *);
219
220static struct value *ada_value_primitive_field (struct value *, int, int,
221 struct type *);
222
0d5cff50 223static int find_struct_field (const char *, struct type *, int,
52ce6436 224 struct type **, int *, int *, int *, int *);
4c4b4cd2 225
d12307c1 226static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
227 struct value **, int, const char *,
228 struct type *);
229
4c4b4cd2
PH
230static int ada_is_direct_array_type (struct type *);
231
72d5681a
PH
232static void ada_language_arch_info (struct gdbarch *,
233 struct language_arch_info *);
714e53ab 234
52ce6436
PH
235static struct value *ada_index_struct_field (int, struct value *, int,
236 struct type *);
237
238static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
239 struct expression *,
240 int *, enum noside);
52ce6436
PH
241
242static void aggregate_assign_from_choices (struct value *, struct value *,
243 struct expression *,
244 int *, LONGEST *, int *,
245 int, LONGEST, LONGEST);
246
247static void aggregate_assign_positional (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *, int,
250 LONGEST, LONGEST);
251
252
253static void aggregate_assign_others (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int, LONGEST, LONGEST);
256
257
258static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259
260
261static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 int *, enum noside);
263
264static void ada_forward_operator_length (struct expression *, int, int *,
265 int *);
852dff6c
JB
266
267static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
268
269static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270 (const lookup_name_info &lookup_name);
271
4c4b4cd2
PH
272\f
273
ee01b665
JB
274/* The result of a symbol lookup to be stored in our symbol cache. */
275
276struct cache_entry
277{
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
fe978cb0 281 domain_enum domain;
ee01b665
JB
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290};
291
292/* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301#define HASH_SIZE 1009
302
303struct ada_symbol_cache
304{
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310};
311
312static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 313
4c4b4cd2 314/* Maximum-sized dynamic type. */
14f9c5c9
AS
315static unsigned int varsize_limit;
316
67cb5b2d 317static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
318#ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320#else
14f9c5c9 321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 322#endif
14f9c5c9 323
4c4b4cd2 324/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 325static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 326 = "__gnat_ada_main_program_name";
14f9c5c9 327
4c4b4cd2
PH
328/* Limit on the number of warnings to raise per expression evaluation. */
329static int warning_limit = 2;
330
331/* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333static int warnings_issued = 0;
334
335static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337};
338
339static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341};
342
c6044dd1
JB
343/* Maintenance-related settings for this module. */
344
345static struct cmd_list_element *maint_set_ada_cmdlist;
346static struct cmd_list_element *maint_show_ada_cmdlist;
347
348/* Implement the "maintenance set ada" (prefix) command. */
349
350static void
981a3fb3 351maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 352{
635c7e8a
TT
353 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 gdb_stdout);
c6044dd1
JB
355}
356
357/* Implement the "maintenance show ada" (prefix) command. */
358
359static void
981a3fb3 360maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
361{
362 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363}
364
365/* The "maintenance ada set/show ignore-descriptive-type" value. */
366
367static int ada_ignore_descriptive_types_p = 0;
368
e802dbe0
JB
369 /* Inferior-specific data. */
370
371/* Per-inferior data for this module. */
372
373struct ada_inferior_data
374{
375 /* The ada__tags__type_specific_data type, which is used when decoding
376 tagged types. With older versions of GNAT, this type was directly
377 accessible through a component ("tsd") in the object tag. But this
378 is no longer the case, so we cache it for each inferior. */
379 struct type *tsd_type;
3eecfa55
JB
380
381 /* The exception_support_info data. This data is used to determine
382 how to implement support for Ada exception catchpoints in a given
383 inferior. */
384 const struct exception_support_info *exception_info;
e802dbe0
JB
385};
386
387/* Our key to this module's inferior data. */
388static const struct inferior_data *ada_inferior_data;
389
390/* A cleanup routine for our inferior data. */
391static void
392ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393{
394 struct ada_inferior_data *data;
395
9a3c8263 396 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
397 if (data != NULL)
398 xfree (data);
399}
400
401/* Return our inferior data for the given inferior (INF).
402
403 This function always returns a valid pointer to an allocated
404 ada_inferior_data structure. If INF's inferior data has not
405 been previously set, this functions creates a new one with all
406 fields set to zero, sets INF's inferior to it, and then returns
407 a pointer to that newly allocated ada_inferior_data. */
408
409static struct ada_inferior_data *
410get_ada_inferior_data (struct inferior *inf)
411{
412 struct ada_inferior_data *data;
413
9a3c8263 414 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
415 if (data == NULL)
416 {
41bf6aca 417 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
418 set_inferior_data (inf, ada_inferior_data, data);
419 }
420
421 return data;
422}
423
424/* Perform all necessary cleanups regarding our module's inferior data
425 that is required after the inferior INF just exited. */
426
427static void
428ada_inferior_exit (struct inferior *inf)
429{
430 ada_inferior_data_cleanup (inf, NULL);
431 set_inferior_data (inf, ada_inferior_data, NULL);
432}
433
ee01b665
JB
434
435 /* program-space-specific data. */
436
437/* This module's per-program-space data. */
438struct ada_pspace_data
439{
440 /* The Ada symbol cache. */
441 struct ada_symbol_cache *sym_cache;
442};
443
444/* Key to our per-program-space data. */
445static const struct program_space_data *ada_pspace_data_handle;
446
447/* Return this module's data for the given program space (PSPACE).
448 If not is found, add a zero'ed one now.
449
450 This function always returns a valid object. */
451
452static struct ada_pspace_data *
453get_ada_pspace_data (struct program_space *pspace)
454{
455 struct ada_pspace_data *data;
456
9a3c8263
SM
457 data = ((struct ada_pspace_data *)
458 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
459 if (data == NULL)
460 {
461 data = XCNEW (struct ada_pspace_data);
462 set_program_space_data (pspace, ada_pspace_data_handle, data);
463 }
464
465 return data;
466}
467
468/* The cleanup callback for this module's per-program-space data. */
469
470static void
471ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472{
9a3c8263 473 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
474
475 if (pspace_data->sym_cache != NULL)
476 ada_free_symbol_cache (pspace_data->sym_cache);
477 xfree (pspace_data);
478}
479
4c4b4cd2
PH
480 /* Utilities */
481
720d1a40 482/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 483 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
484
485 Normally, we really expect a typedef type to only have 1 typedef layer.
486 In other words, we really expect the target type of a typedef type to be
487 a non-typedef type. This is particularly true for Ada units, because
488 the language does not have a typedef vs not-typedef distinction.
489 In that respect, the Ada compiler has been trying to eliminate as many
490 typedef definitions in the debugging information, since they generally
491 do not bring any extra information (we still use typedef under certain
492 circumstances related mostly to the GNAT encoding).
493
494 Unfortunately, we have seen situations where the debugging information
495 generated by the compiler leads to such multiple typedef layers. For
496 instance, consider the following example with stabs:
497
498 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500
501 This is an error in the debugging information which causes type
502 pck__float_array___XUP to be defined twice, and the second time,
503 it is defined as a typedef of a typedef.
504
505 This is on the fringe of legality as far as debugging information is
506 concerned, and certainly unexpected. But it is easy to handle these
507 situations correctly, so we can afford to be lenient in this case. */
508
509static struct type *
510ada_typedef_target_type (struct type *type)
511{
512 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513 type = TYPE_TARGET_TYPE (type);
514 return type;
515}
516
41d27058
JB
517/* Given DECODED_NAME a string holding a symbol name in its
518 decoded form (ie using the Ada dotted notation), returns
519 its unqualified name. */
520
521static const char *
522ada_unqualified_name (const char *decoded_name)
523{
2b0f535a
JB
524 const char *result;
525
526 /* If the decoded name starts with '<', it means that the encoded
527 name does not follow standard naming conventions, and thus that
528 it is not your typical Ada symbol name. Trying to unqualify it
529 is therefore pointless and possibly erroneous. */
530 if (decoded_name[0] == '<')
531 return decoded_name;
532
533 result = strrchr (decoded_name, '.');
41d27058
JB
534 if (result != NULL)
535 result++; /* Skip the dot... */
536 else
537 result = decoded_name;
538
539 return result;
540}
541
39e7af3e 542/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 543
39e7af3e 544static std::string
41d27058
JB
545add_angle_brackets (const char *str)
546{
39e7af3e 547 return string_printf ("<%s>", str);
41d27058 548}
96d887e8 549
67cb5b2d 550static const char *
4c4b4cd2
PH
551ada_get_gdb_completer_word_break_characters (void)
552{
553 return ada_completer_word_break_characters;
554}
555
e79af960
JB
556/* Print an array element index using the Ada syntax. */
557
558static void
559ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 560 const struct value_print_options *options)
e79af960 561{
79a45b7d 562 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
563 fprintf_filtered (stream, " => ");
564}
565
e2b7af72
JB
566/* la_watch_location_expression for Ada. */
567
568gdb::unique_xmalloc_ptr<char>
569ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570{
571 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572 std::string name = type_to_string (type);
573 return gdb::unique_xmalloc_ptr<char>
574 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575}
576
f27cf670 577/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 579 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 580
f27cf670
AS
581void *
582grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 583{
d2e4a39e
AS
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
4c4b4cd2 588 *size = min_size;
f27cf670 589 vect = xrealloc (vect, *size * element_size);
d2e4a39e 590 }
f27cf670 591 return vect;
14f9c5c9
AS
592}
593
594/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 595 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
596
597static int
ebf56fd3 598field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
599{
600 int len = strlen (target);
5b4ee69b 601
d2e4a39e 602 return
4c4b4cd2
PH
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
61012eef 605 || (startswith (field_name + len, "___")
76a01679
JB
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
14f9c5c9
AS
608}
609
610
872c8b51
JB
611/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
618
619int
620ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622{
623 int fieldno;
872c8b51
JB
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
628 return fieldno;
629
630 if (!maybe_missing)
323e0a4a 631 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 632 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
633
634 return -1;
635}
636
637/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
638
639int
d2e4a39e 640ada_name_prefix_len (const char *name)
14f9c5c9
AS
641{
642 if (name == NULL)
643 return 0;
d2e4a39e 644 else
14f9c5c9 645 {
d2e4a39e 646 const char *p = strstr (name, "___");
5b4ee69b 647
14f9c5c9 648 if (p == NULL)
4c4b4cd2 649 return strlen (name);
14f9c5c9 650 else
4c4b4cd2 651 return p - name;
14f9c5c9
AS
652 }
653}
654
4c4b4cd2
PH
655/* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
14f9c5c9 658static int
d2e4a39e 659is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
660{
661 int len1, len2;
5b4ee69b 662
14f9c5c9
AS
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
4c4b4cd2 667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
668}
669
4c4b4cd2
PH
670/* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
14f9c5c9 672
d2e4a39e 673static struct value *
4c4b4cd2 674coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 675{
61ee279c 676 type = ada_check_typedef (type);
df407dfe 677 if (value_type (val) == type)
4c4b4cd2 678 return val;
d2e4a39e 679 else
14f9c5c9 680 {
4c4b4cd2
PH
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
c1b5a1a6 685 ada_ensure_varsize_limit (type);
4c4b4cd2 686
41e8491f
JK
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
9a0dc9e3 693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 694 }
74bcbdf3 695 set_value_component_location (result, val);
9bbda503
AC
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
42ae5230 698 set_value_address (result, value_address (val));
14f9c5c9
AS
699 return result;
700 }
701}
702
fc1a4b47
AC
703static const gdb_byte *
704cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
705{
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710}
711
712static CORE_ADDR
ebf56fd3 713cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
714{
715 if (address == 0)
716 return 0;
d2e4a39e 717 else
14f9c5c9
AS
718 return address + offset;
719}
720
4c4b4cd2
PH
721/* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
a2249542 725
77109804
AC
726/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
a0b31db1 728static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 729
14f9c5c9 730static void
a2249542 731lim_warning (const char *format, ...)
14f9c5c9 732{
a2249542 733 va_list args;
a2249542 734
5b4ee69b 735 va_start (args, format);
4c4b4cd2
PH
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
a2249542
MK
738 vwarning (format, args);
739
740 va_end (args);
4c4b4cd2
PH
741}
742
714e53ab
PH
743/* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
c1b5a1a6
JB
747void
748ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
749{
750 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 751 error (_("object size is larger than varsize-limit"));
714e53ab
PH
752}
753
0963b4bd 754/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 755static LONGEST
c3e5cd34 756max_of_size (int size)
4c4b4cd2 757{
76a01679 758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 759
76a01679 760 return top_bit | (top_bit - 1);
4c4b4cd2
PH
761}
762
0963b4bd 763/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 764static LONGEST
c3e5cd34 765min_of_size (int size)
4c4b4cd2 766{
c3e5cd34 767 return -max_of_size (size) - 1;
4c4b4cd2
PH
768}
769
0963b4bd 770/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 771static ULONGEST
c3e5cd34 772umax_of_size (int size)
4c4b4cd2 773{
76a01679 774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 775
76a01679 776 return top_bit | (top_bit - 1);
4c4b4cd2
PH
777}
778
0963b4bd 779/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
780static LONGEST
781max_of_type (struct type *t)
4c4b4cd2 782{
c3e5cd34
PH
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787}
788
0963b4bd 789/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
790static LONGEST
791min_of_type (struct type *t)
792{
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
797}
798
799/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
800LONGEST
801ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 802{
c3345124 803 type = resolve_dynamic_type (type, NULL, 0);
76a01679 804 switch (TYPE_CODE (type))
4c4b4cd2
PH
805 {
806 case TYPE_CODE_RANGE:
690cc4eb 807 return TYPE_HIGH_BOUND (type);
4c4b4cd2 808 case TYPE_CODE_ENUM:
14e75d8e 809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
76a01679 813 case TYPE_CODE_INT:
690cc4eb 814 return max_of_type (type);
4c4b4cd2 815 default:
43bbcdc2 816 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
817 }
818}
819
14e75d8e 820/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
821LONGEST
822ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 823{
c3345124 824 type = resolve_dynamic_type (type, NULL, 0);
76a01679 825 switch (TYPE_CODE (type))
4c4b4cd2
PH
826 {
827 case TYPE_CODE_RANGE:
690cc4eb 828 return TYPE_LOW_BOUND (type);
4c4b4cd2 829 case TYPE_CODE_ENUM:
14e75d8e 830 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
76a01679 834 case TYPE_CODE_INT:
690cc4eb 835 return min_of_type (type);
4c4b4cd2 836 default:
43bbcdc2 837 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
838 }
839}
840
841/* The identity on non-range types. For range types, the underlying
76a01679 842 non-range scalar type. */
4c4b4cd2
PH
843
844static struct type *
18af8284 845get_base_type (struct type *type)
4c4b4cd2
PH
846{
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
76a01679
JB
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
4c4b4cd2
PH
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
14f9c5c9 854}
41246937
JB
855
856/* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861struct value *
862ada_get_decoded_value (struct value *value)
863{
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879}
880
881/* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886struct type *
887ada_get_decoded_type (struct type *type)
888{
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893}
894
4c4b4cd2 895\f
76a01679 896
4c4b4cd2 897 /* Language Selection */
14f9c5c9
AS
898
899/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 900 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 901
14f9c5c9 902enum language
ccefe4c4 903ada_update_initial_language (enum language lang)
14f9c5c9 904{
d2e4a39e 905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 906 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 907 return language_ada;
14f9c5c9
AS
908
909 return lang;
910}
96d887e8
PH
911
912/* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916char *
917ada_main_name (void)
918{
3b7344d5 919 struct bound_minimal_symbol msym;
e83e4e24 920 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 921
96d887e8
PH
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
3b7344d5 929 if (msym.minsym != NULL)
96d887e8 930 {
f9bc20b9
JB
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
77e371c0 934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 935 if (main_program_name_addr == 0)
323e0a4a 936 error (_("Invalid address for Ada main program name."));
96d887e8 937
f9bc20b9
JB
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
e83e4e24 943 return main_program_name.get ();
96d887e8
PH
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948}
14f9c5c9 949\f
4c4b4cd2 950 /* Symbols */
d2e4a39e 951
4c4b4cd2
PH
952/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
14f9c5c9 954
d2e4a39e
AS
955const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
14f9c5c9
AS
978};
979
b5ec771e
PA
980/* The "encoded" form of DECODED, according to GNAT conventions. The
981 result is valid until the next call to ada_encode. If
982 THROW_ERRORS, throw an error if invalid operator name is found.
983 Otherwise, return NULL in that case. */
4c4b4cd2 984
b5ec771e
PA
985static char *
986ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 987{
4c4b4cd2
PH
988 static char *encoding_buffer = NULL;
989 static size_t encoding_buffer_size = 0;
d2e4a39e 990 const char *p;
14f9c5c9 991 int k;
d2e4a39e 992
4c4b4cd2 993 if (decoded == NULL)
14f9c5c9
AS
994 return NULL;
995
4c4b4cd2
PH
996 GROW_VECT (encoding_buffer, encoding_buffer_size,
997 2 * strlen (decoded) + 10);
14f9c5c9
AS
998
999 k = 0;
4c4b4cd2 1000 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 1001 {
cdc7bb92 1002 if (*p == '.')
4c4b4cd2
PH
1003 {
1004 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005 k += 2;
1006 }
14f9c5c9 1007 else if (*p == '"')
4c4b4cd2
PH
1008 {
1009 const struct ada_opname_map *mapping;
1010
1011 for (mapping = ada_opname_table;
1265e4aa 1012 mapping->encoded != NULL
61012eef 1013 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1014 ;
1015 if (mapping->encoded == NULL)
b5ec771e
PA
1016 {
1017 if (throw_errors)
1018 error (_("invalid Ada operator name: %s"), p);
1019 else
1020 return NULL;
1021 }
4c4b4cd2
PH
1022 strcpy (encoding_buffer + k, mapping->encoded);
1023 k += strlen (mapping->encoded);
1024 break;
1025 }
d2e4a39e 1026 else
4c4b4cd2
PH
1027 {
1028 encoding_buffer[k] = *p;
1029 k += 1;
1030 }
14f9c5c9
AS
1031 }
1032
4c4b4cd2
PH
1033 encoding_buffer[k] = '\0';
1034 return encoding_buffer;
14f9c5c9
AS
1035}
1036
b5ec771e
PA
1037/* The "encoded" form of DECODED, according to GNAT conventions.
1038 The result is valid until the next call to ada_encode. */
1039
1040char *
1041ada_encode (const char *decoded)
1042{
1043 return ada_encode_1 (decoded, true);
1044}
1045
14f9c5c9 1046/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1047 quotes, unfolded, but with the quotes stripped away. Result good
1048 to next call. */
1049
d2e4a39e
AS
1050char *
1051ada_fold_name (const char *name)
14f9c5c9 1052{
d2e4a39e 1053 static char *fold_buffer = NULL;
14f9c5c9
AS
1054 static size_t fold_buffer_size = 0;
1055
1056 int len = strlen (name);
d2e4a39e 1057 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1058
1059 if (name[0] == '\'')
1060 {
d2e4a39e
AS
1061 strncpy (fold_buffer, name + 1, len - 2);
1062 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1063 }
1064 else
1065 {
1066 int i;
5b4ee69b 1067
14f9c5c9 1068 for (i = 0; i <= len; i += 1)
4c4b4cd2 1069 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1070 }
1071
1072 return fold_buffer;
1073}
1074
529cad9c
PH
1075/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1076
1077static int
1078is_lower_alphanum (const char c)
1079{
1080 return (isdigit (c) || (isalpha (c) && islower (c)));
1081}
1082
c90092fe
JB
1083/* ENCODED is the linkage name of a symbol and LEN contains its length.
1084 This function saves in LEN the length of that same symbol name but
1085 without either of these suffixes:
29480c32
JB
1086 . .{DIGIT}+
1087 . ${DIGIT}+
1088 . ___{DIGIT}+
1089 . __{DIGIT}+.
c90092fe 1090
29480c32
JB
1091 These are suffixes introduced by the compiler for entities such as
1092 nested subprogram for instance, in order to avoid name clashes.
1093 They do not serve any purpose for the debugger. */
1094
1095static void
1096ada_remove_trailing_digits (const char *encoded, int *len)
1097{
1098 if (*len > 1 && isdigit (encoded[*len - 1]))
1099 {
1100 int i = *len - 2;
5b4ee69b 1101
29480c32
JB
1102 while (i > 0 && isdigit (encoded[i]))
1103 i--;
1104 if (i >= 0 && encoded[i] == '.')
1105 *len = i;
1106 else if (i >= 0 && encoded[i] == '$')
1107 *len = i;
61012eef 1108 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1109 *len = i - 2;
61012eef 1110 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1111 *len = i - 1;
1112 }
1113}
1114
1115/* Remove the suffix introduced by the compiler for protected object
1116 subprograms. */
1117
1118static void
1119ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120{
1121 /* Remove trailing N. */
1122
1123 /* Protected entry subprograms are broken into two
1124 separate subprograms: The first one is unprotected, and has
1125 a 'N' suffix; the second is the protected version, and has
0963b4bd 1126 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1127 the protection. Since the P subprograms are internally generated,
1128 we leave these names undecoded, giving the user a clue that this
1129 entity is internal. */
1130
1131 if (*len > 1
1132 && encoded[*len - 1] == 'N'
1133 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134 *len = *len - 1;
1135}
1136
69fadcdf
JB
1137/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1138
1139static void
1140ada_remove_Xbn_suffix (const char *encoded, int *len)
1141{
1142 int i = *len - 1;
1143
1144 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145 i--;
1146
1147 if (encoded[i] != 'X')
1148 return;
1149
1150 if (i == 0)
1151 return;
1152
1153 if (isalnum (encoded[i-1]))
1154 *len = i;
1155}
1156
29480c32
JB
1157/* If ENCODED follows the GNAT entity encoding conventions, then return
1158 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1159 replaced by ENCODED.
14f9c5c9 1160
4c4b4cd2 1161 The resulting string is valid until the next call of ada_decode.
29480c32 1162 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1163 is returned. */
1164
1165const char *
1166ada_decode (const char *encoded)
14f9c5c9
AS
1167{
1168 int i, j;
1169 int len0;
d2e4a39e 1170 const char *p;
4c4b4cd2 1171 char *decoded;
14f9c5c9 1172 int at_start_name;
4c4b4cd2
PH
1173 static char *decoding_buffer = NULL;
1174 static size_t decoding_buffer_size = 0;
d2e4a39e 1175
0d81f350
JG
1176 /* With function descriptors on PPC64, the value of a symbol named
1177 ".FN", if it exists, is the entry point of the function "FN". */
1178 if (encoded[0] == '.')
1179 encoded += 1;
1180
29480c32
JB
1181 /* The name of the Ada main procedure starts with "_ada_".
1182 This prefix is not part of the decoded name, so skip this part
1183 if we see this prefix. */
61012eef 1184 if (startswith (encoded, "_ada_"))
4c4b4cd2 1185 encoded += 5;
14f9c5c9 1186
29480c32
JB
1187 /* If the name starts with '_', then it is not a properly encoded
1188 name, so do not attempt to decode it. Similarly, if the name
1189 starts with '<', the name should not be decoded. */
4c4b4cd2 1190 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1191 goto Suppress;
1192
4c4b4cd2 1193 len0 = strlen (encoded);
4c4b4cd2 1194
29480c32
JB
1195 ada_remove_trailing_digits (encoded, &len0);
1196 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1197
4c4b4cd2
PH
1198 /* Remove the ___X.* suffix if present. Do not forget to verify that
1199 the suffix is located before the current "end" of ENCODED. We want
1200 to avoid re-matching parts of ENCODED that have previously been
1201 marked as discarded (by decrementing LEN0). */
1202 p = strstr (encoded, "___");
1203 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1204 {
1205 if (p[3] == 'X')
4c4b4cd2 1206 len0 = p - encoded;
14f9c5c9 1207 else
4c4b4cd2 1208 goto Suppress;
14f9c5c9 1209 }
4c4b4cd2 1210
29480c32
JB
1211 /* Remove any trailing TKB suffix. It tells us that this symbol
1212 is for the body of a task, but that information does not actually
1213 appear in the decoded name. */
1214
61012eef 1215 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1216 len0 -= 3;
76a01679 1217
a10967fa
JB
1218 /* Remove any trailing TB suffix. The TB suffix is slightly different
1219 from the TKB suffix because it is used for non-anonymous task
1220 bodies. */
1221
61012eef 1222 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1223 len0 -= 2;
1224
29480c32
JB
1225 /* Remove trailing "B" suffixes. */
1226 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1227
61012eef 1228 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1229 len0 -= 1;
1230
4c4b4cd2 1231 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1232
4c4b4cd2
PH
1233 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234 decoded = decoding_buffer;
14f9c5c9 1235
29480c32
JB
1236 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1237
4c4b4cd2 1238 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1239 {
4c4b4cd2
PH
1240 i = len0 - 2;
1241 while ((i >= 0 && isdigit (encoded[i]))
1242 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243 i -= 1;
1244 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245 len0 = i - 1;
1246 else if (encoded[i] == '$')
1247 len0 = i;
d2e4a39e 1248 }
14f9c5c9 1249
29480c32
JB
1250 /* The first few characters that are not alphabetic are not part
1251 of any encoding we use, so we can copy them over verbatim. */
1252
4c4b4cd2
PH
1253 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254 decoded[j] = encoded[i];
14f9c5c9
AS
1255
1256 at_start_name = 1;
1257 while (i < len0)
1258 {
29480c32 1259 /* Is this a symbol function? */
4c4b4cd2
PH
1260 if (at_start_name && encoded[i] == 'O')
1261 {
1262 int k;
5b4ee69b 1263
4c4b4cd2
PH
1264 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265 {
1266 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1267 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268 op_len - 1) == 0)
1269 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1270 {
1271 strcpy (decoded + j, ada_opname_table[k].decoded);
1272 at_start_name = 0;
1273 i += op_len;
1274 j += strlen (ada_opname_table[k].decoded);
1275 break;
1276 }
1277 }
1278 if (ada_opname_table[k].encoded != NULL)
1279 continue;
1280 }
14f9c5c9
AS
1281 at_start_name = 0;
1282
529cad9c
PH
1283 /* Replace "TK__" with "__", which will eventually be translated
1284 into "." (just below). */
1285
61012eef 1286 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1287 i += 2;
529cad9c 1288
29480c32
JB
1289 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290 be translated into "." (just below). These are internal names
1291 generated for anonymous blocks inside which our symbol is nested. */
1292
1293 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295 && isdigit (encoded [i+4]))
1296 {
1297 int k = i + 5;
1298
1299 while (k < len0 && isdigit (encoded[k]))
1300 k++; /* Skip any extra digit. */
1301
1302 /* Double-check that the "__B_{DIGITS}+" sequence we found
1303 is indeed followed by "__". */
1304 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305 i = k;
1306 }
1307
529cad9c
PH
1308 /* Remove _E{DIGITS}+[sb] */
1309
1310 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1311 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1312 one implements the actual entry code, and has a suffix following
1313 the convention above; the second one implements the barrier and
1314 uses the same convention as above, except that the 'E' is replaced
1315 by a 'B'.
1316
1317 Just as above, we do not decode the name of barrier functions
1318 to give the user a clue that the code he is debugging has been
1319 internally generated. */
1320
1321 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322 && isdigit (encoded[i+2]))
1323 {
1324 int k = i + 3;
1325
1326 while (k < len0 && isdigit (encoded[k]))
1327 k++;
1328
1329 if (k < len0
1330 && (encoded[k] == 'b' || encoded[k] == 's'))
1331 {
1332 k++;
1333 /* Just as an extra precaution, make sure that if this
1334 suffix is followed by anything else, it is a '_'.
1335 Otherwise, we matched this sequence by accident. */
1336 if (k == len0
1337 || (k < len0 && encoded[k] == '_'))
1338 i = k;
1339 }
1340 }
1341
1342 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1343 the GNAT front-end in protected object subprograms. */
1344
1345 if (i < len0 + 3
1346 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347 {
1348 /* Backtrack a bit up until we reach either the begining of
1349 the encoded name, or "__". Make sure that we only find
1350 digits or lowercase characters. */
1351 const char *ptr = encoded + i - 1;
1352
1353 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354 ptr--;
1355 if (ptr < encoded
1356 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357 i++;
1358 }
1359
4c4b4cd2
PH
1360 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361 {
29480c32
JB
1362 /* This is a X[bn]* sequence not separated from the previous
1363 part of the name with a non-alpha-numeric character (in other
1364 words, immediately following an alpha-numeric character), then
1365 verify that it is placed at the end of the encoded name. If
1366 not, then the encoding is not valid and we should abort the
1367 decoding. Otherwise, just skip it, it is used in body-nested
1368 package names. */
4c4b4cd2
PH
1369 do
1370 i += 1;
1371 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372 if (i < len0)
1373 goto Suppress;
1374 }
cdc7bb92 1375 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1376 {
29480c32 1377 /* Replace '__' by '.'. */
4c4b4cd2
PH
1378 decoded[j] = '.';
1379 at_start_name = 1;
1380 i += 2;
1381 j += 1;
1382 }
14f9c5c9 1383 else
4c4b4cd2 1384 {
29480c32
JB
1385 /* It's a character part of the decoded name, so just copy it
1386 over. */
4c4b4cd2
PH
1387 decoded[j] = encoded[i];
1388 i += 1;
1389 j += 1;
1390 }
14f9c5c9 1391 }
4c4b4cd2 1392 decoded[j] = '\000';
14f9c5c9 1393
29480c32
JB
1394 /* Decoded names should never contain any uppercase character.
1395 Double-check this, and abort the decoding if we find one. */
1396
4c4b4cd2
PH
1397 for (i = 0; decoded[i] != '\0'; i += 1)
1398 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1399 goto Suppress;
1400
4c4b4cd2
PH
1401 if (strcmp (decoded, encoded) == 0)
1402 return encoded;
1403 else
1404 return decoded;
14f9c5c9
AS
1405
1406Suppress:
4c4b4cd2
PH
1407 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408 decoded = decoding_buffer;
1409 if (encoded[0] == '<')
1410 strcpy (decoded, encoded);
14f9c5c9 1411 else
88c15c34 1412 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1413 return decoded;
1414
1415}
1416
1417/* Table for keeping permanent unique copies of decoded names. Once
1418 allocated, names in this table are never released. While this is a
1419 storage leak, it should not be significant unless there are massive
1420 changes in the set of decoded names in successive versions of a
1421 symbol table loaded during a single session. */
1422static struct htab *decoded_names_store;
1423
1424/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425 in the language-specific part of GSYMBOL, if it has not been
1426 previously computed. Tries to save the decoded name in the same
1427 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1429 GSYMBOL).
4c4b4cd2
PH
1430 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1432 when a decoded name is cached in it. */
4c4b4cd2 1433
45e6c716 1434const char *
f85f34ed 1435ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1436{
f85f34ed
TT
1437 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438 const char **resultp =
615b3f62 1439 &gsymbol->language_specific.demangled_name;
5b4ee69b 1440
f85f34ed 1441 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1442 {
1443 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1444 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1445
f85f34ed 1446 gsymbol->ada_mangled = 1;
5b4ee69b 1447
f85f34ed 1448 if (obstack != NULL)
224c3ddb
SM
1449 *resultp
1450 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1451 else
76a01679 1452 {
f85f34ed
TT
1453 /* Sometimes, we can't find a corresponding objfile, in
1454 which case, we put the result on the heap. Since we only
1455 decode when needed, we hope this usually does not cause a
1456 significant memory leak (FIXME). */
1457
76a01679
JB
1458 char **slot = (char **) htab_find_slot (decoded_names_store,
1459 decoded, INSERT);
5b4ee69b 1460
76a01679
JB
1461 if (*slot == NULL)
1462 *slot = xstrdup (decoded);
1463 *resultp = *slot;
1464 }
4c4b4cd2 1465 }
14f9c5c9 1466
4c4b4cd2
PH
1467 return *resultp;
1468}
76a01679 1469
2c0b251b 1470static char *
76a01679 1471ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1472{
1473 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1474}
1475
8b302db8
TT
1476/* Implement la_sniff_from_mangled_name for Ada. */
1477
1478static int
1479ada_sniff_from_mangled_name (const char *mangled, char **out)
1480{
1481 const char *demangled = ada_decode (mangled);
1482
1483 *out = NULL;
1484
1485 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486 {
1487 /* Set the gsymbol language to Ada, but still return 0.
1488 Two reasons for that:
1489
1490 1. For Ada, we prefer computing the symbol's decoded name
1491 on the fly rather than pre-compute it, in order to save
1492 memory (Ada projects are typically very large).
1493
1494 2. There are some areas in the definition of the GNAT
1495 encoding where, with a bit of bad luck, we might be able
1496 to decode a non-Ada symbol, generating an incorrect
1497 demangled name (Eg: names ending with "TB" for instance
1498 are identified as task bodies and so stripped from
1499 the decoded name returned).
1500
1501 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 little bit of the best of both worlds. Because we're last,
1503 we should not affect any of the other languages that were
1504 able to demangle the symbol before us; we get to correctly
1505 tag Ada symbols as such; and even if we incorrectly tagged a
1506 non-Ada symbol, which should be rare, any routing through the
1507 Ada language should be transparent (Ada tries to behave much
1508 like C/C++ with non-Ada symbols). */
1509 return 1;
1510 }
1511
1512 return 0;
1513}
1514
14f9c5c9 1515\f
d2e4a39e 1516
4c4b4cd2 1517 /* Arrays */
14f9c5c9 1518
28c85d6c
JB
1519/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520 generated by the GNAT compiler to describe the index type used
1521 for each dimension of an array, check whether it follows the latest
1522 known encoding. If not, fix it up to conform to the latest encoding.
1523 Otherwise, do nothing. This function also does nothing if
1524 INDEX_DESC_TYPE is NULL.
1525
1526 The GNAT encoding used to describle the array index type evolved a bit.
1527 Initially, the information would be provided through the name of each
1528 field of the structure type only, while the type of these fields was
1529 described as unspecified and irrelevant. The debugger was then expected
1530 to perform a global type lookup using the name of that field in order
1531 to get access to the full index type description. Because these global
1532 lookups can be very expensive, the encoding was later enhanced to make
1533 the global lookup unnecessary by defining the field type as being
1534 the full index type description.
1535
1536 The purpose of this routine is to allow us to support older versions
1537 of the compiler by detecting the use of the older encoding, and by
1538 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539 we essentially replace each field's meaningless type by the associated
1540 index subtype). */
1541
1542void
1543ada_fixup_array_indexes_type (struct type *index_desc_type)
1544{
1545 int i;
1546
1547 if (index_desc_type == NULL)
1548 return;
1549 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550
1551 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552 to check one field only, no need to check them all). If not, return
1553 now.
1554
1555 If our INDEX_DESC_TYPE was generated using the older encoding,
1556 the field type should be a meaningless integer type whose name
1557 is not equal to the field name. */
1558 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561 return;
1562
1563 /* Fixup each field of INDEX_DESC_TYPE. */
1564 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565 {
0d5cff50 1566 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1567 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568
1569 if (raw_type)
1570 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571 }
1572}
1573
4c4b4cd2 1574/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1575
a121b7c1 1576static const char *bound_name[] = {
d2e4a39e 1577 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1578 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579};
1580
1581/* Maximum number of array dimensions we are prepared to handle. */
1582
4c4b4cd2 1583#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1584
14f9c5c9 1585
4c4b4cd2
PH
1586/* The desc_* routines return primitive portions of array descriptors
1587 (fat pointers). */
14f9c5c9
AS
1588
1589/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1590 level of indirection, if needed. */
1591
d2e4a39e
AS
1592static struct type *
1593desc_base_type (struct type *type)
14f9c5c9
AS
1594{
1595 if (type == NULL)
1596 return NULL;
61ee279c 1597 type = ada_check_typedef (type);
720d1a40
JB
1598 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599 type = ada_typedef_target_type (type);
1600
1265e4aa
JB
1601 if (type != NULL
1602 && (TYPE_CODE (type) == TYPE_CODE_PTR
1603 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1604 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1605 else
1606 return type;
1607}
1608
4c4b4cd2
PH
1609/* True iff TYPE indicates a "thin" array pointer type. */
1610
14f9c5c9 1611static int
d2e4a39e 1612is_thin_pntr (struct type *type)
14f9c5c9 1613{
d2e4a39e 1614 return
14f9c5c9
AS
1615 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617}
1618
4c4b4cd2
PH
1619/* The descriptor type for thin pointer type TYPE. */
1620
d2e4a39e
AS
1621static struct type *
1622thin_descriptor_type (struct type *type)
14f9c5c9 1623{
d2e4a39e 1624 struct type *base_type = desc_base_type (type);
5b4ee69b 1625
14f9c5c9
AS
1626 if (base_type == NULL)
1627 return NULL;
1628 if (is_suffix (ada_type_name (base_type), "___XVE"))
1629 return base_type;
d2e4a39e 1630 else
14f9c5c9 1631 {
d2e4a39e 1632 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1633
14f9c5c9 1634 if (alt_type == NULL)
4c4b4cd2 1635 return base_type;
14f9c5c9 1636 else
4c4b4cd2 1637 return alt_type;
14f9c5c9
AS
1638 }
1639}
1640
4c4b4cd2
PH
1641/* A pointer to the array data for thin-pointer value VAL. */
1642
d2e4a39e
AS
1643static struct value *
1644thin_data_pntr (struct value *val)
14f9c5c9 1645{
828292f2 1646 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1647 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1648
556bdfd4
UW
1649 data_type = lookup_pointer_type (data_type);
1650
14f9c5c9 1651 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1652 return value_cast (data_type, value_copy (val));
d2e4a39e 1653 else
42ae5230 1654 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1655}
1656
4c4b4cd2
PH
1657/* True iff TYPE indicates a "thick" array pointer type. */
1658
14f9c5c9 1659static int
d2e4a39e 1660is_thick_pntr (struct type *type)
14f9c5c9
AS
1661{
1662 type = desc_base_type (type);
1663 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1664 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1665}
1666
4c4b4cd2
PH
1667/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1669
d2e4a39e
AS
1670static struct type *
1671desc_bounds_type (struct type *type)
14f9c5c9 1672{
d2e4a39e 1673 struct type *r;
14f9c5c9
AS
1674
1675 type = desc_base_type (type);
1676
1677 if (type == NULL)
1678 return NULL;
1679 else if (is_thin_pntr (type))
1680 {
1681 type = thin_descriptor_type (type);
1682 if (type == NULL)
4c4b4cd2 1683 return NULL;
14f9c5c9
AS
1684 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685 if (r != NULL)
61ee279c 1686 return ada_check_typedef (r);
14f9c5c9
AS
1687 }
1688 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689 {
1690 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691 if (r != NULL)
61ee279c 1692 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1693 }
1694 return NULL;
1695}
1696
1697/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1698 one, a pointer to its bounds data. Otherwise NULL. */
1699
d2e4a39e
AS
1700static struct value *
1701desc_bounds (struct value *arr)
14f9c5c9 1702{
df407dfe 1703 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1704
d2e4a39e 1705 if (is_thin_pntr (type))
14f9c5c9 1706 {
d2e4a39e 1707 struct type *bounds_type =
4c4b4cd2 1708 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1709 LONGEST addr;
1710
4cdfadb1 1711 if (bounds_type == NULL)
323e0a4a 1712 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1713
1714 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1715 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1716 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1717 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1718 addr = value_as_long (arr);
d2e4a39e 1719 else
42ae5230 1720 addr = value_address (arr);
14f9c5c9 1721
d2e4a39e 1722 return
4c4b4cd2
PH
1723 value_from_longest (lookup_pointer_type (bounds_type),
1724 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1725 }
1726
1727 else if (is_thick_pntr (type))
05e522ef
JB
1728 {
1729 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 _("Bad GNAT array descriptor"));
1731 struct type *p_bounds_type = value_type (p_bounds);
1732
1733 if (p_bounds_type
1734 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 {
1736 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737
1738 if (TYPE_STUB (target_type))
1739 p_bounds = value_cast (lookup_pointer_type
1740 (ada_check_typedef (target_type)),
1741 p_bounds);
1742 }
1743 else
1744 error (_("Bad GNAT array descriptor"));
1745
1746 return p_bounds;
1747 }
14f9c5c9
AS
1748 else
1749 return NULL;
1750}
1751
4c4b4cd2
PH
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 position of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1757{
1758 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759}
1760
1761/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1762 size of the field containing the address of the bounds data. */
1763
14f9c5c9 1764static int
d2e4a39e 1765fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1766{
1767 type = desc_base_type (type);
1768
d2e4a39e 1769 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1770 return TYPE_FIELD_BITSIZE (type, 1);
1771 else
61ee279c 1772 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1773}
1774
4c4b4cd2 1775/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1776 pointer to one, the type of its array data (a array-with-no-bounds type);
1777 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1778 data. */
4c4b4cd2 1779
d2e4a39e 1780static struct type *
556bdfd4 1781desc_data_target_type (struct type *type)
14f9c5c9
AS
1782{
1783 type = desc_base_type (type);
1784
4c4b4cd2 1785 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1786 if (is_thin_pntr (type))
556bdfd4 1787 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1788 else if (is_thick_pntr (type))
556bdfd4
UW
1789 {
1790 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791
1792 if (data_type
1793 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1794 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1795 }
1796
1797 return NULL;
14f9c5c9
AS
1798}
1799
1800/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801 its array data. */
4c4b4cd2 1802
d2e4a39e
AS
1803static struct value *
1804desc_data (struct value *arr)
14f9c5c9 1805{
df407dfe 1806 struct type *type = value_type (arr);
5b4ee69b 1807
14f9c5c9
AS
1808 if (is_thin_pntr (type))
1809 return thin_data_pntr (arr);
1810 else if (is_thick_pntr (type))
d2e4a39e 1811 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1812 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1813 else
1814 return NULL;
1815}
1816
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 position of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1823{
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825}
1826
1827/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1828 size of the field containing the address of the data. */
1829
14f9c5c9 1830static int
d2e4a39e 1831fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1832{
1833 type = desc_base_type (type);
1834
1835 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1837 else
14f9c5c9
AS
1838 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839}
1840
4c4b4cd2 1841/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1842 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1843 bound, if WHICH is 1. The first bound is I=1. */
1844
d2e4a39e
AS
1845static struct value *
1846desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1847{
d2e4a39e 1848 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1849 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1850}
1851
1852/* If BOUNDS is an array-bounds structure type, return the bit position
1853 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1854 bound, if WHICH is 1. The first bound is I=1. */
1855
14f9c5c9 1856static int
d2e4a39e 1857desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1858{
d2e4a39e 1859 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1860}
1861
1862/* If BOUNDS is an array-bounds structure type, return the bit field size
1863 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1864 bound, if WHICH is 1. The first bound is I=1. */
1865
76a01679 1866static int
d2e4a39e 1867desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1868{
1869 type = desc_base_type (type);
1870
d2e4a39e
AS
1871 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873 else
1874 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1875}
1876
1877/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1878 Ith bound (numbering from 1). Otherwise, NULL. */
1879
d2e4a39e
AS
1880static struct type *
1881desc_index_type (struct type *type, int i)
14f9c5c9
AS
1882{
1883 type = desc_base_type (type);
1884
1885 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1886 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887 else
14f9c5c9
AS
1888 return NULL;
1889}
1890
4c4b4cd2
PH
1891/* The number of index positions in the array-bounds type TYPE.
1892 Return 0 if TYPE is NULL. */
1893
14f9c5c9 1894static int
d2e4a39e 1895desc_arity (struct type *type)
14f9c5c9
AS
1896{
1897 type = desc_base_type (type);
1898
1899 if (type != NULL)
1900 return TYPE_NFIELDS (type) / 2;
1901 return 0;
1902}
1903
4c4b4cd2
PH
1904/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905 an array descriptor type (representing an unconstrained array
1906 type). */
1907
76a01679
JB
1908static int
1909ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1910{
1911 if (type == NULL)
1912 return 0;
61ee279c 1913 type = ada_check_typedef (type);
4c4b4cd2 1914 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1915 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1916}
1917
52ce6436 1918/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1919 * to one. */
52ce6436 1920
2c0b251b 1921static int
52ce6436
PH
1922ada_is_array_type (struct type *type)
1923{
1924 while (type != NULL
1925 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 || TYPE_CODE (type) == TYPE_CODE_REF))
1927 type = TYPE_TARGET_TYPE (type);
1928 return ada_is_direct_array_type (type);
1929}
1930
4c4b4cd2 1931/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1932
14f9c5c9 1933int
4c4b4cd2 1934ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1935{
1936 if (type == NULL)
1937 return 0;
61ee279c 1938 type = ada_check_typedef (type);
14f9c5c9 1939 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1940 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1941 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1943}
1944
4c4b4cd2
PH
1945/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1946
14f9c5c9 1947int
4c4b4cd2 1948ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1949{
556bdfd4 1950 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1951
1952 if (type == NULL)
1953 return 0;
61ee279c 1954 type = ada_check_typedef (type);
556bdfd4
UW
1955 return (data_type != NULL
1956 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1958}
1959
1960/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1961 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1962 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1963 is still needed. */
1964
14f9c5c9 1965int
ebf56fd3 1966ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1967{
d2e4a39e 1968 return
14f9c5c9
AS
1969 type != NULL
1970 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1972 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1974}
1975
1976
4c4b4cd2 1977/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1978 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1979 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1980 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1981 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1983 a descriptor. */
d2e4a39e
AS
1984struct type *
1985ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1986{
ad82864c
JB
1987 if (ada_is_constrained_packed_array_type (value_type (arr)))
1988 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1989
df407dfe
AC
1990 if (!ada_is_array_descriptor_type (value_type (arr)))
1991 return value_type (arr);
d2e4a39e
AS
1992
1993 if (!bounds)
ad82864c
JB
1994 {
1995 struct type *array_type =
1996 ada_check_typedef (desc_data_target_type (value_type (arr)));
1997
1998 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 TYPE_FIELD_BITSIZE (array_type, 0) =
2000 decode_packed_array_bitsize (value_type (arr));
2001
2002 return array_type;
2003 }
14f9c5c9
AS
2004 else
2005 {
d2e4a39e 2006 struct type *elt_type;
14f9c5c9 2007 int arity;
d2e4a39e 2008 struct value *descriptor;
14f9c5c9 2009
df407dfe
AC
2010 elt_type = ada_array_element_type (value_type (arr), -1);
2011 arity = ada_array_arity (value_type (arr));
14f9c5c9 2012
d2e4a39e 2013 if (elt_type == NULL || arity == 0)
df407dfe 2014 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2015
2016 descriptor = desc_bounds (arr);
d2e4a39e 2017 if (value_as_long (descriptor) == 0)
4c4b4cd2 2018 return NULL;
d2e4a39e 2019 while (arity > 0)
4c4b4cd2 2020 {
e9bb382b
UW
2021 struct type *range_type = alloc_type_copy (value_type (arr));
2022 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2023 struct value *low = desc_one_bound (descriptor, arity, 0);
2024 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2025
5b4ee69b 2026 arity -= 1;
0c9c3474
SA
2027 create_static_range_type (range_type, value_type (low),
2028 longest_to_int (value_as_long (low)),
2029 longest_to_int (value_as_long (high)));
4c4b4cd2 2030 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2031
2032 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2033 {
2034 /* We need to store the element packed bitsize, as well as
2035 recompute the array size, because it was previously
2036 computed based on the unpacked element size. */
2037 LONGEST lo = value_as_long (low);
2038 LONGEST hi = value_as_long (high);
2039
2040 TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 decode_packed_array_bitsize (value_type (arr));
2042 /* If the array has no element, then the size is already
2043 zero, and does not need to be recomputed. */
2044 if (lo < hi)
2045 {
2046 int array_bitsize =
2047 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048
2049 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 }
2051 }
4c4b4cd2 2052 }
14f9c5c9
AS
2053
2054 return lookup_pointer_type (elt_type);
2055 }
2056}
2057
2058/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2059 Otherwise, returns either a standard GDB array with bounds set
2060 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061 GDB array. Returns NULL if ARR is a null fat pointer. */
2062
d2e4a39e
AS
2063struct value *
2064ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2065{
df407dfe 2066 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2067 {
d2e4a39e 2068 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2069
14f9c5c9 2070 if (arrType == NULL)
4c4b4cd2 2071 return NULL;
14f9c5c9
AS
2072 return value_cast (arrType, value_copy (desc_data (arr)));
2073 }
ad82864c
JB
2074 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2076 else
2077 return arr;
2078}
2079
2080/* If ARR does not represent an array, returns ARR unchanged.
2081 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2082 be ARR itself if it already is in the proper form). */
2083
720d1a40 2084struct value *
d2e4a39e 2085ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2086{
df407dfe 2087 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2088 {
d2e4a39e 2089 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2090
14f9c5c9 2091 if (arrVal == NULL)
323e0a4a 2092 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2093 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2094 return value_ind (arrVal);
2095 }
ad82864c
JB
2096 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097 return decode_constrained_packed_array (arr);
d2e4a39e 2098 else
14f9c5c9
AS
2099 return arr;
2100}
2101
2102/* If TYPE represents a GNAT array type, return it translated to an
2103 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2104 packing). For other types, is the identity. */
2105
d2e4a39e
AS
2106struct type *
2107ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2108{
ad82864c
JB
2109 if (ada_is_constrained_packed_array_type (type))
2110 return decode_constrained_packed_array_type (type);
17280b9f
UW
2111
2112 if (ada_is_array_descriptor_type (type))
556bdfd4 2113 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2114
2115 return type;
14f9c5c9
AS
2116}
2117
4c4b4cd2
PH
2118/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2119
ad82864c
JB
2120static int
2121ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2122{
2123 if (type == NULL)
2124 return 0;
4c4b4cd2 2125 type = desc_base_type (type);
61ee279c 2126 type = ada_check_typedef (type);
d2e4a39e 2127 return
14f9c5c9
AS
2128 ada_type_name (type) != NULL
2129 && strstr (ada_type_name (type), "___XP") != NULL;
2130}
2131
ad82864c
JB
2132/* Non-zero iff TYPE represents a standard GNAT constrained
2133 packed-array type. */
2134
2135int
2136ada_is_constrained_packed_array_type (struct type *type)
2137{
2138 return ada_is_packed_array_type (type)
2139 && !ada_is_array_descriptor_type (type);
2140}
2141
2142/* Non-zero iff TYPE represents an array descriptor for a
2143 unconstrained packed-array type. */
2144
2145static int
2146ada_is_unconstrained_packed_array_type (struct type *type)
2147{
2148 return ada_is_packed_array_type (type)
2149 && ada_is_array_descriptor_type (type);
2150}
2151
2152/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153 return the size of its elements in bits. */
2154
2155static long
2156decode_packed_array_bitsize (struct type *type)
2157{
0d5cff50
DE
2158 const char *raw_name;
2159 const char *tail;
ad82864c
JB
2160 long bits;
2161
720d1a40
JB
2162 /* Access to arrays implemented as fat pointers are encoded as a typedef
2163 of the fat pointer type. We need the name of the fat pointer type
2164 to do the decoding, so strip the typedef layer. */
2165 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166 type = ada_typedef_target_type (type);
2167
2168 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2169 if (!raw_name)
2170 raw_name = ada_type_name (desc_base_type (type));
2171
2172 if (!raw_name)
2173 return 0;
2174
2175 tail = strstr (raw_name, "___XP");
720d1a40 2176 gdb_assert (tail != NULL);
ad82864c
JB
2177
2178 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179 {
2180 lim_warning
2181 (_("could not understand bit size information on packed array"));
2182 return 0;
2183 }
2184
2185 return bits;
2186}
2187
14f9c5c9
AS
2188/* Given that TYPE is a standard GDB array type with all bounds filled
2189 in, and that the element size of its ultimate scalar constituents
2190 (that is, either its elements, or, if it is an array of arrays, its
2191 elements' elements, etc.) is *ELT_BITS, return an identical type,
2192 but with the bit sizes of its elements (and those of any
2193 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2194 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2195 in bits.
2196
2197 Note that, for arrays whose index type has an XA encoding where
2198 a bound references a record discriminant, getting that discriminant,
2199 and therefore the actual value of that bound, is not possible
2200 because none of the given parameters gives us access to the record.
2201 This function assumes that it is OK in the context where it is being
2202 used to return an array whose bounds are still dynamic and where
2203 the length is arbitrary. */
4c4b4cd2 2204
d2e4a39e 2205static struct type *
ad82864c 2206constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2207{
d2e4a39e
AS
2208 struct type *new_elt_type;
2209 struct type *new_type;
99b1c762
JB
2210 struct type *index_type_desc;
2211 struct type *index_type;
14f9c5c9
AS
2212 LONGEST low_bound, high_bound;
2213
61ee279c 2214 type = ada_check_typedef (type);
14f9c5c9
AS
2215 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216 return type;
2217
99b1c762
JB
2218 index_type_desc = ada_find_parallel_type (type, "___XA");
2219 if (index_type_desc)
2220 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 NULL);
2222 else
2223 index_type = TYPE_INDEX_TYPE (type);
2224
e9bb382b 2225 new_type = alloc_type_copy (type);
ad82864c
JB
2226 new_elt_type =
2227 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 elt_bits);
99b1c762 2229 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2230 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231 TYPE_NAME (new_type) = ada_type_name (type);
2232
4a46959e
JB
2233 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234 && is_dynamic_type (check_typedef (index_type)))
2235 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2236 low_bound = high_bound = 0;
2237 if (high_bound < low_bound)
2238 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2239 else
14f9c5c9
AS
2240 {
2241 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2242 TYPE_LENGTH (new_type) =
4c4b4cd2 2243 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2244 }
2245
876cecd0 2246 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2247 return new_type;
2248}
2249
ad82864c
JB
2250/* The array type encoded by TYPE, where
2251 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2252
d2e4a39e 2253static struct type *
ad82864c 2254decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2255{
0d5cff50 2256 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2257 char *name;
0d5cff50 2258 const char *tail;
d2e4a39e 2259 struct type *shadow_type;
14f9c5c9 2260 long bits;
14f9c5c9 2261
727e3d2e
JB
2262 if (!raw_name)
2263 raw_name = ada_type_name (desc_base_type (type));
2264
2265 if (!raw_name)
2266 return NULL;
2267
2268 name = (char *) alloca (strlen (raw_name) + 1);
2269 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2270 type = desc_base_type (type);
2271
14f9c5c9
AS
2272 memcpy (name, raw_name, tail - raw_name);
2273 name[tail - raw_name] = '\000';
2274
b4ba55a1
JB
2275 shadow_type = ada_find_parallel_type_with_name (type, name);
2276
2277 if (shadow_type == NULL)
14f9c5c9 2278 {
323e0a4a 2279 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2280 return NULL;
2281 }
f168693b 2282 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2283
2284 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285 {
0963b4bd
MS
2286 lim_warning (_("could not understand bounds "
2287 "information on packed array"));
14f9c5c9
AS
2288 return NULL;
2289 }
d2e4a39e 2290
ad82864c
JB
2291 bits = decode_packed_array_bitsize (type);
2292 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2293}
2294
ad82864c
JB
2295/* Given that ARR is a struct value *indicating a GNAT constrained packed
2296 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2297 standard GDB array type except that the BITSIZEs of the array
2298 target types are set to the number of bits in each element, and the
4c4b4cd2 2299 type length is set appropriately. */
14f9c5c9 2300
d2e4a39e 2301static struct value *
ad82864c 2302decode_constrained_packed_array (struct value *arr)
14f9c5c9 2303{
4c4b4cd2 2304 struct type *type;
14f9c5c9 2305
11aa919a
PMR
2306 /* If our value is a pointer, then dereference it. Likewise if
2307 the value is a reference. Make sure that this operation does not
2308 cause the target type to be fixed, as this would indirectly cause
2309 this array to be decoded. The rest of the routine assumes that
2310 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311 and "value_ind" routines to perform the dereferencing, as opposed
2312 to using "ada_coerce_ref" or "ada_value_ind". */
2313 arr = coerce_ref (arr);
828292f2 2314 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2315 arr = value_ind (arr);
4c4b4cd2 2316
ad82864c 2317 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2318 if (type == NULL)
2319 {
323e0a4a 2320 error (_("can't unpack array"));
14f9c5c9
AS
2321 return NULL;
2322 }
61ee279c 2323
50810684 2324 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2325 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2326 {
2327 /* This is a (right-justified) modular type representing a packed
2328 array with no wrapper. In order to interpret the value through
2329 the (left-justified) packed array type we just built, we must
2330 first left-justify it. */
2331 int bit_size, bit_pos;
2332 ULONGEST mod;
2333
df407dfe 2334 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2335 bit_size = 0;
2336 while (mod > 0)
2337 {
2338 bit_size += 1;
2339 mod >>= 1;
2340 }
df407dfe 2341 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2342 arr = ada_value_primitive_packed_val (arr, NULL,
2343 bit_pos / HOST_CHAR_BIT,
2344 bit_pos % HOST_CHAR_BIT,
2345 bit_size,
2346 type);
2347 }
2348
4c4b4cd2 2349 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2350}
2351
2352
2353/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2354 given in IND. ARR must be a simple array. */
14f9c5c9 2355
d2e4a39e
AS
2356static struct value *
2357value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2358{
2359 int i;
2360 int bits, elt_off, bit_off;
2361 long elt_total_bit_offset;
d2e4a39e
AS
2362 struct type *elt_type;
2363 struct value *v;
14f9c5c9
AS
2364
2365 bits = 0;
2366 elt_total_bit_offset = 0;
df407dfe 2367 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2368 for (i = 0; i < arity; i += 1)
14f9c5c9 2369 {
d2e4a39e 2370 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2371 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372 error
0963b4bd
MS
2373 (_("attempt to do packed indexing of "
2374 "something other than a packed array"));
14f9c5c9 2375 else
4c4b4cd2
PH
2376 {
2377 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378 LONGEST lowerbound, upperbound;
2379 LONGEST idx;
2380
2381 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382 {
323e0a4a 2383 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2384 lowerbound = upperbound = 0;
2385 }
2386
3cb382c9 2387 idx = pos_atr (ind[i]);
4c4b4cd2 2388 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2389 lim_warning (_("packed array index %ld out of bounds"),
2390 (long) idx);
4c4b4cd2
PH
2391 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2393 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2394 }
14f9c5c9
AS
2395 }
2396 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2398
2399 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2400 bits, elt_type);
14f9c5c9
AS
2401 return v;
2402}
2403
4c4b4cd2 2404/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2405
2406static int
d2e4a39e 2407has_negatives (struct type *type)
14f9c5c9 2408{
d2e4a39e
AS
2409 switch (TYPE_CODE (type))
2410 {
2411 default:
2412 return 0;
2413 case TYPE_CODE_INT:
2414 return !TYPE_UNSIGNED (type);
2415 case TYPE_CODE_RANGE:
2416 return TYPE_LOW_BOUND (type) < 0;
2417 }
14f9c5c9 2418}
d2e4a39e 2419
f93fca70 2420/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2421 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2422 the unpacked buffer.
14f9c5c9 2423
5b639dea
JB
2424 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2426
f93fca70
JB
2427 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428 zero otherwise.
14f9c5c9 2429
f93fca70 2430 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2431
f93fca70
JB
2432 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2433
2434static void
2435ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 gdb_byte *unpacked, int unpacked_len,
2437 int is_big_endian, int is_signed_type,
2438 int is_scalar)
2439{
a1c95e6b
JB
2440 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441 int src_idx; /* Index into the source area */
2442 int src_bytes_left; /* Number of source bytes left to process. */
2443 int srcBitsLeft; /* Number of source bits left to move */
2444 int unusedLS; /* Number of bits in next significant
2445 byte of source that are unused */
2446
a1c95e6b
JB
2447 int unpacked_idx; /* Index into the unpacked buffer */
2448 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2449
4c4b4cd2 2450 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2451 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2452 unsigned char sign;
a1c95e6b 2453
4c4b4cd2
PH
2454 /* Transmit bytes from least to most significant; delta is the direction
2455 the indices move. */
f93fca70 2456 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2457
5b639dea
JB
2458 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459 bits from SRC. .*/
2460 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 bit_size, unpacked_len);
2463
14f9c5c9 2464 srcBitsLeft = bit_size;
086ca51f 2465 src_bytes_left = src_len;
f93fca70 2466 unpacked_bytes_left = unpacked_len;
14f9c5c9 2467 sign = 0;
f93fca70
JB
2468
2469 if (is_big_endian)
14f9c5c9 2470 {
086ca51f 2471 src_idx = src_len - 1;
f93fca70
JB
2472 if (is_signed_type
2473 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2474 sign = ~0;
d2e4a39e
AS
2475
2476 unusedLS =
4c4b4cd2
PH
2477 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478 % HOST_CHAR_BIT;
14f9c5c9 2479
f93fca70
JB
2480 if (is_scalar)
2481 {
2482 accumSize = 0;
2483 unpacked_idx = unpacked_len - 1;
2484 }
2485 else
2486 {
4c4b4cd2
PH
2487 /* Non-scalar values must be aligned at a byte boundary... */
2488 accumSize =
2489 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490 /* ... And are placed at the beginning (most-significant) bytes
2491 of the target. */
086ca51f
JB
2492 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2494 }
14f9c5c9 2495 }
d2e4a39e 2496 else
14f9c5c9
AS
2497 {
2498 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499
086ca51f 2500 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2501 unusedLS = bit_offset;
2502 accumSize = 0;
2503
f93fca70 2504 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2505 sign = ~0;
14f9c5c9 2506 }
d2e4a39e 2507
14f9c5c9 2508 accum = 0;
086ca51f 2509 while (src_bytes_left > 0)
14f9c5c9
AS
2510 {
2511 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2512 part of the value. */
d2e4a39e 2513 unsigned int unusedMSMask =
4c4b4cd2
PH
2514 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515 1;
2516 /* Sign-extend bits for this byte. */
14f9c5c9 2517 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2518
d2e4a39e 2519 accum |=
086ca51f 2520 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2521 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2522 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2523 {
db297a65 2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2525 accumSize -= HOST_CHAR_BIT;
2526 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2527 unpacked_bytes_left -= 1;
2528 unpacked_idx += delta;
4c4b4cd2 2529 }
14f9c5c9
AS
2530 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531 unusedLS = 0;
086ca51f
JB
2532 src_bytes_left -= 1;
2533 src_idx += delta;
14f9c5c9 2534 }
086ca51f 2535 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2536 {
2537 accum |= sign << accumSize;
db297a65 2538 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2539 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2540 if (accumSize < 0)
2541 accumSize = 0;
14f9c5c9 2542 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2543 unpacked_bytes_left -= 1;
2544 unpacked_idx += delta;
14f9c5c9 2545 }
f93fca70
JB
2546}
2547
2548/* Create a new value of type TYPE from the contents of OBJ starting
2549 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2551 assigning through the result will set the field fetched from.
2552 VALADDR is ignored unless OBJ is NULL, in which case,
2553 VALADDR+OFFSET must address the start of storage containing the
2554 packed value. The value returned in this case is never an lval.
2555 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2556
2557struct value *
2558ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 long offset, int bit_offset, int bit_size,
2560 struct type *type)
2561{
2562 struct value *v;
bfb1c796 2563 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2564 gdb_byte *unpacked;
220475ed 2565 const int is_scalar = is_scalar_type (type);
d0a9e810 2566 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2567 gdb::byte_vector staging;
f93fca70
JB
2568
2569 type = ada_check_typedef (type);
2570
d0a9e810 2571 if (obj == NULL)
bfb1c796 2572 src = valaddr + offset;
d0a9e810 2573 else
bfb1c796 2574 src = value_contents (obj) + offset;
d0a9e810
JB
2575
2576 if (is_dynamic_type (type))
2577 {
2578 /* The length of TYPE might by dynamic, so we need to resolve
2579 TYPE in order to know its actual size, which we then use
2580 to create the contents buffer of the value we return.
2581 The difficulty is that the data containing our object is
2582 packed, and therefore maybe not at a byte boundary. So, what
2583 we do, is unpack the data into a byte-aligned buffer, and then
2584 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2585 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586 staging.resize (staging_len);
d0a9e810
JB
2587
2588 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2589 staging.data (), staging.size (),
d0a9e810
JB
2590 is_big_endian, has_negatives (type),
2591 is_scalar);
d5722aa2 2592 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2593 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 {
2595 /* This happens when the length of the object is dynamic,
2596 and is actually smaller than the space reserved for it.
2597 For instance, in an array of variant records, the bit_size
2598 we're given is the array stride, which is constant and
2599 normally equal to the maximum size of its element.
2600 But, in reality, each element only actually spans a portion
2601 of that stride. */
2602 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 }
d0a9e810
JB
2604 }
2605
f93fca70
JB
2606 if (obj == NULL)
2607 {
2608 v = allocate_value (type);
bfb1c796 2609 src = valaddr + offset;
f93fca70
JB
2610 }
2611 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612 {
0cafa88c 2613 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2614 gdb_byte *buf;
0cafa88c 2615
f93fca70 2616 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2617 buf = (gdb_byte *) alloca (src_len);
2618 read_memory (value_address (v), buf, src_len);
2619 src = buf;
f93fca70
JB
2620 }
2621 else
2622 {
2623 v = allocate_value (type);
bfb1c796 2624 src = value_contents (obj) + offset;
f93fca70
JB
2625 }
2626
2627 if (obj != NULL)
2628 {
2629 long new_offset = offset;
2630
2631 set_value_component_location (v, obj);
2632 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633 set_value_bitsize (v, bit_size);
2634 if (value_bitpos (v) >= HOST_CHAR_BIT)
2635 {
2636 ++new_offset;
2637 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638 }
2639 set_value_offset (v, new_offset);
2640
2641 /* Also set the parent value. This is needed when trying to
2642 assign a new value (in inferior memory). */
2643 set_value_parent (v, obj);
2644 }
2645 else
2646 set_value_bitsize (v, bit_size);
bfb1c796 2647 unpacked = value_contents_writeable (v);
f93fca70
JB
2648
2649 if (bit_size == 0)
2650 {
2651 memset (unpacked, 0, TYPE_LENGTH (type));
2652 return v;
2653 }
2654
d5722aa2 2655 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2656 {
d0a9e810
JB
2657 /* Small short-cut: If we've unpacked the data into a buffer
2658 of the same size as TYPE's length, then we can reuse that,
2659 instead of doing the unpacking again. */
d5722aa2 2660 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2661 }
d0a9e810
JB
2662 else
2663 ada_unpack_from_contents (src, bit_offset, bit_size,
2664 unpacked, TYPE_LENGTH (type),
2665 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2666
14f9c5c9
AS
2667 return v;
2668}
d2e4a39e 2669
14f9c5c9
AS
2670/* Store the contents of FROMVAL into the location of TOVAL.
2671 Return a new value with the location of TOVAL and contents of
2672 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2673 floating-point or non-scalar types. */
14f9c5c9 2674
d2e4a39e
AS
2675static struct value *
2676ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2677{
df407dfe
AC
2678 struct type *type = value_type (toval);
2679 int bits = value_bitsize (toval);
14f9c5c9 2680
52ce6436
PH
2681 toval = ada_coerce_ref (toval);
2682 fromval = ada_coerce_ref (fromval);
2683
2684 if (ada_is_direct_array_type (value_type (toval)))
2685 toval = ada_coerce_to_simple_array (toval);
2686 if (ada_is_direct_array_type (value_type (fromval)))
2687 fromval = ada_coerce_to_simple_array (fromval);
2688
88e3b34b 2689 if (!deprecated_value_modifiable (toval))
323e0a4a 2690 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2691
d2e4a39e 2692 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2693 && bits > 0
d2e4a39e 2694 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2695 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2696 {
df407dfe
AC
2697 int len = (value_bitpos (toval)
2698 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2699 int from_size;
224c3ddb 2700 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2701 struct value *val;
42ae5230 2702 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2703
2704 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2705 fromval = value_cast (type, fromval);
14f9c5c9 2706
52ce6436 2707 read_memory (to_addr, buffer, len);
aced2898
PH
2708 from_size = value_bitsize (fromval);
2709 if (from_size == 0)
2710 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2711 if (gdbarch_bits_big_endian (get_type_arch (type)))
a99bc3d2
JB
2712 copy_bitwise (buffer, value_bitpos (toval),
2713 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2714 else
a99bc3d2
JB
2715 copy_bitwise (buffer, value_bitpos (toval),
2716 value_contents (fromval), 0, bits, 0);
972daa01 2717 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2718
14f9c5c9 2719 val = value_copy (toval);
0fd88904 2720 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2721 TYPE_LENGTH (type));
04624583 2722 deprecated_set_value_type (val, type);
d2e4a39e 2723
14f9c5c9
AS
2724 return val;
2725 }
2726
2727 return value_assign (toval, fromval);
2728}
2729
2730
7c512744
JB
2731/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2734 COMPONENT, and not the inferior's memory. The current contents
2735 of COMPONENT are ignored.
2736
2737 Although not part of the initial design, this function also works
2738 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739 had a null address, and COMPONENT had an address which is equal to
2740 its offset inside CONTAINER. */
2741
52ce6436
PH
2742static void
2743value_assign_to_component (struct value *container, struct value *component,
2744 struct value *val)
2745{
2746 LONGEST offset_in_container =
42ae5230 2747 (LONGEST) (value_address (component) - value_address (container));
7c512744 2748 int bit_offset_in_container =
52ce6436
PH
2749 value_bitpos (component) - value_bitpos (container);
2750 int bits;
7c512744 2751
52ce6436
PH
2752 val = value_cast (value_type (component), val);
2753
2754 if (value_bitsize (component) == 0)
2755 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756 else
2757 bits = value_bitsize (component);
2758
50810684 2759 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2760 {
2761 int src_offset;
2762
2763 if (is_scalar_type (check_typedef (value_type (component))))
2764 src_offset
2765 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766 else
2767 src_offset = 0;
a99bc3d2
JB
2768 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 value_bitpos (container) + bit_offset_in_container,
2770 value_contents (val), src_offset, bits, 1);
2a62dfa9 2771 }
52ce6436 2772 else
a99bc3d2
JB
2773 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 value_bitpos (container) + bit_offset_in_container,
2775 value_contents (val), 0, bits, 0);
7c512744
JB
2776}
2777
736ade86
XR
2778/* Determine if TYPE is an access to an unconstrained array. */
2779
d91e9ea8 2780bool
736ade86
XR
2781ada_is_access_to_unconstrained_array (struct type *type)
2782{
2783 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 && is_thick_pntr (ada_typedef_target_type (type)));
2785}
2786
4c4b4cd2
PH
2787/* The value of the element of array ARR at the ARITY indices given in IND.
2788 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2789 thereto. */
2790
d2e4a39e
AS
2791struct value *
2792ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2793{
2794 int k;
d2e4a39e
AS
2795 struct value *elt;
2796 struct type *elt_type;
14f9c5c9
AS
2797
2798 elt = ada_coerce_to_simple_array (arr);
2799
df407dfe 2800 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2801 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2802 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803 return value_subscript_packed (elt, arity, ind);
2804
2805 for (k = 0; k < arity; k += 1)
2806 {
b9c50e9a
XR
2807 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808
14f9c5c9 2809 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2810 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2811
2497b498 2812 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2813
2814 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 {
2817 /* The element is a typedef to an unconstrained array,
2818 except that the value_subscript call stripped the
2819 typedef layer. The typedef layer is GNAT's way to
2820 specify that the element is, at the source level, an
2821 access to the unconstrained array, rather than the
2822 unconstrained array. So, we need to restore that
2823 typedef layer, which we can do by forcing the element's
2824 type back to its original type. Otherwise, the returned
2825 value is going to be printed as the array, rather
2826 than as an access. Another symptom of the same issue
2827 would be that an expression trying to dereference the
2828 element would also be improperly rejected. */
2829 deprecated_set_value_type (elt, saved_elt_type);
2830 }
2831
2832 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2833 }
b9c50e9a 2834
14f9c5c9
AS
2835 return elt;
2836}
2837
deede10c
JB
2838/* Assuming ARR is a pointer to a GDB array, the value of the element
2839 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2840 Does not read the entire array into memory.
2841
2842 Note: Unlike what one would expect, this function is used instead of
2843 ada_value_subscript for basically all non-packed array types. The reason
2844 for this is that a side effect of doing our own pointer arithmetics instead
2845 of relying on value_subscript is that there is no implicit typedef peeling.
2846 This is important for arrays of array accesses, where it allows us to
2847 preserve the fact that the array's element is an array access, where the
2848 access part os encoded in a typedef layer. */
14f9c5c9 2849
2c0b251b 2850static struct value *
deede10c 2851ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2852{
2853 int k;
919e6dbe 2854 struct value *array_ind = ada_value_ind (arr);
deede10c 2855 struct type *type
919e6dbe
PMR
2856 = check_typedef (value_enclosing_type (array_ind));
2857
2858 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2861
2862 for (k = 0; k < arity; k += 1)
2863 {
2864 LONGEST lwb, upb;
aa715135 2865 struct value *lwb_value;
14f9c5c9
AS
2866
2867 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2868 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2869 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2870 value_copy (arr));
14f9c5c9 2871 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2872 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2874 type = TYPE_TARGET_TYPE (type);
2875 }
2876
2877 return value_ind (arr);
2878}
2879
0b5d8877 2880/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2881 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2883 this array is LOW, as per Ada rules. */
0b5d8877 2884static struct value *
f5938064
JG
2885ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886 int low, int high)
0b5d8877 2887{
b0dd7688 2888 struct type *type0 = ada_check_typedef (type);
aa715135 2889 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2890 struct type *index_type
aa715135 2891 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2892 struct type *slice_type = create_array_type_with_stride
2893 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2896 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897 LONGEST base_low_pos, low_pos;
2898 CORE_ADDR base;
2899
2900 if (!discrete_position (base_index_type, low, &low_pos)
2901 || !discrete_position (base_index_type, base_low, &base_low_pos))
2902 {
2903 warning (_("unable to get positions in slice, use bounds instead"));
2904 low_pos = low;
2905 base_low_pos = base_low;
2906 }
5b4ee69b 2907
aa715135
JG
2908 base = value_as_address (array_ptr)
2909 + ((low_pos - base_low_pos)
2910 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2911 return value_at_lazy (slice_type, base);
0b5d8877
PH
2912}
2913
2914
2915static struct value *
2916ada_value_slice (struct value *array, int low, int high)
2917{
b0dd7688 2918 struct type *type = ada_check_typedef (value_type (array));
aa715135 2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2920 struct type *index_type
2921 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2922 struct type *slice_type = create_array_type_with_stride
2923 (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2926 LONGEST low_pos, high_pos;
5b4ee69b 2927
aa715135
JG
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, high, &high_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 high_pos = high;
2934 }
2935
2936 return value_cast (slice_type,
2937 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2938}
2939
14f9c5c9
AS
2940/* If type is a record type in the form of a standard GNAT array
2941 descriptor, returns the number of dimensions for type. If arr is a
2942 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2943 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2944
2945int
d2e4a39e 2946ada_array_arity (struct type *type)
14f9c5c9
AS
2947{
2948 int arity;
2949
2950 if (type == NULL)
2951 return 0;
2952
2953 type = desc_base_type (type);
2954
2955 arity = 0;
d2e4a39e 2956 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2957 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2958 else
2959 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2960 {
4c4b4cd2 2961 arity += 1;
61ee279c 2962 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2963 }
d2e4a39e 2964
14f9c5c9
AS
2965 return arity;
2966}
2967
2968/* If TYPE is a record type in the form of a standard GNAT array
2969 descriptor or a simple array type, returns the element type for
2970 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2971 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2972
d2e4a39e
AS
2973struct type *
2974ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2975{
2976 type = desc_base_type (type);
2977
d2e4a39e 2978 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2979 {
2980 int k;
d2e4a39e 2981 struct type *p_array_type;
14f9c5c9 2982
556bdfd4 2983 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2984
2985 k = ada_array_arity (type);
2986 if (k == 0)
4c4b4cd2 2987 return NULL;
d2e4a39e 2988
4c4b4cd2 2989 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2990 if (nindices >= 0 && k > nindices)
4c4b4cd2 2991 k = nindices;
d2e4a39e 2992 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2993 {
61ee279c 2994 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2995 k -= 1;
2996 }
14f9c5c9
AS
2997 return p_array_type;
2998 }
2999 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000 {
3001 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3002 {
3003 type = TYPE_TARGET_TYPE (type);
3004 nindices -= 1;
3005 }
14f9c5c9
AS
3006 return type;
3007 }
3008
3009 return NULL;
3010}
3011
4c4b4cd2 3012/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3013 Does not examine memory. Throws an error if N is invalid or TYPE
3014 is not an array type. NAME is the name of the Ada attribute being
3015 evaluated ('range, 'first, 'last, or 'length); it is used in building
3016 the error message. */
14f9c5c9 3017
1eea4ebd
UW
3018static struct type *
3019ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3020{
4c4b4cd2
PH
3021 struct type *result_type;
3022
14f9c5c9
AS
3023 type = desc_base_type (type);
3024
1eea4ebd
UW
3025 if (n < 0 || n > ada_array_arity (type))
3026 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3027
4c4b4cd2 3028 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3029 {
3030 int i;
3031
3032 for (i = 1; i < n; i += 1)
4c4b4cd2 3033 type = TYPE_TARGET_TYPE (type);
262452ec 3034 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3035 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3037 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3038 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039 result_type = NULL;
14f9c5c9 3040 }
d2e4a39e 3041 else
1eea4ebd
UW
3042 {
3043 result_type = desc_index_type (desc_bounds_type (type), n);
3044 if (result_type == NULL)
3045 error (_("attempt to take bound of something that is not an array"));
3046 }
3047
3048 return result_type;
14f9c5c9
AS
3049}
3050
3051/* Given that arr is an array type, returns the lower bound of the
3052 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3053 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3054 array-descriptor type. It works for other arrays with bounds supplied
3055 by run-time quantities other than discriminants. */
14f9c5c9 3056
abb68b3e 3057static LONGEST
fb5e3d5c 3058ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3059{
8a48ac95 3060 struct type *type, *index_type_desc, *index_type;
1ce677a4 3061 int i;
262452ec
JK
3062
3063 gdb_assert (which == 0 || which == 1);
14f9c5c9 3064
ad82864c
JB
3065 if (ada_is_constrained_packed_array_type (arr_type))
3066 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3067
4c4b4cd2 3068 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3069 return (LONGEST) - which;
14f9c5c9
AS
3070
3071 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072 type = TYPE_TARGET_TYPE (arr_type);
3073 else
3074 type = arr_type;
3075
bafffb51
JB
3076 if (TYPE_FIXED_INSTANCE (type))
3077 {
3078 /* The array has already been fixed, so we do not need to
3079 check the parallel ___XA type again. That encoding has
3080 already been applied, so ignore it now. */
3081 index_type_desc = NULL;
3082 }
3083 else
3084 {
3085 index_type_desc = ada_find_parallel_type (type, "___XA");
3086 ada_fixup_array_indexes_type (index_type_desc);
3087 }
3088
262452ec 3089 if (index_type_desc != NULL)
28c85d6c
JB
3090 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 NULL);
262452ec 3092 else
8a48ac95
JB
3093 {
3094 struct type *elt_type = check_typedef (type);
3095
3096 for (i = 1; i < n; i++)
3097 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098
3099 index_type = TYPE_INDEX_TYPE (elt_type);
3100 }
262452ec 3101
43bbcdc2
PH
3102 return
3103 (LONGEST) (which == 0
3104 ? ada_discrete_type_low_bound (index_type)
3105 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3106}
3107
3108/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3109 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3111 supplied by run-time quantities other than discriminants. */
14f9c5c9 3112
1eea4ebd 3113static LONGEST
4dc81987 3114ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3115{
eb479039
JB
3116 struct type *arr_type;
3117
3118 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119 arr = value_ind (arr);
3120 arr_type = value_enclosing_type (arr);
14f9c5c9 3121
ad82864c
JB
3122 if (ada_is_constrained_packed_array_type (arr_type))
3123 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3124 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3125 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3126 else
1eea4ebd 3127 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3128}
3129
3130/* Given that arr is an array value, returns the length of the
3131 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3132 supplied by run-time quantities other than discriminants.
3133 Does not work for arrays indexed by enumeration types with representation
3134 clauses at the moment. */
14f9c5c9 3135
1eea4ebd 3136static LONGEST
d2e4a39e 3137ada_array_length (struct value *arr, int n)
14f9c5c9 3138{
aa715135
JG
3139 struct type *arr_type, *index_type;
3140 int low, high;
eb479039
JB
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
14f9c5c9 3145
ad82864c
JB
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3148
4c4b4cd2 3149 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3150 {
3151 low = ada_array_bound_from_type (arr_type, n, 0);
3152 high = ada_array_bound_from_type (arr_type, n, 1);
3153 }
14f9c5c9 3154 else
aa715135
JG
3155 {
3156 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158 }
3159
f168693b 3160 arr_type = check_typedef (arr_type);
7150d33c 3161 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3162 if (index_type != NULL)
3163 {
3164 struct type *base_type;
3165 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 base_type = TYPE_TARGET_TYPE (index_type);
3167 else
3168 base_type = index_type;
3169
3170 low = pos_atr (value_from_longest (base_type, low));
3171 high = pos_atr (value_from_longest (base_type, high));
3172 }
3173 return high - low + 1;
4c4b4cd2
PH
3174}
3175
3176/* An empty array whose type is that of ARR_TYPE (an array type),
3177 with bounds LOW to LOW-1. */
3178
3179static struct value *
3180empty_array (struct type *arr_type, int low)
3181{
b0dd7688 3182 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3183 struct type *index_type
3184 = create_static_range_type
3185 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3186 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3187
0b5d8877 3188 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3189}
14f9c5c9 3190\f
d2e4a39e 3191
4c4b4cd2 3192 /* Name resolution */
14f9c5c9 3193
4c4b4cd2
PH
3194/* The "decoded" name for the user-definable Ada operator corresponding
3195 to OP. */
14f9c5c9 3196
d2e4a39e 3197static const char *
4c4b4cd2 3198ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3199{
3200 int i;
3201
4c4b4cd2 3202 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3203 {
3204 if (ada_opname_table[i].op == op)
4c4b4cd2 3205 return ada_opname_table[i].decoded;
14f9c5c9 3206 }
323e0a4a 3207 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3208}
3209
3210
4c4b4cd2
PH
3211/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213 undefined namespace) and converts operators that are
3214 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3215 non-null, it provides a preferred result type [at the moment, only
3216 type void has any effect---causing procedures to be preferred over
3217 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3218 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3219
4c4b4cd2 3220static void
e9d9f57e 3221resolve (expression_up *expp, int void_context_p)
14f9c5c9 3222{
30b15541
UW
3223 struct type *context_type = NULL;
3224 int pc = 0;
3225
3226 if (void_context_p)
3227 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3228
3229 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3230}
3231
4c4b4cd2
PH
3232/* Resolve the operator of the subexpression beginning at
3233 position *POS of *EXPP. "Resolving" consists of replacing
3234 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235 with their resolutions, replacing built-in operators with
3236 function calls to user-defined operators, where appropriate, and,
3237 when DEPROCEDURE_P is non-zero, converting function-valued variables
3238 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3239 are as in ada_resolve, above. */
14f9c5c9 3240
d2e4a39e 3241static struct value *
e9d9f57e 3242resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3243 struct type *context_type)
14f9c5c9
AS
3244{
3245 int pc = *pos;
3246 int i;
4c4b4cd2 3247 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3248 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3249 struct value **argvec; /* Vector of operand types (alloca'ed). */
3250 int nargs; /* Number of operands. */
52ce6436 3251 int oplen;
14f9c5c9
AS
3252
3253 argvec = NULL;
3254 nargs = 0;
e9d9f57e 3255 exp = expp->get ();
14f9c5c9 3256
52ce6436
PH
3257 /* Pass one: resolve operands, saving their types and updating *pos,
3258 if needed. */
14f9c5c9
AS
3259 switch (op)
3260 {
4c4b4cd2
PH
3261 case OP_FUNCALL:
3262 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3263 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3264 *pos += 7;
4c4b4cd2
PH
3265 else
3266 {
3267 *pos += 3;
3268 resolve_subexp (expp, pos, 0, NULL);
3269 }
3270 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3271 break;
3272
14f9c5c9 3273 case UNOP_ADDR:
4c4b4cd2
PH
3274 *pos += 1;
3275 resolve_subexp (expp, pos, 0, NULL);
3276 break;
3277
52ce6436
PH
3278 case UNOP_QUAL:
3279 *pos += 3;
17466c1a 3280 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3281 break;
3282
52ce6436 3283 case OP_ATR_MODULUS:
4c4b4cd2
PH
3284 case OP_ATR_SIZE:
3285 case OP_ATR_TAG:
4c4b4cd2
PH
3286 case OP_ATR_FIRST:
3287 case OP_ATR_LAST:
3288 case OP_ATR_LENGTH:
3289 case OP_ATR_POS:
3290 case OP_ATR_VAL:
4c4b4cd2
PH
3291 case OP_ATR_MIN:
3292 case OP_ATR_MAX:
52ce6436
PH
3293 case TERNOP_IN_RANGE:
3294 case BINOP_IN_BOUNDS:
3295 case UNOP_IN_RANGE:
3296 case OP_AGGREGATE:
3297 case OP_OTHERS:
3298 case OP_CHOICES:
3299 case OP_POSITIONAL:
3300 case OP_DISCRETE_RANGE:
3301 case OP_NAME:
3302 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303 *pos += oplen;
14f9c5c9
AS
3304 break;
3305
3306 case BINOP_ASSIGN:
3307 {
4c4b4cd2
PH
3308 struct value *arg1;
3309
3310 *pos += 1;
3311 arg1 = resolve_subexp (expp, pos, 0, NULL);
3312 if (arg1 == NULL)
3313 resolve_subexp (expp, pos, 1, NULL);
3314 else
df407dfe 3315 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3316 break;
14f9c5c9
AS
3317 }
3318
4c4b4cd2 3319 case UNOP_CAST:
4c4b4cd2
PH
3320 *pos += 3;
3321 nargs = 1;
3322 break;
14f9c5c9 3323
4c4b4cd2
PH
3324 case BINOP_ADD:
3325 case BINOP_SUB:
3326 case BINOP_MUL:
3327 case BINOP_DIV:
3328 case BINOP_REM:
3329 case BINOP_MOD:
3330 case BINOP_EXP:
3331 case BINOP_CONCAT:
3332 case BINOP_LOGICAL_AND:
3333 case BINOP_LOGICAL_OR:
3334 case BINOP_BITWISE_AND:
3335 case BINOP_BITWISE_IOR:
3336 case BINOP_BITWISE_XOR:
14f9c5c9 3337
4c4b4cd2
PH
3338 case BINOP_EQUAL:
3339 case BINOP_NOTEQUAL:
3340 case BINOP_LESS:
3341 case BINOP_GTR:
3342 case BINOP_LEQ:
3343 case BINOP_GEQ:
14f9c5c9 3344
4c4b4cd2
PH
3345 case BINOP_REPEAT:
3346 case BINOP_SUBSCRIPT:
3347 case BINOP_COMMA:
40c8aaa9
JB
3348 *pos += 1;
3349 nargs = 2;
3350 break;
14f9c5c9 3351
4c4b4cd2
PH
3352 case UNOP_NEG:
3353 case UNOP_PLUS:
3354 case UNOP_LOGICAL_NOT:
3355 case UNOP_ABS:
3356 case UNOP_IND:
3357 *pos += 1;
3358 nargs = 1;
3359 break;
14f9c5c9 3360
4c4b4cd2 3361 case OP_LONG:
edd079d9 3362 case OP_FLOAT:
4c4b4cd2 3363 case OP_VAR_VALUE:
74ea4be4 3364 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3365 *pos += 4;
3366 break;
14f9c5c9 3367
4c4b4cd2
PH
3368 case OP_TYPE:
3369 case OP_BOOL:
3370 case OP_LAST:
4c4b4cd2
PH
3371 case OP_INTERNALVAR:
3372 *pos += 3;
3373 break;
14f9c5c9 3374
4c4b4cd2
PH
3375 case UNOP_MEMVAL:
3376 *pos += 3;
3377 nargs = 1;
3378 break;
3379
67f3407f
DJ
3380 case OP_REGISTER:
3381 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3382 break;
3383
4c4b4cd2
PH
3384 case STRUCTOP_STRUCT:
3385 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386 nargs = 1;
3387 break;
3388
4c4b4cd2 3389 case TERNOP_SLICE:
4c4b4cd2
PH
3390 *pos += 1;
3391 nargs = 3;
3392 break;
3393
52ce6436 3394 case OP_STRING:
14f9c5c9 3395 break;
4c4b4cd2
PH
3396
3397 default:
323e0a4a 3398 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3399 }
3400
8d749320 3401 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3402 for (i = 0; i < nargs; i += 1)
3403 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3404 argvec[i] = NULL;
e9d9f57e 3405 exp = expp->get ();
4c4b4cd2
PH
3406
3407 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3408 switch (op)
3409 {
3410 default:
3411 break;
3412
14f9c5c9 3413 case OP_VAR_VALUE:
4c4b4cd2 3414 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3415 {
54d343a2 3416 std::vector<struct block_symbol> candidates;
76a01679
JB
3417 int n_candidates;
3418
3419 n_candidates =
3420 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421 (exp->elts[pc + 2].symbol),
3422 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3423 &candidates);
76a01679
JB
3424
3425 if (n_candidates > 1)
3426 {
3427 /* Types tend to get re-introduced locally, so if there
3428 are any local symbols that are not types, first filter
3429 out all types. */
3430 int j;
3431 for (j = 0; j < n_candidates; j += 1)
d12307c1 3432 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3433 {
3434 case LOC_REGISTER:
3435 case LOC_ARG:
3436 case LOC_REF_ARG:
76a01679
JB
3437 case LOC_REGPARM_ADDR:
3438 case LOC_LOCAL:
76a01679 3439 case LOC_COMPUTED:
76a01679
JB
3440 goto FoundNonType;
3441 default:
3442 break;
3443 }
3444 FoundNonType:
3445 if (j < n_candidates)
3446 {
3447 j = 0;
3448 while (j < n_candidates)
3449 {
d12307c1 3450 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3451 {
3452 candidates[j] = candidates[n_candidates - 1];
3453 n_candidates -= 1;
3454 }
3455 else
3456 j += 1;
3457 }
3458 }
3459 }
3460
3461 if (n_candidates == 0)
323e0a4a 3462 error (_("No definition found for %s"),
76a01679
JB
3463 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464 else if (n_candidates == 1)
3465 i = 0;
3466 else if (deprocedure_p
54d343a2 3467 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3468 {
06d5cf63 3469 i = ada_resolve_function
54d343a2 3470 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3471 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3472 context_type);
76a01679 3473 if (i < 0)
323e0a4a 3474 error (_("Could not find a match for %s"),
76a01679
JB
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476 }
3477 else
3478 {
323e0a4a 3479 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3481 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3482 i = 0;
3483 }
3484
3485 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3486 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3487 innermost_block.update (candidates[i]);
76a01679
JB
3488 }
3489
3490 if (deprocedure_p
3491 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3492 == TYPE_CODE_FUNC))
3493 {
424da6cf 3494 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3495 exp->elts[pc + 2].symbol,
3496 exp->elts[pc + 1].block);
e9d9f57e 3497 exp = expp->get ();
76a01679 3498 }
14f9c5c9
AS
3499 break;
3500
3501 case OP_FUNCALL:
3502 {
4c4b4cd2 3503 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3504 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3505 {
54d343a2 3506 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3507 int n_candidates;
3508
3509 n_candidates =
76a01679
JB
3510 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511 (exp->elts[pc + 5].symbol),
3512 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3513 &candidates);
ec6a20c2 3514
4c4b4cd2
PH
3515 if (n_candidates == 1)
3516 i = 0;
3517 else
3518 {
06d5cf63 3519 i = ada_resolve_function
54d343a2 3520 (candidates.data (), n_candidates,
06d5cf63
JB
3521 argvec, nargs,
3522 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3523 context_type);
4c4b4cd2 3524 if (i < 0)
323e0a4a 3525 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3526 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3527 }
3528
3529 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3530 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3531 innermost_block.update (candidates[i]);
4c4b4cd2 3532 }
14f9c5c9
AS
3533 }
3534 break;
3535 case BINOP_ADD:
3536 case BINOP_SUB:
3537 case BINOP_MUL:
3538 case BINOP_DIV:
3539 case BINOP_REM:
3540 case BINOP_MOD:
3541 case BINOP_CONCAT:
3542 case BINOP_BITWISE_AND:
3543 case BINOP_BITWISE_IOR:
3544 case BINOP_BITWISE_XOR:
3545 case BINOP_EQUAL:
3546 case BINOP_NOTEQUAL:
3547 case BINOP_LESS:
3548 case BINOP_GTR:
3549 case BINOP_LEQ:
3550 case BINOP_GEQ:
3551 case BINOP_EXP:
3552 case UNOP_NEG:
3553 case UNOP_PLUS:
3554 case UNOP_LOGICAL_NOT:
3555 case UNOP_ABS:
3556 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3557 {
54d343a2 3558 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3559 int n_candidates;
3560
3561 n_candidates =
b5ec771e 3562 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3563 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3564 &candidates);
ec6a20c2 3565
54d343a2
TT
3566 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3568 if (i < 0)
3569 break;
3570
d12307c1
PMR
3571 replace_operator_with_call (expp, pc, nargs, 1,
3572 candidates[i].symbol,
3573 candidates[i].block);
e9d9f57e 3574 exp = expp->get ();
4c4b4cd2 3575 }
14f9c5c9 3576 break;
4c4b4cd2
PH
3577
3578 case OP_TYPE:
b3dbf008 3579 case OP_REGISTER:
4c4b4cd2 3580 return NULL;
14f9c5c9
AS
3581 }
3582
3583 *pos = pc;
ced9779b
JB
3584 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 exp->elts[pc + 1].objfile,
3587 exp->elts[pc + 2].msymbol);
3588 else
3589 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3590}
3591
3592/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3593 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3594 a non-pointer. */
14f9c5c9 3595/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3596 liberal. */
14f9c5c9
AS
3597
3598static int
4dc81987 3599ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3600{
61ee279c
PH
3601 ftype = ada_check_typedef (ftype);
3602 atype = ada_check_typedef (atype);
14f9c5c9
AS
3603
3604 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605 ftype = TYPE_TARGET_TYPE (ftype);
3606 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607 atype = TYPE_TARGET_TYPE (atype);
3608
d2e4a39e 3609 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3610 {
3611 default:
5b3d5b7d 3612 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3613 case TYPE_CODE_PTR:
3614 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3615 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3617 else
1265e4aa
JB
3618 return (may_deref
3619 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3620 case TYPE_CODE_INT:
3621 case TYPE_CODE_ENUM:
3622 case TYPE_CODE_RANGE:
3623 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3624 {
3625 case TYPE_CODE_INT:
3626 case TYPE_CODE_ENUM:
3627 case TYPE_CODE_RANGE:
3628 return 1;
3629 default:
3630 return 0;
3631 }
14f9c5c9
AS
3632
3633 case TYPE_CODE_ARRAY:
d2e4a39e 3634 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3635 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3636
3637 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3638 if (ada_is_array_descriptor_type (ftype))
3639 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640 || ada_is_array_descriptor_type (atype));
14f9c5c9 3641 else
4c4b4cd2
PH
3642 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3644
3645 case TYPE_CODE_UNION:
3646 case TYPE_CODE_FLT:
3647 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3648 }
3649}
3650
3651/* Return non-zero if the formals of FUNC "sufficiently match" the
3652 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3653 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3654 argument function. */
14f9c5c9
AS
3655
3656static int
d2e4a39e 3657ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3658{
3659 int i;
d2e4a39e 3660 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3661
1265e4aa
JB
3662 if (SYMBOL_CLASS (func) == LOC_CONST
3663 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3664 return (n_actuals == 0);
3665 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3666 return 0;
3667
3668 if (TYPE_NFIELDS (func_type) != n_actuals)
3669 return 0;
3670
3671 for (i = 0; i < n_actuals; i += 1)
3672 {
4c4b4cd2 3673 if (actuals[i] == NULL)
76a01679
JB
3674 return 0;
3675 else
3676 {
5b4ee69b
MS
3677 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3678 i));
df407dfe 3679 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3680
76a01679
JB
3681 if (!ada_type_match (ftype, atype, 1))
3682 return 0;
3683 }
14f9c5c9
AS
3684 }
3685 return 1;
3686}
3687
3688/* False iff function type FUNC_TYPE definitely does not produce a value
3689 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3690 FUNC_TYPE is not a valid function type with a non-null return type
3691 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3692
3693static int
d2e4a39e 3694return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3695{
d2e4a39e 3696 struct type *return_type;
14f9c5c9
AS
3697
3698 if (func_type == NULL)
3699 return 1;
3700
4c4b4cd2 3701 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3702 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3703 else
18af8284 3704 return_type = get_base_type (func_type);
14f9c5c9
AS
3705 if (return_type == NULL)
3706 return 1;
3707
18af8284 3708 context_type = get_base_type (context_type);
14f9c5c9
AS
3709
3710 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711 return context_type == NULL || return_type == context_type;
3712 else if (context_type == NULL)
3713 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3714 else
3715 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3716}
3717
3718
4c4b4cd2 3719/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3720 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3721 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3722 that returns that type, then eliminate matches that don't. If
3723 CONTEXT_TYPE is void and there is at least one match that does not
3724 return void, eliminate all matches that do.
3725
14f9c5c9
AS
3726 Asks the user if there is more than one match remaining. Returns -1
3727 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3728 solely for messages. May re-arrange and modify SYMS in
3729 the process; the index returned is for the modified vector. */
14f9c5c9 3730
4c4b4cd2 3731static int
d12307c1 3732ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3733 int nsyms, struct value **args, int nargs,
3734 const char *name, struct type *context_type)
14f9c5c9 3735{
30b15541 3736 int fallback;
14f9c5c9 3737 int k;
4c4b4cd2 3738 int m; /* Number of hits */
14f9c5c9 3739
d2e4a39e 3740 m = 0;
30b15541
UW
3741 /* In the first pass of the loop, we only accept functions matching
3742 context_type. If none are found, we add a second pass of the loop
3743 where every function is accepted. */
3744 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3745 {
3746 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3747 {
d12307c1 3748 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3749
d12307c1 3750 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3751 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3752 {
3753 syms[m] = syms[k];
3754 m += 1;
3755 }
3756 }
14f9c5c9
AS
3757 }
3758
dc5c8746
PMR
3759 /* If we got multiple matches, ask the user which one to use. Don't do this
3760 interactive thing during completion, though, as the purpose of the
3761 completion is providing a list of all possible matches. Prompting the
3762 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3763 if (m == 0)
3764 return -1;
dc5c8746 3765 else if (m > 1 && !parse_completion)
14f9c5c9 3766 {
323e0a4a 3767 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3768 user_select_syms (syms, m, 1);
14f9c5c9
AS
3769 return 0;
3770 }
3771 return 0;
3772}
3773
4c4b4cd2
PH
3774/* Returns true (non-zero) iff decoded name N0 should appear before N1
3775 in a listing of choices during disambiguation (see sort_choices, below).
3776 The idea is that overloadings of a subprogram name from the
3777 same package should sort in their source order. We settle for ordering
3778 such symbols by their trailing number (__N or $N). */
3779
14f9c5c9 3780static int
0d5cff50 3781encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3782{
3783 if (N1 == NULL)
3784 return 0;
3785 else if (N0 == NULL)
3786 return 1;
3787 else
3788 {
3789 int k0, k1;
5b4ee69b 3790
d2e4a39e 3791 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3792 ;
d2e4a39e 3793 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3794 ;
d2e4a39e 3795 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3796 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3797 {
3798 int n0, n1;
5b4ee69b 3799
4c4b4cd2
PH
3800 n0 = k0;
3801 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3802 n0 -= 1;
3803 n1 = k1;
3804 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3805 n1 -= 1;
3806 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3808 }
14f9c5c9
AS
3809 return (strcmp (N0, N1) < 0);
3810 }
3811}
d2e4a39e 3812
4c4b4cd2
PH
3813/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3814 encoded names. */
3815
d2e4a39e 3816static void
d12307c1 3817sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3818{
4c4b4cd2 3819 int i;
5b4ee69b 3820
d2e4a39e 3821 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3822 {
d12307c1 3823 struct block_symbol sym = syms[i];
14f9c5c9
AS
3824 int j;
3825
d2e4a39e 3826 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3827 {
d12307c1
PMR
3828 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3830 break;
3831 syms[j + 1] = syms[j];
3832 }
d2e4a39e 3833 syms[j + 1] = sym;
14f9c5c9
AS
3834 }
3835}
3836
d72413e6
PMR
3837/* Whether GDB should display formals and return types for functions in the
3838 overloads selection menu. */
3839static int print_signatures = 1;
3840
3841/* Print the signature for SYM on STREAM according to the FLAGS options. For
3842 all but functions, the signature is just the name of the symbol. For
3843 functions, this is the name of the function, the list of types for formals
3844 and the return type (if any). */
3845
3846static void
3847ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 const struct type_print_options *flags)
3849{
3850 struct type *type = SYMBOL_TYPE (sym);
3851
3852 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853 if (!print_signatures
3854 || type == NULL
3855 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3856 return;
3857
3858 if (TYPE_NFIELDS (type) > 0)
3859 {
3860 int i;
3861
3862 fprintf_filtered (stream, " (");
3863 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3864 {
3865 if (i > 0)
3866 fprintf_filtered (stream, "; ");
3867 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3868 flags);
3869 }
3870 fprintf_filtered (stream, ")");
3871 }
3872 if (TYPE_TARGET_TYPE (type) != NULL
3873 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3874 {
3875 fprintf_filtered (stream, " return ");
3876 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3877 }
3878}
3879
4c4b4cd2
PH
3880/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881 by asking the user (if necessary), returning the number selected,
3882 and setting the first elements of SYMS items. Error if no symbols
3883 selected. */
14f9c5c9
AS
3884
3885/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3886 to be re-integrated one of these days. */
14f9c5c9
AS
3887
3888int
d12307c1 3889user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3890{
3891 int i;
8d749320 3892 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3893 int n_chosen;
3894 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3895 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3896
3897 if (max_results < 1)
323e0a4a 3898 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3899 if (nsyms <= 1)
3900 return nsyms;
3901
717d2f5a
JB
3902 if (select_mode == multiple_symbols_cancel)
3903 error (_("\
3904canceled because the command is ambiguous\n\
3905See set/show multiple-symbol."));
3906
3907 /* If select_mode is "all", then return all possible symbols.
3908 Only do that if more than one symbol can be selected, of course.
3909 Otherwise, display the menu as usual. */
3910 if (select_mode == multiple_symbols_all && max_results > 1)
3911 return nsyms;
3912
323e0a4a 3913 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3914 if (max_results > 1)
323e0a4a 3915 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3916
4c4b4cd2 3917 sort_choices (syms, nsyms);
14f9c5c9
AS
3918
3919 for (i = 0; i < nsyms; i += 1)
3920 {
d12307c1 3921 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3922 continue;
3923
d12307c1 3924 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3925 {
76a01679 3926 struct symtab_and_line sal =
d12307c1 3927 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3928
d72413e6
PMR
3929 printf_unfiltered ("[%d] ", i + first_choice);
3930 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 &type_print_raw_options);
323e0a4a 3932 if (sal.symtab == NULL)
d72413e6 3933 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3934 sal.line);
3935 else
d72413e6 3936 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3937 symtab_to_filename_for_display (sal.symtab),
3938 sal.line);
4c4b4cd2
PH
3939 continue;
3940 }
d2e4a39e 3941 else
4c4b4cd2
PH
3942 {
3943 int is_enumeral =
d12307c1
PMR
3944 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945 && SYMBOL_TYPE (syms[i].symbol) != NULL
3946 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3947 struct symtab *symtab = NULL;
3948
d12307c1
PMR
3949 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3951
d12307c1 3952 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3953 {
3954 printf_unfiltered ("[%d] ", i + first_choice);
3955 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 &type_print_raw_options);
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (symtab),
3959 SYMBOL_LINE (syms[i].symbol));
3960 }
76a01679 3961 else if (is_enumeral
d12307c1 3962 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3963 {
a3f17187 3964 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3965 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3966 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3967 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3968 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3969 }
d72413e6
PMR
3970 else
3971 {
3972 printf_unfiltered ("[%d] ", i + first_choice);
3973 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 &type_print_raw_options);
3975
3976 if (symtab != NULL)
3977 printf_unfiltered (is_enumeral
3978 ? _(" in %s (enumeral)\n")
3979 : _(" at %s:?\n"),
3980 symtab_to_filename_for_display (symtab));
3981 else
3982 printf_unfiltered (is_enumeral
3983 ? _(" (enumeral)\n")
3984 : _(" at ?\n"));
3985 }
4c4b4cd2 3986 }
14f9c5c9 3987 }
d2e4a39e 3988
14f9c5c9 3989 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3990 "overload-choice");
14f9c5c9
AS
3991
3992 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3993 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3994
3995 return n_chosen;
3996}
3997
3998/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3999 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4000 order in CHOICES[0 .. N-1], and return N.
4001
4002 The user types choices as a sequence of numbers on one line
4003 separated by blanks, encoding them as follows:
4004
4c4b4cd2 4005 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4006 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4008
4c4b4cd2 4009 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4010
4011 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4012 prompts (for use with the -f switch). */
14f9c5c9
AS
4013
4014int
d2e4a39e 4015get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4016 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4017{
d2e4a39e 4018 char *args;
a121b7c1 4019 const char *prompt;
14f9c5c9
AS
4020 int n_chosen;
4021 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4022
14f9c5c9
AS
4023 prompt = getenv ("PS2");
4024 if (prompt == NULL)
0bcd0149 4025 prompt = "> ";
14f9c5c9 4026
89fbedf3 4027 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 4028
14f9c5c9 4029 if (args == NULL)
323e0a4a 4030 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4031
4032 n_chosen = 0;
76a01679 4033
4c4b4cd2
PH
4034 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035 order, as given in args. Choices are validated. */
14f9c5c9
AS
4036 while (1)
4037 {
d2e4a39e 4038 char *args2;
14f9c5c9
AS
4039 int choice, j;
4040
0fcd72ba 4041 args = skip_spaces (args);
14f9c5c9 4042 if (*args == '\0' && n_chosen == 0)
323e0a4a 4043 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4044 else if (*args == '\0')
4c4b4cd2 4045 break;
14f9c5c9
AS
4046
4047 choice = strtol (args, &args2, 10);
d2e4a39e 4048 if (args == args2 || choice < 0
4c4b4cd2 4049 || choice > n_choices + first_choice - 1)
323e0a4a 4050 error (_("Argument must be choice number"));
14f9c5c9
AS
4051 args = args2;
4052
d2e4a39e 4053 if (choice == 0)
323e0a4a 4054 error (_("cancelled"));
14f9c5c9
AS
4055
4056 if (choice < first_choice)
4c4b4cd2
PH
4057 {
4058 n_chosen = n_choices;
4059 for (j = 0; j < n_choices; j += 1)
4060 choices[j] = j;
4061 break;
4062 }
14f9c5c9
AS
4063 choice -= first_choice;
4064
d2e4a39e 4065 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4066 {
4067 }
14f9c5c9
AS
4068
4069 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4070 {
4071 int k;
5b4ee69b 4072
4c4b4cd2
PH
4073 for (k = n_chosen - 1; k > j; k -= 1)
4074 choices[k + 1] = choices[k];
4075 choices[j + 1] = choice;
4076 n_chosen += 1;
4077 }
14f9c5c9
AS
4078 }
4079
4080 if (n_chosen > max_results)
323e0a4a 4081 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4082
14f9c5c9
AS
4083 return n_chosen;
4084}
4085
4c4b4cd2
PH
4086/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087 on the function identified by SYM and BLOCK, and taking NARGS
4088 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4089
4090static void
e9d9f57e 4091replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4092 int oplen, struct symbol *sym,
270140bd 4093 const struct block *block)
14f9c5c9
AS
4094{
4095 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4096 symbol, -oplen for operator being replaced). */
d2e4a39e 4097 struct expression *newexp = (struct expression *)
8c1a34e7 4098 xzalloc (sizeof (struct expression)
4c4b4cd2 4099 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4100 struct expression *exp = expp->get ();
14f9c5c9
AS
4101
4102 newexp->nelts = exp->nelts + 7 - oplen;
4103 newexp->language_defn = exp->language_defn;
3489610d 4104 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4105 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4106 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4107 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4108
4109 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4111
4112 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113 newexp->elts[pc + 4].block = block;
4114 newexp->elts[pc + 5].symbol = sym;
4115
e9d9f57e 4116 expp->reset (newexp);
d2e4a39e 4117}
14f9c5c9
AS
4118
4119/* Type-class predicates */
4120
4c4b4cd2
PH
4121/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4122 or FLOAT). */
14f9c5c9
AS
4123
4124static int
d2e4a39e 4125numeric_type_p (struct type *type)
14f9c5c9
AS
4126{
4127 if (type == NULL)
4128 return 0;
d2e4a39e
AS
4129 else
4130 {
4131 switch (TYPE_CODE (type))
4c4b4cd2
PH
4132 {
4133 case TYPE_CODE_INT:
4134 case TYPE_CODE_FLT:
4135 return 1;
4136 case TYPE_CODE_RANGE:
4137 return (type == TYPE_TARGET_TYPE (type)
4138 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4139 default:
4140 return 0;
4141 }
d2e4a39e 4142 }
14f9c5c9
AS
4143}
4144
4c4b4cd2 4145/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4146
4147static int
d2e4a39e 4148integer_type_p (struct type *type)
14f9c5c9
AS
4149{
4150 if (type == NULL)
4151 return 0;
d2e4a39e
AS
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4c4b4cd2
PH
4155 {
4156 case TYPE_CODE_INT:
4157 return 1;
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || integer_type_p (TYPE_TARGET_TYPE (type)));
4161 default:
4162 return 0;
4163 }
d2e4a39e 4164 }
14f9c5c9
AS
4165}
4166
4c4b4cd2 4167/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4168
4169static int
d2e4a39e 4170scalar_type_p (struct type *type)
14f9c5c9
AS
4171{
4172 if (type == NULL)
4173 return 0;
d2e4a39e
AS
4174 else
4175 {
4176 switch (TYPE_CODE (type))
4c4b4cd2
PH
4177 {
4178 case TYPE_CODE_INT:
4179 case TYPE_CODE_RANGE:
4180 case TYPE_CODE_ENUM:
4181 case TYPE_CODE_FLT:
4182 return 1;
4183 default:
4184 return 0;
4185 }
d2e4a39e 4186 }
14f9c5c9
AS
4187}
4188
4c4b4cd2 4189/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4190
4191static int
d2e4a39e 4192discrete_type_p (struct type *type)
14f9c5c9
AS
4193{
4194 if (type == NULL)
4195 return 0;
d2e4a39e
AS
4196 else
4197 {
4198 switch (TYPE_CODE (type))
4c4b4cd2
PH
4199 {
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
872f0337 4203 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4204 return 1;
4205 default:
4206 return 0;
4207 }
d2e4a39e 4208 }
14f9c5c9
AS
4209}
4210
4c4b4cd2
PH
4211/* Returns non-zero if OP with operands in the vector ARGS could be
4212 a user-defined function. Errs on the side of pre-defined operators
4213 (i.e., result 0). */
14f9c5c9
AS
4214
4215static int
d2e4a39e 4216possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4217{
76a01679 4218 struct type *type0 =
df407dfe 4219 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4220 struct type *type1 =
df407dfe 4221 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4222
4c4b4cd2
PH
4223 if (type0 == NULL)
4224 return 0;
4225
14f9c5c9
AS
4226 switch (op)
4227 {
4228 default:
4229 return 0;
4230
4231 case BINOP_ADD:
4232 case BINOP_SUB:
4233 case BINOP_MUL:
4234 case BINOP_DIV:
d2e4a39e 4235 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4236
4237 case BINOP_REM:
4238 case BINOP_MOD:
4239 case BINOP_BITWISE_AND:
4240 case BINOP_BITWISE_IOR:
4241 case BINOP_BITWISE_XOR:
d2e4a39e 4242 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4243
4244 case BINOP_EQUAL:
4245 case BINOP_NOTEQUAL:
4246 case BINOP_LESS:
4247 case BINOP_GTR:
4248 case BINOP_LEQ:
4249 case BINOP_GEQ:
d2e4a39e 4250 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4251
4252 case BINOP_CONCAT:
ee90b9ab 4253 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4254
4255 case BINOP_EXP:
d2e4a39e 4256 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4257
4258 case UNOP_NEG:
4259 case UNOP_PLUS:
4260 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4261 case UNOP_ABS:
4262 return (!numeric_type_p (type0));
14f9c5c9
AS
4263
4264 }
4265}
4266\f
4c4b4cd2 4267 /* Renaming */
14f9c5c9 4268
aeb5907d
JB
4269/* NOTES:
4270
4271 1. In the following, we assume that a renaming type's name may
4272 have an ___XD suffix. It would be nice if this went away at some
4273 point.
4274 2. We handle both the (old) purely type-based representation of
4275 renamings and the (new) variable-based encoding. At some point,
4276 it is devoutly to be hoped that the former goes away
4277 (FIXME: hilfinger-2007-07-09).
4278 3. Subprogram renamings are not implemented, although the XRS
4279 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4280
4281/* If SYM encodes a renaming,
4282
4283 <renaming> renames <renamed entity>,
4284
4285 sets *LEN to the length of the renamed entity's name,
4286 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287 the string describing the subcomponent selected from the renamed
0963b4bd 4288 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4289 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290 are undefined). Otherwise, returns a value indicating the category
4291 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4294 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296 may be NULL, in which case they are not assigned.
4297
4298 [Currently, however, GCC does not generate subprogram renamings.] */
4299
4300enum ada_renaming_category
4301ada_parse_renaming (struct symbol *sym,
4302 const char **renamed_entity, int *len,
4303 const char **renaming_expr)
4304{
4305 enum ada_renaming_category kind;
4306 const char *info;
4307 const char *suffix;
4308
4309 if (sym == NULL)
4310 return ADA_NOT_RENAMING;
4311 switch (SYMBOL_CLASS (sym))
14f9c5c9 4312 {
aeb5907d
JB
4313 default:
4314 return ADA_NOT_RENAMING;
4315 case LOC_TYPEDEF:
4316 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 renamed_entity, len, renaming_expr);
4318 case LOC_LOCAL:
4319 case LOC_STATIC:
4320 case LOC_COMPUTED:
4321 case LOC_OPTIMIZED_OUT:
4322 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4323 if (info == NULL)
4324 return ADA_NOT_RENAMING;
4325 switch (info[5])
4326 {
4327 case '_':
4328 kind = ADA_OBJECT_RENAMING;
4329 info += 6;
4330 break;
4331 case 'E':
4332 kind = ADA_EXCEPTION_RENAMING;
4333 info += 7;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 info += 7;
4338 break;
4339 case 'S':
4340 kind = ADA_SUBPROGRAM_RENAMING;
4341 info += 7;
4342 break;
4343 default:
4344 return ADA_NOT_RENAMING;
4345 }
14f9c5c9 4346 }
4c4b4cd2 4347
aeb5907d
JB
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (suffix == NULL || suffix == info)
4352 return ADA_NOT_RENAMING;
4353 if (len != NULL)
4354 *len = strlen (info) - strlen (suffix);
4355 suffix += 5;
4356 if (renaming_expr != NULL)
4357 *renaming_expr = suffix;
4358 return kind;
4359}
4360
4361/* Assuming TYPE encodes a renaming according to the old encoding in
4362 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4364 ADA_NOT_RENAMING otherwise. */
4365static enum ada_renaming_category
4366parse_old_style_renaming (struct type *type,
4367 const char **renamed_entity, int *len,
4368 const char **renaming_expr)
4369{
4370 enum ada_renaming_category kind;
4371 const char *name;
4372 const char *info;
4373 const char *suffix;
14f9c5c9 4374
aeb5907d
JB
4375 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376 || TYPE_NFIELDS (type) != 1)
4377 return ADA_NOT_RENAMING;
14f9c5c9 4378
a737d952 4379 name = TYPE_NAME (type);
aeb5907d
JB
4380 if (name == NULL)
4381 return ADA_NOT_RENAMING;
4382
4383 name = strstr (name, "___XR");
4384 if (name == NULL)
4385 return ADA_NOT_RENAMING;
4386 switch (name[5])
4387 {
4388 case '\0':
4389 case '_':
4390 kind = ADA_OBJECT_RENAMING;
4391 break;
4392 case 'E':
4393 kind = ADA_EXCEPTION_RENAMING;
4394 break;
4395 case 'P':
4396 kind = ADA_PACKAGE_RENAMING;
4397 break;
4398 case 'S':
4399 kind = ADA_SUBPROGRAM_RENAMING;
4400 break;
4401 default:
4402 return ADA_NOT_RENAMING;
4403 }
14f9c5c9 4404
aeb5907d
JB
4405 info = TYPE_FIELD_NAME (type, 0);
4406 if (info == NULL)
4407 return ADA_NOT_RENAMING;
4408 if (renamed_entity != NULL)
4409 *renamed_entity = info;
4410 suffix = strstr (info, "___XE");
4411 if (renaming_expr != NULL)
4412 *renaming_expr = suffix + 5;
4413 if (suffix == NULL || suffix == info)
4414 return ADA_NOT_RENAMING;
4415 if (len != NULL)
4416 *len = suffix - info;
4417 return kind;
a5ee536b
JB
4418}
4419
4420/* Compute the value of the given RENAMING_SYM, which is expected to
4421 be a symbol encoding a renaming expression. BLOCK is the block
4422 used to evaluate the renaming. */
52ce6436 4423
a5ee536b
JB
4424static struct value *
4425ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4426 const struct block *block)
a5ee536b 4427{
bbc13ae3 4428 const char *sym_name;
a5ee536b 4429
bbc13ae3 4430 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4431 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432 return evaluate_expression (expr.get ());
a5ee536b 4433}
14f9c5c9 4434\f
d2e4a39e 4435
4c4b4cd2 4436 /* Evaluation: Function Calls */
14f9c5c9 4437
4c4b4cd2 4438/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4439 lvalues, and otherwise has the side-effect of allocating memory
4440 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4441
d2e4a39e 4442static struct value *
40bc484c 4443ensure_lval (struct value *val)
14f9c5c9 4444{
40bc484c
JB
4445 if (VALUE_LVAL (val) == not_lval
4446 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4447 {
df407dfe 4448 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4449 const CORE_ADDR addr =
4450 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4451
a84a8a0d 4452 VALUE_LVAL (val) = lval_memory;
1a088441 4453 set_value_address (val, addr);
40bc484c 4454 write_memory (addr, value_contents (val), len);
c3e5cd34 4455 }
14f9c5c9
AS
4456
4457 return val;
4458}
4459
4460/* Return the value ACTUAL, converted to be an appropriate value for a
4461 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4462 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4463 values not residing in memory, updating it as needed. */
14f9c5c9 4464
a93c0eb6 4465struct value *
40bc484c 4466ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4467{
df407dfe 4468 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4469 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4470 struct type *formal_target =
4471 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4472 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4473 struct type *actual_target =
4474 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4475 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4476
4c4b4cd2 4477 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4478 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4479 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4480 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4482 {
a84a8a0d 4483 struct value *result;
5b4ee69b 4484
14f9c5c9 4485 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4486 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4487 result = desc_data (actual);
cb923fcc 4488 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4489 {
4490 if (VALUE_LVAL (actual) != lval_memory)
4491 {
4492 struct value *val;
5b4ee69b 4493
df407dfe 4494 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4495 val = allocate_value (actual_type);
990a07ab 4496 memcpy ((char *) value_contents_raw (val),
0fd88904 4497 (char *) value_contents (actual),
4c4b4cd2 4498 TYPE_LENGTH (actual_type));
40bc484c 4499 actual = ensure_lval (val);
4c4b4cd2 4500 }
a84a8a0d 4501 result = value_addr (actual);
4c4b4cd2 4502 }
a84a8a0d
JB
4503 else
4504 return actual;
b1af9e97 4505 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4506 }
4507 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508 return ada_value_ind (actual);
8344af1e
JB
4509 else if (ada_is_aligner_type (formal_type))
4510 {
4511 /* We need to turn this parameter into an aligner type
4512 as well. */
4513 struct value *aligner = allocate_value (formal_type);
4514 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4515
4516 value_assign_to_component (aligner, component, actual);
4517 return aligner;
4518 }
14f9c5c9
AS
4519
4520 return actual;
4521}
4522
438c98a1
JB
4523/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524 type TYPE. This is usually an inefficient no-op except on some targets
4525 (such as AVR) where the representation of a pointer and an address
4526 differs. */
4527
4528static CORE_ADDR
4529value_pointer (struct value *value, struct type *type)
4530{
4531 struct gdbarch *gdbarch = get_type_arch (type);
4532 unsigned len = TYPE_LENGTH (type);
224c3ddb 4533 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4534 CORE_ADDR addr;
4535
4536 addr = value_address (value);
4537 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539 return addr;
4540}
4541
14f9c5c9 4542
4c4b4cd2
PH
4543/* Push a descriptor of type TYPE for array value ARR on the stack at
4544 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4545 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4546 to-descriptor type rather than a descriptor type), a struct value *
4547 representing a pointer to this descriptor. */
14f9c5c9 4548
d2e4a39e 4549static struct value *
40bc484c 4550make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4551{
d2e4a39e
AS
4552 struct type *bounds_type = desc_bounds_type (type);
4553 struct type *desc_type = desc_base_type (type);
4554 struct value *descriptor = allocate_value (desc_type);
4555 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4556 int i;
d2e4a39e 4557
0963b4bd
MS
4558 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4559 i > 0; i -= 1)
14f9c5c9 4560 {
19f220c3
JK
4561 modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 ada_array_bound (arr, i, 0),
4563 desc_bound_bitpos (bounds_type, i, 0),
4564 desc_bound_bitsize (bounds_type, i, 0));
4565 modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 ada_array_bound (arr, i, 1),
4567 desc_bound_bitpos (bounds_type, i, 1),
4568 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4569 }
d2e4a39e 4570
40bc484c 4571 bounds = ensure_lval (bounds);
d2e4a39e 4572
19f220c3
JK
4573 modify_field (value_type (descriptor),
4574 value_contents_writeable (descriptor),
4575 value_pointer (ensure_lval (arr),
4576 TYPE_FIELD_TYPE (desc_type, 0)),
4577 fat_pntr_data_bitpos (desc_type),
4578 fat_pntr_data_bitsize (desc_type));
4579
4580 modify_field (value_type (descriptor),
4581 value_contents_writeable (descriptor),
4582 value_pointer (bounds,
4583 TYPE_FIELD_TYPE (desc_type, 1)),
4584 fat_pntr_bounds_bitpos (desc_type),
4585 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4586
40bc484c 4587 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4588
4589 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590 return value_addr (descriptor);
4591 else
4592 return descriptor;
4593}
14f9c5c9 4594\f
3d9434b5
JB
4595 /* Symbol Cache Module */
4596
3d9434b5 4597/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4598 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4599 on the type of entity being printed, the cache can make it as much
4600 as an order of magnitude faster than without it.
4601
4602 The descriptive type DWARF extension has significantly reduced
4603 the need for this cache, at least when DWARF is being used. However,
4604 even in this case, some expensive name-based symbol searches are still
4605 sometimes necessary - to find an XVZ variable, mostly. */
4606
ee01b665 4607/* Initialize the contents of SYM_CACHE. */
3d9434b5 4608
ee01b665
JB
4609static void
4610ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4611{
4612 obstack_init (&sym_cache->cache_space);
4613 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4614}
3d9434b5 4615
ee01b665
JB
4616/* Free the memory used by SYM_CACHE. */
4617
4618static void
4619ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4620{
ee01b665
JB
4621 obstack_free (&sym_cache->cache_space, NULL);
4622 xfree (sym_cache);
4623}
3d9434b5 4624
ee01b665
JB
4625/* Return the symbol cache associated to the given program space PSPACE.
4626 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4627
ee01b665
JB
4628static struct ada_symbol_cache *
4629ada_get_symbol_cache (struct program_space *pspace)
4630{
4631 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4632
66c168ae 4633 if (pspace_data->sym_cache == NULL)
ee01b665 4634 {
66c168ae
JB
4635 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4637 }
4638
66c168ae 4639 return pspace_data->sym_cache;
ee01b665 4640}
3d9434b5
JB
4641
4642/* Clear all entries from the symbol cache. */
4643
4644static void
4645ada_clear_symbol_cache (void)
4646{
ee01b665
JB
4647 struct ada_symbol_cache *sym_cache
4648 = ada_get_symbol_cache (current_program_space);
4649
4650 obstack_free (&sym_cache->cache_space, NULL);
4651 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4652}
4653
fe978cb0 4654/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4655 Return it if found, or NULL otherwise. */
4656
4657static struct cache_entry **
fe978cb0 4658find_entry (const char *name, domain_enum domain)
3d9434b5 4659{
ee01b665
JB
4660 struct ada_symbol_cache *sym_cache
4661 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4662 int h = msymbol_hash (name) % HASH_SIZE;
4663 struct cache_entry **e;
4664
ee01b665 4665 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4666 {
fe978cb0 4667 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4668 return e;
4669 }
4670 return NULL;
4671}
4672
fe978cb0 4673/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4674 Return 1 if found, 0 otherwise.
4675
4676 If an entry was found and SYM is not NULL, set *SYM to the entry's
4677 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4678
96d887e8 4679static int
fe978cb0 4680lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4681 struct symbol **sym, const struct block **block)
96d887e8 4682{
fe978cb0 4683 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4684
4685 if (e == NULL)
4686 return 0;
4687 if (sym != NULL)
4688 *sym = (*e)->sym;
4689 if (block != NULL)
4690 *block = (*e)->block;
4691 return 1;
96d887e8
PH
4692}
4693
3d9434b5 4694/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4695 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4696
96d887e8 4697static void
fe978cb0 4698cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4699 const struct block *block)
96d887e8 4700{
ee01b665
JB
4701 struct ada_symbol_cache *sym_cache
4702 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4703 int h;
4704 char *copy;
4705 struct cache_entry *e;
4706
1994afbf
DE
4707 /* Symbols for builtin types don't have a block.
4708 For now don't cache such symbols. */
4709 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4710 return;
4711
3d9434b5
JB
4712 /* If the symbol is a local symbol, then do not cache it, as a search
4713 for that symbol depends on the context. To determine whether
4714 the symbol is local or not, we check the block where we found it
4715 against the global and static blocks of its associated symtab. */
4716 if (sym
08be3fe3 4717 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4718 GLOBAL_BLOCK) != block
08be3fe3 4719 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4720 STATIC_BLOCK) != block)
3d9434b5
JB
4721 return;
4722
4723 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4724 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4725 e->next = sym_cache->root[h];
4726 sym_cache->root[h] = e;
224c3ddb
SM
4727 e->name = copy
4728 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4729 strcpy (copy, name);
4730 e->sym = sym;
fe978cb0 4731 e->domain = domain;
3d9434b5 4732 e->block = block;
96d887e8 4733}
4c4b4cd2
PH
4734\f
4735 /* Symbol Lookup */
4736
b5ec771e
PA
4737/* Return the symbol name match type that should be used used when
4738 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4739
4740 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4741 for Ada lookups. */
c0431670 4742
b5ec771e
PA
4743static symbol_name_match_type
4744name_match_type_from_name (const char *lookup_name)
c0431670 4745{
b5ec771e
PA
4746 return (strstr (lookup_name, "__") == NULL
4747 ? symbol_name_match_type::WILD
4748 : symbol_name_match_type::FULL);
c0431670
JB
4749}
4750
4c4b4cd2
PH
4751/* Return the result of a standard (literal, C-like) lookup of NAME in
4752 given DOMAIN, visible from lexical block BLOCK. */
4753
4754static struct symbol *
4755standard_lookup (const char *name, const struct block *block,
4756 domain_enum domain)
4757{
acbd605d 4758 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4759 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4760
d12307c1
PMR
4761 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4762 return sym.symbol;
2570f2b7 4763 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4764 cache_symbol (name, domain, sym.symbol, sym.block);
4765 return sym.symbol;
4c4b4cd2
PH
4766}
4767
4768
4769/* Non-zero iff there is at least one non-function/non-enumeral symbol
4770 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4771 since they contend in overloading in the same way. */
4772static int
d12307c1 4773is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4774{
4775 int i;
4776
4777 for (i = 0; i < n; i += 1)
d12307c1
PMR
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4781 return 1;
4782
4783 return 0;
4784}
4785
4786/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4787 struct types. Otherwise, they may not. */
14f9c5c9
AS
4788
4789static int
d2e4a39e 4790equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4791{
d2e4a39e 4792 if (type0 == type1)
14f9c5c9 4793 return 1;
d2e4a39e 4794 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4795 || TYPE_CODE (type0) != TYPE_CODE (type1))
4796 return 0;
d2e4a39e 4797 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4798 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4800 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4801 return 1;
d2e4a39e 4802
14f9c5c9
AS
4803 return 0;
4804}
4805
4806/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4807 no more defined than that of SYM1. */
14f9c5c9
AS
4808
4809static int
d2e4a39e 4810lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4811{
4812 if (sym0 == sym1)
4813 return 1;
176620f1 4814 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4815 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4816 return 0;
4817
d2e4a39e 4818 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4819 {
4820 case LOC_UNDEF:
4821 return 1;
4822 case LOC_TYPEDEF:
4823 {
4c4b4cd2
PH
4824 struct type *type0 = SYMBOL_TYPE (sym0);
4825 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4826 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4828 int len0 = strlen (name0);
5b4ee69b 4829
4c4b4cd2
PH
4830 return
4831 TYPE_CODE (type0) == TYPE_CODE (type1)
4832 && (equiv_types (type0, type1)
4833 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4834 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4835 }
4836 case LOC_CONST:
4837 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4838 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4839 default:
4840 return 0;
14f9c5c9
AS
4841 }
4842}
4843
d12307c1 4844/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4845 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4846
4847static void
76a01679
JB
4848add_defn_to_vec (struct obstack *obstackp,
4849 struct symbol *sym,
f0c5f9b2 4850 const struct block *block)
14f9c5c9
AS
4851{
4852 int i;
d12307c1 4853 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4854
529cad9c
PH
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4863
4c4b4cd2
PH
4864 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4865 {
d12307c1 4866 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4867 return;
d12307c1 4868 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4869 {
d12307c1 4870 prevDefns[i].symbol = sym;
4c4b4cd2 4871 prevDefns[i].block = block;
4c4b4cd2 4872 return;
76a01679 4873 }
4c4b4cd2
PH
4874 }
4875
4876 {
d12307c1 4877 struct block_symbol info;
4c4b4cd2 4878
d12307c1 4879 info.symbol = sym;
4c4b4cd2 4880 info.block = block;
d12307c1 4881 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4882 }
4883}
4884
d12307c1
PMR
4885/* Number of block_symbol structures currently collected in current vector in
4886 OBSTACKP. */
4c4b4cd2 4887
76a01679
JB
4888static int
4889num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4890{
d12307c1 4891 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4892}
4893
d12307c1
PMR
4894/* Vector of block_symbol structures currently collected in current vector in
4895 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4896
d12307c1 4897static struct block_symbol *
4c4b4cd2
PH
4898defns_collected (struct obstack *obstackp, int finish)
4899{
4900 if (finish)
224c3ddb 4901 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4902 else
d12307c1 4903 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4904}
4905
7c7b6655
TT
4906/* Return a bound minimal symbol matching NAME according to Ada
4907 decoding rules. Returns an invalid symbol if there is no such
4908 minimal symbol. Names prefixed with "standard__" are handled
4909 specially: "standard__" is first stripped off, and only static and
4910 global symbols are searched. */
4c4b4cd2 4911
7c7b6655 4912struct bound_minimal_symbol
96d887e8 4913ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4914{
7c7b6655 4915 struct bound_minimal_symbol result;
4c4b4cd2 4916 struct objfile *objfile;
96d887e8 4917 struct minimal_symbol *msymbol;
4c4b4cd2 4918
7c7b6655
TT
4919 memset (&result, 0, sizeof (result));
4920
b5ec771e
PA
4921 symbol_name_match_type match_type = name_match_type_from_name (name);
4922 lookup_name_info lookup_name (name, match_type);
4923
4924 symbol_name_matcher_ftype *match_name
4925 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4926
96d887e8
PH
4927 ALL_MSYMBOLS (objfile, msymbol)
4928 {
b5ec771e 4929 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4930 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4931 {
4932 result.minsym = msymbol;
4933 result.objfile = objfile;
4934 break;
4935 }
96d887e8 4936 }
4c4b4cd2 4937
7c7b6655 4938 return result;
96d887e8 4939}
4c4b4cd2 4940
96d887e8
PH
4941/* For all subprograms that statically enclose the subprogram of the
4942 selected frame, add symbols matching identifier NAME in DOMAIN
4943 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4944 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4945 with a wildcard prefix. */
4c4b4cd2 4946
96d887e8
PH
4947static void
4948add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4949 const lookup_name_info &lookup_name,
4950 domain_enum domain)
96d887e8 4951{
96d887e8 4952}
14f9c5c9 4953
96d887e8
PH
4954/* True if TYPE is definitely an artificial type supplied to a symbol
4955 for which no debugging information was given in the symbol file. */
14f9c5c9 4956
96d887e8
PH
4957static int
4958is_nondebugging_type (struct type *type)
4959{
0d5cff50 4960 const char *name = ada_type_name (type);
5b4ee69b 4961
96d887e8
PH
4962 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4963}
4c4b4cd2 4964
8f17729f
JB
4965/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4966 that are deemed "identical" for practical purposes.
4967
4968 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4969 types and that their number of enumerals is identical (in other
4970 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4971
4972static int
4973ada_identical_enum_types_p (struct type *type1, struct type *type2)
4974{
4975 int i;
4976
4977 /* The heuristic we use here is fairly conservative. We consider
4978 that 2 enumerate types are identical if they have the same
4979 number of enumerals and that all enumerals have the same
4980 underlying value and name. */
4981
4982 /* All enums in the type should have an identical underlying value. */
4983 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4984 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4985 return 0;
4986
4987 /* All enumerals should also have the same name (modulo any numerical
4988 suffix). */
4989 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4990 {
0d5cff50
DE
4991 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4992 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4993 int len_1 = strlen (name_1);
4994 int len_2 = strlen (name_2);
4995
4996 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4997 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4998 if (len_1 != len_2
4999 || strncmp (TYPE_FIELD_NAME (type1, i),
5000 TYPE_FIELD_NAME (type2, i),
5001 len_1) != 0)
5002 return 0;
5003 }
5004
5005 return 1;
5006}
5007
5008/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5009 that are deemed "identical" for practical purposes. Sometimes,
5010 enumerals are not strictly identical, but their types are so similar
5011 that they can be considered identical.
5012
5013 For instance, consider the following code:
5014
5015 type Color is (Black, Red, Green, Blue, White);
5016 type RGB_Color is new Color range Red .. Blue;
5017
5018 Type RGB_Color is a subrange of an implicit type which is a copy
5019 of type Color. If we call that implicit type RGB_ColorB ("B" is
5020 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5021 As a result, when an expression references any of the enumeral
5022 by name (Eg. "print green"), the expression is technically
5023 ambiguous and the user should be asked to disambiguate. But
5024 doing so would only hinder the user, since it wouldn't matter
5025 what choice he makes, the outcome would always be the same.
5026 So, for practical purposes, we consider them as the same. */
5027
5028static int
54d343a2 5029symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5030{
5031 int i;
5032
5033 /* Before performing a thorough comparison check of each type,
5034 we perform a series of inexpensive checks. We expect that these
5035 checks will quickly fail in the vast majority of cases, and thus
5036 help prevent the unnecessary use of a more expensive comparison.
5037 Said comparison also expects us to make some of these checks
5038 (see ada_identical_enum_types_p). */
5039
5040 /* Quick check: All symbols should have an enum type. */
54d343a2 5041 for (i = 0; i < syms.size (); i++)
d12307c1 5042 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5043 return 0;
5044
5045 /* Quick check: They should all have the same value. */
54d343a2 5046 for (i = 1; i < syms.size (); i++)
d12307c1 5047 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5048 return 0;
5049
5050 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5051 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5052 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5053 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5054 return 0;
5055
5056 /* All the sanity checks passed, so we might have a set of
5057 identical enumeration types. Perform a more complete
5058 comparison of the type of each symbol. */
54d343a2 5059 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5060 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5061 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5062 return 0;
5063
5064 return 1;
5065}
5066
54d343a2 5067/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5068 duplicate other symbols in the list (The only case I know of where
5069 this happens is when object files containing stabs-in-ecoff are
5070 linked with files containing ordinary ecoff debugging symbols (or no
5071 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5072 Returns the number of items in the modified list. */
4c4b4cd2 5073
96d887e8 5074static int
54d343a2 5075remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5076{
5077 int i, j;
4c4b4cd2 5078
8f17729f
JB
5079 /* We should never be called with less than 2 symbols, as there
5080 cannot be any extra symbol in that case. But it's easy to
5081 handle, since we have nothing to do in that case. */
54d343a2
TT
5082 if (syms->size () < 2)
5083 return syms->size ();
8f17729f 5084
96d887e8 5085 i = 0;
54d343a2 5086 while (i < syms->size ())
96d887e8 5087 {
a35ddb44 5088 int remove_p = 0;
339c13b6
JB
5089
5090 /* If two symbols have the same name and one of them is a stub type,
5091 the get rid of the stub. */
5092
54d343a2
TT
5093 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5094 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5095 {
54d343a2 5096 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5097 {
5098 if (j != i
54d343a2
TT
5099 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5100 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5101 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5102 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5103 remove_p = 1;
339c13b6
JB
5104 }
5105 }
5106
5107 /* Two symbols with the same name, same class and same address
5108 should be identical. */
5109
54d343a2
TT
5110 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5111 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5112 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5113 {
54d343a2 5114 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5115 {
5116 if (i != j
54d343a2
TT
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5120 && SYMBOL_CLASS ((*syms)[i].symbol)
5121 == SYMBOL_CLASS ((*syms)[j].symbol)
5122 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5123 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5124 remove_p = 1;
4c4b4cd2 5125 }
4c4b4cd2 5126 }
339c13b6 5127
a35ddb44 5128 if (remove_p)
54d343a2 5129 syms->erase (syms->begin () + i);
339c13b6 5130
96d887e8 5131 i += 1;
14f9c5c9 5132 }
8f17729f
JB
5133
5134 /* If all the remaining symbols are identical enumerals, then
5135 just keep the first one and discard the rest.
5136
5137 Unlike what we did previously, we do not discard any entry
5138 unless they are ALL identical. This is because the symbol
5139 comparison is not a strict comparison, but rather a practical
5140 comparison. If all symbols are considered identical, then
5141 we can just go ahead and use the first one and discard the rest.
5142 But if we cannot reduce the list to a single element, we have
5143 to ask the user to disambiguate anyways. And if we have to
5144 present a multiple-choice menu, it's less confusing if the list
5145 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5146 if (symbols_are_identical_enums (*syms))
5147 syms->resize (1);
8f17729f 5148
54d343a2 5149 return syms->size ();
14f9c5c9
AS
5150}
5151
96d887e8
PH
5152/* Given a type that corresponds to a renaming entity, use the type name
5153 to extract the scope (package name or function name, fully qualified,
5154 and following the GNAT encoding convention) where this renaming has been
49d83361 5155 defined. */
4c4b4cd2 5156
49d83361 5157static std::string
96d887e8 5158xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5159{
96d887e8 5160 /* The renaming types adhere to the following convention:
0963b4bd 5161 <scope>__<rename>___<XR extension>.
96d887e8
PH
5162 So, to extract the scope, we search for the "___XR" extension,
5163 and then backtrack until we find the first "__". */
76a01679 5164
a737d952 5165 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5166 const char *suffix = strstr (name, "___XR");
5167 const char *last;
14f9c5c9 5168
96d887e8
PH
5169 /* Now, backtrack a bit until we find the first "__". Start looking
5170 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5171
96d887e8
PH
5172 for (last = suffix - 3; last > name; last--)
5173 if (last[0] == '_' && last[1] == '_')
5174 break;
76a01679 5175
96d887e8 5176 /* Make a copy of scope and return it. */
49d83361 5177 return std::string (name, last);
4c4b4cd2
PH
5178}
5179
96d887e8 5180/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5181
96d887e8
PH
5182static int
5183is_package_name (const char *name)
4c4b4cd2 5184{
96d887e8
PH
5185 /* Here, We take advantage of the fact that no symbols are generated
5186 for packages, while symbols are generated for each function.
5187 So the condition for NAME represent a package becomes equivalent
5188 to NAME not existing in our list of symbols. There is only one
5189 small complication with library-level functions (see below). */
4c4b4cd2 5190
96d887e8
PH
5191 /* If it is a function that has not been defined at library level,
5192 then we should be able to look it up in the symbols. */
5193 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5194 return 0;
14f9c5c9 5195
96d887e8
PH
5196 /* Library-level function names start with "_ada_". See if function
5197 "_ada_" followed by NAME can be found. */
14f9c5c9 5198
96d887e8 5199 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5200 functions names cannot contain "__" in them. */
96d887e8
PH
5201 if (strstr (name, "__") != NULL)
5202 return 0;
4c4b4cd2 5203
528e1572 5204 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5205
528e1572 5206 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5207}
14f9c5c9 5208
96d887e8 5209/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5210 not visible from FUNCTION_NAME. */
14f9c5c9 5211
96d887e8 5212static int
0d5cff50 5213old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5214{
aeb5907d
JB
5215 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5216 return 0;
5217
49d83361 5218 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5219
96d887e8 5220 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5221 if (is_package_name (scope.c_str ()))
5222 return 0;
14f9c5c9 5223
96d887e8
PH
5224 /* Check that the rename is in the current function scope by checking
5225 that its name starts with SCOPE. */
76a01679 5226
96d887e8
PH
5227 /* If the function name starts with "_ada_", it means that it is
5228 a library-level function. Strip this prefix before doing the
5229 comparison, as the encoding for the renaming does not contain
5230 this prefix. */
61012eef 5231 if (startswith (function_name, "_ada_"))
96d887e8 5232 function_name += 5;
f26caa11 5233
49d83361 5234 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5235}
5236
aeb5907d
JB
5237/* Remove entries from SYMS that corresponds to a renaming entity that
5238 is not visible from the function associated with CURRENT_BLOCK or
5239 that is superfluous due to the presence of more specific renaming
5240 information. Places surviving symbols in the initial entries of
5241 SYMS and returns the number of surviving symbols.
96d887e8
PH
5242
5243 Rationale:
aeb5907d
JB
5244 First, in cases where an object renaming is implemented as a
5245 reference variable, GNAT may produce both the actual reference
5246 variable and the renaming encoding. In this case, we discard the
5247 latter.
5248
5249 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5250 entity. Unfortunately, STABS currently does not support the definition
5251 of types that are local to a given lexical block, so all renamings types
5252 are emitted at library level. As a consequence, if an application
5253 contains two renaming entities using the same name, and a user tries to
5254 print the value of one of these entities, the result of the ada symbol
5255 lookup will also contain the wrong renaming type.
f26caa11 5256
96d887e8
PH
5257 This function partially covers for this limitation by attempting to
5258 remove from the SYMS list renaming symbols that should be visible
5259 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5260 method with the current information available. The implementation
5261 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5262
5263 - When the user tries to print a rename in a function while there
5264 is another rename entity defined in a package: Normally, the
5265 rename in the function has precedence over the rename in the
5266 package, so the latter should be removed from the list. This is
5267 currently not the case.
5268
5269 - This function will incorrectly remove valid renames if
5270 the CURRENT_BLOCK corresponds to a function which symbol name
5271 has been changed by an "Export" pragma. As a consequence,
5272 the user will be unable to print such rename entities. */
4c4b4cd2 5273
14f9c5c9 5274static int
54d343a2
TT
5275remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5276 const struct block *current_block)
4c4b4cd2
PH
5277{
5278 struct symbol *current_function;
0d5cff50 5279 const char *current_function_name;
4c4b4cd2 5280 int i;
aeb5907d
JB
5281 int is_new_style_renaming;
5282
5283 /* If there is both a renaming foo___XR... encoded as a variable and
5284 a simple variable foo in the same block, discard the latter.
0963b4bd 5285 First, zero out such symbols, then compress. */
aeb5907d 5286 is_new_style_renaming = 0;
54d343a2 5287 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5288 {
54d343a2
TT
5289 struct symbol *sym = (*syms)[i].symbol;
5290 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5291 const char *name;
5292 const char *suffix;
5293
5294 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5295 continue;
5296 name = SYMBOL_LINKAGE_NAME (sym);
5297 suffix = strstr (name, "___XR");
5298
5299 if (suffix != NULL)
5300 {
5301 int name_len = suffix - name;
5302 int j;
5b4ee69b 5303
aeb5907d 5304 is_new_style_renaming = 1;
54d343a2
TT
5305 for (j = 0; j < syms->size (); j += 1)
5306 if (i != j && (*syms)[j].symbol != NULL
5307 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5308 name_len) == 0
54d343a2
TT
5309 && block == (*syms)[j].block)
5310 (*syms)[j].symbol = NULL;
aeb5907d
JB
5311 }
5312 }
5313 if (is_new_style_renaming)
5314 {
5315 int j, k;
5316
54d343a2
TT
5317 for (j = k = 0; j < syms->size (); j += 1)
5318 if ((*syms)[j].symbol != NULL)
aeb5907d 5319 {
54d343a2 5320 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5321 k += 1;
5322 }
5323 return k;
5324 }
4c4b4cd2
PH
5325
5326 /* Extract the function name associated to CURRENT_BLOCK.
5327 Abort if unable to do so. */
76a01679 5328
4c4b4cd2 5329 if (current_block == NULL)
54d343a2 5330 return syms->size ();
76a01679 5331
7f0df278 5332 current_function = block_linkage_function (current_block);
4c4b4cd2 5333 if (current_function == NULL)
54d343a2 5334 return syms->size ();
4c4b4cd2
PH
5335
5336 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5337 if (current_function_name == NULL)
54d343a2 5338 return syms->size ();
4c4b4cd2
PH
5339
5340 /* Check each of the symbols, and remove it from the list if it is
5341 a type corresponding to a renaming that is out of the scope of
5342 the current block. */
5343
5344 i = 0;
54d343a2 5345 while (i < syms->size ())
4c4b4cd2 5346 {
54d343a2 5347 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5348 == ADA_OBJECT_RENAMING
54d343a2
TT
5349 && old_renaming_is_invisible ((*syms)[i].symbol,
5350 current_function_name))
5351 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5352 else
5353 i += 1;
5354 }
5355
54d343a2 5356 return syms->size ();
4c4b4cd2
PH
5357}
5358
339c13b6
JB
5359/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5360 whose name and domain match NAME and DOMAIN respectively.
5361 If no match was found, then extend the search to "enclosing"
5362 routines (in other words, if we're inside a nested function,
5363 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5364 If WILD_MATCH_P is nonzero, perform the naming matching in
5365 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5366
5367 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5368
5369static void
b5ec771e
PA
5370ada_add_local_symbols (struct obstack *obstackp,
5371 const lookup_name_info &lookup_name,
5372 const struct block *block, domain_enum domain)
339c13b6
JB
5373{
5374 int block_depth = 0;
5375
5376 while (block != NULL)
5377 {
5378 block_depth += 1;
b5ec771e 5379 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5380
5381 /* If we found a non-function match, assume that's the one. */
5382 if (is_nonfunction (defns_collected (obstackp, 0),
5383 num_defns_collected (obstackp)))
5384 return;
5385
5386 block = BLOCK_SUPERBLOCK (block);
5387 }
5388
5389 /* If no luck so far, try to find NAME as a local symbol in some lexically
5390 enclosing subprogram. */
5391 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5392 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5393}
5394
ccefe4c4 5395/* An object of this type is used as the user_data argument when
40658b94 5396 calling the map_matching_symbols method. */
ccefe4c4 5397
40658b94 5398struct match_data
ccefe4c4 5399{
40658b94 5400 struct objfile *objfile;
ccefe4c4 5401 struct obstack *obstackp;
40658b94
PH
5402 struct symbol *arg_sym;
5403 int found_sym;
ccefe4c4
TT
5404};
5405
22cee43f 5406/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5407 to a list of symbols. DATA0 is a pointer to a struct match_data *
5408 containing the obstack that collects the symbol list, the file that SYM
5409 must come from, a flag indicating whether a non-argument symbol has
5410 been found in the current block, and the last argument symbol
5411 passed in SYM within the current block (if any). When SYM is null,
5412 marking the end of a block, the argument symbol is added if no
5413 other has been found. */
ccefe4c4 5414
40658b94
PH
5415static int
5416aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5417{
40658b94
PH
5418 struct match_data *data = (struct match_data *) data0;
5419
5420 if (sym == NULL)
5421 {
5422 if (!data->found_sym && data->arg_sym != NULL)
5423 add_defn_to_vec (data->obstackp,
5424 fixup_symbol_section (data->arg_sym, data->objfile),
5425 block);
5426 data->found_sym = 0;
5427 data->arg_sym = NULL;
5428 }
5429 else
5430 {
5431 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5432 return 0;
5433 else if (SYMBOL_IS_ARGUMENT (sym))
5434 data->arg_sym = sym;
5435 else
5436 {
5437 data->found_sym = 1;
5438 add_defn_to_vec (data->obstackp,
5439 fixup_symbol_section (sym, data->objfile),
5440 block);
5441 }
5442 }
5443 return 0;
5444}
5445
b5ec771e
PA
5446/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5447 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5448 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5449
5450static int
5451ada_add_block_renamings (struct obstack *obstackp,
5452 const struct block *block,
b5ec771e
PA
5453 const lookup_name_info &lookup_name,
5454 domain_enum domain)
22cee43f
PMR
5455{
5456 struct using_direct *renaming;
5457 int defns_mark = num_defns_collected (obstackp);
5458
b5ec771e
PA
5459 symbol_name_matcher_ftype *name_match
5460 = ada_get_symbol_name_matcher (lookup_name);
5461
22cee43f
PMR
5462 for (renaming = block_using (block);
5463 renaming != NULL;
5464 renaming = renaming->next)
5465 {
5466 const char *r_name;
22cee43f
PMR
5467
5468 /* Avoid infinite recursions: skip this renaming if we are actually
5469 already traversing it.
5470
5471 Currently, symbol lookup in Ada don't use the namespace machinery from
5472 C++/Fortran support: skip namespace imports that use them. */
5473 if (renaming->searched
5474 || (renaming->import_src != NULL
5475 && renaming->import_src[0] != '\0')
5476 || (renaming->import_dest != NULL
5477 && renaming->import_dest[0] != '\0'))
5478 continue;
5479 renaming->searched = 1;
5480
5481 /* TODO: here, we perform another name-based symbol lookup, which can
5482 pull its own multiple overloads. In theory, we should be able to do
5483 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5484 not a simple name. But in order to do this, we would need to enhance
5485 the DWARF reader to associate a symbol to this renaming, instead of a
5486 name. So, for now, we do something simpler: re-use the C++/Fortran
5487 namespace machinery. */
5488 r_name = (renaming->alias != NULL
5489 ? renaming->alias
5490 : renaming->declaration);
b5ec771e
PA
5491 if (name_match (r_name, lookup_name, NULL))
5492 {
5493 lookup_name_info decl_lookup_name (renaming->declaration,
5494 lookup_name.match_type ());
5495 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5496 1, NULL);
5497 }
22cee43f
PMR
5498 renaming->searched = 0;
5499 }
5500 return num_defns_collected (obstackp) != defns_mark;
5501}
5502
db230ce3
JB
5503/* Implements compare_names, but only applying the comparision using
5504 the given CASING. */
5b4ee69b 5505
40658b94 5506static int
db230ce3
JB
5507compare_names_with_case (const char *string1, const char *string2,
5508 enum case_sensitivity casing)
40658b94
PH
5509{
5510 while (*string1 != '\0' && *string2 != '\0')
5511 {
db230ce3
JB
5512 char c1, c2;
5513
40658b94
PH
5514 if (isspace (*string1) || isspace (*string2))
5515 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5516
5517 if (casing == case_sensitive_off)
5518 {
5519 c1 = tolower (*string1);
5520 c2 = tolower (*string2);
5521 }
5522 else
5523 {
5524 c1 = *string1;
5525 c2 = *string2;
5526 }
5527 if (c1 != c2)
40658b94 5528 break;
db230ce3 5529
40658b94
PH
5530 string1 += 1;
5531 string2 += 1;
5532 }
db230ce3 5533
40658b94
PH
5534 switch (*string1)
5535 {
5536 case '(':
5537 return strcmp_iw_ordered (string1, string2);
5538 case '_':
5539 if (*string2 == '\0')
5540 {
052874e8 5541 if (is_name_suffix (string1))
40658b94
PH
5542 return 0;
5543 else
1a1d5513 5544 return 1;
40658b94 5545 }
dbb8534f 5546 /* FALLTHROUGH */
40658b94
PH
5547 default:
5548 if (*string2 == '(')
5549 return strcmp_iw_ordered (string1, string2);
5550 else
db230ce3
JB
5551 {
5552 if (casing == case_sensitive_off)
5553 return tolower (*string1) - tolower (*string2);
5554 else
5555 return *string1 - *string2;
5556 }
40658b94 5557 }
ccefe4c4
TT
5558}
5559
db230ce3
JB
5560/* Compare STRING1 to STRING2, with results as for strcmp.
5561 Compatible with strcmp_iw_ordered in that...
5562
5563 strcmp_iw_ordered (STRING1, STRING2) <= 0
5564
5565 ... implies...
5566
5567 compare_names (STRING1, STRING2) <= 0
5568
5569 (they may differ as to what symbols compare equal). */
5570
5571static int
5572compare_names (const char *string1, const char *string2)
5573{
5574 int result;
5575
5576 /* Similar to what strcmp_iw_ordered does, we need to perform
5577 a case-insensitive comparison first, and only resort to
5578 a second, case-sensitive, comparison if the first one was
5579 not sufficient to differentiate the two strings. */
5580
5581 result = compare_names_with_case (string1, string2, case_sensitive_off);
5582 if (result == 0)
5583 result = compare_names_with_case (string1, string2, case_sensitive_on);
5584
5585 return result;
5586}
5587
b5ec771e
PA
5588/* Convenience function to get at the Ada encoded lookup name for
5589 LOOKUP_NAME, as a C string. */
5590
5591static const char *
5592ada_lookup_name (const lookup_name_info &lookup_name)
5593{
5594 return lookup_name.ada ().lookup_name ().c_str ();
5595}
5596
339c13b6 5597/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5598 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5599 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5600 symbols otherwise. */
339c13b6
JB
5601
5602static void
b5ec771e
PA
5603add_nonlocal_symbols (struct obstack *obstackp,
5604 const lookup_name_info &lookup_name,
5605 domain_enum domain, int global)
339c13b6 5606{
22cee43f 5607 struct compunit_symtab *cu;
40658b94 5608 struct match_data data;
339c13b6 5609
6475f2fe 5610 memset (&data, 0, sizeof data);
ccefe4c4 5611 data.obstackp = obstackp;
339c13b6 5612
b5ec771e
PA
5613 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5614
aed57c53 5615 for (objfile *objfile : all_objfiles (current_program_space))
40658b94
PH
5616 {
5617 data.objfile = objfile;
5618
5619 if (is_wild_match)
b5ec771e
PA
5620 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5621 domain, global,
4186eb54 5622 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5623 symbol_name_match_type::WILD,
5624 NULL);
40658b94 5625 else
b5ec771e
PA
5626 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5627 domain, global,
4186eb54 5628 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5629 symbol_name_match_type::FULL,
5630 compare_names);
22cee43f
PMR
5631
5632 ALL_OBJFILE_COMPUNITS (objfile, cu)
5633 {
5634 const struct block *global_block
5635 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5636
b5ec771e
PA
5637 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5638 domain))
22cee43f
PMR
5639 data.found_sym = 1;
5640 }
40658b94
PH
5641 }
5642
5643 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5644 {
b5ec771e
PA
5645 const char *name = ada_lookup_name (lookup_name);
5646 std::string name1 = std::string ("<_ada_") + name + '>';
5647
aed57c53 5648 for (objfile *objfile : all_objfiles (current_program_space))
40658b94 5649 {
40658b94 5650 data.objfile = objfile;
b5ec771e
PA
5651 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5652 domain, global,
0963b4bd
MS
5653 aux_add_nonlocal_symbols,
5654 &data,
b5ec771e
PA
5655 symbol_name_match_type::FULL,
5656 compare_names);
40658b94
PH
5657 }
5658 }
339c13b6
JB
5659}
5660
b5ec771e
PA
5661/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5662 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5663 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5664
22cee43f
PMR
5665 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5666 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5667 is the one match returned (no other matches in that or
d9680e73 5668 enclosing blocks is returned). If there are any matches in or
22cee43f 5669 surrounding BLOCK, then these alone are returned.
4eeaa230 5670
b5ec771e
PA
5671 Names prefixed with "standard__" are handled specially:
5672 "standard__" is first stripped off (by the lookup_name
5673 constructor), and only static and global symbols are searched.
14f9c5c9 5674
22cee43f
PMR
5675 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5676 to lookup global symbols. */
5677
5678static void
5679ada_add_all_symbols (struct obstack *obstackp,
5680 const struct block *block,
b5ec771e 5681 const lookup_name_info &lookup_name,
22cee43f
PMR
5682 domain_enum domain,
5683 int full_search,
5684 int *made_global_lookup_p)
14f9c5c9
AS
5685{
5686 struct symbol *sym;
14f9c5c9 5687
22cee43f
PMR
5688 if (made_global_lookup_p)
5689 *made_global_lookup_p = 0;
339c13b6
JB
5690
5691 /* Special case: If the user specifies a symbol name inside package
5692 Standard, do a non-wild matching of the symbol name without
5693 the "standard__" prefix. This was primarily introduced in order
5694 to allow the user to specifically access the standard exceptions
5695 using, for instance, Standard.Constraint_Error when Constraint_Error
5696 is ambiguous (due to the user defining its own Constraint_Error
5697 entity inside its program). */
b5ec771e
PA
5698 if (lookup_name.ada ().standard_p ())
5699 block = NULL;
4c4b4cd2 5700
339c13b6 5701 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5702
4eeaa230
DE
5703 if (block != NULL)
5704 {
5705 if (full_search)
b5ec771e 5706 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5707 else
5708 {
5709 /* In the !full_search case we're are being called by
5710 ada_iterate_over_symbols, and we don't want to search
5711 superblocks. */
b5ec771e 5712 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5713 }
22cee43f
PMR
5714 if (num_defns_collected (obstackp) > 0 || !full_search)
5715 return;
4eeaa230 5716 }
d2e4a39e 5717
339c13b6
JB
5718 /* No non-global symbols found. Check our cache to see if we have
5719 already performed this search before. If we have, then return
5720 the same result. */
5721
b5ec771e
PA
5722 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5723 domain, &sym, &block))
4c4b4cd2
PH
5724 {
5725 if (sym != NULL)
b5ec771e 5726 add_defn_to_vec (obstackp, sym, block);
22cee43f 5727 return;
4c4b4cd2 5728 }
14f9c5c9 5729
22cee43f
PMR
5730 if (made_global_lookup_p)
5731 *made_global_lookup_p = 1;
b1eedac9 5732
339c13b6
JB
5733 /* Search symbols from all global blocks. */
5734
b5ec771e 5735 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5736
4c4b4cd2 5737 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5738 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5739
22cee43f 5740 if (num_defns_collected (obstackp) == 0)
b5ec771e 5741 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5742}
5743
b5ec771e
PA
5744/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5745 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5746 matches.
54d343a2
TT
5747 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5748 found and the blocks and symbol tables (if any) in which they were
5749 found.
22cee43f
PMR
5750
5751 When full_search is non-zero, any non-function/non-enumeral
5752 symbol match within the nest of blocks whose innermost member is BLOCK,
5753 is the one match returned (no other matches in that or
5754 enclosing blocks is returned). If there are any matches in or
5755 surrounding BLOCK, then these alone are returned.
5756
5757 Names prefixed with "standard__" are handled specially: "standard__"
5758 is first stripped off, and only static and global symbols are searched. */
5759
5760static int
b5ec771e
PA
5761ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5762 const struct block *block,
22cee43f 5763 domain_enum domain,
54d343a2 5764 std::vector<struct block_symbol> *results,
22cee43f
PMR
5765 int full_search)
5766{
22cee43f
PMR
5767 int syms_from_global_search;
5768 int ndefns;
ec6a20c2 5769 auto_obstack obstack;
22cee43f 5770
ec6a20c2 5771 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5772 domain, full_search, &syms_from_global_search);
14f9c5c9 5773
ec6a20c2
JB
5774 ndefns = num_defns_collected (&obstack);
5775
54d343a2
TT
5776 struct block_symbol *base = defns_collected (&obstack, 1);
5777 for (int i = 0; i < ndefns; ++i)
5778 results->push_back (base[i]);
4c4b4cd2 5779
54d343a2 5780 ndefns = remove_extra_symbols (results);
4c4b4cd2 5781
b1eedac9 5782 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5783 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5784
b1eedac9 5785 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5786 cache_symbol (ada_lookup_name (lookup_name), domain,
5787 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5788
54d343a2 5789 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5790
14f9c5c9
AS
5791 return ndefns;
5792}
5793
b5ec771e 5794/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5795 in global scopes, returning the number of matches, and filling *RESULTS
5796 with (SYM,BLOCK) tuples.
ec6a20c2 5797
4eeaa230
DE
5798 See ada_lookup_symbol_list_worker for further details. */
5799
5800int
b5ec771e 5801ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5802 domain_enum domain,
5803 std::vector<struct block_symbol> *results)
4eeaa230 5804{
b5ec771e
PA
5805 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5806 lookup_name_info lookup_name (name, name_match_type);
5807
5808 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5809}
5810
5811/* Implementation of the la_iterate_over_symbols method. */
5812
5813static void
14bc53a8 5814ada_iterate_over_symbols
b5ec771e
PA
5815 (const struct block *block, const lookup_name_info &name,
5816 domain_enum domain,
14bc53a8 5817 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5818{
5819 int ndefs, i;
54d343a2 5820 std::vector<struct block_symbol> results;
4eeaa230
DE
5821
5822 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5823
4eeaa230
DE
5824 for (i = 0; i < ndefs; ++i)
5825 {
7e41c8db 5826 if (!callback (&results[i]))
4eeaa230
DE
5827 break;
5828 }
5829}
5830
4e5c77fe
JB
5831/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5832 to 1, but choosing the first symbol found if there are multiple
5833 choices.
5834
5e2336be
JB
5835 The result is stored in *INFO, which must be non-NULL.
5836 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5837
5838void
5839ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5840 domain_enum domain,
d12307c1 5841 struct block_symbol *info)
14f9c5c9 5842{
b5ec771e
PA
5843 /* Since we already have an encoded name, wrap it in '<>' to force a
5844 verbatim match. Otherwise, if the name happens to not look like
5845 an encoded name (because it doesn't include a "__"),
5846 ada_lookup_name_info would re-encode/fold it again, and that
5847 would e.g., incorrectly lowercase object renaming names like
5848 "R28b" -> "r28b". */
5849 std::string verbatim = std::string ("<") + name + '>';
5850
5e2336be 5851 gdb_assert (info != NULL);
f98fc17b 5852 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5853}
aeb5907d
JB
5854
5855/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5856 scope and in global scopes, or NULL if none. NAME is folded and
5857 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5858 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5859 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5860
d12307c1 5861struct block_symbol
aeb5907d 5862ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5863 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5864{
5865 if (is_a_field_of_this != NULL)
5866 *is_a_field_of_this = 0;
5867
54d343a2 5868 std::vector<struct block_symbol> candidates;
f98fc17b 5869 int n_candidates;
f98fc17b
PA
5870
5871 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5872
5873 if (n_candidates == 0)
54d343a2 5874 return {};
f98fc17b
PA
5875
5876 block_symbol info = candidates[0];
5877 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5878 return info;
4c4b4cd2 5879}
14f9c5c9 5880
d12307c1 5881static struct block_symbol
f606139a
DE
5882ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5883 const char *name,
76a01679 5884 const struct block *block,
21b556f4 5885 const domain_enum domain)
4c4b4cd2 5886{
d12307c1 5887 struct block_symbol sym;
04dccad0
JB
5888
5889 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5890 if (sym.symbol != NULL)
04dccad0
JB
5891 return sym;
5892
5893 /* If we haven't found a match at this point, try the primitive
5894 types. In other languages, this search is performed before
5895 searching for global symbols in order to short-circuit that
5896 global-symbol search if it happens that the name corresponds
5897 to a primitive type. But we cannot do the same in Ada, because
5898 it is perfectly legitimate for a program to declare a type which
5899 has the same name as a standard type. If looking up a type in
5900 that situation, we have traditionally ignored the primitive type
5901 in favor of user-defined types. This is why, unlike most other
5902 languages, we search the primitive types this late and only after
5903 having searched the global symbols without success. */
5904
5905 if (domain == VAR_DOMAIN)
5906 {
5907 struct gdbarch *gdbarch;
5908
5909 if (block == NULL)
5910 gdbarch = target_gdbarch ();
5911 else
5912 gdbarch = block_gdbarch (block);
d12307c1
PMR
5913 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5914 if (sym.symbol != NULL)
04dccad0
JB
5915 return sym;
5916 }
5917
d12307c1 5918 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5919}
5920
5921
4c4b4cd2
PH
5922/* True iff STR is a possible encoded suffix of a normal Ada name
5923 that is to be ignored for matching purposes. Suffixes of parallel
5924 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5925 are given by any of the regular expressions:
4c4b4cd2 5926
babe1480
JB
5927 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5928 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5929 TKB [subprogram suffix for task bodies]
babe1480 5930 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5931 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5932
5933 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5934 match is performed. This sequence is used to differentiate homonyms,
5935 is an optional part of a valid name suffix. */
4c4b4cd2 5936
14f9c5c9 5937static int
d2e4a39e 5938is_name_suffix (const char *str)
14f9c5c9
AS
5939{
5940 int k;
4c4b4cd2
PH
5941 const char *matching;
5942 const int len = strlen (str);
5943
babe1480
JB
5944 /* Skip optional leading __[0-9]+. */
5945
4c4b4cd2
PH
5946 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5947 {
babe1480
JB
5948 str += 3;
5949 while (isdigit (str[0]))
5950 str += 1;
4c4b4cd2 5951 }
babe1480
JB
5952
5953 /* [.$][0-9]+ */
4c4b4cd2 5954
babe1480 5955 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5956 {
babe1480 5957 matching = str + 1;
4c4b4cd2
PH
5958 while (isdigit (matching[0]))
5959 matching += 1;
5960 if (matching[0] == '\0')
5961 return 1;
5962 }
5963
5964 /* ___[0-9]+ */
babe1480 5965
4c4b4cd2
PH
5966 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5967 {
5968 matching = str + 3;
5969 while (isdigit (matching[0]))
5970 matching += 1;
5971 if (matching[0] == '\0')
5972 return 1;
5973 }
5974
9ac7f98e
JB
5975 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5976
5977 if (strcmp (str, "TKB") == 0)
5978 return 1;
5979
529cad9c
PH
5980#if 0
5981 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5982 with a N at the end. Unfortunately, the compiler uses the same
5983 convention for other internal types it creates. So treating
529cad9c 5984 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5985 some regressions. For instance, consider the case of an enumerated
5986 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5987 name ends with N.
5988 Having a single character like this as a suffix carrying some
0963b4bd 5989 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5990 to be something like "_N" instead. In the meantime, do not do
5991 the following check. */
5992 /* Protected Object Subprograms */
5993 if (len == 1 && str [0] == 'N')
5994 return 1;
5995#endif
5996
5997 /* _E[0-9]+[bs]$ */
5998 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5999 {
6000 matching = str + 3;
6001 while (isdigit (matching[0]))
6002 matching += 1;
6003 if ((matching[0] == 'b' || matching[0] == 's')
6004 && matching [1] == '\0')
6005 return 1;
6006 }
6007
4c4b4cd2
PH
6008 /* ??? We should not modify STR directly, as we are doing below. This
6009 is fine in this case, but may become problematic later if we find
6010 that this alternative did not work, and want to try matching
6011 another one from the begining of STR. Since we modified it, we
6012 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6013 if (str[0] == 'X')
6014 {
6015 str += 1;
d2e4a39e 6016 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6017 {
6018 if (str[0] != 'n' && str[0] != 'b')
6019 return 0;
6020 str += 1;
6021 }
14f9c5c9 6022 }
babe1480 6023
14f9c5c9
AS
6024 if (str[0] == '\000')
6025 return 1;
babe1480 6026
d2e4a39e 6027 if (str[0] == '_')
14f9c5c9
AS
6028 {
6029 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6030 return 0;
d2e4a39e 6031 if (str[2] == '_')
4c4b4cd2 6032 {
61ee279c
PH
6033 if (strcmp (str + 3, "JM") == 0)
6034 return 1;
6035 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6036 the LJM suffix in favor of the JM one. But we will
6037 still accept LJM as a valid suffix for a reasonable
6038 amount of time, just to allow ourselves to debug programs
6039 compiled using an older version of GNAT. */
4c4b4cd2
PH
6040 if (strcmp (str + 3, "LJM") == 0)
6041 return 1;
6042 if (str[3] != 'X')
6043 return 0;
1265e4aa
JB
6044 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6045 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6046 return 1;
6047 if (str[4] == 'R' && str[5] != 'T')
6048 return 1;
6049 return 0;
6050 }
6051 if (!isdigit (str[2]))
6052 return 0;
6053 for (k = 3; str[k] != '\0'; k += 1)
6054 if (!isdigit (str[k]) && str[k] != '_')
6055 return 0;
14f9c5c9
AS
6056 return 1;
6057 }
4c4b4cd2 6058 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6059 {
4c4b4cd2
PH
6060 for (k = 2; str[k] != '\0'; k += 1)
6061 if (!isdigit (str[k]) && str[k] != '_')
6062 return 0;
14f9c5c9
AS
6063 return 1;
6064 }
6065 return 0;
6066}
d2e4a39e 6067
aeb5907d
JB
6068/* Return non-zero if the string starting at NAME and ending before
6069 NAME_END contains no capital letters. */
529cad9c
PH
6070
6071static int
6072is_valid_name_for_wild_match (const char *name0)
6073{
6074 const char *decoded_name = ada_decode (name0);
6075 int i;
6076
5823c3ef
JB
6077 /* If the decoded name starts with an angle bracket, it means that
6078 NAME0 does not follow the GNAT encoding format. It should then
6079 not be allowed as a possible wild match. */
6080 if (decoded_name[0] == '<')
6081 return 0;
6082
529cad9c
PH
6083 for (i=0; decoded_name[i] != '\0'; i++)
6084 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6085 return 0;
6086
6087 return 1;
6088}
6089
73589123
PH
6090/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6091 that could start a simple name. Assumes that *NAMEP points into
6092 the string beginning at NAME0. */
4c4b4cd2 6093
14f9c5c9 6094static int
73589123 6095advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6096{
73589123 6097 const char *name = *namep;
5b4ee69b 6098
5823c3ef 6099 while (1)
14f9c5c9 6100 {
aa27d0b3 6101 int t0, t1;
73589123
PH
6102
6103 t0 = *name;
6104 if (t0 == '_')
6105 {
6106 t1 = name[1];
6107 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6108 {
6109 name += 1;
61012eef 6110 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6111 break;
6112 else
6113 name += 1;
6114 }
aa27d0b3
JB
6115 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6116 || name[2] == target0))
73589123
PH
6117 {
6118 name += 2;
6119 break;
6120 }
6121 else
6122 return 0;
6123 }
6124 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6125 name += 1;
6126 else
5823c3ef 6127 return 0;
73589123
PH
6128 }
6129
6130 *namep = name;
6131 return 1;
6132}
6133
b5ec771e
PA
6134/* Return true iff NAME encodes a name of the form prefix.PATN.
6135 Ignores any informational suffixes of NAME (i.e., for which
6136 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6137 simple name. */
73589123 6138
b5ec771e 6139static bool
73589123
PH
6140wild_match (const char *name, const char *patn)
6141{
22e048c9 6142 const char *p;
73589123
PH
6143 const char *name0 = name;
6144
6145 while (1)
6146 {
6147 const char *match = name;
6148
6149 if (*name == *patn)
6150 {
6151 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6152 if (*p != *name)
6153 break;
6154 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6155 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6156
6157 if (name[-1] == '_')
6158 name -= 1;
6159 }
6160 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6161 return false;
96d887e8 6162 }
96d887e8
PH
6163}
6164
b5ec771e
PA
6165/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6166 any trailing suffixes that encode debugging information or leading
6167 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6168 information that is ignored). */
40658b94 6169
b5ec771e 6170static bool
c4d840bd
PH
6171full_match (const char *sym_name, const char *search_name)
6172{
b5ec771e
PA
6173 size_t search_name_len = strlen (search_name);
6174
6175 if (strncmp (sym_name, search_name, search_name_len) == 0
6176 && is_name_suffix (sym_name + search_name_len))
6177 return true;
6178
6179 if (startswith (sym_name, "_ada_")
6180 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6181 && is_name_suffix (sym_name + search_name_len + 5))
6182 return true;
c4d840bd 6183
b5ec771e
PA
6184 return false;
6185}
c4d840bd 6186
b5ec771e
PA
6187/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6188 *defn_symbols, updating the list of symbols in OBSTACKP (if
6189 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6190
6191static void
6192ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6193 const struct block *block,
6194 const lookup_name_info &lookup_name,
6195 domain_enum domain, struct objfile *objfile)
96d887e8 6196{
8157b174 6197 struct block_iterator iter;
96d887e8
PH
6198 /* A matching argument symbol, if any. */
6199 struct symbol *arg_sym;
6200 /* Set true when we find a matching non-argument symbol. */
6201 int found_sym;
6202 struct symbol *sym;
6203
6204 arg_sym = NULL;
6205 found_sym = 0;
b5ec771e
PA
6206 for (sym = block_iter_match_first (block, lookup_name, &iter);
6207 sym != NULL;
6208 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6209 {
b5ec771e
PA
6210 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6211 SYMBOL_DOMAIN (sym), domain))
6212 {
6213 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6214 {
6215 if (SYMBOL_IS_ARGUMENT (sym))
6216 arg_sym = sym;
6217 else
6218 {
6219 found_sym = 1;
6220 add_defn_to_vec (obstackp,
6221 fixup_symbol_section (sym, objfile),
6222 block);
6223 }
6224 }
6225 }
96d887e8
PH
6226 }
6227
22cee43f
PMR
6228 /* Handle renamings. */
6229
b5ec771e 6230 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6231 found_sym = 1;
6232
96d887e8
PH
6233 if (!found_sym && arg_sym != NULL)
6234 {
76a01679
JB
6235 add_defn_to_vec (obstackp,
6236 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6237 block);
96d887e8
PH
6238 }
6239
b5ec771e 6240 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6241 {
6242 arg_sym = NULL;
6243 found_sym = 0;
b5ec771e
PA
6244 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6245 const char *name = ada_lookup_name.c_str ();
6246 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6247
6248 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6249 {
4186eb54
KS
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6252 {
6253 int cmp;
6254
6255 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6256 if (cmp == 0)
6257 {
61012eef 6258 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6259 if (cmp == 0)
6260 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6261 name_len);
6262 }
6263
6264 if (cmp == 0
6265 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6266 {
2a2d4dc3
AS
6267 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6268 {
6269 if (SYMBOL_IS_ARGUMENT (sym))
6270 arg_sym = sym;
6271 else
6272 {
6273 found_sym = 1;
6274 add_defn_to_vec (obstackp,
6275 fixup_symbol_section (sym, objfile),
6276 block);
6277 }
6278 }
76a01679
JB
6279 }
6280 }
76a01679 6281 }
96d887e8
PH
6282
6283 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6284 They aren't parameters, right? */
6285 if (!found_sym && arg_sym != NULL)
6286 {
6287 add_defn_to_vec (obstackp,
76a01679 6288 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6289 block);
96d887e8
PH
6290 }
6291 }
6292}
6293\f
41d27058
JB
6294
6295 /* Symbol Completion */
6296
b5ec771e 6297/* See symtab.h. */
41d27058 6298
b5ec771e
PA
6299bool
6300ada_lookup_name_info::matches
6301 (const char *sym_name,
6302 symbol_name_match_type match_type,
a207cff2 6303 completion_match_result *comp_match_res) const
41d27058 6304{
b5ec771e
PA
6305 bool match = false;
6306 const char *text = m_encoded_name.c_str ();
6307 size_t text_len = m_encoded_name.size ();
41d27058
JB
6308
6309 /* First, test against the fully qualified name of the symbol. */
6310
6311 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6312 match = true;
41d27058 6313
b5ec771e 6314 if (match && !m_encoded_p)
41d27058
JB
6315 {
6316 /* One needed check before declaring a positive match is to verify
6317 that iff we are doing a verbatim match, the decoded version
6318 of the symbol name starts with '<'. Otherwise, this symbol name
6319 is not a suitable completion. */
6320 const char *sym_name_copy = sym_name;
b5ec771e 6321 bool has_angle_bracket;
41d27058
JB
6322
6323 sym_name = ada_decode (sym_name);
6324 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6325 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6326 sym_name = sym_name_copy;
6327 }
6328
b5ec771e 6329 if (match && !m_verbatim_p)
41d27058
JB
6330 {
6331 /* When doing non-verbatim match, another check that needs to
6332 be done is to verify that the potentially matching symbol name
6333 does not include capital letters, because the ada-mode would
6334 not be able to understand these symbol names without the
6335 angle bracket notation. */
6336 const char *tmp;
6337
6338 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6339 if (*tmp != '\0')
b5ec771e 6340 match = false;
41d27058
JB
6341 }
6342
6343 /* Second: Try wild matching... */
6344
b5ec771e 6345 if (!match && m_wild_match_p)
41d27058
JB
6346 {
6347 /* Since we are doing wild matching, this means that TEXT
6348 may represent an unqualified symbol name. We therefore must
6349 also compare TEXT against the unqualified name of the symbol. */
6350 sym_name = ada_unqualified_name (ada_decode (sym_name));
6351
6352 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6353 match = true;
41d27058
JB
6354 }
6355
b5ec771e 6356 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6357
6358 if (!match)
b5ec771e 6359 return false;
41d27058 6360
a207cff2 6361 if (comp_match_res != NULL)
b5ec771e 6362 {
a207cff2 6363 std::string &match_str = comp_match_res->match.storage ();
41d27058 6364
b5ec771e 6365 if (!m_encoded_p)
a207cff2 6366 match_str = ada_decode (sym_name);
b5ec771e
PA
6367 else
6368 {
6369 if (m_verbatim_p)
6370 match_str = add_angle_brackets (sym_name);
6371 else
6372 match_str = sym_name;
41d27058 6373
b5ec771e 6374 }
a207cff2
PA
6375
6376 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6377 }
6378
b5ec771e 6379 return true;
41d27058
JB
6380}
6381
b5ec771e 6382/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6383 WORD is the entire command on which completion is made. */
41d27058 6384
eb3ff9a5
PA
6385static void
6386ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6387 complete_symbol_mode mode,
b5ec771e
PA
6388 symbol_name_match_type name_match_type,
6389 const char *text, const char *word,
eb3ff9a5 6390 enum type_code code)
41d27058 6391{
41d27058 6392 struct symbol *sym;
43f3e411 6393 struct compunit_symtab *s;
41d27058
JB
6394 struct minimal_symbol *msymbol;
6395 struct objfile *objfile;
3977b71f 6396 const struct block *b, *surrounding_static_block = 0;
8157b174 6397 struct block_iterator iter;
41d27058 6398
2f68a895
TT
6399 gdb_assert (code == TYPE_CODE_UNDEF);
6400
1b026119 6401 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6402
6403 /* First, look at the partial symtab symbols. */
14bc53a8 6404 expand_symtabs_matching (NULL,
b5ec771e
PA
6405 lookup_name,
6406 NULL,
14bc53a8
PA
6407 NULL,
6408 ALL_DOMAIN);
41d27058
JB
6409
6410 /* At this point scan through the misc symbol vectors and add each
6411 symbol you find to the list. Eventually we want to ignore
6412 anything that isn't a text symbol (everything else will be
6413 handled by the psymtab code above). */
6414
6415 ALL_MSYMBOLS (objfile, msymbol)
6416 {
6417 QUIT;
b5ec771e 6418
f9d67a22
PA
6419 if (completion_skip_symbol (mode, msymbol))
6420 continue;
6421
d4c2a405
PA
6422 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6423
6424 /* Ada minimal symbols won't have their language set to Ada. If
6425 we let completion_list_add_name compare using the
6426 default/C-like matcher, then when completing e.g., symbols in a
6427 package named "pck", we'd match internal Ada symbols like
6428 "pckS", which are invalid in an Ada expression, unless you wrap
6429 them in '<' '>' to request a verbatim match.
6430
6431 Unfortunately, some Ada encoded names successfully demangle as
6432 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6433 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6434 with the wrong language set. Paper over that issue here. */
6435 if (symbol_language == language_auto
6436 || symbol_language == language_cplus)
6437 symbol_language = language_ada;
6438
b5ec771e 6439 completion_list_add_name (tracker,
d4c2a405 6440 symbol_language,
b5ec771e 6441 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6442 lookup_name, text, word);
41d27058
JB
6443 }
6444
6445 /* Search upwards from currently selected frame (so that we can
6446 complete on local vars. */
6447
6448 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6449 {
6450 if (!BLOCK_SUPERBLOCK (b))
6451 surrounding_static_block = b; /* For elmin of dups */
6452
6453 ALL_BLOCK_SYMBOLS (b, iter, sym)
6454 {
f9d67a22
PA
6455 if (completion_skip_symbol (mode, sym))
6456 continue;
6457
b5ec771e
PA
6458 completion_list_add_name (tracker,
6459 SYMBOL_LANGUAGE (sym),
6460 SYMBOL_LINKAGE_NAME (sym),
1b026119 6461 lookup_name, text, word);
41d27058
JB
6462 }
6463 }
6464
6465 /* Go through the symtabs and check the externs and statics for
43f3e411 6466 symbols which match. */
41d27058 6467
43f3e411 6468 ALL_COMPUNITS (objfile, s)
41d27058
JB
6469 {
6470 QUIT;
43f3e411 6471 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6472 ALL_BLOCK_SYMBOLS (b, iter, sym)
6473 {
f9d67a22
PA
6474 if (completion_skip_symbol (mode, sym))
6475 continue;
6476
b5ec771e
PA
6477 completion_list_add_name (tracker,
6478 SYMBOL_LANGUAGE (sym),
6479 SYMBOL_LINKAGE_NAME (sym),
1b026119 6480 lookup_name, text, word);
41d27058
JB
6481 }
6482 }
6483
43f3e411 6484 ALL_COMPUNITS (objfile, s)
41d27058
JB
6485 {
6486 QUIT;
43f3e411 6487 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6488 /* Don't do this block twice. */
6489 if (b == surrounding_static_block)
6490 continue;
6491 ALL_BLOCK_SYMBOLS (b, iter, sym)
6492 {
f9d67a22
PA
6493 if (completion_skip_symbol (mode, sym))
6494 continue;
6495
b5ec771e
PA
6496 completion_list_add_name (tracker,
6497 SYMBOL_LANGUAGE (sym),
6498 SYMBOL_LINKAGE_NAME (sym),
1b026119 6499 lookup_name, text, word);
41d27058
JB
6500 }
6501 }
41d27058
JB
6502}
6503
963a6417 6504 /* Field Access */
96d887e8 6505
73fb9985
JB
6506/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6507 for tagged types. */
6508
6509static int
6510ada_is_dispatch_table_ptr_type (struct type *type)
6511{
0d5cff50 6512 const char *name;
73fb9985
JB
6513
6514 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6515 return 0;
6516
6517 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6518 if (name == NULL)
6519 return 0;
6520
6521 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6522}
6523
ac4a2da4
JG
6524/* Return non-zero if TYPE is an interface tag. */
6525
6526static int
6527ada_is_interface_tag (struct type *type)
6528{
6529 const char *name = TYPE_NAME (type);
6530
6531 if (name == NULL)
6532 return 0;
6533
6534 return (strcmp (name, "ada__tags__interface_tag") == 0);
6535}
6536
963a6417
PH
6537/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6538 to be invisible to users. */
96d887e8 6539
963a6417
PH
6540int
6541ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6542{
963a6417
PH
6543 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6544 return 1;
ffde82bf 6545
73fb9985
JB
6546 /* Check the name of that field. */
6547 {
6548 const char *name = TYPE_FIELD_NAME (type, field_num);
6549
6550 /* Anonymous field names should not be printed.
6551 brobecker/2007-02-20: I don't think this can actually happen
6552 but we don't want to print the value of annonymous fields anyway. */
6553 if (name == NULL)
6554 return 1;
6555
ffde82bf
JB
6556 /* Normally, fields whose name start with an underscore ("_")
6557 are fields that have been internally generated by the compiler,
6558 and thus should not be printed. The "_parent" field is special,
6559 however: This is a field internally generated by the compiler
6560 for tagged types, and it contains the components inherited from
6561 the parent type. This field should not be printed as is, but
6562 should not be ignored either. */
61012eef 6563 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6564 return 1;
6565 }
6566
ac4a2da4
JG
6567 /* If this is the dispatch table of a tagged type or an interface tag,
6568 then ignore. */
73fb9985 6569 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6570 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6571 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6572 return 1;
6573
6574 /* Not a special field, so it should not be ignored. */
6575 return 0;
963a6417 6576}
96d887e8 6577
963a6417 6578/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6579 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6580
963a6417
PH
6581int
6582ada_is_tagged_type (struct type *type, int refok)
6583{
988f6b3d 6584 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6585}
96d887e8 6586
963a6417 6587/* True iff TYPE represents the type of X'Tag */
96d887e8 6588
963a6417
PH
6589int
6590ada_is_tag_type (struct type *type)
6591{
460efde1
JB
6592 type = ada_check_typedef (type);
6593
963a6417
PH
6594 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6595 return 0;
6596 else
96d887e8 6597 {
963a6417 6598 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6599
963a6417
PH
6600 return (name != NULL
6601 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6602 }
96d887e8
PH
6603}
6604
963a6417 6605/* The type of the tag on VAL. */
76a01679 6606
963a6417
PH
6607struct type *
6608ada_tag_type (struct value *val)
96d887e8 6609{
988f6b3d 6610 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6611}
96d887e8 6612
b50d69b5
JG
6613/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6614 retired at Ada 05). */
6615
6616static int
6617is_ada95_tag (struct value *tag)
6618{
6619 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6620}
6621
963a6417 6622/* The value of the tag on VAL. */
96d887e8 6623
963a6417
PH
6624struct value *
6625ada_value_tag (struct value *val)
6626{
03ee6b2e 6627 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6628}
6629
963a6417
PH
6630/* The value of the tag on the object of type TYPE whose contents are
6631 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6632 ADDRESS. */
96d887e8 6633
963a6417 6634static struct value *
10a2c479 6635value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6636 const gdb_byte *valaddr,
963a6417 6637 CORE_ADDR address)
96d887e8 6638{
b5385fc0 6639 int tag_byte_offset;
963a6417 6640 struct type *tag_type;
5b4ee69b 6641
963a6417 6642 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6643 NULL, NULL, NULL))
96d887e8 6644 {
fc1a4b47 6645 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6646 ? NULL
6647 : valaddr + tag_byte_offset);
963a6417 6648 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6649
963a6417 6650 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6651 }
963a6417
PH
6652 return NULL;
6653}
96d887e8 6654
963a6417
PH
6655static struct type *
6656type_from_tag (struct value *tag)
6657{
6658 const char *type_name = ada_tag_name (tag);
5b4ee69b 6659
963a6417
PH
6660 if (type_name != NULL)
6661 return ada_find_any_type (ada_encode (type_name));
6662 return NULL;
6663}
96d887e8 6664
b50d69b5
JG
6665/* Given a value OBJ of a tagged type, return a value of this
6666 type at the base address of the object. The base address, as
6667 defined in Ada.Tags, it is the address of the primary tag of
6668 the object, and therefore where the field values of its full
6669 view can be fetched. */
6670
6671struct value *
6672ada_tag_value_at_base_address (struct value *obj)
6673{
b50d69b5
JG
6674 struct value *val;
6675 LONGEST offset_to_top = 0;
6676 struct type *ptr_type, *obj_type;
6677 struct value *tag;
6678 CORE_ADDR base_address;
6679
6680 obj_type = value_type (obj);
6681
6682 /* It is the responsability of the caller to deref pointers. */
6683
6684 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6685 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6686 return obj;
6687
6688 tag = ada_value_tag (obj);
6689 if (!tag)
6690 return obj;
6691
6692 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6693
6694 if (is_ada95_tag (tag))
6695 return obj;
6696
08f49010
XR
6697 ptr_type = language_lookup_primitive_type
6698 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6699 ptr_type = lookup_pointer_type (ptr_type);
6700 val = value_cast (ptr_type, tag);
6701 if (!val)
6702 return obj;
6703
6704 /* It is perfectly possible that an exception be raised while
6705 trying to determine the base address, just like for the tag;
6706 see ada_tag_name for more details. We do not print the error
6707 message for the same reason. */
6708
492d29ea 6709 TRY
b50d69b5
JG
6710 {
6711 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6712 }
6713
492d29ea
PA
6714 CATCH (e, RETURN_MASK_ERROR)
6715 {
6716 return obj;
6717 }
6718 END_CATCH
b50d69b5
JG
6719
6720 /* If offset is null, nothing to do. */
6721
6722 if (offset_to_top == 0)
6723 return obj;
6724
6725 /* -1 is a special case in Ada.Tags; however, what should be done
6726 is not quite clear from the documentation. So do nothing for
6727 now. */
6728
6729 if (offset_to_top == -1)
6730 return obj;
6731
08f49010
XR
6732 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6733 from the base address. This was however incompatible with
6734 C++ dispatch table: C++ uses a *negative* value to *add*
6735 to the base address. Ada's convention has therefore been
6736 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6737 use the same convention. Here, we support both cases by
6738 checking the sign of OFFSET_TO_TOP. */
6739
6740 if (offset_to_top > 0)
6741 offset_to_top = -offset_to_top;
6742
6743 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6744 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6745
6746 /* Make sure that we have a proper tag at the new address.
6747 Otherwise, offset_to_top is bogus (which can happen when
6748 the object is not initialized yet). */
6749
6750 if (!tag)
6751 return obj;
6752
6753 obj_type = type_from_tag (tag);
6754
6755 if (!obj_type)
6756 return obj;
6757
6758 return value_from_contents_and_address (obj_type, NULL, base_address);
6759}
6760
1b611343
JB
6761/* Return the "ada__tags__type_specific_data" type. */
6762
6763static struct type *
6764ada_get_tsd_type (struct inferior *inf)
963a6417 6765{
1b611343 6766 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6767
1b611343
JB
6768 if (data->tsd_type == 0)
6769 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6770 return data->tsd_type;
6771}
529cad9c 6772
1b611343
JB
6773/* Return the TSD (type-specific data) associated to the given TAG.
6774 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6775
1b611343 6776 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6777
1b611343
JB
6778static struct value *
6779ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6780{
4c4b4cd2 6781 struct value *val;
1b611343 6782 struct type *type;
5b4ee69b 6783
1b611343
JB
6784 /* First option: The TSD is simply stored as a field of our TAG.
6785 Only older versions of GNAT would use this format, but we have
6786 to test it first, because there are no visible markers for
6787 the current approach except the absence of that field. */
529cad9c 6788
1b611343
JB
6789 val = ada_value_struct_elt (tag, "tsd", 1);
6790 if (val)
6791 return val;
e802dbe0 6792
1b611343
JB
6793 /* Try the second representation for the dispatch table (in which
6794 there is no explicit 'tsd' field in the referent of the tag pointer,
6795 and instead the tsd pointer is stored just before the dispatch
6796 table. */
e802dbe0 6797
1b611343
JB
6798 type = ada_get_tsd_type (current_inferior());
6799 if (type == NULL)
6800 return NULL;
6801 type = lookup_pointer_type (lookup_pointer_type (type));
6802 val = value_cast (type, tag);
6803 if (val == NULL)
6804 return NULL;
6805 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6806}
6807
1b611343
JB
6808/* Given the TSD of a tag (type-specific data), return a string
6809 containing the name of the associated type.
6810
6811 The returned value is good until the next call. May return NULL
6812 if we are unable to determine the tag name. */
6813
6814static char *
6815ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6816{
529cad9c
PH
6817 static char name[1024];
6818 char *p;
1b611343 6819 struct value *val;
529cad9c 6820
1b611343 6821 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6822 if (val == NULL)
1b611343 6823 return NULL;
4c4b4cd2
PH
6824 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6825 for (p = name; *p != '\0'; p += 1)
6826 if (isalpha (*p))
6827 *p = tolower (*p);
1b611343 6828 return name;
4c4b4cd2
PH
6829}
6830
6831/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6832 a C string.
6833
6834 Return NULL if the TAG is not an Ada tag, or if we were unable to
6835 determine the name of that tag. The result is good until the next
6836 call. */
4c4b4cd2
PH
6837
6838const char *
6839ada_tag_name (struct value *tag)
6840{
1b611343 6841 char *name = NULL;
5b4ee69b 6842
df407dfe 6843 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6844 return NULL;
1b611343
JB
6845
6846 /* It is perfectly possible that an exception be raised while trying
6847 to determine the TAG's name, even under normal circumstances:
6848 The associated variable may be uninitialized or corrupted, for
6849 instance. We do not let any exception propagate past this point.
6850 instead we return NULL.
6851
6852 We also do not print the error message either (which often is very
6853 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6854 the caller print a more meaningful message if necessary. */
492d29ea 6855 TRY
1b611343
JB
6856 {
6857 struct value *tsd = ada_get_tsd_from_tag (tag);
6858
6859 if (tsd != NULL)
6860 name = ada_tag_name_from_tsd (tsd);
6861 }
492d29ea
PA
6862 CATCH (e, RETURN_MASK_ERROR)
6863 {
6864 }
6865 END_CATCH
1b611343
JB
6866
6867 return name;
4c4b4cd2
PH
6868}
6869
6870/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6871
d2e4a39e 6872struct type *
ebf56fd3 6873ada_parent_type (struct type *type)
14f9c5c9
AS
6874{
6875 int i;
6876
61ee279c 6877 type = ada_check_typedef (type);
14f9c5c9
AS
6878
6879 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6880 return NULL;
6881
6882 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6883 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6884 {
6885 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6886
6887 /* If the _parent field is a pointer, then dereference it. */
6888 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6889 parent_type = TYPE_TARGET_TYPE (parent_type);
6890 /* If there is a parallel XVS type, get the actual base type. */
6891 parent_type = ada_get_base_type (parent_type);
6892
6893 return ada_check_typedef (parent_type);
6894 }
14f9c5c9
AS
6895
6896 return NULL;
6897}
6898
4c4b4cd2
PH
6899/* True iff field number FIELD_NUM of structure type TYPE contains the
6900 parent-type (inherited) fields of a derived type. Assumes TYPE is
6901 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6902
6903int
ebf56fd3 6904ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6905{
61ee279c 6906 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6907
4c4b4cd2 6908 return (name != NULL
61012eef
GB
6909 && (startswith (name, "PARENT")
6910 || startswith (name, "_parent")));
14f9c5c9
AS
6911}
6912
4c4b4cd2 6913/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6914 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6915 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6916 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6917 structures. */
14f9c5c9
AS
6918
6919int
ebf56fd3 6920ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6921{
d2e4a39e 6922 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6923
dddc0e16
JB
6924 if (name != NULL && strcmp (name, "RETVAL") == 0)
6925 {
6926 /* This happens in functions with "out" or "in out" parameters
6927 which are passed by copy. For such functions, GNAT describes
6928 the function's return type as being a struct where the return
6929 value is in a field called RETVAL, and where the other "out"
6930 or "in out" parameters are fields of that struct. This is not
6931 a wrapper. */
6932 return 0;
6933 }
6934
d2e4a39e 6935 return (name != NULL
61012eef 6936 && (startswith (name, "PARENT")
4c4b4cd2 6937 || strcmp (name, "REP") == 0
61012eef 6938 || startswith (name, "_parent")
4c4b4cd2 6939 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6940}
6941
4c4b4cd2
PH
6942/* True iff field number FIELD_NUM of structure or union type TYPE
6943 is a variant wrapper. Assumes TYPE is a structure type with at least
6944 FIELD_NUM+1 fields. */
14f9c5c9
AS
6945
6946int
ebf56fd3 6947ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6948{
d2e4a39e 6949 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6950
14f9c5c9 6951 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6952 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6953 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6954 == TYPE_CODE_UNION)));
14f9c5c9
AS
6955}
6956
6957/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6958 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6959 returns the type of the controlling discriminant for the variant.
6960 May return NULL if the type could not be found. */
14f9c5c9 6961
d2e4a39e 6962struct type *
ebf56fd3 6963ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6964{
a121b7c1 6965 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6966
988f6b3d 6967 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6968}
6969
4c4b4cd2 6970/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6971 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6972 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6973
6974int
ebf56fd3 6975ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6976{
d2e4a39e 6977 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6978
14f9c5c9
AS
6979 return (name != NULL && name[0] == 'O');
6980}
6981
6982/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6983 returns the name of the discriminant controlling the variant.
6984 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6985
a121b7c1 6986const char *
ebf56fd3 6987ada_variant_discrim_name (struct type *type0)
14f9c5c9 6988{
d2e4a39e 6989 static char *result = NULL;
14f9c5c9 6990 static size_t result_len = 0;
d2e4a39e
AS
6991 struct type *type;
6992 const char *name;
6993 const char *discrim_end;
6994 const char *discrim_start;
14f9c5c9
AS
6995
6996 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6997 type = TYPE_TARGET_TYPE (type0);
6998 else
6999 type = type0;
7000
7001 name = ada_type_name (type);
7002
7003 if (name == NULL || name[0] == '\000')
7004 return "";
7005
7006 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7007 discrim_end -= 1)
7008 {
61012eef 7009 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7010 break;
14f9c5c9
AS
7011 }
7012 if (discrim_end == name)
7013 return "";
7014
d2e4a39e 7015 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7016 discrim_start -= 1)
7017 {
d2e4a39e 7018 if (discrim_start == name + 1)
4c4b4cd2 7019 return "";
76a01679 7020 if ((discrim_start > name + 3
61012eef 7021 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7022 || discrim_start[-1] == '.')
7023 break;
14f9c5c9
AS
7024 }
7025
7026 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7027 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7028 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7029 return result;
7030}
7031
4c4b4cd2
PH
7032/* Scan STR for a subtype-encoded number, beginning at position K.
7033 Put the position of the character just past the number scanned in
7034 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7035 Return 1 if there was a valid number at the given position, and 0
7036 otherwise. A "subtype-encoded" number consists of the absolute value
7037 in decimal, followed by the letter 'm' to indicate a negative number.
7038 Assumes 0m does not occur. */
14f9c5c9
AS
7039
7040int
d2e4a39e 7041ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7042{
7043 ULONGEST RU;
7044
d2e4a39e 7045 if (!isdigit (str[k]))
14f9c5c9
AS
7046 return 0;
7047
4c4b4cd2 7048 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7049 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7050 LONGEST. */
14f9c5c9
AS
7051 RU = 0;
7052 while (isdigit (str[k]))
7053 {
d2e4a39e 7054 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7055 k += 1;
7056 }
7057
d2e4a39e 7058 if (str[k] == 'm')
14f9c5c9
AS
7059 {
7060 if (R != NULL)
4c4b4cd2 7061 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7062 k += 1;
7063 }
7064 else if (R != NULL)
7065 *R = (LONGEST) RU;
7066
4c4b4cd2 7067 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7068 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7069 number representable as a LONGEST (although either would probably work
7070 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7071 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7072
7073 if (new_k != NULL)
7074 *new_k = k;
7075 return 1;
7076}
7077
4c4b4cd2
PH
7078/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7079 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7080 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7081
d2e4a39e 7082int
ebf56fd3 7083ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7084{
d2e4a39e 7085 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7086 int p;
7087
7088 p = 0;
7089 while (1)
7090 {
d2e4a39e 7091 switch (name[p])
4c4b4cd2
PH
7092 {
7093 case '\0':
7094 return 0;
7095 case 'S':
7096 {
7097 LONGEST W;
5b4ee69b 7098
4c4b4cd2
PH
7099 if (!ada_scan_number (name, p + 1, &W, &p))
7100 return 0;
7101 if (val == W)
7102 return 1;
7103 break;
7104 }
7105 case 'R':
7106 {
7107 LONGEST L, U;
5b4ee69b 7108
4c4b4cd2
PH
7109 if (!ada_scan_number (name, p + 1, &L, &p)
7110 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7111 return 0;
7112 if (val >= L && val <= U)
7113 return 1;
7114 break;
7115 }
7116 case 'O':
7117 return 1;
7118 default:
7119 return 0;
7120 }
7121 }
7122}
7123
0963b4bd 7124/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7125
7126/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7127 ARG_TYPE, extract and return the value of one of its (non-static)
7128 fields. FIELDNO says which field. Differs from value_primitive_field
7129 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7130
4c4b4cd2 7131static struct value *
d2e4a39e 7132ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7133 struct type *arg_type)
14f9c5c9 7134{
14f9c5c9
AS
7135 struct type *type;
7136
61ee279c 7137 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7138 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7139
4c4b4cd2 7140 /* Handle packed fields. */
14f9c5c9
AS
7141
7142 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7143 {
7144 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7145 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7146
0fd88904 7147 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7148 offset + bit_pos / 8,
7149 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7150 }
7151 else
7152 return value_primitive_field (arg1, offset, fieldno, arg_type);
7153}
7154
52ce6436
PH
7155/* Find field with name NAME in object of type TYPE. If found,
7156 set the following for each argument that is non-null:
7157 - *FIELD_TYPE_P to the field's type;
7158 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7159 an object of that type;
7160 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7161 - *BIT_SIZE_P to its size in bits if the field is packed, and
7162 0 otherwise;
7163 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7164 fields up to but not including the desired field, or by the total
7165 number of fields if not found. A NULL value of NAME never
7166 matches; the function just counts visible fields in this case.
7167
828d5846
XR
7168 Notice that we need to handle when a tagged record hierarchy
7169 has some components with the same name, like in this scenario:
7170
7171 type Top_T is tagged record
7172 N : Integer := 1;
7173 U : Integer := 974;
7174 A : Integer := 48;
7175 end record;
7176
7177 type Middle_T is new Top.Top_T with record
7178 N : Character := 'a';
7179 C : Integer := 3;
7180 end record;
7181
7182 type Bottom_T is new Middle.Middle_T with record
7183 N : Float := 4.0;
7184 C : Character := '5';
7185 X : Integer := 6;
7186 A : Character := 'J';
7187 end record;
7188
7189 Let's say we now have a variable declared and initialized as follow:
7190
7191 TC : Top_A := new Bottom_T;
7192
7193 And then we use this variable to call this function
7194
7195 procedure Assign (Obj: in out Top_T; TV : Integer);
7196
7197 as follow:
7198
7199 Assign (Top_T (B), 12);
7200
7201 Now, we're in the debugger, and we're inside that procedure
7202 then and we want to print the value of obj.c:
7203
7204 Usually, the tagged record or one of the parent type owns the
7205 component to print and there's no issue but in this particular
7206 case, what does it mean to ask for Obj.C? Since the actual
7207 type for object is type Bottom_T, it could mean two things: type
7208 component C from the Middle_T view, but also component C from
7209 Bottom_T. So in that "undefined" case, when the component is
7210 not found in the non-resolved type (which includes all the
7211 components of the parent type), then resolve it and see if we
7212 get better luck once expanded.
7213
7214 In the case of homonyms in the derived tagged type, we don't
7215 guaranty anything, and pick the one that's easiest for us
7216 to program.
7217
0963b4bd 7218 Returns 1 if found, 0 otherwise. */
52ce6436 7219
4c4b4cd2 7220static int
0d5cff50 7221find_struct_field (const char *name, struct type *type, int offset,
76a01679 7222 struct type **field_type_p,
52ce6436
PH
7223 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7224 int *index_p)
4c4b4cd2
PH
7225{
7226 int i;
828d5846 7227 int parent_offset = -1;
4c4b4cd2 7228
61ee279c 7229 type = ada_check_typedef (type);
76a01679 7230
52ce6436
PH
7231 if (field_type_p != NULL)
7232 *field_type_p = NULL;
7233 if (byte_offset_p != NULL)
d5d6fca5 7234 *byte_offset_p = 0;
52ce6436
PH
7235 if (bit_offset_p != NULL)
7236 *bit_offset_p = 0;
7237 if (bit_size_p != NULL)
7238 *bit_size_p = 0;
7239
7240 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7241 {
7242 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7243 int fld_offset = offset + bit_pos / 8;
0d5cff50 7244 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7245
4c4b4cd2
PH
7246 if (t_field_name == NULL)
7247 continue;
7248
828d5846
XR
7249 else if (ada_is_parent_field (type, i))
7250 {
7251 /* This is a field pointing us to the parent type of a tagged
7252 type. As hinted in this function's documentation, we give
7253 preference to fields in the current record first, so what
7254 we do here is just record the index of this field before
7255 we skip it. If it turns out we couldn't find our field
7256 in the current record, then we'll get back to it and search
7257 inside it whether the field might exist in the parent. */
7258
7259 parent_offset = i;
7260 continue;
7261 }
7262
52ce6436 7263 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7264 {
7265 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7266
52ce6436
PH
7267 if (field_type_p != NULL)
7268 *field_type_p = TYPE_FIELD_TYPE (type, i);
7269 if (byte_offset_p != NULL)
7270 *byte_offset_p = fld_offset;
7271 if (bit_offset_p != NULL)
7272 *bit_offset_p = bit_pos % 8;
7273 if (bit_size_p != NULL)
7274 *bit_size_p = bit_size;
76a01679
JB
7275 return 1;
7276 }
4c4b4cd2
PH
7277 else if (ada_is_wrapper_field (type, i))
7278 {
52ce6436
PH
7279 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7280 field_type_p, byte_offset_p, bit_offset_p,
7281 bit_size_p, index_p))
76a01679
JB
7282 return 1;
7283 }
4c4b4cd2
PH
7284 else if (ada_is_variant_part (type, i))
7285 {
52ce6436
PH
7286 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7287 fixed type?? */
4c4b4cd2 7288 int j;
52ce6436
PH
7289 struct type *field_type
7290 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7291
52ce6436 7292 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7293 {
76a01679
JB
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7295 fld_offset
7296 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7297 field_type_p, byte_offset_p,
52ce6436 7298 bit_offset_p, bit_size_p, index_p))
76a01679 7299 return 1;
4c4b4cd2
PH
7300 }
7301 }
52ce6436
PH
7302 else if (index_p != NULL)
7303 *index_p += 1;
4c4b4cd2 7304 }
828d5846
XR
7305
7306 /* Field not found so far. If this is a tagged type which
7307 has a parent, try finding that field in the parent now. */
7308
7309 if (parent_offset != -1)
7310 {
7311 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7312 int fld_offset = offset + bit_pos / 8;
7313
7314 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7315 fld_offset, field_type_p, byte_offset_p,
7316 bit_offset_p, bit_size_p, index_p))
7317 return 1;
7318 }
7319
4c4b4cd2
PH
7320 return 0;
7321}
7322
0963b4bd 7323/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7324
52ce6436
PH
7325static int
7326num_visible_fields (struct type *type)
7327{
7328 int n;
5b4ee69b 7329
52ce6436
PH
7330 n = 0;
7331 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7332 return n;
7333}
14f9c5c9 7334
4c4b4cd2 7335/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7336 and search in it assuming it has (class) type TYPE.
7337 If found, return value, else return NULL.
7338
828d5846
XR
7339 Searches recursively through wrapper fields (e.g., '_parent').
7340
7341 In the case of homonyms in the tagged types, please refer to the
7342 long explanation in find_struct_field's function documentation. */
14f9c5c9 7343
4c4b4cd2 7344static struct value *
108d56a4 7345ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7346 struct type *type)
14f9c5c9
AS
7347{
7348 int i;
828d5846 7349 int parent_offset = -1;
14f9c5c9 7350
5b4ee69b 7351 type = ada_check_typedef (type);
52ce6436 7352 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7353 {
0d5cff50 7354 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7355
7356 if (t_field_name == NULL)
4c4b4cd2 7357 continue;
14f9c5c9 7358
828d5846
XR
7359 else if (ada_is_parent_field (type, i))
7360 {
7361 /* This is a field pointing us to the parent type of a tagged
7362 type. As hinted in this function's documentation, we give
7363 preference to fields in the current record first, so what
7364 we do here is just record the index of this field before
7365 we skip it. If it turns out we couldn't find our field
7366 in the current record, then we'll get back to it and search
7367 inside it whether the field might exist in the parent. */
7368
7369 parent_offset = i;
7370 continue;
7371 }
7372
14f9c5c9 7373 else if (field_name_match (t_field_name, name))
4c4b4cd2 7374 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7375
7376 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7377 {
0963b4bd 7378 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7379 ada_search_struct_field (name, arg,
7380 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7381 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7382
4c4b4cd2
PH
7383 if (v != NULL)
7384 return v;
7385 }
14f9c5c9
AS
7386
7387 else if (ada_is_variant_part (type, i))
4c4b4cd2 7388 {
0963b4bd 7389 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7390 int j;
5b4ee69b
MS
7391 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7392 i));
4c4b4cd2
PH
7393 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7394
52ce6436 7395 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7396 {
0963b4bd
MS
7397 struct value *v = ada_search_struct_field /* Force line
7398 break. */
06d5cf63
JB
7399 (name, arg,
7400 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7401 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7402
4c4b4cd2
PH
7403 if (v != NULL)
7404 return v;
7405 }
7406 }
14f9c5c9 7407 }
828d5846
XR
7408
7409 /* Field not found so far. If this is a tagged type which
7410 has a parent, try finding that field in the parent now. */
7411
7412 if (parent_offset != -1)
7413 {
7414 struct value *v = ada_search_struct_field (
7415 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7416 TYPE_FIELD_TYPE (type, parent_offset));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421
14f9c5c9
AS
7422 return NULL;
7423}
d2e4a39e 7424
52ce6436
PH
7425static struct value *ada_index_struct_field_1 (int *, struct value *,
7426 int, struct type *);
7427
7428
7429/* Return field #INDEX in ARG, where the index is that returned by
7430 * find_struct_field through its INDEX_P argument. Adjust the address
7431 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7432 * If found, return value, else return NULL. */
52ce6436
PH
7433
7434static struct value *
7435ada_index_struct_field (int index, struct value *arg, int offset,
7436 struct type *type)
7437{
7438 return ada_index_struct_field_1 (&index, arg, offset, type);
7439}
7440
7441
7442/* Auxiliary function for ada_index_struct_field. Like
7443 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7444 * *INDEX_P. */
52ce6436
PH
7445
7446static struct value *
7447ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7448 struct type *type)
7449{
7450 int i;
7451 type = ada_check_typedef (type);
7452
7453 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7454 {
7455 if (TYPE_FIELD_NAME (type, i) == NULL)
7456 continue;
7457 else if (ada_is_wrapper_field (type, i))
7458 {
0963b4bd 7459 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7460 ada_index_struct_field_1 (index_p, arg,
7461 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7462 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7463
52ce6436
PH
7464 if (v != NULL)
7465 return v;
7466 }
7467
7468 else if (ada_is_variant_part (type, i))
7469 {
7470 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7471 find_struct_field. */
52ce6436
PH
7472 error (_("Cannot assign this kind of variant record"));
7473 }
7474 else if (*index_p == 0)
7475 return ada_value_primitive_field (arg, offset, i, type);
7476 else
7477 *index_p -= 1;
7478 }
7479 return NULL;
7480}
7481
4c4b4cd2
PH
7482/* Given ARG, a value of type (pointer or reference to a)*
7483 structure/union, extract the component named NAME from the ultimate
7484 target structure/union and return it as a value with its
f5938064 7485 appropriate type.
14f9c5c9 7486
4c4b4cd2
PH
7487 The routine searches for NAME among all members of the structure itself
7488 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7489 (e.g., '_parent').
7490
03ee6b2e
PH
7491 If NO_ERR, then simply return NULL in case of error, rather than
7492 calling error. */
14f9c5c9 7493
d2e4a39e 7494struct value *
a121b7c1 7495ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7496{
4c4b4cd2 7497 struct type *t, *t1;
d2e4a39e 7498 struct value *v;
1f5d1570 7499 int check_tag;
14f9c5c9 7500
4c4b4cd2 7501 v = NULL;
df407dfe 7502 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7503 if (TYPE_CODE (t) == TYPE_CODE_REF)
7504 {
7505 t1 = TYPE_TARGET_TYPE (t);
7506 if (t1 == NULL)
03ee6b2e 7507 goto BadValue;
61ee279c 7508 t1 = ada_check_typedef (t1);
4c4b4cd2 7509 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7510 {
994b9211 7511 arg = coerce_ref (arg);
76a01679
JB
7512 t = t1;
7513 }
4c4b4cd2 7514 }
14f9c5c9 7515
4c4b4cd2
PH
7516 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7517 {
7518 t1 = TYPE_TARGET_TYPE (t);
7519 if (t1 == NULL)
03ee6b2e 7520 goto BadValue;
61ee279c 7521 t1 = ada_check_typedef (t1);
4c4b4cd2 7522 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7523 {
7524 arg = value_ind (arg);
7525 t = t1;
7526 }
4c4b4cd2 7527 else
76a01679 7528 break;
4c4b4cd2 7529 }
14f9c5c9 7530
4c4b4cd2 7531 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7532 goto BadValue;
14f9c5c9 7533
4c4b4cd2
PH
7534 if (t1 == t)
7535 v = ada_search_struct_field (name, arg, 0, t);
7536 else
7537 {
7538 int bit_offset, bit_size, byte_offset;
7539 struct type *field_type;
7540 CORE_ADDR address;
7541
76a01679 7542 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7543 address = value_address (ada_value_ind (arg));
4c4b4cd2 7544 else
b50d69b5 7545 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7546
828d5846
XR
7547 /* Check to see if this is a tagged type. We also need to handle
7548 the case where the type is a reference to a tagged type, but
7549 we have to be careful to exclude pointers to tagged types.
7550 The latter should be shown as usual (as a pointer), whereas
7551 a reference should mostly be transparent to the user. */
7552
7553 if (ada_is_tagged_type (t1, 0)
7554 || (TYPE_CODE (t1) == TYPE_CODE_REF
7555 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7556 {
7557 /* We first try to find the searched field in the current type.
7558 If not found then let's look in the fixed type. */
7559
7560 if (!find_struct_field (name, t1, 0,
7561 &field_type, &byte_offset, &bit_offset,
7562 &bit_size, NULL))
1f5d1570
JG
7563 check_tag = 1;
7564 else
7565 check_tag = 0;
828d5846
XR
7566 }
7567 else
1f5d1570
JG
7568 check_tag = 0;
7569
7570 /* Convert to fixed type in all cases, so that we have proper
7571 offsets to each field in unconstrained record types. */
7572 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7573 address, NULL, check_tag);
828d5846 7574
76a01679
JB
7575 if (find_struct_field (name, t1, 0,
7576 &field_type, &byte_offset, &bit_offset,
52ce6436 7577 &bit_size, NULL))
76a01679
JB
7578 {
7579 if (bit_size != 0)
7580 {
714e53ab
PH
7581 if (TYPE_CODE (t) == TYPE_CODE_REF)
7582 arg = ada_coerce_ref (arg);
7583 else
7584 arg = ada_value_ind (arg);
76a01679
JB
7585 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7586 bit_offset, bit_size,
7587 field_type);
7588 }
7589 else
f5938064 7590 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7591 }
7592 }
7593
03ee6b2e
PH
7594 if (v != NULL || no_err)
7595 return v;
7596 else
323e0a4a 7597 error (_("There is no member named %s."), name);
14f9c5c9 7598
03ee6b2e
PH
7599 BadValue:
7600 if (no_err)
7601 return NULL;
7602 else
0963b4bd
MS
7603 error (_("Attempt to extract a component of "
7604 "a value that is not a record."));
14f9c5c9
AS
7605}
7606
3b4de39c 7607/* Return a string representation of type TYPE. */
99bbb428 7608
3b4de39c 7609static std::string
99bbb428
PA
7610type_as_string (struct type *type)
7611{
d7e74731 7612 string_file tmp_stream;
99bbb428 7613
d7e74731 7614 type_print (type, "", &tmp_stream, -1);
99bbb428 7615
d7e74731 7616 return std::move (tmp_stream.string ());
99bbb428
PA
7617}
7618
14f9c5c9 7619/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7620 If DISPP is non-null, add its byte displacement from the beginning of a
7621 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7622 work for packed fields).
7623
7624 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7625 followed by "___".
14f9c5c9 7626
0963b4bd 7627 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7628 be a (pointer or reference)+ to a struct or union, and the
7629 ultimate target type will be searched.
14f9c5c9
AS
7630
7631 Looks recursively into variant clauses and parent types.
7632
828d5846
XR
7633 In the case of homonyms in the tagged types, please refer to the
7634 long explanation in find_struct_field's function documentation.
7635
4c4b4cd2
PH
7636 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7637 TYPE is not a type of the right kind. */
14f9c5c9 7638
4c4b4cd2 7639static struct type *
a121b7c1 7640ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7641 int noerr)
14f9c5c9
AS
7642{
7643 int i;
828d5846 7644 int parent_offset = -1;
14f9c5c9
AS
7645
7646 if (name == NULL)
7647 goto BadName;
7648
76a01679 7649 if (refok && type != NULL)
4c4b4cd2
PH
7650 while (1)
7651 {
61ee279c 7652 type = ada_check_typedef (type);
76a01679
JB
7653 if (TYPE_CODE (type) != TYPE_CODE_PTR
7654 && TYPE_CODE (type) != TYPE_CODE_REF)
7655 break;
7656 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7657 }
14f9c5c9 7658
76a01679 7659 if (type == NULL
1265e4aa
JB
7660 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7661 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7662 {
4c4b4cd2 7663 if (noerr)
76a01679 7664 return NULL;
99bbb428 7665
3b4de39c
PA
7666 error (_("Type %s is not a structure or union type"),
7667 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7668 }
7669
7670 type = to_static_fixed_type (type);
7671
7672 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7673 {
0d5cff50 7674 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7675 struct type *t;
d2e4a39e 7676
14f9c5c9 7677 if (t_field_name == NULL)
4c4b4cd2 7678 continue;
14f9c5c9 7679
828d5846
XR
7680 else if (ada_is_parent_field (type, i))
7681 {
7682 /* This is a field pointing us to the parent type of a tagged
7683 type. As hinted in this function's documentation, we give
7684 preference to fields in the current record first, so what
7685 we do here is just record the index of this field before
7686 we skip it. If it turns out we couldn't find our field
7687 in the current record, then we'll get back to it and search
7688 inside it whether the field might exist in the parent. */
7689
7690 parent_offset = i;
7691 continue;
7692 }
7693
14f9c5c9 7694 else if (field_name_match (t_field_name, name))
988f6b3d 7695 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7696
7697 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7698 {
4c4b4cd2 7699 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7700 0, 1);
4c4b4cd2 7701 if (t != NULL)
988f6b3d 7702 return t;
4c4b4cd2 7703 }
14f9c5c9
AS
7704
7705 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7706 {
7707 int j;
5b4ee69b
MS
7708 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7709 i));
4c4b4cd2
PH
7710
7711 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7712 {
b1f33ddd
JB
7713 /* FIXME pnh 2008/01/26: We check for a field that is
7714 NOT wrapped in a struct, since the compiler sometimes
7715 generates these for unchecked variant types. Revisit
0963b4bd 7716 if the compiler changes this practice. */
0d5cff50 7717 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7718
b1f33ddd
JB
7719 if (v_field_name != NULL
7720 && field_name_match (v_field_name, name))
460efde1 7721 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7722 else
0963b4bd
MS
7723 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7724 j),
988f6b3d 7725 name, 0, 1);
b1f33ddd 7726
4c4b4cd2 7727 if (t != NULL)
988f6b3d 7728 return t;
4c4b4cd2
PH
7729 }
7730 }
14f9c5c9
AS
7731
7732 }
7733
828d5846
XR
7734 /* Field not found so far. If this is a tagged type which
7735 has a parent, try finding that field in the parent now. */
7736
7737 if (parent_offset != -1)
7738 {
7739 struct type *t;
7740
7741 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7742 name, 0, 1);
7743 if (t != NULL)
7744 return t;
7745 }
7746
14f9c5c9 7747BadName:
d2e4a39e 7748 if (!noerr)
14f9c5c9 7749 {
2b2798cc 7750 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7751
7752 error (_("Type %s has no component named %s"),
3b4de39c 7753 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7754 }
7755
7756 return NULL;
7757}
7758
b1f33ddd
JB
7759/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7760 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7761 represents an unchecked union (that is, the variant part of a
0963b4bd 7762 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7763
7764static int
7765is_unchecked_variant (struct type *var_type, struct type *outer_type)
7766{
a121b7c1 7767 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7768
988f6b3d 7769 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7770}
7771
7772
14f9c5c9
AS
7773/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7774 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7775 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7776 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7777
d2e4a39e 7778int
ebf56fd3 7779ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7780 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7781{
7782 int others_clause;
7783 int i;
a121b7c1 7784 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7785 struct value *outer;
7786 struct value *discrim;
14f9c5c9
AS
7787 LONGEST discrim_val;
7788
012370f6
TT
7789 /* Using plain value_from_contents_and_address here causes problems
7790 because we will end up trying to resolve a type that is currently
7791 being constructed. */
7792 outer = value_from_contents_and_address_unresolved (outer_type,
7793 outer_valaddr, 0);
0c281816
JB
7794 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7795 if (discrim == NULL)
14f9c5c9 7796 return -1;
0c281816 7797 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7798
7799 others_clause = -1;
7800 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7801 {
7802 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7803 others_clause = i;
14f9c5c9 7804 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7805 return i;
14f9c5c9
AS
7806 }
7807
7808 return others_clause;
7809}
d2e4a39e 7810\f
14f9c5c9
AS
7811
7812
4c4b4cd2 7813 /* Dynamic-Sized Records */
14f9c5c9
AS
7814
7815/* Strategy: The type ostensibly attached to a value with dynamic size
7816 (i.e., a size that is not statically recorded in the debugging
7817 data) does not accurately reflect the size or layout of the value.
7818 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7819 conventional types that are constructed on the fly. */
14f9c5c9
AS
7820
7821/* There is a subtle and tricky problem here. In general, we cannot
7822 determine the size of dynamic records without its data. However,
7823 the 'struct value' data structure, which GDB uses to represent
7824 quantities in the inferior process (the target), requires the size
7825 of the type at the time of its allocation in order to reserve space
7826 for GDB's internal copy of the data. That's why the
7827 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7828 rather than struct value*s.
14f9c5c9
AS
7829
7830 However, GDB's internal history variables ($1, $2, etc.) are
7831 struct value*s containing internal copies of the data that are not, in
7832 general, the same as the data at their corresponding addresses in
7833 the target. Fortunately, the types we give to these values are all
7834 conventional, fixed-size types (as per the strategy described
7835 above), so that we don't usually have to perform the
7836 'to_fixed_xxx_type' conversions to look at their values.
7837 Unfortunately, there is one exception: if one of the internal
7838 history variables is an array whose elements are unconstrained
7839 records, then we will need to create distinct fixed types for each
7840 element selected. */
7841
7842/* The upshot of all of this is that many routines take a (type, host
7843 address, target address) triple as arguments to represent a value.
7844 The host address, if non-null, is supposed to contain an internal
7845 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7846 target at the target address. */
14f9c5c9
AS
7847
7848/* Assuming that VAL0 represents a pointer value, the result of
7849 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7850 dynamic-sized types. */
14f9c5c9 7851
d2e4a39e
AS
7852struct value *
7853ada_value_ind (struct value *val0)
14f9c5c9 7854{
c48db5ca 7855 struct value *val = value_ind (val0);
5b4ee69b 7856
b50d69b5
JG
7857 if (ada_is_tagged_type (value_type (val), 0))
7858 val = ada_tag_value_at_base_address (val);
7859
4c4b4cd2 7860 return ada_to_fixed_value (val);
14f9c5c9
AS
7861}
7862
7863/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7864 qualifiers on VAL0. */
7865
d2e4a39e
AS
7866static struct value *
7867ada_coerce_ref (struct value *val0)
7868{
df407dfe 7869 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7870 {
7871 struct value *val = val0;
5b4ee69b 7872
994b9211 7873 val = coerce_ref (val);
b50d69b5
JG
7874
7875 if (ada_is_tagged_type (value_type (val), 0))
7876 val = ada_tag_value_at_base_address (val);
7877
4c4b4cd2 7878 return ada_to_fixed_value (val);
d2e4a39e
AS
7879 }
7880 else
14f9c5c9
AS
7881 return val0;
7882}
7883
7884/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7885 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7886
7887static unsigned int
ebf56fd3 7888align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7889{
7890 return (off + alignment - 1) & ~(alignment - 1);
7891}
7892
4c4b4cd2 7893/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7894
7895static unsigned int
ebf56fd3 7896field_alignment (struct type *type, int f)
14f9c5c9 7897{
d2e4a39e 7898 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7899 int len;
14f9c5c9
AS
7900 int align_offset;
7901
64a1bf19
JB
7902 /* The field name should never be null, unless the debugging information
7903 is somehow malformed. In this case, we assume the field does not
7904 require any alignment. */
7905 if (name == NULL)
7906 return 1;
7907
7908 len = strlen (name);
7909
4c4b4cd2
PH
7910 if (!isdigit (name[len - 1]))
7911 return 1;
14f9c5c9 7912
d2e4a39e 7913 if (isdigit (name[len - 2]))
14f9c5c9
AS
7914 align_offset = len - 2;
7915 else
7916 align_offset = len - 1;
7917
61012eef 7918 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7919 return TARGET_CHAR_BIT;
7920
4c4b4cd2
PH
7921 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7922}
7923
852dff6c 7924/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7925
852dff6c
JB
7926static struct symbol *
7927ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7928{
7929 struct symbol *sym;
7930
7931 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7932 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7933 return sym;
7934
4186eb54
KS
7935 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7936 return sym;
14f9c5c9
AS
7937}
7938
dddfab26
UW
7939/* Find a type named NAME. Ignores ambiguity. This routine will look
7940 solely for types defined by debug info, it will not search the GDB
7941 primitive types. */
4c4b4cd2 7942
852dff6c 7943static struct type *
ebf56fd3 7944ada_find_any_type (const char *name)
14f9c5c9 7945{
852dff6c 7946 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7947
14f9c5c9 7948 if (sym != NULL)
dddfab26 7949 return SYMBOL_TYPE (sym);
14f9c5c9 7950
dddfab26 7951 return NULL;
14f9c5c9
AS
7952}
7953
739593e0
JB
7954/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7955 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7956 symbol, in which case it is returned. Otherwise, this looks for
7957 symbols whose name is that of NAME_SYM suffixed with "___XR".
7958 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7959
7960struct symbol *
270140bd 7961ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7962{
739593e0 7963 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7964 struct symbol *sym;
7965
739593e0
JB
7966 if (strstr (name, "___XR") != NULL)
7967 return name_sym;
7968
aeb5907d
JB
7969 sym = find_old_style_renaming_symbol (name, block);
7970
7971 if (sym != NULL)
7972 return sym;
7973
0963b4bd 7974 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7975 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7976 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7977 return sym;
7978 else
7979 return NULL;
7980}
7981
7982static struct symbol *
270140bd 7983find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7984{
7f0df278 7985 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7986 char *rename;
7987
7988 if (function_sym != NULL)
7989 {
7990 /* If the symbol is defined inside a function, NAME is not fully
7991 qualified. This means we need to prepend the function name
7992 as well as adding the ``___XR'' suffix to build the name of
7993 the associated renaming symbol. */
0d5cff50 7994 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7995 /* Function names sometimes contain suffixes used
7996 for instance to qualify nested subprograms. When building
7997 the XR type name, we need to make sure that this suffix is
7998 not included. So do not include any suffix in the function
7999 name length below. */
69fadcdf 8000 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8001 const int rename_len = function_name_len + 2 /* "__" */
8002 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8003
529cad9c 8004 /* Strip the suffix if necessary. */
69fadcdf
JB
8005 ada_remove_trailing_digits (function_name, &function_name_len);
8006 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8007 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8008
4c4b4cd2
PH
8009 /* Library-level functions are a special case, as GNAT adds
8010 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8011 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8012 have this prefix, so we need to skip this prefix if present. */
8013 if (function_name_len > 5 /* "_ada_" */
8014 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8015 {
8016 function_name += 5;
8017 function_name_len -= 5;
8018 }
4c4b4cd2
PH
8019
8020 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8021 strncpy (rename, function_name, function_name_len);
8022 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8023 "__%s___XR", name);
4c4b4cd2
PH
8024 }
8025 else
8026 {
8027 const int rename_len = strlen (name) + 6;
5b4ee69b 8028
4c4b4cd2 8029 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8030 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8031 }
8032
852dff6c 8033 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8034}
8035
14f9c5c9 8036/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8037 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8038 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8039 otherwise return 0. */
8040
14f9c5c9 8041int
d2e4a39e 8042ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8043{
8044 if (type1 == NULL)
8045 return 1;
8046 else if (type0 == NULL)
8047 return 0;
8048 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8049 return 1;
8050 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8051 return 0;
4c4b4cd2
PH
8052 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8053 return 1;
ad82864c 8054 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8055 return 1;
4c4b4cd2
PH
8056 else if (ada_is_array_descriptor_type (type0)
8057 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8058 return 1;
aeb5907d
JB
8059 else
8060 {
a737d952
TT
8061 const char *type0_name = TYPE_NAME (type0);
8062 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8063
8064 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8065 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8066 return 1;
8067 }
14f9c5c9
AS
8068 return 0;
8069}
8070
e86ca25f
TT
8071/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8072 null. */
4c4b4cd2 8073
0d5cff50 8074const char *
d2e4a39e 8075ada_type_name (struct type *type)
14f9c5c9 8076{
d2e4a39e 8077 if (type == NULL)
14f9c5c9 8078 return NULL;
e86ca25f 8079 return TYPE_NAME (type);
14f9c5c9
AS
8080}
8081
b4ba55a1
JB
8082/* Search the list of "descriptive" types associated to TYPE for a type
8083 whose name is NAME. */
8084
8085static struct type *
8086find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8087{
931e5bc3 8088 struct type *result, *tmp;
b4ba55a1 8089
c6044dd1
JB
8090 if (ada_ignore_descriptive_types_p)
8091 return NULL;
8092
b4ba55a1
JB
8093 /* If there no descriptive-type info, then there is no parallel type
8094 to be found. */
8095 if (!HAVE_GNAT_AUX_INFO (type))
8096 return NULL;
8097
8098 result = TYPE_DESCRIPTIVE_TYPE (type);
8099 while (result != NULL)
8100 {
0d5cff50 8101 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8102
8103 if (result_name == NULL)
8104 {
8105 warning (_("unexpected null name on descriptive type"));
8106 return NULL;
8107 }
8108
8109 /* If the names match, stop. */
8110 if (strcmp (result_name, name) == 0)
8111 break;
8112
8113 /* Otherwise, look at the next item on the list, if any. */
8114 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8115 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8116 else
8117 tmp = NULL;
8118
8119 /* If not found either, try after having resolved the typedef. */
8120 if (tmp != NULL)
8121 result = tmp;
b4ba55a1 8122 else
931e5bc3 8123 {
f168693b 8124 result = check_typedef (result);
931e5bc3
JG
8125 if (HAVE_GNAT_AUX_INFO (result))
8126 result = TYPE_DESCRIPTIVE_TYPE (result);
8127 else
8128 result = NULL;
8129 }
b4ba55a1
JB
8130 }
8131
8132 /* If we didn't find a match, see whether this is a packed array. With
8133 older compilers, the descriptive type information is either absent or
8134 irrelevant when it comes to packed arrays so the above lookup fails.
8135 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8136 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8137 return ada_find_any_type (name);
8138
8139 return result;
8140}
8141
8142/* Find a parallel type to TYPE with the specified NAME, using the
8143 descriptive type taken from the debugging information, if available,
8144 and otherwise using the (slower) name-based method. */
8145
8146static struct type *
8147ada_find_parallel_type_with_name (struct type *type, const char *name)
8148{
8149 struct type *result = NULL;
8150
8151 if (HAVE_GNAT_AUX_INFO (type))
8152 result = find_parallel_type_by_descriptive_type (type, name);
8153 else
8154 result = ada_find_any_type (name);
8155
8156 return result;
8157}
8158
8159/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8160 SUFFIX to the name of TYPE. */
14f9c5c9 8161
d2e4a39e 8162struct type *
ebf56fd3 8163ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8164{
0d5cff50 8165 char *name;
fe978cb0 8166 const char *type_name = ada_type_name (type);
14f9c5c9 8167 int len;
d2e4a39e 8168
fe978cb0 8169 if (type_name == NULL)
14f9c5c9
AS
8170 return NULL;
8171
fe978cb0 8172 len = strlen (type_name);
14f9c5c9 8173
b4ba55a1 8174 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8175
fe978cb0 8176 strcpy (name, type_name);
14f9c5c9
AS
8177 strcpy (name + len, suffix);
8178
b4ba55a1 8179 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8180}
8181
14f9c5c9 8182/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8183 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8184
d2e4a39e
AS
8185static struct type *
8186dynamic_template_type (struct type *type)
14f9c5c9 8187{
61ee279c 8188 type = ada_check_typedef (type);
14f9c5c9
AS
8189
8190 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8191 || ada_type_name (type) == NULL)
14f9c5c9 8192 return NULL;
d2e4a39e 8193 else
14f9c5c9
AS
8194 {
8195 int len = strlen (ada_type_name (type));
5b4ee69b 8196
4c4b4cd2
PH
8197 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8198 return type;
14f9c5c9 8199 else
4c4b4cd2 8200 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8201 }
8202}
8203
8204/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8205 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8206
d2e4a39e
AS
8207static int
8208is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8209{
8210 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8211
d2e4a39e 8212 return name != NULL
14f9c5c9
AS
8213 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8214 && strstr (name, "___XVL") != NULL;
8215}
8216
4c4b4cd2
PH
8217/* The index of the variant field of TYPE, or -1 if TYPE does not
8218 represent a variant record type. */
14f9c5c9 8219
d2e4a39e 8220static int
4c4b4cd2 8221variant_field_index (struct type *type)
14f9c5c9
AS
8222{
8223 int f;
8224
4c4b4cd2
PH
8225 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8226 return -1;
8227
8228 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8229 {
8230 if (ada_is_variant_part (type, f))
8231 return f;
8232 }
8233 return -1;
14f9c5c9
AS
8234}
8235
4c4b4cd2
PH
8236/* A record type with no fields. */
8237
d2e4a39e 8238static struct type *
fe978cb0 8239empty_record (struct type *templ)
14f9c5c9 8240{
fe978cb0 8241 struct type *type = alloc_type_copy (templ);
5b4ee69b 8242
14f9c5c9
AS
8243 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8244 TYPE_NFIELDS (type) = 0;
8245 TYPE_FIELDS (type) = NULL;
b1f33ddd 8246 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8247 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8248 TYPE_LENGTH (type) = 0;
8249 return type;
8250}
8251
8252/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8253 the value of type TYPE at VALADDR or ADDRESS (see comments at
8254 the beginning of this section) VAL according to GNAT conventions.
8255 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8256 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8257 an outer-level type (i.e., as opposed to a branch of a variant.) A
8258 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8259 of the variant.
14f9c5c9 8260
4c4b4cd2
PH
8261 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8262 length are not statically known are discarded. As a consequence,
8263 VALADDR, ADDRESS and DVAL0 are ignored.
8264
8265 NOTE: Limitations: For now, we assume that dynamic fields and
8266 variants occupy whole numbers of bytes. However, they need not be
8267 byte-aligned. */
8268
8269struct type *
10a2c479 8270ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8271 const gdb_byte *valaddr,
4c4b4cd2
PH
8272 CORE_ADDR address, struct value *dval0,
8273 int keep_dynamic_fields)
14f9c5c9 8274{
d2e4a39e
AS
8275 struct value *mark = value_mark ();
8276 struct value *dval;
8277 struct type *rtype;
14f9c5c9 8278 int nfields, bit_len;
4c4b4cd2 8279 int variant_field;
14f9c5c9 8280 long off;
d94e4f4f 8281 int fld_bit_len;
14f9c5c9
AS
8282 int f;
8283
4c4b4cd2
PH
8284 /* Compute the number of fields in this record type that are going
8285 to be processed: unless keep_dynamic_fields, this includes only
8286 fields whose position and length are static will be processed. */
8287 if (keep_dynamic_fields)
8288 nfields = TYPE_NFIELDS (type);
8289 else
8290 {
8291 nfields = 0;
76a01679 8292 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8293 && !ada_is_variant_part (type, nfields)
8294 && !is_dynamic_field (type, nfields))
8295 nfields++;
8296 }
8297
e9bb382b 8298 rtype = alloc_type_copy (type);
14f9c5c9
AS
8299 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8300 INIT_CPLUS_SPECIFIC (rtype);
8301 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8302 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8303 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8304 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8305 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8306 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8307
d2e4a39e
AS
8308 off = 0;
8309 bit_len = 0;
4c4b4cd2
PH
8310 variant_field = -1;
8311
14f9c5c9
AS
8312 for (f = 0; f < nfields; f += 1)
8313 {
6c038f32
PH
8314 off = align_value (off, field_alignment (type, f))
8315 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8316 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8317 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8318
d2e4a39e 8319 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8320 {
8321 variant_field = f;
d94e4f4f 8322 fld_bit_len = 0;
4c4b4cd2 8323 }
14f9c5c9 8324 else if (is_dynamic_field (type, f))
4c4b4cd2 8325 {
284614f0
JB
8326 const gdb_byte *field_valaddr = valaddr;
8327 CORE_ADDR field_address = address;
8328 struct type *field_type =
8329 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8330
4c4b4cd2 8331 if (dval0 == NULL)
b5304971
JG
8332 {
8333 /* rtype's length is computed based on the run-time
8334 value of discriminants. If the discriminants are not
8335 initialized, the type size may be completely bogus and
0963b4bd 8336 GDB may fail to allocate a value for it. So check the
b5304971 8337 size first before creating the value. */
c1b5a1a6 8338 ada_ensure_varsize_limit (rtype);
012370f6
TT
8339 /* Using plain value_from_contents_and_address here
8340 causes problems because we will end up trying to
8341 resolve a type that is currently being
8342 constructed. */
8343 dval = value_from_contents_and_address_unresolved (rtype,
8344 valaddr,
8345 address);
9f1f738a 8346 rtype = value_type (dval);
b5304971 8347 }
4c4b4cd2
PH
8348 else
8349 dval = dval0;
8350
284614f0
JB
8351 /* If the type referenced by this field is an aligner type, we need
8352 to unwrap that aligner type, because its size might not be set.
8353 Keeping the aligner type would cause us to compute the wrong
8354 size for this field, impacting the offset of the all the fields
8355 that follow this one. */
8356 if (ada_is_aligner_type (field_type))
8357 {
8358 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8359
8360 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8361 field_address = cond_offset_target (field_address, field_offset);
8362 field_type = ada_aligned_type (field_type);
8363 }
8364
8365 field_valaddr = cond_offset_host (field_valaddr,
8366 off / TARGET_CHAR_BIT);
8367 field_address = cond_offset_target (field_address,
8368 off / TARGET_CHAR_BIT);
8369
8370 /* Get the fixed type of the field. Note that, in this case,
8371 we do not want to get the real type out of the tag: if
8372 the current field is the parent part of a tagged record,
8373 we will get the tag of the object. Clearly wrong: the real
8374 type of the parent is not the real type of the child. We
8375 would end up in an infinite loop. */
8376 field_type = ada_get_base_type (field_type);
8377 field_type = ada_to_fixed_type (field_type, field_valaddr,
8378 field_address, dval, 0);
27f2a97b
JB
8379 /* If the field size is already larger than the maximum
8380 object size, then the record itself will necessarily
8381 be larger than the maximum object size. We need to make
8382 this check now, because the size might be so ridiculously
8383 large (due to an uninitialized variable in the inferior)
8384 that it would cause an overflow when adding it to the
8385 record size. */
c1b5a1a6 8386 ada_ensure_varsize_limit (field_type);
284614f0
JB
8387
8388 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8389 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8390 /* The multiplication can potentially overflow. But because
8391 the field length has been size-checked just above, and
8392 assuming that the maximum size is a reasonable value,
8393 an overflow should not happen in practice. So rather than
8394 adding overflow recovery code to this already complex code,
8395 we just assume that it's not going to happen. */
d94e4f4f 8396 fld_bit_len =
4c4b4cd2
PH
8397 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8398 }
14f9c5c9 8399 else
4c4b4cd2 8400 {
5ded5331
JB
8401 /* Note: If this field's type is a typedef, it is important
8402 to preserve the typedef layer.
8403
8404 Otherwise, we might be transforming a typedef to a fat
8405 pointer (encoding a pointer to an unconstrained array),
8406 into a basic fat pointer (encoding an unconstrained
8407 array). As both types are implemented using the same
8408 structure, the typedef is the only clue which allows us
8409 to distinguish between the two options. Stripping it
8410 would prevent us from printing this field appropriately. */
8411 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8412 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8413 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8414 fld_bit_len =
4c4b4cd2
PH
8415 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8416 else
5ded5331
JB
8417 {
8418 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8419
8420 /* We need to be careful of typedefs when computing
8421 the length of our field. If this is a typedef,
8422 get the length of the target type, not the length
8423 of the typedef. */
8424 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8425 field_type = ada_typedef_target_type (field_type);
8426
8427 fld_bit_len =
8428 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8429 }
4c4b4cd2 8430 }
14f9c5c9 8431 if (off + fld_bit_len > bit_len)
4c4b4cd2 8432 bit_len = off + fld_bit_len;
d94e4f4f 8433 off += fld_bit_len;
4c4b4cd2
PH
8434 TYPE_LENGTH (rtype) =
8435 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8436 }
4c4b4cd2
PH
8437
8438 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8439 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8440 the record. This can happen in the presence of representation
8441 clauses. */
8442 if (variant_field >= 0)
8443 {
8444 struct type *branch_type;
8445
8446 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8447
8448 if (dval0 == NULL)
9f1f738a 8449 {
012370f6
TT
8450 /* Using plain value_from_contents_and_address here causes
8451 problems because we will end up trying to resolve a type
8452 that is currently being constructed. */
8453 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8454 address);
9f1f738a
SA
8455 rtype = value_type (dval);
8456 }
4c4b4cd2
PH
8457 else
8458 dval = dval0;
8459
8460 branch_type =
8461 to_fixed_variant_branch_type
8462 (TYPE_FIELD_TYPE (type, variant_field),
8463 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8464 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8465 if (branch_type == NULL)
8466 {
8467 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8468 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8469 TYPE_NFIELDS (rtype) -= 1;
8470 }
8471 else
8472 {
8473 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8474 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8475 fld_bit_len =
8476 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8477 TARGET_CHAR_BIT;
8478 if (off + fld_bit_len > bit_len)
8479 bit_len = off + fld_bit_len;
8480 TYPE_LENGTH (rtype) =
8481 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8482 }
8483 }
8484
714e53ab
PH
8485 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8486 should contain the alignment of that record, which should be a strictly
8487 positive value. If null or negative, then something is wrong, most
8488 probably in the debug info. In that case, we don't round up the size
0963b4bd 8489 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8490 the current RTYPE length might be good enough for our purposes. */
8491 if (TYPE_LENGTH (type) <= 0)
8492 {
323e0a4a
AC
8493 if (TYPE_NAME (rtype))
8494 warning (_("Invalid type size for `%s' detected: %d."),
8495 TYPE_NAME (rtype), TYPE_LENGTH (type));
8496 else
8497 warning (_("Invalid type size for <unnamed> detected: %d."),
8498 TYPE_LENGTH (type));
714e53ab
PH
8499 }
8500 else
8501 {
8502 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8503 TYPE_LENGTH (type));
8504 }
14f9c5c9
AS
8505
8506 value_free_to_mark (mark);
d2e4a39e 8507 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8508 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8509 return rtype;
8510}
8511
4c4b4cd2
PH
8512/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8513 of 1. */
14f9c5c9 8514
d2e4a39e 8515static struct type *
fc1a4b47 8516template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8517 CORE_ADDR address, struct value *dval0)
8518{
8519 return ada_template_to_fixed_record_type_1 (type, valaddr,
8520 address, dval0, 1);
8521}
8522
8523/* An ordinary record type in which ___XVL-convention fields and
8524 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8525 static approximations, containing all possible fields. Uses
8526 no runtime values. Useless for use in values, but that's OK,
8527 since the results are used only for type determinations. Works on both
8528 structs and unions. Representation note: to save space, we memorize
8529 the result of this function in the TYPE_TARGET_TYPE of the
8530 template type. */
8531
8532static struct type *
8533template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8534{
8535 struct type *type;
8536 int nfields;
8537 int f;
8538
9e195661
PMR
8539 /* No need no do anything if the input type is already fixed. */
8540 if (TYPE_FIXED_INSTANCE (type0))
8541 return type0;
8542
8543 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8544 if (TYPE_TARGET_TYPE (type0) != NULL)
8545 return TYPE_TARGET_TYPE (type0);
8546
9e195661 8547 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8548 type = type0;
9e195661
PMR
8549 nfields = TYPE_NFIELDS (type0);
8550
8551 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8552 recompute all over next time. */
8553 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8554
8555 for (f = 0; f < nfields; f += 1)
8556 {
460efde1 8557 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8558 struct type *new_type;
14f9c5c9 8559
4c4b4cd2 8560 if (is_dynamic_field (type0, f))
460efde1
JB
8561 {
8562 field_type = ada_check_typedef (field_type);
8563 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8564 }
14f9c5c9 8565 else
f192137b 8566 new_type = static_unwrap_type (field_type);
9e195661
PMR
8567
8568 if (new_type != field_type)
8569 {
8570 /* Clone TYPE0 only the first time we get a new field type. */
8571 if (type == type0)
8572 {
8573 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8574 TYPE_CODE (type) = TYPE_CODE (type0);
8575 INIT_CPLUS_SPECIFIC (type);
8576 TYPE_NFIELDS (type) = nfields;
8577 TYPE_FIELDS (type) = (struct field *)
8578 TYPE_ALLOC (type, nfields * sizeof (struct field));
8579 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8580 sizeof (struct field) * nfields);
8581 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8582 TYPE_FIXED_INSTANCE (type) = 1;
8583 TYPE_LENGTH (type) = 0;
8584 }
8585 TYPE_FIELD_TYPE (type, f) = new_type;
8586 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8587 }
14f9c5c9 8588 }
9e195661 8589
14f9c5c9
AS
8590 return type;
8591}
8592
4c4b4cd2 8593/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8594 whose address in memory is ADDRESS, returns a revision of TYPE,
8595 which should be a non-dynamic-sized record, in which the variant
8596 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8597 for discriminant values in DVAL0, which can be NULL if the record
8598 contains the necessary discriminant values. */
8599
d2e4a39e 8600static struct type *
fc1a4b47 8601to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8602 CORE_ADDR address, struct value *dval0)
14f9c5c9 8603{
d2e4a39e 8604 struct value *mark = value_mark ();
4c4b4cd2 8605 struct value *dval;
d2e4a39e 8606 struct type *rtype;
14f9c5c9
AS
8607 struct type *branch_type;
8608 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8609 int variant_field = variant_field_index (type);
14f9c5c9 8610
4c4b4cd2 8611 if (variant_field == -1)
14f9c5c9
AS
8612 return type;
8613
4c4b4cd2 8614 if (dval0 == NULL)
9f1f738a
SA
8615 {
8616 dval = value_from_contents_and_address (type, valaddr, address);
8617 type = value_type (dval);
8618 }
4c4b4cd2
PH
8619 else
8620 dval = dval0;
8621
e9bb382b 8622 rtype = alloc_type_copy (type);
14f9c5c9 8623 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8624 INIT_CPLUS_SPECIFIC (rtype);
8625 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8626 TYPE_FIELDS (rtype) =
8627 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8628 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8629 sizeof (struct field) * nfields);
14f9c5c9 8630 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8631 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8632 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8633
4c4b4cd2
PH
8634 branch_type = to_fixed_variant_branch_type
8635 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8636 cond_offset_host (valaddr,
4c4b4cd2
PH
8637 TYPE_FIELD_BITPOS (type, variant_field)
8638 / TARGET_CHAR_BIT),
d2e4a39e 8639 cond_offset_target (address,
4c4b4cd2
PH
8640 TYPE_FIELD_BITPOS (type, variant_field)
8641 / TARGET_CHAR_BIT), dval);
d2e4a39e 8642 if (branch_type == NULL)
14f9c5c9 8643 {
4c4b4cd2 8644 int f;
5b4ee69b 8645
4c4b4cd2
PH
8646 for (f = variant_field + 1; f < nfields; f += 1)
8647 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8648 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8649 }
8650 else
8651 {
4c4b4cd2
PH
8652 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8653 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8654 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8655 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8656 }
4c4b4cd2 8657 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8658
4c4b4cd2 8659 value_free_to_mark (mark);
14f9c5c9
AS
8660 return rtype;
8661}
8662
8663/* An ordinary record type (with fixed-length fields) that describes
8664 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8665 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8666 should be in DVAL, a record value; it may be NULL if the object
8667 at ADDR itself contains any necessary discriminant values.
8668 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8669 values from the record are needed. Except in the case that DVAL,
8670 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8671 unchecked) is replaced by a particular branch of the variant.
8672
8673 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8674 is questionable and may be removed. It can arise during the
8675 processing of an unconstrained-array-of-record type where all the
8676 variant branches have exactly the same size. This is because in
8677 such cases, the compiler does not bother to use the XVS convention
8678 when encoding the record. I am currently dubious of this
8679 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8680
d2e4a39e 8681static struct type *
fc1a4b47 8682to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8683 CORE_ADDR address, struct value *dval)
14f9c5c9 8684{
d2e4a39e 8685 struct type *templ_type;
14f9c5c9 8686
876cecd0 8687 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8688 return type0;
8689
d2e4a39e 8690 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8691
8692 if (templ_type != NULL)
8693 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8694 else if (variant_field_index (type0) >= 0)
8695 {
8696 if (dval == NULL && valaddr == NULL && address == 0)
8697 return type0;
8698 return to_record_with_fixed_variant_part (type0, valaddr, address,
8699 dval);
8700 }
14f9c5c9
AS
8701 else
8702 {
876cecd0 8703 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8704 return type0;
8705 }
8706
8707}
8708
8709/* An ordinary record type (with fixed-length fields) that describes
8710 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8711 union type. Any necessary discriminants' values should be in DVAL,
8712 a record value. That is, this routine selects the appropriate
8713 branch of the union at ADDR according to the discriminant value
b1f33ddd 8714 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8715 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8716
d2e4a39e 8717static struct type *
fc1a4b47 8718to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8719 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8720{
8721 int which;
d2e4a39e
AS
8722 struct type *templ_type;
8723 struct type *var_type;
14f9c5c9
AS
8724
8725 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8726 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8727 else
14f9c5c9
AS
8728 var_type = var_type0;
8729
8730 templ_type = ada_find_parallel_type (var_type, "___XVU");
8731
8732 if (templ_type != NULL)
8733 var_type = templ_type;
8734
b1f33ddd
JB
8735 if (is_unchecked_variant (var_type, value_type (dval)))
8736 return var_type0;
d2e4a39e
AS
8737 which =
8738 ada_which_variant_applies (var_type,
0fd88904 8739 value_type (dval), value_contents (dval));
14f9c5c9
AS
8740
8741 if (which < 0)
e9bb382b 8742 return empty_record (var_type);
14f9c5c9 8743 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8744 return to_fixed_record_type
d2e4a39e
AS
8745 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8746 valaddr, address, dval);
4c4b4cd2 8747 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8748 return
8749 to_fixed_record_type
8750 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8751 else
8752 return TYPE_FIELD_TYPE (var_type, which);
8753}
8754
8908fca5
JB
8755/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8756 ENCODING_TYPE, a type following the GNAT conventions for discrete
8757 type encodings, only carries redundant information. */
8758
8759static int
8760ada_is_redundant_range_encoding (struct type *range_type,
8761 struct type *encoding_type)
8762{
108d56a4 8763 const char *bounds_str;
8908fca5
JB
8764 int n;
8765 LONGEST lo, hi;
8766
8767 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8768
005e2509
JB
8769 if (TYPE_CODE (get_base_type (range_type))
8770 != TYPE_CODE (get_base_type (encoding_type)))
8771 {
8772 /* The compiler probably used a simple base type to describe
8773 the range type instead of the range's actual base type,
8774 expecting us to get the real base type from the encoding
8775 anyway. In this situation, the encoding cannot be ignored
8776 as redundant. */
8777 return 0;
8778 }
8779
8908fca5
JB
8780 if (is_dynamic_type (range_type))
8781 return 0;
8782
8783 if (TYPE_NAME (encoding_type) == NULL)
8784 return 0;
8785
8786 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8787 if (bounds_str == NULL)
8788 return 0;
8789
8790 n = 8; /* Skip "___XDLU_". */
8791 if (!ada_scan_number (bounds_str, n, &lo, &n))
8792 return 0;
8793 if (TYPE_LOW_BOUND (range_type) != lo)
8794 return 0;
8795
8796 n += 2; /* Skip the "__" separator between the two bounds. */
8797 if (!ada_scan_number (bounds_str, n, &hi, &n))
8798 return 0;
8799 if (TYPE_HIGH_BOUND (range_type) != hi)
8800 return 0;
8801
8802 return 1;
8803}
8804
8805/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8806 a type following the GNAT encoding for describing array type
8807 indices, only carries redundant information. */
8808
8809static int
8810ada_is_redundant_index_type_desc (struct type *array_type,
8811 struct type *desc_type)
8812{
8813 struct type *this_layer = check_typedef (array_type);
8814 int i;
8815
8816 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8817 {
8818 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8819 TYPE_FIELD_TYPE (desc_type, i)))
8820 return 0;
8821 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8822 }
8823
8824 return 1;
8825}
8826
14f9c5c9
AS
8827/* Assuming that TYPE0 is an array type describing the type of a value
8828 at ADDR, and that DVAL describes a record containing any
8829 discriminants used in TYPE0, returns a type for the value that
8830 contains no dynamic components (that is, no components whose sizes
8831 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8832 true, gives an error message if the resulting type's size is over
4c4b4cd2 8833 varsize_limit. */
14f9c5c9 8834
d2e4a39e
AS
8835static struct type *
8836to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8837 int ignore_too_big)
14f9c5c9 8838{
d2e4a39e
AS
8839 struct type *index_type_desc;
8840 struct type *result;
ad82864c 8841 int constrained_packed_array_p;
931e5bc3 8842 static const char *xa_suffix = "___XA";
14f9c5c9 8843
b0dd7688 8844 type0 = ada_check_typedef (type0);
284614f0 8845 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8846 return type0;
14f9c5c9 8847
ad82864c
JB
8848 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8849 if (constrained_packed_array_p)
8850 type0 = decode_constrained_packed_array_type (type0);
284614f0 8851
931e5bc3
JG
8852 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8853
8854 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8855 encoding suffixed with 'P' may still be generated. If so,
8856 it should be used to find the XA type. */
8857
8858 if (index_type_desc == NULL)
8859 {
1da0522e 8860 const char *type_name = ada_type_name (type0);
931e5bc3 8861
1da0522e 8862 if (type_name != NULL)
931e5bc3 8863 {
1da0522e 8864 const int len = strlen (type_name);
931e5bc3
JG
8865 char *name = (char *) alloca (len + strlen (xa_suffix));
8866
1da0522e 8867 if (type_name[len - 1] == 'P')
931e5bc3 8868 {
1da0522e 8869 strcpy (name, type_name);
931e5bc3
JG
8870 strcpy (name + len - 1, xa_suffix);
8871 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8872 }
8873 }
8874 }
8875
28c85d6c 8876 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8877 if (index_type_desc != NULL
8878 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8879 {
8880 /* Ignore this ___XA parallel type, as it does not bring any
8881 useful information. This allows us to avoid creating fixed
8882 versions of the array's index types, which would be identical
8883 to the original ones. This, in turn, can also help avoid
8884 the creation of fixed versions of the array itself. */
8885 index_type_desc = NULL;
8886 }
8887
14f9c5c9
AS
8888 if (index_type_desc == NULL)
8889 {
61ee279c 8890 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8891
14f9c5c9 8892 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8893 depend on the contents of the array in properly constructed
8894 debugging data. */
529cad9c
PH
8895 /* Create a fixed version of the array element type.
8896 We're not providing the address of an element here,
e1d5a0d2 8897 and thus the actual object value cannot be inspected to do
529cad9c
PH
8898 the conversion. This should not be a problem, since arrays of
8899 unconstrained objects are not allowed. In particular, all
8900 the elements of an array of a tagged type should all be of
8901 the same type specified in the debugging info. No need to
8902 consult the object tag. */
1ed6ede0 8903 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8904
284614f0
JB
8905 /* Make sure we always create a new array type when dealing with
8906 packed array types, since we're going to fix-up the array
8907 type length and element bitsize a little further down. */
ad82864c 8908 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8909 result = type0;
14f9c5c9 8910 else
e9bb382b 8911 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8912 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8913 }
8914 else
8915 {
8916 int i;
8917 struct type *elt_type0;
8918
8919 elt_type0 = type0;
8920 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8921 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8922
8923 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8924 depend on the contents of the array in properly constructed
8925 debugging data. */
529cad9c
PH
8926 /* Create a fixed version of the array element type.
8927 We're not providing the address of an element here,
e1d5a0d2 8928 and thus the actual object value cannot be inspected to do
529cad9c
PH
8929 the conversion. This should not be a problem, since arrays of
8930 unconstrained objects are not allowed. In particular, all
8931 the elements of an array of a tagged type should all be of
8932 the same type specified in the debugging info. No need to
8933 consult the object tag. */
1ed6ede0
JB
8934 result =
8935 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8936
8937 elt_type0 = type0;
14f9c5c9 8938 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8939 {
8940 struct type *range_type =
28c85d6c 8941 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8942
e9bb382b 8943 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8944 result, range_type);
1ce677a4 8945 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8946 }
d2e4a39e 8947 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8948 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8949 }
8950
2e6fda7d
JB
8951 /* We want to preserve the type name. This can be useful when
8952 trying to get the type name of a value that has already been
8953 printed (for instance, if the user did "print VAR; whatis $". */
8954 TYPE_NAME (result) = TYPE_NAME (type0);
8955
ad82864c 8956 if (constrained_packed_array_p)
284614f0
JB
8957 {
8958 /* So far, the resulting type has been created as if the original
8959 type was a regular (non-packed) array type. As a result, the
8960 bitsize of the array elements needs to be set again, and the array
8961 length needs to be recomputed based on that bitsize. */
8962 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8963 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8964
8965 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8966 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8967 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8968 TYPE_LENGTH (result)++;
8969 }
8970
876cecd0 8971 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8972 return result;
d2e4a39e 8973}
14f9c5c9
AS
8974
8975
8976/* A standard type (containing no dynamically sized components)
8977 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8978 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8979 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8980 ADDRESS or in VALADDR contains these discriminants.
8981
1ed6ede0
JB
8982 If CHECK_TAG is not null, in the case of tagged types, this function
8983 attempts to locate the object's tag and use it to compute the actual
8984 type. However, when ADDRESS is null, we cannot use it to determine the
8985 location of the tag, and therefore compute the tagged type's actual type.
8986 So we return the tagged type without consulting the tag. */
529cad9c 8987
f192137b
JB
8988static struct type *
8989ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8990 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8991{
61ee279c 8992 type = ada_check_typedef (type);
d2e4a39e
AS
8993 switch (TYPE_CODE (type))
8994 {
8995 default:
14f9c5c9 8996 return type;
d2e4a39e 8997 case TYPE_CODE_STRUCT:
4c4b4cd2 8998 {
76a01679 8999 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9000 struct type *fixed_record_type =
9001 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9002
529cad9c
PH
9003 /* If STATIC_TYPE is a tagged type and we know the object's address,
9004 then we can determine its tag, and compute the object's actual
0963b4bd 9005 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9006 type (the parent part of the record may have dynamic fields
9007 and the way the location of _tag is expressed may depend on
9008 them). */
529cad9c 9009
1ed6ede0 9010 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9011 {
b50d69b5
JG
9012 struct value *tag =
9013 value_tag_from_contents_and_address
9014 (fixed_record_type,
9015 valaddr,
9016 address);
9017 struct type *real_type = type_from_tag (tag);
9018 struct value *obj =
9019 value_from_contents_and_address (fixed_record_type,
9020 valaddr,
9021 address);
9f1f738a 9022 fixed_record_type = value_type (obj);
76a01679 9023 if (real_type != NULL)
b50d69b5
JG
9024 return to_fixed_record_type
9025 (real_type, NULL,
9026 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9027 }
4af88198
JB
9028
9029 /* Check to see if there is a parallel ___XVZ variable.
9030 If there is, then it provides the actual size of our type. */
9031 else if (ada_type_name (fixed_record_type) != NULL)
9032 {
0d5cff50 9033 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9034 char *xvz_name
9035 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9036 bool xvz_found = false;
4af88198
JB
9037 LONGEST size;
9038
88c15c34 9039 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9040 TRY
9041 {
9042 xvz_found = get_int_var_value (xvz_name, size);
9043 }
9044 CATCH (except, RETURN_MASK_ERROR)
9045 {
9046 /* We found the variable, but somehow failed to read
9047 its value. Rethrow the same error, but with a little
9048 bit more information, to help the user understand
9049 what went wrong (Eg: the variable might have been
9050 optimized out). */
9051 throw_error (except.error,
9052 _("unable to read value of %s (%s)"),
9053 xvz_name, except.message);
9054 }
9055 END_CATCH
9056
9057 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9058 {
9059 fixed_record_type = copy_type (fixed_record_type);
9060 TYPE_LENGTH (fixed_record_type) = size;
9061
9062 /* The FIXED_RECORD_TYPE may have be a stub. We have
9063 observed this when the debugging info is STABS, and
9064 apparently it is something that is hard to fix.
9065
9066 In practice, we don't need the actual type definition
9067 at all, because the presence of the XVZ variable allows us
9068 to assume that there must be a XVS type as well, which we
9069 should be able to use later, when we need the actual type
9070 definition.
9071
9072 In the meantime, pretend that the "fixed" type we are
9073 returning is NOT a stub, because this can cause trouble
9074 when using this type to create new types targeting it.
9075 Indeed, the associated creation routines often check
9076 whether the target type is a stub and will try to replace
0963b4bd 9077 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9078 might cause the new type to have the wrong size too.
9079 Consider the case of an array, for instance, where the size
9080 of the array is computed from the number of elements in
9081 our array multiplied by the size of its element. */
9082 TYPE_STUB (fixed_record_type) = 0;
9083 }
9084 }
1ed6ede0 9085 return fixed_record_type;
4c4b4cd2 9086 }
d2e4a39e 9087 case TYPE_CODE_ARRAY:
4c4b4cd2 9088 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9089 case TYPE_CODE_UNION:
9090 if (dval == NULL)
4c4b4cd2 9091 return type;
d2e4a39e 9092 else
4c4b4cd2 9093 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9094 }
14f9c5c9
AS
9095}
9096
f192137b
JB
9097/* The same as ada_to_fixed_type_1, except that it preserves the type
9098 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9099
9100 The typedef layer needs be preserved in order to differentiate between
9101 arrays and array pointers when both types are implemented using the same
9102 fat pointer. In the array pointer case, the pointer is encoded as
9103 a typedef of the pointer type. For instance, considering:
9104
9105 type String_Access is access String;
9106 S1 : String_Access := null;
9107
9108 To the debugger, S1 is defined as a typedef of type String. But
9109 to the user, it is a pointer. So if the user tries to print S1,
9110 we should not dereference the array, but print the array address
9111 instead.
9112
9113 If we didn't preserve the typedef layer, we would lose the fact that
9114 the type is to be presented as a pointer (needs de-reference before
9115 being printed). And we would also use the source-level type name. */
f192137b
JB
9116
9117struct type *
9118ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9119 CORE_ADDR address, struct value *dval, int check_tag)
9120
9121{
9122 struct type *fixed_type =
9123 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9124
96dbd2c1
JB
9125 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9126 then preserve the typedef layer.
9127
9128 Implementation note: We can only check the main-type portion of
9129 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9130 from TYPE now returns a type that has the same instance flags
9131 as TYPE. For instance, if TYPE is a "typedef const", and its
9132 target type is a "struct", then the typedef elimination will return
9133 a "const" version of the target type. See check_typedef for more
9134 details about how the typedef layer elimination is done.
9135
9136 brobecker/2010-11-19: It seems to me that the only case where it is
9137 useful to preserve the typedef layer is when dealing with fat pointers.
9138 Perhaps, we could add a check for that and preserve the typedef layer
9139 only in that situation. But this seems unecessary so far, probably
9140 because we call check_typedef/ada_check_typedef pretty much everywhere.
9141 */
f192137b 9142 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9143 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9144 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9145 return type;
9146
9147 return fixed_type;
9148}
9149
14f9c5c9 9150/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9151 TYPE0, but based on no runtime data. */
14f9c5c9 9152
d2e4a39e
AS
9153static struct type *
9154to_static_fixed_type (struct type *type0)
14f9c5c9 9155{
d2e4a39e 9156 struct type *type;
14f9c5c9
AS
9157
9158 if (type0 == NULL)
9159 return NULL;
9160
876cecd0 9161 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9162 return type0;
9163
61ee279c 9164 type0 = ada_check_typedef (type0);
d2e4a39e 9165
14f9c5c9
AS
9166 switch (TYPE_CODE (type0))
9167 {
9168 default:
9169 return type0;
9170 case TYPE_CODE_STRUCT:
9171 type = dynamic_template_type (type0);
d2e4a39e 9172 if (type != NULL)
4c4b4cd2
PH
9173 return template_to_static_fixed_type (type);
9174 else
9175 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9176 case TYPE_CODE_UNION:
9177 type = ada_find_parallel_type (type0, "___XVU");
9178 if (type != NULL)
4c4b4cd2
PH
9179 return template_to_static_fixed_type (type);
9180 else
9181 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9182 }
9183}
9184
4c4b4cd2
PH
9185/* A static approximation of TYPE with all type wrappers removed. */
9186
d2e4a39e
AS
9187static struct type *
9188static_unwrap_type (struct type *type)
14f9c5c9
AS
9189{
9190 if (ada_is_aligner_type (type))
9191 {
61ee279c 9192 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9193 if (ada_type_name (type1) == NULL)
4c4b4cd2 9194 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9195
9196 return static_unwrap_type (type1);
9197 }
d2e4a39e 9198 else
14f9c5c9 9199 {
d2e4a39e 9200 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9201
d2e4a39e 9202 if (raw_real_type == type)
4c4b4cd2 9203 return type;
14f9c5c9 9204 else
4c4b4cd2 9205 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9206 }
9207}
9208
9209/* In some cases, incomplete and private types require
4c4b4cd2 9210 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9211 type Foo;
9212 type FooP is access Foo;
9213 V: FooP;
9214 type Foo is array ...;
4c4b4cd2 9215 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9216 cross-references to such types, we instead substitute for FooP a
9217 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9218 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9219
9220/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9221 exists, otherwise TYPE. */
9222
d2e4a39e 9223struct type *
61ee279c 9224ada_check_typedef (struct type *type)
14f9c5c9 9225{
727e3d2e
JB
9226 if (type == NULL)
9227 return NULL;
9228
736ade86
XR
9229 /* If our type is an access to an unconstrained array, which is encoded
9230 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9231 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9232 what allows us to distinguish between fat pointers that represent
9233 array types, and fat pointers that represent array access types
9234 (in both cases, the compiler implements them as fat pointers). */
736ade86 9235 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9236 return type;
9237
f168693b 9238 type = check_typedef (type);
14f9c5c9 9239 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9240 || !TYPE_STUB (type)
e86ca25f 9241 || TYPE_NAME (type) == NULL)
14f9c5c9 9242 return type;
d2e4a39e 9243 else
14f9c5c9 9244 {
e86ca25f 9245 const char *name = TYPE_NAME (type);
d2e4a39e 9246 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9247
05e522ef
JB
9248 if (type1 == NULL)
9249 return type;
9250
9251 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9252 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9253 types, only for the typedef-to-array types). If that's the case,
9254 strip the typedef layer. */
9255 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9256 type1 = ada_check_typedef (type1);
9257
9258 return type1;
14f9c5c9
AS
9259 }
9260}
9261
9262/* A value representing the data at VALADDR/ADDRESS as described by
9263 type TYPE0, but with a standard (static-sized) type that correctly
9264 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9265 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9266 creation of struct values]. */
14f9c5c9 9267
4c4b4cd2
PH
9268static struct value *
9269ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9270 struct value *val0)
14f9c5c9 9271{
1ed6ede0 9272 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9273
14f9c5c9
AS
9274 if (type == type0 && val0 != NULL)
9275 return val0;
cc0e770c
JB
9276
9277 if (VALUE_LVAL (val0) != lval_memory)
9278 {
9279 /* Our value does not live in memory; it could be a convenience
9280 variable, for instance. Create a not_lval value using val0's
9281 contents. */
9282 return value_from_contents (type, value_contents (val0));
9283 }
9284
9285 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9286}
9287
9288/* A value representing VAL, but with a standard (static-sized) type
9289 that correctly describes it. Does not necessarily create a new
9290 value. */
9291
0c3acc09 9292struct value *
4c4b4cd2
PH
9293ada_to_fixed_value (struct value *val)
9294{
c48db5ca 9295 val = unwrap_value (val);
d8ce9127 9296 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9297 return val;
14f9c5c9 9298}
d2e4a39e 9299\f
14f9c5c9 9300
14f9c5c9
AS
9301/* Attributes */
9302
4c4b4cd2
PH
9303/* Table mapping attribute numbers to names.
9304 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9305
d2e4a39e 9306static const char *attribute_names[] = {
14f9c5c9
AS
9307 "<?>",
9308
d2e4a39e 9309 "first",
14f9c5c9
AS
9310 "last",
9311 "length",
9312 "image",
14f9c5c9
AS
9313 "max",
9314 "min",
4c4b4cd2
PH
9315 "modulus",
9316 "pos",
9317 "size",
9318 "tag",
14f9c5c9 9319 "val",
14f9c5c9
AS
9320 0
9321};
9322
d2e4a39e 9323const char *
4c4b4cd2 9324ada_attribute_name (enum exp_opcode n)
14f9c5c9 9325{
4c4b4cd2
PH
9326 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9327 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9328 else
9329 return attribute_names[0];
9330}
9331
4c4b4cd2 9332/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9333
4c4b4cd2
PH
9334static LONGEST
9335pos_atr (struct value *arg)
14f9c5c9 9336{
24209737
PH
9337 struct value *val = coerce_ref (arg);
9338 struct type *type = value_type (val);
aa715135 9339 LONGEST result;
14f9c5c9 9340
d2e4a39e 9341 if (!discrete_type_p (type))
323e0a4a 9342 error (_("'POS only defined on discrete types"));
14f9c5c9 9343
aa715135
JG
9344 if (!discrete_position (type, value_as_long (val), &result))
9345 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9346
aa715135 9347 return result;
4c4b4cd2
PH
9348}
9349
9350static struct value *
3cb382c9 9351value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9352{
3cb382c9 9353 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9354}
9355
4c4b4cd2 9356/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9357
d2e4a39e
AS
9358static struct value *
9359value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9360{
d2e4a39e 9361 if (!discrete_type_p (type))
323e0a4a 9362 error (_("'VAL only defined on discrete types"));
df407dfe 9363 if (!integer_type_p (value_type (arg)))
323e0a4a 9364 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9365
9366 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9367 {
9368 long pos = value_as_long (arg);
5b4ee69b 9369
14f9c5c9 9370 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9371 error (_("argument to 'VAL out of range"));
14e75d8e 9372 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9373 }
9374 else
9375 return value_from_longest (type, value_as_long (arg));
9376}
14f9c5c9 9377\f
d2e4a39e 9378
4c4b4cd2 9379 /* Evaluation */
14f9c5c9 9380
4c4b4cd2
PH
9381/* True if TYPE appears to be an Ada character type.
9382 [At the moment, this is true only for Character and Wide_Character;
9383 It is a heuristic test that could stand improvement]. */
14f9c5c9 9384
d2e4a39e
AS
9385int
9386ada_is_character_type (struct type *type)
14f9c5c9 9387{
7b9f71f2
JB
9388 const char *name;
9389
9390 /* If the type code says it's a character, then assume it really is,
9391 and don't check any further. */
9392 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9393 return 1;
9394
9395 /* Otherwise, assume it's a character type iff it is a discrete type
9396 with a known character type name. */
9397 name = ada_type_name (type);
9398 return (name != NULL
9399 && (TYPE_CODE (type) == TYPE_CODE_INT
9400 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9401 && (strcmp (name, "character") == 0
9402 || strcmp (name, "wide_character") == 0
5a517ebd 9403 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9404 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9405}
9406
4c4b4cd2 9407/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9408
9409int
ebf56fd3 9410ada_is_string_type (struct type *type)
14f9c5c9 9411{
61ee279c 9412 type = ada_check_typedef (type);
d2e4a39e 9413 if (type != NULL
14f9c5c9 9414 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9415 && (ada_is_simple_array_type (type)
9416 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9417 && ada_array_arity (type) == 1)
9418 {
9419 struct type *elttype = ada_array_element_type (type, 1);
9420
9421 return ada_is_character_type (elttype);
9422 }
d2e4a39e 9423 else
14f9c5c9
AS
9424 return 0;
9425}
9426
5bf03f13
JB
9427/* The compiler sometimes provides a parallel XVS type for a given
9428 PAD type. Normally, it is safe to follow the PAD type directly,
9429 but older versions of the compiler have a bug that causes the offset
9430 of its "F" field to be wrong. Following that field in that case
9431 would lead to incorrect results, but this can be worked around
9432 by ignoring the PAD type and using the associated XVS type instead.
9433
9434 Set to True if the debugger should trust the contents of PAD types.
9435 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9436static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9437
9438/* True if TYPE is a struct type introduced by the compiler to force the
9439 alignment of a value. Such types have a single field with a
4c4b4cd2 9440 distinctive name. */
14f9c5c9
AS
9441
9442int
ebf56fd3 9443ada_is_aligner_type (struct type *type)
14f9c5c9 9444{
61ee279c 9445 type = ada_check_typedef (type);
714e53ab 9446
5bf03f13 9447 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9448 return 0;
9449
14f9c5c9 9450 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9451 && TYPE_NFIELDS (type) == 1
9452 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9453}
9454
9455/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9456 the parallel type. */
14f9c5c9 9457
d2e4a39e
AS
9458struct type *
9459ada_get_base_type (struct type *raw_type)
14f9c5c9 9460{
d2e4a39e
AS
9461 struct type *real_type_namer;
9462 struct type *raw_real_type;
14f9c5c9
AS
9463
9464 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9465 return raw_type;
9466
284614f0
JB
9467 if (ada_is_aligner_type (raw_type))
9468 /* The encoding specifies that we should always use the aligner type.
9469 So, even if this aligner type has an associated XVS type, we should
9470 simply ignore it.
9471
9472 According to the compiler gurus, an XVS type parallel to an aligner
9473 type may exist because of a stabs limitation. In stabs, aligner
9474 types are empty because the field has a variable-sized type, and
9475 thus cannot actually be used as an aligner type. As a result,
9476 we need the associated parallel XVS type to decode the type.
9477 Since the policy in the compiler is to not change the internal
9478 representation based on the debugging info format, we sometimes
9479 end up having a redundant XVS type parallel to the aligner type. */
9480 return raw_type;
9481
14f9c5c9 9482 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9483 if (real_type_namer == NULL
14f9c5c9
AS
9484 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9485 || TYPE_NFIELDS (real_type_namer) != 1)
9486 return raw_type;
9487
f80d3ff2
JB
9488 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9489 {
9490 /* This is an older encoding form where the base type needs to be
9491 looked up by name. We prefer the newer enconding because it is
9492 more efficient. */
9493 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9494 if (raw_real_type == NULL)
9495 return raw_type;
9496 else
9497 return raw_real_type;
9498 }
9499
9500 /* The field in our XVS type is a reference to the base type. */
9501 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9502}
14f9c5c9 9503
4c4b4cd2 9504/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9505
d2e4a39e
AS
9506struct type *
9507ada_aligned_type (struct type *type)
14f9c5c9
AS
9508{
9509 if (ada_is_aligner_type (type))
9510 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9511 else
9512 return ada_get_base_type (type);
9513}
9514
9515
9516/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9517 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9518
fc1a4b47
AC
9519const gdb_byte *
9520ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9521{
d2e4a39e 9522 if (ada_is_aligner_type (type))
14f9c5c9 9523 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9524 valaddr +
9525 TYPE_FIELD_BITPOS (type,
9526 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9527 else
9528 return valaddr;
9529}
9530
4c4b4cd2
PH
9531
9532
14f9c5c9 9533/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9534 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9535const char *
9536ada_enum_name (const char *name)
14f9c5c9 9537{
4c4b4cd2
PH
9538 static char *result;
9539 static size_t result_len = 0;
e6a959d6 9540 const char *tmp;
14f9c5c9 9541
4c4b4cd2
PH
9542 /* First, unqualify the enumeration name:
9543 1. Search for the last '.' character. If we find one, then skip
177b42fe 9544 all the preceding characters, the unqualified name starts
76a01679 9545 right after that dot.
4c4b4cd2 9546 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9547 translates dots into "__". Search forward for double underscores,
9548 but stop searching when we hit an overloading suffix, which is
9549 of the form "__" followed by digits. */
4c4b4cd2 9550
c3e5cd34
PH
9551 tmp = strrchr (name, '.');
9552 if (tmp != NULL)
4c4b4cd2
PH
9553 name = tmp + 1;
9554 else
14f9c5c9 9555 {
4c4b4cd2
PH
9556 while ((tmp = strstr (name, "__")) != NULL)
9557 {
9558 if (isdigit (tmp[2]))
9559 break;
9560 else
9561 name = tmp + 2;
9562 }
14f9c5c9
AS
9563 }
9564
9565 if (name[0] == 'Q')
9566 {
14f9c5c9 9567 int v;
5b4ee69b 9568
14f9c5c9 9569 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9570 {
9571 if (sscanf (name + 2, "%x", &v) != 1)
9572 return name;
9573 }
14f9c5c9 9574 else
4c4b4cd2 9575 return name;
14f9c5c9 9576
4c4b4cd2 9577 GROW_VECT (result, result_len, 16);
14f9c5c9 9578 if (isascii (v) && isprint (v))
88c15c34 9579 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9580 else if (name[1] == 'U')
88c15c34 9581 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9582 else
88c15c34 9583 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9584
9585 return result;
9586 }
d2e4a39e 9587 else
4c4b4cd2 9588 {
c3e5cd34
PH
9589 tmp = strstr (name, "__");
9590 if (tmp == NULL)
9591 tmp = strstr (name, "$");
9592 if (tmp != NULL)
4c4b4cd2
PH
9593 {
9594 GROW_VECT (result, result_len, tmp - name + 1);
9595 strncpy (result, name, tmp - name);
9596 result[tmp - name] = '\0';
9597 return result;
9598 }
9599
9600 return name;
9601 }
14f9c5c9
AS
9602}
9603
14f9c5c9
AS
9604/* Evaluate the subexpression of EXP starting at *POS as for
9605 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9606 expression. */
14f9c5c9 9607
d2e4a39e
AS
9608static struct value *
9609evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9610{
4b27a620 9611 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9612}
9613
9614/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9615 value it wraps. */
14f9c5c9 9616
d2e4a39e
AS
9617static struct value *
9618unwrap_value (struct value *val)
14f9c5c9 9619{
df407dfe 9620 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9621
14f9c5c9
AS
9622 if (ada_is_aligner_type (type))
9623 {
de4d072f 9624 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9625 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9626
14f9c5c9 9627 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9628 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9629
9630 return unwrap_value (v);
9631 }
d2e4a39e 9632 else
14f9c5c9 9633 {
d2e4a39e 9634 struct type *raw_real_type =
61ee279c 9635 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9636
5bf03f13
JB
9637 /* If there is no parallel XVS or XVE type, then the value is
9638 already unwrapped. Return it without further modification. */
9639 if ((type == raw_real_type)
9640 && ada_find_parallel_type (type, "___XVE") == NULL)
9641 return val;
14f9c5c9 9642
d2e4a39e 9643 return
4c4b4cd2
PH
9644 coerce_unspec_val_to_type
9645 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9646 value_address (val),
1ed6ede0 9647 NULL, 1));
14f9c5c9
AS
9648 }
9649}
d2e4a39e
AS
9650
9651static struct value *
50eff16b 9652cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9653{
50eff16b
UW
9654 struct value *scale = ada_scaling_factor (value_type (arg));
9655 arg = value_cast (value_type (scale), arg);
14f9c5c9 9656
50eff16b
UW
9657 arg = value_binop (arg, scale, BINOP_MUL);
9658 return value_cast (type, arg);
14f9c5c9
AS
9659}
9660
d2e4a39e 9661static struct value *
50eff16b 9662cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9663{
50eff16b
UW
9664 if (type == value_type (arg))
9665 return arg;
5b4ee69b 9666
50eff16b
UW
9667 struct value *scale = ada_scaling_factor (type);
9668 if (ada_is_fixed_point_type (value_type (arg)))
9669 arg = cast_from_fixed (value_type (scale), arg);
9670 else
9671 arg = value_cast (value_type (scale), arg);
9672
9673 arg = value_binop (arg, scale, BINOP_DIV);
9674 return value_cast (type, arg);
14f9c5c9
AS
9675}
9676
d99dcf51
JB
9677/* Given two array types T1 and T2, return nonzero iff both arrays
9678 contain the same number of elements. */
9679
9680static int
9681ada_same_array_size_p (struct type *t1, struct type *t2)
9682{
9683 LONGEST lo1, hi1, lo2, hi2;
9684
9685 /* Get the array bounds in order to verify that the size of
9686 the two arrays match. */
9687 if (!get_array_bounds (t1, &lo1, &hi1)
9688 || !get_array_bounds (t2, &lo2, &hi2))
9689 error (_("unable to determine array bounds"));
9690
9691 /* To make things easier for size comparison, normalize a bit
9692 the case of empty arrays by making sure that the difference
9693 between upper bound and lower bound is always -1. */
9694 if (lo1 > hi1)
9695 hi1 = lo1 - 1;
9696 if (lo2 > hi2)
9697 hi2 = lo2 - 1;
9698
9699 return (hi1 - lo1 == hi2 - lo2);
9700}
9701
9702/* Assuming that VAL is an array of integrals, and TYPE represents
9703 an array with the same number of elements, but with wider integral
9704 elements, return an array "casted" to TYPE. In practice, this
9705 means that the returned array is built by casting each element
9706 of the original array into TYPE's (wider) element type. */
9707
9708static struct value *
9709ada_promote_array_of_integrals (struct type *type, struct value *val)
9710{
9711 struct type *elt_type = TYPE_TARGET_TYPE (type);
9712 LONGEST lo, hi;
9713 struct value *res;
9714 LONGEST i;
9715
9716 /* Verify that both val and type are arrays of scalars, and
9717 that the size of val's elements is smaller than the size
9718 of type's element. */
9719 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9720 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9721 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9722 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9723 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9724 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9725
9726 if (!get_array_bounds (type, &lo, &hi))
9727 error (_("unable to determine array bounds"));
9728
9729 res = allocate_value (type);
9730
9731 /* Promote each array element. */
9732 for (i = 0; i < hi - lo + 1; i++)
9733 {
9734 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9735
9736 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9737 value_contents_all (elt), TYPE_LENGTH (elt_type));
9738 }
9739
9740 return res;
9741}
9742
4c4b4cd2
PH
9743/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9744 return the converted value. */
9745
d2e4a39e
AS
9746static struct value *
9747coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9748{
df407dfe 9749 struct type *type2 = value_type (val);
5b4ee69b 9750
14f9c5c9
AS
9751 if (type == type2)
9752 return val;
9753
61ee279c
PH
9754 type2 = ada_check_typedef (type2);
9755 type = ada_check_typedef (type);
14f9c5c9 9756
d2e4a39e
AS
9757 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9758 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9759 {
9760 val = ada_value_ind (val);
df407dfe 9761 type2 = value_type (val);
14f9c5c9
AS
9762 }
9763
d2e4a39e 9764 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9765 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9766 {
d99dcf51
JB
9767 if (!ada_same_array_size_p (type, type2))
9768 error (_("cannot assign arrays of different length"));
9769
9770 if (is_integral_type (TYPE_TARGET_TYPE (type))
9771 && is_integral_type (TYPE_TARGET_TYPE (type2))
9772 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9773 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9774 {
9775 /* Allow implicit promotion of the array elements to
9776 a wider type. */
9777 return ada_promote_array_of_integrals (type, val);
9778 }
9779
9780 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9781 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9782 error (_("Incompatible types in assignment"));
04624583 9783 deprecated_set_value_type (val, type);
14f9c5c9 9784 }
d2e4a39e 9785 return val;
14f9c5c9
AS
9786}
9787
4c4b4cd2
PH
9788static struct value *
9789ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9790{
9791 struct value *val;
9792 struct type *type1, *type2;
9793 LONGEST v, v1, v2;
9794
994b9211
AC
9795 arg1 = coerce_ref (arg1);
9796 arg2 = coerce_ref (arg2);
18af8284
JB
9797 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9798 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9799
76a01679
JB
9800 if (TYPE_CODE (type1) != TYPE_CODE_INT
9801 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9802 return value_binop (arg1, arg2, op);
9803
76a01679 9804 switch (op)
4c4b4cd2
PH
9805 {
9806 case BINOP_MOD:
9807 case BINOP_DIV:
9808 case BINOP_REM:
9809 break;
9810 default:
9811 return value_binop (arg1, arg2, op);
9812 }
9813
9814 v2 = value_as_long (arg2);
9815 if (v2 == 0)
323e0a4a 9816 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9817
9818 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9819 return value_binop (arg1, arg2, op);
9820
9821 v1 = value_as_long (arg1);
9822 switch (op)
9823 {
9824 case BINOP_DIV:
9825 v = v1 / v2;
76a01679
JB
9826 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9827 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9828 break;
9829 case BINOP_REM:
9830 v = v1 % v2;
76a01679
JB
9831 if (v * v1 < 0)
9832 v -= v2;
4c4b4cd2
PH
9833 break;
9834 default:
9835 /* Should not reach this point. */
9836 v = 0;
9837 }
9838
9839 val = allocate_value (type1);
990a07ab 9840 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9841 TYPE_LENGTH (value_type (val)),
9842 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9843 return val;
9844}
9845
9846static int
9847ada_value_equal (struct value *arg1, struct value *arg2)
9848{
df407dfe
AC
9849 if (ada_is_direct_array_type (value_type (arg1))
9850 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9851 {
79e8fcaa
JB
9852 struct type *arg1_type, *arg2_type;
9853
f58b38bf
JB
9854 /* Automatically dereference any array reference before
9855 we attempt to perform the comparison. */
9856 arg1 = ada_coerce_ref (arg1);
9857 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9858
4c4b4cd2
PH
9859 arg1 = ada_coerce_to_simple_array (arg1);
9860 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9861
9862 arg1_type = ada_check_typedef (value_type (arg1));
9863 arg2_type = ada_check_typedef (value_type (arg2));
9864
9865 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9866 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9867 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9868 /* FIXME: The following works only for types whose
76a01679
JB
9869 representations use all bits (no padding or undefined bits)
9870 and do not have user-defined equality. */
79e8fcaa
JB
9871 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9872 && memcmp (value_contents (arg1), value_contents (arg2),
9873 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9874 }
9875 return value_equal (arg1, arg2);
9876}
9877
52ce6436
PH
9878/* Total number of component associations in the aggregate starting at
9879 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9880 OP_AGGREGATE. */
52ce6436
PH
9881
9882static int
9883num_component_specs (struct expression *exp, int pc)
9884{
9885 int n, m, i;
5b4ee69b 9886
52ce6436
PH
9887 m = exp->elts[pc + 1].longconst;
9888 pc += 3;
9889 n = 0;
9890 for (i = 0; i < m; i += 1)
9891 {
9892 switch (exp->elts[pc].opcode)
9893 {
9894 default:
9895 n += 1;
9896 break;
9897 case OP_CHOICES:
9898 n += exp->elts[pc + 1].longconst;
9899 break;
9900 }
9901 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9902 }
9903 return n;
9904}
9905
9906/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9907 component of LHS (a simple array or a record), updating *POS past
9908 the expression, assuming that LHS is contained in CONTAINER. Does
9909 not modify the inferior's memory, nor does it modify LHS (unless
9910 LHS == CONTAINER). */
9911
9912static void
9913assign_component (struct value *container, struct value *lhs, LONGEST index,
9914 struct expression *exp, int *pos)
9915{
9916 struct value *mark = value_mark ();
9917 struct value *elt;
0e2da9f0 9918 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9919
0e2da9f0 9920 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9921 {
22601c15
UW
9922 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9923 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9924
52ce6436
PH
9925 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9926 }
9927 else
9928 {
9929 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9930 elt = ada_to_fixed_value (elt);
52ce6436
PH
9931 }
9932
9933 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9934 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9935 else
9936 value_assign_to_component (container, elt,
9937 ada_evaluate_subexp (NULL, exp, pos,
9938 EVAL_NORMAL));
9939
9940 value_free_to_mark (mark);
9941}
9942
9943/* Assuming that LHS represents an lvalue having a record or array
9944 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9945 of that aggregate's value to LHS, advancing *POS past the
9946 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9947 lvalue containing LHS (possibly LHS itself). Does not modify
9948 the inferior's memory, nor does it modify the contents of
0963b4bd 9949 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9950
9951static struct value *
9952assign_aggregate (struct value *container,
9953 struct value *lhs, struct expression *exp,
9954 int *pos, enum noside noside)
9955{
9956 struct type *lhs_type;
9957 int n = exp->elts[*pos+1].longconst;
9958 LONGEST low_index, high_index;
9959 int num_specs;
9960 LONGEST *indices;
9961 int max_indices, num_indices;
52ce6436 9962 int i;
52ce6436
PH
9963
9964 *pos += 3;
9965 if (noside != EVAL_NORMAL)
9966 {
52ce6436
PH
9967 for (i = 0; i < n; i += 1)
9968 ada_evaluate_subexp (NULL, exp, pos, noside);
9969 return container;
9970 }
9971
9972 container = ada_coerce_ref (container);
9973 if (ada_is_direct_array_type (value_type (container)))
9974 container = ada_coerce_to_simple_array (container);
9975 lhs = ada_coerce_ref (lhs);
9976 if (!deprecated_value_modifiable (lhs))
9977 error (_("Left operand of assignment is not a modifiable lvalue."));
9978
0e2da9f0 9979 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9980 if (ada_is_direct_array_type (lhs_type))
9981 {
9982 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9983 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9984 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9985 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9986 }
9987 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9988 {
9989 low_index = 0;
9990 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9991 }
9992 else
9993 error (_("Left-hand side must be array or record."));
9994
9995 num_specs = num_component_specs (exp, *pos - 3);
9996 max_indices = 4 * num_specs + 4;
8d749320 9997 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9998 indices[0] = indices[1] = low_index - 1;
9999 indices[2] = indices[3] = high_index + 1;
10000 num_indices = 4;
10001
10002 for (i = 0; i < n; i += 1)
10003 {
10004 switch (exp->elts[*pos].opcode)
10005 {
1fbf5ada
JB
10006 case OP_CHOICES:
10007 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10008 &num_indices, max_indices,
10009 low_index, high_index);
10010 break;
10011 case OP_POSITIONAL:
10012 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10013 &num_indices, max_indices,
10014 low_index, high_index);
1fbf5ada
JB
10015 break;
10016 case OP_OTHERS:
10017 if (i != n-1)
10018 error (_("Misplaced 'others' clause"));
10019 aggregate_assign_others (container, lhs, exp, pos, indices,
10020 num_indices, low_index, high_index);
10021 break;
10022 default:
10023 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10024 }
10025 }
10026
10027 return container;
10028}
10029
10030/* Assign into the component of LHS indexed by the OP_POSITIONAL
10031 construct at *POS, updating *POS past the construct, given that
10032 the positions are relative to lower bound LOW, where HIGH is the
10033 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10034 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10035 assign_aggregate. */
52ce6436
PH
10036static void
10037aggregate_assign_positional (struct value *container,
10038 struct value *lhs, struct expression *exp,
10039 int *pos, LONGEST *indices, int *num_indices,
10040 int max_indices, LONGEST low, LONGEST high)
10041{
10042 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10043
10044 if (ind - 1 == high)
e1d5a0d2 10045 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10046 if (ind <= high)
10047 {
10048 add_component_interval (ind, ind, indices, num_indices, max_indices);
10049 *pos += 3;
10050 assign_component (container, lhs, ind, exp, pos);
10051 }
10052 else
10053 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10054}
10055
10056/* Assign into the components of LHS indexed by the OP_CHOICES
10057 construct at *POS, updating *POS past the construct, given that
10058 the allowable indices are LOW..HIGH. Record the indices assigned
10059 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10060 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10061static void
10062aggregate_assign_from_choices (struct value *container,
10063 struct value *lhs, struct expression *exp,
10064 int *pos, LONGEST *indices, int *num_indices,
10065 int max_indices, LONGEST low, LONGEST high)
10066{
10067 int j;
10068 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10069 int choice_pos, expr_pc;
10070 int is_array = ada_is_direct_array_type (value_type (lhs));
10071
10072 choice_pos = *pos += 3;
10073
10074 for (j = 0; j < n_choices; j += 1)
10075 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10076 expr_pc = *pos;
10077 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10078
10079 for (j = 0; j < n_choices; j += 1)
10080 {
10081 LONGEST lower, upper;
10082 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10083
52ce6436
PH
10084 if (op == OP_DISCRETE_RANGE)
10085 {
10086 choice_pos += 1;
10087 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10088 EVAL_NORMAL));
10089 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10090 EVAL_NORMAL));
10091 }
10092 else if (is_array)
10093 {
10094 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10095 EVAL_NORMAL));
10096 upper = lower;
10097 }
10098 else
10099 {
10100 int ind;
0d5cff50 10101 const char *name;
5b4ee69b 10102
52ce6436
PH
10103 switch (op)
10104 {
10105 case OP_NAME:
10106 name = &exp->elts[choice_pos + 2].string;
10107 break;
10108 case OP_VAR_VALUE:
10109 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10110 break;
10111 default:
10112 error (_("Invalid record component association."));
10113 }
10114 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10115 ind = 0;
10116 if (! find_struct_field (name, value_type (lhs), 0,
10117 NULL, NULL, NULL, NULL, &ind))
10118 error (_("Unknown component name: %s."), name);
10119 lower = upper = ind;
10120 }
10121
10122 if (lower <= upper && (lower < low || upper > high))
10123 error (_("Index in component association out of bounds."));
10124
10125 add_component_interval (lower, upper, indices, num_indices,
10126 max_indices);
10127 while (lower <= upper)
10128 {
10129 int pos1;
5b4ee69b 10130
52ce6436
PH
10131 pos1 = expr_pc;
10132 assign_component (container, lhs, lower, exp, &pos1);
10133 lower += 1;
10134 }
10135 }
10136}
10137
10138/* Assign the value of the expression in the OP_OTHERS construct in
10139 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10140 have not been previously assigned. The index intervals already assigned
10141 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10142 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10143static void
10144aggregate_assign_others (struct value *container,
10145 struct value *lhs, struct expression *exp,
10146 int *pos, LONGEST *indices, int num_indices,
10147 LONGEST low, LONGEST high)
10148{
10149 int i;
5ce64950 10150 int expr_pc = *pos + 1;
52ce6436
PH
10151
10152 for (i = 0; i < num_indices - 2; i += 2)
10153 {
10154 LONGEST ind;
5b4ee69b 10155
52ce6436
PH
10156 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10157 {
5ce64950 10158 int localpos;
5b4ee69b 10159
5ce64950
MS
10160 localpos = expr_pc;
10161 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10162 }
10163 }
10164 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10165}
10166
10167/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10168 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10169 modifying *SIZE as needed. It is an error if *SIZE exceeds
10170 MAX_SIZE. The resulting intervals do not overlap. */
10171static void
10172add_component_interval (LONGEST low, LONGEST high,
10173 LONGEST* indices, int *size, int max_size)
10174{
10175 int i, j;
5b4ee69b 10176
52ce6436
PH
10177 for (i = 0; i < *size; i += 2) {
10178 if (high >= indices[i] && low <= indices[i + 1])
10179 {
10180 int kh;
5b4ee69b 10181
52ce6436
PH
10182 for (kh = i + 2; kh < *size; kh += 2)
10183 if (high < indices[kh])
10184 break;
10185 if (low < indices[i])
10186 indices[i] = low;
10187 indices[i + 1] = indices[kh - 1];
10188 if (high > indices[i + 1])
10189 indices[i + 1] = high;
10190 memcpy (indices + i + 2, indices + kh, *size - kh);
10191 *size -= kh - i - 2;
10192 return;
10193 }
10194 else if (high < indices[i])
10195 break;
10196 }
10197
10198 if (*size == max_size)
10199 error (_("Internal error: miscounted aggregate components."));
10200 *size += 2;
10201 for (j = *size-1; j >= i+2; j -= 1)
10202 indices[j] = indices[j - 2];
10203 indices[i] = low;
10204 indices[i + 1] = high;
10205}
10206
6e48bd2c
JB
10207/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10208 is different. */
10209
10210static struct value *
b7e22850 10211ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10212{
10213 if (type == ada_check_typedef (value_type (arg2)))
10214 return arg2;
10215
10216 if (ada_is_fixed_point_type (type))
95f39a5b 10217 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10218
10219 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10220 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10221
10222 return value_cast (type, arg2);
10223}
10224
284614f0
JB
10225/* Evaluating Ada expressions, and printing their result.
10226 ------------------------------------------------------
10227
21649b50
JB
10228 1. Introduction:
10229 ----------------
10230
284614f0
JB
10231 We usually evaluate an Ada expression in order to print its value.
10232 We also evaluate an expression in order to print its type, which
10233 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10234 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10235 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10236 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10237 similar.
10238
10239 Evaluating expressions is a little more complicated for Ada entities
10240 than it is for entities in languages such as C. The main reason for
10241 this is that Ada provides types whose definition might be dynamic.
10242 One example of such types is variant records. Or another example
10243 would be an array whose bounds can only be known at run time.
10244
10245 The following description is a general guide as to what should be
10246 done (and what should NOT be done) in order to evaluate an expression
10247 involving such types, and when. This does not cover how the semantic
10248 information is encoded by GNAT as this is covered separatly. For the
10249 document used as the reference for the GNAT encoding, see exp_dbug.ads
10250 in the GNAT sources.
10251
10252 Ideally, we should embed each part of this description next to its
10253 associated code. Unfortunately, the amount of code is so vast right
10254 now that it's hard to see whether the code handling a particular
10255 situation might be duplicated or not. One day, when the code is
10256 cleaned up, this guide might become redundant with the comments
10257 inserted in the code, and we might want to remove it.
10258
21649b50
JB
10259 2. ``Fixing'' an Entity, the Simple Case:
10260 -----------------------------------------
10261
284614f0
JB
10262 When evaluating Ada expressions, the tricky issue is that they may
10263 reference entities whose type contents and size are not statically
10264 known. Consider for instance a variant record:
10265
10266 type Rec (Empty : Boolean := True) is record
10267 case Empty is
10268 when True => null;
10269 when False => Value : Integer;
10270 end case;
10271 end record;
10272 Yes : Rec := (Empty => False, Value => 1);
10273 No : Rec := (empty => True);
10274
10275 The size and contents of that record depends on the value of the
10276 descriminant (Rec.Empty). At this point, neither the debugging
10277 information nor the associated type structure in GDB are able to
10278 express such dynamic types. So what the debugger does is to create
10279 "fixed" versions of the type that applies to the specific object.
10280 We also informally refer to this opperation as "fixing" an object,
10281 which means creating its associated fixed type.
10282
10283 Example: when printing the value of variable "Yes" above, its fixed
10284 type would look like this:
10285
10286 type Rec is record
10287 Empty : Boolean;
10288 Value : Integer;
10289 end record;
10290
10291 On the other hand, if we printed the value of "No", its fixed type
10292 would become:
10293
10294 type Rec is record
10295 Empty : Boolean;
10296 end record;
10297
10298 Things become a little more complicated when trying to fix an entity
10299 with a dynamic type that directly contains another dynamic type,
10300 such as an array of variant records, for instance. There are
10301 two possible cases: Arrays, and records.
10302
21649b50
JB
10303 3. ``Fixing'' Arrays:
10304 ---------------------
10305
10306 The type structure in GDB describes an array in terms of its bounds,
10307 and the type of its elements. By design, all elements in the array
10308 have the same type and we cannot represent an array of variant elements
10309 using the current type structure in GDB. When fixing an array,
10310 we cannot fix the array element, as we would potentially need one
10311 fixed type per element of the array. As a result, the best we can do
10312 when fixing an array is to produce an array whose bounds and size
10313 are correct (allowing us to read it from memory), but without having
10314 touched its element type. Fixing each element will be done later,
10315 when (if) necessary.
10316
10317 Arrays are a little simpler to handle than records, because the same
10318 amount of memory is allocated for each element of the array, even if
1b536f04 10319 the amount of space actually used by each element differs from element
21649b50 10320 to element. Consider for instance the following array of type Rec:
284614f0
JB
10321
10322 type Rec_Array is array (1 .. 2) of Rec;
10323
1b536f04
JB
10324 The actual amount of memory occupied by each element might be different
10325 from element to element, depending on the value of their discriminant.
21649b50 10326 But the amount of space reserved for each element in the array remains
1b536f04 10327 fixed regardless. So we simply need to compute that size using
21649b50
JB
10328 the debugging information available, from which we can then determine
10329 the array size (we multiply the number of elements of the array by
10330 the size of each element).
10331
10332 The simplest case is when we have an array of a constrained element
10333 type. For instance, consider the following type declarations:
10334
10335 type Bounded_String (Max_Size : Integer) is
10336 Length : Integer;
10337 Buffer : String (1 .. Max_Size);
10338 end record;
10339 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10340
10341 In this case, the compiler describes the array as an array of
10342 variable-size elements (identified by its XVS suffix) for which
10343 the size can be read in the parallel XVZ variable.
10344
10345 In the case of an array of an unconstrained element type, the compiler
10346 wraps the array element inside a private PAD type. This type should not
10347 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10348 that we also use the adjective "aligner" in our code to designate
10349 these wrapper types.
10350
1b536f04 10351 In some cases, the size allocated for each element is statically
21649b50
JB
10352 known. In that case, the PAD type already has the correct size,
10353 and the array element should remain unfixed.
10354
10355 But there are cases when this size is not statically known.
10356 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10357
10358 type Dynamic is array (1 .. Five) of Integer;
10359 type Wrapper (Has_Length : Boolean := False) is record
10360 Data : Dynamic;
10361 case Has_Length is
10362 when True => Length : Integer;
10363 when False => null;
10364 end case;
10365 end record;
10366 type Wrapper_Array is array (1 .. 2) of Wrapper;
10367
10368 Hello : Wrapper_Array := (others => (Has_Length => True,
10369 Data => (others => 17),
10370 Length => 1));
10371
10372
10373 The debugging info would describe variable Hello as being an
10374 array of a PAD type. The size of that PAD type is not statically
10375 known, but can be determined using a parallel XVZ variable.
10376 In that case, a copy of the PAD type with the correct size should
10377 be used for the fixed array.
10378
21649b50
JB
10379 3. ``Fixing'' record type objects:
10380 ----------------------------------
10381
10382 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10383 record types. In this case, in order to compute the associated
10384 fixed type, we need to determine the size and offset of each of
10385 its components. This, in turn, requires us to compute the fixed
10386 type of each of these components.
10387
10388 Consider for instance the example:
10389
10390 type Bounded_String (Max_Size : Natural) is record
10391 Str : String (1 .. Max_Size);
10392 Length : Natural;
10393 end record;
10394 My_String : Bounded_String (Max_Size => 10);
10395
10396 In that case, the position of field "Length" depends on the size
10397 of field Str, which itself depends on the value of the Max_Size
21649b50 10398 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10399 we need to fix the type of field Str. Therefore, fixing a variant
10400 record requires us to fix each of its components.
10401
10402 However, if a component does not have a dynamic size, the component
10403 should not be fixed. In particular, fields that use a PAD type
10404 should not fixed. Here is an example where this might happen
10405 (assuming type Rec above):
10406
10407 type Container (Big : Boolean) is record
10408 First : Rec;
10409 After : Integer;
10410 case Big is
10411 when True => Another : Integer;
10412 when False => null;
10413 end case;
10414 end record;
10415 My_Container : Container := (Big => False,
10416 First => (Empty => True),
10417 After => 42);
10418
10419 In that example, the compiler creates a PAD type for component First,
10420 whose size is constant, and then positions the component After just
10421 right after it. The offset of component After is therefore constant
10422 in this case.
10423
10424 The debugger computes the position of each field based on an algorithm
10425 that uses, among other things, the actual position and size of the field
21649b50
JB
10426 preceding it. Let's now imagine that the user is trying to print
10427 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10428 end up computing the offset of field After based on the size of the
10429 fixed version of field First. And since in our example First has
10430 only one actual field, the size of the fixed type is actually smaller
10431 than the amount of space allocated to that field, and thus we would
10432 compute the wrong offset of field After.
10433
21649b50
JB
10434 To make things more complicated, we need to watch out for dynamic
10435 components of variant records (identified by the ___XVL suffix in
10436 the component name). Even if the target type is a PAD type, the size
10437 of that type might not be statically known. So the PAD type needs
10438 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10439 we might end up with the wrong size for our component. This can be
10440 observed with the following type declarations:
284614f0
JB
10441
10442 type Octal is new Integer range 0 .. 7;
10443 type Octal_Array is array (Positive range <>) of Octal;
10444 pragma Pack (Octal_Array);
10445
10446 type Octal_Buffer (Size : Positive) is record
10447 Buffer : Octal_Array (1 .. Size);
10448 Length : Integer;
10449 end record;
10450
10451 In that case, Buffer is a PAD type whose size is unset and needs
10452 to be computed by fixing the unwrapped type.
10453
21649b50
JB
10454 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10455 ----------------------------------------------------------
10456
10457 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10458 thus far, be actually fixed?
10459
10460 The answer is: Only when referencing that element. For instance
10461 when selecting one component of a record, this specific component
10462 should be fixed at that point in time. Or when printing the value
10463 of a record, each component should be fixed before its value gets
10464 printed. Similarly for arrays, the element of the array should be
10465 fixed when printing each element of the array, or when extracting
10466 one element out of that array. On the other hand, fixing should
10467 not be performed on the elements when taking a slice of an array!
10468
31432a67 10469 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10470 size of each field is that we end up also miscomputing the size
10471 of the containing type. This can have adverse results when computing
10472 the value of an entity. GDB fetches the value of an entity based
10473 on the size of its type, and thus a wrong size causes GDB to fetch
10474 the wrong amount of memory. In the case where the computed size is
10475 too small, GDB fetches too little data to print the value of our
31432a67 10476 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10477 past the buffer containing the data =:-o. */
10478
ced9779b
JB
10479/* Evaluate a subexpression of EXP, at index *POS, and return a value
10480 for that subexpression cast to TO_TYPE. Advance *POS over the
10481 subexpression. */
10482
10483static value *
10484ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10485 enum noside noside, struct type *to_type)
10486{
10487 int pc = *pos;
10488
10489 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10490 || exp->elts[pc].opcode == OP_VAR_VALUE)
10491 {
10492 (*pos) += 4;
10493
10494 value *val;
10495 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10496 {
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 return value_zero (to_type, not_lval);
10499
10500 val = evaluate_var_msym_value (noside,
10501 exp->elts[pc + 1].objfile,
10502 exp->elts[pc + 2].msymbol);
10503 }
10504 else
10505 val = evaluate_var_value (noside,
10506 exp->elts[pc + 1].block,
10507 exp->elts[pc + 2].symbol);
10508
10509 if (noside == EVAL_SKIP)
10510 return eval_skip_value (exp);
10511
10512 val = ada_value_cast (to_type, val);
10513
10514 /* Follow the Ada language semantics that do not allow taking
10515 an address of the result of a cast (view conversion in Ada). */
10516 if (VALUE_LVAL (val) == lval_memory)
10517 {
10518 if (value_lazy (val))
10519 value_fetch_lazy (val);
10520 VALUE_LVAL (val) = not_lval;
10521 }
10522 return val;
10523 }
10524
10525 value *val = evaluate_subexp (to_type, exp, pos, noside);
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10528 return ada_value_cast (to_type, val);
10529}
10530
284614f0
JB
10531/* Implement the evaluate_exp routine in the exp_descriptor structure
10532 for the Ada language. */
10533
52ce6436 10534static struct value *
ebf56fd3 10535ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10536 int *pos, enum noside noside)
14f9c5c9
AS
10537{
10538 enum exp_opcode op;
b5385fc0 10539 int tem;
14f9c5c9 10540 int pc;
5ec18f2b 10541 int preeval_pos;
14f9c5c9
AS
10542 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10543 struct type *type;
52ce6436 10544 int nargs, oplen;
d2e4a39e 10545 struct value **argvec;
14f9c5c9 10546
d2e4a39e
AS
10547 pc = *pos;
10548 *pos += 1;
14f9c5c9
AS
10549 op = exp->elts[pc].opcode;
10550
d2e4a39e 10551 switch (op)
14f9c5c9
AS
10552 {
10553 default:
10554 *pos -= 1;
6e48bd2c 10555 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10556
10557 if (noside == EVAL_NORMAL)
10558 arg1 = unwrap_value (arg1);
6e48bd2c 10559
edd079d9 10560 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10561 then we need to perform the conversion manually, because
10562 evaluate_subexp_standard doesn't do it. This conversion is
10563 necessary in Ada because the different kinds of float/fixed
10564 types in Ada have different representations.
10565
10566 Similarly, we need to perform the conversion from OP_LONG
10567 ourselves. */
edd079d9 10568 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10569 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10570
10571 return arg1;
4c4b4cd2
PH
10572
10573 case OP_STRING:
10574 {
76a01679 10575 struct value *result;
5b4ee69b 10576
76a01679
JB
10577 *pos -= 1;
10578 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10579 /* The result type will have code OP_STRING, bashed there from
10580 OP_ARRAY. Bash it back. */
df407dfe
AC
10581 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10582 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10583 return result;
4c4b4cd2 10584 }
14f9c5c9
AS
10585
10586 case UNOP_CAST:
10587 (*pos) += 2;
10588 type = exp->elts[pc + 1].type;
ced9779b 10589 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10590
4c4b4cd2
PH
10591 case UNOP_QUAL:
10592 (*pos) += 2;
10593 type = exp->elts[pc + 1].type;
10594 return ada_evaluate_subexp (type, exp, pos, noside);
10595
14f9c5c9
AS
10596 case BINOP_ASSIGN:
10597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10598 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10599 {
10600 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10601 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10602 return arg1;
10603 return ada_value_assign (arg1, arg1);
10604 }
003f3813
JB
10605 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10606 except if the lhs of our assignment is a convenience variable.
10607 In the case of assigning to a convenience variable, the lhs
10608 should be exactly the result of the evaluation of the rhs. */
10609 type = value_type (arg1);
10610 if (VALUE_LVAL (arg1) == lval_internalvar)
10611 type = NULL;
10612 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10613 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10614 return arg1;
df407dfe
AC
10615 if (ada_is_fixed_point_type (value_type (arg1)))
10616 arg2 = cast_to_fixed (value_type (arg1), arg2);
10617 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10618 error
323e0a4a 10619 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10620 else
df407dfe 10621 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10622 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10623
10624 case BINOP_ADD:
10625 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10626 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10627 if (noside == EVAL_SKIP)
4c4b4cd2 10628 goto nosideret;
2ac8a782
JB
10629 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10630 return (value_from_longest
10631 (value_type (arg1),
10632 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10633 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10634 return (value_from_longest
10635 (value_type (arg2),
10636 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10637 if ((ada_is_fixed_point_type (value_type (arg1))
10638 || ada_is_fixed_point_type (value_type (arg2)))
10639 && value_type (arg1) != value_type (arg2))
323e0a4a 10640 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10641 /* Do the addition, and cast the result to the type of the first
10642 argument. We cannot cast the result to a reference type, so if
10643 ARG1 is a reference type, find its underlying type. */
10644 type = value_type (arg1);
10645 while (TYPE_CODE (type) == TYPE_CODE_REF)
10646 type = TYPE_TARGET_TYPE (type);
f44316fa 10647 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10648 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10649
10650 case BINOP_SUB:
10651 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10652 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10653 if (noside == EVAL_SKIP)
4c4b4cd2 10654 goto nosideret;
2ac8a782
JB
10655 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10656 return (value_from_longest
10657 (value_type (arg1),
10658 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10659 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10660 return (value_from_longest
10661 (value_type (arg2),
10662 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10663 if ((ada_is_fixed_point_type (value_type (arg1))
10664 || ada_is_fixed_point_type (value_type (arg2)))
10665 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10666 error (_("Operands of fixed-point subtraction "
10667 "must have the same type"));
b7789565
JB
10668 /* Do the substraction, and cast the result to the type of the first
10669 argument. We cannot cast the result to a reference type, so if
10670 ARG1 is a reference type, find its underlying type. */
10671 type = value_type (arg1);
10672 while (TYPE_CODE (type) == TYPE_CODE_REF)
10673 type = TYPE_TARGET_TYPE (type);
f44316fa 10674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10675 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10676
10677 case BINOP_MUL:
10678 case BINOP_DIV:
e1578042
JB
10679 case BINOP_REM:
10680 case BINOP_MOD:
14f9c5c9
AS
10681 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10682 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10683 if (noside == EVAL_SKIP)
4c4b4cd2 10684 goto nosideret;
e1578042 10685 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10686 {
10687 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10688 return value_zero (value_type (arg1), not_lval);
10689 }
14f9c5c9 10690 else
4c4b4cd2 10691 {
a53b7a21 10692 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10693 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10694 arg1 = cast_from_fixed (type, arg1);
df407dfe 10695 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10696 arg2 = cast_from_fixed (type, arg2);
f44316fa 10697 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10698 return ada_value_binop (arg1, arg2, op);
10699 }
10700
4c4b4cd2
PH
10701 case BINOP_EQUAL:
10702 case BINOP_NOTEQUAL:
14f9c5c9 10703 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10704 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10705 if (noside == EVAL_SKIP)
76a01679 10706 goto nosideret;
4c4b4cd2 10707 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10708 tem = 0;
4c4b4cd2 10709 else
f44316fa
UW
10710 {
10711 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10712 tem = ada_value_equal (arg1, arg2);
10713 }
4c4b4cd2 10714 if (op == BINOP_NOTEQUAL)
76a01679 10715 tem = !tem;
fbb06eb1
UW
10716 type = language_bool_type (exp->language_defn, exp->gdbarch);
10717 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10718
10719 case UNOP_NEG:
10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10721 if (noside == EVAL_SKIP)
10722 goto nosideret;
df407dfe
AC
10723 else if (ada_is_fixed_point_type (value_type (arg1)))
10724 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10725 else
f44316fa
UW
10726 {
10727 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10728 return value_neg (arg1);
10729 }
4c4b4cd2 10730
2330c6c6
JB
10731 case BINOP_LOGICAL_AND:
10732 case BINOP_LOGICAL_OR:
10733 case UNOP_LOGICAL_NOT:
000d5124
JB
10734 {
10735 struct value *val;
10736
10737 *pos -= 1;
10738 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10739 type = language_bool_type (exp->language_defn, exp->gdbarch);
10740 return value_cast (type, val);
000d5124 10741 }
2330c6c6
JB
10742
10743 case BINOP_BITWISE_AND:
10744 case BINOP_BITWISE_IOR:
10745 case BINOP_BITWISE_XOR:
000d5124
JB
10746 {
10747 struct value *val;
10748
10749 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10750 *pos = pc;
10751 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10752
10753 return value_cast (value_type (arg1), val);
10754 }
2330c6c6 10755
14f9c5c9
AS
10756 case OP_VAR_VALUE:
10757 *pos -= 1;
6799def4 10758
14f9c5c9 10759 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10760 {
10761 *pos += 4;
10762 goto nosideret;
10763 }
da5c522f
JB
10764
10765 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10766 /* Only encountered when an unresolved symbol occurs in a
10767 context other than a function call, in which case, it is
52ce6436 10768 invalid. */
323e0a4a 10769 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10770 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10771
10772 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10773 {
0c1f74cf 10774 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10775 /* Check to see if this is a tagged type. We also need to handle
10776 the case where the type is a reference to a tagged type, but
10777 we have to be careful to exclude pointers to tagged types.
10778 The latter should be shown as usual (as a pointer), whereas
10779 a reference should mostly be transparent to the user. */
10780 if (ada_is_tagged_type (type, 0)
023db19c 10781 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10782 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10783 {
10784 /* Tagged types are a little special in the fact that the real
10785 type is dynamic and can only be determined by inspecting the
10786 object's tag. This means that we need to get the object's
10787 value first (EVAL_NORMAL) and then extract the actual object
10788 type from its tag.
10789
10790 Note that we cannot skip the final step where we extract
10791 the object type from its tag, because the EVAL_NORMAL phase
10792 results in dynamic components being resolved into fixed ones.
10793 This can cause problems when trying to print the type
10794 description of tagged types whose parent has a dynamic size:
10795 We use the type name of the "_parent" component in order
10796 to print the name of the ancestor type in the type description.
10797 If that component had a dynamic size, the resolution into
10798 a fixed type would result in the loss of that type name,
10799 thus preventing us from printing the name of the ancestor
10800 type in the type description. */
10801 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10802
10803 if (TYPE_CODE (type) != TYPE_CODE_REF)
10804 {
10805 struct type *actual_type;
10806
10807 actual_type = type_from_tag (ada_value_tag (arg1));
10808 if (actual_type == NULL)
10809 /* If, for some reason, we were unable to determine
10810 the actual type from the tag, then use the static
10811 approximation that we just computed as a fallback.
10812 This can happen if the debugging information is
10813 incomplete, for instance. */
10814 actual_type = type;
10815 return value_zero (actual_type, not_lval);
10816 }
10817 else
10818 {
10819 /* In the case of a ref, ada_coerce_ref takes care
10820 of determining the actual type. But the evaluation
10821 should return a ref as it should be valid to ask
10822 for its address; so rebuild a ref after coerce. */
10823 arg1 = ada_coerce_ref (arg1);
a65cfae5 10824 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10825 }
10826 }
0c1f74cf 10827
84754697
JB
10828 /* Records and unions for which GNAT encodings have been
10829 generated need to be statically fixed as well.
10830 Otherwise, non-static fixing produces a type where
10831 all dynamic properties are removed, which prevents "ptype"
10832 from being able to completely describe the type.
10833 For instance, a case statement in a variant record would be
10834 replaced by the relevant components based on the actual
10835 value of the discriminants. */
10836 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10837 && dynamic_template_type (type) != NULL)
10838 || (TYPE_CODE (type) == TYPE_CODE_UNION
10839 && ada_find_parallel_type (type, "___XVU") != NULL))
10840 {
10841 *pos += 4;
10842 return value_zero (to_static_fixed_type (type), not_lval);
10843 }
4c4b4cd2 10844 }
da5c522f
JB
10845
10846 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10847 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10848
10849 case OP_FUNCALL:
10850 (*pos) += 2;
10851
10852 /* Allocate arg vector, including space for the function to be
10853 called in argvec[0] and a terminating NULL. */
10854 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10855 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10856
10857 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10858 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10859 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10860 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10861 else
10862 {
10863 for (tem = 0; tem <= nargs; tem += 1)
10864 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 argvec[tem] = 0;
10866
10867 if (noside == EVAL_SKIP)
10868 goto nosideret;
10869 }
10870
ad82864c
JB
10871 if (ada_is_constrained_packed_array_type
10872 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10873 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10874 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10875 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10876 /* This is a packed array that has already been fixed, and
10877 therefore already coerced to a simple array. Nothing further
10878 to do. */
10879 ;
e6c2c623
PMR
10880 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10881 {
10882 /* Make sure we dereference references so that all the code below
10883 feels like it's really handling the referenced value. Wrapping
10884 types (for alignment) may be there, so make sure we strip them as
10885 well. */
10886 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10887 }
10888 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10889 && VALUE_LVAL (argvec[0]) == lval_memory)
10890 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10891
df407dfe 10892 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10893
10894 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10895 them. So, if this is an array typedef (encoding use for array
10896 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10897 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10898 type = ada_typedef_target_type (type);
10899
4c4b4cd2
PH
10900 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10901 {
61ee279c 10902 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10903 {
10904 case TYPE_CODE_FUNC:
61ee279c 10905 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10906 break;
10907 case TYPE_CODE_ARRAY:
10908 break;
10909 case TYPE_CODE_STRUCT:
10910 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10911 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10913 break;
10914 default:
323e0a4a 10915 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10916 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10917 break;
10918 }
10919 }
10920
10921 switch (TYPE_CODE (type))
10922 {
10923 case TYPE_CODE_FUNC:
10924 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10925 {
7022349d
PA
10926 if (TYPE_TARGET_TYPE (type) == NULL)
10927 error_call_unknown_return_type (NULL);
10928 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10929 }
e71585ff
PA
10930 return call_function_by_hand (argvec[0], NULL,
10931 gdb::make_array_view (argvec + 1,
10932 nargs));
c8ea1972
PH
10933 case TYPE_CODE_INTERNAL_FUNCTION:
10934 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10935 /* We don't know anything about what the internal
10936 function might return, but we have to return
10937 something. */
10938 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10939 not_lval);
10940 else
10941 return call_internal_function (exp->gdbarch, exp->language_defn,
10942 argvec[0], nargs, argvec + 1);
10943
4c4b4cd2
PH
10944 case TYPE_CODE_STRUCT:
10945 {
10946 int arity;
10947
4c4b4cd2
PH
10948 arity = ada_array_arity (type);
10949 type = ada_array_element_type (type, nargs);
10950 if (type == NULL)
323e0a4a 10951 error (_("cannot subscript or call a record"));
4c4b4cd2 10952 if (arity != nargs)
323e0a4a 10953 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10954 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10955 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10956 return
10957 unwrap_value (ada_value_subscript
10958 (argvec[0], nargs, argvec + 1));
10959 }
10960 case TYPE_CODE_ARRAY:
10961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10962 {
10963 type = ada_array_element_type (type, nargs);
10964 if (type == NULL)
323e0a4a 10965 error (_("element type of array unknown"));
4c4b4cd2 10966 else
0a07e705 10967 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10968 }
10969 return
10970 unwrap_value (ada_value_subscript
10971 (ada_coerce_to_simple_array (argvec[0]),
10972 nargs, argvec + 1));
10973 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10975 {
deede10c 10976 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10977 type = ada_array_element_type (type, nargs);
10978 if (type == NULL)
323e0a4a 10979 error (_("element type of array unknown"));
4c4b4cd2 10980 else
0a07e705 10981 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10982 }
10983 return
deede10c
JB
10984 unwrap_value (ada_value_ptr_subscript (argvec[0],
10985 nargs, argvec + 1));
4c4b4cd2
PH
10986
10987 default:
e1d5a0d2
PH
10988 error (_("Attempt to index or call something other than an "
10989 "array or function"));
4c4b4cd2
PH
10990 }
10991
10992 case TERNOP_SLICE:
10993 {
10994 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10995 struct value *low_bound_val =
10996 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10997 struct value *high_bound_val =
10998 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10999 LONGEST low_bound;
11000 LONGEST high_bound;
5b4ee69b 11001
994b9211
AC
11002 low_bound_val = coerce_ref (low_bound_val);
11003 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11004 low_bound = value_as_long (low_bound_val);
11005 high_bound = value_as_long (high_bound_val);
963a6417 11006
4c4b4cd2
PH
11007 if (noside == EVAL_SKIP)
11008 goto nosideret;
11009
4c4b4cd2
PH
11010 /* If this is a reference to an aligner type, then remove all
11011 the aligners. */
df407dfe
AC
11012 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11013 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11014 TYPE_TARGET_TYPE (value_type (array)) =
11015 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11016
ad82864c 11017 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11018 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11019
11020 /* If this is a reference to an array or an array lvalue,
11021 convert to a pointer. */
df407dfe
AC
11022 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11023 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11024 && VALUE_LVAL (array) == lval_memory))
11025 array = value_addr (array);
11026
1265e4aa 11027 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11028 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11029 (value_type (array))))
0b5d8877 11030 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11031
11032 array = ada_coerce_to_simple_array_ptr (array);
11033
714e53ab
PH
11034 /* If we have more than one level of pointer indirection,
11035 dereference the value until we get only one level. */
df407dfe
AC
11036 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11037 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11038 == TYPE_CODE_PTR))
11039 array = value_ind (array);
11040
11041 /* Make sure we really do have an array type before going further,
11042 to avoid a SEGV when trying to get the index type or the target
11043 type later down the road if the debug info generated by
11044 the compiler is incorrect or incomplete. */
df407dfe 11045 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11046 error (_("cannot take slice of non-array"));
714e53ab 11047
828292f2
JB
11048 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11049 == TYPE_CODE_PTR)
4c4b4cd2 11050 {
828292f2
JB
11051 struct type *type0 = ada_check_typedef (value_type (array));
11052
0b5d8877 11053 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11054 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11055 else
11056 {
11057 struct type *arr_type0 =
828292f2 11058 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11059
f5938064
JG
11060 return ada_value_slice_from_ptr (array, arr_type0,
11061 longest_to_int (low_bound),
11062 longest_to_int (high_bound));
4c4b4cd2
PH
11063 }
11064 }
11065 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11066 return array;
11067 else if (high_bound < low_bound)
df407dfe 11068 return empty_array (value_type (array), low_bound);
4c4b4cd2 11069 else
529cad9c
PH
11070 return ada_value_slice (array, longest_to_int (low_bound),
11071 longest_to_int (high_bound));
4c4b4cd2 11072 }
14f9c5c9 11073
4c4b4cd2
PH
11074 case UNOP_IN_RANGE:
11075 (*pos) += 2;
11076 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11077 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11078
14f9c5c9 11079 if (noside == EVAL_SKIP)
4c4b4cd2 11080 goto nosideret;
14f9c5c9 11081
4c4b4cd2
PH
11082 switch (TYPE_CODE (type))
11083 {
11084 default:
e1d5a0d2
PH
11085 lim_warning (_("Membership test incompletely implemented; "
11086 "always returns true"));
fbb06eb1
UW
11087 type = language_bool_type (exp->language_defn, exp->gdbarch);
11088 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11089
11090 case TYPE_CODE_RANGE:
030b4912
UW
11091 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11092 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11093 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11094 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11095 type = language_bool_type (exp->language_defn, exp->gdbarch);
11096 return
11097 value_from_longest (type,
4c4b4cd2
PH
11098 (value_less (arg1, arg3)
11099 || value_equal (arg1, arg3))
11100 && (value_less (arg2, arg1)
11101 || value_equal (arg2, arg1)));
11102 }
11103
11104 case BINOP_IN_BOUNDS:
14f9c5c9 11105 (*pos) += 2;
4c4b4cd2
PH
11106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11107 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11108
4c4b4cd2
PH
11109 if (noside == EVAL_SKIP)
11110 goto nosideret;
14f9c5c9 11111
4c4b4cd2 11112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11113 {
11114 type = language_bool_type (exp->language_defn, exp->gdbarch);
11115 return value_zero (type, not_lval);
11116 }
14f9c5c9 11117
4c4b4cd2 11118 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11119
1eea4ebd
UW
11120 type = ada_index_type (value_type (arg2), tem, "range");
11121 if (!type)
11122 type = value_type (arg1);
14f9c5c9 11123
1eea4ebd
UW
11124 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11125 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11126
f44316fa
UW
11127 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11128 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11130 return
fbb06eb1 11131 value_from_longest (type,
4c4b4cd2
PH
11132 (value_less (arg1, arg3)
11133 || value_equal (arg1, arg3))
11134 && (value_less (arg2, arg1)
11135 || value_equal (arg2, arg1)));
11136
11137 case TERNOP_IN_RANGE:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11141
11142 if (noside == EVAL_SKIP)
11143 goto nosideret;
11144
f44316fa
UW
11145 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11147 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11148 return
fbb06eb1 11149 value_from_longest (type,
4c4b4cd2
PH
11150 (value_less (arg1, arg3)
11151 || value_equal (arg1, arg3))
11152 && (value_less (arg2, arg1)
11153 || value_equal (arg2, arg1)));
11154
11155 case OP_ATR_FIRST:
11156 case OP_ATR_LAST:
11157 case OP_ATR_LENGTH:
11158 {
76a01679 11159 struct type *type_arg;
5b4ee69b 11160
76a01679
JB
11161 if (exp->elts[*pos].opcode == OP_TYPE)
11162 {
11163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11164 arg1 = NULL;
5bc23cb3 11165 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11166 }
11167 else
11168 {
11169 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11170 type_arg = NULL;
11171 }
11172
11173 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11174 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11175 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11176 *pos += 4;
11177
11178 if (noside == EVAL_SKIP)
11179 goto nosideret;
11180
11181 if (type_arg == NULL)
11182 {
11183 arg1 = ada_coerce_ref (arg1);
11184
ad82864c 11185 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11186 arg1 = ada_coerce_to_simple_array (arg1);
11187
aa4fb036 11188 if (op == OP_ATR_LENGTH)
1eea4ebd 11189 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11190 else
11191 {
11192 type = ada_index_type (value_type (arg1), tem,
11193 ada_attribute_name (op));
11194 if (type == NULL)
11195 type = builtin_type (exp->gdbarch)->builtin_int;
11196 }
76a01679
JB
11197
11198 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11199 return allocate_value (type);
76a01679
JB
11200
11201 switch (op)
11202 {
11203 default: /* Should never happen. */
323e0a4a 11204 error (_("unexpected attribute encountered"));
76a01679 11205 case OP_ATR_FIRST:
1eea4ebd
UW
11206 return value_from_longest
11207 (type, ada_array_bound (arg1, tem, 0));
76a01679 11208 case OP_ATR_LAST:
1eea4ebd
UW
11209 return value_from_longest
11210 (type, ada_array_bound (arg1, tem, 1));
76a01679 11211 case OP_ATR_LENGTH:
1eea4ebd
UW
11212 return value_from_longest
11213 (type, ada_array_length (arg1, tem));
76a01679
JB
11214 }
11215 }
11216 else if (discrete_type_p (type_arg))
11217 {
11218 struct type *range_type;
0d5cff50 11219 const char *name = ada_type_name (type_arg);
5b4ee69b 11220
76a01679
JB
11221 range_type = NULL;
11222 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11223 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11224 if (range_type == NULL)
11225 range_type = type_arg;
11226 switch (op)
11227 {
11228 default:
323e0a4a 11229 error (_("unexpected attribute encountered"));
76a01679 11230 case OP_ATR_FIRST:
690cc4eb 11231 return value_from_longest
43bbcdc2 11232 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11233 case OP_ATR_LAST:
690cc4eb 11234 return value_from_longest
43bbcdc2 11235 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11236 case OP_ATR_LENGTH:
323e0a4a 11237 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11238 }
11239 }
11240 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11241 error (_("unimplemented type attribute"));
76a01679
JB
11242 else
11243 {
11244 LONGEST low, high;
11245
ad82864c
JB
11246 if (ada_is_constrained_packed_array_type (type_arg))
11247 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11248
aa4fb036 11249 if (op == OP_ATR_LENGTH)
1eea4ebd 11250 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11251 else
11252 {
11253 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11254 if (type == NULL)
11255 type = builtin_type (exp->gdbarch)->builtin_int;
11256 }
1eea4ebd 11257
76a01679
JB
11258 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11259 return allocate_value (type);
11260
11261 switch (op)
11262 {
11263 default:
323e0a4a 11264 error (_("unexpected attribute encountered"));
76a01679 11265 case OP_ATR_FIRST:
1eea4ebd 11266 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11267 return value_from_longest (type, low);
11268 case OP_ATR_LAST:
1eea4ebd 11269 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11270 return value_from_longest (type, high);
11271 case OP_ATR_LENGTH:
1eea4ebd
UW
11272 low = ada_array_bound_from_type (type_arg, tem, 0);
11273 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11274 return value_from_longest (type, high - low + 1);
11275 }
11276 }
14f9c5c9
AS
11277 }
11278
4c4b4cd2
PH
11279 case OP_ATR_TAG:
11280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
76a01679 11282 goto nosideret;
4c4b4cd2
PH
11283
11284 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11285 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11286
11287 return ada_value_tag (arg1);
11288
11289 case OP_ATR_MIN:
11290 case OP_ATR_MAX:
11291 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11292 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11293 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11294 if (noside == EVAL_SKIP)
76a01679 11295 goto nosideret;
d2e4a39e 11296 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11297 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11298 else
f44316fa
UW
11299 {
11300 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11301 return value_binop (arg1, arg2,
11302 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11303 }
14f9c5c9 11304
4c4b4cd2
PH
11305 case OP_ATR_MODULUS:
11306 {
31dedfee 11307 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11308
5b4ee69b 11309 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11310 if (noside == EVAL_SKIP)
11311 goto nosideret;
4c4b4cd2 11312
76a01679 11313 if (!ada_is_modular_type (type_arg))
323e0a4a 11314 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11315
76a01679
JB
11316 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11317 ada_modulus (type_arg));
4c4b4cd2
PH
11318 }
11319
11320
11321 case OP_ATR_POS:
11322 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11323 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11324 if (noside == EVAL_SKIP)
76a01679 11325 goto nosideret;
3cb382c9
UW
11326 type = builtin_type (exp->gdbarch)->builtin_int;
11327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11328 return value_zero (type, not_lval);
14f9c5c9 11329 else
3cb382c9 11330 return value_pos_atr (type, arg1);
14f9c5c9 11331
4c4b4cd2
PH
11332 case OP_ATR_SIZE:
11333 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11334 type = value_type (arg1);
11335
11336 /* If the argument is a reference, then dereference its type, since
11337 the user is really asking for the size of the actual object,
11338 not the size of the pointer. */
11339 if (TYPE_CODE (type) == TYPE_CODE_REF)
11340 type = TYPE_TARGET_TYPE (type);
11341
4c4b4cd2 11342 if (noside == EVAL_SKIP)
76a01679 11343 goto nosideret;
4c4b4cd2 11344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11345 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11346 else
22601c15 11347 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11348 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11349
11350 case OP_ATR_VAL:
11351 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11352 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11353 type = exp->elts[pc + 2].type;
14f9c5c9 11354 if (noside == EVAL_SKIP)
76a01679 11355 goto nosideret;
4c4b4cd2 11356 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11357 return value_zero (type, not_lval);
4c4b4cd2 11358 else
76a01679 11359 return value_val_atr (type, arg1);
4c4b4cd2
PH
11360
11361 case BINOP_EXP:
11362 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11363 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11364 if (noside == EVAL_SKIP)
11365 goto nosideret;
11366 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11367 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11368 else
f44316fa
UW
11369 {
11370 /* For integer exponentiation operations,
11371 only promote the first argument. */
11372 if (is_integral_type (value_type (arg2)))
11373 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11374 else
11375 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11376
11377 return value_binop (arg1, arg2, op);
11378 }
4c4b4cd2
PH
11379
11380 case UNOP_PLUS:
11381 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11382 if (noside == EVAL_SKIP)
11383 goto nosideret;
11384 else
11385 return arg1;
11386
11387 case UNOP_ABS:
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
f44316fa 11391 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11392 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11393 return value_neg (arg1);
14f9c5c9 11394 else
4c4b4cd2 11395 return arg1;
14f9c5c9
AS
11396
11397 case UNOP_IND:
5ec18f2b 11398 preeval_pos = *pos;
6b0d7253 11399 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11400 if (noside == EVAL_SKIP)
4c4b4cd2 11401 goto nosideret;
df407dfe 11402 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11403 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11404 {
11405 if (ada_is_array_descriptor_type (type))
11406 /* GDB allows dereferencing GNAT array descriptors. */
11407 {
11408 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11409
4c4b4cd2 11410 if (arrType == NULL)
323e0a4a 11411 error (_("Attempt to dereference null array pointer."));
00a4c844 11412 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11413 }
11414 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11415 || TYPE_CODE (type) == TYPE_CODE_REF
11416 /* In C you can dereference an array to get the 1st elt. */
11417 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11418 {
5ec18f2b
JG
11419 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11420 only be determined by inspecting the object's tag.
11421 This means that we need to evaluate completely the
11422 expression in order to get its type. */
11423
023db19c
JB
11424 if ((TYPE_CODE (type) == TYPE_CODE_REF
11425 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11426 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11427 {
11428 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11429 EVAL_NORMAL);
11430 type = value_type (ada_value_ind (arg1));
11431 }
11432 else
11433 {
11434 type = to_static_fixed_type
11435 (ada_aligned_type
11436 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11437 }
c1b5a1a6 11438 ada_ensure_varsize_limit (type);
714e53ab
PH
11439 return value_zero (type, lval_memory);
11440 }
4c4b4cd2 11441 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11442 {
11443 /* GDB allows dereferencing an int. */
11444 if (expect_type == NULL)
11445 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11446 lval_memory);
11447 else
11448 {
11449 expect_type =
11450 to_static_fixed_type (ada_aligned_type (expect_type));
11451 return value_zero (expect_type, lval_memory);
11452 }
11453 }
4c4b4cd2 11454 else
323e0a4a 11455 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11456 }
0963b4bd 11457 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11458 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11459
96967637
JB
11460 if (TYPE_CODE (type) == TYPE_CODE_INT)
11461 /* GDB allows dereferencing an int. If we were given
11462 the expect_type, then use that as the target type.
11463 Otherwise, assume that the target type is an int. */
11464 {
11465 if (expect_type != NULL)
11466 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11467 arg1));
11468 else
11469 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11470 (CORE_ADDR) value_as_address (arg1));
11471 }
6b0d7253 11472
4c4b4cd2
PH
11473 if (ada_is_array_descriptor_type (type))
11474 /* GDB allows dereferencing GNAT array descriptors. */
11475 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11476 else
4c4b4cd2 11477 return ada_value_ind (arg1);
14f9c5c9
AS
11478
11479 case STRUCTOP_STRUCT:
11480 tem = longest_to_int (exp->elts[pc + 1].longconst);
11481 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11482 preeval_pos = *pos;
14f9c5c9
AS
11483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11484 if (noside == EVAL_SKIP)
4c4b4cd2 11485 goto nosideret;
14f9c5c9 11486 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11487 {
df407dfe 11488 struct type *type1 = value_type (arg1);
5b4ee69b 11489
76a01679
JB
11490 if (ada_is_tagged_type (type1, 1))
11491 {
11492 type = ada_lookup_struct_elt_type (type1,
11493 &exp->elts[pc + 2].string,
988f6b3d 11494 1, 1);
5ec18f2b
JG
11495
11496 /* If the field is not found, check if it exists in the
11497 extension of this object's type. This means that we
11498 need to evaluate completely the expression. */
11499
76a01679 11500 if (type == NULL)
5ec18f2b
JG
11501 {
11502 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11503 EVAL_NORMAL);
11504 arg1 = ada_value_struct_elt (arg1,
11505 &exp->elts[pc + 2].string,
11506 0);
11507 arg1 = unwrap_value (arg1);
11508 type = value_type (ada_to_fixed_value (arg1));
11509 }
76a01679
JB
11510 }
11511 else
11512 type =
11513 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11514 0);
76a01679
JB
11515
11516 return value_zero (ada_aligned_type (type), lval_memory);
11517 }
14f9c5c9 11518 else
a579cd9a
MW
11519 {
11520 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11521 arg1 = unwrap_value (arg1);
11522 return ada_to_fixed_value (arg1);
11523 }
284614f0 11524
14f9c5c9 11525 case OP_TYPE:
4c4b4cd2
PH
11526 /* The value is not supposed to be used. This is here to make it
11527 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11528 (*pos) += 2;
11529 if (noside == EVAL_SKIP)
4c4b4cd2 11530 goto nosideret;
14f9c5c9 11531 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11532 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11533 else
323e0a4a 11534 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11535
11536 case OP_AGGREGATE:
11537 case OP_CHOICES:
11538 case OP_OTHERS:
11539 case OP_DISCRETE_RANGE:
11540 case OP_POSITIONAL:
11541 case OP_NAME:
11542 if (noside == EVAL_NORMAL)
11543 switch (op)
11544 {
11545 case OP_NAME:
11546 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11547 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11548 case OP_AGGREGATE:
11549 error (_("Aggregates only allowed on the right of an assignment"));
11550 default:
0963b4bd
MS
11551 internal_error (__FILE__, __LINE__,
11552 _("aggregate apparently mangled"));
52ce6436
PH
11553 }
11554
11555 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11556 *pos += oplen - 1;
11557 for (tem = 0; tem < nargs; tem += 1)
11558 ada_evaluate_subexp (NULL, exp, pos, noside);
11559 goto nosideret;
14f9c5c9
AS
11560 }
11561
11562nosideret:
ced9779b 11563 return eval_skip_value (exp);
14f9c5c9 11564}
14f9c5c9 11565\f
d2e4a39e 11566
4c4b4cd2 11567 /* Fixed point */
14f9c5c9
AS
11568
11569/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11570 type name that encodes the 'small and 'delta information.
4c4b4cd2 11571 Otherwise, return NULL. */
14f9c5c9 11572
d2e4a39e 11573static const char *
ebf56fd3 11574fixed_type_info (struct type *type)
14f9c5c9 11575{
d2e4a39e 11576 const char *name = ada_type_name (type);
14f9c5c9
AS
11577 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11578
d2e4a39e
AS
11579 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11580 {
14f9c5c9 11581 const char *tail = strstr (name, "___XF_");
5b4ee69b 11582
14f9c5c9 11583 if (tail == NULL)
4c4b4cd2 11584 return NULL;
d2e4a39e 11585 else
4c4b4cd2 11586 return tail + 5;
14f9c5c9
AS
11587 }
11588 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11589 return fixed_type_info (TYPE_TARGET_TYPE (type));
11590 else
11591 return NULL;
11592}
11593
4c4b4cd2 11594/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11595
11596int
ebf56fd3 11597ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11598{
11599 return fixed_type_info (type) != NULL;
11600}
11601
4c4b4cd2
PH
11602/* Return non-zero iff TYPE represents a System.Address type. */
11603
11604int
11605ada_is_system_address_type (struct type *type)
11606{
11607 return (TYPE_NAME (type)
11608 && strcmp (TYPE_NAME (type), "system__address") == 0);
11609}
11610
14f9c5c9 11611/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11612 type, return the target floating-point type to be used to represent
11613 of this type during internal computation. */
11614
11615static struct type *
11616ada_scaling_type (struct type *type)
11617{
11618 return builtin_type (get_type_arch (type))->builtin_long_double;
11619}
11620
11621/* Assuming that TYPE is the representation of an Ada fixed-point
11622 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11623 delta cannot be determined. */
14f9c5c9 11624
50eff16b 11625struct value *
ebf56fd3 11626ada_delta (struct type *type)
14f9c5c9
AS
11627{
11628 const char *encoding = fixed_type_info (type);
50eff16b
UW
11629 struct type *scale_type = ada_scaling_type (type);
11630
11631 long long num, den;
11632
11633 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11634 return nullptr;
d2e4a39e 11635 else
50eff16b
UW
11636 return value_binop (value_from_longest (scale_type, num),
11637 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11638}
11639
11640/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11641 factor ('SMALL value) associated with the type. */
14f9c5c9 11642
50eff16b
UW
11643struct value *
11644ada_scaling_factor (struct type *type)
14f9c5c9
AS
11645{
11646 const char *encoding = fixed_type_info (type);
50eff16b
UW
11647 struct type *scale_type = ada_scaling_type (type);
11648
11649 long long num0, den0, num1, den1;
14f9c5c9 11650 int n;
d2e4a39e 11651
50eff16b 11652 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11653 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11654
11655 if (n < 2)
50eff16b 11656 return value_from_longest (scale_type, 1);
14f9c5c9 11657 else if (n == 4)
50eff16b
UW
11658 return value_binop (value_from_longest (scale_type, num1),
11659 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11660 else
50eff16b
UW
11661 return value_binop (value_from_longest (scale_type, num0),
11662 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11663}
11664
14f9c5c9 11665\f
d2e4a39e 11666
4c4b4cd2 11667 /* Range types */
14f9c5c9
AS
11668
11669/* Scan STR beginning at position K for a discriminant name, and
11670 return the value of that discriminant field of DVAL in *PX. If
11671 PNEW_K is not null, put the position of the character beyond the
11672 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11673 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11674
11675static int
108d56a4 11676scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11677 int *pnew_k)
14f9c5c9
AS
11678{
11679 static char *bound_buffer = NULL;
11680 static size_t bound_buffer_len = 0;
5da1a4d3 11681 const char *pstart, *pend, *bound;
d2e4a39e 11682 struct value *bound_val;
14f9c5c9
AS
11683
11684 if (dval == NULL || str == NULL || str[k] == '\0')
11685 return 0;
11686
5da1a4d3
SM
11687 pstart = str + k;
11688 pend = strstr (pstart, "__");
14f9c5c9
AS
11689 if (pend == NULL)
11690 {
5da1a4d3 11691 bound = pstart;
14f9c5c9
AS
11692 k += strlen (bound);
11693 }
d2e4a39e 11694 else
14f9c5c9 11695 {
5da1a4d3
SM
11696 int len = pend - pstart;
11697
11698 /* Strip __ and beyond. */
11699 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11700 strncpy (bound_buffer, pstart, len);
11701 bound_buffer[len] = '\0';
11702
14f9c5c9 11703 bound = bound_buffer;
d2e4a39e 11704 k = pend - str;
14f9c5c9 11705 }
d2e4a39e 11706
df407dfe 11707 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11708 if (bound_val == NULL)
11709 return 0;
11710
11711 *px = value_as_long (bound_val);
11712 if (pnew_k != NULL)
11713 *pnew_k = k;
11714 return 1;
11715}
11716
11717/* Value of variable named NAME in the current environment. If
11718 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11719 otherwise causes an error with message ERR_MSG. */
11720
d2e4a39e 11721static struct value *
edb0c9cb 11722get_var_value (const char *name, const char *err_msg)
14f9c5c9 11723{
b5ec771e 11724 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11725
54d343a2 11726 std::vector<struct block_symbol> syms;
b5ec771e
PA
11727 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11728 get_selected_block (0),
11729 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11730
11731 if (nsyms != 1)
11732 {
11733 if (err_msg == NULL)
4c4b4cd2 11734 return 0;
14f9c5c9 11735 else
8a3fe4f8 11736 error (("%s"), err_msg);
14f9c5c9
AS
11737 }
11738
54d343a2 11739 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11740}
d2e4a39e 11741
edb0c9cb
PA
11742/* Value of integer variable named NAME in the current environment.
11743 If no such variable is found, returns false. Otherwise, sets VALUE
11744 to the variable's value and returns true. */
4c4b4cd2 11745
edb0c9cb
PA
11746bool
11747get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11748{
4c4b4cd2 11749 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11750
14f9c5c9 11751 if (var_val == 0)
edb0c9cb
PA
11752 return false;
11753
11754 value = value_as_long (var_val);
11755 return true;
14f9c5c9 11756}
d2e4a39e 11757
14f9c5c9
AS
11758
11759/* Return a range type whose base type is that of the range type named
11760 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11761 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11762 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11763 corresponding range type from debug information; fall back to using it
11764 if symbol lookup fails. If a new type must be created, allocate it
11765 like ORIG_TYPE was. The bounds information, in general, is encoded
11766 in NAME, the base type given in the named range type. */
14f9c5c9 11767
d2e4a39e 11768static struct type *
28c85d6c 11769to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11770{
0d5cff50 11771 const char *name;
14f9c5c9 11772 struct type *base_type;
108d56a4 11773 const char *subtype_info;
14f9c5c9 11774
28c85d6c
JB
11775 gdb_assert (raw_type != NULL);
11776 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11777
1ce677a4 11778 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11779 base_type = TYPE_TARGET_TYPE (raw_type);
11780 else
11781 base_type = raw_type;
11782
28c85d6c 11783 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11784 subtype_info = strstr (name, "___XD");
11785 if (subtype_info == NULL)
690cc4eb 11786 {
43bbcdc2
PH
11787 LONGEST L = ada_discrete_type_low_bound (raw_type);
11788 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11789
690cc4eb
PH
11790 if (L < INT_MIN || U > INT_MAX)
11791 return raw_type;
11792 else
0c9c3474
SA
11793 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11794 L, U);
690cc4eb 11795 }
14f9c5c9
AS
11796 else
11797 {
11798 static char *name_buf = NULL;
11799 static size_t name_len = 0;
11800 int prefix_len = subtype_info - name;
11801 LONGEST L, U;
11802 struct type *type;
108d56a4 11803 const char *bounds_str;
14f9c5c9
AS
11804 int n;
11805
11806 GROW_VECT (name_buf, name_len, prefix_len + 5);
11807 strncpy (name_buf, name, prefix_len);
11808 name_buf[prefix_len] = '\0';
11809
11810 subtype_info += 5;
11811 bounds_str = strchr (subtype_info, '_');
11812 n = 1;
11813
d2e4a39e 11814 if (*subtype_info == 'L')
4c4b4cd2
PH
11815 {
11816 if (!ada_scan_number (bounds_str, n, &L, &n)
11817 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11818 return raw_type;
11819 if (bounds_str[n] == '_')
11820 n += 2;
0963b4bd 11821 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11822 n += 1;
11823 subtype_info += 1;
11824 }
d2e4a39e 11825 else
4c4b4cd2 11826 {
4c4b4cd2 11827 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11828 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11829 {
323e0a4a 11830 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11831 L = 1;
11832 }
11833 }
14f9c5c9 11834
d2e4a39e 11835 if (*subtype_info == 'U')
4c4b4cd2
PH
11836 {
11837 if (!ada_scan_number (bounds_str, n, &U, &n)
11838 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11839 return raw_type;
11840 }
d2e4a39e 11841 else
4c4b4cd2 11842 {
4c4b4cd2 11843 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11844 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11845 {
323e0a4a 11846 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11847 U = L;
11848 }
11849 }
14f9c5c9 11850
0c9c3474
SA
11851 type = create_static_range_type (alloc_type_copy (raw_type),
11852 base_type, L, U);
f5a91472
JB
11853 /* create_static_range_type alters the resulting type's length
11854 to match the size of the base_type, which is not what we want.
11855 Set it back to the original range type's length. */
11856 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11857 TYPE_NAME (type) = name;
14f9c5c9
AS
11858 return type;
11859 }
11860}
11861
4c4b4cd2
PH
11862/* True iff NAME is the name of a range type. */
11863
14f9c5c9 11864int
d2e4a39e 11865ada_is_range_type_name (const char *name)
14f9c5c9
AS
11866{
11867 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11868}
14f9c5c9 11869\f
d2e4a39e 11870
4c4b4cd2
PH
11871 /* Modular types */
11872
11873/* True iff TYPE is an Ada modular type. */
14f9c5c9 11874
14f9c5c9 11875int
d2e4a39e 11876ada_is_modular_type (struct type *type)
14f9c5c9 11877{
18af8284 11878 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11879
11880 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11881 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11882 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11883}
11884
4c4b4cd2
PH
11885/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11886
61ee279c 11887ULONGEST
0056e4d5 11888ada_modulus (struct type *type)
14f9c5c9 11889{
43bbcdc2 11890 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11891}
d2e4a39e 11892\f
f7f9143b
JB
11893
11894/* Ada exception catchpoint support:
11895 ---------------------------------
11896
11897 We support 3 kinds of exception catchpoints:
11898 . catchpoints on Ada exceptions
11899 . catchpoints on unhandled Ada exceptions
11900 . catchpoints on failed assertions
11901
11902 Exceptions raised during failed assertions, or unhandled exceptions
11903 could perfectly be caught with the general catchpoint on Ada exceptions.
11904 However, we can easily differentiate these two special cases, and having
11905 the option to distinguish these two cases from the rest can be useful
11906 to zero-in on certain situations.
11907
11908 Exception catchpoints are a specialized form of breakpoint,
11909 since they rely on inserting breakpoints inside known routines
11910 of the GNAT runtime. The implementation therefore uses a standard
11911 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11912 of breakpoint_ops.
11913
0259addd
JB
11914 Support in the runtime for exception catchpoints have been changed
11915 a few times already, and these changes affect the implementation
11916 of these catchpoints. In order to be able to support several
11917 variants of the runtime, we use a sniffer that will determine
28010a5d 11918 the runtime variant used by the program being debugged. */
f7f9143b 11919
82eacd52
JB
11920/* Ada's standard exceptions.
11921
11922 The Ada 83 standard also defined Numeric_Error. But there so many
11923 situations where it was unclear from the Ada 83 Reference Manual
11924 (RM) whether Constraint_Error or Numeric_Error should be raised,
11925 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11926 Interpretation saying that anytime the RM says that Numeric_Error
11927 should be raised, the implementation may raise Constraint_Error.
11928 Ada 95 went one step further and pretty much removed Numeric_Error
11929 from the list of standard exceptions (it made it a renaming of
11930 Constraint_Error, to help preserve compatibility when compiling
11931 an Ada83 compiler). As such, we do not include Numeric_Error from
11932 this list of standard exceptions. */
3d0b0fa3 11933
a121b7c1 11934static const char *standard_exc[] = {
3d0b0fa3
JB
11935 "constraint_error",
11936 "program_error",
11937 "storage_error",
11938 "tasking_error"
11939};
11940
0259addd
JB
11941typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11942
11943/* A structure that describes how to support exception catchpoints
11944 for a given executable. */
11945
11946struct exception_support_info
11947{
11948 /* The name of the symbol to break on in order to insert
11949 a catchpoint on exceptions. */
11950 const char *catch_exception_sym;
11951
11952 /* The name of the symbol to break on in order to insert
11953 a catchpoint on unhandled exceptions. */
11954 const char *catch_exception_unhandled_sym;
11955
11956 /* The name of the symbol to break on in order to insert
11957 a catchpoint on failed assertions. */
11958 const char *catch_assert_sym;
11959
9f757bf7
XR
11960 /* The name of the symbol to break on in order to insert
11961 a catchpoint on exception handling. */
11962 const char *catch_handlers_sym;
11963
0259addd
JB
11964 /* Assuming that the inferior just triggered an unhandled exception
11965 catchpoint, this function is responsible for returning the address
11966 in inferior memory where the name of that exception is stored.
11967 Return zero if the address could not be computed. */
11968 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11969};
11970
11971static CORE_ADDR ada_unhandled_exception_name_addr (void);
11972static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11973
11974/* The following exception support info structure describes how to
11975 implement exception catchpoints with the latest version of the
11976 Ada runtime (as of 2007-03-06). */
11977
11978static const struct exception_support_info default_exception_support_info =
11979{
11980 "__gnat_debug_raise_exception", /* catch_exception_sym */
11981 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11982 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11983 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11984 ada_unhandled_exception_name_addr
11985};
11986
11987/* The following exception support info structure describes how to
11988 implement exception catchpoints with a slightly older version
11989 of the Ada runtime. */
11990
11991static const struct exception_support_info exception_support_info_fallback =
11992{
11993 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11994 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11995 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11996 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11997 ada_unhandled_exception_name_addr_from_raise
11998};
11999
f17011e0
JB
12000/* Return nonzero if we can detect the exception support routines
12001 described in EINFO.
12002
12003 This function errors out if an abnormal situation is detected
12004 (for instance, if we find the exception support routines, but
12005 that support is found to be incomplete). */
12006
12007static int
12008ada_has_this_exception_support (const struct exception_support_info *einfo)
12009{
12010 struct symbol *sym;
12011
12012 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12013 that should be compiled with debugging information. As a result, we
12014 expect to find that symbol in the symtabs. */
12015
12016 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12017 if (sym == NULL)
a6af7abe
JB
12018 {
12019 /* Perhaps we did not find our symbol because the Ada runtime was
12020 compiled without debugging info, or simply stripped of it.
12021 It happens on some GNU/Linux distributions for instance, where
12022 users have to install a separate debug package in order to get
12023 the runtime's debugging info. In that situation, let the user
12024 know why we cannot insert an Ada exception catchpoint.
12025
12026 Note: Just for the purpose of inserting our Ada exception
12027 catchpoint, we could rely purely on the associated minimal symbol.
12028 But we would be operating in degraded mode anyway, since we are
12029 still lacking the debugging info needed later on to extract
12030 the name of the exception being raised (this name is printed in
12031 the catchpoint message, and is also used when trying to catch
12032 a specific exception). We do not handle this case for now. */
3b7344d5 12033 struct bound_minimal_symbol msym
1c8e84b0
JB
12034 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12035
3b7344d5 12036 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12037 error (_("Your Ada runtime appears to be missing some debugging "
12038 "information.\nCannot insert Ada exception catchpoint "
12039 "in this configuration."));
12040
12041 return 0;
12042 }
f17011e0
JB
12043
12044 /* Make sure that the symbol we found corresponds to a function. */
12045
12046 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12047 error (_("Symbol \"%s\" is not a function (class = %d)"),
12048 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12049
12050 return 1;
12051}
12052
0259addd
JB
12053/* Inspect the Ada runtime and determine which exception info structure
12054 should be used to provide support for exception catchpoints.
12055
3eecfa55
JB
12056 This function will always set the per-inferior exception_info,
12057 or raise an error. */
0259addd
JB
12058
12059static void
12060ada_exception_support_info_sniffer (void)
12061{
3eecfa55 12062 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12063
12064 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12065 if (data->exception_info != NULL)
0259addd
JB
12066 return;
12067
12068 /* Check the latest (default) exception support info. */
f17011e0 12069 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12070 {
3eecfa55 12071 data->exception_info = &default_exception_support_info;
0259addd
JB
12072 return;
12073 }
12074
12075 /* Try our fallback exception suport info. */
f17011e0 12076 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12077 {
3eecfa55 12078 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12079 return;
12080 }
12081
12082 /* Sometimes, it is normal for us to not be able to find the routine
12083 we are looking for. This happens when the program is linked with
12084 the shared version of the GNAT runtime, and the program has not been
12085 started yet. Inform the user of these two possible causes if
12086 applicable. */
12087
ccefe4c4 12088 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12089 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12090
12091 /* If the symbol does not exist, then check that the program is
12092 already started, to make sure that shared libraries have been
12093 loaded. If it is not started, this may mean that the symbol is
12094 in a shared library. */
12095
e99b03dc 12096 if (inferior_ptid.pid () == 0)
0259addd
JB
12097 error (_("Unable to insert catchpoint. Try to start the program first."));
12098
12099 /* At this point, we know that we are debugging an Ada program and
12100 that the inferior has been started, but we still are not able to
0963b4bd 12101 find the run-time symbols. That can mean that we are in
0259addd
JB
12102 configurable run time mode, or that a-except as been optimized
12103 out by the linker... In any case, at this point it is not worth
12104 supporting this feature. */
12105
7dda8cff 12106 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12107}
12108
f7f9143b
JB
12109/* True iff FRAME is very likely to be that of a function that is
12110 part of the runtime system. This is all very heuristic, but is
12111 intended to be used as advice as to what frames are uninteresting
12112 to most users. */
12113
12114static int
12115is_known_support_routine (struct frame_info *frame)
12116{
692465f1 12117 enum language func_lang;
f7f9143b 12118 int i;
f35a17b5 12119 const char *fullname;
f7f9143b 12120
4ed6b5be
JB
12121 /* If this code does not have any debugging information (no symtab),
12122 This cannot be any user code. */
f7f9143b 12123
51abb421 12124 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12125 if (sal.symtab == NULL)
12126 return 1;
12127
4ed6b5be
JB
12128 /* If there is a symtab, but the associated source file cannot be
12129 located, then assume this is not user code: Selecting a frame
12130 for which we cannot display the code would not be very helpful
12131 for the user. This should also take care of case such as VxWorks
12132 where the kernel has some debugging info provided for a few units. */
f7f9143b 12133
f35a17b5
JK
12134 fullname = symtab_to_fullname (sal.symtab);
12135 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12136 return 1;
12137
4ed6b5be
JB
12138 /* Check the unit filename againt the Ada runtime file naming.
12139 We also check the name of the objfile against the name of some
12140 known system libraries that sometimes come with debugging info
12141 too. */
12142
f7f9143b
JB
12143 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12144 {
12145 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12146 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12147 return 1;
eb822aa6
DE
12148 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12149 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12150 return 1;
f7f9143b
JB
12151 }
12152
4ed6b5be 12153 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12154
c6dc63a1
TT
12155 gdb::unique_xmalloc_ptr<char> func_name
12156 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12157 if (func_name == NULL)
12158 return 1;
12159
12160 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12161 {
12162 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12163 if (re_exec (func_name.get ()))
12164 return 1;
f7f9143b
JB
12165 }
12166
12167 return 0;
12168}
12169
12170/* Find the first frame that contains debugging information and that is not
12171 part of the Ada run-time, starting from FI and moving upward. */
12172
0ef643c8 12173void
f7f9143b
JB
12174ada_find_printable_frame (struct frame_info *fi)
12175{
12176 for (; fi != NULL; fi = get_prev_frame (fi))
12177 {
12178 if (!is_known_support_routine (fi))
12179 {
12180 select_frame (fi);
12181 break;
12182 }
12183 }
12184
12185}
12186
12187/* Assuming that the inferior just triggered an unhandled exception
12188 catchpoint, return the address in inferior memory where the name
12189 of the exception is stored.
12190
12191 Return zero if the address could not be computed. */
12192
12193static CORE_ADDR
12194ada_unhandled_exception_name_addr (void)
0259addd
JB
12195{
12196 return parse_and_eval_address ("e.full_name");
12197}
12198
12199/* Same as ada_unhandled_exception_name_addr, except that this function
12200 should be used when the inferior uses an older version of the runtime,
12201 where the exception name needs to be extracted from a specific frame
12202 several frames up in the callstack. */
12203
12204static CORE_ADDR
12205ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12206{
12207 int frame_level;
12208 struct frame_info *fi;
3eecfa55 12209 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12210
12211 /* To determine the name of this exception, we need to select
12212 the frame corresponding to RAISE_SYM_NAME. This frame is
12213 at least 3 levels up, so we simply skip the first 3 frames
12214 without checking the name of their associated function. */
12215 fi = get_current_frame ();
12216 for (frame_level = 0; frame_level < 3; frame_level += 1)
12217 if (fi != NULL)
12218 fi = get_prev_frame (fi);
12219
12220 while (fi != NULL)
12221 {
692465f1
JB
12222 enum language func_lang;
12223
c6dc63a1
TT
12224 gdb::unique_xmalloc_ptr<char> func_name
12225 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12226 if (func_name != NULL)
12227 {
c6dc63a1 12228 if (strcmp (func_name.get (),
55b87a52
KS
12229 data->exception_info->catch_exception_sym) == 0)
12230 break; /* We found the frame we were looking for... */
55b87a52 12231 }
fb44b1a7 12232 fi = get_prev_frame (fi);
f7f9143b
JB
12233 }
12234
12235 if (fi == NULL)
12236 return 0;
12237
12238 select_frame (fi);
12239 return parse_and_eval_address ("id.full_name");
12240}
12241
12242/* Assuming the inferior just triggered an Ada exception catchpoint
12243 (of any type), return the address in inferior memory where the name
12244 of the exception is stored, if applicable.
12245
45db7c09
PA
12246 Assumes the selected frame is the current frame.
12247
f7f9143b
JB
12248 Return zero if the address could not be computed, or if not relevant. */
12249
12250static CORE_ADDR
761269c8 12251ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12252 struct breakpoint *b)
12253{
3eecfa55
JB
12254 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12255
f7f9143b
JB
12256 switch (ex)
12257 {
761269c8 12258 case ada_catch_exception:
f7f9143b
JB
12259 return (parse_and_eval_address ("e.full_name"));
12260 break;
12261
761269c8 12262 case ada_catch_exception_unhandled:
3eecfa55 12263 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12264 break;
9f757bf7
XR
12265
12266 case ada_catch_handlers:
12267 return 0; /* The runtimes does not provide access to the exception
12268 name. */
12269 break;
12270
761269c8 12271 case ada_catch_assert:
f7f9143b
JB
12272 return 0; /* Exception name is not relevant in this case. */
12273 break;
12274
12275 default:
12276 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12277 break;
12278 }
12279
12280 return 0; /* Should never be reached. */
12281}
12282
e547c119
JB
12283/* Assuming the inferior is stopped at an exception catchpoint,
12284 return the message which was associated to the exception, if
12285 available. Return NULL if the message could not be retrieved.
12286
e547c119
JB
12287 Note: The exception message can be associated to an exception
12288 either through the use of the Raise_Exception function, or
12289 more simply (Ada 2005 and later), via:
12290
12291 raise Exception_Name with "exception message";
12292
12293 */
12294
6f46ac85 12295static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12296ada_exception_message_1 (void)
12297{
12298 struct value *e_msg_val;
e547c119 12299 int e_msg_len;
e547c119
JB
12300
12301 /* For runtimes that support this feature, the exception message
12302 is passed as an unbounded string argument called "message". */
12303 e_msg_val = parse_and_eval ("message");
12304 if (e_msg_val == NULL)
12305 return NULL; /* Exception message not supported. */
12306
12307 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12308 gdb_assert (e_msg_val != NULL);
12309 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12310
12311 /* If the message string is empty, then treat it as if there was
12312 no exception message. */
12313 if (e_msg_len <= 0)
12314 return NULL;
12315
6f46ac85
TT
12316 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12317 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12318 e_msg.get ()[e_msg_len] = '\0';
e547c119 12319
e547c119
JB
12320 return e_msg;
12321}
12322
12323/* Same as ada_exception_message_1, except that all exceptions are
12324 contained here (returning NULL instead). */
12325
6f46ac85 12326static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12327ada_exception_message (void)
12328{
6f46ac85 12329 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12330
12331 TRY
12332 {
12333 e_msg = ada_exception_message_1 ();
12334 }
12335 CATCH (e, RETURN_MASK_ERROR)
12336 {
6f46ac85 12337 e_msg.reset (nullptr);
e547c119
JB
12338 }
12339 END_CATCH
12340
12341 return e_msg;
12342}
12343
f7f9143b
JB
12344/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12345 any error that ada_exception_name_addr_1 might cause to be thrown.
12346 When an error is intercepted, a warning with the error message is printed,
12347 and zero is returned. */
12348
12349static CORE_ADDR
761269c8 12350ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12351 struct breakpoint *b)
12352{
f7f9143b
JB
12353 CORE_ADDR result = 0;
12354
492d29ea 12355 TRY
f7f9143b
JB
12356 {
12357 result = ada_exception_name_addr_1 (ex, b);
12358 }
12359
492d29ea 12360 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12361 {
12362 warning (_("failed to get exception name: %s"), e.message);
12363 return 0;
12364 }
492d29ea 12365 END_CATCH
f7f9143b
JB
12366
12367 return result;
12368}
12369
cb7de75e 12370static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12371 (const char *excep_string,
12372 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12373
12374/* Ada catchpoints.
12375
12376 In the case of catchpoints on Ada exceptions, the catchpoint will
12377 stop the target on every exception the program throws. When a user
12378 specifies the name of a specific exception, we translate this
12379 request into a condition expression (in text form), and then parse
12380 it into an expression stored in each of the catchpoint's locations.
12381 We then use this condition to check whether the exception that was
12382 raised is the one the user is interested in. If not, then the
12383 target is resumed again. We store the name of the requested
12384 exception, in order to be able to re-set the condition expression
12385 when symbols change. */
12386
12387/* An instance of this type is used to represent an Ada catchpoint
5625a286 12388 breakpoint location. */
28010a5d 12389
5625a286 12390class ada_catchpoint_location : public bp_location
28010a5d 12391{
5625a286
PA
12392public:
12393 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12394 : bp_location (ops, owner)
12395 {}
28010a5d
PA
12396
12397 /* The condition that checks whether the exception that was raised
12398 is the specific exception the user specified on catchpoint
12399 creation. */
4d01a485 12400 expression_up excep_cond_expr;
28010a5d
PA
12401};
12402
12403/* Implement the DTOR method in the bp_location_ops structure for all
12404 Ada exception catchpoint kinds. */
12405
12406static void
12407ada_catchpoint_location_dtor (struct bp_location *bl)
12408{
12409 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12410
4d01a485 12411 al->excep_cond_expr.reset ();
28010a5d
PA
12412}
12413
12414/* The vtable to be used in Ada catchpoint locations. */
12415
12416static const struct bp_location_ops ada_catchpoint_location_ops =
12417{
12418 ada_catchpoint_location_dtor
12419};
12420
c1fc2657 12421/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12422
c1fc2657 12423struct ada_catchpoint : public breakpoint
28010a5d 12424{
28010a5d 12425 /* The name of the specific exception the user specified. */
bc18fbb5 12426 std::string excep_string;
28010a5d
PA
12427};
12428
12429/* Parse the exception condition string in the context of each of the
12430 catchpoint's locations, and store them for later evaluation. */
12431
12432static void
9f757bf7
XR
12433create_excep_cond_exprs (struct ada_catchpoint *c,
12434 enum ada_exception_catchpoint_kind ex)
28010a5d 12435{
28010a5d 12436 struct bp_location *bl;
28010a5d
PA
12437
12438 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12439 if (c->excep_string.empty ())
28010a5d
PA
12440 return;
12441
12442 /* Same if there are no locations... */
c1fc2657 12443 if (c->loc == NULL)
28010a5d
PA
12444 return;
12445
12446 /* Compute the condition expression in text form, from the specific
12447 expection we want to catch. */
cb7de75e 12448 std::string cond_string
bc18fbb5 12449 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12450
12451 /* Iterate over all the catchpoint's locations, and parse an
12452 expression for each. */
c1fc2657 12453 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12454 {
12455 struct ada_catchpoint_location *ada_loc
12456 = (struct ada_catchpoint_location *) bl;
4d01a485 12457 expression_up exp;
28010a5d
PA
12458
12459 if (!bl->shlib_disabled)
12460 {
bbc13ae3 12461 const char *s;
28010a5d 12462
cb7de75e 12463 s = cond_string.c_str ();
492d29ea 12464 TRY
28010a5d 12465 {
036e657b
JB
12466 exp = parse_exp_1 (&s, bl->address,
12467 block_for_pc (bl->address),
12468 0);
28010a5d 12469 }
492d29ea 12470 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12471 {
12472 warning (_("failed to reevaluate internal exception condition "
12473 "for catchpoint %d: %s"),
c1fc2657 12474 c->number, e.message);
849f2b52 12475 }
492d29ea 12476 END_CATCH
28010a5d
PA
12477 }
12478
b22e99fd 12479 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12480 }
28010a5d
PA
12481}
12482
28010a5d
PA
12483/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12484 structure for all exception catchpoint kinds. */
12485
12486static struct bp_location *
761269c8 12487allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12488 struct breakpoint *self)
12489{
5625a286 12490 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12491}
12492
12493/* Implement the RE_SET method in the breakpoint_ops structure for all
12494 exception catchpoint kinds. */
12495
12496static void
761269c8 12497re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12498{
12499 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12500
12501 /* Call the base class's method. This updates the catchpoint's
12502 locations. */
2060206e 12503 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12504
12505 /* Reparse the exception conditional expressions. One for each
12506 location. */
9f757bf7 12507 create_excep_cond_exprs (c, ex);
28010a5d
PA
12508}
12509
12510/* Returns true if we should stop for this breakpoint hit. If the
12511 user specified a specific exception, we only want to cause a stop
12512 if the program thrown that exception. */
12513
12514static int
12515should_stop_exception (const struct bp_location *bl)
12516{
12517 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12518 const struct ada_catchpoint_location *ada_loc
12519 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12520 int stop;
12521
12522 /* With no specific exception, should always stop. */
bc18fbb5 12523 if (c->excep_string.empty ())
28010a5d
PA
12524 return 1;
12525
12526 if (ada_loc->excep_cond_expr == NULL)
12527 {
12528 /* We will have a NULL expression if back when we were creating
12529 the expressions, this location's had failed to parse. */
12530 return 1;
12531 }
12532
12533 stop = 1;
492d29ea 12534 TRY
28010a5d
PA
12535 {
12536 struct value *mark;
12537
12538 mark = value_mark ();
4d01a485 12539 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12540 value_free_to_mark (mark);
12541 }
492d29ea
PA
12542 CATCH (ex, RETURN_MASK_ALL)
12543 {
12544 exception_fprintf (gdb_stderr, ex,
12545 _("Error in testing exception condition:\n"));
12546 }
12547 END_CATCH
12548
28010a5d
PA
12549 return stop;
12550}
12551
12552/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12553 for all exception catchpoint kinds. */
12554
12555static void
761269c8 12556check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12557{
12558 bs->stop = should_stop_exception (bs->bp_location_at);
12559}
12560
f7f9143b
JB
12561/* Implement the PRINT_IT method in the breakpoint_ops structure
12562 for all exception catchpoint kinds. */
12563
12564static enum print_stop_action
761269c8 12565print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12566{
79a45e25 12567 struct ui_out *uiout = current_uiout;
348d480f
PA
12568 struct breakpoint *b = bs->breakpoint_at;
12569
956a9fb9 12570 annotate_catchpoint (b->number);
f7f9143b 12571
112e8700 12572 if (uiout->is_mi_like_p ())
f7f9143b 12573 {
112e8700 12574 uiout->field_string ("reason",
956a9fb9 12575 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12576 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12577 }
12578
112e8700
SM
12579 uiout->text (b->disposition == disp_del
12580 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12581 uiout->field_int ("bkptno", b->number);
12582 uiout->text (", ");
f7f9143b 12583
45db7c09
PA
12584 /* ada_exception_name_addr relies on the selected frame being the
12585 current frame. Need to do this here because this function may be
12586 called more than once when printing a stop, and below, we'll
12587 select the first frame past the Ada run-time (see
12588 ada_find_printable_frame). */
12589 select_frame (get_current_frame ());
12590
f7f9143b
JB
12591 switch (ex)
12592 {
761269c8
JB
12593 case ada_catch_exception:
12594 case ada_catch_exception_unhandled:
9f757bf7 12595 case ada_catch_handlers:
956a9fb9
JB
12596 {
12597 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12598 char exception_name[256];
12599
12600 if (addr != 0)
12601 {
c714b426
PA
12602 read_memory (addr, (gdb_byte *) exception_name,
12603 sizeof (exception_name) - 1);
956a9fb9
JB
12604 exception_name [sizeof (exception_name) - 1] = '\0';
12605 }
12606 else
12607 {
12608 /* For some reason, we were unable to read the exception
12609 name. This could happen if the Runtime was compiled
12610 without debugging info, for instance. In that case,
12611 just replace the exception name by the generic string
12612 "exception" - it will read as "an exception" in the
12613 notification we are about to print. */
967cff16 12614 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12615 }
12616 /* In the case of unhandled exception breakpoints, we print
12617 the exception name as "unhandled EXCEPTION_NAME", to make
12618 it clearer to the user which kind of catchpoint just got
12619 hit. We used ui_out_text to make sure that this extra
12620 info does not pollute the exception name in the MI case. */
761269c8 12621 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12622 uiout->text ("unhandled ");
12623 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12624 }
12625 break;
761269c8 12626 case ada_catch_assert:
956a9fb9
JB
12627 /* In this case, the name of the exception is not really
12628 important. Just print "failed assertion" to make it clearer
12629 that his program just hit an assertion-failure catchpoint.
12630 We used ui_out_text because this info does not belong in
12631 the MI output. */
112e8700 12632 uiout->text ("failed assertion");
956a9fb9 12633 break;
f7f9143b 12634 }
e547c119 12635
6f46ac85 12636 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12637 if (exception_message != NULL)
12638 {
e547c119 12639 uiout->text (" (");
6f46ac85 12640 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12641 uiout->text (")");
e547c119
JB
12642 }
12643
112e8700 12644 uiout->text (" at ");
956a9fb9 12645 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12646
12647 return PRINT_SRC_AND_LOC;
12648}
12649
12650/* Implement the PRINT_ONE method in the breakpoint_ops structure
12651 for all exception catchpoint kinds. */
12652
12653static void
761269c8 12654print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12655 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12656{
79a45e25 12657 struct ui_out *uiout = current_uiout;
28010a5d 12658 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12659 struct value_print_options opts;
12660
12661 get_user_print_options (&opts);
12662 if (opts.addressprint)
f7f9143b
JB
12663 {
12664 annotate_field (4);
112e8700 12665 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12666 }
12667
12668 annotate_field (5);
a6d9a66e 12669 *last_loc = b->loc;
f7f9143b
JB
12670 switch (ex)
12671 {
761269c8 12672 case ada_catch_exception:
bc18fbb5 12673 if (!c->excep_string.empty ())
f7f9143b 12674 {
bc18fbb5
TT
12675 std::string msg = string_printf (_("`%s' Ada exception"),
12676 c->excep_string.c_str ());
28010a5d 12677
112e8700 12678 uiout->field_string ("what", msg);
f7f9143b
JB
12679 }
12680 else
112e8700 12681 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12682
12683 break;
12684
761269c8 12685 case ada_catch_exception_unhandled:
112e8700 12686 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12687 break;
12688
9f757bf7 12689 case ada_catch_handlers:
bc18fbb5 12690 if (!c->excep_string.empty ())
9f757bf7
XR
12691 {
12692 uiout->field_fmt ("what",
12693 _("`%s' Ada exception handlers"),
bc18fbb5 12694 c->excep_string.c_str ());
9f757bf7
XR
12695 }
12696 else
12697 uiout->field_string ("what", "all Ada exceptions handlers");
12698 break;
12699
761269c8 12700 case ada_catch_assert:
112e8700 12701 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12702 break;
12703
12704 default:
12705 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12706 break;
12707 }
12708}
12709
12710/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12711 for all exception catchpoint kinds. */
12712
12713static void
761269c8 12714print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12715 struct breakpoint *b)
12716{
28010a5d 12717 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12718 struct ui_out *uiout = current_uiout;
28010a5d 12719
112e8700 12720 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12721 : _("Catchpoint "));
112e8700
SM
12722 uiout->field_int ("bkptno", b->number);
12723 uiout->text (": ");
00eb2c4a 12724
f7f9143b
JB
12725 switch (ex)
12726 {
761269c8 12727 case ada_catch_exception:
bc18fbb5 12728 if (!c->excep_string.empty ())
00eb2c4a 12729 {
862d101a 12730 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12731 c->excep_string.c_str ());
862d101a 12732 uiout->text (info.c_str ());
00eb2c4a 12733 }
f7f9143b 12734 else
112e8700 12735 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12736 break;
12737
761269c8 12738 case ada_catch_exception_unhandled:
112e8700 12739 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12740 break;
9f757bf7
XR
12741
12742 case ada_catch_handlers:
bc18fbb5 12743 if (!c->excep_string.empty ())
9f757bf7
XR
12744 {
12745 std::string info
12746 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12747 c->excep_string.c_str ());
9f757bf7
XR
12748 uiout->text (info.c_str ());
12749 }
12750 else
12751 uiout->text (_("all Ada exceptions handlers"));
12752 break;
12753
761269c8 12754 case ada_catch_assert:
112e8700 12755 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12756 break;
12757
12758 default:
12759 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12760 break;
12761 }
12762}
12763
6149aea9
PA
12764/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12765 for all exception catchpoint kinds. */
12766
12767static void
761269c8 12768print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12769 struct breakpoint *b, struct ui_file *fp)
12770{
28010a5d
PA
12771 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12772
6149aea9
PA
12773 switch (ex)
12774 {
761269c8 12775 case ada_catch_exception:
6149aea9 12776 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12777 if (!c->excep_string.empty ())
12778 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12779 break;
12780
761269c8 12781 case ada_catch_exception_unhandled:
78076abc 12782 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12783 break;
12784
9f757bf7
XR
12785 case ada_catch_handlers:
12786 fprintf_filtered (fp, "catch handlers");
12787 break;
12788
761269c8 12789 case ada_catch_assert:
6149aea9
PA
12790 fprintf_filtered (fp, "catch assert");
12791 break;
12792
12793 default:
12794 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12795 }
d9b3f62e 12796 print_recreate_thread (b, fp);
6149aea9
PA
12797}
12798
f7f9143b
JB
12799/* Virtual table for "catch exception" breakpoints. */
12800
28010a5d
PA
12801static struct bp_location *
12802allocate_location_catch_exception (struct breakpoint *self)
12803{
761269c8 12804 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12805}
12806
12807static void
12808re_set_catch_exception (struct breakpoint *b)
12809{
761269c8 12810 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12811}
12812
12813static void
12814check_status_catch_exception (bpstat bs)
12815{
761269c8 12816 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12817}
12818
f7f9143b 12819static enum print_stop_action
348d480f 12820print_it_catch_exception (bpstat bs)
f7f9143b 12821{
761269c8 12822 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12823}
12824
12825static void
a6d9a66e 12826print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12827{
761269c8 12828 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12829}
12830
12831static void
12832print_mention_catch_exception (struct breakpoint *b)
12833{
761269c8 12834 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12835}
12836
6149aea9
PA
12837static void
12838print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12839{
761269c8 12840 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12841}
12842
2060206e 12843static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12844
12845/* Virtual table for "catch exception unhandled" breakpoints. */
12846
28010a5d
PA
12847static struct bp_location *
12848allocate_location_catch_exception_unhandled (struct breakpoint *self)
12849{
761269c8 12850 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12851}
12852
12853static void
12854re_set_catch_exception_unhandled (struct breakpoint *b)
12855{
761269c8 12856 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12857}
12858
12859static void
12860check_status_catch_exception_unhandled (bpstat bs)
12861{
761269c8 12862 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12863}
12864
f7f9143b 12865static enum print_stop_action
348d480f 12866print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12867{
761269c8 12868 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12869}
12870
12871static void
a6d9a66e
UW
12872print_one_catch_exception_unhandled (struct breakpoint *b,
12873 struct bp_location **last_loc)
f7f9143b 12874{
761269c8 12875 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12876}
12877
12878static void
12879print_mention_catch_exception_unhandled (struct breakpoint *b)
12880{
761269c8 12881 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12882}
12883
6149aea9
PA
12884static void
12885print_recreate_catch_exception_unhandled (struct breakpoint *b,
12886 struct ui_file *fp)
12887{
761269c8 12888 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12889}
12890
2060206e 12891static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12892
12893/* Virtual table for "catch assert" breakpoints. */
12894
28010a5d
PA
12895static struct bp_location *
12896allocate_location_catch_assert (struct breakpoint *self)
12897{
761269c8 12898 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12899}
12900
12901static void
12902re_set_catch_assert (struct breakpoint *b)
12903{
761269c8 12904 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12905}
12906
12907static void
12908check_status_catch_assert (bpstat bs)
12909{
761269c8 12910 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12911}
12912
f7f9143b 12913static enum print_stop_action
348d480f 12914print_it_catch_assert (bpstat bs)
f7f9143b 12915{
761269c8 12916 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12917}
12918
12919static void
a6d9a66e 12920print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12921{
761269c8 12922 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12923}
12924
12925static void
12926print_mention_catch_assert (struct breakpoint *b)
12927{
761269c8 12928 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12929}
12930
6149aea9
PA
12931static void
12932print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12933{
761269c8 12934 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12935}
12936
2060206e 12937static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12938
9f757bf7
XR
12939/* Virtual table for "catch handlers" breakpoints. */
12940
12941static struct bp_location *
12942allocate_location_catch_handlers (struct breakpoint *self)
12943{
12944 return allocate_location_exception (ada_catch_handlers, self);
12945}
12946
12947static void
12948re_set_catch_handlers (struct breakpoint *b)
12949{
12950 re_set_exception (ada_catch_handlers, b);
12951}
12952
12953static void
12954check_status_catch_handlers (bpstat bs)
12955{
12956 check_status_exception (ada_catch_handlers, bs);
12957}
12958
12959static enum print_stop_action
12960print_it_catch_handlers (bpstat bs)
12961{
12962 return print_it_exception (ada_catch_handlers, bs);
12963}
12964
12965static void
12966print_one_catch_handlers (struct breakpoint *b,
12967 struct bp_location **last_loc)
12968{
12969 print_one_exception (ada_catch_handlers, b, last_loc);
12970}
12971
12972static void
12973print_mention_catch_handlers (struct breakpoint *b)
12974{
12975 print_mention_exception (ada_catch_handlers, b);
12976}
12977
12978static void
12979print_recreate_catch_handlers (struct breakpoint *b,
12980 struct ui_file *fp)
12981{
12982 print_recreate_exception (ada_catch_handlers, b, fp);
12983}
12984
12985static struct breakpoint_ops catch_handlers_breakpoint_ops;
12986
f7f9143b
JB
12987/* Split the arguments specified in a "catch exception" command.
12988 Set EX to the appropriate catchpoint type.
28010a5d 12989 Set EXCEP_STRING to the name of the specific exception if
5845583d 12990 specified by the user.
9f757bf7
XR
12991 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12992 "catch handlers" command. False otherwise.
5845583d
JB
12993 If a condition is found at the end of the arguments, the condition
12994 expression is stored in COND_STRING (memory must be deallocated
12995 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12996
12997static void
a121b7c1 12998catch_ada_exception_command_split (const char *args,
9f757bf7 12999 bool is_catch_handlers_cmd,
761269c8 13000 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13001 std::string *excep_string,
13002 std::string *cond_string)
f7f9143b 13003{
bc18fbb5 13004 std::string exception_name;
f7f9143b 13005
bc18fbb5
TT
13006 exception_name = extract_arg (&args);
13007 if (exception_name == "if")
5845583d
JB
13008 {
13009 /* This is not an exception name; this is the start of a condition
13010 expression for a catchpoint on all exceptions. So, "un-get"
13011 this token, and set exception_name to NULL. */
bc18fbb5 13012 exception_name.clear ();
5845583d
JB
13013 args -= 2;
13014 }
f7f9143b 13015
5845583d 13016 /* Check to see if we have a condition. */
f7f9143b 13017
f1735a53 13018 args = skip_spaces (args);
61012eef 13019 if (startswith (args, "if")
5845583d
JB
13020 && (isspace (args[2]) || args[2] == '\0'))
13021 {
13022 args += 2;
f1735a53 13023 args = skip_spaces (args);
5845583d
JB
13024
13025 if (args[0] == '\0')
13026 error (_("Condition missing after `if' keyword"));
bc18fbb5 13027 *cond_string = args;
5845583d
JB
13028
13029 args += strlen (args);
13030 }
13031
13032 /* Check that we do not have any more arguments. Anything else
13033 is unexpected. */
f7f9143b
JB
13034
13035 if (args[0] != '\0')
13036 error (_("Junk at end of expression"));
13037
9f757bf7
XR
13038 if (is_catch_handlers_cmd)
13039 {
13040 /* Catch handling of exceptions. */
13041 *ex = ada_catch_handlers;
13042 *excep_string = exception_name;
13043 }
bc18fbb5 13044 else if (exception_name.empty ())
f7f9143b
JB
13045 {
13046 /* Catch all exceptions. */
761269c8 13047 *ex = ada_catch_exception;
bc18fbb5 13048 excep_string->clear ();
f7f9143b 13049 }
bc18fbb5 13050 else if (exception_name == "unhandled")
f7f9143b
JB
13051 {
13052 /* Catch unhandled exceptions. */
761269c8 13053 *ex = ada_catch_exception_unhandled;
bc18fbb5 13054 excep_string->clear ();
f7f9143b
JB
13055 }
13056 else
13057 {
13058 /* Catch a specific exception. */
761269c8 13059 *ex = ada_catch_exception;
28010a5d 13060 *excep_string = exception_name;
f7f9143b
JB
13061 }
13062}
13063
13064/* Return the name of the symbol on which we should break in order to
13065 implement a catchpoint of the EX kind. */
13066
13067static const char *
761269c8 13068ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13069{
3eecfa55
JB
13070 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13071
13072 gdb_assert (data->exception_info != NULL);
0259addd 13073
f7f9143b
JB
13074 switch (ex)
13075 {
761269c8 13076 case ada_catch_exception:
3eecfa55 13077 return (data->exception_info->catch_exception_sym);
f7f9143b 13078 break;
761269c8 13079 case ada_catch_exception_unhandled:
3eecfa55 13080 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13081 break;
761269c8 13082 case ada_catch_assert:
3eecfa55 13083 return (data->exception_info->catch_assert_sym);
f7f9143b 13084 break;
9f757bf7
XR
13085 case ada_catch_handlers:
13086 return (data->exception_info->catch_handlers_sym);
13087 break;
f7f9143b
JB
13088 default:
13089 internal_error (__FILE__, __LINE__,
13090 _("unexpected catchpoint kind (%d)"), ex);
13091 }
13092}
13093
13094/* Return the breakpoint ops "virtual table" used for catchpoints
13095 of the EX kind. */
13096
c0a91b2b 13097static const struct breakpoint_ops *
761269c8 13098ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13099{
13100 switch (ex)
13101 {
761269c8 13102 case ada_catch_exception:
f7f9143b
JB
13103 return (&catch_exception_breakpoint_ops);
13104 break;
761269c8 13105 case ada_catch_exception_unhandled:
f7f9143b
JB
13106 return (&catch_exception_unhandled_breakpoint_ops);
13107 break;
761269c8 13108 case ada_catch_assert:
f7f9143b
JB
13109 return (&catch_assert_breakpoint_ops);
13110 break;
9f757bf7
XR
13111 case ada_catch_handlers:
13112 return (&catch_handlers_breakpoint_ops);
13113 break;
f7f9143b
JB
13114 default:
13115 internal_error (__FILE__, __LINE__,
13116 _("unexpected catchpoint kind (%d)"), ex);
13117 }
13118}
13119
13120/* Return the condition that will be used to match the current exception
13121 being raised with the exception that the user wants to catch. This
13122 assumes that this condition is used when the inferior just triggered
13123 an exception catchpoint.
cb7de75e 13124 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13125
cb7de75e 13126static std::string
9f757bf7
XR
13127ada_exception_catchpoint_cond_string (const char *excep_string,
13128 enum ada_exception_catchpoint_kind ex)
f7f9143b 13129{
3d0b0fa3 13130 int i;
9f757bf7 13131 bool is_standard_exc = false;
cb7de75e 13132 std::string result;
9f757bf7
XR
13133
13134 if (ex == ada_catch_handlers)
13135 {
13136 /* For exception handlers catchpoints, the condition string does
13137 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13138 result = ("long_integer (GNAT_GCC_exception_Access"
13139 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13140 }
13141 else
cb7de75e 13142 result = "long_integer (e)";
3d0b0fa3 13143
0963b4bd 13144 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13145 runtime units that have been compiled without debugging info; if
28010a5d 13146 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13147 exception (e.g. "constraint_error") then, during the evaluation
13148 of the condition expression, the symbol lookup on this name would
0963b4bd 13149 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13150 may then be set only on user-defined exceptions which have the
13151 same not-fully-qualified name (e.g. my_package.constraint_error).
13152
13153 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13154 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13155 exception constraint_error" is rewritten into "catch exception
13156 standard.constraint_error".
13157
13158 If an exception named contraint_error is defined in another package of
13159 the inferior program, then the only way to specify this exception as a
13160 breakpoint condition is to use its fully-qualified named:
13161 e.g. my_package.constraint_error. */
13162
13163 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13164 {
28010a5d 13165 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13166 {
9f757bf7
XR
13167 is_standard_exc = true;
13168 break;
3d0b0fa3
JB
13169 }
13170 }
9f757bf7 13171
cb7de75e
TT
13172 result += " = ";
13173
9f757bf7 13174 if (is_standard_exc)
cb7de75e 13175 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13176 else
cb7de75e 13177 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13178
9f757bf7 13179 return result;
f7f9143b
JB
13180}
13181
13182/* Return the symtab_and_line that should be used to insert an exception
13183 catchpoint of the TYPE kind.
13184
28010a5d
PA
13185 ADDR_STRING returns the name of the function where the real
13186 breakpoint that implements the catchpoints is set, depending on the
13187 type of catchpoint we need to create. */
f7f9143b
JB
13188
13189static struct symtab_and_line
bc18fbb5 13190ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13191 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13192{
13193 const char *sym_name;
13194 struct symbol *sym;
f7f9143b 13195
0259addd
JB
13196 /* First, find out which exception support info to use. */
13197 ada_exception_support_info_sniffer ();
13198
13199 /* Then lookup the function on which we will break in order to catch
f7f9143b 13200 the Ada exceptions requested by the user. */
f7f9143b
JB
13201 sym_name = ada_exception_sym_name (ex);
13202 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13203
57aff202
JB
13204 if (sym == NULL)
13205 error (_("Catchpoint symbol not found: %s"), sym_name);
13206
13207 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13208 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13209
13210 /* Set ADDR_STRING. */
f7f9143b
JB
13211 *addr_string = xstrdup (sym_name);
13212
f7f9143b 13213 /* Set OPS. */
4b9eee8c 13214 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13215
f17011e0 13216 return find_function_start_sal (sym, 1);
f7f9143b
JB
13217}
13218
b4a5b78b 13219/* Create an Ada exception catchpoint.
f7f9143b 13220
b4a5b78b 13221 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13222
bc18fbb5 13223 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13224 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13225 of the exception to which this catchpoint applies.
2df4d1d5 13226
bc18fbb5 13227 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13228
b4a5b78b
JB
13229 TEMPFLAG, if nonzero, means that the underlying breakpoint
13230 should be temporary.
28010a5d 13231
b4a5b78b 13232 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13233
349774ef 13234void
28010a5d 13235create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13236 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13237 const std::string &excep_string,
56ecd069 13238 const std::string &cond_string,
28010a5d 13239 int tempflag,
349774ef 13240 int disabled,
28010a5d
PA
13241 int from_tty)
13242{
f2fc3015 13243 const char *addr_string = NULL;
b4a5b78b 13244 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13245 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13246
b270e6f9
TT
13247 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13248 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13249 ops, tempflag, disabled, from_tty);
28010a5d 13250 c->excep_string = excep_string;
9f757bf7 13251 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13252 if (!cond_string.empty ())
13253 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13254 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13255}
13256
9ac4176b
PA
13257/* Implement the "catch exception" command. */
13258
13259static void
eb4c3f4a 13260catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13261 struct cmd_list_element *command)
13262{
a121b7c1 13263 const char *arg = arg_entry;
9ac4176b
PA
13264 struct gdbarch *gdbarch = get_current_arch ();
13265 int tempflag;
761269c8 13266 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13267 std::string excep_string;
56ecd069 13268 std::string cond_string;
9ac4176b
PA
13269
13270 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13271
13272 if (!arg)
13273 arg = "";
9f757bf7 13274 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13275 &cond_string);
9f757bf7
XR
13276 create_ada_exception_catchpoint (gdbarch, ex_kind,
13277 excep_string, cond_string,
13278 tempflag, 1 /* enabled */,
13279 from_tty);
13280}
13281
13282/* Implement the "catch handlers" command. */
13283
13284static void
13285catch_ada_handlers_command (const char *arg_entry, int from_tty,
13286 struct cmd_list_element *command)
13287{
13288 const char *arg = arg_entry;
13289 struct gdbarch *gdbarch = get_current_arch ();
13290 int tempflag;
13291 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13292 std::string excep_string;
56ecd069 13293 std::string cond_string;
9f757bf7
XR
13294
13295 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13296
13297 if (!arg)
13298 arg = "";
13299 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13300 &cond_string);
b4a5b78b
JB
13301 create_ada_exception_catchpoint (gdbarch, ex_kind,
13302 excep_string, cond_string,
349774ef
JB
13303 tempflag, 1 /* enabled */,
13304 from_tty);
9ac4176b
PA
13305}
13306
b4a5b78b 13307/* Split the arguments specified in a "catch assert" command.
5845583d 13308
b4a5b78b
JB
13309 ARGS contains the command's arguments (or the empty string if
13310 no arguments were passed).
5845583d
JB
13311
13312 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13313 (the memory needs to be deallocated after use). */
5845583d 13314
b4a5b78b 13315static void
56ecd069 13316catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13317{
f1735a53 13318 args = skip_spaces (args);
f7f9143b 13319
5845583d 13320 /* Check whether a condition was provided. */
61012eef 13321 if (startswith (args, "if")
5845583d 13322 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13323 {
5845583d 13324 args += 2;
f1735a53 13325 args = skip_spaces (args);
5845583d
JB
13326 if (args[0] == '\0')
13327 error (_("condition missing after `if' keyword"));
56ecd069 13328 cond_string.assign (args);
f7f9143b
JB
13329 }
13330
5845583d
JB
13331 /* Otherwise, there should be no other argument at the end of
13332 the command. */
13333 else if (args[0] != '\0')
13334 error (_("Junk at end of arguments."));
f7f9143b
JB
13335}
13336
9ac4176b
PA
13337/* Implement the "catch assert" command. */
13338
13339static void
eb4c3f4a 13340catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13341 struct cmd_list_element *command)
13342{
a121b7c1 13343 const char *arg = arg_entry;
9ac4176b
PA
13344 struct gdbarch *gdbarch = get_current_arch ();
13345 int tempflag;
56ecd069 13346 std::string cond_string;
9ac4176b
PA
13347
13348 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13349
13350 if (!arg)
13351 arg = "";
56ecd069 13352 catch_ada_assert_command_split (arg, cond_string);
761269c8 13353 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13354 "", cond_string,
349774ef
JB
13355 tempflag, 1 /* enabled */,
13356 from_tty);
9ac4176b 13357}
778865d3
JB
13358
13359/* Return non-zero if the symbol SYM is an Ada exception object. */
13360
13361static int
13362ada_is_exception_sym (struct symbol *sym)
13363{
a737d952 13364 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13365
13366 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13367 && SYMBOL_CLASS (sym) != LOC_BLOCK
13368 && SYMBOL_CLASS (sym) != LOC_CONST
13369 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13370 && type_name != NULL && strcmp (type_name, "exception") == 0);
13371}
13372
13373/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13374 Ada exception object. This matches all exceptions except the ones
13375 defined by the Ada language. */
13376
13377static int
13378ada_is_non_standard_exception_sym (struct symbol *sym)
13379{
13380 int i;
13381
13382 if (!ada_is_exception_sym (sym))
13383 return 0;
13384
13385 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13386 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13387 return 0; /* A standard exception. */
13388
13389 /* Numeric_Error is also a standard exception, so exclude it.
13390 See the STANDARD_EXC description for more details as to why
13391 this exception is not listed in that array. */
13392 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13393 return 0;
13394
13395 return 1;
13396}
13397
ab816a27 13398/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13399 objects.
13400
13401 The comparison is determined first by exception name, and then
13402 by exception address. */
13403
ab816a27 13404bool
cc536b21 13405ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13406{
778865d3
JB
13407 int result;
13408
ab816a27
TT
13409 result = strcmp (name, other.name);
13410 if (result < 0)
13411 return true;
13412 if (result == 0 && addr < other.addr)
13413 return true;
13414 return false;
13415}
778865d3 13416
ab816a27 13417bool
cc536b21 13418ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13419{
13420 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13421}
13422
13423/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13424 routine, but keeping the first SKIP elements untouched.
13425
13426 All duplicates are also removed. */
13427
13428static void
ab816a27 13429sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13430 int skip)
13431{
ab816a27
TT
13432 std::sort (exceptions->begin () + skip, exceptions->end ());
13433 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13434 exceptions->end ());
778865d3
JB
13435}
13436
778865d3
JB
13437/* Add all exceptions defined by the Ada standard whose name match
13438 a regular expression.
13439
13440 If PREG is not NULL, then this regexp_t object is used to
13441 perform the symbol name matching. Otherwise, no name-based
13442 filtering is performed.
13443
13444 EXCEPTIONS is a vector of exceptions to which matching exceptions
13445 gets pushed. */
13446
13447static void
2d7cc5c7 13448ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13449 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13450{
13451 int i;
13452
13453 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13454 {
13455 if (preg == NULL
2d7cc5c7 13456 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13457 {
13458 struct bound_minimal_symbol msymbol
13459 = ada_lookup_simple_minsym (standard_exc[i]);
13460
13461 if (msymbol.minsym != NULL)
13462 {
13463 struct ada_exc_info info
77e371c0 13464 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13465
ab816a27 13466 exceptions->push_back (info);
778865d3
JB
13467 }
13468 }
13469 }
13470}
13471
13472/* Add all Ada exceptions defined locally and accessible from the given
13473 FRAME.
13474
13475 If PREG is not NULL, then this regexp_t object is used to
13476 perform the symbol name matching. Otherwise, no name-based
13477 filtering is performed.
13478
13479 EXCEPTIONS is a vector of exceptions to which matching exceptions
13480 gets pushed. */
13481
13482static void
2d7cc5c7
PA
13483ada_add_exceptions_from_frame (compiled_regex *preg,
13484 struct frame_info *frame,
ab816a27 13485 std::vector<ada_exc_info> *exceptions)
778865d3 13486{
3977b71f 13487 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13488
13489 while (block != 0)
13490 {
13491 struct block_iterator iter;
13492 struct symbol *sym;
13493
13494 ALL_BLOCK_SYMBOLS (block, iter, sym)
13495 {
13496 switch (SYMBOL_CLASS (sym))
13497 {
13498 case LOC_TYPEDEF:
13499 case LOC_BLOCK:
13500 case LOC_CONST:
13501 break;
13502 default:
13503 if (ada_is_exception_sym (sym))
13504 {
13505 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13506 SYMBOL_VALUE_ADDRESS (sym)};
13507
ab816a27 13508 exceptions->push_back (info);
778865d3
JB
13509 }
13510 }
13511 }
13512 if (BLOCK_FUNCTION (block) != NULL)
13513 break;
13514 block = BLOCK_SUPERBLOCK (block);
13515 }
13516}
13517
14bc53a8
PA
13518/* Return true if NAME matches PREG or if PREG is NULL. */
13519
13520static bool
2d7cc5c7 13521name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13522{
13523 return (preg == NULL
2d7cc5c7 13524 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13525}
13526
778865d3
JB
13527/* Add all exceptions defined globally whose name name match
13528 a regular expression, excluding standard exceptions.
13529
13530 The reason we exclude standard exceptions is that they need
13531 to be handled separately: Standard exceptions are defined inside
13532 a runtime unit which is normally not compiled with debugging info,
13533 and thus usually do not show up in our symbol search. However,
13534 if the unit was in fact built with debugging info, we need to
13535 exclude them because they would duplicate the entry we found
13536 during the special loop that specifically searches for those
13537 standard exceptions.
13538
13539 If PREG is not NULL, then this regexp_t object is used to
13540 perform the symbol name matching. Otherwise, no name-based
13541 filtering is performed.
13542
13543 EXCEPTIONS is a vector of exceptions to which matching exceptions
13544 gets pushed. */
13545
13546static void
2d7cc5c7 13547ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13548 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13549{
13550 struct objfile *objfile;
43f3e411 13551 struct compunit_symtab *s;
778865d3 13552
14bc53a8
PA
13553 /* In Ada, the symbol "search name" is a linkage name, whereas the
13554 regular expression used to do the matching refers to the natural
13555 name. So match against the decoded name. */
13556 expand_symtabs_matching (NULL,
b5ec771e 13557 lookup_name_info::match_any (),
14bc53a8
PA
13558 [&] (const char *search_name)
13559 {
13560 const char *decoded = ada_decode (search_name);
13561 return name_matches_regex (decoded, preg);
13562 },
13563 NULL,
13564 VARIABLES_DOMAIN);
778865d3 13565
43f3e411 13566 ALL_COMPUNITS (objfile, s)
778865d3 13567 {
43f3e411 13568 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13569 int i;
13570
13571 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13572 {
13573 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13574 struct block_iterator iter;
13575 struct symbol *sym;
13576
13577 ALL_BLOCK_SYMBOLS (b, iter, sym)
13578 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13579 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13580 {
13581 struct ada_exc_info info
13582 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13583
ab816a27 13584 exceptions->push_back (info);
778865d3
JB
13585 }
13586 }
13587 }
13588}
13589
13590/* Implements ada_exceptions_list with the regular expression passed
13591 as a regex_t, rather than a string.
13592
13593 If not NULL, PREG is used to filter out exceptions whose names
13594 do not match. Otherwise, all exceptions are listed. */
13595
ab816a27 13596static std::vector<ada_exc_info>
2d7cc5c7 13597ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13598{
ab816a27 13599 std::vector<ada_exc_info> result;
778865d3
JB
13600 int prev_len;
13601
13602 /* First, list the known standard exceptions. These exceptions
13603 need to be handled separately, as they are usually defined in
13604 runtime units that have been compiled without debugging info. */
13605
13606 ada_add_standard_exceptions (preg, &result);
13607
13608 /* Next, find all exceptions whose scope is local and accessible
13609 from the currently selected frame. */
13610
13611 if (has_stack_frames ())
13612 {
ab816a27 13613 prev_len = result.size ();
778865d3
JB
13614 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13615 &result);
ab816a27 13616 if (result.size () > prev_len)
778865d3
JB
13617 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13618 }
13619
13620 /* Add all exceptions whose scope is global. */
13621
ab816a27 13622 prev_len = result.size ();
778865d3 13623 ada_add_global_exceptions (preg, &result);
ab816a27 13624 if (result.size () > prev_len)
778865d3
JB
13625 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13626
778865d3
JB
13627 return result;
13628}
13629
13630/* Return a vector of ada_exc_info.
13631
13632 If REGEXP is NULL, all exceptions are included in the result.
13633 Otherwise, it should contain a valid regular expression,
13634 and only the exceptions whose names match that regular expression
13635 are included in the result.
13636
13637 The exceptions are sorted in the following order:
13638 - Standard exceptions (defined by the Ada language), in
13639 alphabetical order;
13640 - Exceptions only visible from the current frame, in
13641 alphabetical order;
13642 - Exceptions whose scope is global, in alphabetical order. */
13643
ab816a27 13644std::vector<ada_exc_info>
778865d3
JB
13645ada_exceptions_list (const char *regexp)
13646{
2d7cc5c7
PA
13647 if (regexp == NULL)
13648 return ada_exceptions_list_1 (NULL);
778865d3 13649
2d7cc5c7
PA
13650 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13651 return ada_exceptions_list_1 (&reg);
778865d3
JB
13652}
13653
13654/* Implement the "info exceptions" command. */
13655
13656static void
1d12d88f 13657info_exceptions_command (const char *regexp, int from_tty)
778865d3 13658{
778865d3 13659 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13660
ab816a27 13661 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13662
13663 if (regexp != NULL)
13664 printf_filtered
13665 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13666 else
13667 printf_filtered (_("All defined Ada exceptions:\n"));
13668
ab816a27
TT
13669 for (const ada_exc_info &info : exceptions)
13670 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13671}
13672
4c4b4cd2
PH
13673 /* Operators */
13674/* Information about operators given special treatment in functions
13675 below. */
13676/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13677
13678#define ADA_OPERATORS \
13679 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13680 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13681 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13682 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13683 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13684 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13685 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13686 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13687 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13688 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13689 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13690 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13691 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13692 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13693 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13694 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13695 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13696 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13697 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13698
13699static void
554794dc
SDJ
13700ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13701 int *argsp)
4c4b4cd2
PH
13702{
13703 switch (exp->elts[pc - 1].opcode)
13704 {
76a01679 13705 default:
4c4b4cd2
PH
13706 operator_length_standard (exp, pc, oplenp, argsp);
13707 break;
13708
13709#define OP_DEFN(op, len, args, binop) \
13710 case op: *oplenp = len; *argsp = args; break;
13711 ADA_OPERATORS;
13712#undef OP_DEFN
52ce6436
PH
13713
13714 case OP_AGGREGATE:
13715 *oplenp = 3;
13716 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13717 break;
13718
13719 case OP_CHOICES:
13720 *oplenp = 3;
13721 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13722 break;
4c4b4cd2
PH
13723 }
13724}
13725
c0201579
JK
13726/* Implementation of the exp_descriptor method operator_check. */
13727
13728static int
13729ada_operator_check (struct expression *exp, int pos,
13730 int (*objfile_func) (struct objfile *objfile, void *data),
13731 void *data)
13732{
13733 const union exp_element *const elts = exp->elts;
13734 struct type *type = NULL;
13735
13736 switch (elts[pos].opcode)
13737 {
13738 case UNOP_IN_RANGE:
13739 case UNOP_QUAL:
13740 type = elts[pos + 1].type;
13741 break;
13742
13743 default:
13744 return operator_check_standard (exp, pos, objfile_func, data);
13745 }
13746
13747 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13748
13749 if (type && TYPE_OBJFILE (type)
13750 && (*objfile_func) (TYPE_OBJFILE (type), data))
13751 return 1;
13752
13753 return 0;
13754}
13755
a121b7c1 13756static const char *
4c4b4cd2
PH
13757ada_op_name (enum exp_opcode opcode)
13758{
13759 switch (opcode)
13760 {
76a01679 13761 default:
4c4b4cd2 13762 return op_name_standard (opcode);
52ce6436 13763
4c4b4cd2
PH
13764#define OP_DEFN(op, len, args, binop) case op: return #op;
13765 ADA_OPERATORS;
13766#undef OP_DEFN
52ce6436
PH
13767
13768 case OP_AGGREGATE:
13769 return "OP_AGGREGATE";
13770 case OP_CHOICES:
13771 return "OP_CHOICES";
13772 case OP_NAME:
13773 return "OP_NAME";
4c4b4cd2
PH
13774 }
13775}
13776
13777/* As for operator_length, but assumes PC is pointing at the first
13778 element of the operator, and gives meaningful results only for the
52ce6436 13779 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13780
13781static void
76a01679
JB
13782ada_forward_operator_length (struct expression *exp, int pc,
13783 int *oplenp, int *argsp)
4c4b4cd2 13784{
76a01679 13785 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13786 {
13787 default:
13788 *oplenp = *argsp = 0;
13789 break;
52ce6436 13790
4c4b4cd2
PH
13791#define OP_DEFN(op, len, args, binop) \
13792 case op: *oplenp = len; *argsp = args; break;
13793 ADA_OPERATORS;
13794#undef OP_DEFN
52ce6436
PH
13795
13796 case OP_AGGREGATE:
13797 *oplenp = 3;
13798 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13799 break;
13800
13801 case OP_CHOICES:
13802 *oplenp = 3;
13803 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13804 break;
13805
13806 case OP_STRING:
13807 case OP_NAME:
13808 {
13809 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13810
52ce6436
PH
13811 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13812 *argsp = 0;
13813 break;
13814 }
4c4b4cd2
PH
13815 }
13816}
13817
13818static int
13819ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13820{
13821 enum exp_opcode op = exp->elts[elt].opcode;
13822 int oplen, nargs;
13823 int pc = elt;
13824 int i;
76a01679 13825
4c4b4cd2
PH
13826 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13827
76a01679 13828 switch (op)
4c4b4cd2 13829 {
76a01679 13830 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13831 case OP_ATR_FIRST:
13832 case OP_ATR_LAST:
13833 case OP_ATR_LENGTH:
13834 case OP_ATR_IMAGE:
13835 case OP_ATR_MAX:
13836 case OP_ATR_MIN:
13837 case OP_ATR_MODULUS:
13838 case OP_ATR_POS:
13839 case OP_ATR_SIZE:
13840 case OP_ATR_TAG:
13841 case OP_ATR_VAL:
13842 break;
13843
13844 case UNOP_IN_RANGE:
13845 case UNOP_QUAL:
323e0a4a
AC
13846 /* XXX: gdb_sprint_host_address, type_sprint */
13847 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13848 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13849 fprintf_filtered (stream, " (");
13850 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13851 fprintf_filtered (stream, ")");
13852 break;
13853 case BINOP_IN_BOUNDS:
52ce6436
PH
13854 fprintf_filtered (stream, " (%d)",
13855 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13856 break;
13857 case TERNOP_IN_RANGE:
13858 break;
13859
52ce6436
PH
13860 case OP_AGGREGATE:
13861 case OP_OTHERS:
13862 case OP_DISCRETE_RANGE:
13863 case OP_POSITIONAL:
13864 case OP_CHOICES:
13865 break;
13866
13867 case OP_NAME:
13868 case OP_STRING:
13869 {
13870 char *name = &exp->elts[elt + 2].string;
13871 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13872
52ce6436
PH
13873 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13874 break;
13875 }
13876
4c4b4cd2
PH
13877 default:
13878 return dump_subexp_body_standard (exp, stream, elt);
13879 }
13880
13881 elt += oplen;
13882 for (i = 0; i < nargs; i += 1)
13883 elt = dump_subexp (exp, stream, elt);
13884
13885 return elt;
13886}
13887
13888/* The Ada extension of print_subexp (q.v.). */
13889
76a01679
JB
13890static void
13891ada_print_subexp (struct expression *exp, int *pos,
13892 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13893{
52ce6436 13894 int oplen, nargs, i;
4c4b4cd2
PH
13895 int pc = *pos;
13896 enum exp_opcode op = exp->elts[pc].opcode;
13897
13898 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13899
52ce6436 13900 *pos += oplen;
4c4b4cd2
PH
13901 switch (op)
13902 {
13903 default:
52ce6436 13904 *pos -= oplen;
4c4b4cd2
PH
13905 print_subexp_standard (exp, pos, stream, prec);
13906 return;
13907
13908 case OP_VAR_VALUE:
4c4b4cd2
PH
13909 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13910 return;
13911
13912 case BINOP_IN_BOUNDS:
323e0a4a 13913 /* XXX: sprint_subexp */
4c4b4cd2 13914 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13915 fputs_filtered (" in ", stream);
4c4b4cd2 13916 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13917 fputs_filtered ("'range", stream);
4c4b4cd2 13918 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13919 fprintf_filtered (stream, "(%ld)",
13920 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13921 return;
13922
13923 case TERNOP_IN_RANGE:
4c4b4cd2 13924 if (prec >= PREC_EQUAL)
76a01679 13925 fputs_filtered ("(", stream);
323e0a4a 13926 /* XXX: sprint_subexp */
4c4b4cd2 13927 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13928 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13929 print_subexp (exp, pos, stream, PREC_EQUAL);
13930 fputs_filtered (" .. ", stream);
13931 print_subexp (exp, pos, stream, PREC_EQUAL);
13932 if (prec >= PREC_EQUAL)
76a01679
JB
13933 fputs_filtered (")", stream);
13934 return;
4c4b4cd2
PH
13935
13936 case OP_ATR_FIRST:
13937 case OP_ATR_LAST:
13938 case OP_ATR_LENGTH:
13939 case OP_ATR_IMAGE:
13940 case OP_ATR_MAX:
13941 case OP_ATR_MIN:
13942 case OP_ATR_MODULUS:
13943 case OP_ATR_POS:
13944 case OP_ATR_SIZE:
13945 case OP_ATR_TAG:
13946 case OP_ATR_VAL:
4c4b4cd2 13947 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13948 {
13949 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13950 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13951 &type_print_raw_options);
76a01679
JB
13952 *pos += 3;
13953 }
4c4b4cd2 13954 else
76a01679 13955 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13956 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13957 if (nargs > 1)
76a01679
JB
13958 {
13959 int tem;
5b4ee69b 13960
76a01679
JB
13961 for (tem = 1; tem < nargs; tem += 1)
13962 {
13963 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13964 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13965 }
13966 fputs_filtered (")", stream);
13967 }
4c4b4cd2 13968 return;
14f9c5c9 13969
4c4b4cd2 13970 case UNOP_QUAL:
4c4b4cd2
PH
13971 type_print (exp->elts[pc + 1].type, "", stream, 0);
13972 fputs_filtered ("'(", stream);
13973 print_subexp (exp, pos, stream, PREC_PREFIX);
13974 fputs_filtered (")", stream);
13975 return;
14f9c5c9 13976
4c4b4cd2 13977 case UNOP_IN_RANGE:
323e0a4a 13978 /* XXX: sprint_subexp */
4c4b4cd2 13979 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13980 fputs_filtered (" in ", stream);
79d43c61
TT
13981 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13982 &type_print_raw_options);
4c4b4cd2 13983 return;
52ce6436
PH
13984
13985 case OP_DISCRETE_RANGE:
13986 print_subexp (exp, pos, stream, PREC_SUFFIX);
13987 fputs_filtered ("..", stream);
13988 print_subexp (exp, pos, stream, PREC_SUFFIX);
13989 return;
13990
13991 case OP_OTHERS:
13992 fputs_filtered ("others => ", stream);
13993 print_subexp (exp, pos, stream, PREC_SUFFIX);
13994 return;
13995
13996 case OP_CHOICES:
13997 for (i = 0; i < nargs-1; i += 1)
13998 {
13999 if (i > 0)
14000 fputs_filtered ("|", stream);
14001 print_subexp (exp, pos, stream, PREC_SUFFIX);
14002 }
14003 fputs_filtered (" => ", stream);
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 return;
14006
14007 case OP_POSITIONAL:
14008 print_subexp (exp, pos, stream, PREC_SUFFIX);
14009 return;
14010
14011 case OP_AGGREGATE:
14012 fputs_filtered ("(", stream);
14013 for (i = 0; i < nargs; i += 1)
14014 {
14015 if (i > 0)
14016 fputs_filtered (", ", stream);
14017 print_subexp (exp, pos, stream, PREC_SUFFIX);
14018 }
14019 fputs_filtered (")", stream);
14020 return;
4c4b4cd2
PH
14021 }
14022}
14f9c5c9
AS
14023
14024/* Table mapping opcodes into strings for printing operators
14025 and precedences of the operators. */
14026
d2e4a39e
AS
14027static const struct op_print ada_op_print_tab[] = {
14028 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14029 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14030 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14031 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14032 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14033 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14034 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14035 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14036 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14037 {">=", BINOP_GEQ, PREC_ORDER, 0},
14038 {">", BINOP_GTR, PREC_ORDER, 0},
14039 {"<", BINOP_LESS, PREC_ORDER, 0},
14040 {">>", BINOP_RSH, PREC_SHIFT, 0},
14041 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14042 {"+", BINOP_ADD, PREC_ADD, 0},
14043 {"-", BINOP_SUB, PREC_ADD, 0},
14044 {"&", BINOP_CONCAT, PREC_ADD, 0},
14045 {"*", BINOP_MUL, PREC_MUL, 0},
14046 {"/", BINOP_DIV, PREC_MUL, 0},
14047 {"rem", BINOP_REM, PREC_MUL, 0},
14048 {"mod", BINOP_MOD, PREC_MUL, 0},
14049 {"**", BINOP_EXP, PREC_REPEAT, 0},
14050 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14051 {"-", UNOP_NEG, PREC_PREFIX, 0},
14052 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14053 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14054 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14055 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14056 {".all", UNOP_IND, PREC_SUFFIX, 1},
14057 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14058 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14059 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14060};
14061\f
72d5681a
PH
14062enum ada_primitive_types {
14063 ada_primitive_type_int,
14064 ada_primitive_type_long,
14065 ada_primitive_type_short,
14066 ada_primitive_type_char,
14067 ada_primitive_type_float,
14068 ada_primitive_type_double,
14069 ada_primitive_type_void,
14070 ada_primitive_type_long_long,
14071 ada_primitive_type_long_double,
14072 ada_primitive_type_natural,
14073 ada_primitive_type_positive,
14074 ada_primitive_type_system_address,
08f49010 14075 ada_primitive_type_storage_offset,
72d5681a
PH
14076 nr_ada_primitive_types
14077};
6c038f32
PH
14078
14079static void
d4a9a881 14080ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14081 struct language_arch_info *lai)
14082{
d4a9a881 14083 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14084
72d5681a 14085 lai->primitive_type_vector
d4a9a881 14086 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14087 struct type *);
e9bb382b
UW
14088
14089 lai->primitive_type_vector [ada_primitive_type_int]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "integer");
14092 lai->primitive_type_vector [ada_primitive_type_long]
14093 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14094 0, "long_integer");
14095 lai->primitive_type_vector [ada_primitive_type_short]
14096 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14097 0, "short_integer");
14098 lai->string_char_type
14099 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14100 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14101 lai->primitive_type_vector [ada_primitive_type_float]
14102 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14103 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14104 lai->primitive_type_vector [ada_primitive_type_double]
14105 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14106 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14107 lai->primitive_type_vector [ada_primitive_type_long_long]
14108 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14109 0, "long_long_integer");
14110 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14111 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14112 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14113 lai->primitive_type_vector [ada_primitive_type_natural]
14114 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14115 0, "natural");
14116 lai->primitive_type_vector [ada_primitive_type_positive]
14117 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14118 0, "positive");
14119 lai->primitive_type_vector [ada_primitive_type_void]
14120 = builtin->builtin_void;
14121
14122 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14123 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14124 "void"));
72d5681a
PH
14125 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14126 = "system__address";
fbb06eb1 14127
08f49010
XR
14128 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14129 type. This is a signed integral type whose size is the same as
14130 the size of addresses. */
14131 {
14132 unsigned int addr_length = TYPE_LENGTH
14133 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14134
14135 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14136 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14137 "storage_offset");
14138 }
14139
47e729a8 14140 lai->bool_type_symbol = NULL;
fbb06eb1 14141 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14142}
6c038f32
PH
14143\f
14144 /* Language vector */
14145
14146/* Not really used, but needed in the ada_language_defn. */
14147
14148static void
6c7a06a3 14149emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14150{
6c7a06a3 14151 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14152}
14153
14154static int
410a0ff2 14155parse (struct parser_state *ps)
6c038f32
PH
14156{
14157 warnings_issued = 0;
410a0ff2 14158 return ada_parse (ps);
6c038f32
PH
14159}
14160
14161static const struct exp_descriptor ada_exp_descriptor = {
14162 ada_print_subexp,
14163 ada_operator_length,
c0201579 14164 ada_operator_check,
6c038f32
PH
14165 ada_op_name,
14166 ada_dump_subexp_body,
14167 ada_evaluate_subexp
14168};
14169
b5ec771e
PA
14170/* symbol_name_matcher_ftype adapter for wild_match. */
14171
14172static bool
14173do_wild_match (const char *symbol_search_name,
14174 const lookup_name_info &lookup_name,
a207cff2 14175 completion_match_result *comp_match_res)
b5ec771e
PA
14176{
14177 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14178}
14179
14180/* symbol_name_matcher_ftype adapter for full_match. */
14181
14182static bool
14183do_full_match (const char *symbol_search_name,
14184 const lookup_name_info &lookup_name,
a207cff2 14185 completion_match_result *comp_match_res)
b5ec771e
PA
14186{
14187 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14188}
14189
14190/* Build the Ada lookup name for LOOKUP_NAME. */
14191
14192ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14193{
14194 const std::string &user_name = lookup_name.name ();
14195
14196 if (user_name[0] == '<')
14197 {
14198 if (user_name.back () == '>')
14199 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14200 else
14201 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14202 m_encoded_p = true;
14203 m_verbatim_p = true;
14204 m_wild_match_p = false;
14205 m_standard_p = false;
14206 }
14207 else
14208 {
14209 m_verbatim_p = false;
14210
14211 m_encoded_p = user_name.find ("__") != std::string::npos;
14212
14213 if (!m_encoded_p)
14214 {
14215 const char *folded = ada_fold_name (user_name.c_str ());
14216 const char *encoded = ada_encode_1 (folded, false);
14217 if (encoded != NULL)
14218 m_encoded_name = encoded;
14219 else
14220 m_encoded_name = user_name;
14221 }
14222 else
14223 m_encoded_name = user_name;
14224
14225 /* Handle the 'package Standard' special case. See description
14226 of m_standard_p. */
14227 if (startswith (m_encoded_name.c_str (), "standard__"))
14228 {
14229 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14230 m_standard_p = true;
14231 }
14232 else
14233 m_standard_p = false;
74ccd7f5 14234
b5ec771e
PA
14235 /* If the name contains a ".", then the user is entering a fully
14236 qualified entity name, and the match must not be done in wild
14237 mode. Similarly, if the user wants to complete what looks
14238 like an encoded name, the match must not be done in wild
14239 mode. Also, in the standard__ special case always do
14240 non-wild matching. */
14241 m_wild_match_p
14242 = (lookup_name.match_type () != symbol_name_match_type::FULL
14243 && !m_encoded_p
14244 && !m_standard_p
14245 && user_name.find ('.') == std::string::npos);
14246 }
14247}
14248
14249/* symbol_name_matcher_ftype method for Ada. This only handles
14250 completion mode. */
14251
14252static bool
14253ada_symbol_name_matches (const char *symbol_search_name,
14254 const lookup_name_info &lookup_name,
a207cff2 14255 completion_match_result *comp_match_res)
74ccd7f5 14256{
b5ec771e
PA
14257 return lookup_name.ada ().matches (symbol_search_name,
14258 lookup_name.match_type (),
a207cff2 14259 comp_match_res);
b5ec771e
PA
14260}
14261
de63c46b
PA
14262/* A name matcher that matches the symbol name exactly, with
14263 strcmp. */
14264
14265static bool
14266literal_symbol_name_matcher (const char *symbol_search_name,
14267 const lookup_name_info &lookup_name,
14268 completion_match_result *comp_match_res)
14269{
14270 const std::string &name = lookup_name.name ();
14271
14272 int cmp = (lookup_name.completion_mode ()
14273 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14274 : strcmp (symbol_search_name, name.c_str ()));
14275 if (cmp == 0)
14276 {
14277 if (comp_match_res != NULL)
14278 comp_match_res->set_match (symbol_search_name);
14279 return true;
14280 }
14281 else
14282 return false;
14283}
14284
b5ec771e
PA
14285/* Implement the "la_get_symbol_name_matcher" language_defn method for
14286 Ada. */
14287
14288static symbol_name_matcher_ftype *
14289ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14290{
de63c46b
PA
14291 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14292 return literal_symbol_name_matcher;
14293
b5ec771e
PA
14294 if (lookup_name.completion_mode ())
14295 return ada_symbol_name_matches;
74ccd7f5 14296 else
b5ec771e
PA
14297 {
14298 if (lookup_name.ada ().wild_match_p ())
14299 return do_wild_match;
14300 else
14301 return do_full_match;
14302 }
74ccd7f5
JB
14303}
14304
a5ee536b
JB
14305/* Implement the "la_read_var_value" language_defn method for Ada. */
14306
14307static struct value *
63e43d3a
PMR
14308ada_read_var_value (struct symbol *var, const struct block *var_block,
14309 struct frame_info *frame)
a5ee536b 14310{
3977b71f 14311 const struct block *frame_block = NULL;
a5ee536b
JB
14312 struct symbol *renaming_sym = NULL;
14313
14314 /* The only case where default_read_var_value is not sufficient
14315 is when VAR is a renaming... */
14316 if (frame)
14317 frame_block = get_frame_block (frame, NULL);
14318 if (frame_block)
14319 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14320 if (renaming_sym != NULL)
14321 return ada_read_renaming_var_value (renaming_sym, frame_block);
14322
14323 /* This is a typical case where we expect the default_read_var_value
14324 function to work. */
63e43d3a 14325 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14326}
14327
56618e20
TT
14328static const char *ada_extensions[] =
14329{
14330 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14331};
14332
47e77640 14333extern const struct language_defn ada_language_defn = {
6c038f32 14334 "ada", /* Language name */
6abde28f 14335 "Ada",
6c038f32 14336 language_ada,
6c038f32 14337 range_check_off,
6c038f32
PH
14338 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14339 that's not quite what this means. */
6c038f32 14340 array_row_major,
9a044a89 14341 macro_expansion_no,
56618e20 14342 ada_extensions,
6c038f32
PH
14343 &ada_exp_descriptor,
14344 parse,
6c038f32
PH
14345 resolve,
14346 ada_printchar, /* Print a character constant */
14347 ada_printstr, /* Function to print string constant */
14348 emit_char, /* Function to print single char (not used) */
6c038f32 14349 ada_print_type, /* Print a type using appropriate syntax */
be942545 14350 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14351 ada_val_print, /* Print a value using appropriate syntax */
14352 ada_value_print, /* Print a top-level value */
a5ee536b 14353 ada_read_var_value, /* la_read_var_value */
6c038f32 14354 NULL, /* Language specific skip_trampoline */
2b2d9e11 14355 NULL, /* name_of_this */
59cc4834 14356 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14357 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14358 basic_lookup_transparent_type, /* lookup_transparent_type */
14359 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14360 ada_sniff_from_mangled_name,
0963b4bd
MS
14361 NULL, /* Language specific
14362 class_name_from_physname */
6c038f32
PH
14363 ada_op_print_tab, /* expression operators for printing */
14364 0, /* c-style arrays */
14365 1, /* String lower bound */
6c038f32 14366 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14367 ada_collect_symbol_completion_matches,
72d5681a 14368 ada_language_arch_info,
e79af960 14369 ada_print_array_index,
41f1b697 14370 default_pass_by_reference,
ae6a3a4c 14371 c_get_string,
e2b7af72 14372 ada_watch_location_expression,
b5ec771e 14373 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14374 ada_iterate_over_symbols,
5ffa0793 14375 default_search_name_hash,
a53b64ea 14376 &ada_varobj_ops,
bb2ec1b3
TT
14377 NULL,
14378 NULL,
6c038f32
PH
14379 LANG_MAGIC
14380};
14381
5bf03f13
JB
14382/* Command-list for the "set/show ada" prefix command. */
14383static struct cmd_list_element *set_ada_list;
14384static struct cmd_list_element *show_ada_list;
14385
14386/* Implement the "set ada" prefix command. */
14387
14388static void
981a3fb3 14389set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14390{
14391 printf_unfiltered (_(\
14392"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14393 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14394}
14395
14396/* Implement the "show ada" prefix command. */
14397
14398static void
981a3fb3 14399show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14400{
14401 cmd_show_list (show_ada_list, from_tty, "");
14402}
14403
2060206e
PA
14404static void
14405initialize_ada_catchpoint_ops (void)
14406{
14407 struct breakpoint_ops *ops;
14408
14409 initialize_breakpoint_ops ();
14410
14411 ops = &catch_exception_breakpoint_ops;
14412 *ops = bkpt_breakpoint_ops;
2060206e
PA
14413 ops->allocate_location = allocate_location_catch_exception;
14414 ops->re_set = re_set_catch_exception;
14415 ops->check_status = check_status_catch_exception;
14416 ops->print_it = print_it_catch_exception;
14417 ops->print_one = print_one_catch_exception;
14418 ops->print_mention = print_mention_catch_exception;
14419 ops->print_recreate = print_recreate_catch_exception;
14420
14421 ops = &catch_exception_unhandled_breakpoint_ops;
14422 *ops = bkpt_breakpoint_ops;
2060206e
PA
14423 ops->allocate_location = allocate_location_catch_exception_unhandled;
14424 ops->re_set = re_set_catch_exception_unhandled;
14425 ops->check_status = check_status_catch_exception_unhandled;
14426 ops->print_it = print_it_catch_exception_unhandled;
14427 ops->print_one = print_one_catch_exception_unhandled;
14428 ops->print_mention = print_mention_catch_exception_unhandled;
14429 ops->print_recreate = print_recreate_catch_exception_unhandled;
14430
14431 ops = &catch_assert_breakpoint_ops;
14432 *ops = bkpt_breakpoint_ops;
2060206e
PA
14433 ops->allocate_location = allocate_location_catch_assert;
14434 ops->re_set = re_set_catch_assert;
14435 ops->check_status = check_status_catch_assert;
14436 ops->print_it = print_it_catch_assert;
14437 ops->print_one = print_one_catch_assert;
14438 ops->print_mention = print_mention_catch_assert;
14439 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14440
14441 ops = &catch_handlers_breakpoint_ops;
14442 *ops = bkpt_breakpoint_ops;
14443 ops->allocate_location = allocate_location_catch_handlers;
14444 ops->re_set = re_set_catch_handlers;
14445 ops->check_status = check_status_catch_handlers;
14446 ops->print_it = print_it_catch_handlers;
14447 ops->print_one = print_one_catch_handlers;
14448 ops->print_mention = print_mention_catch_handlers;
14449 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14450}
14451
3d9434b5
JB
14452/* This module's 'new_objfile' observer. */
14453
14454static void
14455ada_new_objfile_observer (struct objfile *objfile)
14456{
14457 ada_clear_symbol_cache ();
14458}
14459
14460/* This module's 'free_objfile' observer. */
14461
14462static void
14463ada_free_objfile_observer (struct objfile *objfile)
14464{
14465 ada_clear_symbol_cache ();
14466}
14467
d2e4a39e 14468void
6c038f32 14469_initialize_ada_language (void)
14f9c5c9 14470{
2060206e
PA
14471 initialize_ada_catchpoint_ops ();
14472
5bf03f13 14473 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14474 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14475 &set_ada_list, "set ada ", 0, &setlist);
14476
14477 add_prefix_cmd ("ada", no_class, show_ada_command,
14478 _("Generic command for showing Ada-specific settings."),
14479 &show_ada_list, "show ada ", 0, &showlist);
14480
14481 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14482 &trust_pad_over_xvs, _("\
14483Enable or disable an optimization trusting PAD types over XVS types"), _("\
14484Show whether an optimization trusting PAD types over XVS types is activated"),
14485 _("\
14486This is related to the encoding used by the GNAT compiler. The debugger\n\
14487should normally trust the contents of PAD types, but certain older versions\n\
14488of GNAT have a bug that sometimes causes the information in the PAD type\n\
14489to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14490work around this bug. It is always safe to turn this option \"off\", but\n\
14491this incurs a slight performance penalty, so it is recommended to NOT change\n\
14492this option to \"off\" unless necessary."),
14493 NULL, NULL, &set_ada_list, &show_ada_list);
14494
d72413e6
PMR
14495 add_setshow_boolean_cmd ("print-signatures", class_vars,
14496 &print_signatures, _("\
14497Enable or disable the output of formal and return types for functions in the \
14498overloads selection menu"), _("\
14499Show whether the output of formal and return types for functions in the \
14500overloads selection menu is activated"),
14501 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14502
9ac4176b
PA
14503 add_catch_command ("exception", _("\
14504Catch Ada exceptions, when raised.\n\
14505With an argument, catch only exceptions with the given name."),
14506 catch_ada_exception_command,
14507 NULL,
14508 CATCH_PERMANENT,
14509 CATCH_TEMPORARY);
9f757bf7
XR
14510
14511 add_catch_command ("handlers", _("\
14512Catch Ada exceptions, when handled.\n\
14513With an argument, catch only exceptions with the given name."),
14514 catch_ada_handlers_command,
14515 NULL,
14516 CATCH_PERMANENT,
14517 CATCH_TEMPORARY);
9ac4176b
PA
14518 add_catch_command ("assert", _("\
14519Catch failed Ada assertions, when raised.\n\
14520With an argument, catch only exceptions with the given name."),
14521 catch_assert_command,
14522 NULL,
14523 CATCH_PERMANENT,
14524 CATCH_TEMPORARY);
14525
6c038f32 14526 varsize_limit = 65536;
3fcded8f
JB
14527 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14528 &varsize_limit, _("\
14529Set the maximum number of bytes allowed in a variable-size object."), _("\
14530Show the maximum number of bytes allowed in a variable-size object."), _("\
14531Attempts to access an object whose size is not a compile-time constant\n\
14532and exceeds this limit will cause an error."),
14533 NULL, NULL, &setlist, &showlist);
6c038f32 14534
778865d3
JB
14535 add_info ("exceptions", info_exceptions_command,
14536 _("\
14537List all Ada exception names.\n\
14538If a regular expression is passed as an argument, only those matching\n\
14539the regular expression are listed."));
14540
c6044dd1
JB
14541 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14542 _("Set Ada maintenance-related variables."),
14543 &maint_set_ada_cmdlist, "maintenance set ada ",
14544 0/*allow-unknown*/, &maintenance_set_cmdlist);
14545
14546 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14547 _("Show Ada maintenance-related variables"),
14548 &maint_show_ada_cmdlist, "maintenance show ada ",
14549 0/*allow-unknown*/, &maintenance_show_cmdlist);
14550
14551 add_setshow_boolean_cmd
14552 ("ignore-descriptive-types", class_maintenance,
14553 &ada_ignore_descriptive_types_p,
14554 _("Set whether descriptive types generated by GNAT should be ignored."),
14555 _("Show whether descriptive types generated by GNAT should be ignored."),
14556 _("\
14557When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14558DWARF attribute."),
14559 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14560
459a2e4c
TT
14561 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14562 NULL, xcalloc, xfree);
6b69afc4 14563
3d9434b5 14564 /* The ada-lang observers. */
76727919
TT
14565 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14566 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14567 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14568
14569 /* Setup various context-specific data. */
e802dbe0 14570 ada_inferior_data
8e260fc0 14571 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14572 ada_pspace_data_handle
14573 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14574}
This page took 6.286336 seconds and 4 git commands to generate.