Instantiate a single source highlighter
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
42a4f53d 3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
d55e5aa6 24#include "gdb_regex.h"
4de283e4
TT
25#include "frame.h"
26#include "symtab.h"
27#include "gdbtypes.h"
14f9c5c9 28#include "gdbcmd.h"
4de283e4
TT
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
32#include "varobj.h"
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
14f9c5c9 38#include "gdbcore.h"
4c4b4cd2 39#include "hashtab.h"
4de283e4
TT
40#include "gdb_obstack.h"
41#include "ada-lang.h"
42#include "completer.h"
43#include <sys/stat.h>
44#include "ui-out.h"
45#include "block.h"
04714b91 46#include "infcall.h"
4de283e4
TT
47#include "dictionary.h"
48#include "annotate.h"
49#include "valprint.h"
d55e5aa6 50#include "source.h"
4de283e4
TT
51#include "observable.h"
52#include "common/vec.h"
692465f1 53#include "stack.h"
4de283e4 54#include "common/gdb_vecs.h"
79d43c61 55#include "typeprint.h"
4de283e4
TT
56#include "namespace.h"
57
58#include "psymtab.h"
40bc484c 59#include "value.h"
4de283e4
TT
60#include "mi/mi-common.h"
61#include "arch-utils.h"
62#include "cli/cli-utils.h"
63#include "common/function-view.h"
64#include "common/byte-vector.h"
65#include <algorithm>
2ff0a947 66#include <map>
ccefe4c4 67
4c4b4cd2 68/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 69 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
70 Copied from valarith.c. */
71
72#ifndef TRUNCATION_TOWARDS_ZERO
73#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74#endif
75
d2e4a39e 76static struct type *desc_base_type (struct type *);
14f9c5c9 77
d2e4a39e 78static struct type *desc_bounds_type (struct type *);
14f9c5c9 79
d2e4a39e 80static struct value *desc_bounds (struct value *);
14f9c5c9 81
d2e4a39e 82static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 83
d2e4a39e 84static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 85
556bdfd4 86static struct type *desc_data_target_type (struct type *);
14f9c5c9 87
d2e4a39e 88static struct value *desc_data (struct value *);
14f9c5c9 89
d2e4a39e 90static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 91
d2e4a39e 92static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 93
d2e4a39e 94static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 95
d2e4a39e 96static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 97
d2e4a39e 98static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 99
d2e4a39e 100static struct type *desc_index_type (struct type *, int);
14f9c5c9 101
d2e4a39e 102static int desc_arity (struct type *);
14f9c5c9 103
d2e4a39e 104static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 105
d2e4a39e 106static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 107
40bc484c 108static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 109
4c4b4cd2 110static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
14f9c5c9 114
22cee43f 115static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
22cee43f 118
d12307c1 119static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 120
76a01679 121static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 122 const struct block *);
14f9c5c9 123
4c4b4cd2
PH
124static int num_defns_collected (struct obstack *);
125
d12307c1 126static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 127
e9d9f57e 128static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
129 struct type *, int,
130 innermost_block_tracker *);
14f9c5c9 131
e9d9f57e 132static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 133 struct symbol *, const struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
a121b7c1 137static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
a121b7c1 149static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 150 int, int);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
4c4b4cd2
PH
187static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
14f9c5c9 189
d2e4a39e 190static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 191
d2e4a39e 192static int equiv_types (struct type *, struct type *);
14f9c5c9 193
d2e4a39e 194static int is_name_suffix (const char *);
14f9c5c9 195
73589123
PH
196static int advance_wild_match (const char **, const char *, int);
197
b5ec771e 198static bool wild_match (const char *name, const char *patn);
14f9c5c9 199
d2e4a39e 200static struct value *ada_coerce_ref (struct value *);
14f9c5c9 201
4c4b4cd2
PH
202static LONGEST pos_atr (struct value *);
203
3cb382c9 204static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 205
d2e4a39e 206static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 207
4c4b4cd2
PH
208static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
14f9c5c9 210
108d56a4 211static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
212 struct type *);
213
214static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
0d5cff50 217static int find_struct_field (const char *, struct type *, int,
52ce6436 218 struct type **, int *, int *, int *, int *);
4c4b4cd2 219
d12307c1 220static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 221 struct value **, int, const char *,
2a612529 222 struct type *, int);
4c4b4cd2 223
4c4b4cd2
PH
224static int ada_is_direct_array_type (struct type *);
225
72d5681a
PH
226static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
714e53ab 228
52ce6436
PH
229static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
233 struct expression *,
234 int *, enum noside);
52ce6436
PH
235
236static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
852dff6c
JB
260
261static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
262
263static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
4c4b4cd2
PH
266\f
267
ee01b665
JB
268/* The result of a symbol lookup to be stored in our symbol cache. */
269
270struct cache_entry
271{
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
fe978cb0 275 domain_enum domain;
ee01b665
JB
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284};
285
286/* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295#define HASH_SIZE 1009
296
297struct ada_symbol_cache
298{
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304};
305
306static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 307
4c4b4cd2 308/* Maximum-sized dynamic type. */
14f9c5c9
AS
309static unsigned int varsize_limit;
310
67cb5b2d 311static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
312#ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314#else
14f9c5c9 315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 316#endif
14f9c5c9 317
4c4b4cd2 318/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 319static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 320 = "__gnat_ada_main_program_name";
14f9c5c9 321
4c4b4cd2
PH
322/* Limit on the number of warnings to raise per expression evaluation. */
323static int warning_limit = 2;
324
325/* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327static int warnings_issued = 0;
328
329static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331};
332
333static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335};
336
c6044dd1
JB
337/* Maintenance-related settings for this module. */
338
339static struct cmd_list_element *maint_set_ada_cmdlist;
340static struct cmd_list_element *maint_show_ada_cmdlist;
341
342/* Implement the "maintenance set ada" (prefix) command. */
343
344static void
981a3fb3 345maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 346{
635c7e8a
TT
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
c6044dd1
JB
349}
350
351/* Implement the "maintenance show ada" (prefix) command. */
352
353static void
981a3fb3 354maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
355{
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357}
358
359/* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361static int ada_ignore_descriptive_types_p = 0;
362
e802dbe0
JB
363 /* Inferior-specific data. */
364
365/* Per-inferior data for this module. */
366
367struct ada_inferior_data
368{
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
f37b313d 373 struct type *tsd_type = nullptr;
3eecfa55
JB
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
f37b313d 378 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
379};
380
381/* Our key to this module's inferior data. */
f37b313d 382static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
383
384/* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392static struct ada_inferior_data *
393get_ada_inferior_data (struct inferior *inf)
394{
395 struct ada_inferior_data *data;
396
f37b313d 397 data = ada_inferior_data.get (inf);
e802dbe0 398 if (data == NULL)
f37b313d 399 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
400
401 return data;
402}
403
404/* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407static void
408ada_inferior_exit (struct inferior *inf)
409{
f37b313d 410 ada_inferior_data.clear (inf);
e802dbe0
JB
411}
412
ee01b665
JB
413
414 /* program-space-specific data. */
415
416/* This module's per-program-space data. */
417struct ada_pspace_data
418{
f37b313d
TT
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
ee01b665 425 /* The Ada symbol cache. */
f37b313d 426 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
427};
428
429/* Key to our per-program-space data. */
f37b313d 430static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
431
432/* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437static struct ada_pspace_data *
438get_ada_pspace_data (struct program_space *pspace)
439{
440 struct ada_pspace_data *data;
441
f37b313d 442 data = ada_pspace_data_handle.get (pspace);
ee01b665 443 if (data == NULL)
f37b313d 444 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
445
446 return data;
447}
448
4c4b4cd2
PH
449 /* Utilities */
450
720d1a40 451/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 452 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478static struct type *
479ada_typedef_target_type (struct type *type)
480{
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484}
485
41d27058
JB
486/* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490static const char *
491ada_unqualified_name (const char *decoded_name)
492{
2b0f535a
JB
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
41d27058
JB
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509}
510
39e7af3e 511/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 512
39e7af3e 513static std::string
41d27058
JB
514add_angle_brackets (const char *str)
515{
39e7af3e 516 return string_printf ("<%s>", str);
41d27058 517}
96d887e8 518
67cb5b2d 519static const char *
4c4b4cd2
PH
520ada_get_gdb_completer_word_break_characters (void)
521{
522 return ada_completer_word_break_characters;
523}
524
e79af960
JB
525/* Print an array element index using the Ada syntax. */
526
527static void
528ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 529 const struct value_print_options *options)
e79af960 530{
79a45b7d 531 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
532 fprintf_filtered (stream, " => ");
533}
534
e2b7af72
JB
535/* la_watch_location_expression for Ada. */
536
537gdb::unique_xmalloc_ptr<char>
538ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539{
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544}
545
f27cf670 546/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 548 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 549
f27cf670
AS
550void *
551grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 552{
d2e4a39e
AS
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
4c4b4cd2 557 *size = min_size;
f27cf670 558 vect = xrealloc (vect, *size * element_size);
d2e4a39e 559 }
f27cf670 560 return vect;
14f9c5c9
AS
561}
562
563/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 564 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
565
566static int
ebf56fd3 567field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
568{
569 int len = strlen (target);
5b4ee69b 570
d2e4a39e 571 return
4c4b4cd2
PH
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
61012eef 574 || (startswith (field_name + len, "___")
76a01679
JB
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
14f9c5c9
AS
577}
578
579
872c8b51
JB
580/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
587
588int
589ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591{
592 int fieldno;
872c8b51
JB
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
597 return fieldno;
598
599 if (!maybe_missing)
323e0a4a 600 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 601 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
602
603 return -1;
604}
605
606/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
607
608int
d2e4a39e 609ada_name_prefix_len (const char *name)
14f9c5c9
AS
610{
611 if (name == NULL)
612 return 0;
d2e4a39e 613 else
14f9c5c9 614 {
d2e4a39e 615 const char *p = strstr (name, "___");
5b4ee69b 616
14f9c5c9 617 if (p == NULL)
4c4b4cd2 618 return strlen (name);
14f9c5c9 619 else
4c4b4cd2 620 return p - name;
14f9c5c9
AS
621 }
622}
623
4c4b4cd2
PH
624/* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
14f9c5c9 627static int
d2e4a39e 628is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
629{
630 int len1, len2;
5b4ee69b 631
14f9c5c9
AS
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
4c4b4cd2 636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
637}
638
4c4b4cd2
PH
639/* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
14f9c5c9 641
d2e4a39e 642static struct value *
4c4b4cd2 643coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 644{
61ee279c 645 type = ada_check_typedef (type);
df407dfe 646 if (value_type (val) == type)
4c4b4cd2 647 return val;
d2e4a39e 648 else
14f9c5c9 649 {
4c4b4cd2
PH
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
c1b5a1a6 654 ada_ensure_varsize_limit (type);
4c4b4cd2 655
41e8491f
JK
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
9a0dc9e3 662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 663 }
74bcbdf3 664 set_value_component_location (result, val);
9bbda503
AC
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
14f9c5c9
AS
669 return result;
670 }
671}
672
fc1a4b47
AC
673static const gdb_byte *
674cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
675{
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680}
681
682static CORE_ADDR
ebf56fd3 683cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
684{
685 if (address == 0)
686 return 0;
d2e4a39e 687 else
14f9c5c9
AS
688 return address + offset;
689}
690
4c4b4cd2
PH
691/* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
a2249542 695
77109804
AC
696/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
a0b31db1 698static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 699
14f9c5c9 700static void
a2249542 701lim_warning (const char *format, ...)
14f9c5c9 702{
a2249542 703 va_list args;
a2249542 704
5b4ee69b 705 va_start (args, format);
4c4b4cd2
PH
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
a2249542
MK
708 vwarning (format, args);
709
710 va_end (args);
4c4b4cd2
PH
711}
712
714e53ab
PH
713/* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
c1b5a1a6
JB
717void
718ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
719{
720 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 721 error (_("object size is larger than varsize-limit"));
714e53ab
PH
722}
723
0963b4bd 724/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 725static LONGEST
c3e5cd34 726max_of_size (int size)
4c4b4cd2 727{
76a01679 728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 729
76a01679 730 return top_bit | (top_bit - 1);
4c4b4cd2
PH
731}
732
0963b4bd 733/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 734static LONGEST
c3e5cd34 735min_of_size (int size)
4c4b4cd2 736{
c3e5cd34 737 return -max_of_size (size) - 1;
4c4b4cd2
PH
738}
739
0963b4bd 740/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 741static ULONGEST
c3e5cd34 742umax_of_size (int size)
4c4b4cd2 743{
76a01679 744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 745
76a01679 746 return top_bit | (top_bit - 1);
4c4b4cd2
PH
747}
748
0963b4bd 749/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
750static LONGEST
751max_of_type (struct type *t)
4c4b4cd2 752{
c3e5cd34
PH
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757}
758
0963b4bd 759/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
760static LONGEST
761min_of_type (struct type *t)
762{
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
767}
768
769/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
770LONGEST
771ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 772{
c3345124 773 type = resolve_dynamic_type (type, NULL, 0);
76a01679 774 switch (TYPE_CODE (type))
4c4b4cd2
PH
775 {
776 case TYPE_CODE_RANGE:
690cc4eb 777 return TYPE_HIGH_BOUND (type);
4c4b4cd2 778 case TYPE_CODE_ENUM:
14e75d8e 779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
76a01679 783 case TYPE_CODE_INT:
690cc4eb 784 return max_of_type (type);
4c4b4cd2 785 default:
43bbcdc2 786 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
787 }
788}
789
14e75d8e 790/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
791LONGEST
792ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 793{
c3345124 794 type = resolve_dynamic_type (type, NULL, 0);
76a01679 795 switch (TYPE_CODE (type))
4c4b4cd2
PH
796 {
797 case TYPE_CODE_RANGE:
690cc4eb 798 return TYPE_LOW_BOUND (type);
4c4b4cd2 799 case TYPE_CODE_ENUM:
14e75d8e 800 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
76a01679 804 case TYPE_CODE_INT:
690cc4eb 805 return min_of_type (type);
4c4b4cd2 806 default:
43bbcdc2 807 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
808 }
809}
810
811/* The identity on non-range types. For range types, the underlying
76a01679 812 non-range scalar type. */
4c4b4cd2
PH
813
814static struct type *
18af8284 815get_base_type (struct type *type)
4c4b4cd2
PH
816{
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
76a01679
JB
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
4c4b4cd2
PH
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
14f9c5c9 824}
41246937
JB
825
826/* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831struct value *
832ada_get_decoded_value (struct value *value)
833{
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849}
850
851/* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856struct type *
857ada_get_decoded_type (struct type *type)
858{
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863}
864
4c4b4cd2 865\f
76a01679 866
4c4b4cd2 867 /* Language Selection */
14f9c5c9
AS
868
869/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 870 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 871
14f9c5c9 872enum language
ccefe4c4 873ada_update_initial_language (enum language lang)
14f9c5c9 874{
cafb3438 875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 876 return language_ada;
14f9c5c9
AS
877
878 return lang;
879}
96d887e8
PH
880
881/* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885char *
886ada_main_name (void)
887{
3b7344d5 888 struct bound_minimal_symbol msym;
e83e4e24 889 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 890
96d887e8
PH
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
3b7344d5 898 if (msym.minsym != NULL)
96d887e8 899 {
f9bc20b9
JB
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
77e371c0 903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 904 if (main_program_name_addr == 0)
323e0a4a 905 error (_("Invalid address for Ada main program name."));
96d887e8 906
f9bc20b9
JB
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
e83e4e24 912 return main_program_name.get ();
96d887e8
PH
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917}
14f9c5c9 918\f
4c4b4cd2 919 /* Symbols */
d2e4a39e 920
4c4b4cd2
PH
921/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
14f9c5c9 923
d2e4a39e
AS
924const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
14f9c5c9
AS
947};
948
b5ec771e
PA
949/* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
4c4b4cd2 953
b5ec771e
PA
954static char *
955ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 956{
4c4b4cd2
PH
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
d2e4a39e 959 const char *p;
14f9c5c9 960 int k;
d2e4a39e 961
4c4b4cd2 962 if (decoded == NULL)
14f9c5c9
AS
963 return NULL;
964
4c4b4cd2
PH
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
14f9c5c9
AS
967
968 k = 0;
4c4b4cd2 969 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 970 {
cdc7bb92 971 if (*p == '.')
4c4b4cd2
PH
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
14f9c5c9 976 else if (*p == '"')
4c4b4cd2
PH
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
1265e4aa 981 mapping->encoded != NULL
61012eef 982 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
983 ;
984 if (mapping->encoded == NULL)
b5ec771e
PA
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
4c4b4cd2
PH
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
d2e4a39e 995 else
4c4b4cd2
PH
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
14f9c5c9
AS
1000 }
1001
4c4b4cd2
PH
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
14f9c5c9
AS
1004}
1005
b5ec771e
PA
1006/* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009char *
1010ada_encode (const char *decoded)
1011{
1012 return ada_encode_1 (decoded, true);
1013}
1014
14f9c5c9 1015/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
d2e4a39e
AS
1019char *
1020ada_fold_name (const char *name)
14f9c5c9 1021{
d2e4a39e 1022 static char *fold_buffer = NULL;
14f9c5c9
AS
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
d2e4a39e 1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1027
1028 if (name[0] == '\'')
1029 {
d2e4a39e
AS
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1032 }
1033 else
1034 {
1035 int i;
5b4ee69b 1036
14f9c5c9 1037 for (i = 0; i <= len; i += 1)
4c4b4cd2 1038 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1039 }
1040
1041 return fold_buffer;
1042}
1043
529cad9c
PH
1044/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046static int
1047is_lower_alphanum (const char c)
1048{
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050}
1051
c90092fe
JB
1052/* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
29480c32
JB
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
c90092fe 1059
29480c32
JB
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064static void
1065ada_remove_trailing_digits (const char *encoded, int *len)
1066{
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
5b4ee69b 1070
29480c32
JB
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
61012eef 1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1078 *len = i - 2;
61012eef 1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1080 *len = i - 1;
1081 }
1082}
1083
1084/* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087static void
1088ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089{
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
0963b4bd 1095 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104}
1105
1106/* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
14f9c5c9 1109
4c4b4cd2 1110 The resulting string is valid until the next call of ada_decode.
29480c32 1111 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1112 is returned. */
1113
1114const char *
1115ada_decode (const char *encoded)
14f9c5c9
AS
1116{
1117 int i, j;
1118 int len0;
d2e4a39e 1119 const char *p;
4c4b4cd2 1120 char *decoded;
14f9c5c9 1121 int at_start_name;
4c4b4cd2
PH
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
d2e4a39e 1124
0d81f350
JG
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
29480c32
JB
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
61012eef 1133 if (startswith (encoded, "_ada_"))
4c4b4cd2 1134 encoded += 5;
14f9c5c9 1135
29480c32
JB
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
4c4b4cd2 1139 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1140 goto Suppress;
1141
4c4b4cd2 1142 len0 = strlen (encoded);
4c4b4cd2 1143
29480c32
JB
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1146
4c4b4cd2
PH
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1153 {
1154 if (p[3] == 'X')
4c4b4cd2 1155 len0 = p - encoded;
14f9c5c9 1156 else
4c4b4cd2 1157 goto Suppress;
14f9c5c9 1158 }
4c4b4cd2 1159
29480c32
JB
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
61012eef 1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1165 len0 -= 3;
76a01679 1166
a10967fa
JB
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
61012eef 1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1172 len0 -= 2;
1173
29480c32
JB
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
61012eef 1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1178 len0 -= 1;
1179
4c4b4cd2 1180 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1181
4c4b4cd2
PH
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
14f9c5c9 1184
29480c32
JB
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
4c4b4cd2 1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1188 {
4c4b4cd2
PH
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
d2e4a39e 1197 }
14f9c5c9 1198
29480c32
JB
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
4c4b4cd2
PH
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
14f9c5c9
AS
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
29480c32 1208 /* Is this a symbol function? */
4c4b4cd2
PH
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
5b4ee69b 1212
4c4b4cd2
PH
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
14f9c5c9
AS
1230 at_start_name = 0;
1231
529cad9c
PH
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
61012eef 1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1236 i += 2;
529cad9c 1237
29480c32
JB
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
529cad9c
PH
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1260 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
4c4b4cd2
PH
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
29480c32
JB
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
4c4b4cd2
PH
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
cdc7bb92 1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1325 {
29480c32 1326 /* Replace '__' by '.'. */
4c4b4cd2
PH
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
14f9c5c9 1332 else
4c4b4cd2 1333 {
29480c32
JB
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
4c4b4cd2
PH
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
14f9c5c9 1340 }
4c4b4cd2 1341 decoded[j] = '\000';
14f9c5c9 1342
29480c32
JB
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
4c4b4cd2
PH
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1348 goto Suppress;
1349
4c4b4cd2
PH
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
14f9c5c9
AS
1354
1355Suppress:
4c4b4cd2
PH
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
14f9c5c9 1360 else
88c15c34 1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1362 return decoded;
1363
1364}
1365
1366/* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371static struct htab *decoded_names_store;
1372
1373/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1378 GSYMBOL).
4c4b4cd2
PH
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1381 when a decoded name is cached in it. */
4c4b4cd2 1382
45e6c716 1383const char *
f85f34ed 1384ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1385{
f85f34ed
TT
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
615b3f62 1388 &gsymbol->language_specific.demangled_name;
5b4ee69b 1389
f85f34ed 1390 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1393 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1394
f85f34ed 1395 gsymbol->ada_mangled = 1;
5b4ee69b 1396
f85f34ed 1397 if (obstack != NULL)
224c3ddb
SM
1398 *resultp
1399 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1400 else
76a01679 1401 {
f85f34ed
TT
1402 /* Sometimes, we can't find a corresponding objfile, in
1403 which case, we put the result on the heap. Since we only
1404 decode when needed, we hope this usually does not cause a
1405 significant memory leak (FIXME). */
1406
76a01679
JB
1407 char **slot = (char **) htab_find_slot (decoded_names_store,
1408 decoded, INSERT);
5b4ee69b 1409
76a01679
JB
1410 if (*slot == NULL)
1411 *slot = xstrdup (decoded);
1412 *resultp = *slot;
1413 }
4c4b4cd2 1414 }
14f9c5c9 1415
4c4b4cd2
PH
1416 return *resultp;
1417}
76a01679 1418
2c0b251b 1419static char *
76a01679 1420ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1421{
1422 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1423}
1424
8b302db8
TT
1425/* Implement la_sniff_from_mangled_name for Ada. */
1426
1427static int
1428ada_sniff_from_mangled_name (const char *mangled, char **out)
1429{
1430 const char *demangled = ada_decode (mangled);
1431
1432 *out = NULL;
1433
1434 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1435 {
1436 /* Set the gsymbol language to Ada, but still return 0.
1437 Two reasons for that:
1438
1439 1. For Ada, we prefer computing the symbol's decoded name
1440 on the fly rather than pre-compute it, in order to save
1441 memory (Ada projects are typically very large).
1442
1443 2. There are some areas in the definition of the GNAT
1444 encoding where, with a bit of bad luck, we might be able
1445 to decode a non-Ada symbol, generating an incorrect
1446 demangled name (Eg: names ending with "TB" for instance
1447 are identified as task bodies and so stripped from
1448 the decoded name returned).
1449
1450 Returning 1, here, but not setting *DEMANGLED, helps us get a
1451 little bit of the best of both worlds. Because we're last,
1452 we should not affect any of the other languages that were
1453 able to demangle the symbol before us; we get to correctly
1454 tag Ada symbols as such; and even if we incorrectly tagged a
1455 non-Ada symbol, which should be rare, any routing through the
1456 Ada language should be transparent (Ada tries to behave much
1457 like C/C++ with non-Ada symbols). */
1458 return 1;
1459 }
1460
1461 return 0;
1462}
1463
14f9c5c9 1464\f
d2e4a39e 1465
4c4b4cd2 1466 /* Arrays */
14f9c5c9 1467
28c85d6c
JB
1468/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1469 generated by the GNAT compiler to describe the index type used
1470 for each dimension of an array, check whether it follows the latest
1471 known encoding. If not, fix it up to conform to the latest encoding.
1472 Otherwise, do nothing. This function also does nothing if
1473 INDEX_DESC_TYPE is NULL.
1474
1475 The GNAT encoding used to describle the array index type evolved a bit.
1476 Initially, the information would be provided through the name of each
1477 field of the structure type only, while the type of these fields was
1478 described as unspecified and irrelevant. The debugger was then expected
1479 to perform a global type lookup using the name of that field in order
1480 to get access to the full index type description. Because these global
1481 lookups can be very expensive, the encoding was later enhanced to make
1482 the global lookup unnecessary by defining the field type as being
1483 the full index type description.
1484
1485 The purpose of this routine is to allow us to support older versions
1486 of the compiler by detecting the use of the older encoding, and by
1487 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1488 we essentially replace each field's meaningless type by the associated
1489 index subtype). */
1490
1491void
1492ada_fixup_array_indexes_type (struct type *index_desc_type)
1493{
1494 int i;
1495
1496 if (index_desc_type == NULL)
1497 return;
1498 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1499
1500 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1501 to check one field only, no need to check them all). If not, return
1502 now.
1503
1504 If our INDEX_DESC_TYPE was generated using the older encoding,
1505 the field type should be a meaningless integer type whose name
1506 is not equal to the field name. */
1507 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1508 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1509 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1510 return;
1511
1512 /* Fixup each field of INDEX_DESC_TYPE. */
1513 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1514 {
0d5cff50 1515 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1516 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1517
1518 if (raw_type)
1519 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1520 }
1521}
1522
4c4b4cd2 1523/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1524
a121b7c1 1525static const char *bound_name[] = {
d2e4a39e 1526 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1527 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1528};
1529
1530/* Maximum number of array dimensions we are prepared to handle. */
1531
4c4b4cd2 1532#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1533
14f9c5c9 1534
4c4b4cd2
PH
1535/* The desc_* routines return primitive portions of array descriptors
1536 (fat pointers). */
14f9c5c9
AS
1537
1538/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1539 level of indirection, if needed. */
1540
d2e4a39e
AS
1541static struct type *
1542desc_base_type (struct type *type)
14f9c5c9
AS
1543{
1544 if (type == NULL)
1545 return NULL;
61ee279c 1546 type = ada_check_typedef (type);
720d1a40
JB
1547 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1548 type = ada_typedef_target_type (type);
1549
1265e4aa
JB
1550 if (type != NULL
1551 && (TYPE_CODE (type) == TYPE_CODE_PTR
1552 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1553 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1554 else
1555 return type;
1556}
1557
4c4b4cd2
PH
1558/* True iff TYPE indicates a "thin" array pointer type. */
1559
14f9c5c9 1560static int
d2e4a39e 1561is_thin_pntr (struct type *type)
14f9c5c9 1562{
d2e4a39e 1563 return
14f9c5c9
AS
1564 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1565 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1566}
1567
4c4b4cd2
PH
1568/* The descriptor type for thin pointer type TYPE. */
1569
d2e4a39e
AS
1570static struct type *
1571thin_descriptor_type (struct type *type)
14f9c5c9 1572{
d2e4a39e 1573 struct type *base_type = desc_base_type (type);
5b4ee69b 1574
14f9c5c9
AS
1575 if (base_type == NULL)
1576 return NULL;
1577 if (is_suffix (ada_type_name (base_type), "___XVE"))
1578 return base_type;
d2e4a39e 1579 else
14f9c5c9 1580 {
d2e4a39e 1581 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1582
14f9c5c9 1583 if (alt_type == NULL)
4c4b4cd2 1584 return base_type;
14f9c5c9 1585 else
4c4b4cd2 1586 return alt_type;
14f9c5c9
AS
1587 }
1588}
1589
4c4b4cd2
PH
1590/* A pointer to the array data for thin-pointer value VAL. */
1591
d2e4a39e
AS
1592static struct value *
1593thin_data_pntr (struct value *val)
14f9c5c9 1594{
828292f2 1595 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1596 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1597
556bdfd4
UW
1598 data_type = lookup_pointer_type (data_type);
1599
14f9c5c9 1600 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1601 return value_cast (data_type, value_copy (val));
d2e4a39e 1602 else
42ae5230 1603 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1604}
1605
4c4b4cd2
PH
1606/* True iff TYPE indicates a "thick" array pointer type. */
1607
14f9c5c9 1608static int
d2e4a39e 1609is_thick_pntr (struct type *type)
14f9c5c9
AS
1610{
1611 type = desc_base_type (type);
1612 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1613 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1614}
1615
4c4b4cd2
PH
1616/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1617 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1618
d2e4a39e
AS
1619static struct type *
1620desc_bounds_type (struct type *type)
14f9c5c9 1621{
d2e4a39e 1622 struct type *r;
14f9c5c9
AS
1623
1624 type = desc_base_type (type);
1625
1626 if (type == NULL)
1627 return NULL;
1628 else if (is_thin_pntr (type))
1629 {
1630 type = thin_descriptor_type (type);
1631 if (type == NULL)
4c4b4cd2 1632 return NULL;
14f9c5c9
AS
1633 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1634 if (r != NULL)
61ee279c 1635 return ada_check_typedef (r);
14f9c5c9
AS
1636 }
1637 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1638 {
1639 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1640 if (r != NULL)
61ee279c 1641 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1642 }
1643 return NULL;
1644}
1645
1646/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1647 one, a pointer to its bounds data. Otherwise NULL. */
1648
d2e4a39e
AS
1649static struct value *
1650desc_bounds (struct value *arr)
14f9c5c9 1651{
df407dfe 1652 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1653
d2e4a39e 1654 if (is_thin_pntr (type))
14f9c5c9 1655 {
d2e4a39e 1656 struct type *bounds_type =
4c4b4cd2 1657 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1658 LONGEST addr;
1659
4cdfadb1 1660 if (bounds_type == NULL)
323e0a4a 1661 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1662
1663 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1664 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1665 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1666 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1667 addr = value_as_long (arr);
d2e4a39e 1668 else
42ae5230 1669 addr = value_address (arr);
14f9c5c9 1670
d2e4a39e 1671 return
4c4b4cd2
PH
1672 value_from_longest (lookup_pointer_type (bounds_type),
1673 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1674 }
1675
1676 else if (is_thick_pntr (type))
05e522ef
JB
1677 {
1678 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1679 _("Bad GNAT array descriptor"));
1680 struct type *p_bounds_type = value_type (p_bounds);
1681
1682 if (p_bounds_type
1683 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1684 {
1685 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1686
1687 if (TYPE_STUB (target_type))
1688 p_bounds = value_cast (lookup_pointer_type
1689 (ada_check_typedef (target_type)),
1690 p_bounds);
1691 }
1692 else
1693 error (_("Bad GNAT array descriptor"));
1694
1695 return p_bounds;
1696 }
14f9c5c9
AS
1697 else
1698 return NULL;
1699}
1700
4c4b4cd2
PH
1701/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1702 position of the field containing the address of the bounds data. */
1703
14f9c5c9 1704static int
d2e4a39e 1705fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1706{
1707 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1708}
1709
1710/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1711 size of the field containing the address of the bounds data. */
1712
14f9c5c9 1713static int
d2e4a39e 1714fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1715{
1716 type = desc_base_type (type);
1717
d2e4a39e 1718 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1719 return TYPE_FIELD_BITSIZE (type, 1);
1720 else
61ee279c 1721 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1722}
1723
4c4b4cd2 1724/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1725 pointer to one, the type of its array data (a array-with-no-bounds type);
1726 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1727 data. */
4c4b4cd2 1728
d2e4a39e 1729static struct type *
556bdfd4 1730desc_data_target_type (struct type *type)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
4c4b4cd2 1734 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1735 if (is_thin_pntr (type))
556bdfd4 1736 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1737 else if (is_thick_pntr (type))
556bdfd4
UW
1738 {
1739 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1740
1741 if (data_type
1742 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1743 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1744 }
1745
1746 return NULL;
14f9c5c9
AS
1747}
1748
1749/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1750 its array data. */
4c4b4cd2 1751
d2e4a39e
AS
1752static struct value *
1753desc_data (struct value *arr)
14f9c5c9 1754{
df407dfe 1755 struct type *type = value_type (arr);
5b4ee69b 1756
14f9c5c9
AS
1757 if (is_thin_pntr (type))
1758 return thin_data_pntr (arr);
1759 else if (is_thick_pntr (type))
d2e4a39e 1760 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1761 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1762 else
1763 return NULL;
1764}
1765
1766
1767/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1768 position of the field containing the address of the data. */
1769
14f9c5c9 1770static int
d2e4a39e 1771fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1772{
1773 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1774}
1775
1776/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1777 size of the field containing the address of the data. */
1778
14f9c5c9 1779static int
d2e4a39e 1780fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1781{
1782 type = desc_base_type (type);
1783
1784 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1785 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1786 else
14f9c5c9
AS
1787 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1788}
1789
4c4b4cd2 1790/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1791 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1792 bound, if WHICH is 1. The first bound is I=1. */
1793
d2e4a39e
AS
1794static struct value *
1795desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1796{
d2e4a39e 1797 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1798 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1799}
1800
1801/* If BOUNDS is an array-bounds structure type, return the bit position
1802 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1803 bound, if WHICH is 1. The first bound is I=1. */
1804
14f9c5c9 1805static int
d2e4a39e 1806desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1807{
d2e4a39e 1808 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1809}
1810
1811/* If BOUNDS is an array-bounds structure type, return the bit field size
1812 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1813 bound, if WHICH is 1. The first bound is I=1. */
1814
76a01679 1815static int
d2e4a39e 1816desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1817{
1818 type = desc_base_type (type);
1819
d2e4a39e
AS
1820 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1821 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1822 else
1823 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1824}
1825
1826/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1827 Ith bound (numbering from 1). Otherwise, NULL. */
1828
d2e4a39e
AS
1829static struct type *
1830desc_index_type (struct type *type, int i)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
1834 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1835 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1836 else
14f9c5c9
AS
1837 return NULL;
1838}
1839
4c4b4cd2
PH
1840/* The number of index positions in the array-bounds type TYPE.
1841 Return 0 if TYPE is NULL. */
1842
14f9c5c9 1843static int
d2e4a39e 1844desc_arity (struct type *type)
14f9c5c9
AS
1845{
1846 type = desc_base_type (type);
1847
1848 if (type != NULL)
1849 return TYPE_NFIELDS (type) / 2;
1850 return 0;
1851}
1852
4c4b4cd2
PH
1853/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1854 an array descriptor type (representing an unconstrained array
1855 type). */
1856
76a01679
JB
1857static int
1858ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1859{
1860 if (type == NULL)
1861 return 0;
61ee279c 1862 type = ada_check_typedef (type);
4c4b4cd2 1863 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1864 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1865}
1866
52ce6436 1867/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1868 * to one. */
52ce6436 1869
2c0b251b 1870static int
52ce6436
PH
1871ada_is_array_type (struct type *type)
1872{
1873 while (type != NULL
1874 && (TYPE_CODE (type) == TYPE_CODE_PTR
1875 || TYPE_CODE (type) == TYPE_CODE_REF))
1876 type = TYPE_TARGET_TYPE (type);
1877 return ada_is_direct_array_type (type);
1878}
1879
4c4b4cd2 1880/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1881
14f9c5c9 1882int
4c4b4cd2 1883ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1884{
1885 if (type == NULL)
1886 return 0;
61ee279c 1887 type = ada_check_typedef (type);
14f9c5c9 1888 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1889 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1890 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1891 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1892}
1893
4c4b4cd2
PH
1894/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1895
14f9c5c9 1896int
4c4b4cd2 1897ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1898{
556bdfd4 1899 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1900
1901 if (type == NULL)
1902 return 0;
61ee279c 1903 type = ada_check_typedef (type);
556bdfd4
UW
1904 return (data_type != NULL
1905 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1906 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1907}
1908
1909/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1910 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1911 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1912 is still needed. */
1913
14f9c5c9 1914int
ebf56fd3 1915ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1916{
d2e4a39e 1917 return
14f9c5c9
AS
1918 type != NULL
1919 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1920 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1921 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1922 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1923}
1924
1925
4c4b4cd2 1926/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1927 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1928 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1929 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1930 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1931 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1932 a descriptor. */
d2e4a39e
AS
1933struct type *
1934ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1935{
ad82864c
JB
1936 if (ada_is_constrained_packed_array_type (value_type (arr)))
1937 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1938
df407dfe
AC
1939 if (!ada_is_array_descriptor_type (value_type (arr)))
1940 return value_type (arr);
d2e4a39e
AS
1941
1942 if (!bounds)
ad82864c
JB
1943 {
1944 struct type *array_type =
1945 ada_check_typedef (desc_data_target_type (value_type (arr)));
1946
1947 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1948 TYPE_FIELD_BITSIZE (array_type, 0) =
1949 decode_packed_array_bitsize (value_type (arr));
1950
1951 return array_type;
1952 }
14f9c5c9
AS
1953 else
1954 {
d2e4a39e 1955 struct type *elt_type;
14f9c5c9 1956 int arity;
d2e4a39e 1957 struct value *descriptor;
14f9c5c9 1958
df407dfe
AC
1959 elt_type = ada_array_element_type (value_type (arr), -1);
1960 arity = ada_array_arity (value_type (arr));
14f9c5c9 1961
d2e4a39e 1962 if (elt_type == NULL || arity == 0)
df407dfe 1963 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1964
1965 descriptor = desc_bounds (arr);
d2e4a39e 1966 if (value_as_long (descriptor) == 0)
4c4b4cd2 1967 return NULL;
d2e4a39e 1968 while (arity > 0)
4c4b4cd2 1969 {
e9bb382b
UW
1970 struct type *range_type = alloc_type_copy (value_type (arr));
1971 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1972 struct value *low = desc_one_bound (descriptor, arity, 0);
1973 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1974
5b4ee69b 1975 arity -= 1;
0c9c3474
SA
1976 create_static_range_type (range_type, value_type (low),
1977 longest_to_int (value_as_long (low)),
1978 longest_to_int (value_as_long (high)));
4c4b4cd2 1979 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1980
1981 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1982 {
1983 /* We need to store the element packed bitsize, as well as
1984 recompute the array size, because it was previously
1985 computed based on the unpacked element size. */
1986 LONGEST lo = value_as_long (low);
1987 LONGEST hi = value_as_long (high);
1988
1989 TYPE_FIELD_BITSIZE (elt_type, 0) =
1990 decode_packed_array_bitsize (value_type (arr));
1991 /* If the array has no element, then the size is already
1992 zero, and does not need to be recomputed. */
1993 if (lo < hi)
1994 {
1995 int array_bitsize =
1996 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1997
1998 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1999 }
2000 }
4c4b4cd2 2001 }
14f9c5c9
AS
2002
2003 return lookup_pointer_type (elt_type);
2004 }
2005}
2006
2007/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2008 Otherwise, returns either a standard GDB array with bounds set
2009 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2010 GDB array. Returns NULL if ARR is a null fat pointer. */
2011
d2e4a39e
AS
2012struct value *
2013ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2014{
df407dfe 2015 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2016 {
d2e4a39e 2017 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2018
14f9c5c9 2019 if (arrType == NULL)
4c4b4cd2 2020 return NULL;
14f9c5c9
AS
2021 return value_cast (arrType, value_copy (desc_data (arr)));
2022 }
ad82864c
JB
2023 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2024 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2025 else
2026 return arr;
2027}
2028
2029/* If ARR does not represent an array, returns ARR unchanged.
2030 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2031 be ARR itself if it already is in the proper form). */
2032
720d1a40 2033struct value *
d2e4a39e 2034ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2035{
df407dfe 2036 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2037 {
d2e4a39e 2038 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2039
14f9c5c9 2040 if (arrVal == NULL)
323e0a4a 2041 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2042 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2043 return value_ind (arrVal);
2044 }
ad82864c
JB
2045 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2046 return decode_constrained_packed_array (arr);
d2e4a39e 2047 else
14f9c5c9
AS
2048 return arr;
2049}
2050
2051/* If TYPE represents a GNAT array type, return it translated to an
2052 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2053 packing). For other types, is the identity. */
2054
d2e4a39e
AS
2055struct type *
2056ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2057{
ad82864c
JB
2058 if (ada_is_constrained_packed_array_type (type))
2059 return decode_constrained_packed_array_type (type);
17280b9f
UW
2060
2061 if (ada_is_array_descriptor_type (type))
556bdfd4 2062 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2063
2064 return type;
14f9c5c9
AS
2065}
2066
4c4b4cd2
PH
2067/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2068
ad82864c
JB
2069static int
2070ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2071{
2072 if (type == NULL)
2073 return 0;
4c4b4cd2 2074 type = desc_base_type (type);
61ee279c 2075 type = ada_check_typedef (type);
d2e4a39e 2076 return
14f9c5c9
AS
2077 ada_type_name (type) != NULL
2078 && strstr (ada_type_name (type), "___XP") != NULL;
2079}
2080
ad82864c
JB
2081/* Non-zero iff TYPE represents a standard GNAT constrained
2082 packed-array type. */
2083
2084int
2085ada_is_constrained_packed_array_type (struct type *type)
2086{
2087 return ada_is_packed_array_type (type)
2088 && !ada_is_array_descriptor_type (type);
2089}
2090
2091/* Non-zero iff TYPE represents an array descriptor for a
2092 unconstrained packed-array type. */
2093
2094static int
2095ada_is_unconstrained_packed_array_type (struct type *type)
2096{
2097 return ada_is_packed_array_type (type)
2098 && ada_is_array_descriptor_type (type);
2099}
2100
2101/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2102 return the size of its elements in bits. */
2103
2104static long
2105decode_packed_array_bitsize (struct type *type)
2106{
0d5cff50
DE
2107 const char *raw_name;
2108 const char *tail;
ad82864c
JB
2109 long bits;
2110
720d1a40
JB
2111 /* Access to arrays implemented as fat pointers are encoded as a typedef
2112 of the fat pointer type. We need the name of the fat pointer type
2113 to do the decoding, so strip the typedef layer. */
2114 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2115 type = ada_typedef_target_type (type);
2116
2117 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2118 if (!raw_name)
2119 raw_name = ada_type_name (desc_base_type (type));
2120
2121 if (!raw_name)
2122 return 0;
2123
2124 tail = strstr (raw_name, "___XP");
720d1a40 2125 gdb_assert (tail != NULL);
ad82864c
JB
2126
2127 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2128 {
2129 lim_warning
2130 (_("could not understand bit size information on packed array"));
2131 return 0;
2132 }
2133
2134 return bits;
2135}
2136
14f9c5c9
AS
2137/* Given that TYPE is a standard GDB array type with all bounds filled
2138 in, and that the element size of its ultimate scalar constituents
2139 (that is, either its elements, or, if it is an array of arrays, its
2140 elements' elements, etc.) is *ELT_BITS, return an identical type,
2141 but with the bit sizes of its elements (and those of any
2142 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2143 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2144 in bits.
2145
2146 Note that, for arrays whose index type has an XA encoding where
2147 a bound references a record discriminant, getting that discriminant,
2148 and therefore the actual value of that bound, is not possible
2149 because none of the given parameters gives us access to the record.
2150 This function assumes that it is OK in the context where it is being
2151 used to return an array whose bounds are still dynamic and where
2152 the length is arbitrary. */
4c4b4cd2 2153
d2e4a39e 2154static struct type *
ad82864c 2155constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2156{
d2e4a39e
AS
2157 struct type *new_elt_type;
2158 struct type *new_type;
99b1c762
JB
2159 struct type *index_type_desc;
2160 struct type *index_type;
14f9c5c9
AS
2161 LONGEST low_bound, high_bound;
2162
61ee279c 2163 type = ada_check_typedef (type);
14f9c5c9
AS
2164 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2165 return type;
2166
99b1c762
JB
2167 index_type_desc = ada_find_parallel_type (type, "___XA");
2168 if (index_type_desc)
2169 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2170 NULL);
2171 else
2172 index_type = TYPE_INDEX_TYPE (type);
2173
e9bb382b 2174 new_type = alloc_type_copy (type);
ad82864c
JB
2175 new_elt_type =
2176 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2177 elt_bits);
99b1c762 2178 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2179 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2180 TYPE_NAME (new_type) = ada_type_name (type);
2181
4a46959e
JB
2182 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2183 && is_dynamic_type (check_typedef (index_type)))
2184 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2185 low_bound = high_bound = 0;
2186 if (high_bound < low_bound)
2187 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2188 else
14f9c5c9
AS
2189 {
2190 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2191 TYPE_LENGTH (new_type) =
4c4b4cd2 2192 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2193 }
2194
876cecd0 2195 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2196 return new_type;
2197}
2198
ad82864c
JB
2199/* The array type encoded by TYPE, where
2200 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2201
d2e4a39e 2202static struct type *
ad82864c 2203decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2204{
0d5cff50 2205 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2206 char *name;
0d5cff50 2207 const char *tail;
d2e4a39e 2208 struct type *shadow_type;
14f9c5c9 2209 long bits;
14f9c5c9 2210
727e3d2e
JB
2211 if (!raw_name)
2212 raw_name = ada_type_name (desc_base_type (type));
2213
2214 if (!raw_name)
2215 return NULL;
2216
2217 name = (char *) alloca (strlen (raw_name) + 1);
2218 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2219 type = desc_base_type (type);
2220
14f9c5c9
AS
2221 memcpy (name, raw_name, tail - raw_name);
2222 name[tail - raw_name] = '\000';
2223
b4ba55a1
JB
2224 shadow_type = ada_find_parallel_type_with_name (type, name);
2225
2226 if (shadow_type == NULL)
14f9c5c9 2227 {
323e0a4a 2228 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2229 return NULL;
2230 }
f168693b 2231 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2232
2233 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2234 {
0963b4bd
MS
2235 lim_warning (_("could not understand bounds "
2236 "information on packed array"));
14f9c5c9
AS
2237 return NULL;
2238 }
d2e4a39e 2239
ad82864c
JB
2240 bits = decode_packed_array_bitsize (type);
2241 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2242}
2243
ad82864c
JB
2244/* Given that ARR is a struct value *indicating a GNAT constrained packed
2245 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2246 standard GDB array type except that the BITSIZEs of the array
2247 target types are set to the number of bits in each element, and the
4c4b4cd2 2248 type length is set appropriately. */
14f9c5c9 2249
d2e4a39e 2250static struct value *
ad82864c 2251decode_constrained_packed_array (struct value *arr)
14f9c5c9 2252{
4c4b4cd2 2253 struct type *type;
14f9c5c9 2254
11aa919a
PMR
2255 /* If our value is a pointer, then dereference it. Likewise if
2256 the value is a reference. Make sure that this operation does not
2257 cause the target type to be fixed, as this would indirectly cause
2258 this array to be decoded. The rest of the routine assumes that
2259 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2260 and "value_ind" routines to perform the dereferencing, as opposed
2261 to using "ada_coerce_ref" or "ada_value_ind". */
2262 arr = coerce_ref (arr);
828292f2 2263 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2264 arr = value_ind (arr);
4c4b4cd2 2265
ad82864c 2266 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2267 if (type == NULL)
2268 {
323e0a4a 2269 error (_("can't unpack array"));
14f9c5c9
AS
2270 return NULL;
2271 }
61ee279c 2272
50810684 2273 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2274 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2275 {
2276 /* This is a (right-justified) modular type representing a packed
2277 array with no wrapper. In order to interpret the value through
2278 the (left-justified) packed array type we just built, we must
2279 first left-justify it. */
2280 int bit_size, bit_pos;
2281 ULONGEST mod;
2282
df407dfe 2283 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2284 bit_size = 0;
2285 while (mod > 0)
2286 {
2287 bit_size += 1;
2288 mod >>= 1;
2289 }
df407dfe 2290 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2291 arr = ada_value_primitive_packed_val (arr, NULL,
2292 bit_pos / HOST_CHAR_BIT,
2293 bit_pos % HOST_CHAR_BIT,
2294 bit_size,
2295 type);
2296 }
2297
4c4b4cd2 2298 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2299}
2300
2301
2302/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2303 given in IND. ARR must be a simple array. */
14f9c5c9 2304
d2e4a39e
AS
2305static struct value *
2306value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2307{
2308 int i;
2309 int bits, elt_off, bit_off;
2310 long elt_total_bit_offset;
d2e4a39e
AS
2311 struct type *elt_type;
2312 struct value *v;
14f9c5c9
AS
2313
2314 bits = 0;
2315 elt_total_bit_offset = 0;
df407dfe 2316 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2317 for (i = 0; i < arity; i += 1)
14f9c5c9 2318 {
d2e4a39e 2319 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2320 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2321 error
0963b4bd
MS
2322 (_("attempt to do packed indexing of "
2323 "something other than a packed array"));
14f9c5c9 2324 else
4c4b4cd2
PH
2325 {
2326 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2327 LONGEST lowerbound, upperbound;
2328 LONGEST idx;
2329
2330 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2331 {
323e0a4a 2332 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2333 lowerbound = upperbound = 0;
2334 }
2335
3cb382c9 2336 idx = pos_atr (ind[i]);
4c4b4cd2 2337 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2338 lim_warning (_("packed array index %ld out of bounds"),
2339 (long) idx);
4c4b4cd2
PH
2340 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2341 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2342 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2343 }
14f9c5c9
AS
2344 }
2345 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2346 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2347
2348 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2349 bits, elt_type);
14f9c5c9
AS
2350 return v;
2351}
2352
4c4b4cd2 2353/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2354
2355static int
d2e4a39e 2356has_negatives (struct type *type)
14f9c5c9 2357{
d2e4a39e
AS
2358 switch (TYPE_CODE (type))
2359 {
2360 default:
2361 return 0;
2362 case TYPE_CODE_INT:
2363 return !TYPE_UNSIGNED (type);
2364 case TYPE_CODE_RANGE:
2365 return TYPE_LOW_BOUND (type) < 0;
2366 }
14f9c5c9 2367}
d2e4a39e 2368
f93fca70 2369/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2370 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2371 the unpacked buffer.
14f9c5c9 2372
5b639dea
JB
2373 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2374 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2375
f93fca70
JB
2376 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2377 zero otherwise.
14f9c5c9 2378
f93fca70 2379 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2380
f93fca70
JB
2381 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2382
2383static void
2384ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2385 gdb_byte *unpacked, int unpacked_len,
2386 int is_big_endian, int is_signed_type,
2387 int is_scalar)
2388{
a1c95e6b
JB
2389 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2390 int src_idx; /* Index into the source area */
2391 int src_bytes_left; /* Number of source bytes left to process. */
2392 int srcBitsLeft; /* Number of source bits left to move */
2393 int unusedLS; /* Number of bits in next significant
2394 byte of source that are unused */
2395
a1c95e6b
JB
2396 int unpacked_idx; /* Index into the unpacked buffer */
2397 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2398
4c4b4cd2 2399 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2400 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2401 unsigned char sign;
a1c95e6b 2402
4c4b4cd2
PH
2403 /* Transmit bytes from least to most significant; delta is the direction
2404 the indices move. */
f93fca70 2405 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2406
5b639dea
JB
2407 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2408 bits from SRC. .*/
2409 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2410 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2411 bit_size, unpacked_len);
2412
14f9c5c9 2413 srcBitsLeft = bit_size;
086ca51f 2414 src_bytes_left = src_len;
f93fca70 2415 unpacked_bytes_left = unpacked_len;
14f9c5c9 2416 sign = 0;
f93fca70
JB
2417
2418 if (is_big_endian)
14f9c5c9 2419 {
086ca51f 2420 src_idx = src_len - 1;
f93fca70
JB
2421 if (is_signed_type
2422 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2423 sign = ~0;
d2e4a39e
AS
2424
2425 unusedLS =
4c4b4cd2
PH
2426 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2427 % HOST_CHAR_BIT;
14f9c5c9 2428
f93fca70
JB
2429 if (is_scalar)
2430 {
2431 accumSize = 0;
2432 unpacked_idx = unpacked_len - 1;
2433 }
2434 else
2435 {
4c4b4cd2
PH
2436 /* Non-scalar values must be aligned at a byte boundary... */
2437 accumSize =
2438 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2439 /* ... And are placed at the beginning (most-significant) bytes
2440 of the target. */
086ca51f
JB
2441 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2442 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2443 }
14f9c5c9 2444 }
d2e4a39e 2445 else
14f9c5c9
AS
2446 {
2447 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2448
086ca51f 2449 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2450 unusedLS = bit_offset;
2451 accumSize = 0;
2452
f93fca70 2453 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2454 sign = ~0;
14f9c5c9 2455 }
d2e4a39e 2456
14f9c5c9 2457 accum = 0;
086ca51f 2458 while (src_bytes_left > 0)
14f9c5c9
AS
2459 {
2460 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2461 part of the value. */
d2e4a39e 2462 unsigned int unusedMSMask =
4c4b4cd2
PH
2463 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2464 1;
2465 /* Sign-extend bits for this byte. */
14f9c5c9 2466 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2467
d2e4a39e 2468 accum |=
086ca51f 2469 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2470 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2471 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2472 {
db297a65 2473 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2474 accumSize -= HOST_CHAR_BIT;
2475 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2476 unpacked_bytes_left -= 1;
2477 unpacked_idx += delta;
4c4b4cd2 2478 }
14f9c5c9
AS
2479 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2480 unusedLS = 0;
086ca51f
JB
2481 src_bytes_left -= 1;
2482 src_idx += delta;
14f9c5c9 2483 }
086ca51f 2484 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2485 {
2486 accum |= sign << accumSize;
db297a65 2487 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2488 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2489 if (accumSize < 0)
2490 accumSize = 0;
14f9c5c9 2491 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
14f9c5c9 2494 }
f93fca70
JB
2495}
2496
2497/* Create a new value of type TYPE from the contents of OBJ starting
2498 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2499 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2500 assigning through the result will set the field fetched from.
2501 VALADDR is ignored unless OBJ is NULL, in which case,
2502 VALADDR+OFFSET must address the start of storage containing the
2503 packed value. The value returned in this case is never an lval.
2504 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2505
2506struct value *
2507ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2508 long offset, int bit_offset, int bit_size,
2509 struct type *type)
2510{
2511 struct value *v;
bfb1c796 2512 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2513 gdb_byte *unpacked;
220475ed 2514 const int is_scalar = is_scalar_type (type);
d0a9e810 2515 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2516 gdb::byte_vector staging;
f93fca70
JB
2517
2518 type = ada_check_typedef (type);
2519
d0a9e810 2520 if (obj == NULL)
bfb1c796 2521 src = valaddr + offset;
d0a9e810 2522 else
bfb1c796 2523 src = value_contents (obj) + offset;
d0a9e810
JB
2524
2525 if (is_dynamic_type (type))
2526 {
2527 /* The length of TYPE might by dynamic, so we need to resolve
2528 TYPE in order to know its actual size, which we then use
2529 to create the contents buffer of the value we return.
2530 The difficulty is that the data containing our object is
2531 packed, and therefore maybe not at a byte boundary. So, what
2532 we do, is unpack the data into a byte-aligned buffer, and then
2533 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2534 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2535 staging.resize (staging_len);
d0a9e810
JB
2536
2537 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2538 staging.data (), staging.size (),
d0a9e810
JB
2539 is_big_endian, has_negatives (type),
2540 is_scalar);
d5722aa2 2541 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2542 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2543 {
2544 /* This happens when the length of the object is dynamic,
2545 and is actually smaller than the space reserved for it.
2546 For instance, in an array of variant records, the bit_size
2547 we're given is the array stride, which is constant and
2548 normally equal to the maximum size of its element.
2549 But, in reality, each element only actually spans a portion
2550 of that stride. */
2551 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2552 }
d0a9e810
JB
2553 }
2554
f93fca70
JB
2555 if (obj == NULL)
2556 {
2557 v = allocate_value (type);
bfb1c796 2558 src = valaddr + offset;
f93fca70
JB
2559 }
2560 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2561 {
0cafa88c 2562 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2563 gdb_byte *buf;
0cafa88c 2564
f93fca70 2565 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2566 buf = (gdb_byte *) alloca (src_len);
2567 read_memory (value_address (v), buf, src_len);
2568 src = buf;
f93fca70
JB
2569 }
2570 else
2571 {
2572 v = allocate_value (type);
bfb1c796 2573 src = value_contents (obj) + offset;
f93fca70
JB
2574 }
2575
2576 if (obj != NULL)
2577 {
2578 long new_offset = offset;
2579
2580 set_value_component_location (v, obj);
2581 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2582 set_value_bitsize (v, bit_size);
2583 if (value_bitpos (v) >= HOST_CHAR_BIT)
2584 {
2585 ++new_offset;
2586 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2587 }
2588 set_value_offset (v, new_offset);
2589
2590 /* Also set the parent value. This is needed when trying to
2591 assign a new value (in inferior memory). */
2592 set_value_parent (v, obj);
2593 }
2594 else
2595 set_value_bitsize (v, bit_size);
bfb1c796 2596 unpacked = value_contents_writeable (v);
f93fca70
JB
2597
2598 if (bit_size == 0)
2599 {
2600 memset (unpacked, 0, TYPE_LENGTH (type));
2601 return v;
2602 }
2603
d5722aa2 2604 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2605 {
d0a9e810
JB
2606 /* Small short-cut: If we've unpacked the data into a buffer
2607 of the same size as TYPE's length, then we can reuse that,
2608 instead of doing the unpacking again. */
d5722aa2 2609 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2610 }
d0a9e810
JB
2611 else
2612 ada_unpack_from_contents (src, bit_offset, bit_size,
2613 unpacked, TYPE_LENGTH (type),
2614 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2615
14f9c5c9
AS
2616 return v;
2617}
d2e4a39e 2618
14f9c5c9
AS
2619/* Store the contents of FROMVAL into the location of TOVAL.
2620 Return a new value with the location of TOVAL and contents of
2621 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2622 floating-point or non-scalar types. */
14f9c5c9 2623
d2e4a39e
AS
2624static struct value *
2625ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2626{
df407dfe
AC
2627 struct type *type = value_type (toval);
2628 int bits = value_bitsize (toval);
14f9c5c9 2629
52ce6436
PH
2630 toval = ada_coerce_ref (toval);
2631 fromval = ada_coerce_ref (fromval);
2632
2633 if (ada_is_direct_array_type (value_type (toval)))
2634 toval = ada_coerce_to_simple_array (toval);
2635 if (ada_is_direct_array_type (value_type (fromval)))
2636 fromval = ada_coerce_to_simple_array (fromval);
2637
88e3b34b 2638 if (!deprecated_value_modifiable (toval))
323e0a4a 2639 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2640
d2e4a39e 2641 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2642 && bits > 0
d2e4a39e 2643 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2644 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2645 {
df407dfe
AC
2646 int len = (value_bitpos (toval)
2647 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2648 int from_size;
224c3ddb 2649 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2650 struct value *val;
42ae5230 2651 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2652
2653 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2654 fromval = value_cast (type, fromval);
14f9c5c9 2655
52ce6436 2656 read_memory (to_addr, buffer, len);
aced2898
PH
2657 from_size = value_bitsize (fromval);
2658 if (from_size == 0)
2659 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4
TT
2660
2661 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2662 ULONGEST from_offset = 0;
2663 if (is_big_endian && is_scalar_type (value_type (fromval)))
2664 from_offset = from_size - bits;
2665 copy_bitwise (buffer, value_bitpos (toval),
2666 value_contents (fromval), from_offset,
2667 bits, is_big_endian);
972daa01 2668 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2669
14f9c5c9 2670 val = value_copy (toval);
0fd88904 2671 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2672 TYPE_LENGTH (type));
04624583 2673 deprecated_set_value_type (val, type);
d2e4a39e 2674
14f9c5c9
AS
2675 return val;
2676 }
2677
2678 return value_assign (toval, fromval);
2679}
2680
2681
7c512744
JB
2682/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2683 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2684 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2685 COMPONENT, and not the inferior's memory. The current contents
2686 of COMPONENT are ignored.
2687
2688 Although not part of the initial design, this function also works
2689 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2690 had a null address, and COMPONENT had an address which is equal to
2691 its offset inside CONTAINER. */
2692
52ce6436
PH
2693static void
2694value_assign_to_component (struct value *container, struct value *component,
2695 struct value *val)
2696{
2697 LONGEST offset_in_container =
42ae5230 2698 (LONGEST) (value_address (component) - value_address (container));
7c512744 2699 int bit_offset_in_container =
52ce6436
PH
2700 value_bitpos (component) - value_bitpos (container);
2701 int bits;
7c512744 2702
52ce6436
PH
2703 val = value_cast (value_type (component), val);
2704
2705 if (value_bitsize (component) == 0)
2706 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2707 else
2708 bits = value_bitsize (component);
2709
50810684 2710 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2a62dfa9
JB
2711 {
2712 int src_offset;
2713
2714 if (is_scalar_type (check_typedef (value_type (component))))
2715 src_offset
2716 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2717 else
2718 src_offset = 0;
a99bc3d2
JB
2719 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2720 value_bitpos (container) + bit_offset_in_container,
2721 value_contents (val), src_offset, bits, 1);
2a62dfa9 2722 }
52ce6436 2723 else
a99bc3d2
JB
2724 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2725 value_bitpos (container) + bit_offset_in_container,
2726 value_contents (val), 0, bits, 0);
7c512744
JB
2727}
2728
736ade86
XR
2729/* Determine if TYPE is an access to an unconstrained array. */
2730
d91e9ea8 2731bool
736ade86
XR
2732ada_is_access_to_unconstrained_array (struct type *type)
2733{
2734 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2735 && is_thick_pntr (ada_typedef_target_type (type)));
2736}
2737
4c4b4cd2
PH
2738/* The value of the element of array ARR at the ARITY indices given in IND.
2739 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2740 thereto. */
2741
d2e4a39e
AS
2742struct value *
2743ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2744{
2745 int k;
d2e4a39e
AS
2746 struct value *elt;
2747 struct type *elt_type;
14f9c5c9
AS
2748
2749 elt = ada_coerce_to_simple_array (arr);
2750
df407dfe 2751 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2752 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2753 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2754 return value_subscript_packed (elt, arity, ind);
2755
2756 for (k = 0; k < arity; k += 1)
2757 {
b9c50e9a
XR
2758 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2759
14f9c5c9 2760 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2761 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2762
2497b498 2763 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2764
2765 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2766 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2767 {
2768 /* The element is a typedef to an unconstrained array,
2769 except that the value_subscript call stripped the
2770 typedef layer. The typedef layer is GNAT's way to
2771 specify that the element is, at the source level, an
2772 access to the unconstrained array, rather than the
2773 unconstrained array. So, we need to restore that
2774 typedef layer, which we can do by forcing the element's
2775 type back to its original type. Otherwise, the returned
2776 value is going to be printed as the array, rather
2777 than as an access. Another symptom of the same issue
2778 would be that an expression trying to dereference the
2779 element would also be improperly rejected. */
2780 deprecated_set_value_type (elt, saved_elt_type);
2781 }
2782
2783 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2784 }
b9c50e9a 2785
14f9c5c9
AS
2786 return elt;
2787}
2788
deede10c
JB
2789/* Assuming ARR is a pointer to a GDB array, the value of the element
2790 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2791 Does not read the entire array into memory.
2792
2793 Note: Unlike what one would expect, this function is used instead of
2794 ada_value_subscript for basically all non-packed array types. The reason
2795 for this is that a side effect of doing our own pointer arithmetics instead
2796 of relying on value_subscript is that there is no implicit typedef peeling.
2797 This is important for arrays of array accesses, where it allows us to
2798 preserve the fact that the array's element is an array access, where the
2799 access part os encoded in a typedef layer. */
14f9c5c9 2800
2c0b251b 2801static struct value *
deede10c 2802ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2803{
2804 int k;
919e6dbe 2805 struct value *array_ind = ada_value_ind (arr);
deede10c 2806 struct type *type
919e6dbe
PMR
2807 = check_typedef (value_enclosing_type (array_ind));
2808
2809 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2810 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2811 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2812
2813 for (k = 0; k < arity; k += 1)
2814 {
2815 LONGEST lwb, upb;
aa715135 2816 struct value *lwb_value;
14f9c5c9
AS
2817
2818 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2819 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2820 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2821 value_copy (arr));
14f9c5c9 2822 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2823 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2824 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2825 type = TYPE_TARGET_TYPE (type);
2826 }
2827
2828 return value_ind (arr);
2829}
2830
0b5d8877 2831/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2832 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2833 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2834 this array is LOW, as per Ada rules. */
0b5d8877 2835static struct value *
f5938064
JG
2836ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2837 int low, int high)
0b5d8877 2838{
b0dd7688 2839 struct type *type0 = ada_check_typedef (type);
aa715135 2840 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2841 struct type *index_type
aa715135 2842 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2843 struct type *slice_type = create_array_type_with_stride
2844 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2845 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2846 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2847 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2848 LONGEST base_low_pos, low_pos;
2849 CORE_ADDR base;
2850
2851 if (!discrete_position (base_index_type, low, &low_pos)
2852 || !discrete_position (base_index_type, base_low, &base_low_pos))
2853 {
2854 warning (_("unable to get positions in slice, use bounds instead"));
2855 low_pos = low;
2856 base_low_pos = base_low;
2857 }
5b4ee69b 2858
aa715135
JG
2859 base = value_as_address (array_ptr)
2860 + ((low_pos - base_low_pos)
2861 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2862 return value_at_lazy (slice_type, base);
0b5d8877
PH
2863}
2864
2865
2866static struct value *
2867ada_value_slice (struct value *array, int low, int high)
2868{
b0dd7688 2869 struct type *type = ada_check_typedef (value_type (array));
aa715135 2870 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2871 struct type *index_type
2872 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2873 struct type *slice_type = create_array_type_with_stride
2874 (NULL, TYPE_TARGET_TYPE (type), index_type,
2875 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2876 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2877 LONGEST low_pos, high_pos;
5b4ee69b 2878
aa715135
JG
2879 if (!discrete_position (base_index_type, low, &low_pos)
2880 || !discrete_position (base_index_type, high, &high_pos))
2881 {
2882 warning (_("unable to get positions in slice, use bounds instead"));
2883 low_pos = low;
2884 high_pos = high;
2885 }
2886
2887 return value_cast (slice_type,
2888 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2889}
2890
14f9c5c9
AS
2891/* If type is a record type in the form of a standard GNAT array
2892 descriptor, returns the number of dimensions for type. If arr is a
2893 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2894 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2895
2896int
d2e4a39e 2897ada_array_arity (struct type *type)
14f9c5c9
AS
2898{
2899 int arity;
2900
2901 if (type == NULL)
2902 return 0;
2903
2904 type = desc_base_type (type);
2905
2906 arity = 0;
d2e4a39e 2907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2908 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2909 else
2910 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2911 {
4c4b4cd2 2912 arity += 1;
61ee279c 2913 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2914 }
d2e4a39e 2915
14f9c5c9
AS
2916 return arity;
2917}
2918
2919/* If TYPE is a record type in the form of a standard GNAT array
2920 descriptor or a simple array type, returns the element type for
2921 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2922 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2923
d2e4a39e
AS
2924struct type *
2925ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2926{
2927 type = desc_base_type (type);
2928
d2e4a39e 2929 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2930 {
2931 int k;
d2e4a39e 2932 struct type *p_array_type;
14f9c5c9 2933
556bdfd4 2934 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2935
2936 k = ada_array_arity (type);
2937 if (k == 0)
4c4b4cd2 2938 return NULL;
d2e4a39e 2939
4c4b4cd2 2940 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2941 if (nindices >= 0 && k > nindices)
4c4b4cd2 2942 k = nindices;
d2e4a39e 2943 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2944 {
61ee279c 2945 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2946 k -= 1;
2947 }
14f9c5c9
AS
2948 return p_array_type;
2949 }
2950 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2951 {
2952 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2953 {
2954 type = TYPE_TARGET_TYPE (type);
2955 nindices -= 1;
2956 }
14f9c5c9
AS
2957 return type;
2958 }
2959
2960 return NULL;
2961}
2962
4c4b4cd2 2963/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2964 Does not examine memory. Throws an error if N is invalid or TYPE
2965 is not an array type. NAME is the name of the Ada attribute being
2966 evaluated ('range, 'first, 'last, or 'length); it is used in building
2967 the error message. */
14f9c5c9 2968
1eea4ebd
UW
2969static struct type *
2970ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2971{
4c4b4cd2
PH
2972 struct type *result_type;
2973
14f9c5c9
AS
2974 type = desc_base_type (type);
2975
1eea4ebd
UW
2976 if (n < 0 || n > ada_array_arity (type))
2977 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2978
4c4b4cd2 2979 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2980 {
2981 int i;
2982
2983 for (i = 1; i < n; i += 1)
4c4b4cd2 2984 type = TYPE_TARGET_TYPE (type);
262452ec 2985 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2986 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2987 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2988 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2989 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2990 result_type = NULL;
14f9c5c9 2991 }
d2e4a39e 2992 else
1eea4ebd
UW
2993 {
2994 result_type = desc_index_type (desc_bounds_type (type), n);
2995 if (result_type == NULL)
2996 error (_("attempt to take bound of something that is not an array"));
2997 }
2998
2999 return result_type;
14f9c5c9
AS
3000}
3001
3002/* Given that arr is an array type, returns the lower bound of the
3003 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3004 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3005 array-descriptor type. It works for other arrays with bounds supplied
3006 by run-time quantities other than discriminants. */
14f9c5c9 3007
abb68b3e 3008static LONGEST
fb5e3d5c 3009ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3010{
8a48ac95 3011 struct type *type, *index_type_desc, *index_type;
1ce677a4 3012 int i;
262452ec
JK
3013
3014 gdb_assert (which == 0 || which == 1);
14f9c5c9 3015
ad82864c
JB
3016 if (ada_is_constrained_packed_array_type (arr_type))
3017 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3018
4c4b4cd2 3019 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3020 return (LONGEST) - which;
14f9c5c9
AS
3021
3022 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3023 type = TYPE_TARGET_TYPE (arr_type);
3024 else
3025 type = arr_type;
3026
bafffb51
JB
3027 if (TYPE_FIXED_INSTANCE (type))
3028 {
3029 /* The array has already been fixed, so we do not need to
3030 check the parallel ___XA type again. That encoding has
3031 already been applied, so ignore it now. */
3032 index_type_desc = NULL;
3033 }
3034 else
3035 {
3036 index_type_desc = ada_find_parallel_type (type, "___XA");
3037 ada_fixup_array_indexes_type (index_type_desc);
3038 }
3039
262452ec 3040 if (index_type_desc != NULL)
28c85d6c
JB
3041 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3042 NULL);
262452ec 3043 else
8a48ac95
JB
3044 {
3045 struct type *elt_type = check_typedef (type);
3046
3047 for (i = 1; i < n; i++)
3048 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3049
3050 index_type = TYPE_INDEX_TYPE (elt_type);
3051 }
262452ec 3052
43bbcdc2
PH
3053 return
3054 (LONGEST) (which == 0
3055 ? ada_discrete_type_low_bound (index_type)
3056 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3057}
3058
3059/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3060 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3061 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3062 supplied by run-time quantities other than discriminants. */
14f9c5c9 3063
1eea4ebd 3064static LONGEST
4dc81987 3065ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3066{
eb479039
JB
3067 struct type *arr_type;
3068
3069 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3070 arr = value_ind (arr);
3071 arr_type = value_enclosing_type (arr);
14f9c5c9 3072
ad82864c
JB
3073 if (ada_is_constrained_packed_array_type (arr_type))
3074 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3075 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3076 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3077 else
1eea4ebd 3078 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3079}
3080
3081/* Given that arr is an array value, returns the length of the
3082 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3083 supplied by run-time quantities other than discriminants.
3084 Does not work for arrays indexed by enumeration types with representation
3085 clauses at the moment. */
14f9c5c9 3086
1eea4ebd 3087static LONGEST
d2e4a39e 3088ada_array_length (struct value *arr, int n)
14f9c5c9 3089{
aa715135
JG
3090 struct type *arr_type, *index_type;
3091 int low, high;
eb479039
JB
3092
3093 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3094 arr = value_ind (arr);
3095 arr_type = value_enclosing_type (arr);
14f9c5c9 3096
ad82864c
JB
3097 if (ada_is_constrained_packed_array_type (arr_type))
3098 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3099
4c4b4cd2 3100 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3101 {
3102 low = ada_array_bound_from_type (arr_type, n, 0);
3103 high = ada_array_bound_from_type (arr_type, n, 1);
3104 }
14f9c5c9 3105 else
aa715135
JG
3106 {
3107 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3108 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3109 }
3110
f168693b 3111 arr_type = check_typedef (arr_type);
7150d33c 3112 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3113 if (index_type != NULL)
3114 {
3115 struct type *base_type;
3116 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3117 base_type = TYPE_TARGET_TYPE (index_type);
3118 else
3119 base_type = index_type;
3120
3121 low = pos_atr (value_from_longest (base_type, low));
3122 high = pos_atr (value_from_longest (base_type, high));
3123 }
3124 return high - low + 1;
4c4b4cd2
PH
3125}
3126
bff8c71f
TT
3127/* An array whose type is that of ARR_TYPE (an array type), with
3128 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3129 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3130
3131static struct value *
bff8c71f 3132empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3133{
b0dd7688 3134 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3135 struct type *index_type
3136 = create_static_range_type
bff8c71f
TT
3137 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3138 high < low ? low - 1 : high);
b0dd7688 3139 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3140
0b5d8877 3141 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3142}
14f9c5c9 3143\f
d2e4a39e 3144
4c4b4cd2 3145 /* Name resolution */
14f9c5c9 3146
4c4b4cd2
PH
3147/* The "decoded" name for the user-definable Ada operator corresponding
3148 to OP. */
14f9c5c9 3149
d2e4a39e 3150static const char *
4c4b4cd2 3151ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3152{
3153 int i;
3154
4c4b4cd2 3155 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3156 {
3157 if (ada_opname_table[i].op == op)
4c4b4cd2 3158 return ada_opname_table[i].decoded;
14f9c5c9 3159 }
323e0a4a 3160 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3161}
3162
3163
4c4b4cd2
PH
3164/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3165 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3166 undefined namespace) and converts operators that are
3167 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3168 non-null, it provides a preferred result type [at the moment, only
3169 type void has any effect---causing procedures to be preferred over
3170 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3171 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3172
4c4b4cd2 3173static void
699bd4cf
TT
3174resolve (expression_up *expp, int void_context_p, int parse_completion,
3175 innermost_block_tracker *tracker)
14f9c5c9 3176{
30b15541
UW
3177 struct type *context_type = NULL;
3178 int pc = 0;
3179
3180 if (void_context_p)
3181 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3182
699bd4cf 3183 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
14f9c5c9
AS
3184}
3185
4c4b4cd2
PH
3186/* Resolve the operator of the subexpression beginning at
3187 position *POS of *EXPP. "Resolving" consists of replacing
3188 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3189 with their resolutions, replacing built-in operators with
3190 function calls to user-defined operators, where appropriate, and,
3191 when DEPROCEDURE_P is non-zero, converting function-valued variables
3192 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3193 are as in ada_resolve, above. */
14f9c5c9 3194
d2e4a39e 3195static struct value *
e9d9f57e 3196resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
699bd4cf
TT
3197 struct type *context_type, int parse_completion,
3198 innermost_block_tracker *tracker)
14f9c5c9
AS
3199{
3200 int pc = *pos;
3201 int i;
4c4b4cd2 3202 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3203 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3204 struct value **argvec; /* Vector of operand types (alloca'ed). */
3205 int nargs; /* Number of operands. */
52ce6436 3206 int oplen;
14f9c5c9
AS
3207
3208 argvec = NULL;
3209 nargs = 0;
e9d9f57e 3210 exp = expp->get ();
14f9c5c9 3211
52ce6436
PH
3212 /* Pass one: resolve operands, saving their types and updating *pos,
3213 if needed. */
14f9c5c9
AS
3214 switch (op)
3215 {
4c4b4cd2
PH
3216 case OP_FUNCALL:
3217 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3218 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3219 *pos += 7;
4c4b4cd2
PH
3220 else
3221 {
3222 *pos += 3;
699bd4cf 3223 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3224 }
3225 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3226 break;
3227
14f9c5c9 3228 case UNOP_ADDR:
4c4b4cd2 3229 *pos += 1;
699bd4cf 3230 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2
PH
3231 break;
3232
52ce6436
PH
3233 case UNOP_QUAL:
3234 *pos += 3;
2a612529 3235 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
699bd4cf 3236 parse_completion, tracker);
4c4b4cd2
PH
3237 break;
3238
52ce6436 3239 case OP_ATR_MODULUS:
4c4b4cd2
PH
3240 case OP_ATR_SIZE:
3241 case OP_ATR_TAG:
4c4b4cd2
PH
3242 case OP_ATR_FIRST:
3243 case OP_ATR_LAST:
3244 case OP_ATR_LENGTH:
3245 case OP_ATR_POS:
3246 case OP_ATR_VAL:
4c4b4cd2
PH
3247 case OP_ATR_MIN:
3248 case OP_ATR_MAX:
52ce6436
PH
3249 case TERNOP_IN_RANGE:
3250 case BINOP_IN_BOUNDS:
3251 case UNOP_IN_RANGE:
3252 case OP_AGGREGATE:
3253 case OP_OTHERS:
3254 case OP_CHOICES:
3255 case OP_POSITIONAL:
3256 case OP_DISCRETE_RANGE:
3257 case OP_NAME:
3258 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3259 *pos += oplen;
14f9c5c9
AS
3260 break;
3261
3262 case BINOP_ASSIGN:
3263 {
4c4b4cd2
PH
3264 struct value *arg1;
3265
3266 *pos += 1;
699bd4cf 3267 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3268 if (arg1 == NULL)
699bd4cf 3269 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
4c4b4cd2 3270 else
699bd4cf
TT
3271 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3272 tracker);
4c4b4cd2 3273 break;
14f9c5c9
AS
3274 }
3275
4c4b4cd2 3276 case UNOP_CAST:
4c4b4cd2
PH
3277 *pos += 3;
3278 nargs = 1;
3279 break;
14f9c5c9 3280
4c4b4cd2
PH
3281 case BINOP_ADD:
3282 case BINOP_SUB:
3283 case BINOP_MUL:
3284 case BINOP_DIV:
3285 case BINOP_REM:
3286 case BINOP_MOD:
3287 case BINOP_EXP:
3288 case BINOP_CONCAT:
3289 case BINOP_LOGICAL_AND:
3290 case BINOP_LOGICAL_OR:
3291 case BINOP_BITWISE_AND:
3292 case BINOP_BITWISE_IOR:
3293 case BINOP_BITWISE_XOR:
14f9c5c9 3294
4c4b4cd2
PH
3295 case BINOP_EQUAL:
3296 case BINOP_NOTEQUAL:
3297 case BINOP_LESS:
3298 case BINOP_GTR:
3299 case BINOP_LEQ:
3300 case BINOP_GEQ:
14f9c5c9 3301
4c4b4cd2
PH
3302 case BINOP_REPEAT:
3303 case BINOP_SUBSCRIPT:
3304 case BINOP_COMMA:
40c8aaa9
JB
3305 *pos += 1;
3306 nargs = 2;
3307 break;
14f9c5c9 3308
4c4b4cd2
PH
3309 case UNOP_NEG:
3310 case UNOP_PLUS:
3311 case UNOP_LOGICAL_NOT:
3312 case UNOP_ABS:
3313 case UNOP_IND:
3314 *pos += 1;
3315 nargs = 1;
3316 break;
14f9c5c9 3317
4c4b4cd2 3318 case OP_LONG:
edd079d9 3319 case OP_FLOAT:
4c4b4cd2 3320 case OP_VAR_VALUE:
74ea4be4 3321 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3322 *pos += 4;
3323 break;
14f9c5c9 3324
4c4b4cd2
PH
3325 case OP_TYPE:
3326 case OP_BOOL:
3327 case OP_LAST:
4c4b4cd2
PH
3328 case OP_INTERNALVAR:
3329 *pos += 3;
3330 break;
14f9c5c9 3331
4c4b4cd2
PH
3332 case UNOP_MEMVAL:
3333 *pos += 3;
3334 nargs = 1;
3335 break;
3336
67f3407f
DJ
3337 case OP_REGISTER:
3338 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3339 break;
3340
4c4b4cd2
PH
3341 case STRUCTOP_STRUCT:
3342 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3343 nargs = 1;
3344 break;
3345
4c4b4cd2 3346 case TERNOP_SLICE:
4c4b4cd2
PH
3347 *pos += 1;
3348 nargs = 3;
3349 break;
3350
52ce6436 3351 case OP_STRING:
14f9c5c9 3352 break;
4c4b4cd2
PH
3353
3354 default:
323e0a4a 3355 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3356 }
3357
8d749320 3358 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2 3359 for (i = 0; i < nargs; i += 1)
699bd4cf
TT
3360 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3361 tracker);
4c4b4cd2 3362 argvec[i] = NULL;
e9d9f57e 3363 exp = expp->get ();
4c4b4cd2
PH
3364
3365 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3366 switch (op)
3367 {
3368 default:
3369 break;
3370
14f9c5c9 3371 case OP_VAR_VALUE:
4c4b4cd2 3372 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3373 {
54d343a2 3374 std::vector<struct block_symbol> candidates;
76a01679
JB
3375 int n_candidates;
3376
3377 n_candidates =
3378 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3379 (exp->elts[pc + 2].symbol),
3380 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3381 &candidates);
76a01679
JB
3382
3383 if (n_candidates > 1)
3384 {
3385 /* Types tend to get re-introduced locally, so if there
3386 are any local symbols that are not types, first filter
3387 out all types. */
3388 int j;
3389 for (j = 0; j < n_candidates; j += 1)
d12307c1 3390 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3391 {
3392 case LOC_REGISTER:
3393 case LOC_ARG:
3394 case LOC_REF_ARG:
76a01679
JB
3395 case LOC_REGPARM_ADDR:
3396 case LOC_LOCAL:
76a01679 3397 case LOC_COMPUTED:
76a01679
JB
3398 goto FoundNonType;
3399 default:
3400 break;
3401 }
3402 FoundNonType:
3403 if (j < n_candidates)
3404 {
3405 j = 0;
3406 while (j < n_candidates)
3407 {
d12307c1 3408 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3409 {
3410 candidates[j] = candidates[n_candidates - 1];
3411 n_candidates -= 1;
3412 }
3413 else
3414 j += 1;
3415 }
3416 }
3417 }
3418
3419 if (n_candidates == 0)
323e0a4a 3420 error (_("No definition found for %s"),
76a01679
JB
3421 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3422 else if (n_candidates == 1)
3423 i = 0;
3424 else if (deprocedure_p
54d343a2 3425 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3426 {
06d5cf63 3427 i = ada_resolve_function
54d343a2 3428 (candidates.data (), n_candidates, NULL, 0,
06d5cf63 3429 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2a612529 3430 context_type, parse_completion);
76a01679 3431 if (i < 0)
323e0a4a 3432 error (_("Could not find a match for %s"),
76a01679
JB
3433 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3434 }
3435 else
3436 {
323e0a4a 3437 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3438 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3439 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3440 i = 0;
3441 }
3442
3443 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3444 exp->elts[pc + 2].symbol = candidates[i].symbol;
699bd4cf 3445 tracker->update (candidates[i]);
76a01679
JB
3446 }
3447
3448 if (deprocedure_p
3449 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3450 == TYPE_CODE_FUNC))
3451 {
424da6cf 3452 replace_operator_with_call (expp, pc, 0, 4,
76a01679
JB
3453 exp->elts[pc + 2].symbol,
3454 exp->elts[pc + 1].block);
e9d9f57e 3455 exp = expp->get ();
76a01679 3456 }
14f9c5c9
AS
3457 break;
3458
3459 case OP_FUNCALL:
3460 {
4c4b4cd2 3461 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3462 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3463 {
54d343a2 3464 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3465 int n_candidates;
3466
3467 n_candidates =
76a01679
JB
3468 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3469 (exp->elts[pc + 5].symbol),
3470 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3471 &candidates);
ec6a20c2 3472
4c4b4cd2
PH
3473 if (n_candidates == 1)
3474 i = 0;
3475 else
3476 {
06d5cf63 3477 i = ada_resolve_function
54d343a2 3478 (candidates.data (), n_candidates,
06d5cf63
JB
3479 argvec, nargs,
3480 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2a612529 3481 context_type, parse_completion);
4c4b4cd2 3482 if (i < 0)
323e0a4a 3483 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3484 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3485 }
3486
3487 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3488 exp->elts[pc + 5].symbol = candidates[i].symbol;
699bd4cf 3489 tracker->update (candidates[i]);
4c4b4cd2 3490 }
14f9c5c9
AS
3491 }
3492 break;
3493 case BINOP_ADD:
3494 case BINOP_SUB:
3495 case BINOP_MUL:
3496 case BINOP_DIV:
3497 case BINOP_REM:
3498 case BINOP_MOD:
3499 case BINOP_CONCAT:
3500 case BINOP_BITWISE_AND:
3501 case BINOP_BITWISE_IOR:
3502 case BINOP_BITWISE_XOR:
3503 case BINOP_EQUAL:
3504 case BINOP_NOTEQUAL:
3505 case BINOP_LESS:
3506 case BINOP_GTR:
3507 case BINOP_LEQ:
3508 case BINOP_GEQ:
3509 case BINOP_EXP:
3510 case UNOP_NEG:
3511 case UNOP_PLUS:
3512 case UNOP_LOGICAL_NOT:
3513 case UNOP_ABS:
3514 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3515 {
54d343a2 3516 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3517 int n_candidates;
3518
3519 n_candidates =
b5ec771e 3520 ada_lookup_symbol_list (ada_decoded_op_name (op),
582942f4 3521 NULL, VAR_DOMAIN,
4eeaa230 3522 &candidates);
ec6a20c2 3523
54d343a2 3524 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
2a612529
TT
3525 nargs, ada_decoded_op_name (op), NULL,
3526 parse_completion);
4c4b4cd2
PH
3527 if (i < 0)
3528 break;
3529
d12307c1
PMR
3530 replace_operator_with_call (expp, pc, nargs, 1,
3531 candidates[i].symbol,
3532 candidates[i].block);
e9d9f57e 3533 exp = expp->get ();
4c4b4cd2 3534 }
14f9c5c9 3535 break;
4c4b4cd2
PH
3536
3537 case OP_TYPE:
b3dbf008 3538 case OP_REGISTER:
4c4b4cd2 3539 return NULL;
14f9c5c9
AS
3540 }
3541
3542 *pos = pc;
ced9779b
JB
3543 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3544 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3545 exp->elts[pc + 1].objfile,
3546 exp->elts[pc + 2].msymbol);
3547 else
3548 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3549}
3550
3551/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3552 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3553 a non-pointer. */
14f9c5c9 3554/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3555 liberal. */
14f9c5c9
AS
3556
3557static int
4dc81987 3558ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3559{
61ee279c
PH
3560 ftype = ada_check_typedef (ftype);
3561 atype = ada_check_typedef (atype);
14f9c5c9
AS
3562
3563 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3564 ftype = TYPE_TARGET_TYPE (ftype);
3565 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3566 atype = TYPE_TARGET_TYPE (atype);
3567
d2e4a39e 3568 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3569 {
3570 default:
5b3d5b7d 3571 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3572 case TYPE_CODE_PTR:
3573 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3574 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3575 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3576 else
1265e4aa
JB
3577 return (may_deref
3578 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3579 case TYPE_CODE_INT:
3580 case TYPE_CODE_ENUM:
3581 case TYPE_CODE_RANGE:
3582 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3583 {
3584 case TYPE_CODE_INT:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_RANGE:
3587 return 1;
3588 default:
3589 return 0;
3590 }
14f9c5c9
AS
3591
3592 case TYPE_CODE_ARRAY:
d2e4a39e 3593 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3594 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3595
3596 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3597 if (ada_is_array_descriptor_type (ftype))
3598 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3599 || ada_is_array_descriptor_type (atype));
14f9c5c9 3600 else
4c4b4cd2
PH
3601 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3602 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3603
3604 case TYPE_CODE_UNION:
3605 case TYPE_CODE_FLT:
3606 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3607 }
3608}
3609
3610/* Return non-zero if the formals of FUNC "sufficiently match" the
3611 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3612 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3613 argument function. */
14f9c5c9
AS
3614
3615static int
d2e4a39e 3616ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3617{
3618 int i;
d2e4a39e 3619 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3620
1265e4aa
JB
3621 if (SYMBOL_CLASS (func) == LOC_CONST
3622 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3623 return (n_actuals == 0);
3624 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3625 return 0;
3626
3627 if (TYPE_NFIELDS (func_type) != n_actuals)
3628 return 0;
3629
3630 for (i = 0; i < n_actuals; i += 1)
3631 {
4c4b4cd2 3632 if (actuals[i] == NULL)
76a01679
JB
3633 return 0;
3634 else
3635 {
5b4ee69b
MS
3636 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3637 i));
df407dfe 3638 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3639
76a01679
JB
3640 if (!ada_type_match (ftype, atype, 1))
3641 return 0;
3642 }
14f9c5c9
AS
3643 }
3644 return 1;
3645}
3646
3647/* False iff function type FUNC_TYPE definitely does not produce a value
3648 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3649 FUNC_TYPE is not a valid function type with a non-null return type
3650 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3651
3652static int
d2e4a39e 3653return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3654{
d2e4a39e 3655 struct type *return_type;
14f9c5c9
AS
3656
3657 if (func_type == NULL)
3658 return 1;
3659
4c4b4cd2 3660 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3661 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3662 else
18af8284 3663 return_type = get_base_type (func_type);
14f9c5c9
AS
3664 if (return_type == NULL)
3665 return 1;
3666
18af8284 3667 context_type = get_base_type (context_type);
14f9c5c9
AS
3668
3669 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3670 return context_type == NULL || return_type == context_type;
3671 else if (context_type == NULL)
3672 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3673 else
3674 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3675}
3676
3677
4c4b4cd2 3678/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3679 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3680 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3681 that returns that type, then eliminate matches that don't. If
3682 CONTEXT_TYPE is void and there is at least one match that does not
3683 return void, eliminate all matches that do.
3684
14f9c5c9
AS
3685 Asks the user if there is more than one match remaining. Returns -1
3686 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3687 solely for messages. May re-arrange and modify SYMS in
3688 the process; the index returned is for the modified vector. */
14f9c5c9 3689
4c4b4cd2 3690static int
d12307c1 3691ada_resolve_function (struct block_symbol syms[],
4c4b4cd2 3692 int nsyms, struct value **args, int nargs,
2a612529
TT
3693 const char *name, struct type *context_type,
3694 int parse_completion)
14f9c5c9 3695{
30b15541 3696 int fallback;
14f9c5c9 3697 int k;
4c4b4cd2 3698 int m; /* Number of hits */
14f9c5c9 3699
d2e4a39e 3700 m = 0;
30b15541
UW
3701 /* In the first pass of the loop, we only accept functions matching
3702 context_type. If none are found, we add a second pass of the loop
3703 where every function is accepted. */
3704 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3705 {
3706 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3707 {
d12307c1 3708 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3709
d12307c1 3710 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3711 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3712 {
3713 syms[m] = syms[k];
3714 m += 1;
3715 }
3716 }
14f9c5c9
AS
3717 }
3718
dc5c8746
PMR
3719 /* If we got multiple matches, ask the user which one to use. Don't do this
3720 interactive thing during completion, though, as the purpose of the
3721 completion is providing a list of all possible matches. Prompting the
3722 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3723 if (m == 0)
3724 return -1;
dc5c8746 3725 else if (m > 1 && !parse_completion)
14f9c5c9 3726 {
323e0a4a 3727 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3728 user_select_syms (syms, m, 1);
14f9c5c9
AS
3729 return 0;
3730 }
3731 return 0;
3732}
3733
4c4b4cd2
PH
3734/* Returns true (non-zero) iff decoded name N0 should appear before N1
3735 in a listing of choices during disambiguation (see sort_choices, below).
3736 The idea is that overloadings of a subprogram name from the
3737 same package should sort in their source order. We settle for ordering
3738 such symbols by their trailing number (__N or $N). */
3739
14f9c5c9 3740static int
0d5cff50 3741encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3742{
3743 if (N1 == NULL)
3744 return 0;
3745 else if (N0 == NULL)
3746 return 1;
3747 else
3748 {
3749 int k0, k1;
5b4ee69b 3750
d2e4a39e 3751 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3752 ;
d2e4a39e 3753 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3754 ;
d2e4a39e 3755 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3756 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3757 {
3758 int n0, n1;
5b4ee69b 3759
4c4b4cd2
PH
3760 n0 = k0;
3761 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3762 n0 -= 1;
3763 n1 = k1;
3764 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3765 n1 -= 1;
3766 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3767 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3768 }
14f9c5c9
AS
3769 return (strcmp (N0, N1) < 0);
3770 }
3771}
d2e4a39e 3772
4c4b4cd2
PH
3773/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3774 encoded names. */
3775
d2e4a39e 3776static void
d12307c1 3777sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3778{
4c4b4cd2 3779 int i;
5b4ee69b 3780
d2e4a39e 3781 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3782 {
d12307c1 3783 struct block_symbol sym = syms[i];
14f9c5c9
AS
3784 int j;
3785
d2e4a39e 3786 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3787 {
d12307c1
PMR
3788 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3789 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3790 break;
3791 syms[j + 1] = syms[j];
3792 }
d2e4a39e 3793 syms[j + 1] = sym;
14f9c5c9
AS
3794 }
3795}
3796
d72413e6
PMR
3797/* Whether GDB should display formals and return types for functions in the
3798 overloads selection menu. */
3799static int print_signatures = 1;
3800
3801/* Print the signature for SYM on STREAM according to the FLAGS options. For
3802 all but functions, the signature is just the name of the symbol. For
3803 functions, this is the name of the function, the list of types for formals
3804 and the return type (if any). */
3805
3806static void
3807ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3808 const struct type_print_options *flags)
3809{
3810 struct type *type = SYMBOL_TYPE (sym);
3811
3812 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3813 if (!print_signatures
3814 || type == NULL
3815 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3816 return;
3817
3818 if (TYPE_NFIELDS (type) > 0)
3819 {
3820 int i;
3821
3822 fprintf_filtered (stream, " (");
3823 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3824 {
3825 if (i > 0)
3826 fprintf_filtered (stream, "; ");
3827 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3828 flags);
3829 }
3830 fprintf_filtered (stream, ")");
3831 }
3832 if (TYPE_TARGET_TYPE (type) != NULL
3833 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3834 {
3835 fprintf_filtered (stream, " return ");
3836 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3837 }
3838}
3839
4c4b4cd2
PH
3840/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3841 by asking the user (if necessary), returning the number selected,
3842 and setting the first elements of SYMS items. Error if no symbols
3843 selected. */
14f9c5c9
AS
3844
3845/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3846 to be re-integrated one of these days. */
14f9c5c9
AS
3847
3848int
d12307c1 3849user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3850{
3851 int i;
8d749320 3852 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3853 int n_chosen;
3854 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3855 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3856
3857 if (max_results < 1)
323e0a4a 3858 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3859 if (nsyms <= 1)
3860 return nsyms;
3861
717d2f5a
JB
3862 if (select_mode == multiple_symbols_cancel)
3863 error (_("\
3864canceled because the command is ambiguous\n\
3865See set/show multiple-symbol."));
a0087920 3866
717d2f5a
JB
3867 /* If select_mode is "all", then return all possible symbols.
3868 Only do that if more than one symbol can be selected, of course.
3869 Otherwise, display the menu as usual. */
3870 if (select_mode == multiple_symbols_all && max_results > 1)
3871 return nsyms;
3872
a0087920 3873 printf_filtered (_("[0] cancel\n"));
14f9c5c9 3874 if (max_results > 1)
a0087920 3875 printf_filtered (_("[1] all\n"));
14f9c5c9 3876
4c4b4cd2 3877 sort_choices (syms, nsyms);
14f9c5c9
AS
3878
3879 for (i = 0; i < nsyms; i += 1)
3880 {
d12307c1 3881 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3882 continue;
3883
d12307c1 3884 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3885 {
76a01679 3886 struct symtab_and_line sal =
d12307c1 3887 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3888
a0087920 3889 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3890 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3891 &type_print_raw_options);
323e0a4a 3892 if (sal.symtab == NULL)
a0087920
TT
3893 printf_filtered (_(" at <no source file available>:%d\n"),
3894 sal.line);
323e0a4a 3895 else
a0087920
TT
3896 printf_filtered (_(" at %s:%d\n"),
3897 symtab_to_filename_for_display (sal.symtab),
3898 sal.line);
4c4b4cd2
PH
3899 continue;
3900 }
d2e4a39e 3901 else
4c4b4cd2
PH
3902 {
3903 int is_enumeral =
d12307c1
PMR
3904 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3905 && SYMBOL_TYPE (syms[i].symbol) != NULL
3906 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3907 struct symtab *symtab = NULL;
3908
d12307c1
PMR
3909 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3910 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3911
d12307c1 3912 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6 3913 {
a0087920 3914 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3915 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3916 &type_print_raw_options);
a0087920
TT
3917 printf_filtered (_(" at %s:%d\n"),
3918 symtab_to_filename_for_display (symtab),
3919 SYMBOL_LINE (syms[i].symbol));
d72413e6 3920 }
76a01679 3921 else if (is_enumeral
d12307c1 3922 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3923 {
a0087920 3924 printf_filtered (("[%d] "), i + first_choice);
d12307c1 3925 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3926 gdb_stdout, -1, 0, &type_print_raw_options);
a0087920
TT
3927 printf_filtered (_("'(%s) (enumeral)\n"),
3928 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3929 }
d72413e6
PMR
3930 else
3931 {
a0087920 3932 printf_filtered ("[%d] ", i + first_choice);
d72413e6
PMR
3933 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3934 &type_print_raw_options);
3935
3936 if (symtab != NULL)
a0087920
TT
3937 printf_filtered (is_enumeral
3938 ? _(" in %s (enumeral)\n")
3939 : _(" at %s:?\n"),
3940 symtab_to_filename_for_display (symtab));
d72413e6 3941 else
a0087920
TT
3942 printf_filtered (is_enumeral
3943 ? _(" (enumeral)\n")
3944 : _(" at ?\n"));
d72413e6 3945 }
4c4b4cd2 3946 }
14f9c5c9 3947 }
d2e4a39e 3948
14f9c5c9 3949 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3950 "overload-choice");
14f9c5c9
AS
3951
3952 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3953 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3954
3955 return n_chosen;
3956}
3957
3958/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3959 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3960 order in CHOICES[0 .. N-1], and return N.
3961
3962 The user types choices as a sequence of numbers on one line
3963 separated by blanks, encoding them as follows:
3964
4c4b4cd2 3965 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3966 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3967 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3968
4c4b4cd2 3969 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3970
3971 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3972 prompts (for use with the -f switch). */
14f9c5c9
AS
3973
3974int
d2e4a39e 3975get_selections (int *choices, int n_choices, int max_results,
a121b7c1 3976 int is_all_choice, const char *annotation_suffix)
14f9c5c9 3977{
d2e4a39e 3978 char *args;
a121b7c1 3979 const char *prompt;
14f9c5c9
AS
3980 int n_chosen;
3981 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3982
14f9c5c9
AS
3983 prompt = getenv ("PS2");
3984 if (prompt == NULL)
0bcd0149 3985 prompt = "> ";
14f9c5c9 3986
89fbedf3 3987 args = command_line_input (prompt, annotation_suffix);
d2e4a39e 3988
14f9c5c9 3989 if (args == NULL)
323e0a4a 3990 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3991
3992 n_chosen = 0;
76a01679 3993
4c4b4cd2
PH
3994 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3995 order, as given in args. Choices are validated. */
14f9c5c9
AS
3996 while (1)
3997 {
d2e4a39e 3998 char *args2;
14f9c5c9
AS
3999 int choice, j;
4000
0fcd72ba 4001 args = skip_spaces (args);
14f9c5c9 4002 if (*args == '\0' && n_chosen == 0)
323e0a4a 4003 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4004 else if (*args == '\0')
4c4b4cd2 4005 break;
14f9c5c9
AS
4006
4007 choice = strtol (args, &args2, 10);
d2e4a39e 4008 if (args == args2 || choice < 0
4c4b4cd2 4009 || choice > n_choices + first_choice - 1)
323e0a4a 4010 error (_("Argument must be choice number"));
14f9c5c9
AS
4011 args = args2;
4012
d2e4a39e 4013 if (choice == 0)
323e0a4a 4014 error (_("cancelled"));
14f9c5c9
AS
4015
4016 if (choice < first_choice)
4c4b4cd2
PH
4017 {
4018 n_chosen = n_choices;
4019 for (j = 0; j < n_choices; j += 1)
4020 choices[j] = j;
4021 break;
4022 }
14f9c5c9
AS
4023 choice -= first_choice;
4024
d2e4a39e 4025 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4026 {
4027 }
14f9c5c9
AS
4028
4029 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4030 {
4031 int k;
5b4ee69b 4032
4c4b4cd2
PH
4033 for (k = n_chosen - 1; k > j; k -= 1)
4034 choices[k + 1] = choices[k];
4035 choices[j + 1] = choice;
4036 n_chosen += 1;
4037 }
14f9c5c9
AS
4038 }
4039
4040 if (n_chosen > max_results)
323e0a4a 4041 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4042
14f9c5c9
AS
4043 return n_chosen;
4044}
4045
4c4b4cd2
PH
4046/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4047 on the function identified by SYM and BLOCK, and taking NARGS
4048 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4049
4050static void
e9d9f57e 4051replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4052 int oplen, struct symbol *sym,
270140bd 4053 const struct block *block)
14f9c5c9
AS
4054{
4055 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4056 symbol, -oplen for operator being replaced). */
d2e4a39e 4057 struct expression *newexp = (struct expression *)
8c1a34e7 4058 xzalloc (sizeof (struct expression)
4c4b4cd2 4059 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4060 struct expression *exp = expp->get ();
14f9c5c9
AS
4061
4062 newexp->nelts = exp->nelts + 7 - oplen;
4063 newexp->language_defn = exp->language_defn;
3489610d 4064 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4065 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4066 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4067 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4068
4069 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4070 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4071
4072 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4073 newexp->elts[pc + 4].block = block;
4074 newexp->elts[pc + 5].symbol = sym;
4075
e9d9f57e 4076 expp->reset (newexp);
d2e4a39e 4077}
14f9c5c9
AS
4078
4079/* Type-class predicates */
4080
4c4b4cd2
PH
4081/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4082 or FLOAT). */
14f9c5c9
AS
4083
4084static int
d2e4a39e 4085numeric_type_p (struct type *type)
14f9c5c9
AS
4086{
4087 if (type == NULL)
4088 return 0;
d2e4a39e
AS
4089 else
4090 {
4091 switch (TYPE_CODE (type))
4c4b4cd2
PH
4092 {
4093 case TYPE_CODE_INT:
4094 case TYPE_CODE_FLT:
4095 return 1;
4096 case TYPE_CODE_RANGE:
4097 return (type == TYPE_TARGET_TYPE (type)
4098 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4099 default:
4100 return 0;
4101 }
d2e4a39e 4102 }
14f9c5c9
AS
4103}
4104
4c4b4cd2 4105/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4106
4107static int
d2e4a39e 4108integer_type_p (struct type *type)
14f9c5c9
AS
4109{
4110 if (type == NULL)
4111 return 0;
d2e4a39e
AS
4112 else
4113 {
4114 switch (TYPE_CODE (type))
4c4b4cd2
PH
4115 {
4116 case TYPE_CODE_INT:
4117 return 1;
4118 case TYPE_CODE_RANGE:
4119 return (type == TYPE_TARGET_TYPE (type)
4120 || integer_type_p (TYPE_TARGET_TYPE (type)));
4121 default:
4122 return 0;
4123 }
d2e4a39e 4124 }
14f9c5c9
AS
4125}
4126
4c4b4cd2 4127/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4128
4129static int
d2e4a39e 4130scalar_type_p (struct type *type)
14f9c5c9
AS
4131{
4132 if (type == NULL)
4133 return 0;
d2e4a39e
AS
4134 else
4135 {
4136 switch (TYPE_CODE (type))
4c4b4cd2
PH
4137 {
4138 case TYPE_CODE_INT:
4139 case TYPE_CODE_RANGE:
4140 case TYPE_CODE_ENUM:
4141 case TYPE_CODE_FLT:
4142 return 1;
4143 default:
4144 return 0;
4145 }
d2e4a39e 4146 }
14f9c5c9
AS
4147}
4148
4c4b4cd2 4149/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4150
4151static int
d2e4a39e 4152discrete_type_p (struct type *type)
14f9c5c9
AS
4153{
4154 if (type == NULL)
4155 return 0;
d2e4a39e
AS
4156 else
4157 {
4158 switch (TYPE_CODE (type))
4c4b4cd2
PH
4159 {
4160 case TYPE_CODE_INT:
4161 case TYPE_CODE_RANGE:
4162 case TYPE_CODE_ENUM:
872f0337 4163 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4164 return 1;
4165 default:
4166 return 0;
4167 }
d2e4a39e 4168 }
14f9c5c9
AS
4169}
4170
4c4b4cd2
PH
4171/* Returns non-zero if OP with operands in the vector ARGS could be
4172 a user-defined function. Errs on the side of pre-defined operators
4173 (i.e., result 0). */
14f9c5c9
AS
4174
4175static int
d2e4a39e 4176possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4177{
76a01679 4178 struct type *type0 =
df407dfe 4179 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4180 struct type *type1 =
df407dfe 4181 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4182
4c4b4cd2
PH
4183 if (type0 == NULL)
4184 return 0;
4185
14f9c5c9
AS
4186 switch (op)
4187 {
4188 default:
4189 return 0;
4190
4191 case BINOP_ADD:
4192 case BINOP_SUB:
4193 case BINOP_MUL:
4194 case BINOP_DIV:
d2e4a39e 4195 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4196
4197 case BINOP_REM:
4198 case BINOP_MOD:
4199 case BINOP_BITWISE_AND:
4200 case BINOP_BITWISE_IOR:
4201 case BINOP_BITWISE_XOR:
d2e4a39e 4202 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4203
4204 case BINOP_EQUAL:
4205 case BINOP_NOTEQUAL:
4206 case BINOP_LESS:
4207 case BINOP_GTR:
4208 case BINOP_LEQ:
4209 case BINOP_GEQ:
d2e4a39e 4210 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4211
4212 case BINOP_CONCAT:
ee90b9ab 4213 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4214
4215 case BINOP_EXP:
d2e4a39e 4216 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4217
4218 case UNOP_NEG:
4219 case UNOP_PLUS:
4220 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4221 case UNOP_ABS:
4222 return (!numeric_type_p (type0));
14f9c5c9
AS
4223
4224 }
4225}
4226\f
4c4b4cd2 4227 /* Renaming */
14f9c5c9 4228
aeb5907d
JB
4229/* NOTES:
4230
4231 1. In the following, we assume that a renaming type's name may
4232 have an ___XD suffix. It would be nice if this went away at some
4233 point.
4234 2. We handle both the (old) purely type-based representation of
4235 renamings and the (new) variable-based encoding. At some point,
4236 it is devoutly to be hoped that the former goes away
4237 (FIXME: hilfinger-2007-07-09).
4238 3. Subprogram renamings are not implemented, although the XRS
4239 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4240
4241/* If SYM encodes a renaming,
4242
4243 <renaming> renames <renamed entity>,
4244
4245 sets *LEN to the length of the renamed entity's name,
4246 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4247 the string describing the subcomponent selected from the renamed
0963b4bd 4248 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4249 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4250 are undefined). Otherwise, returns a value indicating the category
4251 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4252 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4253 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4254 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4255 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4256 may be NULL, in which case they are not assigned.
4257
4258 [Currently, however, GCC does not generate subprogram renamings.] */
4259
4260enum ada_renaming_category
4261ada_parse_renaming (struct symbol *sym,
4262 const char **renamed_entity, int *len,
4263 const char **renaming_expr)
4264{
4265 enum ada_renaming_category kind;
4266 const char *info;
4267 const char *suffix;
4268
4269 if (sym == NULL)
4270 return ADA_NOT_RENAMING;
4271 switch (SYMBOL_CLASS (sym))
14f9c5c9 4272 {
aeb5907d
JB
4273 default:
4274 return ADA_NOT_RENAMING;
aeb5907d
JB
4275 case LOC_LOCAL:
4276 case LOC_STATIC:
4277 case LOC_COMPUTED:
4278 case LOC_OPTIMIZED_OUT:
4279 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4280 if (info == NULL)
4281 return ADA_NOT_RENAMING;
4282 switch (info[5])
4283 {
4284 case '_':
4285 kind = ADA_OBJECT_RENAMING;
4286 info += 6;
4287 break;
4288 case 'E':
4289 kind = ADA_EXCEPTION_RENAMING;
4290 info += 7;
4291 break;
4292 case 'P':
4293 kind = ADA_PACKAGE_RENAMING;
4294 info += 7;
4295 break;
4296 case 'S':
4297 kind = ADA_SUBPROGRAM_RENAMING;
4298 info += 7;
4299 break;
4300 default:
4301 return ADA_NOT_RENAMING;
4302 }
14f9c5c9 4303 }
4c4b4cd2 4304
aeb5907d
JB
4305 if (renamed_entity != NULL)
4306 *renamed_entity = info;
4307 suffix = strstr (info, "___XE");
4308 if (suffix == NULL || suffix == info)
4309 return ADA_NOT_RENAMING;
4310 if (len != NULL)
4311 *len = strlen (info) - strlen (suffix);
4312 suffix += 5;
4313 if (renaming_expr != NULL)
4314 *renaming_expr = suffix;
4315 return kind;
4316}
4317
a5ee536b
JB
4318/* Compute the value of the given RENAMING_SYM, which is expected to
4319 be a symbol encoding a renaming expression. BLOCK is the block
4320 used to evaluate the renaming. */
52ce6436 4321
a5ee536b
JB
4322static struct value *
4323ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4324 const struct block *block)
a5ee536b 4325{
bbc13ae3 4326 const char *sym_name;
a5ee536b 4327
bbc13ae3 4328 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4329 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4330 return evaluate_expression (expr.get ());
a5ee536b 4331}
14f9c5c9 4332\f
d2e4a39e 4333
4c4b4cd2 4334 /* Evaluation: Function Calls */
14f9c5c9 4335
4c4b4cd2 4336/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4337 lvalues, and otherwise has the side-effect of allocating memory
4338 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4339
d2e4a39e 4340static struct value *
40bc484c 4341ensure_lval (struct value *val)
14f9c5c9 4342{
40bc484c
JB
4343 if (VALUE_LVAL (val) == not_lval
4344 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4345 {
df407dfe 4346 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4347 const CORE_ADDR addr =
4348 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4349
a84a8a0d 4350 VALUE_LVAL (val) = lval_memory;
1a088441 4351 set_value_address (val, addr);
40bc484c 4352 write_memory (addr, value_contents (val), len);
c3e5cd34 4353 }
14f9c5c9
AS
4354
4355 return val;
4356}
4357
4358/* Return the value ACTUAL, converted to be an appropriate value for a
4359 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4360 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4361 values not residing in memory, updating it as needed. */
14f9c5c9 4362
a93c0eb6 4363struct value *
40bc484c 4364ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4365{
df407dfe 4366 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4367 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4368 struct type *formal_target =
4369 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4370 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4371 struct type *actual_target =
4372 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4373 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4374
4c4b4cd2 4375 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4376 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4377 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4378 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4379 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4380 {
a84a8a0d 4381 struct value *result;
5b4ee69b 4382
14f9c5c9 4383 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4384 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4385 result = desc_data (actual);
cb923fcc 4386 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4387 {
4388 if (VALUE_LVAL (actual) != lval_memory)
4389 {
4390 struct value *val;
5b4ee69b 4391
df407dfe 4392 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4393 val = allocate_value (actual_type);
990a07ab 4394 memcpy ((char *) value_contents_raw (val),
0fd88904 4395 (char *) value_contents (actual),
4c4b4cd2 4396 TYPE_LENGTH (actual_type));
40bc484c 4397 actual = ensure_lval (val);
4c4b4cd2 4398 }
a84a8a0d 4399 result = value_addr (actual);
4c4b4cd2 4400 }
a84a8a0d
JB
4401 else
4402 return actual;
b1af9e97 4403 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4404 }
4405 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4406 return ada_value_ind (actual);
8344af1e
JB
4407 else if (ada_is_aligner_type (formal_type))
4408 {
4409 /* We need to turn this parameter into an aligner type
4410 as well. */
4411 struct value *aligner = allocate_value (formal_type);
4412 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4413
4414 value_assign_to_component (aligner, component, actual);
4415 return aligner;
4416 }
14f9c5c9
AS
4417
4418 return actual;
4419}
4420
438c98a1
JB
4421/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4422 type TYPE. This is usually an inefficient no-op except on some targets
4423 (such as AVR) where the representation of a pointer and an address
4424 differs. */
4425
4426static CORE_ADDR
4427value_pointer (struct value *value, struct type *type)
4428{
4429 struct gdbarch *gdbarch = get_type_arch (type);
4430 unsigned len = TYPE_LENGTH (type);
224c3ddb 4431 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4432 CORE_ADDR addr;
4433
4434 addr = value_address (value);
4435 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4436 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4437 return addr;
4438}
4439
14f9c5c9 4440
4c4b4cd2
PH
4441/* Push a descriptor of type TYPE for array value ARR on the stack at
4442 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4443 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4444 to-descriptor type rather than a descriptor type), a struct value *
4445 representing a pointer to this descriptor. */
14f9c5c9 4446
d2e4a39e 4447static struct value *
40bc484c 4448make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4449{
d2e4a39e
AS
4450 struct type *bounds_type = desc_bounds_type (type);
4451 struct type *desc_type = desc_base_type (type);
4452 struct value *descriptor = allocate_value (desc_type);
4453 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4454 int i;
d2e4a39e 4455
0963b4bd
MS
4456 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4457 i > 0; i -= 1)
14f9c5c9 4458 {
19f220c3
JK
4459 modify_field (value_type (bounds), value_contents_writeable (bounds),
4460 ada_array_bound (arr, i, 0),
4461 desc_bound_bitpos (bounds_type, i, 0),
4462 desc_bound_bitsize (bounds_type, i, 0));
4463 modify_field (value_type (bounds), value_contents_writeable (bounds),
4464 ada_array_bound (arr, i, 1),
4465 desc_bound_bitpos (bounds_type, i, 1),
4466 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4467 }
d2e4a39e 4468
40bc484c 4469 bounds = ensure_lval (bounds);
d2e4a39e 4470
19f220c3
JK
4471 modify_field (value_type (descriptor),
4472 value_contents_writeable (descriptor),
4473 value_pointer (ensure_lval (arr),
4474 TYPE_FIELD_TYPE (desc_type, 0)),
4475 fat_pntr_data_bitpos (desc_type),
4476 fat_pntr_data_bitsize (desc_type));
4477
4478 modify_field (value_type (descriptor),
4479 value_contents_writeable (descriptor),
4480 value_pointer (bounds,
4481 TYPE_FIELD_TYPE (desc_type, 1)),
4482 fat_pntr_bounds_bitpos (desc_type),
4483 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4484
40bc484c 4485 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4486
4487 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4488 return value_addr (descriptor);
4489 else
4490 return descriptor;
4491}
14f9c5c9 4492\f
3d9434b5
JB
4493 /* Symbol Cache Module */
4494
3d9434b5 4495/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4496 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4497 on the type of entity being printed, the cache can make it as much
4498 as an order of magnitude faster than without it.
4499
4500 The descriptive type DWARF extension has significantly reduced
4501 the need for this cache, at least when DWARF is being used. However,
4502 even in this case, some expensive name-based symbol searches are still
4503 sometimes necessary - to find an XVZ variable, mostly. */
4504
ee01b665 4505/* Initialize the contents of SYM_CACHE. */
3d9434b5 4506
ee01b665
JB
4507static void
4508ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4509{
4510 obstack_init (&sym_cache->cache_space);
4511 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4512}
3d9434b5 4513
ee01b665
JB
4514/* Free the memory used by SYM_CACHE. */
4515
4516static void
4517ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4518{
ee01b665
JB
4519 obstack_free (&sym_cache->cache_space, NULL);
4520 xfree (sym_cache);
4521}
3d9434b5 4522
ee01b665
JB
4523/* Return the symbol cache associated to the given program space PSPACE.
4524 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4525
ee01b665
JB
4526static struct ada_symbol_cache *
4527ada_get_symbol_cache (struct program_space *pspace)
4528{
4529 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4530
66c168ae 4531 if (pspace_data->sym_cache == NULL)
ee01b665 4532 {
66c168ae
JB
4533 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4534 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4535 }
4536
66c168ae 4537 return pspace_data->sym_cache;
ee01b665 4538}
3d9434b5
JB
4539
4540/* Clear all entries from the symbol cache. */
4541
4542static void
4543ada_clear_symbol_cache (void)
4544{
ee01b665
JB
4545 struct ada_symbol_cache *sym_cache
4546 = ada_get_symbol_cache (current_program_space);
4547
4548 obstack_free (&sym_cache->cache_space, NULL);
4549 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4550}
4551
fe978cb0 4552/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4553 Return it if found, or NULL otherwise. */
4554
4555static struct cache_entry **
fe978cb0 4556find_entry (const char *name, domain_enum domain)
3d9434b5 4557{
ee01b665
JB
4558 struct ada_symbol_cache *sym_cache
4559 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4560 int h = msymbol_hash (name) % HASH_SIZE;
4561 struct cache_entry **e;
4562
ee01b665 4563 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4564 {
fe978cb0 4565 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4566 return e;
4567 }
4568 return NULL;
4569}
4570
fe978cb0 4571/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4572 Return 1 if found, 0 otherwise.
4573
4574 If an entry was found and SYM is not NULL, set *SYM to the entry's
4575 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4576
96d887e8 4577static int
fe978cb0 4578lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4579 struct symbol **sym, const struct block **block)
96d887e8 4580{
fe978cb0 4581 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4582
4583 if (e == NULL)
4584 return 0;
4585 if (sym != NULL)
4586 *sym = (*e)->sym;
4587 if (block != NULL)
4588 *block = (*e)->block;
4589 return 1;
96d887e8
PH
4590}
4591
3d9434b5 4592/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4593 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4594
96d887e8 4595static void
fe978cb0 4596cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4597 const struct block *block)
96d887e8 4598{
ee01b665
JB
4599 struct ada_symbol_cache *sym_cache
4600 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4601 int h;
4602 char *copy;
4603 struct cache_entry *e;
4604
1994afbf
DE
4605 /* Symbols for builtin types don't have a block.
4606 For now don't cache such symbols. */
4607 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4608 return;
4609
3d9434b5
JB
4610 /* If the symbol is a local symbol, then do not cache it, as a search
4611 for that symbol depends on the context. To determine whether
4612 the symbol is local or not, we check the block where we found it
4613 against the global and static blocks of its associated symtab. */
4614 if (sym
08be3fe3 4615 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4616 GLOBAL_BLOCK) != block
08be3fe3 4617 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4618 STATIC_BLOCK) != block)
3d9434b5
JB
4619 return;
4620
4621 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4622 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4623 e->next = sym_cache->root[h];
4624 sym_cache->root[h] = e;
224c3ddb
SM
4625 e->name = copy
4626 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4627 strcpy (copy, name);
4628 e->sym = sym;
fe978cb0 4629 e->domain = domain;
3d9434b5 4630 e->block = block;
96d887e8 4631}
4c4b4cd2
PH
4632\f
4633 /* Symbol Lookup */
4634
b5ec771e
PA
4635/* Return the symbol name match type that should be used used when
4636 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4637
4638 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4639 for Ada lookups. */
c0431670 4640
b5ec771e
PA
4641static symbol_name_match_type
4642name_match_type_from_name (const char *lookup_name)
c0431670 4643{
b5ec771e
PA
4644 return (strstr (lookup_name, "__") == NULL
4645 ? symbol_name_match_type::WILD
4646 : symbol_name_match_type::FULL);
c0431670
JB
4647}
4648
4c4b4cd2
PH
4649/* Return the result of a standard (literal, C-like) lookup of NAME in
4650 given DOMAIN, visible from lexical block BLOCK. */
4651
4652static struct symbol *
4653standard_lookup (const char *name, const struct block *block,
4654 domain_enum domain)
4655{
acbd605d 4656 /* Initialize it just to avoid a GCC false warning. */
6640a367 4657 struct block_symbol sym = {};
4c4b4cd2 4658
d12307c1
PMR
4659 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4660 return sym.symbol;
a2cd4f14 4661 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4662 cache_symbol (name, domain, sym.symbol, sym.block);
4663 return sym.symbol;
4c4b4cd2
PH
4664}
4665
4666
4667/* Non-zero iff there is at least one non-function/non-enumeral symbol
4668 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4669 since they contend in overloading in the same way. */
4670static int
d12307c1 4671is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4672{
4673 int i;
4674
4675 for (i = 0; i < n; i += 1)
d12307c1
PMR
4676 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4677 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4678 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4679 return 1;
4680
4681 return 0;
4682}
4683
4684/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4685 struct types. Otherwise, they may not. */
14f9c5c9
AS
4686
4687static int
d2e4a39e 4688equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4689{
d2e4a39e 4690 if (type0 == type1)
14f9c5c9 4691 return 1;
d2e4a39e 4692 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4693 || TYPE_CODE (type0) != TYPE_CODE (type1))
4694 return 0;
d2e4a39e 4695 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4696 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4697 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4698 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4699 return 1;
d2e4a39e 4700
14f9c5c9
AS
4701 return 0;
4702}
4703
4704/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4705 no more defined than that of SYM1. */
14f9c5c9
AS
4706
4707static int
d2e4a39e 4708lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4709{
4710 if (sym0 == sym1)
4711 return 1;
176620f1 4712 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4713 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4714 return 0;
4715
d2e4a39e 4716 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4717 {
4718 case LOC_UNDEF:
4719 return 1;
4720 case LOC_TYPEDEF:
4721 {
4c4b4cd2
PH
4722 struct type *type0 = SYMBOL_TYPE (sym0);
4723 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4724 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4725 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4726 int len0 = strlen (name0);
5b4ee69b 4727
4c4b4cd2
PH
4728 return
4729 TYPE_CODE (type0) == TYPE_CODE (type1)
4730 && (equiv_types (type0, type1)
4731 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4732 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4733 }
4734 case LOC_CONST:
4735 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4736 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4737 default:
4738 return 0;
14f9c5c9
AS
4739 }
4740}
4741
d12307c1 4742/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4743 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4744
4745static void
76a01679
JB
4746add_defn_to_vec (struct obstack *obstackp,
4747 struct symbol *sym,
f0c5f9b2 4748 const struct block *block)
14f9c5c9
AS
4749{
4750 int i;
d12307c1 4751 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4752
529cad9c
PH
4753 /* Do not try to complete stub types, as the debugger is probably
4754 already scanning all symbols matching a certain name at the
4755 time when this function is called. Trying to replace the stub
4756 type by its associated full type will cause us to restart a scan
4757 which may lead to an infinite recursion. Instead, the client
4758 collecting the matching symbols will end up collecting several
4759 matches, with at least one of them complete. It can then filter
4760 out the stub ones if needed. */
4761
4c4b4cd2
PH
4762 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4763 {
d12307c1 4764 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4765 return;
d12307c1 4766 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4767 {
d12307c1 4768 prevDefns[i].symbol = sym;
4c4b4cd2 4769 prevDefns[i].block = block;
4c4b4cd2 4770 return;
76a01679 4771 }
4c4b4cd2
PH
4772 }
4773
4774 {
d12307c1 4775 struct block_symbol info;
4c4b4cd2 4776
d12307c1 4777 info.symbol = sym;
4c4b4cd2 4778 info.block = block;
d12307c1 4779 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4780 }
4781}
4782
d12307c1
PMR
4783/* Number of block_symbol structures currently collected in current vector in
4784 OBSTACKP. */
4c4b4cd2 4785
76a01679
JB
4786static int
4787num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4788{
d12307c1 4789 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4790}
4791
d12307c1
PMR
4792/* Vector of block_symbol structures currently collected in current vector in
4793 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4794
d12307c1 4795static struct block_symbol *
4c4b4cd2
PH
4796defns_collected (struct obstack *obstackp, int finish)
4797{
4798 if (finish)
224c3ddb 4799 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4800 else
d12307c1 4801 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4802}
4803
7c7b6655
TT
4804/* Return a bound minimal symbol matching NAME according to Ada
4805 decoding rules. Returns an invalid symbol if there is no such
4806 minimal symbol. Names prefixed with "standard__" are handled
4807 specially: "standard__" is first stripped off, and only static and
4808 global symbols are searched. */
4c4b4cd2 4809
7c7b6655 4810struct bound_minimal_symbol
96d887e8 4811ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4812{
7c7b6655 4813 struct bound_minimal_symbol result;
4c4b4cd2 4814
7c7b6655
TT
4815 memset (&result, 0, sizeof (result));
4816
b5ec771e
PA
4817 symbol_name_match_type match_type = name_match_type_from_name (name);
4818 lookup_name_info lookup_name (name, match_type);
4819
4820 symbol_name_matcher_ftype *match_name
4821 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4822
2030c079 4823 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4824 {
7932255d 4825 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
4826 {
4827 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4828 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4829 {
4830 result.minsym = msymbol;
4831 result.objfile = objfile;
4832 break;
4833 }
4834 }
4835 }
4c4b4cd2 4836
7c7b6655 4837 return result;
96d887e8 4838}
4c4b4cd2 4839
2ff0a947
TT
4840/* Return all the bound minimal symbols matching NAME according to Ada
4841 decoding rules. Returns an empty vector if there is no such
4842 minimal symbol. Names prefixed with "standard__" are handled
4843 specially: "standard__" is first stripped off, and only static and
4844 global symbols are searched. */
4845
4846static std::vector<struct bound_minimal_symbol>
4847ada_lookup_simple_minsyms (const char *name)
4848{
4849 std::vector<struct bound_minimal_symbol> result;
4850
4851 symbol_name_match_type match_type = name_match_type_from_name (name);
4852 lookup_name_info lookup_name (name, match_type);
4853
4854 symbol_name_matcher_ftype *match_name
4855 = ada_get_symbol_name_matcher (lookup_name);
4856
4857 for (objfile *objfile : current_program_space->objfiles ())
4858 {
4859 for (minimal_symbol *msymbol : objfile->msymbols ())
4860 {
4861 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4862 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4863 result.push_back ({msymbol, objfile});
4864 }
4865 }
4866
4867 return result;
4868}
4869
96d887e8
PH
4870/* For all subprograms that statically enclose the subprogram of the
4871 selected frame, add symbols matching identifier NAME in DOMAIN
4872 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4873 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4874 with a wildcard prefix. */
4c4b4cd2 4875
96d887e8
PH
4876static void
4877add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4878 const lookup_name_info &lookup_name,
4879 domain_enum domain)
96d887e8 4880{
96d887e8 4881}
14f9c5c9 4882
96d887e8
PH
4883/* True if TYPE is definitely an artificial type supplied to a symbol
4884 for which no debugging information was given in the symbol file. */
14f9c5c9 4885
96d887e8
PH
4886static int
4887is_nondebugging_type (struct type *type)
4888{
0d5cff50 4889 const char *name = ada_type_name (type);
5b4ee69b 4890
96d887e8
PH
4891 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4892}
4c4b4cd2 4893
8f17729f
JB
4894/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4895 that are deemed "identical" for practical purposes.
4896
4897 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4898 types and that their number of enumerals is identical (in other
4899 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4900
4901static int
4902ada_identical_enum_types_p (struct type *type1, struct type *type2)
4903{
4904 int i;
4905
4906 /* The heuristic we use here is fairly conservative. We consider
4907 that 2 enumerate types are identical if they have the same
4908 number of enumerals and that all enumerals have the same
4909 underlying value and name. */
4910
4911 /* All enums in the type should have an identical underlying value. */
4912 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4913 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4914 return 0;
4915
4916 /* All enumerals should also have the same name (modulo any numerical
4917 suffix). */
4918 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4919 {
0d5cff50
DE
4920 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4921 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4922 int len_1 = strlen (name_1);
4923 int len_2 = strlen (name_2);
4924
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4926 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4927 if (len_1 != len_2
4928 || strncmp (TYPE_FIELD_NAME (type1, i),
4929 TYPE_FIELD_NAME (type2, i),
4930 len_1) != 0)
4931 return 0;
4932 }
4933
4934 return 1;
4935}
4936
4937/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4938 that are deemed "identical" for practical purposes. Sometimes,
4939 enumerals are not strictly identical, but their types are so similar
4940 that they can be considered identical.
4941
4942 For instance, consider the following code:
4943
4944 type Color is (Black, Red, Green, Blue, White);
4945 type RGB_Color is new Color range Red .. Blue;
4946
4947 Type RGB_Color is a subrange of an implicit type which is a copy
4948 of type Color. If we call that implicit type RGB_ColorB ("B" is
4949 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4950 As a result, when an expression references any of the enumeral
4951 by name (Eg. "print green"), the expression is technically
4952 ambiguous and the user should be asked to disambiguate. But
4953 doing so would only hinder the user, since it wouldn't matter
4954 what choice he makes, the outcome would always be the same.
4955 So, for practical purposes, we consider them as the same. */
4956
4957static int
54d343a2 4958symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
4959{
4960 int i;
4961
4962 /* Before performing a thorough comparison check of each type,
4963 we perform a series of inexpensive checks. We expect that these
4964 checks will quickly fail in the vast majority of cases, and thus
4965 help prevent the unnecessary use of a more expensive comparison.
4966 Said comparison also expects us to make some of these checks
4967 (see ada_identical_enum_types_p). */
4968
4969 /* Quick check: All symbols should have an enum type. */
54d343a2 4970 for (i = 0; i < syms.size (); i++)
d12307c1 4971 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
4972 return 0;
4973
4974 /* Quick check: They should all have the same value. */
54d343a2 4975 for (i = 1; i < syms.size (); i++)
d12307c1 4976 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
4977 return 0;
4978
4979 /* Quick check: They should all have the same number of enumerals. */
54d343a2 4980 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4981 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4982 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4983 return 0;
4984
4985 /* All the sanity checks passed, so we might have a set of
4986 identical enumeration types. Perform a more complete
4987 comparison of the type of each symbol. */
54d343a2 4988 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
4989 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4990 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
4991 return 0;
4992
4993 return 1;
4994}
4995
54d343a2 4996/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
4997 duplicate other symbols in the list (The only case I know of where
4998 this happens is when object files containing stabs-in-ecoff are
4999 linked with files containing ordinary ecoff debugging symbols (or no
5000 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5001 Returns the number of items in the modified list. */
4c4b4cd2 5002
96d887e8 5003static int
54d343a2 5004remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5005{
5006 int i, j;
4c4b4cd2 5007
8f17729f
JB
5008 /* We should never be called with less than 2 symbols, as there
5009 cannot be any extra symbol in that case. But it's easy to
5010 handle, since we have nothing to do in that case. */
54d343a2
TT
5011 if (syms->size () < 2)
5012 return syms->size ();
8f17729f 5013
96d887e8 5014 i = 0;
54d343a2 5015 while (i < syms->size ())
96d887e8 5016 {
a35ddb44 5017 int remove_p = 0;
339c13b6
JB
5018
5019 /* If two symbols have the same name and one of them is a stub type,
5020 the get rid of the stub. */
5021
54d343a2
TT
5022 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5023 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5024 {
54d343a2 5025 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5026 {
5027 if (j != i
54d343a2
TT
5028 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5029 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5030 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5031 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5032 remove_p = 1;
339c13b6
JB
5033 }
5034 }
5035
5036 /* Two symbols with the same name, same class and same address
5037 should be identical. */
5038
54d343a2
TT
5039 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5040 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5041 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5042 {
54d343a2 5043 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5044 {
5045 if (i != j
54d343a2
TT
5046 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5047 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5048 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5049 && SYMBOL_CLASS ((*syms)[i].symbol)
5050 == SYMBOL_CLASS ((*syms)[j].symbol)
5051 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5052 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5053 remove_p = 1;
4c4b4cd2 5054 }
4c4b4cd2 5055 }
339c13b6 5056
a35ddb44 5057 if (remove_p)
54d343a2 5058 syms->erase (syms->begin () + i);
339c13b6 5059
96d887e8 5060 i += 1;
14f9c5c9 5061 }
8f17729f
JB
5062
5063 /* If all the remaining symbols are identical enumerals, then
5064 just keep the first one and discard the rest.
5065
5066 Unlike what we did previously, we do not discard any entry
5067 unless they are ALL identical. This is because the symbol
5068 comparison is not a strict comparison, but rather a practical
5069 comparison. If all symbols are considered identical, then
5070 we can just go ahead and use the first one and discard the rest.
5071 But if we cannot reduce the list to a single element, we have
5072 to ask the user to disambiguate anyways. And if we have to
5073 present a multiple-choice menu, it's less confusing if the list
5074 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5075 if (symbols_are_identical_enums (*syms))
5076 syms->resize (1);
8f17729f 5077
54d343a2 5078 return syms->size ();
14f9c5c9
AS
5079}
5080
96d887e8
PH
5081/* Given a type that corresponds to a renaming entity, use the type name
5082 to extract the scope (package name or function name, fully qualified,
5083 and following the GNAT encoding convention) where this renaming has been
49d83361 5084 defined. */
4c4b4cd2 5085
49d83361 5086static std::string
96d887e8 5087xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5088{
96d887e8 5089 /* The renaming types adhere to the following convention:
0963b4bd 5090 <scope>__<rename>___<XR extension>.
96d887e8
PH
5091 So, to extract the scope, we search for the "___XR" extension,
5092 and then backtrack until we find the first "__". */
76a01679 5093
a737d952 5094 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5095 const char *suffix = strstr (name, "___XR");
5096 const char *last;
14f9c5c9 5097
96d887e8
PH
5098 /* Now, backtrack a bit until we find the first "__". Start looking
5099 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5100
96d887e8
PH
5101 for (last = suffix - 3; last > name; last--)
5102 if (last[0] == '_' && last[1] == '_')
5103 break;
76a01679 5104
96d887e8 5105 /* Make a copy of scope and return it. */
49d83361 5106 return std::string (name, last);
4c4b4cd2
PH
5107}
5108
96d887e8 5109/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5110
96d887e8
PH
5111static int
5112is_package_name (const char *name)
4c4b4cd2 5113{
96d887e8
PH
5114 /* Here, We take advantage of the fact that no symbols are generated
5115 for packages, while symbols are generated for each function.
5116 So the condition for NAME represent a package becomes equivalent
5117 to NAME not existing in our list of symbols. There is only one
5118 small complication with library-level functions (see below). */
4c4b4cd2 5119
96d887e8
PH
5120 /* If it is a function that has not been defined at library level,
5121 then we should be able to look it up in the symbols. */
5122 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5123 return 0;
14f9c5c9 5124
96d887e8
PH
5125 /* Library-level function names start with "_ada_". See if function
5126 "_ada_" followed by NAME can be found. */
14f9c5c9 5127
96d887e8 5128 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5129 functions names cannot contain "__" in them. */
96d887e8
PH
5130 if (strstr (name, "__") != NULL)
5131 return 0;
4c4b4cd2 5132
528e1572 5133 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5134
528e1572 5135 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5136}
14f9c5c9 5137
96d887e8 5138/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5139 not visible from FUNCTION_NAME. */
14f9c5c9 5140
96d887e8 5141static int
0d5cff50 5142old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5143{
aeb5907d
JB
5144 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5145 return 0;
5146
49d83361 5147 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5148
96d887e8 5149 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5150 if (is_package_name (scope.c_str ()))
5151 return 0;
14f9c5c9 5152
96d887e8
PH
5153 /* Check that the rename is in the current function scope by checking
5154 that its name starts with SCOPE. */
76a01679 5155
96d887e8
PH
5156 /* If the function name starts with "_ada_", it means that it is
5157 a library-level function. Strip this prefix before doing the
5158 comparison, as the encoding for the renaming does not contain
5159 this prefix. */
61012eef 5160 if (startswith (function_name, "_ada_"))
96d887e8 5161 function_name += 5;
f26caa11 5162
49d83361 5163 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5164}
5165
aeb5907d
JB
5166/* Remove entries from SYMS that corresponds to a renaming entity that
5167 is not visible from the function associated with CURRENT_BLOCK or
5168 that is superfluous due to the presence of more specific renaming
5169 information. Places surviving symbols in the initial entries of
5170 SYMS and returns the number of surviving symbols.
96d887e8
PH
5171
5172 Rationale:
aeb5907d
JB
5173 First, in cases where an object renaming is implemented as a
5174 reference variable, GNAT may produce both the actual reference
5175 variable and the renaming encoding. In this case, we discard the
5176 latter.
5177
5178 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5179 entity. Unfortunately, STABS currently does not support the definition
5180 of types that are local to a given lexical block, so all renamings types
5181 are emitted at library level. As a consequence, if an application
5182 contains two renaming entities using the same name, and a user tries to
5183 print the value of one of these entities, the result of the ada symbol
5184 lookup will also contain the wrong renaming type.
f26caa11 5185
96d887e8
PH
5186 This function partially covers for this limitation by attempting to
5187 remove from the SYMS list renaming symbols that should be visible
5188 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5189 method with the current information available. The implementation
5190 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5191
5192 - When the user tries to print a rename in a function while there
5193 is another rename entity defined in a package: Normally, the
5194 rename in the function has precedence over the rename in the
5195 package, so the latter should be removed from the list. This is
5196 currently not the case.
5197
5198 - This function will incorrectly remove valid renames if
5199 the CURRENT_BLOCK corresponds to a function which symbol name
5200 has been changed by an "Export" pragma. As a consequence,
5201 the user will be unable to print such rename entities. */
4c4b4cd2 5202
14f9c5c9 5203static int
54d343a2
TT
5204remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5205 const struct block *current_block)
4c4b4cd2
PH
5206{
5207 struct symbol *current_function;
0d5cff50 5208 const char *current_function_name;
4c4b4cd2 5209 int i;
aeb5907d
JB
5210 int is_new_style_renaming;
5211
5212 /* If there is both a renaming foo___XR... encoded as a variable and
5213 a simple variable foo in the same block, discard the latter.
0963b4bd 5214 First, zero out such symbols, then compress. */
aeb5907d 5215 is_new_style_renaming = 0;
54d343a2 5216 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5217 {
54d343a2
TT
5218 struct symbol *sym = (*syms)[i].symbol;
5219 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5220 const char *name;
5221 const char *suffix;
5222
5223 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5224 continue;
5225 name = SYMBOL_LINKAGE_NAME (sym);
5226 suffix = strstr (name, "___XR");
5227
5228 if (suffix != NULL)
5229 {
5230 int name_len = suffix - name;
5231 int j;
5b4ee69b 5232
aeb5907d 5233 is_new_style_renaming = 1;
54d343a2
TT
5234 for (j = 0; j < syms->size (); j += 1)
5235 if (i != j && (*syms)[j].symbol != NULL
5236 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5237 name_len) == 0
54d343a2
TT
5238 && block == (*syms)[j].block)
5239 (*syms)[j].symbol = NULL;
aeb5907d
JB
5240 }
5241 }
5242 if (is_new_style_renaming)
5243 {
5244 int j, k;
5245
54d343a2
TT
5246 for (j = k = 0; j < syms->size (); j += 1)
5247 if ((*syms)[j].symbol != NULL)
aeb5907d 5248 {
54d343a2 5249 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5250 k += 1;
5251 }
5252 return k;
5253 }
4c4b4cd2
PH
5254
5255 /* Extract the function name associated to CURRENT_BLOCK.
5256 Abort if unable to do so. */
76a01679 5257
4c4b4cd2 5258 if (current_block == NULL)
54d343a2 5259 return syms->size ();
76a01679 5260
7f0df278 5261 current_function = block_linkage_function (current_block);
4c4b4cd2 5262 if (current_function == NULL)
54d343a2 5263 return syms->size ();
4c4b4cd2
PH
5264
5265 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5266 if (current_function_name == NULL)
54d343a2 5267 return syms->size ();
4c4b4cd2
PH
5268
5269 /* Check each of the symbols, and remove it from the list if it is
5270 a type corresponding to a renaming that is out of the scope of
5271 the current block. */
5272
5273 i = 0;
54d343a2 5274 while (i < syms->size ())
4c4b4cd2 5275 {
54d343a2 5276 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5277 == ADA_OBJECT_RENAMING
54d343a2
TT
5278 && old_renaming_is_invisible ((*syms)[i].symbol,
5279 current_function_name))
5280 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5281 else
5282 i += 1;
5283 }
5284
54d343a2 5285 return syms->size ();
4c4b4cd2
PH
5286}
5287
339c13b6
JB
5288/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5289 whose name and domain match NAME and DOMAIN respectively.
5290 If no match was found, then extend the search to "enclosing"
5291 routines (in other words, if we're inside a nested function,
5292 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5293 If WILD_MATCH_P is nonzero, perform the naming matching in
5294 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5295
5296 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5297
5298static void
b5ec771e
PA
5299ada_add_local_symbols (struct obstack *obstackp,
5300 const lookup_name_info &lookup_name,
5301 const struct block *block, domain_enum domain)
339c13b6
JB
5302{
5303 int block_depth = 0;
5304
5305 while (block != NULL)
5306 {
5307 block_depth += 1;
b5ec771e 5308 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5309
5310 /* If we found a non-function match, assume that's the one. */
5311 if (is_nonfunction (defns_collected (obstackp, 0),
5312 num_defns_collected (obstackp)))
5313 return;
5314
5315 block = BLOCK_SUPERBLOCK (block);
5316 }
5317
5318 /* If no luck so far, try to find NAME as a local symbol in some lexically
5319 enclosing subprogram. */
5320 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5321 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5322}
5323
ccefe4c4 5324/* An object of this type is used as the user_data argument when
40658b94 5325 calling the map_matching_symbols method. */
ccefe4c4 5326
40658b94 5327struct match_data
ccefe4c4 5328{
40658b94 5329 struct objfile *objfile;
ccefe4c4 5330 struct obstack *obstackp;
40658b94
PH
5331 struct symbol *arg_sym;
5332 int found_sym;
ccefe4c4
TT
5333};
5334
22cee43f 5335/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5336 to a list of symbols. DATA0 is a pointer to a struct match_data *
5337 containing the obstack that collects the symbol list, the file that SYM
5338 must come from, a flag indicating whether a non-argument symbol has
5339 been found in the current block, and the last argument symbol
5340 passed in SYM within the current block (if any). When SYM is null,
5341 marking the end of a block, the argument symbol is added if no
5342 other has been found. */
ccefe4c4 5343
40658b94 5344static int
582942f4
TT
5345aux_add_nonlocal_symbols (const struct block *block, struct symbol *sym,
5346 void *data0)
ccefe4c4 5347{
40658b94
PH
5348 struct match_data *data = (struct match_data *) data0;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return 0;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return 0;
5374}
5375
b5ec771e
PA
5376/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5379
5380static int
5381ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
b5ec771e
PA
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
22cee43f
PMR
5385{
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
b5ec771e
PA
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
22cee43f
PMR
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
22cee43f
PMR
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
b5ec771e
PA
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
22cee43f
PMR
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431}
5432
db230ce3
JB
5433/* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5b4ee69b 5435
40658b94 5436static int
db230ce3
JB
5437compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
40658b94
PH
5439{
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
db230ce3
JB
5442 char c1, c2;
5443
40658b94
PH
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
40658b94 5458 break;
db230ce3 5459
40658b94
PH
5460 string1 += 1;
5461 string2 += 1;
5462 }
db230ce3 5463
40658b94
PH
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
052874e8 5471 if (is_name_suffix (string1))
40658b94
PH
5472 return 0;
5473 else
1a1d5513 5474 return 1;
40658b94 5475 }
dbb8534f 5476 /* FALLTHROUGH */
40658b94
PH
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
db230ce3
JB
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
40658b94 5487 }
ccefe4c4
TT
5488}
5489
db230ce3
JB
5490/* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501static int
5502compare_names (const char *string1, const char *string2)
5503{
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516}
5517
b5ec771e
PA
5518/* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521static const char *
5522ada_lookup_name (const lookup_name_info &lookup_name)
5523{
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525}
5526
339c13b6 5527/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
339c13b6
JB
5531
5532static void
b5ec771e
PA
5533add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
339c13b6 5536{
40658b94 5537 struct match_data data;
339c13b6 5538
6475f2fe 5539 memset (&data, 0, sizeof data);
ccefe4c4 5540 data.obstackp = obstackp;
339c13b6 5541
b5ec771e
PA
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
2030c079 5544 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5545 {
5546 data.objfile = objfile;
5547
5548 if (is_wild_match)
b5ec771e
PA
5549 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5550 domain, global,
4186eb54 5551 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5552 symbol_name_match_type::WILD,
5553 NULL);
40658b94 5554 else
b5ec771e
PA
5555 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5556 domain, global,
4186eb54 5557 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5558 symbol_name_match_type::FULL,
5559 compare_names);
22cee43f 5560
b669c953 5561 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5562 {
5563 const struct block *global_block
5564 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5565
b5ec771e
PA
5566 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5567 domain))
22cee43f
PMR
5568 data.found_sym = 1;
5569 }
40658b94
PH
5570 }
5571
5572 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5573 {
b5ec771e
PA
5574 const char *name = ada_lookup_name (lookup_name);
5575 std::string name1 = std::string ("<_ada_") + name + '>';
5576
2030c079 5577 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5578 {
40658b94 5579 data.objfile = objfile;
b5ec771e
PA
5580 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5581 domain, global,
0963b4bd
MS
5582 aux_add_nonlocal_symbols,
5583 &data,
b5ec771e
PA
5584 symbol_name_match_type::FULL,
5585 compare_names);
40658b94
PH
5586 }
5587 }
339c13b6
JB
5588}
5589
b5ec771e
PA
5590/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5591 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5592 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5593
22cee43f
PMR
5594 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5595 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5596 is the one match returned (no other matches in that or
d9680e73 5597 enclosing blocks is returned). If there are any matches in or
22cee43f 5598 surrounding BLOCK, then these alone are returned.
4eeaa230 5599
b5ec771e
PA
5600 Names prefixed with "standard__" are handled specially:
5601 "standard__" is first stripped off (by the lookup_name
5602 constructor), and only static and global symbols are searched.
14f9c5c9 5603
22cee43f
PMR
5604 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5605 to lookup global symbols. */
5606
5607static void
5608ada_add_all_symbols (struct obstack *obstackp,
5609 const struct block *block,
b5ec771e 5610 const lookup_name_info &lookup_name,
22cee43f
PMR
5611 domain_enum domain,
5612 int full_search,
5613 int *made_global_lookup_p)
14f9c5c9
AS
5614{
5615 struct symbol *sym;
14f9c5c9 5616
22cee43f
PMR
5617 if (made_global_lookup_p)
5618 *made_global_lookup_p = 0;
339c13b6
JB
5619
5620 /* Special case: If the user specifies a symbol name inside package
5621 Standard, do a non-wild matching of the symbol name without
5622 the "standard__" prefix. This was primarily introduced in order
5623 to allow the user to specifically access the standard exceptions
5624 using, for instance, Standard.Constraint_Error when Constraint_Error
5625 is ambiguous (due to the user defining its own Constraint_Error
5626 entity inside its program). */
b5ec771e
PA
5627 if (lookup_name.ada ().standard_p ())
5628 block = NULL;
4c4b4cd2 5629
339c13b6 5630 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5631
4eeaa230
DE
5632 if (block != NULL)
5633 {
5634 if (full_search)
b5ec771e 5635 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5636 else
5637 {
5638 /* In the !full_search case we're are being called by
5639 ada_iterate_over_symbols, and we don't want to search
5640 superblocks. */
b5ec771e 5641 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5642 }
22cee43f
PMR
5643 if (num_defns_collected (obstackp) > 0 || !full_search)
5644 return;
4eeaa230 5645 }
d2e4a39e 5646
339c13b6
JB
5647 /* No non-global symbols found. Check our cache to see if we have
5648 already performed this search before. If we have, then return
5649 the same result. */
5650
b5ec771e
PA
5651 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5652 domain, &sym, &block))
4c4b4cd2
PH
5653 {
5654 if (sym != NULL)
b5ec771e 5655 add_defn_to_vec (obstackp, sym, block);
22cee43f 5656 return;
4c4b4cd2 5657 }
14f9c5c9 5658
22cee43f
PMR
5659 if (made_global_lookup_p)
5660 *made_global_lookup_p = 1;
b1eedac9 5661
339c13b6
JB
5662 /* Search symbols from all global blocks. */
5663
b5ec771e 5664 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5665
4c4b4cd2 5666 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5667 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5668
22cee43f 5669 if (num_defns_collected (obstackp) == 0)
b5ec771e 5670 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5671}
5672
b5ec771e
PA
5673/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5674 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5675 matches.
54d343a2
TT
5676 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5677 found and the blocks and symbol tables (if any) in which they were
5678 found.
22cee43f
PMR
5679
5680 When full_search is non-zero, any non-function/non-enumeral
5681 symbol match within the nest of blocks whose innermost member is BLOCK,
5682 is the one match returned (no other matches in that or
5683 enclosing blocks is returned). If there are any matches in or
5684 surrounding BLOCK, then these alone are returned.
5685
5686 Names prefixed with "standard__" are handled specially: "standard__"
5687 is first stripped off, and only static and global symbols are searched. */
5688
5689static int
b5ec771e
PA
5690ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5691 const struct block *block,
22cee43f 5692 domain_enum domain,
54d343a2 5693 std::vector<struct block_symbol> *results,
22cee43f
PMR
5694 int full_search)
5695{
22cee43f
PMR
5696 int syms_from_global_search;
5697 int ndefns;
ec6a20c2 5698 auto_obstack obstack;
22cee43f 5699
ec6a20c2 5700 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5701 domain, full_search, &syms_from_global_search);
14f9c5c9 5702
ec6a20c2
JB
5703 ndefns = num_defns_collected (&obstack);
5704
54d343a2
TT
5705 struct block_symbol *base = defns_collected (&obstack, 1);
5706 for (int i = 0; i < ndefns; ++i)
5707 results->push_back (base[i]);
4c4b4cd2 5708
54d343a2 5709 ndefns = remove_extra_symbols (results);
4c4b4cd2 5710
b1eedac9 5711 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5712 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5713
b1eedac9 5714 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5715 cache_symbol (ada_lookup_name (lookup_name), domain,
5716 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5717
54d343a2 5718 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5719
14f9c5c9
AS
5720 return ndefns;
5721}
5722
b5ec771e 5723/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5724 in global scopes, returning the number of matches, and filling *RESULTS
5725 with (SYM,BLOCK) tuples.
ec6a20c2 5726
4eeaa230
DE
5727 See ada_lookup_symbol_list_worker for further details. */
5728
5729int
b5ec771e 5730ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5731 domain_enum domain,
5732 std::vector<struct block_symbol> *results)
4eeaa230 5733{
b5ec771e
PA
5734 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5735 lookup_name_info lookup_name (name, name_match_type);
5736
5737 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5738}
5739
5740/* Implementation of the la_iterate_over_symbols method. */
5741
5742static void
14bc53a8 5743ada_iterate_over_symbols
b5ec771e
PA
5744 (const struct block *block, const lookup_name_info &name,
5745 domain_enum domain,
14bc53a8 5746 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5747{
5748 int ndefs, i;
54d343a2 5749 std::vector<struct block_symbol> results;
4eeaa230
DE
5750
5751 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5752
4eeaa230
DE
5753 for (i = 0; i < ndefs; ++i)
5754 {
7e41c8db 5755 if (!callback (&results[i]))
4eeaa230
DE
5756 break;
5757 }
5758}
5759
4e5c77fe
JB
5760/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5761 to 1, but choosing the first symbol found if there are multiple
5762 choices.
5763
5e2336be
JB
5764 The result is stored in *INFO, which must be non-NULL.
5765 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5766
5767void
5768ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5769 domain_enum domain,
d12307c1 5770 struct block_symbol *info)
14f9c5c9 5771{
b5ec771e
PA
5772 /* Since we already have an encoded name, wrap it in '<>' to force a
5773 verbatim match. Otherwise, if the name happens to not look like
5774 an encoded name (because it doesn't include a "__"),
5775 ada_lookup_name_info would re-encode/fold it again, and that
5776 would e.g., incorrectly lowercase object renaming names like
5777 "R28b" -> "r28b". */
5778 std::string verbatim = std::string ("<") + name + '>';
5779
5e2336be 5780 gdb_assert (info != NULL);
f98fc17b 5781 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5782}
aeb5907d
JB
5783
5784/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5785 scope and in global scopes, or NULL if none. NAME is folded and
5786 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5787 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5788 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5789
d12307c1 5790struct block_symbol
aeb5907d 5791ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5792 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5793{
5794 if (is_a_field_of_this != NULL)
5795 *is_a_field_of_this = 0;
5796
54d343a2 5797 std::vector<struct block_symbol> candidates;
f98fc17b 5798 int n_candidates;
f98fc17b
PA
5799
5800 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5801
5802 if (n_candidates == 0)
54d343a2 5803 return {};
f98fc17b
PA
5804
5805 block_symbol info = candidates[0];
5806 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5807 return info;
4c4b4cd2 5808}
14f9c5c9 5809
d12307c1 5810static struct block_symbol
f606139a
DE
5811ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5812 const char *name,
76a01679 5813 const struct block *block,
21b556f4 5814 const domain_enum domain)
4c4b4cd2 5815{
d12307c1 5816 struct block_symbol sym;
04dccad0
JB
5817
5818 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5819 if (sym.symbol != NULL)
04dccad0
JB
5820 return sym;
5821
5822 /* If we haven't found a match at this point, try the primitive
5823 types. In other languages, this search is performed before
5824 searching for global symbols in order to short-circuit that
5825 global-symbol search if it happens that the name corresponds
5826 to a primitive type. But we cannot do the same in Ada, because
5827 it is perfectly legitimate for a program to declare a type which
5828 has the same name as a standard type. If looking up a type in
5829 that situation, we have traditionally ignored the primitive type
5830 in favor of user-defined types. This is why, unlike most other
5831 languages, we search the primitive types this late and only after
5832 having searched the global symbols without success. */
5833
5834 if (domain == VAR_DOMAIN)
5835 {
5836 struct gdbarch *gdbarch;
5837
5838 if (block == NULL)
5839 gdbarch = target_gdbarch ();
5840 else
5841 gdbarch = block_gdbarch (block);
d12307c1
PMR
5842 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5843 if (sym.symbol != NULL)
04dccad0
JB
5844 return sym;
5845 }
5846
6640a367 5847 return {};
14f9c5c9
AS
5848}
5849
5850
4c4b4cd2
PH
5851/* True iff STR is a possible encoded suffix of a normal Ada name
5852 that is to be ignored for matching purposes. Suffixes of parallel
5853 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5854 are given by any of the regular expressions:
4c4b4cd2 5855
babe1480
JB
5856 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5857 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5858 TKB [subprogram suffix for task bodies]
babe1480 5859 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5860 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5861
5862 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5863 match is performed. This sequence is used to differentiate homonyms,
5864 is an optional part of a valid name suffix. */
4c4b4cd2 5865
14f9c5c9 5866static int
d2e4a39e 5867is_name_suffix (const char *str)
14f9c5c9
AS
5868{
5869 int k;
4c4b4cd2
PH
5870 const char *matching;
5871 const int len = strlen (str);
5872
babe1480
JB
5873 /* Skip optional leading __[0-9]+. */
5874
4c4b4cd2
PH
5875 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5876 {
babe1480
JB
5877 str += 3;
5878 while (isdigit (str[0]))
5879 str += 1;
4c4b4cd2 5880 }
babe1480
JB
5881
5882 /* [.$][0-9]+ */
4c4b4cd2 5883
babe1480 5884 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5885 {
babe1480 5886 matching = str + 1;
4c4b4cd2
PH
5887 while (isdigit (matching[0]))
5888 matching += 1;
5889 if (matching[0] == '\0')
5890 return 1;
5891 }
5892
5893 /* ___[0-9]+ */
babe1480 5894
4c4b4cd2
PH
5895 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5896 {
5897 matching = str + 3;
5898 while (isdigit (matching[0]))
5899 matching += 1;
5900 if (matching[0] == '\0')
5901 return 1;
5902 }
5903
9ac7f98e
JB
5904 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5905
5906 if (strcmp (str, "TKB") == 0)
5907 return 1;
5908
529cad9c
PH
5909#if 0
5910 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5911 with a N at the end. Unfortunately, the compiler uses the same
5912 convention for other internal types it creates. So treating
529cad9c 5913 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5914 some regressions. For instance, consider the case of an enumerated
5915 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5916 name ends with N.
5917 Having a single character like this as a suffix carrying some
0963b4bd 5918 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5919 to be something like "_N" instead. In the meantime, do not do
5920 the following check. */
5921 /* Protected Object Subprograms */
5922 if (len == 1 && str [0] == 'N')
5923 return 1;
5924#endif
5925
5926 /* _E[0-9]+[bs]$ */
5927 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5928 {
5929 matching = str + 3;
5930 while (isdigit (matching[0]))
5931 matching += 1;
5932 if ((matching[0] == 'b' || matching[0] == 's')
5933 && matching [1] == '\0')
5934 return 1;
5935 }
5936
4c4b4cd2
PH
5937 /* ??? We should not modify STR directly, as we are doing below. This
5938 is fine in this case, but may become problematic later if we find
5939 that this alternative did not work, and want to try matching
5940 another one from the begining of STR. Since we modified it, we
5941 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5942 if (str[0] == 'X')
5943 {
5944 str += 1;
d2e4a39e 5945 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5946 {
5947 if (str[0] != 'n' && str[0] != 'b')
5948 return 0;
5949 str += 1;
5950 }
14f9c5c9 5951 }
babe1480 5952
14f9c5c9
AS
5953 if (str[0] == '\000')
5954 return 1;
babe1480 5955
d2e4a39e 5956 if (str[0] == '_')
14f9c5c9
AS
5957 {
5958 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5959 return 0;
d2e4a39e 5960 if (str[2] == '_')
4c4b4cd2 5961 {
61ee279c
PH
5962 if (strcmp (str + 3, "JM") == 0)
5963 return 1;
5964 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5965 the LJM suffix in favor of the JM one. But we will
5966 still accept LJM as a valid suffix for a reasonable
5967 amount of time, just to allow ourselves to debug programs
5968 compiled using an older version of GNAT. */
4c4b4cd2
PH
5969 if (strcmp (str + 3, "LJM") == 0)
5970 return 1;
5971 if (str[3] != 'X')
5972 return 0;
1265e4aa
JB
5973 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5974 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5975 return 1;
5976 if (str[4] == 'R' && str[5] != 'T')
5977 return 1;
5978 return 0;
5979 }
5980 if (!isdigit (str[2]))
5981 return 0;
5982 for (k = 3; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
14f9c5c9
AS
5985 return 1;
5986 }
4c4b4cd2 5987 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5988 {
4c4b4cd2
PH
5989 for (k = 2; str[k] != '\0'; k += 1)
5990 if (!isdigit (str[k]) && str[k] != '_')
5991 return 0;
14f9c5c9
AS
5992 return 1;
5993 }
5994 return 0;
5995}
d2e4a39e 5996
aeb5907d
JB
5997/* Return non-zero if the string starting at NAME and ending before
5998 NAME_END contains no capital letters. */
529cad9c
PH
5999
6000static int
6001is_valid_name_for_wild_match (const char *name0)
6002{
6003 const char *decoded_name = ada_decode (name0);
6004 int i;
6005
5823c3ef
JB
6006 /* If the decoded name starts with an angle bracket, it means that
6007 NAME0 does not follow the GNAT encoding format. It should then
6008 not be allowed as a possible wild match. */
6009 if (decoded_name[0] == '<')
6010 return 0;
6011
529cad9c
PH
6012 for (i=0; decoded_name[i] != '\0'; i++)
6013 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6014 return 0;
6015
6016 return 1;
6017}
6018
73589123
PH
6019/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6020 that could start a simple name. Assumes that *NAMEP points into
6021 the string beginning at NAME0. */
4c4b4cd2 6022
14f9c5c9 6023static int
73589123 6024advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6025{
73589123 6026 const char *name = *namep;
5b4ee69b 6027
5823c3ef 6028 while (1)
14f9c5c9 6029 {
aa27d0b3 6030 int t0, t1;
73589123
PH
6031
6032 t0 = *name;
6033 if (t0 == '_')
6034 {
6035 t1 = name[1];
6036 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6037 {
6038 name += 1;
61012eef 6039 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6040 break;
6041 else
6042 name += 1;
6043 }
aa27d0b3
JB
6044 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6045 || name[2] == target0))
73589123
PH
6046 {
6047 name += 2;
6048 break;
6049 }
6050 else
6051 return 0;
6052 }
6053 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6054 name += 1;
6055 else
5823c3ef 6056 return 0;
73589123
PH
6057 }
6058
6059 *namep = name;
6060 return 1;
6061}
6062
b5ec771e
PA
6063/* Return true iff NAME encodes a name of the form prefix.PATN.
6064 Ignores any informational suffixes of NAME (i.e., for which
6065 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6066 simple name. */
73589123 6067
b5ec771e 6068static bool
73589123
PH
6069wild_match (const char *name, const char *patn)
6070{
22e048c9 6071 const char *p;
73589123
PH
6072 const char *name0 = name;
6073
6074 while (1)
6075 {
6076 const char *match = name;
6077
6078 if (*name == *patn)
6079 {
6080 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6081 if (*p != *name)
6082 break;
6083 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6084 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6085
6086 if (name[-1] == '_')
6087 name -= 1;
6088 }
6089 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6090 return false;
96d887e8 6091 }
96d887e8
PH
6092}
6093
b5ec771e
PA
6094/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6095 any trailing suffixes that encode debugging information or leading
6096 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6097 information that is ignored). */
40658b94 6098
b5ec771e 6099static bool
c4d840bd
PH
6100full_match (const char *sym_name, const char *search_name)
6101{
b5ec771e
PA
6102 size_t search_name_len = strlen (search_name);
6103
6104 if (strncmp (sym_name, search_name, search_name_len) == 0
6105 && is_name_suffix (sym_name + search_name_len))
6106 return true;
6107
6108 if (startswith (sym_name, "_ada_")
6109 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6110 && is_name_suffix (sym_name + search_name_len + 5))
6111 return true;
c4d840bd 6112
b5ec771e
PA
6113 return false;
6114}
c4d840bd 6115
b5ec771e
PA
6116/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6117 *defn_symbols, updating the list of symbols in OBSTACKP (if
6118 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6119
6120static void
6121ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6122 const struct block *block,
6123 const lookup_name_info &lookup_name,
6124 domain_enum domain, struct objfile *objfile)
96d887e8 6125{
8157b174 6126 struct block_iterator iter;
96d887e8
PH
6127 /* A matching argument symbol, if any. */
6128 struct symbol *arg_sym;
6129 /* Set true when we find a matching non-argument symbol. */
6130 int found_sym;
6131 struct symbol *sym;
6132
6133 arg_sym = NULL;
6134 found_sym = 0;
b5ec771e
PA
6135 for (sym = block_iter_match_first (block, lookup_name, &iter);
6136 sym != NULL;
6137 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6138 {
b5ec771e
PA
6139 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6140 SYMBOL_DOMAIN (sym), domain))
6141 {
6142 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6143 {
6144 if (SYMBOL_IS_ARGUMENT (sym))
6145 arg_sym = sym;
6146 else
6147 {
6148 found_sym = 1;
6149 add_defn_to_vec (obstackp,
6150 fixup_symbol_section (sym, objfile),
6151 block);
6152 }
6153 }
6154 }
96d887e8
PH
6155 }
6156
22cee43f
PMR
6157 /* Handle renamings. */
6158
b5ec771e 6159 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6160 found_sym = 1;
6161
96d887e8
PH
6162 if (!found_sym && arg_sym != NULL)
6163 {
76a01679
JB
6164 add_defn_to_vec (obstackp,
6165 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6166 block);
96d887e8
PH
6167 }
6168
b5ec771e 6169 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6170 {
6171 arg_sym = NULL;
6172 found_sym = 0;
b5ec771e
PA
6173 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6174 const char *name = ada_lookup_name.c_str ();
6175 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6176
6177 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6178 {
4186eb54
KS
6179 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6180 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6181 {
6182 int cmp;
6183
6184 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6185 if (cmp == 0)
6186 {
61012eef 6187 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6188 if (cmp == 0)
6189 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6190 name_len);
6191 }
6192
6193 if (cmp == 0
6194 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6195 {
2a2d4dc3
AS
6196 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6197 {
6198 if (SYMBOL_IS_ARGUMENT (sym))
6199 arg_sym = sym;
6200 else
6201 {
6202 found_sym = 1;
6203 add_defn_to_vec (obstackp,
6204 fixup_symbol_section (sym, objfile),
6205 block);
6206 }
6207 }
76a01679
JB
6208 }
6209 }
76a01679 6210 }
96d887e8
PH
6211
6212 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6213 They aren't parameters, right? */
6214 if (!found_sym && arg_sym != NULL)
6215 {
6216 add_defn_to_vec (obstackp,
76a01679 6217 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6218 block);
96d887e8
PH
6219 }
6220 }
6221}
6222\f
41d27058
JB
6223
6224 /* Symbol Completion */
6225
b5ec771e 6226/* See symtab.h. */
41d27058 6227
b5ec771e
PA
6228bool
6229ada_lookup_name_info::matches
6230 (const char *sym_name,
6231 symbol_name_match_type match_type,
a207cff2 6232 completion_match_result *comp_match_res) const
41d27058 6233{
b5ec771e
PA
6234 bool match = false;
6235 const char *text = m_encoded_name.c_str ();
6236 size_t text_len = m_encoded_name.size ();
41d27058
JB
6237
6238 /* First, test against the fully qualified name of the symbol. */
6239
6240 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6241 match = true;
41d27058 6242
b5ec771e 6243 if (match && !m_encoded_p)
41d27058
JB
6244 {
6245 /* One needed check before declaring a positive match is to verify
6246 that iff we are doing a verbatim match, the decoded version
6247 of the symbol name starts with '<'. Otherwise, this symbol name
6248 is not a suitable completion. */
6249 const char *sym_name_copy = sym_name;
b5ec771e 6250 bool has_angle_bracket;
41d27058
JB
6251
6252 sym_name = ada_decode (sym_name);
6253 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6254 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6255 sym_name = sym_name_copy;
6256 }
6257
b5ec771e 6258 if (match && !m_verbatim_p)
41d27058
JB
6259 {
6260 /* When doing non-verbatim match, another check that needs to
6261 be done is to verify that the potentially matching symbol name
6262 does not include capital letters, because the ada-mode would
6263 not be able to understand these symbol names without the
6264 angle bracket notation. */
6265 const char *tmp;
6266
6267 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6268 if (*tmp != '\0')
b5ec771e 6269 match = false;
41d27058
JB
6270 }
6271
6272 /* Second: Try wild matching... */
6273
b5ec771e 6274 if (!match && m_wild_match_p)
41d27058
JB
6275 {
6276 /* Since we are doing wild matching, this means that TEXT
6277 may represent an unqualified symbol name. We therefore must
6278 also compare TEXT against the unqualified name of the symbol. */
6279 sym_name = ada_unqualified_name (ada_decode (sym_name));
6280
6281 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6282 match = true;
41d27058
JB
6283 }
6284
b5ec771e 6285 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6286
6287 if (!match)
b5ec771e 6288 return false;
41d27058 6289
a207cff2 6290 if (comp_match_res != NULL)
b5ec771e 6291 {
a207cff2 6292 std::string &match_str = comp_match_res->match.storage ();
41d27058 6293
b5ec771e 6294 if (!m_encoded_p)
a207cff2 6295 match_str = ada_decode (sym_name);
b5ec771e
PA
6296 else
6297 {
6298 if (m_verbatim_p)
6299 match_str = add_angle_brackets (sym_name);
6300 else
6301 match_str = sym_name;
41d27058 6302
b5ec771e 6303 }
a207cff2
PA
6304
6305 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6306 }
6307
b5ec771e 6308 return true;
41d27058
JB
6309}
6310
b5ec771e 6311/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6312 WORD is the entire command on which completion is made. */
41d27058 6313
eb3ff9a5
PA
6314static void
6315ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6316 complete_symbol_mode mode,
b5ec771e
PA
6317 symbol_name_match_type name_match_type,
6318 const char *text, const char *word,
eb3ff9a5 6319 enum type_code code)
41d27058 6320{
41d27058 6321 struct symbol *sym;
3977b71f 6322 const struct block *b, *surrounding_static_block = 0;
8157b174 6323 struct block_iterator iter;
41d27058 6324
2f68a895
TT
6325 gdb_assert (code == TYPE_CODE_UNDEF);
6326
1b026119 6327 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6328
6329 /* First, look at the partial symtab symbols. */
14bc53a8 6330 expand_symtabs_matching (NULL,
b5ec771e
PA
6331 lookup_name,
6332 NULL,
14bc53a8
PA
6333 NULL,
6334 ALL_DOMAIN);
41d27058
JB
6335
6336 /* At this point scan through the misc symbol vectors and add each
6337 symbol you find to the list. Eventually we want to ignore
6338 anything that isn't a text symbol (everything else will be
6339 handled by the psymtab code above). */
6340
2030c079 6341 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6342 {
7932255d 6343 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6344 {
6345 QUIT;
6346
6347 if (completion_skip_symbol (mode, msymbol))
6348 continue;
6349
6350 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6351
6352 /* Ada minimal symbols won't have their language set to Ada. If
6353 we let completion_list_add_name compare using the
6354 default/C-like matcher, then when completing e.g., symbols in a
6355 package named "pck", we'd match internal Ada symbols like
6356 "pckS", which are invalid in an Ada expression, unless you wrap
6357 them in '<' '>' to request a verbatim match.
6358
6359 Unfortunately, some Ada encoded names successfully demangle as
6360 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6361 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6362 with the wrong language set. Paper over that issue here. */
6363 if (symbol_language == language_auto
6364 || symbol_language == language_cplus)
6365 symbol_language = language_ada;
6366
6367 completion_list_add_name (tracker,
6368 symbol_language,
6369 MSYMBOL_LINKAGE_NAME (msymbol),
6370 lookup_name, text, word);
6371 }
6372 }
41d27058
JB
6373
6374 /* Search upwards from currently selected frame (so that we can
6375 complete on local vars. */
6376
6377 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6378 {
6379 if (!BLOCK_SUPERBLOCK (b))
6380 surrounding_static_block = b; /* For elmin of dups */
6381
6382 ALL_BLOCK_SYMBOLS (b, iter, sym)
6383 {
f9d67a22
PA
6384 if (completion_skip_symbol (mode, sym))
6385 continue;
6386
b5ec771e
PA
6387 completion_list_add_name (tracker,
6388 SYMBOL_LANGUAGE (sym),
6389 SYMBOL_LINKAGE_NAME (sym),
1b026119 6390 lookup_name, text, word);
41d27058
JB
6391 }
6392 }
6393
6394 /* Go through the symtabs and check the externs and statics for
43f3e411 6395 symbols which match. */
41d27058 6396
2030c079 6397 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6398 {
b669c953 6399 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6400 {
6401 QUIT;
6402 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6403 ALL_BLOCK_SYMBOLS (b, iter, sym)
6404 {
6405 if (completion_skip_symbol (mode, sym))
6406 continue;
f9d67a22 6407
d8aeb77f
TT
6408 completion_list_add_name (tracker,
6409 SYMBOL_LANGUAGE (sym),
6410 SYMBOL_LINKAGE_NAME (sym),
6411 lookup_name, text, word);
6412 }
6413 }
41d27058 6414 }
41d27058 6415
2030c079 6416 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6417 {
b669c953 6418 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6419 {
6420 QUIT;
6421 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6422 /* Don't do this block twice. */
6423 if (b == surrounding_static_block)
6424 continue;
6425 ALL_BLOCK_SYMBOLS (b, iter, sym)
6426 {
6427 if (completion_skip_symbol (mode, sym))
6428 continue;
f9d67a22 6429
d8aeb77f
TT
6430 completion_list_add_name (tracker,
6431 SYMBOL_LANGUAGE (sym),
6432 SYMBOL_LINKAGE_NAME (sym),
6433 lookup_name, text, word);
6434 }
6435 }
41d27058 6436 }
41d27058
JB
6437}
6438
963a6417 6439 /* Field Access */
96d887e8 6440
73fb9985
JB
6441/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6442 for tagged types. */
6443
6444static int
6445ada_is_dispatch_table_ptr_type (struct type *type)
6446{
0d5cff50 6447 const char *name;
73fb9985
JB
6448
6449 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6450 return 0;
6451
6452 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6453 if (name == NULL)
6454 return 0;
6455
6456 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6457}
6458
ac4a2da4
JG
6459/* Return non-zero if TYPE is an interface tag. */
6460
6461static int
6462ada_is_interface_tag (struct type *type)
6463{
6464 const char *name = TYPE_NAME (type);
6465
6466 if (name == NULL)
6467 return 0;
6468
6469 return (strcmp (name, "ada__tags__interface_tag") == 0);
6470}
6471
963a6417
PH
6472/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6473 to be invisible to users. */
96d887e8 6474
963a6417
PH
6475int
6476ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6477{
963a6417
PH
6478 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6479 return 1;
ffde82bf 6480
73fb9985
JB
6481 /* Check the name of that field. */
6482 {
6483 const char *name = TYPE_FIELD_NAME (type, field_num);
6484
6485 /* Anonymous field names should not be printed.
6486 brobecker/2007-02-20: I don't think this can actually happen
6487 but we don't want to print the value of annonymous fields anyway. */
6488 if (name == NULL)
6489 return 1;
6490
ffde82bf
JB
6491 /* Normally, fields whose name start with an underscore ("_")
6492 are fields that have been internally generated by the compiler,
6493 and thus should not be printed. The "_parent" field is special,
6494 however: This is a field internally generated by the compiler
6495 for tagged types, and it contains the components inherited from
6496 the parent type. This field should not be printed as is, but
6497 should not be ignored either. */
61012eef 6498 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6499 return 1;
6500 }
6501
ac4a2da4
JG
6502 /* If this is the dispatch table of a tagged type or an interface tag,
6503 then ignore. */
73fb9985 6504 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6505 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6506 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6507 return 1;
6508
6509 /* Not a special field, so it should not be ignored. */
6510 return 0;
963a6417 6511}
96d887e8 6512
963a6417 6513/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6514 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6515
963a6417
PH
6516int
6517ada_is_tagged_type (struct type *type, int refok)
6518{
988f6b3d 6519 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6520}
96d887e8 6521
963a6417 6522/* True iff TYPE represents the type of X'Tag */
96d887e8 6523
963a6417
PH
6524int
6525ada_is_tag_type (struct type *type)
6526{
460efde1
JB
6527 type = ada_check_typedef (type);
6528
963a6417
PH
6529 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6530 return 0;
6531 else
96d887e8 6532 {
963a6417 6533 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6534
963a6417
PH
6535 return (name != NULL
6536 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6537 }
96d887e8
PH
6538}
6539
963a6417 6540/* The type of the tag on VAL. */
76a01679 6541
963a6417
PH
6542struct type *
6543ada_tag_type (struct value *val)
96d887e8 6544{
988f6b3d 6545 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6546}
96d887e8 6547
b50d69b5
JG
6548/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6549 retired at Ada 05). */
6550
6551static int
6552is_ada95_tag (struct value *tag)
6553{
6554 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6555}
6556
963a6417 6557/* The value of the tag on VAL. */
96d887e8 6558
963a6417
PH
6559struct value *
6560ada_value_tag (struct value *val)
6561{
03ee6b2e 6562 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6563}
6564
963a6417
PH
6565/* The value of the tag on the object of type TYPE whose contents are
6566 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6567 ADDRESS. */
96d887e8 6568
963a6417 6569static struct value *
10a2c479 6570value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6571 const gdb_byte *valaddr,
963a6417 6572 CORE_ADDR address)
96d887e8 6573{
b5385fc0 6574 int tag_byte_offset;
963a6417 6575 struct type *tag_type;
5b4ee69b 6576
963a6417 6577 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6578 NULL, NULL, NULL))
96d887e8 6579 {
fc1a4b47 6580 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6581 ? NULL
6582 : valaddr + tag_byte_offset);
963a6417 6583 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6584
963a6417 6585 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6586 }
963a6417
PH
6587 return NULL;
6588}
96d887e8 6589
963a6417
PH
6590static struct type *
6591type_from_tag (struct value *tag)
6592{
6593 const char *type_name = ada_tag_name (tag);
5b4ee69b 6594
963a6417
PH
6595 if (type_name != NULL)
6596 return ada_find_any_type (ada_encode (type_name));
6597 return NULL;
6598}
96d887e8 6599
b50d69b5
JG
6600/* Given a value OBJ of a tagged type, return a value of this
6601 type at the base address of the object. The base address, as
6602 defined in Ada.Tags, it is the address of the primary tag of
6603 the object, and therefore where the field values of its full
6604 view can be fetched. */
6605
6606struct value *
6607ada_tag_value_at_base_address (struct value *obj)
6608{
b50d69b5
JG
6609 struct value *val;
6610 LONGEST offset_to_top = 0;
6611 struct type *ptr_type, *obj_type;
6612 struct value *tag;
6613 CORE_ADDR base_address;
6614
6615 obj_type = value_type (obj);
6616
6617 /* It is the responsability of the caller to deref pointers. */
6618
6619 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6620 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6621 return obj;
6622
6623 tag = ada_value_tag (obj);
6624 if (!tag)
6625 return obj;
6626
6627 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6628
6629 if (is_ada95_tag (tag))
6630 return obj;
6631
08f49010
XR
6632 ptr_type = language_lookup_primitive_type
6633 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6634 ptr_type = lookup_pointer_type (ptr_type);
6635 val = value_cast (ptr_type, tag);
6636 if (!val)
6637 return obj;
6638
6639 /* It is perfectly possible that an exception be raised while
6640 trying to determine the base address, just like for the tag;
6641 see ada_tag_name for more details. We do not print the error
6642 message for the same reason. */
6643
a70b8144 6644 try
b50d69b5
JG
6645 {
6646 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6647 }
6648
230d2906 6649 catch (const gdb_exception_error &e)
492d29ea
PA
6650 {
6651 return obj;
6652 }
b50d69b5
JG
6653
6654 /* If offset is null, nothing to do. */
6655
6656 if (offset_to_top == 0)
6657 return obj;
6658
6659 /* -1 is a special case in Ada.Tags; however, what should be done
6660 is not quite clear from the documentation. So do nothing for
6661 now. */
6662
6663 if (offset_to_top == -1)
6664 return obj;
6665
08f49010
XR
6666 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6667 from the base address. This was however incompatible with
6668 C++ dispatch table: C++ uses a *negative* value to *add*
6669 to the base address. Ada's convention has therefore been
6670 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6671 use the same convention. Here, we support both cases by
6672 checking the sign of OFFSET_TO_TOP. */
6673
6674 if (offset_to_top > 0)
6675 offset_to_top = -offset_to_top;
6676
6677 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6678 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6679
6680 /* Make sure that we have a proper tag at the new address.
6681 Otherwise, offset_to_top is bogus (which can happen when
6682 the object is not initialized yet). */
6683
6684 if (!tag)
6685 return obj;
6686
6687 obj_type = type_from_tag (tag);
6688
6689 if (!obj_type)
6690 return obj;
6691
6692 return value_from_contents_and_address (obj_type, NULL, base_address);
6693}
6694
1b611343
JB
6695/* Return the "ada__tags__type_specific_data" type. */
6696
6697static struct type *
6698ada_get_tsd_type (struct inferior *inf)
963a6417 6699{
1b611343 6700 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6701
1b611343
JB
6702 if (data->tsd_type == 0)
6703 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6704 return data->tsd_type;
6705}
529cad9c 6706
1b611343
JB
6707/* Return the TSD (type-specific data) associated to the given TAG.
6708 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6709
1b611343 6710 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6711
1b611343
JB
6712static struct value *
6713ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6714{
4c4b4cd2 6715 struct value *val;
1b611343 6716 struct type *type;
5b4ee69b 6717
1b611343
JB
6718 /* First option: The TSD is simply stored as a field of our TAG.
6719 Only older versions of GNAT would use this format, but we have
6720 to test it first, because there are no visible markers for
6721 the current approach except the absence of that field. */
529cad9c 6722
1b611343
JB
6723 val = ada_value_struct_elt (tag, "tsd", 1);
6724 if (val)
6725 return val;
e802dbe0 6726
1b611343
JB
6727 /* Try the second representation for the dispatch table (in which
6728 there is no explicit 'tsd' field in the referent of the tag pointer,
6729 and instead the tsd pointer is stored just before the dispatch
6730 table. */
e802dbe0 6731
1b611343
JB
6732 type = ada_get_tsd_type (current_inferior());
6733 if (type == NULL)
6734 return NULL;
6735 type = lookup_pointer_type (lookup_pointer_type (type));
6736 val = value_cast (type, tag);
6737 if (val == NULL)
6738 return NULL;
6739 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6740}
6741
1b611343
JB
6742/* Given the TSD of a tag (type-specific data), return a string
6743 containing the name of the associated type.
6744
6745 The returned value is good until the next call. May return NULL
6746 if we are unable to determine the tag name. */
6747
6748static char *
6749ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6750{
529cad9c
PH
6751 static char name[1024];
6752 char *p;
1b611343 6753 struct value *val;
529cad9c 6754
1b611343 6755 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6756 if (val == NULL)
1b611343 6757 return NULL;
4c4b4cd2
PH
6758 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6759 for (p = name; *p != '\0'; p += 1)
6760 if (isalpha (*p))
6761 *p = tolower (*p);
1b611343 6762 return name;
4c4b4cd2
PH
6763}
6764
6765/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6766 a C string.
6767
6768 Return NULL if the TAG is not an Ada tag, or if we were unable to
6769 determine the name of that tag. The result is good until the next
6770 call. */
4c4b4cd2
PH
6771
6772const char *
6773ada_tag_name (struct value *tag)
6774{
1b611343 6775 char *name = NULL;
5b4ee69b 6776
df407dfe 6777 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6778 return NULL;
1b611343
JB
6779
6780 /* It is perfectly possible that an exception be raised while trying
6781 to determine the TAG's name, even under normal circumstances:
6782 The associated variable may be uninitialized or corrupted, for
6783 instance. We do not let any exception propagate past this point.
6784 instead we return NULL.
6785
6786 We also do not print the error message either (which often is very
6787 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6788 the caller print a more meaningful message if necessary. */
a70b8144 6789 try
1b611343
JB
6790 {
6791 struct value *tsd = ada_get_tsd_from_tag (tag);
6792
6793 if (tsd != NULL)
6794 name = ada_tag_name_from_tsd (tsd);
6795 }
230d2906 6796 catch (const gdb_exception_error &e)
492d29ea
PA
6797 {
6798 }
1b611343
JB
6799
6800 return name;
4c4b4cd2
PH
6801}
6802
6803/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6804
d2e4a39e 6805struct type *
ebf56fd3 6806ada_parent_type (struct type *type)
14f9c5c9
AS
6807{
6808 int i;
6809
61ee279c 6810 type = ada_check_typedef (type);
14f9c5c9
AS
6811
6812 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6813 return NULL;
6814
6815 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6816 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6817 {
6818 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6819
6820 /* If the _parent field is a pointer, then dereference it. */
6821 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6822 parent_type = TYPE_TARGET_TYPE (parent_type);
6823 /* If there is a parallel XVS type, get the actual base type. */
6824 parent_type = ada_get_base_type (parent_type);
6825
6826 return ada_check_typedef (parent_type);
6827 }
14f9c5c9
AS
6828
6829 return NULL;
6830}
6831
4c4b4cd2
PH
6832/* True iff field number FIELD_NUM of structure type TYPE contains the
6833 parent-type (inherited) fields of a derived type. Assumes TYPE is
6834 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6835
6836int
ebf56fd3 6837ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6838{
61ee279c 6839 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6840
4c4b4cd2 6841 return (name != NULL
61012eef
GB
6842 && (startswith (name, "PARENT")
6843 || startswith (name, "_parent")));
14f9c5c9
AS
6844}
6845
4c4b4cd2 6846/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6847 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6848 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6849 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6850 structures. */
14f9c5c9
AS
6851
6852int
ebf56fd3 6853ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6854{
d2e4a39e 6855 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6856
dddc0e16
JB
6857 if (name != NULL && strcmp (name, "RETVAL") == 0)
6858 {
6859 /* This happens in functions with "out" or "in out" parameters
6860 which are passed by copy. For such functions, GNAT describes
6861 the function's return type as being a struct where the return
6862 value is in a field called RETVAL, and where the other "out"
6863 or "in out" parameters are fields of that struct. This is not
6864 a wrapper. */
6865 return 0;
6866 }
6867
d2e4a39e 6868 return (name != NULL
61012eef 6869 && (startswith (name, "PARENT")
4c4b4cd2 6870 || strcmp (name, "REP") == 0
61012eef 6871 || startswith (name, "_parent")
4c4b4cd2 6872 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6873}
6874
4c4b4cd2
PH
6875/* True iff field number FIELD_NUM of structure or union type TYPE
6876 is a variant wrapper. Assumes TYPE is a structure type with at least
6877 FIELD_NUM+1 fields. */
14f9c5c9
AS
6878
6879int
ebf56fd3 6880ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6881{
8ecb59f8
TT
6882 /* Only Ada types are eligible. */
6883 if (!ADA_TYPE_P (type))
6884 return 0;
6885
d2e4a39e 6886 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6887
14f9c5c9 6888 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6889 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6890 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6891 == TYPE_CODE_UNION)));
14f9c5c9
AS
6892}
6893
6894/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6895 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6896 returns the type of the controlling discriminant for the variant.
6897 May return NULL if the type could not be found. */
14f9c5c9 6898
d2e4a39e 6899struct type *
ebf56fd3 6900ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6901{
a121b7c1 6902 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6903
988f6b3d 6904 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6905}
6906
4c4b4cd2 6907/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6908 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6909 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6910
6911int
ebf56fd3 6912ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6913{
d2e4a39e 6914 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6915
14f9c5c9
AS
6916 return (name != NULL && name[0] == 'O');
6917}
6918
6919/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6920 returns the name of the discriminant controlling the variant.
6921 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6922
a121b7c1 6923const char *
ebf56fd3 6924ada_variant_discrim_name (struct type *type0)
14f9c5c9 6925{
d2e4a39e 6926 static char *result = NULL;
14f9c5c9 6927 static size_t result_len = 0;
d2e4a39e
AS
6928 struct type *type;
6929 const char *name;
6930 const char *discrim_end;
6931 const char *discrim_start;
14f9c5c9
AS
6932
6933 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6934 type = TYPE_TARGET_TYPE (type0);
6935 else
6936 type = type0;
6937
6938 name = ada_type_name (type);
6939
6940 if (name == NULL || name[0] == '\000')
6941 return "";
6942
6943 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6944 discrim_end -= 1)
6945 {
61012eef 6946 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 6947 break;
14f9c5c9
AS
6948 }
6949 if (discrim_end == name)
6950 return "";
6951
d2e4a39e 6952 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6953 discrim_start -= 1)
6954 {
d2e4a39e 6955 if (discrim_start == name + 1)
4c4b4cd2 6956 return "";
76a01679 6957 if ((discrim_start > name + 3
61012eef 6958 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
6959 || discrim_start[-1] == '.')
6960 break;
14f9c5c9
AS
6961 }
6962
6963 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6964 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6965 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6966 return result;
6967}
6968
4c4b4cd2
PH
6969/* Scan STR for a subtype-encoded number, beginning at position K.
6970 Put the position of the character just past the number scanned in
6971 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6972 Return 1 if there was a valid number at the given position, and 0
6973 otherwise. A "subtype-encoded" number consists of the absolute value
6974 in decimal, followed by the letter 'm' to indicate a negative number.
6975 Assumes 0m does not occur. */
14f9c5c9
AS
6976
6977int
d2e4a39e 6978ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6979{
6980 ULONGEST RU;
6981
d2e4a39e 6982 if (!isdigit (str[k]))
14f9c5c9
AS
6983 return 0;
6984
4c4b4cd2 6985 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6986 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6987 LONGEST. */
14f9c5c9
AS
6988 RU = 0;
6989 while (isdigit (str[k]))
6990 {
d2e4a39e 6991 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6992 k += 1;
6993 }
6994
d2e4a39e 6995 if (str[k] == 'm')
14f9c5c9
AS
6996 {
6997 if (R != NULL)
4c4b4cd2 6998 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6999 k += 1;
7000 }
7001 else if (R != NULL)
7002 *R = (LONGEST) RU;
7003
4c4b4cd2 7004 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7005 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7006 number representable as a LONGEST (although either would probably work
7007 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7008 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7009
7010 if (new_k != NULL)
7011 *new_k = k;
7012 return 1;
7013}
7014
4c4b4cd2
PH
7015/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7016 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7017 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7018
d2e4a39e 7019int
ebf56fd3 7020ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7021{
d2e4a39e 7022 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7023 int p;
7024
7025 p = 0;
7026 while (1)
7027 {
d2e4a39e 7028 switch (name[p])
4c4b4cd2
PH
7029 {
7030 case '\0':
7031 return 0;
7032 case 'S':
7033 {
7034 LONGEST W;
5b4ee69b 7035
4c4b4cd2
PH
7036 if (!ada_scan_number (name, p + 1, &W, &p))
7037 return 0;
7038 if (val == W)
7039 return 1;
7040 break;
7041 }
7042 case 'R':
7043 {
7044 LONGEST L, U;
5b4ee69b 7045
4c4b4cd2
PH
7046 if (!ada_scan_number (name, p + 1, &L, &p)
7047 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7048 return 0;
7049 if (val >= L && val <= U)
7050 return 1;
7051 break;
7052 }
7053 case 'O':
7054 return 1;
7055 default:
7056 return 0;
7057 }
7058 }
7059}
7060
0963b4bd 7061/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7062
7063/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7064 ARG_TYPE, extract and return the value of one of its (non-static)
7065 fields. FIELDNO says which field. Differs from value_primitive_field
7066 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7067
4c4b4cd2 7068static struct value *
d2e4a39e 7069ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7070 struct type *arg_type)
14f9c5c9 7071{
14f9c5c9
AS
7072 struct type *type;
7073
61ee279c 7074 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7075 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7076
4504bbde
TT
7077 /* Handle packed fields. It might be that the field is not packed
7078 relative to its containing structure, but the structure itself is
7079 packed; in this case we must take the bit-field path. */
7080 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7081 {
7082 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7083 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7084
0fd88904 7085 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7086 offset + bit_pos / 8,
7087 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7088 }
7089 else
7090 return value_primitive_field (arg1, offset, fieldno, arg_type);
7091}
7092
52ce6436
PH
7093/* Find field with name NAME in object of type TYPE. If found,
7094 set the following for each argument that is non-null:
7095 - *FIELD_TYPE_P to the field's type;
7096 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7097 an object of that type;
7098 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7099 - *BIT_SIZE_P to its size in bits if the field is packed, and
7100 0 otherwise;
7101 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7102 fields up to but not including the desired field, or by the total
7103 number of fields if not found. A NULL value of NAME never
7104 matches; the function just counts visible fields in this case.
7105
828d5846
XR
7106 Notice that we need to handle when a tagged record hierarchy
7107 has some components with the same name, like in this scenario:
7108
7109 type Top_T is tagged record
7110 N : Integer := 1;
7111 U : Integer := 974;
7112 A : Integer := 48;
7113 end record;
7114
7115 type Middle_T is new Top.Top_T with record
7116 N : Character := 'a';
7117 C : Integer := 3;
7118 end record;
7119
7120 type Bottom_T is new Middle.Middle_T with record
7121 N : Float := 4.0;
7122 C : Character := '5';
7123 X : Integer := 6;
7124 A : Character := 'J';
7125 end record;
7126
7127 Let's say we now have a variable declared and initialized as follow:
7128
7129 TC : Top_A := new Bottom_T;
7130
7131 And then we use this variable to call this function
7132
7133 procedure Assign (Obj: in out Top_T; TV : Integer);
7134
7135 as follow:
7136
7137 Assign (Top_T (B), 12);
7138
7139 Now, we're in the debugger, and we're inside that procedure
7140 then and we want to print the value of obj.c:
7141
7142 Usually, the tagged record or one of the parent type owns the
7143 component to print and there's no issue but in this particular
7144 case, what does it mean to ask for Obj.C? Since the actual
7145 type for object is type Bottom_T, it could mean two things: type
7146 component C from the Middle_T view, but also component C from
7147 Bottom_T. So in that "undefined" case, when the component is
7148 not found in the non-resolved type (which includes all the
7149 components of the parent type), then resolve it and see if we
7150 get better luck once expanded.
7151
7152 In the case of homonyms in the derived tagged type, we don't
7153 guaranty anything, and pick the one that's easiest for us
7154 to program.
7155
0963b4bd 7156 Returns 1 if found, 0 otherwise. */
52ce6436 7157
4c4b4cd2 7158static int
0d5cff50 7159find_struct_field (const char *name, struct type *type, int offset,
76a01679 7160 struct type **field_type_p,
52ce6436
PH
7161 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7162 int *index_p)
4c4b4cd2
PH
7163{
7164 int i;
828d5846 7165 int parent_offset = -1;
4c4b4cd2 7166
61ee279c 7167 type = ada_check_typedef (type);
76a01679 7168
52ce6436
PH
7169 if (field_type_p != NULL)
7170 *field_type_p = NULL;
7171 if (byte_offset_p != NULL)
d5d6fca5 7172 *byte_offset_p = 0;
52ce6436
PH
7173 if (bit_offset_p != NULL)
7174 *bit_offset_p = 0;
7175 if (bit_size_p != NULL)
7176 *bit_size_p = 0;
7177
7178 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7179 {
7180 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7181 int fld_offset = offset + bit_pos / 8;
0d5cff50 7182 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7183
4c4b4cd2
PH
7184 if (t_field_name == NULL)
7185 continue;
7186
828d5846
XR
7187 else if (ada_is_parent_field (type, i))
7188 {
7189 /* This is a field pointing us to the parent type of a tagged
7190 type. As hinted in this function's documentation, we give
7191 preference to fields in the current record first, so what
7192 we do here is just record the index of this field before
7193 we skip it. If it turns out we couldn't find our field
7194 in the current record, then we'll get back to it and search
7195 inside it whether the field might exist in the parent. */
7196
7197 parent_offset = i;
7198 continue;
7199 }
7200
52ce6436 7201 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7202 {
7203 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7204
52ce6436
PH
7205 if (field_type_p != NULL)
7206 *field_type_p = TYPE_FIELD_TYPE (type, i);
7207 if (byte_offset_p != NULL)
7208 *byte_offset_p = fld_offset;
7209 if (bit_offset_p != NULL)
7210 *bit_offset_p = bit_pos % 8;
7211 if (bit_size_p != NULL)
7212 *bit_size_p = bit_size;
76a01679
JB
7213 return 1;
7214 }
4c4b4cd2
PH
7215 else if (ada_is_wrapper_field (type, i))
7216 {
52ce6436
PH
7217 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7218 field_type_p, byte_offset_p, bit_offset_p,
7219 bit_size_p, index_p))
76a01679
JB
7220 return 1;
7221 }
4c4b4cd2
PH
7222 else if (ada_is_variant_part (type, i))
7223 {
52ce6436
PH
7224 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7225 fixed type?? */
4c4b4cd2 7226 int j;
52ce6436
PH
7227 struct type *field_type
7228 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7229
52ce6436 7230 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7231 {
76a01679
JB
7232 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7233 fld_offset
7234 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7235 field_type_p, byte_offset_p,
52ce6436 7236 bit_offset_p, bit_size_p, index_p))
76a01679 7237 return 1;
4c4b4cd2
PH
7238 }
7239 }
52ce6436
PH
7240 else if (index_p != NULL)
7241 *index_p += 1;
4c4b4cd2 7242 }
828d5846
XR
7243
7244 /* Field not found so far. If this is a tagged type which
7245 has a parent, try finding that field in the parent now. */
7246
7247 if (parent_offset != -1)
7248 {
7249 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7250 int fld_offset = offset + bit_pos / 8;
7251
7252 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7253 fld_offset, field_type_p, byte_offset_p,
7254 bit_offset_p, bit_size_p, index_p))
7255 return 1;
7256 }
7257
4c4b4cd2
PH
7258 return 0;
7259}
7260
0963b4bd 7261/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7262
52ce6436
PH
7263static int
7264num_visible_fields (struct type *type)
7265{
7266 int n;
5b4ee69b 7267
52ce6436
PH
7268 n = 0;
7269 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7270 return n;
7271}
14f9c5c9 7272
4c4b4cd2 7273/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7274 and search in it assuming it has (class) type TYPE.
7275 If found, return value, else return NULL.
7276
828d5846
XR
7277 Searches recursively through wrapper fields (e.g., '_parent').
7278
7279 In the case of homonyms in the tagged types, please refer to the
7280 long explanation in find_struct_field's function documentation. */
14f9c5c9 7281
4c4b4cd2 7282static struct value *
108d56a4 7283ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7284 struct type *type)
14f9c5c9
AS
7285{
7286 int i;
828d5846 7287 int parent_offset = -1;
14f9c5c9 7288
5b4ee69b 7289 type = ada_check_typedef (type);
52ce6436 7290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7291 {
0d5cff50 7292 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7293
7294 if (t_field_name == NULL)
4c4b4cd2 7295 continue;
14f9c5c9 7296
828d5846
XR
7297 else if (ada_is_parent_field (type, i))
7298 {
7299 /* This is a field pointing us to the parent type of a tagged
7300 type. As hinted in this function's documentation, we give
7301 preference to fields in the current record first, so what
7302 we do here is just record the index of this field before
7303 we skip it. If it turns out we couldn't find our field
7304 in the current record, then we'll get back to it and search
7305 inside it whether the field might exist in the parent. */
7306
7307 parent_offset = i;
7308 continue;
7309 }
7310
14f9c5c9 7311 else if (field_name_match (t_field_name, name))
4c4b4cd2 7312 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7313
7314 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7315 {
0963b4bd 7316 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7317 ada_search_struct_field (name, arg,
7318 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7319 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7320
4c4b4cd2
PH
7321 if (v != NULL)
7322 return v;
7323 }
14f9c5c9
AS
7324
7325 else if (ada_is_variant_part (type, i))
4c4b4cd2 7326 {
0963b4bd 7327 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7328 int j;
5b4ee69b
MS
7329 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7330 i));
4c4b4cd2
PH
7331 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7332
52ce6436 7333 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7334 {
0963b4bd
MS
7335 struct value *v = ada_search_struct_field /* Force line
7336 break. */
06d5cf63
JB
7337 (name, arg,
7338 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7339 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7340
4c4b4cd2
PH
7341 if (v != NULL)
7342 return v;
7343 }
7344 }
14f9c5c9 7345 }
828d5846
XR
7346
7347 /* Field not found so far. If this is a tagged type which
7348 has a parent, try finding that field in the parent now. */
7349
7350 if (parent_offset != -1)
7351 {
7352 struct value *v = ada_search_struct_field (
7353 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7354 TYPE_FIELD_TYPE (type, parent_offset));
7355
7356 if (v != NULL)
7357 return v;
7358 }
7359
14f9c5c9
AS
7360 return NULL;
7361}
d2e4a39e 7362
52ce6436
PH
7363static struct value *ada_index_struct_field_1 (int *, struct value *,
7364 int, struct type *);
7365
7366
7367/* Return field #INDEX in ARG, where the index is that returned by
7368 * find_struct_field through its INDEX_P argument. Adjust the address
7369 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7370 * If found, return value, else return NULL. */
52ce6436
PH
7371
7372static struct value *
7373ada_index_struct_field (int index, struct value *arg, int offset,
7374 struct type *type)
7375{
7376 return ada_index_struct_field_1 (&index, arg, offset, type);
7377}
7378
7379
7380/* Auxiliary function for ada_index_struct_field. Like
7381 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7382 * *INDEX_P. */
52ce6436
PH
7383
7384static struct value *
7385ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7386 struct type *type)
7387{
7388 int i;
7389 type = ada_check_typedef (type);
7390
7391 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7392 {
7393 if (TYPE_FIELD_NAME (type, i) == NULL)
7394 continue;
7395 else if (ada_is_wrapper_field (type, i))
7396 {
0963b4bd 7397 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7398 ada_index_struct_field_1 (index_p, arg,
7399 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7400 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7401
52ce6436
PH
7402 if (v != NULL)
7403 return v;
7404 }
7405
7406 else if (ada_is_variant_part (type, i))
7407 {
7408 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7409 find_struct_field. */
52ce6436
PH
7410 error (_("Cannot assign this kind of variant record"));
7411 }
7412 else if (*index_p == 0)
7413 return ada_value_primitive_field (arg, offset, i, type);
7414 else
7415 *index_p -= 1;
7416 }
7417 return NULL;
7418}
7419
4c4b4cd2
PH
7420/* Given ARG, a value of type (pointer or reference to a)*
7421 structure/union, extract the component named NAME from the ultimate
7422 target structure/union and return it as a value with its
f5938064 7423 appropriate type.
14f9c5c9 7424
4c4b4cd2
PH
7425 The routine searches for NAME among all members of the structure itself
7426 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7427 (e.g., '_parent').
7428
03ee6b2e
PH
7429 If NO_ERR, then simply return NULL in case of error, rather than
7430 calling error. */
14f9c5c9 7431
d2e4a39e 7432struct value *
a121b7c1 7433ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7434{
4c4b4cd2 7435 struct type *t, *t1;
d2e4a39e 7436 struct value *v;
1f5d1570 7437 int check_tag;
14f9c5c9 7438
4c4b4cd2 7439 v = NULL;
df407dfe 7440 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7441 if (TYPE_CODE (t) == TYPE_CODE_REF)
7442 {
7443 t1 = TYPE_TARGET_TYPE (t);
7444 if (t1 == NULL)
03ee6b2e 7445 goto BadValue;
61ee279c 7446 t1 = ada_check_typedef (t1);
4c4b4cd2 7447 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7448 {
994b9211 7449 arg = coerce_ref (arg);
76a01679
JB
7450 t = t1;
7451 }
4c4b4cd2 7452 }
14f9c5c9 7453
4c4b4cd2
PH
7454 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7455 {
7456 t1 = TYPE_TARGET_TYPE (t);
7457 if (t1 == NULL)
03ee6b2e 7458 goto BadValue;
61ee279c 7459 t1 = ada_check_typedef (t1);
4c4b4cd2 7460 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7461 {
7462 arg = value_ind (arg);
7463 t = t1;
7464 }
4c4b4cd2 7465 else
76a01679 7466 break;
4c4b4cd2 7467 }
14f9c5c9 7468
4c4b4cd2 7469 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7470 goto BadValue;
14f9c5c9 7471
4c4b4cd2
PH
7472 if (t1 == t)
7473 v = ada_search_struct_field (name, arg, 0, t);
7474 else
7475 {
7476 int bit_offset, bit_size, byte_offset;
7477 struct type *field_type;
7478 CORE_ADDR address;
7479
76a01679 7480 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7481 address = value_address (ada_value_ind (arg));
4c4b4cd2 7482 else
b50d69b5 7483 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7484
828d5846
XR
7485 /* Check to see if this is a tagged type. We also need to handle
7486 the case where the type is a reference to a tagged type, but
7487 we have to be careful to exclude pointers to tagged types.
7488 The latter should be shown as usual (as a pointer), whereas
7489 a reference should mostly be transparent to the user. */
7490
7491 if (ada_is_tagged_type (t1, 0)
7492 || (TYPE_CODE (t1) == TYPE_CODE_REF
7493 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7494 {
7495 /* We first try to find the searched field in the current type.
7496 If not found then let's look in the fixed type. */
7497
7498 if (!find_struct_field (name, t1, 0,
7499 &field_type, &byte_offset, &bit_offset,
7500 &bit_size, NULL))
1f5d1570
JG
7501 check_tag = 1;
7502 else
7503 check_tag = 0;
828d5846
XR
7504 }
7505 else
1f5d1570
JG
7506 check_tag = 0;
7507
7508 /* Convert to fixed type in all cases, so that we have proper
7509 offsets to each field in unconstrained record types. */
7510 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7511 address, NULL, check_tag);
828d5846 7512
76a01679
JB
7513 if (find_struct_field (name, t1, 0,
7514 &field_type, &byte_offset, &bit_offset,
52ce6436 7515 &bit_size, NULL))
76a01679
JB
7516 {
7517 if (bit_size != 0)
7518 {
714e53ab
PH
7519 if (TYPE_CODE (t) == TYPE_CODE_REF)
7520 arg = ada_coerce_ref (arg);
7521 else
7522 arg = ada_value_ind (arg);
76a01679
JB
7523 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7524 bit_offset, bit_size,
7525 field_type);
7526 }
7527 else
f5938064 7528 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7529 }
7530 }
7531
03ee6b2e
PH
7532 if (v != NULL || no_err)
7533 return v;
7534 else
323e0a4a 7535 error (_("There is no member named %s."), name);
14f9c5c9 7536
03ee6b2e
PH
7537 BadValue:
7538 if (no_err)
7539 return NULL;
7540 else
0963b4bd
MS
7541 error (_("Attempt to extract a component of "
7542 "a value that is not a record."));
14f9c5c9
AS
7543}
7544
3b4de39c 7545/* Return a string representation of type TYPE. */
99bbb428 7546
3b4de39c 7547static std::string
99bbb428
PA
7548type_as_string (struct type *type)
7549{
d7e74731 7550 string_file tmp_stream;
99bbb428 7551
d7e74731 7552 type_print (type, "", &tmp_stream, -1);
99bbb428 7553
d7e74731 7554 return std::move (tmp_stream.string ());
99bbb428
PA
7555}
7556
14f9c5c9 7557/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7558 If DISPP is non-null, add its byte displacement from the beginning of a
7559 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7560 work for packed fields).
7561
7562 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7563 followed by "___".
14f9c5c9 7564
0963b4bd 7565 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7566 be a (pointer or reference)+ to a struct or union, and the
7567 ultimate target type will be searched.
14f9c5c9
AS
7568
7569 Looks recursively into variant clauses and parent types.
7570
828d5846
XR
7571 In the case of homonyms in the tagged types, please refer to the
7572 long explanation in find_struct_field's function documentation.
7573
4c4b4cd2
PH
7574 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7575 TYPE is not a type of the right kind. */
14f9c5c9 7576
4c4b4cd2 7577static struct type *
a121b7c1 7578ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7579 int noerr)
14f9c5c9
AS
7580{
7581 int i;
828d5846 7582 int parent_offset = -1;
14f9c5c9
AS
7583
7584 if (name == NULL)
7585 goto BadName;
7586
76a01679 7587 if (refok && type != NULL)
4c4b4cd2
PH
7588 while (1)
7589 {
61ee279c 7590 type = ada_check_typedef (type);
76a01679
JB
7591 if (TYPE_CODE (type) != TYPE_CODE_PTR
7592 && TYPE_CODE (type) != TYPE_CODE_REF)
7593 break;
7594 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7595 }
14f9c5c9 7596
76a01679 7597 if (type == NULL
1265e4aa
JB
7598 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7599 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7600 {
4c4b4cd2 7601 if (noerr)
76a01679 7602 return NULL;
99bbb428 7603
3b4de39c
PA
7604 error (_("Type %s is not a structure or union type"),
7605 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7606 }
7607
7608 type = to_static_fixed_type (type);
7609
7610 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7611 {
0d5cff50 7612 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7613 struct type *t;
d2e4a39e 7614
14f9c5c9 7615 if (t_field_name == NULL)
4c4b4cd2 7616 continue;
14f9c5c9 7617
828d5846
XR
7618 else if (ada_is_parent_field (type, i))
7619 {
7620 /* This is a field pointing us to the parent type of a tagged
7621 type. As hinted in this function's documentation, we give
7622 preference to fields in the current record first, so what
7623 we do here is just record the index of this field before
7624 we skip it. If it turns out we couldn't find our field
7625 in the current record, then we'll get back to it and search
7626 inside it whether the field might exist in the parent. */
7627
7628 parent_offset = i;
7629 continue;
7630 }
7631
14f9c5c9 7632 else if (field_name_match (t_field_name, name))
988f6b3d 7633 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7634
7635 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7636 {
4c4b4cd2 7637 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7638 0, 1);
4c4b4cd2 7639 if (t != NULL)
988f6b3d 7640 return t;
4c4b4cd2 7641 }
14f9c5c9
AS
7642
7643 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7644 {
7645 int j;
5b4ee69b
MS
7646 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7647 i));
4c4b4cd2
PH
7648
7649 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7650 {
b1f33ddd
JB
7651 /* FIXME pnh 2008/01/26: We check for a field that is
7652 NOT wrapped in a struct, since the compiler sometimes
7653 generates these for unchecked variant types. Revisit
0963b4bd 7654 if the compiler changes this practice. */
0d5cff50 7655 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7656
b1f33ddd
JB
7657 if (v_field_name != NULL
7658 && field_name_match (v_field_name, name))
460efde1 7659 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7660 else
0963b4bd
MS
7661 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7662 j),
988f6b3d 7663 name, 0, 1);
b1f33ddd 7664
4c4b4cd2 7665 if (t != NULL)
988f6b3d 7666 return t;
4c4b4cd2
PH
7667 }
7668 }
14f9c5c9
AS
7669
7670 }
7671
828d5846
XR
7672 /* Field not found so far. If this is a tagged type which
7673 has a parent, try finding that field in the parent now. */
7674
7675 if (parent_offset != -1)
7676 {
7677 struct type *t;
7678
7679 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7680 name, 0, 1);
7681 if (t != NULL)
7682 return t;
7683 }
7684
14f9c5c9 7685BadName:
d2e4a39e 7686 if (!noerr)
14f9c5c9 7687 {
2b2798cc 7688 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7689
7690 error (_("Type %s has no component named %s"),
3b4de39c 7691 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7692 }
7693
7694 return NULL;
7695}
7696
b1f33ddd
JB
7697/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7698 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7699 represents an unchecked union (that is, the variant part of a
0963b4bd 7700 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7701
7702static int
7703is_unchecked_variant (struct type *var_type, struct type *outer_type)
7704{
a121b7c1 7705 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7706
988f6b3d 7707 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7708}
7709
7710
14f9c5c9
AS
7711/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7712 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7713 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7714 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7715
d2e4a39e 7716int
ebf56fd3 7717ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7718 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7719{
7720 int others_clause;
7721 int i;
a121b7c1 7722 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7723 struct value *outer;
7724 struct value *discrim;
14f9c5c9
AS
7725 LONGEST discrim_val;
7726
012370f6
TT
7727 /* Using plain value_from_contents_and_address here causes problems
7728 because we will end up trying to resolve a type that is currently
7729 being constructed. */
7730 outer = value_from_contents_and_address_unresolved (outer_type,
7731 outer_valaddr, 0);
0c281816
JB
7732 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7733 if (discrim == NULL)
14f9c5c9 7734 return -1;
0c281816 7735 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7736
7737 others_clause = -1;
7738 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7739 {
7740 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7741 others_clause = i;
14f9c5c9 7742 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7743 return i;
14f9c5c9
AS
7744 }
7745
7746 return others_clause;
7747}
d2e4a39e 7748\f
14f9c5c9
AS
7749
7750
4c4b4cd2 7751 /* Dynamic-Sized Records */
14f9c5c9
AS
7752
7753/* Strategy: The type ostensibly attached to a value with dynamic size
7754 (i.e., a size that is not statically recorded in the debugging
7755 data) does not accurately reflect the size or layout of the value.
7756 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7757 conventional types that are constructed on the fly. */
14f9c5c9
AS
7758
7759/* There is a subtle and tricky problem here. In general, we cannot
7760 determine the size of dynamic records without its data. However,
7761 the 'struct value' data structure, which GDB uses to represent
7762 quantities in the inferior process (the target), requires the size
7763 of the type at the time of its allocation in order to reserve space
7764 for GDB's internal copy of the data. That's why the
7765 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7766 rather than struct value*s.
14f9c5c9
AS
7767
7768 However, GDB's internal history variables ($1, $2, etc.) are
7769 struct value*s containing internal copies of the data that are not, in
7770 general, the same as the data at their corresponding addresses in
7771 the target. Fortunately, the types we give to these values are all
7772 conventional, fixed-size types (as per the strategy described
7773 above), so that we don't usually have to perform the
7774 'to_fixed_xxx_type' conversions to look at their values.
7775 Unfortunately, there is one exception: if one of the internal
7776 history variables is an array whose elements are unconstrained
7777 records, then we will need to create distinct fixed types for each
7778 element selected. */
7779
7780/* The upshot of all of this is that many routines take a (type, host
7781 address, target address) triple as arguments to represent a value.
7782 The host address, if non-null, is supposed to contain an internal
7783 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7784 target at the target address. */
14f9c5c9
AS
7785
7786/* Assuming that VAL0 represents a pointer value, the result of
7787 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7788 dynamic-sized types. */
14f9c5c9 7789
d2e4a39e
AS
7790struct value *
7791ada_value_ind (struct value *val0)
14f9c5c9 7792{
c48db5ca 7793 struct value *val = value_ind (val0);
5b4ee69b 7794
b50d69b5
JG
7795 if (ada_is_tagged_type (value_type (val), 0))
7796 val = ada_tag_value_at_base_address (val);
7797
4c4b4cd2 7798 return ada_to_fixed_value (val);
14f9c5c9
AS
7799}
7800
7801/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7802 qualifiers on VAL0. */
7803
d2e4a39e
AS
7804static struct value *
7805ada_coerce_ref (struct value *val0)
7806{
df407dfe 7807 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7808 {
7809 struct value *val = val0;
5b4ee69b 7810
994b9211 7811 val = coerce_ref (val);
b50d69b5
JG
7812
7813 if (ada_is_tagged_type (value_type (val), 0))
7814 val = ada_tag_value_at_base_address (val);
7815
4c4b4cd2 7816 return ada_to_fixed_value (val);
d2e4a39e
AS
7817 }
7818 else
14f9c5c9
AS
7819 return val0;
7820}
7821
7822/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7823 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7824
7825static unsigned int
ebf56fd3 7826align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7827{
7828 return (off + alignment - 1) & ~(alignment - 1);
7829}
7830
4c4b4cd2 7831/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7832
7833static unsigned int
ebf56fd3 7834field_alignment (struct type *type, int f)
14f9c5c9 7835{
d2e4a39e 7836 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7837 int len;
14f9c5c9
AS
7838 int align_offset;
7839
64a1bf19
JB
7840 /* The field name should never be null, unless the debugging information
7841 is somehow malformed. In this case, we assume the field does not
7842 require any alignment. */
7843 if (name == NULL)
7844 return 1;
7845
7846 len = strlen (name);
7847
4c4b4cd2
PH
7848 if (!isdigit (name[len - 1]))
7849 return 1;
14f9c5c9 7850
d2e4a39e 7851 if (isdigit (name[len - 2]))
14f9c5c9
AS
7852 align_offset = len - 2;
7853 else
7854 align_offset = len - 1;
7855
61012eef 7856 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7857 return TARGET_CHAR_BIT;
7858
4c4b4cd2
PH
7859 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7860}
7861
852dff6c 7862/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7863
852dff6c
JB
7864static struct symbol *
7865ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7866{
7867 struct symbol *sym;
7868
7869 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7870 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7871 return sym;
7872
4186eb54
KS
7873 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7874 return sym;
14f9c5c9
AS
7875}
7876
dddfab26
UW
7877/* Find a type named NAME. Ignores ambiguity. This routine will look
7878 solely for types defined by debug info, it will not search the GDB
7879 primitive types. */
4c4b4cd2 7880
852dff6c 7881static struct type *
ebf56fd3 7882ada_find_any_type (const char *name)
14f9c5c9 7883{
852dff6c 7884 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7885
14f9c5c9 7886 if (sym != NULL)
dddfab26 7887 return SYMBOL_TYPE (sym);
14f9c5c9 7888
dddfab26 7889 return NULL;
14f9c5c9
AS
7890}
7891
739593e0
JB
7892/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7893 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7894 symbol, in which case it is returned. Otherwise, this looks for
7895 symbols whose name is that of NAME_SYM suffixed with "___XR".
7896 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7897
c0e70c62
TT
7898static bool
7899ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7900{
739593e0 7901 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
c0e70c62 7902 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7903}
7904
14f9c5c9 7905/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7906 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7907 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7908 otherwise return 0. */
7909
14f9c5c9 7910int
d2e4a39e 7911ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7912{
7913 if (type1 == NULL)
7914 return 1;
7915 else if (type0 == NULL)
7916 return 0;
7917 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7918 return 1;
7919 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7920 return 0;
4c4b4cd2
PH
7921 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7922 return 1;
ad82864c 7923 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7924 return 1;
4c4b4cd2
PH
7925 else if (ada_is_array_descriptor_type (type0)
7926 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7927 return 1;
aeb5907d
JB
7928 else
7929 {
a737d952
TT
7930 const char *type0_name = TYPE_NAME (type0);
7931 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7932
7933 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7934 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7935 return 1;
7936 }
14f9c5c9
AS
7937 return 0;
7938}
7939
e86ca25f
TT
7940/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7941 null. */
4c4b4cd2 7942
0d5cff50 7943const char *
d2e4a39e 7944ada_type_name (struct type *type)
14f9c5c9 7945{
d2e4a39e 7946 if (type == NULL)
14f9c5c9 7947 return NULL;
e86ca25f 7948 return TYPE_NAME (type);
14f9c5c9
AS
7949}
7950
b4ba55a1
JB
7951/* Search the list of "descriptive" types associated to TYPE for a type
7952 whose name is NAME. */
7953
7954static struct type *
7955find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7956{
931e5bc3 7957 struct type *result, *tmp;
b4ba55a1 7958
c6044dd1
JB
7959 if (ada_ignore_descriptive_types_p)
7960 return NULL;
7961
b4ba55a1
JB
7962 /* If there no descriptive-type info, then there is no parallel type
7963 to be found. */
7964 if (!HAVE_GNAT_AUX_INFO (type))
7965 return NULL;
7966
7967 result = TYPE_DESCRIPTIVE_TYPE (type);
7968 while (result != NULL)
7969 {
0d5cff50 7970 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7971
7972 if (result_name == NULL)
7973 {
7974 warning (_("unexpected null name on descriptive type"));
7975 return NULL;
7976 }
7977
7978 /* If the names match, stop. */
7979 if (strcmp (result_name, name) == 0)
7980 break;
7981
7982 /* Otherwise, look at the next item on the list, if any. */
7983 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7984 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7985 else
7986 tmp = NULL;
7987
7988 /* If not found either, try after having resolved the typedef. */
7989 if (tmp != NULL)
7990 result = tmp;
b4ba55a1 7991 else
931e5bc3 7992 {
f168693b 7993 result = check_typedef (result);
931e5bc3
JG
7994 if (HAVE_GNAT_AUX_INFO (result))
7995 result = TYPE_DESCRIPTIVE_TYPE (result);
7996 else
7997 result = NULL;
7998 }
b4ba55a1
JB
7999 }
8000
8001 /* If we didn't find a match, see whether this is a packed array. With
8002 older compilers, the descriptive type information is either absent or
8003 irrelevant when it comes to packed arrays so the above lookup fails.
8004 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8005 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8006 return ada_find_any_type (name);
8007
8008 return result;
8009}
8010
8011/* Find a parallel type to TYPE with the specified NAME, using the
8012 descriptive type taken from the debugging information, if available,
8013 and otherwise using the (slower) name-based method. */
8014
8015static struct type *
8016ada_find_parallel_type_with_name (struct type *type, const char *name)
8017{
8018 struct type *result = NULL;
8019
8020 if (HAVE_GNAT_AUX_INFO (type))
8021 result = find_parallel_type_by_descriptive_type (type, name);
8022 else
8023 result = ada_find_any_type (name);
8024
8025 return result;
8026}
8027
8028/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8029 SUFFIX to the name of TYPE. */
14f9c5c9 8030
d2e4a39e 8031struct type *
ebf56fd3 8032ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8033{
0d5cff50 8034 char *name;
fe978cb0 8035 const char *type_name = ada_type_name (type);
14f9c5c9 8036 int len;
d2e4a39e 8037
fe978cb0 8038 if (type_name == NULL)
14f9c5c9
AS
8039 return NULL;
8040
fe978cb0 8041 len = strlen (type_name);
14f9c5c9 8042
b4ba55a1 8043 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8044
fe978cb0 8045 strcpy (name, type_name);
14f9c5c9
AS
8046 strcpy (name + len, suffix);
8047
b4ba55a1 8048 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8049}
8050
14f9c5c9 8051/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8052 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8053
d2e4a39e
AS
8054static struct type *
8055dynamic_template_type (struct type *type)
14f9c5c9 8056{
61ee279c 8057 type = ada_check_typedef (type);
14f9c5c9
AS
8058
8059 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8060 || ada_type_name (type) == NULL)
14f9c5c9 8061 return NULL;
d2e4a39e 8062 else
14f9c5c9
AS
8063 {
8064 int len = strlen (ada_type_name (type));
5b4ee69b 8065
4c4b4cd2
PH
8066 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8067 return type;
14f9c5c9 8068 else
4c4b4cd2 8069 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8070 }
8071}
8072
8073/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8074 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8075
d2e4a39e
AS
8076static int
8077is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8078{
8079 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8080
d2e4a39e 8081 return name != NULL
14f9c5c9
AS
8082 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8083 && strstr (name, "___XVL") != NULL;
8084}
8085
4c4b4cd2
PH
8086/* The index of the variant field of TYPE, or -1 if TYPE does not
8087 represent a variant record type. */
14f9c5c9 8088
d2e4a39e 8089static int
4c4b4cd2 8090variant_field_index (struct type *type)
14f9c5c9
AS
8091{
8092 int f;
8093
4c4b4cd2
PH
8094 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8095 return -1;
8096
8097 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8098 {
8099 if (ada_is_variant_part (type, f))
8100 return f;
8101 }
8102 return -1;
14f9c5c9
AS
8103}
8104
4c4b4cd2
PH
8105/* A record type with no fields. */
8106
d2e4a39e 8107static struct type *
fe978cb0 8108empty_record (struct type *templ)
14f9c5c9 8109{
fe978cb0 8110 struct type *type = alloc_type_copy (templ);
5b4ee69b 8111
14f9c5c9
AS
8112 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8113 TYPE_NFIELDS (type) = 0;
8114 TYPE_FIELDS (type) = NULL;
8ecb59f8 8115 INIT_NONE_SPECIFIC (type);
14f9c5c9 8116 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8117 TYPE_LENGTH (type) = 0;
8118 return type;
8119}
8120
8121/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8122 the value of type TYPE at VALADDR or ADDRESS (see comments at
8123 the beginning of this section) VAL according to GNAT conventions.
8124 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8125 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8126 an outer-level type (i.e., as opposed to a branch of a variant.) A
8127 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8128 of the variant.
14f9c5c9 8129
4c4b4cd2
PH
8130 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8131 length are not statically known are discarded. As a consequence,
8132 VALADDR, ADDRESS and DVAL0 are ignored.
8133
8134 NOTE: Limitations: For now, we assume that dynamic fields and
8135 variants occupy whole numbers of bytes. However, they need not be
8136 byte-aligned. */
8137
8138struct type *
10a2c479 8139ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8140 const gdb_byte *valaddr,
4c4b4cd2
PH
8141 CORE_ADDR address, struct value *dval0,
8142 int keep_dynamic_fields)
14f9c5c9 8143{
d2e4a39e
AS
8144 struct value *mark = value_mark ();
8145 struct value *dval;
8146 struct type *rtype;
14f9c5c9 8147 int nfields, bit_len;
4c4b4cd2 8148 int variant_field;
14f9c5c9 8149 long off;
d94e4f4f 8150 int fld_bit_len;
14f9c5c9
AS
8151 int f;
8152
4c4b4cd2
PH
8153 /* Compute the number of fields in this record type that are going
8154 to be processed: unless keep_dynamic_fields, this includes only
8155 fields whose position and length are static will be processed. */
8156 if (keep_dynamic_fields)
8157 nfields = TYPE_NFIELDS (type);
8158 else
8159 {
8160 nfields = 0;
76a01679 8161 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8162 && !ada_is_variant_part (type, nfields)
8163 && !is_dynamic_field (type, nfields))
8164 nfields++;
8165 }
8166
e9bb382b 8167 rtype = alloc_type_copy (type);
14f9c5c9 8168 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8169 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8170 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8171 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8172 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8173 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8174 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8175 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8176
d2e4a39e
AS
8177 off = 0;
8178 bit_len = 0;
4c4b4cd2
PH
8179 variant_field = -1;
8180
14f9c5c9
AS
8181 for (f = 0; f < nfields; f += 1)
8182 {
6c038f32
PH
8183 off = align_value (off, field_alignment (type, f))
8184 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8185 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8186 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8187
d2e4a39e 8188 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8189 {
8190 variant_field = f;
d94e4f4f 8191 fld_bit_len = 0;
4c4b4cd2 8192 }
14f9c5c9 8193 else if (is_dynamic_field (type, f))
4c4b4cd2 8194 {
284614f0
JB
8195 const gdb_byte *field_valaddr = valaddr;
8196 CORE_ADDR field_address = address;
8197 struct type *field_type =
8198 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8199
4c4b4cd2 8200 if (dval0 == NULL)
b5304971
JG
8201 {
8202 /* rtype's length is computed based on the run-time
8203 value of discriminants. If the discriminants are not
8204 initialized, the type size may be completely bogus and
0963b4bd 8205 GDB may fail to allocate a value for it. So check the
b5304971 8206 size first before creating the value. */
c1b5a1a6 8207 ada_ensure_varsize_limit (rtype);
012370f6
TT
8208 /* Using plain value_from_contents_and_address here
8209 causes problems because we will end up trying to
8210 resolve a type that is currently being
8211 constructed. */
8212 dval = value_from_contents_and_address_unresolved (rtype,
8213 valaddr,
8214 address);
9f1f738a 8215 rtype = value_type (dval);
b5304971 8216 }
4c4b4cd2
PH
8217 else
8218 dval = dval0;
8219
284614f0
JB
8220 /* If the type referenced by this field is an aligner type, we need
8221 to unwrap that aligner type, because its size might not be set.
8222 Keeping the aligner type would cause us to compute the wrong
8223 size for this field, impacting the offset of the all the fields
8224 that follow this one. */
8225 if (ada_is_aligner_type (field_type))
8226 {
8227 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8228
8229 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8230 field_address = cond_offset_target (field_address, field_offset);
8231 field_type = ada_aligned_type (field_type);
8232 }
8233
8234 field_valaddr = cond_offset_host (field_valaddr,
8235 off / TARGET_CHAR_BIT);
8236 field_address = cond_offset_target (field_address,
8237 off / TARGET_CHAR_BIT);
8238
8239 /* Get the fixed type of the field. Note that, in this case,
8240 we do not want to get the real type out of the tag: if
8241 the current field is the parent part of a tagged record,
8242 we will get the tag of the object. Clearly wrong: the real
8243 type of the parent is not the real type of the child. We
8244 would end up in an infinite loop. */
8245 field_type = ada_get_base_type (field_type);
8246 field_type = ada_to_fixed_type (field_type, field_valaddr,
8247 field_address, dval, 0);
27f2a97b
JB
8248 /* If the field size is already larger than the maximum
8249 object size, then the record itself will necessarily
8250 be larger than the maximum object size. We need to make
8251 this check now, because the size might be so ridiculously
8252 large (due to an uninitialized variable in the inferior)
8253 that it would cause an overflow when adding it to the
8254 record size. */
c1b5a1a6 8255 ada_ensure_varsize_limit (field_type);
284614f0
JB
8256
8257 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8258 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8259 /* The multiplication can potentially overflow. But because
8260 the field length has been size-checked just above, and
8261 assuming that the maximum size is a reasonable value,
8262 an overflow should not happen in practice. So rather than
8263 adding overflow recovery code to this already complex code,
8264 we just assume that it's not going to happen. */
d94e4f4f 8265 fld_bit_len =
4c4b4cd2
PH
8266 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8267 }
14f9c5c9 8268 else
4c4b4cd2 8269 {
5ded5331
JB
8270 /* Note: If this field's type is a typedef, it is important
8271 to preserve the typedef layer.
8272
8273 Otherwise, we might be transforming a typedef to a fat
8274 pointer (encoding a pointer to an unconstrained array),
8275 into a basic fat pointer (encoding an unconstrained
8276 array). As both types are implemented using the same
8277 structure, the typedef is the only clue which allows us
8278 to distinguish between the two options. Stripping it
8279 would prevent us from printing this field appropriately. */
8280 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8281 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8282 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8283 fld_bit_len =
4c4b4cd2
PH
8284 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8285 else
5ded5331
JB
8286 {
8287 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8288
8289 /* We need to be careful of typedefs when computing
8290 the length of our field. If this is a typedef,
8291 get the length of the target type, not the length
8292 of the typedef. */
8293 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8294 field_type = ada_typedef_target_type (field_type);
8295
8296 fld_bit_len =
8297 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8298 }
4c4b4cd2 8299 }
14f9c5c9 8300 if (off + fld_bit_len > bit_len)
4c4b4cd2 8301 bit_len = off + fld_bit_len;
d94e4f4f 8302 off += fld_bit_len;
4c4b4cd2
PH
8303 TYPE_LENGTH (rtype) =
8304 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8305 }
4c4b4cd2
PH
8306
8307 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8308 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8309 the record. This can happen in the presence of representation
8310 clauses. */
8311 if (variant_field >= 0)
8312 {
8313 struct type *branch_type;
8314
8315 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8316
8317 if (dval0 == NULL)
9f1f738a 8318 {
012370f6
TT
8319 /* Using plain value_from_contents_and_address here causes
8320 problems because we will end up trying to resolve a type
8321 that is currently being constructed. */
8322 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8323 address);
9f1f738a
SA
8324 rtype = value_type (dval);
8325 }
4c4b4cd2
PH
8326 else
8327 dval = dval0;
8328
8329 branch_type =
8330 to_fixed_variant_branch_type
8331 (TYPE_FIELD_TYPE (type, variant_field),
8332 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8333 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8334 if (branch_type == NULL)
8335 {
8336 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8337 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8338 TYPE_NFIELDS (rtype) -= 1;
8339 }
8340 else
8341 {
8342 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8343 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8344 fld_bit_len =
8345 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8346 TARGET_CHAR_BIT;
8347 if (off + fld_bit_len > bit_len)
8348 bit_len = off + fld_bit_len;
8349 TYPE_LENGTH (rtype) =
8350 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8351 }
8352 }
8353
714e53ab
PH
8354 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8355 should contain the alignment of that record, which should be a strictly
8356 positive value. If null or negative, then something is wrong, most
8357 probably in the debug info. In that case, we don't round up the size
0963b4bd 8358 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8359 the current RTYPE length might be good enough for our purposes. */
8360 if (TYPE_LENGTH (type) <= 0)
8361 {
323e0a4a 8362 if (TYPE_NAME (rtype))
cc1defb1
KS
8363 warning (_("Invalid type size for `%s' detected: %s."),
8364 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8365 else
cc1defb1
KS
8366 warning (_("Invalid type size for <unnamed> detected: %s."),
8367 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8368 }
8369 else
8370 {
8371 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8372 TYPE_LENGTH (type));
8373 }
14f9c5c9
AS
8374
8375 value_free_to_mark (mark);
d2e4a39e 8376 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8377 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8378 return rtype;
8379}
8380
4c4b4cd2
PH
8381/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8382 of 1. */
14f9c5c9 8383
d2e4a39e 8384static struct type *
fc1a4b47 8385template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8386 CORE_ADDR address, struct value *dval0)
8387{
8388 return ada_template_to_fixed_record_type_1 (type, valaddr,
8389 address, dval0, 1);
8390}
8391
8392/* An ordinary record type in which ___XVL-convention fields and
8393 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8394 static approximations, containing all possible fields. Uses
8395 no runtime values. Useless for use in values, but that's OK,
8396 since the results are used only for type determinations. Works on both
8397 structs and unions. Representation note: to save space, we memorize
8398 the result of this function in the TYPE_TARGET_TYPE of the
8399 template type. */
8400
8401static struct type *
8402template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8403{
8404 struct type *type;
8405 int nfields;
8406 int f;
8407
9e195661
PMR
8408 /* No need no do anything if the input type is already fixed. */
8409 if (TYPE_FIXED_INSTANCE (type0))
8410 return type0;
8411
8412 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8413 if (TYPE_TARGET_TYPE (type0) != NULL)
8414 return TYPE_TARGET_TYPE (type0);
8415
9e195661 8416 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8417 type = type0;
9e195661
PMR
8418 nfields = TYPE_NFIELDS (type0);
8419
8420 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8421 recompute all over next time. */
8422 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8423
8424 for (f = 0; f < nfields; f += 1)
8425 {
460efde1 8426 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8427 struct type *new_type;
14f9c5c9 8428
4c4b4cd2 8429 if (is_dynamic_field (type0, f))
460efde1
JB
8430 {
8431 field_type = ada_check_typedef (field_type);
8432 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8433 }
14f9c5c9 8434 else
f192137b 8435 new_type = static_unwrap_type (field_type);
9e195661
PMR
8436
8437 if (new_type != field_type)
8438 {
8439 /* Clone TYPE0 only the first time we get a new field type. */
8440 if (type == type0)
8441 {
8442 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8443 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8444 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8445 TYPE_NFIELDS (type) = nfields;
8446 TYPE_FIELDS (type) = (struct field *)
8447 TYPE_ALLOC (type, nfields * sizeof (struct field));
8448 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8449 sizeof (struct field) * nfields);
8450 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8451 TYPE_FIXED_INSTANCE (type) = 1;
8452 TYPE_LENGTH (type) = 0;
8453 }
8454 TYPE_FIELD_TYPE (type, f) = new_type;
8455 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8456 }
14f9c5c9 8457 }
9e195661 8458
14f9c5c9
AS
8459 return type;
8460}
8461
4c4b4cd2 8462/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8463 whose address in memory is ADDRESS, returns a revision of TYPE,
8464 which should be a non-dynamic-sized record, in which the variant
8465 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8466 for discriminant values in DVAL0, which can be NULL if the record
8467 contains the necessary discriminant values. */
8468
d2e4a39e 8469static struct type *
fc1a4b47 8470to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8471 CORE_ADDR address, struct value *dval0)
14f9c5c9 8472{
d2e4a39e 8473 struct value *mark = value_mark ();
4c4b4cd2 8474 struct value *dval;
d2e4a39e 8475 struct type *rtype;
14f9c5c9
AS
8476 struct type *branch_type;
8477 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8478 int variant_field = variant_field_index (type);
14f9c5c9 8479
4c4b4cd2 8480 if (variant_field == -1)
14f9c5c9
AS
8481 return type;
8482
4c4b4cd2 8483 if (dval0 == NULL)
9f1f738a
SA
8484 {
8485 dval = value_from_contents_and_address (type, valaddr, address);
8486 type = value_type (dval);
8487 }
4c4b4cd2
PH
8488 else
8489 dval = dval0;
8490
e9bb382b 8491 rtype = alloc_type_copy (type);
14f9c5c9 8492 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8493 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8494 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8495 TYPE_FIELDS (rtype) =
8496 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8497 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8498 sizeof (struct field) * nfields);
14f9c5c9 8499 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8500 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8501 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8502
4c4b4cd2
PH
8503 branch_type = to_fixed_variant_branch_type
8504 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8505 cond_offset_host (valaddr,
4c4b4cd2
PH
8506 TYPE_FIELD_BITPOS (type, variant_field)
8507 / TARGET_CHAR_BIT),
d2e4a39e 8508 cond_offset_target (address,
4c4b4cd2
PH
8509 TYPE_FIELD_BITPOS (type, variant_field)
8510 / TARGET_CHAR_BIT), dval);
d2e4a39e 8511 if (branch_type == NULL)
14f9c5c9 8512 {
4c4b4cd2 8513 int f;
5b4ee69b 8514
4c4b4cd2
PH
8515 for (f = variant_field + 1; f < nfields; f += 1)
8516 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8517 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8518 }
8519 else
8520 {
4c4b4cd2
PH
8521 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8522 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8523 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8524 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8525 }
4c4b4cd2 8526 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8527
4c4b4cd2 8528 value_free_to_mark (mark);
14f9c5c9
AS
8529 return rtype;
8530}
8531
8532/* An ordinary record type (with fixed-length fields) that describes
8533 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8534 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8535 should be in DVAL, a record value; it may be NULL if the object
8536 at ADDR itself contains any necessary discriminant values.
8537 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8538 values from the record are needed. Except in the case that DVAL,
8539 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8540 unchecked) is replaced by a particular branch of the variant.
8541
8542 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8543 is questionable and may be removed. It can arise during the
8544 processing of an unconstrained-array-of-record type where all the
8545 variant branches have exactly the same size. This is because in
8546 such cases, the compiler does not bother to use the XVS convention
8547 when encoding the record. I am currently dubious of this
8548 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8549
d2e4a39e 8550static struct type *
fc1a4b47 8551to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8552 CORE_ADDR address, struct value *dval)
14f9c5c9 8553{
d2e4a39e 8554 struct type *templ_type;
14f9c5c9 8555
876cecd0 8556 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8557 return type0;
8558
d2e4a39e 8559 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8560
8561 if (templ_type != NULL)
8562 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8563 else if (variant_field_index (type0) >= 0)
8564 {
8565 if (dval == NULL && valaddr == NULL && address == 0)
8566 return type0;
8567 return to_record_with_fixed_variant_part (type0, valaddr, address,
8568 dval);
8569 }
14f9c5c9
AS
8570 else
8571 {
876cecd0 8572 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8573 return type0;
8574 }
8575
8576}
8577
8578/* An ordinary record type (with fixed-length fields) that describes
8579 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8580 union type. Any necessary discriminants' values should be in DVAL,
8581 a record value. That is, this routine selects the appropriate
8582 branch of the union at ADDR according to the discriminant value
b1f33ddd 8583 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8584 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8585
d2e4a39e 8586static struct type *
fc1a4b47 8587to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8588 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8589{
8590 int which;
d2e4a39e
AS
8591 struct type *templ_type;
8592 struct type *var_type;
14f9c5c9
AS
8593
8594 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8595 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8596 else
14f9c5c9
AS
8597 var_type = var_type0;
8598
8599 templ_type = ada_find_parallel_type (var_type, "___XVU");
8600
8601 if (templ_type != NULL)
8602 var_type = templ_type;
8603
b1f33ddd
JB
8604 if (is_unchecked_variant (var_type, value_type (dval)))
8605 return var_type0;
d2e4a39e
AS
8606 which =
8607 ada_which_variant_applies (var_type,
0fd88904 8608 value_type (dval), value_contents (dval));
14f9c5c9
AS
8609
8610 if (which < 0)
e9bb382b 8611 return empty_record (var_type);
14f9c5c9 8612 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8613 return to_fixed_record_type
d2e4a39e
AS
8614 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8615 valaddr, address, dval);
4c4b4cd2 8616 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8617 return
8618 to_fixed_record_type
8619 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8620 else
8621 return TYPE_FIELD_TYPE (var_type, which);
8622}
8623
8908fca5
JB
8624/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8625 ENCODING_TYPE, a type following the GNAT conventions for discrete
8626 type encodings, only carries redundant information. */
8627
8628static int
8629ada_is_redundant_range_encoding (struct type *range_type,
8630 struct type *encoding_type)
8631{
108d56a4 8632 const char *bounds_str;
8908fca5
JB
8633 int n;
8634 LONGEST lo, hi;
8635
8636 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8637
005e2509
JB
8638 if (TYPE_CODE (get_base_type (range_type))
8639 != TYPE_CODE (get_base_type (encoding_type)))
8640 {
8641 /* The compiler probably used a simple base type to describe
8642 the range type instead of the range's actual base type,
8643 expecting us to get the real base type from the encoding
8644 anyway. In this situation, the encoding cannot be ignored
8645 as redundant. */
8646 return 0;
8647 }
8648
8908fca5
JB
8649 if (is_dynamic_type (range_type))
8650 return 0;
8651
8652 if (TYPE_NAME (encoding_type) == NULL)
8653 return 0;
8654
8655 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8656 if (bounds_str == NULL)
8657 return 0;
8658
8659 n = 8; /* Skip "___XDLU_". */
8660 if (!ada_scan_number (bounds_str, n, &lo, &n))
8661 return 0;
8662 if (TYPE_LOW_BOUND (range_type) != lo)
8663 return 0;
8664
8665 n += 2; /* Skip the "__" separator between the two bounds. */
8666 if (!ada_scan_number (bounds_str, n, &hi, &n))
8667 return 0;
8668 if (TYPE_HIGH_BOUND (range_type) != hi)
8669 return 0;
8670
8671 return 1;
8672}
8673
8674/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8675 a type following the GNAT encoding for describing array type
8676 indices, only carries redundant information. */
8677
8678static int
8679ada_is_redundant_index_type_desc (struct type *array_type,
8680 struct type *desc_type)
8681{
8682 struct type *this_layer = check_typedef (array_type);
8683 int i;
8684
8685 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8686 {
8687 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8688 TYPE_FIELD_TYPE (desc_type, i)))
8689 return 0;
8690 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8691 }
8692
8693 return 1;
8694}
8695
14f9c5c9
AS
8696/* Assuming that TYPE0 is an array type describing the type of a value
8697 at ADDR, and that DVAL describes a record containing any
8698 discriminants used in TYPE0, returns a type for the value that
8699 contains no dynamic components (that is, no components whose sizes
8700 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8701 true, gives an error message if the resulting type's size is over
4c4b4cd2 8702 varsize_limit. */
14f9c5c9 8703
d2e4a39e
AS
8704static struct type *
8705to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8706 int ignore_too_big)
14f9c5c9 8707{
d2e4a39e
AS
8708 struct type *index_type_desc;
8709 struct type *result;
ad82864c 8710 int constrained_packed_array_p;
931e5bc3 8711 static const char *xa_suffix = "___XA";
14f9c5c9 8712
b0dd7688 8713 type0 = ada_check_typedef (type0);
284614f0 8714 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8715 return type0;
14f9c5c9 8716
ad82864c
JB
8717 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8718 if (constrained_packed_array_p)
8719 type0 = decode_constrained_packed_array_type (type0);
284614f0 8720
931e5bc3
JG
8721 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8722
8723 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8724 encoding suffixed with 'P' may still be generated. If so,
8725 it should be used to find the XA type. */
8726
8727 if (index_type_desc == NULL)
8728 {
1da0522e 8729 const char *type_name = ada_type_name (type0);
931e5bc3 8730
1da0522e 8731 if (type_name != NULL)
931e5bc3 8732 {
1da0522e 8733 const int len = strlen (type_name);
931e5bc3
JG
8734 char *name = (char *) alloca (len + strlen (xa_suffix));
8735
1da0522e 8736 if (type_name[len - 1] == 'P')
931e5bc3 8737 {
1da0522e 8738 strcpy (name, type_name);
931e5bc3
JG
8739 strcpy (name + len - 1, xa_suffix);
8740 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8741 }
8742 }
8743 }
8744
28c85d6c 8745 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8746 if (index_type_desc != NULL
8747 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8748 {
8749 /* Ignore this ___XA parallel type, as it does not bring any
8750 useful information. This allows us to avoid creating fixed
8751 versions of the array's index types, which would be identical
8752 to the original ones. This, in turn, can also help avoid
8753 the creation of fixed versions of the array itself. */
8754 index_type_desc = NULL;
8755 }
8756
14f9c5c9
AS
8757 if (index_type_desc == NULL)
8758 {
61ee279c 8759 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8760
14f9c5c9 8761 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8762 depend on the contents of the array in properly constructed
8763 debugging data. */
529cad9c
PH
8764 /* Create a fixed version of the array element type.
8765 We're not providing the address of an element here,
e1d5a0d2 8766 and thus the actual object value cannot be inspected to do
529cad9c
PH
8767 the conversion. This should not be a problem, since arrays of
8768 unconstrained objects are not allowed. In particular, all
8769 the elements of an array of a tagged type should all be of
8770 the same type specified in the debugging info. No need to
8771 consult the object tag. */
1ed6ede0 8772 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8773
284614f0
JB
8774 /* Make sure we always create a new array type when dealing with
8775 packed array types, since we're going to fix-up the array
8776 type length and element bitsize a little further down. */
ad82864c 8777 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8778 result = type0;
14f9c5c9 8779 else
e9bb382b 8780 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8781 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8782 }
8783 else
8784 {
8785 int i;
8786 struct type *elt_type0;
8787
8788 elt_type0 = type0;
8789 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8790 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8791
8792 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8793 depend on the contents of the array in properly constructed
8794 debugging data. */
529cad9c
PH
8795 /* Create a fixed version of the array element type.
8796 We're not providing the address of an element here,
e1d5a0d2 8797 and thus the actual object value cannot be inspected to do
529cad9c
PH
8798 the conversion. This should not be a problem, since arrays of
8799 unconstrained objects are not allowed. In particular, all
8800 the elements of an array of a tagged type should all be of
8801 the same type specified in the debugging info. No need to
8802 consult the object tag. */
1ed6ede0
JB
8803 result =
8804 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8805
8806 elt_type0 = type0;
14f9c5c9 8807 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8808 {
8809 struct type *range_type =
28c85d6c 8810 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8811
e9bb382b 8812 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8813 result, range_type);
1ce677a4 8814 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8815 }
d2e4a39e 8816 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8817 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8818 }
8819
2e6fda7d
JB
8820 /* We want to preserve the type name. This can be useful when
8821 trying to get the type name of a value that has already been
8822 printed (for instance, if the user did "print VAR; whatis $". */
8823 TYPE_NAME (result) = TYPE_NAME (type0);
8824
ad82864c 8825 if (constrained_packed_array_p)
284614f0
JB
8826 {
8827 /* So far, the resulting type has been created as if the original
8828 type was a regular (non-packed) array type. As a result, the
8829 bitsize of the array elements needs to be set again, and the array
8830 length needs to be recomputed based on that bitsize. */
8831 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8832 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8833
8834 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8835 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8836 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8837 TYPE_LENGTH (result)++;
8838 }
8839
876cecd0 8840 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8841 return result;
d2e4a39e 8842}
14f9c5c9
AS
8843
8844
8845/* A standard type (containing no dynamically sized components)
8846 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8847 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8848 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8849 ADDRESS or in VALADDR contains these discriminants.
8850
1ed6ede0
JB
8851 If CHECK_TAG is not null, in the case of tagged types, this function
8852 attempts to locate the object's tag and use it to compute the actual
8853 type. However, when ADDRESS is null, we cannot use it to determine the
8854 location of the tag, and therefore compute the tagged type's actual type.
8855 So we return the tagged type without consulting the tag. */
529cad9c 8856
f192137b
JB
8857static struct type *
8858ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8859 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8860{
61ee279c 8861 type = ada_check_typedef (type);
8ecb59f8
TT
8862
8863 /* Only un-fixed types need to be handled here. */
8864 if (!HAVE_GNAT_AUX_INFO (type))
8865 return type;
8866
d2e4a39e
AS
8867 switch (TYPE_CODE (type))
8868 {
8869 default:
14f9c5c9 8870 return type;
d2e4a39e 8871 case TYPE_CODE_STRUCT:
4c4b4cd2 8872 {
76a01679 8873 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8874 struct type *fixed_record_type =
8875 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8876
529cad9c
PH
8877 /* If STATIC_TYPE is a tagged type and we know the object's address,
8878 then we can determine its tag, and compute the object's actual
0963b4bd 8879 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8880 type (the parent part of the record may have dynamic fields
8881 and the way the location of _tag is expressed may depend on
8882 them). */
529cad9c 8883
1ed6ede0 8884 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8885 {
b50d69b5
JG
8886 struct value *tag =
8887 value_tag_from_contents_and_address
8888 (fixed_record_type,
8889 valaddr,
8890 address);
8891 struct type *real_type = type_from_tag (tag);
8892 struct value *obj =
8893 value_from_contents_and_address (fixed_record_type,
8894 valaddr,
8895 address);
9f1f738a 8896 fixed_record_type = value_type (obj);
76a01679 8897 if (real_type != NULL)
b50d69b5
JG
8898 return to_fixed_record_type
8899 (real_type, NULL,
8900 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8901 }
4af88198
JB
8902
8903 /* Check to see if there is a parallel ___XVZ variable.
8904 If there is, then it provides the actual size of our type. */
8905 else if (ada_type_name (fixed_record_type) != NULL)
8906 {
0d5cff50 8907 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8908 char *xvz_name
8909 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8910 bool xvz_found = false;
4af88198
JB
8911 LONGEST size;
8912
88c15c34 8913 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8914 try
eccab96d
JB
8915 {
8916 xvz_found = get_int_var_value (xvz_name, size);
8917 }
230d2906 8918 catch (const gdb_exception_error &except)
eccab96d
JB
8919 {
8920 /* We found the variable, but somehow failed to read
8921 its value. Rethrow the same error, but with a little
8922 bit more information, to help the user understand
8923 what went wrong (Eg: the variable might have been
8924 optimized out). */
8925 throw_error (except.error,
8926 _("unable to read value of %s (%s)"),
3d6e9d23 8927 xvz_name, except.what ());
eccab96d 8928 }
eccab96d
JB
8929
8930 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8931 {
8932 fixed_record_type = copy_type (fixed_record_type);
8933 TYPE_LENGTH (fixed_record_type) = size;
8934
8935 /* The FIXED_RECORD_TYPE may have be a stub. We have
8936 observed this when the debugging info is STABS, and
8937 apparently it is something that is hard to fix.
8938
8939 In practice, we don't need the actual type definition
8940 at all, because the presence of the XVZ variable allows us
8941 to assume that there must be a XVS type as well, which we
8942 should be able to use later, when we need the actual type
8943 definition.
8944
8945 In the meantime, pretend that the "fixed" type we are
8946 returning is NOT a stub, because this can cause trouble
8947 when using this type to create new types targeting it.
8948 Indeed, the associated creation routines often check
8949 whether the target type is a stub and will try to replace
0963b4bd 8950 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8951 might cause the new type to have the wrong size too.
8952 Consider the case of an array, for instance, where the size
8953 of the array is computed from the number of elements in
8954 our array multiplied by the size of its element. */
8955 TYPE_STUB (fixed_record_type) = 0;
8956 }
8957 }
1ed6ede0 8958 return fixed_record_type;
4c4b4cd2 8959 }
d2e4a39e 8960 case TYPE_CODE_ARRAY:
4c4b4cd2 8961 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8962 case TYPE_CODE_UNION:
8963 if (dval == NULL)
4c4b4cd2 8964 return type;
d2e4a39e 8965 else
4c4b4cd2 8966 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8967 }
14f9c5c9
AS
8968}
8969
f192137b
JB
8970/* The same as ada_to_fixed_type_1, except that it preserves the type
8971 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8972
8973 The typedef layer needs be preserved in order to differentiate between
8974 arrays and array pointers when both types are implemented using the same
8975 fat pointer. In the array pointer case, the pointer is encoded as
8976 a typedef of the pointer type. For instance, considering:
8977
8978 type String_Access is access String;
8979 S1 : String_Access := null;
8980
8981 To the debugger, S1 is defined as a typedef of type String. But
8982 to the user, it is a pointer. So if the user tries to print S1,
8983 we should not dereference the array, but print the array address
8984 instead.
8985
8986 If we didn't preserve the typedef layer, we would lose the fact that
8987 the type is to be presented as a pointer (needs de-reference before
8988 being printed). And we would also use the source-level type name. */
f192137b
JB
8989
8990struct type *
8991ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8992 CORE_ADDR address, struct value *dval, int check_tag)
8993
8994{
8995 struct type *fixed_type =
8996 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8997
96dbd2c1
JB
8998 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8999 then preserve the typedef layer.
9000
9001 Implementation note: We can only check the main-type portion of
9002 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9003 from TYPE now returns a type that has the same instance flags
9004 as TYPE. For instance, if TYPE is a "typedef const", and its
9005 target type is a "struct", then the typedef elimination will return
9006 a "const" version of the target type. See check_typedef for more
9007 details about how the typedef layer elimination is done.
9008
9009 brobecker/2010-11-19: It seems to me that the only case where it is
9010 useful to preserve the typedef layer is when dealing with fat pointers.
9011 Perhaps, we could add a check for that and preserve the typedef layer
9012 only in that situation. But this seems unecessary so far, probably
9013 because we call check_typedef/ada_check_typedef pretty much everywhere.
9014 */
f192137b 9015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9016 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9017 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9018 return type;
9019
9020 return fixed_type;
9021}
9022
14f9c5c9 9023/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9024 TYPE0, but based on no runtime data. */
14f9c5c9 9025
d2e4a39e
AS
9026static struct type *
9027to_static_fixed_type (struct type *type0)
14f9c5c9 9028{
d2e4a39e 9029 struct type *type;
14f9c5c9
AS
9030
9031 if (type0 == NULL)
9032 return NULL;
9033
876cecd0 9034 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9035 return type0;
9036
61ee279c 9037 type0 = ada_check_typedef (type0);
d2e4a39e 9038
14f9c5c9
AS
9039 switch (TYPE_CODE (type0))
9040 {
9041 default:
9042 return type0;
9043 case TYPE_CODE_STRUCT:
9044 type = dynamic_template_type (type0);
d2e4a39e 9045 if (type != NULL)
4c4b4cd2
PH
9046 return template_to_static_fixed_type (type);
9047 else
9048 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9049 case TYPE_CODE_UNION:
9050 type = ada_find_parallel_type (type0, "___XVU");
9051 if (type != NULL)
4c4b4cd2
PH
9052 return template_to_static_fixed_type (type);
9053 else
9054 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9055 }
9056}
9057
4c4b4cd2
PH
9058/* A static approximation of TYPE with all type wrappers removed. */
9059
d2e4a39e
AS
9060static struct type *
9061static_unwrap_type (struct type *type)
14f9c5c9
AS
9062{
9063 if (ada_is_aligner_type (type))
9064 {
61ee279c 9065 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9066 if (ada_type_name (type1) == NULL)
4c4b4cd2 9067 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9068
9069 return static_unwrap_type (type1);
9070 }
d2e4a39e 9071 else
14f9c5c9 9072 {
d2e4a39e 9073 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9074
d2e4a39e 9075 if (raw_real_type == type)
4c4b4cd2 9076 return type;
14f9c5c9 9077 else
4c4b4cd2 9078 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9079 }
9080}
9081
9082/* In some cases, incomplete and private types require
4c4b4cd2 9083 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9084 type Foo;
9085 type FooP is access Foo;
9086 V: FooP;
9087 type Foo is array ...;
4c4b4cd2 9088 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9089 cross-references to such types, we instead substitute for FooP a
9090 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9091 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9092
9093/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9094 exists, otherwise TYPE. */
9095
d2e4a39e 9096struct type *
61ee279c 9097ada_check_typedef (struct type *type)
14f9c5c9 9098{
727e3d2e
JB
9099 if (type == NULL)
9100 return NULL;
9101
736ade86
XR
9102 /* If our type is an access to an unconstrained array, which is encoded
9103 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9104 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9105 what allows us to distinguish between fat pointers that represent
9106 array types, and fat pointers that represent array access types
9107 (in both cases, the compiler implements them as fat pointers). */
736ade86 9108 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9109 return type;
9110
f168693b 9111 type = check_typedef (type);
14f9c5c9 9112 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9113 || !TYPE_STUB (type)
e86ca25f 9114 || TYPE_NAME (type) == NULL)
14f9c5c9 9115 return type;
d2e4a39e 9116 else
14f9c5c9 9117 {
e86ca25f 9118 const char *name = TYPE_NAME (type);
d2e4a39e 9119 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9120
05e522ef
JB
9121 if (type1 == NULL)
9122 return type;
9123
9124 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9125 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9126 types, only for the typedef-to-array types). If that's the case,
9127 strip the typedef layer. */
9128 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9129 type1 = ada_check_typedef (type1);
9130
9131 return type1;
14f9c5c9
AS
9132 }
9133}
9134
9135/* A value representing the data at VALADDR/ADDRESS as described by
9136 type TYPE0, but with a standard (static-sized) type that correctly
9137 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9138 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9139 creation of struct values]. */
14f9c5c9 9140
4c4b4cd2
PH
9141static struct value *
9142ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9143 struct value *val0)
14f9c5c9 9144{
1ed6ede0 9145 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9146
14f9c5c9
AS
9147 if (type == type0 && val0 != NULL)
9148 return val0;
cc0e770c
JB
9149
9150 if (VALUE_LVAL (val0) != lval_memory)
9151 {
9152 /* Our value does not live in memory; it could be a convenience
9153 variable, for instance. Create a not_lval value using val0's
9154 contents. */
9155 return value_from_contents (type, value_contents (val0));
9156 }
9157
9158 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9159}
9160
9161/* A value representing VAL, but with a standard (static-sized) type
9162 that correctly describes it. Does not necessarily create a new
9163 value. */
9164
0c3acc09 9165struct value *
4c4b4cd2
PH
9166ada_to_fixed_value (struct value *val)
9167{
c48db5ca 9168 val = unwrap_value (val);
d8ce9127 9169 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9170 return val;
14f9c5c9 9171}
d2e4a39e 9172\f
14f9c5c9 9173
14f9c5c9
AS
9174/* Attributes */
9175
4c4b4cd2
PH
9176/* Table mapping attribute numbers to names.
9177 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9178
d2e4a39e 9179static const char *attribute_names[] = {
14f9c5c9
AS
9180 "<?>",
9181
d2e4a39e 9182 "first",
14f9c5c9
AS
9183 "last",
9184 "length",
9185 "image",
14f9c5c9
AS
9186 "max",
9187 "min",
4c4b4cd2
PH
9188 "modulus",
9189 "pos",
9190 "size",
9191 "tag",
14f9c5c9 9192 "val",
14f9c5c9
AS
9193 0
9194};
9195
d2e4a39e 9196const char *
4c4b4cd2 9197ada_attribute_name (enum exp_opcode n)
14f9c5c9 9198{
4c4b4cd2
PH
9199 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9200 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9201 else
9202 return attribute_names[0];
9203}
9204
4c4b4cd2 9205/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9206
4c4b4cd2
PH
9207static LONGEST
9208pos_atr (struct value *arg)
14f9c5c9 9209{
24209737
PH
9210 struct value *val = coerce_ref (arg);
9211 struct type *type = value_type (val);
aa715135 9212 LONGEST result;
14f9c5c9 9213
d2e4a39e 9214 if (!discrete_type_p (type))
323e0a4a 9215 error (_("'POS only defined on discrete types"));
14f9c5c9 9216
aa715135
JG
9217 if (!discrete_position (type, value_as_long (val), &result))
9218 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9219
aa715135 9220 return result;
4c4b4cd2
PH
9221}
9222
9223static struct value *
3cb382c9 9224value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9225{
3cb382c9 9226 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9227}
9228
4c4b4cd2 9229/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9230
d2e4a39e
AS
9231static struct value *
9232value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9233{
d2e4a39e 9234 if (!discrete_type_p (type))
323e0a4a 9235 error (_("'VAL only defined on discrete types"));
df407dfe 9236 if (!integer_type_p (value_type (arg)))
323e0a4a 9237 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9238
9239 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9240 {
9241 long pos = value_as_long (arg);
5b4ee69b 9242
14f9c5c9 9243 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9244 error (_("argument to 'VAL out of range"));
14e75d8e 9245 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9246 }
9247 else
9248 return value_from_longest (type, value_as_long (arg));
9249}
14f9c5c9 9250\f
d2e4a39e 9251
4c4b4cd2 9252 /* Evaluation */
14f9c5c9 9253
4c4b4cd2
PH
9254/* True if TYPE appears to be an Ada character type.
9255 [At the moment, this is true only for Character and Wide_Character;
9256 It is a heuristic test that could stand improvement]. */
14f9c5c9 9257
fc913e53 9258bool
d2e4a39e 9259ada_is_character_type (struct type *type)
14f9c5c9 9260{
7b9f71f2
JB
9261 const char *name;
9262
9263 /* If the type code says it's a character, then assume it really is,
9264 and don't check any further. */
9265 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9266 return true;
7b9f71f2
JB
9267
9268 /* Otherwise, assume it's a character type iff it is a discrete type
9269 with a known character type name. */
9270 name = ada_type_name (type);
9271 return (name != NULL
9272 && (TYPE_CODE (type) == TYPE_CODE_INT
9273 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9274 && (strcmp (name, "character") == 0
9275 || strcmp (name, "wide_character") == 0
5a517ebd 9276 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9277 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9278}
9279
4c4b4cd2 9280/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9281
fc913e53 9282bool
ebf56fd3 9283ada_is_string_type (struct type *type)
14f9c5c9 9284{
61ee279c 9285 type = ada_check_typedef (type);
d2e4a39e 9286 if (type != NULL
14f9c5c9 9287 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9288 && (ada_is_simple_array_type (type)
9289 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9290 && ada_array_arity (type) == 1)
9291 {
9292 struct type *elttype = ada_array_element_type (type, 1);
9293
9294 return ada_is_character_type (elttype);
9295 }
d2e4a39e 9296 else
fc913e53 9297 return false;
14f9c5c9
AS
9298}
9299
5bf03f13
JB
9300/* The compiler sometimes provides a parallel XVS type for a given
9301 PAD type. Normally, it is safe to follow the PAD type directly,
9302 but older versions of the compiler have a bug that causes the offset
9303 of its "F" field to be wrong. Following that field in that case
9304 would lead to incorrect results, but this can be worked around
9305 by ignoring the PAD type and using the associated XVS type instead.
9306
9307 Set to True if the debugger should trust the contents of PAD types.
9308 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9309static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9310
9311/* True if TYPE is a struct type introduced by the compiler to force the
9312 alignment of a value. Such types have a single field with a
4c4b4cd2 9313 distinctive name. */
14f9c5c9
AS
9314
9315int
ebf56fd3 9316ada_is_aligner_type (struct type *type)
14f9c5c9 9317{
61ee279c 9318 type = ada_check_typedef (type);
714e53ab 9319
5bf03f13 9320 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9321 return 0;
9322
14f9c5c9 9323 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9324 && TYPE_NFIELDS (type) == 1
9325 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9326}
9327
9328/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9329 the parallel type. */
14f9c5c9 9330
d2e4a39e
AS
9331struct type *
9332ada_get_base_type (struct type *raw_type)
14f9c5c9 9333{
d2e4a39e
AS
9334 struct type *real_type_namer;
9335 struct type *raw_real_type;
14f9c5c9
AS
9336
9337 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9338 return raw_type;
9339
284614f0
JB
9340 if (ada_is_aligner_type (raw_type))
9341 /* The encoding specifies that we should always use the aligner type.
9342 So, even if this aligner type has an associated XVS type, we should
9343 simply ignore it.
9344
9345 According to the compiler gurus, an XVS type parallel to an aligner
9346 type may exist because of a stabs limitation. In stabs, aligner
9347 types are empty because the field has a variable-sized type, and
9348 thus cannot actually be used as an aligner type. As a result,
9349 we need the associated parallel XVS type to decode the type.
9350 Since the policy in the compiler is to not change the internal
9351 representation based on the debugging info format, we sometimes
9352 end up having a redundant XVS type parallel to the aligner type. */
9353 return raw_type;
9354
14f9c5c9 9355 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9356 if (real_type_namer == NULL
14f9c5c9
AS
9357 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9358 || TYPE_NFIELDS (real_type_namer) != 1)
9359 return raw_type;
9360
f80d3ff2
JB
9361 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9362 {
9363 /* This is an older encoding form where the base type needs to be
9364 looked up by name. We prefer the newer enconding because it is
9365 more efficient. */
9366 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9367 if (raw_real_type == NULL)
9368 return raw_type;
9369 else
9370 return raw_real_type;
9371 }
9372
9373 /* The field in our XVS type is a reference to the base type. */
9374 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9375}
14f9c5c9 9376
4c4b4cd2 9377/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9378
d2e4a39e
AS
9379struct type *
9380ada_aligned_type (struct type *type)
14f9c5c9
AS
9381{
9382 if (ada_is_aligner_type (type))
9383 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9384 else
9385 return ada_get_base_type (type);
9386}
9387
9388
9389/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9390 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9391
fc1a4b47
AC
9392const gdb_byte *
9393ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9394{
d2e4a39e 9395 if (ada_is_aligner_type (type))
14f9c5c9 9396 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9397 valaddr +
9398 TYPE_FIELD_BITPOS (type,
9399 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9400 else
9401 return valaddr;
9402}
9403
4c4b4cd2
PH
9404
9405
14f9c5c9 9406/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9407 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9408const char *
9409ada_enum_name (const char *name)
14f9c5c9 9410{
4c4b4cd2
PH
9411 static char *result;
9412 static size_t result_len = 0;
e6a959d6 9413 const char *tmp;
14f9c5c9 9414
4c4b4cd2
PH
9415 /* First, unqualify the enumeration name:
9416 1. Search for the last '.' character. If we find one, then skip
177b42fe 9417 all the preceding characters, the unqualified name starts
76a01679 9418 right after that dot.
4c4b4cd2 9419 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9420 translates dots into "__". Search forward for double underscores,
9421 but stop searching when we hit an overloading suffix, which is
9422 of the form "__" followed by digits. */
4c4b4cd2 9423
c3e5cd34
PH
9424 tmp = strrchr (name, '.');
9425 if (tmp != NULL)
4c4b4cd2
PH
9426 name = tmp + 1;
9427 else
14f9c5c9 9428 {
4c4b4cd2
PH
9429 while ((tmp = strstr (name, "__")) != NULL)
9430 {
9431 if (isdigit (tmp[2]))
9432 break;
9433 else
9434 name = tmp + 2;
9435 }
14f9c5c9
AS
9436 }
9437
9438 if (name[0] == 'Q')
9439 {
14f9c5c9 9440 int v;
5b4ee69b 9441
14f9c5c9 9442 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9443 {
9444 if (sscanf (name + 2, "%x", &v) != 1)
9445 return name;
9446 }
14f9c5c9 9447 else
4c4b4cd2 9448 return name;
14f9c5c9 9449
4c4b4cd2 9450 GROW_VECT (result, result_len, 16);
14f9c5c9 9451 if (isascii (v) && isprint (v))
88c15c34 9452 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9453 else if (name[1] == 'U')
88c15c34 9454 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9455 else
88c15c34 9456 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9457
9458 return result;
9459 }
d2e4a39e 9460 else
4c4b4cd2 9461 {
c3e5cd34
PH
9462 tmp = strstr (name, "__");
9463 if (tmp == NULL)
9464 tmp = strstr (name, "$");
9465 if (tmp != NULL)
4c4b4cd2
PH
9466 {
9467 GROW_VECT (result, result_len, tmp - name + 1);
9468 strncpy (result, name, tmp - name);
9469 result[tmp - name] = '\0';
9470 return result;
9471 }
9472
9473 return name;
9474 }
14f9c5c9
AS
9475}
9476
14f9c5c9
AS
9477/* Evaluate the subexpression of EXP starting at *POS as for
9478 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9479 expression. */
14f9c5c9 9480
d2e4a39e
AS
9481static struct value *
9482evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9483{
4b27a620 9484 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9485}
9486
9487/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9488 value it wraps. */
14f9c5c9 9489
d2e4a39e
AS
9490static struct value *
9491unwrap_value (struct value *val)
14f9c5c9 9492{
df407dfe 9493 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9494
14f9c5c9
AS
9495 if (ada_is_aligner_type (type))
9496 {
de4d072f 9497 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9498 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9499
14f9c5c9 9500 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9501 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9502
9503 return unwrap_value (v);
9504 }
d2e4a39e 9505 else
14f9c5c9 9506 {
d2e4a39e 9507 struct type *raw_real_type =
61ee279c 9508 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9509
5bf03f13
JB
9510 /* If there is no parallel XVS or XVE type, then the value is
9511 already unwrapped. Return it without further modification. */
9512 if ((type == raw_real_type)
9513 && ada_find_parallel_type (type, "___XVE") == NULL)
9514 return val;
14f9c5c9 9515
d2e4a39e 9516 return
4c4b4cd2
PH
9517 coerce_unspec_val_to_type
9518 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9519 value_address (val),
1ed6ede0 9520 NULL, 1));
14f9c5c9
AS
9521 }
9522}
d2e4a39e
AS
9523
9524static struct value *
50eff16b 9525cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9526{
50eff16b
UW
9527 struct value *scale = ada_scaling_factor (value_type (arg));
9528 arg = value_cast (value_type (scale), arg);
14f9c5c9 9529
50eff16b
UW
9530 arg = value_binop (arg, scale, BINOP_MUL);
9531 return value_cast (type, arg);
14f9c5c9
AS
9532}
9533
d2e4a39e 9534static struct value *
50eff16b 9535cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9536{
50eff16b
UW
9537 if (type == value_type (arg))
9538 return arg;
5b4ee69b 9539
50eff16b
UW
9540 struct value *scale = ada_scaling_factor (type);
9541 if (ada_is_fixed_point_type (value_type (arg)))
9542 arg = cast_from_fixed (value_type (scale), arg);
9543 else
9544 arg = value_cast (value_type (scale), arg);
9545
9546 arg = value_binop (arg, scale, BINOP_DIV);
9547 return value_cast (type, arg);
14f9c5c9
AS
9548}
9549
d99dcf51
JB
9550/* Given two array types T1 and T2, return nonzero iff both arrays
9551 contain the same number of elements. */
9552
9553static int
9554ada_same_array_size_p (struct type *t1, struct type *t2)
9555{
9556 LONGEST lo1, hi1, lo2, hi2;
9557
9558 /* Get the array bounds in order to verify that the size of
9559 the two arrays match. */
9560 if (!get_array_bounds (t1, &lo1, &hi1)
9561 || !get_array_bounds (t2, &lo2, &hi2))
9562 error (_("unable to determine array bounds"));
9563
9564 /* To make things easier for size comparison, normalize a bit
9565 the case of empty arrays by making sure that the difference
9566 between upper bound and lower bound is always -1. */
9567 if (lo1 > hi1)
9568 hi1 = lo1 - 1;
9569 if (lo2 > hi2)
9570 hi2 = lo2 - 1;
9571
9572 return (hi1 - lo1 == hi2 - lo2);
9573}
9574
9575/* Assuming that VAL is an array of integrals, and TYPE represents
9576 an array with the same number of elements, but with wider integral
9577 elements, return an array "casted" to TYPE. In practice, this
9578 means that the returned array is built by casting each element
9579 of the original array into TYPE's (wider) element type. */
9580
9581static struct value *
9582ada_promote_array_of_integrals (struct type *type, struct value *val)
9583{
9584 struct type *elt_type = TYPE_TARGET_TYPE (type);
9585 LONGEST lo, hi;
9586 struct value *res;
9587 LONGEST i;
9588
9589 /* Verify that both val and type are arrays of scalars, and
9590 that the size of val's elements is smaller than the size
9591 of type's element. */
9592 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9593 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9594 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9595 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9596 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9597 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9598
9599 if (!get_array_bounds (type, &lo, &hi))
9600 error (_("unable to determine array bounds"));
9601
9602 res = allocate_value (type);
9603
9604 /* Promote each array element. */
9605 for (i = 0; i < hi - lo + 1; i++)
9606 {
9607 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9608
9609 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9610 value_contents_all (elt), TYPE_LENGTH (elt_type));
9611 }
9612
9613 return res;
9614}
9615
4c4b4cd2
PH
9616/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9617 return the converted value. */
9618
d2e4a39e
AS
9619static struct value *
9620coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9621{
df407dfe 9622 struct type *type2 = value_type (val);
5b4ee69b 9623
14f9c5c9
AS
9624 if (type == type2)
9625 return val;
9626
61ee279c
PH
9627 type2 = ada_check_typedef (type2);
9628 type = ada_check_typedef (type);
14f9c5c9 9629
d2e4a39e
AS
9630 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9631 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9632 {
9633 val = ada_value_ind (val);
df407dfe 9634 type2 = value_type (val);
14f9c5c9
AS
9635 }
9636
d2e4a39e 9637 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9638 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9639 {
d99dcf51
JB
9640 if (!ada_same_array_size_p (type, type2))
9641 error (_("cannot assign arrays of different length"));
9642
9643 if (is_integral_type (TYPE_TARGET_TYPE (type))
9644 && is_integral_type (TYPE_TARGET_TYPE (type2))
9645 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9646 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9647 {
9648 /* Allow implicit promotion of the array elements to
9649 a wider type. */
9650 return ada_promote_array_of_integrals (type, val);
9651 }
9652
9653 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9654 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9655 error (_("Incompatible types in assignment"));
04624583 9656 deprecated_set_value_type (val, type);
14f9c5c9 9657 }
d2e4a39e 9658 return val;
14f9c5c9
AS
9659}
9660
4c4b4cd2
PH
9661static struct value *
9662ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9663{
9664 struct value *val;
9665 struct type *type1, *type2;
9666 LONGEST v, v1, v2;
9667
994b9211
AC
9668 arg1 = coerce_ref (arg1);
9669 arg2 = coerce_ref (arg2);
18af8284
JB
9670 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9671 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9672
76a01679
JB
9673 if (TYPE_CODE (type1) != TYPE_CODE_INT
9674 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9675 return value_binop (arg1, arg2, op);
9676
76a01679 9677 switch (op)
4c4b4cd2
PH
9678 {
9679 case BINOP_MOD:
9680 case BINOP_DIV:
9681 case BINOP_REM:
9682 break;
9683 default:
9684 return value_binop (arg1, arg2, op);
9685 }
9686
9687 v2 = value_as_long (arg2);
9688 if (v2 == 0)
323e0a4a 9689 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9690
9691 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9692 return value_binop (arg1, arg2, op);
9693
9694 v1 = value_as_long (arg1);
9695 switch (op)
9696 {
9697 case BINOP_DIV:
9698 v = v1 / v2;
76a01679
JB
9699 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9700 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9701 break;
9702 case BINOP_REM:
9703 v = v1 % v2;
76a01679
JB
9704 if (v * v1 < 0)
9705 v -= v2;
4c4b4cd2
PH
9706 break;
9707 default:
9708 /* Should not reach this point. */
9709 v = 0;
9710 }
9711
9712 val = allocate_value (type1);
990a07ab 9713 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9714 TYPE_LENGTH (value_type (val)),
9715 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9716 return val;
9717}
9718
9719static int
9720ada_value_equal (struct value *arg1, struct value *arg2)
9721{
df407dfe
AC
9722 if (ada_is_direct_array_type (value_type (arg1))
9723 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9724 {
79e8fcaa
JB
9725 struct type *arg1_type, *arg2_type;
9726
f58b38bf
JB
9727 /* Automatically dereference any array reference before
9728 we attempt to perform the comparison. */
9729 arg1 = ada_coerce_ref (arg1);
9730 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9731
4c4b4cd2
PH
9732 arg1 = ada_coerce_to_simple_array (arg1);
9733 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9734
9735 arg1_type = ada_check_typedef (value_type (arg1));
9736 arg2_type = ada_check_typedef (value_type (arg2));
9737
9738 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9739 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9740 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9741 /* FIXME: The following works only for types whose
76a01679
JB
9742 representations use all bits (no padding or undefined bits)
9743 and do not have user-defined equality. */
79e8fcaa
JB
9744 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9745 && memcmp (value_contents (arg1), value_contents (arg2),
9746 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9747 }
9748 return value_equal (arg1, arg2);
9749}
9750
52ce6436
PH
9751/* Total number of component associations in the aggregate starting at
9752 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9753 OP_AGGREGATE. */
52ce6436
PH
9754
9755static int
9756num_component_specs (struct expression *exp, int pc)
9757{
9758 int n, m, i;
5b4ee69b 9759
52ce6436
PH
9760 m = exp->elts[pc + 1].longconst;
9761 pc += 3;
9762 n = 0;
9763 for (i = 0; i < m; i += 1)
9764 {
9765 switch (exp->elts[pc].opcode)
9766 {
9767 default:
9768 n += 1;
9769 break;
9770 case OP_CHOICES:
9771 n += exp->elts[pc + 1].longconst;
9772 break;
9773 }
9774 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9775 }
9776 return n;
9777}
9778
9779/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9780 component of LHS (a simple array or a record), updating *POS past
9781 the expression, assuming that LHS is contained in CONTAINER. Does
9782 not modify the inferior's memory, nor does it modify LHS (unless
9783 LHS == CONTAINER). */
9784
9785static void
9786assign_component (struct value *container, struct value *lhs, LONGEST index,
9787 struct expression *exp, int *pos)
9788{
9789 struct value *mark = value_mark ();
9790 struct value *elt;
0e2da9f0 9791 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9792
0e2da9f0 9793 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9794 {
22601c15
UW
9795 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9796 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9797
52ce6436
PH
9798 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9799 }
9800 else
9801 {
9802 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9803 elt = ada_to_fixed_value (elt);
52ce6436
PH
9804 }
9805
9806 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9807 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9808 else
9809 value_assign_to_component (container, elt,
9810 ada_evaluate_subexp (NULL, exp, pos,
9811 EVAL_NORMAL));
9812
9813 value_free_to_mark (mark);
9814}
9815
9816/* Assuming that LHS represents an lvalue having a record or array
9817 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9818 of that aggregate's value to LHS, advancing *POS past the
9819 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9820 lvalue containing LHS (possibly LHS itself). Does not modify
9821 the inferior's memory, nor does it modify the contents of
0963b4bd 9822 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9823
9824static struct value *
9825assign_aggregate (struct value *container,
9826 struct value *lhs, struct expression *exp,
9827 int *pos, enum noside noside)
9828{
9829 struct type *lhs_type;
9830 int n = exp->elts[*pos+1].longconst;
9831 LONGEST low_index, high_index;
9832 int num_specs;
9833 LONGEST *indices;
9834 int max_indices, num_indices;
52ce6436 9835 int i;
52ce6436
PH
9836
9837 *pos += 3;
9838 if (noside != EVAL_NORMAL)
9839 {
52ce6436
PH
9840 for (i = 0; i < n; i += 1)
9841 ada_evaluate_subexp (NULL, exp, pos, noside);
9842 return container;
9843 }
9844
9845 container = ada_coerce_ref (container);
9846 if (ada_is_direct_array_type (value_type (container)))
9847 container = ada_coerce_to_simple_array (container);
9848 lhs = ada_coerce_ref (lhs);
9849 if (!deprecated_value_modifiable (lhs))
9850 error (_("Left operand of assignment is not a modifiable lvalue."));
9851
0e2da9f0 9852 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9853 if (ada_is_direct_array_type (lhs_type))
9854 {
9855 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9856 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9857 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9858 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9859 }
9860 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9861 {
9862 low_index = 0;
9863 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9864 }
9865 else
9866 error (_("Left-hand side must be array or record."));
9867
9868 num_specs = num_component_specs (exp, *pos - 3);
9869 max_indices = 4 * num_specs + 4;
8d749320 9870 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9871 indices[0] = indices[1] = low_index - 1;
9872 indices[2] = indices[3] = high_index + 1;
9873 num_indices = 4;
9874
9875 for (i = 0; i < n; i += 1)
9876 {
9877 switch (exp->elts[*pos].opcode)
9878 {
1fbf5ada
JB
9879 case OP_CHOICES:
9880 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9881 &num_indices, max_indices,
9882 low_index, high_index);
9883 break;
9884 case OP_POSITIONAL:
9885 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9886 &num_indices, max_indices,
9887 low_index, high_index);
1fbf5ada
JB
9888 break;
9889 case OP_OTHERS:
9890 if (i != n-1)
9891 error (_("Misplaced 'others' clause"));
9892 aggregate_assign_others (container, lhs, exp, pos, indices,
9893 num_indices, low_index, high_index);
9894 break;
9895 default:
9896 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9897 }
9898 }
9899
9900 return container;
9901}
9902
9903/* Assign into the component of LHS indexed by the OP_POSITIONAL
9904 construct at *POS, updating *POS past the construct, given that
9905 the positions are relative to lower bound LOW, where HIGH is the
9906 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9907 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9908 assign_aggregate. */
52ce6436
PH
9909static void
9910aggregate_assign_positional (struct value *container,
9911 struct value *lhs, struct expression *exp,
9912 int *pos, LONGEST *indices, int *num_indices,
9913 int max_indices, LONGEST low, LONGEST high)
9914{
9915 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9916
9917 if (ind - 1 == high)
e1d5a0d2 9918 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9919 if (ind <= high)
9920 {
9921 add_component_interval (ind, ind, indices, num_indices, max_indices);
9922 *pos += 3;
9923 assign_component (container, lhs, ind, exp, pos);
9924 }
9925 else
9926 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9927}
9928
9929/* Assign into the components of LHS indexed by the OP_CHOICES
9930 construct at *POS, updating *POS past the construct, given that
9931 the allowable indices are LOW..HIGH. Record the indices assigned
9932 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9933 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9934static void
9935aggregate_assign_from_choices (struct value *container,
9936 struct value *lhs, struct expression *exp,
9937 int *pos, LONGEST *indices, int *num_indices,
9938 int max_indices, LONGEST low, LONGEST high)
9939{
9940 int j;
9941 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9942 int choice_pos, expr_pc;
9943 int is_array = ada_is_direct_array_type (value_type (lhs));
9944
9945 choice_pos = *pos += 3;
9946
9947 for (j = 0; j < n_choices; j += 1)
9948 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9949 expr_pc = *pos;
9950 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9951
9952 for (j = 0; j < n_choices; j += 1)
9953 {
9954 LONGEST lower, upper;
9955 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9956
52ce6436
PH
9957 if (op == OP_DISCRETE_RANGE)
9958 {
9959 choice_pos += 1;
9960 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9961 EVAL_NORMAL));
9962 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9963 EVAL_NORMAL));
9964 }
9965 else if (is_array)
9966 {
9967 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9968 EVAL_NORMAL));
9969 upper = lower;
9970 }
9971 else
9972 {
9973 int ind;
0d5cff50 9974 const char *name;
5b4ee69b 9975
52ce6436
PH
9976 switch (op)
9977 {
9978 case OP_NAME:
9979 name = &exp->elts[choice_pos + 2].string;
9980 break;
9981 case OP_VAR_VALUE:
9982 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9983 break;
9984 default:
9985 error (_("Invalid record component association."));
9986 }
9987 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9988 ind = 0;
9989 if (! find_struct_field (name, value_type (lhs), 0,
9990 NULL, NULL, NULL, NULL, &ind))
9991 error (_("Unknown component name: %s."), name);
9992 lower = upper = ind;
9993 }
9994
9995 if (lower <= upper && (lower < low || upper > high))
9996 error (_("Index in component association out of bounds."));
9997
9998 add_component_interval (lower, upper, indices, num_indices,
9999 max_indices);
10000 while (lower <= upper)
10001 {
10002 int pos1;
5b4ee69b 10003
52ce6436
PH
10004 pos1 = expr_pc;
10005 assign_component (container, lhs, lower, exp, &pos1);
10006 lower += 1;
10007 }
10008 }
10009}
10010
10011/* Assign the value of the expression in the OP_OTHERS construct in
10012 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10013 have not been previously assigned. The index intervals already assigned
10014 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10015 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10016static void
10017aggregate_assign_others (struct value *container,
10018 struct value *lhs, struct expression *exp,
10019 int *pos, LONGEST *indices, int num_indices,
10020 LONGEST low, LONGEST high)
10021{
10022 int i;
5ce64950 10023 int expr_pc = *pos + 1;
52ce6436
PH
10024
10025 for (i = 0; i < num_indices - 2; i += 2)
10026 {
10027 LONGEST ind;
5b4ee69b 10028
52ce6436
PH
10029 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10030 {
5ce64950 10031 int localpos;
5b4ee69b 10032
5ce64950
MS
10033 localpos = expr_pc;
10034 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10035 }
10036 }
10037 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10038}
10039
10040/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10041 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10042 modifying *SIZE as needed. It is an error if *SIZE exceeds
10043 MAX_SIZE. The resulting intervals do not overlap. */
10044static void
10045add_component_interval (LONGEST low, LONGEST high,
10046 LONGEST* indices, int *size, int max_size)
10047{
10048 int i, j;
5b4ee69b 10049
52ce6436
PH
10050 for (i = 0; i < *size; i += 2) {
10051 if (high >= indices[i] && low <= indices[i + 1])
10052 {
10053 int kh;
5b4ee69b 10054
52ce6436
PH
10055 for (kh = i + 2; kh < *size; kh += 2)
10056 if (high < indices[kh])
10057 break;
10058 if (low < indices[i])
10059 indices[i] = low;
10060 indices[i + 1] = indices[kh - 1];
10061 if (high > indices[i + 1])
10062 indices[i + 1] = high;
10063 memcpy (indices + i + 2, indices + kh, *size - kh);
10064 *size -= kh - i - 2;
10065 return;
10066 }
10067 else if (high < indices[i])
10068 break;
10069 }
10070
10071 if (*size == max_size)
10072 error (_("Internal error: miscounted aggregate components."));
10073 *size += 2;
10074 for (j = *size-1; j >= i+2; j -= 1)
10075 indices[j] = indices[j - 2];
10076 indices[i] = low;
10077 indices[i + 1] = high;
10078}
10079
6e48bd2c
JB
10080/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10081 is different. */
10082
10083static struct value *
b7e22850 10084ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10085{
10086 if (type == ada_check_typedef (value_type (arg2)))
10087 return arg2;
10088
10089 if (ada_is_fixed_point_type (type))
95f39a5b 10090 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10091
10092 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10093 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10094
10095 return value_cast (type, arg2);
10096}
10097
284614f0
JB
10098/* Evaluating Ada expressions, and printing their result.
10099 ------------------------------------------------------
10100
21649b50
JB
10101 1. Introduction:
10102 ----------------
10103
284614f0
JB
10104 We usually evaluate an Ada expression in order to print its value.
10105 We also evaluate an expression in order to print its type, which
10106 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10107 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10108 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10109 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10110 similar.
10111
10112 Evaluating expressions is a little more complicated for Ada entities
10113 than it is for entities in languages such as C. The main reason for
10114 this is that Ada provides types whose definition might be dynamic.
10115 One example of such types is variant records. Or another example
10116 would be an array whose bounds can only be known at run time.
10117
10118 The following description is a general guide as to what should be
10119 done (and what should NOT be done) in order to evaluate an expression
10120 involving such types, and when. This does not cover how the semantic
10121 information is encoded by GNAT as this is covered separatly. For the
10122 document used as the reference for the GNAT encoding, see exp_dbug.ads
10123 in the GNAT sources.
10124
10125 Ideally, we should embed each part of this description next to its
10126 associated code. Unfortunately, the amount of code is so vast right
10127 now that it's hard to see whether the code handling a particular
10128 situation might be duplicated or not. One day, when the code is
10129 cleaned up, this guide might become redundant with the comments
10130 inserted in the code, and we might want to remove it.
10131
21649b50
JB
10132 2. ``Fixing'' an Entity, the Simple Case:
10133 -----------------------------------------
10134
284614f0
JB
10135 When evaluating Ada expressions, the tricky issue is that they may
10136 reference entities whose type contents and size are not statically
10137 known. Consider for instance a variant record:
10138
10139 type Rec (Empty : Boolean := True) is record
10140 case Empty is
10141 when True => null;
10142 when False => Value : Integer;
10143 end case;
10144 end record;
10145 Yes : Rec := (Empty => False, Value => 1);
10146 No : Rec := (empty => True);
10147
10148 The size and contents of that record depends on the value of the
10149 descriminant (Rec.Empty). At this point, neither the debugging
10150 information nor the associated type structure in GDB are able to
10151 express such dynamic types. So what the debugger does is to create
10152 "fixed" versions of the type that applies to the specific object.
10153 We also informally refer to this opperation as "fixing" an object,
10154 which means creating its associated fixed type.
10155
10156 Example: when printing the value of variable "Yes" above, its fixed
10157 type would look like this:
10158
10159 type Rec is record
10160 Empty : Boolean;
10161 Value : Integer;
10162 end record;
10163
10164 On the other hand, if we printed the value of "No", its fixed type
10165 would become:
10166
10167 type Rec is record
10168 Empty : Boolean;
10169 end record;
10170
10171 Things become a little more complicated when trying to fix an entity
10172 with a dynamic type that directly contains another dynamic type,
10173 such as an array of variant records, for instance. There are
10174 two possible cases: Arrays, and records.
10175
21649b50
JB
10176 3. ``Fixing'' Arrays:
10177 ---------------------
10178
10179 The type structure in GDB describes an array in terms of its bounds,
10180 and the type of its elements. By design, all elements in the array
10181 have the same type and we cannot represent an array of variant elements
10182 using the current type structure in GDB. When fixing an array,
10183 we cannot fix the array element, as we would potentially need one
10184 fixed type per element of the array. As a result, the best we can do
10185 when fixing an array is to produce an array whose bounds and size
10186 are correct (allowing us to read it from memory), but without having
10187 touched its element type. Fixing each element will be done later,
10188 when (if) necessary.
10189
10190 Arrays are a little simpler to handle than records, because the same
10191 amount of memory is allocated for each element of the array, even if
1b536f04 10192 the amount of space actually used by each element differs from element
21649b50 10193 to element. Consider for instance the following array of type Rec:
284614f0
JB
10194
10195 type Rec_Array is array (1 .. 2) of Rec;
10196
1b536f04
JB
10197 The actual amount of memory occupied by each element might be different
10198 from element to element, depending on the value of their discriminant.
21649b50 10199 But the amount of space reserved for each element in the array remains
1b536f04 10200 fixed regardless. So we simply need to compute that size using
21649b50
JB
10201 the debugging information available, from which we can then determine
10202 the array size (we multiply the number of elements of the array by
10203 the size of each element).
10204
10205 The simplest case is when we have an array of a constrained element
10206 type. For instance, consider the following type declarations:
10207
10208 type Bounded_String (Max_Size : Integer) is
10209 Length : Integer;
10210 Buffer : String (1 .. Max_Size);
10211 end record;
10212 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10213
10214 In this case, the compiler describes the array as an array of
10215 variable-size elements (identified by its XVS suffix) for which
10216 the size can be read in the parallel XVZ variable.
10217
10218 In the case of an array of an unconstrained element type, the compiler
10219 wraps the array element inside a private PAD type. This type should not
10220 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10221 that we also use the adjective "aligner" in our code to designate
10222 these wrapper types.
10223
1b536f04 10224 In some cases, the size allocated for each element is statically
21649b50
JB
10225 known. In that case, the PAD type already has the correct size,
10226 and the array element should remain unfixed.
10227
10228 But there are cases when this size is not statically known.
10229 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10230
10231 type Dynamic is array (1 .. Five) of Integer;
10232 type Wrapper (Has_Length : Boolean := False) is record
10233 Data : Dynamic;
10234 case Has_Length is
10235 when True => Length : Integer;
10236 when False => null;
10237 end case;
10238 end record;
10239 type Wrapper_Array is array (1 .. 2) of Wrapper;
10240
10241 Hello : Wrapper_Array := (others => (Has_Length => True,
10242 Data => (others => 17),
10243 Length => 1));
10244
10245
10246 The debugging info would describe variable Hello as being an
10247 array of a PAD type. The size of that PAD type is not statically
10248 known, but can be determined using a parallel XVZ variable.
10249 In that case, a copy of the PAD type with the correct size should
10250 be used for the fixed array.
10251
21649b50
JB
10252 3. ``Fixing'' record type objects:
10253 ----------------------------------
10254
10255 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10256 record types. In this case, in order to compute the associated
10257 fixed type, we need to determine the size and offset of each of
10258 its components. This, in turn, requires us to compute the fixed
10259 type of each of these components.
10260
10261 Consider for instance the example:
10262
10263 type Bounded_String (Max_Size : Natural) is record
10264 Str : String (1 .. Max_Size);
10265 Length : Natural;
10266 end record;
10267 My_String : Bounded_String (Max_Size => 10);
10268
10269 In that case, the position of field "Length" depends on the size
10270 of field Str, which itself depends on the value of the Max_Size
21649b50 10271 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10272 we need to fix the type of field Str. Therefore, fixing a variant
10273 record requires us to fix each of its components.
10274
10275 However, if a component does not have a dynamic size, the component
10276 should not be fixed. In particular, fields that use a PAD type
10277 should not fixed. Here is an example where this might happen
10278 (assuming type Rec above):
10279
10280 type Container (Big : Boolean) is record
10281 First : Rec;
10282 After : Integer;
10283 case Big is
10284 when True => Another : Integer;
10285 when False => null;
10286 end case;
10287 end record;
10288 My_Container : Container := (Big => False,
10289 First => (Empty => True),
10290 After => 42);
10291
10292 In that example, the compiler creates a PAD type for component First,
10293 whose size is constant, and then positions the component After just
10294 right after it. The offset of component After is therefore constant
10295 in this case.
10296
10297 The debugger computes the position of each field based on an algorithm
10298 that uses, among other things, the actual position and size of the field
21649b50
JB
10299 preceding it. Let's now imagine that the user is trying to print
10300 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10301 end up computing the offset of field After based on the size of the
10302 fixed version of field First. And since in our example First has
10303 only one actual field, the size of the fixed type is actually smaller
10304 than the amount of space allocated to that field, and thus we would
10305 compute the wrong offset of field After.
10306
21649b50
JB
10307 To make things more complicated, we need to watch out for dynamic
10308 components of variant records (identified by the ___XVL suffix in
10309 the component name). Even if the target type is a PAD type, the size
10310 of that type might not be statically known. So the PAD type needs
10311 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10312 we might end up with the wrong size for our component. This can be
10313 observed with the following type declarations:
284614f0
JB
10314
10315 type Octal is new Integer range 0 .. 7;
10316 type Octal_Array is array (Positive range <>) of Octal;
10317 pragma Pack (Octal_Array);
10318
10319 type Octal_Buffer (Size : Positive) is record
10320 Buffer : Octal_Array (1 .. Size);
10321 Length : Integer;
10322 end record;
10323
10324 In that case, Buffer is a PAD type whose size is unset and needs
10325 to be computed by fixing the unwrapped type.
10326
21649b50
JB
10327 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10328 ----------------------------------------------------------
10329
10330 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10331 thus far, be actually fixed?
10332
10333 The answer is: Only when referencing that element. For instance
10334 when selecting one component of a record, this specific component
10335 should be fixed at that point in time. Or when printing the value
10336 of a record, each component should be fixed before its value gets
10337 printed. Similarly for arrays, the element of the array should be
10338 fixed when printing each element of the array, or when extracting
10339 one element out of that array. On the other hand, fixing should
10340 not be performed on the elements when taking a slice of an array!
10341
31432a67 10342 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10343 size of each field is that we end up also miscomputing the size
10344 of the containing type. This can have adverse results when computing
10345 the value of an entity. GDB fetches the value of an entity based
10346 on the size of its type, and thus a wrong size causes GDB to fetch
10347 the wrong amount of memory. In the case where the computed size is
10348 too small, GDB fetches too little data to print the value of our
31432a67 10349 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10350 past the buffer containing the data =:-o. */
10351
ced9779b
JB
10352/* Evaluate a subexpression of EXP, at index *POS, and return a value
10353 for that subexpression cast to TO_TYPE. Advance *POS over the
10354 subexpression. */
10355
10356static value *
10357ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10358 enum noside noside, struct type *to_type)
10359{
10360 int pc = *pos;
10361
10362 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10363 || exp->elts[pc].opcode == OP_VAR_VALUE)
10364 {
10365 (*pos) += 4;
10366
10367 value *val;
10368 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10369 {
10370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10371 return value_zero (to_type, not_lval);
10372
10373 val = evaluate_var_msym_value (noside,
10374 exp->elts[pc + 1].objfile,
10375 exp->elts[pc + 2].msymbol);
10376 }
10377 else
10378 val = evaluate_var_value (noside,
10379 exp->elts[pc + 1].block,
10380 exp->elts[pc + 2].symbol);
10381
10382 if (noside == EVAL_SKIP)
10383 return eval_skip_value (exp);
10384
10385 val = ada_value_cast (to_type, val);
10386
10387 /* Follow the Ada language semantics that do not allow taking
10388 an address of the result of a cast (view conversion in Ada). */
10389 if (VALUE_LVAL (val) == lval_memory)
10390 {
10391 if (value_lazy (val))
10392 value_fetch_lazy (val);
10393 VALUE_LVAL (val) = not_lval;
10394 }
10395 return val;
10396 }
10397
10398 value *val = evaluate_subexp (to_type, exp, pos, noside);
10399 if (noside == EVAL_SKIP)
10400 return eval_skip_value (exp);
10401 return ada_value_cast (to_type, val);
10402}
10403
284614f0
JB
10404/* Implement the evaluate_exp routine in the exp_descriptor structure
10405 for the Ada language. */
10406
52ce6436 10407static struct value *
ebf56fd3 10408ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10409 int *pos, enum noside noside)
14f9c5c9
AS
10410{
10411 enum exp_opcode op;
b5385fc0 10412 int tem;
14f9c5c9 10413 int pc;
5ec18f2b 10414 int preeval_pos;
14f9c5c9
AS
10415 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10416 struct type *type;
52ce6436 10417 int nargs, oplen;
d2e4a39e 10418 struct value **argvec;
14f9c5c9 10419
d2e4a39e
AS
10420 pc = *pos;
10421 *pos += 1;
14f9c5c9
AS
10422 op = exp->elts[pc].opcode;
10423
d2e4a39e 10424 switch (op)
14f9c5c9
AS
10425 {
10426 default:
10427 *pos -= 1;
6e48bd2c 10428 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10429
10430 if (noside == EVAL_NORMAL)
10431 arg1 = unwrap_value (arg1);
6e48bd2c 10432
edd079d9 10433 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10434 then we need to perform the conversion manually, because
10435 evaluate_subexp_standard doesn't do it. This conversion is
10436 necessary in Ada because the different kinds of float/fixed
10437 types in Ada have different representations.
10438
10439 Similarly, we need to perform the conversion from OP_LONG
10440 ourselves. */
edd079d9 10441 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10442 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10443
10444 return arg1;
4c4b4cd2
PH
10445
10446 case OP_STRING:
10447 {
76a01679 10448 struct value *result;
5b4ee69b 10449
76a01679
JB
10450 *pos -= 1;
10451 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10452 /* The result type will have code OP_STRING, bashed there from
10453 OP_ARRAY. Bash it back. */
df407dfe
AC
10454 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10455 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10456 return result;
4c4b4cd2 10457 }
14f9c5c9
AS
10458
10459 case UNOP_CAST:
10460 (*pos) += 2;
10461 type = exp->elts[pc + 1].type;
ced9779b 10462 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10463
4c4b4cd2
PH
10464 case UNOP_QUAL:
10465 (*pos) += 2;
10466 type = exp->elts[pc + 1].type;
10467 return ada_evaluate_subexp (type, exp, pos, noside);
10468
14f9c5c9
AS
10469 case BINOP_ASSIGN:
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10471 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10472 {
10473 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10474 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10475 return arg1;
10476 return ada_value_assign (arg1, arg1);
10477 }
003f3813
JB
10478 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10479 except if the lhs of our assignment is a convenience variable.
10480 In the case of assigning to a convenience variable, the lhs
10481 should be exactly the result of the evaluation of the rhs. */
10482 type = value_type (arg1);
10483 if (VALUE_LVAL (arg1) == lval_internalvar)
10484 type = NULL;
10485 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10486 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10487 return arg1;
f411722c
TT
10488 if (VALUE_LVAL (arg1) == lval_internalvar)
10489 {
10490 /* Nothing. */
10491 }
10492 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10493 arg2 = cast_to_fixed (value_type (arg1), arg2);
10494 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10495 error
323e0a4a 10496 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10497 else
df407dfe 10498 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10499 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10500
10501 case BINOP_ADD:
10502 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10503 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10504 if (noside == EVAL_SKIP)
4c4b4cd2 10505 goto nosideret;
2ac8a782
JB
10506 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10507 return (value_from_longest
10508 (value_type (arg1),
10509 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10510 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10511 return (value_from_longest
10512 (value_type (arg2),
10513 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10514 if ((ada_is_fixed_point_type (value_type (arg1))
10515 || ada_is_fixed_point_type (value_type (arg2)))
10516 && value_type (arg1) != value_type (arg2))
323e0a4a 10517 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10518 /* Do the addition, and cast the result to the type of the first
10519 argument. We cannot cast the result to a reference type, so if
10520 ARG1 is a reference type, find its underlying type. */
10521 type = value_type (arg1);
10522 while (TYPE_CODE (type) == TYPE_CODE_REF)
10523 type = TYPE_TARGET_TYPE (type);
f44316fa 10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10525 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10526
10527 case BINOP_SUB:
10528 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10529 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10530 if (noside == EVAL_SKIP)
4c4b4cd2 10531 goto nosideret;
2ac8a782
JB
10532 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10533 return (value_from_longest
10534 (value_type (arg1),
10535 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10536 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10537 return (value_from_longest
10538 (value_type (arg2),
10539 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10540 if ((ada_is_fixed_point_type (value_type (arg1))
10541 || ada_is_fixed_point_type (value_type (arg2)))
10542 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10543 error (_("Operands of fixed-point subtraction "
10544 "must have the same type"));
b7789565
JB
10545 /* Do the substraction, and cast the result to the type of the first
10546 argument. We cannot cast the result to a reference type, so if
10547 ARG1 is a reference type, find its underlying type. */
10548 type = value_type (arg1);
10549 while (TYPE_CODE (type) == TYPE_CODE_REF)
10550 type = TYPE_TARGET_TYPE (type);
f44316fa 10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10552 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10553
10554 case BINOP_MUL:
10555 case BINOP_DIV:
e1578042
JB
10556 case BINOP_REM:
10557 case BINOP_MOD:
14f9c5c9
AS
10558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10559 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10560 if (noside == EVAL_SKIP)
4c4b4cd2 10561 goto nosideret;
e1578042 10562 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10563 {
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10565 return value_zero (value_type (arg1), not_lval);
10566 }
14f9c5c9 10567 else
4c4b4cd2 10568 {
a53b7a21 10569 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10570 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10571 arg1 = cast_from_fixed (type, arg1);
df407dfe 10572 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10573 arg2 = cast_from_fixed (type, arg2);
f44316fa 10574 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10575 return ada_value_binop (arg1, arg2, op);
10576 }
10577
4c4b4cd2
PH
10578 case BINOP_EQUAL:
10579 case BINOP_NOTEQUAL:
14f9c5c9 10580 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10581 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10582 if (noside == EVAL_SKIP)
76a01679 10583 goto nosideret;
4c4b4cd2 10584 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10585 tem = 0;
4c4b4cd2 10586 else
f44316fa
UW
10587 {
10588 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10589 tem = ada_value_equal (arg1, arg2);
10590 }
4c4b4cd2 10591 if (op == BINOP_NOTEQUAL)
76a01679 10592 tem = !tem;
fbb06eb1
UW
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10595
10596 case UNOP_NEG:
10597 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10598 if (noside == EVAL_SKIP)
10599 goto nosideret;
df407dfe
AC
10600 else if (ada_is_fixed_point_type (value_type (arg1)))
10601 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10602 else
f44316fa
UW
10603 {
10604 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10605 return value_neg (arg1);
10606 }
4c4b4cd2 10607
2330c6c6
JB
10608 case BINOP_LOGICAL_AND:
10609 case BINOP_LOGICAL_OR:
10610 case UNOP_LOGICAL_NOT:
000d5124
JB
10611 {
10612 struct value *val;
10613
10614 *pos -= 1;
10615 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10616 type = language_bool_type (exp->language_defn, exp->gdbarch);
10617 return value_cast (type, val);
000d5124 10618 }
2330c6c6
JB
10619
10620 case BINOP_BITWISE_AND:
10621 case BINOP_BITWISE_IOR:
10622 case BINOP_BITWISE_XOR:
000d5124
JB
10623 {
10624 struct value *val;
10625
10626 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10627 *pos = pc;
10628 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10629
10630 return value_cast (value_type (arg1), val);
10631 }
2330c6c6 10632
14f9c5c9
AS
10633 case OP_VAR_VALUE:
10634 *pos -= 1;
6799def4 10635
14f9c5c9 10636 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10637 {
10638 *pos += 4;
10639 goto nosideret;
10640 }
da5c522f
JB
10641
10642 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10643 /* Only encountered when an unresolved symbol occurs in a
10644 context other than a function call, in which case, it is
52ce6436 10645 invalid. */
323e0a4a 10646 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10647 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10648
10649 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10650 {
0c1f74cf 10651 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10652 /* Check to see if this is a tagged type. We also need to handle
10653 the case where the type is a reference to a tagged type, but
10654 we have to be careful to exclude pointers to tagged types.
10655 The latter should be shown as usual (as a pointer), whereas
10656 a reference should mostly be transparent to the user. */
10657 if (ada_is_tagged_type (type, 0)
023db19c 10658 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10659 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10660 {
10661 /* Tagged types are a little special in the fact that the real
10662 type is dynamic and can only be determined by inspecting the
10663 object's tag. This means that we need to get the object's
10664 value first (EVAL_NORMAL) and then extract the actual object
10665 type from its tag.
10666
10667 Note that we cannot skip the final step where we extract
10668 the object type from its tag, because the EVAL_NORMAL phase
10669 results in dynamic components being resolved into fixed ones.
10670 This can cause problems when trying to print the type
10671 description of tagged types whose parent has a dynamic size:
10672 We use the type name of the "_parent" component in order
10673 to print the name of the ancestor type in the type description.
10674 If that component had a dynamic size, the resolution into
10675 a fixed type would result in the loss of that type name,
10676 thus preventing us from printing the name of the ancestor
10677 type in the type description. */
10678 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10679
10680 if (TYPE_CODE (type) != TYPE_CODE_REF)
10681 {
10682 struct type *actual_type;
10683
10684 actual_type = type_from_tag (ada_value_tag (arg1));
10685 if (actual_type == NULL)
10686 /* If, for some reason, we were unable to determine
10687 the actual type from the tag, then use the static
10688 approximation that we just computed as a fallback.
10689 This can happen if the debugging information is
10690 incomplete, for instance. */
10691 actual_type = type;
10692 return value_zero (actual_type, not_lval);
10693 }
10694 else
10695 {
10696 /* In the case of a ref, ada_coerce_ref takes care
10697 of determining the actual type. But the evaluation
10698 should return a ref as it should be valid to ask
10699 for its address; so rebuild a ref after coerce. */
10700 arg1 = ada_coerce_ref (arg1);
a65cfae5 10701 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10702 }
10703 }
0c1f74cf 10704
84754697
JB
10705 /* Records and unions for which GNAT encodings have been
10706 generated need to be statically fixed as well.
10707 Otherwise, non-static fixing produces a type where
10708 all dynamic properties are removed, which prevents "ptype"
10709 from being able to completely describe the type.
10710 For instance, a case statement in a variant record would be
10711 replaced by the relevant components based on the actual
10712 value of the discriminants. */
10713 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10714 && dynamic_template_type (type) != NULL)
10715 || (TYPE_CODE (type) == TYPE_CODE_UNION
10716 && ada_find_parallel_type (type, "___XVU") != NULL))
10717 {
10718 *pos += 4;
10719 return value_zero (to_static_fixed_type (type), not_lval);
10720 }
4c4b4cd2 10721 }
da5c522f
JB
10722
10723 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10724 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10725
10726 case OP_FUNCALL:
10727 (*pos) += 2;
10728
10729 /* Allocate arg vector, including space for the function to be
10730 called in argvec[0] and a terminating NULL. */
10731 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10732 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10733
10734 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10735 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10736 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10737 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10738 else
10739 {
10740 for (tem = 0; tem <= nargs; tem += 1)
10741 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 argvec[tem] = 0;
10743
10744 if (noside == EVAL_SKIP)
10745 goto nosideret;
10746 }
10747
ad82864c
JB
10748 if (ada_is_constrained_packed_array_type
10749 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10750 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10751 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10752 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10753 /* This is a packed array that has already been fixed, and
10754 therefore already coerced to a simple array. Nothing further
10755 to do. */
10756 ;
e6c2c623
PMR
10757 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10758 {
10759 /* Make sure we dereference references so that all the code below
10760 feels like it's really handling the referenced value. Wrapping
10761 types (for alignment) may be there, so make sure we strip them as
10762 well. */
10763 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10764 }
10765 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10766 && VALUE_LVAL (argvec[0]) == lval_memory)
10767 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10768
df407dfe 10769 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10770
10771 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10772 them. So, if this is an array typedef (encoding use for array
10773 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10774 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10775 type = ada_typedef_target_type (type);
10776
4c4b4cd2
PH
10777 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10778 {
61ee279c 10779 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10780 {
10781 case TYPE_CODE_FUNC:
61ee279c 10782 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10783 break;
10784 case TYPE_CODE_ARRAY:
10785 break;
10786 case TYPE_CODE_STRUCT:
10787 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10788 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10789 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10790 break;
10791 default:
323e0a4a 10792 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10793 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10794 break;
10795 }
10796 }
10797
10798 switch (TYPE_CODE (type))
10799 {
10800 case TYPE_CODE_FUNC:
10801 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10802 {
7022349d
PA
10803 if (TYPE_TARGET_TYPE (type) == NULL)
10804 error_call_unknown_return_type (NULL);
10805 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10806 }
e71585ff
PA
10807 return call_function_by_hand (argvec[0], NULL,
10808 gdb::make_array_view (argvec + 1,
10809 nargs));
c8ea1972
PH
10810 case TYPE_CODE_INTERNAL_FUNCTION:
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 /* We don't know anything about what the internal
10813 function might return, but we have to return
10814 something. */
10815 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10816 not_lval);
10817 else
10818 return call_internal_function (exp->gdbarch, exp->language_defn,
10819 argvec[0], nargs, argvec + 1);
10820
4c4b4cd2
PH
10821 case TYPE_CODE_STRUCT:
10822 {
10823 int arity;
10824
4c4b4cd2
PH
10825 arity = ada_array_arity (type);
10826 type = ada_array_element_type (type, nargs);
10827 if (type == NULL)
323e0a4a 10828 error (_("cannot subscript or call a record"));
4c4b4cd2 10829 if (arity != nargs)
323e0a4a 10830 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10831 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10832 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10833 return
10834 unwrap_value (ada_value_subscript
10835 (argvec[0], nargs, argvec + 1));
10836 }
10837 case TYPE_CODE_ARRAY:
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 type = ada_array_element_type (type, nargs);
10841 if (type == NULL)
323e0a4a 10842 error (_("element type of array unknown"));
4c4b4cd2 10843 else
0a07e705 10844 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10845 }
10846 return
10847 unwrap_value (ada_value_subscript
10848 (ada_coerce_to_simple_array (argvec[0]),
10849 nargs, argvec + 1));
10850 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10851 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10852 {
deede10c 10853 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10854 type = ada_array_element_type (type, nargs);
10855 if (type == NULL)
323e0a4a 10856 error (_("element type of array unknown"));
4c4b4cd2 10857 else
0a07e705 10858 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10859 }
10860 return
deede10c
JB
10861 unwrap_value (ada_value_ptr_subscript (argvec[0],
10862 nargs, argvec + 1));
4c4b4cd2
PH
10863
10864 default:
e1d5a0d2
PH
10865 error (_("Attempt to index or call something other than an "
10866 "array or function"));
4c4b4cd2
PH
10867 }
10868
10869 case TERNOP_SLICE:
10870 {
10871 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10872 struct value *low_bound_val =
10873 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10874 struct value *high_bound_val =
10875 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10876 LONGEST low_bound;
10877 LONGEST high_bound;
5b4ee69b 10878
994b9211
AC
10879 low_bound_val = coerce_ref (low_bound_val);
10880 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10881 low_bound = value_as_long (low_bound_val);
10882 high_bound = value_as_long (high_bound_val);
963a6417 10883
4c4b4cd2
PH
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886
4c4b4cd2
PH
10887 /* If this is a reference to an aligner type, then remove all
10888 the aligners. */
df407dfe
AC
10889 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10890 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10891 TYPE_TARGET_TYPE (value_type (array)) =
10892 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10893
ad82864c 10894 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10895 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10896
10897 /* If this is a reference to an array or an array lvalue,
10898 convert to a pointer. */
df407dfe
AC
10899 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10900 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10901 && VALUE_LVAL (array) == lval_memory))
10902 array = value_addr (array);
10903
1265e4aa 10904 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10905 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10906 (value_type (array))))
bff8c71f
TT
10907 return empty_array (ada_type_of_array (array, 0), low_bound,
10908 high_bound);
4c4b4cd2
PH
10909
10910 array = ada_coerce_to_simple_array_ptr (array);
10911
714e53ab
PH
10912 /* If we have more than one level of pointer indirection,
10913 dereference the value until we get only one level. */
df407dfe
AC
10914 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10915 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10916 == TYPE_CODE_PTR))
10917 array = value_ind (array);
10918
10919 /* Make sure we really do have an array type before going further,
10920 to avoid a SEGV when trying to get the index type or the target
10921 type later down the road if the debug info generated by
10922 the compiler is incorrect or incomplete. */
df407dfe 10923 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10924 error (_("cannot take slice of non-array"));
714e53ab 10925
828292f2
JB
10926 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10927 == TYPE_CODE_PTR)
4c4b4cd2 10928 {
828292f2
JB
10929 struct type *type0 = ada_check_typedef (value_type (array));
10930
0b5d8877 10931 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10932 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10933 else
10934 {
10935 struct type *arr_type0 =
828292f2 10936 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10937
f5938064
JG
10938 return ada_value_slice_from_ptr (array, arr_type0,
10939 longest_to_int (low_bound),
10940 longest_to_int (high_bound));
4c4b4cd2
PH
10941 }
10942 }
10943 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10944 return array;
10945 else if (high_bound < low_bound)
bff8c71f 10946 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10947 else
529cad9c
PH
10948 return ada_value_slice (array, longest_to_int (low_bound),
10949 longest_to_int (high_bound));
4c4b4cd2 10950 }
14f9c5c9 10951
4c4b4cd2
PH
10952 case UNOP_IN_RANGE:
10953 (*pos) += 2;
10954 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10955 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10956
14f9c5c9 10957 if (noside == EVAL_SKIP)
4c4b4cd2 10958 goto nosideret;
14f9c5c9 10959
4c4b4cd2
PH
10960 switch (TYPE_CODE (type))
10961 {
10962 default:
e1d5a0d2
PH
10963 lim_warning (_("Membership test incompletely implemented; "
10964 "always returns true"));
fbb06eb1
UW
10965 type = language_bool_type (exp->language_defn, exp->gdbarch);
10966 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10967
10968 case TYPE_CODE_RANGE:
030b4912
UW
10969 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10970 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10971 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10973 type = language_bool_type (exp->language_defn, exp->gdbarch);
10974 return
10975 value_from_longest (type,
4c4b4cd2
PH
10976 (value_less (arg1, arg3)
10977 || value_equal (arg1, arg3))
10978 && (value_less (arg2, arg1)
10979 || value_equal (arg2, arg1)));
10980 }
10981
10982 case BINOP_IN_BOUNDS:
14f9c5c9 10983 (*pos) += 2;
4c4b4cd2
PH
10984 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10985 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10986
4c4b4cd2
PH
10987 if (noside == EVAL_SKIP)
10988 goto nosideret;
14f9c5c9 10989
4c4b4cd2 10990 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10991 {
10992 type = language_bool_type (exp->language_defn, exp->gdbarch);
10993 return value_zero (type, not_lval);
10994 }
14f9c5c9 10995
4c4b4cd2 10996 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10997
1eea4ebd
UW
10998 type = ada_index_type (value_type (arg2), tem, "range");
10999 if (!type)
11000 type = value_type (arg1);
14f9c5c9 11001
1eea4ebd
UW
11002 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11003 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11004
f44316fa
UW
11005 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11007 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11008 return
fbb06eb1 11009 value_from_longest (type,
4c4b4cd2
PH
11010 (value_less (arg1, arg3)
11011 || value_equal (arg1, arg3))
11012 && (value_less (arg2, arg1)
11013 || value_equal (arg2, arg1)));
11014
11015 case TERNOP_IN_RANGE:
11016 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11017 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11019
11020 if (noside == EVAL_SKIP)
11021 goto nosideret;
11022
f44316fa
UW
11023 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11025 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11026 return
fbb06eb1 11027 value_from_longest (type,
4c4b4cd2
PH
11028 (value_less (arg1, arg3)
11029 || value_equal (arg1, arg3))
11030 && (value_less (arg2, arg1)
11031 || value_equal (arg2, arg1)));
11032
11033 case OP_ATR_FIRST:
11034 case OP_ATR_LAST:
11035 case OP_ATR_LENGTH:
11036 {
76a01679 11037 struct type *type_arg;
5b4ee69b 11038
76a01679
JB
11039 if (exp->elts[*pos].opcode == OP_TYPE)
11040 {
11041 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11042 arg1 = NULL;
5bc23cb3 11043 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11044 }
11045 else
11046 {
11047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11048 type_arg = NULL;
11049 }
11050
11051 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11052 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11053 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11054 *pos += 4;
11055
11056 if (noside == EVAL_SKIP)
11057 goto nosideret;
11058
11059 if (type_arg == NULL)
11060 {
11061 arg1 = ada_coerce_ref (arg1);
11062
ad82864c 11063 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11064 arg1 = ada_coerce_to_simple_array (arg1);
11065
aa4fb036 11066 if (op == OP_ATR_LENGTH)
1eea4ebd 11067 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11068 else
11069 {
11070 type = ada_index_type (value_type (arg1), tem,
11071 ada_attribute_name (op));
11072 if (type == NULL)
11073 type = builtin_type (exp->gdbarch)->builtin_int;
11074 }
76a01679
JB
11075
11076 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11077 return allocate_value (type);
76a01679
JB
11078
11079 switch (op)
11080 {
11081 default: /* Should never happen. */
323e0a4a 11082 error (_("unexpected attribute encountered"));
76a01679 11083 case OP_ATR_FIRST:
1eea4ebd
UW
11084 return value_from_longest
11085 (type, ada_array_bound (arg1, tem, 0));
76a01679 11086 case OP_ATR_LAST:
1eea4ebd
UW
11087 return value_from_longest
11088 (type, ada_array_bound (arg1, tem, 1));
76a01679 11089 case OP_ATR_LENGTH:
1eea4ebd
UW
11090 return value_from_longest
11091 (type, ada_array_length (arg1, tem));
76a01679
JB
11092 }
11093 }
11094 else if (discrete_type_p (type_arg))
11095 {
11096 struct type *range_type;
0d5cff50 11097 const char *name = ada_type_name (type_arg);
5b4ee69b 11098
76a01679
JB
11099 range_type = NULL;
11100 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11101 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11102 if (range_type == NULL)
11103 range_type = type_arg;
11104 switch (op)
11105 {
11106 default:
323e0a4a 11107 error (_("unexpected attribute encountered"));
76a01679 11108 case OP_ATR_FIRST:
690cc4eb 11109 return value_from_longest
43bbcdc2 11110 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11111 case OP_ATR_LAST:
690cc4eb 11112 return value_from_longest
43bbcdc2 11113 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11114 case OP_ATR_LENGTH:
323e0a4a 11115 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11116 }
11117 }
11118 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11119 error (_("unimplemented type attribute"));
76a01679
JB
11120 else
11121 {
11122 LONGEST low, high;
11123
ad82864c
JB
11124 if (ada_is_constrained_packed_array_type (type_arg))
11125 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11126
aa4fb036 11127 if (op == OP_ATR_LENGTH)
1eea4ebd 11128 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11129 else
11130 {
11131 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11132 if (type == NULL)
11133 type = builtin_type (exp->gdbarch)->builtin_int;
11134 }
1eea4ebd 11135
76a01679
JB
11136 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11137 return allocate_value (type);
11138
11139 switch (op)
11140 {
11141 default:
323e0a4a 11142 error (_("unexpected attribute encountered"));
76a01679 11143 case OP_ATR_FIRST:
1eea4ebd 11144 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11145 return value_from_longest (type, low);
11146 case OP_ATR_LAST:
1eea4ebd 11147 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11148 return value_from_longest (type, high);
11149 case OP_ATR_LENGTH:
1eea4ebd
UW
11150 low = ada_array_bound_from_type (type_arg, tem, 0);
11151 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11152 return value_from_longest (type, high - low + 1);
11153 }
11154 }
14f9c5c9
AS
11155 }
11156
4c4b4cd2
PH
11157 case OP_ATR_TAG:
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
76a01679 11160 goto nosideret;
4c4b4cd2
PH
11161
11162 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11163 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11164
11165 return ada_value_tag (arg1);
11166
11167 case OP_ATR_MIN:
11168 case OP_ATR_MAX:
11169 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11170 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11171 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11172 if (noside == EVAL_SKIP)
76a01679 11173 goto nosideret;
d2e4a39e 11174 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11175 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11176 else
f44316fa
UW
11177 {
11178 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11179 return value_binop (arg1, arg2,
11180 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11181 }
14f9c5c9 11182
4c4b4cd2
PH
11183 case OP_ATR_MODULUS:
11184 {
31dedfee 11185 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11186
5b4ee69b 11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11188 if (noside == EVAL_SKIP)
11189 goto nosideret;
4c4b4cd2 11190
76a01679 11191 if (!ada_is_modular_type (type_arg))
323e0a4a 11192 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11193
76a01679
JB
11194 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11195 ada_modulus (type_arg));
4c4b4cd2
PH
11196 }
11197
11198
11199 case OP_ATR_POS:
11200 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11201 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11202 if (noside == EVAL_SKIP)
76a01679 11203 goto nosideret;
3cb382c9
UW
11204 type = builtin_type (exp->gdbarch)->builtin_int;
11205 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11206 return value_zero (type, not_lval);
14f9c5c9 11207 else
3cb382c9 11208 return value_pos_atr (type, arg1);
14f9c5c9 11209
4c4b4cd2
PH
11210 case OP_ATR_SIZE:
11211 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11212 type = value_type (arg1);
11213
11214 /* If the argument is a reference, then dereference its type, since
11215 the user is really asking for the size of the actual object,
11216 not the size of the pointer. */
11217 if (TYPE_CODE (type) == TYPE_CODE_REF)
11218 type = TYPE_TARGET_TYPE (type);
11219
4c4b4cd2 11220 if (noside == EVAL_SKIP)
76a01679 11221 goto nosideret;
4c4b4cd2 11222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11223 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11224 else
22601c15 11225 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11226 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11227
11228 case OP_ATR_VAL:
11229 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11230 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11231 type = exp->elts[pc + 2].type;
14f9c5c9 11232 if (noside == EVAL_SKIP)
76a01679 11233 goto nosideret;
4c4b4cd2 11234 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11235 return value_zero (type, not_lval);
4c4b4cd2 11236 else
76a01679 11237 return value_val_atr (type, arg1);
4c4b4cd2
PH
11238
11239 case BINOP_EXP:
11240 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11241 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11242 if (noside == EVAL_SKIP)
11243 goto nosideret;
11244 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11245 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11246 else
f44316fa
UW
11247 {
11248 /* For integer exponentiation operations,
11249 only promote the first argument. */
11250 if (is_integral_type (value_type (arg2)))
11251 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11252 else
11253 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11254
11255 return value_binop (arg1, arg2, op);
11256 }
4c4b4cd2
PH
11257
11258 case UNOP_PLUS:
11259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11260 if (noside == EVAL_SKIP)
11261 goto nosideret;
11262 else
11263 return arg1;
11264
11265 case UNOP_ABS:
11266 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11267 if (noside == EVAL_SKIP)
11268 goto nosideret;
f44316fa 11269 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11270 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11271 return value_neg (arg1);
14f9c5c9 11272 else
4c4b4cd2 11273 return arg1;
14f9c5c9
AS
11274
11275 case UNOP_IND:
5ec18f2b 11276 preeval_pos = *pos;
6b0d7253 11277 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11278 if (noside == EVAL_SKIP)
4c4b4cd2 11279 goto nosideret;
df407dfe 11280 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11281 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11282 {
11283 if (ada_is_array_descriptor_type (type))
11284 /* GDB allows dereferencing GNAT array descriptors. */
11285 {
11286 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11287
4c4b4cd2 11288 if (arrType == NULL)
323e0a4a 11289 error (_("Attempt to dereference null array pointer."));
00a4c844 11290 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11291 }
11292 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11293 || TYPE_CODE (type) == TYPE_CODE_REF
11294 /* In C you can dereference an array to get the 1st elt. */
11295 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11296 {
5ec18f2b
JG
11297 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11298 only be determined by inspecting the object's tag.
11299 This means that we need to evaluate completely the
11300 expression in order to get its type. */
11301
023db19c
JB
11302 if ((TYPE_CODE (type) == TYPE_CODE_REF
11303 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11304 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11305 {
11306 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11307 EVAL_NORMAL);
11308 type = value_type (ada_value_ind (arg1));
11309 }
11310 else
11311 {
11312 type = to_static_fixed_type
11313 (ada_aligned_type
11314 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11315 }
c1b5a1a6 11316 ada_ensure_varsize_limit (type);
714e53ab
PH
11317 return value_zero (type, lval_memory);
11318 }
4c4b4cd2 11319 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11320 {
11321 /* GDB allows dereferencing an int. */
11322 if (expect_type == NULL)
11323 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11324 lval_memory);
11325 else
11326 {
11327 expect_type =
11328 to_static_fixed_type (ada_aligned_type (expect_type));
11329 return value_zero (expect_type, lval_memory);
11330 }
11331 }
4c4b4cd2 11332 else
323e0a4a 11333 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11334 }
0963b4bd 11335 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11336 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11337
96967637
JB
11338 if (TYPE_CODE (type) == TYPE_CODE_INT)
11339 /* GDB allows dereferencing an int. If we were given
11340 the expect_type, then use that as the target type.
11341 Otherwise, assume that the target type is an int. */
11342 {
11343 if (expect_type != NULL)
11344 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11345 arg1));
11346 else
11347 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11348 (CORE_ADDR) value_as_address (arg1));
11349 }
6b0d7253 11350
4c4b4cd2
PH
11351 if (ada_is_array_descriptor_type (type))
11352 /* GDB allows dereferencing GNAT array descriptors. */
11353 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11354 else
4c4b4cd2 11355 return ada_value_ind (arg1);
14f9c5c9
AS
11356
11357 case STRUCTOP_STRUCT:
11358 tem = longest_to_int (exp->elts[pc + 1].longconst);
11359 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11360 preeval_pos = *pos;
14f9c5c9
AS
11361 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11362 if (noside == EVAL_SKIP)
4c4b4cd2 11363 goto nosideret;
14f9c5c9 11364 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11365 {
df407dfe 11366 struct type *type1 = value_type (arg1);
5b4ee69b 11367
76a01679
JB
11368 if (ada_is_tagged_type (type1, 1))
11369 {
11370 type = ada_lookup_struct_elt_type (type1,
11371 &exp->elts[pc + 2].string,
988f6b3d 11372 1, 1);
5ec18f2b
JG
11373
11374 /* If the field is not found, check if it exists in the
11375 extension of this object's type. This means that we
11376 need to evaluate completely the expression. */
11377
76a01679 11378 if (type == NULL)
5ec18f2b
JG
11379 {
11380 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11381 EVAL_NORMAL);
11382 arg1 = ada_value_struct_elt (arg1,
11383 &exp->elts[pc + 2].string,
11384 0);
11385 arg1 = unwrap_value (arg1);
11386 type = value_type (ada_to_fixed_value (arg1));
11387 }
76a01679
JB
11388 }
11389 else
11390 type =
11391 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11392 0);
76a01679
JB
11393
11394 return value_zero (ada_aligned_type (type), lval_memory);
11395 }
14f9c5c9 11396 else
a579cd9a
MW
11397 {
11398 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11399 arg1 = unwrap_value (arg1);
11400 return ada_to_fixed_value (arg1);
11401 }
284614f0 11402
14f9c5c9 11403 case OP_TYPE:
4c4b4cd2
PH
11404 /* The value is not supposed to be used. This is here to make it
11405 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11406 (*pos) += 2;
11407 if (noside == EVAL_SKIP)
4c4b4cd2 11408 goto nosideret;
14f9c5c9 11409 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11410 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11411 else
323e0a4a 11412 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11413
11414 case OP_AGGREGATE:
11415 case OP_CHOICES:
11416 case OP_OTHERS:
11417 case OP_DISCRETE_RANGE:
11418 case OP_POSITIONAL:
11419 case OP_NAME:
11420 if (noside == EVAL_NORMAL)
11421 switch (op)
11422 {
11423 case OP_NAME:
11424 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11425 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11426 case OP_AGGREGATE:
11427 error (_("Aggregates only allowed on the right of an assignment"));
11428 default:
0963b4bd
MS
11429 internal_error (__FILE__, __LINE__,
11430 _("aggregate apparently mangled"));
52ce6436
PH
11431 }
11432
11433 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11434 *pos += oplen - 1;
11435 for (tem = 0; tem < nargs; tem += 1)
11436 ada_evaluate_subexp (NULL, exp, pos, noside);
11437 goto nosideret;
14f9c5c9
AS
11438 }
11439
11440nosideret:
ced9779b 11441 return eval_skip_value (exp);
14f9c5c9 11442}
14f9c5c9 11443\f
d2e4a39e 11444
4c4b4cd2 11445 /* Fixed point */
14f9c5c9
AS
11446
11447/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11448 type name that encodes the 'small and 'delta information.
4c4b4cd2 11449 Otherwise, return NULL. */
14f9c5c9 11450
d2e4a39e 11451static const char *
ebf56fd3 11452fixed_type_info (struct type *type)
14f9c5c9 11453{
d2e4a39e 11454 const char *name = ada_type_name (type);
14f9c5c9
AS
11455 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11456
d2e4a39e
AS
11457 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11458 {
14f9c5c9 11459 const char *tail = strstr (name, "___XF_");
5b4ee69b 11460
14f9c5c9 11461 if (tail == NULL)
4c4b4cd2 11462 return NULL;
d2e4a39e 11463 else
4c4b4cd2 11464 return tail + 5;
14f9c5c9
AS
11465 }
11466 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11467 return fixed_type_info (TYPE_TARGET_TYPE (type));
11468 else
11469 return NULL;
11470}
11471
4c4b4cd2 11472/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11473
11474int
ebf56fd3 11475ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11476{
11477 return fixed_type_info (type) != NULL;
11478}
11479
4c4b4cd2
PH
11480/* Return non-zero iff TYPE represents a System.Address type. */
11481
11482int
11483ada_is_system_address_type (struct type *type)
11484{
11485 return (TYPE_NAME (type)
11486 && strcmp (TYPE_NAME (type), "system__address") == 0);
11487}
11488
14f9c5c9 11489/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11490 type, return the target floating-point type to be used to represent
11491 of this type during internal computation. */
11492
11493static struct type *
11494ada_scaling_type (struct type *type)
11495{
11496 return builtin_type (get_type_arch (type))->builtin_long_double;
11497}
11498
11499/* Assuming that TYPE is the representation of an Ada fixed-point
11500 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11501 delta cannot be determined. */
14f9c5c9 11502
50eff16b 11503struct value *
ebf56fd3 11504ada_delta (struct type *type)
14f9c5c9
AS
11505{
11506 const char *encoding = fixed_type_info (type);
50eff16b
UW
11507 struct type *scale_type = ada_scaling_type (type);
11508
11509 long long num, den;
11510
11511 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11512 return nullptr;
d2e4a39e 11513 else
50eff16b
UW
11514 return value_binop (value_from_longest (scale_type, num),
11515 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11516}
11517
11518/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11519 factor ('SMALL value) associated with the type. */
14f9c5c9 11520
50eff16b
UW
11521struct value *
11522ada_scaling_factor (struct type *type)
14f9c5c9
AS
11523{
11524 const char *encoding = fixed_type_info (type);
50eff16b
UW
11525 struct type *scale_type = ada_scaling_type (type);
11526
11527 long long num0, den0, num1, den1;
14f9c5c9 11528 int n;
d2e4a39e 11529
50eff16b 11530 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11531 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11532
11533 if (n < 2)
50eff16b 11534 return value_from_longest (scale_type, 1);
14f9c5c9 11535 else if (n == 4)
50eff16b
UW
11536 return value_binop (value_from_longest (scale_type, num1),
11537 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11538 else
50eff16b
UW
11539 return value_binop (value_from_longest (scale_type, num0),
11540 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11541}
11542
14f9c5c9 11543\f
d2e4a39e 11544
4c4b4cd2 11545 /* Range types */
14f9c5c9
AS
11546
11547/* Scan STR beginning at position K for a discriminant name, and
11548 return the value of that discriminant field of DVAL in *PX. If
11549 PNEW_K is not null, put the position of the character beyond the
11550 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11551 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11552
11553static int
108d56a4 11554scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11555 int *pnew_k)
14f9c5c9
AS
11556{
11557 static char *bound_buffer = NULL;
11558 static size_t bound_buffer_len = 0;
5da1a4d3 11559 const char *pstart, *pend, *bound;
d2e4a39e 11560 struct value *bound_val;
14f9c5c9
AS
11561
11562 if (dval == NULL || str == NULL || str[k] == '\0')
11563 return 0;
11564
5da1a4d3
SM
11565 pstart = str + k;
11566 pend = strstr (pstart, "__");
14f9c5c9
AS
11567 if (pend == NULL)
11568 {
5da1a4d3 11569 bound = pstart;
14f9c5c9
AS
11570 k += strlen (bound);
11571 }
d2e4a39e 11572 else
14f9c5c9 11573 {
5da1a4d3
SM
11574 int len = pend - pstart;
11575
11576 /* Strip __ and beyond. */
11577 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11578 strncpy (bound_buffer, pstart, len);
11579 bound_buffer[len] = '\0';
11580
14f9c5c9 11581 bound = bound_buffer;
d2e4a39e 11582 k = pend - str;
14f9c5c9 11583 }
d2e4a39e 11584
df407dfe 11585 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11586 if (bound_val == NULL)
11587 return 0;
11588
11589 *px = value_as_long (bound_val);
11590 if (pnew_k != NULL)
11591 *pnew_k = k;
11592 return 1;
11593}
11594
11595/* Value of variable named NAME in the current environment. If
11596 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11597 otherwise causes an error with message ERR_MSG. */
11598
d2e4a39e 11599static struct value *
edb0c9cb 11600get_var_value (const char *name, const char *err_msg)
14f9c5c9 11601{
b5ec771e 11602 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11603
54d343a2 11604 std::vector<struct block_symbol> syms;
b5ec771e
PA
11605 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11606 get_selected_block (0),
11607 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11608
11609 if (nsyms != 1)
11610 {
11611 if (err_msg == NULL)
4c4b4cd2 11612 return 0;
14f9c5c9 11613 else
8a3fe4f8 11614 error (("%s"), err_msg);
14f9c5c9
AS
11615 }
11616
54d343a2 11617 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11618}
d2e4a39e 11619
edb0c9cb
PA
11620/* Value of integer variable named NAME in the current environment.
11621 If no such variable is found, returns false. Otherwise, sets VALUE
11622 to the variable's value and returns true. */
4c4b4cd2 11623
edb0c9cb
PA
11624bool
11625get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11626{
4c4b4cd2 11627 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11628
14f9c5c9 11629 if (var_val == 0)
edb0c9cb
PA
11630 return false;
11631
11632 value = value_as_long (var_val);
11633 return true;
14f9c5c9 11634}
d2e4a39e 11635
14f9c5c9
AS
11636
11637/* Return a range type whose base type is that of the range type named
11638 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11639 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11640 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11641 corresponding range type from debug information; fall back to using it
11642 if symbol lookup fails. If a new type must be created, allocate it
11643 like ORIG_TYPE was. The bounds information, in general, is encoded
11644 in NAME, the base type given in the named range type. */
14f9c5c9 11645
d2e4a39e 11646static struct type *
28c85d6c 11647to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11648{
0d5cff50 11649 const char *name;
14f9c5c9 11650 struct type *base_type;
108d56a4 11651 const char *subtype_info;
14f9c5c9 11652
28c85d6c
JB
11653 gdb_assert (raw_type != NULL);
11654 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11655
1ce677a4 11656 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11657 base_type = TYPE_TARGET_TYPE (raw_type);
11658 else
11659 base_type = raw_type;
11660
28c85d6c 11661 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11662 subtype_info = strstr (name, "___XD");
11663 if (subtype_info == NULL)
690cc4eb 11664 {
43bbcdc2
PH
11665 LONGEST L = ada_discrete_type_low_bound (raw_type);
11666 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11667
690cc4eb
PH
11668 if (L < INT_MIN || U > INT_MAX)
11669 return raw_type;
11670 else
0c9c3474
SA
11671 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11672 L, U);
690cc4eb 11673 }
14f9c5c9
AS
11674 else
11675 {
11676 static char *name_buf = NULL;
11677 static size_t name_len = 0;
11678 int prefix_len = subtype_info - name;
11679 LONGEST L, U;
11680 struct type *type;
108d56a4 11681 const char *bounds_str;
14f9c5c9
AS
11682 int n;
11683
11684 GROW_VECT (name_buf, name_len, prefix_len + 5);
11685 strncpy (name_buf, name, prefix_len);
11686 name_buf[prefix_len] = '\0';
11687
11688 subtype_info += 5;
11689 bounds_str = strchr (subtype_info, '_');
11690 n = 1;
11691
d2e4a39e 11692 if (*subtype_info == 'L')
4c4b4cd2
PH
11693 {
11694 if (!ada_scan_number (bounds_str, n, &L, &n)
11695 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11696 return raw_type;
11697 if (bounds_str[n] == '_')
11698 n += 2;
0963b4bd 11699 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11700 n += 1;
11701 subtype_info += 1;
11702 }
d2e4a39e 11703 else
4c4b4cd2 11704 {
4c4b4cd2 11705 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11706 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11707 {
323e0a4a 11708 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11709 L = 1;
11710 }
11711 }
14f9c5c9 11712
d2e4a39e 11713 if (*subtype_info == 'U')
4c4b4cd2
PH
11714 {
11715 if (!ada_scan_number (bounds_str, n, &U, &n)
11716 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11717 return raw_type;
11718 }
d2e4a39e 11719 else
4c4b4cd2 11720 {
4c4b4cd2 11721 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11722 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11723 {
323e0a4a 11724 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11725 U = L;
11726 }
11727 }
14f9c5c9 11728
0c9c3474
SA
11729 type = create_static_range_type (alloc_type_copy (raw_type),
11730 base_type, L, U);
f5a91472
JB
11731 /* create_static_range_type alters the resulting type's length
11732 to match the size of the base_type, which is not what we want.
11733 Set it back to the original range type's length. */
11734 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11735 TYPE_NAME (type) = name;
14f9c5c9
AS
11736 return type;
11737 }
11738}
11739
4c4b4cd2
PH
11740/* True iff NAME is the name of a range type. */
11741
14f9c5c9 11742int
d2e4a39e 11743ada_is_range_type_name (const char *name)
14f9c5c9
AS
11744{
11745 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11746}
14f9c5c9 11747\f
d2e4a39e 11748
4c4b4cd2
PH
11749 /* Modular types */
11750
11751/* True iff TYPE is an Ada modular type. */
14f9c5c9 11752
14f9c5c9 11753int
d2e4a39e 11754ada_is_modular_type (struct type *type)
14f9c5c9 11755{
18af8284 11756 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11757
11758 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11759 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11760 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11761}
11762
4c4b4cd2
PH
11763/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11764
61ee279c 11765ULONGEST
0056e4d5 11766ada_modulus (struct type *type)
14f9c5c9 11767{
43bbcdc2 11768 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11769}
d2e4a39e 11770\f
f7f9143b
JB
11771
11772/* Ada exception catchpoint support:
11773 ---------------------------------
11774
11775 We support 3 kinds of exception catchpoints:
11776 . catchpoints on Ada exceptions
11777 . catchpoints on unhandled Ada exceptions
11778 . catchpoints on failed assertions
11779
11780 Exceptions raised during failed assertions, or unhandled exceptions
11781 could perfectly be caught with the general catchpoint on Ada exceptions.
11782 However, we can easily differentiate these two special cases, and having
11783 the option to distinguish these two cases from the rest can be useful
11784 to zero-in on certain situations.
11785
11786 Exception catchpoints are a specialized form of breakpoint,
11787 since they rely on inserting breakpoints inside known routines
11788 of the GNAT runtime. The implementation therefore uses a standard
11789 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11790 of breakpoint_ops.
11791
0259addd
JB
11792 Support in the runtime for exception catchpoints have been changed
11793 a few times already, and these changes affect the implementation
11794 of these catchpoints. In order to be able to support several
11795 variants of the runtime, we use a sniffer that will determine
28010a5d 11796 the runtime variant used by the program being debugged. */
f7f9143b 11797
82eacd52
JB
11798/* Ada's standard exceptions.
11799
11800 The Ada 83 standard also defined Numeric_Error. But there so many
11801 situations where it was unclear from the Ada 83 Reference Manual
11802 (RM) whether Constraint_Error or Numeric_Error should be raised,
11803 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11804 Interpretation saying that anytime the RM says that Numeric_Error
11805 should be raised, the implementation may raise Constraint_Error.
11806 Ada 95 went one step further and pretty much removed Numeric_Error
11807 from the list of standard exceptions (it made it a renaming of
11808 Constraint_Error, to help preserve compatibility when compiling
11809 an Ada83 compiler). As such, we do not include Numeric_Error from
11810 this list of standard exceptions. */
3d0b0fa3 11811
a121b7c1 11812static const char *standard_exc[] = {
3d0b0fa3
JB
11813 "constraint_error",
11814 "program_error",
11815 "storage_error",
11816 "tasking_error"
11817};
11818
0259addd
JB
11819typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11820
11821/* A structure that describes how to support exception catchpoints
11822 for a given executable. */
11823
11824struct exception_support_info
11825{
11826 /* The name of the symbol to break on in order to insert
11827 a catchpoint on exceptions. */
11828 const char *catch_exception_sym;
11829
11830 /* The name of the symbol to break on in order to insert
11831 a catchpoint on unhandled exceptions. */
11832 const char *catch_exception_unhandled_sym;
11833
11834 /* The name of the symbol to break on in order to insert
11835 a catchpoint on failed assertions. */
11836 const char *catch_assert_sym;
11837
9f757bf7
XR
11838 /* The name of the symbol to break on in order to insert
11839 a catchpoint on exception handling. */
11840 const char *catch_handlers_sym;
11841
0259addd
JB
11842 /* Assuming that the inferior just triggered an unhandled exception
11843 catchpoint, this function is responsible for returning the address
11844 in inferior memory where the name of that exception is stored.
11845 Return zero if the address could not be computed. */
11846 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11847};
11848
11849static CORE_ADDR ada_unhandled_exception_name_addr (void);
11850static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11851
11852/* The following exception support info structure describes how to
11853 implement exception catchpoints with the latest version of the
11854 Ada runtime (as of 2007-03-06). */
11855
11856static const struct exception_support_info default_exception_support_info =
11857{
11858 "__gnat_debug_raise_exception", /* catch_exception_sym */
11859 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11860 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11861 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11862 ada_unhandled_exception_name_addr
11863};
11864
11865/* The following exception support info structure describes how to
11866 implement exception catchpoints with a slightly older version
11867 of the Ada runtime. */
11868
11869static const struct exception_support_info exception_support_info_fallback =
11870{
11871 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11872 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11873 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11874 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11875 ada_unhandled_exception_name_addr_from_raise
11876};
11877
f17011e0
JB
11878/* Return nonzero if we can detect the exception support routines
11879 described in EINFO.
11880
11881 This function errors out if an abnormal situation is detected
11882 (for instance, if we find the exception support routines, but
11883 that support is found to be incomplete). */
11884
11885static int
11886ada_has_this_exception_support (const struct exception_support_info *einfo)
11887{
11888 struct symbol *sym;
11889
11890 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11891 that should be compiled with debugging information. As a result, we
11892 expect to find that symbol in the symtabs. */
11893
11894 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11895 if (sym == NULL)
a6af7abe
JB
11896 {
11897 /* Perhaps we did not find our symbol because the Ada runtime was
11898 compiled without debugging info, or simply stripped of it.
11899 It happens on some GNU/Linux distributions for instance, where
11900 users have to install a separate debug package in order to get
11901 the runtime's debugging info. In that situation, let the user
11902 know why we cannot insert an Ada exception catchpoint.
11903
11904 Note: Just for the purpose of inserting our Ada exception
11905 catchpoint, we could rely purely on the associated minimal symbol.
11906 But we would be operating in degraded mode anyway, since we are
11907 still lacking the debugging info needed later on to extract
11908 the name of the exception being raised (this name is printed in
11909 the catchpoint message, and is also used when trying to catch
11910 a specific exception). We do not handle this case for now. */
3b7344d5 11911 struct bound_minimal_symbol msym
1c8e84b0
JB
11912 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11913
3b7344d5 11914 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11915 error (_("Your Ada runtime appears to be missing some debugging "
11916 "information.\nCannot insert Ada exception catchpoint "
11917 "in this configuration."));
11918
11919 return 0;
11920 }
f17011e0
JB
11921
11922 /* Make sure that the symbol we found corresponds to a function. */
11923
11924 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11925 error (_("Symbol \"%s\" is not a function (class = %d)"),
11926 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11927
11928 return 1;
11929}
11930
0259addd
JB
11931/* Inspect the Ada runtime and determine which exception info structure
11932 should be used to provide support for exception catchpoints.
11933
3eecfa55
JB
11934 This function will always set the per-inferior exception_info,
11935 or raise an error. */
0259addd
JB
11936
11937static void
11938ada_exception_support_info_sniffer (void)
11939{
3eecfa55 11940 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11941
11942 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11943 if (data->exception_info != NULL)
0259addd
JB
11944 return;
11945
11946 /* Check the latest (default) exception support info. */
f17011e0 11947 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11948 {
3eecfa55 11949 data->exception_info = &default_exception_support_info;
0259addd
JB
11950 return;
11951 }
11952
11953 /* Try our fallback exception suport info. */
f17011e0 11954 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11955 {
3eecfa55 11956 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11957 return;
11958 }
11959
11960 /* Sometimes, it is normal for us to not be able to find the routine
11961 we are looking for. This happens when the program is linked with
11962 the shared version of the GNAT runtime, and the program has not been
11963 started yet. Inform the user of these two possible causes if
11964 applicable. */
11965
ccefe4c4 11966 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11967 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11968
11969 /* If the symbol does not exist, then check that the program is
11970 already started, to make sure that shared libraries have been
11971 loaded. If it is not started, this may mean that the symbol is
11972 in a shared library. */
11973
e99b03dc 11974 if (inferior_ptid.pid () == 0)
0259addd
JB
11975 error (_("Unable to insert catchpoint. Try to start the program first."));
11976
11977 /* At this point, we know that we are debugging an Ada program and
11978 that the inferior has been started, but we still are not able to
0963b4bd 11979 find the run-time symbols. That can mean that we are in
0259addd
JB
11980 configurable run time mode, or that a-except as been optimized
11981 out by the linker... In any case, at this point it is not worth
11982 supporting this feature. */
11983
7dda8cff 11984 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11985}
11986
f7f9143b
JB
11987/* True iff FRAME is very likely to be that of a function that is
11988 part of the runtime system. This is all very heuristic, but is
11989 intended to be used as advice as to what frames are uninteresting
11990 to most users. */
11991
11992static int
11993is_known_support_routine (struct frame_info *frame)
11994{
692465f1 11995 enum language func_lang;
f7f9143b 11996 int i;
f35a17b5 11997 const char *fullname;
f7f9143b 11998
4ed6b5be
JB
11999 /* If this code does not have any debugging information (no symtab),
12000 This cannot be any user code. */
f7f9143b 12001
51abb421 12002 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12003 if (sal.symtab == NULL)
12004 return 1;
12005
4ed6b5be
JB
12006 /* If there is a symtab, but the associated source file cannot be
12007 located, then assume this is not user code: Selecting a frame
12008 for which we cannot display the code would not be very helpful
12009 for the user. This should also take care of case such as VxWorks
12010 where the kernel has some debugging info provided for a few units. */
f7f9143b 12011
f35a17b5
JK
12012 fullname = symtab_to_fullname (sal.symtab);
12013 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12014 return 1;
12015
4ed6b5be
JB
12016 /* Check the unit filename againt the Ada runtime file naming.
12017 We also check the name of the objfile against the name of some
12018 known system libraries that sometimes come with debugging info
12019 too. */
12020
f7f9143b
JB
12021 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12022 {
12023 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12024 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12025 return 1;
eb822aa6
DE
12026 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12027 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12028 return 1;
f7f9143b
JB
12029 }
12030
4ed6b5be 12031 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12032
c6dc63a1
TT
12033 gdb::unique_xmalloc_ptr<char> func_name
12034 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12035 if (func_name == NULL)
12036 return 1;
12037
12038 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12039 {
12040 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12041 if (re_exec (func_name.get ()))
12042 return 1;
f7f9143b
JB
12043 }
12044
12045 return 0;
12046}
12047
12048/* Find the first frame that contains debugging information and that is not
12049 part of the Ada run-time, starting from FI and moving upward. */
12050
0ef643c8 12051void
f7f9143b
JB
12052ada_find_printable_frame (struct frame_info *fi)
12053{
12054 for (; fi != NULL; fi = get_prev_frame (fi))
12055 {
12056 if (!is_known_support_routine (fi))
12057 {
12058 select_frame (fi);
12059 break;
12060 }
12061 }
12062
12063}
12064
12065/* Assuming that the inferior just triggered an unhandled exception
12066 catchpoint, return the address in inferior memory where the name
12067 of the exception is stored.
12068
12069 Return zero if the address could not be computed. */
12070
12071static CORE_ADDR
12072ada_unhandled_exception_name_addr (void)
0259addd
JB
12073{
12074 return parse_and_eval_address ("e.full_name");
12075}
12076
12077/* Same as ada_unhandled_exception_name_addr, except that this function
12078 should be used when the inferior uses an older version of the runtime,
12079 where the exception name needs to be extracted from a specific frame
12080 several frames up in the callstack. */
12081
12082static CORE_ADDR
12083ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12084{
12085 int frame_level;
12086 struct frame_info *fi;
3eecfa55 12087 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12088
12089 /* To determine the name of this exception, we need to select
12090 the frame corresponding to RAISE_SYM_NAME. This frame is
12091 at least 3 levels up, so we simply skip the first 3 frames
12092 without checking the name of their associated function. */
12093 fi = get_current_frame ();
12094 for (frame_level = 0; frame_level < 3; frame_level += 1)
12095 if (fi != NULL)
12096 fi = get_prev_frame (fi);
12097
12098 while (fi != NULL)
12099 {
692465f1
JB
12100 enum language func_lang;
12101
c6dc63a1
TT
12102 gdb::unique_xmalloc_ptr<char> func_name
12103 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12104 if (func_name != NULL)
12105 {
c6dc63a1 12106 if (strcmp (func_name.get (),
55b87a52
KS
12107 data->exception_info->catch_exception_sym) == 0)
12108 break; /* We found the frame we were looking for... */
55b87a52 12109 }
fb44b1a7 12110 fi = get_prev_frame (fi);
f7f9143b
JB
12111 }
12112
12113 if (fi == NULL)
12114 return 0;
12115
12116 select_frame (fi);
12117 return parse_and_eval_address ("id.full_name");
12118}
12119
12120/* Assuming the inferior just triggered an Ada exception catchpoint
12121 (of any type), return the address in inferior memory where the name
12122 of the exception is stored, if applicable.
12123
45db7c09
PA
12124 Assumes the selected frame is the current frame.
12125
f7f9143b
JB
12126 Return zero if the address could not be computed, or if not relevant. */
12127
12128static CORE_ADDR
761269c8 12129ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12130 struct breakpoint *b)
12131{
3eecfa55
JB
12132 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12133
f7f9143b
JB
12134 switch (ex)
12135 {
761269c8 12136 case ada_catch_exception:
f7f9143b
JB
12137 return (parse_and_eval_address ("e.full_name"));
12138 break;
12139
761269c8 12140 case ada_catch_exception_unhandled:
3eecfa55 12141 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12142 break;
9f757bf7
XR
12143
12144 case ada_catch_handlers:
12145 return 0; /* The runtimes does not provide access to the exception
12146 name. */
12147 break;
12148
761269c8 12149 case ada_catch_assert:
f7f9143b
JB
12150 return 0; /* Exception name is not relevant in this case. */
12151 break;
12152
12153 default:
12154 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12155 break;
12156 }
12157
12158 return 0; /* Should never be reached. */
12159}
12160
e547c119
JB
12161/* Assuming the inferior is stopped at an exception catchpoint,
12162 return the message which was associated to the exception, if
12163 available. Return NULL if the message could not be retrieved.
12164
e547c119
JB
12165 Note: The exception message can be associated to an exception
12166 either through the use of the Raise_Exception function, or
12167 more simply (Ada 2005 and later), via:
12168
12169 raise Exception_Name with "exception message";
12170
12171 */
12172
6f46ac85 12173static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12174ada_exception_message_1 (void)
12175{
12176 struct value *e_msg_val;
e547c119 12177 int e_msg_len;
e547c119
JB
12178
12179 /* For runtimes that support this feature, the exception message
12180 is passed as an unbounded string argument called "message". */
12181 e_msg_val = parse_and_eval ("message");
12182 if (e_msg_val == NULL)
12183 return NULL; /* Exception message not supported. */
12184
12185 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12186 gdb_assert (e_msg_val != NULL);
12187 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12188
12189 /* If the message string is empty, then treat it as if there was
12190 no exception message. */
12191 if (e_msg_len <= 0)
12192 return NULL;
12193
6f46ac85
TT
12194 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12195 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12196 e_msg.get ()[e_msg_len] = '\0';
e547c119 12197
e547c119
JB
12198 return e_msg;
12199}
12200
12201/* Same as ada_exception_message_1, except that all exceptions are
12202 contained here (returning NULL instead). */
12203
6f46ac85 12204static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12205ada_exception_message (void)
12206{
6f46ac85 12207 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12208
a70b8144 12209 try
e547c119
JB
12210 {
12211 e_msg = ada_exception_message_1 ();
12212 }
230d2906 12213 catch (const gdb_exception_error &e)
e547c119 12214 {
6f46ac85 12215 e_msg.reset (nullptr);
e547c119 12216 }
e547c119
JB
12217
12218 return e_msg;
12219}
12220
f7f9143b
JB
12221/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12222 any error that ada_exception_name_addr_1 might cause to be thrown.
12223 When an error is intercepted, a warning with the error message is printed,
12224 and zero is returned. */
12225
12226static CORE_ADDR
761269c8 12227ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12228 struct breakpoint *b)
12229{
f7f9143b
JB
12230 CORE_ADDR result = 0;
12231
a70b8144 12232 try
f7f9143b
JB
12233 {
12234 result = ada_exception_name_addr_1 (ex, b);
12235 }
12236
230d2906 12237 catch (const gdb_exception_error &e)
f7f9143b 12238 {
3d6e9d23 12239 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12240 return 0;
12241 }
12242
12243 return result;
12244}
12245
cb7de75e 12246static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12247 (const char *excep_string,
12248 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12249
12250/* Ada catchpoints.
12251
12252 In the case of catchpoints on Ada exceptions, the catchpoint will
12253 stop the target on every exception the program throws. When a user
12254 specifies the name of a specific exception, we translate this
12255 request into a condition expression (in text form), and then parse
12256 it into an expression stored in each of the catchpoint's locations.
12257 We then use this condition to check whether the exception that was
12258 raised is the one the user is interested in. If not, then the
12259 target is resumed again. We store the name of the requested
12260 exception, in order to be able to re-set the condition expression
12261 when symbols change. */
12262
12263/* An instance of this type is used to represent an Ada catchpoint
5625a286 12264 breakpoint location. */
28010a5d 12265
5625a286 12266class ada_catchpoint_location : public bp_location
28010a5d 12267{
5625a286 12268public:
5f486660
TT
12269 ada_catchpoint_location (breakpoint *owner)
12270 : bp_location (owner)
5625a286 12271 {}
28010a5d
PA
12272
12273 /* The condition that checks whether the exception that was raised
12274 is the specific exception the user specified on catchpoint
12275 creation. */
4d01a485 12276 expression_up excep_cond_expr;
28010a5d
PA
12277};
12278
c1fc2657 12279/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12280
c1fc2657 12281struct ada_catchpoint : public breakpoint
28010a5d 12282{
28010a5d 12283 /* The name of the specific exception the user specified. */
bc18fbb5 12284 std::string excep_string;
28010a5d
PA
12285};
12286
12287/* Parse the exception condition string in the context of each of the
12288 catchpoint's locations, and store them for later evaluation. */
12289
12290static void
9f757bf7
XR
12291create_excep_cond_exprs (struct ada_catchpoint *c,
12292 enum ada_exception_catchpoint_kind ex)
28010a5d 12293{
28010a5d 12294 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12295 if (c->excep_string.empty ())
28010a5d
PA
12296 return;
12297
12298 /* Same if there are no locations... */
c1fc2657 12299 if (c->loc == NULL)
28010a5d
PA
12300 return;
12301
2ff0a947
TT
12302 /* We have to compute the expression once for each program space,
12303 because the expression may hold the addresses of multiple symbols
12304 in some cases. */
12305 std::multimap<program_space *, struct bp_location *> loc_map;
bde09ab7 12306 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
2ff0a947 12307 loc_map.emplace (bl->pspace, bl);
28010a5d 12308
2ff0a947
TT
12309 scoped_restore_current_program_space save_pspace;
12310
12311 std::string cond_string;
12312 program_space *last_ps = nullptr;
12313 for (auto iter : loc_map)
28010a5d
PA
12314 {
12315 struct ada_catchpoint_location *ada_loc
2ff0a947
TT
12316 = (struct ada_catchpoint_location *) iter.second;
12317
12318 if (ada_loc->pspace != last_ps)
12319 {
12320 last_ps = ada_loc->pspace;
12321 set_current_program_space (last_ps);
12322
12323 /* Compute the condition expression in text form, from the
12324 specific expection we want to catch. */
12325 cond_string
12326 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12327 ex);
12328 }
12329
4d01a485 12330 expression_up exp;
28010a5d 12331
2ff0a947 12332 if (!ada_loc->shlib_disabled)
28010a5d 12333 {
bbc13ae3 12334 const char *s;
28010a5d 12335
cb7de75e 12336 s = cond_string.c_str ();
a70b8144 12337 try
28010a5d 12338 {
2ff0a947
TT
12339 exp = parse_exp_1 (&s, ada_loc->address,
12340 block_for_pc (ada_loc->address),
036e657b 12341 0);
28010a5d 12342 }
230d2906 12343 catch (const gdb_exception_error &e)
849f2b52
JB
12344 {
12345 warning (_("failed to reevaluate internal exception condition "
12346 "for catchpoint %d: %s"),
3d6e9d23 12347 c->number, e.what ());
849f2b52 12348 }
28010a5d
PA
12349 }
12350
b22e99fd 12351 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12352 }
28010a5d
PA
12353}
12354
28010a5d
PA
12355/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12356 structure for all exception catchpoint kinds. */
12357
12358static struct bp_location *
761269c8 12359allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12360 struct breakpoint *self)
12361{
5f486660 12362 return new ada_catchpoint_location (self);
28010a5d
PA
12363}
12364
12365/* Implement the RE_SET method in the breakpoint_ops structure for all
12366 exception catchpoint kinds. */
12367
12368static void
761269c8 12369re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12370{
12371 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12372
12373 /* Call the base class's method. This updates the catchpoint's
12374 locations. */
2060206e 12375 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12376
12377 /* Reparse the exception conditional expressions. One for each
12378 location. */
9f757bf7 12379 create_excep_cond_exprs (c, ex);
28010a5d
PA
12380}
12381
12382/* Returns true if we should stop for this breakpoint hit. If the
12383 user specified a specific exception, we only want to cause a stop
12384 if the program thrown that exception. */
12385
12386static int
12387should_stop_exception (const struct bp_location *bl)
12388{
12389 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12390 const struct ada_catchpoint_location *ada_loc
12391 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12392 int stop;
12393
12394 /* With no specific exception, should always stop. */
bc18fbb5 12395 if (c->excep_string.empty ())
28010a5d
PA
12396 return 1;
12397
12398 if (ada_loc->excep_cond_expr == NULL)
12399 {
12400 /* We will have a NULL expression if back when we were creating
12401 the expressions, this location's had failed to parse. */
12402 return 1;
12403 }
12404
12405 stop = 1;
a70b8144 12406 try
28010a5d
PA
12407 {
12408 struct value *mark;
12409
12410 mark = value_mark ();
4d01a485 12411 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12412 value_free_to_mark (mark);
12413 }
230d2906 12414 catch (const gdb_exception &ex)
492d29ea
PA
12415 {
12416 exception_fprintf (gdb_stderr, ex,
12417 _("Error in testing exception condition:\n"));
12418 }
492d29ea 12419
28010a5d
PA
12420 return stop;
12421}
12422
12423/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12424 for all exception catchpoint kinds. */
12425
12426static void
761269c8 12427check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12428{
12429 bs->stop = should_stop_exception (bs->bp_location_at);
12430}
12431
f7f9143b
JB
12432/* Implement the PRINT_IT method in the breakpoint_ops structure
12433 for all exception catchpoint kinds. */
12434
12435static enum print_stop_action
761269c8 12436print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12437{
79a45e25 12438 struct ui_out *uiout = current_uiout;
348d480f
PA
12439 struct breakpoint *b = bs->breakpoint_at;
12440
956a9fb9 12441 annotate_catchpoint (b->number);
f7f9143b 12442
112e8700 12443 if (uiout->is_mi_like_p ())
f7f9143b 12444 {
112e8700 12445 uiout->field_string ("reason",
956a9fb9 12446 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12447 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12448 }
12449
112e8700
SM
12450 uiout->text (b->disposition == disp_del
12451 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12452 uiout->field_int ("bkptno", b->number);
12453 uiout->text (", ");
f7f9143b 12454
45db7c09
PA
12455 /* ada_exception_name_addr relies on the selected frame being the
12456 current frame. Need to do this here because this function may be
12457 called more than once when printing a stop, and below, we'll
12458 select the first frame past the Ada run-time (see
12459 ada_find_printable_frame). */
12460 select_frame (get_current_frame ());
12461
f7f9143b
JB
12462 switch (ex)
12463 {
761269c8
JB
12464 case ada_catch_exception:
12465 case ada_catch_exception_unhandled:
9f757bf7 12466 case ada_catch_handlers:
956a9fb9
JB
12467 {
12468 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12469 char exception_name[256];
12470
12471 if (addr != 0)
12472 {
c714b426
PA
12473 read_memory (addr, (gdb_byte *) exception_name,
12474 sizeof (exception_name) - 1);
956a9fb9
JB
12475 exception_name [sizeof (exception_name) - 1] = '\0';
12476 }
12477 else
12478 {
12479 /* For some reason, we were unable to read the exception
12480 name. This could happen if the Runtime was compiled
12481 without debugging info, for instance. In that case,
12482 just replace the exception name by the generic string
12483 "exception" - it will read as "an exception" in the
12484 notification we are about to print. */
967cff16 12485 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12486 }
12487 /* In the case of unhandled exception breakpoints, we print
12488 the exception name as "unhandled EXCEPTION_NAME", to make
12489 it clearer to the user which kind of catchpoint just got
12490 hit. We used ui_out_text to make sure that this extra
12491 info does not pollute the exception name in the MI case. */
761269c8 12492 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12493 uiout->text ("unhandled ");
12494 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12495 }
12496 break;
761269c8 12497 case ada_catch_assert:
956a9fb9
JB
12498 /* In this case, the name of the exception is not really
12499 important. Just print "failed assertion" to make it clearer
12500 that his program just hit an assertion-failure catchpoint.
12501 We used ui_out_text because this info does not belong in
12502 the MI output. */
112e8700 12503 uiout->text ("failed assertion");
956a9fb9 12504 break;
f7f9143b 12505 }
e547c119 12506
6f46ac85 12507 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12508 if (exception_message != NULL)
12509 {
e547c119 12510 uiout->text (" (");
6f46ac85 12511 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12512 uiout->text (")");
e547c119
JB
12513 }
12514
112e8700 12515 uiout->text (" at ");
956a9fb9 12516 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12517
12518 return PRINT_SRC_AND_LOC;
12519}
12520
12521/* Implement the PRINT_ONE method in the breakpoint_ops structure
12522 for all exception catchpoint kinds. */
12523
12524static void
761269c8 12525print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12526 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12527{
79a45e25 12528 struct ui_out *uiout = current_uiout;
28010a5d 12529 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12530 struct value_print_options opts;
12531
12532 get_user_print_options (&opts);
12533 if (opts.addressprint)
f7f9143b
JB
12534 {
12535 annotate_field (4);
112e8700 12536 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12537 }
12538
12539 annotate_field (5);
a6d9a66e 12540 *last_loc = b->loc;
f7f9143b
JB
12541 switch (ex)
12542 {
761269c8 12543 case ada_catch_exception:
bc18fbb5 12544 if (!c->excep_string.empty ())
f7f9143b 12545 {
bc18fbb5
TT
12546 std::string msg = string_printf (_("`%s' Ada exception"),
12547 c->excep_string.c_str ());
28010a5d 12548
112e8700 12549 uiout->field_string ("what", msg);
f7f9143b
JB
12550 }
12551 else
112e8700 12552 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12553
12554 break;
12555
761269c8 12556 case ada_catch_exception_unhandled:
112e8700 12557 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12558 break;
12559
9f757bf7 12560 case ada_catch_handlers:
bc18fbb5 12561 if (!c->excep_string.empty ())
9f757bf7
XR
12562 {
12563 uiout->field_fmt ("what",
12564 _("`%s' Ada exception handlers"),
bc18fbb5 12565 c->excep_string.c_str ());
9f757bf7
XR
12566 }
12567 else
12568 uiout->field_string ("what", "all Ada exceptions handlers");
12569 break;
12570
761269c8 12571 case ada_catch_assert:
112e8700 12572 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12573 break;
12574
12575 default:
12576 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12577 break;
12578 }
12579}
12580
12581/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12582 for all exception catchpoint kinds. */
12583
12584static void
761269c8 12585print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12586 struct breakpoint *b)
12587{
28010a5d 12588 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12589 struct ui_out *uiout = current_uiout;
28010a5d 12590
112e8700 12591 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12592 : _("Catchpoint "));
112e8700
SM
12593 uiout->field_int ("bkptno", b->number);
12594 uiout->text (": ");
00eb2c4a 12595
f7f9143b
JB
12596 switch (ex)
12597 {
761269c8 12598 case ada_catch_exception:
bc18fbb5 12599 if (!c->excep_string.empty ())
00eb2c4a 12600 {
862d101a 12601 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12602 c->excep_string.c_str ());
862d101a 12603 uiout->text (info.c_str ());
00eb2c4a 12604 }
f7f9143b 12605 else
112e8700 12606 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12607 break;
12608
761269c8 12609 case ada_catch_exception_unhandled:
112e8700 12610 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12611 break;
9f757bf7
XR
12612
12613 case ada_catch_handlers:
bc18fbb5 12614 if (!c->excep_string.empty ())
9f757bf7
XR
12615 {
12616 std::string info
12617 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12618 c->excep_string.c_str ());
9f757bf7
XR
12619 uiout->text (info.c_str ());
12620 }
12621 else
12622 uiout->text (_("all Ada exceptions handlers"));
12623 break;
12624
761269c8 12625 case ada_catch_assert:
112e8700 12626 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12627 break;
12628
12629 default:
12630 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12631 break;
12632 }
12633}
12634
6149aea9
PA
12635/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12636 for all exception catchpoint kinds. */
12637
12638static void
761269c8 12639print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12640 struct breakpoint *b, struct ui_file *fp)
12641{
28010a5d
PA
12642 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12643
6149aea9
PA
12644 switch (ex)
12645 {
761269c8 12646 case ada_catch_exception:
6149aea9 12647 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12648 if (!c->excep_string.empty ())
12649 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12650 break;
12651
761269c8 12652 case ada_catch_exception_unhandled:
78076abc 12653 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12654 break;
12655
9f757bf7
XR
12656 case ada_catch_handlers:
12657 fprintf_filtered (fp, "catch handlers");
12658 break;
12659
761269c8 12660 case ada_catch_assert:
6149aea9
PA
12661 fprintf_filtered (fp, "catch assert");
12662 break;
12663
12664 default:
12665 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12666 }
d9b3f62e 12667 print_recreate_thread (b, fp);
6149aea9
PA
12668}
12669
f7f9143b
JB
12670/* Virtual table for "catch exception" breakpoints. */
12671
28010a5d
PA
12672static struct bp_location *
12673allocate_location_catch_exception (struct breakpoint *self)
12674{
761269c8 12675 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12676}
12677
12678static void
12679re_set_catch_exception (struct breakpoint *b)
12680{
761269c8 12681 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12682}
12683
12684static void
12685check_status_catch_exception (bpstat bs)
12686{
761269c8 12687 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12688}
12689
f7f9143b 12690static enum print_stop_action
348d480f 12691print_it_catch_exception (bpstat bs)
f7f9143b 12692{
761269c8 12693 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12694}
12695
12696static void
a6d9a66e 12697print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12698{
761269c8 12699 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12700}
12701
12702static void
12703print_mention_catch_exception (struct breakpoint *b)
12704{
761269c8 12705 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12706}
12707
6149aea9
PA
12708static void
12709print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12710{
761269c8 12711 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12712}
12713
2060206e 12714static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12715
12716/* Virtual table for "catch exception unhandled" breakpoints. */
12717
28010a5d
PA
12718static struct bp_location *
12719allocate_location_catch_exception_unhandled (struct breakpoint *self)
12720{
761269c8 12721 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12722}
12723
12724static void
12725re_set_catch_exception_unhandled (struct breakpoint *b)
12726{
761269c8 12727 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12728}
12729
12730static void
12731check_status_catch_exception_unhandled (bpstat bs)
12732{
761269c8 12733 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12734}
12735
f7f9143b 12736static enum print_stop_action
348d480f 12737print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12738{
761269c8 12739 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12740}
12741
12742static void
a6d9a66e
UW
12743print_one_catch_exception_unhandled (struct breakpoint *b,
12744 struct bp_location **last_loc)
f7f9143b 12745{
761269c8 12746 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12747}
12748
12749static void
12750print_mention_catch_exception_unhandled (struct breakpoint *b)
12751{
761269c8 12752 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12753}
12754
6149aea9
PA
12755static void
12756print_recreate_catch_exception_unhandled (struct breakpoint *b,
12757 struct ui_file *fp)
12758{
761269c8 12759 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12760}
12761
2060206e 12762static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12763
12764/* Virtual table for "catch assert" breakpoints. */
12765
28010a5d
PA
12766static struct bp_location *
12767allocate_location_catch_assert (struct breakpoint *self)
12768{
761269c8 12769 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12770}
12771
12772static void
12773re_set_catch_assert (struct breakpoint *b)
12774{
761269c8 12775 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12776}
12777
12778static void
12779check_status_catch_assert (bpstat bs)
12780{
761269c8 12781 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12782}
12783
f7f9143b 12784static enum print_stop_action
348d480f 12785print_it_catch_assert (bpstat bs)
f7f9143b 12786{
761269c8 12787 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12788}
12789
12790static void
a6d9a66e 12791print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12792{
761269c8 12793 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12794}
12795
12796static void
12797print_mention_catch_assert (struct breakpoint *b)
12798{
761269c8 12799 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12800}
12801
6149aea9
PA
12802static void
12803print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12804{
761269c8 12805 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12806}
12807
2060206e 12808static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12809
9f757bf7
XR
12810/* Virtual table for "catch handlers" breakpoints. */
12811
12812static struct bp_location *
12813allocate_location_catch_handlers (struct breakpoint *self)
12814{
12815 return allocate_location_exception (ada_catch_handlers, self);
12816}
12817
12818static void
12819re_set_catch_handlers (struct breakpoint *b)
12820{
12821 re_set_exception (ada_catch_handlers, b);
12822}
12823
12824static void
12825check_status_catch_handlers (bpstat bs)
12826{
12827 check_status_exception (ada_catch_handlers, bs);
12828}
12829
12830static enum print_stop_action
12831print_it_catch_handlers (bpstat bs)
12832{
12833 return print_it_exception (ada_catch_handlers, bs);
12834}
12835
12836static void
12837print_one_catch_handlers (struct breakpoint *b,
12838 struct bp_location **last_loc)
12839{
12840 print_one_exception (ada_catch_handlers, b, last_loc);
12841}
12842
12843static void
12844print_mention_catch_handlers (struct breakpoint *b)
12845{
12846 print_mention_exception (ada_catch_handlers, b);
12847}
12848
12849static void
12850print_recreate_catch_handlers (struct breakpoint *b,
12851 struct ui_file *fp)
12852{
12853 print_recreate_exception (ada_catch_handlers, b, fp);
12854}
12855
12856static struct breakpoint_ops catch_handlers_breakpoint_ops;
12857
f7f9143b
JB
12858/* Split the arguments specified in a "catch exception" command.
12859 Set EX to the appropriate catchpoint type.
28010a5d 12860 Set EXCEP_STRING to the name of the specific exception if
5845583d 12861 specified by the user.
9f757bf7
XR
12862 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12863 "catch handlers" command. False otherwise.
5845583d
JB
12864 If a condition is found at the end of the arguments, the condition
12865 expression is stored in COND_STRING (memory must be deallocated
12866 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12867
12868static void
a121b7c1 12869catch_ada_exception_command_split (const char *args,
9f757bf7 12870 bool is_catch_handlers_cmd,
761269c8 12871 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12872 std::string *excep_string,
12873 std::string *cond_string)
f7f9143b 12874{
bc18fbb5 12875 std::string exception_name;
f7f9143b 12876
bc18fbb5
TT
12877 exception_name = extract_arg (&args);
12878 if (exception_name == "if")
5845583d
JB
12879 {
12880 /* This is not an exception name; this is the start of a condition
12881 expression for a catchpoint on all exceptions. So, "un-get"
12882 this token, and set exception_name to NULL. */
bc18fbb5 12883 exception_name.clear ();
5845583d
JB
12884 args -= 2;
12885 }
f7f9143b 12886
5845583d 12887 /* Check to see if we have a condition. */
f7f9143b 12888
f1735a53 12889 args = skip_spaces (args);
61012eef 12890 if (startswith (args, "if")
5845583d
JB
12891 && (isspace (args[2]) || args[2] == '\0'))
12892 {
12893 args += 2;
f1735a53 12894 args = skip_spaces (args);
5845583d
JB
12895
12896 if (args[0] == '\0')
12897 error (_("Condition missing after `if' keyword"));
bc18fbb5 12898 *cond_string = args;
5845583d
JB
12899
12900 args += strlen (args);
12901 }
12902
12903 /* Check that we do not have any more arguments. Anything else
12904 is unexpected. */
f7f9143b
JB
12905
12906 if (args[0] != '\0')
12907 error (_("Junk at end of expression"));
12908
9f757bf7
XR
12909 if (is_catch_handlers_cmd)
12910 {
12911 /* Catch handling of exceptions. */
12912 *ex = ada_catch_handlers;
12913 *excep_string = exception_name;
12914 }
bc18fbb5 12915 else if (exception_name.empty ())
f7f9143b
JB
12916 {
12917 /* Catch all exceptions. */
761269c8 12918 *ex = ada_catch_exception;
bc18fbb5 12919 excep_string->clear ();
f7f9143b 12920 }
bc18fbb5 12921 else if (exception_name == "unhandled")
f7f9143b
JB
12922 {
12923 /* Catch unhandled exceptions. */
761269c8 12924 *ex = ada_catch_exception_unhandled;
bc18fbb5 12925 excep_string->clear ();
f7f9143b
JB
12926 }
12927 else
12928 {
12929 /* Catch a specific exception. */
761269c8 12930 *ex = ada_catch_exception;
28010a5d 12931 *excep_string = exception_name;
f7f9143b
JB
12932 }
12933}
12934
12935/* Return the name of the symbol on which we should break in order to
12936 implement a catchpoint of the EX kind. */
12937
12938static const char *
761269c8 12939ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12940{
3eecfa55
JB
12941 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12942
12943 gdb_assert (data->exception_info != NULL);
0259addd 12944
f7f9143b
JB
12945 switch (ex)
12946 {
761269c8 12947 case ada_catch_exception:
3eecfa55 12948 return (data->exception_info->catch_exception_sym);
f7f9143b 12949 break;
761269c8 12950 case ada_catch_exception_unhandled:
3eecfa55 12951 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12952 break;
761269c8 12953 case ada_catch_assert:
3eecfa55 12954 return (data->exception_info->catch_assert_sym);
f7f9143b 12955 break;
9f757bf7
XR
12956 case ada_catch_handlers:
12957 return (data->exception_info->catch_handlers_sym);
12958 break;
f7f9143b
JB
12959 default:
12960 internal_error (__FILE__, __LINE__,
12961 _("unexpected catchpoint kind (%d)"), ex);
12962 }
12963}
12964
12965/* Return the breakpoint ops "virtual table" used for catchpoints
12966 of the EX kind. */
12967
c0a91b2b 12968static const struct breakpoint_ops *
761269c8 12969ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12970{
12971 switch (ex)
12972 {
761269c8 12973 case ada_catch_exception:
f7f9143b
JB
12974 return (&catch_exception_breakpoint_ops);
12975 break;
761269c8 12976 case ada_catch_exception_unhandled:
f7f9143b
JB
12977 return (&catch_exception_unhandled_breakpoint_ops);
12978 break;
761269c8 12979 case ada_catch_assert:
f7f9143b
JB
12980 return (&catch_assert_breakpoint_ops);
12981 break;
9f757bf7
XR
12982 case ada_catch_handlers:
12983 return (&catch_handlers_breakpoint_ops);
12984 break;
f7f9143b
JB
12985 default:
12986 internal_error (__FILE__, __LINE__,
12987 _("unexpected catchpoint kind (%d)"), ex);
12988 }
12989}
12990
12991/* Return the condition that will be used to match the current exception
12992 being raised with the exception that the user wants to catch. This
12993 assumes that this condition is used when the inferior just triggered
12994 an exception catchpoint.
cb7de75e 12995 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12996
cb7de75e 12997static std::string
9f757bf7
XR
12998ada_exception_catchpoint_cond_string (const char *excep_string,
12999 enum ada_exception_catchpoint_kind ex)
f7f9143b 13000{
3d0b0fa3 13001 int i;
cb7de75e 13002 std::string result;
2ff0a947 13003 const char *name;
9f757bf7
XR
13004
13005 if (ex == ada_catch_handlers)
13006 {
13007 /* For exception handlers catchpoints, the condition string does
13008 not use the same parameter as for the other exceptions. */
2ff0a947
TT
13009 name = ("long_integer (GNAT_GCC_exception_Access"
13010 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13011 }
13012 else
2ff0a947 13013 name = "long_integer (e)";
3d0b0fa3 13014
0963b4bd 13015 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13016 runtime units that have been compiled without debugging info; if
28010a5d 13017 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13018 exception (e.g. "constraint_error") then, during the evaluation
13019 of the condition expression, the symbol lookup on this name would
0963b4bd 13020 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13021 may then be set only on user-defined exceptions which have the
13022 same not-fully-qualified name (e.g. my_package.constraint_error).
13023
13024 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13025 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13026 exception constraint_error" is rewritten into "catch exception
13027 standard.constraint_error".
13028
13029 If an exception named contraint_error is defined in another package of
13030 the inferior program, then the only way to specify this exception as a
13031 breakpoint condition is to use its fully-qualified named:
2ff0a947
TT
13032 e.g. my_package.constraint_error.
13033
13034 Furthermore, in some situations a standard exception's symbol may
13035 be present in more than one objfile, because the compiler may
13036 choose to emit copy relocations for them. So, we have to compare
13037 against all the possible addresses. */
3d0b0fa3 13038
2ff0a947
TT
13039 /* Storage for a rewritten symbol name. */
13040 std::string std_name;
3d0b0fa3
JB
13041 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13042 {
28010a5d 13043 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13044 {
2ff0a947
TT
13045 std_name = std::string ("standard.") + excep_string;
13046 excep_string = std_name.c_str ();
9f757bf7 13047 break;
3d0b0fa3
JB
13048 }
13049 }
9f757bf7 13050
2ff0a947
TT
13051 excep_string = ada_encode (excep_string);
13052 std::vector<struct bound_minimal_symbol> symbols
13053 = ada_lookup_simple_minsyms (excep_string);
bde09ab7 13054 for (const bound_minimal_symbol &msym : symbols)
2ff0a947
TT
13055 {
13056 if (!result.empty ())
13057 result += " or ";
13058 string_appendf (result, "%s = %s", name,
13059 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13060 }
9f757bf7 13061
9f757bf7 13062 return result;
f7f9143b
JB
13063}
13064
13065/* Return the symtab_and_line that should be used to insert an exception
13066 catchpoint of the TYPE kind.
13067
28010a5d
PA
13068 ADDR_STRING returns the name of the function where the real
13069 breakpoint that implements the catchpoints is set, depending on the
13070 type of catchpoint we need to create. */
f7f9143b
JB
13071
13072static struct symtab_and_line
bc18fbb5 13073ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 13074 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13075{
13076 const char *sym_name;
13077 struct symbol *sym;
f7f9143b 13078
0259addd
JB
13079 /* First, find out which exception support info to use. */
13080 ada_exception_support_info_sniffer ();
13081
13082 /* Then lookup the function on which we will break in order to catch
f7f9143b 13083 the Ada exceptions requested by the user. */
f7f9143b
JB
13084 sym_name = ada_exception_sym_name (ex);
13085 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13086
57aff202
JB
13087 if (sym == NULL)
13088 error (_("Catchpoint symbol not found: %s"), sym_name);
13089
13090 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13091 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
13092
13093 /* Set ADDR_STRING. */
cc12f4a8 13094 *addr_string = sym_name;
f7f9143b 13095
f7f9143b 13096 /* Set OPS. */
4b9eee8c 13097 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13098
f17011e0 13099 return find_function_start_sal (sym, 1);
f7f9143b
JB
13100}
13101
b4a5b78b 13102/* Create an Ada exception catchpoint.
f7f9143b 13103
b4a5b78b 13104 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13105
bc18fbb5 13106 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13107 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13108 of the exception to which this catchpoint applies.
2df4d1d5 13109
bc18fbb5 13110 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13111
b4a5b78b
JB
13112 TEMPFLAG, if nonzero, means that the underlying breakpoint
13113 should be temporary.
28010a5d 13114
b4a5b78b 13115 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13116
349774ef 13117void
28010a5d 13118create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13119 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13120 const std::string &excep_string,
56ecd069 13121 const std::string &cond_string,
28010a5d 13122 int tempflag,
349774ef 13123 int disabled,
28010a5d
PA
13124 int from_tty)
13125{
cc12f4a8 13126 std::string addr_string;
b4a5b78b 13127 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13128 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13129
b270e6f9 13130 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
cc12f4a8 13131 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 13132 ops, tempflag, disabled, from_tty);
28010a5d 13133 c->excep_string = excep_string;
9f757bf7 13134 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13135 if (!cond_string.empty ())
13136 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13137 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13138}
13139
9ac4176b
PA
13140/* Implement the "catch exception" command. */
13141
13142static void
eb4c3f4a 13143catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13144 struct cmd_list_element *command)
13145{
a121b7c1 13146 const char *arg = arg_entry;
9ac4176b
PA
13147 struct gdbarch *gdbarch = get_current_arch ();
13148 int tempflag;
761269c8 13149 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13150 std::string excep_string;
56ecd069 13151 std::string cond_string;
9ac4176b
PA
13152
13153 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13154
13155 if (!arg)
13156 arg = "";
9f757bf7 13157 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13158 &cond_string);
9f757bf7
XR
13159 create_ada_exception_catchpoint (gdbarch, ex_kind,
13160 excep_string, cond_string,
13161 tempflag, 1 /* enabled */,
13162 from_tty);
13163}
13164
13165/* Implement the "catch handlers" command. */
13166
13167static void
13168catch_ada_handlers_command (const char *arg_entry, int from_tty,
13169 struct cmd_list_element *command)
13170{
13171 const char *arg = arg_entry;
13172 struct gdbarch *gdbarch = get_current_arch ();
13173 int tempflag;
13174 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13175 std::string excep_string;
56ecd069 13176 std::string cond_string;
9f757bf7
XR
13177
13178 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13179
13180 if (!arg)
13181 arg = "";
13182 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13183 &cond_string);
b4a5b78b
JB
13184 create_ada_exception_catchpoint (gdbarch, ex_kind,
13185 excep_string, cond_string,
349774ef
JB
13186 tempflag, 1 /* enabled */,
13187 from_tty);
9ac4176b
PA
13188}
13189
71bed2db
TT
13190/* Completion function for the Ada "catch" commands. */
13191
13192static void
13193catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13194 const char *text, const char *word)
13195{
13196 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13197
13198 for (const ada_exc_info &info : exceptions)
13199 {
13200 if (startswith (info.name, word))
b02f78f9 13201 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13202 }
13203}
13204
b4a5b78b 13205/* Split the arguments specified in a "catch assert" command.
5845583d 13206
b4a5b78b
JB
13207 ARGS contains the command's arguments (or the empty string if
13208 no arguments were passed).
5845583d
JB
13209
13210 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13211 (the memory needs to be deallocated after use). */
5845583d 13212
b4a5b78b 13213static void
56ecd069 13214catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13215{
f1735a53 13216 args = skip_spaces (args);
f7f9143b 13217
5845583d 13218 /* Check whether a condition was provided. */
61012eef 13219 if (startswith (args, "if")
5845583d 13220 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13221 {
5845583d 13222 args += 2;
f1735a53 13223 args = skip_spaces (args);
5845583d
JB
13224 if (args[0] == '\0')
13225 error (_("condition missing after `if' keyword"));
56ecd069 13226 cond_string.assign (args);
f7f9143b
JB
13227 }
13228
5845583d
JB
13229 /* Otherwise, there should be no other argument at the end of
13230 the command. */
13231 else if (args[0] != '\0')
13232 error (_("Junk at end of arguments."));
f7f9143b
JB
13233}
13234
9ac4176b
PA
13235/* Implement the "catch assert" command. */
13236
13237static void
eb4c3f4a 13238catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13239 struct cmd_list_element *command)
13240{
a121b7c1 13241 const char *arg = arg_entry;
9ac4176b
PA
13242 struct gdbarch *gdbarch = get_current_arch ();
13243 int tempflag;
56ecd069 13244 std::string cond_string;
9ac4176b
PA
13245
13246 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13247
13248 if (!arg)
13249 arg = "";
56ecd069 13250 catch_ada_assert_command_split (arg, cond_string);
761269c8 13251 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13252 "", cond_string,
349774ef
JB
13253 tempflag, 1 /* enabled */,
13254 from_tty);
9ac4176b 13255}
778865d3
JB
13256
13257/* Return non-zero if the symbol SYM is an Ada exception object. */
13258
13259static int
13260ada_is_exception_sym (struct symbol *sym)
13261{
a737d952 13262 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13263
13264 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13265 && SYMBOL_CLASS (sym) != LOC_BLOCK
13266 && SYMBOL_CLASS (sym) != LOC_CONST
13267 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13268 && type_name != NULL && strcmp (type_name, "exception") == 0);
13269}
13270
13271/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13272 Ada exception object. This matches all exceptions except the ones
13273 defined by the Ada language. */
13274
13275static int
13276ada_is_non_standard_exception_sym (struct symbol *sym)
13277{
13278 int i;
13279
13280 if (!ada_is_exception_sym (sym))
13281 return 0;
13282
13283 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13284 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13285 return 0; /* A standard exception. */
13286
13287 /* Numeric_Error is also a standard exception, so exclude it.
13288 See the STANDARD_EXC description for more details as to why
13289 this exception is not listed in that array. */
13290 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13291 return 0;
13292
13293 return 1;
13294}
13295
ab816a27 13296/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13297 objects.
13298
13299 The comparison is determined first by exception name, and then
13300 by exception address. */
13301
ab816a27 13302bool
cc536b21 13303ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13304{
778865d3
JB
13305 int result;
13306
ab816a27
TT
13307 result = strcmp (name, other.name);
13308 if (result < 0)
13309 return true;
13310 if (result == 0 && addr < other.addr)
13311 return true;
13312 return false;
13313}
778865d3 13314
ab816a27 13315bool
cc536b21 13316ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13317{
13318 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13319}
13320
13321/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13322 routine, but keeping the first SKIP elements untouched.
13323
13324 All duplicates are also removed. */
13325
13326static void
ab816a27 13327sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13328 int skip)
13329{
ab816a27
TT
13330 std::sort (exceptions->begin () + skip, exceptions->end ());
13331 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13332 exceptions->end ());
778865d3
JB
13333}
13334
778865d3
JB
13335/* Add all exceptions defined by the Ada standard whose name match
13336 a regular expression.
13337
13338 If PREG is not NULL, then this regexp_t object is used to
13339 perform the symbol name matching. Otherwise, no name-based
13340 filtering is performed.
13341
13342 EXCEPTIONS is a vector of exceptions to which matching exceptions
13343 gets pushed. */
13344
13345static void
2d7cc5c7 13346ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13347 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13348{
13349 int i;
13350
13351 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13352 {
13353 if (preg == NULL
2d7cc5c7 13354 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13355 {
13356 struct bound_minimal_symbol msymbol
13357 = ada_lookup_simple_minsym (standard_exc[i]);
13358
13359 if (msymbol.minsym != NULL)
13360 {
13361 struct ada_exc_info info
77e371c0 13362 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13363
ab816a27 13364 exceptions->push_back (info);
778865d3
JB
13365 }
13366 }
13367 }
13368}
13369
13370/* Add all Ada exceptions defined locally and accessible from the given
13371 FRAME.
13372
13373 If PREG is not NULL, then this regexp_t object is used to
13374 perform the symbol name matching. Otherwise, no name-based
13375 filtering is performed.
13376
13377 EXCEPTIONS is a vector of exceptions to which matching exceptions
13378 gets pushed. */
13379
13380static void
2d7cc5c7
PA
13381ada_add_exceptions_from_frame (compiled_regex *preg,
13382 struct frame_info *frame,
ab816a27 13383 std::vector<ada_exc_info> *exceptions)
778865d3 13384{
3977b71f 13385 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13386
13387 while (block != 0)
13388 {
13389 struct block_iterator iter;
13390 struct symbol *sym;
13391
13392 ALL_BLOCK_SYMBOLS (block, iter, sym)
13393 {
13394 switch (SYMBOL_CLASS (sym))
13395 {
13396 case LOC_TYPEDEF:
13397 case LOC_BLOCK:
13398 case LOC_CONST:
13399 break;
13400 default:
13401 if (ada_is_exception_sym (sym))
13402 {
13403 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13404 SYMBOL_VALUE_ADDRESS (sym)};
13405
ab816a27 13406 exceptions->push_back (info);
778865d3
JB
13407 }
13408 }
13409 }
13410 if (BLOCK_FUNCTION (block) != NULL)
13411 break;
13412 block = BLOCK_SUPERBLOCK (block);
13413 }
13414}
13415
14bc53a8
PA
13416/* Return true if NAME matches PREG or if PREG is NULL. */
13417
13418static bool
2d7cc5c7 13419name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13420{
13421 return (preg == NULL
2d7cc5c7 13422 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13423}
13424
778865d3
JB
13425/* Add all exceptions defined globally whose name name match
13426 a regular expression, excluding standard exceptions.
13427
13428 The reason we exclude standard exceptions is that they need
13429 to be handled separately: Standard exceptions are defined inside
13430 a runtime unit which is normally not compiled with debugging info,
13431 and thus usually do not show up in our symbol search. However,
13432 if the unit was in fact built with debugging info, we need to
13433 exclude them because they would duplicate the entry we found
13434 during the special loop that specifically searches for those
13435 standard exceptions.
13436
13437 If PREG is not NULL, then this regexp_t object is used to
13438 perform the symbol name matching. Otherwise, no name-based
13439 filtering is performed.
13440
13441 EXCEPTIONS is a vector of exceptions to which matching exceptions
13442 gets pushed. */
13443
13444static void
2d7cc5c7 13445ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13446 std::vector<ada_exc_info> *exceptions)
778865d3 13447{
14bc53a8
PA
13448 /* In Ada, the symbol "search name" is a linkage name, whereas the
13449 regular expression used to do the matching refers to the natural
13450 name. So match against the decoded name. */
13451 expand_symtabs_matching (NULL,
b5ec771e 13452 lookup_name_info::match_any (),
14bc53a8
PA
13453 [&] (const char *search_name)
13454 {
13455 const char *decoded = ada_decode (search_name);
13456 return name_matches_regex (decoded, preg);
13457 },
13458 NULL,
13459 VARIABLES_DOMAIN);
778865d3 13460
2030c079 13461 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13462 {
b669c953 13463 for (compunit_symtab *s : objfile->compunits ())
778865d3 13464 {
d8aeb77f
TT
13465 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13466 int i;
778865d3 13467
d8aeb77f
TT
13468 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13469 {
582942f4 13470 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13471 struct block_iterator iter;
13472 struct symbol *sym;
778865d3 13473
d8aeb77f
TT
13474 ALL_BLOCK_SYMBOLS (b, iter, sym)
13475 if (ada_is_non_standard_exception_sym (sym)
13476 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13477 {
13478 struct ada_exc_info info
13479 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13480
13481 exceptions->push_back (info);
13482 }
13483 }
778865d3
JB
13484 }
13485 }
13486}
13487
13488/* Implements ada_exceptions_list with the regular expression passed
13489 as a regex_t, rather than a string.
13490
13491 If not NULL, PREG is used to filter out exceptions whose names
13492 do not match. Otherwise, all exceptions are listed. */
13493
ab816a27 13494static std::vector<ada_exc_info>
2d7cc5c7 13495ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13496{
ab816a27 13497 std::vector<ada_exc_info> result;
778865d3
JB
13498 int prev_len;
13499
13500 /* First, list the known standard exceptions. These exceptions
13501 need to be handled separately, as they are usually defined in
13502 runtime units that have been compiled without debugging info. */
13503
13504 ada_add_standard_exceptions (preg, &result);
13505
13506 /* Next, find all exceptions whose scope is local and accessible
13507 from the currently selected frame. */
13508
13509 if (has_stack_frames ())
13510 {
ab816a27 13511 prev_len = result.size ();
778865d3
JB
13512 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13513 &result);
ab816a27 13514 if (result.size () > prev_len)
778865d3
JB
13515 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13516 }
13517
13518 /* Add all exceptions whose scope is global. */
13519
ab816a27 13520 prev_len = result.size ();
778865d3 13521 ada_add_global_exceptions (preg, &result);
ab816a27 13522 if (result.size () > prev_len)
778865d3
JB
13523 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13524
778865d3
JB
13525 return result;
13526}
13527
13528/* Return a vector of ada_exc_info.
13529
13530 If REGEXP is NULL, all exceptions are included in the result.
13531 Otherwise, it should contain a valid regular expression,
13532 and only the exceptions whose names match that regular expression
13533 are included in the result.
13534
13535 The exceptions are sorted in the following order:
13536 - Standard exceptions (defined by the Ada language), in
13537 alphabetical order;
13538 - Exceptions only visible from the current frame, in
13539 alphabetical order;
13540 - Exceptions whose scope is global, in alphabetical order. */
13541
ab816a27 13542std::vector<ada_exc_info>
778865d3
JB
13543ada_exceptions_list (const char *regexp)
13544{
2d7cc5c7
PA
13545 if (regexp == NULL)
13546 return ada_exceptions_list_1 (NULL);
778865d3 13547
2d7cc5c7
PA
13548 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13549 return ada_exceptions_list_1 (&reg);
778865d3
JB
13550}
13551
13552/* Implement the "info exceptions" command. */
13553
13554static void
1d12d88f 13555info_exceptions_command (const char *regexp, int from_tty)
778865d3 13556{
778865d3 13557 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13558
ab816a27 13559 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13560
13561 if (regexp != NULL)
13562 printf_filtered
13563 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13564 else
13565 printf_filtered (_("All defined Ada exceptions:\n"));
13566
ab816a27
TT
13567 for (const ada_exc_info &info : exceptions)
13568 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13569}
13570
4c4b4cd2
PH
13571 /* Operators */
13572/* Information about operators given special treatment in functions
13573 below. */
13574/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13575
13576#define ADA_OPERATORS \
13577 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13578 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13579 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13580 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13581 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13582 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13583 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13584 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13585 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13586 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13587 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13588 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13589 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13590 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13591 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13592 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13593 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13594 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13595 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13596
13597static void
554794dc
SDJ
13598ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13599 int *argsp)
4c4b4cd2
PH
13600{
13601 switch (exp->elts[pc - 1].opcode)
13602 {
76a01679 13603 default:
4c4b4cd2
PH
13604 operator_length_standard (exp, pc, oplenp, argsp);
13605 break;
13606
13607#define OP_DEFN(op, len, args, binop) \
13608 case op: *oplenp = len; *argsp = args; break;
13609 ADA_OPERATORS;
13610#undef OP_DEFN
52ce6436
PH
13611
13612 case OP_AGGREGATE:
13613 *oplenp = 3;
13614 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13615 break;
13616
13617 case OP_CHOICES:
13618 *oplenp = 3;
13619 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13620 break;
4c4b4cd2
PH
13621 }
13622}
13623
c0201579
JK
13624/* Implementation of the exp_descriptor method operator_check. */
13625
13626static int
13627ada_operator_check (struct expression *exp, int pos,
13628 int (*objfile_func) (struct objfile *objfile, void *data),
13629 void *data)
13630{
13631 const union exp_element *const elts = exp->elts;
13632 struct type *type = NULL;
13633
13634 switch (elts[pos].opcode)
13635 {
13636 case UNOP_IN_RANGE:
13637 case UNOP_QUAL:
13638 type = elts[pos + 1].type;
13639 break;
13640
13641 default:
13642 return operator_check_standard (exp, pos, objfile_func, data);
13643 }
13644
13645 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13646
13647 if (type && TYPE_OBJFILE (type)
13648 && (*objfile_func) (TYPE_OBJFILE (type), data))
13649 return 1;
13650
13651 return 0;
13652}
13653
a121b7c1 13654static const char *
4c4b4cd2
PH
13655ada_op_name (enum exp_opcode opcode)
13656{
13657 switch (opcode)
13658 {
76a01679 13659 default:
4c4b4cd2 13660 return op_name_standard (opcode);
52ce6436 13661
4c4b4cd2
PH
13662#define OP_DEFN(op, len, args, binop) case op: return #op;
13663 ADA_OPERATORS;
13664#undef OP_DEFN
52ce6436
PH
13665
13666 case OP_AGGREGATE:
13667 return "OP_AGGREGATE";
13668 case OP_CHOICES:
13669 return "OP_CHOICES";
13670 case OP_NAME:
13671 return "OP_NAME";
4c4b4cd2
PH
13672 }
13673}
13674
13675/* As for operator_length, but assumes PC is pointing at the first
13676 element of the operator, and gives meaningful results only for the
52ce6436 13677 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13678
13679static void
76a01679
JB
13680ada_forward_operator_length (struct expression *exp, int pc,
13681 int *oplenp, int *argsp)
4c4b4cd2 13682{
76a01679 13683 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13684 {
13685 default:
13686 *oplenp = *argsp = 0;
13687 break;
52ce6436 13688
4c4b4cd2
PH
13689#define OP_DEFN(op, len, args, binop) \
13690 case op: *oplenp = len; *argsp = args; break;
13691 ADA_OPERATORS;
13692#undef OP_DEFN
52ce6436
PH
13693
13694 case OP_AGGREGATE:
13695 *oplenp = 3;
13696 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13697 break;
13698
13699 case OP_CHOICES:
13700 *oplenp = 3;
13701 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13702 break;
13703
13704 case OP_STRING:
13705 case OP_NAME:
13706 {
13707 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13708
52ce6436
PH
13709 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13710 *argsp = 0;
13711 break;
13712 }
4c4b4cd2
PH
13713 }
13714}
13715
13716static int
13717ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13718{
13719 enum exp_opcode op = exp->elts[elt].opcode;
13720 int oplen, nargs;
13721 int pc = elt;
13722 int i;
76a01679 13723
4c4b4cd2
PH
13724 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13725
76a01679 13726 switch (op)
4c4b4cd2 13727 {
76a01679 13728 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13729 case OP_ATR_FIRST:
13730 case OP_ATR_LAST:
13731 case OP_ATR_LENGTH:
13732 case OP_ATR_IMAGE:
13733 case OP_ATR_MAX:
13734 case OP_ATR_MIN:
13735 case OP_ATR_MODULUS:
13736 case OP_ATR_POS:
13737 case OP_ATR_SIZE:
13738 case OP_ATR_TAG:
13739 case OP_ATR_VAL:
13740 break;
13741
13742 case UNOP_IN_RANGE:
13743 case UNOP_QUAL:
323e0a4a
AC
13744 /* XXX: gdb_sprint_host_address, type_sprint */
13745 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13746 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13747 fprintf_filtered (stream, " (");
13748 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13749 fprintf_filtered (stream, ")");
13750 break;
13751 case BINOP_IN_BOUNDS:
52ce6436
PH
13752 fprintf_filtered (stream, " (%d)",
13753 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13754 break;
13755 case TERNOP_IN_RANGE:
13756 break;
13757
52ce6436
PH
13758 case OP_AGGREGATE:
13759 case OP_OTHERS:
13760 case OP_DISCRETE_RANGE:
13761 case OP_POSITIONAL:
13762 case OP_CHOICES:
13763 break;
13764
13765 case OP_NAME:
13766 case OP_STRING:
13767 {
13768 char *name = &exp->elts[elt + 2].string;
13769 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13770
52ce6436
PH
13771 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13772 break;
13773 }
13774
4c4b4cd2
PH
13775 default:
13776 return dump_subexp_body_standard (exp, stream, elt);
13777 }
13778
13779 elt += oplen;
13780 for (i = 0; i < nargs; i += 1)
13781 elt = dump_subexp (exp, stream, elt);
13782
13783 return elt;
13784}
13785
13786/* The Ada extension of print_subexp (q.v.). */
13787
76a01679
JB
13788static void
13789ada_print_subexp (struct expression *exp, int *pos,
13790 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13791{
52ce6436 13792 int oplen, nargs, i;
4c4b4cd2
PH
13793 int pc = *pos;
13794 enum exp_opcode op = exp->elts[pc].opcode;
13795
13796 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13797
52ce6436 13798 *pos += oplen;
4c4b4cd2
PH
13799 switch (op)
13800 {
13801 default:
52ce6436 13802 *pos -= oplen;
4c4b4cd2
PH
13803 print_subexp_standard (exp, pos, stream, prec);
13804 return;
13805
13806 case OP_VAR_VALUE:
4c4b4cd2
PH
13807 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13808 return;
13809
13810 case BINOP_IN_BOUNDS:
323e0a4a 13811 /* XXX: sprint_subexp */
4c4b4cd2 13812 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13813 fputs_filtered (" in ", stream);
4c4b4cd2 13814 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13815 fputs_filtered ("'range", stream);
4c4b4cd2 13816 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13817 fprintf_filtered (stream, "(%ld)",
13818 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13819 return;
13820
13821 case TERNOP_IN_RANGE:
4c4b4cd2 13822 if (prec >= PREC_EQUAL)
76a01679 13823 fputs_filtered ("(", stream);
323e0a4a 13824 /* XXX: sprint_subexp */
4c4b4cd2 13825 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13826 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13827 print_subexp (exp, pos, stream, PREC_EQUAL);
13828 fputs_filtered (" .. ", stream);
13829 print_subexp (exp, pos, stream, PREC_EQUAL);
13830 if (prec >= PREC_EQUAL)
76a01679
JB
13831 fputs_filtered (")", stream);
13832 return;
4c4b4cd2
PH
13833
13834 case OP_ATR_FIRST:
13835 case OP_ATR_LAST:
13836 case OP_ATR_LENGTH:
13837 case OP_ATR_IMAGE:
13838 case OP_ATR_MAX:
13839 case OP_ATR_MIN:
13840 case OP_ATR_MODULUS:
13841 case OP_ATR_POS:
13842 case OP_ATR_SIZE:
13843 case OP_ATR_TAG:
13844 case OP_ATR_VAL:
4c4b4cd2 13845 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13846 {
13847 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13848 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13849 &type_print_raw_options);
76a01679
JB
13850 *pos += 3;
13851 }
4c4b4cd2 13852 else
76a01679 13853 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13854 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13855 if (nargs > 1)
76a01679
JB
13856 {
13857 int tem;
5b4ee69b 13858
76a01679
JB
13859 for (tem = 1; tem < nargs; tem += 1)
13860 {
13861 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13862 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13863 }
13864 fputs_filtered (")", stream);
13865 }
4c4b4cd2 13866 return;
14f9c5c9 13867
4c4b4cd2 13868 case UNOP_QUAL:
4c4b4cd2
PH
13869 type_print (exp->elts[pc + 1].type, "", stream, 0);
13870 fputs_filtered ("'(", stream);
13871 print_subexp (exp, pos, stream, PREC_PREFIX);
13872 fputs_filtered (")", stream);
13873 return;
14f9c5c9 13874
4c4b4cd2 13875 case UNOP_IN_RANGE:
323e0a4a 13876 /* XXX: sprint_subexp */
4c4b4cd2 13877 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13878 fputs_filtered (" in ", stream);
79d43c61
TT
13879 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13880 &type_print_raw_options);
4c4b4cd2 13881 return;
52ce6436
PH
13882
13883 case OP_DISCRETE_RANGE:
13884 print_subexp (exp, pos, stream, PREC_SUFFIX);
13885 fputs_filtered ("..", stream);
13886 print_subexp (exp, pos, stream, PREC_SUFFIX);
13887 return;
13888
13889 case OP_OTHERS:
13890 fputs_filtered ("others => ", stream);
13891 print_subexp (exp, pos, stream, PREC_SUFFIX);
13892 return;
13893
13894 case OP_CHOICES:
13895 for (i = 0; i < nargs-1; i += 1)
13896 {
13897 if (i > 0)
13898 fputs_filtered ("|", stream);
13899 print_subexp (exp, pos, stream, PREC_SUFFIX);
13900 }
13901 fputs_filtered (" => ", stream);
13902 print_subexp (exp, pos, stream, PREC_SUFFIX);
13903 return;
13904
13905 case OP_POSITIONAL:
13906 print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 return;
13908
13909 case OP_AGGREGATE:
13910 fputs_filtered ("(", stream);
13911 for (i = 0; i < nargs; i += 1)
13912 {
13913 if (i > 0)
13914 fputs_filtered (", ", stream);
13915 print_subexp (exp, pos, stream, PREC_SUFFIX);
13916 }
13917 fputs_filtered (")", stream);
13918 return;
4c4b4cd2
PH
13919 }
13920}
14f9c5c9
AS
13921
13922/* Table mapping opcodes into strings for printing operators
13923 and precedences of the operators. */
13924
d2e4a39e
AS
13925static const struct op_print ada_op_print_tab[] = {
13926 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13927 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13928 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13929 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13930 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13931 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13932 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13933 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13934 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13935 {">=", BINOP_GEQ, PREC_ORDER, 0},
13936 {">", BINOP_GTR, PREC_ORDER, 0},
13937 {"<", BINOP_LESS, PREC_ORDER, 0},
13938 {">>", BINOP_RSH, PREC_SHIFT, 0},
13939 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13940 {"+", BINOP_ADD, PREC_ADD, 0},
13941 {"-", BINOP_SUB, PREC_ADD, 0},
13942 {"&", BINOP_CONCAT, PREC_ADD, 0},
13943 {"*", BINOP_MUL, PREC_MUL, 0},
13944 {"/", BINOP_DIV, PREC_MUL, 0},
13945 {"rem", BINOP_REM, PREC_MUL, 0},
13946 {"mod", BINOP_MOD, PREC_MUL, 0},
13947 {"**", BINOP_EXP, PREC_REPEAT, 0},
13948 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13949 {"-", UNOP_NEG, PREC_PREFIX, 0},
13950 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13951 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13952 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13953 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13954 {".all", UNOP_IND, PREC_SUFFIX, 1},
13955 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13956 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13957 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13958};
13959\f
72d5681a
PH
13960enum ada_primitive_types {
13961 ada_primitive_type_int,
13962 ada_primitive_type_long,
13963 ada_primitive_type_short,
13964 ada_primitive_type_char,
13965 ada_primitive_type_float,
13966 ada_primitive_type_double,
13967 ada_primitive_type_void,
13968 ada_primitive_type_long_long,
13969 ada_primitive_type_long_double,
13970 ada_primitive_type_natural,
13971 ada_primitive_type_positive,
13972 ada_primitive_type_system_address,
08f49010 13973 ada_primitive_type_storage_offset,
72d5681a
PH
13974 nr_ada_primitive_types
13975};
6c038f32
PH
13976
13977static void
d4a9a881 13978ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13979 struct language_arch_info *lai)
13980{
d4a9a881 13981 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13982
72d5681a 13983 lai->primitive_type_vector
d4a9a881 13984 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13985 struct type *);
e9bb382b
UW
13986
13987 lai->primitive_type_vector [ada_primitive_type_int]
13988 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13989 0, "integer");
13990 lai->primitive_type_vector [ada_primitive_type_long]
13991 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13992 0, "long_integer");
13993 lai->primitive_type_vector [ada_primitive_type_short]
13994 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13995 0, "short_integer");
13996 lai->string_char_type
13997 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13998 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13999 lai->primitive_type_vector [ada_primitive_type_float]
14000 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14001 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14002 lai->primitive_type_vector [ada_primitive_type_double]
14003 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14004 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14005 lai->primitive_type_vector [ada_primitive_type_long_long]
14006 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14007 0, "long_long_integer");
14008 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14009 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14010 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14011 lai->primitive_type_vector [ada_primitive_type_natural]
14012 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14013 0, "natural");
14014 lai->primitive_type_vector [ada_primitive_type_positive]
14015 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14016 0, "positive");
14017 lai->primitive_type_vector [ada_primitive_type_void]
14018 = builtin->builtin_void;
14019
14020 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14021 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14022 "void"));
72d5681a
PH
14023 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14024 = "system__address";
fbb06eb1 14025
08f49010
XR
14026 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14027 type. This is a signed integral type whose size is the same as
14028 the size of addresses. */
14029 {
14030 unsigned int addr_length = TYPE_LENGTH
14031 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14032
14033 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14034 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14035 "storage_offset");
14036 }
14037
47e729a8 14038 lai->bool_type_symbol = NULL;
fbb06eb1 14039 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14040}
6c038f32
PH
14041\f
14042 /* Language vector */
14043
14044/* Not really used, but needed in the ada_language_defn. */
14045
14046static void
6c7a06a3 14047emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14048{
6c7a06a3 14049 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14050}
14051
14052static int
410a0ff2 14053parse (struct parser_state *ps)
6c038f32
PH
14054{
14055 warnings_issued = 0;
410a0ff2 14056 return ada_parse (ps);
6c038f32
PH
14057}
14058
14059static const struct exp_descriptor ada_exp_descriptor = {
14060 ada_print_subexp,
14061 ada_operator_length,
c0201579 14062 ada_operator_check,
6c038f32
PH
14063 ada_op_name,
14064 ada_dump_subexp_body,
14065 ada_evaluate_subexp
14066};
14067
b5ec771e
PA
14068/* symbol_name_matcher_ftype adapter for wild_match. */
14069
14070static bool
14071do_wild_match (const char *symbol_search_name,
14072 const lookup_name_info &lookup_name,
a207cff2 14073 completion_match_result *comp_match_res)
b5ec771e
PA
14074{
14075 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14076}
14077
14078/* symbol_name_matcher_ftype adapter for full_match. */
14079
14080static bool
14081do_full_match (const char *symbol_search_name,
14082 const lookup_name_info &lookup_name,
a207cff2 14083 completion_match_result *comp_match_res)
b5ec771e
PA
14084{
14085 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14086}
14087
a2cd4f14
JB
14088/* symbol_name_matcher_ftype for exact (verbatim) matches. */
14089
14090static bool
14091do_exact_match (const char *symbol_search_name,
14092 const lookup_name_info &lookup_name,
14093 completion_match_result *comp_match_res)
14094{
14095 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14096}
14097
b5ec771e
PA
14098/* Build the Ada lookup name for LOOKUP_NAME. */
14099
14100ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14101{
14102 const std::string &user_name = lookup_name.name ();
14103
14104 if (user_name[0] == '<')
14105 {
14106 if (user_name.back () == '>')
14107 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14108 else
14109 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14110 m_encoded_p = true;
14111 m_verbatim_p = true;
14112 m_wild_match_p = false;
14113 m_standard_p = false;
14114 }
14115 else
14116 {
14117 m_verbatim_p = false;
14118
14119 m_encoded_p = user_name.find ("__") != std::string::npos;
14120
14121 if (!m_encoded_p)
14122 {
14123 const char *folded = ada_fold_name (user_name.c_str ());
14124 const char *encoded = ada_encode_1 (folded, false);
14125 if (encoded != NULL)
14126 m_encoded_name = encoded;
14127 else
14128 m_encoded_name = user_name;
14129 }
14130 else
14131 m_encoded_name = user_name;
14132
14133 /* Handle the 'package Standard' special case. See description
14134 of m_standard_p. */
14135 if (startswith (m_encoded_name.c_str (), "standard__"))
14136 {
14137 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14138 m_standard_p = true;
14139 }
14140 else
14141 m_standard_p = false;
74ccd7f5 14142
b5ec771e
PA
14143 /* If the name contains a ".", then the user is entering a fully
14144 qualified entity name, and the match must not be done in wild
14145 mode. Similarly, if the user wants to complete what looks
14146 like an encoded name, the match must not be done in wild
14147 mode. Also, in the standard__ special case always do
14148 non-wild matching. */
14149 m_wild_match_p
14150 = (lookup_name.match_type () != symbol_name_match_type::FULL
14151 && !m_encoded_p
14152 && !m_standard_p
14153 && user_name.find ('.') == std::string::npos);
14154 }
14155}
14156
14157/* symbol_name_matcher_ftype method for Ada. This only handles
14158 completion mode. */
14159
14160static bool
14161ada_symbol_name_matches (const char *symbol_search_name,
14162 const lookup_name_info &lookup_name,
a207cff2 14163 completion_match_result *comp_match_res)
74ccd7f5 14164{
b5ec771e
PA
14165 return lookup_name.ada ().matches (symbol_search_name,
14166 lookup_name.match_type (),
a207cff2 14167 comp_match_res);
b5ec771e
PA
14168}
14169
de63c46b
PA
14170/* A name matcher that matches the symbol name exactly, with
14171 strcmp. */
14172
14173static bool
14174literal_symbol_name_matcher (const char *symbol_search_name,
14175 const lookup_name_info &lookup_name,
14176 completion_match_result *comp_match_res)
14177{
14178 const std::string &name = lookup_name.name ();
14179
14180 int cmp = (lookup_name.completion_mode ()
14181 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14182 : strcmp (symbol_search_name, name.c_str ()));
14183 if (cmp == 0)
14184 {
14185 if (comp_match_res != NULL)
14186 comp_match_res->set_match (symbol_search_name);
14187 return true;
14188 }
14189 else
14190 return false;
14191}
14192
b5ec771e
PA
14193/* Implement the "la_get_symbol_name_matcher" language_defn method for
14194 Ada. */
14195
14196static symbol_name_matcher_ftype *
14197ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14198{
de63c46b
PA
14199 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14200 return literal_symbol_name_matcher;
14201
b5ec771e
PA
14202 if (lookup_name.completion_mode ())
14203 return ada_symbol_name_matches;
74ccd7f5 14204 else
b5ec771e
PA
14205 {
14206 if (lookup_name.ada ().wild_match_p ())
14207 return do_wild_match;
a2cd4f14
JB
14208 else if (lookup_name.ada ().verbatim_p ())
14209 return do_exact_match;
b5ec771e
PA
14210 else
14211 return do_full_match;
14212 }
74ccd7f5
JB
14213}
14214
a5ee536b
JB
14215/* Implement the "la_read_var_value" language_defn method for Ada. */
14216
14217static struct value *
63e43d3a
PMR
14218ada_read_var_value (struct symbol *var, const struct block *var_block,
14219 struct frame_info *frame)
a5ee536b 14220{
a5ee536b
JB
14221 /* The only case where default_read_var_value is not sufficient
14222 is when VAR is a renaming... */
c0e70c62
TT
14223 if (frame != nullptr)
14224 {
14225 const struct block *frame_block = get_frame_block (frame, NULL);
14226 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14227 return ada_read_renaming_var_value (var, frame_block);
14228 }
a5ee536b
JB
14229
14230 /* This is a typical case where we expect the default_read_var_value
14231 function to work. */
63e43d3a 14232 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14233}
14234
56618e20
TT
14235static const char *ada_extensions[] =
14236{
14237 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14238};
14239
47e77640 14240extern const struct language_defn ada_language_defn = {
6c038f32 14241 "ada", /* Language name */
6abde28f 14242 "Ada",
6c038f32 14243 language_ada,
6c038f32 14244 range_check_off,
6c038f32
PH
14245 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14246 that's not quite what this means. */
6c038f32 14247 array_row_major,
9a044a89 14248 macro_expansion_no,
56618e20 14249 ada_extensions,
6c038f32
PH
14250 &ada_exp_descriptor,
14251 parse,
6c038f32
PH
14252 resolve,
14253 ada_printchar, /* Print a character constant */
14254 ada_printstr, /* Function to print string constant */
14255 emit_char, /* Function to print single char (not used) */
6c038f32 14256 ada_print_type, /* Print a type using appropriate syntax */
be942545 14257 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14258 ada_val_print, /* Print a value using appropriate syntax */
14259 ada_value_print, /* Print a top-level value */
a5ee536b 14260 ada_read_var_value, /* la_read_var_value */
6c038f32 14261 NULL, /* Language specific skip_trampoline */
2b2d9e11 14262 NULL, /* name_of_this */
59cc4834 14263 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14264 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14265 basic_lookup_transparent_type, /* lookup_transparent_type */
14266 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14267 ada_sniff_from_mangled_name,
0963b4bd
MS
14268 NULL, /* Language specific
14269 class_name_from_physname */
6c038f32
PH
14270 ada_op_print_tab, /* expression operators for printing */
14271 0, /* c-style arrays */
14272 1, /* String lower bound */
6c038f32 14273 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14274 ada_collect_symbol_completion_matches,
72d5681a 14275 ada_language_arch_info,
e79af960 14276 ada_print_array_index,
41f1b697 14277 default_pass_by_reference,
ae6a3a4c 14278 c_get_string,
e2b7af72 14279 ada_watch_location_expression,
b5ec771e 14280 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14281 ada_iterate_over_symbols,
5ffa0793 14282 default_search_name_hash,
a53b64ea 14283 &ada_varobj_ops,
bb2ec1b3 14284 NULL,
721b08c6 14285 NULL,
4be290b2 14286 ada_is_string_type,
721b08c6 14287 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14288};
14289
5bf03f13
JB
14290/* Command-list for the "set/show ada" prefix command. */
14291static struct cmd_list_element *set_ada_list;
14292static struct cmd_list_element *show_ada_list;
14293
14294/* Implement the "set ada" prefix command. */
14295
14296static void
981a3fb3 14297set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14298{
14299 printf_unfiltered (_(\
14300"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14301 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14302}
14303
14304/* Implement the "show ada" prefix command. */
14305
14306static void
981a3fb3 14307show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14308{
14309 cmd_show_list (show_ada_list, from_tty, "");
14310}
14311
2060206e
PA
14312static void
14313initialize_ada_catchpoint_ops (void)
14314{
14315 struct breakpoint_ops *ops;
14316
14317 initialize_breakpoint_ops ();
14318
14319 ops = &catch_exception_breakpoint_ops;
14320 *ops = bkpt_breakpoint_ops;
2060206e
PA
14321 ops->allocate_location = allocate_location_catch_exception;
14322 ops->re_set = re_set_catch_exception;
14323 ops->check_status = check_status_catch_exception;
14324 ops->print_it = print_it_catch_exception;
14325 ops->print_one = print_one_catch_exception;
14326 ops->print_mention = print_mention_catch_exception;
14327 ops->print_recreate = print_recreate_catch_exception;
14328
14329 ops = &catch_exception_unhandled_breakpoint_ops;
14330 *ops = bkpt_breakpoint_ops;
2060206e
PA
14331 ops->allocate_location = allocate_location_catch_exception_unhandled;
14332 ops->re_set = re_set_catch_exception_unhandled;
14333 ops->check_status = check_status_catch_exception_unhandled;
14334 ops->print_it = print_it_catch_exception_unhandled;
14335 ops->print_one = print_one_catch_exception_unhandled;
14336 ops->print_mention = print_mention_catch_exception_unhandled;
14337 ops->print_recreate = print_recreate_catch_exception_unhandled;
14338
14339 ops = &catch_assert_breakpoint_ops;
14340 *ops = bkpt_breakpoint_ops;
2060206e
PA
14341 ops->allocate_location = allocate_location_catch_assert;
14342 ops->re_set = re_set_catch_assert;
14343 ops->check_status = check_status_catch_assert;
14344 ops->print_it = print_it_catch_assert;
14345 ops->print_one = print_one_catch_assert;
14346 ops->print_mention = print_mention_catch_assert;
14347 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14348
14349 ops = &catch_handlers_breakpoint_ops;
14350 *ops = bkpt_breakpoint_ops;
14351 ops->allocate_location = allocate_location_catch_handlers;
14352 ops->re_set = re_set_catch_handlers;
14353 ops->check_status = check_status_catch_handlers;
14354 ops->print_it = print_it_catch_handlers;
14355 ops->print_one = print_one_catch_handlers;
14356 ops->print_mention = print_mention_catch_handlers;
14357 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14358}
14359
3d9434b5
JB
14360/* This module's 'new_objfile' observer. */
14361
14362static void
14363ada_new_objfile_observer (struct objfile *objfile)
14364{
14365 ada_clear_symbol_cache ();
14366}
14367
14368/* This module's 'free_objfile' observer. */
14369
14370static void
14371ada_free_objfile_observer (struct objfile *objfile)
14372{
14373 ada_clear_symbol_cache ();
14374}
14375
d2e4a39e 14376void
6c038f32 14377_initialize_ada_language (void)
14f9c5c9 14378{
2060206e
PA
14379 initialize_ada_catchpoint_ops ();
14380
5bf03f13 14381 add_prefix_cmd ("ada", no_class, set_ada_command,
470678d7 14382 _("Prefix command for changing Ada-specific settings"),
5bf03f13
JB
14383 &set_ada_list, "set ada ", 0, &setlist);
14384
14385 add_prefix_cmd ("ada", no_class, show_ada_command,
14386 _("Generic command for showing Ada-specific settings."),
14387 &show_ada_list, "show ada ", 0, &showlist);
14388
14389 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14390 &trust_pad_over_xvs, _("\
14391Enable or disable an optimization trusting PAD types over XVS types"), _("\
14392Show whether an optimization trusting PAD types over XVS types is activated"),
14393 _("\
14394This is related to the encoding used by the GNAT compiler. The debugger\n\
14395should normally trust the contents of PAD types, but certain older versions\n\
14396of GNAT have a bug that sometimes causes the information in the PAD type\n\
14397to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14398work around this bug. It is always safe to turn this option \"off\", but\n\
14399this incurs a slight performance penalty, so it is recommended to NOT change\n\
14400this option to \"off\" unless necessary."),
14401 NULL, NULL, &set_ada_list, &show_ada_list);
14402
d72413e6
PMR
14403 add_setshow_boolean_cmd ("print-signatures", class_vars,
14404 &print_signatures, _("\
14405Enable or disable the output of formal and return types for functions in the \
14406overloads selection menu"), _("\
14407Show whether the output of formal and return types for functions in the \
14408overloads selection menu is activated"),
14409 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14410
9ac4176b
PA
14411 add_catch_command ("exception", _("\
14412Catch Ada exceptions, when raised.\n\
9bf7038b 14413Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14414Without any argument, stop when any Ada exception is raised.\n\
14415If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14416being raised does not have a handler (and will therefore lead to the task's\n\
14417termination).\n\
14418Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14419raised is the same as ARG.\n\
14420CONDITION is a boolean expression that is evaluated to see whether the\n\
14421exception should cause a stop."),
9ac4176b 14422 catch_ada_exception_command,
71bed2db 14423 catch_ada_completer,
9ac4176b
PA
14424 CATCH_PERMANENT,
14425 CATCH_TEMPORARY);
9f757bf7
XR
14426
14427 add_catch_command ("handlers", _("\
14428Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14429Usage: catch handlers [ARG] [if CONDITION]\n\
14430Without any argument, stop when any Ada exception is handled.\n\
14431With an argument, catch only exceptions with the given name.\n\
14432CONDITION is a boolean expression that is evaluated to see whether the\n\
14433exception should cause a stop."),
9f757bf7 14434 catch_ada_handlers_command,
71bed2db 14435 catch_ada_completer,
9f757bf7
XR
14436 CATCH_PERMANENT,
14437 CATCH_TEMPORARY);
9ac4176b
PA
14438 add_catch_command ("assert", _("\
14439Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14440Usage: catch assert [if CONDITION]\n\
14441CONDITION is a boolean expression that is evaluated to see whether the\n\
14442exception should cause a stop."),
9ac4176b
PA
14443 catch_assert_command,
14444 NULL,
14445 CATCH_PERMANENT,
14446 CATCH_TEMPORARY);
14447
6c038f32 14448 varsize_limit = 65536;
3fcded8f
JB
14449 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14450 &varsize_limit, _("\
14451Set the maximum number of bytes allowed in a variable-size object."), _("\
14452Show the maximum number of bytes allowed in a variable-size object."), _("\
14453Attempts to access an object whose size is not a compile-time constant\n\
14454and exceeds this limit will cause an error."),
14455 NULL, NULL, &setlist, &showlist);
6c038f32 14456
778865d3
JB
14457 add_info ("exceptions", info_exceptions_command,
14458 _("\
14459List all Ada exception names.\n\
9bf7038b 14460Usage: info exceptions [REGEXP]\n\
778865d3
JB
14461If a regular expression is passed as an argument, only those matching\n\
14462the regular expression are listed."));
14463
c6044dd1
JB
14464 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14465 _("Set Ada maintenance-related variables."),
14466 &maint_set_ada_cmdlist, "maintenance set ada ",
14467 0/*allow-unknown*/, &maintenance_set_cmdlist);
14468
14469 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14470 _("Show Ada maintenance-related variables"),
14471 &maint_show_ada_cmdlist, "maintenance show ada ",
14472 0/*allow-unknown*/, &maintenance_show_cmdlist);
14473
14474 add_setshow_boolean_cmd
14475 ("ignore-descriptive-types", class_maintenance,
14476 &ada_ignore_descriptive_types_p,
14477 _("Set whether descriptive types generated by GNAT should be ignored."),
14478 _("Show whether descriptive types generated by GNAT should be ignored."),
14479 _("\
14480When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14481DWARF attribute."),
14482 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14483
459a2e4c
TT
14484 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14485 NULL, xcalloc, xfree);
6b69afc4 14486
3d9434b5 14487 /* The ada-lang observers. */
76727919
TT
14488 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14489 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14490 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14491}
This page took 3.23854 seconds and 4 git commands to generate.