* ada-lang.c (ada_index_type): Update comment.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
197e01b6 1/* Ada language support routines for GDB, the GNU debugger. Copyright (C)
10a2c479 2
ae6a3a4c
TJB
3 1992, 1993, 1994, 1997, 1998, 1999, 2000, 2003, 2004, 2005, 2007, 2008,
4 2009 Free Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
14f9c5c9 59
4c4b4cd2
PH
60/* Define whether or not the C operator '/' truncates towards zero for
61 differently signed operands (truncation direction is undefined in C).
62 Copied from valarith.c. */
63
64#ifndef TRUNCATION_TOWARDS_ZERO
65#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
66#endif
67
4c4b4cd2 68static void extract_string (CORE_ADDR addr, char *buf);
14f9c5c9 69
14f9c5c9
AS
70static void modify_general_field (char *, LONGEST, int, int);
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
4c4b4cd2 104static struct value *ensure_lval (struct value *, CORE_ADDR *);
14f9c5c9 105
d2e4a39e 106static struct value *convert_actual (struct value *, struct type *,
4c4b4cd2 107 CORE_ADDR *);
14f9c5c9 108
d2e4a39e 109static struct value *make_array_descriptor (struct type *, struct value *,
4c4b4cd2 110 CORE_ADDR *);
14f9c5c9 111
4c4b4cd2 112static void ada_add_block_symbols (struct obstack *,
76a01679 113 struct block *, const char *,
2570f2b7 114 domain_enum, struct objfile *, int);
14f9c5c9 115
4c4b4cd2 116static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 117
76a01679 118static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 119 struct block *);
14f9c5c9 120
4c4b4cd2
PH
121static int num_defns_collected (struct obstack *);
122
123static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 124
d2e4a39e 125static struct partial_symbol *ada_lookup_partial_symbol (struct partial_symtab
76a01679
JB
126 *, const char *, int,
127 domain_enum, int);
14f9c5c9 128
4c4b4cd2 129static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 130 struct type *);
14f9c5c9 131
d2e4a39e 132static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 133 struct symbol *, struct block *);
14f9c5c9 134
d2e4a39e 135static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 136
4c4b4cd2
PH
137static char *ada_op_name (enum exp_opcode);
138
139static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 140
d2e4a39e 141static int numeric_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int integer_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int scalar_type_p (struct type *);
14f9c5c9 146
d2e4a39e 147static int discrete_type_p (struct type *);
14f9c5c9 148
aeb5907d
JB
149static enum ada_renaming_category parse_old_style_renaming (struct type *,
150 const char **,
151 int *,
152 const char **);
153
154static struct symbol *find_old_style_renaming_symbol (const char *,
155 struct block *);
156
4c4b4cd2 157static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 158 int, int, int *);
4c4b4cd2 159
d2e4a39e 160static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
d2e4a39e 170static struct type *to_fixed_range_type (char *, struct value *,
4c4b4cd2 171 struct objfile *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
d2e4a39e 178static struct type *packed_array_type (struct type *, long *);
14f9c5c9 179
d2e4a39e 180static struct type *decode_packed_array_type (struct type *);
14f9c5c9 181
d2e4a39e 182static struct value *decode_packed_array (struct value *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
52ce6436
PH
187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int);
188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
d2e4a39e 200static int wild_match (const char *, int, const char *);
14f9c5c9 201
d2e4a39e 202static struct value *ada_coerce_ref (struct value *);
14f9c5c9 203
4c4b4cd2
PH
204static LONGEST pos_atr (struct value *);
205
3cb382c9 206static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 207
d2e4a39e 208static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static struct symbol *standard_lookup (const char *, const struct block *,
211 domain_enum);
14f9c5c9 212
4c4b4cd2
PH
213static struct value *ada_search_struct_field (char *, struct value *, int,
214 struct type *);
215
216static struct value *ada_value_primitive_field (struct value *, int, int,
217 struct type *);
218
76a01679 219static int find_struct_field (char *, struct type *, int,
52ce6436 220 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
221
222static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
223 struct value *);
224
225static struct value *ada_to_fixed_value (struct value *);
14f9c5c9 226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
231static struct value *ada_coerce_to_simple_array (struct value *);
232
233static int ada_is_direct_array_type (struct type *);
234
72d5681a
PH
235static void ada_language_arch_info (struct gdbarch *,
236 struct language_arch_info *);
714e53ab
PH
237
238static void check_size (const struct type *);
52ce6436
PH
239
240static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *, int *, enum noside);
245
246static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
4c4b4cd2
PH
270\f
271
76a01679 272
4c4b4cd2 273/* Maximum-sized dynamic type. */
14f9c5c9
AS
274static unsigned int varsize_limit;
275
4c4b4cd2
PH
276/* FIXME: brobecker/2003-09-17: No longer a const because it is
277 returned by a function that does not return a const char *. */
278static char *ada_completer_word_break_characters =
279#ifdef VMS
280 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
281#else
14f9c5c9 282 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 283#endif
14f9c5c9 284
4c4b4cd2 285/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 286static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 287 = "__gnat_ada_main_program_name";
14f9c5c9 288
4c4b4cd2
PH
289/* Limit on the number of warnings to raise per expression evaluation. */
290static int warning_limit = 2;
291
292/* Number of warning messages issued; reset to 0 by cleanups after
293 expression evaluation. */
294static int warnings_issued = 0;
295
296static const char *known_runtime_file_name_patterns[] = {
297 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
298};
299
300static const char *known_auxiliary_function_name_patterns[] = {
301 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
302};
303
304/* Space for allocating results of ada_lookup_symbol_list. */
305static struct obstack symbol_list_obstack;
306
307 /* Utilities */
308
41d27058
JB
309/* Given DECODED_NAME a string holding a symbol name in its
310 decoded form (ie using the Ada dotted notation), returns
311 its unqualified name. */
312
313static const char *
314ada_unqualified_name (const char *decoded_name)
315{
316 const char *result = strrchr (decoded_name, '.');
317
318 if (result != NULL)
319 result++; /* Skip the dot... */
320 else
321 result = decoded_name;
322
323 return result;
324}
325
326/* Return a string starting with '<', followed by STR, and '>'.
327 The result is good until the next call. */
328
329static char *
330add_angle_brackets (const char *str)
331{
332 static char *result = NULL;
333
334 xfree (result);
88c15c34 335 result = xstrprintf ("<%s>", str);
41d27058
JB
336 return result;
337}
96d887e8 338
4c4b4cd2
PH
339static char *
340ada_get_gdb_completer_word_break_characters (void)
341{
342 return ada_completer_word_break_characters;
343}
344
e79af960
JB
345/* Print an array element index using the Ada syntax. */
346
347static void
348ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 349 const struct value_print_options *options)
e79af960 350{
79a45b7d 351 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
352 fprintf_filtered (stream, " => ");
353}
354
4c4b4cd2
PH
355/* Read the string located at ADDR from the inferior and store the
356 result into BUF. */
357
358static void
14f9c5c9
AS
359extract_string (CORE_ADDR addr, char *buf)
360{
d2e4a39e 361 int char_index = 0;
14f9c5c9 362
4c4b4cd2
PH
363 /* Loop, reading one byte at a time, until we reach the '\000'
364 end-of-string marker. */
d2e4a39e
AS
365 do
366 {
367 target_read_memory (addr + char_index * sizeof (char),
4c4b4cd2 368 buf + char_index * sizeof (char), sizeof (char));
d2e4a39e
AS
369 char_index++;
370 }
371 while (buf[char_index - 1] != '\000');
14f9c5c9
AS
372}
373
f27cf670 374/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 375 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 376 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 377
f27cf670
AS
378void *
379grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 380{
d2e4a39e
AS
381 if (*size < min_size)
382 {
383 *size *= 2;
384 if (*size < min_size)
4c4b4cd2 385 *size = min_size;
f27cf670 386 vect = xrealloc (vect, *size * element_size);
d2e4a39e 387 }
f27cf670 388 return vect;
14f9c5c9
AS
389}
390
391/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 392 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
393
394static int
ebf56fd3 395field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
396{
397 int len = strlen (target);
d2e4a39e 398 return
4c4b4cd2
PH
399 (strncmp (field_name, target, len) == 0
400 && (field_name[len] == '\0'
401 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
402 && strcmp (field_name + strlen (field_name) - 6,
403 "___XVN") != 0)));
14f9c5c9
AS
404}
405
406
872c8b51
JB
407/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
408 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
409 and return its index. This function also handles fields whose name
410 have ___ suffixes because the compiler sometimes alters their name
411 by adding such a suffix to represent fields with certain constraints.
412 If the field could not be found, return a negative number if
413 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
414
415int
416ada_get_field_index (const struct type *type, const char *field_name,
417 int maybe_missing)
418{
419 int fieldno;
872c8b51
JB
420 struct type *struct_type = check_typedef ((struct type *) type);
421
422 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
423 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
424 return fieldno;
425
426 if (!maybe_missing)
323e0a4a 427 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 428 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
429
430 return -1;
431}
432
433/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
434
435int
d2e4a39e 436ada_name_prefix_len (const char *name)
14f9c5c9
AS
437{
438 if (name == NULL)
439 return 0;
d2e4a39e 440 else
14f9c5c9 441 {
d2e4a39e 442 const char *p = strstr (name, "___");
14f9c5c9 443 if (p == NULL)
4c4b4cd2 444 return strlen (name);
14f9c5c9 445 else
4c4b4cd2 446 return p - name;
14f9c5c9
AS
447 }
448}
449
4c4b4cd2
PH
450/* Return non-zero if SUFFIX is a suffix of STR.
451 Return zero if STR is null. */
452
14f9c5c9 453static int
d2e4a39e 454is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
455{
456 int len1, len2;
457 if (str == NULL)
458 return 0;
459 len1 = strlen (str);
460 len2 = strlen (suffix);
4c4b4cd2 461 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
462}
463
4c4b4cd2
PH
464/* The contents of value VAL, treated as a value of type TYPE. The
465 result is an lval in memory if VAL is. */
14f9c5c9 466
d2e4a39e 467static struct value *
4c4b4cd2 468coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 469{
61ee279c 470 type = ada_check_typedef (type);
df407dfe 471 if (value_type (val) == type)
4c4b4cd2 472 return val;
d2e4a39e 473 else
14f9c5c9 474 {
4c4b4cd2
PH
475 struct value *result;
476
477 /* Make sure that the object size is not unreasonable before
478 trying to allocate some memory for it. */
714e53ab 479 check_size (type);
4c4b4cd2
PH
480
481 result = allocate_value (type);
74bcbdf3 482 set_value_component_location (result, val);
9bbda503
AC
483 set_value_bitsize (result, value_bitsize (val));
484 set_value_bitpos (result, value_bitpos (val));
42ae5230 485 set_value_address (result, value_address (val));
d69fe07e 486 if (value_lazy (val)
df407dfe 487 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
dfa52d88 488 set_value_lazy (result, 1);
d2e4a39e 489 else
0fd88904 490 memcpy (value_contents_raw (result), value_contents (val),
4c4b4cd2 491 TYPE_LENGTH (type));
14f9c5c9
AS
492 return result;
493 }
494}
495
fc1a4b47
AC
496static const gdb_byte *
497cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
498{
499 if (valaddr == NULL)
500 return NULL;
501 else
502 return valaddr + offset;
503}
504
505static CORE_ADDR
ebf56fd3 506cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
507{
508 if (address == 0)
509 return 0;
d2e4a39e 510 else
14f9c5c9
AS
511 return address + offset;
512}
513
4c4b4cd2
PH
514/* Issue a warning (as for the definition of warning in utils.c, but
515 with exactly one argument rather than ...), unless the limit on the
516 number of warnings has passed during the evaluation of the current
517 expression. */
a2249542 518
77109804
AC
519/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
520 provided by "complaint". */
521static void lim_warning (const char *format, ...) ATTR_FORMAT (printf, 1, 2);
522
14f9c5c9 523static void
a2249542 524lim_warning (const char *format, ...)
14f9c5c9 525{
a2249542
MK
526 va_list args;
527 va_start (args, format);
528
4c4b4cd2
PH
529 warnings_issued += 1;
530 if (warnings_issued <= warning_limit)
a2249542
MK
531 vwarning (format, args);
532
533 va_end (args);
4c4b4cd2
PH
534}
535
714e53ab
PH
536/* Issue an error if the size of an object of type T is unreasonable,
537 i.e. if it would be a bad idea to allocate a value of this type in
538 GDB. */
539
540static void
541check_size (const struct type *type)
542{
543 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 544 error (_("object size is larger than varsize-limit"));
714e53ab
PH
545}
546
547
c3e5cd34
PH
548/* Note: would have used MAX_OF_TYPE and MIN_OF_TYPE macros from
549 gdbtypes.h, but some of the necessary definitions in that file
550 seem to have gone missing. */
551
552/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 553static LONGEST
c3e5cd34 554max_of_size (int size)
4c4b4cd2 555{
76a01679
JB
556 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
557 return top_bit | (top_bit - 1);
4c4b4cd2
PH
558}
559
c3e5cd34 560/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 561static LONGEST
c3e5cd34 562min_of_size (int size)
4c4b4cd2 563{
c3e5cd34 564 return -max_of_size (size) - 1;
4c4b4cd2
PH
565}
566
c3e5cd34 567/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 568static ULONGEST
c3e5cd34 569umax_of_size (int size)
4c4b4cd2 570{
76a01679
JB
571 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
572 return top_bit | (top_bit - 1);
4c4b4cd2
PH
573}
574
c3e5cd34
PH
575/* Maximum value of integral type T, as a signed quantity. */
576static LONGEST
577max_of_type (struct type *t)
4c4b4cd2 578{
c3e5cd34
PH
579 if (TYPE_UNSIGNED (t))
580 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
581 else
582 return max_of_size (TYPE_LENGTH (t));
583}
584
585/* Minimum value of integral type T, as a signed quantity. */
586static LONGEST
587min_of_type (struct type *t)
588{
589 if (TYPE_UNSIGNED (t))
590 return 0;
591 else
592 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
593}
594
595/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 596static LONGEST
4c4b4cd2
PH
597discrete_type_high_bound (struct type *type)
598{
76a01679 599 switch (TYPE_CODE (type))
4c4b4cd2
PH
600 {
601 case TYPE_CODE_RANGE:
690cc4eb 602 return TYPE_HIGH_BOUND (type);
4c4b4cd2 603 case TYPE_CODE_ENUM:
690cc4eb
PH
604 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
605 case TYPE_CODE_BOOL:
606 return 1;
607 case TYPE_CODE_CHAR:
76a01679 608 case TYPE_CODE_INT:
690cc4eb 609 return max_of_type (type);
4c4b4cd2 610 default:
323e0a4a 611 error (_("Unexpected type in discrete_type_high_bound."));
4c4b4cd2
PH
612 }
613}
614
615/* The largest value in the domain of TYPE, a discrete type, as an integer. */
690cc4eb 616static LONGEST
4c4b4cd2
PH
617discrete_type_low_bound (struct type *type)
618{
76a01679 619 switch (TYPE_CODE (type))
4c4b4cd2
PH
620 {
621 case TYPE_CODE_RANGE:
690cc4eb 622 return TYPE_LOW_BOUND (type);
4c4b4cd2 623 case TYPE_CODE_ENUM:
690cc4eb
PH
624 return TYPE_FIELD_BITPOS (type, 0);
625 case TYPE_CODE_BOOL:
626 return 0;
627 case TYPE_CODE_CHAR:
76a01679 628 case TYPE_CODE_INT:
690cc4eb 629 return min_of_type (type);
4c4b4cd2 630 default:
323e0a4a 631 error (_("Unexpected type in discrete_type_low_bound."));
4c4b4cd2
PH
632 }
633}
634
635/* The identity on non-range types. For range types, the underlying
76a01679 636 non-range scalar type. */
4c4b4cd2
PH
637
638static struct type *
639base_type (struct type *type)
640{
641 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
642 {
76a01679
JB
643 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
644 return type;
4c4b4cd2
PH
645 type = TYPE_TARGET_TYPE (type);
646 }
647 return type;
14f9c5c9 648}
4c4b4cd2 649\f
76a01679 650
4c4b4cd2 651 /* Language Selection */
14f9c5c9
AS
652
653/* If the main program is in Ada, return language_ada, otherwise return LANG
654 (the main program is in Ada iif the adainit symbol is found).
655
4c4b4cd2 656 MAIN_PST is not used. */
d2e4a39e 657
14f9c5c9 658enum language
d2e4a39e 659ada_update_initial_language (enum language lang,
4c4b4cd2 660 struct partial_symtab *main_pst)
14f9c5c9 661{
d2e4a39e 662 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
663 (struct objfile *) NULL) != NULL)
664 return language_ada;
14f9c5c9
AS
665
666 return lang;
667}
96d887e8
PH
668
669/* If the main procedure is written in Ada, then return its name.
670 The result is good until the next call. Return NULL if the main
671 procedure doesn't appear to be in Ada. */
672
673char *
674ada_main_name (void)
675{
676 struct minimal_symbol *msym;
f9bc20b9 677 static char *main_program_name = NULL;
6c038f32 678
96d887e8
PH
679 /* For Ada, the name of the main procedure is stored in a specific
680 string constant, generated by the binder. Look for that symbol,
681 extract its address, and then read that string. If we didn't find
682 that string, then most probably the main procedure is not written
683 in Ada. */
684 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
685
686 if (msym != NULL)
687 {
f9bc20b9
JB
688 CORE_ADDR main_program_name_addr;
689 int err_code;
690
96d887e8
PH
691 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
692 if (main_program_name_addr == 0)
323e0a4a 693 error (_("Invalid address for Ada main program name."));
96d887e8 694
f9bc20b9
JB
695 xfree (main_program_name);
696 target_read_string (main_program_name_addr, &main_program_name,
697 1024, &err_code);
698
699 if (err_code != 0)
700 return NULL;
96d887e8
PH
701 return main_program_name;
702 }
703
704 /* The main procedure doesn't seem to be in Ada. */
705 return NULL;
706}
14f9c5c9 707\f
4c4b4cd2 708 /* Symbols */
d2e4a39e 709
4c4b4cd2
PH
710/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
711 of NULLs. */
14f9c5c9 712
d2e4a39e
AS
713const struct ada_opname_map ada_opname_table[] = {
714 {"Oadd", "\"+\"", BINOP_ADD},
715 {"Osubtract", "\"-\"", BINOP_SUB},
716 {"Omultiply", "\"*\"", BINOP_MUL},
717 {"Odivide", "\"/\"", BINOP_DIV},
718 {"Omod", "\"mod\"", BINOP_MOD},
719 {"Orem", "\"rem\"", BINOP_REM},
720 {"Oexpon", "\"**\"", BINOP_EXP},
721 {"Olt", "\"<\"", BINOP_LESS},
722 {"Ole", "\"<=\"", BINOP_LEQ},
723 {"Ogt", "\">\"", BINOP_GTR},
724 {"Oge", "\">=\"", BINOP_GEQ},
725 {"Oeq", "\"=\"", BINOP_EQUAL},
726 {"One", "\"/=\"", BINOP_NOTEQUAL},
727 {"Oand", "\"and\"", BINOP_BITWISE_AND},
728 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
729 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
730 {"Oconcat", "\"&\"", BINOP_CONCAT},
731 {"Oabs", "\"abs\"", UNOP_ABS},
732 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
733 {"Oadd", "\"+\"", UNOP_PLUS},
734 {"Osubtract", "\"-\"", UNOP_NEG},
735 {NULL, NULL}
14f9c5c9
AS
736};
737
4c4b4cd2
PH
738/* The "encoded" form of DECODED, according to GNAT conventions.
739 The result is valid until the next call to ada_encode. */
740
14f9c5c9 741char *
4c4b4cd2 742ada_encode (const char *decoded)
14f9c5c9 743{
4c4b4cd2
PH
744 static char *encoding_buffer = NULL;
745 static size_t encoding_buffer_size = 0;
d2e4a39e 746 const char *p;
14f9c5c9 747 int k;
d2e4a39e 748
4c4b4cd2 749 if (decoded == NULL)
14f9c5c9
AS
750 return NULL;
751
4c4b4cd2
PH
752 GROW_VECT (encoding_buffer, encoding_buffer_size,
753 2 * strlen (decoded) + 10);
14f9c5c9
AS
754
755 k = 0;
4c4b4cd2 756 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 757 {
cdc7bb92 758 if (*p == '.')
4c4b4cd2
PH
759 {
760 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
761 k += 2;
762 }
14f9c5c9 763 else if (*p == '"')
4c4b4cd2
PH
764 {
765 const struct ada_opname_map *mapping;
766
767 for (mapping = ada_opname_table;
1265e4aa
JB
768 mapping->encoded != NULL
769 && strncmp (mapping->decoded, p,
770 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
771 ;
772 if (mapping->encoded == NULL)
323e0a4a 773 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
774 strcpy (encoding_buffer + k, mapping->encoded);
775 k += strlen (mapping->encoded);
776 break;
777 }
d2e4a39e 778 else
4c4b4cd2
PH
779 {
780 encoding_buffer[k] = *p;
781 k += 1;
782 }
14f9c5c9
AS
783 }
784
4c4b4cd2
PH
785 encoding_buffer[k] = '\0';
786 return encoding_buffer;
14f9c5c9
AS
787}
788
789/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
790 quotes, unfolded, but with the quotes stripped away. Result good
791 to next call. */
792
d2e4a39e
AS
793char *
794ada_fold_name (const char *name)
14f9c5c9 795{
d2e4a39e 796 static char *fold_buffer = NULL;
14f9c5c9
AS
797 static size_t fold_buffer_size = 0;
798
799 int len = strlen (name);
d2e4a39e 800 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
801
802 if (name[0] == '\'')
803 {
d2e4a39e
AS
804 strncpy (fold_buffer, name + 1, len - 2);
805 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
806 }
807 else
808 {
809 int i;
810 for (i = 0; i <= len; i += 1)
4c4b4cd2 811 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
812 }
813
814 return fold_buffer;
815}
816
529cad9c
PH
817/* Return nonzero if C is either a digit or a lowercase alphabet character. */
818
819static int
820is_lower_alphanum (const char c)
821{
822 return (isdigit (c) || (isalpha (c) && islower (c)));
823}
824
29480c32
JB
825/* Remove either of these suffixes:
826 . .{DIGIT}+
827 . ${DIGIT}+
828 . ___{DIGIT}+
829 . __{DIGIT}+.
830 These are suffixes introduced by the compiler for entities such as
831 nested subprogram for instance, in order to avoid name clashes.
832 They do not serve any purpose for the debugger. */
833
834static void
835ada_remove_trailing_digits (const char *encoded, int *len)
836{
837 if (*len > 1 && isdigit (encoded[*len - 1]))
838 {
839 int i = *len - 2;
840 while (i > 0 && isdigit (encoded[i]))
841 i--;
842 if (i >= 0 && encoded[i] == '.')
843 *len = i;
844 else if (i >= 0 && encoded[i] == '$')
845 *len = i;
846 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
847 *len = i - 2;
848 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
849 *len = i - 1;
850 }
851}
852
853/* Remove the suffix introduced by the compiler for protected object
854 subprograms. */
855
856static void
857ada_remove_po_subprogram_suffix (const char *encoded, int *len)
858{
859 /* Remove trailing N. */
860
861 /* Protected entry subprograms are broken into two
862 separate subprograms: The first one is unprotected, and has
863 a 'N' suffix; the second is the protected version, and has
864 the 'P' suffix. The second calls the first one after handling
865 the protection. Since the P subprograms are internally generated,
866 we leave these names undecoded, giving the user a clue that this
867 entity is internal. */
868
869 if (*len > 1
870 && encoded[*len - 1] == 'N'
871 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
872 *len = *len - 1;
873}
874
875/* If ENCODED follows the GNAT entity encoding conventions, then return
876 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
877 replaced by ENCODED.
14f9c5c9 878
4c4b4cd2 879 The resulting string is valid until the next call of ada_decode.
29480c32 880 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
881 is returned. */
882
883const char *
884ada_decode (const char *encoded)
14f9c5c9
AS
885{
886 int i, j;
887 int len0;
d2e4a39e 888 const char *p;
4c4b4cd2 889 char *decoded;
14f9c5c9 890 int at_start_name;
4c4b4cd2
PH
891 static char *decoding_buffer = NULL;
892 static size_t decoding_buffer_size = 0;
d2e4a39e 893
29480c32
JB
894 /* The name of the Ada main procedure starts with "_ada_".
895 This prefix is not part of the decoded name, so skip this part
896 if we see this prefix. */
4c4b4cd2
PH
897 if (strncmp (encoded, "_ada_", 5) == 0)
898 encoded += 5;
14f9c5c9 899
29480c32
JB
900 /* If the name starts with '_', then it is not a properly encoded
901 name, so do not attempt to decode it. Similarly, if the name
902 starts with '<', the name should not be decoded. */
4c4b4cd2 903 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
904 goto Suppress;
905
4c4b4cd2 906 len0 = strlen (encoded);
4c4b4cd2 907
29480c32
JB
908 ada_remove_trailing_digits (encoded, &len0);
909 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 910
4c4b4cd2
PH
911 /* Remove the ___X.* suffix if present. Do not forget to verify that
912 the suffix is located before the current "end" of ENCODED. We want
913 to avoid re-matching parts of ENCODED that have previously been
914 marked as discarded (by decrementing LEN0). */
915 p = strstr (encoded, "___");
916 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
917 {
918 if (p[3] == 'X')
4c4b4cd2 919 len0 = p - encoded;
14f9c5c9 920 else
4c4b4cd2 921 goto Suppress;
14f9c5c9 922 }
4c4b4cd2 923
29480c32
JB
924 /* Remove any trailing TKB suffix. It tells us that this symbol
925 is for the body of a task, but that information does not actually
926 appear in the decoded name. */
927
4c4b4cd2 928 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 929 len0 -= 3;
76a01679 930
29480c32
JB
931 /* Remove trailing "B" suffixes. */
932 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
933
4c4b4cd2 934 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
935 len0 -= 1;
936
4c4b4cd2 937 /* Make decoded big enough for possible expansion by operator name. */
29480c32 938
4c4b4cd2
PH
939 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
940 decoded = decoding_buffer;
14f9c5c9 941
29480c32
JB
942 /* Remove trailing __{digit}+ or trailing ${digit}+. */
943
4c4b4cd2 944 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 945 {
4c4b4cd2
PH
946 i = len0 - 2;
947 while ((i >= 0 && isdigit (encoded[i]))
948 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
949 i -= 1;
950 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
951 len0 = i - 1;
952 else if (encoded[i] == '$')
953 len0 = i;
d2e4a39e 954 }
14f9c5c9 955
29480c32
JB
956 /* The first few characters that are not alphabetic are not part
957 of any encoding we use, so we can copy them over verbatim. */
958
4c4b4cd2
PH
959 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
960 decoded[j] = encoded[i];
14f9c5c9
AS
961
962 at_start_name = 1;
963 while (i < len0)
964 {
29480c32 965 /* Is this a symbol function? */
4c4b4cd2
PH
966 if (at_start_name && encoded[i] == 'O')
967 {
968 int k;
969 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
970 {
971 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
972 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
973 op_len - 1) == 0)
974 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
975 {
976 strcpy (decoded + j, ada_opname_table[k].decoded);
977 at_start_name = 0;
978 i += op_len;
979 j += strlen (ada_opname_table[k].decoded);
980 break;
981 }
982 }
983 if (ada_opname_table[k].encoded != NULL)
984 continue;
985 }
14f9c5c9
AS
986 at_start_name = 0;
987
529cad9c
PH
988 /* Replace "TK__" with "__", which will eventually be translated
989 into "." (just below). */
990
4c4b4cd2
PH
991 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
992 i += 2;
529cad9c 993
29480c32
JB
994 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
995 be translated into "." (just below). These are internal names
996 generated for anonymous blocks inside which our symbol is nested. */
997
998 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
999 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1000 && isdigit (encoded [i+4]))
1001 {
1002 int k = i + 5;
1003
1004 while (k < len0 && isdigit (encoded[k]))
1005 k++; /* Skip any extra digit. */
1006
1007 /* Double-check that the "__B_{DIGITS}+" sequence we found
1008 is indeed followed by "__". */
1009 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1010 i = k;
1011 }
1012
529cad9c
PH
1013 /* Remove _E{DIGITS}+[sb] */
1014
1015 /* Just as for protected object subprograms, there are 2 categories
1016 of subprograms created by the compiler for each entry. The first
1017 one implements the actual entry code, and has a suffix following
1018 the convention above; the second one implements the barrier and
1019 uses the same convention as above, except that the 'E' is replaced
1020 by a 'B'.
1021
1022 Just as above, we do not decode the name of barrier functions
1023 to give the user a clue that the code he is debugging has been
1024 internally generated. */
1025
1026 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1027 && isdigit (encoded[i+2]))
1028 {
1029 int k = i + 3;
1030
1031 while (k < len0 && isdigit (encoded[k]))
1032 k++;
1033
1034 if (k < len0
1035 && (encoded[k] == 'b' || encoded[k] == 's'))
1036 {
1037 k++;
1038 /* Just as an extra precaution, make sure that if this
1039 suffix is followed by anything else, it is a '_'.
1040 Otherwise, we matched this sequence by accident. */
1041 if (k == len0
1042 || (k < len0 && encoded[k] == '_'))
1043 i = k;
1044 }
1045 }
1046
1047 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1048 the GNAT front-end in protected object subprograms. */
1049
1050 if (i < len0 + 3
1051 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1052 {
1053 /* Backtrack a bit up until we reach either the begining of
1054 the encoded name, or "__". Make sure that we only find
1055 digits or lowercase characters. */
1056 const char *ptr = encoded + i - 1;
1057
1058 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1059 ptr--;
1060 if (ptr < encoded
1061 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1062 i++;
1063 }
1064
4c4b4cd2
PH
1065 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1066 {
29480c32
JB
1067 /* This is a X[bn]* sequence not separated from the previous
1068 part of the name with a non-alpha-numeric character (in other
1069 words, immediately following an alpha-numeric character), then
1070 verify that it is placed at the end of the encoded name. If
1071 not, then the encoding is not valid and we should abort the
1072 decoding. Otherwise, just skip it, it is used in body-nested
1073 package names. */
4c4b4cd2
PH
1074 do
1075 i += 1;
1076 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1077 if (i < len0)
1078 goto Suppress;
1079 }
cdc7bb92 1080 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1081 {
29480c32 1082 /* Replace '__' by '.'. */
4c4b4cd2
PH
1083 decoded[j] = '.';
1084 at_start_name = 1;
1085 i += 2;
1086 j += 1;
1087 }
14f9c5c9 1088 else
4c4b4cd2 1089 {
29480c32
JB
1090 /* It's a character part of the decoded name, so just copy it
1091 over. */
4c4b4cd2
PH
1092 decoded[j] = encoded[i];
1093 i += 1;
1094 j += 1;
1095 }
14f9c5c9 1096 }
4c4b4cd2 1097 decoded[j] = '\000';
14f9c5c9 1098
29480c32
JB
1099 /* Decoded names should never contain any uppercase character.
1100 Double-check this, and abort the decoding if we find one. */
1101
4c4b4cd2
PH
1102 for (i = 0; decoded[i] != '\0'; i += 1)
1103 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1104 goto Suppress;
1105
4c4b4cd2
PH
1106 if (strcmp (decoded, encoded) == 0)
1107 return encoded;
1108 else
1109 return decoded;
14f9c5c9
AS
1110
1111Suppress:
4c4b4cd2
PH
1112 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1113 decoded = decoding_buffer;
1114 if (encoded[0] == '<')
1115 strcpy (decoded, encoded);
14f9c5c9 1116 else
88c15c34 1117 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1118 return decoded;
1119
1120}
1121
1122/* Table for keeping permanent unique copies of decoded names. Once
1123 allocated, names in this table are never released. While this is a
1124 storage leak, it should not be significant unless there are massive
1125 changes in the set of decoded names in successive versions of a
1126 symbol table loaded during a single session. */
1127static struct htab *decoded_names_store;
1128
1129/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1130 in the language-specific part of GSYMBOL, if it has not been
1131 previously computed. Tries to save the decoded name in the same
1132 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1133 in any case, the decoded symbol has a lifetime at least that of
1134 GSYMBOL).
1135 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1136 const, but nevertheless modified to a semantically equivalent form
1137 when a decoded name is cached in it.
76a01679 1138*/
4c4b4cd2 1139
76a01679
JB
1140char *
1141ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1142{
76a01679 1143 char **resultp =
4c4b4cd2
PH
1144 (char **) &gsymbol->language_specific.cplus_specific.demangled_name;
1145 if (*resultp == NULL)
1146 {
1147 const char *decoded = ada_decode (gsymbol->name);
714835d5 1148 if (gsymbol->obj_section != NULL)
76a01679 1149 {
714835d5
UW
1150 struct objfile *objf = gsymbol->obj_section->objfile;
1151 *resultp = obsavestring (decoded, strlen (decoded),
1152 &objf->objfile_obstack);
76a01679 1153 }
4c4b4cd2 1154 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1155 case, we put the result on the heap. Since we only decode
1156 when needed, we hope this usually does not cause a
1157 significant memory leak (FIXME). */
4c4b4cd2 1158 if (*resultp == NULL)
76a01679
JB
1159 {
1160 char **slot = (char **) htab_find_slot (decoded_names_store,
1161 decoded, INSERT);
1162 if (*slot == NULL)
1163 *slot = xstrdup (decoded);
1164 *resultp = *slot;
1165 }
4c4b4cd2 1166 }
14f9c5c9 1167
4c4b4cd2
PH
1168 return *resultp;
1169}
76a01679 1170
2c0b251b 1171static char *
76a01679 1172ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1173{
1174 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1175}
1176
1177/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1178 suffixes that encode debugging information or leading _ada_ on
1179 SYM_NAME (see is_name_suffix commentary for the debugging
1180 information that is ignored). If WILD, then NAME need only match a
1181 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1182 either argument is NULL. */
14f9c5c9 1183
2c0b251b 1184static int
d2e4a39e 1185ada_match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1186{
1187 if (sym_name == NULL || name == NULL)
1188 return 0;
1189 else if (wild)
1190 return wild_match (name, strlen (name), sym_name);
d2e4a39e
AS
1191 else
1192 {
1193 int len_name = strlen (name);
4c4b4cd2
PH
1194 return (strncmp (sym_name, name, len_name) == 0
1195 && is_name_suffix (sym_name + len_name))
1196 || (strncmp (sym_name, "_ada_", 5) == 0
1197 && strncmp (sym_name + 5, name, len_name) == 0
1198 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1199 }
14f9c5c9 1200}
14f9c5c9 1201\f
d2e4a39e 1202
4c4b4cd2 1203 /* Arrays */
14f9c5c9 1204
4c4b4cd2 1205/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1206
d2e4a39e
AS
1207static char *bound_name[] = {
1208 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1209 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1210};
1211
1212/* Maximum number of array dimensions we are prepared to handle. */
1213
4c4b4cd2 1214#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1215
4c4b4cd2 1216/* Like modify_field, but allows bitpos > wordlength. */
14f9c5c9
AS
1217
1218static void
ebf56fd3 1219modify_general_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
14f9c5c9 1220{
4c4b4cd2 1221 modify_field (addr + bitpos / 8, fieldval, bitpos % 8, bitsize);
14f9c5c9
AS
1222}
1223
1224
4c4b4cd2
PH
1225/* The desc_* routines return primitive portions of array descriptors
1226 (fat pointers). */
14f9c5c9
AS
1227
1228/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1229 level of indirection, if needed. */
1230
d2e4a39e
AS
1231static struct type *
1232desc_base_type (struct type *type)
14f9c5c9
AS
1233{
1234 if (type == NULL)
1235 return NULL;
61ee279c 1236 type = ada_check_typedef (type);
1265e4aa
JB
1237 if (type != NULL
1238 && (TYPE_CODE (type) == TYPE_CODE_PTR
1239 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1240 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1241 else
1242 return type;
1243}
1244
4c4b4cd2
PH
1245/* True iff TYPE indicates a "thin" array pointer type. */
1246
14f9c5c9 1247static int
d2e4a39e 1248is_thin_pntr (struct type *type)
14f9c5c9 1249{
d2e4a39e 1250 return
14f9c5c9
AS
1251 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1252 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1253}
1254
4c4b4cd2
PH
1255/* The descriptor type for thin pointer type TYPE. */
1256
d2e4a39e
AS
1257static struct type *
1258thin_descriptor_type (struct type *type)
14f9c5c9 1259{
d2e4a39e 1260 struct type *base_type = desc_base_type (type);
14f9c5c9
AS
1261 if (base_type == NULL)
1262 return NULL;
1263 if (is_suffix (ada_type_name (base_type), "___XVE"))
1264 return base_type;
d2e4a39e 1265 else
14f9c5c9 1266 {
d2e4a39e 1267 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
14f9c5c9 1268 if (alt_type == NULL)
4c4b4cd2 1269 return base_type;
14f9c5c9 1270 else
4c4b4cd2 1271 return alt_type;
14f9c5c9
AS
1272 }
1273}
1274
4c4b4cd2
PH
1275/* A pointer to the array data for thin-pointer value VAL. */
1276
d2e4a39e
AS
1277static struct value *
1278thin_data_pntr (struct value *val)
14f9c5c9 1279{
df407dfe 1280 struct type *type = value_type (val);
556bdfd4
UW
1281 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1282 data_type = lookup_pointer_type (data_type);
1283
14f9c5c9 1284 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1285 return value_cast (data_type, value_copy (val));
d2e4a39e 1286 else
42ae5230 1287 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1288}
1289
4c4b4cd2
PH
1290/* True iff TYPE indicates a "thick" array pointer type. */
1291
14f9c5c9 1292static int
d2e4a39e 1293is_thick_pntr (struct type *type)
14f9c5c9
AS
1294{
1295 type = desc_base_type (type);
1296 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1297 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1298}
1299
4c4b4cd2
PH
1300/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1301 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1302
d2e4a39e
AS
1303static struct type *
1304desc_bounds_type (struct type *type)
14f9c5c9 1305{
d2e4a39e 1306 struct type *r;
14f9c5c9
AS
1307
1308 type = desc_base_type (type);
1309
1310 if (type == NULL)
1311 return NULL;
1312 else if (is_thin_pntr (type))
1313 {
1314 type = thin_descriptor_type (type);
1315 if (type == NULL)
4c4b4cd2 1316 return NULL;
14f9c5c9
AS
1317 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1318 if (r != NULL)
61ee279c 1319 return ada_check_typedef (r);
14f9c5c9
AS
1320 }
1321 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1322 {
1323 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1324 if (r != NULL)
61ee279c 1325 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1326 }
1327 return NULL;
1328}
1329
1330/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1331 one, a pointer to its bounds data. Otherwise NULL. */
1332
d2e4a39e
AS
1333static struct value *
1334desc_bounds (struct value *arr)
14f9c5c9 1335{
df407dfe 1336 struct type *type = ada_check_typedef (value_type (arr));
d2e4a39e 1337 if (is_thin_pntr (type))
14f9c5c9 1338 {
d2e4a39e 1339 struct type *bounds_type =
4c4b4cd2 1340 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1341 LONGEST addr;
1342
4cdfadb1 1343 if (bounds_type == NULL)
323e0a4a 1344 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1345
1346 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1347 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1348 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1349 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1350 addr = value_as_long (arr);
d2e4a39e 1351 else
42ae5230 1352 addr = value_address (arr);
14f9c5c9 1353
d2e4a39e 1354 return
4c4b4cd2
PH
1355 value_from_longest (lookup_pointer_type (bounds_type),
1356 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1357 }
1358
1359 else if (is_thick_pntr (type))
d2e4a39e 1360 return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
323e0a4a 1361 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1362 else
1363 return NULL;
1364}
1365
4c4b4cd2
PH
1366/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1367 position of the field containing the address of the bounds data. */
1368
14f9c5c9 1369static int
d2e4a39e 1370fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1371{
1372 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1373}
1374
1375/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1376 size of the field containing the address of the bounds data. */
1377
14f9c5c9 1378static int
d2e4a39e 1379fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1380{
1381 type = desc_base_type (type);
1382
d2e4a39e 1383 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1384 return TYPE_FIELD_BITSIZE (type, 1);
1385 else
61ee279c 1386 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1387}
1388
4c4b4cd2 1389/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1390 pointer to one, the type of its array data (a array-with-no-bounds type);
1391 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1392 data. */
4c4b4cd2 1393
d2e4a39e 1394static struct type *
556bdfd4 1395desc_data_target_type (struct type *type)
14f9c5c9
AS
1396{
1397 type = desc_base_type (type);
1398
4c4b4cd2 1399 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1400 if (is_thin_pntr (type))
556bdfd4 1401 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1402 else if (is_thick_pntr (type))
556bdfd4
UW
1403 {
1404 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1405
1406 if (data_type
1407 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1408 return TYPE_TARGET_TYPE (data_type);
1409 }
1410
1411 return NULL;
14f9c5c9
AS
1412}
1413
1414/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1415 its array data. */
4c4b4cd2 1416
d2e4a39e
AS
1417static struct value *
1418desc_data (struct value *arr)
14f9c5c9 1419{
df407dfe 1420 struct type *type = value_type (arr);
14f9c5c9
AS
1421 if (is_thin_pntr (type))
1422 return thin_data_pntr (arr);
1423 else if (is_thick_pntr (type))
d2e4a39e 1424 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1425 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1426 else
1427 return NULL;
1428}
1429
1430
1431/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1432 position of the field containing the address of the data. */
1433
14f9c5c9 1434static int
d2e4a39e 1435fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1436{
1437 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1438}
1439
1440/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1441 size of the field containing the address of the data. */
1442
14f9c5c9 1443static int
d2e4a39e 1444fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1445{
1446 type = desc_base_type (type);
1447
1448 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1449 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1450 else
14f9c5c9
AS
1451 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1452}
1453
4c4b4cd2 1454/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1455 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1456 bound, if WHICH is 1. The first bound is I=1. */
1457
d2e4a39e
AS
1458static struct value *
1459desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1460{
d2e4a39e 1461 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1462 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1463}
1464
1465/* If BOUNDS is an array-bounds structure type, return the bit position
1466 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1467 bound, if WHICH is 1. The first bound is I=1. */
1468
14f9c5c9 1469static int
d2e4a39e 1470desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1471{
d2e4a39e 1472 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1473}
1474
1475/* If BOUNDS is an array-bounds structure type, return the bit field size
1476 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1477 bound, if WHICH is 1. The first bound is I=1. */
1478
76a01679 1479static int
d2e4a39e 1480desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1481{
1482 type = desc_base_type (type);
1483
d2e4a39e
AS
1484 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1485 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1486 else
1487 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1488}
1489
1490/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1491 Ith bound (numbering from 1). Otherwise, NULL. */
1492
d2e4a39e
AS
1493static struct type *
1494desc_index_type (struct type *type, int i)
14f9c5c9
AS
1495{
1496 type = desc_base_type (type);
1497
1498 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1499 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1500 else
14f9c5c9
AS
1501 return NULL;
1502}
1503
4c4b4cd2
PH
1504/* The number of index positions in the array-bounds type TYPE.
1505 Return 0 if TYPE is NULL. */
1506
14f9c5c9 1507static int
d2e4a39e 1508desc_arity (struct type *type)
14f9c5c9
AS
1509{
1510 type = desc_base_type (type);
1511
1512 if (type != NULL)
1513 return TYPE_NFIELDS (type) / 2;
1514 return 0;
1515}
1516
4c4b4cd2
PH
1517/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1518 an array descriptor type (representing an unconstrained array
1519 type). */
1520
76a01679
JB
1521static int
1522ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1523{
1524 if (type == NULL)
1525 return 0;
61ee279c 1526 type = ada_check_typedef (type);
4c4b4cd2 1527 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1528 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1529}
1530
52ce6436
PH
1531/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1532 * to one. */
1533
2c0b251b 1534static int
52ce6436
PH
1535ada_is_array_type (struct type *type)
1536{
1537 while (type != NULL
1538 && (TYPE_CODE (type) == TYPE_CODE_PTR
1539 || TYPE_CODE (type) == TYPE_CODE_REF))
1540 type = TYPE_TARGET_TYPE (type);
1541 return ada_is_direct_array_type (type);
1542}
1543
4c4b4cd2 1544/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1545
14f9c5c9 1546int
4c4b4cd2 1547ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1548{
1549 if (type == NULL)
1550 return 0;
61ee279c 1551 type = ada_check_typedef (type);
14f9c5c9 1552 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2
PH
1553 || (TYPE_CODE (type) == TYPE_CODE_PTR
1554 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY));
14f9c5c9
AS
1555}
1556
4c4b4cd2
PH
1557/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1558
14f9c5c9 1559int
4c4b4cd2 1560ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1561{
556bdfd4 1562 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1563
1564 if (type == NULL)
1565 return 0;
61ee279c 1566 type = ada_check_typedef (type);
556bdfd4
UW
1567 return (data_type != NULL
1568 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1569 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1570}
1571
1572/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1573 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1574 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1575 is still needed. */
1576
14f9c5c9 1577int
ebf56fd3 1578ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1579{
d2e4a39e 1580 return
14f9c5c9
AS
1581 type != NULL
1582 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1583 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1584 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1585 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1586}
1587
1588
4c4b4cd2 1589/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1590 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1591 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1592 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1593 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1594 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1595 a descriptor. */
d2e4a39e
AS
1596struct type *
1597ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1598{
df407dfe
AC
1599 if (ada_is_packed_array_type (value_type (arr)))
1600 return decode_packed_array_type (value_type (arr));
14f9c5c9 1601
df407dfe
AC
1602 if (!ada_is_array_descriptor_type (value_type (arr)))
1603 return value_type (arr);
d2e4a39e
AS
1604
1605 if (!bounds)
1606 return
556bdfd4 1607 ada_check_typedef (desc_data_target_type (value_type (arr)));
14f9c5c9
AS
1608 else
1609 {
d2e4a39e 1610 struct type *elt_type;
14f9c5c9 1611 int arity;
d2e4a39e 1612 struct value *descriptor;
df407dfe 1613 struct objfile *objf = TYPE_OBJFILE (value_type (arr));
14f9c5c9 1614
df407dfe
AC
1615 elt_type = ada_array_element_type (value_type (arr), -1);
1616 arity = ada_array_arity (value_type (arr));
14f9c5c9 1617
d2e4a39e 1618 if (elt_type == NULL || arity == 0)
df407dfe 1619 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1620
1621 descriptor = desc_bounds (arr);
d2e4a39e 1622 if (value_as_long (descriptor) == 0)
4c4b4cd2 1623 return NULL;
d2e4a39e 1624 while (arity > 0)
4c4b4cd2
PH
1625 {
1626 struct type *range_type = alloc_type (objf);
1627 struct type *array_type = alloc_type (objf);
1628 struct value *low = desc_one_bound (descriptor, arity, 0);
1629 struct value *high = desc_one_bound (descriptor, arity, 1);
1630 arity -= 1;
1631
df407dfe 1632 create_range_type (range_type, value_type (low),
529cad9c
PH
1633 longest_to_int (value_as_long (low)),
1634 longest_to_int (value_as_long (high)));
4c4b4cd2
PH
1635 elt_type = create_array_type (array_type, elt_type, range_type);
1636 }
14f9c5c9
AS
1637
1638 return lookup_pointer_type (elt_type);
1639 }
1640}
1641
1642/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1643 Otherwise, returns either a standard GDB array with bounds set
1644 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1645 GDB array. Returns NULL if ARR is a null fat pointer. */
1646
d2e4a39e
AS
1647struct value *
1648ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1649{
df407dfe 1650 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1651 {
d2e4a39e 1652 struct type *arrType = ada_type_of_array (arr, 1);
14f9c5c9 1653 if (arrType == NULL)
4c4b4cd2 1654 return NULL;
14f9c5c9
AS
1655 return value_cast (arrType, value_copy (desc_data (arr)));
1656 }
df407dfe 1657 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9
AS
1658 return decode_packed_array (arr);
1659 else
1660 return arr;
1661}
1662
1663/* If ARR does not represent an array, returns ARR unchanged.
1664 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1665 be ARR itself if it already is in the proper form). */
1666
1667static struct value *
d2e4a39e 1668ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1669{
df407dfe 1670 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1671 {
d2e4a39e 1672 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
14f9c5c9 1673 if (arrVal == NULL)
323e0a4a 1674 error (_("Bounds unavailable for null array pointer."));
529cad9c 1675 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1676 return value_ind (arrVal);
1677 }
df407dfe 1678 else if (ada_is_packed_array_type (value_type (arr)))
14f9c5c9 1679 return decode_packed_array (arr);
d2e4a39e 1680 else
14f9c5c9
AS
1681 return arr;
1682}
1683
1684/* If TYPE represents a GNAT array type, return it translated to an
1685 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1686 packing). For other types, is the identity. */
1687
d2e4a39e
AS
1688struct type *
1689ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1690{
17280b9f
UW
1691 if (ada_is_packed_array_type (type))
1692 return decode_packed_array_type (type);
1693
1694 if (ada_is_array_descriptor_type (type))
556bdfd4 1695 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1696
1697 return type;
14f9c5c9
AS
1698}
1699
4c4b4cd2
PH
1700/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1701
14f9c5c9 1702int
d2e4a39e 1703ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1704{
1705 if (type == NULL)
1706 return 0;
4c4b4cd2 1707 type = desc_base_type (type);
61ee279c 1708 type = ada_check_typedef (type);
d2e4a39e 1709 return
14f9c5c9
AS
1710 ada_type_name (type) != NULL
1711 && strstr (ada_type_name (type), "___XP") != NULL;
1712}
1713
1714/* Given that TYPE is a standard GDB array type with all bounds filled
1715 in, and that the element size of its ultimate scalar constituents
1716 (that is, either its elements, or, if it is an array of arrays, its
1717 elements' elements, etc.) is *ELT_BITS, return an identical type,
1718 but with the bit sizes of its elements (and those of any
1719 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
1720 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
1721 in bits. */
1722
d2e4a39e
AS
1723static struct type *
1724packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 1725{
d2e4a39e
AS
1726 struct type *new_elt_type;
1727 struct type *new_type;
14f9c5c9
AS
1728 LONGEST low_bound, high_bound;
1729
61ee279c 1730 type = ada_check_typedef (type);
14f9c5c9
AS
1731 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
1732 return type;
1733
1734 new_type = alloc_type (TYPE_OBJFILE (type));
61ee279c 1735 new_elt_type = packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
4c4b4cd2 1736 elt_bits);
262452ec 1737 create_array_type (new_type, new_elt_type, TYPE_INDEX_TYPE (type));
14f9c5c9
AS
1738 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
1739 TYPE_NAME (new_type) = ada_type_name (type);
1740
262452ec 1741 if (get_discrete_bounds (TYPE_INDEX_TYPE (type),
4c4b4cd2 1742 &low_bound, &high_bound) < 0)
14f9c5c9
AS
1743 low_bound = high_bound = 0;
1744 if (high_bound < low_bound)
1745 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 1746 else
14f9c5c9
AS
1747 {
1748 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 1749 TYPE_LENGTH (new_type) =
4c4b4cd2 1750 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
1751 }
1752
876cecd0 1753 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
1754 return new_type;
1755}
1756
4c4b4cd2
PH
1757/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). */
1758
d2e4a39e
AS
1759static struct type *
1760decode_packed_array_type (struct type *type)
1761{
4c4b4cd2 1762 struct symbol *sym;
d2e4a39e 1763 struct block **blocks;
727e3d2e
JB
1764 char *raw_name = ada_type_name (ada_check_typedef (type));
1765 char *name;
1766 char *tail;
d2e4a39e 1767 struct type *shadow_type;
14f9c5c9
AS
1768 long bits;
1769 int i, n;
1770
727e3d2e
JB
1771 if (!raw_name)
1772 raw_name = ada_type_name (desc_base_type (type));
1773
1774 if (!raw_name)
1775 return NULL;
1776
1777 name = (char *) alloca (strlen (raw_name) + 1);
1778 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
1779 type = desc_base_type (type);
1780
14f9c5c9
AS
1781 memcpy (name, raw_name, tail - raw_name);
1782 name[tail - raw_name] = '\000';
1783
4c4b4cd2
PH
1784 sym = standard_lookup (name, get_selected_block (0), VAR_DOMAIN);
1785 if (sym == NULL || SYMBOL_TYPE (sym) == NULL)
14f9c5c9 1786 {
323e0a4a 1787 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
1788 return NULL;
1789 }
4c4b4cd2 1790 shadow_type = SYMBOL_TYPE (sym);
cb249c71 1791 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
1792
1793 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
1794 {
323e0a4a 1795 lim_warning (_("could not understand bounds information on packed array"));
14f9c5c9
AS
1796 return NULL;
1797 }
d2e4a39e 1798
14f9c5c9
AS
1799 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1800 {
4c4b4cd2 1801 lim_warning
323e0a4a 1802 (_("could not understand bit size information on packed array"));
14f9c5c9
AS
1803 return NULL;
1804 }
d2e4a39e 1805
14f9c5c9
AS
1806 return packed_array_type (shadow_type, &bits);
1807}
1808
4c4b4cd2 1809/* Given that ARR is a struct value *indicating a GNAT packed array,
14f9c5c9
AS
1810 returns a simple array that denotes that array. Its type is a
1811 standard GDB array type except that the BITSIZEs of the array
1812 target types are set to the number of bits in each element, and the
4c4b4cd2 1813 type length is set appropriately. */
14f9c5c9 1814
d2e4a39e
AS
1815static struct value *
1816decode_packed_array (struct value *arr)
14f9c5c9 1817{
4c4b4cd2 1818 struct type *type;
14f9c5c9 1819
4c4b4cd2 1820 arr = ada_coerce_ref (arr);
284614f0
JB
1821
1822 /* If our value is a pointer, then dererence it. Make sure that
1823 this operation does not cause the target type to be fixed, as
1824 this would indirectly cause this array to be decoded. The rest
1825 of the routine assumes that the array hasn't been decoded yet,
1826 so we use the basic "value_ind" routine to perform the dereferencing,
1827 as opposed to using "ada_value_ind". */
df407dfe 1828 if (TYPE_CODE (value_type (arr)) == TYPE_CODE_PTR)
284614f0 1829 arr = value_ind (arr);
4c4b4cd2 1830
df407dfe 1831 type = decode_packed_array_type (value_type (arr));
14f9c5c9
AS
1832 if (type == NULL)
1833 {
323e0a4a 1834 error (_("can't unpack array"));
14f9c5c9
AS
1835 return NULL;
1836 }
61ee279c 1837
32c9a795
MD
1838 if (gdbarch_bits_big_endian (current_gdbarch)
1839 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
1840 {
1841 /* This is a (right-justified) modular type representing a packed
1842 array with no wrapper. In order to interpret the value through
1843 the (left-justified) packed array type we just built, we must
1844 first left-justify it. */
1845 int bit_size, bit_pos;
1846 ULONGEST mod;
1847
df407dfe 1848 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
1849 bit_size = 0;
1850 while (mod > 0)
1851 {
1852 bit_size += 1;
1853 mod >>= 1;
1854 }
df407dfe 1855 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
1856 arr = ada_value_primitive_packed_val (arr, NULL,
1857 bit_pos / HOST_CHAR_BIT,
1858 bit_pos % HOST_CHAR_BIT,
1859 bit_size,
1860 type);
1861 }
1862
4c4b4cd2 1863 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
1864}
1865
1866
1867/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 1868 given in IND. ARR must be a simple array. */
14f9c5c9 1869
d2e4a39e
AS
1870static struct value *
1871value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
1872{
1873 int i;
1874 int bits, elt_off, bit_off;
1875 long elt_total_bit_offset;
d2e4a39e
AS
1876 struct type *elt_type;
1877 struct value *v;
14f9c5c9
AS
1878
1879 bits = 0;
1880 elt_total_bit_offset = 0;
df407dfe 1881 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 1882 for (i = 0; i < arity; i += 1)
14f9c5c9 1883 {
d2e4a39e 1884 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
1885 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
1886 error
323e0a4a 1887 (_("attempt to do packed indexing of something other than a packed array"));
14f9c5c9 1888 else
4c4b4cd2
PH
1889 {
1890 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
1891 LONGEST lowerbound, upperbound;
1892 LONGEST idx;
1893
1894 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
1895 {
323e0a4a 1896 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
1897 lowerbound = upperbound = 0;
1898 }
1899
3cb382c9 1900 idx = pos_atr (ind[i]);
4c4b4cd2 1901 if (idx < lowerbound || idx > upperbound)
323e0a4a 1902 lim_warning (_("packed array index %ld out of bounds"), (long) idx);
4c4b4cd2
PH
1903 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
1904 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 1905 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 1906 }
14f9c5c9
AS
1907 }
1908 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
1909 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
1910
1911 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 1912 bits, elt_type);
14f9c5c9
AS
1913 return v;
1914}
1915
4c4b4cd2 1916/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
1917
1918static int
d2e4a39e 1919has_negatives (struct type *type)
14f9c5c9 1920{
d2e4a39e
AS
1921 switch (TYPE_CODE (type))
1922 {
1923 default:
1924 return 0;
1925 case TYPE_CODE_INT:
1926 return !TYPE_UNSIGNED (type);
1927 case TYPE_CODE_RANGE:
1928 return TYPE_LOW_BOUND (type) < 0;
1929 }
14f9c5c9 1930}
d2e4a39e 1931
14f9c5c9
AS
1932
1933/* Create a new value of type TYPE from the contents of OBJ starting
1934 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
1935 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
4c4b4cd2
PH
1936 assigning through the result will set the field fetched from.
1937 VALADDR is ignored unless OBJ is NULL, in which case,
1938 VALADDR+OFFSET must address the start of storage containing the
1939 packed value. The value returned in this case is never an lval.
1940 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 1941
d2e4a39e 1942struct value *
fc1a4b47 1943ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 1944 long offset, int bit_offset, int bit_size,
4c4b4cd2 1945 struct type *type)
14f9c5c9 1946{
d2e4a39e 1947 struct value *v;
4c4b4cd2
PH
1948 int src, /* Index into the source area */
1949 targ, /* Index into the target area */
1950 srcBitsLeft, /* Number of source bits left to move */
1951 nsrc, ntarg, /* Number of source and target bytes */
1952 unusedLS, /* Number of bits in next significant
1953 byte of source that are unused */
1954 accumSize; /* Number of meaningful bits in accum */
1955 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 1956 unsigned char *unpacked;
4c4b4cd2 1957 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
1958 unsigned char sign;
1959 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
1960 /* Transmit bytes from least to most significant; delta is the direction
1961 the indices move. */
32c9a795 1962 int delta = gdbarch_bits_big_endian (current_gdbarch) ? -1 : 1;
14f9c5c9 1963
61ee279c 1964 type = ada_check_typedef (type);
14f9c5c9
AS
1965
1966 if (obj == NULL)
1967 {
1968 v = allocate_value (type);
d2e4a39e 1969 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 1970 }
9214ee5f 1971 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9
AS
1972 {
1973 v = value_at (type,
42ae5230 1974 value_address (obj) + offset);
d2e4a39e 1975 bytes = (unsigned char *) alloca (len);
42ae5230 1976 read_memory (value_address (v), bytes, len);
14f9c5c9 1977 }
d2e4a39e 1978 else
14f9c5c9
AS
1979 {
1980 v = allocate_value (type);
0fd88904 1981 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 1982 }
d2e4a39e
AS
1983
1984 if (obj != NULL)
14f9c5c9 1985 {
42ae5230 1986 CORE_ADDR new_addr;
74bcbdf3 1987 set_value_component_location (v, obj);
42ae5230 1988 new_addr = value_address (obj) + offset;
9bbda503
AC
1989 set_value_bitpos (v, bit_offset + value_bitpos (obj));
1990 set_value_bitsize (v, bit_size);
df407dfe 1991 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 1992 {
42ae5230 1993 ++new_addr;
9bbda503 1994 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 1995 }
42ae5230 1996 set_value_address (v, new_addr);
14f9c5c9
AS
1997 }
1998 else
9bbda503 1999 set_value_bitsize (v, bit_size);
0fd88904 2000 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2001
2002 srcBitsLeft = bit_size;
2003 nsrc = len;
2004 ntarg = TYPE_LENGTH (type);
2005 sign = 0;
2006 if (bit_size == 0)
2007 {
2008 memset (unpacked, 0, TYPE_LENGTH (type));
2009 return v;
2010 }
32c9a795 2011 else if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9 2012 {
d2e4a39e 2013 src = len - 1;
1265e4aa
JB
2014 if (has_negatives (type)
2015 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2016 sign = ~0;
d2e4a39e
AS
2017
2018 unusedLS =
4c4b4cd2
PH
2019 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2020 % HOST_CHAR_BIT;
14f9c5c9
AS
2021
2022 switch (TYPE_CODE (type))
4c4b4cd2
PH
2023 {
2024 case TYPE_CODE_ARRAY:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_STRUCT:
2027 /* Non-scalar values must be aligned at a byte boundary... */
2028 accumSize =
2029 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2030 /* ... And are placed at the beginning (most-significant) bytes
2031 of the target. */
529cad9c 2032 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2033 ntarg = targ + 1;
4c4b4cd2
PH
2034 break;
2035 default:
2036 accumSize = 0;
2037 targ = TYPE_LENGTH (type) - 1;
2038 break;
2039 }
14f9c5c9 2040 }
d2e4a39e 2041 else
14f9c5c9
AS
2042 {
2043 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2044
2045 src = targ = 0;
2046 unusedLS = bit_offset;
2047 accumSize = 0;
2048
d2e4a39e 2049 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2050 sign = ~0;
14f9c5c9 2051 }
d2e4a39e 2052
14f9c5c9
AS
2053 accum = 0;
2054 while (nsrc > 0)
2055 {
2056 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2057 part of the value. */
d2e4a39e 2058 unsigned int unusedMSMask =
4c4b4cd2
PH
2059 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2060 1;
2061 /* Sign-extend bits for this byte. */
14f9c5c9 2062 unsigned int signMask = sign & ~unusedMSMask;
d2e4a39e 2063 accum |=
4c4b4cd2 2064 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2065 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2066 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2067 {
2068 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2069 accumSize -= HOST_CHAR_BIT;
2070 accum >>= HOST_CHAR_BIT;
2071 ntarg -= 1;
2072 targ += delta;
2073 }
14f9c5c9
AS
2074 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2075 unusedLS = 0;
2076 nsrc -= 1;
2077 src += delta;
2078 }
2079 while (ntarg > 0)
2080 {
2081 accum |= sign << accumSize;
2082 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2083 accumSize -= HOST_CHAR_BIT;
2084 accum >>= HOST_CHAR_BIT;
2085 ntarg -= 1;
2086 targ += delta;
2087 }
2088
2089 return v;
2090}
d2e4a39e 2091
14f9c5c9
AS
2092/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2093 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2094 not overlap. */
14f9c5c9 2095static void
fc1a4b47 2096move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
0fd88904 2097 int src_offset, int n)
14f9c5c9
AS
2098{
2099 unsigned int accum, mask;
2100 int accum_bits, chunk_size;
2101
2102 target += targ_offset / HOST_CHAR_BIT;
2103 targ_offset %= HOST_CHAR_BIT;
2104 source += src_offset / HOST_CHAR_BIT;
2105 src_offset %= HOST_CHAR_BIT;
32c9a795 2106 if (gdbarch_bits_big_endian (current_gdbarch))
14f9c5c9
AS
2107 {
2108 accum = (unsigned char) *source;
2109 source += 1;
2110 accum_bits = HOST_CHAR_BIT - src_offset;
2111
d2e4a39e 2112 while (n > 0)
4c4b4cd2
PH
2113 {
2114 int unused_right;
2115 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2116 accum_bits += HOST_CHAR_BIT;
2117 source += 1;
2118 chunk_size = HOST_CHAR_BIT - targ_offset;
2119 if (chunk_size > n)
2120 chunk_size = n;
2121 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2122 mask = ((1 << chunk_size) - 1) << unused_right;
2123 *target =
2124 (*target & ~mask)
2125 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2126 n -= chunk_size;
2127 accum_bits -= chunk_size;
2128 target += 1;
2129 targ_offset = 0;
2130 }
14f9c5c9
AS
2131 }
2132 else
2133 {
2134 accum = (unsigned char) *source >> src_offset;
2135 source += 1;
2136 accum_bits = HOST_CHAR_BIT - src_offset;
2137
d2e4a39e 2138 while (n > 0)
4c4b4cd2
PH
2139 {
2140 accum = accum + ((unsigned char) *source << accum_bits);
2141 accum_bits += HOST_CHAR_BIT;
2142 source += 1;
2143 chunk_size = HOST_CHAR_BIT - targ_offset;
2144 if (chunk_size > n)
2145 chunk_size = n;
2146 mask = ((1 << chunk_size) - 1) << targ_offset;
2147 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2148 n -= chunk_size;
2149 accum_bits -= chunk_size;
2150 accum >>= chunk_size;
2151 target += 1;
2152 targ_offset = 0;
2153 }
14f9c5c9
AS
2154 }
2155}
2156
14f9c5c9
AS
2157/* Store the contents of FROMVAL into the location of TOVAL.
2158 Return a new value with the location of TOVAL and contents of
2159 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2160 floating-point or non-scalar types. */
14f9c5c9 2161
d2e4a39e
AS
2162static struct value *
2163ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2164{
df407dfe
AC
2165 struct type *type = value_type (toval);
2166 int bits = value_bitsize (toval);
14f9c5c9 2167
52ce6436
PH
2168 toval = ada_coerce_ref (toval);
2169 fromval = ada_coerce_ref (fromval);
2170
2171 if (ada_is_direct_array_type (value_type (toval)))
2172 toval = ada_coerce_to_simple_array (toval);
2173 if (ada_is_direct_array_type (value_type (fromval)))
2174 fromval = ada_coerce_to_simple_array (fromval);
2175
88e3b34b 2176 if (!deprecated_value_modifiable (toval))
323e0a4a 2177 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2178
d2e4a39e 2179 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2180 && bits > 0
d2e4a39e 2181 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2182 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2183 {
df407dfe
AC
2184 int len = (value_bitpos (toval)
2185 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2186 int from_size;
d2e4a39e
AS
2187 char *buffer = (char *) alloca (len);
2188 struct value *val;
42ae5230 2189 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2192 fromval = value_cast (type, fromval);
14f9c5c9 2193
52ce6436 2194 read_memory (to_addr, buffer, len);
aced2898
PH
2195 from_size = value_bitsize (fromval);
2196 if (from_size == 0)
2197 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
32c9a795 2198 if (gdbarch_bits_big_endian (current_gdbarch))
df407dfe 2199 move_bits (buffer, value_bitpos (toval),
aced2898 2200 value_contents (fromval), from_size - bits, bits);
14f9c5c9 2201 else
0fd88904 2202 move_bits (buffer, value_bitpos (toval), value_contents (fromval),
4c4b4cd2 2203 0, bits);
52ce6436
PH
2204 write_memory (to_addr, buffer, len);
2205 if (deprecated_memory_changed_hook)
2206 deprecated_memory_changed_hook (to_addr, len);
2207
14f9c5c9 2208 val = value_copy (toval);
0fd88904 2209 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2210 TYPE_LENGTH (type));
04624583 2211 deprecated_set_value_type (val, type);
d2e4a39e 2212
14f9c5c9
AS
2213 return val;
2214 }
2215
2216 return value_assign (toval, fromval);
2217}
2218
2219
52ce6436
PH
2220/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2221 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2222 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2223 * COMPONENT, and not the inferior's memory. The current contents
2224 * of COMPONENT are ignored. */
2225static void
2226value_assign_to_component (struct value *container, struct value *component,
2227 struct value *val)
2228{
2229 LONGEST offset_in_container =
42ae5230 2230 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2231 int bit_offset_in_container =
2232 value_bitpos (component) - value_bitpos (container);
2233 int bits;
2234
2235 val = value_cast (value_type (component), val);
2236
2237 if (value_bitsize (component) == 0)
2238 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2239 else
2240 bits = value_bitsize (component);
2241
32c9a795 2242 if (gdbarch_bits_big_endian (current_gdbarch))
52ce6436
PH
2243 move_bits (value_contents_writeable (container) + offset_in_container,
2244 value_bitpos (container) + bit_offset_in_container,
2245 value_contents (val),
2246 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2247 bits);
2248 else
2249 move_bits (value_contents_writeable (container) + offset_in_container,
2250 value_bitpos (container) + bit_offset_in_container,
2251 value_contents (val), 0, bits);
2252}
2253
4c4b4cd2
PH
2254/* The value of the element of array ARR at the ARITY indices given in IND.
2255 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2256 thereto. */
2257
d2e4a39e
AS
2258struct value *
2259ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2260{
2261 int k;
d2e4a39e
AS
2262 struct value *elt;
2263 struct type *elt_type;
14f9c5c9
AS
2264
2265 elt = ada_coerce_to_simple_array (arr);
2266
df407dfe 2267 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2268 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2269 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2270 return value_subscript_packed (elt, arity, ind);
2271
2272 for (k = 0; k < arity; k += 1)
2273 {
2274 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2275 error (_("too many subscripts (%d expected)"), k);
2497b498 2276 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2277 }
2278 return elt;
2279}
2280
2281/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2282 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2283 IND. Does not read the entire array into memory. */
14f9c5c9 2284
2c0b251b 2285static struct value *
d2e4a39e 2286ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2287 struct value **ind)
14f9c5c9
AS
2288{
2289 int k;
2290
2291 for (k = 0; k < arity; k += 1)
2292 {
2293 LONGEST lwb, upb;
14f9c5c9
AS
2294
2295 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2296 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2297 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2298 value_copy (arr));
14f9c5c9 2299 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2300 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2301 type = TYPE_TARGET_TYPE (type);
2302 }
2303
2304 return value_ind (arr);
2305}
2306
0b5d8877 2307/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2308 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2309 elements starting at index LOW. The lower bound of this array is LOW, as
2310 per Ada rules. */
0b5d8877 2311static struct value *
f5938064
JG
2312ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2313 int low, int high)
0b5d8877 2314{
6c038f32 2315 CORE_ADDR base = value_as_address (array_ptr)
0b5d8877
PH
2316 + ((low - TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)))
2317 * TYPE_LENGTH (TYPE_TARGET_TYPE (type)));
6c038f32
PH
2318 struct type *index_type =
2319 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)),
0b5d8877 2320 low, high);
6c038f32 2321 struct type *slice_type =
0b5d8877 2322 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
f5938064 2323 return value_at_lazy (slice_type, base);
0b5d8877
PH
2324}
2325
2326
2327static struct value *
2328ada_value_slice (struct value *array, int low, int high)
2329{
df407dfe 2330 struct type *type = value_type (array);
6c038f32 2331 struct type *index_type =
0b5d8877 2332 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2333 struct type *slice_type =
0b5d8877 2334 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
6c038f32 2335 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2336}
2337
14f9c5c9
AS
2338/* If type is a record type in the form of a standard GNAT array
2339 descriptor, returns the number of dimensions for type. If arr is a
2340 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2341 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2342
2343int
d2e4a39e 2344ada_array_arity (struct type *type)
14f9c5c9
AS
2345{
2346 int arity;
2347
2348 if (type == NULL)
2349 return 0;
2350
2351 type = desc_base_type (type);
2352
2353 arity = 0;
d2e4a39e 2354 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2355 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2356 else
2357 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2358 {
4c4b4cd2 2359 arity += 1;
61ee279c 2360 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2361 }
d2e4a39e 2362
14f9c5c9
AS
2363 return arity;
2364}
2365
2366/* If TYPE is a record type in the form of a standard GNAT array
2367 descriptor or a simple array type, returns the element type for
2368 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2369 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2370
d2e4a39e
AS
2371struct type *
2372ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2373{
2374 type = desc_base_type (type);
2375
d2e4a39e 2376 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2377 {
2378 int k;
d2e4a39e 2379 struct type *p_array_type;
14f9c5c9 2380
556bdfd4 2381 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2382
2383 k = ada_array_arity (type);
2384 if (k == 0)
4c4b4cd2 2385 return NULL;
d2e4a39e 2386
4c4b4cd2 2387 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2388 if (nindices >= 0 && k > nindices)
4c4b4cd2 2389 k = nindices;
d2e4a39e 2390 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2391 {
61ee279c 2392 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2393 k -= 1;
2394 }
14f9c5c9
AS
2395 return p_array_type;
2396 }
2397 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2398 {
2399 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2400 {
2401 type = TYPE_TARGET_TYPE (type);
2402 nindices -= 1;
2403 }
14f9c5c9
AS
2404 return type;
2405 }
2406
2407 return NULL;
2408}
2409
4c4b4cd2 2410/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2411 Does not examine memory. Throws an error if N is invalid or TYPE
2412 is not an array type. NAME is the name of the Ada attribute being
2413 evaluated ('range, 'first, 'last, or 'length); it is used in building
2414 the error message. */
14f9c5c9 2415
1eea4ebd
UW
2416static struct type *
2417ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2418{
4c4b4cd2
PH
2419 struct type *result_type;
2420
14f9c5c9
AS
2421 type = desc_base_type (type);
2422
1eea4ebd
UW
2423 if (n < 0 || n > ada_array_arity (type))
2424 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2425
4c4b4cd2 2426 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2427 {
2428 int i;
2429
2430 for (i = 1; i < n; i += 1)
4c4b4cd2 2431 type = TYPE_TARGET_TYPE (type);
262452ec 2432 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2433 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2434 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2435 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2436 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2437 result_type = NULL;
14f9c5c9 2438 }
d2e4a39e 2439 else
1eea4ebd
UW
2440 {
2441 result_type = desc_index_type (desc_bounds_type (type), n);
2442 if (result_type == NULL)
2443 error (_("attempt to take bound of something that is not an array"));
2444 }
2445
2446 return result_type;
14f9c5c9
AS
2447}
2448
2449/* Given that arr is an array type, returns the lower bound of the
2450 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2451 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2452 array-descriptor type. It works for other arrays with bounds supplied
2453 by run-time quantities other than discriminants. */
14f9c5c9 2454
abb68b3e 2455static LONGEST
1eea4ebd 2456ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2457{
262452ec
JK
2458 struct type *type, *index_type_desc, *index_type;
2459 LONGEST retval;
2460
2461 gdb_assert (which == 0 || which == 1);
14f9c5c9
AS
2462
2463 if (ada_is_packed_array_type (arr_type))
2464 arr_type = decode_packed_array_type (arr_type);
2465
4c4b4cd2 2466 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2467 return (LONGEST) - which;
14f9c5c9
AS
2468
2469 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2470 type = TYPE_TARGET_TYPE (arr_type);
2471 else
2472 type = arr_type;
2473
2474 index_type_desc = ada_find_parallel_type (type, "___XA");
262452ec
JK
2475 if (index_type_desc != NULL)
2476 index_type = to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n - 1),
2477 NULL, TYPE_OBJFILE (arr_type));
2478 else
14f9c5c9 2479 {
d2e4a39e 2480 while (n > 1)
4c4b4cd2
PH
2481 {
2482 type = TYPE_TARGET_TYPE (type);
2483 n -= 1;
2484 }
14f9c5c9 2485
abb68b3e 2486 index_type = TYPE_INDEX_TYPE (type);
14f9c5c9 2487 }
262452ec
JK
2488
2489 switch (TYPE_CODE (index_type))
14f9c5c9 2490 {
262452ec
JK
2491 case TYPE_CODE_RANGE:
2492 retval = which == 0 ? TYPE_LOW_BOUND (index_type)
2493 : TYPE_HIGH_BOUND (index_type);
2494 break;
2495 case TYPE_CODE_ENUM:
2496 retval = which == 0 ? TYPE_FIELD_BITPOS (index_type, 0)
2497 : TYPE_FIELD_BITPOS (index_type,
2498 TYPE_NFIELDS (index_type) - 1);
2499 break;
2500 default:
2501 internal_error (__FILE__, __LINE__, _("invalid type code of index type"));
2502 }
abb68b3e 2503
262452ec 2504 return retval;
14f9c5c9
AS
2505}
2506
2507/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2508 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2509 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2510 supplied by run-time quantities other than discriminants. */
14f9c5c9 2511
1eea4ebd 2512static LONGEST
4dc81987 2513ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2514{
df407dfe 2515 struct type *arr_type = value_type (arr);
14f9c5c9
AS
2516
2517 if (ada_is_packed_array_type (arr_type))
2518 return ada_array_bound (decode_packed_array (arr), n, which);
4c4b4cd2 2519 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2520 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2521 else
1eea4ebd 2522 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2523}
2524
2525/* Given that arr is an array value, returns the length of the
2526 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2527 supplied by run-time quantities other than discriminants.
2528 Does not work for arrays indexed by enumeration types with representation
2529 clauses at the moment. */
14f9c5c9 2530
1eea4ebd 2531static LONGEST
d2e4a39e 2532ada_array_length (struct value *arr, int n)
14f9c5c9 2533{
df407dfe 2534 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9
AS
2535
2536 if (ada_is_packed_array_type (arr_type))
2537 return ada_array_length (decode_packed_array (arr), n);
2538
4c4b4cd2 2539 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2540 return (ada_array_bound_from_type (arr_type, n, 1)
2541 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2542 else
1eea4ebd
UW
2543 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2544 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2545}
2546
2547/* An empty array whose type is that of ARR_TYPE (an array type),
2548 with bounds LOW to LOW-1. */
2549
2550static struct value *
2551empty_array (struct type *arr_type, int low)
2552{
6c038f32 2553 struct type *index_type =
0b5d8877
PH
2554 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type)),
2555 low, low - 1);
2556 struct type *elt_type = ada_array_element_type (arr_type, 1);
2557 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2558}
14f9c5c9 2559\f
d2e4a39e 2560
4c4b4cd2 2561 /* Name resolution */
14f9c5c9 2562
4c4b4cd2
PH
2563/* The "decoded" name for the user-definable Ada operator corresponding
2564 to OP. */
14f9c5c9 2565
d2e4a39e 2566static const char *
4c4b4cd2 2567ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2568{
2569 int i;
2570
4c4b4cd2 2571 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2572 {
2573 if (ada_opname_table[i].op == op)
4c4b4cd2 2574 return ada_opname_table[i].decoded;
14f9c5c9 2575 }
323e0a4a 2576 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2577}
2578
2579
4c4b4cd2
PH
2580/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2581 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2582 undefined namespace) and converts operators that are
2583 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2584 non-null, it provides a preferred result type [at the moment, only
2585 type void has any effect---causing procedures to be preferred over
2586 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2587 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2588
4c4b4cd2
PH
2589static void
2590resolve (struct expression **expp, int void_context_p)
14f9c5c9
AS
2591{
2592 int pc;
2593 pc = 0;
4c4b4cd2 2594 resolve_subexp (expp, &pc, 1, void_context_p ? builtin_type_void : NULL);
14f9c5c9
AS
2595}
2596
4c4b4cd2
PH
2597/* Resolve the operator of the subexpression beginning at
2598 position *POS of *EXPP. "Resolving" consists of replacing
2599 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2600 with their resolutions, replacing built-in operators with
2601 function calls to user-defined operators, where appropriate, and,
2602 when DEPROCEDURE_P is non-zero, converting function-valued variables
2603 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2604 are as in ada_resolve, above. */
14f9c5c9 2605
d2e4a39e 2606static struct value *
4c4b4cd2 2607resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2608 struct type *context_type)
14f9c5c9
AS
2609{
2610 int pc = *pos;
2611 int i;
4c4b4cd2 2612 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2613 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2614 struct value **argvec; /* Vector of operand types (alloca'ed). */
2615 int nargs; /* Number of operands. */
52ce6436 2616 int oplen;
14f9c5c9
AS
2617
2618 argvec = NULL;
2619 nargs = 0;
2620 exp = *expp;
2621
52ce6436
PH
2622 /* Pass one: resolve operands, saving their types and updating *pos,
2623 if needed. */
14f9c5c9
AS
2624 switch (op)
2625 {
4c4b4cd2
PH
2626 case OP_FUNCALL:
2627 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2628 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2629 *pos += 7;
4c4b4cd2
PH
2630 else
2631 {
2632 *pos += 3;
2633 resolve_subexp (expp, pos, 0, NULL);
2634 }
2635 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2636 break;
2637
14f9c5c9 2638 case UNOP_ADDR:
4c4b4cd2
PH
2639 *pos += 1;
2640 resolve_subexp (expp, pos, 0, NULL);
2641 break;
2642
52ce6436
PH
2643 case UNOP_QUAL:
2644 *pos += 3;
17466c1a 2645 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2646 break;
2647
52ce6436 2648 case OP_ATR_MODULUS:
4c4b4cd2
PH
2649 case OP_ATR_SIZE:
2650 case OP_ATR_TAG:
4c4b4cd2
PH
2651 case OP_ATR_FIRST:
2652 case OP_ATR_LAST:
2653 case OP_ATR_LENGTH:
2654 case OP_ATR_POS:
2655 case OP_ATR_VAL:
4c4b4cd2
PH
2656 case OP_ATR_MIN:
2657 case OP_ATR_MAX:
52ce6436
PH
2658 case TERNOP_IN_RANGE:
2659 case BINOP_IN_BOUNDS:
2660 case UNOP_IN_RANGE:
2661 case OP_AGGREGATE:
2662 case OP_OTHERS:
2663 case OP_CHOICES:
2664 case OP_POSITIONAL:
2665 case OP_DISCRETE_RANGE:
2666 case OP_NAME:
2667 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2668 *pos += oplen;
14f9c5c9
AS
2669 break;
2670
2671 case BINOP_ASSIGN:
2672 {
4c4b4cd2
PH
2673 struct value *arg1;
2674
2675 *pos += 1;
2676 arg1 = resolve_subexp (expp, pos, 0, NULL);
2677 if (arg1 == NULL)
2678 resolve_subexp (expp, pos, 1, NULL);
2679 else
df407dfe 2680 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 2681 break;
14f9c5c9
AS
2682 }
2683
4c4b4cd2 2684 case UNOP_CAST:
4c4b4cd2
PH
2685 *pos += 3;
2686 nargs = 1;
2687 break;
14f9c5c9 2688
4c4b4cd2
PH
2689 case BINOP_ADD:
2690 case BINOP_SUB:
2691 case BINOP_MUL:
2692 case BINOP_DIV:
2693 case BINOP_REM:
2694 case BINOP_MOD:
2695 case BINOP_EXP:
2696 case BINOP_CONCAT:
2697 case BINOP_LOGICAL_AND:
2698 case BINOP_LOGICAL_OR:
2699 case BINOP_BITWISE_AND:
2700 case BINOP_BITWISE_IOR:
2701 case BINOP_BITWISE_XOR:
14f9c5c9 2702
4c4b4cd2
PH
2703 case BINOP_EQUAL:
2704 case BINOP_NOTEQUAL:
2705 case BINOP_LESS:
2706 case BINOP_GTR:
2707 case BINOP_LEQ:
2708 case BINOP_GEQ:
14f9c5c9 2709
4c4b4cd2
PH
2710 case BINOP_REPEAT:
2711 case BINOP_SUBSCRIPT:
2712 case BINOP_COMMA:
40c8aaa9
JB
2713 *pos += 1;
2714 nargs = 2;
2715 break;
14f9c5c9 2716
4c4b4cd2
PH
2717 case UNOP_NEG:
2718 case UNOP_PLUS:
2719 case UNOP_LOGICAL_NOT:
2720 case UNOP_ABS:
2721 case UNOP_IND:
2722 *pos += 1;
2723 nargs = 1;
2724 break;
14f9c5c9 2725
4c4b4cd2
PH
2726 case OP_LONG:
2727 case OP_DOUBLE:
2728 case OP_VAR_VALUE:
2729 *pos += 4;
2730 break;
14f9c5c9 2731
4c4b4cd2
PH
2732 case OP_TYPE:
2733 case OP_BOOL:
2734 case OP_LAST:
4c4b4cd2
PH
2735 case OP_INTERNALVAR:
2736 *pos += 3;
2737 break;
14f9c5c9 2738
4c4b4cd2
PH
2739 case UNOP_MEMVAL:
2740 *pos += 3;
2741 nargs = 1;
2742 break;
2743
67f3407f
DJ
2744 case OP_REGISTER:
2745 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2746 break;
2747
4c4b4cd2
PH
2748 case STRUCTOP_STRUCT:
2749 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
2750 nargs = 1;
2751 break;
2752
4c4b4cd2 2753 case TERNOP_SLICE:
4c4b4cd2
PH
2754 *pos += 1;
2755 nargs = 3;
2756 break;
2757
52ce6436 2758 case OP_STRING:
14f9c5c9 2759 break;
4c4b4cd2
PH
2760
2761 default:
323e0a4a 2762 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
2763 }
2764
76a01679 2765 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
2766 for (i = 0; i < nargs; i += 1)
2767 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
2768 argvec[i] = NULL;
2769 exp = *expp;
2770
2771 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
2772 switch (op)
2773 {
2774 default:
2775 break;
2776
14f9c5c9 2777 case OP_VAR_VALUE:
4c4b4cd2 2778 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
2779 {
2780 struct ada_symbol_info *candidates;
2781 int n_candidates;
2782
2783 n_candidates =
2784 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2785 (exp->elts[pc + 2].symbol),
2786 exp->elts[pc + 1].block, VAR_DOMAIN,
2787 &candidates);
2788
2789 if (n_candidates > 1)
2790 {
2791 /* Types tend to get re-introduced locally, so if there
2792 are any local symbols that are not types, first filter
2793 out all types. */
2794 int j;
2795 for (j = 0; j < n_candidates; j += 1)
2796 switch (SYMBOL_CLASS (candidates[j].sym))
2797 {
2798 case LOC_REGISTER:
2799 case LOC_ARG:
2800 case LOC_REF_ARG:
76a01679
JB
2801 case LOC_REGPARM_ADDR:
2802 case LOC_LOCAL:
76a01679 2803 case LOC_COMPUTED:
76a01679
JB
2804 goto FoundNonType;
2805 default:
2806 break;
2807 }
2808 FoundNonType:
2809 if (j < n_candidates)
2810 {
2811 j = 0;
2812 while (j < n_candidates)
2813 {
2814 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
2815 {
2816 candidates[j] = candidates[n_candidates - 1];
2817 n_candidates -= 1;
2818 }
2819 else
2820 j += 1;
2821 }
2822 }
2823 }
2824
2825 if (n_candidates == 0)
323e0a4a 2826 error (_("No definition found for %s"),
76a01679
JB
2827 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2828 else if (n_candidates == 1)
2829 i = 0;
2830 else if (deprocedure_p
2831 && !is_nonfunction (candidates, n_candidates))
2832 {
06d5cf63
JB
2833 i = ada_resolve_function
2834 (candidates, n_candidates, NULL, 0,
2835 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
2836 context_type);
76a01679 2837 if (i < 0)
323e0a4a 2838 error (_("Could not find a match for %s"),
76a01679
JB
2839 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2840 }
2841 else
2842 {
323e0a4a 2843 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
2844 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
2845 user_select_syms (candidates, n_candidates, 1);
2846 i = 0;
2847 }
2848
2849 exp->elts[pc + 1].block = candidates[i].block;
2850 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
2851 if (innermost_block == NULL
2852 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
2853 innermost_block = candidates[i].block;
2854 }
2855
2856 if (deprocedure_p
2857 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
2858 == TYPE_CODE_FUNC))
2859 {
2860 replace_operator_with_call (expp, pc, 0, 0,
2861 exp->elts[pc + 2].symbol,
2862 exp->elts[pc + 1].block);
2863 exp = *expp;
2864 }
14f9c5c9
AS
2865 break;
2866
2867 case OP_FUNCALL:
2868 {
4c4b4cd2 2869 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 2870 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
2871 {
2872 struct ada_symbol_info *candidates;
2873 int n_candidates;
2874
2875 n_candidates =
76a01679
JB
2876 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
2877 (exp->elts[pc + 5].symbol),
2878 exp->elts[pc + 4].block, VAR_DOMAIN,
2879 &candidates);
4c4b4cd2
PH
2880 if (n_candidates == 1)
2881 i = 0;
2882 else
2883 {
06d5cf63
JB
2884 i = ada_resolve_function
2885 (candidates, n_candidates,
2886 argvec, nargs,
2887 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
2888 context_type);
4c4b4cd2 2889 if (i < 0)
323e0a4a 2890 error (_("Could not find a match for %s"),
4c4b4cd2
PH
2891 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
2892 }
2893
2894 exp->elts[pc + 4].block = candidates[i].block;
2895 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
2896 if (innermost_block == NULL
2897 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
2898 innermost_block = candidates[i].block;
2899 }
14f9c5c9
AS
2900 }
2901 break;
2902 case BINOP_ADD:
2903 case BINOP_SUB:
2904 case BINOP_MUL:
2905 case BINOP_DIV:
2906 case BINOP_REM:
2907 case BINOP_MOD:
2908 case BINOP_CONCAT:
2909 case BINOP_BITWISE_AND:
2910 case BINOP_BITWISE_IOR:
2911 case BINOP_BITWISE_XOR:
2912 case BINOP_EQUAL:
2913 case BINOP_NOTEQUAL:
2914 case BINOP_LESS:
2915 case BINOP_GTR:
2916 case BINOP_LEQ:
2917 case BINOP_GEQ:
2918 case BINOP_EXP:
2919 case UNOP_NEG:
2920 case UNOP_PLUS:
2921 case UNOP_LOGICAL_NOT:
2922 case UNOP_ABS:
2923 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
2924 {
2925 struct ada_symbol_info *candidates;
2926 int n_candidates;
2927
2928 n_candidates =
2929 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
2930 (struct block *) NULL, VAR_DOMAIN,
2931 &candidates);
2932 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 2933 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
2934 if (i < 0)
2935 break;
2936
76a01679
JB
2937 replace_operator_with_call (expp, pc, nargs, 1,
2938 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
2939 exp = *expp;
2940 }
14f9c5c9 2941 break;
4c4b4cd2
PH
2942
2943 case OP_TYPE:
b3dbf008 2944 case OP_REGISTER:
4c4b4cd2 2945 return NULL;
14f9c5c9
AS
2946 }
2947
2948 *pos = pc;
2949 return evaluate_subexp_type (exp, pos);
2950}
2951
2952/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2
PH
2953 MAY_DEREF is non-zero, the formal may be a pointer and the actual
2954 a non-pointer. A type of 'void' (which is never a valid expression type)
2955 by convention matches anything. */
14f9c5c9 2956/* The term "match" here is rather loose. The match is heuristic and
4c4b4cd2 2957 liberal. FIXME: TOO liberal, in fact. */
14f9c5c9
AS
2958
2959static int
4dc81987 2960ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 2961{
61ee279c
PH
2962 ftype = ada_check_typedef (ftype);
2963 atype = ada_check_typedef (atype);
14f9c5c9
AS
2964
2965 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
2966 ftype = TYPE_TARGET_TYPE (ftype);
2967 if (TYPE_CODE (atype) == TYPE_CODE_REF)
2968 atype = TYPE_TARGET_TYPE (atype);
2969
d2e4a39e 2970 if (TYPE_CODE (ftype) == TYPE_CODE_VOID
14f9c5c9
AS
2971 || TYPE_CODE (atype) == TYPE_CODE_VOID)
2972 return 1;
2973
d2e4a39e 2974 switch (TYPE_CODE (ftype))
14f9c5c9
AS
2975 {
2976 default:
2977 return 1;
2978 case TYPE_CODE_PTR:
2979 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
2980 return ada_type_match (TYPE_TARGET_TYPE (ftype),
2981 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 2982 else
1265e4aa
JB
2983 return (may_deref
2984 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_ENUM:
2987 case TYPE_CODE_RANGE:
2988 switch (TYPE_CODE (atype))
4c4b4cd2
PH
2989 {
2990 case TYPE_CODE_INT:
2991 case TYPE_CODE_ENUM:
2992 case TYPE_CODE_RANGE:
2993 return 1;
2994 default:
2995 return 0;
2996 }
14f9c5c9
AS
2997
2998 case TYPE_CODE_ARRAY:
d2e4a39e 2999 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3000 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3001
3002 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3003 if (ada_is_array_descriptor_type (ftype))
3004 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3005 || ada_is_array_descriptor_type (atype));
14f9c5c9 3006 else
4c4b4cd2
PH
3007 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3008 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3009
3010 case TYPE_CODE_UNION:
3011 case TYPE_CODE_FLT:
3012 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3013 }
3014}
3015
3016/* Return non-zero if the formals of FUNC "sufficiently match" the
3017 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3018 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3019 argument function. */
14f9c5c9
AS
3020
3021static int
d2e4a39e 3022ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3023{
3024 int i;
d2e4a39e 3025 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3026
1265e4aa
JB
3027 if (SYMBOL_CLASS (func) == LOC_CONST
3028 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3029 return (n_actuals == 0);
3030 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3031 return 0;
3032
3033 if (TYPE_NFIELDS (func_type) != n_actuals)
3034 return 0;
3035
3036 for (i = 0; i < n_actuals; i += 1)
3037 {
4c4b4cd2 3038 if (actuals[i] == NULL)
76a01679
JB
3039 return 0;
3040 else
3041 {
61ee279c 3042 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, i));
df407dfe 3043 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3044
76a01679
JB
3045 if (!ada_type_match (ftype, atype, 1))
3046 return 0;
3047 }
14f9c5c9
AS
3048 }
3049 return 1;
3050}
3051
3052/* False iff function type FUNC_TYPE definitely does not produce a value
3053 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3054 FUNC_TYPE is not a valid function type with a non-null return type
3055 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3056
3057static int
d2e4a39e 3058return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3059{
d2e4a39e 3060 struct type *return_type;
14f9c5c9
AS
3061
3062 if (func_type == NULL)
3063 return 1;
3064
4c4b4cd2
PH
3065 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3066 return_type = base_type (TYPE_TARGET_TYPE (func_type));
3067 else
3068 return_type = base_type (func_type);
14f9c5c9
AS
3069 if (return_type == NULL)
3070 return 1;
3071
4c4b4cd2 3072 context_type = base_type (context_type);
14f9c5c9
AS
3073
3074 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3075 return context_type == NULL || return_type == context_type;
3076 else if (context_type == NULL)
3077 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3078 else
3079 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3080}
3081
3082
4c4b4cd2 3083/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3084 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3085 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3086 that returns that type, then eliminate matches that don't. If
3087 CONTEXT_TYPE is void and there is at least one match that does not
3088 return void, eliminate all matches that do.
3089
14f9c5c9
AS
3090 Asks the user if there is more than one match remaining. Returns -1
3091 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3092 solely for messages. May re-arrange and modify SYMS in
3093 the process; the index returned is for the modified vector. */
14f9c5c9 3094
4c4b4cd2
PH
3095static int
3096ada_resolve_function (struct ada_symbol_info syms[],
3097 int nsyms, struct value **args, int nargs,
3098 const char *name, struct type *context_type)
14f9c5c9
AS
3099{
3100 int k;
4c4b4cd2 3101 int m; /* Number of hits */
d2e4a39e
AS
3102 struct type *fallback;
3103 struct type *return_type;
14f9c5c9
AS
3104
3105 return_type = context_type;
3106 if (context_type == NULL)
3107 fallback = builtin_type_void;
3108 else
3109 fallback = NULL;
3110
d2e4a39e 3111 m = 0;
14f9c5c9
AS
3112 while (1)
3113 {
3114 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3115 {
61ee279c 3116 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3117
3118 if (ada_args_match (syms[k].sym, args, nargs)
3119 && return_match (type, return_type))
3120 {
3121 syms[m] = syms[k];
3122 m += 1;
3123 }
3124 }
14f9c5c9 3125 if (m > 0 || return_type == fallback)
4c4b4cd2 3126 break;
14f9c5c9 3127 else
4c4b4cd2 3128 return_type = fallback;
14f9c5c9
AS
3129 }
3130
3131 if (m == 0)
3132 return -1;
3133 else if (m > 1)
3134 {
323e0a4a 3135 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3136 user_select_syms (syms, m, 1);
14f9c5c9
AS
3137 return 0;
3138 }
3139 return 0;
3140}
3141
4c4b4cd2
PH
3142/* Returns true (non-zero) iff decoded name N0 should appear before N1
3143 in a listing of choices during disambiguation (see sort_choices, below).
3144 The idea is that overloadings of a subprogram name from the
3145 same package should sort in their source order. We settle for ordering
3146 such symbols by their trailing number (__N or $N). */
3147
14f9c5c9 3148static int
4c4b4cd2 3149encoded_ordered_before (char *N0, char *N1)
14f9c5c9
AS
3150{
3151 if (N1 == NULL)
3152 return 0;
3153 else if (N0 == NULL)
3154 return 1;
3155 else
3156 {
3157 int k0, k1;
d2e4a39e 3158 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3159 ;
d2e4a39e 3160 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3161 ;
d2e4a39e 3162 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3163 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3164 {
3165 int n0, n1;
3166 n0 = k0;
3167 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3168 n0 -= 1;
3169 n1 = k1;
3170 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3171 n1 -= 1;
3172 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3173 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3174 }
14f9c5c9
AS
3175 return (strcmp (N0, N1) < 0);
3176 }
3177}
d2e4a39e 3178
4c4b4cd2
PH
3179/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3180 encoded names. */
3181
d2e4a39e 3182static void
4c4b4cd2 3183sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3184{
4c4b4cd2 3185 int i;
d2e4a39e 3186 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3187 {
4c4b4cd2 3188 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3189 int j;
3190
d2e4a39e 3191 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3192 {
3193 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3194 SYMBOL_LINKAGE_NAME (sym.sym)))
3195 break;
3196 syms[j + 1] = syms[j];
3197 }
d2e4a39e 3198 syms[j + 1] = sym;
14f9c5c9
AS
3199 }
3200}
3201
4c4b4cd2
PH
3202/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3203 by asking the user (if necessary), returning the number selected,
3204 and setting the first elements of SYMS items. Error if no symbols
3205 selected. */
14f9c5c9
AS
3206
3207/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3208 to be re-integrated one of these days. */
14f9c5c9
AS
3209
3210int
4c4b4cd2 3211user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3212{
3213 int i;
d2e4a39e 3214 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3215 int n_chosen;
3216 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3217 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3218
3219 if (max_results < 1)
323e0a4a 3220 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3221 if (nsyms <= 1)
3222 return nsyms;
3223
717d2f5a
JB
3224 if (select_mode == multiple_symbols_cancel)
3225 error (_("\
3226canceled because the command is ambiguous\n\
3227See set/show multiple-symbol."));
3228
3229 /* If select_mode is "all", then return all possible symbols.
3230 Only do that if more than one symbol can be selected, of course.
3231 Otherwise, display the menu as usual. */
3232 if (select_mode == multiple_symbols_all && max_results > 1)
3233 return nsyms;
3234
323e0a4a 3235 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3236 if (max_results > 1)
323e0a4a 3237 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3238
4c4b4cd2 3239 sort_choices (syms, nsyms);
14f9c5c9
AS
3240
3241 for (i = 0; i < nsyms; i += 1)
3242 {
4c4b4cd2
PH
3243 if (syms[i].sym == NULL)
3244 continue;
3245
3246 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3247 {
76a01679
JB
3248 struct symtab_and_line sal =
3249 find_function_start_sal (syms[i].sym, 1);
323e0a4a
AC
3250 if (sal.symtab == NULL)
3251 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3252 i + first_choice,
3253 SYMBOL_PRINT_NAME (syms[i].sym),
3254 sal.line);
3255 else
3256 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3257 SYMBOL_PRINT_NAME (syms[i].sym),
3258 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3259 continue;
3260 }
d2e4a39e 3261 else
4c4b4cd2
PH
3262 {
3263 int is_enumeral =
3264 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3265 && SYMBOL_TYPE (syms[i].sym) != NULL
3266 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3267 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3268
3269 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3270 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3271 i + first_choice,
3272 SYMBOL_PRINT_NAME (syms[i].sym),
3273 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3274 else if (is_enumeral
3275 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3276 {
a3f17187 3277 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3278 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3279 gdb_stdout, -1, 0);
323e0a4a 3280 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3281 SYMBOL_PRINT_NAME (syms[i].sym));
3282 }
3283 else if (symtab != NULL)
3284 printf_unfiltered (is_enumeral
323e0a4a
AC
3285 ? _("[%d] %s in %s (enumeral)\n")
3286 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3287 i + first_choice,
3288 SYMBOL_PRINT_NAME (syms[i].sym),
3289 symtab->filename);
3290 else
3291 printf_unfiltered (is_enumeral
323e0a4a
AC
3292 ? _("[%d] %s (enumeral)\n")
3293 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3294 i + first_choice,
3295 SYMBOL_PRINT_NAME (syms[i].sym));
3296 }
14f9c5c9 3297 }
d2e4a39e 3298
14f9c5c9 3299 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3300 "overload-choice");
14f9c5c9
AS
3301
3302 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3303 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3304
3305 return n_chosen;
3306}
3307
3308/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3309 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3310 order in CHOICES[0 .. N-1], and return N.
3311
3312 The user types choices as a sequence of numbers on one line
3313 separated by blanks, encoding them as follows:
3314
4c4b4cd2 3315 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3316 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3317 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3318
4c4b4cd2 3319 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3320
3321 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3322 prompts (for use with the -f switch). */
14f9c5c9
AS
3323
3324int
d2e4a39e 3325get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3326 int is_all_choice, char *annotation_suffix)
14f9c5c9 3327{
d2e4a39e 3328 char *args;
0bcd0149 3329 char *prompt;
14f9c5c9
AS
3330 int n_chosen;
3331 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3332
14f9c5c9
AS
3333 prompt = getenv ("PS2");
3334 if (prompt == NULL)
0bcd0149 3335 prompt = "> ";
14f9c5c9 3336
0bcd0149 3337 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3338
14f9c5c9 3339 if (args == NULL)
323e0a4a 3340 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3341
3342 n_chosen = 0;
76a01679 3343
4c4b4cd2
PH
3344 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3345 order, as given in args. Choices are validated. */
14f9c5c9
AS
3346 while (1)
3347 {
d2e4a39e 3348 char *args2;
14f9c5c9
AS
3349 int choice, j;
3350
3351 while (isspace (*args))
4c4b4cd2 3352 args += 1;
14f9c5c9 3353 if (*args == '\0' && n_chosen == 0)
323e0a4a 3354 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3355 else if (*args == '\0')
4c4b4cd2 3356 break;
14f9c5c9
AS
3357
3358 choice = strtol (args, &args2, 10);
d2e4a39e 3359 if (args == args2 || choice < 0
4c4b4cd2 3360 || choice > n_choices + first_choice - 1)
323e0a4a 3361 error (_("Argument must be choice number"));
14f9c5c9
AS
3362 args = args2;
3363
d2e4a39e 3364 if (choice == 0)
323e0a4a 3365 error (_("cancelled"));
14f9c5c9
AS
3366
3367 if (choice < first_choice)
4c4b4cd2
PH
3368 {
3369 n_chosen = n_choices;
3370 for (j = 0; j < n_choices; j += 1)
3371 choices[j] = j;
3372 break;
3373 }
14f9c5c9
AS
3374 choice -= first_choice;
3375
d2e4a39e 3376 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3377 {
3378 }
14f9c5c9
AS
3379
3380 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3381 {
3382 int k;
3383 for (k = n_chosen - 1; k > j; k -= 1)
3384 choices[k + 1] = choices[k];
3385 choices[j + 1] = choice;
3386 n_chosen += 1;
3387 }
14f9c5c9
AS
3388 }
3389
3390 if (n_chosen > max_results)
323e0a4a 3391 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3392
14f9c5c9
AS
3393 return n_chosen;
3394}
3395
4c4b4cd2
PH
3396/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3397 on the function identified by SYM and BLOCK, and taking NARGS
3398 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3399
3400static void
d2e4a39e 3401replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3402 int oplen, struct symbol *sym,
3403 struct block *block)
14f9c5c9
AS
3404{
3405 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3406 symbol, -oplen for operator being replaced). */
d2e4a39e 3407 struct expression *newexp = (struct expression *)
14f9c5c9 3408 xmalloc (sizeof (struct expression)
4c4b4cd2 3409 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3410 struct expression *exp = *expp;
14f9c5c9
AS
3411
3412 newexp->nelts = exp->nelts + 7 - oplen;
3413 newexp->language_defn = exp->language_defn;
3414 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3415 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3416 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3417
3418 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3419 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3420
3421 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3422 newexp->elts[pc + 4].block = block;
3423 newexp->elts[pc + 5].symbol = sym;
3424
3425 *expp = newexp;
aacb1f0a 3426 xfree (exp);
d2e4a39e 3427}
14f9c5c9
AS
3428
3429/* Type-class predicates */
3430
4c4b4cd2
PH
3431/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3432 or FLOAT). */
14f9c5c9
AS
3433
3434static int
d2e4a39e 3435numeric_type_p (struct type *type)
14f9c5c9
AS
3436{
3437 if (type == NULL)
3438 return 0;
d2e4a39e
AS
3439 else
3440 {
3441 switch (TYPE_CODE (type))
4c4b4cd2
PH
3442 {
3443 case TYPE_CODE_INT:
3444 case TYPE_CODE_FLT:
3445 return 1;
3446 case TYPE_CODE_RANGE:
3447 return (type == TYPE_TARGET_TYPE (type)
3448 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3449 default:
3450 return 0;
3451 }
d2e4a39e 3452 }
14f9c5c9
AS
3453}
3454
4c4b4cd2 3455/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3456
3457static int
d2e4a39e 3458integer_type_p (struct type *type)
14f9c5c9
AS
3459{
3460 if (type == NULL)
3461 return 0;
d2e4a39e
AS
3462 else
3463 {
3464 switch (TYPE_CODE (type))
4c4b4cd2
PH
3465 {
3466 case TYPE_CODE_INT:
3467 return 1;
3468 case TYPE_CODE_RANGE:
3469 return (type == TYPE_TARGET_TYPE (type)
3470 || integer_type_p (TYPE_TARGET_TYPE (type)));
3471 default:
3472 return 0;
3473 }
d2e4a39e 3474 }
14f9c5c9
AS
3475}
3476
4c4b4cd2 3477/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3478
3479static int
d2e4a39e 3480scalar_type_p (struct type *type)
14f9c5c9
AS
3481{
3482 if (type == NULL)
3483 return 0;
d2e4a39e
AS
3484 else
3485 {
3486 switch (TYPE_CODE (type))
4c4b4cd2
PH
3487 {
3488 case TYPE_CODE_INT:
3489 case TYPE_CODE_RANGE:
3490 case TYPE_CODE_ENUM:
3491 case TYPE_CODE_FLT:
3492 return 1;
3493 default:
3494 return 0;
3495 }
d2e4a39e 3496 }
14f9c5c9
AS
3497}
3498
4c4b4cd2 3499/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3500
3501static int
d2e4a39e 3502discrete_type_p (struct type *type)
14f9c5c9
AS
3503{
3504 if (type == NULL)
3505 return 0;
d2e4a39e
AS
3506 else
3507 {
3508 switch (TYPE_CODE (type))
4c4b4cd2
PH
3509 {
3510 case TYPE_CODE_INT:
3511 case TYPE_CODE_RANGE:
3512 case TYPE_CODE_ENUM:
3513 return 1;
3514 default:
3515 return 0;
3516 }
d2e4a39e 3517 }
14f9c5c9
AS
3518}
3519
4c4b4cd2
PH
3520/* Returns non-zero if OP with operands in the vector ARGS could be
3521 a user-defined function. Errs on the side of pre-defined operators
3522 (i.e., result 0). */
14f9c5c9
AS
3523
3524static int
d2e4a39e 3525possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3526{
76a01679 3527 struct type *type0 =
df407dfe 3528 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3529 struct type *type1 =
df407dfe 3530 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3531
4c4b4cd2
PH
3532 if (type0 == NULL)
3533 return 0;
3534
14f9c5c9
AS
3535 switch (op)
3536 {
3537 default:
3538 return 0;
3539
3540 case BINOP_ADD:
3541 case BINOP_SUB:
3542 case BINOP_MUL:
3543 case BINOP_DIV:
d2e4a39e 3544 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3545
3546 case BINOP_REM:
3547 case BINOP_MOD:
3548 case BINOP_BITWISE_AND:
3549 case BINOP_BITWISE_IOR:
3550 case BINOP_BITWISE_XOR:
d2e4a39e 3551 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3552
3553 case BINOP_EQUAL:
3554 case BINOP_NOTEQUAL:
3555 case BINOP_LESS:
3556 case BINOP_GTR:
3557 case BINOP_LEQ:
3558 case BINOP_GEQ:
d2e4a39e 3559 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3560
3561 case BINOP_CONCAT:
ee90b9ab 3562 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3563
3564 case BINOP_EXP:
d2e4a39e 3565 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3566
3567 case UNOP_NEG:
3568 case UNOP_PLUS:
3569 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3570 case UNOP_ABS:
3571 return (!numeric_type_p (type0));
14f9c5c9
AS
3572
3573 }
3574}
3575\f
4c4b4cd2 3576 /* Renaming */
14f9c5c9 3577
aeb5907d
JB
3578/* NOTES:
3579
3580 1. In the following, we assume that a renaming type's name may
3581 have an ___XD suffix. It would be nice if this went away at some
3582 point.
3583 2. We handle both the (old) purely type-based representation of
3584 renamings and the (new) variable-based encoding. At some point,
3585 it is devoutly to be hoped that the former goes away
3586 (FIXME: hilfinger-2007-07-09).
3587 3. Subprogram renamings are not implemented, although the XRS
3588 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3589
3590/* If SYM encodes a renaming,
3591
3592 <renaming> renames <renamed entity>,
3593
3594 sets *LEN to the length of the renamed entity's name,
3595 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3596 the string describing the subcomponent selected from the renamed
3597 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3598 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3599 are undefined). Otherwise, returns a value indicating the category
3600 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3601 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3602 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3603 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3604 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3605 may be NULL, in which case they are not assigned.
3606
3607 [Currently, however, GCC does not generate subprogram renamings.] */
3608
3609enum ada_renaming_category
3610ada_parse_renaming (struct symbol *sym,
3611 const char **renamed_entity, int *len,
3612 const char **renaming_expr)
3613{
3614 enum ada_renaming_category kind;
3615 const char *info;
3616 const char *suffix;
3617
3618 if (sym == NULL)
3619 return ADA_NOT_RENAMING;
3620 switch (SYMBOL_CLASS (sym))
14f9c5c9 3621 {
aeb5907d
JB
3622 default:
3623 return ADA_NOT_RENAMING;
3624 case LOC_TYPEDEF:
3625 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3626 renamed_entity, len, renaming_expr);
3627 case LOC_LOCAL:
3628 case LOC_STATIC:
3629 case LOC_COMPUTED:
3630 case LOC_OPTIMIZED_OUT:
3631 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3632 if (info == NULL)
3633 return ADA_NOT_RENAMING;
3634 switch (info[5])
3635 {
3636 case '_':
3637 kind = ADA_OBJECT_RENAMING;
3638 info += 6;
3639 break;
3640 case 'E':
3641 kind = ADA_EXCEPTION_RENAMING;
3642 info += 7;
3643 break;
3644 case 'P':
3645 kind = ADA_PACKAGE_RENAMING;
3646 info += 7;
3647 break;
3648 case 'S':
3649 kind = ADA_SUBPROGRAM_RENAMING;
3650 info += 7;
3651 break;
3652 default:
3653 return ADA_NOT_RENAMING;
3654 }
14f9c5c9 3655 }
4c4b4cd2 3656
aeb5907d
JB
3657 if (renamed_entity != NULL)
3658 *renamed_entity = info;
3659 suffix = strstr (info, "___XE");
3660 if (suffix == NULL || suffix == info)
3661 return ADA_NOT_RENAMING;
3662 if (len != NULL)
3663 *len = strlen (info) - strlen (suffix);
3664 suffix += 5;
3665 if (renaming_expr != NULL)
3666 *renaming_expr = suffix;
3667 return kind;
3668}
3669
3670/* Assuming TYPE encodes a renaming according to the old encoding in
3671 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3672 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3673 ADA_NOT_RENAMING otherwise. */
3674static enum ada_renaming_category
3675parse_old_style_renaming (struct type *type,
3676 const char **renamed_entity, int *len,
3677 const char **renaming_expr)
3678{
3679 enum ada_renaming_category kind;
3680 const char *name;
3681 const char *info;
3682 const char *suffix;
14f9c5c9 3683
aeb5907d
JB
3684 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3685 || TYPE_NFIELDS (type) != 1)
3686 return ADA_NOT_RENAMING;
14f9c5c9 3687
aeb5907d
JB
3688 name = type_name_no_tag (type);
3689 if (name == NULL)
3690 return ADA_NOT_RENAMING;
3691
3692 name = strstr (name, "___XR");
3693 if (name == NULL)
3694 return ADA_NOT_RENAMING;
3695 switch (name[5])
3696 {
3697 case '\0':
3698 case '_':
3699 kind = ADA_OBJECT_RENAMING;
3700 break;
3701 case 'E':
3702 kind = ADA_EXCEPTION_RENAMING;
3703 break;
3704 case 'P':
3705 kind = ADA_PACKAGE_RENAMING;
3706 break;
3707 case 'S':
3708 kind = ADA_SUBPROGRAM_RENAMING;
3709 break;
3710 default:
3711 return ADA_NOT_RENAMING;
3712 }
14f9c5c9 3713
aeb5907d
JB
3714 info = TYPE_FIELD_NAME (type, 0);
3715 if (info == NULL)
3716 return ADA_NOT_RENAMING;
3717 if (renamed_entity != NULL)
3718 *renamed_entity = info;
3719 suffix = strstr (info, "___XE");
3720 if (renaming_expr != NULL)
3721 *renaming_expr = suffix + 5;
3722 if (suffix == NULL || suffix == info)
3723 return ADA_NOT_RENAMING;
3724 if (len != NULL)
3725 *len = suffix - info;
3726 return kind;
3727}
52ce6436 3728
14f9c5c9 3729\f
d2e4a39e 3730
4c4b4cd2 3731 /* Evaluation: Function Calls */
14f9c5c9 3732
4c4b4cd2
PH
3733/* Return an lvalue containing the value VAL. This is the identity on
3734 lvalues, and otherwise has the side-effect of pushing a copy of VAL
3735 on the stack, using and updating *SP as the stack pointer, and
42ae5230 3736 returning an lvalue whose value_address points to the copy. */
14f9c5c9 3737
d2e4a39e 3738static struct value *
4c4b4cd2 3739ensure_lval (struct value *val, CORE_ADDR *sp)
14f9c5c9 3740{
c3e5cd34
PH
3741 if (! VALUE_LVAL (val))
3742 {
df407dfe 3743 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
c3e5cd34
PH
3744
3745 /* The following is taken from the structure-return code in
3746 call_function_by_hand. FIXME: Therefore, some refactoring seems
3747 indicated. */
4d1e7dd1 3748 if (gdbarch_inner_than (current_gdbarch, 1, 2))
c3e5cd34 3749 {
42ae5230 3750 /* Stack grows downward. Align SP and value_address (val) after
c3e5cd34
PH
3751 reserving sufficient space. */
3752 *sp -= len;
3753 if (gdbarch_frame_align_p (current_gdbarch))
3754 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3755 set_value_address (val, *sp);
c3e5cd34
PH
3756 }
3757 else
3758 {
3759 /* Stack grows upward. Align the frame, allocate space, and
3760 then again, re-align the frame. */
3761 if (gdbarch_frame_align_p (current_gdbarch))
3762 *sp = gdbarch_frame_align (current_gdbarch, *sp);
42ae5230 3763 set_value_address (val, *sp);
c3e5cd34
PH
3764 *sp += len;
3765 if (gdbarch_frame_align_p (current_gdbarch))
3766 *sp = gdbarch_frame_align (current_gdbarch, *sp);
3767 }
a84a8a0d 3768 VALUE_LVAL (val) = lval_memory;
14f9c5c9 3769
42ae5230 3770 write_memory (value_address (val), value_contents_raw (val), len);
c3e5cd34 3771 }
14f9c5c9
AS
3772
3773 return val;
3774}
3775
3776/* Return the value ACTUAL, converted to be an appropriate value for a
3777 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
3778 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 3779 values not residing in memory, updating it as needed. */
14f9c5c9 3780
a93c0eb6
JB
3781struct value *
3782ada_convert_actual (struct value *actual, struct type *formal_type0,
3783 CORE_ADDR *sp)
14f9c5c9 3784{
df407dfe 3785 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 3786 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
3787 struct type *formal_target =
3788 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 3789 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
3790 struct type *actual_target =
3791 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 3792 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 3793
4c4b4cd2 3794 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9
AS
3795 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
3796 return make_array_descriptor (formal_type, actual, sp);
a84a8a0d
JB
3797 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
3798 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 3799 {
a84a8a0d 3800 struct value *result;
14f9c5c9 3801 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 3802 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 3803 result = desc_data (actual);
14f9c5c9 3804 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
3805 {
3806 if (VALUE_LVAL (actual) != lval_memory)
3807 {
3808 struct value *val;
df407dfe 3809 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 3810 val = allocate_value (actual_type);
990a07ab 3811 memcpy ((char *) value_contents_raw (val),
0fd88904 3812 (char *) value_contents (actual),
4c4b4cd2
PH
3813 TYPE_LENGTH (actual_type));
3814 actual = ensure_lval (val, sp);
3815 }
a84a8a0d 3816 result = value_addr (actual);
4c4b4cd2 3817 }
a84a8a0d
JB
3818 else
3819 return actual;
3820 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
3821 }
3822 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
3823 return ada_value_ind (actual);
3824
3825 return actual;
3826}
3827
3828
4c4b4cd2
PH
3829/* Push a descriptor of type TYPE for array value ARR on the stack at
3830 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 3831 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
3832 to-descriptor type rather than a descriptor type), a struct value *
3833 representing a pointer to this descriptor. */
14f9c5c9 3834
d2e4a39e
AS
3835static struct value *
3836make_array_descriptor (struct type *type, struct value *arr, CORE_ADDR *sp)
14f9c5c9 3837{
d2e4a39e
AS
3838 struct type *bounds_type = desc_bounds_type (type);
3839 struct type *desc_type = desc_base_type (type);
3840 struct value *descriptor = allocate_value (desc_type);
3841 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 3842 int i;
d2e4a39e 3843
df407dfe 3844 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); i > 0; i -= 1)
14f9c5c9 3845 {
0fd88904 3846 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3847 ada_array_bound (arr, i, 0),
4c4b4cd2
PH
3848 desc_bound_bitpos (bounds_type, i, 0),
3849 desc_bound_bitsize (bounds_type, i, 0));
0fd88904 3850 modify_general_field (value_contents_writeable (bounds),
1eea4ebd 3851 ada_array_bound (arr, i, 1),
4c4b4cd2
PH
3852 desc_bound_bitpos (bounds_type, i, 1),
3853 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 3854 }
d2e4a39e 3855
4c4b4cd2 3856 bounds = ensure_lval (bounds, sp);
d2e4a39e 3857
0fd88904 3858 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3859 value_address (ensure_lval (arr, sp)),
76a01679
JB
3860 fat_pntr_data_bitpos (desc_type),
3861 fat_pntr_data_bitsize (desc_type));
4c4b4cd2 3862
0fd88904 3863 modify_general_field (value_contents_writeable (descriptor),
42ae5230 3864 value_address (bounds),
4c4b4cd2
PH
3865 fat_pntr_bounds_bitpos (desc_type),
3866 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 3867
4c4b4cd2 3868 descriptor = ensure_lval (descriptor, sp);
14f9c5c9
AS
3869
3870 if (TYPE_CODE (type) == TYPE_CODE_PTR)
3871 return value_addr (descriptor);
3872 else
3873 return descriptor;
3874}
14f9c5c9 3875\f
963a6417
PH
3876/* Dummy definitions for an experimental caching module that is not
3877 * used in the public sources. */
96d887e8 3878
96d887e8
PH
3879static int
3880lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 3881 struct symbol **sym, struct block **block)
96d887e8
PH
3882{
3883 return 0;
3884}
3885
3886static void
3887cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 3888 struct block *block)
96d887e8
PH
3889{
3890}
4c4b4cd2
PH
3891\f
3892 /* Symbol Lookup */
3893
3894/* Return the result of a standard (literal, C-like) lookup of NAME in
3895 given DOMAIN, visible from lexical block BLOCK. */
3896
3897static struct symbol *
3898standard_lookup (const char *name, const struct block *block,
3899 domain_enum domain)
3900{
3901 struct symbol *sym;
4c4b4cd2 3902
2570f2b7 3903 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 3904 return sym;
2570f2b7
UW
3905 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
3906 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
3907 return sym;
3908}
3909
3910
3911/* Non-zero iff there is at least one non-function/non-enumeral symbol
3912 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
3913 since they contend in overloading in the same way. */
3914static int
3915is_nonfunction (struct ada_symbol_info syms[], int n)
3916{
3917 int i;
3918
3919 for (i = 0; i < n; i += 1)
3920 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
3921 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
3922 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
3923 return 1;
3924
3925 return 0;
3926}
3927
3928/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 3929 struct types. Otherwise, they may not. */
14f9c5c9
AS
3930
3931static int
d2e4a39e 3932equiv_types (struct type *type0, struct type *type1)
14f9c5c9 3933{
d2e4a39e 3934 if (type0 == type1)
14f9c5c9 3935 return 1;
d2e4a39e 3936 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
3937 || TYPE_CODE (type0) != TYPE_CODE (type1))
3938 return 0;
d2e4a39e 3939 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
3940 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
3941 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 3942 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 3943 return 1;
d2e4a39e 3944
14f9c5c9
AS
3945 return 0;
3946}
3947
3948/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 3949 no more defined than that of SYM1. */
14f9c5c9
AS
3950
3951static int
d2e4a39e 3952lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
3953{
3954 if (sym0 == sym1)
3955 return 1;
176620f1 3956 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
3957 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
3958 return 0;
3959
d2e4a39e 3960 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
3961 {
3962 case LOC_UNDEF:
3963 return 1;
3964 case LOC_TYPEDEF:
3965 {
4c4b4cd2
PH
3966 struct type *type0 = SYMBOL_TYPE (sym0);
3967 struct type *type1 = SYMBOL_TYPE (sym1);
3968 char *name0 = SYMBOL_LINKAGE_NAME (sym0);
3969 char *name1 = SYMBOL_LINKAGE_NAME (sym1);
3970 int len0 = strlen (name0);
3971 return
3972 TYPE_CODE (type0) == TYPE_CODE (type1)
3973 && (equiv_types (type0, type1)
3974 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
3975 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
3976 }
3977 case LOC_CONST:
3978 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 3979 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
3980 default:
3981 return 0;
14f9c5c9
AS
3982 }
3983}
3984
4c4b4cd2
PH
3985/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
3986 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
3987
3988static void
76a01679
JB
3989add_defn_to_vec (struct obstack *obstackp,
3990 struct symbol *sym,
2570f2b7 3991 struct block *block)
14f9c5c9
AS
3992{
3993 int i;
3994 size_t tmp;
4c4b4cd2 3995 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 3996
529cad9c
PH
3997 /* Do not try to complete stub types, as the debugger is probably
3998 already scanning all symbols matching a certain name at the
3999 time when this function is called. Trying to replace the stub
4000 type by its associated full type will cause us to restart a scan
4001 which may lead to an infinite recursion. Instead, the client
4002 collecting the matching symbols will end up collecting several
4003 matches, with at least one of them complete. It can then filter
4004 out the stub ones if needed. */
4005
4c4b4cd2
PH
4006 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4007 {
4008 if (lesseq_defined_than (sym, prevDefns[i].sym))
4009 return;
4010 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4011 {
4012 prevDefns[i].sym = sym;
4013 prevDefns[i].block = block;
4c4b4cd2 4014 return;
76a01679 4015 }
4c4b4cd2
PH
4016 }
4017
4018 {
4019 struct ada_symbol_info info;
4020
4021 info.sym = sym;
4022 info.block = block;
4c4b4cd2
PH
4023 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4024 }
4025}
4026
4027/* Number of ada_symbol_info structures currently collected in
4028 current vector in *OBSTACKP. */
4029
76a01679
JB
4030static int
4031num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4032{
4033 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4034}
4035
4036/* Vector of ada_symbol_info structures currently collected in current
4037 vector in *OBSTACKP. If FINISH, close off the vector and return
4038 its final address. */
4039
76a01679 4040static struct ada_symbol_info *
4c4b4cd2
PH
4041defns_collected (struct obstack *obstackp, int finish)
4042{
4043 if (finish)
4044 return obstack_finish (obstackp);
4045 else
4046 return (struct ada_symbol_info *) obstack_base (obstackp);
4047}
4048
96d887e8
PH
4049/* Look, in partial_symtab PST, for symbol NAME in given namespace.
4050 Check the global symbols if GLOBAL, the static symbols if not.
4051 Do wild-card match if WILD. */
4c4b4cd2 4052
96d887e8
PH
4053static struct partial_symbol *
4054ada_lookup_partial_symbol (struct partial_symtab *pst, const char *name,
4055 int global, domain_enum namespace, int wild)
4c4b4cd2 4056{
96d887e8
PH
4057 struct partial_symbol **start;
4058 int name_len = strlen (name);
4059 int length = (global ? pst->n_global_syms : pst->n_static_syms);
4060 int i;
4c4b4cd2 4061
96d887e8 4062 if (length == 0)
4c4b4cd2 4063 {
96d887e8 4064 return (NULL);
4c4b4cd2
PH
4065 }
4066
96d887e8
PH
4067 start = (global ?
4068 pst->objfile->global_psymbols.list + pst->globals_offset :
4069 pst->objfile->static_psymbols.list + pst->statics_offset);
4c4b4cd2 4070
96d887e8 4071 if (wild)
4c4b4cd2 4072 {
96d887e8
PH
4073 for (i = 0; i < length; i += 1)
4074 {
4075 struct partial_symbol *psym = start[i];
4c4b4cd2 4076
5eeb2539
AR
4077 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4078 SYMBOL_DOMAIN (psym), namespace)
1265e4aa 4079 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (psym)))
96d887e8
PH
4080 return psym;
4081 }
4082 return NULL;
4c4b4cd2 4083 }
96d887e8
PH
4084 else
4085 {
4086 if (global)
4087 {
4088 int U;
4089 i = 0;
4090 U = length - 1;
4091 while (U - i > 4)
4092 {
4093 int M = (U + i) >> 1;
4094 struct partial_symbol *psym = start[M];
4095 if (SYMBOL_LINKAGE_NAME (psym)[0] < name[0])
4096 i = M + 1;
4097 else if (SYMBOL_LINKAGE_NAME (psym)[0] > name[0])
4098 U = M - 1;
4099 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), name) < 0)
4100 i = M + 1;
4101 else
4102 U = M;
4103 }
4104 }
4105 else
4106 i = 0;
4c4b4cd2 4107
96d887e8
PH
4108 while (i < length)
4109 {
4110 struct partial_symbol *psym = start[i];
4c4b4cd2 4111
5eeb2539
AR
4112 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4113 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4114 {
4115 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym), name_len);
4c4b4cd2 4116
96d887e8
PH
4117 if (cmp < 0)
4118 {
4119 if (global)
4120 break;
4121 }
4122 else if (cmp == 0
4123 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4124 + name_len))
96d887e8
PH
4125 return psym;
4126 }
4127 i += 1;
4128 }
4c4b4cd2 4129
96d887e8
PH
4130 if (global)
4131 {
4132 int U;
4133 i = 0;
4134 U = length - 1;
4135 while (U - i > 4)
4136 {
4137 int M = (U + i) >> 1;
4138 struct partial_symbol *psym = start[M];
4139 if (SYMBOL_LINKAGE_NAME (psym)[0] < '_')
4140 i = M + 1;
4141 else if (SYMBOL_LINKAGE_NAME (psym)[0] > '_')
4142 U = M - 1;
4143 else if (strcmp (SYMBOL_LINKAGE_NAME (psym), "_ada_") < 0)
4144 i = M + 1;
4145 else
4146 U = M;
4147 }
4148 }
4149 else
4150 i = 0;
4c4b4cd2 4151
96d887e8
PH
4152 while (i < length)
4153 {
4154 struct partial_symbol *psym = start[i];
4c4b4cd2 4155
5eeb2539
AR
4156 if (symbol_matches_domain (SYMBOL_LANGUAGE (psym),
4157 SYMBOL_DOMAIN (psym), namespace))
96d887e8
PH
4158 {
4159 int cmp;
4c4b4cd2 4160
96d887e8
PH
4161 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (psym)[0];
4162 if (cmp == 0)
4163 {
4164 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (psym), 5);
4165 if (cmp == 0)
4166 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (psym) + 5,
76a01679 4167 name_len);
96d887e8 4168 }
4c4b4cd2 4169
96d887e8
PH
4170 if (cmp < 0)
4171 {
4172 if (global)
4173 break;
4174 }
4175 else if (cmp == 0
4176 && is_name_suffix (SYMBOL_LINKAGE_NAME (psym)
76a01679 4177 + name_len + 5))
96d887e8
PH
4178 return psym;
4179 }
4180 i += 1;
4181 }
4182 }
4183 return NULL;
4c4b4cd2
PH
4184}
4185
96d887e8
PH
4186/* Return a minimal symbol matching NAME according to Ada decoding
4187 rules. Returns NULL if there is no such minimal symbol. Names
4188 prefixed with "standard__" are handled specially: "standard__" is
4189 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4190
96d887e8
PH
4191struct minimal_symbol *
4192ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4193{
4c4b4cd2 4194 struct objfile *objfile;
96d887e8
PH
4195 struct minimal_symbol *msymbol;
4196 int wild_match;
4c4b4cd2 4197
96d887e8 4198 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4c4b4cd2 4199 {
96d887e8 4200 name += sizeof ("standard__") - 1;
4c4b4cd2 4201 wild_match = 0;
4c4b4cd2
PH
4202 }
4203 else
96d887e8 4204 wild_match = (strstr (name, "__") == NULL);
4c4b4cd2 4205
96d887e8
PH
4206 ALL_MSYMBOLS (objfile, msymbol)
4207 {
4208 if (ada_match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4209 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4210 return msymbol;
4211 }
4c4b4cd2 4212
96d887e8
PH
4213 return NULL;
4214}
4c4b4cd2 4215
96d887e8
PH
4216/* For all subprograms that statically enclose the subprogram of the
4217 selected frame, add symbols matching identifier NAME in DOMAIN
4218 and their blocks to the list of data in OBSTACKP, as for
4219 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4220 wildcard prefix. */
4c4b4cd2 4221
96d887e8
PH
4222static void
4223add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4224 const char *name, domain_enum namespace,
96d887e8
PH
4225 int wild_match)
4226{
96d887e8 4227}
14f9c5c9 4228
96d887e8
PH
4229/* True if TYPE is definitely an artificial type supplied to a symbol
4230 for which no debugging information was given in the symbol file. */
14f9c5c9 4231
96d887e8
PH
4232static int
4233is_nondebugging_type (struct type *type)
4234{
4235 char *name = ada_type_name (type);
4236 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4237}
4c4b4cd2 4238
96d887e8
PH
4239/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4240 duplicate other symbols in the list (The only case I know of where
4241 this happens is when object files containing stabs-in-ecoff are
4242 linked with files containing ordinary ecoff debugging symbols (or no
4243 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4244 Returns the number of items in the modified list. */
4c4b4cd2 4245
96d887e8
PH
4246static int
4247remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4248{
4249 int i, j;
4c4b4cd2 4250
96d887e8
PH
4251 i = 0;
4252 while (i < nsyms)
4253 {
339c13b6
JB
4254 int remove = 0;
4255
4256 /* If two symbols have the same name and one of them is a stub type,
4257 the get rid of the stub. */
4258
4259 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4260 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4261 {
4262 for (j = 0; j < nsyms; j++)
4263 {
4264 if (j != i
4265 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4266 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4267 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4268 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4269 remove = 1;
4270 }
4271 }
4272
4273 /* Two symbols with the same name, same class and same address
4274 should be identical. */
4275
4276 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4277 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4278 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4279 {
4280 for (j = 0; j < nsyms; j += 1)
4281 {
4282 if (i != j
4283 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4284 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4285 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4286 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4287 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4288 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
339c13b6 4289 remove = 1;
4c4b4cd2 4290 }
4c4b4cd2 4291 }
339c13b6
JB
4292
4293 if (remove)
4294 {
4295 for (j = i + 1; j < nsyms; j += 1)
4296 syms[j - 1] = syms[j];
4297 nsyms -= 1;
4298 }
4299
96d887e8 4300 i += 1;
14f9c5c9 4301 }
96d887e8 4302 return nsyms;
14f9c5c9
AS
4303}
4304
96d887e8
PH
4305/* Given a type that corresponds to a renaming entity, use the type name
4306 to extract the scope (package name or function name, fully qualified,
4307 and following the GNAT encoding convention) where this renaming has been
4308 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4309
96d887e8
PH
4310static char *
4311xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4312{
96d887e8
PH
4313 /* The renaming types adhere to the following convention:
4314 <scope>__<rename>___<XR extension>.
4315 So, to extract the scope, we search for the "___XR" extension,
4316 and then backtrack until we find the first "__". */
76a01679 4317
96d887e8
PH
4318 const char *name = type_name_no_tag (renaming_type);
4319 char *suffix = strstr (name, "___XR");
4320 char *last;
4321 int scope_len;
4322 char *scope;
14f9c5c9 4323
96d887e8
PH
4324 /* Now, backtrack a bit until we find the first "__". Start looking
4325 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4326
96d887e8
PH
4327 for (last = suffix - 3; last > name; last--)
4328 if (last[0] == '_' && last[1] == '_')
4329 break;
76a01679 4330
96d887e8 4331 /* Make a copy of scope and return it. */
14f9c5c9 4332
96d887e8
PH
4333 scope_len = last - name;
4334 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4335
96d887e8
PH
4336 strncpy (scope, name, scope_len);
4337 scope[scope_len] = '\0';
4c4b4cd2 4338
96d887e8 4339 return scope;
4c4b4cd2
PH
4340}
4341
96d887e8 4342/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4343
96d887e8
PH
4344static int
4345is_package_name (const char *name)
4c4b4cd2 4346{
96d887e8
PH
4347 /* Here, We take advantage of the fact that no symbols are generated
4348 for packages, while symbols are generated for each function.
4349 So the condition for NAME represent a package becomes equivalent
4350 to NAME not existing in our list of symbols. There is only one
4351 small complication with library-level functions (see below). */
4c4b4cd2 4352
96d887e8 4353 char *fun_name;
76a01679 4354
96d887e8
PH
4355 /* If it is a function that has not been defined at library level,
4356 then we should be able to look it up in the symbols. */
4357 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4358 return 0;
14f9c5c9 4359
96d887e8
PH
4360 /* Library-level function names start with "_ada_". See if function
4361 "_ada_" followed by NAME can be found. */
14f9c5c9 4362
96d887e8 4363 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4364 functions names cannot contain "__" in them. */
96d887e8
PH
4365 if (strstr (name, "__") != NULL)
4366 return 0;
4c4b4cd2 4367
b435e160 4368 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4369
96d887e8
PH
4370 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4371}
14f9c5c9 4372
96d887e8 4373/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4374 not visible from FUNCTION_NAME. */
14f9c5c9 4375
96d887e8 4376static int
aeb5907d 4377old_renaming_is_invisible (const struct symbol *sym, char *function_name)
96d887e8 4378{
aeb5907d
JB
4379 char *scope;
4380
4381 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4382 return 0;
4383
4384 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4385
96d887e8 4386 make_cleanup (xfree, scope);
14f9c5c9 4387
96d887e8
PH
4388 /* If the rename has been defined in a package, then it is visible. */
4389 if (is_package_name (scope))
aeb5907d 4390 return 0;
14f9c5c9 4391
96d887e8
PH
4392 /* Check that the rename is in the current function scope by checking
4393 that its name starts with SCOPE. */
76a01679 4394
96d887e8
PH
4395 /* If the function name starts with "_ada_", it means that it is
4396 a library-level function. Strip this prefix before doing the
4397 comparison, as the encoding for the renaming does not contain
4398 this prefix. */
4399 if (strncmp (function_name, "_ada_", 5) == 0)
4400 function_name += 5;
f26caa11 4401
aeb5907d 4402 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4403}
4404
aeb5907d
JB
4405/* Remove entries from SYMS that corresponds to a renaming entity that
4406 is not visible from the function associated with CURRENT_BLOCK or
4407 that is superfluous due to the presence of more specific renaming
4408 information. Places surviving symbols in the initial entries of
4409 SYMS and returns the number of surviving symbols.
96d887e8
PH
4410
4411 Rationale:
aeb5907d
JB
4412 First, in cases where an object renaming is implemented as a
4413 reference variable, GNAT may produce both the actual reference
4414 variable and the renaming encoding. In this case, we discard the
4415 latter.
4416
4417 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4418 entity. Unfortunately, STABS currently does not support the definition
4419 of types that are local to a given lexical block, so all renamings types
4420 are emitted at library level. As a consequence, if an application
4421 contains two renaming entities using the same name, and a user tries to
4422 print the value of one of these entities, the result of the ada symbol
4423 lookup will also contain the wrong renaming type.
f26caa11 4424
96d887e8
PH
4425 This function partially covers for this limitation by attempting to
4426 remove from the SYMS list renaming symbols that should be visible
4427 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4428 method with the current information available. The implementation
4429 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4430
4431 - When the user tries to print a rename in a function while there
4432 is another rename entity defined in a package: Normally, the
4433 rename in the function has precedence over the rename in the
4434 package, so the latter should be removed from the list. This is
4435 currently not the case.
4436
4437 - This function will incorrectly remove valid renames if
4438 the CURRENT_BLOCK corresponds to a function which symbol name
4439 has been changed by an "Export" pragma. As a consequence,
4440 the user will be unable to print such rename entities. */
4c4b4cd2 4441
14f9c5c9 4442static int
aeb5907d
JB
4443remove_irrelevant_renamings (struct ada_symbol_info *syms,
4444 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4445{
4446 struct symbol *current_function;
4447 char *current_function_name;
4448 int i;
aeb5907d
JB
4449 int is_new_style_renaming;
4450
4451 /* If there is both a renaming foo___XR... encoded as a variable and
4452 a simple variable foo in the same block, discard the latter.
4453 First, zero out such symbols, then compress. */
4454 is_new_style_renaming = 0;
4455 for (i = 0; i < nsyms; i += 1)
4456 {
4457 struct symbol *sym = syms[i].sym;
4458 struct block *block = syms[i].block;
4459 const char *name;
4460 const char *suffix;
4461
4462 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4463 continue;
4464 name = SYMBOL_LINKAGE_NAME (sym);
4465 suffix = strstr (name, "___XR");
4466
4467 if (suffix != NULL)
4468 {
4469 int name_len = suffix - name;
4470 int j;
4471 is_new_style_renaming = 1;
4472 for (j = 0; j < nsyms; j += 1)
4473 if (i != j && syms[j].sym != NULL
4474 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4475 name_len) == 0
4476 && block == syms[j].block)
4477 syms[j].sym = NULL;
4478 }
4479 }
4480 if (is_new_style_renaming)
4481 {
4482 int j, k;
4483
4484 for (j = k = 0; j < nsyms; j += 1)
4485 if (syms[j].sym != NULL)
4486 {
4487 syms[k] = syms[j];
4488 k += 1;
4489 }
4490 return k;
4491 }
4c4b4cd2
PH
4492
4493 /* Extract the function name associated to CURRENT_BLOCK.
4494 Abort if unable to do so. */
76a01679 4495
4c4b4cd2
PH
4496 if (current_block == NULL)
4497 return nsyms;
76a01679 4498
7f0df278 4499 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4500 if (current_function == NULL)
4501 return nsyms;
4502
4503 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4504 if (current_function_name == NULL)
4505 return nsyms;
4506
4507 /* Check each of the symbols, and remove it from the list if it is
4508 a type corresponding to a renaming that is out of the scope of
4509 the current block. */
4510
4511 i = 0;
4512 while (i < nsyms)
4513 {
aeb5907d
JB
4514 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4515 == ADA_OBJECT_RENAMING
4516 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4517 {
4518 int j;
aeb5907d 4519 for (j = i + 1; j < nsyms; j += 1)
76a01679 4520 syms[j - 1] = syms[j];
4c4b4cd2
PH
4521 nsyms -= 1;
4522 }
4523 else
4524 i += 1;
4525 }
4526
4527 return nsyms;
4528}
4529
339c13b6
JB
4530/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4531 whose name and domain match NAME and DOMAIN respectively.
4532 If no match was found, then extend the search to "enclosing"
4533 routines (in other words, if we're inside a nested function,
4534 search the symbols defined inside the enclosing functions).
4535
4536 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4537
4538static void
4539ada_add_local_symbols (struct obstack *obstackp, const char *name,
4540 struct block *block, domain_enum domain,
4541 int wild_match)
4542{
4543 int block_depth = 0;
4544
4545 while (block != NULL)
4546 {
4547 block_depth += 1;
4548 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4549
4550 /* If we found a non-function match, assume that's the one. */
4551 if (is_nonfunction (defns_collected (obstackp, 0),
4552 num_defns_collected (obstackp)))
4553 return;
4554
4555 block = BLOCK_SUPERBLOCK (block);
4556 }
4557
4558 /* If no luck so far, try to find NAME as a local symbol in some lexically
4559 enclosing subprogram. */
4560 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4561 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4562}
4563
4564/* Add to OBSTACKP all non-local symbols whose name and domain match
4565 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4566 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4567
4568static void
4569ada_add_non_local_symbols (struct obstack *obstackp, const char *name,
4570 domain_enum domain, int global,
4571 int wild_match)
4572{
4573 struct objfile *objfile;
4574 struct partial_symtab *ps;
4575
4576 ALL_PSYMTABS (objfile, ps)
4577 {
4578 QUIT;
4579 if (ps->readin
4580 || ada_lookup_partial_symbol (ps, name, global, domain, wild_match))
4581 {
4582 struct symtab *s = PSYMTAB_TO_SYMTAB (ps);
4583 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
4584
4585 if (s == NULL || !s->primary)
4586 continue;
4587 ada_add_block_symbols (obstackp,
4588 BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), block_kind),
4589 name, domain, objfile, wild_match);
4590 }
4591 }
4592}
4593
4c4b4cd2
PH
4594/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4595 scope and in global scopes, returning the number of matches. Sets
6c9353d3 4596 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2
PH
4597 indicating the symbols found and the blocks and symbol tables (if
4598 any) in which they were found. This vector are transient---good only to
4599 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4600 symbol match within the nest of blocks whose innermost member is BLOCK0,
4601 is the one match returned (no other matches in that or
4602 enclosing blocks is returned). If there are any matches in or
4603 surrounding BLOCK0, then these alone are returned. Otherwise, the
4604 search extends to global and file-scope (static) symbol tables.
4605 Names prefixed with "standard__" are handled specially: "standard__"
4606 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
4607
4608int
4c4b4cd2 4609ada_lookup_symbol_list (const char *name0, const struct block *block0,
76a01679
JB
4610 domain_enum namespace,
4611 struct ada_symbol_info **results)
14f9c5c9
AS
4612{
4613 struct symbol *sym;
14f9c5c9 4614 struct block *block;
4c4b4cd2 4615 const char *name;
4c4b4cd2 4616 int wild_match;
14f9c5c9 4617 int cacheIfUnique;
4c4b4cd2 4618 int ndefns;
14f9c5c9 4619
4c4b4cd2
PH
4620 obstack_free (&symbol_list_obstack, NULL);
4621 obstack_init (&symbol_list_obstack);
14f9c5c9 4622
14f9c5c9
AS
4623 cacheIfUnique = 0;
4624
4625 /* Search specified block and its superiors. */
4626
4c4b4cd2
PH
4627 wild_match = (strstr (name0, "__") == NULL);
4628 name = name0;
76a01679
JB
4629 block = (struct block *) block0; /* FIXME: No cast ought to be
4630 needed, but adding const will
4631 have a cascade effect. */
339c13b6
JB
4632
4633 /* Special case: If the user specifies a symbol name inside package
4634 Standard, do a non-wild matching of the symbol name without
4635 the "standard__" prefix. This was primarily introduced in order
4636 to allow the user to specifically access the standard exceptions
4637 using, for instance, Standard.Constraint_Error when Constraint_Error
4638 is ambiguous (due to the user defining its own Constraint_Error
4639 entity inside its program). */
4c4b4cd2
PH
4640 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
4641 {
4642 wild_match = 0;
4643 block = NULL;
4644 name = name0 + sizeof ("standard__") - 1;
4645 }
4646
339c13b6 4647 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 4648
339c13b6
JB
4649 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
4650 wild_match);
4c4b4cd2 4651 if (num_defns_collected (&symbol_list_obstack) > 0)
14f9c5c9 4652 goto done;
d2e4a39e 4653
339c13b6
JB
4654 /* No non-global symbols found. Check our cache to see if we have
4655 already performed this search before. If we have, then return
4656 the same result. */
4657
14f9c5c9 4658 cacheIfUnique = 1;
2570f2b7 4659 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
4660 {
4661 if (sym != NULL)
2570f2b7 4662 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
4663 goto done;
4664 }
14f9c5c9 4665
339c13b6
JB
4666 /* Search symbols from all global blocks. */
4667
4668 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 1,
4669 wild_match);
d2e4a39e 4670
4c4b4cd2 4671 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 4672 (not strictly correct, but perhaps better than an error). */
d2e4a39e 4673
4c4b4cd2 4674 if (num_defns_collected (&symbol_list_obstack) == 0)
339c13b6
JB
4675 ada_add_non_local_symbols (&symbol_list_obstack, name, namespace, 0,
4676 wild_match);
14f9c5c9 4677
4c4b4cd2
PH
4678done:
4679 ndefns = num_defns_collected (&symbol_list_obstack);
4680 *results = defns_collected (&symbol_list_obstack, 1);
4681
4682 ndefns = remove_extra_symbols (*results, ndefns);
4683
d2e4a39e 4684 if (ndefns == 0)
2570f2b7 4685 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 4686
4c4b4cd2 4687 if (ndefns == 1 && cacheIfUnique)
2570f2b7 4688 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 4689
aeb5907d 4690 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 4691
14f9c5c9
AS
4692 return ndefns;
4693}
4694
d2e4a39e 4695struct symbol *
aeb5907d 4696ada_lookup_encoded_symbol (const char *name, const struct block *block0,
21b556f4 4697 domain_enum namespace, struct block **block_found)
14f9c5c9 4698{
4c4b4cd2 4699 struct ada_symbol_info *candidates;
14f9c5c9
AS
4700 int n_candidates;
4701
aeb5907d 4702 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates);
14f9c5c9
AS
4703
4704 if (n_candidates == 0)
4705 return NULL;
4c4b4cd2 4706
aeb5907d
JB
4707 if (block_found != NULL)
4708 *block_found = candidates[0].block;
4c4b4cd2 4709
21b556f4 4710 return fixup_symbol_section (candidates[0].sym, NULL);
aeb5907d
JB
4711}
4712
4713/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
4714 scope and in global scopes, or NULL if none. NAME is folded and
4715 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
4716 choosing the first symbol if there are multiple choices.
4717 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
4718 table in which the symbol was found (in both cases, these
4719 assignments occur only if the pointers are non-null). */
4720struct symbol *
4721ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 4722 domain_enum namespace, int *is_a_field_of_this)
aeb5907d
JB
4723{
4724 if (is_a_field_of_this != NULL)
4725 *is_a_field_of_this = 0;
4726
4727 return
4728 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
21b556f4 4729 block0, namespace, NULL);
4c4b4cd2 4730}
14f9c5c9 4731
4c4b4cd2
PH
4732static struct symbol *
4733ada_lookup_symbol_nonlocal (const char *name,
76a01679
JB
4734 const char *linkage_name,
4735 const struct block *block,
21b556f4 4736 const domain_enum domain)
4c4b4cd2
PH
4737{
4738 if (linkage_name == NULL)
4739 linkage_name = name;
76a01679 4740 return ada_lookup_symbol (linkage_name, block_static_block (block), domain,
21b556f4 4741 NULL);
14f9c5c9
AS
4742}
4743
4744
4c4b4cd2
PH
4745/* True iff STR is a possible encoded suffix of a normal Ada name
4746 that is to be ignored for matching purposes. Suffixes of parallel
4747 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 4748 are given by any of the regular expressions:
4c4b4cd2 4749
babe1480
JB
4750 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
4751 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
4752 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 4753 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
4754
4755 Also, any leading "__[0-9]+" sequence is skipped before the suffix
4756 match is performed. This sequence is used to differentiate homonyms,
4757 is an optional part of a valid name suffix. */
4c4b4cd2 4758
14f9c5c9 4759static int
d2e4a39e 4760is_name_suffix (const char *str)
14f9c5c9
AS
4761{
4762 int k;
4c4b4cd2
PH
4763 const char *matching;
4764 const int len = strlen (str);
4765
babe1480
JB
4766 /* Skip optional leading __[0-9]+. */
4767
4c4b4cd2
PH
4768 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
4769 {
babe1480
JB
4770 str += 3;
4771 while (isdigit (str[0]))
4772 str += 1;
4c4b4cd2 4773 }
babe1480
JB
4774
4775 /* [.$][0-9]+ */
4c4b4cd2 4776
babe1480 4777 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 4778 {
babe1480 4779 matching = str + 1;
4c4b4cd2
PH
4780 while (isdigit (matching[0]))
4781 matching += 1;
4782 if (matching[0] == '\0')
4783 return 1;
4784 }
4785
4786 /* ___[0-9]+ */
babe1480 4787
4c4b4cd2
PH
4788 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
4789 {
4790 matching = str + 3;
4791 while (isdigit (matching[0]))
4792 matching += 1;
4793 if (matching[0] == '\0')
4794 return 1;
4795 }
4796
529cad9c
PH
4797#if 0
4798 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
4799 with a N at the end. Unfortunately, the compiler uses the same
4800 convention for other internal types it creates. So treating
4801 all entity names that end with an "N" as a name suffix causes
4802 some regressions. For instance, consider the case of an enumerated
4803 type. To support the 'Image attribute, it creates an array whose
4804 name ends with N.
4805 Having a single character like this as a suffix carrying some
4806 information is a bit risky. Perhaps we should change the encoding
4807 to be something like "_N" instead. In the meantime, do not do
4808 the following check. */
4809 /* Protected Object Subprograms */
4810 if (len == 1 && str [0] == 'N')
4811 return 1;
4812#endif
4813
4814 /* _E[0-9]+[bs]$ */
4815 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
4816 {
4817 matching = str + 3;
4818 while (isdigit (matching[0]))
4819 matching += 1;
4820 if ((matching[0] == 'b' || matching[0] == 's')
4821 && matching [1] == '\0')
4822 return 1;
4823 }
4824
4c4b4cd2
PH
4825 /* ??? We should not modify STR directly, as we are doing below. This
4826 is fine in this case, but may become problematic later if we find
4827 that this alternative did not work, and want to try matching
4828 another one from the begining of STR. Since we modified it, we
4829 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
4830 if (str[0] == 'X')
4831 {
4832 str += 1;
d2e4a39e 4833 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
4834 {
4835 if (str[0] != 'n' && str[0] != 'b')
4836 return 0;
4837 str += 1;
4838 }
14f9c5c9 4839 }
babe1480 4840
14f9c5c9
AS
4841 if (str[0] == '\000')
4842 return 1;
babe1480 4843
d2e4a39e 4844 if (str[0] == '_')
14f9c5c9
AS
4845 {
4846 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 4847 return 0;
d2e4a39e 4848 if (str[2] == '_')
4c4b4cd2 4849 {
61ee279c
PH
4850 if (strcmp (str + 3, "JM") == 0)
4851 return 1;
4852 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
4853 the LJM suffix in favor of the JM one. But we will
4854 still accept LJM as a valid suffix for a reasonable
4855 amount of time, just to allow ourselves to debug programs
4856 compiled using an older version of GNAT. */
4c4b4cd2
PH
4857 if (strcmp (str + 3, "LJM") == 0)
4858 return 1;
4859 if (str[3] != 'X')
4860 return 0;
1265e4aa
JB
4861 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
4862 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
4863 return 1;
4864 if (str[4] == 'R' && str[5] != 'T')
4865 return 1;
4866 return 0;
4867 }
4868 if (!isdigit (str[2]))
4869 return 0;
4870 for (k = 3; str[k] != '\0'; k += 1)
4871 if (!isdigit (str[k]) && str[k] != '_')
4872 return 0;
14f9c5c9
AS
4873 return 1;
4874 }
4c4b4cd2 4875 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 4876 {
4c4b4cd2
PH
4877 for (k = 2; str[k] != '\0'; k += 1)
4878 if (!isdigit (str[k]) && str[k] != '_')
4879 return 0;
14f9c5c9
AS
4880 return 1;
4881 }
4882 return 0;
4883}
d2e4a39e 4884
aeb5907d
JB
4885/* Return non-zero if the string starting at NAME and ending before
4886 NAME_END contains no capital letters. */
529cad9c
PH
4887
4888static int
4889is_valid_name_for_wild_match (const char *name0)
4890{
4891 const char *decoded_name = ada_decode (name0);
4892 int i;
4893
5823c3ef
JB
4894 /* If the decoded name starts with an angle bracket, it means that
4895 NAME0 does not follow the GNAT encoding format. It should then
4896 not be allowed as a possible wild match. */
4897 if (decoded_name[0] == '<')
4898 return 0;
4899
529cad9c
PH
4900 for (i=0; decoded_name[i] != '\0'; i++)
4901 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
4902 return 0;
4903
4904 return 1;
4905}
4906
4c4b4cd2
PH
4907/* True if NAME represents a name of the form A1.A2....An, n>=1 and
4908 PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores
4909 informational suffixes of NAME (i.e., for which is_name_suffix is
4910 true). */
4911
14f9c5c9 4912static int
4c4b4cd2 4913wild_match (const char *patn0, int patn_len, const char *name0)
14f9c5c9 4914{
5823c3ef
JB
4915 char* match;
4916 const char* start;
4917 start = name0;
4918 while (1)
14f9c5c9 4919 {
5823c3ef
JB
4920 match = strstr (start, patn0);
4921 if (match == NULL)
4922 return 0;
4923 if ((match == name0
4924 || match[-1] == '.'
4925 || (match > name0 + 1 && match[-1] == '_' && match[-2] == '_')
4926 || (match == name0 + 5 && strncmp ("_ada_", name0, 5) == 0))
4927 && is_name_suffix (match + patn_len))
4928 return (match == name0 || is_valid_name_for_wild_match (name0));
4929 start = match + 1;
96d887e8 4930 }
96d887e8
PH
4931}
4932
96d887e8
PH
4933/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
4934 vector *defn_symbols, updating the list of symbols in OBSTACKP
4935 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4936 OBJFILE is the section containing BLOCK.
4937 SYMTAB is recorded with each symbol added. */
4938
4939static void
4940ada_add_block_symbols (struct obstack *obstackp,
76a01679 4941 struct block *block, const char *name,
96d887e8 4942 domain_enum domain, struct objfile *objfile,
2570f2b7 4943 int wild)
96d887e8
PH
4944{
4945 struct dict_iterator iter;
4946 int name_len = strlen (name);
4947 /* A matching argument symbol, if any. */
4948 struct symbol *arg_sym;
4949 /* Set true when we find a matching non-argument symbol. */
4950 int found_sym;
4951 struct symbol *sym;
4952
4953 arg_sym = NULL;
4954 found_sym = 0;
4955 if (wild)
4956 {
4957 struct symbol *sym;
4958 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4959 {
5eeb2539
AR
4960 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4961 SYMBOL_DOMAIN (sym), domain)
1265e4aa 4962 && wild_match (name, name_len, SYMBOL_LINKAGE_NAME (sym)))
76a01679 4963 {
2a2d4dc3
AS
4964 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4965 continue;
4966 else if (SYMBOL_IS_ARGUMENT (sym))
4967 arg_sym = sym;
4968 else
4969 {
76a01679
JB
4970 found_sym = 1;
4971 add_defn_to_vec (obstackp,
4972 fixup_symbol_section (sym, objfile),
2570f2b7 4973 block);
76a01679
JB
4974 }
4975 }
4976 }
96d887e8
PH
4977 }
4978 else
4979 {
4980 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 4981 {
5eeb2539
AR
4982 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
4983 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
4984 {
4985 int cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym), name_len);
4986 if (cmp == 0
4987 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len))
4988 {
2a2d4dc3
AS
4989 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
4990 {
4991 if (SYMBOL_IS_ARGUMENT (sym))
4992 arg_sym = sym;
4993 else
4994 {
4995 found_sym = 1;
4996 add_defn_to_vec (obstackp,
4997 fixup_symbol_section (sym, objfile),
4998 block);
4999 }
5000 }
76a01679
JB
5001 }
5002 }
5003 }
96d887e8
PH
5004 }
5005
5006 if (!found_sym && arg_sym != NULL)
5007 {
76a01679
JB
5008 add_defn_to_vec (obstackp,
5009 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5010 block);
96d887e8
PH
5011 }
5012
5013 if (!wild)
5014 {
5015 arg_sym = NULL;
5016 found_sym = 0;
5017
5018 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5019 {
5eeb2539
AR
5020 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5021 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5022 {
5023 int cmp;
5024
5025 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5026 if (cmp == 0)
5027 {
5028 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5029 if (cmp == 0)
5030 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5031 name_len);
5032 }
5033
5034 if (cmp == 0
5035 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5036 {
2a2d4dc3
AS
5037 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5038 {
5039 if (SYMBOL_IS_ARGUMENT (sym))
5040 arg_sym = sym;
5041 else
5042 {
5043 found_sym = 1;
5044 add_defn_to_vec (obstackp,
5045 fixup_symbol_section (sym, objfile),
5046 block);
5047 }
5048 }
76a01679
JB
5049 }
5050 }
76a01679 5051 }
96d887e8
PH
5052
5053 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5054 They aren't parameters, right? */
5055 if (!found_sym && arg_sym != NULL)
5056 {
5057 add_defn_to_vec (obstackp,
76a01679 5058 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5059 block);
96d887e8
PH
5060 }
5061 }
5062}
5063\f
41d27058
JB
5064
5065 /* Symbol Completion */
5066
5067/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5068 name in a form that's appropriate for the completion. The result
5069 does not need to be deallocated, but is only good until the next call.
5070
5071 TEXT_LEN is equal to the length of TEXT.
5072 Perform a wild match if WILD_MATCH is set.
5073 ENCODED should be set if TEXT represents the start of a symbol name
5074 in its encoded form. */
5075
5076static const char *
5077symbol_completion_match (const char *sym_name,
5078 const char *text, int text_len,
5079 int wild_match, int encoded)
5080{
5081 char *result;
5082 const int verbatim_match = (text[0] == '<');
5083 int match = 0;
5084
5085 if (verbatim_match)
5086 {
5087 /* Strip the leading angle bracket. */
5088 text = text + 1;
5089 text_len--;
5090 }
5091
5092 /* First, test against the fully qualified name of the symbol. */
5093
5094 if (strncmp (sym_name, text, text_len) == 0)
5095 match = 1;
5096
5097 if (match && !encoded)
5098 {
5099 /* One needed check before declaring a positive match is to verify
5100 that iff we are doing a verbatim match, the decoded version
5101 of the symbol name starts with '<'. Otherwise, this symbol name
5102 is not a suitable completion. */
5103 const char *sym_name_copy = sym_name;
5104 int has_angle_bracket;
5105
5106 sym_name = ada_decode (sym_name);
5107 has_angle_bracket = (sym_name[0] == '<');
5108 match = (has_angle_bracket == verbatim_match);
5109 sym_name = sym_name_copy;
5110 }
5111
5112 if (match && !verbatim_match)
5113 {
5114 /* When doing non-verbatim match, another check that needs to
5115 be done is to verify that the potentially matching symbol name
5116 does not include capital letters, because the ada-mode would
5117 not be able to understand these symbol names without the
5118 angle bracket notation. */
5119 const char *tmp;
5120
5121 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5122 if (*tmp != '\0')
5123 match = 0;
5124 }
5125
5126 /* Second: Try wild matching... */
5127
5128 if (!match && wild_match)
5129 {
5130 /* Since we are doing wild matching, this means that TEXT
5131 may represent an unqualified symbol name. We therefore must
5132 also compare TEXT against the unqualified name of the symbol. */
5133 sym_name = ada_unqualified_name (ada_decode (sym_name));
5134
5135 if (strncmp (sym_name, text, text_len) == 0)
5136 match = 1;
5137 }
5138
5139 /* Finally: If we found a mach, prepare the result to return. */
5140
5141 if (!match)
5142 return NULL;
5143
5144 if (verbatim_match)
5145 sym_name = add_angle_brackets (sym_name);
5146
5147 if (!encoded)
5148 sym_name = ada_decode (sym_name);
5149
5150 return sym_name;
5151}
5152
2ba95b9b
JB
5153typedef char *char_ptr;
5154DEF_VEC_P (char_ptr);
5155
41d27058
JB
5156/* A companion function to ada_make_symbol_completion_list().
5157 Check if SYM_NAME represents a symbol which name would be suitable
5158 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5159 it is appended at the end of the given string vector SV.
5160
5161 ORIG_TEXT is the string original string from the user command
5162 that needs to be completed. WORD is the entire command on which
5163 completion should be performed. These two parameters are used to
5164 determine which part of the symbol name should be added to the
5165 completion vector.
5166 if WILD_MATCH is set, then wild matching is performed.
5167 ENCODED should be set if TEXT represents a symbol name in its
5168 encoded formed (in which case the completion should also be
5169 encoded). */
5170
5171static void
d6565258 5172symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5173 const char *sym_name,
5174 const char *text, int text_len,
5175 const char *orig_text, const char *word,
5176 int wild_match, int encoded)
5177{
5178 const char *match = symbol_completion_match (sym_name, text, text_len,
5179 wild_match, encoded);
5180 char *completion;
5181
5182 if (match == NULL)
5183 return;
5184
5185 /* We found a match, so add the appropriate completion to the given
5186 string vector. */
5187
5188 if (word == orig_text)
5189 {
5190 completion = xmalloc (strlen (match) + 5);
5191 strcpy (completion, match);
5192 }
5193 else if (word > orig_text)
5194 {
5195 /* Return some portion of sym_name. */
5196 completion = xmalloc (strlen (match) + 5);
5197 strcpy (completion, match + (word - orig_text));
5198 }
5199 else
5200 {
5201 /* Return some of ORIG_TEXT plus sym_name. */
5202 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5203 strncpy (completion, word, orig_text - word);
5204 completion[orig_text - word] = '\0';
5205 strcat (completion, match);
5206 }
5207
d6565258 5208 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5209}
5210
5211/* Return a list of possible symbol names completing TEXT0. The list
5212 is NULL terminated. WORD is the entire command on which completion
5213 is made. */
5214
5215static char **
5216ada_make_symbol_completion_list (char *text0, char *word)
5217{
5218 char *text;
5219 int text_len;
5220 int wild_match;
5221 int encoded;
2ba95b9b 5222 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5223 struct symbol *sym;
5224 struct symtab *s;
5225 struct partial_symtab *ps;
5226 struct minimal_symbol *msymbol;
5227 struct objfile *objfile;
5228 struct block *b, *surrounding_static_block = 0;
5229 int i;
5230 struct dict_iterator iter;
5231
5232 if (text0[0] == '<')
5233 {
5234 text = xstrdup (text0);
5235 make_cleanup (xfree, text);
5236 text_len = strlen (text);
5237 wild_match = 0;
5238 encoded = 1;
5239 }
5240 else
5241 {
5242 text = xstrdup (ada_encode (text0));
5243 make_cleanup (xfree, text);
5244 text_len = strlen (text);
5245 for (i = 0; i < text_len; i++)
5246 text[i] = tolower (text[i]);
5247
5248 encoded = (strstr (text0, "__") != NULL);
5249 /* If the name contains a ".", then the user is entering a fully
5250 qualified entity name, and the match must not be done in wild
5251 mode. Similarly, if the user wants to complete what looks like
5252 an encoded name, the match must not be done in wild mode. */
5253 wild_match = (strchr (text0, '.') == NULL && !encoded);
5254 }
5255
5256 /* First, look at the partial symtab symbols. */
5257 ALL_PSYMTABS (objfile, ps)
5258 {
5259 struct partial_symbol **psym;
5260
5261 /* If the psymtab's been read in we'll get it when we search
5262 through the blockvector. */
5263 if (ps->readin)
5264 continue;
5265
5266 for (psym = objfile->global_psymbols.list + ps->globals_offset;
5267 psym < (objfile->global_psymbols.list + ps->globals_offset
5268 + ps->n_global_syms); psym++)
5269 {
5270 QUIT;
d6565258 5271 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5272 text, text_len, text0, word,
5273 wild_match, encoded);
5274 }
5275
5276 for (psym = objfile->static_psymbols.list + ps->statics_offset;
5277 psym < (objfile->static_psymbols.list + ps->statics_offset
5278 + ps->n_static_syms); psym++)
5279 {
5280 QUIT;
d6565258 5281 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (*psym),
41d27058
JB
5282 text, text_len, text0, word,
5283 wild_match, encoded);
5284 }
5285 }
5286
5287 /* At this point scan through the misc symbol vectors and add each
5288 symbol you find to the list. Eventually we want to ignore
5289 anything that isn't a text symbol (everything else will be
5290 handled by the psymtab code above). */
5291
5292 ALL_MSYMBOLS (objfile, msymbol)
5293 {
5294 QUIT;
d6565258 5295 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
41d27058
JB
5296 text, text_len, text0, word, wild_match, encoded);
5297 }
5298
5299 /* Search upwards from currently selected frame (so that we can
5300 complete on local vars. */
5301
5302 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5303 {
5304 if (!BLOCK_SUPERBLOCK (b))
5305 surrounding_static_block = b; /* For elmin of dups */
5306
5307 ALL_BLOCK_SYMBOLS (b, iter, sym)
5308 {
d6565258 5309 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5310 text, text_len, text0, word,
5311 wild_match, encoded);
5312 }
5313 }
5314
5315 /* Go through the symtabs and check the externs and statics for
5316 symbols which match. */
5317
5318 ALL_SYMTABS (objfile, s)
5319 {
5320 QUIT;
5321 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5322 ALL_BLOCK_SYMBOLS (b, iter, sym)
5323 {
d6565258 5324 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5325 text, text_len, text0, word,
5326 wild_match, encoded);
5327 }
5328 }
5329
5330 ALL_SYMTABS (objfile, s)
5331 {
5332 QUIT;
5333 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5334 /* Don't do this block twice. */
5335 if (b == surrounding_static_block)
5336 continue;
5337 ALL_BLOCK_SYMBOLS (b, iter, sym)
5338 {
d6565258 5339 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058
JB
5340 text, text_len, text0, word,
5341 wild_match, encoded);
5342 }
5343 }
5344
5345 /* Append the closing NULL entry. */
2ba95b9b 5346 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5347
2ba95b9b
JB
5348 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5349 return the copy. It's unfortunate that we have to make a copy
5350 of an array that we're about to destroy, but there is nothing much
5351 we can do about it. Fortunately, it's typically not a very large
5352 array. */
5353 {
5354 const size_t completions_size =
5355 VEC_length (char_ptr, completions) * sizeof (char *);
5356 char **result = malloc (completions_size);
5357
5358 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5359
5360 VEC_free (char_ptr, completions);
5361 return result;
5362 }
41d27058
JB
5363}
5364
963a6417 5365 /* Field Access */
96d887e8 5366
73fb9985
JB
5367/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5368 for tagged types. */
5369
5370static int
5371ada_is_dispatch_table_ptr_type (struct type *type)
5372{
5373 char *name;
5374
5375 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5376 return 0;
5377
5378 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5379 if (name == NULL)
5380 return 0;
5381
5382 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5383}
5384
963a6417
PH
5385/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5386 to be invisible to users. */
96d887e8 5387
963a6417
PH
5388int
5389ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5390{
963a6417
PH
5391 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5392 return 1;
73fb9985
JB
5393
5394 /* Check the name of that field. */
5395 {
5396 const char *name = TYPE_FIELD_NAME (type, field_num);
5397
5398 /* Anonymous field names should not be printed.
5399 brobecker/2007-02-20: I don't think this can actually happen
5400 but we don't want to print the value of annonymous fields anyway. */
5401 if (name == NULL)
5402 return 1;
5403
5404 /* A field named "_parent" is internally generated by GNAT for
5405 tagged types, and should not be printed either. */
5406 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5407 return 1;
5408 }
5409
5410 /* If this is the dispatch table of a tagged type, then ignore. */
5411 if (ada_is_tagged_type (type, 1)
5412 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5413 return 1;
5414
5415 /* Not a special field, so it should not be ignored. */
5416 return 0;
963a6417 5417}
96d887e8 5418
963a6417
PH
5419/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5420 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5421
963a6417
PH
5422int
5423ada_is_tagged_type (struct type *type, int refok)
5424{
5425 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5426}
96d887e8 5427
963a6417 5428/* True iff TYPE represents the type of X'Tag */
96d887e8 5429
963a6417
PH
5430int
5431ada_is_tag_type (struct type *type)
5432{
5433 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5434 return 0;
5435 else
96d887e8 5436 {
963a6417
PH
5437 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5438 return (name != NULL
5439 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 5440 }
96d887e8
PH
5441}
5442
963a6417 5443/* The type of the tag on VAL. */
76a01679 5444
963a6417
PH
5445struct type *
5446ada_tag_type (struct value *val)
96d887e8 5447{
df407dfe 5448 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 5449}
96d887e8 5450
963a6417 5451/* The value of the tag on VAL. */
96d887e8 5452
963a6417
PH
5453struct value *
5454ada_value_tag (struct value *val)
5455{
03ee6b2e 5456 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
5457}
5458
963a6417
PH
5459/* The value of the tag on the object of type TYPE whose contents are
5460 saved at VALADDR, if it is non-null, or is at memory address
5461 ADDRESS. */
96d887e8 5462
963a6417 5463static struct value *
10a2c479 5464value_tag_from_contents_and_address (struct type *type,
fc1a4b47 5465 const gdb_byte *valaddr,
963a6417 5466 CORE_ADDR address)
96d887e8 5467{
963a6417
PH
5468 int tag_byte_offset, dummy1, dummy2;
5469 struct type *tag_type;
5470 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 5471 NULL, NULL, NULL))
96d887e8 5472 {
fc1a4b47 5473 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
5474 ? NULL
5475 : valaddr + tag_byte_offset);
963a6417 5476 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 5477
963a6417 5478 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 5479 }
963a6417
PH
5480 return NULL;
5481}
96d887e8 5482
963a6417
PH
5483static struct type *
5484type_from_tag (struct value *tag)
5485{
5486 const char *type_name = ada_tag_name (tag);
5487 if (type_name != NULL)
5488 return ada_find_any_type (ada_encode (type_name));
5489 return NULL;
5490}
96d887e8 5491
963a6417
PH
5492struct tag_args
5493{
5494 struct value *tag;
5495 char *name;
5496};
4c4b4cd2 5497
529cad9c
PH
5498
5499static int ada_tag_name_1 (void *);
5500static int ada_tag_name_2 (struct tag_args *);
5501
4c4b4cd2
PH
5502/* Wrapper function used by ada_tag_name. Given a struct tag_args*
5503 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
5504 The value stored in ARGS->name is valid until the next call to
5505 ada_tag_name_1. */
5506
5507static int
5508ada_tag_name_1 (void *args0)
5509{
5510 struct tag_args *args = (struct tag_args *) args0;
5511 static char name[1024];
76a01679 5512 char *p;
4c4b4cd2
PH
5513 struct value *val;
5514 args->name = NULL;
03ee6b2e 5515 val = ada_value_struct_elt (args->tag, "tsd", 1);
529cad9c
PH
5516 if (val == NULL)
5517 return ada_tag_name_2 (args);
03ee6b2e 5518 val = ada_value_struct_elt (val, "expanded_name", 1);
529cad9c
PH
5519 if (val == NULL)
5520 return 0;
5521 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5522 for (p = name; *p != '\0'; p += 1)
5523 if (isalpha (*p))
5524 *p = tolower (*p);
5525 args->name = name;
5526 return 0;
5527}
5528
5529/* Utility function for ada_tag_name_1 that tries the second
5530 representation for the dispatch table (in which there is no
5531 explicit 'tsd' field in the referent of the tag pointer, and instead
5532 the tsd pointer is stored just before the dispatch table. */
5533
5534static int
5535ada_tag_name_2 (struct tag_args *args)
5536{
5537 struct type *info_type;
5538 static char name[1024];
5539 char *p;
5540 struct value *val, *valp;
5541
5542 args->name = NULL;
5543 info_type = ada_find_any_type ("ada__tags__type_specific_data");
5544 if (info_type == NULL)
5545 return 0;
5546 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
5547 valp = value_cast (info_type, args->tag);
5548 if (valp == NULL)
5549 return 0;
2497b498 5550 val = value_ind (value_ptradd (valp, -1));
4c4b4cd2
PH
5551 if (val == NULL)
5552 return 0;
03ee6b2e 5553 val = ada_value_struct_elt (val, "expanded_name", 1);
4c4b4cd2
PH
5554 if (val == NULL)
5555 return 0;
5556 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
5557 for (p = name; *p != '\0'; p += 1)
5558 if (isalpha (*p))
5559 *p = tolower (*p);
5560 args->name = name;
5561 return 0;
5562}
5563
5564/* The type name of the dynamic type denoted by the 'tag value TAG, as
5565 * a C string. */
5566
5567const char *
5568ada_tag_name (struct value *tag)
5569{
5570 struct tag_args args;
df407dfe 5571 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 5572 return NULL;
76a01679 5573 args.tag = tag;
4c4b4cd2
PH
5574 args.name = NULL;
5575 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
5576 return args.name;
5577}
5578
5579/* The parent type of TYPE, or NULL if none. */
14f9c5c9 5580
d2e4a39e 5581struct type *
ebf56fd3 5582ada_parent_type (struct type *type)
14f9c5c9
AS
5583{
5584 int i;
5585
61ee279c 5586 type = ada_check_typedef (type);
14f9c5c9
AS
5587
5588 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
5589 return NULL;
5590
5591 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
5592 if (ada_is_parent_field (type, i))
0c1f74cf
JB
5593 {
5594 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
5595
5596 /* If the _parent field is a pointer, then dereference it. */
5597 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
5598 parent_type = TYPE_TARGET_TYPE (parent_type);
5599 /* If there is a parallel XVS type, get the actual base type. */
5600 parent_type = ada_get_base_type (parent_type);
5601
5602 return ada_check_typedef (parent_type);
5603 }
14f9c5c9
AS
5604
5605 return NULL;
5606}
5607
4c4b4cd2
PH
5608/* True iff field number FIELD_NUM of structure type TYPE contains the
5609 parent-type (inherited) fields of a derived type. Assumes TYPE is
5610 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
5611
5612int
ebf56fd3 5613ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 5614{
61ee279c 5615 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
4c4b4cd2
PH
5616 return (name != NULL
5617 && (strncmp (name, "PARENT", 6) == 0
5618 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
5619}
5620
4c4b4cd2 5621/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 5622 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 5623 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 5624 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 5625 structures. */
14f9c5c9
AS
5626
5627int
ebf56fd3 5628ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 5629{
d2e4a39e
AS
5630 const char *name = TYPE_FIELD_NAME (type, field_num);
5631 return (name != NULL
4c4b4cd2
PH
5632 && (strncmp (name, "PARENT", 6) == 0
5633 || strcmp (name, "REP") == 0
5634 || strncmp (name, "_parent", 7) == 0
5635 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
5636}
5637
4c4b4cd2
PH
5638/* True iff field number FIELD_NUM of structure or union type TYPE
5639 is a variant wrapper. Assumes TYPE is a structure type with at least
5640 FIELD_NUM+1 fields. */
14f9c5c9
AS
5641
5642int
ebf56fd3 5643ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 5644{
d2e4a39e 5645 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
14f9c5c9 5646 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 5647 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
5648 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
5649 == TYPE_CODE_UNION)));
14f9c5c9
AS
5650}
5651
5652/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 5653 whose discriminants are contained in the record type OUTER_TYPE,
14f9c5c9
AS
5654 returns the type of the controlling discriminant for the variant. */
5655
d2e4a39e 5656struct type *
ebf56fd3 5657ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 5658{
d2e4a39e 5659 char *name = ada_variant_discrim_name (var_type);
76a01679 5660 struct type *type =
4c4b4cd2 5661 ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9 5662 if (type == NULL)
6d84d3d8 5663 return builtin_type_int32;
14f9c5c9
AS
5664 else
5665 return type;
5666}
5667
4c4b4cd2 5668/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 5669 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 5670 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
5671
5672int
ebf56fd3 5673ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 5674{
d2e4a39e 5675 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5676 return (name != NULL && name[0] == 'O');
5677}
5678
5679/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
5680 returns the name of the discriminant controlling the variant.
5681 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 5682
d2e4a39e 5683char *
ebf56fd3 5684ada_variant_discrim_name (struct type *type0)
14f9c5c9 5685{
d2e4a39e 5686 static char *result = NULL;
14f9c5c9 5687 static size_t result_len = 0;
d2e4a39e
AS
5688 struct type *type;
5689 const char *name;
5690 const char *discrim_end;
5691 const char *discrim_start;
14f9c5c9
AS
5692
5693 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
5694 type = TYPE_TARGET_TYPE (type0);
5695 else
5696 type = type0;
5697
5698 name = ada_type_name (type);
5699
5700 if (name == NULL || name[0] == '\000')
5701 return "";
5702
5703 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
5704 discrim_end -= 1)
5705 {
4c4b4cd2
PH
5706 if (strncmp (discrim_end, "___XVN", 6) == 0)
5707 break;
14f9c5c9
AS
5708 }
5709 if (discrim_end == name)
5710 return "";
5711
d2e4a39e 5712 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
5713 discrim_start -= 1)
5714 {
d2e4a39e 5715 if (discrim_start == name + 1)
4c4b4cd2 5716 return "";
76a01679 5717 if ((discrim_start > name + 3
4c4b4cd2
PH
5718 && strncmp (discrim_start - 3, "___", 3) == 0)
5719 || discrim_start[-1] == '.')
5720 break;
14f9c5c9
AS
5721 }
5722
5723 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
5724 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 5725 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
5726 return result;
5727}
5728
4c4b4cd2
PH
5729/* Scan STR for a subtype-encoded number, beginning at position K.
5730 Put the position of the character just past the number scanned in
5731 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
5732 Return 1 if there was a valid number at the given position, and 0
5733 otherwise. A "subtype-encoded" number consists of the absolute value
5734 in decimal, followed by the letter 'm' to indicate a negative number.
5735 Assumes 0m does not occur. */
14f9c5c9
AS
5736
5737int
d2e4a39e 5738ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
5739{
5740 ULONGEST RU;
5741
d2e4a39e 5742 if (!isdigit (str[k]))
14f9c5c9
AS
5743 return 0;
5744
4c4b4cd2 5745 /* Do it the hard way so as not to make any assumption about
14f9c5c9 5746 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 5747 LONGEST. */
14f9c5c9
AS
5748 RU = 0;
5749 while (isdigit (str[k]))
5750 {
d2e4a39e 5751 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
5752 k += 1;
5753 }
5754
d2e4a39e 5755 if (str[k] == 'm')
14f9c5c9
AS
5756 {
5757 if (R != NULL)
4c4b4cd2 5758 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
5759 k += 1;
5760 }
5761 else if (R != NULL)
5762 *R = (LONGEST) RU;
5763
4c4b4cd2 5764 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
5765 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
5766 number representable as a LONGEST (although either would probably work
5767 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 5768 above is always equivalent to the negative of RU. */
14f9c5c9
AS
5769
5770 if (new_k != NULL)
5771 *new_k = k;
5772 return 1;
5773}
5774
4c4b4cd2
PH
5775/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
5776 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
5777 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 5778
d2e4a39e 5779int
ebf56fd3 5780ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 5781{
d2e4a39e 5782 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
5783 int p;
5784
5785 p = 0;
5786 while (1)
5787 {
d2e4a39e 5788 switch (name[p])
4c4b4cd2
PH
5789 {
5790 case '\0':
5791 return 0;
5792 case 'S':
5793 {
5794 LONGEST W;
5795 if (!ada_scan_number (name, p + 1, &W, &p))
5796 return 0;
5797 if (val == W)
5798 return 1;
5799 break;
5800 }
5801 case 'R':
5802 {
5803 LONGEST L, U;
5804 if (!ada_scan_number (name, p + 1, &L, &p)
5805 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
5806 return 0;
5807 if (val >= L && val <= U)
5808 return 1;
5809 break;
5810 }
5811 case 'O':
5812 return 1;
5813 default:
5814 return 0;
5815 }
5816 }
5817}
5818
5819/* FIXME: Lots of redundancy below. Try to consolidate. */
5820
5821/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
5822 ARG_TYPE, extract and return the value of one of its (non-static)
5823 fields. FIELDNO says which field. Differs from value_primitive_field
5824 only in that it can handle packed values of arbitrary type. */
14f9c5c9 5825
4c4b4cd2 5826static struct value *
d2e4a39e 5827ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 5828 struct type *arg_type)
14f9c5c9 5829{
14f9c5c9
AS
5830 struct type *type;
5831
61ee279c 5832 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
5833 type = TYPE_FIELD_TYPE (arg_type, fieldno);
5834
4c4b4cd2 5835 /* Handle packed fields. */
14f9c5c9
AS
5836
5837 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
5838 {
5839 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
5840 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 5841
0fd88904 5842 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
5843 offset + bit_pos / 8,
5844 bit_pos % 8, bit_size, type);
14f9c5c9
AS
5845 }
5846 else
5847 return value_primitive_field (arg1, offset, fieldno, arg_type);
5848}
5849
52ce6436
PH
5850/* Find field with name NAME in object of type TYPE. If found,
5851 set the following for each argument that is non-null:
5852 - *FIELD_TYPE_P to the field's type;
5853 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
5854 an object of that type;
5855 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
5856 - *BIT_SIZE_P to its size in bits if the field is packed, and
5857 0 otherwise;
5858 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
5859 fields up to but not including the desired field, or by the total
5860 number of fields if not found. A NULL value of NAME never
5861 matches; the function just counts visible fields in this case.
5862
5863 Returns 1 if found, 0 otherwise. */
5864
4c4b4cd2 5865static int
76a01679
JB
5866find_struct_field (char *name, struct type *type, int offset,
5867 struct type **field_type_p,
52ce6436
PH
5868 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
5869 int *index_p)
4c4b4cd2
PH
5870{
5871 int i;
5872
61ee279c 5873 type = ada_check_typedef (type);
76a01679 5874
52ce6436
PH
5875 if (field_type_p != NULL)
5876 *field_type_p = NULL;
5877 if (byte_offset_p != NULL)
d5d6fca5 5878 *byte_offset_p = 0;
52ce6436
PH
5879 if (bit_offset_p != NULL)
5880 *bit_offset_p = 0;
5881 if (bit_size_p != NULL)
5882 *bit_size_p = 0;
5883
5884 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
5885 {
5886 int bit_pos = TYPE_FIELD_BITPOS (type, i);
5887 int fld_offset = offset + bit_pos / 8;
5888 char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 5889
4c4b4cd2
PH
5890 if (t_field_name == NULL)
5891 continue;
5892
52ce6436 5893 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
5894 {
5895 int bit_size = TYPE_FIELD_BITSIZE (type, i);
52ce6436
PH
5896 if (field_type_p != NULL)
5897 *field_type_p = TYPE_FIELD_TYPE (type, i);
5898 if (byte_offset_p != NULL)
5899 *byte_offset_p = fld_offset;
5900 if (bit_offset_p != NULL)
5901 *bit_offset_p = bit_pos % 8;
5902 if (bit_size_p != NULL)
5903 *bit_size_p = bit_size;
76a01679
JB
5904 return 1;
5905 }
4c4b4cd2
PH
5906 else if (ada_is_wrapper_field (type, i))
5907 {
52ce6436
PH
5908 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
5909 field_type_p, byte_offset_p, bit_offset_p,
5910 bit_size_p, index_p))
76a01679
JB
5911 return 1;
5912 }
4c4b4cd2
PH
5913 else if (ada_is_variant_part (type, i))
5914 {
52ce6436
PH
5915 /* PNH: Wait. Do we ever execute this section, or is ARG always of
5916 fixed type?? */
4c4b4cd2 5917 int j;
52ce6436
PH
5918 struct type *field_type
5919 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 5920
52ce6436 5921 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5922 {
76a01679
JB
5923 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
5924 fld_offset
5925 + TYPE_FIELD_BITPOS (field_type, j) / 8,
5926 field_type_p, byte_offset_p,
52ce6436 5927 bit_offset_p, bit_size_p, index_p))
76a01679 5928 return 1;
4c4b4cd2
PH
5929 }
5930 }
52ce6436
PH
5931 else if (index_p != NULL)
5932 *index_p += 1;
4c4b4cd2
PH
5933 }
5934 return 0;
5935}
5936
52ce6436 5937/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 5938
52ce6436
PH
5939static int
5940num_visible_fields (struct type *type)
5941{
5942 int n;
5943 n = 0;
5944 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
5945 return n;
5946}
14f9c5c9 5947
4c4b4cd2 5948/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
5949 and search in it assuming it has (class) type TYPE.
5950 If found, return value, else return NULL.
5951
4c4b4cd2 5952 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 5953
4c4b4cd2 5954static struct value *
d2e4a39e 5955ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 5956 struct type *type)
14f9c5c9
AS
5957{
5958 int i;
61ee279c 5959 type = ada_check_typedef (type);
14f9c5c9 5960
52ce6436 5961 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9
AS
5962 {
5963 char *t_field_name = TYPE_FIELD_NAME (type, i);
5964
5965 if (t_field_name == NULL)
4c4b4cd2 5966 continue;
14f9c5c9
AS
5967
5968 else if (field_name_match (t_field_name, name))
4c4b4cd2 5969 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
5970
5971 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 5972 {
06d5cf63
JB
5973 struct value *v = /* Do not let indent join lines here. */
5974 ada_search_struct_field (name, arg,
5975 offset + TYPE_FIELD_BITPOS (type, i) / 8,
5976 TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5977 if (v != NULL)
5978 return v;
5979 }
14f9c5c9
AS
5980
5981 else if (ada_is_variant_part (type, i))
4c4b4cd2 5982 {
52ce6436 5983 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 5984 int j;
61ee279c 5985 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
5986 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
5987
52ce6436 5988 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 5989 {
06d5cf63
JB
5990 struct value *v = ada_search_struct_field /* Force line break. */
5991 (name, arg,
5992 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
5993 TYPE_FIELD_TYPE (field_type, j));
4c4b4cd2
PH
5994 if (v != NULL)
5995 return v;
5996 }
5997 }
14f9c5c9
AS
5998 }
5999 return NULL;
6000}
d2e4a39e 6001
52ce6436
PH
6002static struct value *ada_index_struct_field_1 (int *, struct value *,
6003 int, struct type *);
6004
6005
6006/* Return field #INDEX in ARG, where the index is that returned by
6007 * find_struct_field through its INDEX_P argument. Adjust the address
6008 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6009 * If found, return value, else return NULL. */
6010
6011static struct value *
6012ada_index_struct_field (int index, struct value *arg, int offset,
6013 struct type *type)
6014{
6015 return ada_index_struct_field_1 (&index, arg, offset, type);
6016}
6017
6018
6019/* Auxiliary function for ada_index_struct_field. Like
6020 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6021 * *INDEX_P. */
6022
6023static struct value *
6024ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6025 struct type *type)
6026{
6027 int i;
6028 type = ada_check_typedef (type);
6029
6030 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6031 {
6032 if (TYPE_FIELD_NAME (type, i) == NULL)
6033 continue;
6034 else if (ada_is_wrapper_field (type, i))
6035 {
6036 struct value *v = /* Do not let indent join lines here. */
6037 ada_index_struct_field_1 (index_p, arg,
6038 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6039 TYPE_FIELD_TYPE (type, i));
6040 if (v != NULL)
6041 return v;
6042 }
6043
6044 else if (ada_is_variant_part (type, i))
6045 {
6046 /* PNH: Do we ever get here? See ada_search_struct_field,
6047 find_struct_field. */
6048 error (_("Cannot assign this kind of variant record"));
6049 }
6050 else if (*index_p == 0)
6051 return ada_value_primitive_field (arg, offset, i, type);
6052 else
6053 *index_p -= 1;
6054 }
6055 return NULL;
6056}
6057
4c4b4cd2
PH
6058/* Given ARG, a value of type (pointer or reference to a)*
6059 structure/union, extract the component named NAME from the ultimate
6060 target structure/union and return it as a value with its
f5938064 6061 appropriate type.
14f9c5c9 6062
4c4b4cd2
PH
6063 The routine searches for NAME among all members of the structure itself
6064 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6065 (e.g., '_parent').
6066
03ee6b2e
PH
6067 If NO_ERR, then simply return NULL in case of error, rather than
6068 calling error. */
14f9c5c9 6069
d2e4a39e 6070struct value *
03ee6b2e 6071ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6072{
4c4b4cd2 6073 struct type *t, *t1;
d2e4a39e 6074 struct value *v;
14f9c5c9 6075
4c4b4cd2 6076 v = NULL;
df407dfe 6077 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6078 if (TYPE_CODE (t) == TYPE_CODE_REF)
6079 {
6080 t1 = TYPE_TARGET_TYPE (t);
6081 if (t1 == NULL)
03ee6b2e 6082 goto BadValue;
61ee279c 6083 t1 = ada_check_typedef (t1);
4c4b4cd2 6084 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6085 {
994b9211 6086 arg = coerce_ref (arg);
76a01679
JB
6087 t = t1;
6088 }
4c4b4cd2 6089 }
14f9c5c9 6090
4c4b4cd2
PH
6091 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6092 {
6093 t1 = TYPE_TARGET_TYPE (t);
6094 if (t1 == NULL)
03ee6b2e 6095 goto BadValue;
61ee279c 6096 t1 = ada_check_typedef (t1);
4c4b4cd2 6097 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6098 {
6099 arg = value_ind (arg);
6100 t = t1;
6101 }
4c4b4cd2 6102 else
76a01679 6103 break;
4c4b4cd2 6104 }
14f9c5c9 6105
4c4b4cd2 6106 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6107 goto BadValue;
14f9c5c9 6108
4c4b4cd2
PH
6109 if (t1 == t)
6110 v = ada_search_struct_field (name, arg, 0, t);
6111 else
6112 {
6113 int bit_offset, bit_size, byte_offset;
6114 struct type *field_type;
6115 CORE_ADDR address;
6116
76a01679
JB
6117 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6118 address = value_as_address (arg);
4c4b4cd2 6119 else
0fd88904 6120 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6121
1ed6ede0 6122 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6123 if (find_struct_field (name, t1, 0,
6124 &field_type, &byte_offset, &bit_offset,
52ce6436 6125 &bit_size, NULL))
76a01679
JB
6126 {
6127 if (bit_size != 0)
6128 {
714e53ab
PH
6129 if (TYPE_CODE (t) == TYPE_CODE_REF)
6130 arg = ada_coerce_ref (arg);
6131 else
6132 arg = ada_value_ind (arg);
76a01679
JB
6133 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6134 bit_offset, bit_size,
6135 field_type);
6136 }
6137 else
f5938064 6138 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6139 }
6140 }
6141
03ee6b2e
PH
6142 if (v != NULL || no_err)
6143 return v;
6144 else
323e0a4a 6145 error (_("There is no member named %s."), name);
14f9c5c9 6146
03ee6b2e
PH
6147 BadValue:
6148 if (no_err)
6149 return NULL;
6150 else
6151 error (_("Attempt to extract a component of a value that is not a record."));
14f9c5c9
AS
6152}
6153
6154/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6155 If DISPP is non-null, add its byte displacement from the beginning of a
6156 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6157 work for packed fields).
6158
6159 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6160 followed by "___".
14f9c5c9 6161
4c4b4cd2
PH
6162 TYPE can be either a struct or union. If REFOK, TYPE may also
6163 be a (pointer or reference)+ to a struct or union, and the
6164 ultimate target type will be searched.
14f9c5c9
AS
6165
6166 Looks recursively into variant clauses and parent types.
6167
4c4b4cd2
PH
6168 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6169 TYPE is not a type of the right kind. */
14f9c5c9 6170
4c4b4cd2 6171static struct type *
76a01679
JB
6172ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6173 int noerr, int *dispp)
14f9c5c9
AS
6174{
6175 int i;
6176
6177 if (name == NULL)
6178 goto BadName;
6179
76a01679 6180 if (refok && type != NULL)
4c4b4cd2
PH
6181 while (1)
6182 {
61ee279c 6183 type = ada_check_typedef (type);
76a01679
JB
6184 if (TYPE_CODE (type) != TYPE_CODE_PTR
6185 && TYPE_CODE (type) != TYPE_CODE_REF)
6186 break;
6187 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6188 }
14f9c5c9 6189
76a01679 6190 if (type == NULL
1265e4aa
JB
6191 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6192 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6193 {
4c4b4cd2 6194 if (noerr)
76a01679 6195 return NULL;
4c4b4cd2 6196 else
76a01679
JB
6197 {
6198 target_terminal_ours ();
6199 gdb_flush (gdb_stdout);
323e0a4a
AC
6200 if (type == NULL)
6201 error (_("Type (null) is not a structure or union type"));
6202 else
6203 {
6204 /* XXX: type_sprint */
6205 fprintf_unfiltered (gdb_stderr, _("Type "));
6206 type_print (type, "", gdb_stderr, -1);
6207 error (_(" is not a structure or union type"));
6208 }
76a01679 6209 }
14f9c5c9
AS
6210 }
6211
6212 type = to_static_fixed_type (type);
6213
6214 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6215 {
6216 char *t_field_name = TYPE_FIELD_NAME (type, i);
6217 struct type *t;
6218 int disp;
d2e4a39e 6219
14f9c5c9 6220 if (t_field_name == NULL)
4c4b4cd2 6221 continue;
14f9c5c9
AS
6222
6223 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6224 {
6225 if (dispp != NULL)
6226 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6227 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6228 }
14f9c5c9
AS
6229
6230 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6231 {
6232 disp = 0;
6233 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6234 0, 1, &disp);
6235 if (t != NULL)
6236 {
6237 if (dispp != NULL)
6238 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6239 return t;
6240 }
6241 }
14f9c5c9
AS
6242
6243 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6244 {
6245 int j;
61ee279c 6246 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2
PH
6247
6248 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6249 {
b1f33ddd
JB
6250 /* FIXME pnh 2008/01/26: We check for a field that is
6251 NOT wrapped in a struct, since the compiler sometimes
6252 generates these for unchecked variant types. Revisit
6253 if the compiler changes this practice. */
6254 char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6255 disp = 0;
b1f33ddd
JB
6256 if (v_field_name != NULL
6257 && field_name_match (v_field_name, name))
6258 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6259 else
6260 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j),
6261 name, 0, 1, &disp);
6262
4c4b4cd2
PH
6263 if (t != NULL)
6264 {
6265 if (dispp != NULL)
6266 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6267 return t;
6268 }
6269 }
6270 }
14f9c5c9
AS
6271
6272 }
6273
6274BadName:
d2e4a39e 6275 if (!noerr)
14f9c5c9
AS
6276 {
6277 target_terminal_ours ();
6278 gdb_flush (gdb_stdout);
323e0a4a
AC
6279 if (name == NULL)
6280 {
6281 /* XXX: type_sprint */
6282 fprintf_unfiltered (gdb_stderr, _("Type "));
6283 type_print (type, "", gdb_stderr, -1);
6284 error (_(" has no component named <null>"));
6285 }
6286 else
6287 {
6288 /* XXX: type_sprint */
6289 fprintf_unfiltered (gdb_stderr, _("Type "));
6290 type_print (type, "", gdb_stderr, -1);
6291 error (_(" has no component named %s"), name);
6292 }
14f9c5c9
AS
6293 }
6294
6295 return NULL;
6296}
6297
b1f33ddd
JB
6298/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6299 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6300 represents an unchecked union (that is, the variant part of a
6301 record that is named in an Unchecked_Union pragma). */
6302
6303static int
6304is_unchecked_variant (struct type *var_type, struct type *outer_type)
6305{
6306 char *discrim_name = ada_variant_discrim_name (var_type);
6307 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6308 == NULL);
6309}
6310
6311
14f9c5c9
AS
6312/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6313 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6314 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6315 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6316
d2e4a39e 6317int
ebf56fd3 6318ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6319 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6320{
6321 int others_clause;
6322 int i;
d2e4a39e 6323 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6324 struct value *outer;
6325 struct value *discrim;
14f9c5c9
AS
6326 LONGEST discrim_val;
6327
0c281816
JB
6328 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6329 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6330 if (discrim == NULL)
14f9c5c9 6331 return -1;
0c281816 6332 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6333
6334 others_clause = -1;
6335 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6336 {
6337 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6338 others_clause = i;
14f9c5c9 6339 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6340 return i;
14f9c5c9
AS
6341 }
6342
6343 return others_clause;
6344}
d2e4a39e 6345\f
14f9c5c9
AS
6346
6347
4c4b4cd2 6348 /* Dynamic-Sized Records */
14f9c5c9
AS
6349
6350/* Strategy: The type ostensibly attached to a value with dynamic size
6351 (i.e., a size that is not statically recorded in the debugging
6352 data) does not accurately reflect the size or layout of the value.
6353 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6354 conventional types that are constructed on the fly. */
14f9c5c9
AS
6355
6356/* There is a subtle and tricky problem here. In general, we cannot
6357 determine the size of dynamic records without its data. However,
6358 the 'struct value' data structure, which GDB uses to represent
6359 quantities in the inferior process (the target), requires the size
6360 of the type at the time of its allocation in order to reserve space
6361 for GDB's internal copy of the data. That's why the
6362 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6363 rather than struct value*s.
14f9c5c9
AS
6364
6365 However, GDB's internal history variables ($1, $2, etc.) are
6366 struct value*s containing internal copies of the data that are not, in
6367 general, the same as the data at their corresponding addresses in
6368 the target. Fortunately, the types we give to these values are all
6369 conventional, fixed-size types (as per the strategy described
6370 above), so that we don't usually have to perform the
6371 'to_fixed_xxx_type' conversions to look at their values.
6372 Unfortunately, there is one exception: if one of the internal
6373 history variables is an array whose elements are unconstrained
6374 records, then we will need to create distinct fixed types for each
6375 element selected. */
6376
6377/* The upshot of all of this is that many routines take a (type, host
6378 address, target address) triple as arguments to represent a value.
6379 The host address, if non-null, is supposed to contain an internal
6380 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6381 target at the target address. */
14f9c5c9
AS
6382
6383/* Assuming that VAL0 represents a pointer value, the result of
6384 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6385 dynamic-sized types. */
14f9c5c9 6386
d2e4a39e
AS
6387struct value *
6388ada_value_ind (struct value *val0)
14f9c5c9 6389{
d2e4a39e 6390 struct value *val = unwrap_value (value_ind (val0));
4c4b4cd2 6391 return ada_to_fixed_value (val);
14f9c5c9
AS
6392}
6393
6394/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
6395 qualifiers on VAL0. */
6396
d2e4a39e
AS
6397static struct value *
6398ada_coerce_ref (struct value *val0)
6399{
df407dfe 6400 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
6401 {
6402 struct value *val = val0;
994b9211 6403 val = coerce_ref (val);
d2e4a39e 6404 val = unwrap_value (val);
4c4b4cd2 6405 return ada_to_fixed_value (val);
d2e4a39e
AS
6406 }
6407 else
14f9c5c9
AS
6408 return val0;
6409}
6410
6411/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 6412 ALIGNMENT (a power of 2). */
14f9c5c9
AS
6413
6414static unsigned int
ebf56fd3 6415align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
6416{
6417 return (off + alignment - 1) & ~(alignment - 1);
6418}
6419
4c4b4cd2 6420/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
6421
6422static unsigned int
ebf56fd3 6423field_alignment (struct type *type, int f)
14f9c5c9 6424{
d2e4a39e 6425 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 6426 int len;
14f9c5c9
AS
6427 int align_offset;
6428
64a1bf19
JB
6429 /* The field name should never be null, unless the debugging information
6430 is somehow malformed. In this case, we assume the field does not
6431 require any alignment. */
6432 if (name == NULL)
6433 return 1;
6434
6435 len = strlen (name);
6436
4c4b4cd2
PH
6437 if (!isdigit (name[len - 1]))
6438 return 1;
14f9c5c9 6439
d2e4a39e 6440 if (isdigit (name[len - 2]))
14f9c5c9
AS
6441 align_offset = len - 2;
6442 else
6443 align_offset = len - 1;
6444
4c4b4cd2 6445 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
6446 return TARGET_CHAR_BIT;
6447
4c4b4cd2
PH
6448 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6449}
6450
6451/* Find a symbol named NAME. Ignores ambiguity. */
6452
6453struct symbol *
6454ada_find_any_symbol (const char *name)
6455{
6456 struct symbol *sym;
6457
6458 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6459 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6460 return sym;
6461
6462 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6463 return sym;
14f9c5c9
AS
6464}
6465
dddfab26
UW
6466/* Find a type named NAME. Ignores ambiguity. This routine will look
6467 solely for types defined by debug info, it will not search the GDB
6468 primitive types. */
4c4b4cd2 6469
d2e4a39e 6470struct type *
ebf56fd3 6471ada_find_any_type (const char *name)
14f9c5c9 6472{
4c4b4cd2 6473 struct symbol *sym = ada_find_any_symbol (name);
14f9c5c9 6474
14f9c5c9 6475 if (sym != NULL)
dddfab26 6476 return SYMBOL_TYPE (sym);
14f9c5c9 6477
dddfab26 6478 return NULL;
14f9c5c9
AS
6479}
6480
aeb5907d
JB
6481/* Given NAME and an associated BLOCK, search all symbols for
6482 NAME suffixed with "___XR", which is the ``renaming'' symbol
4c4b4cd2
PH
6483 associated to NAME. Return this symbol if found, return
6484 NULL otherwise. */
6485
6486struct symbol *
6487ada_find_renaming_symbol (const char *name, struct block *block)
aeb5907d
JB
6488{
6489 struct symbol *sym;
6490
6491 sym = find_old_style_renaming_symbol (name, block);
6492
6493 if (sym != NULL)
6494 return sym;
6495
6496 /* Not right yet. FIXME pnh 7/20/2007. */
6497 sym = ada_find_any_symbol (name);
6498 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
6499 return sym;
6500 else
6501 return NULL;
6502}
6503
6504static struct symbol *
6505find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 6506{
7f0df278 6507 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
6508 char *rename;
6509
6510 if (function_sym != NULL)
6511 {
6512 /* If the symbol is defined inside a function, NAME is not fully
6513 qualified. This means we need to prepend the function name
6514 as well as adding the ``___XR'' suffix to build the name of
6515 the associated renaming symbol. */
6516 char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
6517 /* Function names sometimes contain suffixes used
6518 for instance to qualify nested subprograms. When building
6519 the XR type name, we need to make sure that this suffix is
6520 not included. So do not include any suffix in the function
6521 name length below. */
6522 const int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
6523 const int rename_len = function_name_len + 2 /* "__" */
6524 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 6525
529cad9c
PH
6526 /* Strip the suffix if necessary. */
6527 function_name[function_name_len] = '\0';
6528
4c4b4cd2
PH
6529 /* Library-level functions are a special case, as GNAT adds
6530 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 6531 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
6532 have this prefix, so we need to skip this prefix if present. */
6533 if (function_name_len > 5 /* "_ada_" */
6534 && strstr (function_name, "_ada_") == function_name)
6535 function_name = function_name + 5;
6536
6537 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34
PM
6538 xsnprintf (rename, rename_len * sizeof (char), "%s__%s___XR",
6539 function_name, name);
4c4b4cd2
PH
6540 }
6541 else
6542 {
6543 const int rename_len = strlen (name) + 6;
6544 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 6545 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
6546 }
6547
6548 return ada_find_any_symbol (rename);
6549}
6550
14f9c5c9 6551/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 6552 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 6553 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
6554 otherwise return 0. */
6555
14f9c5c9 6556int
d2e4a39e 6557ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
6558{
6559 if (type1 == NULL)
6560 return 1;
6561 else if (type0 == NULL)
6562 return 0;
6563 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
6564 return 1;
6565 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
6566 return 0;
4c4b4cd2
PH
6567 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
6568 return 1;
14f9c5c9
AS
6569 else if (ada_is_packed_array_type (type0))
6570 return 1;
4c4b4cd2
PH
6571 else if (ada_is_array_descriptor_type (type0)
6572 && !ada_is_array_descriptor_type (type1))
14f9c5c9 6573 return 1;
aeb5907d
JB
6574 else
6575 {
6576 const char *type0_name = type_name_no_tag (type0);
6577 const char *type1_name = type_name_no_tag (type1);
6578
6579 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
6580 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
6581 return 1;
6582 }
14f9c5c9
AS
6583 return 0;
6584}
6585
6586/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
6587 null, its TYPE_TAG_NAME. Null if TYPE is null. */
6588
d2e4a39e
AS
6589char *
6590ada_type_name (struct type *type)
14f9c5c9 6591{
d2e4a39e 6592 if (type == NULL)
14f9c5c9
AS
6593 return NULL;
6594 else if (TYPE_NAME (type) != NULL)
6595 return TYPE_NAME (type);
6596 else
6597 return TYPE_TAG_NAME (type);
6598}
6599
6600/* Find a parallel type to TYPE whose name is formed by appending
4c4b4cd2 6601 SUFFIX to the name of TYPE. */
14f9c5c9 6602
d2e4a39e 6603struct type *
ebf56fd3 6604ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 6605{
d2e4a39e 6606 static char *name;
14f9c5c9 6607 static size_t name_len = 0;
14f9c5c9 6608 int len;
d2e4a39e
AS
6609 char *typename = ada_type_name (type);
6610
14f9c5c9
AS
6611 if (typename == NULL)
6612 return NULL;
6613
6614 len = strlen (typename);
6615
d2e4a39e 6616 GROW_VECT (name, name_len, len + strlen (suffix) + 1);
14f9c5c9
AS
6617
6618 strcpy (name, typename);
6619 strcpy (name + len, suffix);
6620
6621 return ada_find_any_type (name);
6622}
6623
6624
6625/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 6626 type describing its fields. Otherwise, return NULL. */
14f9c5c9 6627
d2e4a39e
AS
6628static struct type *
6629dynamic_template_type (struct type *type)
14f9c5c9 6630{
61ee279c 6631 type = ada_check_typedef (type);
14f9c5c9
AS
6632
6633 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 6634 || ada_type_name (type) == NULL)
14f9c5c9 6635 return NULL;
d2e4a39e 6636 else
14f9c5c9
AS
6637 {
6638 int len = strlen (ada_type_name (type));
4c4b4cd2
PH
6639 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
6640 return type;
14f9c5c9 6641 else
4c4b4cd2 6642 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
6643 }
6644}
6645
6646/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 6647 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 6648
d2e4a39e
AS
6649static int
6650is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
6651{
6652 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
d2e4a39e 6653 return name != NULL
14f9c5c9
AS
6654 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
6655 && strstr (name, "___XVL") != NULL;
6656}
6657
4c4b4cd2
PH
6658/* The index of the variant field of TYPE, or -1 if TYPE does not
6659 represent a variant record type. */
14f9c5c9 6660
d2e4a39e 6661static int
4c4b4cd2 6662variant_field_index (struct type *type)
14f9c5c9
AS
6663{
6664 int f;
6665
4c4b4cd2
PH
6666 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6667 return -1;
6668
6669 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
6670 {
6671 if (ada_is_variant_part (type, f))
6672 return f;
6673 }
6674 return -1;
14f9c5c9
AS
6675}
6676
4c4b4cd2
PH
6677/* A record type with no fields. */
6678
d2e4a39e
AS
6679static struct type *
6680empty_record (struct objfile *objfile)
14f9c5c9 6681{
d2e4a39e 6682 struct type *type = alloc_type (objfile);
14f9c5c9
AS
6683 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6684 TYPE_NFIELDS (type) = 0;
6685 TYPE_FIELDS (type) = NULL;
b1f33ddd 6686 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
6687 TYPE_NAME (type) = "<empty>";
6688 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
6689 TYPE_LENGTH (type) = 0;
6690 return type;
6691}
6692
6693/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
6694 the value of type TYPE at VALADDR or ADDRESS (see comments at
6695 the beginning of this section) VAL according to GNAT conventions.
6696 DVAL0 should describe the (portion of a) record that contains any
df407dfe 6697 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
6698 an outer-level type (i.e., as opposed to a branch of a variant.) A
6699 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 6700 of the variant.
14f9c5c9 6701
4c4b4cd2
PH
6702 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
6703 length are not statically known are discarded. As a consequence,
6704 VALADDR, ADDRESS and DVAL0 are ignored.
6705
6706 NOTE: Limitations: For now, we assume that dynamic fields and
6707 variants occupy whole numbers of bytes. However, they need not be
6708 byte-aligned. */
6709
6710struct type *
10a2c479 6711ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 6712 const gdb_byte *valaddr,
4c4b4cd2
PH
6713 CORE_ADDR address, struct value *dval0,
6714 int keep_dynamic_fields)
14f9c5c9 6715{
d2e4a39e
AS
6716 struct value *mark = value_mark ();
6717 struct value *dval;
6718 struct type *rtype;
14f9c5c9 6719 int nfields, bit_len;
4c4b4cd2 6720 int variant_field;
14f9c5c9 6721 long off;
4c4b4cd2 6722 int fld_bit_len, bit_incr;
14f9c5c9
AS
6723 int f;
6724
4c4b4cd2
PH
6725 /* Compute the number of fields in this record type that are going
6726 to be processed: unless keep_dynamic_fields, this includes only
6727 fields whose position and length are static will be processed. */
6728 if (keep_dynamic_fields)
6729 nfields = TYPE_NFIELDS (type);
6730 else
6731 {
6732 nfields = 0;
76a01679 6733 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
6734 && !ada_is_variant_part (type, nfields)
6735 && !is_dynamic_field (type, nfields))
6736 nfields++;
6737 }
6738
14f9c5c9
AS
6739 rtype = alloc_type (TYPE_OBJFILE (type));
6740 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
6741 INIT_CPLUS_SPECIFIC (rtype);
6742 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 6743 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
6744 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
6745 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
6746 TYPE_NAME (rtype) = ada_type_name (type);
6747 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 6748 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 6749
d2e4a39e
AS
6750 off = 0;
6751 bit_len = 0;
4c4b4cd2
PH
6752 variant_field = -1;
6753
14f9c5c9
AS
6754 for (f = 0; f < nfields; f += 1)
6755 {
6c038f32
PH
6756 off = align_value (off, field_alignment (type, f))
6757 + TYPE_FIELD_BITPOS (type, f);
14f9c5c9 6758 TYPE_FIELD_BITPOS (rtype, f) = off;
d2e4a39e 6759 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 6760
d2e4a39e 6761 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
6762 {
6763 variant_field = f;
6764 fld_bit_len = bit_incr = 0;
6765 }
14f9c5c9 6766 else if (is_dynamic_field (type, f))
4c4b4cd2 6767 {
284614f0
JB
6768 const gdb_byte *field_valaddr = valaddr;
6769 CORE_ADDR field_address = address;
6770 struct type *field_type =
6771 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
6772
4c4b4cd2 6773 if (dval0 == NULL)
b5304971
JG
6774 {
6775 /* rtype's length is computed based on the run-time
6776 value of discriminants. If the discriminants are not
6777 initialized, the type size may be completely bogus and
6778 GDB may fail to allocate a value for it. So check the
6779 size first before creating the value. */
6780 check_size (rtype);
6781 dval = value_from_contents_and_address (rtype, valaddr, address);
6782 }
4c4b4cd2
PH
6783 else
6784 dval = dval0;
6785
284614f0
JB
6786 /* If the type referenced by this field is an aligner type, we need
6787 to unwrap that aligner type, because its size might not be set.
6788 Keeping the aligner type would cause us to compute the wrong
6789 size for this field, impacting the offset of the all the fields
6790 that follow this one. */
6791 if (ada_is_aligner_type (field_type))
6792 {
6793 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
6794
6795 field_valaddr = cond_offset_host (field_valaddr, field_offset);
6796 field_address = cond_offset_target (field_address, field_offset);
6797 field_type = ada_aligned_type (field_type);
6798 }
6799
6800 field_valaddr = cond_offset_host (field_valaddr,
6801 off / TARGET_CHAR_BIT);
6802 field_address = cond_offset_target (field_address,
6803 off / TARGET_CHAR_BIT);
6804
6805 /* Get the fixed type of the field. Note that, in this case,
6806 we do not want to get the real type out of the tag: if
6807 the current field is the parent part of a tagged record,
6808 we will get the tag of the object. Clearly wrong: the real
6809 type of the parent is not the real type of the child. We
6810 would end up in an infinite loop. */
6811 field_type = ada_get_base_type (field_type);
6812 field_type = ada_to_fixed_type (field_type, field_valaddr,
6813 field_address, dval, 0);
6814
6815 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
6816 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6817 bit_incr = fld_bit_len =
6818 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
6819 }
14f9c5c9 6820 else
4c4b4cd2
PH
6821 {
6822 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
6823 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
6824 if (TYPE_FIELD_BITSIZE (type, f) > 0)
6825 bit_incr = fld_bit_len =
6826 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
6827 else
6828 bit_incr = fld_bit_len =
6829 TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT;
6830 }
14f9c5c9 6831 if (off + fld_bit_len > bit_len)
4c4b4cd2 6832 bit_len = off + fld_bit_len;
14f9c5c9 6833 off += bit_incr;
4c4b4cd2
PH
6834 TYPE_LENGTH (rtype) =
6835 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 6836 }
4c4b4cd2
PH
6837
6838 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 6839 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
6840 the record. This can happen in the presence of representation
6841 clauses. */
6842 if (variant_field >= 0)
6843 {
6844 struct type *branch_type;
6845
6846 off = TYPE_FIELD_BITPOS (rtype, variant_field);
6847
6848 if (dval0 == NULL)
6849 dval = value_from_contents_and_address (rtype, valaddr, address);
6850 else
6851 dval = dval0;
6852
6853 branch_type =
6854 to_fixed_variant_branch_type
6855 (TYPE_FIELD_TYPE (type, variant_field),
6856 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
6857 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
6858 if (branch_type == NULL)
6859 {
6860 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
6861 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
6862 TYPE_NFIELDS (rtype) -= 1;
6863 }
6864 else
6865 {
6866 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
6867 TYPE_FIELD_NAME (rtype, variant_field) = "S";
6868 fld_bit_len =
6869 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
6870 TARGET_CHAR_BIT;
6871 if (off + fld_bit_len > bit_len)
6872 bit_len = off + fld_bit_len;
6873 TYPE_LENGTH (rtype) =
6874 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
6875 }
6876 }
6877
714e53ab
PH
6878 /* According to exp_dbug.ads, the size of TYPE for variable-size records
6879 should contain the alignment of that record, which should be a strictly
6880 positive value. If null or negative, then something is wrong, most
6881 probably in the debug info. In that case, we don't round up the size
6882 of the resulting type. If this record is not part of another structure,
6883 the current RTYPE length might be good enough for our purposes. */
6884 if (TYPE_LENGTH (type) <= 0)
6885 {
323e0a4a
AC
6886 if (TYPE_NAME (rtype))
6887 warning (_("Invalid type size for `%s' detected: %d."),
6888 TYPE_NAME (rtype), TYPE_LENGTH (type));
6889 else
6890 warning (_("Invalid type size for <unnamed> detected: %d."),
6891 TYPE_LENGTH (type));
714e53ab
PH
6892 }
6893 else
6894 {
6895 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
6896 TYPE_LENGTH (type));
6897 }
14f9c5c9
AS
6898
6899 value_free_to_mark (mark);
d2e4a39e 6900 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 6901 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
6902 return rtype;
6903}
6904
4c4b4cd2
PH
6905/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
6906 of 1. */
14f9c5c9 6907
d2e4a39e 6908static struct type *
fc1a4b47 6909template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
6910 CORE_ADDR address, struct value *dval0)
6911{
6912 return ada_template_to_fixed_record_type_1 (type, valaddr,
6913 address, dval0, 1);
6914}
6915
6916/* An ordinary record type in which ___XVL-convention fields and
6917 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
6918 static approximations, containing all possible fields. Uses
6919 no runtime values. Useless for use in values, but that's OK,
6920 since the results are used only for type determinations. Works on both
6921 structs and unions. Representation note: to save space, we memorize
6922 the result of this function in the TYPE_TARGET_TYPE of the
6923 template type. */
6924
6925static struct type *
6926template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
6927{
6928 struct type *type;
6929 int nfields;
6930 int f;
6931
4c4b4cd2
PH
6932 if (TYPE_TARGET_TYPE (type0) != NULL)
6933 return TYPE_TARGET_TYPE (type0);
6934
6935 nfields = TYPE_NFIELDS (type0);
6936 type = type0;
14f9c5c9
AS
6937
6938 for (f = 0; f < nfields; f += 1)
6939 {
61ee279c 6940 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 6941 struct type *new_type;
14f9c5c9 6942
4c4b4cd2
PH
6943 if (is_dynamic_field (type0, f))
6944 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 6945 else
f192137b 6946 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
6947 if (type == type0 && new_type != field_type)
6948 {
6949 TYPE_TARGET_TYPE (type0) = type = alloc_type (TYPE_OBJFILE (type0));
6950 TYPE_CODE (type) = TYPE_CODE (type0);
6951 INIT_CPLUS_SPECIFIC (type);
6952 TYPE_NFIELDS (type) = nfields;
6953 TYPE_FIELDS (type) = (struct field *)
6954 TYPE_ALLOC (type, nfields * sizeof (struct field));
6955 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
6956 sizeof (struct field) * nfields);
6957 TYPE_NAME (type) = ada_type_name (type0);
6958 TYPE_TAG_NAME (type) = NULL;
876cecd0 6959 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
6960 TYPE_LENGTH (type) = 0;
6961 }
6962 TYPE_FIELD_TYPE (type, f) = new_type;
6963 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 6964 }
14f9c5c9
AS
6965 return type;
6966}
6967
4c4b4cd2 6968/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
6969 whose address in memory is ADDRESS, returns a revision of TYPE,
6970 which should be a non-dynamic-sized record, in which the variant
6971 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
6972 for discriminant values in DVAL0, which can be NULL if the record
6973 contains the necessary discriminant values. */
6974
d2e4a39e 6975static struct type *
fc1a4b47 6976to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 6977 CORE_ADDR address, struct value *dval0)
14f9c5c9 6978{
d2e4a39e 6979 struct value *mark = value_mark ();
4c4b4cd2 6980 struct value *dval;
d2e4a39e 6981 struct type *rtype;
14f9c5c9
AS
6982 struct type *branch_type;
6983 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 6984 int variant_field = variant_field_index (type);
14f9c5c9 6985
4c4b4cd2 6986 if (variant_field == -1)
14f9c5c9
AS
6987 return type;
6988
4c4b4cd2
PH
6989 if (dval0 == NULL)
6990 dval = value_from_contents_and_address (type, valaddr, address);
6991 else
6992 dval = dval0;
6993
14f9c5c9
AS
6994 rtype = alloc_type (TYPE_OBJFILE (type));
6995 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
6996 INIT_CPLUS_SPECIFIC (rtype);
6997 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
6998 TYPE_FIELDS (rtype) =
6999 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7000 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7001 sizeof (struct field) * nfields);
14f9c5c9
AS
7002 TYPE_NAME (rtype) = ada_type_name (type);
7003 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7004 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7005 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7006
4c4b4cd2
PH
7007 branch_type = to_fixed_variant_branch_type
7008 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7009 cond_offset_host (valaddr,
4c4b4cd2
PH
7010 TYPE_FIELD_BITPOS (type, variant_field)
7011 / TARGET_CHAR_BIT),
d2e4a39e 7012 cond_offset_target (address,
4c4b4cd2
PH
7013 TYPE_FIELD_BITPOS (type, variant_field)
7014 / TARGET_CHAR_BIT), dval);
d2e4a39e 7015 if (branch_type == NULL)
14f9c5c9 7016 {
4c4b4cd2
PH
7017 int f;
7018 for (f = variant_field + 1; f < nfields; f += 1)
7019 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7020 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7021 }
7022 else
7023 {
4c4b4cd2
PH
7024 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7025 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7026 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7027 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7028 }
4c4b4cd2 7029 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7030
4c4b4cd2 7031 value_free_to_mark (mark);
14f9c5c9
AS
7032 return rtype;
7033}
7034
7035/* An ordinary record type (with fixed-length fields) that describes
7036 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7037 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7038 should be in DVAL, a record value; it may be NULL if the object
7039 at ADDR itself contains any necessary discriminant values.
7040 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7041 values from the record are needed. Except in the case that DVAL,
7042 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7043 unchecked) is replaced by a particular branch of the variant.
7044
7045 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7046 is questionable and may be removed. It can arise during the
7047 processing of an unconstrained-array-of-record type where all the
7048 variant branches have exactly the same size. This is because in
7049 such cases, the compiler does not bother to use the XVS convention
7050 when encoding the record. I am currently dubious of this
7051 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7052
d2e4a39e 7053static struct type *
fc1a4b47 7054to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7055 CORE_ADDR address, struct value *dval)
14f9c5c9 7056{
d2e4a39e 7057 struct type *templ_type;
14f9c5c9 7058
876cecd0 7059 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7060 return type0;
7061
d2e4a39e 7062 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7063
7064 if (templ_type != NULL)
7065 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7066 else if (variant_field_index (type0) >= 0)
7067 {
7068 if (dval == NULL && valaddr == NULL && address == 0)
7069 return type0;
7070 return to_record_with_fixed_variant_part (type0, valaddr, address,
7071 dval);
7072 }
14f9c5c9
AS
7073 else
7074 {
876cecd0 7075 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7076 return type0;
7077 }
7078
7079}
7080
7081/* An ordinary record type (with fixed-length fields) that describes
7082 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7083 union type. Any necessary discriminants' values should be in DVAL,
7084 a record value. That is, this routine selects the appropriate
7085 branch of the union at ADDR according to the discriminant value
b1f33ddd
JB
7086 indicated in the union's type name. Returns VAR_TYPE0 itself if
7087 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7088
d2e4a39e 7089static struct type *
fc1a4b47 7090to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7091 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7092{
7093 int which;
d2e4a39e
AS
7094 struct type *templ_type;
7095 struct type *var_type;
14f9c5c9
AS
7096
7097 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7098 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7099 else
14f9c5c9
AS
7100 var_type = var_type0;
7101
7102 templ_type = ada_find_parallel_type (var_type, "___XVU");
7103
7104 if (templ_type != NULL)
7105 var_type = templ_type;
7106
b1f33ddd
JB
7107 if (is_unchecked_variant (var_type, value_type (dval)))
7108 return var_type0;
d2e4a39e
AS
7109 which =
7110 ada_which_variant_applies (var_type,
0fd88904 7111 value_type (dval), value_contents (dval));
14f9c5c9
AS
7112
7113 if (which < 0)
7114 return empty_record (TYPE_OBJFILE (var_type));
7115 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7116 return to_fixed_record_type
d2e4a39e
AS
7117 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7118 valaddr, address, dval);
4c4b4cd2 7119 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7120 return
7121 to_fixed_record_type
7122 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7123 else
7124 return TYPE_FIELD_TYPE (var_type, which);
7125}
7126
7127/* Assuming that TYPE0 is an array type describing the type of a value
7128 at ADDR, and that DVAL describes a record containing any
7129 discriminants used in TYPE0, returns a type for the value that
7130 contains no dynamic components (that is, no components whose sizes
7131 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7132 true, gives an error message if the resulting type's size is over
4c4b4cd2 7133 varsize_limit. */
14f9c5c9 7134
d2e4a39e
AS
7135static struct type *
7136to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7137 int ignore_too_big)
14f9c5c9 7138{
d2e4a39e
AS
7139 struct type *index_type_desc;
7140 struct type *result;
284614f0 7141 int packed_array_p;
14f9c5c9 7142
284614f0 7143 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7144 return type0;
14f9c5c9 7145
284614f0
JB
7146 packed_array_p = ada_is_packed_array_type (type0);
7147 if (packed_array_p)
7148 type0 = decode_packed_array_type (type0);
7149
14f9c5c9
AS
7150 index_type_desc = ada_find_parallel_type (type0, "___XA");
7151 if (index_type_desc == NULL)
7152 {
61ee279c 7153 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
14f9c5c9 7154 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7155 depend on the contents of the array in properly constructed
7156 debugging data. */
529cad9c
PH
7157 /* Create a fixed version of the array element type.
7158 We're not providing the address of an element here,
e1d5a0d2 7159 and thus the actual object value cannot be inspected to do
529cad9c
PH
7160 the conversion. This should not be a problem, since arrays of
7161 unconstrained objects are not allowed. In particular, all
7162 the elements of an array of a tagged type should all be of
7163 the same type specified in the debugging info. No need to
7164 consult the object tag. */
1ed6ede0 7165 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7166
284614f0
JB
7167 /* Make sure we always create a new array type when dealing with
7168 packed array types, since we're going to fix-up the array
7169 type length and element bitsize a little further down. */
7170 if (elt_type0 == elt_type && !packed_array_p)
4c4b4cd2 7171 result = type0;
14f9c5c9 7172 else
4c4b4cd2
PH
7173 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7174 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7175 }
7176 else
7177 {
7178 int i;
7179 struct type *elt_type0;
7180
7181 elt_type0 = type0;
7182 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7183 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7184
7185 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7186 depend on the contents of the array in properly constructed
7187 debugging data. */
529cad9c
PH
7188 /* Create a fixed version of the array element type.
7189 We're not providing the address of an element here,
e1d5a0d2 7190 and thus the actual object value cannot be inspected to do
529cad9c
PH
7191 the conversion. This should not be a problem, since arrays of
7192 unconstrained objects are not allowed. In particular, all
7193 the elements of an array of a tagged type should all be of
7194 the same type specified in the debugging info. No need to
7195 consult the object tag. */
1ed6ede0
JB
7196 result =
7197 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
14f9c5c9 7198 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7199 {
7200 struct type *range_type =
7201 to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i),
7202 dval, TYPE_OBJFILE (type0));
7203 result = create_array_type (alloc_type (TYPE_OBJFILE (type0)),
7204 result, range_type);
7205 }
d2e4a39e 7206 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7207 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7208 }
7209
284614f0
JB
7210 if (packed_array_p)
7211 {
7212 /* So far, the resulting type has been created as if the original
7213 type was a regular (non-packed) array type. As a result, the
7214 bitsize of the array elements needs to be set again, and the array
7215 length needs to be recomputed based on that bitsize. */
7216 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7217 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7218
7219 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7220 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7221 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7222 TYPE_LENGTH (result)++;
7223 }
7224
876cecd0 7225 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7226 return result;
d2e4a39e 7227}
14f9c5c9
AS
7228
7229
7230/* A standard type (containing no dynamically sized components)
7231 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7232 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7233 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7234 ADDRESS or in VALADDR contains these discriminants.
7235
1ed6ede0
JB
7236 If CHECK_TAG is not null, in the case of tagged types, this function
7237 attempts to locate the object's tag and use it to compute the actual
7238 type. However, when ADDRESS is null, we cannot use it to determine the
7239 location of the tag, and therefore compute the tagged type's actual type.
7240 So we return the tagged type without consulting the tag. */
529cad9c 7241
f192137b
JB
7242static struct type *
7243ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7244 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7245{
61ee279c 7246 type = ada_check_typedef (type);
d2e4a39e
AS
7247 switch (TYPE_CODE (type))
7248 {
7249 default:
14f9c5c9 7250 return type;
d2e4a39e 7251 case TYPE_CODE_STRUCT:
4c4b4cd2 7252 {
76a01679 7253 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7254 struct type *fixed_record_type =
7255 to_fixed_record_type (type, valaddr, address, NULL);
529cad9c
PH
7256 /* If STATIC_TYPE is a tagged type and we know the object's address,
7257 then we can determine its tag, and compute the object's actual
1ed6ede0
JB
7258 type from there. Note that we have to use the fixed record
7259 type (the parent part of the record may have dynamic fields
7260 and the way the location of _tag is expressed may depend on
7261 them). */
529cad9c 7262
1ed6ede0 7263 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7264 {
7265 struct type *real_type =
1ed6ede0
JB
7266 type_from_tag (value_tag_from_contents_and_address
7267 (fixed_record_type,
7268 valaddr,
7269 address));
76a01679 7270 if (real_type != NULL)
1ed6ede0 7271 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7272 }
4af88198
JB
7273
7274 /* Check to see if there is a parallel ___XVZ variable.
7275 If there is, then it provides the actual size of our type. */
7276 else if (ada_type_name (fixed_record_type) != NULL)
7277 {
7278 char *name = ada_type_name (fixed_record_type);
7279 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7280 int xvz_found = 0;
7281 LONGEST size;
7282
88c15c34 7283 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
7284 size = get_int_var_value (xvz_name, &xvz_found);
7285 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7286 {
7287 fixed_record_type = copy_type (fixed_record_type);
7288 TYPE_LENGTH (fixed_record_type) = size;
7289
7290 /* The FIXED_RECORD_TYPE may have be a stub. We have
7291 observed this when the debugging info is STABS, and
7292 apparently it is something that is hard to fix.
7293
7294 In practice, we don't need the actual type definition
7295 at all, because the presence of the XVZ variable allows us
7296 to assume that there must be a XVS type as well, which we
7297 should be able to use later, when we need the actual type
7298 definition.
7299
7300 In the meantime, pretend that the "fixed" type we are
7301 returning is NOT a stub, because this can cause trouble
7302 when using this type to create new types targeting it.
7303 Indeed, the associated creation routines often check
7304 whether the target type is a stub and will try to replace
7305 it, thus using a type with the wrong size. This, in turn,
7306 might cause the new type to have the wrong size too.
7307 Consider the case of an array, for instance, where the size
7308 of the array is computed from the number of elements in
7309 our array multiplied by the size of its element. */
7310 TYPE_STUB (fixed_record_type) = 0;
7311 }
7312 }
1ed6ede0 7313 return fixed_record_type;
4c4b4cd2 7314 }
d2e4a39e 7315 case TYPE_CODE_ARRAY:
4c4b4cd2 7316 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
7317 case TYPE_CODE_UNION:
7318 if (dval == NULL)
4c4b4cd2 7319 return type;
d2e4a39e 7320 else
4c4b4cd2 7321 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 7322 }
14f9c5c9
AS
7323}
7324
f192137b
JB
7325/* The same as ada_to_fixed_type_1, except that it preserves the type
7326 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7327 ada_to_fixed_type_1 would return the type referenced by TYPE. */
7328
7329struct type *
7330ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7331 CORE_ADDR address, struct value *dval, int check_tag)
7332
7333{
7334 struct type *fixed_type =
7335 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7336
7337 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
7338 && TYPE_TARGET_TYPE (type) == fixed_type)
7339 return type;
7340
7341 return fixed_type;
7342}
7343
14f9c5c9 7344/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 7345 TYPE0, but based on no runtime data. */
14f9c5c9 7346
d2e4a39e
AS
7347static struct type *
7348to_static_fixed_type (struct type *type0)
14f9c5c9 7349{
d2e4a39e 7350 struct type *type;
14f9c5c9
AS
7351
7352 if (type0 == NULL)
7353 return NULL;
7354
876cecd0 7355 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7356 return type0;
7357
61ee279c 7358 type0 = ada_check_typedef (type0);
d2e4a39e 7359
14f9c5c9
AS
7360 switch (TYPE_CODE (type0))
7361 {
7362 default:
7363 return type0;
7364 case TYPE_CODE_STRUCT:
7365 type = dynamic_template_type (type0);
d2e4a39e 7366 if (type != NULL)
4c4b4cd2
PH
7367 return template_to_static_fixed_type (type);
7368 else
7369 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7370 case TYPE_CODE_UNION:
7371 type = ada_find_parallel_type (type0, "___XVU");
7372 if (type != NULL)
4c4b4cd2
PH
7373 return template_to_static_fixed_type (type);
7374 else
7375 return template_to_static_fixed_type (type0);
14f9c5c9
AS
7376 }
7377}
7378
4c4b4cd2
PH
7379/* A static approximation of TYPE with all type wrappers removed. */
7380
d2e4a39e
AS
7381static struct type *
7382static_unwrap_type (struct type *type)
14f9c5c9
AS
7383{
7384 if (ada_is_aligner_type (type))
7385 {
61ee279c 7386 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 7387 if (ada_type_name (type1) == NULL)
4c4b4cd2 7388 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
7389
7390 return static_unwrap_type (type1);
7391 }
d2e4a39e 7392 else
14f9c5c9 7393 {
d2e4a39e
AS
7394 struct type *raw_real_type = ada_get_base_type (type);
7395 if (raw_real_type == type)
4c4b4cd2 7396 return type;
14f9c5c9 7397 else
4c4b4cd2 7398 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
7399 }
7400}
7401
7402/* In some cases, incomplete and private types require
4c4b4cd2 7403 cross-references that are not resolved as records (for example,
14f9c5c9
AS
7404 type Foo;
7405 type FooP is access Foo;
7406 V: FooP;
7407 type Foo is array ...;
4c4b4cd2 7408 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
7409 cross-references to such types, we instead substitute for FooP a
7410 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 7411 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
7412
7413/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
7414 exists, otherwise TYPE. */
7415
d2e4a39e 7416struct type *
61ee279c 7417ada_check_typedef (struct type *type)
14f9c5c9 7418{
727e3d2e
JB
7419 if (type == NULL)
7420 return NULL;
7421
14f9c5c9
AS
7422 CHECK_TYPEDEF (type);
7423 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 7424 || !TYPE_STUB (type)
14f9c5c9
AS
7425 || TYPE_TAG_NAME (type) == NULL)
7426 return type;
d2e4a39e 7427 else
14f9c5c9 7428 {
d2e4a39e
AS
7429 char *name = TYPE_TAG_NAME (type);
7430 struct type *type1 = ada_find_any_type (name);
14f9c5c9
AS
7431 return (type1 == NULL) ? type : type1;
7432 }
7433}
7434
7435/* A value representing the data at VALADDR/ADDRESS as described by
7436 type TYPE0, but with a standard (static-sized) type that correctly
7437 describes it. If VAL0 is not NULL and TYPE0 already is a standard
7438 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 7439 creation of struct values]. */
14f9c5c9 7440
4c4b4cd2
PH
7441static struct value *
7442ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
7443 struct value *val0)
14f9c5c9 7444{
1ed6ede0 7445 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
14f9c5c9
AS
7446 if (type == type0 && val0 != NULL)
7447 return val0;
d2e4a39e 7448 else
4c4b4cd2
PH
7449 return value_from_contents_and_address (type, 0, address);
7450}
7451
7452/* A value representing VAL, but with a standard (static-sized) type
7453 that correctly describes it. Does not necessarily create a new
7454 value. */
7455
7456static struct value *
7457ada_to_fixed_value (struct value *val)
7458{
df407dfe 7459 return ada_to_fixed_value_create (value_type (val),
42ae5230 7460 value_address (val),
4c4b4cd2 7461 val);
14f9c5c9
AS
7462}
7463
4c4b4cd2 7464/* A value representing VAL, but with a standard (static-sized) type
14f9c5c9
AS
7465 chosen to approximate the real type of VAL as well as possible, but
7466 without consulting any runtime values. For Ada dynamic-sized
4c4b4cd2 7467 types, therefore, the type of the result is likely to be inaccurate. */
14f9c5c9 7468
2c0b251b 7469static struct value *
d2e4a39e 7470ada_to_static_fixed_value (struct value *val)
14f9c5c9 7471{
d2e4a39e 7472 struct type *type =
df407dfe
AC
7473 to_static_fixed_type (static_unwrap_type (value_type (val)));
7474 if (type == value_type (val))
14f9c5c9
AS
7475 return val;
7476 else
4c4b4cd2 7477 return coerce_unspec_val_to_type (val, type);
14f9c5c9 7478}
d2e4a39e 7479\f
14f9c5c9 7480
14f9c5c9
AS
7481/* Attributes */
7482
4c4b4cd2
PH
7483/* Table mapping attribute numbers to names.
7484 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 7485
d2e4a39e 7486static const char *attribute_names[] = {
14f9c5c9
AS
7487 "<?>",
7488
d2e4a39e 7489 "first",
14f9c5c9
AS
7490 "last",
7491 "length",
7492 "image",
14f9c5c9
AS
7493 "max",
7494 "min",
4c4b4cd2
PH
7495 "modulus",
7496 "pos",
7497 "size",
7498 "tag",
14f9c5c9 7499 "val",
14f9c5c9
AS
7500 0
7501};
7502
d2e4a39e 7503const char *
4c4b4cd2 7504ada_attribute_name (enum exp_opcode n)
14f9c5c9 7505{
4c4b4cd2
PH
7506 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
7507 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
7508 else
7509 return attribute_names[0];
7510}
7511
4c4b4cd2 7512/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 7513
4c4b4cd2
PH
7514static LONGEST
7515pos_atr (struct value *arg)
14f9c5c9 7516{
24209737
PH
7517 struct value *val = coerce_ref (arg);
7518 struct type *type = value_type (val);
14f9c5c9 7519
d2e4a39e 7520 if (!discrete_type_p (type))
323e0a4a 7521 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
7522
7523 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7524 {
7525 int i;
24209737 7526 LONGEST v = value_as_long (val);
14f9c5c9 7527
d2e4a39e 7528 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7529 {
7530 if (v == TYPE_FIELD_BITPOS (type, i))
7531 return i;
7532 }
323e0a4a 7533 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
7534 }
7535 else
24209737 7536 return value_as_long (val);
4c4b4cd2
PH
7537}
7538
7539static struct value *
3cb382c9 7540value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 7541{
3cb382c9 7542 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
7543}
7544
4c4b4cd2 7545/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 7546
d2e4a39e
AS
7547static struct value *
7548value_val_atr (struct type *type, struct value *arg)
14f9c5c9 7549{
d2e4a39e 7550 if (!discrete_type_p (type))
323e0a4a 7551 error (_("'VAL only defined on discrete types"));
df407dfe 7552 if (!integer_type_p (value_type (arg)))
323e0a4a 7553 error (_("'VAL requires integral argument"));
14f9c5c9
AS
7554
7555 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
7556 {
7557 long pos = value_as_long (arg);
7558 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 7559 error (_("argument to 'VAL out of range"));
d2e4a39e 7560 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
14f9c5c9
AS
7561 }
7562 else
7563 return value_from_longest (type, value_as_long (arg));
7564}
14f9c5c9 7565\f
d2e4a39e 7566
4c4b4cd2 7567 /* Evaluation */
14f9c5c9 7568
4c4b4cd2
PH
7569/* True if TYPE appears to be an Ada character type.
7570 [At the moment, this is true only for Character and Wide_Character;
7571 It is a heuristic test that could stand improvement]. */
14f9c5c9 7572
d2e4a39e
AS
7573int
7574ada_is_character_type (struct type *type)
14f9c5c9 7575{
7b9f71f2
JB
7576 const char *name;
7577
7578 /* If the type code says it's a character, then assume it really is,
7579 and don't check any further. */
7580 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
7581 return 1;
7582
7583 /* Otherwise, assume it's a character type iff it is a discrete type
7584 with a known character type name. */
7585 name = ada_type_name (type);
7586 return (name != NULL
7587 && (TYPE_CODE (type) == TYPE_CODE_INT
7588 || TYPE_CODE (type) == TYPE_CODE_RANGE)
7589 && (strcmp (name, "character") == 0
7590 || strcmp (name, "wide_character") == 0
5a517ebd 7591 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 7592 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
7593}
7594
4c4b4cd2 7595/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
7596
7597int
ebf56fd3 7598ada_is_string_type (struct type *type)
14f9c5c9 7599{
61ee279c 7600 type = ada_check_typedef (type);
d2e4a39e 7601 if (type != NULL
14f9c5c9 7602 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
7603 && (ada_is_simple_array_type (type)
7604 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
7605 && ada_array_arity (type) == 1)
7606 {
7607 struct type *elttype = ada_array_element_type (type, 1);
7608
7609 return ada_is_character_type (elttype);
7610 }
d2e4a39e 7611 else
14f9c5c9
AS
7612 return 0;
7613}
7614
7615
7616/* True if TYPE is a struct type introduced by the compiler to force the
7617 alignment of a value. Such types have a single field with a
4c4b4cd2 7618 distinctive name. */
14f9c5c9
AS
7619
7620int
ebf56fd3 7621ada_is_aligner_type (struct type *type)
14f9c5c9 7622{
61ee279c 7623 type = ada_check_typedef (type);
714e53ab
PH
7624
7625 /* If we can find a parallel XVS type, then the XVS type should
7626 be used instead of this type. And hence, this is not an aligner
7627 type. */
7628 if (ada_find_parallel_type (type, "___XVS") != NULL)
7629 return 0;
7630
14f9c5c9 7631 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
7632 && TYPE_NFIELDS (type) == 1
7633 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
7634}
7635
7636/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 7637 the parallel type. */
14f9c5c9 7638
d2e4a39e
AS
7639struct type *
7640ada_get_base_type (struct type *raw_type)
14f9c5c9 7641{
d2e4a39e
AS
7642 struct type *real_type_namer;
7643 struct type *raw_real_type;
14f9c5c9
AS
7644
7645 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
7646 return raw_type;
7647
284614f0
JB
7648 if (ada_is_aligner_type (raw_type))
7649 /* The encoding specifies that we should always use the aligner type.
7650 So, even if this aligner type has an associated XVS type, we should
7651 simply ignore it.
7652
7653 According to the compiler gurus, an XVS type parallel to an aligner
7654 type may exist because of a stabs limitation. In stabs, aligner
7655 types are empty because the field has a variable-sized type, and
7656 thus cannot actually be used as an aligner type. As a result,
7657 we need the associated parallel XVS type to decode the type.
7658 Since the policy in the compiler is to not change the internal
7659 representation based on the debugging info format, we sometimes
7660 end up having a redundant XVS type parallel to the aligner type. */
7661 return raw_type;
7662
14f9c5c9 7663 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 7664 if (real_type_namer == NULL
14f9c5c9
AS
7665 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
7666 || TYPE_NFIELDS (real_type_namer) != 1)
7667 return raw_type;
7668
7669 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
d2e4a39e 7670 if (raw_real_type == NULL)
14f9c5c9
AS
7671 return raw_type;
7672 else
7673 return raw_real_type;
d2e4a39e 7674}
14f9c5c9 7675
4c4b4cd2 7676/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 7677
d2e4a39e
AS
7678struct type *
7679ada_aligned_type (struct type *type)
14f9c5c9
AS
7680{
7681 if (ada_is_aligner_type (type))
7682 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
7683 else
7684 return ada_get_base_type (type);
7685}
7686
7687
7688/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 7689 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 7690
fc1a4b47
AC
7691const gdb_byte *
7692ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 7693{
d2e4a39e 7694 if (ada_is_aligner_type (type))
14f9c5c9 7695 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
7696 valaddr +
7697 TYPE_FIELD_BITPOS (type,
7698 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
7699 else
7700 return valaddr;
7701}
7702
4c4b4cd2
PH
7703
7704
14f9c5c9 7705/* The printed representation of an enumeration literal with encoded
4c4b4cd2 7706 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
7707const char *
7708ada_enum_name (const char *name)
14f9c5c9 7709{
4c4b4cd2
PH
7710 static char *result;
7711 static size_t result_len = 0;
d2e4a39e 7712 char *tmp;
14f9c5c9 7713
4c4b4cd2
PH
7714 /* First, unqualify the enumeration name:
7715 1. Search for the last '.' character. If we find one, then skip
76a01679
JB
7716 all the preceeding characters, the unqualified name starts
7717 right after that dot.
4c4b4cd2 7718 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
7719 translates dots into "__". Search forward for double underscores,
7720 but stop searching when we hit an overloading suffix, which is
7721 of the form "__" followed by digits. */
4c4b4cd2 7722
c3e5cd34
PH
7723 tmp = strrchr (name, '.');
7724 if (tmp != NULL)
4c4b4cd2
PH
7725 name = tmp + 1;
7726 else
14f9c5c9 7727 {
4c4b4cd2
PH
7728 while ((tmp = strstr (name, "__")) != NULL)
7729 {
7730 if (isdigit (tmp[2]))
7731 break;
7732 else
7733 name = tmp + 2;
7734 }
14f9c5c9
AS
7735 }
7736
7737 if (name[0] == 'Q')
7738 {
14f9c5c9
AS
7739 int v;
7740 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
7741 {
7742 if (sscanf (name + 2, "%x", &v) != 1)
7743 return name;
7744 }
14f9c5c9 7745 else
4c4b4cd2 7746 return name;
14f9c5c9 7747
4c4b4cd2 7748 GROW_VECT (result, result_len, 16);
14f9c5c9 7749 if (isascii (v) && isprint (v))
88c15c34 7750 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 7751 else if (name[1] == 'U')
88c15c34 7752 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 7753 else
88c15c34 7754 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
7755
7756 return result;
7757 }
d2e4a39e 7758 else
4c4b4cd2 7759 {
c3e5cd34
PH
7760 tmp = strstr (name, "__");
7761 if (tmp == NULL)
7762 tmp = strstr (name, "$");
7763 if (tmp != NULL)
4c4b4cd2
PH
7764 {
7765 GROW_VECT (result, result_len, tmp - name + 1);
7766 strncpy (result, name, tmp - name);
7767 result[tmp - name] = '\0';
7768 return result;
7769 }
7770
7771 return name;
7772 }
14f9c5c9
AS
7773}
7774
14f9c5c9
AS
7775/* Evaluate the subexpression of EXP starting at *POS as for
7776 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 7777 expression. */
14f9c5c9 7778
d2e4a39e
AS
7779static struct value *
7780evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 7781{
4b27a620 7782 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
7783}
7784
7785/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 7786 value it wraps. */
14f9c5c9 7787
d2e4a39e
AS
7788static struct value *
7789unwrap_value (struct value *val)
14f9c5c9 7790{
df407dfe 7791 struct type *type = ada_check_typedef (value_type (val));
14f9c5c9
AS
7792 if (ada_is_aligner_type (type))
7793 {
de4d072f 7794 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 7795 struct type *val_type = ada_check_typedef (value_type (v));
14f9c5c9 7796 if (ada_type_name (val_type) == NULL)
4c4b4cd2 7797 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
7798
7799 return unwrap_value (v);
7800 }
d2e4a39e 7801 else
14f9c5c9 7802 {
d2e4a39e 7803 struct type *raw_real_type =
61ee279c 7804 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 7805
14f9c5c9 7806 if (type == raw_real_type)
4c4b4cd2 7807 return val;
14f9c5c9 7808
d2e4a39e 7809 return
4c4b4cd2
PH
7810 coerce_unspec_val_to_type
7811 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 7812 value_address (val),
1ed6ede0 7813 NULL, 1));
14f9c5c9
AS
7814 }
7815}
d2e4a39e
AS
7816
7817static struct value *
7818cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
7819{
7820 LONGEST val;
7821
df407dfe 7822 if (type == value_type (arg))
14f9c5c9 7823 return arg;
df407dfe 7824 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 7825 val = ada_float_to_fixed (type,
df407dfe 7826 ada_fixed_to_float (value_type (arg),
4c4b4cd2 7827 value_as_long (arg)));
d2e4a39e 7828 else
14f9c5c9 7829 {
a53b7a21 7830 DOUBLEST argd = value_as_double (arg);
14f9c5c9
AS
7831 val = ada_float_to_fixed (type, argd);
7832 }
7833
7834 return value_from_longest (type, val);
7835}
7836
d2e4a39e 7837static struct value *
a53b7a21 7838cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 7839{
df407dfe 7840 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 7841 value_as_long (arg));
a53b7a21 7842 return value_from_double (type, val);
14f9c5c9
AS
7843}
7844
4c4b4cd2
PH
7845/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
7846 return the converted value. */
7847
d2e4a39e
AS
7848static struct value *
7849coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 7850{
df407dfe 7851 struct type *type2 = value_type (val);
14f9c5c9
AS
7852 if (type == type2)
7853 return val;
7854
61ee279c
PH
7855 type2 = ada_check_typedef (type2);
7856 type = ada_check_typedef (type);
14f9c5c9 7857
d2e4a39e
AS
7858 if (TYPE_CODE (type2) == TYPE_CODE_PTR
7859 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
7860 {
7861 val = ada_value_ind (val);
df407dfe 7862 type2 = value_type (val);
14f9c5c9
AS
7863 }
7864
d2e4a39e 7865 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
7866 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
7867 {
7868 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
7869 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
7870 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 7871 error (_("Incompatible types in assignment"));
04624583 7872 deprecated_set_value_type (val, type);
14f9c5c9 7873 }
d2e4a39e 7874 return val;
14f9c5c9
AS
7875}
7876
4c4b4cd2
PH
7877static struct value *
7878ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
7879{
7880 struct value *val;
7881 struct type *type1, *type2;
7882 LONGEST v, v1, v2;
7883
994b9211
AC
7884 arg1 = coerce_ref (arg1);
7885 arg2 = coerce_ref (arg2);
df407dfe
AC
7886 type1 = base_type (ada_check_typedef (value_type (arg1)));
7887 type2 = base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 7888
76a01679
JB
7889 if (TYPE_CODE (type1) != TYPE_CODE_INT
7890 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
7891 return value_binop (arg1, arg2, op);
7892
76a01679 7893 switch (op)
4c4b4cd2
PH
7894 {
7895 case BINOP_MOD:
7896 case BINOP_DIV:
7897 case BINOP_REM:
7898 break;
7899 default:
7900 return value_binop (arg1, arg2, op);
7901 }
7902
7903 v2 = value_as_long (arg2);
7904 if (v2 == 0)
323e0a4a 7905 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
7906
7907 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
7908 return value_binop (arg1, arg2, op);
7909
7910 v1 = value_as_long (arg1);
7911 switch (op)
7912 {
7913 case BINOP_DIV:
7914 v = v1 / v2;
76a01679
JB
7915 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
7916 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
7917 break;
7918 case BINOP_REM:
7919 v = v1 % v2;
76a01679
JB
7920 if (v * v1 < 0)
7921 v -= v2;
4c4b4cd2
PH
7922 break;
7923 default:
7924 /* Should not reach this point. */
7925 v = 0;
7926 }
7927
7928 val = allocate_value (type1);
990a07ab 7929 store_unsigned_integer (value_contents_raw (val),
df407dfe 7930 TYPE_LENGTH (value_type (val)), v);
4c4b4cd2
PH
7931 return val;
7932}
7933
7934static int
7935ada_value_equal (struct value *arg1, struct value *arg2)
7936{
df407dfe
AC
7937 if (ada_is_direct_array_type (value_type (arg1))
7938 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 7939 {
f58b38bf
JB
7940 /* Automatically dereference any array reference before
7941 we attempt to perform the comparison. */
7942 arg1 = ada_coerce_ref (arg1);
7943 arg2 = ada_coerce_ref (arg2);
7944
4c4b4cd2
PH
7945 arg1 = ada_coerce_to_simple_array (arg1);
7946 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
7947 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
7948 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 7949 error (_("Attempt to compare array with non-array"));
4c4b4cd2 7950 /* FIXME: The following works only for types whose
76a01679
JB
7951 representations use all bits (no padding or undefined bits)
7952 and do not have user-defined equality. */
7953 return
df407dfe 7954 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 7955 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 7956 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
7957 }
7958 return value_equal (arg1, arg2);
7959}
7960
52ce6436
PH
7961/* Total number of component associations in the aggregate starting at
7962 index PC in EXP. Assumes that index PC is the start of an
7963 OP_AGGREGATE. */
7964
7965static int
7966num_component_specs (struct expression *exp, int pc)
7967{
7968 int n, m, i;
7969 m = exp->elts[pc + 1].longconst;
7970 pc += 3;
7971 n = 0;
7972 for (i = 0; i < m; i += 1)
7973 {
7974 switch (exp->elts[pc].opcode)
7975 {
7976 default:
7977 n += 1;
7978 break;
7979 case OP_CHOICES:
7980 n += exp->elts[pc + 1].longconst;
7981 break;
7982 }
7983 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
7984 }
7985 return n;
7986}
7987
7988/* Assign the result of evaluating EXP starting at *POS to the INDEXth
7989 component of LHS (a simple array or a record), updating *POS past
7990 the expression, assuming that LHS is contained in CONTAINER. Does
7991 not modify the inferior's memory, nor does it modify LHS (unless
7992 LHS == CONTAINER). */
7993
7994static void
7995assign_component (struct value *container, struct value *lhs, LONGEST index,
7996 struct expression *exp, int *pos)
7997{
7998 struct value *mark = value_mark ();
7999 struct value *elt;
8000 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8001 {
6d84d3d8 8002 struct value *index_val = value_from_longest (builtin_type_int32, index);
52ce6436
PH
8003 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8004 }
8005 else
8006 {
8007 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8008 elt = ada_to_fixed_value (unwrap_value (elt));
8009 }
8010
8011 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8012 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8013 else
8014 value_assign_to_component (container, elt,
8015 ada_evaluate_subexp (NULL, exp, pos,
8016 EVAL_NORMAL));
8017
8018 value_free_to_mark (mark);
8019}
8020
8021/* Assuming that LHS represents an lvalue having a record or array
8022 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8023 of that aggregate's value to LHS, advancing *POS past the
8024 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8025 lvalue containing LHS (possibly LHS itself). Does not modify
8026 the inferior's memory, nor does it modify the contents of
8027 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8028
8029static struct value *
8030assign_aggregate (struct value *container,
8031 struct value *lhs, struct expression *exp,
8032 int *pos, enum noside noside)
8033{
8034 struct type *lhs_type;
8035 int n = exp->elts[*pos+1].longconst;
8036 LONGEST low_index, high_index;
8037 int num_specs;
8038 LONGEST *indices;
8039 int max_indices, num_indices;
8040 int is_array_aggregate;
8041 int i;
8042 struct value *mark = value_mark ();
8043
8044 *pos += 3;
8045 if (noside != EVAL_NORMAL)
8046 {
8047 int i;
8048 for (i = 0; i < n; i += 1)
8049 ada_evaluate_subexp (NULL, exp, pos, noside);
8050 return container;
8051 }
8052
8053 container = ada_coerce_ref (container);
8054 if (ada_is_direct_array_type (value_type (container)))
8055 container = ada_coerce_to_simple_array (container);
8056 lhs = ada_coerce_ref (lhs);
8057 if (!deprecated_value_modifiable (lhs))
8058 error (_("Left operand of assignment is not a modifiable lvalue."));
8059
8060 lhs_type = value_type (lhs);
8061 if (ada_is_direct_array_type (lhs_type))
8062 {
8063 lhs = ada_coerce_to_simple_array (lhs);
8064 lhs_type = value_type (lhs);
8065 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8066 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8067 is_array_aggregate = 1;
8068 }
8069 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8070 {
8071 low_index = 0;
8072 high_index = num_visible_fields (lhs_type) - 1;
8073 is_array_aggregate = 0;
8074 }
8075 else
8076 error (_("Left-hand side must be array or record."));
8077
8078 num_specs = num_component_specs (exp, *pos - 3);
8079 max_indices = 4 * num_specs + 4;
8080 indices = alloca (max_indices * sizeof (indices[0]));
8081 indices[0] = indices[1] = low_index - 1;
8082 indices[2] = indices[3] = high_index + 1;
8083 num_indices = 4;
8084
8085 for (i = 0; i < n; i += 1)
8086 {
8087 switch (exp->elts[*pos].opcode)
8088 {
8089 case OP_CHOICES:
8090 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8091 &num_indices, max_indices,
8092 low_index, high_index);
8093 break;
8094 case OP_POSITIONAL:
8095 aggregate_assign_positional (container, lhs, exp, pos, indices,
8096 &num_indices, max_indices,
8097 low_index, high_index);
8098 break;
8099 case OP_OTHERS:
8100 if (i != n-1)
8101 error (_("Misplaced 'others' clause"));
8102 aggregate_assign_others (container, lhs, exp, pos, indices,
8103 num_indices, low_index, high_index);
8104 break;
8105 default:
8106 error (_("Internal error: bad aggregate clause"));
8107 }
8108 }
8109
8110 return container;
8111}
8112
8113/* Assign into the component of LHS indexed by the OP_POSITIONAL
8114 construct at *POS, updating *POS past the construct, given that
8115 the positions are relative to lower bound LOW, where HIGH is the
8116 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8117 updating *NUM_INDICES as needed. CONTAINER is as for
8118 assign_aggregate. */
8119static void
8120aggregate_assign_positional (struct value *container,
8121 struct value *lhs, struct expression *exp,
8122 int *pos, LONGEST *indices, int *num_indices,
8123 int max_indices, LONGEST low, LONGEST high)
8124{
8125 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8126
8127 if (ind - 1 == high)
e1d5a0d2 8128 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8129 if (ind <= high)
8130 {
8131 add_component_interval (ind, ind, indices, num_indices, max_indices);
8132 *pos += 3;
8133 assign_component (container, lhs, ind, exp, pos);
8134 }
8135 else
8136 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8137}
8138
8139/* Assign into the components of LHS indexed by the OP_CHOICES
8140 construct at *POS, updating *POS past the construct, given that
8141 the allowable indices are LOW..HIGH. Record the indices assigned
8142 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8143 needed. CONTAINER is as for assign_aggregate. */
8144static void
8145aggregate_assign_from_choices (struct value *container,
8146 struct value *lhs, struct expression *exp,
8147 int *pos, LONGEST *indices, int *num_indices,
8148 int max_indices, LONGEST low, LONGEST high)
8149{
8150 int j;
8151 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8152 int choice_pos, expr_pc;
8153 int is_array = ada_is_direct_array_type (value_type (lhs));
8154
8155 choice_pos = *pos += 3;
8156
8157 for (j = 0; j < n_choices; j += 1)
8158 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8159 expr_pc = *pos;
8160 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8161
8162 for (j = 0; j < n_choices; j += 1)
8163 {
8164 LONGEST lower, upper;
8165 enum exp_opcode op = exp->elts[choice_pos].opcode;
8166 if (op == OP_DISCRETE_RANGE)
8167 {
8168 choice_pos += 1;
8169 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8170 EVAL_NORMAL));
8171 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8172 EVAL_NORMAL));
8173 }
8174 else if (is_array)
8175 {
8176 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8177 EVAL_NORMAL));
8178 upper = lower;
8179 }
8180 else
8181 {
8182 int ind;
8183 char *name;
8184 switch (op)
8185 {
8186 case OP_NAME:
8187 name = &exp->elts[choice_pos + 2].string;
8188 break;
8189 case OP_VAR_VALUE:
8190 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8191 break;
8192 default:
8193 error (_("Invalid record component association."));
8194 }
8195 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8196 ind = 0;
8197 if (! find_struct_field (name, value_type (lhs), 0,
8198 NULL, NULL, NULL, NULL, &ind))
8199 error (_("Unknown component name: %s."), name);
8200 lower = upper = ind;
8201 }
8202
8203 if (lower <= upper && (lower < low || upper > high))
8204 error (_("Index in component association out of bounds."));
8205
8206 add_component_interval (lower, upper, indices, num_indices,
8207 max_indices);
8208 while (lower <= upper)
8209 {
8210 int pos1;
8211 pos1 = expr_pc;
8212 assign_component (container, lhs, lower, exp, &pos1);
8213 lower += 1;
8214 }
8215 }
8216}
8217
8218/* Assign the value of the expression in the OP_OTHERS construct in
8219 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8220 have not been previously assigned. The index intervals already assigned
8221 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8222 OP_OTHERS clause. CONTAINER is as for assign_aggregate*/
8223static void
8224aggregate_assign_others (struct value *container,
8225 struct value *lhs, struct expression *exp,
8226 int *pos, LONGEST *indices, int num_indices,
8227 LONGEST low, LONGEST high)
8228{
8229 int i;
8230 int expr_pc = *pos+1;
8231
8232 for (i = 0; i < num_indices - 2; i += 2)
8233 {
8234 LONGEST ind;
8235 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8236 {
8237 int pos;
8238 pos = expr_pc;
8239 assign_component (container, lhs, ind, exp, &pos);
8240 }
8241 }
8242 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8243}
8244
8245/* Add the interval [LOW .. HIGH] to the sorted set of intervals
8246 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8247 modifying *SIZE as needed. It is an error if *SIZE exceeds
8248 MAX_SIZE. The resulting intervals do not overlap. */
8249static void
8250add_component_interval (LONGEST low, LONGEST high,
8251 LONGEST* indices, int *size, int max_size)
8252{
8253 int i, j;
8254 for (i = 0; i < *size; i += 2) {
8255 if (high >= indices[i] && low <= indices[i + 1])
8256 {
8257 int kh;
8258 for (kh = i + 2; kh < *size; kh += 2)
8259 if (high < indices[kh])
8260 break;
8261 if (low < indices[i])
8262 indices[i] = low;
8263 indices[i + 1] = indices[kh - 1];
8264 if (high > indices[i + 1])
8265 indices[i + 1] = high;
8266 memcpy (indices + i + 2, indices + kh, *size - kh);
8267 *size -= kh - i - 2;
8268 return;
8269 }
8270 else if (high < indices[i])
8271 break;
8272 }
8273
8274 if (*size == max_size)
8275 error (_("Internal error: miscounted aggregate components."));
8276 *size += 2;
8277 for (j = *size-1; j >= i+2; j -= 1)
8278 indices[j] = indices[j - 2];
8279 indices[i] = low;
8280 indices[i + 1] = high;
8281}
8282
6e48bd2c
JB
8283/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
8284 is different. */
8285
8286static struct value *
8287ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
8288{
8289 if (type == ada_check_typedef (value_type (arg2)))
8290 return arg2;
8291
8292 if (ada_is_fixed_point_type (type))
8293 return (cast_to_fixed (type, arg2));
8294
8295 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8296 return cast_from_fixed (type, arg2);
6e48bd2c
JB
8297
8298 return value_cast (type, arg2);
8299}
8300
284614f0
JB
8301/* Evaluating Ada expressions, and printing their result.
8302 ------------------------------------------------------
8303
8304 We usually evaluate an Ada expression in order to print its value.
8305 We also evaluate an expression in order to print its type, which
8306 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
8307 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
8308 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
8309 the evaluation compared to the EVAL_NORMAL, but is otherwise very
8310 similar.
8311
8312 Evaluating expressions is a little more complicated for Ada entities
8313 than it is for entities in languages such as C. The main reason for
8314 this is that Ada provides types whose definition might be dynamic.
8315 One example of such types is variant records. Or another example
8316 would be an array whose bounds can only be known at run time.
8317
8318 The following description is a general guide as to what should be
8319 done (and what should NOT be done) in order to evaluate an expression
8320 involving such types, and when. This does not cover how the semantic
8321 information is encoded by GNAT as this is covered separatly. For the
8322 document used as the reference for the GNAT encoding, see exp_dbug.ads
8323 in the GNAT sources.
8324
8325 Ideally, we should embed each part of this description next to its
8326 associated code. Unfortunately, the amount of code is so vast right
8327 now that it's hard to see whether the code handling a particular
8328 situation might be duplicated or not. One day, when the code is
8329 cleaned up, this guide might become redundant with the comments
8330 inserted in the code, and we might want to remove it.
8331
8332 When evaluating Ada expressions, the tricky issue is that they may
8333 reference entities whose type contents and size are not statically
8334 known. Consider for instance a variant record:
8335
8336 type Rec (Empty : Boolean := True) is record
8337 case Empty is
8338 when True => null;
8339 when False => Value : Integer;
8340 end case;
8341 end record;
8342 Yes : Rec := (Empty => False, Value => 1);
8343 No : Rec := (empty => True);
8344
8345 The size and contents of that record depends on the value of the
8346 descriminant (Rec.Empty). At this point, neither the debugging
8347 information nor the associated type structure in GDB are able to
8348 express such dynamic types. So what the debugger does is to create
8349 "fixed" versions of the type that applies to the specific object.
8350 We also informally refer to this opperation as "fixing" an object,
8351 which means creating its associated fixed type.
8352
8353 Example: when printing the value of variable "Yes" above, its fixed
8354 type would look like this:
8355
8356 type Rec is record
8357 Empty : Boolean;
8358 Value : Integer;
8359 end record;
8360
8361 On the other hand, if we printed the value of "No", its fixed type
8362 would become:
8363
8364 type Rec is record
8365 Empty : Boolean;
8366 end record;
8367
8368 Things become a little more complicated when trying to fix an entity
8369 with a dynamic type that directly contains another dynamic type,
8370 such as an array of variant records, for instance. There are
8371 two possible cases: Arrays, and records.
8372
8373 Arrays are a little simpler to handle, because the same amount of
8374 memory is allocated for each element of the array, even if the amount
8375 of space used by each element changes from element to element.
8376 Consider for instance the following array of type Rec:
8377
8378 type Rec_Array is array (1 .. 2) of Rec;
8379
8380 The type structure in GDB describes an array in terms of its
8381 bounds, and the type of its elements. By design, all elements
8382 in the array have the same type. So we cannot use a fixed type
8383 for the array elements in this case, since the fixed type depends
8384 on the actual value of each element.
8385
8386 Fortunately, what happens in practice is that each element of
8387 the array has the same size, which is the maximum size that
8388 might be needed in order to hold an object of the element type.
8389 And the compiler shows it in the debugging information by wrapping
8390 the array element inside a private PAD type. This type should not
8391 be shown to the user, and must be "unwrap"'ed before printing. Note
8392 that we also use the adjective "aligner" in our code to designate
8393 these wrapper types.
8394
8395 These wrapper types should have a constant size, which is the size
8396 of each element of the array. In the case when the size is statically
8397 known, the PAD type will already have the right size, and the array
8398 element type should remain unfixed. But there are cases when
8399 this size is not statically known. For instance, assuming that
8400 "Five" is an integer variable:
8401
8402 type Dynamic is array (1 .. Five) of Integer;
8403 type Wrapper (Has_Length : Boolean := False) is record
8404 Data : Dynamic;
8405 case Has_Length is
8406 when True => Length : Integer;
8407 when False => null;
8408 end case;
8409 end record;
8410 type Wrapper_Array is array (1 .. 2) of Wrapper;
8411
8412 Hello : Wrapper_Array := (others => (Has_Length => True,
8413 Data => (others => 17),
8414 Length => 1));
8415
8416
8417 The debugging info would describe variable Hello as being an
8418 array of a PAD type. The size of that PAD type is not statically
8419 known, but can be determined using a parallel XVZ variable.
8420 In that case, a copy of the PAD type with the correct size should
8421 be used for the fixed array.
8422
8423 However, things are slightly different in the case of dynamic
8424 record types. In this case, in order to compute the associated
8425 fixed type, we need to determine the size and offset of each of
8426 its components. This, in turn, requires us to compute the fixed
8427 type of each of these components.
8428
8429 Consider for instance the example:
8430
8431 type Bounded_String (Max_Size : Natural) is record
8432 Str : String (1 .. Max_Size);
8433 Length : Natural;
8434 end record;
8435 My_String : Bounded_String (Max_Size => 10);
8436
8437 In that case, the position of field "Length" depends on the size
8438 of field Str, which itself depends on the value of the Max_Size
8439 discriminant. In order to fix the type of variable My_String,
8440 we need to fix the type of field Str. Therefore, fixing a variant
8441 record requires us to fix each of its components.
8442
8443 However, if a component does not have a dynamic size, the component
8444 should not be fixed. In particular, fields that use a PAD type
8445 should not fixed. Here is an example where this might happen
8446 (assuming type Rec above):
8447
8448 type Container (Big : Boolean) is record
8449 First : Rec;
8450 After : Integer;
8451 case Big is
8452 when True => Another : Integer;
8453 when False => null;
8454 end case;
8455 end record;
8456 My_Container : Container := (Big => False,
8457 First => (Empty => True),
8458 After => 42);
8459
8460 In that example, the compiler creates a PAD type for component First,
8461 whose size is constant, and then positions the component After just
8462 right after it. The offset of component After is therefore constant
8463 in this case.
8464
8465 The debugger computes the position of each field based on an algorithm
8466 that uses, among other things, the actual position and size of the field
8467 preceding it. Let's now imagine that the user is trying to print the
8468 value of My_Container. If the type fixing was recursive, we would
8469 end up computing the offset of field After based on the size of the
8470 fixed version of field First. And since in our example First has
8471 only one actual field, the size of the fixed type is actually smaller
8472 than the amount of space allocated to that field, and thus we would
8473 compute the wrong offset of field After.
8474
8475 Unfortunately, we need to watch out for dynamic components of variant
8476 records (identified by the ___XVL suffix in the component name).
8477 Even if the target type is a PAD type, the size of that type might
8478 not be statically known. So the PAD type needs to be unwrapped and
8479 the resulting type needs to be fixed. Otherwise, we might end up
8480 with the wrong size for our component. This can be observed with
8481 the following type declarations:
8482
8483 type Octal is new Integer range 0 .. 7;
8484 type Octal_Array is array (Positive range <>) of Octal;
8485 pragma Pack (Octal_Array);
8486
8487 type Octal_Buffer (Size : Positive) is record
8488 Buffer : Octal_Array (1 .. Size);
8489 Length : Integer;
8490 end record;
8491
8492 In that case, Buffer is a PAD type whose size is unset and needs
8493 to be computed by fixing the unwrapped type.
8494
8495 Lastly, when should the sub-elements of a type that remained unfixed
8496 thus far, be actually fixed?
8497
8498 The answer is: Only when referencing that element. For instance
8499 when selecting one component of a record, this specific component
8500 should be fixed at that point in time. Or when printing the value
8501 of a record, each component should be fixed before its value gets
8502 printed. Similarly for arrays, the element of the array should be
8503 fixed when printing each element of the array, or when extracting
8504 one element out of that array. On the other hand, fixing should
8505 not be performed on the elements when taking a slice of an array!
8506
8507 Note that one of the side-effects of miscomputing the offset and
8508 size of each field is that we end up also miscomputing the size
8509 of the containing type. This can have adverse results when computing
8510 the value of an entity. GDB fetches the value of an entity based
8511 on the size of its type, and thus a wrong size causes GDB to fetch
8512 the wrong amount of memory. In the case where the computed size is
8513 too small, GDB fetches too little data to print the value of our
8514 entiry. Results in this case as unpredicatble, as we usually read
8515 past the buffer containing the data =:-o. */
8516
8517/* Implement the evaluate_exp routine in the exp_descriptor structure
8518 for the Ada language. */
8519
52ce6436 8520static struct value *
ebf56fd3 8521ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 8522 int *pos, enum noside noside)
14f9c5c9
AS
8523{
8524 enum exp_opcode op;
14f9c5c9
AS
8525 int tem, tem2, tem3;
8526 int pc;
8527 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
8528 struct type *type;
52ce6436 8529 int nargs, oplen;
d2e4a39e 8530 struct value **argvec;
14f9c5c9 8531
d2e4a39e
AS
8532 pc = *pos;
8533 *pos += 1;
14f9c5c9
AS
8534 op = exp->elts[pc].opcode;
8535
d2e4a39e 8536 switch (op)
14f9c5c9
AS
8537 {
8538 default:
8539 *pos -= 1;
6e48bd2c
JB
8540 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8541 arg1 = unwrap_value (arg1);
8542
8543 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
8544 then we need to perform the conversion manually, because
8545 evaluate_subexp_standard doesn't do it. This conversion is
8546 necessary in Ada because the different kinds of float/fixed
8547 types in Ada have different representations.
8548
8549 Similarly, we need to perform the conversion from OP_LONG
8550 ourselves. */
8551 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
8552 arg1 = ada_value_cast (expect_type, arg1, noside);
8553
8554 return arg1;
4c4b4cd2
PH
8555
8556 case OP_STRING:
8557 {
76a01679
JB
8558 struct value *result;
8559 *pos -= 1;
8560 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
8561 /* The result type will have code OP_STRING, bashed there from
8562 OP_ARRAY. Bash it back. */
df407dfe
AC
8563 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
8564 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 8565 return result;
4c4b4cd2 8566 }
14f9c5c9
AS
8567
8568 case UNOP_CAST:
8569 (*pos) += 2;
8570 type = exp->elts[pc + 1].type;
8571 arg1 = evaluate_subexp (type, exp, pos, noside);
8572 if (noside == EVAL_SKIP)
4c4b4cd2 8573 goto nosideret;
6e48bd2c 8574 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
8575 return arg1;
8576
4c4b4cd2
PH
8577 case UNOP_QUAL:
8578 (*pos) += 2;
8579 type = exp->elts[pc + 1].type;
8580 return ada_evaluate_subexp (type, exp, pos, noside);
8581
14f9c5c9
AS
8582 case BINOP_ASSIGN:
8583 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
8584 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8585 {
8586 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
8587 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
8588 return arg1;
8589 return ada_value_assign (arg1, arg1);
8590 }
003f3813
JB
8591 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
8592 except if the lhs of our assignment is a convenience variable.
8593 In the case of assigning to a convenience variable, the lhs
8594 should be exactly the result of the evaluation of the rhs. */
8595 type = value_type (arg1);
8596 if (VALUE_LVAL (arg1) == lval_internalvar)
8597 type = NULL;
8598 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 8599 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8600 return arg1;
df407dfe
AC
8601 if (ada_is_fixed_point_type (value_type (arg1)))
8602 arg2 = cast_to_fixed (value_type (arg1), arg2);
8603 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 8604 error
323e0a4a 8605 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 8606 else
df407dfe 8607 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 8608 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
8609
8610 case BINOP_ADD:
8611 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8612 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8613 if (noside == EVAL_SKIP)
4c4b4cd2 8614 goto nosideret;
2ac8a782
JB
8615 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8616 return (value_from_longest
8617 (value_type (arg1),
8618 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
8619 if ((ada_is_fixed_point_type (value_type (arg1))
8620 || ada_is_fixed_point_type (value_type (arg2)))
8621 && value_type (arg1) != value_type (arg2))
323e0a4a 8622 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
8623 /* Do the addition, and cast the result to the type of the first
8624 argument. We cannot cast the result to a reference type, so if
8625 ARG1 is a reference type, find its underlying type. */
8626 type = value_type (arg1);
8627 while (TYPE_CODE (type) == TYPE_CODE_REF)
8628 type = TYPE_TARGET_TYPE (type);
f44316fa 8629 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8630 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
8631
8632 case BINOP_SUB:
8633 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
8634 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
8635 if (noside == EVAL_SKIP)
4c4b4cd2 8636 goto nosideret;
2ac8a782
JB
8637 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
8638 return (value_from_longest
8639 (value_type (arg1),
8640 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
8641 if ((ada_is_fixed_point_type (value_type (arg1))
8642 || ada_is_fixed_point_type (value_type (arg2)))
8643 && value_type (arg1) != value_type (arg2))
323e0a4a 8644 error (_("Operands of fixed-point subtraction must have the same type"));
b7789565
JB
8645 /* Do the substraction, and cast the result to the type of the first
8646 argument. We cannot cast the result to a reference type, so if
8647 ARG1 is a reference type, find its underlying type. */
8648 type = value_type (arg1);
8649 while (TYPE_CODE (type) == TYPE_CODE_REF)
8650 type = TYPE_TARGET_TYPE (type);
f44316fa 8651 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 8652 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
8653
8654 case BINOP_MUL:
8655 case BINOP_DIV:
e1578042
JB
8656 case BINOP_REM:
8657 case BINOP_MOD:
14f9c5c9
AS
8658 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8659 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8660 if (noside == EVAL_SKIP)
4c4b4cd2 8661 goto nosideret;
e1578042 8662 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
8663 {
8664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8665 return value_zero (value_type (arg1), not_lval);
8666 }
14f9c5c9 8667 else
4c4b4cd2 8668 {
a53b7a21 8669 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 8670 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 8671 arg1 = cast_from_fixed (type, arg1);
df407dfe 8672 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 8673 arg2 = cast_from_fixed (type, arg2);
f44316fa 8674 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
8675 return ada_value_binop (arg1, arg2, op);
8676 }
8677
4c4b4cd2
PH
8678 case BINOP_EQUAL:
8679 case BINOP_NOTEQUAL:
14f9c5c9 8680 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 8681 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 8682 if (noside == EVAL_SKIP)
76a01679 8683 goto nosideret;
4c4b4cd2 8684 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 8685 tem = 0;
4c4b4cd2 8686 else
f44316fa
UW
8687 {
8688 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
8689 tem = ada_value_equal (arg1, arg2);
8690 }
4c4b4cd2 8691 if (op == BINOP_NOTEQUAL)
76a01679 8692 tem = !tem;
fbb06eb1
UW
8693 type = language_bool_type (exp->language_defn, exp->gdbarch);
8694 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
8695
8696 case UNOP_NEG:
8697 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8698 if (noside == EVAL_SKIP)
8699 goto nosideret;
df407dfe
AC
8700 else if (ada_is_fixed_point_type (value_type (arg1)))
8701 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 8702 else
f44316fa
UW
8703 {
8704 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
8705 return value_neg (arg1);
8706 }
4c4b4cd2 8707
2330c6c6
JB
8708 case BINOP_LOGICAL_AND:
8709 case BINOP_LOGICAL_OR:
8710 case UNOP_LOGICAL_NOT:
000d5124
JB
8711 {
8712 struct value *val;
8713
8714 *pos -= 1;
8715 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
8716 type = language_bool_type (exp->language_defn, exp->gdbarch);
8717 return value_cast (type, val);
000d5124 8718 }
2330c6c6
JB
8719
8720 case BINOP_BITWISE_AND:
8721 case BINOP_BITWISE_IOR:
8722 case BINOP_BITWISE_XOR:
000d5124
JB
8723 {
8724 struct value *val;
8725
8726 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8727 *pos = pc;
8728 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
8729
8730 return value_cast (value_type (arg1), val);
8731 }
2330c6c6 8732
14f9c5c9
AS
8733 case OP_VAR_VALUE:
8734 *pos -= 1;
6799def4 8735
14f9c5c9 8736 if (noside == EVAL_SKIP)
4c4b4cd2
PH
8737 {
8738 *pos += 4;
8739 goto nosideret;
8740 }
8741 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
8742 /* Only encountered when an unresolved symbol occurs in a
8743 context other than a function call, in which case, it is
52ce6436 8744 invalid. */
323e0a4a 8745 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 8746 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 8747 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 8748 {
0c1f74cf
JB
8749 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
8750 if (ada_is_tagged_type (type, 0))
8751 {
8752 /* Tagged types are a little special in the fact that the real
8753 type is dynamic and can only be determined by inspecting the
8754 object's tag. This means that we need to get the object's
8755 value first (EVAL_NORMAL) and then extract the actual object
8756 type from its tag.
8757
8758 Note that we cannot skip the final step where we extract
8759 the object type from its tag, because the EVAL_NORMAL phase
8760 results in dynamic components being resolved into fixed ones.
8761 This can cause problems when trying to print the type
8762 description of tagged types whose parent has a dynamic size:
8763 We use the type name of the "_parent" component in order
8764 to print the name of the ancestor type in the type description.
8765 If that component had a dynamic size, the resolution into
8766 a fixed type would result in the loss of that type name,
8767 thus preventing us from printing the name of the ancestor
8768 type in the type description. */
b79819ba
JB
8769 struct type *actual_type;
8770
0c1f74cf 8771 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
8772 actual_type = type_from_tag (ada_value_tag (arg1));
8773 if (actual_type == NULL)
8774 /* If, for some reason, we were unable to determine
8775 the actual type from the tag, then use the static
8776 approximation that we just computed as a fallback.
8777 This can happen if the debugging information is
8778 incomplete, for instance. */
8779 actual_type = type;
8780
8781 return value_zero (actual_type, not_lval);
0c1f74cf
JB
8782 }
8783
4c4b4cd2
PH
8784 *pos += 4;
8785 return value_zero
8786 (to_static_fixed_type
8787 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
8788 not_lval);
8789 }
d2e4a39e 8790 else
4c4b4cd2 8791 {
284614f0
JB
8792 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
8793 arg1 = unwrap_value (arg1);
4c4b4cd2
PH
8794 return ada_to_fixed_value (arg1);
8795 }
8796
8797 case OP_FUNCALL:
8798 (*pos) += 2;
8799
8800 /* Allocate arg vector, including space for the function to be
8801 called in argvec[0] and a terminating NULL. */
8802 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8803 argvec =
8804 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
8805
8806 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 8807 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 8808 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
8809 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
8810 else
8811 {
8812 for (tem = 0; tem <= nargs; tem += 1)
8813 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8814 argvec[tem] = 0;
8815
8816 if (noside == EVAL_SKIP)
8817 goto nosideret;
8818 }
8819
df407dfe 8820 if (ada_is_packed_array_type (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 8821 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
8822 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
8823 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
8824 /* This is a packed array that has already been fixed, and
8825 therefore already coerced to a simple array. Nothing further
8826 to do. */
8827 ;
df407dfe
AC
8828 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
8829 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 8830 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
8831 argvec[0] = value_addr (argvec[0]);
8832
df407dfe 8833 type = ada_check_typedef (value_type (argvec[0]));
4c4b4cd2
PH
8834 if (TYPE_CODE (type) == TYPE_CODE_PTR)
8835 {
61ee279c 8836 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
8837 {
8838 case TYPE_CODE_FUNC:
61ee279c 8839 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8840 break;
8841 case TYPE_CODE_ARRAY:
8842 break;
8843 case TYPE_CODE_STRUCT:
8844 if (noside != EVAL_AVOID_SIDE_EFFECTS)
8845 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 8846 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
8847 break;
8848 default:
323e0a4a 8849 error (_("cannot subscript or call something of type `%s'"),
df407dfe 8850 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
8851 break;
8852 }
8853 }
8854
8855 switch (TYPE_CODE (type))
8856 {
8857 case TYPE_CODE_FUNC:
8858 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8859 return allocate_value (TYPE_TARGET_TYPE (type));
8860 return call_function_by_hand (argvec[0], nargs, argvec + 1);
8861 case TYPE_CODE_STRUCT:
8862 {
8863 int arity;
8864
4c4b4cd2
PH
8865 arity = ada_array_arity (type);
8866 type = ada_array_element_type (type, nargs);
8867 if (type == NULL)
323e0a4a 8868 error (_("cannot subscript or call a record"));
4c4b4cd2 8869 if (arity != nargs)
323e0a4a 8870 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 8871 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 8872 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8873 return
8874 unwrap_value (ada_value_subscript
8875 (argvec[0], nargs, argvec + 1));
8876 }
8877 case TYPE_CODE_ARRAY:
8878 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8879 {
8880 type = ada_array_element_type (type, nargs);
8881 if (type == NULL)
323e0a4a 8882 error (_("element type of array unknown"));
4c4b4cd2 8883 else
0a07e705 8884 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8885 }
8886 return
8887 unwrap_value (ada_value_subscript
8888 (ada_coerce_to_simple_array (argvec[0]),
8889 nargs, argvec + 1));
8890 case TYPE_CODE_PTR: /* Pointer to array */
8891 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
8892 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8893 {
8894 type = ada_array_element_type (type, nargs);
8895 if (type == NULL)
323e0a4a 8896 error (_("element type of array unknown"));
4c4b4cd2 8897 else
0a07e705 8898 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
8899 }
8900 return
8901 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
8902 nargs, argvec + 1));
8903
8904 default:
e1d5a0d2
PH
8905 error (_("Attempt to index or call something other than an "
8906 "array or function"));
4c4b4cd2
PH
8907 }
8908
8909 case TERNOP_SLICE:
8910 {
8911 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8912 struct value *low_bound_val =
8913 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
8914 struct value *high_bound_val =
8915 evaluate_subexp (NULL_TYPE, exp, pos, noside);
8916 LONGEST low_bound;
8917 LONGEST high_bound;
994b9211
AC
8918 low_bound_val = coerce_ref (low_bound_val);
8919 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
8920 low_bound = pos_atr (low_bound_val);
8921 high_bound = pos_atr (high_bound_val);
963a6417 8922
4c4b4cd2
PH
8923 if (noside == EVAL_SKIP)
8924 goto nosideret;
8925
4c4b4cd2
PH
8926 /* If this is a reference to an aligner type, then remove all
8927 the aligners. */
df407dfe
AC
8928 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8929 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
8930 TYPE_TARGET_TYPE (value_type (array)) =
8931 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 8932
df407dfe 8933 if (ada_is_packed_array_type (value_type (array)))
323e0a4a 8934 error (_("cannot slice a packed array"));
4c4b4cd2
PH
8935
8936 /* If this is a reference to an array or an array lvalue,
8937 convert to a pointer. */
df407dfe
AC
8938 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
8939 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
8940 && VALUE_LVAL (array) == lval_memory))
8941 array = value_addr (array);
8942
1265e4aa 8943 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 8944 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 8945 (value_type (array))))
0b5d8877 8946 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
8947
8948 array = ada_coerce_to_simple_array_ptr (array);
8949
714e53ab
PH
8950 /* If we have more than one level of pointer indirection,
8951 dereference the value until we get only one level. */
df407dfe
AC
8952 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
8953 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
8954 == TYPE_CODE_PTR))
8955 array = value_ind (array);
8956
8957 /* Make sure we really do have an array type before going further,
8958 to avoid a SEGV when trying to get the index type or the target
8959 type later down the road if the debug info generated by
8960 the compiler is incorrect or incomplete. */
df407dfe 8961 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 8962 error (_("cannot take slice of non-array"));
714e53ab 8963
df407dfe 8964 if (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR)
4c4b4cd2 8965 {
0b5d8877 8966 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 8967 return empty_array (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2
PH
8968 low_bound);
8969 else
8970 {
8971 struct type *arr_type0 =
df407dfe 8972 to_fixed_array_type (TYPE_TARGET_TYPE (value_type (array)),
4c4b4cd2 8973 NULL, 1);
f5938064
JG
8974 return ada_value_slice_from_ptr (array, arr_type0,
8975 longest_to_int (low_bound),
8976 longest_to_int (high_bound));
4c4b4cd2
PH
8977 }
8978 }
8979 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
8980 return array;
8981 else if (high_bound < low_bound)
df407dfe 8982 return empty_array (value_type (array), low_bound);
4c4b4cd2 8983 else
529cad9c
PH
8984 return ada_value_slice (array, longest_to_int (low_bound),
8985 longest_to_int (high_bound));
4c4b4cd2 8986 }
14f9c5c9 8987
4c4b4cd2
PH
8988 case UNOP_IN_RANGE:
8989 (*pos) += 2;
8990 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 8991 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 8992
14f9c5c9 8993 if (noside == EVAL_SKIP)
4c4b4cd2 8994 goto nosideret;
14f9c5c9 8995
4c4b4cd2
PH
8996 switch (TYPE_CODE (type))
8997 {
8998 default:
e1d5a0d2
PH
8999 lim_warning (_("Membership test incompletely implemented; "
9000 "always returns true"));
fbb06eb1
UW
9001 type = language_bool_type (exp->language_defn, exp->gdbarch);
9002 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9003
9004 case TYPE_CODE_RANGE:
030b4912
UW
9005 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9006 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9008 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9009 type = language_bool_type (exp->language_defn, exp->gdbarch);
9010 return
9011 value_from_longest (type,
4c4b4cd2
PH
9012 (value_less (arg1, arg3)
9013 || value_equal (arg1, arg3))
9014 && (value_less (arg2, arg1)
9015 || value_equal (arg2, arg1)));
9016 }
9017
9018 case BINOP_IN_BOUNDS:
14f9c5c9 9019 (*pos) += 2;
4c4b4cd2
PH
9020 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9021 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9022
4c4b4cd2
PH
9023 if (noside == EVAL_SKIP)
9024 goto nosideret;
14f9c5c9 9025
4c4b4cd2 9026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9027 {
9028 type = language_bool_type (exp->language_defn, exp->gdbarch);
9029 return value_zero (type, not_lval);
9030 }
14f9c5c9 9031
4c4b4cd2 9032 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9033
1eea4ebd
UW
9034 type = ada_index_type (value_type (arg2), tem, "range");
9035 if (!type)
9036 type = value_type (arg1);
14f9c5c9 9037
1eea4ebd
UW
9038 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9039 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9040
f44316fa
UW
9041 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9042 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9043 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9044 return
fbb06eb1 9045 value_from_longest (type,
4c4b4cd2
PH
9046 (value_less (arg1, arg3)
9047 || value_equal (arg1, arg3))
9048 && (value_less (arg2, arg1)
9049 || value_equal (arg2, arg1)));
9050
9051 case TERNOP_IN_RANGE:
9052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9053 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9054 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9055
9056 if (noside == EVAL_SKIP)
9057 goto nosideret;
9058
f44316fa
UW
9059 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9060 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9061 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9062 return
fbb06eb1 9063 value_from_longest (type,
4c4b4cd2
PH
9064 (value_less (arg1, arg3)
9065 || value_equal (arg1, arg3))
9066 && (value_less (arg2, arg1)
9067 || value_equal (arg2, arg1)));
9068
9069 case OP_ATR_FIRST:
9070 case OP_ATR_LAST:
9071 case OP_ATR_LENGTH:
9072 {
76a01679
JB
9073 struct type *type_arg;
9074 if (exp->elts[*pos].opcode == OP_TYPE)
9075 {
9076 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9077 arg1 = NULL;
5bc23cb3 9078 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9079 }
9080 else
9081 {
9082 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9083 type_arg = NULL;
9084 }
9085
9086 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9087 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9088 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9089 *pos += 4;
9090
9091 if (noside == EVAL_SKIP)
9092 goto nosideret;
9093
9094 if (type_arg == NULL)
9095 {
9096 arg1 = ada_coerce_ref (arg1);
9097
df407dfe 9098 if (ada_is_packed_array_type (value_type (arg1)))
76a01679
JB
9099 arg1 = ada_coerce_to_simple_array (arg1);
9100
1eea4ebd
UW
9101 type = ada_index_type (value_type (arg1), tem,
9102 ada_attribute_name (op));
9103 if (type == NULL)
9104 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9105
9106 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9107 return allocate_value (type);
76a01679
JB
9108
9109 switch (op)
9110 {
9111 default: /* Should never happen. */
323e0a4a 9112 error (_("unexpected attribute encountered"));
76a01679 9113 case OP_ATR_FIRST:
1eea4ebd
UW
9114 return value_from_longest
9115 (type, ada_array_bound (arg1, tem, 0));
76a01679 9116 case OP_ATR_LAST:
1eea4ebd
UW
9117 return value_from_longest
9118 (type, ada_array_bound (arg1, tem, 1));
76a01679 9119 case OP_ATR_LENGTH:
1eea4ebd
UW
9120 return value_from_longest
9121 (type, ada_array_length (arg1, tem));
76a01679
JB
9122 }
9123 }
9124 else if (discrete_type_p (type_arg))
9125 {
9126 struct type *range_type;
9127 char *name = ada_type_name (type_arg);
9128 range_type = NULL;
9129 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9130 range_type =
9131 to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg));
9132 if (range_type == NULL)
9133 range_type = type_arg;
9134 switch (op)
9135 {
9136 default:
323e0a4a 9137 error (_("unexpected attribute encountered"));
76a01679 9138 case OP_ATR_FIRST:
690cc4eb
PH
9139 return value_from_longest
9140 (range_type, discrete_type_low_bound (range_type));
76a01679 9141 case OP_ATR_LAST:
690cc4eb
PH
9142 return value_from_longest
9143 (range_type, discrete_type_high_bound (range_type));
76a01679 9144 case OP_ATR_LENGTH:
323e0a4a 9145 error (_("the 'length attribute applies only to array types"));
76a01679
JB
9146 }
9147 }
9148 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 9149 error (_("unimplemented type attribute"));
76a01679
JB
9150 else
9151 {
9152 LONGEST low, high;
9153
9154 if (ada_is_packed_array_type (type_arg))
9155 type_arg = decode_packed_array_type (type_arg);
9156
1eea4ebd 9157 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 9158 if (type == NULL)
1eea4ebd
UW
9159 type = builtin_type (exp->gdbarch)->builtin_int;
9160
76a01679
JB
9161 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9162 return allocate_value (type);
9163
9164 switch (op)
9165 {
9166 default:
323e0a4a 9167 error (_("unexpected attribute encountered"));
76a01679 9168 case OP_ATR_FIRST:
1eea4ebd 9169 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
9170 return value_from_longest (type, low);
9171 case OP_ATR_LAST:
1eea4ebd 9172 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9173 return value_from_longest (type, high);
9174 case OP_ATR_LENGTH:
1eea4ebd
UW
9175 low = ada_array_bound_from_type (type_arg, tem, 0);
9176 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
9177 return value_from_longest (type, high - low + 1);
9178 }
9179 }
14f9c5c9
AS
9180 }
9181
4c4b4cd2
PH
9182 case OP_ATR_TAG:
9183 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9184 if (noside == EVAL_SKIP)
76a01679 9185 goto nosideret;
4c4b4cd2
PH
9186
9187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9188 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
9189
9190 return ada_value_tag (arg1);
9191
9192 case OP_ATR_MIN:
9193 case OP_ATR_MAX:
9194 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9195 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9196 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9197 if (noside == EVAL_SKIP)
76a01679 9198 goto nosideret;
d2e4a39e 9199 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9200 return value_zero (value_type (arg1), not_lval);
14f9c5c9 9201 else
f44316fa
UW
9202 {
9203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9204 return value_binop (arg1, arg2,
9205 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9206 }
14f9c5c9 9207
4c4b4cd2
PH
9208 case OP_ATR_MODULUS:
9209 {
31dedfee 9210 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679 9211 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
4c4b4cd2 9212
76a01679
JB
9213 if (noside == EVAL_SKIP)
9214 goto nosideret;
4c4b4cd2 9215
76a01679 9216 if (!ada_is_modular_type (type_arg))
323e0a4a 9217 error (_("'modulus must be applied to modular type"));
4c4b4cd2 9218
76a01679
JB
9219 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9220 ada_modulus (type_arg));
4c4b4cd2
PH
9221 }
9222
9223
9224 case OP_ATR_POS:
9225 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
9226 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9227 if (noside == EVAL_SKIP)
76a01679 9228 goto nosideret;
3cb382c9
UW
9229 type = builtin_type (exp->gdbarch)->builtin_int;
9230 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9231 return value_zero (type, not_lval);
14f9c5c9 9232 else
3cb382c9 9233 return value_pos_atr (type, arg1);
14f9c5c9 9234
4c4b4cd2
PH
9235 case OP_ATR_SIZE:
9236 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
9237 type = value_type (arg1);
9238
9239 /* If the argument is a reference, then dereference its type, since
9240 the user is really asking for the size of the actual object,
9241 not the size of the pointer. */
9242 if (TYPE_CODE (type) == TYPE_CODE_REF)
9243 type = TYPE_TARGET_TYPE (type);
9244
4c4b4cd2 9245 if (noside == EVAL_SKIP)
76a01679 9246 goto nosideret;
4c4b4cd2 9247 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
6d2e05aa 9248 return value_zero (builtin_type_int32, not_lval);
4c4b4cd2 9249 else
6d2e05aa 9250 return value_from_longest (builtin_type_int32,
8c1c099f 9251 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
9252
9253 case OP_ATR_VAL:
9254 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 9255 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 9256 type = exp->elts[pc + 2].type;
14f9c5c9 9257 if (noside == EVAL_SKIP)
76a01679 9258 goto nosideret;
4c4b4cd2 9259 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9260 return value_zero (type, not_lval);
4c4b4cd2 9261 else
76a01679 9262 return value_val_atr (type, arg1);
4c4b4cd2
PH
9263
9264 case BINOP_EXP:
9265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9266 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9267 if (noside == EVAL_SKIP)
9268 goto nosideret;
9269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 9270 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 9271 else
f44316fa
UW
9272 {
9273 /* For integer exponentiation operations,
9274 only promote the first argument. */
9275 if (is_integral_type (value_type (arg2)))
9276 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9277 else
9278 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9279
9280 return value_binop (arg1, arg2, op);
9281 }
4c4b4cd2
PH
9282
9283 case UNOP_PLUS:
9284 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9285 if (noside == EVAL_SKIP)
9286 goto nosideret;
9287 else
9288 return arg1;
9289
9290 case UNOP_ABS:
9291 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9292 if (noside == EVAL_SKIP)
9293 goto nosideret;
f44316fa 9294 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 9295 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 9296 return value_neg (arg1);
14f9c5c9 9297 else
4c4b4cd2 9298 return arg1;
14f9c5c9
AS
9299
9300 case UNOP_IND:
6b0d7253 9301 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9302 if (noside == EVAL_SKIP)
4c4b4cd2 9303 goto nosideret;
df407dfe 9304 type = ada_check_typedef (value_type (arg1));
14f9c5c9 9305 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
9306 {
9307 if (ada_is_array_descriptor_type (type))
9308 /* GDB allows dereferencing GNAT array descriptors. */
9309 {
9310 struct type *arrType = ada_type_of_array (arg1, 0);
9311 if (arrType == NULL)
323e0a4a 9312 error (_("Attempt to dereference null array pointer."));
00a4c844 9313 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
9314 }
9315 else if (TYPE_CODE (type) == TYPE_CODE_PTR
9316 || TYPE_CODE (type) == TYPE_CODE_REF
9317 /* In C you can dereference an array to get the 1st elt. */
9318 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
9319 {
9320 type = to_static_fixed_type
9321 (ada_aligned_type
9322 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
9323 check_size (type);
9324 return value_zero (type, lval_memory);
9325 }
4c4b4cd2 9326 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
9327 {
9328 /* GDB allows dereferencing an int. */
9329 if (expect_type == NULL)
9330 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9331 lval_memory);
9332 else
9333 {
9334 expect_type =
9335 to_static_fixed_type (ada_aligned_type (expect_type));
9336 return value_zero (expect_type, lval_memory);
9337 }
9338 }
4c4b4cd2 9339 else
323e0a4a 9340 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 9341 }
76a01679 9342 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 9343 type = ada_check_typedef (value_type (arg1));
d2e4a39e 9344
96967637
JB
9345 if (TYPE_CODE (type) == TYPE_CODE_INT)
9346 /* GDB allows dereferencing an int. If we were given
9347 the expect_type, then use that as the target type.
9348 Otherwise, assume that the target type is an int. */
9349 {
9350 if (expect_type != NULL)
9351 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
9352 arg1));
9353 else
9354 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
9355 (CORE_ADDR) value_as_address (arg1));
9356 }
6b0d7253 9357
4c4b4cd2
PH
9358 if (ada_is_array_descriptor_type (type))
9359 /* GDB allows dereferencing GNAT array descriptors. */
9360 return ada_coerce_to_simple_array (arg1);
14f9c5c9 9361 else
4c4b4cd2 9362 return ada_value_ind (arg1);
14f9c5c9
AS
9363
9364 case STRUCTOP_STRUCT:
9365 tem = longest_to_int (exp->elts[pc + 1].longconst);
9366 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
9367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9368 if (noside == EVAL_SKIP)
4c4b4cd2 9369 goto nosideret;
14f9c5c9 9370 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9371 {
df407dfe 9372 struct type *type1 = value_type (arg1);
76a01679
JB
9373 if (ada_is_tagged_type (type1, 1))
9374 {
9375 type = ada_lookup_struct_elt_type (type1,
9376 &exp->elts[pc + 2].string,
9377 1, 1, NULL);
9378 if (type == NULL)
9379 /* In this case, we assume that the field COULD exist
9380 in some extension of the type. Return an object of
9381 "type" void, which will match any formal
9382 (see ada_type_match). */
9383 return value_zero (builtin_type_void, lval_memory);
9384 }
9385 else
9386 type =
9387 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
9388 0, NULL);
9389
9390 return value_zero (ada_aligned_type (type), lval_memory);
9391 }
14f9c5c9 9392 else
284614f0
JB
9393 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
9394 arg1 = unwrap_value (arg1);
9395 return ada_to_fixed_value (arg1);
9396
14f9c5c9 9397 case OP_TYPE:
4c4b4cd2
PH
9398 /* The value is not supposed to be used. This is here to make it
9399 easier to accommodate expressions that contain types. */
14f9c5c9
AS
9400 (*pos) += 2;
9401 if (noside == EVAL_SKIP)
4c4b4cd2 9402 goto nosideret;
14f9c5c9 9403 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 9404 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 9405 else
323e0a4a 9406 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
9407
9408 case OP_AGGREGATE:
9409 case OP_CHOICES:
9410 case OP_OTHERS:
9411 case OP_DISCRETE_RANGE:
9412 case OP_POSITIONAL:
9413 case OP_NAME:
9414 if (noside == EVAL_NORMAL)
9415 switch (op)
9416 {
9417 case OP_NAME:
9418 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 9419 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
9420 case OP_AGGREGATE:
9421 error (_("Aggregates only allowed on the right of an assignment"));
9422 default:
e1d5a0d2 9423 internal_error (__FILE__, __LINE__, _("aggregate apparently mangled"));
52ce6436
PH
9424 }
9425
9426 ada_forward_operator_length (exp, pc, &oplen, &nargs);
9427 *pos += oplen - 1;
9428 for (tem = 0; tem < nargs; tem += 1)
9429 ada_evaluate_subexp (NULL, exp, pos, noside);
9430 goto nosideret;
14f9c5c9
AS
9431 }
9432
9433nosideret:
cb18ec49 9434 return value_from_longest (builtin_type_int8, (LONGEST) 1);
14f9c5c9 9435}
14f9c5c9 9436\f
d2e4a39e 9437
4c4b4cd2 9438 /* Fixed point */
14f9c5c9
AS
9439
9440/* If TYPE encodes an Ada fixed-point type, return the suffix of the
9441 type name that encodes the 'small and 'delta information.
4c4b4cd2 9442 Otherwise, return NULL. */
14f9c5c9 9443
d2e4a39e 9444static const char *
ebf56fd3 9445fixed_type_info (struct type *type)
14f9c5c9 9446{
d2e4a39e 9447 const char *name = ada_type_name (type);
14f9c5c9
AS
9448 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
9449
d2e4a39e
AS
9450 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
9451 {
14f9c5c9
AS
9452 const char *tail = strstr (name, "___XF_");
9453 if (tail == NULL)
4c4b4cd2 9454 return NULL;
d2e4a39e 9455 else
4c4b4cd2 9456 return tail + 5;
14f9c5c9
AS
9457 }
9458 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
9459 return fixed_type_info (TYPE_TARGET_TYPE (type));
9460 else
9461 return NULL;
9462}
9463
4c4b4cd2 9464/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
9465
9466int
ebf56fd3 9467ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
9468{
9469 return fixed_type_info (type) != NULL;
9470}
9471
4c4b4cd2
PH
9472/* Return non-zero iff TYPE represents a System.Address type. */
9473
9474int
9475ada_is_system_address_type (struct type *type)
9476{
9477 return (TYPE_NAME (type)
9478 && strcmp (TYPE_NAME (type), "system__address") == 0);
9479}
9480
14f9c5c9
AS
9481/* Assuming that TYPE is the representation of an Ada fixed-point
9482 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 9483 delta cannot be determined. */
14f9c5c9
AS
9484
9485DOUBLEST
ebf56fd3 9486ada_delta (struct type *type)
14f9c5c9
AS
9487{
9488 const char *encoding = fixed_type_info (type);
facc390f 9489 DOUBLEST num, den;
14f9c5c9 9490
facc390f
JB
9491 /* Strictly speaking, num and den are encoded as integer. However,
9492 they may not fit into a long, and they will have to be converted
9493 to DOUBLEST anyway. So scan them as DOUBLEST. */
9494 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9495 &num, &den) < 2)
14f9c5c9 9496 return -1.0;
d2e4a39e 9497 else
facc390f 9498 return num / den;
14f9c5c9
AS
9499}
9500
9501/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 9502 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
9503
9504static DOUBLEST
ebf56fd3 9505scaling_factor (struct type *type)
14f9c5c9
AS
9506{
9507 const char *encoding = fixed_type_info (type);
facc390f 9508 DOUBLEST num0, den0, num1, den1;
14f9c5c9 9509 int n;
d2e4a39e 9510
facc390f
JB
9511 /* Strictly speaking, num's and den's are encoded as integer. However,
9512 they may not fit into a long, and they will have to be converted
9513 to DOUBLEST anyway. So scan them as DOUBLEST. */
9514 n = sscanf (encoding,
9515 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
9516 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
9517 &num0, &den0, &num1, &den1);
14f9c5c9
AS
9518
9519 if (n < 2)
9520 return 1.0;
9521 else if (n == 4)
facc390f 9522 return num1 / den1;
d2e4a39e 9523 else
facc390f 9524 return num0 / den0;
14f9c5c9
AS
9525}
9526
9527
9528/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 9529 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
9530
9531DOUBLEST
ebf56fd3 9532ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 9533{
d2e4a39e 9534 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
9535}
9536
4c4b4cd2
PH
9537/* The representation of a fixed-point value of type TYPE
9538 corresponding to the value X. */
14f9c5c9
AS
9539
9540LONGEST
ebf56fd3 9541ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
9542{
9543 return (LONGEST) (x / scaling_factor (type) + 0.5);
9544}
9545
9546
4c4b4cd2 9547 /* VAX floating formats */
14f9c5c9
AS
9548
9549/* Non-zero iff TYPE represents one of the special VAX floating-point
4c4b4cd2
PH
9550 types. */
9551
14f9c5c9 9552int
d2e4a39e 9553ada_is_vax_floating_type (struct type *type)
14f9c5c9 9554{
d2e4a39e 9555 int name_len =
14f9c5c9 9556 (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type));
d2e4a39e 9557 return
14f9c5c9 9558 name_len > 6
d2e4a39e 9559 && (TYPE_CODE (type) == TYPE_CODE_INT
4c4b4cd2
PH
9560 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9561 && strncmp (ada_type_name (type) + name_len - 6, "___XF", 5) == 0;
14f9c5c9
AS
9562}
9563
9564/* The type of special VAX floating-point type this is, assuming
4c4b4cd2
PH
9565 ada_is_vax_floating_point. */
9566
14f9c5c9 9567int
d2e4a39e 9568ada_vax_float_type_suffix (struct type *type)
14f9c5c9 9569{
d2e4a39e 9570 return ada_type_name (type)[strlen (ada_type_name (type)) - 1];
14f9c5c9
AS
9571}
9572
4c4b4cd2 9573/* A value representing the special debugging function that outputs
14f9c5c9 9574 VAX floating-point values of the type represented by TYPE. Assumes
4c4b4cd2
PH
9575 ada_is_vax_floating_type (TYPE). */
9576
d2e4a39e
AS
9577struct value *
9578ada_vax_float_print_function (struct type *type)
9579{
9580 switch (ada_vax_float_type_suffix (type))
9581 {
9582 case 'F':
9583 return get_var_value ("DEBUG_STRING_F", 0);
9584 case 'D':
9585 return get_var_value ("DEBUG_STRING_D", 0);
9586 case 'G':
9587 return get_var_value ("DEBUG_STRING_G", 0);
9588 default:
323e0a4a 9589 error (_("invalid VAX floating-point type"));
d2e4a39e 9590 }
14f9c5c9 9591}
14f9c5c9 9592\f
d2e4a39e 9593
4c4b4cd2 9594 /* Range types */
14f9c5c9
AS
9595
9596/* Scan STR beginning at position K for a discriminant name, and
9597 return the value of that discriminant field of DVAL in *PX. If
9598 PNEW_K is not null, put the position of the character beyond the
9599 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 9600 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
9601
9602static int
07d8f827 9603scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 9604 int *pnew_k)
14f9c5c9
AS
9605{
9606 static char *bound_buffer = NULL;
9607 static size_t bound_buffer_len = 0;
9608 char *bound;
9609 char *pend;
d2e4a39e 9610 struct value *bound_val;
14f9c5c9
AS
9611
9612 if (dval == NULL || str == NULL || str[k] == '\0')
9613 return 0;
9614
d2e4a39e 9615 pend = strstr (str + k, "__");
14f9c5c9
AS
9616 if (pend == NULL)
9617 {
d2e4a39e 9618 bound = str + k;
14f9c5c9
AS
9619 k += strlen (bound);
9620 }
d2e4a39e 9621 else
14f9c5c9 9622 {
d2e4a39e 9623 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 9624 bound = bound_buffer;
d2e4a39e
AS
9625 strncpy (bound_buffer, str + k, pend - (str + k));
9626 bound[pend - (str + k)] = '\0';
9627 k = pend - str;
14f9c5c9 9628 }
d2e4a39e 9629
df407dfe 9630 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
9631 if (bound_val == NULL)
9632 return 0;
9633
9634 *px = value_as_long (bound_val);
9635 if (pnew_k != NULL)
9636 *pnew_k = k;
9637 return 1;
9638}
9639
9640/* Value of variable named NAME in the current environment. If
9641 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
9642 otherwise causes an error with message ERR_MSG. */
9643
d2e4a39e
AS
9644static struct value *
9645get_var_value (char *name, char *err_msg)
14f9c5c9 9646{
4c4b4cd2 9647 struct ada_symbol_info *syms;
14f9c5c9
AS
9648 int nsyms;
9649
4c4b4cd2
PH
9650 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
9651 &syms);
14f9c5c9
AS
9652
9653 if (nsyms != 1)
9654 {
9655 if (err_msg == NULL)
4c4b4cd2 9656 return 0;
14f9c5c9 9657 else
8a3fe4f8 9658 error (("%s"), err_msg);
14f9c5c9
AS
9659 }
9660
4c4b4cd2 9661 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 9662}
d2e4a39e 9663
14f9c5c9 9664/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
9665 no such variable found, returns 0, and sets *FLAG to 0. If
9666 successful, sets *FLAG to 1. */
9667
14f9c5c9 9668LONGEST
4c4b4cd2 9669get_int_var_value (char *name, int *flag)
14f9c5c9 9670{
4c4b4cd2 9671 struct value *var_val = get_var_value (name, 0);
d2e4a39e 9672
14f9c5c9
AS
9673 if (var_val == 0)
9674 {
9675 if (flag != NULL)
4c4b4cd2 9676 *flag = 0;
14f9c5c9
AS
9677 return 0;
9678 }
9679 else
9680 {
9681 if (flag != NULL)
4c4b4cd2 9682 *flag = 1;
14f9c5c9
AS
9683 return value_as_long (var_val);
9684 }
9685}
d2e4a39e 9686
14f9c5c9
AS
9687
9688/* Return a range type whose base type is that of the range type named
9689 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 9690 from NAME according to the GNAT range encoding conventions.
14f9c5c9
AS
9691 Extract discriminant values, if needed, from DVAL. If a new type
9692 must be created, allocate in OBJFILE's space. The bounds
9693 information, in general, is encoded in NAME, the base type given in
4c4b4cd2 9694 the named range type. */
14f9c5c9 9695
d2e4a39e 9696static struct type *
ebf56fd3 9697to_fixed_range_type (char *name, struct value *dval, struct objfile *objfile)
14f9c5c9
AS
9698{
9699 struct type *raw_type = ada_find_any_type (name);
9700 struct type *base_type;
d2e4a39e 9701 char *subtype_info;
14f9c5c9 9702
dddfab26
UW
9703 /* Also search primitive types if type symbol could not be found. */
9704 if (raw_type == NULL)
9705 raw_type = language_lookup_primitive_type_by_name
9706 (language_def (language_ada), current_gdbarch, name);
9707
14f9c5c9 9708 if (raw_type == NULL)
6d84d3d8 9709 base_type = builtin_type_int32;
14f9c5c9
AS
9710 else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
9711 base_type = TYPE_TARGET_TYPE (raw_type);
9712 else
9713 base_type = raw_type;
9714
9715 subtype_info = strstr (name, "___XD");
9716 if (subtype_info == NULL)
690cc4eb
PH
9717 {
9718 LONGEST L = discrete_type_low_bound (raw_type);
9719 LONGEST U = discrete_type_high_bound (raw_type);
9720 if (L < INT_MIN || U > INT_MAX)
9721 return raw_type;
9722 else
9723 return create_range_type (alloc_type (objfile), raw_type,
9724 discrete_type_low_bound (raw_type),
9725 discrete_type_high_bound (raw_type));
9726 }
14f9c5c9
AS
9727 else
9728 {
9729 static char *name_buf = NULL;
9730 static size_t name_len = 0;
9731 int prefix_len = subtype_info - name;
9732 LONGEST L, U;
9733 struct type *type;
9734 char *bounds_str;
9735 int n;
9736
9737 GROW_VECT (name_buf, name_len, prefix_len + 5);
9738 strncpy (name_buf, name, prefix_len);
9739 name_buf[prefix_len] = '\0';
9740
9741 subtype_info += 5;
9742 bounds_str = strchr (subtype_info, '_');
9743 n = 1;
9744
d2e4a39e 9745 if (*subtype_info == 'L')
4c4b4cd2
PH
9746 {
9747 if (!ada_scan_number (bounds_str, n, &L, &n)
9748 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
9749 return raw_type;
9750 if (bounds_str[n] == '_')
9751 n += 2;
9752 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
9753 n += 1;
9754 subtype_info += 1;
9755 }
d2e4a39e 9756 else
4c4b4cd2
PH
9757 {
9758 int ok;
9759 strcpy (name_buf + prefix_len, "___L");
9760 L = get_int_var_value (name_buf, &ok);
9761 if (!ok)
9762 {
323e0a4a 9763 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
9764 L = 1;
9765 }
9766 }
14f9c5c9 9767
d2e4a39e 9768 if (*subtype_info == 'U')
4c4b4cd2
PH
9769 {
9770 if (!ada_scan_number (bounds_str, n, &U, &n)
9771 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
9772 return raw_type;
9773 }
d2e4a39e 9774 else
4c4b4cd2
PH
9775 {
9776 int ok;
9777 strcpy (name_buf + prefix_len, "___U");
9778 U = get_int_var_value (name_buf, &ok);
9779 if (!ok)
9780 {
323e0a4a 9781 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
9782 U = L;
9783 }
9784 }
14f9c5c9 9785
d2e4a39e 9786 if (objfile == NULL)
4c4b4cd2 9787 objfile = TYPE_OBJFILE (base_type);
14f9c5c9 9788 type = create_range_type (alloc_type (objfile), base_type, L, U);
d2e4a39e 9789 TYPE_NAME (type) = name;
14f9c5c9
AS
9790 return type;
9791 }
9792}
9793
4c4b4cd2
PH
9794/* True iff NAME is the name of a range type. */
9795
14f9c5c9 9796int
d2e4a39e 9797ada_is_range_type_name (const char *name)
14f9c5c9
AS
9798{
9799 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 9800}
14f9c5c9 9801\f
d2e4a39e 9802
4c4b4cd2
PH
9803 /* Modular types */
9804
9805/* True iff TYPE is an Ada modular type. */
14f9c5c9 9806
14f9c5c9 9807int
d2e4a39e 9808ada_is_modular_type (struct type *type)
14f9c5c9 9809{
4c4b4cd2 9810 struct type *subranged_type = base_type (type);
14f9c5c9
AS
9811
9812 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 9813 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 9814 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
9815}
9816
0056e4d5
JB
9817/* Try to determine the lower and upper bounds of the given modular type
9818 using the type name only. Return non-zero and set L and U as the lower
9819 and upper bounds (respectively) if successful. */
9820
9821int
9822ada_modulus_from_name (struct type *type, ULONGEST *modulus)
9823{
9824 char *name = ada_type_name (type);
9825 char *suffix;
9826 int k;
9827 LONGEST U;
9828
9829 if (name == NULL)
9830 return 0;
9831
9832 /* Discrete type bounds are encoded using an __XD suffix. In our case,
9833 we are looking for static bounds, which means an __XDLU suffix.
9834 Moreover, we know that the lower bound of modular types is always
9835 zero, so the actual suffix should start with "__XDLU_0__", and
9836 then be followed by the upper bound value. */
9837 suffix = strstr (name, "__XDLU_0__");
9838 if (suffix == NULL)
9839 return 0;
9840 k = 10;
9841 if (!ada_scan_number (suffix, k, &U, NULL))
9842 return 0;
9843
9844 *modulus = (ULONGEST) U + 1;
9845 return 1;
9846}
9847
4c4b4cd2
PH
9848/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
9849
61ee279c 9850ULONGEST
0056e4d5 9851ada_modulus (struct type *type)
14f9c5c9 9852{
0056e4d5
JB
9853 ULONGEST modulus;
9854
9855 /* Normally, the modulus of a modular type is equal to the value of
9856 its upper bound + 1. However, the upper bound is currently stored
9857 as an int, which is not always big enough to hold the actual bound
9858 value. To workaround this, try to take advantage of the encoding
9859 that GNAT uses with with discrete types. To avoid some unnecessary
9860 parsing, we do this only when the size of TYPE is greater than
9861 the size of the field holding the bound. */
9862 if (TYPE_LENGTH (type) > sizeof (TYPE_HIGH_BOUND (type))
9863 && ada_modulus_from_name (type, &modulus))
9864 return modulus;
9865
d37209fd 9866 return (ULONGEST) (unsigned int) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 9867}
d2e4a39e 9868\f
f7f9143b
JB
9869
9870/* Ada exception catchpoint support:
9871 ---------------------------------
9872
9873 We support 3 kinds of exception catchpoints:
9874 . catchpoints on Ada exceptions
9875 . catchpoints on unhandled Ada exceptions
9876 . catchpoints on failed assertions
9877
9878 Exceptions raised during failed assertions, or unhandled exceptions
9879 could perfectly be caught with the general catchpoint on Ada exceptions.
9880 However, we can easily differentiate these two special cases, and having
9881 the option to distinguish these two cases from the rest can be useful
9882 to zero-in on certain situations.
9883
9884 Exception catchpoints are a specialized form of breakpoint,
9885 since they rely on inserting breakpoints inside known routines
9886 of the GNAT runtime. The implementation therefore uses a standard
9887 breakpoint structure of the BP_BREAKPOINT type, but with its own set
9888 of breakpoint_ops.
9889
0259addd
JB
9890 Support in the runtime for exception catchpoints have been changed
9891 a few times already, and these changes affect the implementation
9892 of these catchpoints. In order to be able to support several
9893 variants of the runtime, we use a sniffer that will determine
9894 the runtime variant used by the program being debugged.
9895
f7f9143b
JB
9896 At this time, we do not support the use of conditions on Ada exception
9897 catchpoints. The COND and COND_STRING fields are therefore set
9898 to NULL (most of the time, see below).
9899
9900 Conditions where EXP_STRING, COND, and COND_STRING are used:
9901
9902 When a user specifies the name of a specific exception in the case
9903 of catchpoints on Ada exceptions, we store the name of that exception
9904 in the EXP_STRING. We then translate this request into an actual
9905 condition stored in COND_STRING, and then parse it into an expression
9906 stored in COND. */
9907
9908/* The different types of catchpoints that we introduced for catching
9909 Ada exceptions. */
9910
9911enum exception_catchpoint_kind
9912{
9913 ex_catch_exception,
9914 ex_catch_exception_unhandled,
9915 ex_catch_assert
9916};
9917
3d0b0fa3
JB
9918/* Ada's standard exceptions. */
9919
9920static char *standard_exc[] = {
9921 "constraint_error",
9922 "program_error",
9923 "storage_error",
9924 "tasking_error"
9925};
9926
0259addd
JB
9927typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
9928
9929/* A structure that describes how to support exception catchpoints
9930 for a given executable. */
9931
9932struct exception_support_info
9933{
9934 /* The name of the symbol to break on in order to insert
9935 a catchpoint on exceptions. */
9936 const char *catch_exception_sym;
9937
9938 /* The name of the symbol to break on in order to insert
9939 a catchpoint on unhandled exceptions. */
9940 const char *catch_exception_unhandled_sym;
9941
9942 /* The name of the symbol to break on in order to insert
9943 a catchpoint on failed assertions. */
9944 const char *catch_assert_sym;
9945
9946 /* Assuming that the inferior just triggered an unhandled exception
9947 catchpoint, this function is responsible for returning the address
9948 in inferior memory where the name of that exception is stored.
9949 Return zero if the address could not be computed. */
9950 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
9951};
9952
9953static CORE_ADDR ada_unhandled_exception_name_addr (void);
9954static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
9955
9956/* The following exception support info structure describes how to
9957 implement exception catchpoints with the latest version of the
9958 Ada runtime (as of 2007-03-06). */
9959
9960static const struct exception_support_info default_exception_support_info =
9961{
9962 "__gnat_debug_raise_exception", /* catch_exception_sym */
9963 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9964 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9965 ada_unhandled_exception_name_addr
9966};
9967
9968/* The following exception support info structure describes how to
9969 implement exception catchpoints with a slightly older version
9970 of the Ada runtime. */
9971
9972static const struct exception_support_info exception_support_info_fallback =
9973{
9974 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
9975 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
9976 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9977 ada_unhandled_exception_name_addr_from_raise
9978};
9979
9980/* For each executable, we sniff which exception info structure to use
9981 and cache it in the following global variable. */
9982
9983static const struct exception_support_info *exception_info = NULL;
9984
9985/* Inspect the Ada runtime and determine which exception info structure
9986 should be used to provide support for exception catchpoints.
9987
9988 This function will always set exception_info, or raise an error. */
9989
9990static void
9991ada_exception_support_info_sniffer (void)
9992{
9993 struct symbol *sym;
9994
9995 /* If the exception info is already known, then no need to recompute it. */
9996 if (exception_info != NULL)
9997 return;
9998
9999 /* Check the latest (default) exception support info. */
10000 sym = standard_lookup (default_exception_support_info.catch_exception_sym,
10001 NULL, VAR_DOMAIN);
10002 if (sym != NULL)
10003 {
10004 exception_info = &default_exception_support_info;
10005 return;
10006 }
10007
10008 /* Try our fallback exception suport info. */
10009 sym = standard_lookup (exception_support_info_fallback.catch_exception_sym,
10010 NULL, VAR_DOMAIN);
10011 if (sym != NULL)
10012 {
10013 exception_info = &exception_support_info_fallback;
10014 return;
10015 }
10016
10017 /* Sometimes, it is normal for us to not be able to find the routine
10018 we are looking for. This happens when the program is linked with
10019 the shared version of the GNAT runtime, and the program has not been
10020 started yet. Inform the user of these two possible causes if
10021 applicable. */
10022
10023 if (ada_update_initial_language (language_unknown, NULL) != language_ada)
10024 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10025
10026 /* If the symbol does not exist, then check that the program is
10027 already started, to make sure that shared libraries have been
10028 loaded. If it is not started, this may mean that the symbol is
10029 in a shared library. */
10030
10031 if (ptid_get_pid (inferior_ptid) == 0)
10032 error (_("Unable to insert catchpoint. Try to start the program first."));
10033
10034 /* At this point, we know that we are debugging an Ada program and
10035 that the inferior has been started, but we still are not able to
10036 find the run-time symbols. That can mean that we are in
10037 configurable run time mode, or that a-except as been optimized
10038 out by the linker... In any case, at this point it is not worth
10039 supporting this feature. */
10040
10041 error (_("Cannot insert catchpoints in this configuration."));
10042}
10043
10044/* An observer of "executable_changed" events.
10045 Its role is to clear certain cached values that need to be recomputed
10046 each time a new executable is loaded by GDB. */
10047
10048static void
781b42b0 10049ada_executable_changed_observer (void)
0259addd
JB
10050{
10051 /* If the executable changed, then it is possible that the Ada runtime
10052 is different. So we need to invalidate the exception support info
10053 cache. */
10054 exception_info = NULL;
10055}
10056
f7f9143b
JB
10057/* Return the name of the function at PC, NULL if could not find it.
10058 This function only checks the debugging information, not the symbol
10059 table. */
10060
10061static char *
10062function_name_from_pc (CORE_ADDR pc)
10063{
10064 char *func_name;
10065
10066 if (!find_pc_partial_function (pc, &func_name, NULL, NULL))
10067 return NULL;
10068
10069 return func_name;
10070}
10071
10072/* True iff FRAME is very likely to be that of a function that is
10073 part of the runtime system. This is all very heuristic, but is
10074 intended to be used as advice as to what frames are uninteresting
10075 to most users. */
10076
10077static int
10078is_known_support_routine (struct frame_info *frame)
10079{
4ed6b5be 10080 struct symtab_and_line sal;
f7f9143b
JB
10081 char *func_name;
10082 int i;
f7f9143b 10083
4ed6b5be
JB
10084 /* If this code does not have any debugging information (no symtab),
10085 This cannot be any user code. */
f7f9143b 10086
4ed6b5be 10087 find_frame_sal (frame, &sal);
f7f9143b
JB
10088 if (sal.symtab == NULL)
10089 return 1;
10090
4ed6b5be
JB
10091 /* If there is a symtab, but the associated source file cannot be
10092 located, then assume this is not user code: Selecting a frame
10093 for which we cannot display the code would not be very helpful
10094 for the user. This should also take care of case such as VxWorks
10095 where the kernel has some debugging info provided for a few units. */
f7f9143b 10096
9bbc9174 10097 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10098 return 1;
10099
4ed6b5be
JB
10100 /* Check the unit filename againt the Ada runtime file naming.
10101 We also check the name of the objfile against the name of some
10102 known system libraries that sometimes come with debugging info
10103 too. */
10104
f7f9143b
JB
10105 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10106 {
10107 re_comp (known_runtime_file_name_patterns[i]);
10108 if (re_exec (sal.symtab->filename))
10109 return 1;
4ed6b5be
JB
10110 if (sal.symtab->objfile != NULL
10111 && re_exec (sal.symtab->objfile->name))
10112 return 1;
f7f9143b
JB
10113 }
10114
4ed6b5be 10115 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10116
4ed6b5be 10117 func_name = function_name_from_pc (get_frame_address_in_block (frame));
f7f9143b
JB
10118 if (func_name == NULL)
10119 return 1;
10120
10121 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10122 {
10123 re_comp (known_auxiliary_function_name_patterns[i]);
10124 if (re_exec (func_name))
10125 return 1;
10126 }
10127
10128 return 0;
10129}
10130
10131/* Find the first frame that contains debugging information and that is not
10132 part of the Ada run-time, starting from FI and moving upward. */
10133
0ef643c8 10134void
f7f9143b
JB
10135ada_find_printable_frame (struct frame_info *fi)
10136{
10137 for (; fi != NULL; fi = get_prev_frame (fi))
10138 {
10139 if (!is_known_support_routine (fi))
10140 {
10141 select_frame (fi);
10142 break;
10143 }
10144 }
10145
10146}
10147
10148/* Assuming that the inferior just triggered an unhandled exception
10149 catchpoint, return the address in inferior memory where the name
10150 of the exception is stored.
10151
10152 Return zero if the address could not be computed. */
10153
10154static CORE_ADDR
10155ada_unhandled_exception_name_addr (void)
0259addd
JB
10156{
10157 return parse_and_eval_address ("e.full_name");
10158}
10159
10160/* Same as ada_unhandled_exception_name_addr, except that this function
10161 should be used when the inferior uses an older version of the runtime,
10162 where the exception name needs to be extracted from a specific frame
10163 several frames up in the callstack. */
10164
10165static CORE_ADDR
10166ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10167{
10168 int frame_level;
10169 struct frame_info *fi;
10170
10171 /* To determine the name of this exception, we need to select
10172 the frame corresponding to RAISE_SYM_NAME. This frame is
10173 at least 3 levels up, so we simply skip the first 3 frames
10174 without checking the name of their associated function. */
10175 fi = get_current_frame ();
10176 for (frame_level = 0; frame_level < 3; frame_level += 1)
10177 if (fi != NULL)
10178 fi = get_prev_frame (fi);
10179
10180 while (fi != NULL)
10181 {
10182 const char *func_name =
10183 function_name_from_pc (get_frame_address_in_block (fi));
10184 if (func_name != NULL
0259addd 10185 && strcmp (func_name, exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10186 break; /* We found the frame we were looking for... */
10187 fi = get_prev_frame (fi);
10188 }
10189
10190 if (fi == NULL)
10191 return 0;
10192
10193 select_frame (fi);
10194 return parse_and_eval_address ("id.full_name");
10195}
10196
10197/* Assuming the inferior just triggered an Ada exception catchpoint
10198 (of any type), return the address in inferior memory where the name
10199 of the exception is stored, if applicable.
10200
10201 Return zero if the address could not be computed, or if not relevant. */
10202
10203static CORE_ADDR
10204ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10205 struct breakpoint *b)
10206{
10207 switch (ex)
10208 {
10209 case ex_catch_exception:
10210 return (parse_and_eval_address ("e.full_name"));
10211 break;
10212
10213 case ex_catch_exception_unhandled:
0259addd 10214 return exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
10215 break;
10216
10217 case ex_catch_assert:
10218 return 0; /* Exception name is not relevant in this case. */
10219 break;
10220
10221 default:
10222 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10223 break;
10224 }
10225
10226 return 0; /* Should never be reached. */
10227}
10228
10229/* Same as ada_exception_name_addr_1, except that it intercepts and contains
10230 any error that ada_exception_name_addr_1 might cause to be thrown.
10231 When an error is intercepted, a warning with the error message is printed,
10232 and zero is returned. */
10233
10234static CORE_ADDR
10235ada_exception_name_addr (enum exception_catchpoint_kind ex,
10236 struct breakpoint *b)
10237{
10238 struct gdb_exception e;
10239 CORE_ADDR result = 0;
10240
10241 TRY_CATCH (e, RETURN_MASK_ERROR)
10242 {
10243 result = ada_exception_name_addr_1 (ex, b);
10244 }
10245
10246 if (e.reason < 0)
10247 {
10248 warning (_("failed to get exception name: %s"), e.message);
10249 return 0;
10250 }
10251
10252 return result;
10253}
10254
10255/* Implement the PRINT_IT method in the breakpoint_ops structure
10256 for all exception catchpoint kinds. */
10257
10258static enum print_stop_action
10259print_it_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
10260{
10261 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
10262 char exception_name[256];
10263
10264 if (addr != 0)
10265 {
10266 read_memory (addr, exception_name, sizeof (exception_name) - 1);
10267 exception_name [sizeof (exception_name) - 1] = '\0';
10268 }
10269
10270 ada_find_printable_frame (get_current_frame ());
10271
10272 annotate_catchpoint (b->number);
10273 switch (ex)
10274 {
10275 case ex_catch_exception:
10276 if (addr != 0)
10277 printf_filtered (_("\nCatchpoint %d, %s at "),
10278 b->number, exception_name);
10279 else
10280 printf_filtered (_("\nCatchpoint %d, exception at "), b->number);
10281 break;
10282 case ex_catch_exception_unhandled:
10283 if (addr != 0)
10284 printf_filtered (_("\nCatchpoint %d, unhandled %s at "),
10285 b->number, exception_name);
10286 else
10287 printf_filtered (_("\nCatchpoint %d, unhandled exception at "),
10288 b->number);
10289 break;
10290 case ex_catch_assert:
10291 printf_filtered (_("\nCatchpoint %d, failed assertion at "),
10292 b->number);
10293 break;
10294 }
10295
10296 return PRINT_SRC_AND_LOC;
10297}
10298
10299/* Implement the PRINT_ONE method in the breakpoint_ops structure
10300 for all exception catchpoint kinds. */
10301
10302static void
10303print_one_exception (enum exception_catchpoint_kind ex,
10304 struct breakpoint *b, CORE_ADDR *last_addr)
10305{
79a45b7d
TT
10306 struct value_print_options opts;
10307
10308 get_user_print_options (&opts);
10309 if (opts.addressprint)
f7f9143b
JB
10310 {
10311 annotate_field (4);
10312 ui_out_field_core_addr (uiout, "addr", b->loc->address);
10313 }
10314
10315 annotate_field (5);
10316 *last_addr = b->loc->address;
10317 switch (ex)
10318 {
10319 case ex_catch_exception:
10320 if (b->exp_string != NULL)
10321 {
10322 char *msg = xstrprintf (_("`%s' Ada exception"), b->exp_string);
10323
10324 ui_out_field_string (uiout, "what", msg);
10325 xfree (msg);
10326 }
10327 else
10328 ui_out_field_string (uiout, "what", "all Ada exceptions");
10329
10330 break;
10331
10332 case ex_catch_exception_unhandled:
10333 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
10334 break;
10335
10336 case ex_catch_assert:
10337 ui_out_field_string (uiout, "what", "failed Ada assertions");
10338 break;
10339
10340 default:
10341 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10342 break;
10343 }
10344}
10345
10346/* Implement the PRINT_MENTION method in the breakpoint_ops structure
10347 for all exception catchpoint kinds. */
10348
10349static void
10350print_mention_exception (enum exception_catchpoint_kind ex,
10351 struct breakpoint *b)
10352{
10353 switch (ex)
10354 {
10355 case ex_catch_exception:
10356 if (b->exp_string != NULL)
10357 printf_filtered (_("Catchpoint %d: `%s' Ada exception"),
10358 b->number, b->exp_string);
10359 else
10360 printf_filtered (_("Catchpoint %d: all Ada exceptions"), b->number);
10361
10362 break;
10363
10364 case ex_catch_exception_unhandled:
10365 printf_filtered (_("Catchpoint %d: unhandled Ada exceptions"),
10366 b->number);
10367 break;
10368
10369 case ex_catch_assert:
10370 printf_filtered (_("Catchpoint %d: failed Ada assertions"), b->number);
10371 break;
10372
10373 default:
10374 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10375 break;
10376 }
10377}
10378
10379/* Virtual table for "catch exception" breakpoints. */
10380
10381static enum print_stop_action
10382print_it_catch_exception (struct breakpoint *b)
10383{
10384 return print_it_exception (ex_catch_exception, b);
10385}
10386
10387static void
10388print_one_catch_exception (struct breakpoint *b, CORE_ADDR *last_addr)
10389{
10390 print_one_exception (ex_catch_exception, b, last_addr);
10391}
10392
10393static void
10394print_mention_catch_exception (struct breakpoint *b)
10395{
10396 print_mention_exception (ex_catch_exception, b);
10397}
10398
10399static struct breakpoint_ops catch_exception_breakpoint_ops =
10400{
ce78b96d
JB
10401 NULL, /* insert */
10402 NULL, /* remove */
10403 NULL, /* breakpoint_hit */
f7f9143b
JB
10404 print_it_catch_exception,
10405 print_one_catch_exception,
10406 print_mention_catch_exception
10407};
10408
10409/* Virtual table for "catch exception unhandled" breakpoints. */
10410
10411static enum print_stop_action
10412print_it_catch_exception_unhandled (struct breakpoint *b)
10413{
10414 return print_it_exception (ex_catch_exception_unhandled, b);
10415}
10416
10417static void
10418print_one_catch_exception_unhandled (struct breakpoint *b, CORE_ADDR *last_addr)
10419{
10420 print_one_exception (ex_catch_exception_unhandled, b, last_addr);
10421}
10422
10423static void
10424print_mention_catch_exception_unhandled (struct breakpoint *b)
10425{
10426 print_mention_exception (ex_catch_exception_unhandled, b);
10427}
10428
10429static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops = {
ce78b96d
JB
10430 NULL, /* insert */
10431 NULL, /* remove */
10432 NULL, /* breakpoint_hit */
f7f9143b
JB
10433 print_it_catch_exception_unhandled,
10434 print_one_catch_exception_unhandled,
10435 print_mention_catch_exception_unhandled
10436};
10437
10438/* Virtual table for "catch assert" breakpoints. */
10439
10440static enum print_stop_action
10441print_it_catch_assert (struct breakpoint *b)
10442{
10443 return print_it_exception (ex_catch_assert, b);
10444}
10445
10446static void
10447print_one_catch_assert (struct breakpoint *b, CORE_ADDR *last_addr)
10448{
10449 print_one_exception (ex_catch_assert, b, last_addr);
10450}
10451
10452static void
10453print_mention_catch_assert (struct breakpoint *b)
10454{
10455 print_mention_exception (ex_catch_assert, b);
10456}
10457
10458static struct breakpoint_ops catch_assert_breakpoint_ops = {
ce78b96d
JB
10459 NULL, /* insert */
10460 NULL, /* remove */
10461 NULL, /* breakpoint_hit */
f7f9143b
JB
10462 print_it_catch_assert,
10463 print_one_catch_assert,
10464 print_mention_catch_assert
10465};
10466
10467/* Return non-zero if B is an Ada exception catchpoint. */
10468
10469int
10470ada_exception_catchpoint_p (struct breakpoint *b)
10471{
10472 return (b->ops == &catch_exception_breakpoint_ops
10473 || b->ops == &catch_exception_unhandled_breakpoint_ops
10474 || b->ops == &catch_assert_breakpoint_ops);
10475}
10476
f7f9143b
JB
10477/* Return a newly allocated copy of the first space-separated token
10478 in ARGSP, and then adjust ARGSP to point immediately after that
10479 token.
10480
10481 Return NULL if ARGPS does not contain any more tokens. */
10482
10483static char *
10484ada_get_next_arg (char **argsp)
10485{
10486 char *args = *argsp;
10487 char *end;
10488 char *result;
10489
10490 /* Skip any leading white space. */
10491
10492 while (isspace (*args))
10493 args++;
10494
10495 if (args[0] == '\0')
10496 return NULL; /* No more arguments. */
10497
10498 /* Find the end of the current argument. */
10499
10500 end = args;
10501 while (*end != '\0' && !isspace (*end))
10502 end++;
10503
10504 /* Adjust ARGSP to point to the start of the next argument. */
10505
10506 *argsp = end;
10507
10508 /* Make a copy of the current argument and return it. */
10509
10510 result = xmalloc (end - args + 1);
10511 strncpy (result, args, end - args);
10512 result[end - args] = '\0';
10513
10514 return result;
10515}
10516
10517/* Split the arguments specified in a "catch exception" command.
10518 Set EX to the appropriate catchpoint type.
10519 Set EXP_STRING to the name of the specific exception if
10520 specified by the user. */
10521
10522static void
10523catch_ada_exception_command_split (char *args,
10524 enum exception_catchpoint_kind *ex,
10525 char **exp_string)
10526{
10527 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
10528 char *exception_name;
10529
10530 exception_name = ada_get_next_arg (&args);
10531 make_cleanup (xfree, exception_name);
10532
10533 /* Check that we do not have any more arguments. Anything else
10534 is unexpected. */
10535
10536 while (isspace (*args))
10537 args++;
10538
10539 if (args[0] != '\0')
10540 error (_("Junk at end of expression"));
10541
10542 discard_cleanups (old_chain);
10543
10544 if (exception_name == NULL)
10545 {
10546 /* Catch all exceptions. */
10547 *ex = ex_catch_exception;
10548 *exp_string = NULL;
10549 }
10550 else if (strcmp (exception_name, "unhandled") == 0)
10551 {
10552 /* Catch unhandled exceptions. */
10553 *ex = ex_catch_exception_unhandled;
10554 *exp_string = NULL;
10555 }
10556 else
10557 {
10558 /* Catch a specific exception. */
10559 *ex = ex_catch_exception;
10560 *exp_string = exception_name;
10561 }
10562}
10563
10564/* Return the name of the symbol on which we should break in order to
10565 implement a catchpoint of the EX kind. */
10566
10567static const char *
10568ada_exception_sym_name (enum exception_catchpoint_kind ex)
10569{
0259addd
JB
10570 gdb_assert (exception_info != NULL);
10571
f7f9143b
JB
10572 switch (ex)
10573 {
10574 case ex_catch_exception:
0259addd 10575 return (exception_info->catch_exception_sym);
f7f9143b
JB
10576 break;
10577 case ex_catch_exception_unhandled:
0259addd 10578 return (exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
10579 break;
10580 case ex_catch_assert:
0259addd 10581 return (exception_info->catch_assert_sym);
f7f9143b
JB
10582 break;
10583 default:
10584 internal_error (__FILE__, __LINE__,
10585 _("unexpected catchpoint kind (%d)"), ex);
10586 }
10587}
10588
10589/* Return the breakpoint ops "virtual table" used for catchpoints
10590 of the EX kind. */
10591
10592static struct breakpoint_ops *
4b9eee8c 10593ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
10594{
10595 switch (ex)
10596 {
10597 case ex_catch_exception:
10598 return (&catch_exception_breakpoint_ops);
10599 break;
10600 case ex_catch_exception_unhandled:
10601 return (&catch_exception_unhandled_breakpoint_ops);
10602 break;
10603 case ex_catch_assert:
10604 return (&catch_assert_breakpoint_ops);
10605 break;
10606 default:
10607 internal_error (__FILE__, __LINE__,
10608 _("unexpected catchpoint kind (%d)"), ex);
10609 }
10610}
10611
10612/* Return the condition that will be used to match the current exception
10613 being raised with the exception that the user wants to catch. This
10614 assumes that this condition is used when the inferior just triggered
10615 an exception catchpoint.
10616
10617 The string returned is a newly allocated string that needs to be
10618 deallocated later. */
10619
10620static char *
10621ada_exception_catchpoint_cond_string (const char *exp_string)
10622{
3d0b0fa3
JB
10623 int i;
10624
10625 /* The standard exceptions are a special case. They are defined in
10626 runtime units that have been compiled without debugging info; if
10627 EXP_STRING is the not-fully-qualified name of a standard
10628 exception (e.g. "constraint_error") then, during the evaluation
10629 of the condition expression, the symbol lookup on this name would
10630 *not* return this standard exception. The catchpoint condition
10631 may then be set only on user-defined exceptions which have the
10632 same not-fully-qualified name (e.g. my_package.constraint_error).
10633
10634 To avoid this unexcepted behavior, these standard exceptions are
10635 systematically prefixed by "standard". This means that "catch
10636 exception constraint_error" is rewritten into "catch exception
10637 standard.constraint_error".
10638
10639 If an exception named contraint_error is defined in another package of
10640 the inferior program, then the only way to specify this exception as a
10641 breakpoint condition is to use its fully-qualified named:
10642 e.g. my_package.constraint_error. */
10643
10644 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
10645 {
10646 if (strcmp (standard_exc [i], exp_string) == 0)
10647 {
10648 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
10649 exp_string);
10650 }
10651 }
f7f9143b
JB
10652 return xstrprintf ("long_integer (e) = long_integer (&%s)", exp_string);
10653}
10654
10655/* Return the expression corresponding to COND_STRING evaluated at SAL. */
10656
10657static struct expression *
10658ada_parse_catchpoint_condition (char *cond_string,
10659 struct symtab_and_line sal)
10660{
10661 return (parse_exp_1 (&cond_string, block_for_pc (sal.pc), 0));
10662}
10663
10664/* Return the symtab_and_line that should be used to insert an exception
10665 catchpoint of the TYPE kind.
10666
10667 EX_STRING should contain the name of a specific exception
10668 that the catchpoint should catch, or NULL otherwise.
10669
10670 The idea behind all the remaining parameters is that their names match
10671 the name of certain fields in the breakpoint structure that are used to
10672 handle exception catchpoints. This function returns the value to which
10673 these fields should be set, depending on the type of catchpoint we need
10674 to create.
10675
10676 If COND and COND_STRING are both non-NULL, any value they might
10677 hold will be free'ed, and then replaced by newly allocated ones.
10678 These parameters are left untouched otherwise. */
10679
10680static struct symtab_and_line
10681ada_exception_sal (enum exception_catchpoint_kind ex, char *exp_string,
10682 char **addr_string, char **cond_string,
10683 struct expression **cond, struct breakpoint_ops **ops)
10684{
10685 const char *sym_name;
10686 struct symbol *sym;
10687 struct symtab_and_line sal;
10688
0259addd
JB
10689 /* First, find out which exception support info to use. */
10690 ada_exception_support_info_sniffer ();
10691
10692 /* Then lookup the function on which we will break in order to catch
f7f9143b
JB
10693 the Ada exceptions requested by the user. */
10694
10695 sym_name = ada_exception_sym_name (ex);
10696 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
10697
10698 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10699 that should be compiled with debugging information. As a result, we
10700 expect to find that symbol in the symtabs. If we don't find it, then
10701 the target most likely does not support Ada exceptions, or we cannot
10702 insert exception breakpoints yet, because the GNAT runtime hasn't been
10703 loaded yet. */
10704
10705 /* brobecker/2006-12-26: It is conceivable that the runtime was compiled
10706 in such a way that no debugging information is produced for the symbol
10707 we are looking for. In this case, we could search the minimal symbols
10708 as a fall-back mechanism. This would still be operating in degraded
10709 mode, however, as we would still be missing the debugging information
10710 that is needed in order to extract the name of the exception being
10711 raised (this name is printed in the catchpoint message, and is also
10712 used when trying to catch a specific exception). We do not handle
10713 this case for now. */
10714
10715 if (sym == NULL)
0259addd 10716 error (_("Unable to break on '%s' in this configuration."), sym_name);
f7f9143b
JB
10717
10718 /* Make sure that the symbol we found corresponds to a function. */
10719 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10720 error (_("Symbol \"%s\" is not a function (class = %d)"),
10721 sym_name, SYMBOL_CLASS (sym));
10722
10723 sal = find_function_start_sal (sym, 1);
10724
10725 /* Set ADDR_STRING. */
10726
10727 *addr_string = xstrdup (sym_name);
10728
10729 /* Set the COND and COND_STRING (if not NULL). */
10730
10731 if (cond_string != NULL && cond != NULL)
10732 {
10733 if (*cond_string != NULL)
10734 {
10735 xfree (*cond_string);
10736 *cond_string = NULL;
10737 }
10738 if (*cond != NULL)
10739 {
10740 xfree (*cond);
10741 *cond = NULL;
10742 }
10743 if (exp_string != NULL)
10744 {
10745 *cond_string = ada_exception_catchpoint_cond_string (exp_string);
10746 *cond = ada_parse_catchpoint_condition (*cond_string, sal);
10747 }
10748 }
10749
10750 /* Set OPS. */
4b9eee8c 10751 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b
JB
10752
10753 return sal;
10754}
10755
10756/* Parse the arguments (ARGS) of the "catch exception" command.
10757
10758 Set TYPE to the appropriate exception catchpoint type.
10759 If the user asked the catchpoint to catch only a specific
10760 exception, then save the exception name in ADDR_STRING.
10761
10762 See ada_exception_sal for a description of all the remaining
10763 function arguments of this function. */
10764
10765struct symtab_and_line
10766ada_decode_exception_location (char *args, char **addr_string,
10767 char **exp_string, char **cond_string,
10768 struct expression **cond,
10769 struct breakpoint_ops **ops)
10770{
10771 enum exception_catchpoint_kind ex;
10772
10773 catch_ada_exception_command_split (args, &ex, exp_string);
10774 return ada_exception_sal (ex, *exp_string, addr_string, cond_string,
10775 cond, ops);
10776}
10777
10778struct symtab_and_line
10779ada_decode_assert_location (char *args, char **addr_string,
10780 struct breakpoint_ops **ops)
10781{
10782 /* Check that no argument where provided at the end of the command. */
10783
10784 if (args != NULL)
10785 {
10786 while (isspace (*args))
10787 args++;
10788 if (*args != '\0')
10789 error (_("Junk at end of arguments."));
10790 }
10791
10792 return ada_exception_sal (ex_catch_assert, NULL, addr_string, NULL, NULL,
10793 ops);
10794}
10795
4c4b4cd2
PH
10796 /* Operators */
10797/* Information about operators given special treatment in functions
10798 below. */
10799/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
10800
10801#define ADA_OPERATORS \
10802 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
10803 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
10804 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
10805 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
10806 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
10807 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
10808 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
10809 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
10810 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
10811 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
10812 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
10813 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
10814 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
10815 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
10816 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
10817 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
10818 OP_DEFN (OP_OTHERS, 1, 1, 0) \
10819 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
10820 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
10821
10822static void
10823ada_operator_length (struct expression *exp, int pc, int *oplenp, int *argsp)
10824{
10825 switch (exp->elts[pc - 1].opcode)
10826 {
76a01679 10827 default:
4c4b4cd2
PH
10828 operator_length_standard (exp, pc, oplenp, argsp);
10829 break;
10830
10831#define OP_DEFN(op, len, args, binop) \
10832 case op: *oplenp = len; *argsp = args; break;
10833 ADA_OPERATORS;
10834#undef OP_DEFN
52ce6436
PH
10835
10836 case OP_AGGREGATE:
10837 *oplenp = 3;
10838 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
10839 break;
10840
10841 case OP_CHOICES:
10842 *oplenp = 3;
10843 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
10844 break;
4c4b4cd2
PH
10845 }
10846}
10847
10848static char *
10849ada_op_name (enum exp_opcode opcode)
10850{
10851 switch (opcode)
10852 {
76a01679 10853 default:
4c4b4cd2 10854 return op_name_standard (opcode);
52ce6436 10855
4c4b4cd2
PH
10856#define OP_DEFN(op, len, args, binop) case op: return #op;
10857 ADA_OPERATORS;
10858#undef OP_DEFN
52ce6436
PH
10859
10860 case OP_AGGREGATE:
10861 return "OP_AGGREGATE";
10862 case OP_CHOICES:
10863 return "OP_CHOICES";
10864 case OP_NAME:
10865 return "OP_NAME";
4c4b4cd2
PH
10866 }
10867}
10868
10869/* As for operator_length, but assumes PC is pointing at the first
10870 element of the operator, and gives meaningful results only for the
52ce6436 10871 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
10872
10873static void
76a01679
JB
10874ada_forward_operator_length (struct expression *exp, int pc,
10875 int *oplenp, int *argsp)
4c4b4cd2 10876{
76a01679 10877 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
10878 {
10879 default:
10880 *oplenp = *argsp = 0;
10881 break;
52ce6436 10882
4c4b4cd2
PH
10883#define OP_DEFN(op, len, args, binop) \
10884 case op: *oplenp = len; *argsp = args; break;
10885 ADA_OPERATORS;
10886#undef OP_DEFN
52ce6436
PH
10887
10888 case OP_AGGREGATE:
10889 *oplenp = 3;
10890 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
10891 break;
10892
10893 case OP_CHOICES:
10894 *oplenp = 3;
10895 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
10896 break;
10897
10898 case OP_STRING:
10899 case OP_NAME:
10900 {
10901 int len = longest_to_int (exp->elts[pc + 1].longconst);
10902 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
10903 *argsp = 0;
10904 break;
10905 }
4c4b4cd2
PH
10906 }
10907}
10908
10909static int
10910ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
10911{
10912 enum exp_opcode op = exp->elts[elt].opcode;
10913 int oplen, nargs;
10914 int pc = elt;
10915 int i;
76a01679 10916
4c4b4cd2
PH
10917 ada_forward_operator_length (exp, elt, &oplen, &nargs);
10918
76a01679 10919 switch (op)
4c4b4cd2 10920 {
76a01679 10921 /* Ada attributes ('Foo). */
4c4b4cd2
PH
10922 case OP_ATR_FIRST:
10923 case OP_ATR_LAST:
10924 case OP_ATR_LENGTH:
10925 case OP_ATR_IMAGE:
10926 case OP_ATR_MAX:
10927 case OP_ATR_MIN:
10928 case OP_ATR_MODULUS:
10929 case OP_ATR_POS:
10930 case OP_ATR_SIZE:
10931 case OP_ATR_TAG:
10932 case OP_ATR_VAL:
10933 break;
10934
10935 case UNOP_IN_RANGE:
10936 case UNOP_QUAL:
323e0a4a
AC
10937 /* XXX: gdb_sprint_host_address, type_sprint */
10938 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
10939 gdb_print_host_address (exp->elts[pc + 1].type, stream);
10940 fprintf_filtered (stream, " (");
10941 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
10942 fprintf_filtered (stream, ")");
10943 break;
10944 case BINOP_IN_BOUNDS:
52ce6436
PH
10945 fprintf_filtered (stream, " (%d)",
10946 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
10947 break;
10948 case TERNOP_IN_RANGE:
10949 break;
10950
52ce6436
PH
10951 case OP_AGGREGATE:
10952 case OP_OTHERS:
10953 case OP_DISCRETE_RANGE:
10954 case OP_POSITIONAL:
10955 case OP_CHOICES:
10956 break;
10957
10958 case OP_NAME:
10959 case OP_STRING:
10960 {
10961 char *name = &exp->elts[elt + 2].string;
10962 int len = longest_to_int (exp->elts[elt + 1].longconst);
10963 fprintf_filtered (stream, "Text: `%.*s'", len, name);
10964 break;
10965 }
10966
4c4b4cd2
PH
10967 default:
10968 return dump_subexp_body_standard (exp, stream, elt);
10969 }
10970
10971 elt += oplen;
10972 for (i = 0; i < nargs; i += 1)
10973 elt = dump_subexp (exp, stream, elt);
10974
10975 return elt;
10976}
10977
10978/* The Ada extension of print_subexp (q.v.). */
10979
76a01679
JB
10980static void
10981ada_print_subexp (struct expression *exp, int *pos,
10982 struct ui_file *stream, enum precedence prec)
4c4b4cd2 10983{
52ce6436 10984 int oplen, nargs, i;
4c4b4cd2
PH
10985 int pc = *pos;
10986 enum exp_opcode op = exp->elts[pc].opcode;
10987
10988 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10989
52ce6436 10990 *pos += oplen;
4c4b4cd2
PH
10991 switch (op)
10992 {
10993 default:
52ce6436 10994 *pos -= oplen;
4c4b4cd2
PH
10995 print_subexp_standard (exp, pos, stream, prec);
10996 return;
10997
10998 case OP_VAR_VALUE:
4c4b4cd2
PH
10999 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
11000 return;
11001
11002 case BINOP_IN_BOUNDS:
323e0a4a 11003 /* XXX: sprint_subexp */
4c4b4cd2 11004 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11005 fputs_filtered (" in ", stream);
4c4b4cd2 11006 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11007 fputs_filtered ("'range", stream);
4c4b4cd2 11008 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
11009 fprintf_filtered (stream, "(%ld)",
11010 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
11011 return;
11012
11013 case TERNOP_IN_RANGE:
4c4b4cd2 11014 if (prec >= PREC_EQUAL)
76a01679 11015 fputs_filtered ("(", stream);
323e0a4a 11016 /* XXX: sprint_subexp */
4c4b4cd2 11017 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11018 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11019 print_subexp (exp, pos, stream, PREC_EQUAL);
11020 fputs_filtered (" .. ", stream);
11021 print_subexp (exp, pos, stream, PREC_EQUAL);
11022 if (prec >= PREC_EQUAL)
76a01679
JB
11023 fputs_filtered (")", stream);
11024 return;
4c4b4cd2
PH
11025
11026 case OP_ATR_FIRST:
11027 case OP_ATR_LAST:
11028 case OP_ATR_LENGTH:
11029 case OP_ATR_IMAGE:
11030 case OP_ATR_MAX:
11031 case OP_ATR_MIN:
11032 case OP_ATR_MODULUS:
11033 case OP_ATR_POS:
11034 case OP_ATR_SIZE:
11035 case OP_ATR_TAG:
11036 case OP_ATR_VAL:
4c4b4cd2 11037 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
11038 {
11039 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
11040 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
11041 *pos += 3;
11042 }
4c4b4cd2 11043 else
76a01679 11044 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
11045 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
11046 if (nargs > 1)
76a01679
JB
11047 {
11048 int tem;
11049 for (tem = 1; tem < nargs; tem += 1)
11050 {
11051 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
11052 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
11053 }
11054 fputs_filtered (")", stream);
11055 }
4c4b4cd2 11056 return;
14f9c5c9 11057
4c4b4cd2 11058 case UNOP_QUAL:
4c4b4cd2
PH
11059 type_print (exp->elts[pc + 1].type, "", stream, 0);
11060 fputs_filtered ("'(", stream);
11061 print_subexp (exp, pos, stream, PREC_PREFIX);
11062 fputs_filtered (")", stream);
11063 return;
14f9c5c9 11064
4c4b4cd2 11065 case UNOP_IN_RANGE:
323e0a4a 11066 /* XXX: sprint_subexp */
4c4b4cd2 11067 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 11068 fputs_filtered (" in ", stream);
4c4b4cd2
PH
11069 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
11070 return;
52ce6436
PH
11071
11072 case OP_DISCRETE_RANGE:
11073 print_subexp (exp, pos, stream, PREC_SUFFIX);
11074 fputs_filtered ("..", stream);
11075 print_subexp (exp, pos, stream, PREC_SUFFIX);
11076 return;
11077
11078 case OP_OTHERS:
11079 fputs_filtered ("others => ", stream);
11080 print_subexp (exp, pos, stream, PREC_SUFFIX);
11081 return;
11082
11083 case OP_CHOICES:
11084 for (i = 0; i < nargs-1; i += 1)
11085 {
11086 if (i > 0)
11087 fputs_filtered ("|", stream);
11088 print_subexp (exp, pos, stream, PREC_SUFFIX);
11089 }
11090 fputs_filtered (" => ", stream);
11091 print_subexp (exp, pos, stream, PREC_SUFFIX);
11092 return;
11093
11094 case OP_POSITIONAL:
11095 print_subexp (exp, pos, stream, PREC_SUFFIX);
11096 return;
11097
11098 case OP_AGGREGATE:
11099 fputs_filtered ("(", stream);
11100 for (i = 0; i < nargs; i += 1)
11101 {
11102 if (i > 0)
11103 fputs_filtered (", ", stream);
11104 print_subexp (exp, pos, stream, PREC_SUFFIX);
11105 }
11106 fputs_filtered (")", stream);
11107 return;
4c4b4cd2
PH
11108 }
11109}
14f9c5c9
AS
11110
11111/* Table mapping opcodes into strings for printing operators
11112 and precedences of the operators. */
11113
d2e4a39e
AS
11114static const struct op_print ada_op_print_tab[] = {
11115 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
11116 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
11117 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
11118 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
11119 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
11120 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
11121 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
11122 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
11123 {"<=", BINOP_LEQ, PREC_ORDER, 0},
11124 {">=", BINOP_GEQ, PREC_ORDER, 0},
11125 {">", BINOP_GTR, PREC_ORDER, 0},
11126 {"<", BINOP_LESS, PREC_ORDER, 0},
11127 {">>", BINOP_RSH, PREC_SHIFT, 0},
11128 {"<<", BINOP_LSH, PREC_SHIFT, 0},
11129 {"+", BINOP_ADD, PREC_ADD, 0},
11130 {"-", BINOP_SUB, PREC_ADD, 0},
11131 {"&", BINOP_CONCAT, PREC_ADD, 0},
11132 {"*", BINOP_MUL, PREC_MUL, 0},
11133 {"/", BINOP_DIV, PREC_MUL, 0},
11134 {"rem", BINOP_REM, PREC_MUL, 0},
11135 {"mod", BINOP_MOD, PREC_MUL, 0},
11136 {"**", BINOP_EXP, PREC_REPEAT, 0},
11137 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
11138 {"-", UNOP_NEG, PREC_PREFIX, 0},
11139 {"+", UNOP_PLUS, PREC_PREFIX, 0},
11140 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
11141 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
11142 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
11143 {".all", UNOP_IND, PREC_SUFFIX, 1},
11144 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
11145 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 11146 {NULL, 0, 0, 0}
14f9c5c9
AS
11147};
11148\f
72d5681a
PH
11149enum ada_primitive_types {
11150 ada_primitive_type_int,
11151 ada_primitive_type_long,
11152 ada_primitive_type_short,
11153 ada_primitive_type_char,
11154 ada_primitive_type_float,
11155 ada_primitive_type_double,
11156 ada_primitive_type_void,
11157 ada_primitive_type_long_long,
11158 ada_primitive_type_long_double,
11159 ada_primitive_type_natural,
11160 ada_primitive_type_positive,
11161 ada_primitive_type_system_address,
11162 nr_ada_primitive_types
11163};
6c038f32
PH
11164
11165static void
d4a9a881 11166ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
11167 struct language_arch_info *lai)
11168{
d4a9a881 11169 const struct builtin_type *builtin = builtin_type (gdbarch);
72d5681a 11170 lai->primitive_type_vector
d4a9a881 11171 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a
PH
11172 struct type *);
11173 lai->primitive_type_vector [ada_primitive_type_int] =
9a76efb6 11174 init_type (TYPE_CODE_INT,
d4a9a881 11175 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11176 0, "integer", (struct objfile *) NULL);
72d5681a 11177 lai->primitive_type_vector [ada_primitive_type_long] =
9a76efb6 11178 init_type (TYPE_CODE_INT,
d4a9a881 11179 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11180 0, "long_integer", (struct objfile *) NULL);
72d5681a 11181 lai->primitive_type_vector [ada_primitive_type_short] =
9a76efb6 11182 init_type (TYPE_CODE_INT,
d4a9a881 11183 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11184 0, "short_integer", (struct objfile *) NULL);
61ee279c
PH
11185 lai->string_char_type =
11186 lai->primitive_type_vector [ada_primitive_type_char] =
6c038f32
PH
11187 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
11188 0, "character", (struct objfile *) NULL);
72d5681a 11189 lai->primitive_type_vector [ada_primitive_type_float] =
ea06eb3d 11190 init_type (TYPE_CODE_FLT,
d4a9a881 11191 gdbarch_float_bit (gdbarch)/ TARGET_CHAR_BIT,
6c038f32 11192 0, "float", (struct objfile *) NULL);
72d5681a 11193 lai->primitive_type_vector [ada_primitive_type_double] =
ea06eb3d 11194 init_type (TYPE_CODE_FLT,
d4a9a881 11195 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11196 0, "long_float", (struct objfile *) NULL);
72d5681a 11197 lai->primitive_type_vector [ada_primitive_type_long_long] =
9a76efb6 11198 init_type (TYPE_CODE_INT,
d4a9a881 11199 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11200 0, "long_long_integer", (struct objfile *) NULL);
72d5681a 11201 lai->primitive_type_vector [ada_primitive_type_long_double] =
ea06eb3d 11202 init_type (TYPE_CODE_FLT,
d4a9a881 11203 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
6c038f32 11204 0, "long_long_float", (struct objfile *) NULL);
72d5681a 11205 lai->primitive_type_vector [ada_primitive_type_natural] =
9a76efb6 11206 init_type (TYPE_CODE_INT,
d4a9a881 11207 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11208 0, "natural", (struct objfile *) NULL);
72d5681a 11209 lai->primitive_type_vector [ada_primitive_type_positive] =
9a76efb6 11210 init_type (TYPE_CODE_INT,
d4a9a881 11211 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
9a76efb6 11212 0, "positive", (struct objfile *) NULL);
72d5681a 11213 lai->primitive_type_vector [ada_primitive_type_void] = builtin->builtin_void;
6c038f32 11214
72d5681a 11215 lai->primitive_type_vector [ada_primitive_type_system_address] =
6c038f32
PH
11216 lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void",
11217 (struct objfile *) NULL));
72d5681a
PH
11218 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
11219 = "system__address";
fbb06eb1 11220
47e729a8 11221 lai->bool_type_symbol = NULL;
fbb06eb1 11222 lai->bool_type_default = builtin->builtin_bool;
6c038f32 11223}
6c038f32
PH
11224\f
11225 /* Language vector */
11226
11227/* Not really used, but needed in the ada_language_defn. */
11228
11229static void
6c7a06a3 11230emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 11231{
6c7a06a3 11232 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
11233}
11234
11235static int
11236parse (void)
11237{
11238 warnings_issued = 0;
11239 return ada_parse ();
11240}
11241
11242static const struct exp_descriptor ada_exp_descriptor = {
11243 ada_print_subexp,
11244 ada_operator_length,
11245 ada_op_name,
11246 ada_dump_subexp_body,
11247 ada_evaluate_subexp
11248};
11249
11250const struct language_defn ada_language_defn = {
11251 "ada", /* Language name */
11252 language_ada,
6c038f32
PH
11253 range_check_off,
11254 type_check_off,
11255 case_sensitive_on, /* Yes, Ada is case-insensitive, but
11256 that's not quite what this means. */
6c038f32 11257 array_row_major,
9a044a89 11258 macro_expansion_no,
6c038f32
PH
11259 &ada_exp_descriptor,
11260 parse,
11261 ada_error,
11262 resolve,
11263 ada_printchar, /* Print a character constant */
11264 ada_printstr, /* Function to print string constant */
11265 emit_char, /* Function to print single char (not used) */
6c038f32 11266 ada_print_type, /* Print a type using appropriate syntax */
5c6ce71d 11267 default_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
11268 ada_val_print, /* Print a value using appropriate syntax */
11269 ada_value_print, /* Print a top-level value */
11270 NULL, /* Language specific skip_trampoline */
2b2d9e11 11271 NULL, /* name_of_this */
6c038f32
PH
11272 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
11273 basic_lookup_transparent_type, /* lookup_transparent_type */
11274 ada_la_decode, /* Language specific symbol demangler */
11275 NULL, /* Language specific class_name_from_physname */
11276 ada_op_print_tab, /* expression operators for printing */
11277 0, /* c-style arrays */
11278 1, /* String lower bound */
6c038f32 11279 ada_get_gdb_completer_word_break_characters,
41d27058 11280 ada_make_symbol_completion_list,
72d5681a 11281 ada_language_arch_info,
e79af960 11282 ada_print_array_index,
41f1b697 11283 default_pass_by_reference,
ae6a3a4c 11284 c_get_string,
6c038f32
PH
11285 LANG_MAGIC
11286};
11287
2c0b251b
PA
11288/* Provide a prototype to silence -Wmissing-prototypes. */
11289extern initialize_file_ftype _initialize_ada_language;
11290
d2e4a39e 11291void
6c038f32 11292_initialize_ada_language (void)
14f9c5c9 11293{
6c038f32
PH
11294 add_language (&ada_language_defn);
11295
11296 varsize_limit = 65536;
6c038f32
PH
11297
11298 obstack_init (&symbol_list_obstack);
11299
11300 decoded_names_store = htab_create_alloc
11301 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
11302 NULL, xcalloc, xfree);
6b69afc4
JB
11303
11304 observer_attach_executable_changed (ada_executable_changed_observer);
14f9c5c9 11305}
This page took 1.245374 seconds and 4 git commands to generate.