daily update
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
28e7fd62 3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <stdio.h>
0c30c098 23#include "gdb_string.h"
14f9c5c9
AS
24#include <ctype.h>
25#include <stdarg.h>
26#include "demangle.h"
4c4b4cd2
PH
27#include "gdb_regex.h"
28#include "frame.h"
14f9c5c9
AS
29#include "symtab.h"
30#include "gdbtypes.h"
31#include "gdbcmd.h"
32#include "expression.h"
33#include "parser-defs.h"
34#include "language.h"
35#include "c-lang.h"
36#include "inferior.h"
37#include "symfile.h"
38#include "objfiles.h"
39#include "breakpoint.h"
40#include "gdbcore.h"
4c4b4cd2
PH
41#include "hashtab.h"
42#include "gdb_obstack.h"
14f9c5c9 43#include "ada-lang.h"
4c4b4cd2
PH
44#include "completer.h"
45#include "gdb_stat.h"
46#ifdef UI_OUT
14f9c5c9 47#include "ui-out.h"
4c4b4cd2 48#endif
fe898f56 49#include "block.h"
04714b91 50#include "infcall.h"
de4f826b 51#include "dictionary.h"
60250e8b 52#include "exceptions.h"
f7f9143b
JB
53#include "annotate.h"
54#include "valprint.h"
9bbc9174 55#include "source.h"
0259addd 56#include "observer.h"
2ba95b9b 57#include "vec.h"
692465f1 58#include "stack.h"
fa864999 59#include "gdb_vecs.h"
79d43c61 60#include "typeprint.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 130 struct symbol *, const struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 152 const struct block *);
aeb5907d 153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
eca07816 584 set_value_optimized_out (result, value_optimized_out_const (val));
14f9c5c9
AS
585 return result;
586 }
587}
588
fc1a4b47
AC
589static const gdb_byte *
590cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
591{
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596}
597
598static CORE_ADDR
ebf56fd3 599cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
600{
601 if (address == 0)
602 return 0;
d2e4a39e 603 else
14f9c5c9
AS
604 return address + offset;
605}
606
4c4b4cd2
PH
607/* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
a2249542 611
77109804
AC
612/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
a0b31db1 614static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 615
14f9c5c9 616static void
a2249542 617lim_warning (const char *format, ...)
14f9c5c9 618{
a2249542 619 va_list args;
a2249542 620
5b4ee69b 621 va_start (args, format);
4c4b4cd2
PH
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
a2249542
MK
624 vwarning (format, args);
625
626 va_end (args);
4c4b4cd2
PH
627}
628
714e53ab
PH
629/* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633static void
634check_size (const struct type *type)
635{
636 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 637 error (_("object size is larger than varsize-limit"));
714e53ab
PH
638}
639
0963b4bd 640/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 641static LONGEST
c3e5cd34 642max_of_size (int size)
4c4b4cd2 643{
76a01679 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 645
76a01679 646 return top_bit | (top_bit - 1);
4c4b4cd2
PH
647}
648
0963b4bd 649/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 650static LONGEST
c3e5cd34 651min_of_size (int size)
4c4b4cd2 652{
c3e5cd34 653 return -max_of_size (size) - 1;
4c4b4cd2
PH
654}
655
0963b4bd 656/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 657static ULONGEST
c3e5cd34 658umax_of_size (int size)
4c4b4cd2 659{
76a01679 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 661
76a01679 662 return top_bit | (top_bit - 1);
4c4b4cd2
PH
663}
664
0963b4bd 665/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
666static LONGEST
667max_of_type (struct type *t)
4c4b4cd2 668{
c3e5cd34
PH
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673}
674
0963b4bd 675/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
676static LONGEST
677min_of_type (struct type *t)
678{
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
683}
684
685/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
686LONGEST
687ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 688{
76a01679 689 switch (TYPE_CODE (type))
4c4b4cd2
PH
690 {
691 case TYPE_CODE_RANGE:
690cc4eb 692 return TYPE_HIGH_BOUND (type);
4c4b4cd2 693 case TYPE_CODE_ENUM:
14e75d8e 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
76a01679 698 case TYPE_CODE_INT:
690cc4eb 699 return max_of_type (type);
4c4b4cd2 700 default:
43bbcdc2 701 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
702 }
703}
704
14e75d8e 705/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
706LONGEST
707ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 708{
76a01679 709 switch (TYPE_CODE (type))
4c4b4cd2
PH
710 {
711 case TYPE_CODE_RANGE:
690cc4eb 712 return TYPE_LOW_BOUND (type);
4c4b4cd2 713 case TYPE_CODE_ENUM:
14e75d8e 714 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
76a01679 718 case TYPE_CODE_INT:
690cc4eb 719 return min_of_type (type);
4c4b4cd2 720 default:
43bbcdc2 721 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
722 }
723}
724
725/* The identity on non-range types. For range types, the underlying
76a01679 726 non-range scalar type. */
4c4b4cd2
PH
727
728static struct type *
18af8284 729get_base_type (struct type *type)
4c4b4cd2
PH
730{
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
76a01679
JB
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
4c4b4cd2
PH
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
14f9c5c9 738}
41246937
JB
739
740/* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745struct value *
746ada_get_decoded_value (struct value *value)
747{
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763}
764
765/* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770struct type *
771ada_get_decoded_type (struct type *type)
772{
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777}
778
4c4b4cd2 779\f
76a01679 780
4c4b4cd2 781 /* Language Selection */
14f9c5c9
AS
782
783/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 784 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 785
14f9c5c9 786enum language
ccefe4c4 787ada_update_initial_language (enum language lang)
14f9c5c9 788{
d2e4a39e 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
14f9c5c9
AS
792
793 return lang;
794}
96d887e8
PH
795
796/* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800char *
801ada_main_name (void)
802{
803 struct minimal_symbol *msym;
f9bc20b9 804 static char *main_program_name = NULL;
6c038f32 805
96d887e8
PH
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
f9bc20b9
JB
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
96d887e8
PH
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
323e0a4a 820 error (_("Invalid address for Ada main program name."));
96d887e8 821
f9bc20b9
JB
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
96d887e8
PH
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833}
14f9c5c9 834\f
4c4b4cd2 835 /* Symbols */
d2e4a39e 836
4c4b4cd2
PH
837/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
14f9c5c9 839
d2e4a39e
AS
840const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
14f9c5c9
AS
863};
864
4c4b4cd2
PH
865/* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
14f9c5c9 868char *
4c4b4cd2 869ada_encode (const char *decoded)
14f9c5c9 870{
4c4b4cd2
PH
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
d2e4a39e 873 const char *p;
14f9c5c9 874 int k;
d2e4a39e 875
4c4b4cd2 876 if (decoded == NULL)
14f9c5c9
AS
877 return NULL;
878
4c4b4cd2
PH
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
14f9c5c9
AS
881
882 k = 0;
4c4b4cd2 883 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 884 {
cdc7bb92 885 if (*p == '.')
4c4b4cd2
PH
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
14f9c5c9 890 else if (*p == '"')
4c4b4cd2
PH
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
1265e4aa
JB
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
898 ;
899 if (mapping->encoded == NULL)
323e0a4a 900 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
d2e4a39e 905 else
4c4b4cd2
PH
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
14f9c5c9
AS
910 }
911
4c4b4cd2
PH
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
14f9c5c9
AS
914}
915
916/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
d2e4a39e
AS
920char *
921ada_fold_name (const char *name)
14f9c5c9 922{
d2e4a39e 923 static char *fold_buffer = NULL;
14f9c5c9
AS
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
d2e4a39e 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
928
929 if (name[0] == '\'')
930 {
d2e4a39e
AS
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
933 }
934 else
935 {
936 int i;
5b4ee69b 937
14f9c5c9 938 for (i = 0; i <= len; i += 1)
4c4b4cd2 939 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
940 }
941
942 return fold_buffer;
943}
944
529cad9c
PH
945/* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947static int
948is_lower_alphanum (const char c)
949{
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951}
952
c90092fe
JB
953/* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
29480c32
JB
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
c90092fe 960
29480c32
JB
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965static void
966ada_remove_trailing_digits (const char *encoded, int *len)
967{
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
5b4ee69b 971
29480c32
JB
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983}
984
985/* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988static void
989ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990{
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
0963b4bd 996 the 'P' suffix. The second calls the first one after handling
29480c32
JB
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005}
1006
69fadcdf
JB
1007/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009static void
1010ada_remove_Xbn_suffix (const char *encoded, int *len)
1011{
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025}
1026
29480c32
JB
1027/* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
14f9c5c9 1030
4c4b4cd2 1031 The resulting string is valid until the next call of ada_decode.
29480c32 1032 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1033 is returned. */
1034
1035const char *
1036ada_decode (const char *encoded)
14f9c5c9
AS
1037{
1038 int i, j;
1039 int len0;
d2e4a39e 1040 const char *p;
4c4b4cd2 1041 char *decoded;
14f9c5c9 1042 int at_start_name;
4c4b4cd2
PH
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
d2e4a39e 1045
29480c32
JB
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
4c4b4cd2
PH
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
14f9c5c9 1051
29480c32
JB
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
4c4b4cd2 1055 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1056 goto Suppress;
1057
4c4b4cd2 1058 len0 = strlen (encoded);
4c4b4cd2 1059
29480c32
JB
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1062
4c4b4cd2
PH
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1069 {
1070 if (p[3] == 'X')
4c4b4cd2 1071 len0 = p - encoded;
14f9c5c9 1072 else
4c4b4cd2 1073 goto Suppress;
14f9c5c9 1074 }
4c4b4cd2 1075
29480c32
JB
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
4c4b4cd2 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1081 len0 -= 3;
76a01679 1082
a10967fa
JB
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
29480c32
JB
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
4c4b4cd2 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1094 len0 -= 1;
1095
4c4b4cd2 1096 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1097
4c4b4cd2
PH
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
14f9c5c9 1100
29480c32
JB
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
4c4b4cd2 1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1104 {
4c4b4cd2
PH
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
d2e4a39e 1113 }
14f9c5c9 1114
29480c32
JB
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
4c4b4cd2
PH
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
14f9c5c9
AS
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
29480c32 1124 /* Is this a symbol function? */
4c4b4cd2
PH
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
5b4ee69b 1128
4c4b4cd2
PH
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
14f9c5c9
AS
1146 at_start_name = 0;
1147
529cad9c
PH
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
4c4b4cd2
PH
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
529cad9c 1153
29480c32
JB
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
529cad9c
PH
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1176 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
4c4b4cd2
PH
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
29480c32
JB
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
4c4b4cd2
PH
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
cdc7bb92 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1241 {
29480c32 1242 /* Replace '__' by '.'. */
4c4b4cd2
PH
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
14f9c5c9 1248 else
4c4b4cd2 1249 {
29480c32
JB
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
4c4b4cd2
PH
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
14f9c5c9 1256 }
4c4b4cd2 1257 decoded[j] = '\000';
14f9c5c9 1258
29480c32
JB
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
4c4b4cd2
PH
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1264 goto Suppress;
1265
4c4b4cd2
PH
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
14f9c5c9
AS
1270
1271Suppress:
4c4b4cd2
PH
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
14f9c5c9 1276 else
88c15c34 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1278 return decoded;
1279
1280}
1281
1282/* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287static struct htab *decoded_names_store;
1288
1289/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1294 GSYMBOL).
4c4b4cd2
PH
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1297 when a decoded name is cached in it. */
4c4b4cd2 1298
45e6c716 1299const char *
f85f34ed 1300ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1301{
f85f34ed
TT
1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303 const char **resultp =
1304 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1305
f85f34ed 1306 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1307 {
1308 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1309 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1310
f85f34ed 1311 gsymbol->ada_mangled = 1;
5b4ee69b 1312
f85f34ed
TT
1313 if (obstack != NULL)
1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315 else
76a01679 1316 {
f85f34ed
TT
1317 /* Sometimes, we can't find a corresponding objfile, in
1318 which case, we put the result on the heap. Since we only
1319 decode when needed, we hope this usually does not cause a
1320 significant memory leak (FIXME). */
1321
76a01679
JB
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
5b4ee69b 1324
76a01679
JB
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
4c4b4cd2 1329 }
14f9c5c9 1330
4c4b4cd2
PH
1331 return *resultp;
1332}
76a01679 1333
2c0b251b 1334static char *
76a01679 1335ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1336{
1337 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1338}
1339
1340/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
14f9c5c9 1346
2c0b251b 1347static int
40658b94 1348match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1349{
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
73589123 1353 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1354 else
1355 {
1356 int len_name = strlen (name);
5b4ee69b 1357
4c4b4cd2
PH
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1363 }
14f9c5c9 1364}
14f9c5c9 1365\f
d2e4a39e 1366
4c4b4cd2 1367 /* Arrays */
14f9c5c9 1368
28c85d6c
JB
1369/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392void
1393ada_fixup_array_indexes_type (struct type *index_desc_type)
1394{
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
0d5cff50 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422}
1423
4c4b4cd2 1424/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1425
d2e4a39e
AS
1426static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429};
1430
1431/* Maximum number of array dimensions we are prepared to handle. */
1432
4c4b4cd2 1433#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1434
14f9c5c9 1435
4c4b4cd2
PH
1436/* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
14f9c5c9
AS
1438
1439/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1440 level of indirection, if needed. */
1441
d2e4a39e
AS
1442static struct type *
1443desc_base_type (struct type *type)
14f9c5c9
AS
1444{
1445 if (type == NULL)
1446 return NULL;
61ee279c 1447 type = ada_check_typedef (type);
720d1a40
JB
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1265e4aa
JB
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1455 else
1456 return type;
1457}
1458
4c4b4cd2
PH
1459/* True iff TYPE indicates a "thin" array pointer type. */
1460
14f9c5c9 1461static int
d2e4a39e 1462is_thin_pntr (struct type *type)
14f9c5c9 1463{
d2e4a39e 1464 return
14f9c5c9
AS
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467}
1468
4c4b4cd2
PH
1469/* The descriptor type for thin pointer type TYPE. */
1470
d2e4a39e
AS
1471static struct type *
1472thin_descriptor_type (struct type *type)
14f9c5c9 1473{
d2e4a39e 1474 struct type *base_type = desc_base_type (type);
5b4ee69b 1475
14f9c5c9
AS
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
d2e4a39e 1480 else
14f9c5c9 1481 {
d2e4a39e 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1483
14f9c5c9 1484 if (alt_type == NULL)
4c4b4cd2 1485 return base_type;
14f9c5c9 1486 else
4c4b4cd2 1487 return alt_type;
14f9c5c9
AS
1488 }
1489}
1490
4c4b4cd2
PH
1491/* A pointer to the array data for thin-pointer value VAL. */
1492
d2e4a39e
AS
1493static struct value *
1494thin_data_pntr (struct value *val)
14f9c5c9 1495{
828292f2 1496 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1498
556bdfd4
UW
1499 data_type = lookup_pointer_type (data_type);
1500
14f9c5c9 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1502 return value_cast (data_type, value_copy (val));
d2e4a39e 1503 else
42ae5230 1504 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1505}
1506
4c4b4cd2
PH
1507/* True iff TYPE indicates a "thick" array pointer type. */
1508
14f9c5c9 1509static int
d2e4a39e 1510is_thick_pntr (struct type *type)
14f9c5c9
AS
1511{
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1515}
1516
4c4b4cd2
PH
1517/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1519
d2e4a39e
AS
1520static struct type *
1521desc_bounds_type (struct type *type)
14f9c5c9 1522{
d2e4a39e 1523 struct type *r;
14f9c5c9
AS
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
4c4b4cd2 1533 return NULL;
14f9c5c9
AS
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
61ee279c 1536 return ada_check_typedef (r);
14f9c5c9
AS
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
61ee279c 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1543 }
1544 return NULL;
1545}
1546
1547/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
d2e4a39e
AS
1550static struct value *
1551desc_bounds (struct value *arr)
14f9c5c9 1552{
df407dfe 1553 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1554
d2e4a39e 1555 if (is_thin_pntr (type))
14f9c5c9 1556 {
d2e4a39e 1557 struct type *bounds_type =
4c4b4cd2 1558 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1559 LONGEST addr;
1560
4cdfadb1 1561 if (bounds_type == NULL)
323e0a4a 1562 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1563
1564 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1565 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1566 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1568 addr = value_as_long (arr);
d2e4a39e 1569 else
42ae5230 1570 addr = value_address (arr);
14f9c5c9 1571
d2e4a39e 1572 return
4c4b4cd2
PH
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1575 }
1576
1577 else if (is_thick_pntr (type))
05e522ef
JB
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
14f9c5c9
AS
1598 else
1599 return NULL;
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
14f9c5c9 1605static int
d2e4a39e 1606fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1607{
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609}
1610
1611/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1612 size of the field containing the address of the bounds data. */
1613
14f9c5c9 1614static int
d2e4a39e 1615fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618
d2e4a39e 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
61ee279c 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1623}
1624
4c4b4cd2 1625/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
4c4b4cd2 1629
d2e4a39e 1630static struct type *
556bdfd4 1631desc_data_target_type (struct type *type)
14f9c5c9
AS
1632{
1633 type = desc_base_type (type);
1634
4c4b4cd2 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1636 if (is_thin_pntr (type))
556bdfd4 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1638 else if (is_thick_pntr (type))
556bdfd4
UW
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1645 }
1646
1647 return NULL;
14f9c5c9
AS
1648}
1649
1650/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
4c4b4cd2 1652
d2e4a39e
AS
1653static struct value *
1654desc_data (struct value *arr)
14f9c5c9 1655{
df407dfe 1656 struct type *type = value_type (arr);
5b4ee69b 1657
14f9c5c9
AS
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
d2e4a39e 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1662 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1663 else
1664 return NULL;
1665}
1666
1667
1668/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1669 position of the field containing the address of the data. */
1670
14f9c5c9 1671static int
d2e4a39e 1672fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1673{
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675}
1676
1677/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1678 size of the field containing the address of the data. */
1679
14f9c5c9 1680static int
d2e4a39e 1681fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1682{
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1687 else
14f9c5c9
AS
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689}
1690
4c4b4cd2 1691/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
d2e4a39e
AS
1695static struct value *
1696desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1697{
d2e4a39e 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1699 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1700}
1701
1702/* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
14f9c5c9 1706static int
d2e4a39e 1707desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1708{
d2e4a39e 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1710}
1711
1712/* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
76a01679 1716static int
d2e4a39e 1717desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1718{
1719 type = desc_base_type (type);
1720
d2e4a39e
AS
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1725}
1726
1727/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
d2e4a39e
AS
1730static struct type *
1731desc_index_type (struct type *type, int i)
14f9c5c9
AS
1732{
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
14f9c5c9
AS
1738 return NULL;
1739}
1740
4c4b4cd2
PH
1741/* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
14f9c5c9 1744static int
d2e4a39e 1745desc_arity (struct type *type)
14f9c5c9
AS
1746{
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752}
1753
4c4b4cd2
PH
1754/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
76a01679
JB
1758static int
1759ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1760{
1761 if (type == NULL)
1762 return 0;
61ee279c 1763 type = ada_check_typedef (type);
4c4b4cd2 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1765 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1766}
1767
52ce6436 1768/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1769 * to one. */
52ce6436 1770
2c0b251b 1771static int
52ce6436
PH
1772ada_is_array_type (struct type *type)
1773{
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779}
1780
4c4b4cd2 1781/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1782
14f9c5c9 1783int
4c4b4cd2 1784ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1785{
1786 if (type == NULL)
1787 return 0;
61ee279c 1788 type = ada_check_typedef (type);
14f9c5c9 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1793}
1794
4c4b4cd2
PH
1795/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
14f9c5c9 1797int
4c4b4cd2 1798ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1799{
556bdfd4 1800 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1801
1802 if (type == NULL)
1803 return 0;
61ee279c 1804 type = ada_check_typedef (type);
556bdfd4
UW
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1808}
1809
1810/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1811 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1812 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1813 is still needed. */
1814
14f9c5c9 1815int
ebf56fd3 1816ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1817{
d2e4a39e 1818 return
14f9c5c9
AS
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1824}
1825
1826
4c4b4cd2 1827/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1828 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1830 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1833 a descriptor. */
d2e4a39e
AS
1834struct type *
1835ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1836{
ad82864c
JB
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1839
df407dfe
AC
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
d2e4a39e
AS
1842
1843 if (!bounds)
ad82864c
JB
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
14f9c5c9
AS
1854 else
1855 {
d2e4a39e 1856 struct type *elt_type;
14f9c5c9 1857 int arity;
d2e4a39e 1858 struct value *descriptor;
14f9c5c9 1859
df407dfe
AC
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
14f9c5c9 1862
d2e4a39e 1863 if (elt_type == NULL || arity == 0)
df407dfe 1864 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1865
1866 descriptor = desc_bounds (arr);
d2e4a39e 1867 if (value_as_long (descriptor) == 0)
4c4b4cd2 1868 return NULL;
d2e4a39e 1869 while (arity > 0)
4c4b4cd2 1870 {
e9bb382b
UW
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1875
5b4ee69b 1876 arity -= 1;
df407dfe 1877 create_range_type (range_type, value_type (low),
529cad9c
PH
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
4c4b4cd2 1880 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
4c4b4cd2 1902 }
14f9c5c9
AS
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906}
1907
1908/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
d2e4a39e
AS
1913struct value *
1914ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1915{
df407dfe 1916 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1917 {
d2e4a39e 1918 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1919
14f9c5c9 1920 if (arrType == NULL)
4c4b4cd2 1921 return NULL;
14f9c5c9
AS
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
ad82864c
JB
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1926 else
1927 return arr;
1928}
1929
1930/* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1932 be ARR itself if it already is in the proper form). */
1933
720d1a40 1934struct value *
d2e4a39e 1935ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1936{
df407dfe 1937 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1938 {
d2e4a39e 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1940
14f9c5c9 1941 if (arrVal == NULL)
323e0a4a 1942 error (_("Bounds unavailable for null array pointer."));
529cad9c 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1944 return value_ind (arrVal);
1945 }
ad82864c
JB
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
d2e4a39e 1948 else
14f9c5c9
AS
1949 return arr;
1950}
1951
1952/* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1954 packing). For other types, is the identity. */
1955
d2e4a39e
AS
1956struct type *
1957ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1958{
ad82864c
JB
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
17280b9f
UW
1961
1962 if (ada_is_array_descriptor_type (type))
556bdfd4 1963 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1964
1965 return type;
14f9c5c9
AS
1966}
1967
4c4b4cd2
PH
1968/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
ad82864c
JB
1970static int
1971ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1972{
1973 if (type == NULL)
1974 return 0;
4c4b4cd2 1975 type = desc_base_type (type);
61ee279c 1976 type = ada_check_typedef (type);
d2e4a39e 1977 return
14f9c5c9
AS
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980}
1981
ad82864c
JB
1982/* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985int
1986ada_is_constrained_packed_array_type (struct type *type)
1987{
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990}
1991
1992/* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995static int
1996ada_is_unconstrained_packed_array_type (struct type *type)
1997{
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000}
2001
2002/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005static long
2006decode_packed_array_bitsize (struct type *type)
2007{
0d5cff50
DE
2008 const char *raw_name;
2009 const char *tail;
ad82864c
JB
2010 long bits;
2011
720d1a40
JB
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
720d1a40 2026 gdb_assert (tail != NULL);
ad82864c
JB
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036}
2037
14f9c5c9
AS
2038/* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
d2e4a39e 2047static struct type *
ad82864c 2048constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2049{
d2e4a39e
AS
2050 struct type *new_elt_type;
2051 struct type *new_type;
99b1c762
JB
2052 struct type *index_type_desc;
2053 struct type *index_type;
14f9c5c9
AS
2054 LONGEST low_bound, high_bound;
2055
61ee279c 2056 type = ada_check_typedef (type);
14f9c5c9
AS
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
99b1c762
JB
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
e9bb382b 2067 new_type = alloc_type_copy (type);
ad82864c
JB
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
99b1c762 2071 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
99b1c762 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2079 else
14f9c5c9
AS
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2082 TYPE_LENGTH (new_type) =
4c4b4cd2 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2084 }
2085
876cecd0 2086 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2087 return new_type;
2088}
2089
ad82864c
JB
2090/* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2092
d2e4a39e 2093static struct type *
ad82864c 2094decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2095{
0d5cff50 2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2097 char *name;
0d5cff50 2098 const char *tail;
d2e4a39e 2099 struct type *shadow_type;
14f9c5c9 2100 long bits;
14f9c5c9 2101
727e3d2e
JB
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2110 type = desc_base_type (type);
2111
14f9c5c9
AS
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
b4ba55a1
JB
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
14f9c5c9 2118 {
323e0a4a 2119 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2120 return NULL;
2121 }
cb249c71 2122 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
0963b4bd
MS
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
14f9c5c9
AS
2128 return NULL;
2129 }
d2e4a39e 2130
ad82864c
JB
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2133}
2134
ad82864c
JB
2135/* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
4c4b4cd2 2139 type length is set appropriately. */
14f9c5c9 2140
d2e4a39e 2141static struct value *
ad82864c 2142decode_constrained_packed_array (struct value *arr)
14f9c5c9 2143{
4c4b4cd2 2144 struct type *type;
14f9c5c9 2145
4c4b4cd2 2146 arr = ada_coerce_ref (arr);
284614f0
JB
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
828292f2 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2155 arr = value_ind (arr);
4c4b4cd2 2156
ad82864c 2157 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2158 if (type == NULL)
2159 {
323e0a4a 2160 error (_("can't unpack array"));
14f9c5c9
AS
2161 return NULL;
2162 }
61ee279c 2163
50810684 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2165 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
df407dfe 2174 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
df407dfe 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
4c4b4cd2 2189 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2190}
2191
2192
2193/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2194 given in IND. ARR must be a simple array. */
14f9c5c9 2195
d2e4a39e
AS
2196static struct value *
2197value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2198{
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
d2e4a39e
AS
2202 struct type *elt_type;
2203 struct value *v;
14f9c5c9
AS
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
df407dfe 2207 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2208 for (i = 0; i < arity; i += 1)
14f9c5c9 2209 {
d2e4a39e 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
0963b4bd
MS
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
14f9c5c9 2215 else
4c4b4cd2
PH
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
323e0a4a 2223 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2224 lowerbound = upperbound = 0;
2225 }
2226
3cb382c9 2227 idx = pos_atr (ind[i]);
4c4b4cd2 2228 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
4c4b4cd2
PH
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2234 }
14f9c5c9
AS
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2240 bits, elt_type);
14f9c5c9
AS
2241 return v;
2242}
2243
4c4b4cd2 2244/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2245
2246static int
d2e4a39e 2247has_negatives (struct type *type)
14f9c5c9 2248{
d2e4a39e
AS
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
14f9c5c9 2258}
d2e4a39e 2259
14f9c5c9
AS
2260
2261/* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2264 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2269
d2e4a39e 2270struct value *
fc1a4b47 2271ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2272 long offset, int bit_offset, int bit_size,
4c4b4cd2 2273 struct type *type)
14f9c5c9 2274{
d2e4a39e 2275 struct value *v;
4c4b4cd2
PH
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2284 unsigned char *unpacked;
4c4b4cd2 2285 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
50810684 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2291
61ee279c 2292 type = ada_check_typedef (type);
14f9c5c9
AS
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
d2e4a39e 2297 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2298 }
9214ee5f 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2300 {
53ba8333 2301 v = value_at (type, value_address (obj));
d2e4a39e 2302 bytes = (unsigned char *) alloca (len);
53ba8333 2303 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2304 }
d2e4a39e 2305 else
14f9c5c9
AS
2306 {
2307 v = allocate_value (type);
0fd88904 2308 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2309 }
d2e4a39e
AS
2310
2311 if (obj != NULL)
14f9c5c9 2312 {
53ba8333 2313 long new_offset = offset;
5b4ee69b 2314
74bcbdf3 2315 set_value_component_location (v, obj);
9bbda503
AC
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
df407dfe 2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2319 {
53ba8333 2320 ++new_offset;
9bbda503 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2322 }
53ba8333
JB
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
14f9c5c9
AS
2328 }
2329 else
9bbda503 2330 set_value_bitsize (v, bit_size);
0fd88904 2331 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
50810684 2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2343 {
d2e4a39e 2344 src = len - 1;
1265e4aa
JB
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2347 sign = ~0;
d2e4a39e
AS
2348
2349 unusedLS =
4c4b4cd2
PH
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
14f9c5c9
AS
2352
2353 switch (TYPE_CODE (type))
4c4b4cd2
PH
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
529cad9c 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2364 ntarg = targ + 1;
4c4b4cd2
PH
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
14f9c5c9 2371 }
d2e4a39e 2372 else
14f9c5c9
AS
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
d2e4a39e 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2381 sign = ~0;
14f9c5c9 2382 }
d2e4a39e 2383
14f9c5c9
AS
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2388 part of the value. */
d2e4a39e 2389 unsigned int unusedMSMask =
4c4b4cd2
PH
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
14f9c5c9 2393 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2394
d2e4a39e 2395 accum |=
4c4b4cd2 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2397 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2398 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
14f9c5c9
AS
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422}
d2e4a39e 2423
14f9c5c9
AS
2424/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2426 not overlap. */
14f9c5c9 2427static void
fc1a4b47 2428move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2429 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2430{
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
50810684 2438 if (bits_big_endian_p)
14f9c5c9
AS
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
d2e4a39e 2444 while (n > 0)
4c4b4cd2
PH
2445 {
2446 int unused_right;
5b4ee69b 2447
4c4b4cd2
PH
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
14f9c5c9
AS
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
d2e4a39e 2471 while (n > 0)
4c4b4cd2
PH
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488}
2489
14f9c5c9
AS
2490/* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2493 floating-point or non-scalar types. */
14f9c5c9 2494
d2e4a39e
AS
2495static struct value *
2496ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2497{
df407dfe
AC
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
14f9c5c9 2500
52ce6436
PH
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
88e3b34b 2509 if (!deprecated_value_modifiable (toval))
323e0a4a 2510 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2511
d2e4a39e 2512 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2513 && bits > 0
d2e4a39e 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2516 {
df407dfe
AC
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2519 int from_size;
948f8e3d 2520 gdb_byte *buffer = alloca (len);
d2e4a39e 2521 struct value *val;
42ae5230 2522 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2525 fromval = value_cast (type, fromval);
14f9c5c9 2526
52ce6436 2527 read_memory (to_addr, buffer, len);
aced2898
PH
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2532 move_bits (buffer, value_bitpos (toval),
50810684 2533 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2534 else
50810684
UW
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
972daa01 2537 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2538
14f9c5c9 2539 val = value_copy (toval);
0fd88904 2540 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2541 TYPE_LENGTH (type));
04624583 2542 deprecated_set_value_type (val, type);
d2e4a39e 2543
14f9c5c9
AS
2544 return val;
2545 }
2546
2547 return value_assign (toval, fromval);
2548}
2549
2550
52ce6436
PH
2551/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2554 * COMPONENT, and not the inferior's memory. The current contents
2555 * of COMPONENT are ignored. */
2556static void
2557value_assign_to_component (struct value *container, struct value *component,
2558 struct value *val)
2559{
2560 LONGEST offset_in_container =
42ae5230 2561 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2562 int bit_offset_in_container =
2563 value_bitpos (component) - value_bitpos (container);
2564 int bits;
2565
2566 val = value_cast (value_type (component), val);
2567
2568 if (value_bitsize (component) == 0)
2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570 else
2571 bits = value_bitsize (component);
2572
50810684 2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2574 move_bits (value_contents_writeable (container) + offset_in_container,
2575 value_bitpos (container) + bit_offset_in_container,
2576 value_contents (val),
2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2578 bits, 1);
52ce6436
PH
2579 else
2580 move_bits (value_contents_writeable (container) + offset_in_container,
2581 value_bitpos (container) + bit_offset_in_container,
50810684 2582 value_contents (val), 0, bits, 0);
52ce6436
PH
2583}
2584
4c4b4cd2
PH
2585/* The value of the element of array ARR at the ARITY indices given in IND.
2586 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2587 thereto. */
2588
d2e4a39e
AS
2589struct value *
2590ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2591{
2592 int k;
d2e4a39e
AS
2593 struct value *elt;
2594 struct type *elt_type;
14f9c5c9
AS
2595
2596 elt = ada_coerce_to_simple_array (arr);
2597
df407dfe 2598 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601 return value_subscript_packed (elt, arity, ind);
2602
2603 for (k = 0; k < arity; k += 1)
2604 {
2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2606 error (_("too many subscripts (%d expected)"), k);
2497b498 2607 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2608 }
2609 return elt;
2610}
2611
2612/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2614 IND. Does not read the entire array into memory. */
14f9c5c9 2615
2c0b251b 2616static struct value *
d2e4a39e 2617ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2618 struct value **ind)
14f9c5c9
AS
2619{
2620 int k;
2621
2622 for (k = 0; k < arity; k += 1)
2623 {
2624 LONGEST lwb, upb;
14f9c5c9
AS
2625
2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2627 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2629 value_copy (arr));
14f9c5c9 2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2632 type = TYPE_TARGET_TYPE (type);
2633 }
2634
2635 return value_ind (arr);
2636}
2637
0b5d8877 2638/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2641 per Ada rules. */
0b5d8877 2642static struct value *
f5938064
JG
2643ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644 int low, int high)
0b5d8877 2645{
b0dd7688 2646 struct type *type0 = ada_check_typedef (type);
6c038f32 2647 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2650 struct type *index_type =
b0dd7688 2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2652 low, high);
6c038f32 2653 struct type *slice_type =
b0dd7688 2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2655
f5938064 2656 return value_at_lazy (slice_type, base);
0b5d8877
PH
2657}
2658
2659
2660static struct value *
2661ada_value_slice (struct value *array, int low, int high)
2662{
b0dd7688 2663 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2664 struct type *index_type =
0b5d8877 2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2666 struct type *slice_type =
0b5d8877 2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2668
6c038f32 2669 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2670}
2671
14f9c5c9
AS
2672/* If type is a record type in the form of a standard GNAT array
2673 descriptor, returns the number of dimensions for type. If arr is a
2674 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2675 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2676
2677int
d2e4a39e 2678ada_array_arity (struct type *type)
14f9c5c9
AS
2679{
2680 int arity;
2681
2682 if (type == NULL)
2683 return 0;
2684
2685 type = desc_base_type (type);
2686
2687 arity = 0;
d2e4a39e 2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2689 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2690 else
2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2692 {
4c4b4cd2 2693 arity += 1;
61ee279c 2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2695 }
d2e4a39e 2696
14f9c5c9
AS
2697 return arity;
2698}
2699
2700/* If TYPE is a record type in the form of a standard GNAT array
2701 descriptor or a simple array type, returns the element type for
2702 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2703 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2704
d2e4a39e
AS
2705struct type *
2706ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2707{
2708 type = desc_base_type (type);
2709
d2e4a39e 2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2711 {
2712 int k;
d2e4a39e 2713 struct type *p_array_type;
14f9c5c9 2714
556bdfd4 2715 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2716
2717 k = ada_array_arity (type);
2718 if (k == 0)
4c4b4cd2 2719 return NULL;
d2e4a39e 2720
4c4b4cd2 2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2722 if (nindices >= 0 && k > nindices)
4c4b4cd2 2723 k = nindices;
d2e4a39e 2724 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2725 {
61ee279c 2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2727 k -= 1;
2728 }
14f9c5c9
AS
2729 return p_array_type;
2730 }
2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732 {
2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2734 {
2735 type = TYPE_TARGET_TYPE (type);
2736 nindices -= 1;
2737 }
14f9c5c9
AS
2738 return type;
2739 }
2740
2741 return NULL;
2742}
2743
4c4b4cd2 2744/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2745 Does not examine memory. Throws an error if N is invalid or TYPE
2746 is not an array type. NAME is the name of the Ada attribute being
2747 evaluated ('range, 'first, 'last, or 'length); it is used in building
2748 the error message. */
14f9c5c9 2749
1eea4ebd
UW
2750static struct type *
2751ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2752{
4c4b4cd2
PH
2753 struct type *result_type;
2754
14f9c5c9
AS
2755 type = desc_base_type (type);
2756
1eea4ebd
UW
2757 if (n < 0 || n > ada_array_arity (type))
2758 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2759
4c4b4cd2 2760 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2761 {
2762 int i;
2763
2764 for (i = 1; i < n; i += 1)
4c4b4cd2 2765 type = TYPE_TARGET_TYPE (type);
262452ec 2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2769 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771 result_type = NULL;
14f9c5c9 2772 }
d2e4a39e 2773 else
1eea4ebd
UW
2774 {
2775 result_type = desc_index_type (desc_bounds_type (type), n);
2776 if (result_type == NULL)
2777 error (_("attempt to take bound of something that is not an array"));
2778 }
2779
2780 return result_type;
14f9c5c9
AS
2781}
2782
2783/* Given that arr is an array type, returns the lower bound of the
2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2786 array-descriptor type. It works for other arrays with bounds supplied
2787 by run-time quantities other than discriminants. */
14f9c5c9 2788
abb68b3e 2789static LONGEST
1eea4ebd 2790ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2791{
1ce677a4 2792 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2793 int i;
262452ec
JK
2794
2795 gdb_assert (which == 0 || which == 1);
14f9c5c9 2796
ad82864c
JB
2797 if (ada_is_constrained_packed_array_type (arr_type))
2798 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2799
4c4b4cd2 2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2801 return (LONGEST) - which;
14f9c5c9
AS
2802
2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804 type = TYPE_TARGET_TYPE (arr_type);
2805 else
2806 type = arr_type;
2807
1ce677a4
UW
2808 elt_type = type;
2809 for (i = n; i > 1; i--)
2810 elt_type = TYPE_TARGET_TYPE (type);
2811
14f9c5c9 2812 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2813 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2814 if (index_type_desc != NULL)
28c85d6c
JB
2815 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2816 NULL);
262452ec 2817 else
1ce677a4 2818 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2819
43bbcdc2
PH
2820 return
2821 (LONGEST) (which == 0
2822 ? ada_discrete_type_low_bound (index_type)
2823 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2824}
2825
2826/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2827 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2828 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2829 supplied by run-time quantities other than discriminants. */
14f9c5c9 2830
1eea4ebd 2831static LONGEST
4dc81987 2832ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2833{
df407dfe 2834 struct type *arr_type = value_type (arr);
14f9c5c9 2835
ad82864c
JB
2836 if (ada_is_constrained_packed_array_type (arr_type))
2837 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2838 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2839 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2840 else
1eea4ebd 2841 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2842}
2843
2844/* Given that arr is an array value, returns the length of the
2845 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2846 supplied by run-time quantities other than discriminants.
2847 Does not work for arrays indexed by enumeration types with representation
2848 clauses at the moment. */
14f9c5c9 2849
1eea4ebd 2850static LONGEST
d2e4a39e 2851ada_array_length (struct value *arr, int n)
14f9c5c9 2852{
df407dfe 2853 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2854
ad82864c
JB
2855 if (ada_is_constrained_packed_array_type (arr_type))
2856 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2857
4c4b4cd2 2858 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2859 return (ada_array_bound_from_type (arr_type, n, 1)
2860 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2861 else
1eea4ebd
UW
2862 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2863 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2864}
2865
2866/* An empty array whose type is that of ARR_TYPE (an array type),
2867 with bounds LOW to LOW-1. */
2868
2869static struct value *
2870empty_array (struct type *arr_type, int low)
2871{
b0dd7688 2872 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2873 struct type *index_type =
b0dd7688 2874 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2875 low, low - 1);
b0dd7688 2876 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2877
0b5d8877 2878 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2879}
14f9c5c9 2880\f
d2e4a39e 2881
4c4b4cd2 2882 /* Name resolution */
14f9c5c9 2883
4c4b4cd2
PH
2884/* The "decoded" name for the user-definable Ada operator corresponding
2885 to OP. */
14f9c5c9 2886
d2e4a39e 2887static const char *
4c4b4cd2 2888ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2889{
2890 int i;
2891
4c4b4cd2 2892 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2893 {
2894 if (ada_opname_table[i].op == op)
4c4b4cd2 2895 return ada_opname_table[i].decoded;
14f9c5c9 2896 }
323e0a4a 2897 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2898}
2899
2900
4c4b4cd2
PH
2901/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2902 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2903 undefined namespace) and converts operators that are
2904 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2905 non-null, it provides a preferred result type [at the moment, only
2906 type void has any effect---causing procedures to be preferred over
2907 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2908 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2909
4c4b4cd2
PH
2910static void
2911resolve (struct expression **expp, int void_context_p)
14f9c5c9 2912{
30b15541
UW
2913 struct type *context_type = NULL;
2914 int pc = 0;
2915
2916 if (void_context_p)
2917 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2918
2919 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2920}
2921
4c4b4cd2
PH
2922/* Resolve the operator of the subexpression beginning at
2923 position *POS of *EXPP. "Resolving" consists of replacing
2924 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2925 with their resolutions, replacing built-in operators with
2926 function calls to user-defined operators, where appropriate, and,
2927 when DEPROCEDURE_P is non-zero, converting function-valued variables
2928 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2929 are as in ada_resolve, above. */
14f9c5c9 2930
d2e4a39e 2931static struct value *
4c4b4cd2 2932resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2933 struct type *context_type)
14f9c5c9
AS
2934{
2935 int pc = *pos;
2936 int i;
4c4b4cd2 2937 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2938 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2939 struct value **argvec; /* Vector of operand types (alloca'ed). */
2940 int nargs; /* Number of operands. */
52ce6436 2941 int oplen;
14f9c5c9
AS
2942
2943 argvec = NULL;
2944 nargs = 0;
2945 exp = *expp;
2946
52ce6436
PH
2947 /* Pass one: resolve operands, saving their types and updating *pos,
2948 if needed. */
14f9c5c9
AS
2949 switch (op)
2950 {
4c4b4cd2
PH
2951 case OP_FUNCALL:
2952 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2953 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2954 *pos += 7;
4c4b4cd2
PH
2955 else
2956 {
2957 *pos += 3;
2958 resolve_subexp (expp, pos, 0, NULL);
2959 }
2960 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2961 break;
2962
14f9c5c9 2963 case UNOP_ADDR:
4c4b4cd2
PH
2964 *pos += 1;
2965 resolve_subexp (expp, pos, 0, NULL);
2966 break;
2967
52ce6436
PH
2968 case UNOP_QUAL:
2969 *pos += 3;
17466c1a 2970 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2971 break;
2972
52ce6436 2973 case OP_ATR_MODULUS:
4c4b4cd2
PH
2974 case OP_ATR_SIZE:
2975 case OP_ATR_TAG:
4c4b4cd2
PH
2976 case OP_ATR_FIRST:
2977 case OP_ATR_LAST:
2978 case OP_ATR_LENGTH:
2979 case OP_ATR_POS:
2980 case OP_ATR_VAL:
4c4b4cd2
PH
2981 case OP_ATR_MIN:
2982 case OP_ATR_MAX:
52ce6436
PH
2983 case TERNOP_IN_RANGE:
2984 case BINOP_IN_BOUNDS:
2985 case UNOP_IN_RANGE:
2986 case OP_AGGREGATE:
2987 case OP_OTHERS:
2988 case OP_CHOICES:
2989 case OP_POSITIONAL:
2990 case OP_DISCRETE_RANGE:
2991 case OP_NAME:
2992 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2993 *pos += oplen;
14f9c5c9
AS
2994 break;
2995
2996 case BINOP_ASSIGN:
2997 {
4c4b4cd2
PH
2998 struct value *arg1;
2999
3000 *pos += 1;
3001 arg1 = resolve_subexp (expp, pos, 0, NULL);
3002 if (arg1 == NULL)
3003 resolve_subexp (expp, pos, 1, NULL);
3004 else
df407dfe 3005 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3006 break;
14f9c5c9
AS
3007 }
3008
4c4b4cd2 3009 case UNOP_CAST:
4c4b4cd2
PH
3010 *pos += 3;
3011 nargs = 1;
3012 break;
14f9c5c9 3013
4c4b4cd2
PH
3014 case BINOP_ADD:
3015 case BINOP_SUB:
3016 case BINOP_MUL:
3017 case BINOP_DIV:
3018 case BINOP_REM:
3019 case BINOP_MOD:
3020 case BINOP_EXP:
3021 case BINOP_CONCAT:
3022 case BINOP_LOGICAL_AND:
3023 case BINOP_LOGICAL_OR:
3024 case BINOP_BITWISE_AND:
3025 case BINOP_BITWISE_IOR:
3026 case BINOP_BITWISE_XOR:
14f9c5c9 3027
4c4b4cd2
PH
3028 case BINOP_EQUAL:
3029 case BINOP_NOTEQUAL:
3030 case BINOP_LESS:
3031 case BINOP_GTR:
3032 case BINOP_LEQ:
3033 case BINOP_GEQ:
14f9c5c9 3034
4c4b4cd2
PH
3035 case BINOP_REPEAT:
3036 case BINOP_SUBSCRIPT:
3037 case BINOP_COMMA:
40c8aaa9
JB
3038 *pos += 1;
3039 nargs = 2;
3040 break;
14f9c5c9 3041
4c4b4cd2
PH
3042 case UNOP_NEG:
3043 case UNOP_PLUS:
3044 case UNOP_LOGICAL_NOT:
3045 case UNOP_ABS:
3046 case UNOP_IND:
3047 *pos += 1;
3048 nargs = 1;
3049 break;
14f9c5c9 3050
4c4b4cd2
PH
3051 case OP_LONG:
3052 case OP_DOUBLE:
3053 case OP_VAR_VALUE:
3054 *pos += 4;
3055 break;
14f9c5c9 3056
4c4b4cd2
PH
3057 case OP_TYPE:
3058 case OP_BOOL:
3059 case OP_LAST:
4c4b4cd2
PH
3060 case OP_INTERNALVAR:
3061 *pos += 3;
3062 break;
14f9c5c9 3063
4c4b4cd2
PH
3064 case UNOP_MEMVAL:
3065 *pos += 3;
3066 nargs = 1;
3067 break;
3068
67f3407f
DJ
3069 case OP_REGISTER:
3070 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3071 break;
3072
4c4b4cd2
PH
3073 case STRUCTOP_STRUCT:
3074 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3075 nargs = 1;
3076 break;
3077
4c4b4cd2 3078 case TERNOP_SLICE:
4c4b4cd2
PH
3079 *pos += 1;
3080 nargs = 3;
3081 break;
3082
52ce6436 3083 case OP_STRING:
14f9c5c9 3084 break;
4c4b4cd2
PH
3085
3086 default:
323e0a4a 3087 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3088 }
3089
76a01679 3090 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3091 for (i = 0; i < nargs; i += 1)
3092 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3093 argvec[i] = NULL;
3094 exp = *expp;
3095
3096 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3097 switch (op)
3098 {
3099 default:
3100 break;
3101
14f9c5c9 3102 case OP_VAR_VALUE:
4c4b4cd2 3103 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3104 {
3105 struct ada_symbol_info *candidates;
3106 int n_candidates;
3107
3108 n_candidates =
3109 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3110 (exp->elts[pc + 2].symbol),
3111 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3112 &candidates);
76a01679
JB
3113
3114 if (n_candidates > 1)
3115 {
3116 /* Types tend to get re-introduced locally, so if there
3117 are any local symbols that are not types, first filter
3118 out all types. */
3119 int j;
3120 for (j = 0; j < n_candidates; j += 1)
3121 switch (SYMBOL_CLASS (candidates[j].sym))
3122 {
3123 case LOC_REGISTER:
3124 case LOC_ARG:
3125 case LOC_REF_ARG:
76a01679
JB
3126 case LOC_REGPARM_ADDR:
3127 case LOC_LOCAL:
76a01679 3128 case LOC_COMPUTED:
76a01679
JB
3129 goto FoundNonType;
3130 default:
3131 break;
3132 }
3133 FoundNonType:
3134 if (j < n_candidates)
3135 {
3136 j = 0;
3137 while (j < n_candidates)
3138 {
3139 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3140 {
3141 candidates[j] = candidates[n_candidates - 1];
3142 n_candidates -= 1;
3143 }
3144 else
3145 j += 1;
3146 }
3147 }
3148 }
3149
3150 if (n_candidates == 0)
323e0a4a 3151 error (_("No definition found for %s"),
76a01679
JB
3152 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3153 else if (n_candidates == 1)
3154 i = 0;
3155 else if (deprocedure_p
3156 && !is_nonfunction (candidates, n_candidates))
3157 {
06d5cf63
JB
3158 i = ada_resolve_function
3159 (candidates, n_candidates, NULL, 0,
3160 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3161 context_type);
76a01679 3162 if (i < 0)
323e0a4a 3163 error (_("Could not find a match for %s"),
76a01679
JB
3164 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3165 }
3166 else
3167 {
323e0a4a 3168 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3169 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3170 user_select_syms (candidates, n_candidates, 1);
3171 i = 0;
3172 }
3173
3174 exp->elts[pc + 1].block = candidates[i].block;
3175 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3176 if (innermost_block == NULL
3177 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3178 innermost_block = candidates[i].block;
3179 }
3180
3181 if (deprocedure_p
3182 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3183 == TYPE_CODE_FUNC))
3184 {
3185 replace_operator_with_call (expp, pc, 0, 0,
3186 exp->elts[pc + 2].symbol,
3187 exp->elts[pc + 1].block);
3188 exp = *expp;
3189 }
14f9c5c9
AS
3190 break;
3191
3192 case OP_FUNCALL:
3193 {
4c4b4cd2 3194 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3195 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3196 {
3197 struct ada_symbol_info *candidates;
3198 int n_candidates;
3199
3200 n_candidates =
76a01679
JB
3201 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3202 (exp->elts[pc + 5].symbol),
3203 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3204 &candidates);
4c4b4cd2
PH
3205 if (n_candidates == 1)
3206 i = 0;
3207 else
3208 {
06d5cf63
JB
3209 i = ada_resolve_function
3210 (candidates, n_candidates,
3211 argvec, nargs,
3212 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3213 context_type);
4c4b4cd2 3214 if (i < 0)
323e0a4a 3215 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3216 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3217 }
3218
3219 exp->elts[pc + 4].block = candidates[i].block;
3220 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3221 if (innermost_block == NULL
3222 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3223 innermost_block = candidates[i].block;
3224 }
14f9c5c9
AS
3225 }
3226 break;
3227 case BINOP_ADD:
3228 case BINOP_SUB:
3229 case BINOP_MUL:
3230 case BINOP_DIV:
3231 case BINOP_REM:
3232 case BINOP_MOD:
3233 case BINOP_CONCAT:
3234 case BINOP_BITWISE_AND:
3235 case BINOP_BITWISE_IOR:
3236 case BINOP_BITWISE_XOR:
3237 case BINOP_EQUAL:
3238 case BINOP_NOTEQUAL:
3239 case BINOP_LESS:
3240 case BINOP_GTR:
3241 case BINOP_LEQ:
3242 case BINOP_GEQ:
3243 case BINOP_EXP:
3244 case UNOP_NEG:
3245 case UNOP_PLUS:
3246 case UNOP_LOGICAL_NOT:
3247 case UNOP_ABS:
3248 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3249 {
3250 struct ada_symbol_info *candidates;
3251 int n_candidates;
3252
3253 n_candidates =
3254 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3255 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3256 &candidates);
4c4b4cd2 3257 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3258 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3259 if (i < 0)
3260 break;
3261
76a01679
JB
3262 replace_operator_with_call (expp, pc, nargs, 1,
3263 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3264 exp = *expp;
3265 }
14f9c5c9 3266 break;
4c4b4cd2
PH
3267
3268 case OP_TYPE:
b3dbf008 3269 case OP_REGISTER:
4c4b4cd2 3270 return NULL;
14f9c5c9
AS
3271 }
3272
3273 *pos = pc;
3274 return evaluate_subexp_type (exp, pos);
3275}
3276
3277/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3278 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3279 a non-pointer. */
14f9c5c9 3280/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3281 liberal. */
14f9c5c9
AS
3282
3283static int
4dc81987 3284ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3285{
61ee279c
PH
3286 ftype = ada_check_typedef (ftype);
3287 atype = ada_check_typedef (atype);
14f9c5c9
AS
3288
3289 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3290 ftype = TYPE_TARGET_TYPE (ftype);
3291 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3292 atype = TYPE_TARGET_TYPE (atype);
3293
d2e4a39e 3294 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3295 {
3296 default:
5b3d5b7d 3297 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3298 case TYPE_CODE_PTR:
3299 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3300 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3301 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3302 else
1265e4aa
JB
3303 return (may_deref
3304 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3305 case TYPE_CODE_INT:
3306 case TYPE_CODE_ENUM:
3307 case TYPE_CODE_RANGE:
3308 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3309 {
3310 case TYPE_CODE_INT:
3311 case TYPE_CODE_ENUM:
3312 case TYPE_CODE_RANGE:
3313 return 1;
3314 default:
3315 return 0;
3316 }
14f9c5c9
AS
3317
3318 case TYPE_CODE_ARRAY:
d2e4a39e 3319 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3320 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3321
3322 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3323 if (ada_is_array_descriptor_type (ftype))
3324 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3325 || ada_is_array_descriptor_type (atype));
14f9c5c9 3326 else
4c4b4cd2
PH
3327 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3328 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3329
3330 case TYPE_CODE_UNION:
3331 case TYPE_CODE_FLT:
3332 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3333 }
3334}
3335
3336/* Return non-zero if the formals of FUNC "sufficiently match" the
3337 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3338 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3339 argument function. */
14f9c5c9
AS
3340
3341static int
d2e4a39e 3342ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3343{
3344 int i;
d2e4a39e 3345 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3346
1265e4aa
JB
3347 if (SYMBOL_CLASS (func) == LOC_CONST
3348 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3349 return (n_actuals == 0);
3350 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3351 return 0;
3352
3353 if (TYPE_NFIELDS (func_type) != n_actuals)
3354 return 0;
3355
3356 for (i = 0; i < n_actuals; i += 1)
3357 {
4c4b4cd2 3358 if (actuals[i] == NULL)
76a01679
JB
3359 return 0;
3360 else
3361 {
5b4ee69b
MS
3362 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3363 i));
df407dfe 3364 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3365
76a01679
JB
3366 if (!ada_type_match (ftype, atype, 1))
3367 return 0;
3368 }
14f9c5c9
AS
3369 }
3370 return 1;
3371}
3372
3373/* False iff function type FUNC_TYPE definitely does not produce a value
3374 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3375 FUNC_TYPE is not a valid function type with a non-null return type
3376 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3377
3378static int
d2e4a39e 3379return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3380{
d2e4a39e 3381 struct type *return_type;
14f9c5c9
AS
3382
3383 if (func_type == NULL)
3384 return 1;
3385
4c4b4cd2 3386 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3387 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3388 else
18af8284 3389 return_type = get_base_type (func_type);
14f9c5c9
AS
3390 if (return_type == NULL)
3391 return 1;
3392
18af8284 3393 context_type = get_base_type (context_type);
14f9c5c9
AS
3394
3395 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3396 return context_type == NULL || return_type == context_type;
3397 else if (context_type == NULL)
3398 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3399 else
3400 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3401}
3402
3403
4c4b4cd2 3404/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3405 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3406 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3407 that returns that type, then eliminate matches that don't. If
3408 CONTEXT_TYPE is void and there is at least one match that does not
3409 return void, eliminate all matches that do.
3410
14f9c5c9
AS
3411 Asks the user if there is more than one match remaining. Returns -1
3412 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3413 solely for messages. May re-arrange and modify SYMS in
3414 the process; the index returned is for the modified vector. */
14f9c5c9 3415
4c4b4cd2
PH
3416static int
3417ada_resolve_function (struct ada_symbol_info syms[],
3418 int nsyms, struct value **args, int nargs,
3419 const char *name, struct type *context_type)
14f9c5c9 3420{
30b15541 3421 int fallback;
14f9c5c9 3422 int k;
4c4b4cd2 3423 int m; /* Number of hits */
14f9c5c9 3424
d2e4a39e 3425 m = 0;
30b15541
UW
3426 /* In the first pass of the loop, we only accept functions matching
3427 context_type. If none are found, we add a second pass of the loop
3428 where every function is accepted. */
3429 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3430 {
3431 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3432 {
61ee279c 3433 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3434
3435 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3436 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3437 {
3438 syms[m] = syms[k];
3439 m += 1;
3440 }
3441 }
14f9c5c9
AS
3442 }
3443
3444 if (m == 0)
3445 return -1;
3446 else if (m > 1)
3447 {
323e0a4a 3448 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3449 user_select_syms (syms, m, 1);
14f9c5c9
AS
3450 return 0;
3451 }
3452 return 0;
3453}
3454
4c4b4cd2
PH
3455/* Returns true (non-zero) iff decoded name N0 should appear before N1
3456 in a listing of choices during disambiguation (see sort_choices, below).
3457 The idea is that overloadings of a subprogram name from the
3458 same package should sort in their source order. We settle for ordering
3459 such symbols by their trailing number (__N or $N). */
3460
14f9c5c9 3461static int
0d5cff50 3462encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3463{
3464 if (N1 == NULL)
3465 return 0;
3466 else if (N0 == NULL)
3467 return 1;
3468 else
3469 {
3470 int k0, k1;
5b4ee69b 3471
d2e4a39e 3472 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3473 ;
d2e4a39e 3474 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3475 ;
d2e4a39e 3476 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3477 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3478 {
3479 int n0, n1;
5b4ee69b 3480
4c4b4cd2
PH
3481 n0 = k0;
3482 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3483 n0 -= 1;
3484 n1 = k1;
3485 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3486 n1 -= 1;
3487 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3488 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3489 }
14f9c5c9
AS
3490 return (strcmp (N0, N1) < 0);
3491 }
3492}
d2e4a39e 3493
4c4b4cd2
PH
3494/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3495 encoded names. */
3496
d2e4a39e 3497static void
4c4b4cd2 3498sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3499{
4c4b4cd2 3500 int i;
5b4ee69b 3501
d2e4a39e 3502 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3503 {
4c4b4cd2 3504 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3505 int j;
3506
d2e4a39e 3507 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3508 {
3509 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3510 SYMBOL_LINKAGE_NAME (sym.sym)))
3511 break;
3512 syms[j + 1] = syms[j];
3513 }
d2e4a39e 3514 syms[j + 1] = sym;
14f9c5c9
AS
3515 }
3516}
3517
4c4b4cd2
PH
3518/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3519 by asking the user (if necessary), returning the number selected,
3520 and setting the first elements of SYMS items. Error if no symbols
3521 selected. */
14f9c5c9
AS
3522
3523/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3524 to be re-integrated one of these days. */
14f9c5c9
AS
3525
3526int
4c4b4cd2 3527user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3528{
3529 int i;
d2e4a39e 3530 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3531 int n_chosen;
3532 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3533 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3534
3535 if (max_results < 1)
323e0a4a 3536 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3537 if (nsyms <= 1)
3538 return nsyms;
3539
717d2f5a
JB
3540 if (select_mode == multiple_symbols_cancel)
3541 error (_("\
3542canceled because the command is ambiguous\n\
3543See set/show multiple-symbol."));
3544
3545 /* If select_mode is "all", then return all possible symbols.
3546 Only do that if more than one symbol can be selected, of course.
3547 Otherwise, display the menu as usual. */
3548 if (select_mode == multiple_symbols_all && max_results > 1)
3549 return nsyms;
3550
323e0a4a 3551 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3552 if (max_results > 1)
323e0a4a 3553 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3554
4c4b4cd2 3555 sort_choices (syms, nsyms);
14f9c5c9
AS
3556
3557 for (i = 0; i < nsyms; i += 1)
3558 {
4c4b4cd2
PH
3559 if (syms[i].sym == NULL)
3560 continue;
3561
3562 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3563 {
76a01679
JB
3564 struct symtab_and_line sal =
3565 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3566
323e0a4a
AC
3567 if (sal.symtab == NULL)
3568 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3569 i + first_choice,
3570 SYMBOL_PRINT_NAME (syms[i].sym),
3571 sal.line);
3572 else
3573 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3574 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3575 symtab_to_filename_for_display (sal.symtab),
3576 sal.line);
4c4b4cd2
PH
3577 continue;
3578 }
d2e4a39e 3579 else
4c4b4cd2
PH
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3585 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3591 symtab_to_filename_for_display (symtab),
3592 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3593 else if (is_enumeral
3594 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3595 {
a3f17187 3596 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3597 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3598 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3599 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3600 SYMBOL_PRINT_NAME (syms[i].sym));
3601 }
3602 else if (symtab != NULL)
3603 printf_unfiltered (is_enumeral
323e0a4a
AC
3604 ? _("[%d] %s in %s (enumeral)\n")
3605 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3606 i + first_choice,
3607 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3608 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3609 else
3610 printf_unfiltered (is_enumeral
323e0a4a
AC
3611 ? _("[%d] %s (enumeral)\n")
3612 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3613 i + first_choice,
3614 SYMBOL_PRINT_NAME (syms[i].sym));
3615 }
14f9c5c9 3616 }
d2e4a39e 3617
14f9c5c9 3618 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3619 "overload-choice");
14f9c5c9
AS
3620
3621 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3622 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3623
3624 return n_chosen;
3625}
3626
3627/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3628 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3629 order in CHOICES[0 .. N-1], and return N.
3630
3631 The user types choices as a sequence of numbers on one line
3632 separated by blanks, encoding them as follows:
3633
4c4b4cd2 3634 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3635 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3636 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3637
4c4b4cd2 3638 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3639
3640 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3641 prompts (for use with the -f switch). */
14f9c5c9
AS
3642
3643int
d2e4a39e 3644get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3645 int is_all_choice, char *annotation_suffix)
14f9c5c9 3646{
d2e4a39e 3647 char *args;
0bcd0149 3648 char *prompt;
14f9c5c9
AS
3649 int n_chosen;
3650 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3651
14f9c5c9
AS
3652 prompt = getenv ("PS2");
3653 if (prompt == NULL)
0bcd0149 3654 prompt = "> ";
14f9c5c9 3655
0bcd0149 3656 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3657
14f9c5c9 3658 if (args == NULL)
323e0a4a 3659 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3660
3661 n_chosen = 0;
76a01679 3662
4c4b4cd2
PH
3663 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3664 order, as given in args. Choices are validated. */
14f9c5c9
AS
3665 while (1)
3666 {
d2e4a39e 3667 char *args2;
14f9c5c9
AS
3668 int choice, j;
3669
0fcd72ba 3670 args = skip_spaces (args);
14f9c5c9 3671 if (*args == '\0' && n_chosen == 0)
323e0a4a 3672 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3673 else if (*args == '\0')
4c4b4cd2 3674 break;
14f9c5c9
AS
3675
3676 choice = strtol (args, &args2, 10);
d2e4a39e 3677 if (args == args2 || choice < 0
4c4b4cd2 3678 || choice > n_choices + first_choice - 1)
323e0a4a 3679 error (_("Argument must be choice number"));
14f9c5c9
AS
3680 args = args2;
3681
d2e4a39e 3682 if (choice == 0)
323e0a4a 3683 error (_("cancelled"));
14f9c5c9
AS
3684
3685 if (choice < first_choice)
4c4b4cd2
PH
3686 {
3687 n_chosen = n_choices;
3688 for (j = 0; j < n_choices; j += 1)
3689 choices[j] = j;
3690 break;
3691 }
14f9c5c9
AS
3692 choice -= first_choice;
3693
d2e4a39e 3694 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3695 {
3696 }
14f9c5c9
AS
3697
3698 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3699 {
3700 int k;
5b4ee69b 3701
4c4b4cd2
PH
3702 for (k = n_chosen - 1; k > j; k -= 1)
3703 choices[k + 1] = choices[k];
3704 choices[j + 1] = choice;
3705 n_chosen += 1;
3706 }
14f9c5c9
AS
3707 }
3708
3709 if (n_chosen > max_results)
323e0a4a 3710 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3711
14f9c5c9
AS
3712 return n_chosen;
3713}
3714
4c4b4cd2
PH
3715/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3716 on the function identified by SYM and BLOCK, and taking NARGS
3717 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3718
3719static void
d2e4a39e 3720replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3721 int oplen, struct symbol *sym,
270140bd 3722 const struct block *block)
14f9c5c9
AS
3723{
3724 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3725 symbol, -oplen for operator being replaced). */
d2e4a39e 3726 struct expression *newexp = (struct expression *)
8c1a34e7 3727 xzalloc (sizeof (struct expression)
4c4b4cd2 3728 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3729 struct expression *exp = *expp;
14f9c5c9
AS
3730
3731 newexp->nelts = exp->nelts + 7 - oplen;
3732 newexp->language_defn = exp->language_defn;
3489610d 3733 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3734 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3735 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3736 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3737
3738 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3739 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3740
3741 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3742 newexp->elts[pc + 4].block = block;
3743 newexp->elts[pc + 5].symbol = sym;
3744
3745 *expp = newexp;
aacb1f0a 3746 xfree (exp);
d2e4a39e 3747}
14f9c5c9
AS
3748
3749/* Type-class predicates */
3750
4c4b4cd2
PH
3751/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3752 or FLOAT). */
14f9c5c9
AS
3753
3754static int
d2e4a39e 3755numeric_type_p (struct type *type)
14f9c5c9
AS
3756{
3757 if (type == NULL)
3758 return 0;
d2e4a39e
AS
3759 else
3760 {
3761 switch (TYPE_CODE (type))
4c4b4cd2
PH
3762 {
3763 case TYPE_CODE_INT:
3764 case TYPE_CODE_FLT:
3765 return 1;
3766 case TYPE_CODE_RANGE:
3767 return (type == TYPE_TARGET_TYPE (type)
3768 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3769 default:
3770 return 0;
3771 }
d2e4a39e 3772 }
14f9c5c9
AS
3773}
3774
4c4b4cd2 3775/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3776
3777static int
d2e4a39e 3778integer_type_p (struct type *type)
14f9c5c9
AS
3779{
3780 if (type == NULL)
3781 return 0;
d2e4a39e
AS
3782 else
3783 {
3784 switch (TYPE_CODE (type))
4c4b4cd2
PH
3785 {
3786 case TYPE_CODE_INT:
3787 return 1;
3788 case TYPE_CODE_RANGE:
3789 return (type == TYPE_TARGET_TYPE (type)
3790 || integer_type_p (TYPE_TARGET_TYPE (type)));
3791 default:
3792 return 0;
3793 }
d2e4a39e 3794 }
14f9c5c9
AS
3795}
3796
4c4b4cd2 3797/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3798
3799static int
d2e4a39e 3800scalar_type_p (struct type *type)
14f9c5c9
AS
3801{
3802 if (type == NULL)
3803 return 0;
d2e4a39e
AS
3804 else
3805 {
3806 switch (TYPE_CODE (type))
4c4b4cd2
PH
3807 {
3808 case TYPE_CODE_INT:
3809 case TYPE_CODE_RANGE:
3810 case TYPE_CODE_ENUM:
3811 case TYPE_CODE_FLT:
3812 return 1;
3813 default:
3814 return 0;
3815 }
d2e4a39e 3816 }
14f9c5c9
AS
3817}
3818
4c4b4cd2 3819/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3820
3821static int
d2e4a39e 3822discrete_type_p (struct type *type)
14f9c5c9
AS
3823{
3824 if (type == NULL)
3825 return 0;
d2e4a39e
AS
3826 else
3827 {
3828 switch (TYPE_CODE (type))
4c4b4cd2
PH
3829 {
3830 case TYPE_CODE_INT:
3831 case TYPE_CODE_RANGE:
3832 case TYPE_CODE_ENUM:
872f0337 3833 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3834 return 1;
3835 default:
3836 return 0;
3837 }
d2e4a39e 3838 }
14f9c5c9
AS
3839}
3840
4c4b4cd2
PH
3841/* Returns non-zero if OP with operands in the vector ARGS could be
3842 a user-defined function. Errs on the side of pre-defined operators
3843 (i.e., result 0). */
14f9c5c9
AS
3844
3845static int
d2e4a39e 3846possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3847{
76a01679 3848 struct type *type0 =
df407dfe 3849 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3850 struct type *type1 =
df407dfe 3851 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3852
4c4b4cd2
PH
3853 if (type0 == NULL)
3854 return 0;
3855
14f9c5c9
AS
3856 switch (op)
3857 {
3858 default:
3859 return 0;
3860
3861 case BINOP_ADD:
3862 case BINOP_SUB:
3863 case BINOP_MUL:
3864 case BINOP_DIV:
d2e4a39e 3865 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3866
3867 case BINOP_REM:
3868 case BINOP_MOD:
3869 case BINOP_BITWISE_AND:
3870 case BINOP_BITWISE_IOR:
3871 case BINOP_BITWISE_XOR:
d2e4a39e 3872 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3873
3874 case BINOP_EQUAL:
3875 case BINOP_NOTEQUAL:
3876 case BINOP_LESS:
3877 case BINOP_GTR:
3878 case BINOP_LEQ:
3879 case BINOP_GEQ:
d2e4a39e 3880 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3881
3882 case BINOP_CONCAT:
ee90b9ab 3883 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3884
3885 case BINOP_EXP:
d2e4a39e 3886 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3887
3888 case UNOP_NEG:
3889 case UNOP_PLUS:
3890 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3891 case UNOP_ABS:
3892 return (!numeric_type_p (type0));
14f9c5c9
AS
3893
3894 }
3895}
3896\f
4c4b4cd2 3897 /* Renaming */
14f9c5c9 3898
aeb5907d
JB
3899/* NOTES:
3900
3901 1. In the following, we assume that a renaming type's name may
3902 have an ___XD suffix. It would be nice if this went away at some
3903 point.
3904 2. We handle both the (old) purely type-based representation of
3905 renamings and the (new) variable-based encoding. At some point,
3906 it is devoutly to be hoped that the former goes away
3907 (FIXME: hilfinger-2007-07-09).
3908 3. Subprogram renamings are not implemented, although the XRS
3909 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3910
3911/* If SYM encodes a renaming,
3912
3913 <renaming> renames <renamed entity>,
3914
3915 sets *LEN to the length of the renamed entity's name,
3916 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3917 the string describing the subcomponent selected from the renamed
0963b4bd 3918 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3919 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3920 are undefined). Otherwise, returns a value indicating the category
3921 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3922 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3923 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3924 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3925 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3926 may be NULL, in which case they are not assigned.
3927
3928 [Currently, however, GCC does not generate subprogram renamings.] */
3929
3930enum ada_renaming_category
3931ada_parse_renaming (struct symbol *sym,
3932 const char **renamed_entity, int *len,
3933 const char **renaming_expr)
3934{
3935 enum ada_renaming_category kind;
3936 const char *info;
3937 const char *suffix;
3938
3939 if (sym == NULL)
3940 return ADA_NOT_RENAMING;
3941 switch (SYMBOL_CLASS (sym))
14f9c5c9 3942 {
aeb5907d
JB
3943 default:
3944 return ADA_NOT_RENAMING;
3945 case LOC_TYPEDEF:
3946 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3947 renamed_entity, len, renaming_expr);
3948 case LOC_LOCAL:
3949 case LOC_STATIC:
3950 case LOC_COMPUTED:
3951 case LOC_OPTIMIZED_OUT:
3952 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3953 if (info == NULL)
3954 return ADA_NOT_RENAMING;
3955 switch (info[5])
3956 {
3957 case '_':
3958 kind = ADA_OBJECT_RENAMING;
3959 info += 6;
3960 break;
3961 case 'E':
3962 kind = ADA_EXCEPTION_RENAMING;
3963 info += 7;
3964 break;
3965 case 'P':
3966 kind = ADA_PACKAGE_RENAMING;
3967 info += 7;
3968 break;
3969 case 'S':
3970 kind = ADA_SUBPROGRAM_RENAMING;
3971 info += 7;
3972 break;
3973 default:
3974 return ADA_NOT_RENAMING;
3975 }
14f9c5c9 3976 }
4c4b4cd2 3977
aeb5907d
JB
3978 if (renamed_entity != NULL)
3979 *renamed_entity = info;
3980 suffix = strstr (info, "___XE");
3981 if (suffix == NULL || suffix == info)
3982 return ADA_NOT_RENAMING;
3983 if (len != NULL)
3984 *len = strlen (info) - strlen (suffix);
3985 suffix += 5;
3986 if (renaming_expr != NULL)
3987 *renaming_expr = suffix;
3988 return kind;
3989}
3990
3991/* Assuming TYPE encodes a renaming according to the old encoding in
3992 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3993 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3994 ADA_NOT_RENAMING otherwise. */
3995static enum ada_renaming_category
3996parse_old_style_renaming (struct type *type,
3997 const char **renamed_entity, int *len,
3998 const char **renaming_expr)
3999{
4000 enum ada_renaming_category kind;
4001 const char *name;
4002 const char *info;
4003 const char *suffix;
14f9c5c9 4004
aeb5907d
JB
4005 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4006 || TYPE_NFIELDS (type) != 1)
4007 return ADA_NOT_RENAMING;
14f9c5c9 4008
aeb5907d
JB
4009 name = type_name_no_tag (type);
4010 if (name == NULL)
4011 return ADA_NOT_RENAMING;
4012
4013 name = strstr (name, "___XR");
4014 if (name == NULL)
4015 return ADA_NOT_RENAMING;
4016 switch (name[5])
4017 {
4018 case '\0':
4019 case '_':
4020 kind = ADA_OBJECT_RENAMING;
4021 break;
4022 case 'E':
4023 kind = ADA_EXCEPTION_RENAMING;
4024 break;
4025 case 'P':
4026 kind = ADA_PACKAGE_RENAMING;
4027 break;
4028 case 'S':
4029 kind = ADA_SUBPROGRAM_RENAMING;
4030 break;
4031 default:
4032 return ADA_NOT_RENAMING;
4033 }
14f9c5c9 4034
aeb5907d
JB
4035 info = TYPE_FIELD_NAME (type, 0);
4036 if (info == NULL)
4037 return ADA_NOT_RENAMING;
4038 if (renamed_entity != NULL)
4039 *renamed_entity = info;
4040 suffix = strstr (info, "___XE");
4041 if (renaming_expr != NULL)
4042 *renaming_expr = suffix + 5;
4043 if (suffix == NULL || suffix == info)
4044 return ADA_NOT_RENAMING;
4045 if (len != NULL)
4046 *len = suffix - info;
4047 return kind;
a5ee536b
JB
4048}
4049
4050/* Compute the value of the given RENAMING_SYM, which is expected to
4051 be a symbol encoding a renaming expression. BLOCK is the block
4052 used to evaluate the renaming. */
52ce6436 4053
a5ee536b
JB
4054static struct value *
4055ada_read_renaming_var_value (struct symbol *renaming_sym,
4056 struct block *block)
4057{
bbc13ae3 4058 const char *sym_name;
a5ee536b
JB
4059 struct expression *expr;
4060 struct value *value;
4061 struct cleanup *old_chain = NULL;
4062
bbc13ae3 4063 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4065 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070}
14f9c5c9 4071\f
d2e4a39e 4072
4c4b4cd2 4073 /* Evaluation: Function Calls */
14f9c5c9 4074
4c4b4cd2 4075/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4078
d2e4a39e 4079static struct value *
40bc484c 4080ensure_lval (struct value *val)
14f9c5c9 4081{
40bc484c
JB
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4084 {
df407dfe 4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4088
40bc484c 4089 set_value_address (val, addr);
a84a8a0d 4090 VALUE_LVAL (val) = lval_memory;
40bc484c 4091 write_memory (addr, value_contents (val), len);
c3e5cd34 4092 }
14f9c5c9
AS
4093
4094 return val;
4095}
4096
4097/* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4100 values not residing in memory, updating it as needed. */
14f9c5c9 4101
a93c0eb6 4102struct value *
40bc484c 4103ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4104{
df407dfe 4105 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4106 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4113
4c4b4cd2 4114 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4116 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4119 {
a84a8a0d 4120 struct value *result;
5b4ee69b 4121
14f9c5c9 4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4123 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4124 result = desc_data (actual);
14f9c5c9 4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
5b4ee69b 4130
df407dfe 4131 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4132 val = allocate_value (actual_type);
990a07ab 4133 memcpy ((char *) value_contents_raw (val),
0fd88904 4134 (char *) value_contents (actual),
4c4b4cd2 4135 TYPE_LENGTH (actual_type));
40bc484c 4136 actual = ensure_lval (val);
4c4b4cd2 4137 }
a84a8a0d 4138 result = value_addr (actual);
4c4b4cd2 4139 }
a84a8a0d
JB
4140 else
4141 return actual;
b1af9e97 4142 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148}
4149
438c98a1
JB
4150/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155static CORE_ADDR
4156value_pointer (struct value *value, struct type *type)
4157{
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
963a6417 4222/* Dummy definitions for an experimental caching module that is not
0963b4bd 4223 * used in the public sources. */
96d887e8 4224
96d887e8
PH
4225static int
4226lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4227 struct symbol **sym, struct block **block)
96d887e8
PH
4228{
4229 return 0;
4230}
4231
4232static void
4233cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4234 const struct block *block)
96d887e8
PH
4235{
4236}
4c4b4cd2
PH
4237\f
4238 /* Symbol Lookup */
4239
c0431670
JB
4240/* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246static int
4247should_use_wild_match (const char *lookup_name)
4248{
4249 return (strstr (lookup_name, "__") == NULL);
4250}
4251
4c4b4cd2
PH
4252/* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255static struct symbol *
4256standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258{
acbd605d
MGD
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4c4b4cd2 4261
2570f2b7 4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4263 return sym;
2570f2b7
UW
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4266 return sym;
4267}
4268
4269
4270/* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273static int
4274is_nonfunction (struct ada_symbol_info syms[], int n)
4275{
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4282 return 1;
4283
4284 return 0;
4285}
4286
4287/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4288 struct types. Otherwise, they may not. */
14f9c5c9
AS
4289
4290static int
d2e4a39e 4291equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4292{
d2e4a39e 4293 if (type0 == type1)
14f9c5c9 4294 return 1;
d2e4a39e 4295 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
d2e4a39e 4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4302 return 1;
d2e4a39e 4303
14f9c5c9
AS
4304 return 0;
4305}
4306
4307/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4308 no more defined than that of SYM1. */
14f9c5c9
AS
4309
4310static int
d2e4a39e 4311lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4312{
4313 if (sym0 == sym1)
4314 return 1;
176620f1 4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
d2e4a39e 4319 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4c4b4cd2
PH
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4329 int len0 = strlen (name0);
5b4ee69b 4330
4c4b4cd2
PH
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4340 default:
4341 return 0;
14f9c5c9
AS
4342 }
4343}
4344
4c4b4cd2
PH
4345/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4347
4348static void
76a01679
JB
4349add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
2570f2b7 4351 struct block *block)
14f9c5c9
AS
4352{
4353 int i;
4c4b4cd2 4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4355
529cad9c
PH
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4c4b4cd2
PH
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4c4b4cd2 4373 return;
76a01679 4374 }
4c4b4cd2
PH
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4c4b4cd2
PH
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384}
4385
4386/* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
76a01679
JB
4389static int
4390num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4391{
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393}
4394
4395/* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
76a01679 4399static struct ada_symbol_info *
4c4b4cd2
PH
4400defns_collected (struct obstack *obstackp, int finish)
4401{
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406}
4407
7c7b6655
TT
4408/* Return a bound minimal symbol matching NAME according to Ada
4409 decoding rules. Returns an invalid symbol if there is no such
4410 minimal symbol. Names prefixed with "standard__" are handled
4411 specially: "standard__" is first stripped off, and only static and
4412 global symbols are searched. */
4c4b4cd2 4413
7c7b6655 4414struct bound_minimal_symbol
96d887e8 4415ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4416{
7c7b6655 4417 struct bound_minimal_symbol result;
4c4b4cd2 4418 struct objfile *objfile;
96d887e8 4419 struct minimal_symbol *msymbol;
dc4024cd 4420 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4421
7c7b6655
TT
4422 memset (&result, 0, sizeof (result));
4423
c0431670
JB
4424 /* Special case: If the user specifies a symbol name inside package
4425 Standard, do a non-wild matching of the symbol name without
4426 the "standard__" prefix. This was primarily introduced in order
4427 to allow the user to specifically access the standard exceptions
4428 using, for instance, Standard.Constraint_Error when Constraint_Error
4429 is ambiguous (due to the user defining its own Constraint_Error
4430 entity inside its program). */
96d887e8 4431 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4432 name += sizeof ("standard__") - 1;
4c4b4cd2 4433
96d887e8
PH
4434 ALL_MSYMBOLS (objfile, msymbol)
4435 {
dc4024cd 4436 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4437 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4438 {
4439 result.minsym = msymbol;
4440 result.objfile = objfile;
4441 break;
4442 }
96d887e8 4443 }
4c4b4cd2 4444
7c7b6655 4445 return result;
96d887e8 4446}
4c4b4cd2 4447
96d887e8
PH
4448/* For all subprograms that statically enclose the subprogram of the
4449 selected frame, add symbols matching identifier NAME in DOMAIN
4450 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4451 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4452 with a wildcard prefix. */
4c4b4cd2 4453
96d887e8
PH
4454static void
4455add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4456 const char *name, domain_enum namespace,
48b78332 4457 int wild_match_p)
96d887e8 4458{
96d887e8 4459}
14f9c5c9 4460
96d887e8
PH
4461/* True if TYPE is definitely an artificial type supplied to a symbol
4462 for which no debugging information was given in the symbol file. */
14f9c5c9 4463
96d887e8
PH
4464static int
4465is_nondebugging_type (struct type *type)
4466{
0d5cff50 4467 const char *name = ada_type_name (type);
5b4ee69b 4468
96d887e8
PH
4469 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4470}
4c4b4cd2 4471
8f17729f
JB
4472/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4473 that are deemed "identical" for practical purposes.
4474
4475 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4476 types and that their number of enumerals is identical (in other
4477 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4478
4479static int
4480ada_identical_enum_types_p (struct type *type1, struct type *type2)
4481{
4482 int i;
4483
4484 /* The heuristic we use here is fairly conservative. We consider
4485 that 2 enumerate types are identical if they have the same
4486 number of enumerals and that all enumerals have the same
4487 underlying value and name. */
4488
4489 /* All enums in the type should have an identical underlying value. */
4490 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4491 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4492 return 0;
4493
4494 /* All enumerals should also have the same name (modulo any numerical
4495 suffix). */
4496 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4497 {
0d5cff50
DE
4498 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4499 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4500 int len_1 = strlen (name_1);
4501 int len_2 = strlen (name_2);
4502
4503 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4504 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4505 if (len_1 != len_2
4506 || strncmp (TYPE_FIELD_NAME (type1, i),
4507 TYPE_FIELD_NAME (type2, i),
4508 len_1) != 0)
4509 return 0;
4510 }
4511
4512 return 1;
4513}
4514
4515/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4516 that are deemed "identical" for practical purposes. Sometimes,
4517 enumerals are not strictly identical, but their types are so similar
4518 that they can be considered identical.
4519
4520 For instance, consider the following code:
4521
4522 type Color is (Black, Red, Green, Blue, White);
4523 type RGB_Color is new Color range Red .. Blue;
4524
4525 Type RGB_Color is a subrange of an implicit type which is a copy
4526 of type Color. If we call that implicit type RGB_ColorB ("B" is
4527 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4528 As a result, when an expression references any of the enumeral
4529 by name (Eg. "print green"), the expression is technically
4530 ambiguous and the user should be asked to disambiguate. But
4531 doing so would only hinder the user, since it wouldn't matter
4532 what choice he makes, the outcome would always be the same.
4533 So, for practical purposes, we consider them as the same. */
4534
4535static int
4536symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4537{
4538 int i;
4539
4540 /* Before performing a thorough comparison check of each type,
4541 we perform a series of inexpensive checks. We expect that these
4542 checks will quickly fail in the vast majority of cases, and thus
4543 help prevent the unnecessary use of a more expensive comparison.
4544 Said comparison also expects us to make some of these checks
4545 (see ada_identical_enum_types_p). */
4546
4547 /* Quick check: All symbols should have an enum type. */
4548 for (i = 0; i < nsyms; i++)
4549 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4550 return 0;
4551
4552 /* Quick check: They should all have the same value. */
4553 for (i = 1; i < nsyms; i++)
4554 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4555 return 0;
4556
4557 /* Quick check: They should all have the same number of enumerals. */
4558 for (i = 1; i < nsyms; i++)
4559 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4560 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 /* All the sanity checks passed, so we might have a set of
4564 identical enumeration types. Perform a more complete
4565 comparison of the type of each symbol. */
4566 for (i = 1; i < nsyms; i++)
4567 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4568 SYMBOL_TYPE (syms[0].sym)))
4569 return 0;
4570
4571 return 1;
4572}
4573
96d887e8
PH
4574/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4575 duplicate other symbols in the list (The only case I know of where
4576 this happens is when object files containing stabs-in-ecoff are
4577 linked with files containing ordinary ecoff debugging symbols (or no
4578 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4579 Returns the number of items in the modified list. */
4c4b4cd2 4580
96d887e8
PH
4581static int
4582remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4583{
4584 int i, j;
4c4b4cd2 4585
8f17729f
JB
4586 /* We should never be called with less than 2 symbols, as there
4587 cannot be any extra symbol in that case. But it's easy to
4588 handle, since we have nothing to do in that case. */
4589 if (nsyms < 2)
4590 return nsyms;
4591
96d887e8
PH
4592 i = 0;
4593 while (i < nsyms)
4594 {
a35ddb44 4595 int remove_p = 0;
339c13b6
JB
4596
4597 /* If two symbols have the same name and one of them is a stub type,
4598 the get rid of the stub. */
4599
4600 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4601 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4602 {
4603 for (j = 0; j < nsyms; j++)
4604 {
4605 if (j != i
4606 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4607 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4608 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4609 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4610 remove_p = 1;
339c13b6
JB
4611 }
4612 }
4613
4614 /* Two symbols with the same name, same class and same address
4615 should be identical. */
4616
4617 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4618 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4619 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4620 {
4621 for (j = 0; j < nsyms; j += 1)
4622 {
4623 if (i != j
4624 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4625 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4626 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4627 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4628 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4629 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4630 remove_p = 1;
4c4b4cd2 4631 }
4c4b4cd2 4632 }
339c13b6 4633
a35ddb44 4634 if (remove_p)
339c13b6
JB
4635 {
4636 for (j = i + 1; j < nsyms; j += 1)
4637 syms[j - 1] = syms[j];
4638 nsyms -= 1;
4639 }
4640
96d887e8 4641 i += 1;
14f9c5c9 4642 }
8f17729f
JB
4643
4644 /* If all the remaining symbols are identical enumerals, then
4645 just keep the first one and discard the rest.
4646
4647 Unlike what we did previously, we do not discard any entry
4648 unless they are ALL identical. This is because the symbol
4649 comparison is not a strict comparison, but rather a practical
4650 comparison. If all symbols are considered identical, then
4651 we can just go ahead and use the first one and discard the rest.
4652 But if we cannot reduce the list to a single element, we have
4653 to ask the user to disambiguate anyways. And if we have to
4654 present a multiple-choice menu, it's less confusing if the list
4655 isn't missing some choices that were identical and yet distinct. */
4656 if (symbols_are_identical_enums (syms, nsyms))
4657 nsyms = 1;
4658
96d887e8 4659 return nsyms;
14f9c5c9
AS
4660}
4661
96d887e8
PH
4662/* Given a type that corresponds to a renaming entity, use the type name
4663 to extract the scope (package name or function name, fully qualified,
4664 and following the GNAT encoding convention) where this renaming has been
4665 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4666
96d887e8
PH
4667static char *
4668xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4669{
96d887e8 4670 /* The renaming types adhere to the following convention:
0963b4bd 4671 <scope>__<rename>___<XR extension>.
96d887e8
PH
4672 So, to extract the scope, we search for the "___XR" extension,
4673 and then backtrack until we find the first "__". */
76a01679 4674
96d887e8
PH
4675 const char *name = type_name_no_tag (renaming_type);
4676 char *suffix = strstr (name, "___XR");
4677 char *last;
4678 int scope_len;
4679 char *scope;
14f9c5c9 4680
96d887e8
PH
4681 /* Now, backtrack a bit until we find the first "__". Start looking
4682 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4683
96d887e8
PH
4684 for (last = suffix - 3; last > name; last--)
4685 if (last[0] == '_' && last[1] == '_')
4686 break;
76a01679 4687
96d887e8 4688 /* Make a copy of scope and return it. */
14f9c5c9 4689
96d887e8
PH
4690 scope_len = last - name;
4691 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4692
96d887e8
PH
4693 strncpy (scope, name, scope_len);
4694 scope[scope_len] = '\0';
4c4b4cd2 4695
96d887e8 4696 return scope;
4c4b4cd2
PH
4697}
4698
96d887e8 4699/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4700
96d887e8
PH
4701static int
4702is_package_name (const char *name)
4c4b4cd2 4703{
96d887e8
PH
4704 /* Here, We take advantage of the fact that no symbols are generated
4705 for packages, while symbols are generated for each function.
4706 So the condition for NAME represent a package becomes equivalent
4707 to NAME not existing in our list of symbols. There is only one
4708 small complication with library-level functions (see below). */
4c4b4cd2 4709
96d887e8 4710 char *fun_name;
76a01679 4711
96d887e8
PH
4712 /* If it is a function that has not been defined at library level,
4713 then we should be able to look it up in the symbols. */
4714 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4715 return 0;
14f9c5c9 4716
96d887e8
PH
4717 /* Library-level function names start with "_ada_". See if function
4718 "_ada_" followed by NAME can be found. */
14f9c5c9 4719
96d887e8 4720 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4721 functions names cannot contain "__" in them. */
96d887e8
PH
4722 if (strstr (name, "__") != NULL)
4723 return 0;
4c4b4cd2 4724
b435e160 4725 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4726
96d887e8
PH
4727 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4728}
14f9c5c9 4729
96d887e8 4730/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4731 not visible from FUNCTION_NAME. */
14f9c5c9 4732
96d887e8 4733static int
0d5cff50 4734old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4735{
aeb5907d 4736 char *scope;
1509e573 4737 struct cleanup *old_chain;
aeb5907d
JB
4738
4739 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4740 return 0;
4741
4742 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4743 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4744
96d887e8
PH
4745 /* If the rename has been defined in a package, then it is visible. */
4746 if (is_package_name (scope))
1509e573
JB
4747 {
4748 do_cleanups (old_chain);
4749 return 0;
4750 }
14f9c5c9 4751
96d887e8
PH
4752 /* Check that the rename is in the current function scope by checking
4753 that its name starts with SCOPE. */
76a01679 4754
96d887e8
PH
4755 /* If the function name starts with "_ada_", it means that it is
4756 a library-level function. Strip this prefix before doing the
4757 comparison, as the encoding for the renaming does not contain
4758 this prefix. */
4759 if (strncmp (function_name, "_ada_", 5) == 0)
4760 function_name += 5;
f26caa11 4761
1509e573
JB
4762 {
4763 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4764
4765 do_cleanups (old_chain);
4766 return is_invisible;
4767 }
f26caa11
PH
4768}
4769
aeb5907d
JB
4770/* Remove entries from SYMS that corresponds to a renaming entity that
4771 is not visible from the function associated with CURRENT_BLOCK or
4772 that is superfluous due to the presence of more specific renaming
4773 information. Places surviving symbols in the initial entries of
4774 SYMS and returns the number of surviving symbols.
96d887e8
PH
4775
4776 Rationale:
aeb5907d
JB
4777 First, in cases where an object renaming is implemented as a
4778 reference variable, GNAT may produce both the actual reference
4779 variable and the renaming encoding. In this case, we discard the
4780 latter.
4781
4782 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4783 entity. Unfortunately, STABS currently does not support the definition
4784 of types that are local to a given lexical block, so all renamings types
4785 are emitted at library level. As a consequence, if an application
4786 contains two renaming entities using the same name, and a user tries to
4787 print the value of one of these entities, the result of the ada symbol
4788 lookup will also contain the wrong renaming type.
f26caa11 4789
96d887e8
PH
4790 This function partially covers for this limitation by attempting to
4791 remove from the SYMS list renaming symbols that should be visible
4792 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4793 method with the current information available. The implementation
4794 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4795
4796 - When the user tries to print a rename in a function while there
4797 is another rename entity defined in a package: Normally, the
4798 rename in the function has precedence over the rename in the
4799 package, so the latter should be removed from the list. This is
4800 currently not the case.
4801
4802 - This function will incorrectly remove valid renames if
4803 the CURRENT_BLOCK corresponds to a function which symbol name
4804 has been changed by an "Export" pragma. As a consequence,
4805 the user will be unable to print such rename entities. */
4c4b4cd2 4806
14f9c5c9 4807static int
aeb5907d
JB
4808remove_irrelevant_renamings (struct ada_symbol_info *syms,
4809 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4810{
4811 struct symbol *current_function;
0d5cff50 4812 const char *current_function_name;
4c4b4cd2 4813 int i;
aeb5907d
JB
4814 int is_new_style_renaming;
4815
4816 /* If there is both a renaming foo___XR... encoded as a variable and
4817 a simple variable foo in the same block, discard the latter.
0963b4bd 4818 First, zero out such symbols, then compress. */
aeb5907d
JB
4819 is_new_style_renaming = 0;
4820 for (i = 0; i < nsyms; i += 1)
4821 {
4822 struct symbol *sym = syms[i].sym;
270140bd 4823 const struct block *block = syms[i].block;
aeb5907d
JB
4824 const char *name;
4825 const char *suffix;
4826
4827 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4828 continue;
4829 name = SYMBOL_LINKAGE_NAME (sym);
4830 suffix = strstr (name, "___XR");
4831
4832 if (suffix != NULL)
4833 {
4834 int name_len = suffix - name;
4835 int j;
5b4ee69b 4836
aeb5907d
JB
4837 is_new_style_renaming = 1;
4838 for (j = 0; j < nsyms; j += 1)
4839 if (i != j && syms[j].sym != NULL
4840 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4841 name_len) == 0
4842 && block == syms[j].block)
4843 syms[j].sym = NULL;
4844 }
4845 }
4846 if (is_new_style_renaming)
4847 {
4848 int j, k;
4849
4850 for (j = k = 0; j < nsyms; j += 1)
4851 if (syms[j].sym != NULL)
4852 {
4853 syms[k] = syms[j];
4854 k += 1;
4855 }
4856 return k;
4857 }
4c4b4cd2
PH
4858
4859 /* Extract the function name associated to CURRENT_BLOCK.
4860 Abort if unable to do so. */
76a01679 4861
4c4b4cd2
PH
4862 if (current_block == NULL)
4863 return nsyms;
76a01679 4864
7f0df278 4865 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4866 if (current_function == NULL)
4867 return nsyms;
4868
4869 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4870 if (current_function_name == NULL)
4871 return nsyms;
4872
4873 /* Check each of the symbols, and remove it from the list if it is
4874 a type corresponding to a renaming that is out of the scope of
4875 the current block. */
4876
4877 i = 0;
4878 while (i < nsyms)
4879 {
aeb5907d
JB
4880 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4881 == ADA_OBJECT_RENAMING
4882 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4883 {
4884 int j;
5b4ee69b 4885
aeb5907d 4886 for (j = i + 1; j < nsyms; j += 1)
76a01679 4887 syms[j - 1] = syms[j];
4c4b4cd2
PH
4888 nsyms -= 1;
4889 }
4890 else
4891 i += 1;
4892 }
4893
4894 return nsyms;
4895}
4896
339c13b6
JB
4897/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4898 whose name and domain match NAME and DOMAIN respectively.
4899 If no match was found, then extend the search to "enclosing"
4900 routines (in other words, if we're inside a nested function,
4901 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4902 If WILD_MATCH_P is nonzero, perform the naming matching in
4903 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4904
4905 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4906
4907static void
4908ada_add_local_symbols (struct obstack *obstackp, const char *name,
4909 struct block *block, domain_enum domain,
d0a8ab18 4910 int wild_match_p)
339c13b6
JB
4911{
4912 int block_depth = 0;
4913
4914 while (block != NULL)
4915 {
4916 block_depth += 1;
d0a8ab18
JB
4917 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4918 wild_match_p);
339c13b6
JB
4919
4920 /* If we found a non-function match, assume that's the one. */
4921 if (is_nonfunction (defns_collected (obstackp, 0),
4922 num_defns_collected (obstackp)))
4923 return;
4924
4925 block = BLOCK_SUPERBLOCK (block);
4926 }
4927
4928 /* If no luck so far, try to find NAME as a local symbol in some lexically
4929 enclosing subprogram. */
4930 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4931 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4932}
4933
ccefe4c4 4934/* An object of this type is used as the user_data argument when
40658b94 4935 calling the map_matching_symbols method. */
ccefe4c4 4936
40658b94 4937struct match_data
ccefe4c4 4938{
40658b94 4939 struct objfile *objfile;
ccefe4c4 4940 struct obstack *obstackp;
40658b94
PH
4941 struct symbol *arg_sym;
4942 int found_sym;
ccefe4c4
TT
4943};
4944
40658b94
PH
4945/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4946 to a list of symbols. DATA0 is a pointer to a struct match_data *
4947 containing the obstack that collects the symbol list, the file that SYM
4948 must come from, a flag indicating whether a non-argument symbol has
4949 been found in the current block, and the last argument symbol
4950 passed in SYM within the current block (if any). When SYM is null,
4951 marking the end of a block, the argument symbol is added if no
4952 other has been found. */
ccefe4c4 4953
40658b94
PH
4954static int
4955aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4956{
40658b94
PH
4957 struct match_data *data = (struct match_data *) data0;
4958
4959 if (sym == NULL)
4960 {
4961 if (!data->found_sym && data->arg_sym != NULL)
4962 add_defn_to_vec (data->obstackp,
4963 fixup_symbol_section (data->arg_sym, data->objfile),
4964 block);
4965 data->found_sym = 0;
4966 data->arg_sym = NULL;
4967 }
4968 else
4969 {
4970 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4971 return 0;
4972 else if (SYMBOL_IS_ARGUMENT (sym))
4973 data->arg_sym = sym;
4974 else
4975 {
4976 data->found_sym = 1;
4977 add_defn_to_vec (data->obstackp,
4978 fixup_symbol_section (sym, data->objfile),
4979 block);
4980 }
4981 }
4982 return 0;
4983}
4984
4985/* Compare STRING1 to STRING2, with results as for strcmp.
4986 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4987 implies compare_names (STRING1, STRING2) (they may differ as to
4988 what symbols compare equal). */
5b4ee69b 4989
40658b94
PH
4990static int
4991compare_names (const char *string1, const char *string2)
4992{
4993 while (*string1 != '\0' && *string2 != '\0')
4994 {
4995 if (isspace (*string1) || isspace (*string2))
4996 return strcmp_iw_ordered (string1, string2);
4997 if (*string1 != *string2)
4998 break;
4999 string1 += 1;
5000 string2 += 1;
5001 }
5002 switch (*string1)
5003 {
5004 case '(':
5005 return strcmp_iw_ordered (string1, string2);
5006 case '_':
5007 if (*string2 == '\0')
5008 {
052874e8 5009 if (is_name_suffix (string1))
40658b94
PH
5010 return 0;
5011 else
1a1d5513 5012 return 1;
40658b94 5013 }
dbb8534f 5014 /* FALLTHROUGH */
40658b94
PH
5015 default:
5016 if (*string2 == '(')
5017 return strcmp_iw_ordered (string1, string2);
5018 else
5019 return *string1 - *string2;
5020 }
ccefe4c4
TT
5021}
5022
339c13b6
JB
5023/* Add to OBSTACKP all non-local symbols whose name and domain match
5024 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5025 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5026
5027static void
40658b94
PH
5028add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5029 domain_enum domain, int global,
5030 int is_wild_match)
339c13b6
JB
5031{
5032 struct objfile *objfile;
40658b94 5033 struct match_data data;
339c13b6 5034
6475f2fe 5035 memset (&data, 0, sizeof data);
ccefe4c4 5036 data.obstackp = obstackp;
339c13b6 5037
ccefe4c4 5038 ALL_OBJFILES (objfile)
40658b94
PH
5039 {
5040 data.objfile = objfile;
5041
5042 if (is_wild_match)
ade7ed9e 5043 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5044 aux_add_nonlocal_symbols, &data,
5045 wild_match, NULL);
5046 else
ade7ed9e 5047 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
40658b94
PH
5048 aux_add_nonlocal_symbols, &data,
5049 full_match, compare_names);
5050 }
5051
5052 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5053 {
5054 ALL_OBJFILES (objfile)
5055 {
5056 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5057 strcpy (name1, "_ada_");
5058 strcpy (name1 + sizeof ("_ada_") - 1, name);
5059 data.objfile = objfile;
ade7ed9e
DE
5060 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5061 global,
0963b4bd
MS
5062 aux_add_nonlocal_symbols,
5063 &data,
40658b94
PH
5064 full_match, compare_names);
5065 }
5066 }
339c13b6
JB
5067}
5068
4eeaa230
DE
5069/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5070 non-zero, enclosing scope and in global scopes, returning the number of
5071 matches.
9f88c959 5072 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5073 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5074 any) in which they were found. This vector is transient---good only to
5075 the next call of ada_lookup_symbol_list.
5076
5077 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5078 symbol match within the nest of blocks whose innermost member is BLOCK0,
5079 is the one match returned (no other matches in that or
d9680e73 5080 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5081 surrounding BLOCK0, then these alone are returned.
5082
9f88c959 5083 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5084 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5085
4eeaa230
DE
5086static int
5087ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5088 domain_enum namespace,
5089 struct ada_symbol_info **results,
5090 int full_search)
14f9c5c9
AS
5091{
5092 struct symbol *sym;
14f9c5c9 5093 struct block *block;
4c4b4cd2 5094 const char *name;
82ccd55e 5095 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5096 int cacheIfUnique;
4c4b4cd2 5097 int ndefns;
14f9c5c9 5098
4c4b4cd2
PH
5099 obstack_free (&symbol_list_obstack, NULL);
5100 obstack_init (&symbol_list_obstack);
14f9c5c9 5101
14f9c5c9
AS
5102 cacheIfUnique = 0;
5103
5104 /* Search specified block and its superiors. */
5105
4c4b4cd2 5106 name = name0;
76a01679
JB
5107 block = (struct block *) block0; /* FIXME: No cast ought to be
5108 needed, but adding const will
5109 have a cascade effect. */
339c13b6
JB
5110
5111 /* Special case: If the user specifies a symbol name inside package
5112 Standard, do a non-wild matching of the symbol name without
5113 the "standard__" prefix. This was primarily introduced in order
5114 to allow the user to specifically access the standard exceptions
5115 using, for instance, Standard.Constraint_Error when Constraint_Error
5116 is ambiguous (due to the user defining its own Constraint_Error
5117 entity inside its program). */
4c4b4cd2
PH
5118 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5119 {
4c4b4cd2
PH
5120 block = NULL;
5121 name = name0 + sizeof ("standard__") - 1;
5122 }
5123
339c13b6 5124 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5125
4eeaa230
DE
5126 if (block != NULL)
5127 {
5128 if (full_search)
5129 {
5130 ada_add_local_symbols (&symbol_list_obstack, name, block,
5131 namespace, wild_match_p);
5132 }
5133 else
5134 {
5135 /* In the !full_search case we're are being called by
5136 ada_iterate_over_symbols, and we don't want to search
5137 superblocks. */
5138 ada_add_block_symbols (&symbol_list_obstack, block, name,
5139 namespace, NULL, wild_match_p);
5140 }
5141 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5142 goto done;
5143 }
d2e4a39e 5144
339c13b6
JB
5145 /* No non-global symbols found. Check our cache to see if we have
5146 already performed this search before. If we have, then return
5147 the same result. */
5148
14f9c5c9 5149 cacheIfUnique = 1;
2570f2b7 5150 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5151 {
5152 if (sym != NULL)
2570f2b7 5153 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5154 goto done;
5155 }
14f9c5c9 5156
339c13b6
JB
5157 /* Search symbols from all global blocks. */
5158
40658b94 5159 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5160 wild_match_p);
d2e4a39e 5161
4c4b4cd2 5162 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5163 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5164
4c4b4cd2 5165 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5166 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5167 wild_match_p);
14f9c5c9 5168
4c4b4cd2
PH
5169done:
5170 ndefns = num_defns_collected (&symbol_list_obstack);
5171 *results = defns_collected (&symbol_list_obstack, 1);
5172
5173 ndefns = remove_extra_symbols (*results, ndefns);
5174
2ad01556 5175 if (ndefns == 0 && full_search)
2570f2b7 5176 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5177
2ad01556 5178 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5179 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5180
aeb5907d 5181 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5182
14f9c5c9
AS
5183 return ndefns;
5184}
5185
4eeaa230
DE
5186/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5187 in global scopes, returning the number of matches, and setting *RESULTS
5188 to a vector of (SYM,BLOCK) tuples.
5189 See ada_lookup_symbol_list_worker for further details. */
5190
5191int
5192ada_lookup_symbol_list (const char *name0, const struct block *block0,
5193 domain_enum domain, struct ada_symbol_info **results)
5194{
5195 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5196}
5197
5198/* Implementation of the la_iterate_over_symbols method. */
5199
5200static void
5201ada_iterate_over_symbols (const struct block *block,
5202 const char *name, domain_enum domain,
5203 symbol_found_callback_ftype *callback,
5204 void *data)
5205{
5206 int ndefs, i;
5207 struct ada_symbol_info *results;
5208
5209 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5210 for (i = 0; i < ndefs; ++i)
5211 {
5212 if (! (*callback) (results[i].sym, data))
5213 break;
5214 }
5215}
5216
f8eba3c6
TT
5217/* If NAME is the name of an entity, return a string that should
5218 be used to look that entity up in Ada units. This string should
5219 be deallocated after use using xfree.
5220
5221 NAME can have any form that the "break" or "print" commands might
5222 recognize. In other words, it does not have to be the "natural"
5223 name, or the "encoded" name. */
5224
5225char *
5226ada_name_for_lookup (const char *name)
5227{
5228 char *canon;
5229 int nlen = strlen (name);
5230
5231 if (name[0] == '<' && name[nlen - 1] == '>')
5232 {
5233 canon = xmalloc (nlen - 1);
5234 memcpy (canon, name + 1, nlen - 2);
5235 canon[nlen - 2] = '\0';
5236 }
5237 else
5238 canon = xstrdup (ada_encode (ada_fold_name (name)));
5239 return canon;
5240}
5241
4e5c77fe
JB
5242/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5243 to 1, but choosing the first symbol found if there are multiple
5244 choices.
5245
5e2336be
JB
5246 The result is stored in *INFO, which must be non-NULL.
5247 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5248
5249void
5250ada_lookup_encoded_symbol (const char *name, const struct block *block,
5251 domain_enum namespace,
5e2336be 5252 struct ada_symbol_info *info)
14f9c5c9 5253{
4c4b4cd2 5254 struct ada_symbol_info *candidates;
14f9c5c9
AS
5255 int n_candidates;
5256
5e2336be
JB
5257 gdb_assert (info != NULL);
5258 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5259
4eeaa230 5260 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5261 if (n_candidates == 0)
4e5c77fe 5262 return;
4c4b4cd2 5263
5e2336be
JB
5264 *info = candidates[0];
5265 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5266}
aeb5907d
JB
5267
5268/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5269 scope and in global scopes, or NULL if none. NAME is folded and
5270 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5271 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5272 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5273
aeb5907d
JB
5274struct symbol *
5275ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5276 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5277{
5e2336be 5278 struct ada_symbol_info info;
4e5c77fe 5279
aeb5907d
JB
5280 if (is_a_field_of_this != NULL)
5281 *is_a_field_of_this = 0;
5282
4e5c77fe 5283 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5284 block0, namespace, &info);
5285 return info.sym;
4c4b4cd2 5286}
14f9c5c9 5287
4c4b4cd2
PH
5288static struct symbol *
5289ada_lookup_symbol_nonlocal (const char *name,
76a01679 5290 const struct block *block,
21b556f4 5291 const domain_enum domain)
4c4b4cd2 5292{
94af9270 5293 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5294}
5295
5296
4c4b4cd2
PH
5297/* True iff STR is a possible encoded suffix of a normal Ada name
5298 that is to be ignored for matching purposes. Suffixes of parallel
5299 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5300 are given by any of the regular expressions:
4c4b4cd2 5301
babe1480
JB
5302 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5303 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5304 TKB [subprogram suffix for task bodies]
babe1480 5305 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5306 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5307
5308 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5309 match is performed. This sequence is used to differentiate homonyms,
5310 is an optional part of a valid name suffix. */
4c4b4cd2 5311
14f9c5c9 5312static int
d2e4a39e 5313is_name_suffix (const char *str)
14f9c5c9
AS
5314{
5315 int k;
4c4b4cd2
PH
5316 const char *matching;
5317 const int len = strlen (str);
5318
babe1480
JB
5319 /* Skip optional leading __[0-9]+. */
5320
4c4b4cd2
PH
5321 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5322 {
babe1480
JB
5323 str += 3;
5324 while (isdigit (str[0]))
5325 str += 1;
4c4b4cd2 5326 }
babe1480
JB
5327
5328 /* [.$][0-9]+ */
4c4b4cd2 5329
babe1480 5330 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5331 {
babe1480 5332 matching = str + 1;
4c4b4cd2
PH
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if (matching[0] == '\0')
5336 return 1;
5337 }
5338
5339 /* ___[0-9]+ */
babe1480 5340
4c4b4cd2
PH
5341 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5342 {
5343 matching = str + 3;
5344 while (isdigit (matching[0]))
5345 matching += 1;
5346 if (matching[0] == '\0')
5347 return 1;
5348 }
5349
9ac7f98e
JB
5350 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5351
5352 if (strcmp (str, "TKB") == 0)
5353 return 1;
5354
529cad9c
PH
5355#if 0
5356 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5357 with a N at the end. Unfortunately, the compiler uses the same
5358 convention for other internal types it creates. So treating
529cad9c 5359 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5360 some regressions. For instance, consider the case of an enumerated
5361 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5362 name ends with N.
5363 Having a single character like this as a suffix carrying some
0963b4bd 5364 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5365 to be something like "_N" instead. In the meantime, do not do
5366 the following check. */
5367 /* Protected Object Subprograms */
5368 if (len == 1 && str [0] == 'N')
5369 return 1;
5370#endif
5371
5372 /* _E[0-9]+[bs]$ */
5373 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5374 {
5375 matching = str + 3;
5376 while (isdigit (matching[0]))
5377 matching += 1;
5378 if ((matching[0] == 'b' || matching[0] == 's')
5379 && matching [1] == '\0')
5380 return 1;
5381 }
5382
4c4b4cd2
PH
5383 /* ??? We should not modify STR directly, as we are doing below. This
5384 is fine in this case, but may become problematic later if we find
5385 that this alternative did not work, and want to try matching
5386 another one from the begining of STR. Since we modified it, we
5387 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5388 if (str[0] == 'X')
5389 {
5390 str += 1;
d2e4a39e 5391 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5392 {
5393 if (str[0] != 'n' && str[0] != 'b')
5394 return 0;
5395 str += 1;
5396 }
14f9c5c9 5397 }
babe1480 5398
14f9c5c9
AS
5399 if (str[0] == '\000')
5400 return 1;
babe1480 5401
d2e4a39e 5402 if (str[0] == '_')
14f9c5c9
AS
5403 {
5404 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5405 return 0;
d2e4a39e 5406 if (str[2] == '_')
4c4b4cd2 5407 {
61ee279c
PH
5408 if (strcmp (str + 3, "JM") == 0)
5409 return 1;
5410 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5411 the LJM suffix in favor of the JM one. But we will
5412 still accept LJM as a valid suffix for a reasonable
5413 amount of time, just to allow ourselves to debug programs
5414 compiled using an older version of GNAT. */
4c4b4cd2
PH
5415 if (strcmp (str + 3, "LJM") == 0)
5416 return 1;
5417 if (str[3] != 'X')
5418 return 0;
1265e4aa
JB
5419 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5420 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5421 return 1;
5422 if (str[4] == 'R' && str[5] != 'T')
5423 return 1;
5424 return 0;
5425 }
5426 if (!isdigit (str[2]))
5427 return 0;
5428 for (k = 3; str[k] != '\0'; k += 1)
5429 if (!isdigit (str[k]) && str[k] != '_')
5430 return 0;
14f9c5c9
AS
5431 return 1;
5432 }
4c4b4cd2 5433 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5434 {
4c4b4cd2
PH
5435 for (k = 2; str[k] != '\0'; k += 1)
5436 if (!isdigit (str[k]) && str[k] != '_')
5437 return 0;
14f9c5c9
AS
5438 return 1;
5439 }
5440 return 0;
5441}
d2e4a39e 5442
aeb5907d
JB
5443/* Return non-zero if the string starting at NAME and ending before
5444 NAME_END contains no capital letters. */
529cad9c
PH
5445
5446static int
5447is_valid_name_for_wild_match (const char *name0)
5448{
5449 const char *decoded_name = ada_decode (name0);
5450 int i;
5451
5823c3ef
JB
5452 /* If the decoded name starts with an angle bracket, it means that
5453 NAME0 does not follow the GNAT encoding format. It should then
5454 not be allowed as a possible wild match. */
5455 if (decoded_name[0] == '<')
5456 return 0;
5457
529cad9c
PH
5458 for (i=0; decoded_name[i] != '\0'; i++)
5459 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5460 return 0;
5461
5462 return 1;
5463}
5464
73589123
PH
5465/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5466 that could start a simple name. Assumes that *NAMEP points into
5467 the string beginning at NAME0. */
4c4b4cd2 5468
14f9c5c9 5469static int
73589123 5470advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5471{
73589123 5472 const char *name = *namep;
5b4ee69b 5473
5823c3ef 5474 while (1)
14f9c5c9 5475 {
aa27d0b3 5476 int t0, t1;
73589123
PH
5477
5478 t0 = *name;
5479 if (t0 == '_')
5480 {
5481 t1 = name[1];
5482 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5483 {
5484 name += 1;
5485 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5486 break;
5487 else
5488 name += 1;
5489 }
aa27d0b3
JB
5490 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5491 || name[2] == target0))
73589123
PH
5492 {
5493 name += 2;
5494 break;
5495 }
5496 else
5497 return 0;
5498 }
5499 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5500 name += 1;
5501 else
5823c3ef 5502 return 0;
73589123
PH
5503 }
5504
5505 *namep = name;
5506 return 1;
5507}
5508
5509/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5510 informational suffixes of NAME (i.e., for which is_name_suffix is
5511 true). Assumes that PATN is a lower-cased Ada simple name. */
5512
5513static int
5514wild_match (const char *name, const char *patn)
5515{
22e048c9 5516 const char *p;
73589123
PH
5517 const char *name0 = name;
5518
5519 while (1)
5520 {
5521 const char *match = name;
5522
5523 if (*name == *patn)
5524 {
5525 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5526 if (*p != *name)
5527 break;
5528 if (*p == '\0' && is_name_suffix (name))
5529 return match != name0 && !is_valid_name_for_wild_match (name0);
5530
5531 if (name[-1] == '_')
5532 name -= 1;
5533 }
5534 if (!advance_wild_match (&name, name0, *patn))
5535 return 1;
96d887e8 5536 }
96d887e8
PH
5537}
5538
40658b94
PH
5539/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5540 informational suffix. */
5541
c4d840bd
PH
5542static int
5543full_match (const char *sym_name, const char *search_name)
5544{
40658b94 5545 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5546}
5547
5548
96d887e8
PH
5549/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5550 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5551 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5552 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5553
5554static void
5555ada_add_block_symbols (struct obstack *obstackp,
76a01679 5556 struct block *block, const char *name,
96d887e8 5557 domain_enum domain, struct objfile *objfile,
2570f2b7 5558 int wild)
96d887e8 5559{
8157b174 5560 struct block_iterator iter;
96d887e8
PH
5561 int name_len = strlen (name);
5562 /* A matching argument symbol, if any. */
5563 struct symbol *arg_sym;
5564 /* Set true when we find a matching non-argument symbol. */
5565 int found_sym;
5566 struct symbol *sym;
5567
5568 arg_sym = NULL;
5569 found_sym = 0;
5570 if (wild)
5571 {
8157b174
TT
5572 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5573 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5574 {
5eeb2539
AR
5575 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5576 SYMBOL_DOMAIN (sym), domain)
73589123 5577 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5578 {
2a2d4dc3
AS
5579 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5580 continue;
5581 else if (SYMBOL_IS_ARGUMENT (sym))
5582 arg_sym = sym;
5583 else
5584 {
76a01679
JB
5585 found_sym = 1;
5586 add_defn_to_vec (obstackp,
5587 fixup_symbol_section (sym, objfile),
2570f2b7 5588 block);
76a01679
JB
5589 }
5590 }
5591 }
96d887e8
PH
5592 }
5593 else
5594 {
8157b174
TT
5595 for (sym = block_iter_match_first (block, name, full_match, &iter);
5596 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5597 {
5eeb2539
AR
5598 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5599 SYMBOL_DOMAIN (sym), domain))
76a01679 5600 {
c4d840bd
PH
5601 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5602 {
5603 if (SYMBOL_IS_ARGUMENT (sym))
5604 arg_sym = sym;
5605 else
2a2d4dc3 5606 {
c4d840bd
PH
5607 found_sym = 1;
5608 add_defn_to_vec (obstackp,
5609 fixup_symbol_section (sym, objfile),
5610 block);
2a2d4dc3 5611 }
c4d840bd 5612 }
76a01679
JB
5613 }
5614 }
96d887e8
PH
5615 }
5616
5617 if (!found_sym && arg_sym != NULL)
5618 {
76a01679
JB
5619 add_defn_to_vec (obstackp,
5620 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5621 block);
96d887e8
PH
5622 }
5623
5624 if (!wild)
5625 {
5626 arg_sym = NULL;
5627 found_sym = 0;
5628
5629 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5630 {
5eeb2539
AR
5631 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5632 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5633 {
5634 int cmp;
5635
5636 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5637 if (cmp == 0)
5638 {
5639 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5640 if (cmp == 0)
5641 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5642 name_len);
5643 }
5644
5645 if (cmp == 0
5646 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5647 {
2a2d4dc3
AS
5648 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5649 {
5650 if (SYMBOL_IS_ARGUMENT (sym))
5651 arg_sym = sym;
5652 else
5653 {
5654 found_sym = 1;
5655 add_defn_to_vec (obstackp,
5656 fixup_symbol_section (sym, objfile),
5657 block);
5658 }
5659 }
76a01679
JB
5660 }
5661 }
76a01679 5662 }
96d887e8
PH
5663
5664 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5665 They aren't parameters, right? */
5666 if (!found_sym && arg_sym != NULL)
5667 {
5668 add_defn_to_vec (obstackp,
76a01679 5669 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5670 block);
96d887e8
PH
5671 }
5672 }
5673}
5674\f
41d27058
JB
5675
5676 /* Symbol Completion */
5677
5678/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5679 name in a form that's appropriate for the completion. The result
5680 does not need to be deallocated, but is only good until the next call.
5681
5682 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5683 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5684 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5685 in its encoded form. */
5686
5687static const char *
5688symbol_completion_match (const char *sym_name,
5689 const char *text, int text_len,
6ea35997 5690 int wild_match_p, int encoded_p)
41d27058 5691{
41d27058
JB
5692 const int verbatim_match = (text[0] == '<');
5693 int match = 0;
5694
5695 if (verbatim_match)
5696 {
5697 /* Strip the leading angle bracket. */
5698 text = text + 1;
5699 text_len--;
5700 }
5701
5702 /* First, test against the fully qualified name of the symbol. */
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706
6ea35997 5707 if (match && !encoded_p)
41d27058
JB
5708 {
5709 /* One needed check before declaring a positive match is to verify
5710 that iff we are doing a verbatim match, the decoded version
5711 of the symbol name starts with '<'. Otherwise, this symbol name
5712 is not a suitable completion. */
5713 const char *sym_name_copy = sym_name;
5714 int has_angle_bracket;
5715
5716 sym_name = ada_decode (sym_name);
5717 has_angle_bracket = (sym_name[0] == '<');
5718 match = (has_angle_bracket == verbatim_match);
5719 sym_name = sym_name_copy;
5720 }
5721
5722 if (match && !verbatim_match)
5723 {
5724 /* When doing non-verbatim match, another check that needs to
5725 be done is to verify that the potentially matching symbol name
5726 does not include capital letters, because the ada-mode would
5727 not be able to understand these symbol names without the
5728 angle bracket notation. */
5729 const char *tmp;
5730
5731 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5732 if (*tmp != '\0')
5733 match = 0;
5734 }
5735
5736 /* Second: Try wild matching... */
5737
e701b3c0 5738 if (!match && wild_match_p)
41d27058
JB
5739 {
5740 /* Since we are doing wild matching, this means that TEXT
5741 may represent an unqualified symbol name. We therefore must
5742 also compare TEXT against the unqualified name of the symbol. */
5743 sym_name = ada_unqualified_name (ada_decode (sym_name));
5744
5745 if (strncmp (sym_name, text, text_len) == 0)
5746 match = 1;
5747 }
5748
5749 /* Finally: If we found a mach, prepare the result to return. */
5750
5751 if (!match)
5752 return NULL;
5753
5754 if (verbatim_match)
5755 sym_name = add_angle_brackets (sym_name);
5756
6ea35997 5757 if (!encoded_p)
41d27058
JB
5758 sym_name = ada_decode (sym_name);
5759
5760 return sym_name;
5761}
5762
5763/* A companion function to ada_make_symbol_completion_list().
5764 Check if SYM_NAME represents a symbol which name would be suitable
5765 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5766 it is appended at the end of the given string vector SV.
5767
5768 ORIG_TEXT is the string original string from the user command
5769 that needs to be completed. WORD is the entire command on which
5770 completion should be performed. These two parameters are used to
5771 determine which part of the symbol name should be added to the
5772 completion vector.
c0af1706 5773 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5774 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5775 encoded formed (in which case the completion should also be
5776 encoded). */
5777
5778static void
d6565258 5779symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5780 const char *sym_name,
5781 const char *text, int text_len,
5782 const char *orig_text, const char *word,
cb8e9b97 5783 int wild_match_p, int encoded_p)
41d27058
JB
5784{
5785 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5786 wild_match_p, encoded_p);
41d27058
JB
5787 char *completion;
5788
5789 if (match == NULL)
5790 return;
5791
5792 /* We found a match, so add the appropriate completion to the given
5793 string vector. */
5794
5795 if (word == orig_text)
5796 {
5797 completion = xmalloc (strlen (match) + 5);
5798 strcpy (completion, match);
5799 }
5800 else if (word > orig_text)
5801 {
5802 /* Return some portion of sym_name. */
5803 completion = xmalloc (strlen (match) + 5);
5804 strcpy (completion, match + (word - orig_text));
5805 }
5806 else
5807 {
5808 /* Return some of ORIG_TEXT plus sym_name. */
5809 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5810 strncpy (completion, word, orig_text - word);
5811 completion[orig_text - word] = '\0';
5812 strcat (completion, match);
5813 }
5814
d6565258 5815 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5816}
5817
ccefe4c4 5818/* An object of this type is passed as the user_data argument to the
7b08b9eb 5819 expand_partial_symbol_names method. */
ccefe4c4
TT
5820struct add_partial_datum
5821{
5822 VEC(char_ptr) **completions;
6f937416 5823 const char *text;
ccefe4c4 5824 int text_len;
6f937416
PA
5825 const char *text0;
5826 const char *word;
ccefe4c4
TT
5827 int wild_match;
5828 int encoded;
5829};
5830
7b08b9eb
JK
5831/* A callback for expand_partial_symbol_names. */
5832static int
e078317b 5833ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5834{
5835 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5836
5837 return symbol_completion_match (name, data->text, data->text_len,
5838 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5839}
5840
49c4e619
TT
5841/* Return a list of possible symbol names completing TEXT0. WORD is
5842 the entire command on which completion is made. */
41d27058 5843
49c4e619 5844static VEC (char_ptr) *
6f937416
PA
5845ada_make_symbol_completion_list (const char *text0, const char *word,
5846 enum type_code code)
41d27058
JB
5847{
5848 char *text;
5849 int text_len;
b1ed564a
JB
5850 int wild_match_p;
5851 int encoded_p;
2ba95b9b 5852 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5853 struct symbol *sym;
5854 struct symtab *s;
41d27058
JB
5855 struct minimal_symbol *msymbol;
5856 struct objfile *objfile;
5857 struct block *b, *surrounding_static_block = 0;
5858 int i;
8157b174 5859 struct block_iterator iter;
b8fea896 5860 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 5861
2f68a895
TT
5862 gdb_assert (code == TYPE_CODE_UNDEF);
5863
41d27058
JB
5864 if (text0[0] == '<')
5865 {
5866 text = xstrdup (text0);
5867 make_cleanup (xfree, text);
5868 text_len = strlen (text);
b1ed564a
JB
5869 wild_match_p = 0;
5870 encoded_p = 1;
41d27058
JB
5871 }
5872 else
5873 {
5874 text = xstrdup (ada_encode (text0));
5875 make_cleanup (xfree, text);
5876 text_len = strlen (text);
5877 for (i = 0; i < text_len; i++)
5878 text[i] = tolower (text[i]);
5879
b1ed564a 5880 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5881 /* If the name contains a ".", then the user is entering a fully
5882 qualified entity name, and the match must not be done in wild
5883 mode. Similarly, if the user wants to complete what looks like
5884 an encoded name, the match must not be done in wild mode. */
b1ed564a 5885 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5886 }
5887
5888 /* First, look at the partial symtab symbols. */
41d27058 5889 {
ccefe4c4
TT
5890 struct add_partial_datum data;
5891
5892 data.completions = &completions;
5893 data.text = text;
5894 data.text_len = text_len;
5895 data.text0 = text0;
5896 data.word = word;
b1ed564a
JB
5897 data.wild_match = wild_match_p;
5898 data.encoded = encoded_p;
7b08b9eb 5899 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5900 }
5901
5902 /* At this point scan through the misc symbol vectors and add each
5903 symbol you find to the list. Eventually we want to ignore
5904 anything that isn't a text symbol (everything else will be
5905 handled by the psymtab code above). */
5906
5907 ALL_MSYMBOLS (objfile, msymbol)
5908 {
5909 QUIT;
d6565258 5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5911 text, text_len, text0, word, wild_match_p,
5912 encoded_p);
41d27058
JB
5913 }
5914
5915 /* Search upwards from currently selected frame (so that we can
5916 complete on local vars. */
5917
5918 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5919 {
5920 if (!BLOCK_SUPERBLOCK (b))
5921 surrounding_static_block = b; /* For elmin of dups */
5922
5923 ALL_BLOCK_SYMBOLS (b, iter, sym)
5924 {
d6565258 5925 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5926 text, text_len, text0, word,
b1ed564a 5927 wild_match_p, encoded_p);
41d27058
JB
5928 }
5929 }
5930
5931 /* Go through the symtabs and check the externs and statics for
5932 symbols which match. */
5933
5934 ALL_SYMTABS (objfile, s)
5935 {
5936 QUIT;
5937 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5938 ALL_BLOCK_SYMBOLS (b, iter, sym)
5939 {
d6565258 5940 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5941 text, text_len, text0, word,
b1ed564a 5942 wild_match_p, encoded_p);
41d27058
JB
5943 }
5944 }
5945
5946 ALL_SYMTABS (objfile, s)
5947 {
5948 QUIT;
5949 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5950 /* Don't do this block twice. */
5951 if (b == surrounding_static_block)
5952 continue;
5953 ALL_BLOCK_SYMBOLS (b, iter, sym)
5954 {
d6565258 5955 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5956 text, text_len, text0, word,
b1ed564a 5957 wild_match_p, encoded_p);
41d27058
JB
5958 }
5959 }
5960
b8fea896 5961 do_cleanups (old_chain);
49c4e619 5962 return completions;
41d27058
JB
5963}
5964
963a6417 5965 /* Field Access */
96d887e8 5966
73fb9985
JB
5967/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5968 for tagged types. */
5969
5970static int
5971ada_is_dispatch_table_ptr_type (struct type *type)
5972{
0d5cff50 5973 const char *name;
73fb9985
JB
5974
5975 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5976 return 0;
5977
5978 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5979 if (name == NULL)
5980 return 0;
5981
5982 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5983}
5984
ac4a2da4
JG
5985/* Return non-zero if TYPE is an interface tag. */
5986
5987static int
5988ada_is_interface_tag (struct type *type)
5989{
5990 const char *name = TYPE_NAME (type);
5991
5992 if (name == NULL)
5993 return 0;
5994
5995 return (strcmp (name, "ada__tags__interface_tag") == 0);
5996}
5997
963a6417
PH
5998/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5999 to be invisible to users. */
96d887e8 6000
963a6417
PH
6001int
6002ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6003{
963a6417
PH
6004 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6005 return 1;
ffde82bf 6006
73fb9985
JB
6007 /* Check the name of that field. */
6008 {
6009 const char *name = TYPE_FIELD_NAME (type, field_num);
6010
6011 /* Anonymous field names should not be printed.
6012 brobecker/2007-02-20: I don't think this can actually happen
6013 but we don't want to print the value of annonymous fields anyway. */
6014 if (name == NULL)
6015 return 1;
6016
ffde82bf
JB
6017 /* Normally, fields whose name start with an underscore ("_")
6018 are fields that have been internally generated by the compiler,
6019 and thus should not be printed. The "_parent" field is special,
6020 however: This is a field internally generated by the compiler
6021 for tagged types, and it contains the components inherited from
6022 the parent type. This field should not be printed as is, but
6023 should not be ignored either. */
73fb9985
JB
6024 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6025 return 1;
6026 }
6027
ac4a2da4
JG
6028 /* If this is the dispatch table of a tagged type or an interface tag,
6029 then ignore. */
73fb9985 6030 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6031 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6032 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6033 return 1;
6034
6035 /* Not a special field, so it should not be ignored. */
6036 return 0;
963a6417 6037}
96d887e8 6038
963a6417 6039/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6040 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6041
963a6417
PH
6042int
6043ada_is_tagged_type (struct type *type, int refok)
6044{
6045 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6046}
96d887e8 6047
963a6417 6048/* True iff TYPE represents the type of X'Tag */
96d887e8 6049
963a6417
PH
6050int
6051ada_is_tag_type (struct type *type)
6052{
6053 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6054 return 0;
6055 else
96d887e8 6056 {
963a6417 6057 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6058
963a6417
PH
6059 return (name != NULL
6060 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6061 }
96d887e8
PH
6062}
6063
963a6417 6064/* The type of the tag on VAL. */
76a01679 6065
963a6417
PH
6066struct type *
6067ada_tag_type (struct value *val)
96d887e8 6068{
df407dfe 6069 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6070}
96d887e8 6071
b50d69b5
JG
6072/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6073 retired at Ada 05). */
6074
6075static int
6076is_ada95_tag (struct value *tag)
6077{
6078 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6079}
6080
963a6417 6081/* The value of the tag on VAL. */
96d887e8 6082
963a6417
PH
6083struct value *
6084ada_value_tag (struct value *val)
6085{
03ee6b2e 6086 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6087}
6088
963a6417
PH
6089/* The value of the tag on the object of type TYPE whose contents are
6090 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6091 ADDRESS. */
96d887e8 6092
963a6417 6093static struct value *
10a2c479 6094value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6095 const gdb_byte *valaddr,
963a6417 6096 CORE_ADDR address)
96d887e8 6097{
b5385fc0 6098 int tag_byte_offset;
963a6417 6099 struct type *tag_type;
5b4ee69b 6100
963a6417 6101 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6102 NULL, NULL, NULL))
96d887e8 6103 {
fc1a4b47 6104 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6105 ? NULL
6106 : valaddr + tag_byte_offset);
963a6417 6107 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6108
963a6417 6109 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6110 }
963a6417
PH
6111 return NULL;
6112}
96d887e8 6113
963a6417
PH
6114static struct type *
6115type_from_tag (struct value *tag)
6116{
6117 const char *type_name = ada_tag_name (tag);
5b4ee69b 6118
963a6417
PH
6119 if (type_name != NULL)
6120 return ada_find_any_type (ada_encode (type_name));
6121 return NULL;
6122}
96d887e8 6123
b50d69b5
JG
6124/* Given a value OBJ of a tagged type, return a value of this
6125 type at the base address of the object. The base address, as
6126 defined in Ada.Tags, it is the address of the primary tag of
6127 the object, and therefore where the field values of its full
6128 view can be fetched. */
6129
6130struct value *
6131ada_tag_value_at_base_address (struct value *obj)
6132{
6133 volatile struct gdb_exception e;
6134 struct value *val;
6135 LONGEST offset_to_top = 0;
6136 struct type *ptr_type, *obj_type;
6137 struct value *tag;
6138 CORE_ADDR base_address;
6139
6140 obj_type = value_type (obj);
6141
6142 /* It is the responsability of the caller to deref pointers. */
6143
6144 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6145 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6146 return obj;
6147
6148 tag = ada_value_tag (obj);
6149 if (!tag)
6150 return obj;
6151
6152 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6153
6154 if (is_ada95_tag (tag))
6155 return obj;
6156
6157 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6158 ptr_type = lookup_pointer_type (ptr_type);
6159 val = value_cast (ptr_type, tag);
6160 if (!val)
6161 return obj;
6162
6163 /* It is perfectly possible that an exception be raised while
6164 trying to determine the base address, just like for the tag;
6165 see ada_tag_name for more details. We do not print the error
6166 message for the same reason. */
6167
6168 TRY_CATCH (e, RETURN_MASK_ERROR)
6169 {
6170 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6171 }
6172
6173 if (e.reason < 0)
6174 return obj;
6175
6176 /* If offset is null, nothing to do. */
6177
6178 if (offset_to_top == 0)
6179 return obj;
6180
6181 /* -1 is a special case in Ada.Tags; however, what should be done
6182 is not quite clear from the documentation. So do nothing for
6183 now. */
6184
6185 if (offset_to_top == -1)
6186 return obj;
6187
6188 base_address = value_address (obj) - offset_to_top;
6189 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6190
6191 /* Make sure that we have a proper tag at the new address.
6192 Otherwise, offset_to_top is bogus (which can happen when
6193 the object is not initialized yet). */
6194
6195 if (!tag)
6196 return obj;
6197
6198 obj_type = type_from_tag (tag);
6199
6200 if (!obj_type)
6201 return obj;
6202
6203 return value_from_contents_and_address (obj_type, NULL, base_address);
6204}
6205
1b611343
JB
6206/* Return the "ada__tags__type_specific_data" type. */
6207
6208static struct type *
6209ada_get_tsd_type (struct inferior *inf)
963a6417 6210{
1b611343 6211 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6212
1b611343
JB
6213 if (data->tsd_type == 0)
6214 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6215 return data->tsd_type;
6216}
529cad9c 6217
1b611343
JB
6218/* Return the TSD (type-specific data) associated to the given TAG.
6219 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6220
1b611343 6221 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6222
1b611343
JB
6223static struct value *
6224ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6225{
4c4b4cd2 6226 struct value *val;
1b611343 6227 struct type *type;
5b4ee69b 6228
1b611343
JB
6229 /* First option: The TSD is simply stored as a field of our TAG.
6230 Only older versions of GNAT would use this format, but we have
6231 to test it first, because there are no visible markers for
6232 the current approach except the absence of that field. */
529cad9c 6233
1b611343
JB
6234 val = ada_value_struct_elt (tag, "tsd", 1);
6235 if (val)
6236 return val;
e802dbe0 6237
1b611343
JB
6238 /* Try the second representation for the dispatch table (in which
6239 there is no explicit 'tsd' field in the referent of the tag pointer,
6240 and instead the tsd pointer is stored just before the dispatch
6241 table. */
e802dbe0 6242
1b611343
JB
6243 type = ada_get_tsd_type (current_inferior());
6244 if (type == NULL)
6245 return NULL;
6246 type = lookup_pointer_type (lookup_pointer_type (type));
6247 val = value_cast (type, tag);
6248 if (val == NULL)
6249 return NULL;
6250 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6251}
6252
1b611343
JB
6253/* Given the TSD of a tag (type-specific data), return a string
6254 containing the name of the associated type.
6255
6256 The returned value is good until the next call. May return NULL
6257 if we are unable to determine the tag name. */
6258
6259static char *
6260ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6261{
529cad9c
PH
6262 static char name[1024];
6263 char *p;
1b611343 6264 struct value *val;
529cad9c 6265
1b611343 6266 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6267 if (val == NULL)
1b611343 6268 return NULL;
4c4b4cd2
PH
6269 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6270 for (p = name; *p != '\0'; p += 1)
6271 if (isalpha (*p))
6272 *p = tolower (*p);
1b611343 6273 return name;
4c4b4cd2
PH
6274}
6275
6276/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6277 a C string.
6278
6279 Return NULL if the TAG is not an Ada tag, or if we were unable to
6280 determine the name of that tag. The result is good until the next
6281 call. */
4c4b4cd2
PH
6282
6283const char *
6284ada_tag_name (struct value *tag)
6285{
1b611343
JB
6286 volatile struct gdb_exception e;
6287 char *name = NULL;
5b4ee69b 6288
df407dfe 6289 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6290 return NULL;
1b611343
JB
6291
6292 /* It is perfectly possible that an exception be raised while trying
6293 to determine the TAG's name, even under normal circumstances:
6294 The associated variable may be uninitialized or corrupted, for
6295 instance. We do not let any exception propagate past this point.
6296 instead we return NULL.
6297
6298 We also do not print the error message either (which often is very
6299 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6300 the caller print a more meaningful message if necessary. */
6301 TRY_CATCH (e, RETURN_MASK_ERROR)
6302 {
6303 struct value *tsd = ada_get_tsd_from_tag (tag);
6304
6305 if (tsd != NULL)
6306 name = ada_tag_name_from_tsd (tsd);
6307 }
6308
6309 return name;
4c4b4cd2
PH
6310}
6311
6312/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6313
d2e4a39e 6314struct type *
ebf56fd3 6315ada_parent_type (struct type *type)
14f9c5c9
AS
6316{
6317 int i;
6318
61ee279c 6319 type = ada_check_typedef (type);
14f9c5c9
AS
6320
6321 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6322 return NULL;
6323
6324 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6325 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6326 {
6327 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6328
6329 /* If the _parent field is a pointer, then dereference it. */
6330 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6331 parent_type = TYPE_TARGET_TYPE (parent_type);
6332 /* If there is a parallel XVS type, get the actual base type. */
6333 parent_type = ada_get_base_type (parent_type);
6334
6335 return ada_check_typedef (parent_type);
6336 }
14f9c5c9
AS
6337
6338 return NULL;
6339}
6340
4c4b4cd2
PH
6341/* True iff field number FIELD_NUM of structure type TYPE contains the
6342 parent-type (inherited) fields of a derived type. Assumes TYPE is
6343 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6344
6345int
ebf56fd3 6346ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6347{
61ee279c 6348 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6349
4c4b4cd2
PH
6350 return (name != NULL
6351 && (strncmp (name, "PARENT", 6) == 0
6352 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6353}
6354
4c4b4cd2 6355/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6356 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6357 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6358 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6359 structures. */
14f9c5c9
AS
6360
6361int
ebf56fd3 6362ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6363{
d2e4a39e 6364 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6365
d2e4a39e 6366 return (name != NULL
4c4b4cd2
PH
6367 && (strncmp (name, "PARENT", 6) == 0
6368 || strcmp (name, "REP") == 0
6369 || strncmp (name, "_parent", 7) == 0
6370 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6371}
6372
4c4b4cd2
PH
6373/* True iff field number FIELD_NUM of structure or union type TYPE
6374 is a variant wrapper. Assumes TYPE is a structure type with at least
6375 FIELD_NUM+1 fields. */
14f9c5c9
AS
6376
6377int
ebf56fd3 6378ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6379{
d2e4a39e 6380 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6381
14f9c5c9 6382 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6383 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6384 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6385 == TYPE_CODE_UNION)));
14f9c5c9
AS
6386}
6387
6388/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6389 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6390 returns the type of the controlling discriminant for the variant.
6391 May return NULL if the type could not be found. */
14f9c5c9 6392
d2e4a39e 6393struct type *
ebf56fd3 6394ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6395{
d2e4a39e 6396 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6397
7c964f07 6398 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6399}
6400
4c4b4cd2 6401/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6402 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6403 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6404
6405int
ebf56fd3 6406ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6407{
d2e4a39e 6408 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6409
14f9c5c9
AS
6410 return (name != NULL && name[0] == 'O');
6411}
6412
6413/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6414 returns the name of the discriminant controlling the variant.
6415 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6416
d2e4a39e 6417char *
ebf56fd3 6418ada_variant_discrim_name (struct type *type0)
14f9c5c9 6419{
d2e4a39e 6420 static char *result = NULL;
14f9c5c9 6421 static size_t result_len = 0;
d2e4a39e
AS
6422 struct type *type;
6423 const char *name;
6424 const char *discrim_end;
6425 const char *discrim_start;
14f9c5c9
AS
6426
6427 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6428 type = TYPE_TARGET_TYPE (type0);
6429 else
6430 type = type0;
6431
6432 name = ada_type_name (type);
6433
6434 if (name == NULL || name[0] == '\000')
6435 return "";
6436
6437 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6438 discrim_end -= 1)
6439 {
4c4b4cd2
PH
6440 if (strncmp (discrim_end, "___XVN", 6) == 0)
6441 break;
14f9c5c9
AS
6442 }
6443 if (discrim_end == name)
6444 return "";
6445
d2e4a39e 6446 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6447 discrim_start -= 1)
6448 {
d2e4a39e 6449 if (discrim_start == name + 1)
4c4b4cd2 6450 return "";
76a01679 6451 if ((discrim_start > name + 3
4c4b4cd2
PH
6452 && strncmp (discrim_start - 3, "___", 3) == 0)
6453 || discrim_start[-1] == '.')
6454 break;
14f9c5c9
AS
6455 }
6456
6457 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6458 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6459 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6460 return result;
6461}
6462
4c4b4cd2
PH
6463/* Scan STR for a subtype-encoded number, beginning at position K.
6464 Put the position of the character just past the number scanned in
6465 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6466 Return 1 if there was a valid number at the given position, and 0
6467 otherwise. A "subtype-encoded" number consists of the absolute value
6468 in decimal, followed by the letter 'm' to indicate a negative number.
6469 Assumes 0m does not occur. */
14f9c5c9
AS
6470
6471int
d2e4a39e 6472ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6473{
6474 ULONGEST RU;
6475
d2e4a39e 6476 if (!isdigit (str[k]))
14f9c5c9
AS
6477 return 0;
6478
4c4b4cd2 6479 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6480 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6481 LONGEST. */
14f9c5c9
AS
6482 RU = 0;
6483 while (isdigit (str[k]))
6484 {
d2e4a39e 6485 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6486 k += 1;
6487 }
6488
d2e4a39e 6489 if (str[k] == 'm')
14f9c5c9
AS
6490 {
6491 if (R != NULL)
4c4b4cd2 6492 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6493 k += 1;
6494 }
6495 else if (R != NULL)
6496 *R = (LONGEST) RU;
6497
4c4b4cd2 6498 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6499 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6500 number representable as a LONGEST (although either would probably work
6501 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6502 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6503
6504 if (new_k != NULL)
6505 *new_k = k;
6506 return 1;
6507}
6508
4c4b4cd2
PH
6509/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6510 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6511 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6512
d2e4a39e 6513int
ebf56fd3 6514ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6515{
d2e4a39e 6516 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6517 int p;
6518
6519 p = 0;
6520 while (1)
6521 {
d2e4a39e 6522 switch (name[p])
4c4b4cd2
PH
6523 {
6524 case '\0':
6525 return 0;
6526 case 'S':
6527 {
6528 LONGEST W;
5b4ee69b 6529
4c4b4cd2
PH
6530 if (!ada_scan_number (name, p + 1, &W, &p))
6531 return 0;
6532 if (val == W)
6533 return 1;
6534 break;
6535 }
6536 case 'R':
6537 {
6538 LONGEST L, U;
5b4ee69b 6539
4c4b4cd2
PH
6540 if (!ada_scan_number (name, p + 1, &L, &p)
6541 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6542 return 0;
6543 if (val >= L && val <= U)
6544 return 1;
6545 break;
6546 }
6547 case 'O':
6548 return 1;
6549 default:
6550 return 0;
6551 }
6552 }
6553}
6554
0963b4bd 6555/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6556
6557/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6558 ARG_TYPE, extract and return the value of one of its (non-static)
6559 fields. FIELDNO says which field. Differs from value_primitive_field
6560 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6561
4c4b4cd2 6562static struct value *
d2e4a39e 6563ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6564 struct type *arg_type)
14f9c5c9 6565{
14f9c5c9
AS
6566 struct type *type;
6567
61ee279c 6568 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6569 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6570
4c4b4cd2 6571 /* Handle packed fields. */
14f9c5c9
AS
6572
6573 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6574 {
6575 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6576 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6577
0fd88904 6578 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6579 offset + bit_pos / 8,
6580 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6581 }
6582 else
6583 return value_primitive_field (arg1, offset, fieldno, arg_type);
6584}
6585
52ce6436
PH
6586/* Find field with name NAME in object of type TYPE. If found,
6587 set the following for each argument that is non-null:
6588 - *FIELD_TYPE_P to the field's type;
6589 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6590 an object of that type;
6591 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6592 - *BIT_SIZE_P to its size in bits if the field is packed, and
6593 0 otherwise;
6594 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6595 fields up to but not including the desired field, or by the total
6596 number of fields if not found. A NULL value of NAME never
6597 matches; the function just counts visible fields in this case.
6598
0963b4bd 6599 Returns 1 if found, 0 otherwise. */
52ce6436 6600
4c4b4cd2 6601static int
0d5cff50 6602find_struct_field (const char *name, struct type *type, int offset,
76a01679 6603 struct type **field_type_p,
52ce6436
PH
6604 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6605 int *index_p)
4c4b4cd2
PH
6606{
6607 int i;
6608
61ee279c 6609 type = ada_check_typedef (type);
76a01679 6610
52ce6436
PH
6611 if (field_type_p != NULL)
6612 *field_type_p = NULL;
6613 if (byte_offset_p != NULL)
d5d6fca5 6614 *byte_offset_p = 0;
52ce6436
PH
6615 if (bit_offset_p != NULL)
6616 *bit_offset_p = 0;
6617 if (bit_size_p != NULL)
6618 *bit_size_p = 0;
6619
6620 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6621 {
6622 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6623 int fld_offset = offset + bit_pos / 8;
0d5cff50 6624 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6625
4c4b4cd2
PH
6626 if (t_field_name == NULL)
6627 continue;
6628
52ce6436 6629 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6630 {
6631 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6632
52ce6436
PH
6633 if (field_type_p != NULL)
6634 *field_type_p = TYPE_FIELD_TYPE (type, i);
6635 if (byte_offset_p != NULL)
6636 *byte_offset_p = fld_offset;
6637 if (bit_offset_p != NULL)
6638 *bit_offset_p = bit_pos % 8;
6639 if (bit_size_p != NULL)
6640 *bit_size_p = bit_size;
76a01679
JB
6641 return 1;
6642 }
4c4b4cd2
PH
6643 else if (ada_is_wrapper_field (type, i))
6644 {
52ce6436
PH
6645 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6646 field_type_p, byte_offset_p, bit_offset_p,
6647 bit_size_p, index_p))
76a01679
JB
6648 return 1;
6649 }
4c4b4cd2
PH
6650 else if (ada_is_variant_part (type, i))
6651 {
52ce6436
PH
6652 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6653 fixed type?? */
4c4b4cd2 6654 int j;
52ce6436
PH
6655 struct type *field_type
6656 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6657
52ce6436 6658 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6659 {
76a01679
JB
6660 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6661 fld_offset
6662 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6663 field_type_p, byte_offset_p,
52ce6436 6664 bit_offset_p, bit_size_p, index_p))
76a01679 6665 return 1;
4c4b4cd2
PH
6666 }
6667 }
52ce6436
PH
6668 else if (index_p != NULL)
6669 *index_p += 1;
4c4b4cd2
PH
6670 }
6671 return 0;
6672}
6673
0963b4bd 6674/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6675
52ce6436
PH
6676static int
6677num_visible_fields (struct type *type)
6678{
6679 int n;
5b4ee69b 6680
52ce6436
PH
6681 n = 0;
6682 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6683 return n;
6684}
14f9c5c9 6685
4c4b4cd2 6686/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6687 and search in it assuming it has (class) type TYPE.
6688 If found, return value, else return NULL.
6689
4c4b4cd2 6690 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6691
4c4b4cd2 6692static struct value *
d2e4a39e 6693ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6694 struct type *type)
14f9c5c9
AS
6695{
6696 int i;
14f9c5c9 6697
5b4ee69b 6698 type = ada_check_typedef (type);
52ce6436 6699 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6700 {
0d5cff50 6701 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6702
6703 if (t_field_name == NULL)
4c4b4cd2 6704 continue;
14f9c5c9
AS
6705
6706 else if (field_name_match (t_field_name, name))
4c4b4cd2 6707 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6708
6709 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6710 {
0963b4bd 6711 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6712 ada_search_struct_field (name, arg,
6713 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6714 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6715
4c4b4cd2
PH
6716 if (v != NULL)
6717 return v;
6718 }
14f9c5c9
AS
6719
6720 else if (ada_is_variant_part (type, i))
4c4b4cd2 6721 {
0963b4bd 6722 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6723 int j;
5b4ee69b
MS
6724 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6725 i));
4c4b4cd2
PH
6726 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6727
52ce6436 6728 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6729 {
0963b4bd
MS
6730 struct value *v = ada_search_struct_field /* Force line
6731 break. */
06d5cf63
JB
6732 (name, arg,
6733 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6734 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6735
4c4b4cd2
PH
6736 if (v != NULL)
6737 return v;
6738 }
6739 }
14f9c5c9
AS
6740 }
6741 return NULL;
6742}
d2e4a39e 6743
52ce6436
PH
6744static struct value *ada_index_struct_field_1 (int *, struct value *,
6745 int, struct type *);
6746
6747
6748/* Return field #INDEX in ARG, where the index is that returned by
6749 * find_struct_field through its INDEX_P argument. Adjust the address
6750 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6751 * If found, return value, else return NULL. */
52ce6436
PH
6752
6753static struct value *
6754ada_index_struct_field (int index, struct value *arg, int offset,
6755 struct type *type)
6756{
6757 return ada_index_struct_field_1 (&index, arg, offset, type);
6758}
6759
6760
6761/* Auxiliary function for ada_index_struct_field. Like
6762 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6763 * *INDEX_P. */
52ce6436
PH
6764
6765static struct value *
6766ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6767 struct type *type)
6768{
6769 int i;
6770 type = ada_check_typedef (type);
6771
6772 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6773 {
6774 if (TYPE_FIELD_NAME (type, i) == NULL)
6775 continue;
6776 else if (ada_is_wrapper_field (type, i))
6777 {
0963b4bd 6778 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6779 ada_index_struct_field_1 (index_p, arg,
6780 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6781 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6782
52ce6436
PH
6783 if (v != NULL)
6784 return v;
6785 }
6786
6787 else if (ada_is_variant_part (type, i))
6788 {
6789 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6790 find_struct_field. */
52ce6436
PH
6791 error (_("Cannot assign this kind of variant record"));
6792 }
6793 else if (*index_p == 0)
6794 return ada_value_primitive_field (arg, offset, i, type);
6795 else
6796 *index_p -= 1;
6797 }
6798 return NULL;
6799}
6800
4c4b4cd2
PH
6801/* Given ARG, a value of type (pointer or reference to a)*
6802 structure/union, extract the component named NAME from the ultimate
6803 target structure/union and return it as a value with its
f5938064 6804 appropriate type.
14f9c5c9 6805
4c4b4cd2
PH
6806 The routine searches for NAME among all members of the structure itself
6807 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6808 (e.g., '_parent').
6809
03ee6b2e
PH
6810 If NO_ERR, then simply return NULL in case of error, rather than
6811 calling error. */
14f9c5c9 6812
d2e4a39e 6813struct value *
03ee6b2e 6814ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6815{
4c4b4cd2 6816 struct type *t, *t1;
d2e4a39e 6817 struct value *v;
14f9c5c9 6818
4c4b4cd2 6819 v = NULL;
df407dfe 6820 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6821 if (TYPE_CODE (t) == TYPE_CODE_REF)
6822 {
6823 t1 = TYPE_TARGET_TYPE (t);
6824 if (t1 == NULL)
03ee6b2e 6825 goto BadValue;
61ee279c 6826 t1 = ada_check_typedef (t1);
4c4b4cd2 6827 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6828 {
994b9211 6829 arg = coerce_ref (arg);
76a01679
JB
6830 t = t1;
6831 }
4c4b4cd2 6832 }
14f9c5c9 6833
4c4b4cd2
PH
6834 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6835 {
6836 t1 = TYPE_TARGET_TYPE (t);
6837 if (t1 == NULL)
03ee6b2e 6838 goto BadValue;
61ee279c 6839 t1 = ada_check_typedef (t1);
4c4b4cd2 6840 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6841 {
6842 arg = value_ind (arg);
6843 t = t1;
6844 }
4c4b4cd2 6845 else
76a01679 6846 break;
4c4b4cd2 6847 }
14f9c5c9 6848
4c4b4cd2 6849 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6850 goto BadValue;
14f9c5c9 6851
4c4b4cd2
PH
6852 if (t1 == t)
6853 v = ada_search_struct_field (name, arg, 0, t);
6854 else
6855 {
6856 int bit_offset, bit_size, byte_offset;
6857 struct type *field_type;
6858 CORE_ADDR address;
6859
76a01679 6860 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 6861 address = value_address (ada_value_ind (arg));
4c4b4cd2 6862 else
b50d69b5 6863 address = value_address (ada_coerce_ref (arg));
14f9c5c9 6864
1ed6ede0 6865 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6866 if (find_struct_field (name, t1, 0,
6867 &field_type, &byte_offset, &bit_offset,
52ce6436 6868 &bit_size, NULL))
76a01679
JB
6869 {
6870 if (bit_size != 0)
6871 {
714e53ab
PH
6872 if (TYPE_CODE (t) == TYPE_CODE_REF)
6873 arg = ada_coerce_ref (arg);
6874 else
6875 arg = ada_value_ind (arg);
76a01679
JB
6876 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6877 bit_offset, bit_size,
6878 field_type);
6879 }
6880 else
f5938064 6881 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6882 }
6883 }
6884
03ee6b2e
PH
6885 if (v != NULL || no_err)
6886 return v;
6887 else
323e0a4a 6888 error (_("There is no member named %s."), name);
14f9c5c9 6889
03ee6b2e
PH
6890 BadValue:
6891 if (no_err)
6892 return NULL;
6893 else
0963b4bd
MS
6894 error (_("Attempt to extract a component of "
6895 "a value that is not a record."));
14f9c5c9
AS
6896}
6897
6898/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6899 If DISPP is non-null, add its byte displacement from the beginning of a
6900 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6901 work for packed fields).
6902
6903 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6904 followed by "___".
14f9c5c9 6905
0963b4bd 6906 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6907 be a (pointer or reference)+ to a struct or union, and the
6908 ultimate target type will be searched.
14f9c5c9
AS
6909
6910 Looks recursively into variant clauses and parent types.
6911
4c4b4cd2
PH
6912 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6913 TYPE is not a type of the right kind. */
14f9c5c9 6914
4c4b4cd2 6915static struct type *
76a01679
JB
6916ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6917 int noerr, int *dispp)
14f9c5c9
AS
6918{
6919 int i;
6920
6921 if (name == NULL)
6922 goto BadName;
6923
76a01679 6924 if (refok && type != NULL)
4c4b4cd2
PH
6925 while (1)
6926 {
61ee279c 6927 type = ada_check_typedef (type);
76a01679
JB
6928 if (TYPE_CODE (type) != TYPE_CODE_PTR
6929 && TYPE_CODE (type) != TYPE_CODE_REF)
6930 break;
6931 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6932 }
14f9c5c9 6933
76a01679 6934 if (type == NULL
1265e4aa
JB
6935 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6936 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6937 {
4c4b4cd2 6938 if (noerr)
76a01679 6939 return NULL;
4c4b4cd2 6940 else
76a01679
JB
6941 {
6942 target_terminal_ours ();
6943 gdb_flush (gdb_stdout);
323e0a4a
AC
6944 if (type == NULL)
6945 error (_("Type (null) is not a structure or union type"));
6946 else
6947 {
6948 /* XXX: type_sprint */
6949 fprintf_unfiltered (gdb_stderr, _("Type "));
6950 type_print (type, "", gdb_stderr, -1);
6951 error (_(" is not a structure or union type"));
6952 }
76a01679 6953 }
14f9c5c9
AS
6954 }
6955
6956 type = to_static_fixed_type (type);
6957
6958 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6959 {
0d5cff50 6960 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6961 struct type *t;
6962 int disp;
d2e4a39e 6963
14f9c5c9 6964 if (t_field_name == NULL)
4c4b4cd2 6965 continue;
14f9c5c9
AS
6966
6967 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6968 {
6969 if (dispp != NULL)
6970 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6971 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6972 }
14f9c5c9
AS
6973
6974 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6975 {
6976 disp = 0;
6977 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6978 0, 1, &disp);
6979 if (t != NULL)
6980 {
6981 if (dispp != NULL)
6982 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6983 return t;
6984 }
6985 }
14f9c5c9
AS
6986
6987 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6988 {
6989 int j;
5b4ee69b
MS
6990 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6991 i));
4c4b4cd2
PH
6992
6993 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6994 {
b1f33ddd
JB
6995 /* FIXME pnh 2008/01/26: We check for a field that is
6996 NOT wrapped in a struct, since the compiler sometimes
6997 generates these for unchecked variant types. Revisit
0963b4bd 6998 if the compiler changes this practice. */
0d5cff50 6999 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7000 disp = 0;
b1f33ddd
JB
7001 if (v_field_name != NULL
7002 && field_name_match (v_field_name, name))
7003 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7004 else
0963b4bd
MS
7005 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7006 j),
b1f33ddd
JB
7007 name, 0, 1, &disp);
7008
4c4b4cd2
PH
7009 if (t != NULL)
7010 {
7011 if (dispp != NULL)
7012 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7013 return t;
7014 }
7015 }
7016 }
14f9c5c9
AS
7017
7018 }
7019
7020BadName:
d2e4a39e 7021 if (!noerr)
14f9c5c9
AS
7022 {
7023 target_terminal_ours ();
7024 gdb_flush (gdb_stdout);
323e0a4a
AC
7025 if (name == NULL)
7026 {
7027 /* XXX: type_sprint */
7028 fprintf_unfiltered (gdb_stderr, _("Type "));
7029 type_print (type, "", gdb_stderr, -1);
7030 error (_(" has no component named <null>"));
7031 }
7032 else
7033 {
7034 /* XXX: type_sprint */
7035 fprintf_unfiltered (gdb_stderr, _("Type "));
7036 type_print (type, "", gdb_stderr, -1);
7037 error (_(" has no component named %s"), name);
7038 }
14f9c5c9
AS
7039 }
7040
7041 return NULL;
7042}
7043
b1f33ddd
JB
7044/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7045 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7046 represents an unchecked union (that is, the variant part of a
0963b4bd 7047 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7048
7049static int
7050is_unchecked_variant (struct type *var_type, struct type *outer_type)
7051{
7052 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7053
b1f33ddd
JB
7054 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7055 == NULL);
7056}
7057
7058
14f9c5c9
AS
7059/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7060 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7061 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7062 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7063
d2e4a39e 7064int
ebf56fd3 7065ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7066 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7067{
7068 int others_clause;
7069 int i;
d2e4a39e 7070 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7071 struct value *outer;
7072 struct value *discrim;
14f9c5c9
AS
7073 LONGEST discrim_val;
7074
0c281816
JB
7075 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7076 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7077 if (discrim == NULL)
14f9c5c9 7078 return -1;
0c281816 7079 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7080
7081 others_clause = -1;
7082 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7083 {
7084 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7085 others_clause = i;
14f9c5c9 7086 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7087 return i;
14f9c5c9
AS
7088 }
7089
7090 return others_clause;
7091}
d2e4a39e 7092\f
14f9c5c9
AS
7093
7094
4c4b4cd2 7095 /* Dynamic-Sized Records */
14f9c5c9
AS
7096
7097/* Strategy: The type ostensibly attached to a value with dynamic size
7098 (i.e., a size that is not statically recorded in the debugging
7099 data) does not accurately reflect the size or layout of the value.
7100 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7101 conventional types that are constructed on the fly. */
14f9c5c9
AS
7102
7103/* There is a subtle and tricky problem here. In general, we cannot
7104 determine the size of dynamic records without its data. However,
7105 the 'struct value' data structure, which GDB uses to represent
7106 quantities in the inferior process (the target), requires the size
7107 of the type at the time of its allocation in order to reserve space
7108 for GDB's internal copy of the data. That's why the
7109 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7110 rather than struct value*s.
14f9c5c9
AS
7111
7112 However, GDB's internal history variables ($1, $2, etc.) are
7113 struct value*s containing internal copies of the data that are not, in
7114 general, the same as the data at their corresponding addresses in
7115 the target. Fortunately, the types we give to these values are all
7116 conventional, fixed-size types (as per the strategy described
7117 above), so that we don't usually have to perform the
7118 'to_fixed_xxx_type' conversions to look at their values.
7119 Unfortunately, there is one exception: if one of the internal
7120 history variables is an array whose elements are unconstrained
7121 records, then we will need to create distinct fixed types for each
7122 element selected. */
7123
7124/* The upshot of all of this is that many routines take a (type, host
7125 address, target address) triple as arguments to represent a value.
7126 The host address, if non-null, is supposed to contain an internal
7127 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7128 target at the target address. */
14f9c5c9
AS
7129
7130/* Assuming that VAL0 represents a pointer value, the result of
7131 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7132 dynamic-sized types. */
14f9c5c9 7133
d2e4a39e
AS
7134struct value *
7135ada_value_ind (struct value *val0)
14f9c5c9 7136{
c48db5ca 7137 struct value *val = value_ind (val0);
5b4ee69b 7138
b50d69b5
JG
7139 if (ada_is_tagged_type (value_type (val), 0))
7140 val = ada_tag_value_at_base_address (val);
7141
4c4b4cd2 7142 return ada_to_fixed_value (val);
14f9c5c9
AS
7143}
7144
7145/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7146 qualifiers on VAL0. */
7147
d2e4a39e
AS
7148static struct value *
7149ada_coerce_ref (struct value *val0)
7150{
df407dfe 7151 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7152 {
7153 struct value *val = val0;
5b4ee69b 7154
994b9211 7155 val = coerce_ref (val);
b50d69b5
JG
7156
7157 if (ada_is_tagged_type (value_type (val), 0))
7158 val = ada_tag_value_at_base_address (val);
7159
4c4b4cd2 7160 return ada_to_fixed_value (val);
d2e4a39e
AS
7161 }
7162 else
14f9c5c9
AS
7163 return val0;
7164}
7165
7166/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7167 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7168
7169static unsigned int
ebf56fd3 7170align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7171{
7172 return (off + alignment - 1) & ~(alignment - 1);
7173}
7174
4c4b4cd2 7175/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7176
7177static unsigned int
ebf56fd3 7178field_alignment (struct type *type, int f)
14f9c5c9 7179{
d2e4a39e 7180 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7181 int len;
14f9c5c9
AS
7182 int align_offset;
7183
64a1bf19
JB
7184 /* The field name should never be null, unless the debugging information
7185 is somehow malformed. In this case, we assume the field does not
7186 require any alignment. */
7187 if (name == NULL)
7188 return 1;
7189
7190 len = strlen (name);
7191
4c4b4cd2
PH
7192 if (!isdigit (name[len - 1]))
7193 return 1;
14f9c5c9 7194
d2e4a39e 7195 if (isdigit (name[len - 2]))
14f9c5c9
AS
7196 align_offset = len - 2;
7197 else
7198 align_offset = len - 1;
7199
4c4b4cd2 7200 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7201 return TARGET_CHAR_BIT;
7202
4c4b4cd2
PH
7203 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7204}
7205
852dff6c 7206/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7207
852dff6c
JB
7208static struct symbol *
7209ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7210{
7211 struct symbol *sym;
7212
7213 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7214 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7215 return sym;
7216
7217 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7218 return sym;
14f9c5c9
AS
7219}
7220
dddfab26
UW
7221/* Find a type named NAME. Ignores ambiguity. This routine will look
7222 solely for types defined by debug info, it will not search the GDB
7223 primitive types. */
4c4b4cd2 7224
852dff6c 7225static struct type *
ebf56fd3 7226ada_find_any_type (const char *name)
14f9c5c9 7227{
852dff6c 7228 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7229
14f9c5c9 7230 if (sym != NULL)
dddfab26 7231 return SYMBOL_TYPE (sym);
14f9c5c9 7232
dddfab26 7233 return NULL;
14f9c5c9
AS
7234}
7235
739593e0
JB
7236/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7237 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7238 symbol, in which case it is returned. Otherwise, this looks for
7239 symbols whose name is that of NAME_SYM suffixed with "___XR".
7240 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7241
7242struct symbol *
270140bd 7243ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7244{
739593e0 7245 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7246 struct symbol *sym;
7247
739593e0
JB
7248 if (strstr (name, "___XR") != NULL)
7249 return name_sym;
7250
aeb5907d
JB
7251 sym = find_old_style_renaming_symbol (name, block);
7252
7253 if (sym != NULL)
7254 return sym;
7255
0963b4bd 7256 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7257 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7258 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7259 return sym;
7260 else
7261 return NULL;
7262}
7263
7264static struct symbol *
270140bd 7265find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7266{
7f0df278 7267 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7268 char *rename;
7269
7270 if (function_sym != NULL)
7271 {
7272 /* If the symbol is defined inside a function, NAME is not fully
7273 qualified. This means we need to prepend the function name
7274 as well as adding the ``___XR'' suffix to build the name of
7275 the associated renaming symbol. */
0d5cff50 7276 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7277 /* Function names sometimes contain suffixes used
7278 for instance to qualify nested subprograms. When building
7279 the XR type name, we need to make sure that this suffix is
7280 not included. So do not include any suffix in the function
7281 name length below. */
69fadcdf 7282 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7283 const int rename_len = function_name_len + 2 /* "__" */
7284 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7285
529cad9c 7286 /* Strip the suffix if necessary. */
69fadcdf
JB
7287 ada_remove_trailing_digits (function_name, &function_name_len);
7288 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7289 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7290
4c4b4cd2
PH
7291 /* Library-level functions are a special case, as GNAT adds
7292 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7293 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7294 have this prefix, so we need to skip this prefix if present. */
7295 if (function_name_len > 5 /* "_ada_" */
7296 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7297 {
7298 function_name += 5;
7299 function_name_len -= 5;
7300 }
4c4b4cd2
PH
7301
7302 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7303 strncpy (rename, function_name, function_name_len);
7304 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7305 "__%s___XR", name);
4c4b4cd2
PH
7306 }
7307 else
7308 {
7309 const int rename_len = strlen (name) + 6;
5b4ee69b 7310
4c4b4cd2 7311 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7312 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7313 }
7314
852dff6c 7315 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7316}
7317
14f9c5c9 7318/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7319 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7320 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7321 otherwise return 0. */
7322
14f9c5c9 7323int
d2e4a39e 7324ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7325{
7326 if (type1 == NULL)
7327 return 1;
7328 else if (type0 == NULL)
7329 return 0;
7330 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7331 return 1;
7332 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7333 return 0;
4c4b4cd2
PH
7334 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7335 return 1;
ad82864c 7336 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7337 return 1;
4c4b4cd2
PH
7338 else if (ada_is_array_descriptor_type (type0)
7339 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7340 return 1;
aeb5907d
JB
7341 else
7342 {
7343 const char *type0_name = type_name_no_tag (type0);
7344 const char *type1_name = type_name_no_tag (type1);
7345
7346 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7347 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7348 return 1;
7349 }
14f9c5c9
AS
7350 return 0;
7351}
7352
7353/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7354 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7355
0d5cff50 7356const char *
d2e4a39e 7357ada_type_name (struct type *type)
14f9c5c9 7358{
d2e4a39e 7359 if (type == NULL)
14f9c5c9
AS
7360 return NULL;
7361 else if (TYPE_NAME (type) != NULL)
7362 return TYPE_NAME (type);
7363 else
7364 return TYPE_TAG_NAME (type);
7365}
7366
b4ba55a1
JB
7367/* Search the list of "descriptive" types associated to TYPE for a type
7368 whose name is NAME. */
7369
7370static struct type *
7371find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7372{
7373 struct type *result;
7374
7375 /* If there no descriptive-type info, then there is no parallel type
7376 to be found. */
7377 if (!HAVE_GNAT_AUX_INFO (type))
7378 return NULL;
7379
7380 result = TYPE_DESCRIPTIVE_TYPE (type);
7381 while (result != NULL)
7382 {
0d5cff50 7383 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7384
7385 if (result_name == NULL)
7386 {
7387 warning (_("unexpected null name on descriptive type"));
7388 return NULL;
7389 }
7390
7391 /* If the names match, stop. */
7392 if (strcmp (result_name, name) == 0)
7393 break;
7394
7395 /* Otherwise, look at the next item on the list, if any. */
7396 if (HAVE_GNAT_AUX_INFO (result))
7397 result = TYPE_DESCRIPTIVE_TYPE (result);
7398 else
7399 result = NULL;
7400 }
7401
7402 /* If we didn't find a match, see whether this is a packed array. With
7403 older compilers, the descriptive type information is either absent or
7404 irrelevant when it comes to packed arrays so the above lookup fails.
7405 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7406 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7407 return ada_find_any_type (name);
7408
7409 return result;
7410}
7411
7412/* Find a parallel type to TYPE with the specified NAME, using the
7413 descriptive type taken from the debugging information, if available,
7414 and otherwise using the (slower) name-based method. */
7415
7416static struct type *
7417ada_find_parallel_type_with_name (struct type *type, const char *name)
7418{
7419 struct type *result = NULL;
7420
7421 if (HAVE_GNAT_AUX_INFO (type))
7422 result = find_parallel_type_by_descriptive_type (type, name);
7423 else
7424 result = ada_find_any_type (name);
7425
7426 return result;
7427}
7428
7429/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7430 SUFFIX to the name of TYPE. */
14f9c5c9 7431
d2e4a39e 7432struct type *
ebf56fd3 7433ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7434{
0d5cff50
DE
7435 char *name;
7436 const char *typename = ada_type_name (type);
14f9c5c9 7437 int len;
d2e4a39e 7438
14f9c5c9
AS
7439 if (typename == NULL)
7440 return NULL;
7441
7442 len = strlen (typename);
7443
b4ba55a1 7444 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7445
7446 strcpy (name, typename);
7447 strcpy (name + len, suffix);
7448
b4ba55a1 7449 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7450}
7451
14f9c5c9 7452/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7453 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7454
d2e4a39e
AS
7455static struct type *
7456dynamic_template_type (struct type *type)
14f9c5c9 7457{
61ee279c 7458 type = ada_check_typedef (type);
14f9c5c9
AS
7459
7460 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7461 || ada_type_name (type) == NULL)
14f9c5c9 7462 return NULL;
d2e4a39e 7463 else
14f9c5c9
AS
7464 {
7465 int len = strlen (ada_type_name (type));
5b4ee69b 7466
4c4b4cd2
PH
7467 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7468 return type;
14f9c5c9 7469 else
4c4b4cd2 7470 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7471 }
7472}
7473
7474/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7475 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7476
d2e4a39e
AS
7477static int
7478is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7479{
7480 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7481
d2e4a39e 7482 return name != NULL
14f9c5c9
AS
7483 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7484 && strstr (name, "___XVL") != NULL;
7485}
7486
4c4b4cd2
PH
7487/* The index of the variant field of TYPE, or -1 if TYPE does not
7488 represent a variant record type. */
14f9c5c9 7489
d2e4a39e 7490static int
4c4b4cd2 7491variant_field_index (struct type *type)
14f9c5c9
AS
7492{
7493 int f;
7494
4c4b4cd2
PH
7495 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7496 return -1;
7497
7498 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7499 {
7500 if (ada_is_variant_part (type, f))
7501 return f;
7502 }
7503 return -1;
14f9c5c9
AS
7504}
7505
4c4b4cd2
PH
7506/* A record type with no fields. */
7507
d2e4a39e 7508static struct type *
e9bb382b 7509empty_record (struct type *template)
14f9c5c9 7510{
e9bb382b 7511 struct type *type = alloc_type_copy (template);
5b4ee69b 7512
14f9c5c9
AS
7513 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7514 TYPE_NFIELDS (type) = 0;
7515 TYPE_FIELDS (type) = NULL;
b1f33ddd 7516 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7517 TYPE_NAME (type) = "<empty>";
7518 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7519 TYPE_LENGTH (type) = 0;
7520 return type;
7521}
7522
7523/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7524 the value of type TYPE at VALADDR or ADDRESS (see comments at
7525 the beginning of this section) VAL according to GNAT conventions.
7526 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7527 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7528 an outer-level type (i.e., as opposed to a branch of a variant.) A
7529 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7530 of the variant.
14f9c5c9 7531
4c4b4cd2
PH
7532 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7533 length are not statically known are discarded. As a consequence,
7534 VALADDR, ADDRESS and DVAL0 are ignored.
7535
7536 NOTE: Limitations: For now, we assume that dynamic fields and
7537 variants occupy whole numbers of bytes. However, they need not be
7538 byte-aligned. */
7539
7540struct type *
10a2c479 7541ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7542 const gdb_byte *valaddr,
4c4b4cd2
PH
7543 CORE_ADDR address, struct value *dval0,
7544 int keep_dynamic_fields)
14f9c5c9 7545{
d2e4a39e
AS
7546 struct value *mark = value_mark ();
7547 struct value *dval;
7548 struct type *rtype;
14f9c5c9 7549 int nfields, bit_len;
4c4b4cd2 7550 int variant_field;
14f9c5c9 7551 long off;
d94e4f4f 7552 int fld_bit_len;
14f9c5c9
AS
7553 int f;
7554
4c4b4cd2
PH
7555 /* Compute the number of fields in this record type that are going
7556 to be processed: unless keep_dynamic_fields, this includes only
7557 fields whose position and length are static will be processed. */
7558 if (keep_dynamic_fields)
7559 nfields = TYPE_NFIELDS (type);
7560 else
7561 {
7562 nfields = 0;
76a01679 7563 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7564 && !ada_is_variant_part (type, nfields)
7565 && !is_dynamic_field (type, nfields))
7566 nfields++;
7567 }
7568
e9bb382b 7569 rtype = alloc_type_copy (type);
14f9c5c9
AS
7570 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7571 INIT_CPLUS_SPECIFIC (rtype);
7572 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7573 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7574 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7575 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7576 TYPE_NAME (rtype) = ada_type_name (type);
7577 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7578 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7579
d2e4a39e
AS
7580 off = 0;
7581 bit_len = 0;
4c4b4cd2
PH
7582 variant_field = -1;
7583
14f9c5c9
AS
7584 for (f = 0; f < nfields; f += 1)
7585 {
6c038f32
PH
7586 off = align_value (off, field_alignment (type, f))
7587 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7588 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7589 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7590
d2e4a39e 7591 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7592 {
7593 variant_field = f;
d94e4f4f 7594 fld_bit_len = 0;
4c4b4cd2 7595 }
14f9c5c9 7596 else if (is_dynamic_field (type, f))
4c4b4cd2 7597 {
284614f0
JB
7598 const gdb_byte *field_valaddr = valaddr;
7599 CORE_ADDR field_address = address;
7600 struct type *field_type =
7601 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7602
4c4b4cd2 7603 if (dval0 == NULL)
b5304971
JG
7604 {
7605 /* rtype's length is computed based on the run-time
7606 value of discriminants. If the discriminants are not
7607 initialized, the type size may be completely bogus and
0963b4bd 7608 GDB may fail to allocate a value for it. So check the
b5304971
JG
7609 size first before creating the value. */
7610 check_size (rtype);
7611 dval = value_from_contents_and_address (rtype, valaddr, address);
7612 }
4c4b4cd2
PH
7613 else
7614 dval = dval0;
7615
284614f0
JB
7616 /* If the type referenced by this field is an aligner type, we need
7617 to unwrap that aligner type, because its size might not be set.
7618 Keeping the aligner type would cause us to compute the wrong
7619 size for this field, impacting the offset of the all the fields
7620 that follow this one. */
7621 if (ada_is_aligner_type (field_type))
7622 {
7623 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7624
7625 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7626 field_address = cond_offset_target (field_address, field_offset);
7627 field_type = ada_aligned_type (field_type);
7628 }
7629
7630 field_valaddr = cond_offset_host (field_valaddr,
7631 off / TARGET_CHAR_BIT);
7632 field_address = cond_offset_target (field_address,
7633 off / TARGET_CHAR_BIT);
7634
7635 /* Get the fixed type of the field. Note that, in this case,
7636 we do not want to get the real type out of the tag: if
7637 the current field is the parent part of a tagged record,
7638 we will get the tag of the object. Clearly wrong: the real
7639 type of the parent is not the real type of the child. We
7640 would end up in an infinite loop. */
7641 field_type = ada_get_base_type (field_type);
7642 field_type = ada_to_fixed_type (field_type, field_valaddr,
7643 field_address, dval, 0);
27f2a97b
JB
7644 /* If the field size is already larger than the maximum
7645 object size, then the record itself will necessarily
7646 be larger than the maximum object size. We need to make
7647 this check now, because the size might be so ridiculously
7648 large (due to an uninitialized variable in the inferior)
7649 that it would cause an overflow when adding it to the
7650 record size. */
7651 check_size (field_type);
284614f0
JB
7652
7653 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7654 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7655 /* The multiplication can potentially overflow. But because
7656 the field length has been size-checked just above, and
7657 assuming that the maximum size is a reasonable value,
7658 an overflow should not happen in practice. So rather than
7659 adding overflow recovery code to this already complex code,
7660 we just assume that it's not going to happen. */
d94e4f4f 7661 fld_bit_len =
4c4b4cd2
PH
7662 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7663 }
14f9c5c9 7664 else
4c4b4cd2 7665 {
5ded5331
JB
7666 /* Note: If this field's type is a typedef, it is important
7667 to preserve the typedef layer.
7668
7669 Otherwise, we might be transforming a typedef to a fat
7670 pointer (encoding a pointer to an unconstrained array),
7671 into a basic fat pointer (encoding an unconstrained
7672 array). As both types are implemented using the same
7673 structure, the typedef is the only clue which allows us
7674 to distinguish between the two options. Stripping it
7675 would prevent us from printing this field appropriately. */
7676 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7677 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7678 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7679 fld_bit_len =
4c4b4cd2
PH
7680 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7681 else
5ded5331
JB
7682 {
7683 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7684
7685 /* We need to be careful of typedefs when computing
7686 the length of our field. If this is a typedef,
7687 get the length of the target type, not the length
7688 of the typedef. */
7689 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7690 field_type = ada_typedef_target_type (field_type);
7691
7692 fld_bit_len =
7693 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7694 }
4c4b4cd2 7695 }
14f9c5c9 7696 if (off + fld_bit_len > bit_len)
4c4b4cd2 7697 bit_len = off + fld_bit_len;
d94e4f4f 7698 off += fld_bit_len;
4c4b4cd2
PH
7699 TYPE_LENGTH (rtype) =
7700 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7701 }
4c4b4cd2
PH
7702
7703 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7704 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7705 the record. This can happen in the presence of representation
7706 clauses. */
7707 if (variant_field >= 0)
7708 {
7709 struct type *branch_type;
7710
7711 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7712
7713 if (dval0 == NULL)
7714 dval = value_from_contents_and_address (rtype, valaddr, address);
7715 else
7716 dval = dval0;
7717
7718 branch_type =
7719 to_fixed_variant_branch_type
7720 (TYPE_FIELD_TYPE (type, variant_field),
7721 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7722 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7723 if (branch_type == NULL)
7724 {
7725 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7727 TYPE_NFIELDS (rtype) -= 1;
7728 }
7729 else
7730 {
7731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7733 fld_bit_len =
7734 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7735 TARGET_CHAR_BIT;
7736 if (off + fld_bit_len > bit_len)
7737 bit_len = off + fld_bit_len;
7738 TYPE_LENGTH (rtype) =
7739 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7740 }
7741 }
7742
714e53ab
PH
7743 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7744 should contain the alignment of that record, which should be a strictly
7745 positive value. If null or negative, then something is wrong, most
7746 probably in the debug info. In that case, we don't round up the size
0963b4bd 7747 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7748 the current RTYPE length might be good enough for our purposes. */
7749 if (TYPE_LENGTH (type) <= 0)
7750 {
323e0a4a
AC
7751 if (TYPE_NAME (rtype))
7752 warning (_("Invalid type size for `%s' detected: %d."),
7753 TYPE_NAME (rtype), TYPE_LENGTH (type));
7754 else
7755 warning (_("Invalid type size for <unnamed> detected: %d."),
7756 TYPE_LENGTH (type));
714e53ab
PH
7757 }
7758 else
7759 {
7760 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7761 TYPE_LENGTH (type));
7762 }
14f9c5c9
AS
7763
7764 value_free_to_mark (mark);
d2e4a39e 7765 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7766 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7767 return rtype;
7768}
7769
4c4b4cd2
PH
7770/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7771 of 1. */
14f9c5c9 7772
d2e4a39e 7773static struct type *
fc1a4b47 7774template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7775 CORE_ADDR address, struct value *dval0)
7776{
7777 return ada_template_to_fixed_record_type_1 (type, valaddr,
7778 address, dval0, 1);
7779}
7780
7781/* An ordinary record type in which ___XVL-convention fields and
7782 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7783 static approximations, containing all possible fields. Uses
7784 no runtime values. Useless for use in values, but that's OK,
7785 since the results are used only for type determinations. Works on both
7786 structs and unions. Representation note: to save space, we memorize
7787 the result of this function in the TYPE_TARGET_TYPE of the
7788 template type. */
7789
7790static struct type *
7791template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7792{
7793 struct type *type;
7794 int nfields;
7795 int f;
7796
4c4b4cd2
PH
7797 if (TYPE_TARGET_TYPE (type0) != NULL)
7798 return TYPE_TARGET_TYPE (type0);
7799
7800 nfields = TYPE_NFIELDS (type0);
7801 type = type0;
14f9c5c9
AS
7802
7803 for (f = 0; f < nfields; f += 1)
7804 {
61ee279c 7805 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7806 struct type *new_type;
14f9c5c9 7807
4c4b4cd2
PH
7808 if (is_dynamic_field (type0, f))
7809 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7810 else
f192137b 7811 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7812 if (type == type0 && new_type != field_type)
7813 {
e9bb382b 7814 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7815 TYPE_CODE (type) = TYPE_CODE (type0);
7816 INIT_CPLUS_SPECIFIC (type);
7817 TYPE_NFIELDS (type) = nfields;
7818 TYPE_FIELDS (type) = (struct field *)
7819 TYPE_ALLOC (type, nfields * sizeof (struct field));
7820 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7821 sizeof (struct field) * nfields);
7822 TYPE_NAME (type) = ada_type_name (type0);
7823 TYPE_TAG_NAME (type) = NULL;
876cecd0 7824 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7825 TYPE_LENGTH (type) = 0;
7826 }
7827 TYPE_FIELD_TYPE (type, f) = new_type;
7828 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7829 }
14f9c5c9
AS
7830 return type;
7831}
7832
4c4b4cd2 7833/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7834 whose address in memory is ADDRESS, returns a revision of TYPE,
7835 which should be a non-dynamic-sized record, in which the variant
7836 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7837 for discriminant values in DVAL0, which can be NULL if the record
7838 contains the necessary discriminant values. */
7839
d2e4a39e 7840static struct type *
fc1a4b47 7841to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7842 CORE_ADDR address, struct value *dval0)
14f9c5c9 7843{
d2e4a39e 7844 struct value *mark = value_mark ();
4c4b4cd2 7845 struct value *dval;
d2e4a39e 7846 struct type *rtype;
14f9c5c9
AS
7847 struct type *branch_type;
7848 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7849 int variant_field = variant_field_index (type);
14f9c5c9 7850
4c4b4cd2 7851 if (variant_field == -1)
14f9c5c9
AS
7852 return type;
7853
4c4b4cd2
PH
7854 if (dval0 == NULL)
7855 dval = value_from_contents_and_address (type, valaddr, address);
7856 else
7857 dval = dval0;
7858
e9bb382b 7859 rtype = alloc_type_copy (type);
14f9c5c9 7860 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7861 INIT_CPLUS_SPECIFIC (rtype);
7862 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7863 TYPE_FIELDS (rtype) =
7864 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7865 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7866 sizeof (struct field) * nfields);
14f9c5c9
AS
7867 TYPE_NAME (rtype) = ada_type_name (type);
7868 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7869 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7870 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7871
4c4b4cd2
PH
7872 branch_type = to_fixed_variant_branch_type
7873 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7874 cond_offset_host (valaddr,
4c4b4cd2
PH
7875 TYPE_FIELD_BITPOS (type, variant_field)
7876 / TARGET_CHAR_BIT),
d2e4a39e 7877 cond_offset_target (address,
4c4b4cd2
PH
7878 TYPE_FIELD_BITPOS (type, variant_field)
7879 / TARGET_CHAR_BIT), dval);
d2e4a39e 7880 if (branch_type == NULL)
14f9c5c9 7881 {
4c4b4cd2 7882 int f;
5b4ee69b 7883
4c4b4cd2
PH
7884 for (f = variant_field + 1; f < nfields; f += 1)
7885 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7886 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7887 }
7888 else
7889 {
4c4b4cd2
PH
7890 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7891 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7892 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7893 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7894 }
4c4b4cd2 7895 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7896
4c4b4cd2 7897 value_free_to_mark (mark);
14f9c5c9
AS
7898 return rtype;
7899}
7900
7901/* An ordinary record type (with fixed-length fields) that describes
7902 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7903 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7904 should be in DVAL, a record value; it may be NULL if the object
7905 at ADDR itself contains any necessary discriminant values.
7906 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7907 values from the record are needed. Except in the case that DVAL,
7908 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7909 unchecked) is replaced by a particular branch of the variant.
7910
7911 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7912 is questionable and may be removed. It can arise during the
7913 processing of an unconstrained-array-of-record type where all the
7914 variant branches have exactly the same size. This is because in
7915 such cases, the compiler does not bother to use the XVS convention
7916 when encoding the record. I am currently dubious of this
7917 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7918
d2e4a39e 7919static struct type *
fc1a4b47 7920to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7921 CORE_ADDR address, struct value *dval)
14f9c5c9 7922{
d2e4a39e 7923 struct type *templ_type;
14f9c5c9 7924
876cecd0 7925 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7926 return type0;
7927
d2e4a39e 7928 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7929
7930 if (templ_type != NULL)
7931 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7932 else if (variant_field_index (type0) >= 0)
7933 {
7934 if (dval == NULL && valaddr == NULL && address == 0)
7935 return type0;
7936 return to_record_with_fixed_variant_part (type0, valaddr, address,
7937 dval);
7938 }
14f9c5c9
AS
7939 else
7940 {
876cecd0 7941 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7942 return type0;
7943 }
7944
7945}
7946
7947/* An ordinary record type (with fixed-length fields) that describes
7948 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7949 union type. Any necessary discriminants' values should be in DVAL,
7950 a record value. That is, this routine selects the appropriate
7951 branch of the union at ADDR according to the discriminant value
b1f33ddd 7952 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7953 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7954
d2e4a39e 7955static struct type *
fc1a4b47 7956to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7957 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7958{
7959 int which;
d2e4a39e
AS
7960 struct type *templ_type;
7961 struct type *var_type;
14f9c5c9
AS
7962
7963 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7964 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7965 else
14f9c5c9
AS
7966 var_type = var_type0;
7967
7968 templ_type = ada_find_parallel_type (var_type, "___XVU");
7969
7970 if (templ_type != NULL)
7971 var_type = templ_type;
7972
b1f33ddd
JB
7973 if (is_unchecked_variant (var_type, value_type (dval)))
7974 return var_type0;
d2e4a39e
AS
7975 which =
7976 ada_which_variant_applies (var_type,
0fd88904 7977 value_type (dval), value_contents (dval));
14f9c5c9
AS
7978
7979 if (which < 0)
e9bb382b 7980 return empty_record (var_type);
14f9c5c9 7981 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7982 return to_fixed_record_type
d2e4a39e
AS
7983 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7984 valaddr, address, dval);
4c4b4cd2 7985 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7986 return
7987 to_fixed_record_type
7988 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7989 else
7990 return TYPE_FIELD_TYPE (var_type, which);
7991}
7992
7993/* Assuming that TYPE0 is an array type describing the type of a value
7994 at ADDR, and that DVAL describes a record containing any
7995 discriminants used in TYPE0, returns a type for the value that
7996 contains no dynamic components (that is, no components whose sizes
7997 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7998 true, gives an error message if the resulting type's size is over
4c4b4cd2 7999 varsize_limit. */
14f9c5c9 8000
d2e4a39e
AS
8001static struct type *
8002to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8003 int ignore_too_big)
14f9c5c9 8004{
d2e4a39e
AS
8005 struct type *index_type_desc;
8006 struct type *result;
ad82864c 8007 int constrained_packed_array_p;
14f9c5c9 8008
b0dd7688 8009 type0 = ada_check_typedef (type0);
284614f0 8010 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8011 return type0;
14f9c5c9 8012
ad82864c
JB
8013 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8014 if (constrained_packed_array_p)
8015 type0 = decode_constrained_packed_array_type (type0);
284614f0 8016
14f9c5c9 8017 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8018 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8019 if (index_type_desc == NULL)
8020 {
61ee279c 8021 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8022
14f9c5c9 8023 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8024 depend on the contents of the array in properly constructed
8025 debugging data. */
529cad9c
PH
8026 /* Create a fixed version of the array element type.
8027 We're not providing the address of an element here,
e1d5a0d2 8028 and thus the actual object value cannot be inspected to do
529cad9c
PH
8029 the conversion. This should not be a problem, since arrays of
8030 unconstrained objects are not allowed. In particular, all
8031 the elements of an array of a tagged type should all be of
8032 the same type specified in the debugging info. No need to
8033 consult the object tag. */
1ed6ede0 8034 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8035
284614f0
JB
8036 /* Make sure we always create a new array type when dealing with
8037 packed array types, since we're going to fix-up the array
8038 type length and element bitsize a little further down. */
ad82864c 8039 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8040 result = type0;
14f9c5c9 8041 else
e9bb382b 8042 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8043 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8044 }
8045 else
8046 {
8047 int i;
8048 struct type *elt_type0;
8049
8050 elt_type0 = type0;
8051 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8052 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8053
8054 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8055 depend on the contents of the array in properly constructed
8056 debugging data. */
529cad9c
PH
8057 /* Create a fixed version of the array element type.
8058 We're not providing the address of an element here,
e1d5a0d2 8059 and thus the actual object value cannot be inspected to do
529cad9c
PH
8060 the conversion. This should not be a problem, since arrays of
8061 unconstrained objects are not allowed. In particular, all
8062 the elements of an array of a tagged type should all be of
8063 the same type specified in the debugging info. No need to
8064 consult the object tag. */
1ed6ede0
JB
8065 result =
8066 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8067
8068 elt_type0 = type0;
14f9c5c9 8069 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8070 {
8071 struct type *range_type =
28c85d6c 8072 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8073
e9bb382b 8074 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8075 result, range_type);
1ce677a4 8076 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8077 }
d2e4a39e 8078 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8079 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8080 }
8081
2e6fda7d
JB
8082 /* We want to preserve the type name. This can be useful when
8083 trying to get the type name of a value that has already been
8084 printed (for instance, if the user did "print VAR; whatis $". */
8085 TYPE_NAME (result) = TYPE_NAME (type0);
8086
ad82864c 8087 if (constrained_packed_array_p)
284614f0
JB
8088 {
8089 /* So far, the resulting type has been created as if the original
8090 type was a regular (non-packed) array type. As a result, the
8091 bitsize of the array elements needs to be set again, and the array
8092 length needs to be recomputed based on that bitsize. */
8093 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8094 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8095
8096 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8097 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8098 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8099 TYPE_LENGTH (result)++;
8100 }
8101
876cecd0 8102 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8103 return result;
d2e4a39e 8104}
14f9c5c9
AS
8105
8106
8107/* A standard type (containing no dynamically sized components)
8108 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8109 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8110 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8111 ADDRESS or in VALADDR contains these discriminants.
8112
1ed6ede0
JB
8113 If CHECK_TAG is not null, in the case of tagged types, this function
8114 attempts to locate the object's tag and use it to compute the actual
8115 type. However, when ADDRESS is null, we cannot use it to determine the
8116 location of the tag, and therefore compute the tagged type's actual type.
8117 So we return the tagged type without consulting the tag. */
529cad9c 8118
f192137b
JB
8119static struct type *
8120ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8121 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8122{
61ee279c 8123 type = ada_check_typedef (type);
d2e4a39e
AS
8124 switch (TYPE_CODE (type))
8125 {
8126 default:
14f9c5c9 8127 return type;
d2e4a39e 8128 case TYPE_CODE_STRUCT:
4c4b4cd2 8129 {
76a01679 8130 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8131 struct type *fixed_record_type =
8132 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8133
529cad9c
PH
8134 /* If STATIC_TYPE is a tagged type and we know the object's address,
8135 then we can determine its tag, and compute the object's actual
0963b4bd 8136 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8137 type (the parent part of the record may have dynamic fields
8138 and the way the location of _tag is expressed may depend on
8139 them). */
529cad9c 8140
1ed6ede0 8141 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8142 {
b50d69b5
JG
8143 struct value *tag =
8144 value_tag_from_contents_and_address
8145 (fixed_record_type,
8146 valaddr,
8147 address);
8148 struct type *real_type = type_from_tag (tag);
8149 struct value *obj =
8150 value_from_contents_and_address (fixed_record_type,
8151 valaddr,
8152 address);
76a01679 8153 if (real_type != NULL)
b50d69b5
JG
8154 return to_fixed_record_type
8155 (real_type, NULL,
8156 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8157 }
4af88198
JB
8158
8159 /* Check to see if there is a parallel ___XVZ variable.
8160 If there is, then it provides the actual size of our type. */
8161 else if (ada_type_name (fixed_record_type) != NULL)
8162 {
0d5cff50 8163 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8164 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8165 int xvz_found = 0;
8166 LONGEST size;
8167
88c15c34 8168 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8169 size = get_int_var_value (xvz_name, &xvz_found);
8170 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8171 {
8172 fixed_record_type = copy_type (fixed_record_type);
8173 TYPE_LENGTH (fixed_record_type) = size;
8174
8175 /* The FIXED_RECORD_TYPE may have be a stub. We have
8176 observed this when the debugging info is STABS, and
8177 apparently it is something that is hard to fix.
8178
8179 In practice, we don't need the actual type definition
8180 at all, because the presence of the XVZ variable allows us
8181 to assume that there must be a XVS type as well, which we
8182 should be able to use later, when we need the actual type
8183 definition.
8184
8185 In the meantime, pretend that the "fixed" type we are
8186 returning is NOT a stub, because this can cause trouble
8187 when using this type to create new types targeting it.
8188 Indeed, the associated creation routines often check
8189 whether the target type is a stub and will try to replace
0963b4bd 8190 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8191 might cause the new type to have the wrong size too.
8192 Consider the case of an array, for instance, where the size
8193 of the array is computed from the number of elements in
8194 our array multiplied by the size of its element. */
8195 TYPE_STUB (fixed_record_type) = 0;
8196 }
8197 }
1ed6ede0 8198 return fixed_record_type;
4c4b4cd2 8199 }
d2e4a39e 8200 case TYPE_CODE_ARRAY:
4c4b4cd2 8201 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8202 case TYPE_CODE_UNION:
8203 if (dval == NULL)
4c4b4cd2 8204 return type;
d2e4a39e 8205 else
4c4b4cd2 8206 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8207 }
14f9c5c9
AS
8208}
8209
f192137b
JB
8210/* The same as ada_to_fixed_type_1, except that it preserves the type
8211 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8212
8213 The typedef layer needs be preserved in order to differentiate between
8214 arrays and array pointers when both types are implemented using the same
8215 fat pointer. In the array pointer case, the pointer is encoded as
8216 a typedef of the pointer type. For instance, considering:
8217
8218 type String_Access is access String;
8219 S1 : String_Access := null;
8220
8221 To the debugger, S1 is defined as a typedef of type String. But
8222 to the user, it is a pointer. So if the user tries to print S1,
8223 we should not dereference the array, but print the array address
8224 instead.
8225
8226 If we didn't preserve the typedef layer, we would lose the fact that
8227 the type is to be presented as a pointer (needs de-reference before
8228 being printed). And we would also use the source-level type name. */
f192137b
JB
8229
8230struct type *
8231ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8232 CORE_ADDR address, struct value *dval, int check_tag)
8233
8234{
8235 struct type *fixed_type =
8236 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8237
96dbd2c1
JB
8238 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8239 then preserve the typedef layer.
8240
8241 Implementation note: We can only check the main-type portion of
8242 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8243 from TYPE now returns a type that has the same instance flags
8244 as TYPE. For instance, if TYPE is a "typedef const", and its
8245 target type is a "struct", then the typedef elimination will return
8246 a "const" version of the target type. See check_typedef for more
8247 details about how the typedef layer elimination is done.
8248
8249 brobecker/2010-11-19: It seems to me that the only case where it is
8250 useful to preserve the typedef layer is when dealing with fat pointers.
8251 Perhaps, we could add a check for that and preserve the typedef layer
8252 only in that situation. But this seems unecessary so far, probably
8253 because we call check_typedef/ada_check_typedef pretty much everywhere.
8254 */
f192137b 8255 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8256 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8257 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8258 return type;
8259
8260 return fixed_type;
8261}
8262
14f9c5c9 8263/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8264 TYPE0, but based on no runtime data. */
14f9c5c9 8265
d2e4a39e
AS
8266static struct type *
8267to_static_fixed_type (struct type *type0)
14f9c5c9 8268{
d2e4a39e 8269 struct type *type;
14f9c5c9
AS
8270
8271 if (type0 == NULL)
8272 return NULL;
8273
876cecd0 8274 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8275 return type0;
8276
61ee279c 8277 type0 = ada_check_typedef (type0);
d2e4a39e 8278
14f9c5c9
AS
8279 switch (TYPE_CODE (type0))
8280 {
8281 default:
8282 return type0;
8283 case TYPE_CODE_STRUCT:
8284 type = dynamic_template_type (type0);
d2e4a39e 8285 if (type != NULL)
4c4b4cd2
PH
8286 return template_to_static_fixed_type (type);
8287 else
8288 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8289 case TYPE_CODE_UNION:
8290 type = ada_find_parallel_type (type0, "___XVU");
8291 if (type != NULL)
4c4b4cd2
PH
8292 return template_to_static_fixed_type (type);
8293 else
8294 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8295 }
8296}
8297
4c4b4cd2
PH
8298/* A static approximation of TYPE with all type wrappers removed. */
8299
d2e4a39e
AS
8300static struct type *
8301static_unwrap_type (struct type *type)
14f9c5c9
AS
8302{
8303 if (ada_is_aligner_type (type))
8304 {
61ee279c 8305 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8306 if (ada_type_name (type1) == NULL)
4c4b4cd2 8307 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8308
8309 return static_unwrap_type (type1);
8310 }
d2e4a39e 8311 else
14f9c5c9 8312 {
d2e4a39e 8313 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8314
d2e4a39e 8315 if (raw_real_type == type)
4c4b4cd2 8316 return type;
14f9c5c9 8317 else
4c4b4cd2 8318 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8319 }
8320}
8321
8322/* In some cases, incomplete and private types require
4c4b4cd2 8323 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8324 type Foo;
8325 type FooP is access Foo;
8326 V: FooP;
8327 type Foo is array ...;
4c4b4cd2 8328 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8329 cross-references to such types, we instead substitute for FooP a
8330 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8331 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8332
8333/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8334 exists, otherwise TYPE. */
8335
d2e4a39e 8336struct type *
61ee279c 8337ada_check_typedef (struct type *type)
14f9c5c9 8338{
727e3d2e
JB
8339 if (type == NULL)
8340 return NULL;
8341
720d1a40
JB
8342 /* If our type is a typedef type of a fat pointer, then we're done.
8343 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8344 what allows us to distinguish between fat pointers that represent
8345 array types, and fat pointers that represent array access types
8346 (in both cases, the compiler implements them as fat pointers). */
8347 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8348 && is_thick_pntr (ada_typedef_target_type (type)))
8349 return type;
8350
14f9c5c9
AS
8351 CHECK_TYPEDEF (type);
8352 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8353 || !TYPE_STUB (type)
14f9c5c9
AS
8354 || TYPE_TAG_NAME (type) == NULL)
8355 return type;
d2e4a39e 8356 else
14f9c5c9 8357 {
0d5cff50 8358 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8359 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8360
05e522ef
JB
8361 if (type1 == NULL)
8362 return type;
8363
8364 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8365 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8366 types, only for the typedef-to-array types). If that's the case,
8367 strip the typedef layer. */
8368 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8369 type1 = ada_check_typedef (type1);
8370
8371 return type1;
14f9c5c9
AS
8372 }
8373}
8374
8375/* A value representing the data at VALADDR/ADDRESS as described by
8376 type TYPE0, but with a standard (static-sized) type that correctly
8377 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8378 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8379 creation of struct values]. */
14f9c5c9 8380
4c4b4cd2
PH
8381static struct value *
8382ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8383 struct value *val0)
14f9c5c9 8384{
1ed6ede0 8385 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8386
14f9c5c9
AS
8387 if (type == type0 && val0 != NULL)
8388 return val0;
d2e4a39e 8389 else
4c4b4cd2
PH
8390 return value_from_contents_and_address (type, 0, address);
8391}
8392
8393/* A value representing VAL, but with a standard (static-sized) type
8394 that correctly describes it. Does not necessarily create a new
8395 value. */
8396
0c3acc09 8397struct value *
4c4b4cd2
PH
8398ada_to_fixed_value (struct value *val)
8399{
c48db5ca
JB
8400 val = unwrap_value (val);
8401 val = ada_to_fixed_value_create (value_type (val),
8402 value_address (val),
8403 val);
8404 return val;
14f9c5c9 8405}
d2e4a39e 8406\f
14f9c5c9 8407
14f9c5c9
AS
8408/* Attributes */
8409
4c4b4cd2
PH
8410/* Table mapping attribute numbers to names.
8411 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8412
d2e4a39e 8413static const char *attribute_names[] = {
14f9c5c9
AS
8414 "<?>",
8415
d2e4a39e 8416 "first",
14f9c5c9
AS
8417 "last",
8418 "length",
8419 "image",
14f9c5c9
AS
8420 "max",
8421 "min",
4c4b4cd2
PH
8422 "modulus",
8423 "pos",
8424 "size",
8425 "tag",
14f9c5c9 8426 "val",
14f9c5c9
AS
8427 0
8428};
8429
d2e4a39e 8430const char *
4c4b4cd2 8431ada_attribute_name (enum exp_opcode n)
14f9c5c9 8432{
4c4b4cd2
PH
8433 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8434 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8435 else
8436 return attribute_names[0];
8437}
8438
4c4b4cd2 8439/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8440
4c4b4cd2
PH
8441static LONGEST
8442pos_atr (struct value *arg)
14f9c5c9 8443{
24209737
PH
8444 struct value *val = coerce_ref (arg);
8445 struct type *type = value_type (val);
14f9c5c9 8446
d2e4a39e 8447 if (!discrete_type_p (type))
323e0a4a 8448 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8449
8450 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8451 {
8452 int i;
24209737 8453 LONGEST v = value_as_long (val);
14f9c5c9 8454
d2e4a39e 8455 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8456 {
14e75d8e 8457 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8458 return i;
8459 }
323e0a4a 8460 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8461 }
8462 else
24209737 8463 return value_as_long (val);
4c4b4cd2
PH
8464}
8465
8466static struct value *
3cb382c9 8467value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8468{
3cb382c9 8469 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8470}
8471
4c4b4cd2 8472/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8473
d2e4a39e
AS
8474static struct value *
8475value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8476{
d2e4a39e 8477 if (!discrete_type_p (type))
323e0a4a 8478 error (_("'VAL only defined on discrete types"));
df407dfe 8479 if (!integer_type_p (value_type (arg)))
323e0a4a 8480 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8481
8482 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8483 {
8484 long pos = value_as_long (arg);
5b4ee69b 8485
14f9c5c9 8486 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8487 error (_("argument to 'VAL out of range"));
14e75d8e 8488 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8489 }
8490 else
8491 return value_from_longest (type, value_as_long (arg));
8492}
14f9c5c9 8493\f
d2e4a39e 8494
4c4b4cd2 8495 /* Evaluation */
14f9c5c9 8496
4c4b4cd2
PH
8497/* True if TYPE appears to be an Ada character type.
8498 [At the moment, this is true only for Character and Wide_Character;
8499 It is a heuristic test that could stand improvement]. */
14f9c5c9 8500
d2e4a39e
AS
8501int
8502ada_is_character_type (struct type *type)
14f9c5c9 8503{
7b9f71f2
JB
8504 const char *name;
8505
8506 /* If the type code says it's a character, then assume it really is,
8507 and don't check any further. */
8508 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8509 return 1;
8510
8511 /* Otherwise, assume it's a character type iff it is a discrete type
8512 with a known character type name. */
8513 name = ada_type_name (type);
8514 return (name != NULL
8515 && (TYPE_CODE (type) == TYPE_CODE_INT
8516 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8517 && (strcmp (name, "character") == 0
8518 || strcmp (name, "wide_character") == 0
5a517ebd 8519 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8520 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8521}
8522
4c4b4cd2 8523/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8524
8525int
ebf56fd3 8526ada_is_string_type (struct type *type)
14f9c5c9 8527{
61ee279c 8528 type = ada_check_typedef (type);
d2e4a39e 8529 if (type != NULL
14f9c5c9 8530 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8531 && (ada_is_simple_array_type (type)
8532 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8533 && ada_array_arity (type) == 1)
8534 {
8535 struct type *elttype = ada_array_element_type (type, 1);
8536
8537 return ada_is_character_type (elttype);
8538 }
d2e4a39e 8539 else
14f9c5c9
AS
8540 return 0;
8541}
8542
5bf03f13
JB
8543/* The compiler sometimes provides a parallel XVS type for a given
8544 PAD type. Normally, it is safe to follow the PAD type directly,
8545 but older versions of the compiler have a bug that causes the offset
8546 of its "F" field to be wrong. Following that field in that case
8547 would lead to incorrect results, but this can be worked around
8548 by ignoring the PAD type and using the associated XVS type instead.
8549
8550 Set to True if the debugger should trust the contents of PAD types.
8551 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8552static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8553
8554/* True if TYPE is a struct type introduced by the compiler to force the
8555 alignment of a value. Such types have a single field with a
4c4b4cd2 8556 distinctive name. */
14f9c5c9
AS
8557
8558int
ebf56fd3 8559ada_is_aligner_type (struct type *type)
14f9c5c9 8560{
61ee279c 8561 type = ada_check_typedef (type);
714e53ab 8562
5bf03f13 8563 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8564 return 0;
8565
14f9c5c9 8566 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8567 && TYPE_NFIELDS (type) == 1
8568 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8569}
8570
8571/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8572 the parallel type. */
14f9c5c9 8573
d2e4a39e
AS
8574struct type *
8575ada_get_base_type (struct type *raw_type)
14f9c5c9 8576{
d2e4a39e
AS
8577 struct type *real_type_namer;
8578 struct type *raw_real_type;
14f9c5c9
AS
8579
8580 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8581 return raw_type;
8582
284614f0
JB
8583 if (ada_is_aligner_type (raw_type))
8584 /* The encoding specifies that we should always use the aligner type.
8585 So, even if this aligner type has an associated XVS type, we should
8586 simply ignore it.
8587
8588 According to the compiler gurus, an XVS type parallel to an aligner
8589 type may exist because of a stabs limitation. In stabs, aligner
8590 types are empty because the field has a variable-sized type, and
8591 thus cannot actually be used as an aligner type. As a result,
8592 we need the associated parallel XVS type to decode the type.
8593 Since the policy in the compiler is to not change the internal
8594 representation based on the debugging info format, we sometimes
8595 end up having a redundant XVS type parallel to the aligner type. */
8596 return raw_type;
8597
14f9c5c9 8598 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8599 if (real_type_namer == NULL
14f9c5c9
AS
8600 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8601 || TYPE_NFIELDS (real_type_namer) != 1)
8602 return raw_type;
8603
f80d3ff2
JB
8604 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8605 {
8606 /* This is an older encoding form where the base type needs to be
8607 looked up by name. We prefer the newer enconding because it is
8608 more efficient. */
8609 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8610 if (raw_real_type == NULL)
8611 return raw_type;
8612 else
8613 return raw_real_type;
8614 }
8615
8616 /* The field in our XVS type is a reference to the base type. */
8617 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8618}
14f9c5c9 8619
4c4b4cd2 8620/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8621
d2e4a39e
AS
8622struct type *
8623ada_aligned_type (struct type *type)
14f9c5c9
AS
8624{
8625 if (ada_is_aligner_type (type))
8626 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8627 else
8628 return ada_get_base_type (type);
8629}
8630
8631
8632/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8633 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8634
fc1a4b47
AC
8635const gdb_byte *
8636ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8637{
d2e4a39e 8638 if (ada_is_aligner_type (type))
14f9c5c9 8639 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8640 valaddr +
8641 TYPE_FIELD_BITPOS (type,
8642 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8643 else
8644 return valaddr;
8645}
8646
4c4b4cd2
PH
8647
8648
14f9c5c9 8649/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8650 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8651const char *
8652ada_enum_name (const char *name)
14f9c5c9 8653{
4c4b4cd2
PH
8654 static char *result;
8655 static size_t result_len = 0;
d2e4a39e 8656 char *tmp;
14f9c5c9 8657
4c4b4cd2
PH
8658 /* First, unqualify the enumeration name:
8659 1. Search for the last '.' character. If we find one, then skip
177b42fe 8660 all the preceding characters, the unqualified name starts
76a01679 8661 right after that dot.
4c4b4cd2 8662 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8663 translates dots into "__". Search forward for double underscores,
8664 but stop searching when we hit an overloading suffix, which is
8665 of the form "__" followed by digits. */
4c4b4cd2 8666
c3e5cd34
PH
8667 tmp = strrchr (name, '.');
8668 if (tmp != NULL)
4c4b4cd2
PH
8669 name = tmp + 1;
8670 else
14f9c5c9 8671 {
4c4b4cd2
PH
8672 while ((tmp = strstr (name, "__")) != NULL)
8673 {
8674 if (isdigit (tmp[2]))
8675 break;
8676 else
8677 name = tmp + 2;
8678 }
14f9c5c9
AS
8679 }
8680
8681 if (name[0] == 'Q')
8682 {
14f9c5c9 8683 int v;
5b4ee69b 8684
14f9c5c9 8685 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8686 {
8687 if (sscanf (name + 2, "%x", &v) != 1)
8688 return name;
8689 }
14f9c5c9 8690 else
4c4b4cd2 8691 return name;
14f9c5c9 8692
4c4b4cd2 8693 GROW_VECT (result, result_len, 16);
14f9c5c9 8694 if (isascii (v) && isprint (v))
88c15c34 8695 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8696 else if (name[1] == 'U')
88c15c34 8697 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8698 else
88c15c34 8699 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8700
8701 return result;
8702 }
d2e4a39e 8703 else
4c4b4cd2 8704 {
c3e5cd34
PH
8705 tmp = strstr (name, "__");
8706 if (tmp == NULL)
8707 tmp = strstr (name, "$");
8708 if (tmp != NULL)
4c4b4cd2
PH
8709 {
8710 GROW_VECT (result, result_len, tmp - name + 1);
8711 strncpy (result, name, tmp - name);
8712 result[tmp - name] = '\0';
8713 return result;
8714 }
8715
8716 return name;
8717 }
14f9c5c9
AS
8718}
8719
14f9c5c9
AS
8720/* Evaluate the subexpression of EXP starting at *POS as for
8721 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8722 expression. */
14f9c5c9 8723
d2e4a39e
AS
8724static struct value *
8725evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8726{
4b27a620 8727 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8728}
8729
8730/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8731 value it wraps. */
14f9c5c9 8732
d2e4a39e
AS
8733static struct value *
8734unwrap_value (struct value *val)
14f9c5c9 8735{
df407dfe 8736 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8737
14f9c5c9
AS
8738 if (ada_is_aligner_type (type))
8739 {
de4d072f 8740 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8741 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8742
14f9c5c9 8743 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8744 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8745
8746 return unwrap_value (v);
8747 }
d2e4a39e 8748 else
14f9c5c9 8749 {
d2e4a39e 8750 struct type *raw_real_type =
61ee279c 8751 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8752
5bf03f13
JB
8753 /* If there is no parallel XVS or XVE type, then the value is
8754 already unwrapped. Return it without further modification. */
8755 if ((type == raw_real_type)
8756 && ada_find_parallel_type (type, "___XVE") == NULL)
8757 return val;
14f9c5c9 8758
d2e4a39e 8759 return
4c4b4cd2
PH
8760 coerce_unspec_val_to_type
8761 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8762 value_address (val),
1ed6ede0 8763 NULL, 1));
14f9c5c9
AS
8764 }
8765}
d2e4a39e
AS
8766
8767static struct value *
8768cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8769{
8770 LONGEST val;
8771
df407dfe 8772 if (type == value_type (arg))
14f9c5c9 8773 return arg;
df407dfe 8774 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8775 val = ada_float_to_fixed (type,
df407dfe 8776 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8777 value_as_long (arg)));
d2e4a39e 8778 else
14f9c5c9 8779 {
a53b7a21 8780 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8781
14f9c5c9
AS
8782 val = ada_float_to_fixed (type, argd);
8783 }
8784
8785 return value_from_longest (type, val);
8786}
8787
d2e4a39e 8788static struct value *
a53b7a21 8789cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8790{
df407dfe 8791 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8792 value_as_long (arg));
5b4ee69b 8793
a53b7a21 8794 return value_from_double (type, val);
14f9c5c9
AS
8795}
8796
d99dcf51
JB
8797/* Given two array types T1 and T2, return nonzero iff both arrays
8798 contain the same number of elements. */
8799
8800static int
8801ada_same_array_size_p (struct type *t1, struct type *t2)
8802{
8803 LONGEST lo1, hi1, lo2, hi2;
8804
8805 /* Get the array bounds in order to verify that the size of
8806 the two arrays match. */
8807 if (!get_array_bounds (t1, &lo1, &hi1)
8808 || !get_array_bounds (t2, &lo2, &hi2))
8809 error (_("unable to determine array bounds"));
8810
8811 /* To make things easier for size comparison, normalize a bit
8812 the case of empty arrays by making sure that the difference
8813 between upper bound and lower bound is always -1. */
8814 if (lo1 > hi1)
8815 hi1 = lo1 - 1;
8816 if (lo2 > hi2)
8817 hi2 = lo2 - 1;
8818
8819 return (hi1 - lo1 == hi2 - lo2);
8820}
8821
8822/* Assuming that VAL is an array of integrals, and TYPE represents
8823 an array with the same number of elements, but with wider integral
8824 elements, return an array "casted" to TYPE. In practice, this
8825 means that the returned array is built by casting each element
8826 of the original array into TYPE's (wider) element type. */
8827
8828static struct value *
8829ada_promote_array_of_integrals (struct type *type, struct value *val)
8830{
8831 struct type *elt_type = TYPE_TARGET_TYPE (type);
8832 LONGEST lo, hi;
8833 struct value *res;
8834 LONGEST i;
8835
8836 /* Verify that both val and type are arrays of scalars, and
8837 that the size of val's elements is smaller than the size
8838 of type's element. */
8839 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8840 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8841 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8842 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8843 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8844 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8845
8846 if (!get_array_bounds (type, &lo, &hi))
8847 error (_("unable to determine array bounds"));
8848
8849 res = allocate_value (type);
8850
8851 /* Promote each array element. */
8852 for (i = 0; i < hi - lo + 1; i++)
8853 {
8854 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8855
8856 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8857 value_contents_all (elt), TYPE_LENGTH (elt_type));
8858 }
8859
8860 return res;
8861}
8862
4c4b4cd2
PH
8863/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8864 return the converted value. */
8865
d2e4a39e
AS
8866static struct value *
8867coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8868{
df407dfe 8869 struct type *type2 = value_type (val);
5b4ee69b 8870
14f9c5c9
AS
8871 if (type == type2)
8872 return val;
8873
61ee279c
PH
8874 type2 = ada_check_typedef (type2);
8875 type = ada_check_typedef (type);
14f9c5c9 8876
d2e4a39e
AS
8877 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8878 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8879 {
8880 val = ada_value_ind (val);
df407dfe 8881 type2 = value_type (val);
14f9c5c9
AS
8882 }
8883
d2e4a39e 8884 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8885 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8886 {
d99dcf51
JB
8887 if (!ada_same_array_size_p (type, type2))
8888 error (_("cannot assign arrays of different length"));
8889
8890 if (is_integral_type (TYPE_TARGET_TYPE (type))
8891 && is_integral_type (TYPE_TARGET_TYPE (type2))
8892 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8893 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8894 {
8895 /* Allow implicit promotion of the array elements to
8896 a wider type. */
8897 return ada_promote_array_of_integrals (type, val);
8898 }
8899
8900 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8901 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 8902 error (_("Incompatible types in assignment"));
04624583 8903 deprecated_set_value_type (val, type);
14f9c5c9 8904 }
d2e4a39e 8905 return val;
14f9c5c9
AS
8906}
8907
4c4b4cd2
PH
8908static struct value *
8909ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8910{
8911 struct value *val;
8912 struct type *type1, *type2;
8913 LONGEST v, v1, v2;
8914
994b9211
AC
8915 arg1 = coerce_ref (arg1);
8916 arg2 = coerce_ref (arg2);
18af8284
JB
8917 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8918 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8919
76a01679
JB
8920 if (TYPE_CODE (type1) != TYPE_CODE_INT
8921 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8922 return value_binop (arg1, arg2, op);
8923
76a01679 8924 switch (op)
4c4b4cd2
PH
8925 {
8926 case BINOP_MOD:
8927 case BINOP_DIV:
8928 case BINOP_REM:
8929 break;
8930 default:
8931 return value_binop (arg1, arg2, op);
8932 }
8933
8934 v2 = value_as_long (arg2);
8935 if (v2 == 0)
323e0a4a 8936 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8937
8938 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8939 return value_binop (arg1, arg2, op);
8940
8941 v1 = value_as_long (arg1);
8942 switch (op)
8943 {
8944 case BINOP_DIV:
8945 v = v1 / v2;
76a01679
JB
8946 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8947 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8948 break;
8949 case BINOP_REM:
8950 v = v1 % v2;
76a01679
JB
8951 if (v * v1 < 0)
8952 v -= v2;
4c4b4cd2
PH
8953 break;
8954 default:
8955 /* Should not reach this point. */
8956 v = 0;
8957 }
8958
8959 val = allocate_value (type1);
990a07ab 8960 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8961 TYPE_LENGTH (value_type (val)),
8962 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8963 return val;
8964}
8965
8966static int
8967ada_value_equal (struct value *arg1, struct value *arg2)
8968{
df407dfe
AC
8969 if (ada_is_direct_array_type (value_type (arg1))
8970 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8971 {
f58b38bf
JB
8972 /* Automatically dereference any array reference before
8973 we attempt to perform the comparison. */
8974 arg1 = ada_coerce_ref (arg1);
8975 arg2 = ada_coerce_ref (arg2);
8976
4c4b4cd2
PH
8977 arg1 = ada_coerce_to_simple_array (arg1);
8978 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8979 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8980 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8981 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8982 /* FIXME: The following works only for types whose
76a01679
JB
8983 representations use all bits (no padding or undefined bits)
8984 and do not have user-defined equality. */
8985 return
df407dfe 8986 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8987 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8988 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8989 }
8990 return value_equal (arg1, arg2);
8991}
8992
52ce6436
PH
8993/* Total number of component associations in the aggregate starting at
8994 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8995 OP_AGGREGATE. */
52ce6436
PH
8996
8997static int
8998num_component_specs (struct expression *exp, int pc)
8999{
9000 int n, m, i;
5b4ee69b 9001
52ce6436
PH
9002 m = exp->elts[pc + 1].longconst;
9003 pc += 3;
9004 n = 0;
9005 for (i = 0; i < m; i += 1)
9006 {
9007 switch (exp->elts[pc].opcode)
9008 {
9009 default:
9010 n += 1;
9011 break;
9012 case OP_CHOICES:
9013 n += exp->elts[pc + 1].longconst;
9014 break;
9015 }
9016 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9017 }
9018 return n;
9019}
9020
9021/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9022 component of LHS (a simple array or a record), updating *POS past
9023 the expression, assuming that LHS is contained in CONTAINER. Does
9024 not modify the inferior's memory, nor does it modify LHS (unless
9025 LHS == CONTAINER). */
9026
9027static void
9028assign_component (struct value *container, struct value *lhs, LONGEST index,
9029 struct expression *exp, int *pos)
9030{
9031 struct value *mark = value_mark ();
9032 struct value *elt;
5b4ee69b 9033
52ce6436
PH
9034 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9035 {
22601c15
UW
9036 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9037 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9038
52ce6436
PH
9039 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9040 }
9041 else
9042 {
9043 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9044 elt = ada_to_fixed_value (elt);
52ce6436
PH
9045 }
9046
9047 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9048 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9049 else
9050 value_assign_to_component (container, elt,
9051 ada_evaluate_subexp (NULL, exp, pos,
9052 EVAL_NORMAL));
9053
9054 value_free_to_mark (mark);
9055}
9056
9057/* Assuming that LHS represents an lvalue having a record or array
9058 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9059 of that aggregate's value to LHS, advancing *POS past the
9060 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9061 lvalue containing LHS (possibly LHS itself). Does not modify
9062 the inferior's memory, nor does it modify the contents of
0963b4bd 9063 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9064
9065static struct value *
9066assign_aggregate (struct value *container,
9067 struct value *lhs, struct expression *exp,
9068 int *pos, enum noside noside)
9069{
9070 struct type *lhs_type;
9071 int n = exp->elts[*pos+1].longconst;
9072 LONGEST low_index, high_index;
9073 int num_specs;
9074 LONGEST *indices;
9075 int max_indices, num_indices;
52ce6436 9076 int i;
52ce6436
PH
9077
9078 *pos += 3;
9079 if (noside != EVAL_NORMAL)
9080 {
52ce6436
PH
9081 for (i = 0; i < n; i += 1)
9082 ada_evaluate_subexp (NULL, exp, pos, noside);
9083 return container;
9084 }
9085
9086 container = ada_coerce_ref (container);
9087 if (ada_is_direct_array_type (value_type (container)))
9088 container = ada_coerce_to_simple_array (container);
9089 lhs = ada_coerce_ref (lhs);
9090 if (!deprecated_value_modifiable (lhs))
9091 error (_("Left operand of assignment is not a modifiable lvalue."));
9092
9093 lhs_type = value_type (lhs);
9094 if (ada_is_direct_array_type (lhs_type))
9095 {
9096 lhs = ada_coerce_to_simple_array (lhs);
9097 lhs_type = value_type (lhs);
9098 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9099 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9100 }
9101 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9102 {
9103 low_index = 0;
9104 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9105 }
9106 else
9107 error (_("Left-hand side must be array or record."));
9108
9109 num_specs = num_component_specs (exp, *pos - 3);
9110 max_indices = 4 * num_specs + 4;
9111 indices = alloca (max_indices * sizeof (indices[0]));
9112 indices[0] = indices[1] = low_index - 1;
9113 indices[2] = indices[3] = high_index + 1;
9114 num_indices = 4;
9115
9116 for (i = 0; i < n; i += 1)
9117 {
9118 switch (exp->elts[*pos].opcode)
9119 {
1fbf5ada
JB
9120 case OP_CHOICES:
9121 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9122 &num_indices, max_indices,
9123 low_index, high_index);
9124 break;
9125 case OP_POSITIONAL:
9126 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9127 &num_indices, max_indices,
9128 low_index, high_index);
1fbf5ada
JB
9129 break;
9130 case OP_OTHERS:
9131 if (i != n-1)
9132 error (_("Misplaced 'others' clause"));
9133 aggregate_assign_others (container, lhs, exp, pos, indices,
9134 num_indices, low_index, high_index);
9135 break;
9136 default:
9137 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9138 }
9139 }
9140
9141 return container;
9142}
9143
9144/* Assign into the component of LHS indexed by the OP_POSITIONAL
9145 construct at *POS, updating *POS past the construct, given that
9146 the positions are relative to lower bound LOW, where HIGH is the
9147 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9148 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9149 assign_aggregate. */
52ce6436
PH
9150static void
9151aggregate_assign_positional (struct value *container,
9152 struct value *lhs, struct expression *exp,
9153 int *pos, LONGEST *indices, int *num_indices,
9154 int max_indices, LONGEST low, LONGEST high)
9155{
9156 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9157
9158 if (ind - 1 == high)
e1d5a0d2 9159 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9160 if (ind <= high)
9161 {
9162 add_component_interval (ind, ind, indices, num_indices, max_indices);
9163 *pos += 3;
9164 assign_component (container, lhs, ind, exp, pos);
9165 }
9166 else
9167 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9168}
9169
9170/* Assign into the components of LHS indexed by the OP_CHOICES
9171 construct at *POS, updating *POS past the construct, given that
9172 the allowable indices are LOW..HIGH. Record the indices assigned
9173 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9174 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9175static void
9176aggregate_assign_from_choices (struct value *container,
9177 struct value *lhs, struct expression *exp,
9178 int *pos, LONGEST *indices, int *num_indices,
9179 int max_indices, LONGEST low, LONGEST high)
9180{
9181 int j;
9182 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9183 int choice_pos, expr_pc;
9184 int is_array = ada_is_direct_array_type (value_type (lhs));
9185
9186 choice_pos = *pos += 3;
9187
9188 for (j = 0; j < n_choices; j += 1)
9189 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9190 expr_pc = *pos;
9191 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9192
9193 for (j = 0; j < n_choices; j += 1)
9194 {
9195 LONGEST lower, upper;
9196 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9197
52ce6436
PH
9198 if (op == OP_DISCRETE_RANGE)
9199 {
9200 choice_pos += 1;
9201 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9202 EVAL_NORMAL));
9203 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9204 EVAL_NORMAL));
9205 }
9206 else if (is_array)
9207 {
9208 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9209 EVAL_NORMAL));
9210 upper = lower;
9211 }
9212 else
9213 {
9214 int ind;
0d5cff50 9215 const char *name;
5b4ee69b 9216
52ce6436
PH
9217 switch (op)
9218 {
9219 case OP_NAME:
9220 name = &exp->elts[choice_pos + 2].string;
9221 break;
9222 case OP_VAR_VALUE:
9223 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9224 break;
9225 default:
9226 error (_("Invalid record component association."));
9227 }
9228 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9229 ind = 0;
9230 if (! find_struct_field (name, value_type (lhs), 0,
9231 NULL, NULL, NULL, NULL, &ind))
9232 error (_("Unknown component name: %s."), name);
9233 lower = upper = ind;
9234 }
9235
9236 if (lower <= upper && (lower < low || upper > high))
9237 error (_("Index in component association out of bounds."));
9238
9239 add_component_interval (lower, upper, indices, num_indices,
9240 max_indices);
9241 while (lower <= upper)
9242 {
9243 int pos1;
5b4ee69b 9244
52ce6436
PH
9245 pos1 = expr_pc;
9246 assign_component (container, lhs, lower, exp, &pos1);
9247 lower += 1;
9248 }
9249 }
9250}
9251
9252/* Assign the value of the expression in the OP_OTHERS construct in
9253 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9254 have not been previously assigned. The index intervals already assigned
9255 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9256 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9257static void
9258aggregate_assign_others (struct value *container,
9259 struct value *lhs, struct expression *exp,
9260 int *pos, LONGEST *indices, int num_indices,
9261 LONGEST low, LONGEST high)
9262{
9263 int i;
5ce64950 9264 int expr_pc = *pos + 1;
52ce6436
PH
9265
9266 for (i = 0; i < num_indices - 2; i += 2)
9267 {
9268 LONGEST ind;
5b4ee69b 9269
52ce6436
PH
9270 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9271 {
5ce64950 9272 int localpos;
5b4ee69b 9273
5ce64950
MS
9274 localpos = expr_pc;
9275 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9276 }
9277 }
9278 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9279}
9280
9281/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9282 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9283 modifying *SIZE as needed. It is an error if *SIZE exceeds
9284 MAX_SIZE. The resulting intervals do not overlap. */
9285static void
9286add_component_interval (LONGEST low, LONGEST high,
9287 LONGEST* indices, int *size, int max_size)
9288{
9289 int i, j;
5b4ee69b 9290
52ce6436
PH
9291 for (i = 0; i < *size; i += 2) {
9292 if (high >= indices[i] && low <= indices[i + 1])
9293 {
9294 int kh;
5b4ee69b 9295
52ce6436
PH
9296 for (kh = i + 2; kh < *size; kh += 2)
9297 if (high < indices[kh])
9298 break;
9299 if (low < indices[i])
9300 indices[i] = low;
9301 indices[i + 1] = indices[kh - 1];
9302 if (high > indices[i + 1])
9303 indices[i + 1] = high;
9304 memcpy (indices + i + 2, indices + kh, *size - kh);
9305 *size -= kh - i - 2;
9306 return;
9307 }
9308 else if (high < indices[i])
9309 break;
9310 }
9311
9312 if (*size == max_size)
9313 error (_("Internal error: miscounted aggregate components."));
9314 *size += 2;
9315 for (j = *size-1; j >= i+2; j -= 1)
9316 indices[j] = indices[j - 2];
9317 indices[i] = low;
9318 indices[i + 1] = high;
9319}
9320
6e48bd2c
JB
9321/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9322 is different. */
9323
9324static struct value *
9325ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9326{
9327 if (type == ada_check_typedef (value_type (arg2)))
9328 return arg2;
9329
9330 if (ada_is_fixed_point_type (type))
9331 return (cast_to_fixed (type, arg2));
9332
9333 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9334 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9335
9336 return value_cast (type, arg2);
9337}
9338
284614f0
JB
9339/* Evaluating Ada expressions, and printing their result.
9340 ------------------------------------------------------
9341
21649b50
JB
9342 1. Introduction:
9343 ----------------
9344
284614f0
JB
9345 We usually evaluate an Ada expression in order to print its value.
9346 We also evaluate an expression in order to print its type, which
9347 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9348 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9349 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9350 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9351 similar.
9352
9353 Evaluating expressions is a little more complicated for Ada entities
9354 than it is for entities in languages such as C. The main reason for
9355 this is that Ada provides types whose definition might be dynamic.
9356 One example of such types is variant records. Or another example
9357 would be an array whose bounds can only be known at run time.
9358
9359 The following description is a general guide as to what should be
9360 done (and what should NOT be done) in order to evaluate an expression
9361 involving such types, and when. This does not cover how the semantic
9362 information is encoded by GNAT as this is covered separatly. For the
9363 document used as the reference for the GNAT encoding, see exp_dbug.ads
9364 in the GNAT sources.
9365
9366 Ideally, we should embed each part of this description next to its
9367 associated code. Unfortunately, the amount of code is so vast right
9368 now that it's hard to see whether the code handling a particular
9369 situation might be duplicated or not. One day, when the code is
9370 cleaned up, this guide might become redundant with the comments
9371 inserted in the code, and we might want to remove it.
9372
21649b50
JB
9373 2. ``Fixing'' an Entity, the Simple Case:
9374 -----------------------------------------
9375
284614f0
JB
9376 When evaluating Ada expressions, the tricky issue is that they may
9377 reference entities whose type contents and size are not statically
9378 known. Consider for instance a variant record:
9379
9380 type Rec (Empty : Boolean := True) is record
9381 case Empty is
9382 when True => null;
9383 when False => Value : Integer;
9384 end case;
9385 end record;
9386 Yes : Rec := (Empty => False, Value => 1);
9387 No : Rec := (empty => True);
9388
9389 The size and contents of that record depends on the value of the
9390 descriminant (Rec.Empty). At this point, neither the debugging
9391 information nor the associated type structure in GDB are able to
9392 express such dynamic types. So what the debugger does is to create
9393 "fixed" versions of the type that applies to the specific object.
9394 We also informally refer to this opperation as "fixing" an object,
9395 which means creating its associated fixed type.
9396
9397 Example: when printing the value of variable "Yes" above, its fixed
9398 type would look like this:
9399
9400 type Rec is record
9401 Empty : Boolean;
9402 Value : Integer;
9403 end record;
9404
9405 On the other hand, if we printed the value of "No", its fixed type
9406 would become:
9407
9408 type Rec is record
9409 Empty : Boolean;
9410 end record;
9411
9412 Things become a little more complicated when trying to fix an entity
9413 with a dynamic type that directly contains another dynamic type,
9414 such as an array of variant records, for instance. There are
9415 two possible cases: Arrays, and records.
9416
21649b50
JB
9417 3. ``Fixing'' Arrays:
9418 ---------------------
9419
9420 The type structure in GDB describes an array in terms of its bounds,
9421 and the type of its elements. By design, all elements in the array
9422 have the same type and we cannot represent an array of variant elements
9423 using the current type structure in GDB. When fixing an array,
9424 we cannot fix the array element, as we would potentially need one
9425 fixed type per element of the array. As a result, the best we can do
9426 when fixing an array is to produce an array whose bounds and size
9427 are correct (allowing us to read it from memory), but without having
9428 touched its element type. Fixing each element will be done later,
9429 when (if) necessary.
9430
9431 Arrays are a little simpler to handle than records, because the same
9432 amount of memory is allocated for each element of the array, even if
1b536f04 9433 the amount of space actually used by each element differs from element
21649b50 9434 to element. Consider for instance the following array of type Rec:
284614f0
JB
9435
9436 type Rec_Array is array (1 .. 2) of Rec;
9437
1b536f04
JB
9438 The actual amount of memory occupied by each element might be different
9439 from element to element, depending on the value of their discriminant.
21649b50 9440 But the amount of space reserved for each element in the array remains
1b536f04 9441 fixed regardless. So we simply need to compute that size using
21649b50
JB
9442 the debugging information available, from which we can then determine
9443 the array size (we multiply the number of elements of the array by
9444 the size of each element).
9445
9446 The simplest case is when we have an array of a constrained element
9447 type. For instance, consider the following type declarations:
9448
9449 type Bounded_String (Max_Size : Integer) is
9450 Length : Integer;
9451 Buffer : String (1 .. Max_Size);
9452 end record;
9453 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9454
9455 In this case, the compiler describes the array as an array of
9456 variable-size elements (identified by its XVS suffix) for which
9457 the size can be read in the parallel XVZ variable.
9458
9459 In the case of an array of an unconstrained element type, the compiler
9460 wraps the array element inside a private PAD type. This type should not
9461 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9462 that we also use the adjective "aligner" in our code to designate
9463 these wrapper types.
9464
1b536f04 9465 In some cases, the size allocated for each element is statically
21649b50
JB
9466 known. In that case, the PAD type already has the correct size,
9467 and the array element should remain unfixed.
9468
9469 But there are cases when this size is not statically known.
9470 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9471
9472 type Dynamic is array (1 .. Five) of Integer;
9473 type Wrapper (Has_Length : Boolean := False) is record
9474 Data : Dynamic;
9475 case Has_Length is
9476 when True => Length : Integer;
9477 when False => null;
9478 end case;
9479 end record;
9480 type Wrapper_Array is array (1 .. 2) of Wrapper;
9481
9482 Hello : Wrapper_Array := (others => (Has_Length => True,
9483 Data => (others => 17),
9484 Length => 1));
9485
9486
9487 The debugging info would describe variable Hello as being an
9488 array of a PAD type. The size of that PAD type is not statically
9489 known, but can be determined using a parallel XVZ variable.
9490 In that case, a copy of the PAD type with the correct size should
9491 be used for the fixed array.
9492
21649b50
JB
9493 3. ``Fixing'' record type objects:
9494 ----------------------------------
9495
9496 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9497 record types. In this case, in order to compute the associated
9498 fixed type, we need to determine the size and offset of each of
9499 its components. This, in turn, requires us to compute the fixed
9500 type of each of these components.
9501
9502 Consider for instance the example:
9503
9504 type Bounded_String (Max_Size : Natural) is record
9505 Str : String (1 .. Max_Size);
9506 Length : Natural;
9507 end record;
9508 My_String : Bounded_String (Max_Size => 10);
9509
9510 In that case, the position of field "Length" depends on the size
9511 of field Str, which itself depends on the value of the Max_Size
21649b50 9512 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9513 we need to fix the type of field Str. Therefore, fixing a variant
9514 record requires us to fix each of its components.
9515
9516 However, if a component does not have a dynamic size, the component
9517 should not be fixed. In particular, fields that use a PAD type
9518 should not fixed. Here is an example where this might happen
9519 (assuming type Rec above):
9520
9521 type Container (Big : Boolean) is record
9522 First : Rec;
9523 After : Integer;
9524 case Big is
9525 when True => Another : Integer;
9526 when False => null;
9527 end case;
9528 end record;
9529 My_Container : Container := (Big => False,
9530 First => (Empty => True),
9531 After => 42);
9532
9533 In that example, the compiler creates a PAD type for component First,
9534 whose size is constant, and then positions the component After just
9535 right after it. The offset of component After is therefore constant
9536 in this case.
9537
9538 The debugger computes the position of each field based on an algorithm
9539 that uses, among other things, the actual position and size of the field
21649b50
JB
9540 preceding it. Let's now imagine that the user is trying to print
9541 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9542 end up computing the offset of field After based on the size of the
9543 fixed version of field First. And since in our example First has
9544 only one actual field, the size of the fixed type is actually smaller
9545 than the amount of space allocated to that field, and thus we would
9546 compute the wrong offset of field After.
9547
21649b50
JB
9548 To make things more complicated, we need to watch out for dynamic
9549 components of variant records (identified by the ___XVL suffix in
9550 the component name). Even if the target type is a PAD type, the size
9551 of that type might not be statically known. So the PAD type needs
9552 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9553 we might end up with the wrong size for our component. This can be
9554 observed with the following type declarations:
284614f0
JB
9555
9556 type Octal is new Integer range 0 .. 7;
9557 type Octal_Array is array (Positive range <>) of Octal;
9558 pragma Pack (Octal_Array);
9559
9560 type Octal_Buffer (Size : Positive) is record
9561 Buffer : Octal_Array (1 .. Size);
9562 Length : Integer;
9563 end record;
9564
9565 In that case, Buffer is a PAD type whose size is unset and needs
9566 to be computed by fixing the unwrapped type.
9567
21649b50
JB
9568 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9569 ----------------------------------------------------------
9570
9571 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9572 thus far, be actually fixed?
9573
9574 The answer is: Only when referencing that element. For instance
9575 when selecting one component of a record, this specific component
9576 should be fixed at that point in time. Or when printing the value
9577 of a record, each component should be fixed before its value gets
9578 printed. Similarly for arrays, the element of the array should be
9579 fixed when printing each element of the array, or when extracting
9580 one element out of that array. On the other hand, fixing should
9581 not be performed on the elements when taking a slice of an array!
9582
9583 Note that one of the side-effects of miscomputing the offset and
9584 size of each field is that we end up also miscomputing the size
9585 of the containing type. This can have adverse results when computing
9586 the value of an entity. GDB fetches the value of an entity based
9587 on the size of its type, and thus a wrong size causes GDB to fetch
9588 the wrong amount of memory. In the case where the computed size is
9589 too small, GDB fetches too little data to print the value of our
9590 entiry. Results in this case as unpredicatble, as we usually read
9591 past the buffer containing the data =:-o. */
9592
9593/* Implement the evaluate_exp routine in the exp_descriptor structure
9594 for the Ada language. */
9595
52ce6436 9596static struct value *
ebf56fd3 9597ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9598 int *pos, enum noside noside)
14f9c5c9
AS
9599{
9600 enum exp_opcode op;
b5385fc0 9601 int tem;
14f9c5c9
AS
9602 int pc;
9603 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9604 struct type *type;
52ce6436 9605 int nargs, oplen;
d2e4a39e 9606 struct value **argvec;
14f9c5c9 9607
d2e4a39e
AS
9608 pc = *pos;
9609 *pos += 1;
14f9c5c9
AS
9610 op = exp->elts[pc].opcode;
9611
d2e4a39e 9612 switch (op)
14f9c5c9
AS
9613 {
9614 default:
9615 *pos -= 1;
6e48bd2c 9616 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9617
9618 if (noside == EVAL_NORMAL)
9619 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9620
9621 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9622 then we need to perform the conversion manually, because
9623 evaluate_subexp_standard doesn't do it. This conversion is
9624 necessary in Ada because the different kinds of float/fixed
9625 types in Ada have different representations.
9626
9627 Similarly, we need to perform the conversion from OP_LONG
9628 ourselves. */
9629 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9630 arg1 = ada_value_cast (expect_type, arg1, noside);
9631
9632 return arg1;
4c4b4cd2
PH
9633
9634 case OP_STRING:
9635 {
76a01679 9636 struct value *result;
5b4ee69b 9637
76a01679
JB
9638 *pos -= 1;
9639 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9640 /* The result type will have code OP_STRING, bashed there from
9641 OP_ARRAY. Bash it back. */
df407dfe
AC
9642 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9643 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9644 return result;
4c4b4cd2 9645 }
14f9c5c9
AS
9646
9647 case UNOP_CAST:
9648 (*pos) += 2;
9649 type = exp->elts[pc + 1].type;
9650 arg1 = evaluate_subexp (type, exp, pos, noside);
9651 if (noside == EVAL_SKIP)
4c4b4cd2 9652 goto nosideret;
6e48bd2c 9653 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9654 return arg1;
9655
4c4b4cd2
PH
9656 case UNOP_QUAL:
9657 (*pos) += 2;
9658 type = exp->elts[pc + 1].type;
9659 return ada_evaluate_subexp (type, exp, pos, noside);
9660
14f9c5c9
AS
9661 case BINOP_ASSIGN:
9662 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9663 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9664 {
9665 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9666 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9667 return arg1;
9668 return ada_value_assign (arg1, arg1);
9669 }
003f3813
JB
9670 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9671 except if the lhs of our assignment is a convenience variable.
9672 In the case of assigning to a convenience variable, the lhs
9673 should be exactly the result of the evaluation of the rhs. */
9674 type = value_type (arg1);
9675 if (VALUE_LVAL (arg1) == lval_internalvar)
9676 type = NULL;
9677 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9678 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9679 return arg1;
df407dfe
AC
9680 if (ada_is_fixed_point_type (value_type (arg1)))
9681 arg2 = cast_to_fixed (value_type (arg1), arg2);
9682 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9683 error
323e0a4a 9684 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9685 else
df407dfe 9686 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9687 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9688
9689 case BINOP_ADD:
9690 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9691 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9692 if (noside == EVAL_SKIP)
4c4b4cd2 9693 goto nosideret;
2ac8a782
JB
9694 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9695 return (value_from_longest
9696 (value_type (arg1),
9697 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9698 if ((ada_is_fixed_point_type (value_type (arg1))
9699 || ada_is_fixed_point_type (value_type (arg2)))
9700 && value_type (arg1) != value_type (arg2))
323e0a4a 9701 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9702 /* Do the addition, and cast the result to the type of the first
9703 argument. We cannot cast the result to a reference type, so if
9704 ARG1 is a reference type, find its underlying type. */
9705 type = value_type (arg1);
9706 while (TYPE_CODE (type) == TYPE_CODE_REF)
9707 type = TYPE_TARGET_TYPE (type);
f44316fa 9708 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9709 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9710
9711 case BINOP_SUB:
9712 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9713 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9714 if (noside == EVAL_SKIP)
4c4b4cd2 9715 goto nosideret;
2ac8a782
JB
9716 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9717 return (value_from_longest
9718 (value_type (arg1),
9719 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9720 if ((ada_is_fixed_point_type (value_type (arg1))
9721 || ada_is_fixed_point_type (value_type (arg2)))
9722 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9723 error (_("Operands of fixed-point subtraction "
9724 "must have the same type"));
b7789565
JB
9725 /* Do the substraction, and cast the result to the type of the first
9726 argument. We cannot cast the result to a reference type, so if
9727 ARG1 is a reference type, find its underlying type. */
9728 type = value_type (arg1);
9729 while (TYPE_CODE (type) == TYPE_CODE_REF)
9730 type = TYPE_TARGET_TYPE (type);
f44316fa 9731 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9732 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9733
9734 case BINOP_MUL:
9735 case BINOP_DIV:
e1578042
JB
9736 case BINOP_REM:
9737 case BINOP_MOD:
14f9c5c9
AS
9738 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9739 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9740 if (noside == EVAL_SKIP)
4c4b4cd2 9741 goto nosideret;
e1578042 9742 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9743 {
9744 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9745 return value_zero (value_type (arg1), not_lval);
9746 }
14f9c5c9 9747 else
4c4b4cd2 9748 {
a53b7a21 9749 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9750 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9751 arg1 = cast_from_fixed (type, arg1);
df407dfe 9752 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9753 arg2 = cast_from_fixed (type, arg2);
f44316fa 9754 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9755 return ada_value_binop (arg1, arg2, op);
9756 }
9757
4c4b4cd2
PH
9758 case BINOP_EQUAL:
9759 case BINOP_NOTEQUAL:
14f9c5c9 9760 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9761 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9762 if (noside == EVAL_SKIP)
76a01679 9763 goto nosideret;
4c4b4cd2 9764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9765 tem = 0;
4c4b4cd2 9766 else
f44316fa
UW
9767 {
9768 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9769 tem = ada_value_equal (arg1, arg2);
9770 }
4c4b4cd2 9771 if (op == BINOP_NOTEQUAL)
76a01679 9772 tem = !tem;
fbb06eb1
UW
9773 type = language_bool_type (exp->language_defn, exp->gdbarch);
9774 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9775
9776 case UNOP_NEG:
9777 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9778 if (noside == EVAL_SKIP)
9779 goto nosideret;
df407dfe
AC
9780 else if (ada_is_fixed_point_type (value_type (arg1)))
9781 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9782 else
f44316fa
UW
9783 {
9784 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9785 return value_neg (arg1);
9786 }
4c4b4cd2 9787
2330c6c6
JB
9788 case BINOP_LOGICAL_AND:
9789 case BINOP_LOGICAL_OR:
9790 case UNOP_LOGICAL_NOT:
000d5124
JB
9791 {
9792 struct value *val;
9793
9794 *pos -= 1;
9795 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9796 type = language_bool_type (exp->language_defn, exp->gdbarch);
9797 return value_cast (type, val);
000d5124 9798 }
2330c6c6
JB
9799
9800 case BINOP_BITWISE_AND:
9801 case BINOP_BITWISE_IOR:
9802 case BINOP_BITWISE_XOR:
000d5124
JB
9803 {
9804 struct value *val;
9805
9806 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9807 *pos = pc;
9808 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9809
9810 return value_cast (value_type (arg1), val);
9811 }
2330c6c6 9812
14f9c5c9
AS
9813 case OP_VAR_VALUE:
9814 *pos -= 1;
6799def4 9815
14f9c5c9 9816 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9817 {
9818 *pos += 4;
9819 goto nosideret;
9820 }
9821 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9822 /* Only encountered when an unresolved symbol occurs in a
9823 context other than a function call, in which case, it is
52ce6436 9824 invalid. */
323e0a4a 9825 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9826 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9827 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9828 {
0c1f74cf 9829 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9830 /* Check to see if this is a tagged type. We also need to handle
9831 the case where the type is a reference to a tagged type, but
9832 we have to be careful to exclude pointers to tagged types.
9833 The latter should be shown as usual (as a pointer), whereas
9834 a reference should mostly be transparent to the user. */
9835 if (ada_is_tagged_type (type, 0)
9836 || (TYPE_CODE(type) == TYPE_CODE_REF
9837 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9838 {
9839 /* Tagged types are a little special in the fact that the real
9840 type is dynamic and can only be determined by inspecting the
9841 object's tag. This means that we need to get the object's
9842 value first (EVAL_NORMAL) and then extract the actual object
9843 type from its tag.
9844
9845 Note that we cannot skip the final step where we extract
9846 the object type from its tag, because the EVAL_NORMAL phase
9847 results in dynamic components being resolved into fixed ones.
9848 This can cause problems when trying to print the type
9849 description of tagged types whose parent has a dynamic size:
9850 We use the type name of the "_parent" component in order
9851 to print the name of the ancestor type in the type description.
9852 If that component had a dynamic size, the resolution into
9853 a fixed type would result in the loss of that type name,
9854 thus preventing us from printing the name of the ancestor
9855 type in the type description. */
9856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b50d69b5
JG
9857
9858 if (TYPE_CODE (type) != TYPE_CODE_REF)
9859 {
9860 struct type *actual_type;
9861
9862 actual_type = type_from_tag (ada_value_tag (arg1));
9863 if (actual_type == NULL)
9864 /* If, for some reason, we were unable to determine
9865 the actual type from the tag, then use the static
9866 approximation that we just computed as a fallback.
9867 This can happen if the debugging information is
9868 incomplete, for instance. */
9869 actual_type = type;
9870 return value_zero (actual_type, not_lval);
9871 }
9872 else
9873 {
9874 /* In the case of a ref, ada_coerce_ref takes care
9875 of determining the actual type. But the evaluation
9876 should return a ref as it should be valid to ask
9877 for its address; so rebuild a ref after coerce. */
9878 arg1 = ada_coerce_ref (arg1);
9879 return value_ref (arg1);
9880 }
0c1f74cf
JB
9881 }
9882
4c4b4cd2
PH
9883 *pos += 4;
9884 return value_zero
9885 (to_static_fixed_type
9886 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9887 not_lval);
9888 }
d2e4a39e 9889 else
4c4b4cd2 9890 {
284614f0 9891 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9892 return ada_to_fixed_value (arg1);
9893 }
9894
9895 case OP_FUNCALL:
9896 (*pos) += 2;
9897
9898 /* Allocate arg vector, including space for the function to be
9899 called in argvec[0] and a terminating NULL. */
9900 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9901 argvec =
9902 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9903
9904 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9905 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9906 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9907 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9908 else
9909 {
9910 for (tem = 0; tem <= nargs; tem += 1)
9911 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9912 argvec[tem] = 0;
9913
9914 if (noside == EVAL_SKIP)
9915 goto nosideret;
9916 }
9917
ad82864c
JB
9918 if (ada_is_constrained_packed_array_type
9919 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9920 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9921 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9922 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9923 /* This is a packed array that has already been fixed, and
9924 therefore already coerced to a simple array. Nothing further
9925 to do. */
9926 ;
df407dfe
AC
9927 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9928 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9929 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9930 argvec[0] = value_addr (argvec[0]);
9931
df407dfe 9932 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9933
9934 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9935 them. So, if this is an array typedef (encoding use for array
9936 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9937 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9938 type = ada_typedef_target_type (type);
9939
4c4b4cd2
PH
9940 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9941 {
61ee279c 9942 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9943 {
9944 case TYPE_CODE_FUNC:
61ee279c 9945 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9946 break;
9947 case TYPE_CODE_ARRAY:
9948 break;
9949 case TYPE_CODE_STRUCT:
9950 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9951 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9952 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9953 break;
9954 default:
323e0a4a 9955 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9956 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9957 break;
9958 }
9959 }
9960
9961 switch (TYPE_CODE (type))
9962 {
9963 case TYPE_CODE_FUNC:
9964 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9965 {
9966 struct type *rtype = TYPE_TARGET_TYPE (type);
9967
9968 if (TYPE_GNU_IFUNC (type))
9969 return allocate_value (TYPE_TARGET_TYPE (rtype));
9970 return allocate_value (rtype);
9971 }
4c4b4cd2 9972 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9973 case TYPE_CODE_INTERNAL_FUNCTION:
9974 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9975 /* We don't know anything about what the internal
9976 function might return, but we have to return
9977 something. */
9978 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9979 not_lval);
9980 else
9981 return call_internal_function (exp->gdbarch, exp->language_defn,
9982 argvec[0], nargs, argvec + 1);
9983
4c4b4cd2
PH
9984 case TYPE_CODE_STRUCT:
9985 {
9986 int arity;
9987
4c4b4cd2
PH
9988 arity = ada_array_arity (type);
9989 type = ada_array_element_type (type, nargs);
9990 if (type == NULL)
323e0a4a 9991 error (_("cannot subscript or call a record"));
4c4b4cd2 9992 if (arity != nargs)
323e0a4a 9993 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9994 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9995 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9996 return
9997 unwrap_value (ada_value_subscript
9998 (argvec[0], nargs, argvec + 1));
9999 }
10000 case TYPE_CODE_ARRAY:
10001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10002 {
10003 type = ada_array_element_type (type, nargs);
10004 if (type == NULL)
323e0a4a 10005 error (_("element type of array unknown"));
4c4b4cd2 10006 else
0a07e705 10007 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10008 }
10009 return
10010 unwrap_value (ada_value_subscript
10011 (ada_coerce_to_simple_array (argvec[0]),
10012 nargs, argvec + 1));
10013 case TYPE_CODE_PTR: /* Pointer to array */
10014 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10016 {
10017 type = ada_array_element_type (type, nargs);
10018 if (type == NULL)
323e0a4a 10019 error (_("element type of array unknown"));
4c4b4cd2 10020 else
0a07e705 10021 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10022 }
10023 return
10024 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10025 nargs, argvec + 1));
10026
10027 default:
e1d5a0d2
PH
10028 error (_("Attempt to index or call something other than an "
10029 "array or function"));
4c4b4cd2
PH
10030 }
10031
10032 case TERNOP_SLICE:
10033 {
10034 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10035 struct value *low_bound_val =
10036 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10037 struct value *high_bound_val =
10038 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10039 LONGEST low_bound;
10040 LONGEST high_bound;
5b4ee69b 10041
994b9211
AC
10042 low_bound_val = coerce_ref (low_bound_val);
10043 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10044 low_bound = pos_atr (low_bound_val);
10045 high_bound = pos_atr (high_bound_val);
963a6417 10046
4c4b4cd2
PH
10047 if (noside == EVAL_SKIP)
10048 goto nosideret;
10049
4c4b4cd2
PH
10050 /* If this is a reference to an aligner type, then remove all
10051 the aligners. */
df407dfe
AC
10052 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10053 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10054 TYPE_TARGET_TYPE (value_type (array)) =
10055 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10056
ad82864c 10057 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10058 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10059
10060 /* If this is a reference to an array or an array lvalue,
10061 convert to a pointer. */
df407dfe
AC
10062 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10063 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10064 && VALUE_LVAL (array) == lval_memory))
10065 array = value_addr (array);
10066
1265e4aa 10067 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10068 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10069 (value_type (array))))
0b5d8877 10070 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10071
10072 array = ada_coerce_to_simple_array_ptr (array);
10073
714e53ab
PH
10074 /* If we have more than one level of pointer indirection,
10075 dereference the value until we get only one level. */
df407dfe
AC
10076 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10077 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10078 == TYPE_CODE_PTR))
10079 array = value_ind (array);
10080
10081 /* Make sure we really do have an array type before going further,
10082 to avoid a SEGV when trying to get the index type or the target
10083 type later down the road if the debug info generated by
10084 the compiler is incorrect or incomplete. */
df407dfe 10085 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10086 error (_("cannot take slice of non-array"));
714e53ab 10087
828292f2
JB
10088 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10089 == TYPE_CODE_PTR)
4c4b4cd2 10090 {
828292f2
JB
10091 struct type *type0 = ada_check_typedef (value_type (array));
10092
0b5d8877 10093 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10094 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10095 else
10096 {
10097 struct type *arr_type0 =
828292f2 10098 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10099
f5938064
JG
10100 return ada_value_slice_from_ptr (array, arr_type0,
10101 longest_to_int (low_bound),
10102 longest_to_int (high_bound));
4c4b4cd2
PH
10103 }
10104 }
10105 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10106 return array;
10107 else if (high_bound < low_bound)
df407dfe 10108 return empty_array (value_type (array), low_bound);
4c4b4cd2 10109 else
529cad9c
PH
10110 return ada_value_slice (array, longest_to_int (low_bound),
10111 longest_to_int (high_bound));
4c4b4cd2 10112 }
14f9c5c9 10113
4c4b4cd2
PH
10114 case UNOP_IN_RANGE:
10115 (*pos) += 2;
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10117 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10118
14f9c5c9 10119 if (noside == EVAL_SKIP)
4c4b4cd2 10120 goto nosideret;
14f9c5c9 10121
4c4b4cd2
PH
10122 switch (TYPE_CODE (type))
10123 {
10124 default:
e1d5a0d2
PH
10125 lim_warning (_("Membership test incompletely implemented; "
10126 "always returns true"));
fbb06eb1
UW
10127 type = language_bool_type (exp->language_defn, exp->gdbarch);
10128 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10129
10130 case TYPE_CODE_RANGE:
030b4912
UW
10131 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10132 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10133 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10135 type = language_bool_type (exp->language_defn, exp->gdbarch);
10136 return
10137 value_from_longest (type,
4c4b4cd2
PH
10138 (value_less (arg1, arg3)
10139 || value_equal (arg1, arg3))
10140 && (value_less (arg2, arg1)
10141 || value_equal (arg2, arg1)));
10142 }
10143
10144 case BINOP_IN_BOUNDS:
14f9c5c9 10145 (*pos) += 2;
4c4b4cd2
PH
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10148
4c4b4cd2
PH
10149 if (noside == EVAL_SKIP)
10150 goto nosideret;
14f9c5c9 10151
4c4b4cd2 10152 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10153 {
10154 type = language_bool_type (exp->language_defn, exp->gdbarch);
10155 return value_zero (type, not_lval);
10156 }
14f9c5c9 10157
4c4b4cd2 10158 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10159
1eea4ebd
UW
10160 type = ada_index_type (value_type (arg2), tem, "range");
10161 if (!type)
10162 type = value_type (arg1);
14f9c5c9 10163
1eea4ebd
UW
10164 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10165 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10166
f44316fa
UW
10167 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10169 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10170 return
fbb06eb1 10171 value_from_longest (type,
4c4b4cd2
PH
10172 (value_less (arg1, arg3)
10173 || value_equal (arg1, arg3))
10174 && (value_less (arg2, arg1)
10175 || value_equal (arg2, arg1)));
10176
10177 case TERNOP_IN_RANGE:
10178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10180 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10181
10182 if (noside == EVAL_SKIP)
10183 goto nosideret;
10184
f44316fa
UW
10185 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10187 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10188 return
fbb06eb1 10189 value_from_longest (type,
4c4b4cd2
PH
10190 (value_less (arg1, arg3)
10191 || value_equal (arg1, arg3))
10192 && (value_less (arg2, arg1)
10193 || value_equal (arg2, arg1)));
10194
10195 case OP_ATR_FIRST:
10196 case OP_ATR_LAST:
10197 case OP_ATR_LENGTH:
10198 {
76a01679 10199 struct type *type_arg;
5b4ee69b 10200
76a01679
JB
10201 if (exp->elts[*pos].opcode == OP_TYPE)
10202 {
10203 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10204 arg1 = NULL;
5bc23cb3 10205 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10206 }
10207 else
10208 {
10209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10210 type_arg = NULL;
10211 }
10212
10213 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10214 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10215 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10216 *pos += 4;
10217
10218 if (noside == EVAL_SKIP)
10219 goto nosideret;
10220
10221 if (type_arg == NULL)
10222 {
10223 arg1 = ada_coerce_ref (arg1);
10224
ad82864c 10225 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10226 arg1 = ada_coerce_to_simple_array (arg1);
10227
1eea4ebd
UW
10228 type = ada_index_type (value_type (arg1), tem,
10229 ada_attribute_name (op));
10230 if (type == NULL)
10231 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
10232
10233 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10234 return allocate_value (type);
76a01679
JB
10235
10236 switch (op)
10237 {
10238 default: /* Should never happen. */
323e0a4a 10239 error (_("unexpected attribute encountered"));
76a01679 10240 case OP_ATR_FIRST:
1eea4ebd
UW
10241 return value_from_longest
10242 (type, ada_array_bound (arg1, tem, 0));
76a01679 10243 case OP_ATR_LAST:
1eea4ebd
UW
10244 return value_from_longest
10245 (type, ada_array_bound (arg1, tem, 1));
76a01679 10246 case OP_ATR_LENGTH:
1eea4ebd
UW
10247 return value_from_longest
10248 (type, ada_array_length (arg1, tem));
76a01679
JB
10249 }
10250 }
10251 else if (discrete_type_p (type_arg))
10252 {
10253 struct type *range_type;
0d5cff50 10254 const char *name = ada_type_name (type_arg);
5b4ee69b 10255
76a01679
JB
10256 range_type = NULL;
10257 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10258 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10259 if (range_type == NULL)
10260 range_type = type_arg;
10261 switch (op)
10262 {
10263 default:
323e0a4a 10264 error (_("unexpected attribute encountered"));
76a01679 10265 case OP_ATR_FIRST:
690cc4eb 10266 return value_from_longest
43bbcdc2 10267 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10268 case OP_ATR_LAST:
690cc4eb 10269 return value_from_longest
43bbcdc2 10270 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10271 case OP_ATR_LENGTH:
323e0a4a 10272 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10273 }
10274 }
10275 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10276 error (_("unimplemented type attribute"));
76a01679
JB
10277 else
10278 {
10279 LONGEST low, high;
10280
ad82864c
JB
10281 if (ada_is_constrained_packed_array_type (type_arg))
10282 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10283
1eea4ebd 10284 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10285 if (type == NULL)
1eea4ebd
UW
10286 type = builtin_type (exp->gdbarch)->builtin_int;
10287
76a01679
JB
10288 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10289 return allocate_value (type);
10290
10291 switch (op)
10292 {
10293 default:
323e0a4a 10294 error (_("unexpected attribute encountered"));
76a01679 10295 case OP_ATR_FIRST:
1eea4ebd 10296 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10297 return value_from_longest (type, low);
10298 case OP_ATR_LAST:
1eea4ebd 10299 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10300 return value_from_longest (type, high);
10301 case OP_ATR_LENGTH:
1eea4ebd
UW
10302 low = ada_array_bound_from_type (type_arg, tem, 0);
10303 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10304 return value_from_longest (type, high - low + 1);
10305 }
10306 }
14f9c5c9
AS
10307 }
10308
4c4b4cd2
PH
10309 case OP_ATR_TAG:
10310 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10311 if (noside == EVAL_SKIP)
76a01679 10312 goto nosideret;
4c4b4cd2
PH
10313
10314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10315 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10316
10317 return ada_value_tag (arg1);
10318
10319 case OP_ATR_MIN:
10320 case OP_ATR_MAX:
10321 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10323 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10324 if (noside == EVAL_SKIP)
76a01679 10325 goto nosideret;
d2e4a39e 10326 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10327 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10328 else
f44316fa
UW
10329 {
10330 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10331 return value_binop (arg1, arg2,
10332 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10333 }
14f9c5c9 10334
4c4b4cd2
PH
10335 case OP_ATR_MODULUS:
10336 {
31dedfee 10337 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10338
5b4ee69b 10339 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10340 if (noside == EVAL_SKIP)
10341 goto nosideret;
4c4b4cd2 10342
76a01679 10343 if (!ada_is_modular_type (type_arg))
323e0a4a 10344 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10345
76a01679
JB
10346 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10347 ada_modulus (type_arg));
4c4b4cd2
PH
10348 }
10349
10350
10351 case OP_ATR_POS:
10352 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10353 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10354 if (noside == EVAL_SKIP)
76a01679 10355 goto nosideret;
3cb382c9
UW
10356 type = builtin_type (exp->gdbarch)->builtin_int;
10357 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10358 return value_zero (type, not_lval);
14f9c5c9 10359 else
3cb382c9 10360 return value_pos_atr (type, arg1);
14f9c5c9 10361
4c4b4cd2
PH
10362 case OP_ATR_SIZE:
10363 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10364 type = value_type (arg1);
10365
10366 /* If the argument is a reference, then dereference its type, since
10367 the user is really asking for the size of the actual object,
10368 not the size of the pointer. */
10369 if (TYPE_CODE (type) == TYPE_CODE_REF)
10370 type = TYPE_TARGET_TYPE (type);
10371
4c4b4cd2 10372 if (noside == EVAL_SKIP)
76a01679 10373 goto nosideret;
4c4b4cd2 10374 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10375 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10376 else
22601c15 10377 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10378 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10379
10380 case OP_ATR_VAL:
10381 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10383 type = exp->elts[pc + 2].type;
14f9c5c9 10384 if (noside == EVAL_SKIP)
76a01679 10385 goto nosideret;
4c4b4cd2 10386 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10387 return value_zero (type, not_lval);
4c4b4cd2 10388 else
76a01679 10389 return value_val_atr (type, arg1);
4c4b4cd2
PH
10390
10391 case BINOP_EXP:
10392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10393 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10394 if (noside == EVAL_SKIP)
10395 goto nosideret;
10396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10397 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10398 else
f44316fa
UW
10399 {
10400 /* For integer exponentiation operations,
10401 only promote the first argument. */
10402 if (is_integral_type (value_type (arg2)))
10403 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10404 else
10405 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10406
10407 return value_binop (arg1, arg2, op);
10408 }
4c4b4cd2
PH
10409
10410 case UNOP_PLUS:
10411 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10412 if (noside == EVAL_SKIP)
10413 goto nosideret;
10414 else
10415 return arg1;
10416
10417 case UNOP_ABS:
10418 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10419 if (noside == EVAL_SKIP)
10420 goto nosideret;
f44316fa 10421 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10422 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10423 return value_neg (arg1);
14f9c5c9 10424 else
4c4b4cd2 10425 return arg1;
14f9c5c9
AS
10426
10427 case UNOP_IND:
6b0d7253 10428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10429 if (noside == EVAL_SKIP)
4c4b4cd2 10430 goto nosideret;
df407dfe 10431 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10433 {
10434 if (ada_is_array_descriptor_type (type))
10435 /* GDB allows dereferencing GNAT array descriptors. */
10436 {
10437 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10438
4c4b4cd2 10439 if (arrType == NULL)
323e0a4a 10440 error (_("Attempt to dereference null array pointer."));
00a4c844 10441 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10442 }
10443 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10444 || TYPE_CODE (type) == TYPE_CODE_REF
10445 /* In C you can dereference an array to get the 1st elt. */
10446 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10447 {
10448 type = to_static_fixed_type
10449 (ada_aligned_type
10450 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10451 check_size (type);
10452 return value_zero (type, lval_memory);
10453 }
4c4b4cd2 10454 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10455 {
10456 /* GDB allows dereferencing an int. */
10457 if (expect_type == NULL)
10458 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10459 lval_memory);
10460 else
10461 {
10462 expect_type =
10463 to_static_fixed_type (ada_aligned_type (expect_type));
10464 return value_zero (expect_type, lval_memory);
10465 }
10466 }
4c4b4cd2 10467 else
323e0a4a 10468 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10469 }
0963b4bd 10470 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10471 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10472
96967637
JB
10473 if (TYPE_CODE (type) == TYPE_CODE_INT)
10474 /* GDB allows dereferencing an int. If we were given
10475 the expect_type, then use that as the target type.
10476 Otherwise, assume that the target type is an int. */
10477 {
10478 if (expect_type != NULL)
10479 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10480 arg1));
10481 else
10482 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10483 (CORE_ADDR) value_as_address (arg1));
10484 }
6b0d7253 10485
4c4b4cd2
PH
10486 if (ada_is_array_descriptor_type (type))
10487 /* GDB allows dereferencing GNAT array descriptors. */
10488 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10489 else
4c4b4cd2 10490 return ada_value_ind (arg1);
14f9c5c9
AS
10491
10492 case STRUCTOP_STRUCT:
10493 tem = longest_to_int (exp->elts[pc + 1].longconst);
10494 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10495 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10496 if (noside == EVAL_SKIP)
4c4b4cd2 10497 goto nosideret;
14f9c5c9 10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10499 {
df407dfe 10500 struct type *type1 = value_type (arg1);
5b4ee69b 10501
76a01679
JB
10502 if (ada_is_tagged_type (type1, 1))
10503 {
10504 type = ada_lookup_struct_elt_type (type1,
10505 &exp->elts[pc + 2].string,
10506 1, 1, NULL);
10507 if (type == NULL)
10508 /* In this case, we assume that the field COULD exist
10509 in some extension of the type. Return an object of
10510 "type" void, which will match any formal
0963b4bd 10511 (see ada_type_match). */
30b15541
UW
10512 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10513 lval_memory);
76a01679
JB
10514 }
10515 else
10516 type =
10517 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10518 0, NULL);
10519
10520 return value_zero (ada_aligned_type (type), lval_memory);
10521 }
14f9c5c9 10522 else
284614f0
JB
10523 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10524 arg1 = unwrap_value (arg1);
10525 return ada_to_fixed_value (arg1);
10526
14f9c5c9 10527 case OP_TYPE:
4c4b4cd2
PH
10528 /* The value is not supposed to be used. This is here to make it
10529 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10530 (*pos) += 2;
10531 if (noside == EVAL_SKIP)
4c4b4cd2 10532 goto nosideret;
14f9c5c9 10533 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10534 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10535 else
323e0a4a 10536 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10537
10538 case OP_AGGREGATE:
10539 case OP_CHOICES:
10540 case OP_OTHERS:
10541 case OP_DISCRETE_RANGE:
10542 case OP_POSITIONAL:
10543 case OP_NAME:
10544 if (noside == EVAL_NORMAL)
10545 switch (op)
10546 {
10547 case OP_NAME:
10548 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10549 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10550 case OP_AGGREGATE:
10551 error (_("Aggregates only allowed on the right of an assignment"));
10552 default:
0963b4bd
MS
10553 internal_error (__FILE__, __LINE__,
10554 _("aggregate apparently mangled"));
52ce6436
PH
10555 }
10556
10557 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10558 *pos += oplen - 1;
10559 for (tem = 0; tem < nargs; tem += 1)
10560 ada_evaluate_subexp (NULL, exp, pos, noside);
10561 goto nosideret;
14f9c5c9
AS
10562 }
10563
10564nosideret:
22601c15 10565 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10566}
14f9c5c9 10567\f
d2e4a39e 10568
4c4b4cd2 10569 /* Fixed point */
14f9c5c9
AS
10570
10571/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10572 type name that encodes the 'small and 'delta information.
4c4b4cd2 10573 Otherwise, return NULL. */
14f9c5c9 10574
d2e4a39e 10575static const char *
ebf56fd3 10576fixed_type_info (struct type *type)
14f9c5c9 10577{
d2e4a39e 10578 const char *name = ada_type_name (type);
14f9c5c9
AS
10579 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10580
d2e4a39e
AS
10581 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10582 {
14f9c5c9 10583 const char *tail = strstr (name, "___XF_");
5b4ee69b 10584
14f9c5c9 10585 if (tail == NULL)
4c4b4cd2 10586 return NULL;
d2e4a39e 10587 else
4c4b4cd2 10588 return tail + 5;
14f9c5c9
AS
10589 }
10590 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10591 return fixed_type_info (TYPE_TARGET_TYPE (type));
10592 else
10593 return NULL;
10594}
10595
4c4b4cd2 10596/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10597
10598int
ebf56fd3 10599ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10600{
10601 return fixed_type_info (type) != NULL;
10602}
10603
4c4b4cd2
PH
10604/* Return non-zero iff TYPE represents a System.Address type. */
10605
10606int
10607ada_is_system_address_type (struct type *type)
10608{
10609 return (TYPE_NAME (type)
10610 && strcmp (TYPE_NAME (type), "system__address") == 0);
10611}
10612
14f9c5c9
AS
10613/* Assuming that TYPE is the representation of an Ada fixed-point
10614 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10615 delta cannot be determined. */
14f9c5c9
AS
10616
10617DOUBLEST
ebf56fd3 10618ada_delta (struct type *type)
14f9c5c9
AS
10619{
10620 const char *encoding = fixed_type_info (type);
facc390f 10621 DOUBLEST num, den;
14f9c5c9 10622
facc390f
JB
10623 /* Strictly speaking, num and den are encoded as integer. However,
10624 they may not fit into a long, and they will have to be converted
10625 to DOUBLEST anyway. So scan them as DOUBLEST. */
10626 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10627 &num, &den) < 2)
14f9c5c9 10628 return -1.0;
d2e4a39e 10629 else
facc390f 10630 return num / den;
14f9c5c9
AS
10631}
10632
10633/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10634 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10635
10636static DOUBLEST
ebf56fd3 10637scaling_factor (struct type *type)
14f9c5c9
AS
10638{
10639 const char *encoding = fixed_type_info (type);
facc390f 10640 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10641 int n;
d2e4a39e 10642
facc390f
JB
10643 /* Strictly speaking, num's and den's are encoded as integer. However,
10644 they may not fit into a long, and they will have to be converted
10645 to DOUBLEST anyway. So scan them as DOUBLEST. */
10646 n = sscanf (encoding,
10647 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10648 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10649 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10650
10651 if (n < 2)
10652 return 1.0;
10653 else if (n == 4)
facc390f 10654 return num1 / den1;
d2e4a39e 10655 else
facc390f 10656 return num0 / den0;
14f9c5c9
AS
10657}
10658
10659
10660/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10661 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10662
10663DOUBLEST
ebf56fd3 10664ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10665{
d2e4a39e 10666 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10667}
10668
4c4b4cd2
PH
10669/* The representation of a fixed-point value of type TYPE
10670 corresponding to the value X. */
14f9c5c9
AS
10671
10672LONGEST
ebf56fd3 10673ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10674{
10675 return (LONGEST) (x / scaling_factor (type) + 0.5);
10676}
10677
14f9c5c9 10678\f
d2e4a39e 10679
4c4b4cd2 10680 /* Range types */
14f9c5c9
AS
10681
10682/* Scan STR beginning at position K for a discriminant name, and
10683 return the value of that discriminant field of DVAL in *PX. If
10684 PNEW_K is not null, put the position of the character beyond the
10685 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10686 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10687
10688static int
07d8f827 10689scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10690 int *pnew_k)
14f9c5c9
AS
10691{
10692 static char *bound_buffer = NULL;
10693 static size_t bound_buffer_len = 0;
10694 char *bound;
10695 char *pend;
d2e4a39e 10696 struct value *bound_val;
14f9c5c9
AS
10697
10698 if (dval == NULL || str == NULL || str[k] == '\0')
10699 return 0;
10700
d2e4a39e 10701 pend = strstr (str + k, "__");
14f9c5c9
AS
10702 if (pend == NULL)
10703 {
d2e4a39e 10704 bound = str + k;
14f9c5c9
AS
10705 k += strlen (bound);
10706 }
d2e4a39e 10707 else
14f9c5c9 10708 {
d2e4a39e 10709 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10710 bound = bound_buffer;
d2e4a39e
AS
10711 strncpy (bound_buffer, str + k, pend - (str + k));
10712 bound[pend - (str + k)] = '\0';
10713 k = pend - str;
14f9c5c9 10714 }
d2e4a39e 10715
df407dfe 10716 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10717 if (bound_val == NULL)
10718 return 0;
10719
10720 *px = value_as_long (bound_val);
10721 if (pnew_k != NULL)
10722 *pnew_k = k;
10723 return 1;
10724}
10725
10726/* Value of variable named NAME in the current environment. If
10727 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10728 otherwise causes an error with message ERR_MSG. */
10729
d2e4a39e
AS
10730static struct value *
10731get_var_value (char *name, char *err_msg)
14f9c5c9 10732{
4c4b4cd2 10733 struct ada_symbol_info *syms;
14f9c5c9
AS
10734 int nsyms;
10735
4c4b4cd2 10736 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 10737 &syms);
14f9c5c9
AS
10738
10739 if (nsyms != 1)
10740 {
10741 if (err_msg == NULL)
4c4b4cd2 10742 return 0;
14f9c5c9 10743 else
8a3fe4f8 10744 error (("%s"), err_msg);
14f9c5c9
AS
10745 }
10746
4c4b4cd2 10747 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10748}
d2e4a39e 10749
14f9c5c9 10750/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10751 no such variable found, returns 0, and sets *FLAG to 0. If
10752 successful, sets *FLAG to 1. */
10753
14f9c5c9 10754LONGEST
4c4b4cd2 10755get_int_var_value (char *name, int *flag)
14f9c5c9 10756{
4c4b4cd2 10757 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10758
14f9c5c9
AS
10759 if (var_val == 0)
10760 {
10761 if (flag != NULL)
4c4b4cd2 10762 *flag = 0;
14f9c5c9
AS
10763 return 0;
10764 }
10765 else
10766 {
10767 if (flag != NULL)
4c4b4cd2 10768 *flag = 1;
14f9c5c9
AS
10769 return value_as_long (var_val);
10770 }
10771}
d2e4a39e 10772
14f9c5c9
AS
10773
10774/* Return a range type whose base type is that of the range type named
10775 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10776 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10778 corresponding range type from debug information; fall back to using it
10779 if symbol lookup fails. If a new type must be created, allocate it
10780 like ORIG_TYPE was. The bounds information, in general, is encoded
10781 in NAME, the base type given in the named range type. */
14f9c5c9 10782
d2e4a39e 10783static struct type *
28c85d6c 10784to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10785{
0d5cff50 10786 const char *name;
14f9c5c9 10787 struct type *base_type;
d2e4a39e 10788 char *subtype_info;
14f9c5c9 10789
28c85d6c
JB
10790 gdb_assert (raw_type != NULL);
10791 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10792
1ce677a4 10793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10794 base_type = TYPE_TARGET_TYPE (raw_type);
10795 else
10796 base_type = raw_type;
10797
28c85d6c 10798 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10799 subtype_info = strstr (name, "___XD");
10800 if (subtype_info == NULL)
690cc4eb 10801 {
43bbcdc2
PH
10802 LONGEST L = ada_discrete_type_low_bound (raw_type);
10803 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10804
690cc4eb
PH
10805 if (L < INT_MIN || U > INT_MAX)
10806 return raw_type;
10807 else
28c85d6c 10808 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10809 ada_discrete_type_low_bound (raw_type),
10810 ada_discrete_type_high_bound (raw_type));
690cc4eb 10811 }
14f9c5c9
AS
10812 else
10813 {
10814 static char *name_buf = NULL;
10815 static size_t name_len = 0;
10816 int prefix_len = subtype_info - name;
10817 LONGEST L, U;
10818 struct type *type;
10819 char *bounds_str;
10820 int n;
10821
10822 GROW_VECT (name_buf, name_len, prefix_len + 5);
10823 strncpy (name_buf, name, prefix_len);
10824 name_buf[prefix_len] = '\0';
10825
10826 subtype_info += 5;
10827 bounds_str = strchr (subtype_info, '_');
10828 n = 1;
10829
d2e4a39e 10830 if (*subtype_info == 'L')
4c4b4cd2
PH
10831 {
10832 if (!ada_scan_number (bounds_str, n, &L, &n)
10833 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10834 return raw_type;
10835 if (bounds_str[n] == '_')
10836 n += 2;
0963b4bd 10837 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10838 n += 1;
10839 subtype_info += 1;
10840 }
d2e4a39e 10841 else
4c4b4cd2
PH
10842 {
10843 int ok;
5b4ee69b 10844
4c4b4cd2
PH
10845 strcpy (name_buf + prefix_len, "___L");
10846 L = get_int_var_value (name_buf, &ok);
10847 if (!ok)
10848 {
323e0a4a 10849 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10850 L = 1;
10851 }
10852 }
14f9c5c9 10853
d2e4a39e 10854 if (*subtype_info == 'U')
4c4b4cd2
PH
10855 {
10856 if (!ada_scan_number (bounds_str, n, &U, &n)
10857 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10858 return raw_type;
10859 }
d2e4a39e 10860 else
4c4b4cd2
PH
10861 {
10862 int ok;
5b4ee69b 10863
4c4b4cd2
PH
10864 strcpy (name_buf + prefix_len, "___U");
10865 U = get_int_var_value (name_buf, &ok);
10866 if (!ok)
10867 {
323e0a4a 10868 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10869 U = L;
10870 }
10871 }
14f9c5c9 10872
28c85d6c 10873 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10874 TYPE_NAME (type) = name;
14f9c5c9
AS
10875 return type;
10876 }
10877}
10878
4c4b4cd2
PH
10879/* True iff NAME is the name of a range type. */
10880
14f9c5c9 10881int
d2e4a39e 10882ada_is_range_type_name (const char *name)
14f9c5c9
AS
10883{
10884 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10885}
14f9c5c9 10886\f
d2e4a39e 10887
4c4b4cd2
PH
10888 /* Modular types */
10889
10890/* True iff TYPE is an Ada modular type. */
14f9c5c9 10891
14f9c5c9 10892int
d2e4a39e 10893ada_is_modular_type (struct type *type)
14f9c5c9 10894{
18af8284 10895 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10896
10897 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10898 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10899 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10900}
10901
4c4b4cd2
PH
10902/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10903
61ee279c 10904ULONGEST
0056e4d5 10905ada_modulus (struct type *type)
14f9c5c9 10906{
43bbcdc2 10907 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10908}
d2e4a39e 10909\f
f7f9143b
JB
10910
10911/* Ada exception catchpoint support:
10912 ---------------------------------
10913
10914 We support 3 kinds of exception catchpoints:
10915 . catchpoints on Ada exceptions
10916 . catchpoints on unhandled Ada exceptions
10917 . catchpoints on failed assertions
10918
10919 Exceptions raised during failed assertions, or unhandled exceptions
10920 could perfectly be caught with the general catchpoint on Ada exceptions.
10921 However, we can easily differentiate these two special cases, and having
10922 the option to distinguish these two cases from the rest can be useful
10923 to zero-in on certain situations.
10924
10925 Exception catchpoints are a specialized form of breakpoint,
10926 since they rely on inserting breakpoints inside known routines
10927 of the GNAT runtime. The implementation therefore uses a standard
10928 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10929 of breakpoint_ops.
10930
0259addd
JB
10931 Support in the runtime for exception catchpoints have been changed
10932 a few times already, and these changes affect the implementation
10933 of these catchpoints. In order to be able to support several
10934 variants of the runtime, we use a sniffer that will determine
28010a5d 10935 the runtime variant used by the program being debugged. */
f7f9143b
JB
10936
10937/* The different types of catchpoints that we introduced for catching
10938 Ada exceptions. */
10939
10940enum exception_catchpoint_kind
10941{
10942 ex_catch_exception,
10943 ex_catch_exception_unhandled,
10944 ex_catch_assert
10945};
10946
3d0b0fa3
JB
10947/* Ada's standard exceptions. */
10948
10949static char *standard_exc[] = {
10950 "constraint_error",
10951 "program_error",
10952 "storage_error",
10953 "tasking_error"
10954};
10955
0259addd
JB
10956typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10957
10958/* A structure that describes how to support exception catchpoints
10959 for a given executable. */
10960
10961struct exception_support_info
10962{
10963 /* The name of the symbol to break on in order to insert
10964 a catchpoint on exceptions. */
10965 const char *catch_exception_sym;
10966
10967 /* The name of the symbol to break on in order to insert
10968 a catchpoint on unhandled exceptions. */
10969 const char *catch_exception_unhandled_sym;
10970
10971 /* The name of the symbol to break on in order to insert
10972 a catchpoint on failed assertions. */
10973 const char *catch_assert_sym;
10974
10975 /* Assuming that the inferior just triggered an unhandled exception
10976 catchpoint, this function is responsible for returning the address
10977 in inferior memory where the name of that exception is stored.
10978 Return zero if the address could not be computed. */
10979 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10980};
10981
10982static CORE_ADDR ada_unhandled_exception_name_addr (void);
10983static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10984
10985/* The following exception support info structure describes how to
10986 implement exception catchpoints with the latest version of the
10987 Ada runtime (as of 2007-03-06). */
10988
10989static const struct exception_support_info default_exception_support_info =
10990{
10991 "__gnat_debug_raise_exception", /* catch_exception_sym */
10992 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10993 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10994 ada_unhandled_exception_name_addr
10995};
10996
10997/* The following exception support info structure describes how to
10998 implement exception catchpoints with a slightly older version
10999 of the Ada runtime. */
11000
11001static const struct exception_support_info exception_support_info_fallback =
11002{
11003 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11004 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11005 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11006 ada_unhandled_exception_name_addr_from_raise
11007};
11008
f17011e0
JB
11009/* Return nonzero if we can detect the exception support routines
11010 described in EINFO.
11011
11012 This function errors out if an abnormal situation is detected
11013 (for instance, if we find the exception support routines, but
11014 that support is found to be incomplete). */
11015
11016static int
11017ada_has_this_exception_support (const struct exception_support_info *einfo)
11018{
11019 struct symbol *sym;
11020
11021 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11022 that should be compiled with debugging information. As a result, we
11023 expect to find that symbol in the symtabs. */
11024
11025 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11026 if (sym == NULL)
a6af7abe
JB
11027 {
11028 /* Perhaps we did not find our symbol because the Ada runtime was
11029 compiled without debugging info, or simply stripped of it.
11030 It happens on some GNU/Linux distributions for instance, where
11031 users have to install a separate debug package in order to get
11032 the runtime's debugging info. In that situation, let the user
11033 know why we cannot insert an Ada exception catchpoint.
11034
11035 Note: Just for the purpose of inserting our Ada exception
11036 catchpoint, we could rely purely on the associated minimal symbol.
11037 But we would be operating in degraded mode anyway, since we are
11038 still lacking the debugging info needed later on to extract
11039 the name of the exception being raised (this name is printed in
11040 the catchpoint message, and is also used when trying to catch
11041 a specific exception). We do not handle this case for now. */
11042 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
11043 error (_("Your Ada runtime appears to be missing some debugging "
11044 "information.\nCannot insert Ada exception catchpoint "
11045 "in this configuration."));
11046
11047 return 0;
11048 }
f17011e0
JB
11049
11050 /* Make sure that the symbol we found corresponds to a function. */
11051
11052 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11053 error (_("Symbol \"%s\" is not a function (class = %d)"),
11054 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11055
11056 return 1;
11057}
11058
0259addd
JB
11059/* Inspect the Ada runtime and determine which exception info structure
11060 should be used to provide support for exception catchpoints.
11061
3eecfa55
JB
11062 This function will always set the per-inferior exception_info,
11063 or raise an error. */
0259addd
JB
11064
11065static void
11066ada_exception_support_info_sniffer (void)
11067{
3eecfa55 11068 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11069
11070 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11071 if (data->exception_info != NULL)
0259addd
JB
11072 return;
11073
11074 /* Check the latest (default) exception support info. */
f17011e0 11075 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11076 {
3eecfa55 11077 data->exception_info = &default_exception_support_info;
0259addd
JB
11078 return;
11079 }
11080
11081 /* Try our fallback exception suport info. */
f17011e0 11082 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11083 {
3eecfa55 11084 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11085 return;
11086 }
11087
11088 /* Sometimes, it is normal for us to not be able to find the routine
11089 we are looking for. This happens when the program is linked with
11090 the shared version of the GNAT runtime, and the program has not been
11091 started yet. Inform the user of these two possible causes if
11092 applicable. */
11093
ccefe4c4 11094 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11095 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11096
11097 /* If the symbol does not exist, then check that the program is
11098 already started, to make sure that shared libraries have been
11099 loaded. If it is not started, this may mean that the symbol is
11100 in a shared library. */
11101
11102 if (ptid_get_pid (inferior_ptid) == 0)
11103 error (_("Unable to insert catchpoint. Try to start the program first."));
11104
11105 /* At this point, we know that we are debugging an Ada program and
11106 that the inferior has been started, but we still are not able to
0963b4bd 11107 find the run-time symbols. That can mean that we are in
0259addd
JB
11108 configurable run time mode, or that a-except as been optimized
11109 out by the linker... In any case, at this point it is not worth
11110 supporting this feature. */
11111
7dda8cff 11112 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11113}
11114
f7f9143b
JB
11115/* True iff FRAME is very likely to be that of a function that is
11116 part of the runtime system. This is all very heuristic, but is
11117 intended to be used as advice as to what frames are uninteresting
11118 to most users. */
11119
11120static int
11121is_known_support_routine (struct frame_info *frame)
11122{
4ed6b5be 11123 struct symtab_and_line sal;
55b87a52 11124 char *func_name;
692465f1 11125 enum language func_lang;
f7f9143b 11126 int i;
f35a17b5 11127 const char *fullname;
f7f9143b 11128
4ed6b5be
JB
11129 /* If this code does not have any debugging information (no symtab),
11130 This cannot be any user code. */
f7f9143b 11131
4ed6b5be 11132 find_frame_sal (frame, &sal);
f7f9143b
JB
11133 if (sal.symtab == NULL)
11134 return 1;
11135
4ed6b5be
JB
11136 /* If there is a symtab, but the associated source file cannot be
11137 located, then assume this is not user code: Selecting a frame
11138 for which we cannot display the code would not be very helpful
11139 for the user. This should also take care of case such as VxWorks
11140 where the kernel has some debugging info provided for a few units. */
f7f9143b 11141
f35a17b5
JK
11142 fullname = symtab_to_fullname (sal.symtab);
11143 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11144 return 1;
11145
4ed6b5be
JB
11146 /* Check the unit filename againt the Ada runtime file naming.
11147 We also check the name of the objfile against the name of some
11148 known system libraries that sometimes come with debugging info
11149 too. */
11150
f7f9143b
JB
11151 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11152 {
11153 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11154 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11155 return 1;
4ed6b5be 11156 if (sal.symtab->objfile != NULL
4262abfb 11157 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11158 return 1;
f7f9143b
JB
11159 }
11160
4ed6b5be 11161 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11162
e9e07ba6 11163 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11164 if (func_name == NULL)
11165 return 1;
11166
11167 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11168 {
11169 re_comp (known_auxiliary_function_name_patterns[i]);
11170 if (re_exec (func_name))
55b87a52
KS
11171 {
11172 xfree (func_name);
11173 return 1;
11174 }
f7f9143b
JB
11175 }
11176
55b87a52 11177 xfree (func_name);
f7f9143b
JB
11178 return 0;
11179}
11180
11181/* Find the first frame that contains debugging information and that is not
11182 part of the Ada run-time, starting from FI and moving upward. */
11183
0ef643c8 11184void
f7f9143b
JB
11185ada_find_printable_frame (struct frame_info *fi)
11186{
11187 for (; fi != NULL; fi = get_prev_frame (fi))
11188 {
11189 if (!is_known_support_routine (fi))
11190 {
11191 select_frame (fi);
11192 break;
11193 }
11194 }
11195
11196}
11197
11198/* Assuming that the inferior just triggered an unhandled exception
11199 catchpoint, return the address in inferior memory where the name
11200 of the exception is stored.
11201
11202 Return zero if the address could not be computed. */
11203
11204static CORE_ADDR
11205ada_unhandled_exception_name_addr (void)
0259addd
JB
11206{
11207 return parse_and_eval_address ("e.full_name");
11208}
11209
11210/* Same as ada_unhandled_exception_name_addr, except that this function
11211 should be used when the inferior uses an older version of the runtime,
11212 where the exception name needs to be extracted from a specific frame
11213 several frames up in the callstack. */
11214
11215static CORE_ADDR
11216ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11217{
11218 int frame_level;
11219 struct frame_info *fi;
3eecfa55 11220 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11221 struct cleanup *old_chain;
f7f9143b
JB
11222
11223 /* To determine the name of this exception, we need to select
11224 the frame corresponding to RAISE_SYM_NAME. This frame is
11225 at least 3 levels up, so we simply skip the first 3 frames
11226 without checking the name of their associated function. */
11227 fi = get_current_frame ();
11228 for (frame_level = 0; frame_level < 3; frame_level += 1)
11229 if (fi != NULL)
11230 fi = get_prev_frame (fi);
11231
55b87a52 11232 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11233 while (fi != NULL)
11234 {
55b87a52 11235 char *func_name;
692465f1
JB
11236 enum language func_lang;
11237
e9e07ba6 11238 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11239 if (func_name != NULL)
11240 {
11241 make_cleanup (xfree, func_name);
11242
11243 if (strcmp (func_name,
11244 data->exception_info->catch_exception_sym) == 0)
11245 break; /* We found the frame we were looking for... */
11246 fi = get_prev_frame (fi);
11247 }
f7f9143b 11248 }
55b87a52 11249 do_cleanups (old_chain);
f7f9143b
JB
11250
11251 if (fi == NULL)
11252 return 0;
11253
11254 select_frame (fi);
11255 return parse_and_eval_address ("id.full_name");
11256}
11257
11258/* Assuming the inferior just triggered an Ada exception catchpoint
11259 (of any type), return the address in inferior memory where the name
11260 of the exception is stored, if applicable.
11261
11262 Return zero if the address could not be computed, or if not relevant. */
11263
11264static CORE_ADDR
11265ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11266 struct breakpoint *b)
11267{
3eecfa55
JB
11268 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11269
f7f9143b
JB
11270 switch (ex)
11271 {
11272 case ex_catch_exception:
11273 return (parse_and_eval_address ("e.full_name"));
11274 break;
11275
11276 case ex_catch_exception_unhandled:
3eecfa55 11277 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11278 break;
11279
11280 case ex_catch_assert:
11281 return 0; /* Exception name is not relevant in this case. */
11282 break;
11283
11284 default:
11285 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11286 break;
11287 }
11288
11289 return 0; /* Should never be reached. */
11290}
11291
11292/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11293 any error that ada_exception_name_addr_1 might cause to be thrown.
11294 When an error is intercepted, a warning with the error message is printed,
11295 and zero is returned. */
11296
11297static CORE_ADDR
11298ada_exception_name_addr (enum exception_catchpoint_kind ex,
11299 struct breakpoint *b)
11300{
bfd189b1 11301 volatile struct gdb_exception e;
f7f9143b
JB
11302 CORE_ADDR result = 0;
11303
11304 TRY_CATCH (e, RETURN_MASK_ERROR)
11305 {
11306 result = ada_exception_name_addr_1 (ex, b);
11307 }
11308
11309 if (e.reason < 0)
11310 {
11311 warning (_("failed to get exception name: %s"), e.message);
11312 return 0;
11313 }
11314
11315 return result;
11316}
11317
28010a5d
PA
11318static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11319 char *, char **,
c0a91b2b 11320 const struct breakpoint_ops **);
28010a5d
PA
11321static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11322
11323/* Ada catchpoints.
11324
11325 In the case of catchpoints on Ada exceptions, the catchpoint will
11326 stop the target on every exception the program throws. When a user
11327 specifies the name of a specific exception, we translate this
11328 request into a condition expression (in text form), and then parse
11329 it into an expression stored in each of the catchpoint's locations.
11330 We then use this condition to check whether the exception that was
11331 raised is the one the user is interested in. If not, then the
11332 target is resumed again. We store the name of the requested
11333 exception, in order to be able to re-set the condition expression
11334 when symbols change. */
11335
11336/* An instance of this type is used to represent an Ada catchpoint
11337 breakpoint location. It includes a "struct bp_location" as a kind
11338 of base class; users downcast to "struct bp_location *" when
11339 needed. */
11340
11341struct ada_catchpoint_location
11342{
11343 /* The base class. */
11344 struct bp_location base;
11345
11346 /* The condition that checks whether the exception that was raised
11347 is the specific exception the user specified on catchpoint
11348 creation. */
11349 struct expression *excep_cond_expr;
11350};
11351
11352/* Implement the DTOR method in the bp_location_ops structure for all
11353 Ada exception catchpoint kinds. */
11354
11355static void
11356ada_catchpoint_location_dtor (struct bp_location *bl)
11357{
11358 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11359
11360 xfree (al->excep_cond_expr);
11361}
11362
11363/* The vtable to be used in Ada catchpoint locations. */
11364
11365static const struct bp_location_ops ada_catchpoint_location_ops =
11366{
11367 ada_catchpoint_location_dtor
11368};
11369
11370/* An instance of this type is used to represent an Ada catchpoint.
11371 It includes a "struct breakpoint" as a kind of base class; users
11372 downcast to "struct breakpoint *" when needed. */
11373
11374struct ada_catchpoint
11375{
11376 /* The base class. */
11377 struct breakpoint base;
11378
11379 /* The name of the specific exception the user specified. */
11380 char *excep_string;
11381};
11382
11383/* Parse the exception condition string in the context of each of the
11384 catchpoint's locations, and store them for later evaluation. */
11385
11386static void
11387create_excep_cond_exprs (struct ada_catchpoint *c)
11388{
11389 struct cleanup *old_chain;
11390 struct bp_location *bl;
11391 char *cond_string;
11392
11393 /* Nothing to do if there's no specific exception to catch. */
11394 if (c->excep_string == NULL)
11395 return;
11396
11397 /* Same if there are no locations... */
11398 if (c->base.loc == NULL)
11399 return;
11400
11401 /* Compute the condition expression in text form, from the specific
11402 expection we want to catch. */
11403 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11404 old_chain = make_cleanup (xfree, cond_string);
11405
11406 /* Iterate over all the catchpoint's locations, and parse an
11407 expression for each. */
11408 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11409 {
11410 struct ada_catchpoint_location *ada_loc
11411 = (struct ada_catchpoint_location *) bl;
11412 struct expression *exp = NULL;
11413
11414 if (!bl->shlib_disabled)
11415 {
11416 volatile struct gdb_exception e;
bbc13ae3 11417 const char *s;
28010a5d
PA
11418
11419 s = cond_string;
11420 TRY_CATCH (e, RETURN_MASK_ERROR)
11421 {
1bb9788d
TT
11422 exp = parse_exp_1 (&s, bl->address,
11423 block_for_pc (bl->address), 0);
28010a5d
PA
11424 }
11425 if (e.reason < 0)
11426 warning (_("failed to reevaluate internal exception condition "
11427 "for catchpoint %d: %s"),
11428 c->base.number, e.message);
11429 }
11430
11431 ada_loc->excep_cond_expr = exp;
11432 }
11433
11434 do_cleanups (old_chain);
11435}
11436
11437/* Implement the DTOR method in the breakpoint_ops structure for all
11438 exception catchpoint kinds. */
11439
11440static void
11441dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11442{
11443 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11444
11445 xfree (c->excep_string);
348d480f 11446
2060206e 11447 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11448}
11449
11450/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11451 structure for all exception catchpoint kinds. */
11452
11453static struct bp_location *
11454allocate_location_exception (enum exception_catchpoint_kind ex,
11455 struct breakpoint *self)
11456{
11457 struct ada_catchpoint_location *loc;
11458
11459 loc = XNEW (struct ada_catchpoint_location);
11460 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11461 loc->excep_cond_expr = NULL;
11462 return &loc->base;
11463}
11464
11465/* Implement the RE_SET method in the breakpoint_ops structure for all
11466 exception catchpoint kinds. */
11467
11468static void
11469re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11470{
11471 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11472
11473 /* Call the base class's method. This updates the catchpoint's
11474 locations. */
2060206e 11475 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11476
11477 /* Reparse the exception conditional expressions. One for each
11478 location. */
11479 create_excep_cond_exprs (c);
11480}
11481
11482/* Returns true if we should stop for this breakpoint hit. If the
11483 user specified a specific exception, we only want to cause a stop
11484 if the program thrown that exception. */
11485
11486static int
11487should_stop_exception (const struct bp_location *bl)
11488{
11489 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11490 const struct ada_catchpoint_location *ada_loc
11491 = (const struct ada_catchpoint_location *) bl;
11492 volatile struct gdb_exception ex;
11493 int stop;
11494
11495 /* With no specific exception, should always stop. */
11496 if (c->excep_string == NULL)
11497 return 1;
11498
11499 if (ada_loc->excep_cond_expr == NULL)
11500 {
11501 /* We will have a NULL expression if back when we were creating
11502 the expressions, this location's had failed to parse. */
11503 return 1;
11504 }
11505
11506 stop = 1;
11507 TRY_CATCH (ex, RETURN_MASK_ALL)
11508 {
11509 struct value *mark;
11510
11511 mark = value_mark ();
11512 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11513 value_free_to_mark (mark);
11514 }
11515 if (ex.reason < 0)
11516 exception_fprintf (gdb_stderr, ex,
11517 _("Error in testing exception condition:\n"));
11518 return stop;
11519}
11520
11521/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11522 for all exception catchpoint kinds. */
11523
11524static void
11525check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11526{
11527 bs->stop = should_stop_exception (bs->bp_location_at);
11528}
11529
f7f9143b
JB
11530/* Implement the PRINT_IT method in the breakpoint_ops structure
11531 for all exception catchpoint kinds. */
11532
11533static enum print_stop_action
348d480f 11534print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11535{
79a45e25 11536 struct ui_out *uiout = current_uiout;
348d480f
PA
11537 struct breakpoint *b = bs->breakpoint_at;
11538
956a9fb9 11539 annotate_catchpoint (b->number);
f7f9143b 11540
956a9fb9 11541 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11542 {
956a9fb9
JB
11543 ui_out_field_string (uiout, "reason",
11544 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11545 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11546 }
11547
00eb2c4a
JB
11548 ui_out_text (uiout,
11549 b->disposition == disp_del ? "\nTemporary catchpoint "
11550 : "\nCatchpoint ");
956a9fb9
JB
11551 ui_out_field_int (uiout, "bkptno", b->number);
11552 ui_out_text (uiout, ", ");
f7f9143b 11553
f7f9143b
JB
11554 switch (ex)
11555 {
11556 case ex_catch_exception:
f7f9143b 11557 case ex_catch_exception_unhandled:
956a9fb9
JB
11558 {
11559 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11560 char exception_name[256];
11561
11562 if (addr != 0)
11563 {
c714b426
PA
11564 read_memory (addr, (gdb_byte *) exception_name,
11565 sizeof (exception_name) - 1);
956a9fb9
JB
11566 exception_name [sizeof (exception_name) - 1] = '\0';
11567 }
11568 else
11569 {
11570 /* For some reason, we were unable to read the exception
11571 name. This could happen if the Runtime was compiled
11572 without debugging info, for instance. In that case,
11573 just replace the exception name by the generic string
11574 "exception" - it will read as "an exception" in the
11575 notification we are about to print. */
967cff16 11576 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11577 }
11578 /* In the case of unhandled exception breakpoints, we print
11579 the exception name as "unhandled EXCEPTION_NAME", to make
11580 it clearer to the user which kind of catchpoint just got
11581 hit. We used ui_out_text to make sure that this extra
11582 info does not pollute the exception name in the MI case. */
11583 if (ex == ex_catch_exception_unhandled)
11584 ui_out_text (uiout, "unhandled ");
11585 ui_out_field_string (uiout, "exception-name", exception_name);
11586 }
11587 break;
f7f9143b 11588 case ex_catch_assert:
956a9fb9
JB
11589 /* In this case, the name of the exception is not really
11590 important. Just print "failed assertion" to make it clearer
11591 that his program just hit an assertion-failure catchpoint.
11592 We used ui_out_text because this info does not belong in
11593 the MI output. */
11594 ui_out_text (uiout, "failed assertion");
11595 break;
f7f9143b 11596 }
956a9fb9
JB
11597 ui_out_text (uiout, " at ");
11598 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11599
11600 return PRINT_SRC_AND_LOC;
11601}
11602
11603/* Implement the PRINT_ONE method in the breakpoint_ops structure
11604 for all exception catchpoint kinds. */
11605
11606static void
11607print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11608 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11609{
79a45e25 11610 struct ui_out *uiout = current_uiout;
28010a5d 11611 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11612 struct value_print_options opts;
11613
11614 get_user_print_options (&opts);
11615 if (opts.addressprint)
f7f9143b
JB
11616 {
11617 annotate_field (4);
5af949e3 11618 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11619 }
11620
11621 annotate_field (5);
a6d9a66e 11622 *last_loc = b->loc;
f7f9143b
JB
11623 switch (ex)
11624 {
11625 case ex_catch_exception:
28010a5d 11626 if (c->excep_string != NULL)
f7f9143b 11627 {
28010a5d
PA
11628 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11629
f7f9143b
JB
11630 ui_out_field_string (uiout, "what", msg);
11631 xfree (msg);
11632 }
11633 else
11634 ui_out_field_string (uiout, "what", "all Ada exceptions");
11635
11636 break;
11637
11638 case ex_catch_exception_unhandled:
11639 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11640 break;
11641
11642 case ex_catch_assert:
11643 ui_out_field_string (uiout, "what", "failed Ada assertions");
11644 break;
11645
11646 default:
11647 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11648 break;
11649 }
11650}
11651
11652/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11653 for all exception catchpoint kinds. */
11654
11655static void
11656print_mention_exception (enum exception_catchpoint_kind ex,
11657 struct breakpoint *b)
11658{
28010a5d 11659 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11660 struct ui_out *uiout = current_uiout;
28010a5d 11661
00eb2c4a
JB
11662 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11663 : _("Catchpoint "));
11664 ui_out_field_int (uiout, "bkptno", b->number);
11665 ui_out_text (uiout, ": ");
11666
f7f9143b
JB
11667 switch (ex)
11668 {
11669 case ex_catch_exception:
28010a5d 11670 if (c->excep_string != NULL)
00eb2c4a
JB
11671 {
11672 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11673 struct cleanup *old_chain = make_cleanup (xfree, info);
11674
11675 ui_out_text (uiout, info);
11676 do_cleanups (old_chain);
11677 }
f7f9143b 11678 else
00eb2c4a 11679 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11680 break;
11681
11682 case ex_catch_exception_unhandled:
00eb2c4a 11683 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11684 break;
11685
11686 case ex_catch_assert:
00eb2c4a 11687 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11688 break;
11689
11690 default:
11691 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11692 break;
11693 }
11694}
11695
6149aea9
PA
11696/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11697 for all exception catchpoint kinds. */
11698
11699static void
11700print_recreate_exception (enum exception_catchpoint_kind ex,
11701 struct breakpoint *b, struct ui_file *fp)
11702{
28010a5d
PA
11703 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11704
6149aea9
PA
11705 switch (ex)
11706 {
11707 case ex_catch_exception:
11708 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11709 if (c->excep_string != NULL)
11710 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11711 break;
11712
11713 case ex_catch_exception_unhandled:
78076abc 11714 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11715 break;
11716
11717 case ex_catch_assert:
11718 fprintf_filtered (fp, "catch assert");
11719 break;
11720
11721 default:
11722 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11723 }
d9b3f62e 11724 print_recreate_thread (b, fp);
6149aea9
PA
11725}
11726
f7f9143b
JB
11727/* Virtual table for "catch exception" breakpoints. */
11728
28010a5d
PA
11729static void
11730dtor_catch_exception (struct breakpoint *b)
11731{
11732 dtor_exception (ex_catch_exception, b);
11733}
11734
11735static struct bp_location *
11736allocate_location_catch_exception (struct breakpoint *self)
11737{
11738 return allocate_location_exception (ex_catch_exception, self);
11739}
11740
11741static void
11742re_set_catch_exception (struct breakpoint *b)
11743{
11744 re_set_exception (ex_catch_exception, b);
11745}
11746
11747static void
11748check_status_catch_exception (bpstat bs)
11749{
11750 check_status_exception (ex_catch_exception, bs);
11751}
11752
f7f9143b 11753static enum print_stop_action
348d480f 11754print_it_catch_exception (bpstat bs)
f7f9143b 11755{
348d480f 11756 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11757}
11758
11759static void
a6d9a66e 11760print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11761{
a6d9a66e 11762 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11763}
11764
11765static void
11766print_mention_catch_exception (struct breakpoint *b)
11767{
11768 print_mention_exception (ex_catch_exception, b);
11769}
11770
6149aea9
PA
11771static void
11772print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11773{
11774 print_recreate_exception (ex_catch_exception, b, fp);
11775}
11776
2060206e 11777static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11778
11779/* Virtual table for "catch exception unhandled" breakpoints. */
11780
28010a5d
PA
11781static void
11782dtor_catch_exception_unhandled (struct breakpoint *b)
11783{
11784 dtor_exception (ex_catch_exception_unhandled, b);
11785}
11786
11787static struct bp_location *
11788allocate_location_catch_exception_unhandled (struct breakpoint *self)
11789{
11790 return allocate_location_exception (ex_catch_exception_unhandled, self);
11791}
11792
11793static void
11794re_set_catch_exception_unhandled (struct breakpoint *b)
11795{
11796 re_set_exception (ex_catch_exception_unhandled, b);
11797}
11798
11799static void
11800check_status_catch_exception_unhandled (bpstat bs)
11801{
11802 check_status_exception (ex_catch_exception_unhandled, bs);
11803}
11804
f7f9143b 11805static enum print_stop_action
348d480f 11806print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11807{
348d480f 11808 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11809}
11810
11811static void
a6d9a66e
UW
11812print_one_catch_exception_unhandled (struct breakpoint *b,
11813 struct bp_location **last_loc)
f7f9143b 11814{
a6d9a66e 11815 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11816}
11817
11818static void
11819print_mention_catch_exception_unhandled (struct breakpoint *b)
11820{
11821 print_mention_exception (ex_catch_exception_unhandled, b);
11822}
11823
6149aea9
PA
11824static void
11825print_recreate_catch_exception_unhandled (struct breakpoint *b,
11826 struct ui_file *fp)
11827{
11828 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11829}
11830
2060206e 11831static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11832
11833/* Virtual table for "catch assert" breakpoints. */
11834
28010a5d
PA
11835static void
11836dtor_catch_assert (struct breakpoint *b)
11837{
11838 dtor_exception (ex_catch_assert, b);
11839}
11840
11841static struct bp_location *
11842allocate_location_catch_assert (struct breakpoint *self)
11843{
11844 return allocate_location_exception (ex_catch_assert, self);
11845}
11846
11847static void
11848re_set_catch_assert (struct breakpoint *b)
11849{
843e694d 11850 re_set_exception (ex_catch_assert, b);
28010a5d
PA
11851}
11852
11853static void
11854check_status_catch_assert (bpstat bs)
11855{
11856 check_status_exception (ex_catch_assert, bs);
11857}
11858
f7f9143b 11859static enum print_stop_action
348d480f 11860print_it_catch_assert (bpstat bs)
f7f9143b 11861{
348d480f 11862 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11863}
11864
11865static void
a6d9a66e 11866print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11867{
a6d9a66e 11868 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11869}
11870
11871static void
11872print_mention_catch_assert (struct breakpoint *b)
11873{
11874 print_mention_exception (ex_catch_assert, b);
11875}
11876
6149aea9
PA
11877static void
11878print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11879{
11880 print_recreate_exception (ex_catch_assert, b, fp);
11881}
11882
2060206e 11883static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11884
f7f9143b
JB
11885/* Return a newly allocated copy of the first space-separated token
11886 in ARGSP, and then adjust ARGSP to point immediately after that
11887 token.
11888
11889 Return NULL if ARGPS does not contain any more tokens. */
11890
11891static char *
11892ada_get_next_arg (char **argsp)
11893{
11894 char *args = *argsp;
11895 char *end;
11896 char *result;
11897
0fcd72ba 11898 args = skip_spaces (args);
f7f9143b
JB
11899 if (args[0] == '\0')
11900 return NULL; /* No more arguments. */
11901
11902 /* Find the end of the current argument. */
11903
0fcd72ba 11904 end = skip_to_space (args);
f7f9143b
JB
11905
11906 /* Adjust ARGSP to point to the start of the next argument. */
11907
11908 *argsp = end;
11909
11910 /* Make a copy of the current argument and return it. */
11911
11912 result = xmalloc (end - args + 1);
11913 strncpy (result, args, end - args);
11914 result[end - args] = '\0';
11915
11916 return result;
11917}
11918
11919/* Split the arguments specified in a "catch exception" command.
11920 Set EX to the appropriate catchpoint type.
28010a5d 11921 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11922 specified by the user.
11923 If a condition is found at the end of the arguments, the condition
11924 expression is stored in COND_STRING (memory must be deallocated
11925 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11926
11927static void
11928catch_ada_exception_command_split (char *args,
11929 enum exception_catchpoint_kind *ex,
5845583d
JB
11930 char **excep_string,
11931 char **cond_string)
f7f9143b
JB
11932{
11933 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11934 char *exception_name;
5845583d 11935 char *cond = NULL;
f7f9143b
JB
11936
11937 exception_name = ada_get_next_arg (&args);
5845583d
JB
11938 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11939 {
11940 /* This is not an exception name; this is the start of a condition
11941 expression for a catchpoint on all exceptions. So, "un-get"
11942 this token, and set exception_name to NULL. */
11943 xfree (exception_name);
11944 exception_name = NULL;
11945 args -= 2;
11946 }
f7f9143b
JB
11947 make_cleanup (xfree, exception_name);
11948
5845583d 11949 /* Check to see if we have a condition. */
f7f9143b 11950
0fcd72ba 11951 args = skip_spaces (args);
5845583d
JB
11952 if (strncmp (args, "if", 2) == 0
11953 && (isspace (args[2]) || args[2] == '\0'))
11954 {
11955 args += 2;
11956 args = skip_spaces (args);
11957
11958 if (args[0] == '\0')
11959 error (_("Condition missing after `if' keyword"));
11960 cond = xstrdup (args);
11961 make_cleanup (xfree, cond);
11962
11963 args += strlen (args);
11964 }
11965
11966 /* Check that we do not have any more arguments. Anything else
11967 is unexpected. */
f7f9143b
JB
11968
11969 if (args[0] != '\0')
11970 error (_("Junk at end of expression"));
11971
11972 discard_cleanups (old_chain);
11973
11974 if (exception_name == NULL)
11975 {
11976 /* Catch all exceptions. */
11977 *ex = ex_catch_exception;
28010a5d 11978 *excep_string = NULL;
f7f9143b
JB
11979 }
11980 else if (strcmp (exception_name, "unhandled") == 0)
11981 {
11982 /* Catch unhandled exceptions. */
11983 *ex = ex_catch_exception_unhandled;
28010a5d 11984 *excep_string = NULL;
f7f9143b
JB
11985 }
11986 else
11987 {
11988 /* Catch a specific exception. */
11989 *ex = ex_catch_exception;
28010a5d 11990 *excep_string = exception_name;
f7f9143b 11991 }
5845583d 11992 *cond_string = cond;
f7f9143b
JB
11993}
11994
11995/* Return the name of the symbol on which we should break in order to
11996 implement a catchpoint of the EX kind. */
11997
11998static const char *
11999ada_exception_sym_name (enum exception_catchpoint_kind ex)
12000{
3eecfa55
JB
12001 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12002
12003 gdb_assert (data->exception_info != NULL);
0259addd 12004
f7f9143b
JB
12005 switch (ex)
12006 {
12007 case ex_catch_exception:
3eecfa55 12008 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
12009 break;
12010 case ex_catch_exception_unhandled:
3eecfa55 12011 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
12012 break;
12013 case ex_catch_assert:
3eecfa55 12014 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12015 break;
12016 default:
12017 internal_error (__FILE__, __LINE__,
12018 _("unexpected catchpoint kind (%d)"), ex);
12019 }
12020}
12021
12022/* Return the breakpoint ops "virtual table" used for catchpoints
12023 of the EX kind. */
12024
c0a91b2b 12025static const struct breakpoint_ops *
4b9eee8c 12026ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
12027{
12028 switch (ex)
12029 {
12030 case ex_catch_exception:
12031 return (&catch_exception_breakpoint_ops);
12032 break;
12033 case ex_catch_exception_unhandled:
12034 return (&catch_exception_unhandled_breakpoint_ops);
12035 break;
12036 case ex_catch_assert:
12037 return (&catch_assert_breakpoint_ops);
12038 break;
12039 default:
12040 internal_error (__FILE__, __LINE__,
12041 _("unexpected catchpoint kind (%d)"), ex);
12042 }
12043}
12044
12045/* Return the condition that will be used to match the current exception
12046 being raised with the exception that the user wants to catch. This
12047 assumes that this condition is used when the inferior just triggered
12048 an exception catchpoint.
12049
12050 The string returned is a newly allocated string that needs to be
12051 deallocated later. */
12052
12053static char *
28010a5d 12054ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12055{
3d0b0fa3
JB
12056 int i;
12057
0963b4bd 12058 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12059 runtime units that have been compiled without debugging info; if
28010a5d 12060 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12061 exception (e.g. "constraint_error") then, during the evaluation
12062 of the condition expression, the symbol lookup on this name would
0963b4bd 12063 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12064 may then be set only on user-defined exceptions which have the
12065 same not-fully-qualified name (e.g. my_package.constraint_error).
12066
12067 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12068 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12069 exception constraint_error" is rewritten into "catch exception
12070 standard.constraint_error".
12071
12072 If an exception named contraint_error is defined in another package of
12073 the inferior program, then the only way to specify this exception as a
12074 breakpoint condition is to use its fully-qualified named:
12075 e.g. my_package.constraint_error. */
12076
12077 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12078 {
28010a5d 12079 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12080 {
12081 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12082 excep_string);
3d0b0fa3
JB
12083 }
12084 }
28010a5d 12085 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12086}
12087
12088/* Return the symtab_and_line that should be used to insert an exception
12089 catchpoint of the TYPE kind.
12090
28010a5d
PA
12091 EXCEP_STRING should contain the name of a specific exception that
12092 the catchpoint should catch, or NULL otherwise.
f7f9143b 12093
28010a5d
PA
12094 ADDR_STRING returns the name of the function where the real
12095 breakpoint that implements the catchpoints is set, depending on the
12096 type of catchpoint we need to create. */
f7f9143b
JB
12097
12098static struct symtab_and_line
28010a5d 12099ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12100 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12101{
12102 const char *sym_name;
12103 struct symbol *sym;
f7f9143b 12104
0259addd
JB
12105 /* First, find out which exception support info to use. */
12106 ada_exception_support_info_sniffer ();
12107
12108 /* Then lookup the function on which we will break in order to catch
f7f9143b 12109 the Ada exceptions requested by the user. */
f7f9143b
JB
12110 sym_name = ada_exception_sym_name (ex);
12111 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12112
f17011e0
JB
12113 /* We can assume that SYM is not NULL at this stage. If the symbol
12114 did not exist, ada_exception_support_info_sniffer would have
12115 raised an exception.
f7f9143b 12116
f17011e0
JB
12117 Also, ada_exception_support_info_sniffer should have already
12118 verified that SYM is a function symbol. */
12119 gdb_assert (sym != NULL);
12120 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12121
12122 /* Set ADDR_STRING. */
f7f9143b
JB
12123 *addr_string = xstrdup (sym_name);
12124
f7f9143b 12125 /* Set OPS. */
4b9eee8c 12126 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12127
f17011e0 12128 return find_function_start_sal (sym, 1);
f7f9143b
JB
12129}
12130
12131/* Parse the arguments (ARGS) of the "catch exception" command.
12132
f7f9143b
JB
12133 If the user asked the catchpoint to catch only a specific
12134 exception, then save the exception name in ADDR_STRING.
12135
5845583d
JB
12136 If the user provided a condition, then set COND_STRING to
12137 that condition expression (the memory must be deallocated
12138 after use). Otherwise, set COND_STRING to NULL.
12139
f7f9143b
JB
12140 See ada_exception_sal for a description of all the remaining
12141 function arguments of this function. */
12142
9ac4176b 12143static struct symtab_and_line
f7f9143b 12144ada_decode_exception_location (char *args, char **addr_string,
28010a5d 12145 char **excep_string,
5845583d 12146 char **cond_string,
c0a91b2b 12147 const struct breakpoint_ops **ops)
f7f9143b
JB
12148{
12149 enum exception_catchpoint_kind ex;
12150
5845583d 12151 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
12152 return ada_exception_sal (ex, *excep_string, addr_string, ops);
12153}
12154
12155/* Create an Ada exception catchpoint. */
12156
12157static void
12158create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12159 struct symtab_and_line sal,
12160 char *addr_string,
12161 char *excep_string,
5845583d 12162 char *cond_string,
c0a91b2b 12163 const struct breakpoint_ops *ops,
28010a5d
PA
12164 int tempflag,
12165 int from_tty)
12166{
12167 struct ada_catchpoint *c;
12168
12169 c = XNEW (struct ada_catchpoint);
12170 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12171 ops, tempflag, from_tty);
12172 c->excep_string = excep_string;
12173 create_excep_cond_exprs (c);
5845583d
JB
12174 if (cond_string != NULL)
12175 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12176 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12177}
12178
9ac4176b
PA
12179/* Implement the "catch exception" command. */
12180
12181static void
12182catch_ada_exception_command (char *arg, int from_tty,
12183 struct cmd_list_element *command)
12184{
12185 struct gdbarch *gdbarch = get_current_arch ();
12186 int tempflag;
12187 struct symtab_and_line sal;
12188 char *addr_string = NULL;
28010a5d 12189 char *excep_string = NULL;
5845583d 12190 char *cond_string = NULL;
c0a91b2b 12191 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12192
12193 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12194
12195 if (!arg)
12196 arg = "";
5845583d
JB
12197 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12198 &cond_string, &ops);
28010a5d 12199 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12200 excep_string, cond_string, ops,
12201 tempflag, from_tty);
9ac4176b
PA
12202}
12203
5845583d
JB
12204/* Assuming that ARGS contains the arguments of a "catch assert"
12205 command, parse those arguments and return a symtab_and_line object
12206 for a failed assertion catchpoint.
12207
12208 Set ADDR_STRING to the name of the function where the real
12209 breakpoint that implements the catchpoint is set.
12210
12211 If ARGS contains a condition, set COND_STRING to that condition
12212 (the memory needs to be deallocated after use). Otherwise, set
12213 COND_STRING to NULL. */
12214
9ac4176b 12215static struct symtab_and_line
f7f9143b 12216ada_decode_assert_location (char *args, char **addr_string,
5845583d 12217 char **cond_string,
c0a91b2b 12218 const struct breakpoint_ops **ops)
f7f9143b 12219{
5845583d 12220 args = skip_spaces (args);
f7f9143b 12221
5845583d
JB
12222 /* Check whether a condition was provided. */
12223 if (strncmp (args, "if", 2) == 0
12224 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12225 {
5845583d 12226 args += 2;
0fcd72ba 12227 args = skip_spaces (args);
5845583d
JB
12228 if (args[0] == '\0')
12229 error (_("condition missing after `if' keyword"));
12230 *cond_string = xstrdup (args);
f7f9143b
JB
12231 }
12232
5845583d
JB
12233 /* Otherwise, there should be no other argument at the end of
12234 the command. */
12235 else if (args[0] != '\0')
12236 error (_("Junk at end of arguments."));
12237
28010a5d 12238 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
12239}
12240
9ac4176b
PA
12241/* Implement the "catch assert" command. */
12242
12243static void
12244catch_assert_command (char *arg, int from_tty,
12245 struct cmd_list_element *command)
12246{
12247 struct gdbarch *gdbarch = get_current_arch ();
12248 int tempflag;
12249 struct symtab_and_line sal;
12250 char *addr_string = NULL;
5845583d 12251 char *cond_string = NULL;
c0a91b2b 12252 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
12253
12254 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12255
12256 if (!arg)
12257 arg = "";
5845583d 12258 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 12259 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
12260 NULL, cond_string, ops, tempflag,
12261 from_tty);
9ac4176b 12262}
4c4b4cd2
PH
12263 /* Operators */
12264/* Information about operators given special treatment in functions
12265 below. */
12266/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12267
12268#define ADA_OPERATORS \
12269 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12270 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12271 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12272 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12273 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12274 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12275 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12276 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12277 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12278 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12279 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12280 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12281 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12282 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12283 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12284 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12285 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12286 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12287 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12288
12289static void
554794dc
SDJ
12290ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12291 int *argsp)
4c4b4cd2
PH
12292{
12293 switch (exp->elts[pc - 1].opcode)
12294 {
76a01679 12295 default:
4c4b4cd2
PH
12296 operator_length_standard (exp, pc, oplenp, argsp);
12297 break;
12298
12299#define OP_DEFN(op, len, args, binop) \
12300 case op: *oplenp = len; *argsp = args; break;
12301 ADA_OPERATORS;
12302#undef OP_DEFN
52ce6436
PH
12303
12304 case OP_AGGREGATE:
12305 *oplenp = 3;
12306 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12307 break;
12308
12309 case OP_CHOICES:
12310 *oplenp = 3;
12311 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12312 break;
4c4b4cd2
PH
12313 }
12314}
12315
c0201579
JK
12316/* Implementation of the exp_descriptor method operator_check. */
12317
12318static int
12319ada_operator_check (struct expression *exp, int pos,
12320 int (*objfile_func) (struct objfile *objfile, void *data),
12321 void *data)
12322{
12323 const union exp_element *const elts = exp->elts;
12324 struct type *type = NULL;
12325
12326 switch (elts[pos].opcode)
12327 {
12328 case UNOP_IN_RANGE:
12329 case UNOP_QUAL:
12330 type = elts[pos + 1].type;
12331 break;
12332
12333 default:
12334 return operator_check_standard (exp, pos, objfile_func, data);
12335 }
12336
12337 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12338
12339 if (type && TYPE_OBJFILE (type)
12340 && (*objfile_func) (TYPE_OBJFILE (type), data))
12341 return 1;
12342
12343 return 0;
12344}
12345
4c4b4cd2
PH
12346static char *
12347ada_op_name (enum exp_opcode opcode)
12348{
12349 switch (opcode)
12350 {
76a01679 12351 default:
4c4b4cd2 12352 return op_name_standard (opcode);
52ce6436 12353
4c4b4cd2
PH
12354#define OP_DEFN(op, len, args, binop) case op: return #op;
12355 ADA_OPERATORS;
12356#undef OP_DEFN
52ce6436
PH
12357
12358 case OP_AGGREGATE:
12359 return "OP_AGGREGATE";
12360 case OP_CHOICES:
12361 return "OP_CHOICES";
12362 case OP_NAME:
12363 return "OP_NAME";
4c4b4cd2
PH
12364 }
12365}
12366
12367/* As for operator_length, but assumes PC is pointing at the first
12368 element of the operator, and gives meaningful results only for the
52ce6436 12369 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12370
12371static void
76a01679
JB
12372ada_forward_operator_length (struct expression *exp, int pc,
12373 int *oplenp, int *argsp)
4c4b4cd2 12374{
76a01679 12375 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12376 {
12377 default:
12378 *oplenp = *argsp = 0;
12379 break;
52ce6436 12380
4c4b4cd2
PH
12381#define OP_DEFN(op, len, args, binop) \
12382 case op: *oplenp = len; *argsp = args; break;
12383 ADA_OPERATORS;
12384#undef OP_DEFN
52ce6436
PH
12385
12386 case OP_AGGREGATE:
12387 *oplenp = 3;
12388 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12389 break;
12390
12391 case OP_CHOICES:
12392 *oplenp = 3;
12393 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12394 break;
12395
12396 case OP_STRING:
12397 case OP_NAME:
12398 {
12399 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12400
52ce6436
PH
12401 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12402 *argsp = 0;
12403 break;
12404 }
4c4b4cd2
PH
12405 }
12406}
12407
12408static int
12409ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12410{
12411 enum exp_opcode op = exp->elts[elt].opcode;
12412 int oplen, nargs;
12413 int pc = elt;
12414 int i;
76a01679 12415
4c4b4cd2
PH
12416 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12417
76a01679 12418 switch (op)
4c4b4cd2 12419 {
76a01679 12420 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12421 case OP_ATR_FIRST:
12422 case OP_ATR_LAST:
12423 case OP_ATR_LENGTH:
12424 case OP_ATR_IMAGE:
12425 case OP_ATR_MAX:
12426 case OP_ATR_MIN:
12427 case OP_ATR_MODULUS:
12428 case OP_ATR_POS:
12429 case OP_ATR_SIZE:
12430 case OP_ATR_TAG:
12431 case OP_ATR_VAL:
12432 break;
12433
12434 case UNOP_IN_RANGE:
12435 case UNOP_QUAL:
323e0a4a
AC
12436 /* XXX: gdb_sprint_host_address, type_sprint */
12437 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12438 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12439 fprintf_filtered (stream, " (");
12440 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12441 fprintf_filtered (stream, ")");
12442 break;
12443 case BINOP_IN_BOUNDS:
52ce6436
PH
12444 fprintf_filtered (stream, " (%d)",
12445 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12446 break;
12447 case TERNOP_IN_RANGE:
12448 break;
12449
52ce6436
PH
12450 case OP_AGGREGATE:
12451 case OP_OTHERS:
12452 case OP_DISCRETE_RANGE:
12453 case OP_POSITIONAL:
12454 case OP_CHOICES:
12455 break;
12456
12457 case OP_NAME:
12458 case OP_STRING:
12459 {
12460 char *name = &exp->elts[elt + 2].string;
12461 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12462
52ce6436
PH
12463 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12464 break;
12465 }
12466
4c4b4cd2
PH
12467 default:
12468 return dump_subexp_body_standard (exp, stream, elt);
12469 }
12470
12471 elt += oplen;
12472 for (i = 0; i < nargs; i += 1)
12473 elt = dump_subexp (exp, stream, elt);
12474
12475 return elt;
12476}
12477
12478/* The Ada extension of print_subexp (q.v.). */
12479
76a01679
JB
12480static void
12481ada_print_subexp (struct expression *exp, int *pos,
12482 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12483{
52ce6436 12484 int oplen, nargs, i;
4c4b4cd2
PH
12485 int pc = *pos;
12486 enum exp_opcode op = exp->elts[pc].opcode;
12487
12488 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12489
52ce6436 12490 *pos += oplen;
4c4b4cd2
PH
12491 switch (op)
12492 {
12493 default:
52ce6436 12494 *pos -= oplen;
4c4b4cd2
PH
12495 print_subexp_standard (exp, pos, stream, prec);
12496 return;
12497
12498 case OP_VAR_VALUE:
4c4b4cd2
PH
12499 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12500 return;
12501
12502 case BINOP_IN_BOUNDS:
323e0a4a 12503 /* XXX: sprint_subexp */
4c4b4cd2 12504 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12505 fputs_filtered (" in ", stream);
4c4b4cd2 12506 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12507 fputs_filtered ("'range", stream);
4c4b4cd2 12508 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12509 fprintf_filtered (stream, "(%ld)",
12510 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12511 return;
12512
12513 case TERNOP_IN_RANGE:
4c4b4cd2 12514 if (prec >= PREC_EQUAL)
76a01679 12515 fputs_filtered ("(", stream);
323e0a4a 12516 /* XXX: sprint_subexp */
4c4b4cd2 12517 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12518 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12519 print_subexp (exp, pos, stream, PREC_EQUAL);
12520 fputs_filtered (" .. ", stream);
12521 print_subexp (exp, pos, stream, PREC_EQUAL);
12522 if (prec >= PREC_EQUAL)
76a01679
JB
12523 fputs_filtered (")", stream);
12524 return;
4c4b4cd2
PH
12525
12526 case OP_ATR_FIRST:
12527 case OP_ATR_LAST:
12528 case OP_ATR_LENGTH:
12529 case OP_ATR_IMAGE:
12530 case OP_ATR_MAX:
12531 case OP_ATR_MIN:
12532 case OP_ATR_MODULUS:
12533 case OP_ATR_POS:
12534 case OP_ATR_SIZE:
12535 case OP_ATR_TAG:
12536 case OP_ATR_VAL:
4c4b4cd2 12537 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12538 {
12539 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
12540 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12541 &type_print_raw_options);
76a01679
JB
12542 *pos += 3;
12543 }
4c4b4cd2 12544 else
76a01679 12545 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12546 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12547 if (nargs > 1)
76a01679
JB
12548 {
12549 int tem;
5b4ee69b 12550
76a01679
JB
12551 for (tem = 1; tem < nargs; tem += 1)
12552 {
12553 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12554 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12555 }
12556 fputs_filtered (")", stream);
12557 }
4c4b4cd2 12558 return;
14f9c5c9 12559
4c4b4cd2 12560 case UNOP_QUAL:
4c4b4cd2
PH
12561 type_print (exp->elts[pc + 1].type, "", stream, 0);
12562 fputs_filtered ("'(", stream);
12563 print_subexp (exp, pos, stream, PREC_PREFIX);
12564 fputs_filtered (")", stream);
12565 return;
14f9c5c9 12566
4c4b4cd2 12567 case UNOP_IN_RANGE:
323e0a4a 12568 /* XXX: sprint_subexp */
4c4b4cd2 12569 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12570 fputs_filtered (" in ", stream);
79d43c61
TT
12571 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12572 &type_print_raw_options);
4c4b4cd2 12573 return;
52ce6436
PH
12574
12575 case OP_DISCRETE_RANGE:
12576 print_subexp (exp, pos, stream, PREC_SUFFIX);
12577 fputs_filtered ("..", stream);
12578 print_subexp (exp, pos, stream, PREC_SUFFIX);
12579 return;
12580
12581 case OP_OTHERS:
12582 fputs_filtered ("others => ", stream);
12583 print_subexp (exp, pos, stream, PREC_SUFFIX);
12584 return;
12585
12586 case OP_CHOICES:
12587 for (i = 0; i < nargs-1; i += 1)
12588 {
12589 if (i > 0)
12590 fputs_filtered ("|", stream);
12591 print_subexp (exp, pos, stream, PREC_SUFFIX);
12592 }
12593 fputs_filtered (" => ", stream);
12594 print_subexp (exp, pos, stream, PREC_SUFFIX);
12595 return;
12596
12597 case OP_POSITIONAL:
12598 print_subexp (exp, pos, stream, PREC_SUFFIX);
12599 return;
12600
12601 case OP_AGGREGATE:
12602 fputs_filtered ("(", stream);
12603 for (i = 0; i < nargs; i += 1)
12604 {
12605 if (i > 0)
12606 fputs_filtered (", ", stream);
12607 print_subexp (exp, pos, stream, PREC_SUFFIX);
12608 }
12609 fputs_filtered (")", stream);
12610 return;
4c4b4cd2
PH
12611 }
12612}
14f9c5c9
AS
12613
12614/* Table mapping opcodes into strings for printing operators
12615 and precedences of the operators. */
12616
d2e4a39e
AS
12617static const struct op_print ada_op_print_tab[] = {
12618 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12619 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12620 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12621 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12622 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12623 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12624 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12625 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12626 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12627 {">=", BINOP_GEQ, PREC_ORDER, 0},
12628 {">", BINOP_GTR, PREC_ORDER, 0},
12629 {"<", BINOP_LESS, PREC_ORDER, 0},
12630 {">>", BINOP_RSH, PREC_SHIFT, 0},
12631 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12632 {"+", BINOP_ADD, PREC_ADD, 0},
12633 {"-", BINOP_SUB, PREC_ADD, 0},
12634 {"&", BINOP_CONCAT, PREC_ADD, 0},
12635 {"*", BINOP_MUL, PREC_MUL, 0},
12636 {"/", BINOP_DIV, PREC_MUL, 0},
12637 {"rem", BINOP_REM, PREC_MUL, 0},
12638 {"mod", BINOP_MOD, PREC_MUL, 0},
12639 {"**", BINOP_EXP, PREC_REPEAT, 0},
12640 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12641 {"-", UNOP_NEG, PREC_PREFIX, 0},
12642 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12643 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12644 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12645 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12646 {".all", UNOP_IND, PREC_SUFFIX, 1},
12647 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12648 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12649 {NULL, 0, 0, 0}
14f9c5c9
AS
12650};
12651\f
72d5681a
PH
12652enum ada_primitive_types {
12653 ada_primitive_type_int,
12654 ada_primitive_type_long,
12655 ada_primitive_type_short,
12656 ada_primitive_type_char,
12657 ada_primitive_type_float,
12658 ada_primitive_type_double,
12659 ada_primitive_type_void,
12660 ada_primitive_type_long_long,
12661 ada_primitive_type_long_double,
12662 ada_primitive_type_natural,
12663 ada_primitive_type_positive,
12664 ada_primitive_type_system_address,
12665 nr_ada_primitive_types
12666};
6c038f32
PH
12667
12668static void
d4a9a881 12669ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12670 struct language_arch_info *lai)
12671{
d4a9a881 12672 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12673
72d5681a 12674 lai->primitive_type_vector
d4a9a881 12675 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12676 struct type *);
e9bb382b
UW
12677
12678 lai->primitive_type_vector [ada_primitive_type_int]
12679 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12680 0, "integer");
12681 lai->primitive_type_vector [ada_primitive_type_long]
12682 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12683 0, "long_integer");
12684 lai->primitive_type_vector [ada_primitive_type_short]
12685 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12686 0, "short_integer");
12687 lai->string_char_type
12688 = lai->primitive_type_vector [ada_primitive_type_char]
12689 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12690 lai->primitive_type_vector [ada_primitive_type_float]
12691 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12692 "float", NULL);
12693 lai->primitive_type_vector [ada_primitive_type_double]
12694 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12695 "long_float", NULL);
12696 lai->primitive_type_vector [ada_primitive_type_long_long]
12697 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12698 0, "long_long_integer");
12699 lai->primitive_type_vector [ada_primitive_type_long_double]
12700 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12701 "long_long_float", NULL);
12702 lai->primitive_type_vector [ada_primitive_type_natural]
12703 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12704 0, "natural");
12705 lai->primitive_type_vector [ada_primitive_type_positive]
12706 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12707 0, "positive");
12708 lai->primitive_type_vector [ada_primitive_type_void]
12709 = builtin->builtin_void;
12710
12711 lai->primitive_type_vector [ada_primitive_type_system_address]
12712 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12713 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12714 = "system__address";
fbb06eb1 12715
47e729a8 12716 lai->bool_type_symbol = NULL;
fbb06eb1 12717 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12718}
6c038f32
PH
12719\f
12720 /* Language vector */
12721
12722/* Not really used, but needed in the ada_language_defn. */
12723
12724static void
6c7a06a3 12725emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12726{
6c7a06a3 12727 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12728}
12729
12730static int
12731parse (void)
12732{
12733 warnings_issued = 0;
12734 return ada_parse ();
12735}
12736
12737static const struct exp_descriptor ada_exp_descriptor = {
12738 ada_print_subexp,
12739 ada_operator_length,
c0201579 12740 ada_operator_check,
6c038f32
PH
12741 ada_op_name,
12742 ada_dump_subexp_body,
12743 ada_evaluate_subexp
12744};
12745
1a119f36 12746/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12747 for Ada. */
12748
1a119f36
JB
12749static symbol_name_cmp_ftype
12750ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12751{
12752 if (should_use_wild_match (lookup_name))
12753 return wild_match;
12754 else
12755 return compare_names;
12756}
12757
a5ee536b
JB
12758/* Implement the "la_read_var_value" language_defn method for Ada. */
12759
12760static struct value *
12761ada_read_var_value (struct symbol *var, struct frame_info *frame)
12762{
12763 struct block *frame_block = NULL;
12764 struct symbol *renaming_sym = NULL;
12765
12766 /* The only case where default_read_var_value is not sufficient
12767 is when VAR is a renaming... */
12768 if (frame)
12769 frame_block = get_frame_block (frame, NULL);
12770 if (frame_block)
12771 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12772 if (renaming_sym != NULL)
12773 return ada_read_renaming_var_value (renaming_sym, frame_block);
12774
12775 /* This is a typical case where we expect the default_read_var_value
12776 function to work. */
12777 return default_read_var_value (var, frame);
12778}
12779
6c038f32
PH
12780const struct language_defn ada_language_defn = {
12781 "ada", /* Language name */
12782 language_ada,
6c038f32 12783 range_check_off,
6c038f32
PH
12784 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12785 that's not quite what this means. */
6c038f32 12786 array_row_major,
9a044a89 12787 macro_expansion_no,
6c038f32
PH
12788 &ada_exp_descriptor,
12789 parse,
12790 ada_error,
12791 resolve,
12792 ada_printchar, /* Print a character constant */
12793 ada_printstr, /* Function to print string constant */
12794 emit_char, /* Function to print single char (not used) */
6c038f32 12795 ada_print_type, /* Print a type using appropriate syntax */
be942545 12796 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12797 ada_val_print, /* Print a value using appropriate syntax */
12798 ada_value_print, /* Print a top-level value */
a5ee536b 12799 ada_read_var_value, /* la_read_var_value */
6c038f32 12800 NULL, /* Language specific skip_trampoline */
2b2d9e11 12801 NULL, /* name_of_this */
6c038f32
PH
12802 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12803 basic_lookup_transparent_type, /* lookup_transparent_type */
12804 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12805 NULL, /* Language specific
12806 class_name_from_physname */
6c038f32
PH
12807 ada_op_print_tab, /* expression operators for printing */
12808 0, /* c-style arrays */
12809 1, /* String lower bound */
6c038f32 12810 ada_get_gdb_completer_word_break_characters,
41d27058 12811 ada_make_symbol_completion_list,
72d5681a 12812 ada_language_arch_info,
e79af960 12813 ada_print_array_index,
41f1b697 12814 default_pass_by_reference,
ae6a3a4c 12815 c_get_string,
1a119f36 12816 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12817 ada_iterate_over_symbols,
6c038f32
PH
12818 LANG_MAGIC
12819};
12820
2c0b251b
PA
12821/* Provide a prototype to silence -Wmissing-prototypes. */
12822extern initialize_file_ftype _initialize_ada_language;
12823
5bf03f13
JB
12824/* Command-list for the "set/show ada" prefix command. */
12825static struct cmd_list_element *set_ada_list;
12826static struct cmd_list_element *show_ada_list;
12827
12828/* Implement the "set ada" prefix command. */
12829
12830static void
12831set_ada_command (char *arg, int from_tty)
12832{
12833 printf_unfiltered (_(\
12834"\"set ada\" must be followed by the name of a setting.\n"));
12835 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12836}
12837
12838/* Implement the "show ada" prefix command. */
12839
12840static void
12841show_ada_command (char *args, int from_tty)
12842{
12843 cmd_show_list (show_ada_list, from_tty, "");
12844}
12845
2060206e
PA
12846static void
12847initialize_ada_catchpoint_ops (void)
12848{
12849 struct breakpoint_ops *ops;
12850
12851 initialize_breakpoint_ops ();
12852
12853 ops = &catch_exception_breakpoint_ops;
12854 *ops = bkpt_breakpoint_ops;
12855 ops->dtor = dtor_catch_exception;
12856 ops->allocate_location = allocate_location_catch_exception;
12857 ops->re_set = re_set_catch_exception;
12858 ops->check_status = check_status_catch_exception;
12859 ops->print_it = print_it_catch_exception;
12860 ops->print_one = print_one_catch_exception;
12861 ops->print_mention = print_mention_catch_exception;
12862 ops->print_recreate = print_recreate_catch_exception;
12863
12864 ops = &catch_exception_unhandled_breakpoint_ops;
12865 *ops = bkpt_breakpoint_ops;
12866 ops->dtor = dtor_catch_exception_unhandled;
12867 ops->allocate_location = allocate_location_catch_exception_unhandled;
12868 ops->re_set = re_set_catch_exception_unhandled;
12869 ops->check_status = check_status_catch_exception_unhandled;
12870 ops->print_it = print_it_catch_exception_unhandled;
12871 ops->print_one = print_one_catch_exception_unhandled;
12872 ops->print_mention = print_mention_catch_exception_unhandled;
12873 ops->print_recreate = print_recreate_catch_exception_unhandled;
12874
12875 ops = &catch_assert_breakpoint_ops;
12876 *ops = bkpt_breakpoint_ops;
12877 ops->dtor = dtor_catch_assert;
12878 ops->allocate_location = allocate_location_catch_assert;
12879 ops->re_set = re_set_catch_assert;
12880 ops->check_status = check_status_catch_assert;
12881 ops->print_it = print_it_catch_assert;
12882 ops->print_one = print_one_catch_assert;
12883 ops->print_mention = print_mention_catch_assert;
12884 ops->print_recreate = print_recreate_catch_assert;
12885}
12886
d2e4a39e 12887void
6c038f32 12888_initialize_ada_language (void)
14f9c5c9 12889{
6c038f32
PH
12890 add_language (&ada_language_defn);
12891
2060206e
PA
12892 initialize_ada_catchpoint_ops ();
12893
5bf03f13
JB
12894 add_prefix_cmd ("ada", no_class, set_ada_command,
12895 _("Prefix command for changing Ada-specfic settings"),
12896 &set_ada_list, "set ada ", 0, &setlist);
12897
12898 add_prefix_cmd ("ada", no_class, show_ada_command,
12899 _("Generic command for showing Ada-specific settings."),
12900 &show_ada_list, "show ada ", 0, &showlist);
12901
12902 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12903 &trust_pad_over_xvs, _("\
12904Enable or disable an optimization trusting PAD types over XVS types"), _("\
12905Show whether an optimization trusting PAD types over XVS types is activated"),
12906 _("\
12907This is related to the encoding used by the GNAT compiler. The debugger\n\
12908should normally trust the contents of PAD types, but certain older versions\n\
12909of GNAT have a bug that sometimes causes the information in the PAD type\n\
12910to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12911work around this bug. It is always safe to turn this option \"off\", but\n\
12912this incurs a slight performance penalty, so it is recommended to NOT change\n\
12913this option to \"off\" unless necessary."),
12914 NULL, NULL, &set_ada_list, &show_ada_list);
12915
9ac4176b
PA
12916 add_catch_command ("exception", _("\
12917Catch Ada exceptions, when raised.\n\
12918With an argument, catch only exceptions with the given name."),
12919 catch_ada_exception_command,
12920 NULL,
12921 CATCH_PERMANENT,
12922 CATCH_TEMPORARY);
12923 add_catch_command ("assert", _("\
12924Catch failed Ada assertions, when raised.\n\
12925With an argument, catch only exceptions with the given name."),
12926 catch_assert_command,
12927 NULL,
12928 CATCH_PERMANENT,
12929 CATCH_TEMPORARY);
12930
6c038f32 12931 varsize_limit = 65536;
6c038f32
PH
12932
12933 obstack_init (&symbol_list_obstack);
12934
12935 decoded_names_store = htab_create_alloc
12936 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12937 NULL, xcalloc, xfree);
6b69afc4 12938
e802dbe0
JB
12939 /* Setup per-inferior data. */
12940 observer_attach_inferior_exit (ada_inferior_exit);
12941 ada_inferior_data
8e260fc0 12942 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14f9c5c9 12943}
This page took 1.710755 seconds and 4 git commands to generate.