Ada subscripting of pointer to array with dynamic bounds
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
ecd75fc8 3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
60250e8b 48#include "exceptions.h"
f7f9143b
JB
49#include "annotate.h"
50#include "valprint.h"
9bbc9174 51#include "source.h"
0259addd 52#include "observer.h"
2ba95b9b 53#include "vec.h"
692465f1 54#include "stack.h"
fa864999 55#include "gdb_vecs.h"
79d43c61 56#include "typeprint.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
ccefe4c4 63
4c4b4cd2 64/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 65 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
66 Copied from valarith.c. */
67
68#ifndef TRUNCATION_TOWARDS_ZERO
69#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70#endif
71
d2e4a39e 72static struct type *desc_base_type (struct type *);
14f9c5c9 73
d2e4a39e 74static struct type *desc_bounds_type (struct type *);
14f9c5c9 75
d2e4a39e 76static struct value *desc_bounds (struct value *);
14f9c5c9 77
d2e4a39e 78static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 79
d2e4a39e 80static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 81
556bdfd4 82static struct type *desc_data_target_type (struct type *);
14f9c5c9 83
d2e4a39e 84static struct value *desc_data (struct value *);
14f9c5c9 85
d2e4a39e 86static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 87
d2e4a39e 88static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 89
d2e4a39e 90static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 91
d2e4a39e 92static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 93
d2e4a39e 94static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 95
d2e4a39e 96static struct type *desc_index_type (struct type *, int);
14f9c5c9 97
d2e4a39e 98static int desc_arity (struct type *);
14f9c5c9 99
d2e4a39e 100static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 101
d2e4a39e 102static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 103
40658b94
PH
104static int full_match (const char *, const char *);
105
40bc484c 106static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 107
4c4b4cd2 108static void ada_add_block_symbols (struct obstack *,
f0c5f9b2 109 const struct block *, const char *,
2570f2b7 110 domain_enum, struct objfile *, int);
14f9c5c9 111
4c4b4cd2 112static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
119static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 120
4c4b4cd2 121static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 122 struct type *);
14f9c5c9 123
d2e4a39e 124static void replace_operator_with_call (struct expression **, int, int, int,
270140bd 125 struct symbol *, const struct block *);
14f9c5c9 126
d2e4a39e 127static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 128
4c4b4cd2
PH
129static char *ada_op_name (enum exp_opcode);
130
131static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 132
d2e4a39e 133static int numeric_type_p (struct type *);
14f9c5c9 134
d2e4a39e 135static int integer_type_p (struct type *);
14f9c5c9 136
d2e4a39e 137static int scalar_type_p (struct type *);
14f9c5c9 138
d2e4a39e 139static int discrete_type_p (struct type *);
14f9c5c9 140
aeb5907d
JB
141static enum ada_renaming_category parse_old_style_renaming (struct type *,
142 const char **,
143 int *,
144 const char **);
145
146static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 147 const struct block *);
aeb5907d 148
4c4b4cd2 149static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 150 int, int, int *);
4c4b4cd2 151
d2e4a39e 152static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 153
b4ba55a1
JB
154static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
d2e4a39e 157static int is_dynamic_field (struct type *, int);
14f9c5c9 158
10a2c479 159static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 160 const gdb_byte *,
4c4b4cd2
PH
161 CORE_ADDR, struct value *);
162
163static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 164
28c85d6c 165static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 166
d2e4a39e 167static struct type *to_static_fixed_type (struct type *);
f192137b 168static struct type *static_unwrap_type (struct type *type);
14f9c5c9 169
d2e4a39e 170static struct value *unwrap_value (struct value *);
14f9c5c9 171
ad82864c 172static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 173
ad82864c 174static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 175
ad82864c
JB
176static long decode_packed_array_bitsize (struct type *);
177
178static struct value *decode_constrained_packed_array (struct value *);
179
180static int ada_is_packed_array_type (struct type *);
181
182static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 183
d2e4a39e 184static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 185 struct value **);
14f9c5c9 186
50810684 187static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 188
4c4b4cd2
PH
189static struct value *coerce_unspec_val_to_type (struct value *,
190 struct type *);
14f9c5c9 191
d2e4a39e 192static struct value *get_var_value (char *, char *);
14f9c5c9 193
d2e4a39e 194static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 195
d2e4a39e 196static int equiv_types (struct type *, struct type *);
14f9c5c9 197
d2e4a39e 198static int is_name_suffix (const char *);
14f9c5c9 199
73589123
PH
200static int advance_wild_match (const char **, const char *, int);
201
202static int wild_match (const char *, const char *);
14f9c5c9 203
d2e4a39e 204static struct value *ada_coerce_ref (struct value *);
14f9c5c9 205
4c4b4cd2
PH
206static LONGEST pos_atr (struct value *);
207
3cb382c9 208static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 209
d2e4a39e 210static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 211
4c4b4cd2
PH
212static struct symbol *standard_lookup (const char *, const struct block *,
213 domain_enum);
14f9c5c9 214
4c4b4cd2
PH
215static struct value *ada_search_struct_field (char *, struct value *, int,
216 struct type *);
217
218static struct value *ada_value_primitive_field (struct value *, int, int,
219 struct type *);
220
0d5cff50 221static int find_struct_field (const char *, struct type *, int,
52ce6436 222 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
223
224static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
225 struct value *);
226
4c4b4cd2
PH
227static int ada_resolve_function (struct ada_symbol_info *, int,
228 struct value **, int, const char *,
229 struct type *);
230
4c4b4cd2
PH
231static int ada_is_direct_array_type (struct type *);
232
72d5681a
PH
233static void ada_language_arch_info (struct gdbarch *,
234 struct language_arch_info *);
714e53ab
PH
235
236static void check_size (const struct type *);
52ce6436
PH
237
238static struct value *ada_index_struct_field (int, struct value *, int,
239 struct type *);
240
241static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
242 struct expression *,
243 int *, enum noside);
52ce6436
PH
244
245static void aggregate_assign_from_choices (struct value *, struct value *,
246 struct expression *,
247 int *, LONGEST *, int *,
248 int, LONGEST, LONGEST);
249
250static void aggregate_assign_positional (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *, int,
253 LONGEST, LONGEST);
254
255
256static void aggregate_assign_others (struct value *, struct value *,
257 struct expression *,
258 int *, LONGEST *, int, LONGEST, LONGEST);
259
260
261static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
262
263
264static struct value *ada_evaluate_subexp (struct type *, struct expression *,
265 int *, enum noside);
266
267static void ada_forward_operator_length (struct expression *, int, int *,
268 int *);
852dff6c
JB
269
270static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
271\f
272
ee01b665
JB
273/* The result of a symbol lookup to be stored in our symbol cache. */
274
275struct cache_entry
276{
277 /* The name used to perform the lookup. */
278 const char *name;
279 /* The namespace used during the lookup. */
280 domain_enum namespace;
281 /* The symbol returned by the lookup, or NULL if no matching symbol
282 was found. */
283 struct symbol *sym;
284 /* The block where the symbol was found, or NULL if no matching
285 symbol was found. */
286 const struct block *block;
287 /* A pointer to the next entry with the same hash. */
288 struct cache_entry *next;
289};
290
291/* The Ada symbol cache, used to store the result of Ada-mode symbol
292 lookups in the course of executing the user's commands.
293
294 The cache is implemented using a simple, fixed-sized hash.
295 The size is fixed on the grounds that there are not likely to be
296 all that many symbols looked up during any given session, regardless
297 of the size of the symbol table. If we decide to go to a resizable
298 table, let's just use the stuff from libiberty instead. */
299
300#define HASH_SIZE 1009
301
302struct ada_symbol_cache
303{
304 /* An obstack used to store the entries in our cache. */
305 struct obstack cache_space;
306
307 /* The root of the hash table used to implement our symbol cache. */
308 struct cache_entry *root[HASH_SIZE];
309};
310
311static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 312
4c4b4cd2 313/* Maximum-sized dynamic type. */
14f9c5c9
AS
314static unsigned int varsize_limit;
315
4c4b4cd2
PH
316/* FIXME: brobecker/2003-09-17: No longer a const because it is
317 returned by a function that does not return a const char *. */
318static char *ada_completer_word_break_characters =
319#ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321#else
14f9c5c9 322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 323#endif
14f9c5c9 324
4c4b4cd2 325/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 326static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 327 = "__gnat_ada_main_program_name";
14f9c5c9 328
4c4b4cd2
PH
329/* Limit on the number of warnings to raise per expression evaluation. */
330static int warning_limit = 2;
331
332/* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334static int warnings_issued = 0;
335
336static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338};
339
340static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342};
343
344/* Space for allocating results of ada_lookup_symbol_list. */
345static struct obstack symbol_list_obstack;
346
c6044dd1
JB
347/* Maintenance-related settings for this module. */
348
349static struct cmd_list_element *maint_set_ada_cmdlist;
350static struct cmd_list_element *maint_show_ada_cmdlist;
351
352/* Implement the "maintenance set ada" (prefix) command. */
353
354static void
355maint_set_ada_cmd (char *args, int from_tty)
356{
635c7e8a
TT
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
c6044dd1
JB
359}
360
361/* Implement the "maintenance show ada" (prefix) command. */
362
363static void
364maint_show_ada_cmd (char *args, int from_tty)
365{
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367}
368
369/* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371static int ada_ignore_descriptive_types_p = 0;
372
e802dbe0
JB
373 /* Inferior-specific data. */
374
375/* Per-inferior data for this module. */
376
377struct ada_inferior_data
378{
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
3eecfa55
JB
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
e802dbe0
JB
389};
390
391/* Our key to this module's inferior data. */
392static const struct inferior_data *ada_inferior_data;
393
394/* A cleanup routine for our inferior data. */
395static void
396ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397{
398 struct ada_inferior_data *data;
399
400 data = inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403}
404
405/* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413static struct ada_inferior_data *
414get_ada_inferior_data (struct inferior *inf)
415{
416 struct ada_inferior_data *data;
417
418 data = inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
41bf6aca 421 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426}
427
428/* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431static void
432ada_inferior_exit (struct inferior *inf)
433{
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436}
437
ee01b665
JB
438
439 /* program-space-specific data. */
440
441/* This module's per-program-space data. */
442struct ada_pspace_data
443{
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446};
447
448/* Key to our per-program-space data. */
449static const struct program_space_data *ada_pspace_data_handle;
450
451/* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456static struct ada_pspace_data *
457get_ada_pspace_data (struct program_space *pspace)
458{
459 struct ada_pspace_data *data;
460
461 data = program_space_data (pspace, ada_pspace_data_handle);
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469}
470
471/* The cleanup callback for this module's per-program-space data. */
472
473static void
474ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475{
476 struct ada_pspace_data *pspace_data = data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481}
482
4c4b4cd2
PH
483 /* Utilities */
484
720d1a40 485/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 486 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512static struct type *
513ada_typedef_target_type (struct type *type)
514{
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518}
519
41d27058
JB
520/* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524static const char *
525ada_unqualified_name (const char *decoded_name)
526{
527 const char *result = strrchr (decoded_name, '.');
528
529 if (result != NULL)
530 result++; /* Skip the dot... */
531 else
532 result = decoded_name;
533
534 return result;
535}
536
537/* Return a string starting with '<', followed by STR, and '>'.
538 The result is good until the next call. */
539
540static char *
541add_angle_brackets (const char *str)
542{
543 static char *result = NULL;
544
545 xfree (result);
88c15c34 546 result = xstrprintf ("<%s>", str);
41d27058
JB
547 return result;
548}
96d887e8 549
4c4b4cd2
PH
550static char *
551ada_get_gdb_completer_word_break_characters (void)
552{
553 return ada_completer_word_break_characters;
554}
555
e79af960
JB
556/* Print an array element index using the Ada syntax. */
557
558static void
559ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 560 const struct value_print_options *options)
e79af960 561{
79a45b7d 562 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
563 fprintf_filtered (stream, " => ");
564}
565
f27cf670 566/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 567 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 568 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 569
f27cf670
AS
570void *
571grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 572{
d2e4a39e
AS
573 if (*size < min_size)
574 {
575 *size *= 2;
576 if (*size < min_size)
4c4b4cd2 577 *size = min_size;
f27cf670 578 vect = xrealloc (vect, *size * element_size);
d2e4a39e 579 }
f27cf670 580 return vect;
14f9c5c9
AS
581}
582
583/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 584 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
585
586static int
ebf56fd3 587field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
588{
589 int len = strlen (target);
5b4ee69b 590
d2e4a39e 591 return
4c4b4cd2
PH
592 (strncmp (field_name, target, len) == 0
593 && (field_name[len] == '\0'
594 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
595 && strcmp (field_name + strlen (field_name) - 6,
596 "___XVN") != 0)));
14f9c5c9
AS
597}
598
599
872c8b51
JB
600/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
601 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
602 and return its index. This function also handles fields whose name
603 have ___ suffixes because the compiler sometimes alters their name
604 by adding such a suffix to represent fields with certain constraints.
605 If the field could not be found, return a negative number if
606 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
607
608int
609ada_get_field_index (const struct type *type, const char *field_name,
610 int maybe_missing)
611{
612 int fieldno;
872c8b51
JB
613 struct type *struct_type = check_typedef ((struct type *) type);
614
615 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
616 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
617 return fieldno;
618
619 if (!maybe_missing)
323e0a4a 620 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 621 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
622
623 return -1;
624}
625
626/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
627
628int
d2e4a39e 629ada_name_prefix_len (const char *name)
14f9c5c9
AS
630{
631 if (name == NULL)
632 return 0;
d2e4a39e 633 else
14f9c5c9 634 {
d2e4a39e 635 const char *p = strstr (name, "___");
5b4ee69b 636
14f9c5c9 637 if (p == NULL)
4c4b4cd2 638 return strlen (name);
14f9c5c9 639 else
4c4b4cd2 640 return p - name;
14f9c5c9
AS
641 }
642}
643
4c4b4cd2
PH
644/* Return non-zero if SUFFIX is a suffix of STR.
645 Return zero if STR is null. */
646
14f9c5c9 647static int
d2e4a39e 648is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
649{
650 int len1, len2;
5b4ee69b 651
14f9c5c9
AS
652 if (str == NULL)
653 return 0;
654 len1 = strlen (str);
655 len2 = strlen (suffix);
4c4b4cd2 656 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
657}
658
4c4b4cd2
PH
659/* The contents of value VAL, treated as a value of type TYPE. The
660 result is an lval in memory if VAL is. */
14f9c5c9 661
d2e4a39e 662static struct value *
4c4b4cd2 663coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 664{
61ee279c 665 type = ada_check_typedef (type);
df407dfe 666 if (value_type (val) == type)
4c4b4cd2 667 return val;
d2e4a39e 668 else
14f9c5c9 669 {
4c4b4cd2
PH
670 struct value *result;
671
672 /* Make sure that the object size is not unreasonable before
673 trying to allocate some memory for it. */
714e53ab 674 check_size (type);
4c4b4cd2 675
41e8491f
JK
676 if (value_lazy (val)
677 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
678 result = allocate_value_lazy (type);
679 else
680 {
681 result = allocate_value (type);
9a0dc9e3 682 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 683 }
74bcbdf3 684 set_value_component_location (result, val);
9bbda503
AC
685 set_value_bitsize (result, value_bitsize (val));
686 set_value_bitpos (result, value_bitpos (val));
42ae5230 687 set_value_address (result, value_address (val));
14f9c5c9
AS
688 return result;
689 }
690}
691
fc1a4b47
AC
692static const gdb_byte *
693cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
694{
695 if (valaddr == NULL)
696 return NULL;
697 else
698 return valaddr + offset;
699}
700
701static CORE_ADDR
ebf56fd3 702cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
703{
704 if (address == 0)
705 return 0;
d2e4a39e 706 else
14f9c5c9
AS
707 return address + offset;
708}
709
4c4b4cd2
PH
710/* Issue a warning (as for the definition of warning in utils.c, but
711 with exactly one argument rather than ...), unless the limit on the
712 number of warnings has passed during the evaluation of the current
713 expression. */
a2249542 714
77109804
AC
715/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
716 provided by "complaint". */
a0b31db1 717static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 718
14f9c5c9 719static void
a2249542 720lim_warning (const char *format, ...)
14f9c5c9 721{
a2249542 722 va_list args;
a2249542 723
5b4ee69b 724 va_start (args, format);
4c4b4cd2
PH
725 warnings_issued += 1;
726 if (warnings_issued <= warning_limit)
a2249542
MK
727 vwarning (format, args);
728
729 va_end (args);
4c4b4cd2
PH
730}
731
714e53ab
PH
732/* Issue an error if the size of an object of type T is unreasonable,
733 i.e. if it would be a bad idea to allocate a value of this type in
734 GDB. */
735
736static void
737check_size (const struct type *type)
738{
739 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 740 error (_("object size is larger than varsize-limit"));
714e53ab
PH
741}
742
0963b4bd 743/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 744static LONGEST
c3e5cd34 745max_of_size (int size)
4c4b4cd2 746{
76a01679 747 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 748
76a01679 749 return top_bit | (top_bit - 1);
4c4b4cd2
PH
750}
751
0963b4bd 752/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 753static LONGEST
c3e5cd34 754min_of_size (int size)
4c4b4cd2 755{
c3e5cd34 756 return -max_of_size (size) - 1;
4c4b4cd2
PH
757}
758
0963b4bd 759/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 760static ULONGEST
c3e5cd34 761umax_of_size (int size)
4c4b4cd2 762{
76a01679 763 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 764
76a01679 765 return top_bit | (top_bit - 1);
4c4b4cd2
PH
766}
767
0963b4bd 768/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
769static LONGEST
770max_of_type (struct type *t)
4c4b4cd2 771{
c3e5cd34
PH
772 if (TYPE_UNSIGNED (t))
773 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
774 else
775 return max_of_size (TYPE_LENGTH (t));
776}
777
0963b4bd 778/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
779static LONGEST
780min_of_type (struct type *t)
781{
782 if (TYPE_UNSIGNED (t))
783 return 0;
784 else
785 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
786}
787
788/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
789LONGEST
790ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 791{
8739bc53 792 type = resolve_dynamic_type (type, 0);
76a01679 793 switch (TYPE_CODE (type))
4c4b4cd2
PH
794 {
795 case TYPE_CODE_RANGE:
690cc4eb 796 return TYPE_HIGH_BOUND (type);
4c4b4cd2 797 case TYPE_CODE_ENUM:
14e75d8e 798 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
799 case TYPE_CODE_BOOL:
800 return 1;
801 case TYPE_CODE_CHAR:
76a01679 802 case TYPE_CODE_INT:
690cc4eb 803 return max_of_type (type);
4c4b4cd2 804 default:
43bbcdc2 805 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
806 }
807}
808
14e75d8e 809/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
810LONGEST
811ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 812{
8739bc53 813 type = resolve_dynamic_type (type, 0);
76a01679 814 switch (TYPE_CODE (type))
4c4b4cd2
PH
815 {
816 case TYPE_CODE_RANGE:
690cc4eb 817 return TYPE_LOW_BOUND (type);
4c4b4cd2 818 case TYPE_CODE_ENUM:
14e75d8e 819 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
820 case TYPE_CODE_BOOL:
821 return 0;
822 case TYPE_CODE_CHAR:
76a01679 823 case TYPE_CODE_INT:
690cc4eb 824 return min_of_type (type);
4c4b4cd2 825 default:
43bbcdc2 826 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
827 }
828}
829
830/* The identity on non-range types. For range types, the underlying
76a01679 831 non-range scalar type. */
4c4b4cd2
PH
832
833static struct type *
18af8284 834get_base_type (struct type *type)
4c4b4cd2
PH
835{
836 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
837 {
76a01679
JB
838 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
839 return type;
4c4b4cd2
PH
840 type = TYPE_TARGET_TYPE (type);
841 }
842 return type;
14f9c5c9 843}
41246937
JB
844
845/* Return a decoded version of the given VALUE. This means returning
846 a value whose type is obtained by applying all the GNAT-specific
847 encondings, making the resulting type a static but standard description
848 of the initial type. */
849
850struct value *
851ada_get_decoded_value (struct value *value)
852{
853 struct type *type = ada_check_typedef (value_type (value));
854
855 if (ada_is_array_descriptor_type (type)
856 || (ada_is_constrained_packed_array_type (type)
857 && TYPE_CODE (type) != TYPE_CODE_PTR))
858 {
859 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
860 value = ada_coerce_to_simple_array_ptr (value);
861 else
862 value = ada_coerce_to_simple_array (value);
863 }
864 else
865 value = ada_to_fixed_value (value);
866
867 return value;
868}
869
870/* Same as ada_get_decoded_value, but with the given TYPE.
871 Because there is no associated actual value for this type,
872 the resulting type might be a best-effort approximation in
873 the case of dynamic types. */
874
875struct type *
876ada_get_decoded_type (struct type *type)
877{
878 type = to_static_fixed_type (type);
879 if (ada_is_constrained_packed_array_type (type))
880 type = ada_coerce_to_simple_array_type (type);
881 return type;
882}
883
4c4b4cd2 884\f
76a01679 885
4c4b4cd2 886 /* Language Selection */
14f9c5c9
AS
887
888/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 889 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 890
14f9c5c9 891enum language
ccefe4c4 892ada_update_initial_language (enum language lang)
14f9c5c9 893{
d2e4a39e 894 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 895 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 896 return language_ada;
14f9c5c9
AS
897
898 return lang;
899}
96d887e8
PH
900
901/* If the main procedure is written in Ada, then return its name.
902 The result is good until the next call. Return NULL if the main
903 procedure doesn't appear to be in Ada. */
904
905char *
906ada_main_name (void)
907{
3b7344d5 908 struct bound_minimal_symbol msym;
f9bc20b9 909 static char *main_program_name = NULL;
6c038f32 910
96d887e8
PH
911 /* For Ada, the name of the main procedure is stored in a specific
912 string constant, generated by the binder. Look for that symbol,
913 extract its address, and then read that string. If we didn't find
914 that string, then most probably the main procedure is not written
915 in Ada. */
916 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
917
3b7344d5 918 if (msym.minsym != NULL)
96d887e8 919 {
f9bc20b9
JB
920 CORE_ADDR main_program_name_addr;
921 int err_code;
922
77e371c0 923 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 924 if (main_program_name_addr == 0)
323e0a4a 925 error (_("Invalid address for Ada main program name."));
96d887e8 926
f9bc20b9
JB
927 xfree (main_program_name);
928 target_read_string (main_program_name_addr, &main_program_name,
929 1024, &err_code);
930
931 if (err_code != 0)
932 return NULL;
96d887e8
PH
933 return main_program_name;
934 }
935
936 /* The main procedure doesn't seem to be in Ada. */
937 return NULL;
938}
14f9c5c9 939\f
4c4b4cd2 940 /* Symbols */
d2e4a39e 941
4c4b4cd2
PH
942/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
943 of NULLs. */
14f9c5c9 944
d2e4a39e
AS
945const struct ada_opname_map ada_opname_table[] = {
946 {"Oadd", "\"+\"", BINOP_ADD},
947 {"Osubtract", "\"-\"", BINOP_SUB},
948 {"Omultiply", "\"*\"", BINOP_MUL},
949 {"Odivide", "\"/\"", BINOP_DIV},
950 {"Omod", "\"mod\"", BINOP_MOD},
951 {"Orem", "\"rem\"", BINOP_REM},
952 {"Oexpon", "\"**\"", BINOP_EXP},
953 {"Olt", "\"<\"", BINOP_LESS},
954 {"Ole", "\"<=\"", BINOP_LEQ},
955 {"Ogt", "\">\"", BINOP_GTR},
956 {"Oge", "\">=\"", BINOP_GEQ},
957 {"Oeq", "\"=\"", BINOP_EQUAL},
958 {"One", "\"/=\"", BINOP_NOTEQUAL},
959 {"Oand", "\"and\"", BINOP_BITWISE_AND},
960 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
961 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
962 {"Oconcat", "\"&\"", BINOP_CONCAT},
963 {"Oabs", "\"abs\"", UNOP_ABS},
964 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
965 {"Oadd", "\"+\"", UNOP_PLUS},
966 {"Osubtract", "\"-\"", UNOP_NEG},
967 {NULL, NULL}
14f9c5c9
AS
968};
969
4c4b4cd2
PH
970/* The "encoded" form of DECODED, according to GNAT conventions.
971 The result is valid until the next call to ada_encode. */
972
14f9c5c9 973char *
4c4b4cd2 974ada_encode (const char *decoded)
14f9c5c9 975{
4c4b4cd2
PH
976 static char *encoding_buffer = NULL;
977 static size_t encoding_buffer_size = 0;
d2e4a39e 978 const char *p;
14f9c5c9 979 int k;
d2e4a39e 980
4c4b4cd2 981 if (decoded == NULL)
14f9c5c9
AS
982 return NULL;
983
4c4b4cd2
PH
984 GROW_VECT (encoding_buffer, encoding_buffer_size,
985 2 * strlen (decoded) + 10);
14f9c5c9
AS
986
987 k = 0;
4c4b4cd2 988 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 989 {
cdc7bb92 990 if (*p == '.')
4c4b4cd2
PH
991 {
992 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
993 k += 2;
994 }
14f9c5c9 995 else if (*p == '"')
4c4b4cd2
PH
996 {
997 const struct ada_opname_map *mapping;
998
999 for (mapping = ada_opname_table;
1265e4aa
JB
1000 mapping->encoded != NULL
1001 && strncmp (mapping->decoded, p,
1002 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
1003 ;
1004 if (mapping->encoded == NULL)
323e0a4a 1005 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
1006 strcpy (encoding_buffer + k, mapping->encoded);
1007 k += strlen (mapping->encoded);
1008 break;
1009 }
d2e4a39e 1010 else
4c4b4cd2
PH
1011 {
1012 encoding_buffer[k] = *p;
1013 k += 1;
1014 }
14f9c5c9
AS
1015 }
1016
4c4b4cd2
PH
1017 encoding_buffer[k] = '\0';
1018 return encoding_buffer;
14f9c5c9
AS
1019}
1020
1021/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1022 quotes, unfolded, but with the quotes stripped away. Result good
1023 to next call. */
1024
d2e4a39e
AS
1025char *
1026ada_fold_name (const char *name)
14f9c5c9 1027{
d2e4a39e 1028 static char *fold_buffer = NULL;
14f9c5c9
AS
1029 static size_t fold_buffer_size = 0;
1030
1031 int len = strlen (name);
d2e4a39e 1032 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1033
1034 if (name[0] == '\'')
1035 {
d2e4a39e
AS
1036 strncpy (fold_buffer, name + 1, len - 2);
1037 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1038 }
1039 else
1040 {
1041 int i;
5b4ee69b 1042
14f9c5c9 1043 for (i = 0; i <= len; i += 1)
4c4b4cd2 1044 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1045 }
1046
1047 return fold_buffer;
1048}
1049
529cad9c
PH
1050/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1051
1052static int
1053is_lower_alphanum (const char c)
1054{
1055 return (isdigit (c) || (isalpha (c) && islower (c)));
1056}
1057
c90092fe
JB
1058/* ENCODED is the linkage name of a symbol and LEN contains its length.
1059 This function saves in LEN the length of that same symbol name but
1060 without either of these suffixes:
29480c32
JB
1061 . .{DIGIT}+
1062 . ${DIGIT}+
1063 . ___{DIGIT}+
1064 . __{DIGIT}+.
c90092fe 1065
29480c32
JB
1066 These are suffixes introduced by the compiler for entities such as
1067 nested subprogram for instance, in order to avoid name clashes.
1068 They do not serve any purpose for the debugger. */
1069
1070static void
1071ada_remove_trailing_digits (const char *encoded, int *len)
1072{
1073 if (*len > 1 && isdigit (encoded[*len - 1]))
1074 {
1075 int i = *len - 2;
5b4ee69b 1076
29480c32
JB
1077 while (i > 0 && isdigit (encoded[i]))
1078 i--;
1079 if (i >= 0 && encoded[i] == '.')
1080 *len = i;
1081 else if (i >= 0 && encoded[i] == '$')
1082 *len = i;
1083 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
1084 *len = i - 2;
1085 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
1086 *len = i - 1;
1087 }
1088}
1089
1090/* Remove the suffix introduced by the compiler for protected object
1091 subprograms. */
1092
1093static void
1094ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1095{
1096 /* Remove trailing N. */
1097
1098 /* Protected entry subprograms are broken into two
1099 separate subprograms: The first one is unprotected, and has
1100 a 'N' suffix; the second is the protected version, and has
0963b4bd 1101 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1102 the protection. Since the P subprograms are internally generated,
1103 we leave these names undecoded, giving the user a clue that this
1104 entity is internal. */
1105
1106 if (*len > 1
1107 && encoded[*len - 1] == 'N'
1108 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1109 *len = *len - 1;
1110}
1111
69fadcdf
JB
1112/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1113
1114static void
1115ada_remove_Xbn_suffix (const char *encoded, int *len)
1116{
1117 int i = *len - 1;
1118
1119 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1120 i--;
1121
1122 if (encoded[i] != 'X')
1123 return;
1124
1125 if (i == 0)
1126 return;
1127
1128 if (isalnum (encoded[i-1]))
1129 *len = i;
1130}
1131
29480c32
JB
1132/* If ENCODED follows the GNAT entity encoding conventions, then return
1133 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1134 replaced by ENCODED.
14f9c5c9 1135
4c4b4cd2 1136 The resulting string is valid until the next call of ada_decode.
29480c32 1137 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1138 is returned. */
1139
1140const char *
1141ada_decode (const char *encoded)
14f9c5c9
AS
1142{
1143 int i, j;
1144 int len0;
d2e4a39e 1145 const char *p;
4c4b4cd2 1146 char *decoded;
14f9c5c9 1147 int at_start_name;
4c4b4cd2
PH
1148 static char *decoding_buffer = NULL;
1149 static size_t decoding_buffer_size = 0;
d2e4a39e 1150
29480c32
JB
1151 /* The name of the Ada main procedure starts with "_ada_".
1152 This prefix is not part of the decoded name, so skip this part
1153 if we see this prefix. */
4c4b4cd2
PH
1154 if (strncmp (encoded, "_ada_", 5) == 0)
1155 encoded += 5;
14f9c5c9 1156
29480c32
JB
1157 /* If the name starts with '_', then it is not a properly encoded
1158 name, so do not attempt to decode it. Similarly, if the name
1159 starts with '<', the name should not be decoded. */
4c4b4cd2 1160 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1161 goto Suppress;
1162
4c4b4cd2 1163 len0 = strlen (encoded);
4c4b4cd2 1164
29480c32
JB
1165 ada_remove_trailing_digits (encoded, &len0);
1166 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1167
4c4b4cd2
PH
1168 /* Remove the ___X.* suffix if present. Do not forget to verify that
1169 the suffix is located before the current "end" of ENCODED. We want
1170 to avoid re-matching parts of ENCODED that have previously been
1171 marked as discarded (by decrementing LEN0). */
1172 p = strstr (encoded, "___");
1173 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1174 {
1175 if (p[3] == 'X')
4c4b4cd2 1176 len0 = p - encoded;
14f9c5c9 1177 else
4c4b4cd2 1178 goto Suppress;
14f9c5c9 1179 }
4c4b4cd2 1180
29480c32
JB
1181 /* Remove any trailing TKB suffix. It tells us that this symbol
1182 is for the body of a task, but that information does not actually
1183 appear in the decoded name. */
1184
4c4b4cd2 1185 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1186 len0 -= 3;
76a01679 1187
a10967fa
JB
1188 /* Remove any trailing TB suffix. The TB suffix is slightly different
1189 from the TKB suffix because it is used for non-anonymous task
1190 bodies. */
1191
1192 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1193 len0 -= 2;
1194
29480c32
JB
1195 /* Remove trailing "B" suffixes. */
1196 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1197
4c4b4cd2 1198 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1199 len0 -= 1;
1200
4c4b4cd2 1201 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1202
4c4b4cd2
PH
1203 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1204 decoded = decoding_buffer;
14f9c5c9 1205
29480c32
JB
1206 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1207
4c4b4cd2 1208 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1209 {
4c4b4cd2
PH
1210 i = len0 - 2;
1211 while ((i >= 0 && isdigit (encoded[i]))
1212 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1213 i -= 1;
1214 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1215 len0 = i - 1;
1216 else if (encoded[i] == '$')
1217 len0 = i;
d2e4a39e 1218 }
14f9c5c9 1219
29480c32
JB
1220 /* The first few characters that are not alphabetic are not part
1221 of any encoding we use, so we can copy them over verbatim. */
1222
4c4b4cd2
PH
1223 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1224 decoded[j] = encoded[i];
14f9c5c9
AS
1225
1226 at_start_name = 1;
1227 while (i < len0)
1228 {
29480c32 1229 /* Is this a symbol function? */
4c4b4cd2
PH
1230 if (at_start_name && encoded[i] == 'O')
1231 {
1232 int k;
5b4ee69b 1233
4c4b4cd2
PH
1234 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1235 {
1236 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1237 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1238 op_len - 1) == 0)
1239 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1240 {
1241 strcpy (decoded + j, ada_opname_table[k].decoded);
1242 at_start_name = 0;
1243 i += op_len;
1244 j += strlen (ada_opname_table[k].decoded);
1245 break;
1246 }
1247 }
1248 if (ada_opname_table[k].encoded != NULL)
1249 continue;
1250 }
14f9c5c9
AS
1251 at_start_name = 0;
1252
529cad9c
PH
1253 /* Replace "TK__" with "__", which will eventually be translated
1254 into "." (just below). */
1255
4c4b4cd2
PH
1256 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1257 i += 2;
529cad9c 1258
29480c32
JB
1259 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1260 be translated into "." (just below). These are internal names
1261 generated for anonymous blocks inside which our symbol is nested. */
1262
1263 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1264 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1265 && isdigit (encoded [i+4]))
1266 {
1267 int k = i + 5;
1268
1269 while (k < len0 && isdigit (encoded[k]))
1270 k++; /* Skip any extra digit. */
1271
1272 /* Double-check that the "__B_{DIGITS}+" sequence we found
1273 is indeed followed by "__". */
1274 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1275 i = k;
1276 }
1277
529cad9c
PH
1278 /* Remove _E{DIGITS}+[sb] */
1279
1280 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1281 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1282 one implements the actual entry code, and has a suffix following
1283 the convention above; the second one implements the barrier and
1284 uses the same convention as above, except that the 'E' is replaced
1285 by a 'B'.
1286
1287 Just as above, we do not decode the name of barrier functions
1288 to give the user a clue that the code he is debugging has been
1289 internally generated. */
1290
1291 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1292 && isdigit (encoded[i+2]))
1293 {
1294 int k = i + 3;
1295
1296 while (k < len0 && isdigit (encoded[k]))
1297 k++;
1298
1299 if (k < len0
1300 && (encoded[k] == 'b' || encoded[k] == 's'))
1301 {
1302 k++;
1303 /* Just as an extra precaution, make sure that if this
1304 suffix is followed by anything else, it is a '_'.
1305 Otherwise, we matched this sequence by accident. */
1306 if (k == len0
1307 || (k < len0 && encoded[k] == '_'))
1308 i = k;
1309 }
1310 }
1311
1312 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1313 the GNAT front-end in protected object subprograms. */
1314
1315 if (i < len0 + 3
1316 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1317 {
1318 /* Backtrack a bit up until we reach either the begining of
1319 the encoded name, or "__". Make sure that we only find
1320 digits or lowercase characters. */
1321 const char *ptr = encoded + i - 1;
1322
1323 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1324 ptr--;
1325 if (ptr < encoded
1326 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1327 i++;
1328 }
1329
4c4b4cd2
PH
1330 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1331 {
29480c32
JB
1332 /* This is a X[bn]* sequence not separated from the previous
1333 part of the name with a non-alpha-numeric character (in other
1334 words, immediately following an alpha-numeric character), then
1335 verify that it is placed at the end of the encoded name. If
1336 not, then the encoding is not valid and we should abort the
1337 decoding. Otherwise, just skip it, it is used in body-nested
1338 package names. */
4c4b4cd2
PH
1339 do
1340 i += 1;
1341 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1342 if (i < len0)
1343 goto Suppress;
1344 }
cdc7bb92 1345 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1346 {
29480c32 1347 /* Replace '__' by '.'. */
4c4b4cd2
PH
1348 decoded[j] = '.';
1349 at_start_name = 1;
1350 i += 2;
1351 j += 1;
1352 }
14f9c5c9 1353 else
4c4b4cd2 1354 {
29480c32
JB
1355 /* It's a character part of the decoded name, so just copy it
1356 over. */
4c4b4cd2
PH
1357 decoded[j] = encoded[i];
1358 i += 1;
1359 j += 1;
1360 }
14f9c5c9 1361 }
4c4b4cd2 1362 decoded[j] = '\000';
14f9c5c9 1363
29480c32
JB
1364 /* Decoded names should never contain any uppercase character.
1365 Double-check this, and abort the decoding if we find one. */
1366
4c4b4cd2
PH
1367 for (i = 0; decoded[i] != '\0'; i += 1)
1368 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1369 goto Suppress;
1370
4c4b4cd2
PH
1371 if (strcmp (decoded, encoded) == 0)
1372 return encoded;
1373 else
1374 return decoded;
14f9c5c9
AS
1375
1376Suppress:
4c4b4cd2
PH
1377 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1378 decoded = decoding_buffer;
1379 if (encoded[0] == '<')
1380 strcpy (decoded, encoded);
14f9c5c9 1381 else
88c15c34 1382 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1383 return decoded;
1384
1385}
1386
1387/* Table for keeping permanent unique copies of decoded names. Once
1388 allocated, names in this table are never released. While this is a
1389 storage leak, it should not be significant unless there are massive
1390 changes in the set of decoded names in successive versions of a
1391 symbol table loaded during a single session. */
1392static struct htab *decoded_names_store;
1393
1394/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1395 in the language-specific part of GSYMBOL, if it has not been
1396 previously computed. Tries to save the decoded name in the same
1397 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1398 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1399 GSYMBOL).
4c4b4cd2
PH
1400 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1401 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1402 when a decoded name is cached in it. */
4c4b4cd2 1403
45e6c716 1404const char *
f85f34ed 1405ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1406{
f85f34ed
TT
1407 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1408 const char **resultp =
1409 &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1410
f85f34ed 1411 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1412 {
1413 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1414 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1415
f85f34ed 1416 gsymbol->ada_mangled = 1;
5b4ee69b 1417
f85f34ed
TT
1418 if (obstack != NULL)
1419 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1420 else
76a01679 1421 {
f85f34ed
TT
1422 /* Sometimes, we can't find a corresponding objfile, in
1423 which case, we put the result on the heap. Since we only
1424 decode when needed, we hope this usually does not cause a
1425 significant memory leak (FIXME). */
1426
76a01679
JB
1427 char **slot = (char **) htab_find_slot (decoded_names_store,
1428 decoded, INSERT);
5b4ee69b 1429
76a01679
JB
1430 if (*slot == NULL)
1431 *slot = xstrdup (decoded);
1432 *resultp = *slot;
1433 }
4c4b4cd2 1434 }
14f9c5c9 1435
4c4b4cd2
PH
1436 return *resultp;
1437}
76a01679 1438
2c0b251b 1439static char *
76a01679 1440ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1441{
1442 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1443}
1444
1445/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1446 suffixes that encode debugging information or leading _ada_ on
1447 SYM_NAME (see is_name_suffix commentary for the debugging
1448 information that is ignored). If WILD, then NAME need only match a
1449 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1450 either argument is NULL. */
14f9c5c9 1451
2c0b251b 1452static int
40658b94 1453match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1454{
1455 if (sym_name == NULL || name == NULL)
1456 return 0;
1457 else if (wild)
73589123 1458 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1459 else
1460 {
1461 int len_name = strlen (name);
5b4ee69b 1462
4c4b4cd2
PH
1463 return (strncmp (sym_name, name, len_name) == 0
1464 && is_name_suffix (sym_name + len_name))
1465 || (strncmp (sym_name, "_ada_", 5) == 0
1466 && strncmp (sym_name + 5, name, len_name) == 0
1467 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1468 }
14f9c5c9 1469}
14f9c5c9 1470\f
d2e4a39e 1471
4c4b4cd2 1472 /* Arrays */
14f9c5c9 1473
28c85d6c
JB
1474/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1475 generated by the GNAT compiler to describe the index type used
1476 for each dimension of an array, check whether it follows the latest
1477 known encoding. If not, fix it up to conform to the latest encoding.
1478 Otherwise, do nothing. This function also does nothing if
1479 INDEX_DESC_TYPE is NULL.
1480
1481 The GNAT encoding used to describle the array index type evolved a bit.
1482 Initially, the information would be provided through the name of each
1483 field of the structure type only, while the type of these fields was
1484 described as unspecified and irrelevant. The debugger was then expected
1485 to perform a global type lookup using the name of that field in order
1486 to get access to the full index type description. Because these global
1487 lookups can be very expensive, the encoding was later enhanced to make
1488 the global lookup unnecessary by defining the field type as being
1489 the full index type description.
1490
1491 The purpose of this routine is to allow us to support older versions
1492 of the compiler by detecting the use of the older encoding, and by
1493 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1494 we essentially replace each field's meaningless type by the associated
1495 index subtype). */
1496
1497void
1498ada_fixup_array_indexes_type (struct type *index_desc_type)
1499{
1500 int i;
1501
1502 if (index_desc_type == NULL)
1503 return;
1504 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1505
1506 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1507 to check one field only, no need to check them all). If not, return
1508 now.
1509
1510 If our INDEX_DESC_TYPE was generated using the older encoding,
1511 the field type should be a meaningless integer type whose name
1512 is not equal to the field name. */
1513 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1514 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1515 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1516 return;
1517
1518 /* Fixup each field of INDEX_DESC_TYPE. */
1519 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1520 {
0d5cff50 1521 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1522 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1523
1524 if (raw_type)
1525 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1526 }
1527}
1528
4c4b4cd2 1529/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1530
d2e4a39e
AS
1531static char *bound_name[] = {
1532 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1533 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1534};
1535
1536/* Maximum number of array dimensions we are prepared to handle. */
1537
4c4b4cd2 1538#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1539
14f9c5c9 1540
4c4b4cd2
PH
1541/* The desc_* routines return primitive portions of array descriptors
1542 (fat pointers). */
14f9c5c9
AS
1543
1544/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1545 level of indirection, if needed. */
1546
d2e4a39e
AS
1547static struct type *
1548desc_base_type (struct type *type)
14f9c5c9
AS
1549{
1550 if (type == NULL)
1551 return NULL;
61ee279c 1552 type = ada_check_typedef (type);
720d1a40
JB
1553 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1554 type = ada_typedef_target_type (type);
1555
1265e4aa
JB
1556 if (type != NULL
1557 && (TYPE_CODE (type) == TYPE_CODE_PTR
1558 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1559 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1560 else
1561 return type;
1562}
1563
4c4b4cd2
PH
1564/* True iff TYPE indicates a "thin" array pointer type. */
1565
14f9c5c9 1566static int
d2e4a39e 1567is_thin_pntr (struct type *type)
14f9c5c9 1568{
d2e4a39e 1569 return
14f9c5c9
AS
1570 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1571 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1572}
1573
4c4b4cd2
PH
1574/* The descriptor type for thin pointer type TYPE. */
1575
d2e4a39e
AS
1576static struct type *
1577thin_descriptor_type (struct type *type)
14f9c5c9 1578{
d2e4a39e 1579 struct type *base_type = desc_base_type (type);
5b4ee69b 1580
14f9c5c9
AS
1581 if (base_type == NULL)
1582 return NULL;
1583 if (is_suffix (ada_type_name (base_type), "___XVE"))
1584 return base_type;
d2e4a39e 1585 else
14f9c5c9 1586 {
d2e4a39e 1587 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1588
14f9c5c9 1589 if (alt_type == NULL)
4c4b4cd2 1590 return base_type;
14f9c5c9 1591 else
4c4b4cd2 1592 return alt_type;
14f9c5c9
AS
1593 }
1594}
1595
4c4b4cd2
PH
1596/* A pointer to the array data for thin-pointer value VAL. */
1597
d2e4a39e
AS
1598static struct value *
1599thin_data_pntr (struct value *val)
14f9c5c9 1600{
828292f2 1601 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1602 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1603
556bdfd4
UW
1604 data_type = lookup_pointer_type (data_type);
1605
14f9c5c9 1606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1607 return value_cast (data_type, value_copy (val));
d2e4a39e 1608 else
42ae5230 1609 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1610}
1611
4c4b4cd2
PH
1612/* True iff TYPE indicates a "thick" array pointer type. */
1613
14f9c5c9 1614static int
d2e4a39e 1615is_thick_pntr (struct type *type)
14f9c5c9
AS
1616{
1617 type = desc_base_type (type);
1618 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1619 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1620}
1621
4c4b4cd2
PH
1622/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1623 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1624
d2e4a39e
AS
1625static struct type *
1626desc_bounds_type (struct type *type)
14f9c5c9 1627{
d2e4a39e 1628 struct type *r;
14f9c5c9
AS
1629
1630 type = desc_base_type (type);
1631
1632 if (type == NULL)
1633 return NULL;
1634 else if (is_thin_pntr (type))
1635 {
1636 type = thin_descriptor_type (type);
1637 if (type == NULL)
4c4b4cd2 1638 return NULL;
14f9c5c9
AS
1639 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1640 if (r != NULL)
61ee279c 1641 return ada_check_typedef (r);
14f9c5c9
AS
1642 }
1643 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1644 {
1645 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1646 if (r != NULL)
61ee279c 1647 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1648 }
1649 return NULL;
1650}
1651
1652/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1653 one, a pointer to its bounds data. Otherwise NULL. */
1654
d2e4a39e
AS
1655static struct value *
1656desc_bounds (struct value *arr)
14f9c5c9 1657{
df407dfe 1658 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1659
d2e4a39e 1660 if (is_thin_pntr (type))
14f9c5c9 1661 {
d2e4a39e 1662 struct type *bounds_type =
4c4b4cd2 1663 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1664 LONGEST addr;
1665
4cdfadb1 1666 if (bounds_type == NULL)
323e0a4a 1667 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1668
1669 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1670 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1671 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1672 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1673 addr = value_as_long (arr);
d2e4a39e 1674 else
42ae5230 1675 addr = value_address (arr);
14f9c5c9 1676
d2e4a39e 1677 return
4c4b4cd2
PH
1678 value_from_longest (lookup_pointer_type (bounds_type),
1679 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1680 }
1681
1682 else if (is_thick_pntr (type))
05e522ef
JB
1683 {
1684 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1685 _("Bad GNAT array descriptor"));
1686 struct type *p_bounds_type = value_type (p_bounds);
1687
1688 if (p_bounds_type
1689 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1690 {
1691 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1692
1693 if (TYPE_STUB (target_type))
1694 p_bounds = value_cast (lookup_pointer_type
1695 (ada_check_typedef (target_type)),
1696 p_bounds);
1697 }
1698 else
1699 error (_("Bad GNAT array descriptor"));
1700
1701 return p_bounds;
1702 }
14f9c5c9
AS
1703 else
1704 return NULL;
1705}
1706
4c4b4cd2
PH
1707/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1708 position of the field containing the address of the bounds data. */
1709
14f9c5c9 1710static int
d2e4a39e 1711fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1712{
1713 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1714}
1715
1716/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1717 size of the field containing the address of the bounds data. */
1718
14f9c5c9 1719static int
d2e4a39e 1720fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1721{
1722 type = desc_base_type (type);
1723
d2e4a39e 1724 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1725 return TYPE_FIELD_BITSIZE (type, 1);
1726 else
61ee279c 1727 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1728}
1729
4c4b4cd2 1730/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1731 pointer to one, the type of its array data (a array-with-no-bounds type);
1732 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1733 data. */
4c4b4cd2 1734
d2e4a39e 1735static struct type *
556bdfd4 1736desc_data_target_type (struct type *type)
14f9c5c9
AS
1737{
1738 type = desc_base_type (type);
1739
4c4b4cd2 1740 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1741 if (is_thin_pntr (type))
556bdfd4 1742 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1743 else if (is_thick_pntr (type))
556bdfd4
UW
1744 {
1745 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1746
1747 if (data_type
1748 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1749 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1750 }
1751
1752 return NULL;
14f9c5c9
AS
1753}
1754
1755/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1756 its array data. */
4c4b4cd2 1757
d2e4a39e
AS
1758static struct value *
1759desc_data (struct value *arr)
14f9c5c9 1760{
df407dfe 1761 struct type *type = value_type (arr);
5b4ee69b 1762
14f9c5c9
AS
1763 if (is_thin_pntr (type))
1764 return thin_data_pntr (arr);
1765 else if (is_thick_pntr (type))
d2e4a39e 1766 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1767 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1768 else
1769 return NULL;
1770}
1771
1772
1773/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1774 position of the field containing the address of the data. */
1775
14f9c5c9 1776static int
d2e4a39e 1777fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1778{
1779 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1780}
1781
1782/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1783 size of the field containing the address of the data. */
1784
14f9c5c9 1785static int
d2e4a39e 1786fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1787{
1788 type = desc_base_type (type);
1789
1790 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1791 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1792 else
14f9c5c9
AS
1793 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1794}
1795
4c4b4cd2 1796/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1797 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1798 bound, if WHICH is 1. The first bound is I=1. */
1799
d2e4a39e
AS
1800static struct value *
1801desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1802{
d2e4a39e 1803 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1804 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1805}
1806
1807/* If BOUNDS is an array-bounds structure type, return the bit position
1808 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1809 bound, if WHICH is 1. The first bound is I=1. */
1810
14f9c5c9 1811static int
d2e4a39e 1812desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1813{
d2e4a39e 1814 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1815}
1816
1817/* If BOUNDS is an array-bounds structure type, return the bit field size
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
76a01679 1821static int
d2e4a39e 1822desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
d2e4a39e
AS
1826 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1828 else
1829 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1830}
1831
1832/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1833 Ith bound (numbering from 1). Otherwise, NULL. */
1834
d2e4a39e
AS
1835static struct type *
1836desc_index_type (struct type *type, int i)
14f9c5c9
AS
1837{
1838 type = desc_base_type (type);
1839
1840 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1841 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1842 else
14f9c5c9
AS
1843 return NULL;
1844}
1845
4c4b4cd2
PH
1846/* The number of index positions in the array-bounds type TYPE.
1847 Return 0 if TYPE is NULL. */
1848
14f9c5c9 1849static int
d2e4a39e 1850desc_arity (struct type *type)
14f9c5c9
AS
1851{
1852 type = desc_base_type (type);
1853
1854 if (type != NULL)
1855 return TYPE_NFIELDS (type) / 2;
1856 return 0;
1857}
1858
4c4b4cd2
PH
1859/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1860 an array descriptor type (representing an unconstrained array
1861 type). */
1862
76a01679
JB
1863static int
1864ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1865{
1866 if (type == NULL)
1867 return 0;
61ee279c 1868 type = ada_check_typedef (type);
4c4b4cd2 1869 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1870 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1871}
1872
52ce6436 1873/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1874 * to one. */
52ce6436 1875
2c0b251b 1876static int
52ce6436
PH
1877ada_is_array_type (struct type *type)
1878{
1879 while (type != NULL
1880 && (TYPE_CODE (type) == TYPE_CODE_PTR
1881 || TYPE_CODE (type) == TYPE_CODE_REF))
1882 type = TYPE_TARGET_TYPE (type);
1883 return ada_is_direct_array_type (type);
1884}
1885
4c4b4cd2 1886/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1887
14f9c5c9 1888int
4c4b4cd2 1889ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1890{
1891 if (type == NULL)
1892 return 0;
61ee279c 1893 type = ada_check_typedef (type);
14f9c5c9 1894 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1895 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1896 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1897 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1898}
1899
4c4b4cd2
PH
1900/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1901
14f9c5c9 1902int
4c4b4cd2 1903ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1904{
556bdfd4 1905 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1906
1907 if (type == NULL)
1908 return 0;
61ee279c 1909 type = ada_check_typedef (type);
556bdfd4
UW
1910 return (data_type != NULL
1911 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1912 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1913}
1914
1915/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1916 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1917 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1918 is still needed. */
1919
14f9c5c9 1920int
ebf56fd3 1921ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1922{
d2e4a39e 1923 return
14f9c5c9
AS
1924 type != NULL
1925 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1926 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1927 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1928 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1929}
1930
1931
4c4b4cd2 1932/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1933 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1934 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1935 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1936 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1937 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1938 a descriptor. */
d2e4a39e
AS
1939struct type *
1940ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1941{
ad82864c
JB
1942 if (ada_is_constrained_packed_array_type (value_type (arr)))
1943 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1944
df407dfe
AC
1945 if (!ada_is_array_descriptor_type (value_type (arr)))
1946 return value_type (arr);
d2e4a39e
AS
1947
1948 if (!bounds)
ad82864c
JB
1949 {
1950 struct type *array_type =
1951 ada_check_typedef (desc_data_target_type (value_type (arr)));
1952
1953 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1954 TYPE_FIELD_BITSIZE (array_type, 0) =
1955 decode_packed_array_bitsize (value_type (arr));
1956
1957 return array_type;
1958 }
14f9c5c9
AS
1959 else
1960 {
d2e4a39e 1961 struct type *elt_type;
14f9c5c9 1962 int arity;
d2e4a39e 1963 struct value *descriptor;
14f9c5c9 1964
df407dfe
AC
1965 elt_type = ada_array_element_type (value_type (arr), -1);
1966 arity = ada_array_arity (value_type (arr));
14f9c5c9 1967
d2e4a39e 1968 if (elt_type == NULL || arity == 0)
df407dfe 1969 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1970
1971 descriptor = desc_bounds (arr);
d2e4a39e 1972 if (value_as_long (descriptor) == 0)
4c4b4cd2 1973 return NULL;
d2e4a39e 1974 while (arity > 0)
4c4b4cd2 1975 {
e9bb382b
UW
1976 struct type *range_type = alloc_type_copy (value_type (arr));
1977 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1978 struct value *low = desc_one_bound (descriptor, arity, 0);
1979 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1980
5b4ee69b 1981 arity -= 1;
0c9c3474
SA
1982 create_static_range_type (range_type, value_type (low),
1983 longest_to_int (value_as_long (low)),
1984 longest_to_int (value_as_long (high)));
4c4b4cd2 1985 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1986
1987 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1988 {
1989 /* We need to store the element packed bitsize, as well as
1990 recompute the array size, because it was previously
1991 computed based on the unpacked element size. */
1992 LONGEST lo = value_as_long (low);
1993 LONGEST hi = value_as_long (high);
1994
1995 TYPE_FIELD_BITSIZE (elt_type, 0) =
1996 decode_packed_array_bitsize (value_type (arr));
1997 /* If the array has no element, then the size is already
1998 zero, and does not need to be recomputed. */
1999 if (lo < hi)
2000 {
2001 int array_bitsize =
2002 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2003
2004 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2005 }
2006 }
4c4b4cd2 2007 }
14f9c5c9
AS
2008
2009 return lookup_pointer_type (elt_type);
2010 }
2011}
2012
2013/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2014 Otherwise, returns either a standard GDB array with bounds set
2015 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2016 GDB array. Returns NULL if ARR is a null fat pointer. */
2017
d2e4a39e
AS
2018struct value *
2019ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2020{
df407dfe 2021 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2022 {
d2e4a39e 2023 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2024
14f9c5c9 2025 if (arrType == NULL)
4c4b4cd2 2026 return NULL;
14f9c5c9
AS
2027 return value_cast (arrType, value_copy (desc_data (arr)));
2028 }
ad82864c
JB
2029 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2030 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2031 else
2032 return arr;
2033}
2034
2035/* If ARR does not represent an array, returns ARR unchanged.
2036 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2037 be ARR itself if it already is in the proper form). */
2038
720d1a40 2039struct value *
d2e4a39e 2040ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2041{
df407dfe 2042 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2043 {
d2e4a39e 2044 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2045
14f9c5c9 2046 if (arrVal == NULL)
323e0a4a 2047 error (_("Bounds unavailable for null array pointer."));
529cad9c 2048 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2049 return value_ind (arrVal);
2050 }
ad82864c
JB
2051 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2052 return decode_constrained_packed_array (arr);
d2e4a39e 2053 else
14f9c5c9
AS
2054 return arr;
2055}
2056
2057/* If TYPE represents a GNAT array type, return it translated to an
2058 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2059 packing). For other types, is the identity. */
2060
d2e4a39e
AS
2061struct type *
2062ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2063{
ad82864c
JB
2064 if (ada_is_constrained_packed_array_type (type))
2065 return decode_constrained_packed_array_type (type);
17280b9f
UW
2066
2067 if (ada_is_array_descriptor_type (type))
556bdfd4 2068 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2069
2070 return type;
14f9c5c9
AS
2071}
2072
4c4b4cd2
PH
2073/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2074
ad82864c
JB
2075static int
2076ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2077{
2078 if (type == NULL)
2079 return 0;
4c4b4cd2 2080 type = desc_base_type (type);
61ee279c 2081 type = ada_check_typedef (type);
d2e4a39e 2082 return
14f9c5c9
AS
2083 ada_type_name (type) != NULL
2084 && strstr (ada_type_name (type), "___XP") != NULL;
2085}
2086
ad82864c
JB
2087/* Non-zero iff TYPE represents a standard GNAT constrained
2088 packed-array type. */
2089
2090int
2091ada_is_constrained_packed_array_type (struct type *type)
2092{
2093 return ada_is_packed_array_type (type)
2094 && !ada_is_array_descriptor_type (type);
2095}
2096
2097/* Non-zero iff TYPE represents an array descriptor for a
2098 unconstrained packed-array type. */
2099
2100static int
2101ada_is_unconstrained_packed_array_type (struct type *type)
2102{
2103 return ada_is_packed_array_type (type)
2104 && ada_is_array_descriptor_type (type);
2105}
2106
2107/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2108 return the size of its elements in bits. */
2109
2110static long
2111decode_packed_array_bitsize (struct type *type)
2112{
0d5cff50
DE
2113 const char *raw_name;
2114 const char *tail;
ad82864c
JB
2115 long bits;
2116
720d1a40
JB
2117 /* Access to arrays implemented as fat pointers are encoded as a typedef
2118 of the fat pointer type. We need the name of the fat pointer type
2119 to do the decoding, so strip the typedef layer. */
2120 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2121 type = ada_typedef_target_type (type);
2122
2123 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2124 if (!raw_name)
2125 raw_name = ada_type_name (desc_base_type (type));
2126
2127 if (!raw_name)
2128 return 0;
2129
2130 tail = strstr (raw_name, "___XP");
720d1a40 2131 gdb_assert (tail != NULL);
ad82864c
JB
2132
2133 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2134 {
2135 lim_warning
2136 (_("could not understand bit size information on packed array"));
2137 return 0;
2138 }
2139
2140 return bits;
2141}
2142
14f9c5c9
AS
2143/* Given that TYPE is a standard GDB array type with all bounds filled
2144 in, and that the element size of its ultimate scalar constituents
2145 (that is, either its elements, or, if it is an array of arrays, its
2146 elements' elements, etc.) is *ELT_BITS, return an identical type,
2147 but with the bit sizes of its elements (and those of any
2148 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2149 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2150 in bits. */
2151
d2e4a39e 2152static struct type *
ad82864c 2153constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2154{
d2e4a39e
AS
2155 struct type *new_elt_type;
2156 struct type *new_type;
99b1c762
JB
2157 struct type *index_type_desc;
2158 struct type *index_type;
14f9c5c9
AS
2159 LONGEST low_bound, high_bound;
2160
61ee279c 2161 type = ada_check_typedef (type);
14f9c5c9
AS
2162 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2163 return type;
2164
99b1c762
JB
2165 index_type_desc = ada_find_parallel_type (type, "___XA");
2166 if (index_type_desc)
2167 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2168 NULL);
2169 else
2170 index_type = TYPE_INDEX_TYPE (type);
2171
e9bb382b 2172 new_type = alloc_type_copy (type);
ad82864c
JB
2173 new_elt_type =
2174 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2175 elt_bits);
99b1c762 2176 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2177 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2178 TYPE_NAME (new_type) = ada_type_name (type);
2179
99b1c762 2180 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2181 low_bound = high_bound = 0;
2182 if (high_bound < low_bound)
2183 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2184 else
14f9c5c9
AS
2185 {
2186 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2187 TYPE_LENGTH (new_type) =
4c4b4cd2 2188 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2189 }
2190
876cecd0 2191 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2192 return new_type;
2193}
2194
ad82864c
JB
2195/* The array type encoded by TYPE, where
2196 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2197
d2e4a39e 2198static struct type *
ad82864c 2199decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2200{
0d5cff50 2201 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2202 char *name;
0d5cff50 2203 const char *tail;
d2e4a39e 2204 struct type *shadow_type;
14f9c5c9 2205 long bits;
14f9c5c9 2206
727e3d2e
JB
2207 if (!raw_name)
2208 raw_name = ada_type_name (desc_base_type (type));
2209
2210 if (!raw_name)
2211 return NULL;
2212
2213 name = (char *) alloca (strlen (raw_name) + 1);
2214 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2215 type = desc_base_type (type);
2216
14f9c5c9
AS
2217 memcpy (name, raw_name, tail - raw_name);
2218 name[tail - raw_name] = '\000';
2219
b4ba55a1
JB
2220 shadow_type = ada_find_parallel_type_with_name (type, name);
2221
2222 if (shadow_type == NULL)
14f9c5c9 2223 {
323e0a4a 2224 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2225 return NULL;
2226 }
cb249c71 2227 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2228
2229 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2230 {
0963b4bd
MS
2231 lim_warning (_("could not understand bounds "
2232 "information on packed array"));
14f9c5c9
AS
2233 return NULL;
2234 }
d2e4a39e 2235
ad82864c
JB
2236 bits = decode_packed_array_bitsize (type);
2237 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2238}
2239
ad82864c
JB
2240/* Given that ARR is a struct value *indicating a GNAT constrained packed
2241 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2242 standard GDB array type except that the BITSIZEs of the array
2243 target types are set to the number of bits in each element, and the
4c4b4cd2 2244 type length is set appropriately. */
14f9c5c9 2245
d2e4a39e 2246static struct value *
ad82864c 2247decode_constrained_packed_array (struct value *arr)
14f9c5c9 2248{
4c4b4cd2 2249 struct type *type;
14f9c5c9 2250
11aa919a
PMR
2251 /* If our value is a pointer, then dereference it. Likewise if
2252 the value is a reference. Make sure that this operation does not
2253 cause the target type to be fixed, as this would indirectly cause
2254 this array to be decoded. The rest of the routine assumes that
2255 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2256 and "value_ind" routines to perform the dereferencing, as opposed
2257 to using "ada_coerce_ref" or "ada_value_ind". */
2258 arr = coerce_ref (arr);
828292f2 2259 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2260 arr = value_ind (arr);
4c4b4cd2 2261
ad82864c 2262 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2263 if (type == NULL)
2264 {
323e0a4a 2265 error (_("can't unpack array"));
14f9c5c9
AS
2266 return NULL;
2267 }
61ee279c 2268
50810684 2269 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2270 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2271 {
2272 /* This is a (right-justified) modular type representing a packed
2273 array with no wrapper. In order to interpret the value through
2274 the (left-justified) packed array type we just built, we must
2275 first left-justify it. */
2276 int bit_size, bit_pos;
2277 ULONGEST mod;
2278
df407dfe 2279 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2280 bit_size = 0;
2281 while (mod > 0)
2282 {
2283 bit_size += 1;
2284 mod >>= 1;
2285 }
df407dfe 2286 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2287 arr = ada_value_primitive_packed_val (arr, NULL,
2288 bit_pos / HOST_CHAR_BIT,
2289 bit_pos % HOST_CHAR_BIT,
2290 bit_size,
2291 type);
2292 }
2293
4c4b4cd2 2294 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2295}
2296
2297
2298/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2299 given in IND. ARR must be a simple array. */
14f9c5c9 2300
d2e4a39e
AS
2301static struct value *
2302value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2303{
2304 int i;
2305 int bits, elt_off, bit_off;
2306 long elt_total_bit_offset;
d2e4a39e
AS
2307 struct type *elt_type;
2308 struct value *v;
14f9c5c9
AS
2309
2310 bits = 0;
2311 elt_total_bit_offset = 0;
df407dfe 2312 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2313 for (i = 0; i < arity; i += 1)
14f9c5c9 2314 {
d2e4a39e 2315 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2316 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2317 error
0963b4bd
MS
2318 (_("attempt to do packed indexing of "
2319 "something other than a packed array"));
14f9c5c9 2320 else
4c4b4cd2
PH
2321 {
2322 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2323 LONGEST lowerbound, upperbound;
2324 LONGEST idx;
2325
2326 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2327 {
323e0a4a 2328 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2329 lowerbound = upperbound = 0;
2330 }
2331
3cb382c9 2332 idx = pos_atr (ind[i]);
4c4b4cd2 2333 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2334 lim_warning (_("packed array index %ld out of bounds"),
2335 (long) idx);
4c4b4cd2
PH
2336 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2337 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2338 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2339 }
14f9c5c9
AS
2340 }
2341 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2342 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2343
2344 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2345 bits, elt_type);
14f9c5c9
AS
2346 return v;
2347}
2348
4c4b4cd2 2349/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2350
2351static int
d2e4a39e 2352has_negatives (struct type *type)
14f9c5c9 2353{
d2e4a39e
AS
2354 switch (TYPE_CODE (type))
2355 {
2356 default:
2357 return 0;
2358 case TYPE_CODE_INT:
2359 return !TYPE_UNSIGNED (type);
2360 case TYPE_CODE_RANGE:
2361 return TYPE_LOW_BOUND (type) < 0;
2362 }
14f9c5c9 2363}
d2e4a39e 2364
14f9c5c9
AS
2365
2366/* Create a new value of type TYPE from the contents of OBJ starting
2367 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2368 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2369 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2370 VALADDR is ignored unless OBJ is NULL, in which case,
2371 VALADDR+OFFSET must address the start of storage containing the
2372 packed value. The value returned in this case is never an lval.
2373 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2374
d2e4a39e 2375struct value *
fc1a4b47 2376ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2377 long offset, int bit_offset, int bit_size,
4c4b4cd2 2378 struct type *type)
14f9c5c9 2379{
d2e4a39e 2380 struct value *v;
4c4b4cd2
PH
2381 int src, /* Index into the source area */
2382 targ, /* Index into the target area */
2383 srcBitsLeft, /* Number of source bits left to move */
2384 nsrc, ntarg, /* Number of source and target bytes */
2385 unusedLS, /* Number of bits in next significant
2386 byte of source that are unused */
2387 accumSize; /* Number of meaningful bits in accum */
2388 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2389 unsigned char *unpacked;
4c4b4cd2 2390 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2391 unsigned char sign;
2392 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2393 /* Transmit bytes from least to most significant; delta is the direction
2394 the indices move. */
50810684 2395 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2396
61ee279c 2397 type = ada_check_typedef (type);
14f9c5c9
AS
2398
2399 if (obj == NULL)
2400 {
2401 v = allocate_value (type);
d2e4a39e 2402 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2403 }
9214ee5f 2404 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2405 {
53ba8333 2406 v = value_at (type, value_address (obj));
9f1f738a 2407 type = value_type (v);
d2e4a39e 2408 bytes = (unsigned char *) alloca (len);
53ba8333 2409 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2410 }
d2e4a39e 2411 else
14f9c5c9
AS
2412 {
2413 v = allocate_value (type);
0fd88904 2414 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2415 }
d2e4a39e
AS
2416
2417 if (obj != NULL)
14f9c5c9 2418 {
53ba8333 2419 long new_offset = offset;
5b4ee69b 2420
74bcbdf3 2421 set_value_component_location (v, obj);
9bbda503
AC
2422 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2423 set_value_bitsize (v, bit_size);
df407dfe 2424 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2425 {
53ba8333 2426 ++new_offset;
9bbda503 2427 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2428 }
53ba8333
JB
2429 set_value_offset (v, new_offset);
2430
2431 /* Also set the parent value. This is needed when trying to
2432 assign a new value (in inferior memory). */
2433 set_value_parent (v, obj);
14f9c5c9
AS
2434 }
2435 else
9bbda503 2436 set_value_bitsize (v, bit_size);
0fd88904 2437 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2438
2439 srcBitsLeft = bit_size;
2440 nsrc = len;
2441 ntarg = TYPE_LENGTH (type);
2442 sign = 0;
2443 if (bit_size == 0)
2444 {
2445 memset (unpacked, 0, TYPE_LENGTH (type));
2446 return v;
2447 }
50810684 2448 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2449 {
d2e4a39e 2450 src = len - 1;
1265e4aa
JB
2451 if (has_negatives (type)
2452 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2453 sign = ~0;
d2e4a39e
AS
2454
2455 unusedLS =
4c4b4cd2
PH
2456 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2457 % HOST_CHAR_BIT;
14f9c5c9
AS
2458
2459 switch (TYPE_CODE (type))
4c4b4cd2
PH
2460 {
2461 case TYPE_CODE_ARRAY:
2462 case TYPE_CODE_UNION:
2463 case TYPE_CODE_STRUCT:
2464 /* Non-scalar values must be aligned at a byte boundary... */
2465 accumSize =
2466 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2467 /* ... And are placed at the beginning (most-significant) bytes
2468 of the target. */
529cad9c 2469 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2470 ntarg = targ + 1;
4c4b4cd2
PH
2471 break;
2472 default:
2473 accumSize = 0;
2474 targ = TYPE_LENGTH (type) - 1;
2475 break;
2476 }
14f9c5c9 2477 }
d2e4a39e 2478 else
14f9c5c9
AS
2479 {
2480 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2481
2482 src = targ = 0;
2483 unusedLS = bit_offset;
2484 accumSize = 0;
2485
d2e4a39e 2486 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2487 sign = ~0;
14f9c5c9 2488 }
d2e4a39e 2489
14f9c5c9
AS
2490 accum = 0;
2491 while (nsrc > 0)
2492 {
2493 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2494 part of the value. */
d2e4a39e 2495 unsigned int unusedMSMask =
4c4b4cd2
PH
2496 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2497 1;
2498 /* Sign-extend bits for this byte. */
14f9c5c9 2499 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2500
d2e4a39e 2501 accum |=
4c4b4cd2 2502 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2503 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2504 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2505 {
2506 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2507 accumSize -= HOST_CHAR_BIT;
2508 accum >>= HOST_CHAR_BIT;
2509 ntarg -= 1;
2510 targ += delta;
2511 }
14f9c5c9
AS
2512 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2513 unusedLS = 0;
2514 nsrc -= 1;
2515 src += delta;
2516 }
2517 while (ntarg > 0)
2518 {
2519 accum |= sign << accumSize;
2520 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2521 accumSize -= HOST_CHAR_BIT;
2522 accum >>= HOST_CHAR_BIT;
2523 ntarg -= 1;
2524 targ += delta;
2525 }
2526
2527 return v;
2528}
d2e4a39e 2529
14f9c5c9
AS
2530/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2531 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2532 not overlap. */
14f9c5c9 2533static void
fc1a4b47 2534move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2535 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2536{
2537 unsigned int accum, mask;
2538 int accum_bits, chunk_size;
2539
2540 target += targ_offset / HOST_CHAR_BIT;
2541 targ_offset %= HOST_CHAR_BIT;
2542 source += src_offset / HOST_CHAR_BIT;
2543 src_offset %= HOST_CHAR_BIT;
50810684 2544 if (bits_big_endian_p)
14f9c5c9
AS
2545 {
2546 accum = (unsigned char) *source;
2547 source += 1;
2548 accum_bits = HOST_CHAR_BIT - src_offset;
2549
d2e4a39e 2550 while (n > 0)
4c4b4cd2
PH
2551 {
2552 int unused_right;
5b4ee69b 2553
4c4b4cd2
PH
2554 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2555 accum_bits += HOST_CHAR_BIT;
2556 source += 1;
2557 chunk_size = HOST_CHAR_BIT - targ_offset;
2558 if (chunk_size > n)
2559 chunk_size = n;
2560 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2561 mask = ((1 << chunk_size) - 1) << unused_right;
2562 *target =
2563 (*target & ~mask)
2564 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2565 n -= chunk_size;
2566 accum_bits -= chunk_size;
2567 target += 1;
2568 targ_offset = 0;
2569 }
14f9c5c9
AS
2570 }
2571 else
2572 {
2573 accum = (unsigned char) *source >> src_offset;
2574 source += 1;
2575 accum_bits = HOST_CHAR_BIT - src_offset;
2576
d2e4a39e 2577 while (n > 0)
4c4b4cd2
PH
2578 {
2579 accum = accum + ((unsigned char) *source << accum_bits);
2580 accum_bits += HOST_CHAR_BIT;
2581 source += 1;
2582 chunk_size = HOST_CHAR_BIT - targ_offset;
2583 if (chunk_size > n)
2584 chunk_size = n;
2585 mask = ((1 << chunk_size) - 1) << targ_offset;
2586 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2587 n -= chunk_size;
2588 accum_bits -= chunk_size;
2589 accum >>= chunk_size;
2590 target += 1;
2591 targ_offset = 0;
2592 }
14f9c5c9
AS
2593 }
2594}
2595
14f9c5c9
AS
2596/* Store the contents of FROMVAL into the location of TOVAL.
2597 Return a new value with the location of TOVAL and contents of
2598 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2599 floating-point or non-scalar types. */
14f9c5c9 2600
d2e4a39e
AS
2601static struct value *
2602ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2603{
df407dfe
AC
2604 struct type *type = value_type (toval);
2605 int bits = value_bitsize (toval);
14f9c5c9 2606
52ce6436
PH
2607 toval = ada_coerce_ref (toval);
2608 fromval = ada_coerce_ref (fromval);
2609
2610 if (ada_is_direct_array_type (value_type (toval)))
2611 toval = ada_coerce_to_simple_array (toval);
2612 if (ada_is_direct_array_type (value_type (fromval)))
2613 fromval = ada_coerce_to_simple_array (fromval);
2614
88e3b34b 2615 if (!deprecated_value_modifiable (toval))
323e0a4a 2616 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2617
d2e4a39e 2618 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2619 && bits > 0
d2e4a39e 2620 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2621 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2622 {
df407dfe
AC
2623 int len = (value_bitpos (toval)
2624 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2625 int from_size;
948f8e3d 2626 gdb_byte *buffer = alloca (len);
d2e4a39e 2627 struct value *val;
42ae5230 2628 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2631 fromval = value_cast (type, fromval);
14f9c5c9 2632
52ce6436 2633 read_memory (to_addr, buffer, len);
aced2898
PH
2634 from_size = value_bitsize (fromval);
2635 if (from_size == 0)
2636 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2637 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2638 move_bits (buffer, value_bitpos (toval),
50810684 2639 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2640 else
50810684
UW
2641 move_bits (buffer, value_bitpos (toval),
2642 value_contents (fromval), 0, bits, 0);
972daa01 2643 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2644
14f9c5c9 2645 val = value_copy (toval);
0fd88904 2646 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2647 TYPE_LENGTH (type));
04624583 2648 deprecated_set_value_type (val, type);
d2e4a39e 2649
14f9c5c9
AS
2650 return val;
2651 }
2652
2653 return value_assign (toval, fromval);
2654}
2655
2656
52ce6436
PH
2657/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2658 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2659 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2660 * COMPONENT, and not the inferior's memory. The current contents
2661 * of COMPONENT are ignored. */
2662static void
2663value_assign_to_component (struct value *container, struct value *component,
2664 struct value *val)
2665{
2666 LONGEST offset_in_container =
42ae5230 2667 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2668 int bit_offset_in_container =
2669 value_bitpos (component) - value_bitpos (container);
2670 int bits;
2671
2672 val = value_cast (value_type (component), val);
2673
2674 if (value_bitsize (component) == 0)
2675 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2676 else
2677 bits = value_bitsize (component);
2678
50810684 2679 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2680 move_bits (value_contents_writeable (container) + offset_in_container,
2681 value_bitpos (container) + bit_offset_in_container,
2682 value_contents (val),
2683 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2684 bits, 1);
52ce6436
PH
2685 else
2686 move_bits (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
50810684 2688 value_contents (val), 0, bits, 0);
52ce6436
PH
2689}
2690
4c4b4cd2
PH
2691/* The value of the element of array ARR at the ARITY indices given in IND.
2692 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2693 thereto. */
2694
d2e4a39e
AS
2695struct value *
2696ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2697{
2698 int k;
d2e4a39e
AS
2699 struct value *elt;
2700 struct type *elt_type;
14f9c5c9
AS
2701
2702 elt = ada_coerce_to_simple_array (arr);
2703
df407dfe 2704 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2705 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2706 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2707 return value_subscript_packed (elt, arity, ind);
2708
2709 for (k = 0; k < arity; k += 1)
2710 {
2711 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2712 error (_("too many subscripts (%d expected)"), k);
2497b498 2713 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2714 }
2715 return elt;
2716}
2717
deede10c
JB
2718/* Assuming ARR is a pointer to a GDB array, the value of the element
2719 of *ARR at the ARITY indices given in IND.
2720 Does not read the entire array into memory. */
14f9c5c9 2721
2c0b251b 2722static struct value *
deede10c 2723ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2724{
2725 int k;
deede10c
JB
2726 struct type *type
2727 = check_typedef (value_enclosing_type (ada_value_ind (arr)));
14f9c5c9
AS
2728
2729 for (k = 0; k < arity; k += 1)
2730 {
2731 LONGEST lwb, upb;
14f9c5c9
AS
2732
2733 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2734 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2735 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2736 value_copy (arr));
14f9c5c9 2737 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2738 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2739 type = TYPE_TARGET_TYPE (type);
2740 }
2741
2742 return value_ind (arr);
2743}
2744
0b5d8877 2745/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2747 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2748 per Ada rules. */
0b5d8877 2749static struct value *
f5938064
JG
2750ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2751 int low, int high)
0b5d8877 2752{
b0dd7688 2753 struct type *type0 = ada_check_typedef (type);
6c038f32 2754 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2755 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2756 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
0c9c3474
SA
2757 struct type *index_type
2758 = create_static_range_type (NULL,
2759 TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2760 low, high);
6c038f32 2761 struct type *slice_type =
b0dd7688 2762 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2763
f5938064 2764 return value_at_lazy (slice_type, base);
0b5d8877
PH
2765}
2766
2767
2768static struct value *
2769ada_value_slice (struct value *array, int low, int high)
2770{
b0dd7688 2771 struct type *type = ada_check_typedef (value_type (array));
0c9c3474
SA
2772 struct type *index_type
2773 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2774 struct type *slice_type =
0b5d8877 2775 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2776
6c038f32 2777 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2778}
2779
14f9c5c9
AS
2780/* If type is a record type in the form of a standard GNAT array
2781 descriptor, returns the number of dimensions for type. If arr is a
2782 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2783 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2784
2785int
d2e4a39e 2786ada_array_arity (struct type *type)
14f9c5c9
AS
2787{
2788 int arity;
2789
2790 if (type == NULL)
2791 return 0;
2792
2793 type = desc_base_type (type);
2794
2795 arity = 0;
d2e4a39e 2796 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2797 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2798 else
2799 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2800 {
4c4b4cd2 2801 arity += 1;
61ee279c 2802 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2803 }
d2e4a39e 2804
14f9c5c9
AS
2805 return arity;
2806}
2807
2808/* If TYPE is a record type in the form of a standard GNAT array
2809 descriptor or a simple array type, returns the element type for
2810 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2811 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2812
d2e4a39e
AS
2813struct type *
2814ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2815{
2816 type = desc_base_type (type);
2817
d2e4a39e 2818 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2819 {
2820 int k;
d2e4a39e 2821 struct type *p_array_type;
14f9c5c9 2822
556bdfd4 2823 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2824
2825 k = ada_array_arity (type);
2826 if (k == 0)
4c4b4cd2 2827 return NULL;
d2e4a39e 2828
4c4b4cd2 2829 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2830 if (nindices >= 0 && k > nindices)
4c4b4cd2 2831 k = nindices;
d2e4a39e 2832 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2833 {
61ee279c 2834 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2835 k -= 1;
2836 }
14f9c5c9
AS
2837 return p_array_type;
2838 }
2839 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2840 {
2841 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2842 {
2843 type = TYPE_TARGET_TYPE (type);
2844 nindices -= 1;
2845 }
14f9c5c9
AS
2846 return type;
2847 }
2848
2849 return NULL;
2850}
2851
4c4b4cd2 2852/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2853 Does not examine memory. Throws an error if N is invalid or TYPE
2854 is not an array type. NAME is the name of the Ada attribute being
2855 evaluated ('range, 'first, 'last, or 'length); it is used in building
2856 the error message. */
14f9c5c9 2857
1eea4ebd
UW
2858static struct type *
2859ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2860{
4c4b4cd2
PH
2861 struct type *result_type;
2862
14f9c5c9
AS
2863 type = desc_base_type (type);
2864
1eea4ebd
UW
2865 if (n < 0 || n > ada_array_arity (type))
2866 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2867
4c4b4cd2 2868 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2869 {
2870 int i;
2871
2872 for (i = 1; i < n; i += 1)
4c4b4cd2 2873 type = TYPE_TARGET_TYPE (type);
262452ec 2874 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2875 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2876 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2877 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2878 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2879 result_type = NULL;
14f9c5c9 2880 }
d2e4a39e 2881 else
1eea4ebd
UW
2882 {
2883 result_type = desc_index_type (desc_bounds_type (type), n);
2884 if (result_type == NULL)
2885 error (_("attempt to take bound of something that is not an array"));
2886 }
2887
2888 return result_type;
14f9c5c9
AS
2889}
2890
2891/* Given that arr is an array type, returns the lower bound of the
2892 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2893 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2894 array-descriptor type. It works for other arrays with bounds supplied
2895 by run-time quantities other than discriminants. */
14f9c5c9 2896
abb68b3e 2897static LONGEST
fb5e3d5c 2898ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2899{
8a48ac95 2900 struct type *type, *index_type_desc, *index_type;
1ce677a4 2901 int i;
262452ec
JK
2902
2903 gdb_assert (which == 0 || which == 1);
14f9c5c9 2904
ad82864c
JB
2905 if (ada_is_constrained_packed_array_type (arr_type))
2906 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2907
4c4b4cd2 2908 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2909 return (LONGEST) - which;
14f9c5c9
AS
2910
2911 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2912 type = TYPE_TARGET_TYPE (arr_type);
2913 else
2914 type = arr_type;
2915
2916 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2917 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2918 if (index_type_desc != NULL)
28c85d6c
JB
2919 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2920 NULL);
262452ec 2921 else
8a48ac95
JB
2922 {
2923 struct type *elt_type = check_typedef (type);
2924
2925 for (i = 1; i < n; i++)
2926 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2927
2928 index_type = TYPE_INDEX_TYPE (elt_type);
2929 }
262452ec 2930
43bbcdc2
PH
2931 return
2932 (LONGEST) (which == 0
2933 ? ada_discrete_type_low_bound (index_type)
2934 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2935}
2936
2937/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2938 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2939 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2940 supplied by run-time quantities other than discriminants. */
14f9c5c9 2941
1eea4ebd 2942static LONGEST
4dc81987 2943ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2944{
df407dfe 2945 struct type *arr_type = value_type (arr);
14f9c5c9 2946
ad82864c
JB
2947 if (ada_is_constrained_packed_array_type (arr_type))
2948 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2949 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2950 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2951 else
1eea4ebd 2952 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2953}
2954
2955/* Given that arr is an array value, returns the length of the
2956 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2957 supplied by run-time quantities other than discriminants.
2958 Does not work for arrays indexed by enumeration types with representation
2959 clauses at the moment. */
14f9c5c9 2960
1eea4ebd 2961static LONGEST
d2e4a39e 2962ada_array_length (struct value *arr, int n)
14f9c5c9 2963{
df407dfe 2964 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2965
ad82864c
JB
2966 if (ada_is_constrained_packed_array_type (arr_type))
2967 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2968
4c4b4cd2 2969 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2970 return (ada_array_bound_from_type (arr_type, n, 1)
2971 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2972 else
1eea4ebd
UW
2973 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2974 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2975}
2976
2977/* An empty array whose type is that of ARR_TYPE (an array type),
2978 with bounds LOW to LOW-1. */
2979
2980static struct value *
2981empty_array (struct type *arr_type, int low)
2982{
b0dd7688 2983 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
2984 struct type *index_type
2985 = create_static_range_type
2986 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 2987 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2988
0b5d8877 2989 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2990}
14f9c5c9 2991\f
d2e4a39e 2992
4c4b4cd2 2993 /* Name resolution */
14f9c5c9 2994
4c4b4cd2
PH
2995/* The "decoded" name for the user-definable Ada operator corresponding
2996 to OP. */
14f9c5c9 2997
d2e4a39e 2998static const char *
4c4b4cd2 2999ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3000{
3001 int i;
3002
4c4b4cd2 3003 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3004 {
3005 if (ada_opname_table[i].op == op)
4c4b4cd2 3006 return ada_opname_table[i].decoded;
14f9c5c9 3007 }
323e0a4a 3008 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3009}
3010
3011
4c4b4cd2
PH
3012/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3013 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3014 undefined namespace) and converts operators that are
3015 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3016 non-null, it provides a preferred result type [at the moment, only
3017 type void has any effect---causing procedures to be preferred over
3018 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3019 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3020
4c4b4cd2
PH
3021static void
3022resolve (struct expression **expp, int void_context_p)
14f9c5c9 3023{
30b15541
UW
3024 struct type *context_type = NULL;
3025 int pc = 0;
3026
3027 if (void_context_p)
3028 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3029
3030 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3031}
3032
4c4b4cd2
PH
3033/* Resolve the operator of the subexpression beginning at
3034 position *POS of *EXPP. "Resolving" consists of replacing
3035 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3036 with their resolutions, replacing built-in operators with
3037 function calls to user-defined operators, where appropriate, and,
3038 when DEPROCEDURE_P is non-zero, converting function-valued variables
3039 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3040 are as in ada_resolve, above. */
14f9c5c9 3041
d2e4a39e 3042static struct value *
4c4b4cd2 3043resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 3044 struct type *context_type)
14f9c5c9
AS
3045{
3046 int pc = *pos;
3047 int i;
4c4b4cd2 3048 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3049 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3050 struct value **argvec; /* Vector of operand types (alloca'ed). */
3051 int nargs; /* Number of operands. */
52ce6436 3052 int oplen;
14f9c5c9
AS
3053
3054 argvec = NULL;
3055 nargs = 0;
3056 exp = *expp;
3057
52ce6436
PH
3058 /* Pass one: resolve operands, saving their types and updating *pos,
3059 if needed. */
14f9c5c9
AS
3060 switch (op)
3061 {
4c4b4cd2
PH
3062 case OP_FUNCALL:
3063 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3064 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3065 *pos += 7;
4c4b4cd2
PH
3066 else
3067 {
3068 *pos += 3;
3069 resolve_subexp (expp, pos, 0, NULL);
3070 }
3071 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3072 break;
3073
14f9c5c9 3074 case UNOP_ADDR:
4c4b4cd2
PH
3075 *pos += 1;
3076 resolve_subexp (expp, pos, 0, NULL);
3077 break;
3078
52ce6436
PH
3079 case UNOP_QUAL:
3080 *pos += 3;
17466c1a 3081 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3082 break;
3083
52ce6436 3084 case OP_ATR_MODULUS:
4c4b4cd2
PH
3085 case OP_ATR_SIZE:
3086 case OP_ATR_TAG:
4c4b4cd2
PH
3087 case OP_ATR_FIRST:
3088 case OP_ATR_LAST:
3089 case OP_ATR_LENGTH:
3090 case OP_ATR_POS:
3091 case OP_ATR_VAL:
4c4b4cd2
PH
3092 case OP_ATR_MIN:
3093 case OP_ATR_MAX:
52ce6436
PH
3094 case TERNOP_IN_RANGE:
3095 case BINOP_IN_BOUNDS:
3096 case UNOP_IN_RANGE:
3097 case OP_AGGREGATE:
3098 case OP_OTHERS:
3099 case OP_CHOICES:
3100 case OP_POSITIONAL:
3101 case OP_DISCRETE_RANGE:
3102 case OP_NAME:
3103 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3104 *pos += oplen;
14f9c5c9
AS
3105 break;
3106
3107 case BINOP_ASSIGN:
3108 {
4c4b4cd2
PH
3109 struct value *arg1;
3110
3111 *pos += 1;
3112 arg1 = resolve_subexp (expp, pos, 0, NULL);
3113 if (arg1 == NULL)
3114 resolve_subexp (expp, pos, 1, NULL);
3115 else
df407dfe 3116 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3117 break;
14f9c5c9
AS
3118 }
3119
4c4b4cd2 3120 case UNOP_CAST:
4c4b4cd2
PH
3121 *pos += 3;
3122 nargs = 1;
3123 break;
14f9c5c9 3124
4c4b4cd2
PH
3125 case BINOP_ADD:
3126 case BINOP_SUB:
3127 case BINOP_MUL:
3128 case BINOP_DIV:
3129 case BINOP_REM:
3130 case BINOP_MOD:
3131 case BINOP_EXP:
3132 case BINOP_CONCAT:
3133 case BINOP_LOGICAL_AND:
3134 case BINOP_LOGICAL_OR:
3135 case BINOP_BITWISE_AND:
3136 case BINOP_BITWISE_IOR:
3137 case BINOP_BITWISE_XOR:
14f9c5c9 3138
4c4b4cd2
PH
3139 case BINOP_EQUAL:
3140 case BINOP_NOTEQUAL:
3141 case BINOP_LESS:
3142 case BINOP_GTR:
3143 case BINOP_LEQ:
3144 case BINOP_GEQ:
14f9c5c9 3145
4c4b4cd2
PH
3146 case BINOP_REPEAT:
3147 case BINOP_SUBSCRIPT:
3148 case BINOP_COMMA:
40c8aaa9
JB
3149 *pos += 1;
3150 nargs = 2;
3151 break;
14f9c5c9 3152
4c4b4cd2
PH
3153 case UNOP_NEG:
3154 case UNOP_PLUS:
3155 case UNOP_LOGICAL_NOT:
3156 case UNOP_ABS:
3157 case UNOP_IND:
3158 *pos += 1;
3159 nargs = 1;
3160 break;
14f9c5c9 3161
4c4b4cd2
PH
3162 case OP_LONG:
3163 case OP_DOUBLE:
3164 case OP_VAR_VALUE:
3165 *pos += 4;
3166 break;
14f9c5c9 3167
4c4b4cd2
PH
3168 case OP_TYPE:
3169 case OP_BOOL:
3170 case OP_LAST:
4c4b4cd2
PH
3171 case OP_INTERNALVAR:
3172 *pos += 3;
3173 break;
14f9c5c9 3174
4c4b4cd2
PH
3175 case UNOP_MEMVAL:
3176 *pos += 3;
3177 nargs = 1;
3178 break;
3179
67f3407f
DJ
3180 case OP_REGISTER:
3181 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3182 break;
3183
4c4b4cd2
PH
3184 case STRUCTOP_STRUCT:
3185 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3186 nargs = 1;
3187 break;
3188
4c4b4cd2 3189 case TERNOP_SLICE:
4c4b4cd2
PH
3190 *pos += 1;
3191 nargs = 3;
3192 break;
3193
52ce6436 3194 case OP_STRING:
14f9c5c9 3195 break;
4c4b4cd2
PH
3196
3197 default:
323e0a4a 3198 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3199 }
3200
76a01679 3201 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3202 for (i = 0; i < nargs; i += 1)
3203 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3204 argvec[i] = NULL;
3205 exp = *expp;
3206
3207 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3208 switch (op)
3209 {
3210 default:
3211 break;
3212
14f9c5c9 3213 case OP_VAR_VALUE:
4c4b4cd2 3214 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3215 {
3216 struct ada_symbol_info *candidates;
3217 int n_candidates;
3218
3219 n_candidates =
3220 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3221 (exp->elts[pc + 2].symbol),
3222 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3223 &candidates);
76a01679
JB
3224
3225 if (n_candidates > 1)
3226 {
3227 /* Types tend to get re-introduced locally, so if there
3228 are any local symbols that are not types, first filter
3229 out all types. */
3230 int j;
3231 for (j = 0; j < n_candidates; j += 1)
3232 switch (SYMBOL_CLASS (candidates[j].sym))
3233 {
3234 case LOC_REGISTER:
3235 case LOC_ARG:
3236 case LOC_REF_ARG:
76a01679
JB
3237 case LOC_REGPARM_ADDR:
3238 case LOC_LOCAL:
76a01679 3239 case LOC_COMPUTED:
76a01679
JB
3240 goto FoundNonType;
3241 default:
3242 break;
3243 }
3244 FoundNonType:
3245 if (j < n_candidates)
3246 {
3247 j = 0;
3248 while (j < n_candidates)
3249 {
3250 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3251 {
3252 candidates[j] = candidates[n_candidates - 1];
3253 n_candidates -= 1;
3254 }
3255 else
3256 j += 1;
3257 }
3258 }
3259 }
3260
3261 if (n_candidates == 0)
323e0a4a 3262 error (_("No definition found for %s"),
76a01679
JB
3263 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3264 else if (n_candidates == 1)
3265 i = 0;
3266 else if (deprocedure_p
3267 && !is_nonfunction (candidates, n_candidates))
3268 {
06d5cf63
JB
3269 i = ada_resolve_function
3270 (candidates, n_candidates, NULL, 0,
3271 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3272 context_type);
76a01679 3273 if (i < 0)
323e0a4a 3274 error (_("Could not find a match for %s"),
76a01679
JB
3275 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3276 }
3277 else
3278 {
323e0a4a 3279 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3280 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3281 user_select_syms (candidates, n_candidates, 1);
3282 i = 0;
3283 }
3284
3285 exp->elts[pc + 1].block = candidates[i].block;
3286 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3287 if (innermost_block == NULL
3288 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3289 innermost_block = candidates[i].block;
3290 }
3291
3292 if (deprocedure_p
3293 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3294 == TYPE_CODE_FUNC))
3295 {
3296 replace_operator_with_call (expp, pc, 0, 0,
3297 exp->elts[pc + 2].symbol,
3298 exp->elts[pc + 1].block);
3299 exp = *expp;
3300 }
14f9c5c9
AS
3301 break;
3302
3303 case OP_FUNCALL:
3304 {
4c4b4cd2 3305 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3306 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3307 {
3308 struct ada_symbol_info *candidates;
3309 int n_candidates;
3310
3311 n_candidates =
76a01679
JB
3312 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3313 (exp->elts[pc + 5].symbol),
3314 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3315 &candidates);
4c4b4cd2
PH
3316 if (n_candidates == 1)
3317 i = 0;
3318 else
3319 {
06d5cf63
JB
3320 i = ada_resolve_function
3321 (candidates, n_candidates,
3322 argvec, nargs,
3323 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3324 context_type);
4c4b4cd2 3325 if (i < 0)
323e0a4a 3326 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3327 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3328 }
3329
3330 exp->elts[pc + 4].block = candidates[i].block;
3331 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3332 if (innermost_block == NULL
3333 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3334 innermost_block = candidates[i].block;
3335 }
14f9c5c9
AS
3336 }
3337 break;
3338 case BINOP_ADD:
3339 case BINOP_SUB:
3340 case BINOP_MUL:
3341 case BINOP_DIV:
3342 case BINOP_REM:
3343 case BINOP_MOD:
3344 case BINOP_CONCAT:
3345 case BINOP_BITWISE_AND:
3346 case BINOP_BITWISE_IOR:
3347 case BINOP_BITWISE_XOR:
3348 case BINOP_EQUAL:
3349 case BINOP_NOTEQUAL:
3350 case BINOP_LESS:
3351 case BINOP_GTR:
3352 case BINOP_LEQ:
3353 case BINOP_GEQ:
3354 case BINOP_EXP:
3355 case UNOP_NEG:
3356 case UNOP_PLUS:
3357 case UNOP_LOGICAL_NOT:
3358 case UNOP_ABS:
3359 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3360 {
3361 struct ada_symbol_info *candidates;
3362 int n_candidates;
3363
3364 n_candidates =
3365 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3366 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3367 &candidates);
4c4b4cd2 3368 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3369 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3370 if (i < 0)
3371 break;
3372
76a01679
JB
3373 replace_operator_with_call (expp, pc, nargs, 1,
3374 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3375 exp = *expp;
3376 }
14f9c5c9 3377 break;
4c4b4cd2
PH
3378
3379 case OP_TYPE:
b3dbf008 3380 case OP_REGISTER:
4c4b4cd2 3381 return NULL;
14f9c5c9
AS
3382 }
3383
3384 *pos = pc;
3385 return evaluate_subexp_type (exp, pos);
3386}
3387
3388/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3389 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3390 a non-pointer. */
14f9c5c9 3391/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3392 liberal. */
14f9c5c9
AS
3393
3394static int
4dc81987 3395ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3396{
61ee279c
PH
3397 ftype = ada_check_typedef (ftype);
3398 atype = ada_check_typedef (atype);
14f9c5c9
AS
3399
3400 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3401 ftype = TYPE_TARGET_TYPE (ftype);
3402 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3403 atype = TYPE_TARGET_TYPE (atype);
3404
d2e4a39e 3405 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3406 {
3407 default:
5b3d5b7d 3408 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3409 case TYPE_CODE_PTR:
3410 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3411 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3412 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3413 else
1265e4aa
JB
3414 return (may_deref
3415 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3416 case TYPE_CODE_INT:
3417 case TYPE_CODE_ENUM:
3418 case TYPE_CODE_RANGE:
3419 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3420 {
3421 case TYPE_CODE_INT:
3422 case TYPE_CODE_ENUM:
3423 case TYPE_CODE_RANGE:
3424 return 1;
3425 default:
3426 return 0;
3427 }
14f9c5c9
AS
3428
3429 case TYPE_CODE_ARRAY:
d2e4a39e 3430 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3431 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3432
3433 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3434 if (ada_is_array_descriptor_type (ftype))
3435 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3436 || ada_is_array_descriptor_type (atype));
14f9c5c9 3437 else
4c4b4cd2
PH
3438 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3439 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3440
3441 case TYPE_CODE_UNION:
3442 case TYPE_CODE_FLT:
3443 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3444 }
3445}
3446
3447/* Return non-zero if the formals of FUNC "sufficiently match" the
3448 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3449 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3450 argument function. */
14f9c5c9
AS
3451
3452static int
d2e4a39e 3453ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3454{
3455 int i;
d2e4a39e 3456 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3457
1265e4aa
JB
3458 if (SYMBOL_CLASS (func) == LOC_CONST
3459 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3460 return (n_actuals == 0);
3461 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3462 return 0;
3463
3464 if (TYPE_NFIELDS (func_type) != n_actuals)
3465 return 0;
3466
3467 for (i = 0; i < n_actuals; i += 1)
3468 {
4c4b4cd2 3469 if (actuals[i] == NULL)
76a01679
JB
3470 return 0;
3471 else
3472 {
5b4ee69b
MS
3473 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3474 i));
df407dfe 3475 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3476
76a01679
JB
3477 if (!ada_type_match (ftype, atype, 1))
3478 return 0;
3479 }
14f9c5c9
AS
3480 }
3481 return 1;
3482}
3483
3484/* False iff function type FUNC_TYPE definitely does not produce a value
3485 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3486 FUNC_TYPE is not a valid function type with a non-null return type
3487 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3488
3489static int
d2e4a39e 3490return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3491{
d2e4a39e 3492 struct type *return_type;
14f9c5c9
AS
3493
3494 if (func_type == NULL)
3495 return 1;
3496
4c4b4cd2 3497 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3498 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3499 else
18af8284 3500 return_type = get_base_type (func_type);
14f9c5c9
AS
3501 if (return_type == NULL)
3502 return 1;
3503
18af8284 3504 context_type = get_base_type (context_type);
14f9c5c9
AS
3505
3506 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3507 return context_type == NULL || return_type == context_type;
3508 else if (context_type == NULL)
3509 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3510 else
3511 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3512}
3513
3514
4c4b4cd2 3515/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3516 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3517 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3518 that returns that type, then eliminate matches that don't. If
3519 CONTEXT_TYPE is void and there is at least one match that does not
3520 return void, eliminate all matches that do.
3521
14f9c5c9
AS
3522 Asks the user if there is more than one match remaining. Returns -1
3523 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3524 solely for messages. May re-arrange and modify SYMS in
3525 the process; the index returned is for the modified vector. */
14f9c5c9 3526
4c4b4cd2
PH
3527static int
3528ada_resolve_function (struct ada_symbol_info syms[],
3529 int nsyms, struct value **args, int nargs,
3530 const char *name, struct type *context_type)
14f9c5c9 3531{
30b15541 3532 int fallback;
14f9c5c9 3533 int k;
4c4b4cd2 3534 int m; /* Number of hits */
14f9c5c9 3535
d2e4a39e 3536 m = 0;
30b15541
UW
3537 /* In the first pass of the loop, we only accept functions matching
3538 context_type. If none are found, we add a second pass of the loop
3539 where every function is accepted. */
3540 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3541 {
3542 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3543 {
61ee279c 3544 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3545
3546 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3547 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3548 {
3549 syms[m] = syms[k];
3550 m += 1;
3551 }
3552 }
14f9c5c9
AS
3553 }
3554
3555 if (m == 0)
3556 return -1;
3557 else if (m > 1)
3558 {
323e0a4a 3559 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3560 user_select_syms (syms, m, 1);
14f9c5c9
AS
3561 return 0;
3562 }
3563 return 0;
3564}
3565
4c4b4cd2
PH
3566/* Returns true (non-zero) iff decoded name N0 should appear before N1
3567 in a listing of choices during disambiguation (see sort_choices, below).
3568 The idea is that overloadings of a subprogram name from the
3569 same package should sort in their source order. We settle for ordering
3570 such symbols by their trailing number (__N or $N). */
3571
14f9c5c9 3572static int
0d5cff50 3573encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3574{
3575 if (N1 == NULL)
3576 return 0;
3577 else if (N0 == NULL)
3578 return 1;
3579 else
3580 {
3581 int k0, k1;
5b4ee69b 3582
d2e4a39e 3583 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3584 ;
d2e4a39e 3585 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3586 ;
d2e4a39e 3587 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3588 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3589 {
3590 int n0, n1;
5b4ee69b 3591
4c4b4cd2
PH
3592 n0 = k0;
3593 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3594 n0 -= 1;
3595 n1 = k1;
3596 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3597 n1 -= 1;
3598 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3599 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3600 }
14f9c5c9
AS
3601 return (strcmp (N0, N1) < 0);
3602 }
3603}
d2e4a39e 3604
4c4b4cd2
PH
3605/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3606 encoded names. */
3607
d2e4a39e 3608static void
4c4b4cd2 3609sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3610{
4c4b4cd2 3611 int i;
5b4ee69b 3612
d2e4a39e 3613 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3614 {
4c4b4cd2 3615 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3616 int j;
3617
d2e4a39e 3618 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3619 {
3620 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3621 SYMBOL_LINKAGE_NAME (sym.sym)))
3622 break;
3623 syms[j + 1] = syms[j];
3624 }
d2e4a39e 3625 syms[j + 1] = sym;
14f9c5c9
AS
3626 }
3627}
3628
4c4b4cd2
PH
3629/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3630 by asking the user (if necessary), returning the number selected,
3631 and setting the first elements of SYMS items. Error if no symbols
3632 selected. */
14f9c5c9
AS
3633
3634/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3635 to be re-integrated one of these days. */
14f9c5c9
AS
3636
3637int
4c4b4cd2 3638user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3639{
3640 int i;
d2e4a39e 3641 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3642 int n_chosen;
3643 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3644 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3645
3646 if (max_results < 1)
323e0a4a 3647 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3648 if (nsyms <= 1)
3649 return nsyms;
3650
717d2f5a
JB
3651 if (select_mode == multiple_symbols_cancel)
3652 error (_("\
3653canceled because the command is ambiguous\n\
3654See set/show multiple-symbol."));
3655
3656 /* If select_mode is "all", then return all possible symbols.
3657 Only do that if more than one symbol can be selected, of course.
3658 Otherwise, display the menu as usual. */
3659 if (select_mode == multiple_symbols_all && max_results > 1)
3660 return nsyms;
3661
323e0a4a 3662 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3663 if (max_results > 1)
323e0a4a 3664 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3665
4c4b4cd2 3666 sort_choices (syms, nsyms);
14f9c5c9
AS
3667
3668 for (i = 0; i < nsyms; i += 1)
3669 {
4c4b4cd2
PH
3670 if (syms[i].sym == NULL)
3671 continue;
3672
3673 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3674 {
76a01679
JB
3675 struct symtab_and_line sal =
3676 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3677
323e0a4a
AC
3678 if (sal.symtab == NULL)
3679 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3680 i + first_choice,
3681 SYMBOL_PRINT_NAME (syms[i].sym),
3682 sal.line);
3683 else
3684 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3685 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3686 symtab_to_filename_for_display (sal.symtab),
3687 sal.line);
4c4b4cd2
PH
3688 continue;
3689 }
d2e4a39e 3690 else
4c4b4cd2
PH
3691 {
3692 int is_enumeral =
3693 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3694 && SYMBOL_TYPE (syms[i].sym) != NULL
3695 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
210bbc17 3696 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
4c4b4cd2
PH
3697
3698 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3699 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3700 i + first_choice,
3701 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821
JK
3702 symtab_to_filename_for_display (symtab),
3703 SYMBOL_LINE (syms[i].sym));
76a01679
JB
3704 else if (is_enumeral
3705 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3706 {
a3f17187 3707 printf_unfiltered (("[%d] "), i + first_choice);
76a01679 3708 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
79d43c61 3709 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3710 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3711 SYMBOL_PRINT_NAME (syms[i].sym));
3712 }
3713 else if (symtab != NULL)
3714 printf_unfiltered (is_enumeral
323e0a4a
AC
3715 ? _("[%d] %s in %s (enumeral)\n")
3716 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3717 i + first_choice,
3718 SYMBOL_PRINT_NAME (syms[i].sym),
05cba821 3719 symtab_to_filename_for_display (symtab));
4c4b4cd2
PH
3720 else
3721 printf_unfiltered (is_enumeral
323e0a4a
AC
3722 ? _("[%d] %s (enumeral)\n")
3723 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3724 i + first_choice,
3725 SYMBOL_PRINT_NAME (syms[i].sym));
3726 }
14f9c5c9 3727 }
d2e4a39e 3728
14f9c5c9 3729 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3730 "overload-choice");
14f9c5c9
AS
3731
3732 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3733 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3734
3735 return n_chosen;
3736}
3737
3738/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3739 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3740 order in CHOICES[0 .. N-1], and return N.
3741
3742 The user types choices as a sequence of numbers on one line
3743 separated by blanks, encoding them as follows:
3744
4c4b4cd2 3745 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3746 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3747 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3748
4c4b4cd2 3749 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3750
3751 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3752 prompts (for use with the -f switch). */
14f9c5c9
AS
3753
3754int
d2e4a39e 3755get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3756 int is_all_choice, char *annotation_suffix)
14f9c5c9 3757{
d2e4a39e 3758 char *args;
0bcd0149 3759 char *prompt;
14f9c5c9
AS
3760 int n_chosen;
3761 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3762
14f9c5c9
AS
3763 prompt = getenv ("PS2");
3764 if (prompt == NULL)
0bcd0149 3765 prompt = "> ";
14f9c5c9 3766
0bcd0149 3767 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3768
14f9c5c9 3769 if (args == NULL)
323e0a4a 3770 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3771
3772 n_chosen = 0;
76a01679 3773
4c4b4cd2
PH
3774 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3775 order, as given in args. Choices are validated. */
14f9c5c9
AS
3776 while (1)
3777 {
d2e4a39e 3778 char *args2;
14f9c5c9
AS
3779 int choice, j;
3780
0fcd72ba 3781 args = skip_spaces (args);
14f9c5c9 3782 if (*args == '\0' && n_chosen == 0)
323e0a4a 3783 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3784 else if (*args == '\0')
4c4b4cd2 3785 break;
14f9c5c9
AS
3786
3787 choice = strtol (args, &args2, 10);
d2e4a39e 3788 if (args == args2 || choice < 0
4c4b4cd2 3789 || choice > n_choices + first_choice - 1)
323e0a4a 3790 error (_("Argument must be choice number"));
14f9c5c9
AS
3791 args = args2;
3792
d2e4a39e 3793 if (choice == 0)
323e0a4a 3794 error (_("cancelled"));
14f9c5c9
AS
3795
3796 if (choice < first_choice)
4c4b4cd2
PH
3797 {
3798 n_chosen = n_choices;
3799 for (j = 0; j < n_choices; j += 1)
3800 choices[j] = j;
3801 break;
3802 }
14f9c5c9
AS
3803 choice -= first_choice;
3804
d2e4a39e 3805 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3806 {
3807 }
14f9c5c9
AS
3808
3809 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3810 {
3811 int k;
5b4ee69b 3812
4c4b4cd2
PH
3813 for (k = n_chosen - 1; k > j; k -= 1)
3814 choices[k + 1] = choices[k];
3815 choices[j + 1] = choice;
3816 n_chosen += 1;
3817 }
14f9c5c9
AS
3818 }
3819
3820 if (n_chosen > max_results)
323e0a4a 3821 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3822
14f9c5c9
AS
3823 return n_chosen;
3824}
3825
4c4b4cd2
PH
3826/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3827 on the function identified by SYM and BLOCK, and taking NARGS
3828 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3829
3830static void
d2e4a39e 3831replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2 3832 int oplen, struct symbol *sym,
270140bd 3833 const struct block *block)
14f9c5c9
AS
3834{
3835 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3836 symbol, -oplen for operator being replaced). */
d2e4a39e 3837 struct expression *newexp = (struct expression *)
8c1a34e7 3838 xzalloc (sizeof (struct expression)
4c4b4cd2 3839 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3840 struct expression *exp = *expp;
14f9c5c9
AS
3841
3842 newexp->nelts = exp->nelts + 7 - oplen;
3843 newexp->language_defn = exp->language_defn;
3489610d 3844 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3845 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3846 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3847 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3848
3849 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3850 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3851
3852 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3853 newexp->elts[pc + 4].block = block;
3854 newexp->elts[pc + 5].symbol = sym;
3855
3856 *expp = newexp;
aacb1f0a 3857 xfree (exp);
d2e4a39e 3858}
14f9c5c9
AS
3859
3860/* Type-class predicates */
3861
4c4b4cd2
PH
3862/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3863 or FLOAT). */
14f9c5c9
AS
3864
3865static int
d2e4a39e 3866numeric_type_p (struct type *type)
14f9c5c9
AS
3867{
3868 if (type == NULL)
3869 return 0;
d2e4a39e
AS
3870 else
3871 {
3872 switch (TYPE_CODE (type))
4c4b4cd2
PH
3873 {
3874 case TYPE_CODE_INT:
3875 case TYPE_CODE_FLT:
3876 return 1;
3877 case TYPE_CODE_RANGE:
3878 return (type == TYPE_TARGET_TYPE (type)
3879 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3880 default:
3881 return 0;
3882 }
d2e4a39e 3883 }
14f9c5c9
AS
3884}
3885
4c4b4cd2 3886/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3887
3888static int
d2e4a39e 3889integer_type_p (struct type *type)
14f9c5c9
AS
3890{
3891 if (type == NULL)
3892 return 0;
d2e4a39e
AS
3893 else
3894 {
3895 switch (TYPE_CODE (type))
4c4b4cd2
PH
3896 {
3897 case TYPE_CODE_INT:
3898 return 1;
3899 case TYPE_CODE_RANGE:
3900 return (type == TYPE_TARGET_TYPE (type)
3901 || integer_type_p (TYPE_TARGET_TYPE (type)));
3902 default:
3903 return 0;
3904 }
d2e4a39e 3905 }
14f9c5c9
AS
3906}
3907
4c4b4cd2 3908/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3909
3910static int
d2e4a39e 3911scalar_type_p (struct type *type)
14f9c5c9
AS
3912{
3913 if (type == NULL)
3914 return 0;
d2e4a39e
AS
3915 else
3916 {
3917 switch (TYPE_CODE (type))
4c4b4cd2
PH
3918 {
3919 case TYPE_CODE_INT:
3920 case TYPE_CODE_RANGE:
3921 case TYPE_CODE_ENUM:
3922 case TYPE_CODE_FLT:
3923 return 1;
3924 default:
3925 return 0;
3926 }
d2e4a39e 3927 }
14f9c5c9
AS
3928}
3929
4c4b4cd2 3930/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3931
3932static int
d2e4a39e 3933discrete_type_p (struct type *type)
14f9c5c9
AS
3934{
3935 if (type == NULL)
3936 return 0;
d2e4a39e
AS
3937 else
3938 {
3939 switch (TYPE_CODE (type))
4c4b4cd2
PH
3940 {
3941 case TYPE_CODE_INT:
3942 case TYPE_CODE_RANGE:
3943 case TYPE_CODE_ENUM:
872f0337 3944 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3945 return 1;
3946 default:
3947 return 0;
3948 }
d2e4a39e 3949 }
14f9c5c9
AS
3950}
3951
4c4b4cd2
PH
3952/* Returns non-zero if OP with operands in the vector ARGS could be
3953 a user-defined function. Errs on the side of pre-defined operators
3954 (i.e., result 0). */
14f9c5c9
AS
3955
3956static int
d2e4a39e 3957possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3958{
76a01679 3959 struct type *type0 =
df407dfe 3960 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3961 struct type *type1 =
df407dfe 3962 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3963
4c4b4cd2
PH
3964 if (type0 == NULL)
3965 return 0;
3966
14f9c5c9
AS
3967 switch (op)
3968 {
3969 default:
3970 return 0;
3971
3972 case BINOP_ADD:
3973 case BINOP_SUB:
3974 case BINOP_MUL:
3975 case BINOP_DIV:
d2e4a39e 3976 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3977
3978 case BINOP_REM:
3979 case BINOP_MOD:
3980 case BINOP_BITWISE_AND:
3981 case BINOP_BITWISE_IOR:
3982 case BINOP_BITWISE_XOR:
d2e4a39e 3983 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3984
3985 case BINOP_EQUAL:
3986 case BINOP_NOTEQUAL:
3987 case BINOP_LESS:
3988 case BINOP_GTR:
3989 case BINOP_LEQ:
3990 case BINOP_GEQ:
d2e4a39e 3991 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3992
3993 case BINOP_CONCAT:
ee90b9ab 3994 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3995
3996 case BINOP_EXP:
d2e4a39e 3997 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3998
3999 case UNOP_NEG:
4000 case UNOP_PLUS:
4001 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4002 case UNOP_ABS:
4003 return (!numeric_type_p (type0));
14f9c5c9
AS
4004
4005 }
4006}
4007\f
4c4b4cd2 4008 /* Renaming */
14f9c5c9 4009
aeb5907d
JB
4010/* NOTES:
4011
4012 1. In the following, we assume that a renaming type's name may
4013 have an ___XD suffix. It would be nice if this went away at some
4014 point.
4015 2. We handle both the (old) purely type-based representation of
4016 renamings and the (new) variable-based encoding. At some point,
4017 it is devoutly to be hoped that the former goes away
4018 (FIXME: hilfinger-2007-07-09).
4019 3. Subprogram renamings are not implemented, although the XRS
4020 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4021
4022/* If SYM encodes a renaming,
4023
4024 <renaming> renames <renamed entity>,
4025
4026 sets *LEN to the length of the renamed entity's name,
4027 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4028 the string describing the subcomponent selected from the renamed
0963b4bd 4029 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4030 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4031 are undefined). Otherwise, returns a value indicating the category
4032 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4033 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4034 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4035 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4036 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4037 may be NULL, in which case they are not assigned.
4038
4039 [Currently, however, GCC does not generate subprogram renamings.] */
4040
4041enum ada_renaming_category
4042ada_parse_renaming (struct symbol *sym,
4043 const char **renamed_entity, int *len,
4044 const char **renaming_expr)
4045{
4046 enum ada_renaming_category kind;
4047 const char *info;
4048 const char *suffix;
4049
4050 if (sym == NULL)
4051 return ADA_NOT_RENAMING;
4052 switch (SYMBOL_CLASS (sym))
14f9c5c9 4053 {
aeb5907d
JB
4054 default:
4055 return ADA_NOT_RENAMING;
4056 case LOC_TYPEDEF:
4057 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4058 renamed_entity, len, renaming_expr);
4059 case LOC_LOCAL:
4060 case LOC_STATIC:
4061 case LOC_COMPUTED:
4062 case LOC_OPTIMIZED_OUT:
4063 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4064 if (info == NULL)
4065 return ADA_NOT_RENAMING;
4066 switch (info[5])
4067 {
4068 case '_':
4069 kind = ADA_OBJECT_RENAMING;
4070 info += 6;
4071 break;
4072 case 'E':
4073 kind = ADA_EXCEPTION_RENAMING;
4074 info += 7;
4075 break;
4076 case 'P':
4077 kind = ADA_PACKAGE_RENAMING;
4078 info += 7;
4079 break;
4080 case 'S':
4081 kind = ADA_SUBPROGRAM_RENAMING;
4082 info += 7;
4083 break;
4084 default:
4085 return ADA_NOT_RENAMING;
4086 }
14f9c5c9 4087 }
4c4b4cd2 4088
aeb5907d
JB
4089 if (renamed_entity != NULL)
4090 *renamed_entity = info;
4091 suffix = strstr (info, "___XE");
4092 if (suffix == NULL || suffix == info)
4093 return ADA_NOT_RENAMING;
4094 if (len != NULL)
4095 *len = strlen (info) - strlen (suffix);
4096 suffix += 5;
4097 if (renaming_expr != NULL)
4098 *renaming_expr = suffix;
4099 return kind;
4100}
4101
4102/* Assuming TYPE encodes a renaming according to the old encoding in
4103 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4104 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4105 ADA_NOT_RENAMING otherwise. */
4106static enum ada_renaming_category
4107parse_old_style_renaming (struct type *type,
4108 const char **renamed_entity, int *len,
4109 const char **renaming_expr)
4110{
4111 enum ada_renaming_category kind;
4112 const char *name;
4113 const char *info;
4114 const char *suffix;
14f9c5c9 4115
aeb5907d
JB
4116 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4117 || TYPE_NFIELDS (type) != 1)
4118 return ADA_NOT_RENAMING;
14f9c5c9 4119
aeb5907d
JB
4120 name = type_name_no_tag (type);
4121 if (name == NULL)
4122 return ADA_NOT_RENAMING;
4123
4124 name = strstr (name, "___XR");
4125 if (name == NULL)
4126 return ADA_NOT_RENAMING;
4127 switch (name[5])
4128 {
4129 case '\0':
4130 case '_':
4131 kind = ADA_OBJECT_RENAMING;
4132 break;
4133 case 'E':
4134 kind = ADA_EXCEPTION_RENAMING;
4135 break;
4136 case 'P':
4137 kind = ADA_PACKAGE_RENAMING;
4138 break;
4139 case 'S':
4140 kind = ADA_SUBPROGRAM_RENAMING;
4141 break;
4142 default:
4143 return ADA_NOT_RENAMING;
4144 }
14f9c5c9 4145
aeb5907d
JB
4146 info = TYPE_FIELD_NAME (type, 0);
4147 if (info == NULL)
4148 return ADA_NOT_RENAMING;
4149 if (renamed_entity != NULL)
4150 *renamed_entity = info;
4151 suffix = strstr (info, "___XE");
4152 if (renaming_expr != NULL)
4153 *renaming_expr = suffix + 5;
4154 if (suffix == NULL || suffix == info)
4155 return ADA_NOT_RENAMING;
4156 if (len != NULL)
4157 *len = suffix - info;
4158 return kind;
a5ee536b
JB
4159}
4160
4161/* Compute the value of the given RENAMING_SYM, which is expected to
4162 be a symbol encoding a renaming expression. BLOCK is the block
4163 used to evaluate the renaming. */
52ce6436 4164
a5ee536b
JB
4165static struct value *
4166ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4167 const struct block *block)
a5ee536b 4168{
bbc13ae3 4169 const char *sym_name;
a5ee536b
JB
4170 struct expression *expr;
4171 struct value *value;
4172 struct cleanup *old_chain = NULL;
4173
bbc13ae3 4174 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
1bb9788d 4175 expr = parse_exp_1 (&sym_name, 0, block, 0);
bbc13ae3 4176 old_chain = make_cleanup (free_current_contents, &expr);
a5ee536b
JB
4177 value = evaluate_expression (expr);
4178
4179 do_cleanups (old_chain);
4180 return value;
4181}
14f9c5c9 4182\f
d2e4a39e 4183
4c4b4cd2 4184 /* Evaluation: Function Calls */
14f9c5c9 4185
4c4b4cd2 4186/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4187 lvalues, and otherwise has the side-effect of allocating memory
4188 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4189
d2e4a39e 4190static struct value *
40bc484c 4191ensure_lval (struct value *val)
14f9c5c9 4192{
40bc484c
JB
4193 if (VALUE_LVAL (val) == not_lval
4194 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4195 {
df407dfe 4196 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4197 const CORE_ADDR addr =
4198 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4199
40bc484c 4200 set_value_address (val, addr);
a84a8a0d 4201 VALUE_LVAL (val) = lval_memory;
40bc484c 4202 write_memory (addr, value_contents (val), len);
c3e5cd34 4203 }
14f9c5c9
AS
4204
4205 return val;
4206}
4207
4208/* Return the value ACTUAL, converted to be an appropriate value for a
4209 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4210 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4211 values not residing in memory, updating it as needed. */
14f9c5c9 4212
a93c0eb6 4213struct value *
40bc484c 4214ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4215{
df407dfe 4216 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4217 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4218 struct type *formal_target =
4219 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4220 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4221 struct type *actual_target =
4222 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4223 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4224
4c4b4cd2 4225 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4226 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4227 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4228 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4229 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4230 {
a84a8a0d 4231 struct value *result;
5b4ee69b 4232
14f9c5c9 4233 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4234 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4235 result = desc_data (actual);
14f9c5c9 4236 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4237 {
4238 if (VALUE_LVAL (actual) != lval_memory)
4239 {
4240 struct value *val;
5b4ee69b 4241
df407dfe 4242 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4243 val = allocate_value (actual_type);
990a07ab 4244 memcpy ((char *) value_contents_raw (val),
0fd88904 4245 (char *) value_contents (actual),
4c4b4cd2 4246 TYPE_LENGTH (actual_type));
40bc484c 4247 actual = ensure_lval (val);
4c4b4cd2 4248 }
a84a8a0d 4249 result = value_addr (actual);
4c4b4cd2 4250 }
a84a8a0d
JB
4251 else
4252 return actual;
b1af9e97 4253 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4254 }
4255 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4256 return ada_value_ind (actual);
4257
4258 return actual;
4259}
4260
438c98a1
JB
4261/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4262 type TYPE. This is usually an inefficient no-op except on some targets
4263 (such as AVR) where the representation of a pointer and an address
4264 differs. */
4265
4266static CORE_ADDR
4267value_pointer (struct value *value, struct type *type)
4268{
4269 struct gdbarch *gdbarch = get_type_arch (type);
4270 unsigned len = TYPE_LENGTH (type);
4271 gdb_byte *buf = alloca (len);
4272 CORE_ADDR addr;
4273
4274 addr = value_address (value);
4275 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4276 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4277 return addr;
4278}
4279
14f9c5c9 4280
4c4b4cd2
PH
4281/* Push a descriptor of type TYPE for array value ARR on the stack at
4282 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4283 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4284 to-descriptor type rather than a descriptor type), a struct value *
4285 representing a pointer to this descriptor. */
14f9c5c9 4286
d2e4a39e 4287static struct value *
40bc484c 4288make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4289{
d2e4a39e
AS
4290 struct type *bounds_type = desc_bounds_type (type);
4291 struct type *desc_type = desc_base_type (type);
4292 struct value *descriptor = allocate_value (desc_type);
4293 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4294 int i;
d2e4a39e 4295
0963b4bd
MS
4296 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4297 i > 0; i -= 1)
14f9c5c9 4298 {
19f220c3
JK
4299 modify_field (value_type (bounds), value_contents_writeable (bounds),
4300 ada_array_bound (arr, i, 0),
4301 desc_bound_bitpos (bounds_type, i, 0),
4302 desc_bound_bitsize (bounds_type, i, 0));
4303 modify_field (value_type (bounds), value_contents_writeable (bounds),
4304 ada_array_bound (arr, i, 1),
4305 desc_bound_bitpos (bounds_type, i, 1),
4306 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4307 }
d2e4a39e 4308
40bc484c 4309 bounds = ensure_lval (bounds);
d2e4a39e 4310
19f220c3
JK
4311 modify_field (value_type (descriptor),
4312 value_contents_writeable (descriptor),
4313 value_pointer (ensure_lval (arr),
4314 TYPE_FIELD_TYPE (desc_type, 0)),
4315 fat_pntr_data_bitpos (desc_type),
4316 fat_pntr_data_bitsize (desc_type));
4317
4318 modify_field (value_type (descriptor),
4319 value_contents_writeable (descriptor),
4320 value_pointer (bounds,
4321 TYPE_FIELD_TYPE (desc_type, 1)),
4322 fat_pntr_bounds_bitpos (desc_type),
4323 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4324
40bc484c 4325 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4326
4327 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4328 return value_addr (descriptor);
4329 else
4330 return descriptor;
4331}
14f9c5c9 4332\f
3d9434b5
JB
4333 /* Symbol Cache Module */
4334
3d9434b5 4335/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4336 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4337 on the type of entity being printed, the cache can make it as much
4338 as an order of magnitude faster than without it.
4339
4340 The descriptive type DWARF extension has significantly reduced
4341 the need for this cache, at least when DWARF is being used. However,
4342 even in this case, some expensive name-based symbol searches are still
4343 sometimes necessary - to find an XVZ variable, mostly. */
4344
ee01b665 4345/* Initialize the contents of SYM_CACHE. */
3d9434b5 4346
ee01b665
JB
4347static void
4348ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4349{
4350 obstack_init (&sym_cache->cache_space);
4351 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4352}
3d9434b5 4353
ee01b665
JB
4354/* Free the memory used by SYM_CACHE. */
4355
4356static void
4357ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4358{
ee01b665
JB
4359 obstack_free (&sym_cache->cache_space, NULL);
4360 xfree (sym_cache);
4361}
3d9434b5 4362
ee01b665
JB
4363/* Return the symbol cache associated to the given program space PSPACE.
4364 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4365
ee01b665
JB
4366static struct ada_symbol_cache *
4367ada_get_symbol_cache (struct program_space *pspace)
4368{
4369 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4370 struct ada_symbol_cache *sym_cache = pspace_data->sym_cache;
4371
4372 if (sym_cache == NULL)
4373 {
4374 sym_cache = XCNEW (struct ada_symbol_cache);
4375 ada_init_symbol_cache (sym_cache);
4376 }
4377
4378 return sym_cache;
4379}
3d9434b5
JB
4380
4381/* Clear all entries from the symbol cache. */
4382
4383static void
4384ada_clear_symbol_cache (void)
4385{
ee01b665
JB
4386 struct ada_symbol_cache *sym_cache
4387 = ada_get_symbol_cache (current_program_space);
4388
4389 obstack_free (&sym_cache->cache_space, NULL);
4390 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4391}
4392
4393/* Search our cache for an entry matching NAME and NAMESPACE.
4394 Return it if found, or NULL otherwise. */
4395
4396static struct cache_entry **
4397find_entry (const char *name, domain_enum namespace)
4398{
ee01b665
JB
4399 struct ada_symbol_cache *sym_cache
4400 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4401 int h = msymbol_hash (name) % HASH_SIZE;
4402 struct cache_entry **e;
4403
ee01b665 4404 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5
JB
4405 {
4406 if (namespace == (*e)->namespace && strcmp (name, (*e)->name) == 0)
4407 return e;
4408 }
4409 return NULL;
4410}
4411
4412/* Search the symbol cache for an entry matching NAME and NAMESPACE.
4413 Return 1 if found, 0 otherwise.
4414
4415 If an entry was found and SYM is not NULL, set *SYM to the entry's
4416 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4417
96d887e8
PH
4418static int
4419lookup_cached_symbol (const char *name, domain_enum namespace,
f0c5f9b2 4420 struct symbol **sym, const struct block **block)
96d887e8 4421{
3d9434b5
JB
4422 struct cache_entry **e = find_entry (name, namespace);
4423
4424 if (e == NULL)
4425 return 0;
4426 if (sym != NULL)
4427 *sym = (*e)->sym;
4428 if (block != NULL)
4429 *block = (*e)->block;
4430 return 1;
96d887e8
PH
4431}
4432
3d9434b5
JB
4433/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4434 in domain NAMESPACE, save this result in our symbol cache. */
4435
96d887e8
PH
4436static void
4437cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
270140bd 4438 const struct block *block)
96d887e8 4439{
ee01b665
JB
4440 struct ada_symbol_cache *sym_cache
4441 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4442 int h;
4443 char *copy;
4444 struct cache_entry *e;
4445
4446 /* If the symbol is a local symbol, then do not cache it, as a search
4447 for that symbol depends on the context. To determine whether
4448 the symbol is local or not, we check the block where we found it
4449 against the global and static blocks of its associated symtab. */
4450 if (sym
4451 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), GLOBAL_BLOCK) != block
4452 && BLOCKVECTOR_BLOCK (BLOCKVECTOR (sym->symtab), STATIC_BLOCK) != block)
4453 return;
4454
4455 h = msymbol_hash (name) % HASH_SIZE;
ee01b665
JB
4456 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4457 sizeof (*e));
4458 e->next = sym_cache->root[h];
4459 sym_cache->root[h] = e;
4460 e->name = copy = obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4461 strcpy (copy, name);
4462 e->sym = sym;
4463 e->namespace = namespace;
4464 e->block = block;
96d887e8 4465}
4c4b4cd2
PH
4466\f
4467 /* Symbol Lookup */
4468
c0431670
JB
4469/* Return nonzero if wild matching should be used when searching for
4470 all symbols matching LOOKUP_NAME.
4471
4472 LOOKUP_NAME is expected to be a symbol name after transformation
4473 for Ada lookups (see ada_name_for_lookup). */
4474
4475static int
4476should_use_wild_match (const char *lookup_name)
4477{
4478 return (strstr (lookup_name, "__") == NULL);
4479}
4480
4c4b4cd2
PH
4481/* Return the result of a standard (literal, C-like) lookup of NAME in
4482 given DOMAIN, visible from lexical block BLOCK. */
4483
4484static struct symbol *
4485standard_lookup (const char *name, const struct block *block,
4486 domain_enum domain)
4487{
acbd605d
MGD
4488 /* Initialize it just to avoid a GCC false warning. */
4489 struct symbol *sym = NULL;
4c4b4cd2 4490
2570f2b7 4491 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4492 return sym;
2570f2b7
UW
4493 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4494 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4495 return sym;
4496}
4497
4498
4499/* Non-zero iff there is at least one non-function/non-enumeral symbol
4500 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4501 since they contend in overloading in the same way. */
4502static int
4503is_nonfunction (struct ada_symbol_info syms[], int n)
4504{
4505 int i;
4506
4507 for (i = 0; i < n; i += 1)
4508 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4509 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4510 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4511 return 1;
4512
4513 return 0;
4514}
4515
4516/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4517 struct types. Otherwise, they may not. */
14f9c5c9
AS
4518
4519static int
d2e4a39e 4520equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4521{
d2e4a39e 4522 if (type0 == type1)
14f9c5c9 4523 return 1;
d2e4a39e 4524 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4525 || TYPE_CODE (type0) != TYPE_CODE (type1))
4526 return 0;
d2e4a39e 4527 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4528 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4529 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4530 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4531 return 1;
d2e4a39e 4532
14f9c5c9
AS
4533 return 0;
4534}
4535
4536/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4537 no more defined than that of SYM1. */
14f9c5c9
AS
4538
4539static int
d2e4a39e 4540lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4541{
4542 if (sym0 == sym1)
4543 return 1;
176620f1 4544 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4545 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4546 return 0;
4547
d2e4a39e 4548 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4549 {
4550 case LOC_UNDEF:
4551 return 1;
4552 case LOC_TYPEDEF:
4553 {
4c4b4cd2
PH
4554 struct type *type0 = SYMBOL_TYPE (sym0);
4555 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4556 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4557 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4558 int len0 = strlen (name0);
5b4ee69b 4559
4c4b4cd2
PH
4560 return
4561 TYPE_CODE (type0) == TYPE_CODE (type1)
4562 && (equiv_types (type0, type1)
4563 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4564 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4565 }
4566 case LOC_CONST:
4567 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4568 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4569 default:
4570 return 0;
14f9c5c9
AS
4571 }
4572}
4573
4c4b4cd2
PH
4574/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4575 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4576
4577static void
76a01679
JB
4578add_defn_to_vec (struct obstack *obstackp,
4579 struct symbol *sym,
f0c5f9b2 4580 const struct block *block)
14f9c5c9
AS
4581{
4582 int i;
4c4b4cd2 4583 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4584
529cad9c
PH
4585 /* Do not try to complete stub types, as the debugger is probably
4586 already scanning all symbols matching a certain name at the
4587 time when this function is called. Trying to replace the stub
4588 type by its associated full type will cause us to restart a scan
4589 which may lead to an infinite recursion. Instead, the client
4590 collecting the matching symbols will end up collecting several
4591 matches, with at least one of them complete. It can then filter
4592 out the stub ones if needed. */
4593
4c4b4cd2
PH
4594 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4595 {
4596 if (lesseq_defined_than (sym, prevDefns[i].sym))
4597 return;
4598 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4599 {
4600 prevDefns[i].sym = sym;
4601 prevDefns[i].block = block;
4c4b4cd2 4602 return;
76a01679 4603 }
4c4b4cd2
PH
4604 }
4605
4606 {
4607 struct ada_symbol_info info;
4608
4609 info.sym = sym;
4610 info.block = block;
4c4b4cd2
PH
4611 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4612 }
4613}
4614
4615/* Number of ada_symbol_info structures currently collected in
4616 current vector in *OBSTACKP. */
4617
76a01679
JB
4618static int
4619num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4620{
4621 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4622}
4623
4624/* Vector of ada_symbol_info structures currently collected in current
4625 vector in *OBSTACKP. If FINISH, close off the vector and return
4626 its final address. */
4627
76a01679 4628static struct ada_symbol_info *
4c4b4cd2
PH
4629defns_collected (struct obstack *obstackp, int finish)
4630{
4631 if (finish)
4632 return obstack_finish (obstackp);
4633 else
4634 return (struct ada_symbol_info *) obstack_base (obstackp);
4635}
4636
7c7b6655
TT
4637/* Return a bound minimal symbol matching NAME according to Ada
4638 decoding rules. Returns an invalid symbol if there is no such
4639 minimal symbol. Names prefixed with "standard__" are handled
4640 specially: "standard__" is first stripped off, and only static and
4641 global symbols are searched. */
4c4b4cd2 4642
7c7b6655 4643struct bound_minimal_symbol
96d887e8 4644ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4645{
7c7b6655 4646 struct bound_minimal_symbol result;
4c4b4cd2 4647 struct objfile *objfile;
96d887e8 4648 struct minimal_symbol *msymbol;
dc4024cd 4649 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4650
7c7b6655
TT
4651 memset (&result, 0, sizeof (result));
4652
c0431670
JB
4653 /* Special case: If the user specifies a symbol name inside package
4654 Standard, do a non-wild matching of the symbol name without
4655 the "standard__" prefix. This was primarily introduced in order
4656 to allow the user to specifically access the standard exceptions
4657 using, for instance, Standard.Constraint_Error when Constraint_Error
4658 is ambiguous (due to the user defining its own Constraint_Error
4659 entity inside its program). */
96d887e8 4660 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4661 name += sizeof ("standard__") - 1;
4c4b4cd2 4662
96d887e8
PH
4663 ALL_MSYMBOLS (objfile, msymbol)
4664 {
efd66ac6 4665 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8 4666 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4667 {
4668 result.minsym = msymbol;
4669 result.objfile = objfile;
4670 break;
4671 }
96d887e8 4672 }
4c4b4cd2 4673
7c7b6655 4674 return result;
96d887e8 4675}
4c4b4cd2 4676
96d887e8
PH
4677/* For all subprograms that statically enclose the subprogram of the
4678 selected frame, add symbols matching identifier NAME in DOMAIN
4679 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4680 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4681 with a wildcard prefix. */
4c4b4cd2 4682
96d887e8
PH
4683static void
4684add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4685 const char *name, domain_enum namespace,
48b78332 4686 int wild_match_p)
96d887e8 4687{
96d887e8 4688}
14f9c5c9 4689
96d887e8
PH
4690/* True if TYPE is definitely an artificial type supplied to a symbol
4691 for which no debugging information was given in the symbol file. */
14f9c5c9 4692
96d887e8
PH
4693static int
4694is_nondebugging_type (struct type *type)
4695{
0d5cff50 4696 const char *name = ada_type_name (type);
5b4ee69b 4697
96d887e8
PH
4698 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4699}
4c4b4cd2 4700
8f17729f
JB
4701/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4702 that are deemed "identical" for practical purposes.
4703
4704 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4705 types and that their number of enumerals is identical (in other
4706 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4707
4708static int
4709ada_identical_enum_types_p (struct type *type1, struct type *type2)
4710{
4711 int i;
4712
4713 /* The heuristic we use here is fairly conservative. We consider
4714 that 2 enumerate types are identical if they have the same
4715 number of enumerals and that all enumerals have the same
4716 underlying value and name. */
4717
4718 /* All enums in the type should have an identical underlying value. */
4719 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4720 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4721 return 0;
4722
4723 /* All enumerals should also have the same name (modulo any numerical
4724 suffix). */
4725 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4726 {
0d5cff50
DE
4727 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4728 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4729 int len_1 = strlen (name_1);
4730 int len_2 = strlen (name_2);
4731
4732 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4733 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4734 if (len_1 != len_2
4735 || strncmp (TYPE_FIELD_NAME (type1, i),
4736 TYPE_FIELD_NAME (type2, i),
4737 len_1) != 0)
4738 return 0;
4739 }
4740
4741 return 1;
4742}
4743
4744/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4745 that are deemed "identical" for practical purposes. Sometimes,
4746 enumerals are not strictly identical, but their types are so similar
4747 that they can be considered identical.
4748
4749 For instance, consider the following code:
4750
4751 type Color is (Black, Red, Green, Blue, White);
4752 type RGB_Color is new Color range Red .. Blue;
4753
4754 Type RGB_Color is a subrange of an implicit type which is a copy
4755 of type Color. If we call that implicit type RGB_ColorB ("B" is
4756 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4757 As a result, when an expression references any of the enumeral
4758 by name (Eg. "print green"), the expression is technically
4759 ambiguous and the user should be asked to disambiguate. But
4760 doing so would only hinder the user, since it wouldn't matter
4761 what choice he makes, the outcome would always be the same.
4762 So, for practical purposes, we consider them as the same. */
4763
4764static int
4765symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4766{
4767 int i;
4768
4769 /* Before performing a thorough comparison check of each type,
4770 we perform a series of inexpensive checks. We expect that these
4771 checks will quickly fail in the vast majority of cases, and thus
4772 help prevent the unnecessary use of a more expensive comparison.
4773 Said comparison also expects us to make some of these checks
4774 (see ada_identical_enum_types_p). */
4775
4776 /* Quick check: All symbols should have an enum type. */
4777 for (i = 0; i < nsyms; i++)
4778 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4779 return 0;
4780
4781 /* Quick check: They should all have the same value. */
4782 for (i = 1; i < nsyms; i++)
4783 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4784 return 0;
4785
4786 /* Quick check: They should all have the same number of enumerals. */
4787 for (i = 1; i < nsyms; i++)
4788 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4789 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4790 return 0;
4791
4792 /* All the sanity checks passed, so we might have a set of
4793 identical enumeration types. Perform a more complete
4794 comparison of the type of each symbol. */
4795 for (i = 1; i < nsyms; i++)
4796 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4797 SYMBOL_TYPE (syms[0].sym)))
4798 return 0;
4799
4800 return 1;
4801}
4802
96d887e8
PH
4803/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4804 duplicate other symbols in the list (The only case I know of where
4805 this happens is when object files containing stabs-in-ecoff are
4806 linked with files containing ordinary ecoff debugging symbols (or no
4807 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4808 Returns the number of items in the modified list. */
4c4b4cd2 4809
96d887e8
PH
4810static int
4811remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4812{
4813 int i, j;
4c4b4cd2 4814
8f17729f
JB
4815 /* We should never be called with less than 2 symbols, as there
4816 cannot be any extra symbol in that case. But it's easy to
4817 handle, since we have nothing to do in that case. */
4818 if (nsyms < 2)
4819 return nsyms;
4820
96d887e8
PH
4821 i = 0;
4822 while (i < nsyms)
4823 {
a35ddb44 4824 int remove_p = 0;
339c13b6
JB
4825
4826 /* If two symbols have the same name and one of them is a stub type,
4827 the get rid of the stub. */
4828
4829 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4830 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4831 {
4832 for (j = 0; j < nsyms; j++)
4833 {
4834 if (j != i
4835 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4836 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4837 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4838 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4839 remove_p = 1;
339c13b6
JB
4840 }
4841 }
4842
4843 /* Two symbols with the same name, same class and same address
4844 should be identical. */
4845
4846 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4847 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4848 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4849 {
4850 for (j = 0; j < nsyms; j += 1)
4851 {
4852 if (i != j
4853 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4854 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4855 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4856 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4857 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4858 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4859 remove_p = 1;
4c4b4cd2 4860 }
4c4b4cd2 4861 }
339c13b6 4862
a35ddb44 4863 if (remove_p)
339c13b6
JB
4864 {
4865 for (j = i + 1; j < nsyms; j += 1)
4866 syms[j - 1] = syms[j];
4867 nsyms -= 1;
4868 }
4869
96d887e8 4870 i += 1;
14f9c5c9 4871 }
8f17729f
JB
4872
4873 /* If all the remaining symbols are identical enumerals, then
4874 just keep the first one and discard the rest.
4875
4876 Unlike what we did previously, we do not discard any entry
4877 unless they are ALL identical. This is because the symbol
4878 comparison is not a strict comparison, but rather a practical
4879 comparison. If all symbols are considered identical, then
4880 we can just go ahead and use the first one and discard the rest.
4881 But if we cannot reduce the list to a single element, we have
4882 to ask the user to disambiguate anyways. And if we have to
4883 present a multiple-choice menu, it's less confusing if the list
4884 isn't missing some choices that were identical and yet distinct. */
4885 if (symbols_are_identical_enums (syms, nsyms))
4886 nsyms = 1;
4887
96d887e8 4888 return nsyms;
14f9c5c9
AS
4889}
4890
96d887e8
PH
4891/* Given a type that corresponds to a renaming entity, use the type name
4892 to extract the scope (package name or function name, fully qualified,
4893 and following the GNAT encoding convention) where this renaming has been
4894 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4895
96d887e8
PH
4896static char *
4897xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4898{
96d887e8 4899 /* The renaming types adhere to the following convention:
0963b4bd 4900 <scope>__<rename>___<XR extension>.
96d887e8
PH
4901 So, to extract the scope, we search for the "___XR" extension,
4902 and then backtrack until we find the first "__". */
76a01679 4903
96d887e8
PH
4904 const char *name = type_name_no_tag (renaming_type);
4905 char *suffix = strstr (name, "___XR");
4906 char *last;
4907 int scope_len;
4908 char *scope;
14f9c5c9 4909
96d887e8
PH
4910 /* Now, backtrack a bit until we find the first "__". Start looking
4911 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4912
96d887e8
PH
4913 for (last = suffix - 3; last > name; last--)
4914 if (last[0] == '_' && last[1] == '_')
4915 break;
76a01679 4916
96d887e8 4917 /* Make a copy of scope and return it. */
14f9c5c9 4918
96d887e8
PH
4919 scope_len = last - name;
4920 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4921
96d887e8
PH
4922 strncpy (scope, name, scope_len);
4923 scope[scope_len] = '\0';
4c4b4cd2 4924
96d887e8 4925 return scope;
4c4b4cd2
PH
4926}
4927
96d887e8 4928/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4929
96d887e8
PH
4930static int
4931is_package_name (const char *name)
4c4b4cd2 4932{
96d887e8
PH
4933 /* Here, We take advantage of the fact that no symbols are generated
4934 for packages, while symbols are generated for each function.
4935 So the condition for NAME represent a package becomes equivalent
4936 to NAME not existing in our list of symbols. There is only one
4937 small complication with library-level functions (see below). */
4c4b4cd2 4938
96d887e8 4939 char *fun_name;
76a01679 4940
96d887e8
PH
4941 /* If it is a function that has not been defined at library level,
4942 then we should be able to look it up in the symbols. */
4943 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4944 return 0;
14f9c5c9 4945
96d887e8
PH
4946 /* Library-level function names start with "_ada_". See if function
4947 "_ada_" followed by NAME can be found. */
14f9c5c9 4948
96d887e8 4949 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4950 functions names cannot contain "__" in them. */
96d887e8
PH
4951 if (strstr (name, "__") != NULL)
4952 return 0;
4c4b4cd2 4953
b435e160 4954 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4955
96d887e8
PH
4956 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4957}
14f9c5c9 4958
96d887e8 4959/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4960 not visible from FUNCTION_NAME. */
14f9c5c9 4961
96d887e8 4962static int
0d5cff50 4963old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4964{
aeb5907d 4965 char *scope;
1509e573 4966 struct cleanup *old_chain;
aeb5907d
JB
4967
4968 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4969 return 0;
4970
4971 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
1509e573 4972 old_chain = make_cleanup (xfree, scope);
14f9c5c9 4973
96d887e8
PH
4974 /* If the rename has been defined in a package, then it is visible. */
4975 if (is_package_name (scope))
1509e573
JB
4976 {
4977 do_cleanups (old_chain);
4978 return 0;
4979 }
14f9c5c9 4980
96d887e8
PH
4981 /* Check that the rename is in the current function scope by checking
4982 that its name starts with SCOPE. */
76a01679 4983
96d887e8
PH
4984 /* If the function name starts with "_ada_", it means that it is
4985 a library-level function. Strip this prefix before doing the
4986 comparison, as the encoding for the renaming does not contain
4987 this prefix. */
4988 if (strncmp (function_name, "_ada_", 5) == 0)
4989 function_name += 5;
f26caa11 4990
1509e573
JB
4991 {
4992 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4993
4994 do_cleanups (old_chain);
4995 return is_invisible;
4996 }
f26caa11
PH
4997}
4998
aeb5907d
JB
4999/* Remove entries from SYMS that corresponds to a renaming entity that
5000 is not visible from the function associated with CURRENT_BLOCK or
5001 that is superfluous due to the presence of more specific renaming
5002 information. Places surviving symbols in the initial entries of
5003 SYMS and returns the number of surviving symbols.
96d887e8
PH
5004
5005 Rationale:
aeb5907d
JB
5006 First, in cases where an object renaming is implemented as a
5007 reference variable, GNAT may produce both the actual reference
5008 variable and the renaming encoding. In this case, we discard the
5009 latter.
5010
5011 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5012 entity. Unfortunately, STABS currently does not support the definition
5013 of types that are local to a given lexical block, so all renamings types
5014 are emitted at library level. As a consequence, if an application
5015 contains two renaming entities using the same name, and a user tries to
5016 print the value of one of these entities, the result of the ada symbol
5017 lookup will also contain the wrong renaming type.
f26caa11 5018
96d887e8
PH
5019 This function partially covers for this limitation by attempting to
5020 remove from the SYMS list renaming symbols that should be visible
5021 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5022 method with the current information available. The implementation
5023 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5024
5025 - When the user tries to print a rename in a function while there
5026 is another rename entity defined in a package: Normally, the
5027 rename in the function has precedence over the rename in the
5028 package, so the latter should be removed from the list. This is
5029 currently not the case.
5030
5031 - This function will incorrectly remove valid renames if
5032 the CURRENT_BLOCK corresponds to a function which symbol name
5033 has been changed by an "Export" pragma. As a consequence,
5034 the user will be unable to print such rename entities. */
4c4b4cd2 5035
14f9c5c9 5036static int
aeb5907d
JB
5037remove_irrelevant_renamings (struct ada_symbol_info *syms,
5038 int nsyms, const struct block *current_block)
4c4b4cd2
PH
5039{
5040 struct symbol *current_function;
0d5cff50 5041 const char *current_function_name;
4c4b4cd2 5042 int i;
aeb5907d
JB
5043 int is_new_style_renaming;
5044
5045 /* If there is both a renaming foo___XR... encoded as a variable and
5046 a simple variable foo in the same block, discard the latter.
0963b4bd 5047 First, zero out such symbols, then compress. */
aeb5907d
JB
5048 is_new_style_renaming = 0;
5049 for (i = 0; i < nsyms; i += 1)
5050 {
5051 struct symbol *sym = syms[i].sym;
270140bd 5052 const struct block *block = syms[i].block;
aeb5907d
JB
5053 const char *name;
5054 const char *suffix;
5055
5056 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5057 continue;
5058 name = SYMBOL_LINKAGE_NAME (sym);
5059 suffix = strstr (name, "___XR");
5060
5061 if (suffix != NULL)
5062 {
5063 int name_len = suffix - name;
5064 int j;
5b4ee69b 5065
aeb5907d
JB
5066 is_new_style_renaming = 1;
5067 for (j = 0; j < nsyms; j += 1)
5068 if (i != j && syms[j].sym != NULL
5069 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
5070 name_len) == 0
5071 && block == syms[j].block)
5072 syms[j].sym = NULL;
5073 }
5074 }
5075 if (is_new_style_renaming)
5076 {
5077 int j, k;
5078
5079 for (j = k = 0; j < nsyms; j += 1)
5080 if (syms[j].sym != NULL)
5081 {
5082 syms[k] = syms[j];
5083 k += 1;
5084 }
5085 return k;
5086 }
4c4b4cd2
PH
5087
5088 /* Extract the function name associated to CURRENT_BLOCK.
5089 Abort if unable to do so. */
76a01679 5090
4c4b4cd2
PH
5091 if (current_block == NULL)
5092 return nsyms;
76a01679 5093
7f0df278 5094 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
5095 if (current_function == NULL)
5096 return nsyms;
5097
5098 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5099 if (current_function_name == NULL)
5100 return nsyms;
5101
5102 /* Check each of the symbols, and remove it from the list if it is
5103 a type corresponding to a renaming that is out of the scope of
5104 the current block. */
5105
5106 i = 0;
5107 while (i < nsyms)
5108 {
aeb5907d
JB
5109 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
5110 == ADA_OBJECT_RENAMING
5111 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
5112 {
5113 int j;
5b4ee69b 5114
aeb5907d 5115 for (j = i + 1; j < nsyms; j += 1)
76a01679 5116 syms[j - 1] = syms[j];
4c4b4cd2
PH
5117 nsyms -= 1;
5118 }
5119 else
5120 i += 1;
5121 }
5122
5123 return nsyms;
5124}
5125
339c13b6
JB
5126/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5127 whose name and domain match NAME and DOMAIN respectively.
5128 If no match was found, then extend the search to "enclosing"
5129 routines (in other words, if we're inside a nested function,
5130 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5131 If WILD_MATCH_P is nonzero, perform the naming matching in
5132 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5133
5134 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5135
5136static void
5137ada_add_local_symbols (struct obstack *obstackp, const char *name,
f0c5f9b2 5138 const struct block *block, domain_enum domain,
d0a8ab18 5139 int wild_match_p)
339c13b6
JB
5140{
5141 int block_depth = 0;
5142
5143 while (block != NULL)
5144 {
5145 block_depth += 1;
d0a8ab18
JB
5146 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5147 wild_match_p);
339c13b6
JB
5148
5149 /* If we found a non-function match, assume that's the one. */
5150 if (is_nonfunction (defns_collected (obstackp, 0),
5151 num_defns_collected (obstackp)))
5152 return;
5153
5154 block = BLOCK_SUPERBLOCK (block);
5155 }
5156
5157 /* If no luck so far, try to find NAME as a local symbol in some lexically
5158 enclosing subprogram. */
5159 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 5160 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
5161}
5162
ccefe4c4 5163/* An object of this type is used as the user_data argument when
40658b94 5164 calling the map_matching_symbols method. */
ccefe4c4 5165
40658b94 5166struct match_data
ccefe4c4 5167{
40658b94 5168 struct objfile *objfile;
ccefe4c4 5169 struct obstack *obstackp;
40658b94
PH
5170 struct symbol *arg_sym;
5171 int found_sym;
ccefe4c4
TT
5172};
5173
40658b94
PH
5174/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
5175 to a list of symbols. DATA0 is a pointer to a struct match_data *
5176 containing the obstack that collects the symbol list, the file that SYM
5177 must come from, a flag indicating whether a non-argument symbol has
5178 been found in the current block, and the last argument symbol
5179 passed in SYM within the current block (if any). When SYM is null,
5180 marking the end of a block, the argument symbol is added if no
5181 other has been found. */
ccefe4c4 5182
40658b94
PH
5183static int
5184aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5185{
40658b94
PH
5186 struct match_data *data = (struct match_data *) data0;
5187
5188 if (sym == NULL)
5189 {
5190 if (!data->found_sym && data->arg_sym != NULL)
5191 add_defn_to_vec (data->obstackp,
5192 fixup_symbol_section (data->arg_sym, data->objfile),
5193 block);
5194 data->found_sym = 0;
5195 data->arg_sym = NULL;
5196 }
5197 else
5198 {
5199 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5200 return 0;
5201 else if (SYMBOL_IS_ARGUMENT (sym))
5202 data->arg_sym = sym;
5203 else
5204 {
5205 data->found_sym = 1;
5206 add_defn_to_vec (data->obstackp,
5207 fixup_symbol_section (sym, data->objfile),
5208 block);
5209 }
5210 }
5211 return 0;
5212}
5213
db230ce3
JB
5214/* Implements compare_names, but only applying the comparision using
5215 the given CASING. */
5b4ee69b 5216
40658b94 5217static int
db230ce3
JB
5218compare_names_with_case (const char *string1, const char *string2,
5219 enum case_sensitivity casing)
40658b94
PH
5220{
5221 while (*string1 != '\0' && *string2 != '\0')
5222 {
db230ce3
JB
5223 char c1, c2;
5224
40658b94
PH
5225 if (isspace (*string1) || isspace (*string2))
5226 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5227
5228 if (casing == case_sensitive_off)
5229 {
5230 c1 = tolower (*string1);
5231 c2 = tolower (*string2);
5232 }
5233 else
5234 {
5235 c1 = *string1;
5236 c2 = *string2;
5237 }
5238 if (c1 != c2)
40658b94 5239 break;
db230ce3 5240
40658b94
PH
5241 string1 += 1;
5242 string2 += 1;
5243 }
db230ce3 5244
40658b94
PH
5245 switch (*string1)
5246 {
5247 case '(':
5248 return strcmp_iw_ordered (string1, string2);
5249 case '_':
5250 if (*string2 == '\0')
5251 {
052874e8 5252 if (is_name_suffix (string1))
40658b94
PH
5253 return 0;
5254 else
1a1d5513 5255 return 1;
40658b94 5256 }
dbb8534f 5257 /* FALLTHROUGH */
40658b94
PH
5258 default:
5259 if (*string2 == '(')
5260 return strcmp_iw_ordered (string1, string2);
5261 else
db230ce3
JB
5262 {
5263 if (casing == case_sensitive_off)
5264 return tolower (*string1) - tolower (*string2);
5265 else
5266 return *string1 - *string2;
5267 }
40658b94 5268 }
ccefe4c4
TT
5269}
5270
db230ce3
JB
5271/* Compare STRING1 to STRING2, with results as for strcmp.
5272 Compatible with strcmp_iw_ordered in that...
5273
5274 strcmp_iw_ordered (STRING1, STRING2) <= 0
5275
5276 ... implies...
5277
5278 compare_names (STRING1, STRING2) <= 0
5279
5280 (they may differ as to what symbols compare equal). */
5281
5282static int
5283compare_names (const char *string1, const char *string2)
5284{
5285 int result;
5286
5287 /* Similar to what strcmp_iw_ordered does, we need to perform
5288 a case-insensitive comparison first, and only resort to
5289 a second, case-sensitive, comparison if the first one was
5290 not sufficient to differentiate the two strings. */
5291
5292 result = compare_names_with_case (string1, string2, case_sensitive_off);
5293 if (result == 0)
5294 result = compare_names_with_case (string1, string2, case_sensitive_on);
5295
5296 return result;
5297}
5298
339c13b6
JB
5299/* Add to OBSTACKP all non-local symbols whose name and domain match
5300 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5301 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5302
5303static void
40658b94
PH
5304add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5305 domain_enum domain, int global,
5306 int is_wild_match)
339c13b6
JB
5307{
5308 struct objfile *objfile;
40658b94 5309 struct match_data data;
339c13b6 5310
6475f2fe 5311 memset (&data, 0, sizeof data);
ccefe4c4 5312 data.obstackp = obstackp;
339c13b6 5313
ccefe4c4 5314 ALL_OBJFILES (objfile)
40658b94
PH
5315 {
5316 data.objfile = objfile;
5317
5318 if (is_wild_match)
4186eb54
KS
5319 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5320 aux_add_nonlocal_symbols, &data,
5321 wild_match, NULL);
40658b94 5322 else
4186eb54
KS
5323 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5324 aux_add_nonlocal_symbols, &data,
5325 full_match, compare_names);
40658b94
PH
5326 }
5327
5328 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5329 {
5330 ALL_OBJFILES (objfile)
5331 {
5332 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5333 strcpy (name1, "_ada_");
5334 strcpy (name1 + sizeof ("_ada_") - 1, name);
5335 data.objfile = objfile;
ade7ed9e
DE
5336 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5337 global,
0963b4bd
MS
5338 aux_add_nonlocal_symbols,
5339 &data,
40658b94
PH
5340 full_match, compare_names);
5341 }
5342 }
339c13b6
JB
5343}
5344
4eeaa230
DE
5345/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5346 non-zero, enclosing scope and in global scopes, returning the number of
5347 matches.
9f88c959 5348 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5349 indicating the symbols found and the blocks and symbol tables (if
4eeaa230
DE
5350 any) in which they were found. This vector is transient---good only to
5351 the next call of ada_lookup_symbol_list.
5352
5353 When full_search is non-zero, any non-function/non-enumeral
4c4b4cd2
PH
5354 symbol match within the nest of blocks whose innermost member is BLOCK0,
5355 is the one match returned (no other matches in that or
d9680e73 5356 enclosing blocks is returned). If there are any matches in or
4eeaa230
DE
5357 surrounding BLOCK0, then these alone are returned.
5358
9f88c959 5359 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5360 is first stripped off, and only static and global symbols are searched. */
14f9c5c9 5361
4eeaa230
DE
5362static int
5363ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5364 domain_enum namespace,
5365 struct ada_symbol_info **results,
5366 int full_search)
14f9c5c9
AS
5367{
5368 struct symbol *sym;
f0c5f9b2 5369 const struct block *block;
4c4b4cd2 5370 const char *name;
82ccd55e 5371 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5372 int cacheIfUnique;
4c4b4cd2 5373 int ndefns;
14f9c5c9 5374
4c4b4cd2
PH
5375 obstack_free (&symbol_list_obstack, NULL);
5376 obstack_init (&symbol_list_obstack);
14f9c5c9 5377
14f9c5c9
AS
5378 cacheIfUnique = 0;
5379
5380 /* Search specified block and its superiors. */
5381
4c4b4cd2 5382 name = name0;
f0c5f9b2 5383 block = block0;
339c13b6
JB
5384
5385 /* Special case: If the user specifies a symbol name inside package
5386 Standard, do a non-wild matching of the symbol name without
5387 the "standard__" prefix. This was primarily introduced in order
5388 to allow the user to specifically access the standard exceptions
5389 using, for instance, Standard.Constraint_Error when Constraint_Error
5390 is ambiguous (due to the user defining its own Constraint_Error
5391 entity inside its program). */
4c4b4cd2
PH
5392 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5393 {
4c4b4cd2
PH
5394 block = NULL;
5395 name = name0 + sizeof ("standard__") - 1;
5396 }
5397
339c13b6 5398 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5399
4eeaa230
DE
5400 if (block != NULL)
5401 {
5402 if (full_search)
5403 {
5404 ada_add_local_symbols (&symbol_list_obstack, name, block,
5405 namespace, wild_match_p);
5406 }
5407 else
5408 {
5409 /* In the !full_search case we're are being called by
5410 ada_iterate_over_symbols, and we don't want to search
5411 superblocks. */
5412 ada_add_block_symbols (&symbol_list_obstack, block, name,
5413 namespace, NULL, wild_match_p);
5414 }
5415 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5416 goto done;
5417 }
d2e4a39e 5418
339c13b6
JB
5419 /* No non-global symbols found. Check our cache to see if we have
5420 already performed this search before. If we have, then return
5421 the same result. */
5422
14f9c5c9 5423 cacheIfUnique = 1;
2570f2b7 5424 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5425 {
5426 if (sym != NULL)
2570f2b7 5427 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5428 goto done;
5429 }
14f9c5c9 5430
339c13b6
JB
5431 /* Search symbols from all global blocks. */
5432
40658b94 5433 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5434 wild_match_p);
d2e4a39e 5435
4c4b4cd2 5436 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5437 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5438
4c4b4cd2 5439 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5440 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5441 wild_match_p);
14f9c5c9 5442
4c4b4cd2
PH
5443done:
5444 ndefns = num_defns_collected (&symbol_list_obstack);
5445 *results = defns_collected (&symbol_list_obstack, 1);
5446
5447 ndefns = remove_extra_symbols (*results, ndefns);
5448
2ad01556 5449 if (ndefns == 0 && full_search)
2570f2b7 5450 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5451
2ad01556 5452 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5453 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5454
aeb5907d 5455 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5456
14f9c5c9
AS
5457 return ndefns;
5458}
5459
4eeaa230
DE
5460/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5461 in global scopes, returning the number of matches, and setting *RESULTS
5462 to a vector of (SYM,BLOCK) tuples.
5463 See ada_lookup_symbol_list_worker for further details. */
5464
5465int
5466ada_lookup_symbol_list (const char *name0, const struct block *block0,
5467 domain_enum domain, struct ada_symbol_info **results)
5468{
5469 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5470}
5471
5472/* Implementation of the la_iterate_over_symbols method. */
5473
5474static void
5475ada_iterate_over_symbols (const struct block *block,
5476 const char *name, domain_enum domain,
5477 symbol_found_callback_ftype *callback,
5478 void *data)
5479{
5480 int ndefs, i;
5481 struct ada_symbol_info *results;
5482
5483 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5484 for (i = 0; i < ndefs; ++i)
5485 {
5486 if (! (*callback) (results[i].sym, data))
5487 break;
5488 }
5489}
5490
f8eba3c6
TT
5491/* If NAME is the name of an entity, return a string that should
5492 be used to look that entity up in Ada units. This string should
5493 be deallocated after use using xfree.
5494
5495 NAME can have any form that the "break" or "print" commands might
5496 recognize. In other words, it does not have to be the "natural"
5497 name, or the "encoded" name. */
5498
5499char *
5500ada_name_for_lookup (const char *name)
5501{
5502 char *canon;
5503 int nlen = strlen (name);
5504
5505 if (name[0] == '<' && name[nlen - 1] == '>')
5506 {
5507 canon = xmalloc (nlen - 1);
5508 memcpy (canon, name + 1, nlen - 2);
5509 canon[nlen - 2] = '\0';
5510 }
5511 else
5512 canon = xstrdup (ada_encode (ada_fold_name (name)));
5513 return canon;
5514}
5515
4e5c77fe
JB
5516/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5517 to 1, but choosing the first symbol found if there are multiple
5518 choices.
5519
5e2336be
JB
5520 The result is stored in *INFO, which must be non-NULL.
5521 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5522
5523void
5524ada_lookup_encoded_symbol (const char *name, const struct block *block,
5525 domain_enum namespace,
5e2336be 5526 struct ada_symbol_info *info)
14f9c5c9 5527{
4c4b4cd2 5528 struct ada_symbol_info *candidates;
14f9c5c9
AS
5529 int n_candidates;
5530
5e2336be
JB
5531 gdb_assert (info != NULL);
5532 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe 5533
4eeaa230 5534 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
14f9c5c9 5535 if (n_candidates == 0)
4e5c77fe 5536 return;
4c4b4cd2 5537
5e2336be
JB
5538 *info = candidates[0];
5539 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5540}
aeb5907d
JB
5541
5542/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5543 scope and in global scopes, or NULL if none. NAME is folded and
5544 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5545 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5546 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5547
aeb5907d
JB
5548struct symbol *
5549ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5550 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5551{
5e2336be 5552 struct ada_symbol_info info;
4e5c77fe 5553
aeb5907d
JB
5554 if (is_a_field_of_this != NULL)
5555 *is_a_field_of_this = 0;
5556
4e5c77fe 5557 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5558 block0, namespace, &info);
5559 return info.sym;
4c4b4cd2 5560}
14f9c5c9 5561
4c4b4cd2
PH
5562static struct symbol *
5563ada_lookup_symbol_nonlocal (const char *name,
76a01679 5564 const struct block *block,
21b556f4 5565 const domain_enum domain)
4c4b4cd2 5566{
94af9270 5567 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5568}
5569
5570
4c4b4cd2
PH
5571/* True iff STR is a possible encoded suffix of a normal Ada name
5572 that is to be ignored for matching purposes. Suffixes of parallel
5573 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5574 are given by any of the regular expressions:
4c4b4cd2 5575
babe1480
JB
5576 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5577 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5578 TKB [subprogram suffix for task bodies]
babe1480 5579 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5580 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5581
5582 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5583 match is performed. This sequence is used to differentiate homonyms,
5584 is an optional part of a valid name suffix. */
4c4b4cd2 5585
14f9c5c9 5586static int
d2e4a39e 5587is_name_suffix (const char *str)
14f9c5c9
AS
5588{
5589 int k;
4c4b4cd2
PH
5590 const char *matching;
5591 const int len = strlen (str);
5592
babe1480
JB
5593 /* Skip optional leading __[0-9]+. */
5594
4c4b4cd2
PH
5595 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5596 {
babe1480
JB
5597 str += 3;
5598 while (isdigit (str[0]))
5599 str += 1;
4c4b4cd2 5600 }
babe1480
JB
5601
5602 /* [.$][0-9]+ */
4c4b4cd2 5603
babe1480 5604 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5605 {
babe1480 5606 matching = str + 1;
4c4b4cd2
PH
5607 while (isdigit (matching[0]))
5608 matching += 1;
5609 if (matching[0] == '\0')
5610 return 1;
5611 }
5612
5613 /* ___[0-9]+ */
babe1480 5614
4c4b4cd2
PH
5615 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5616 {
5617 matching = str + 3;
5618 while (isdigit (matching[0]))
5619 matching += 1;
5620 if (matching[0] == '\0')
5621 return 1;
5622 }
5623
9ac7f98e
JB
5624 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5625
5626 if (strcmp (str, "TKB") == 0)
5627 return 1;
5628
529cad9c
PH
5629#if 0
5630 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5631 with a N at the end. Unfortunately, the compiler uses the same
5632 convention for other internal types it creates. So treating
529cad9c 5633 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5634 some regressions. For instance, consider the case of an enumerated
5635 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5636 name ends with N.
5637 Having a single character like this as a suffix carrying some
0963b4bd 5638 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5639 to be something like "_N" instead. In the meantime, do not do
5640 the following check. */
5641 /* Protected Object Subprograms */
5642 if (len == 1 && str [0] == 'N')
5643 return 1;
5644#endif
5645
5646 /* _E[0-9]+[bs]$ */
5647 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5648 {
5649 matching = str + 3;
5650 while (isdigit (matching[0]))
5651 matching += 1;
5652 if ((matching[0] == 'b' || matching[0] == 's')
5653 && matching [1] == '\0')
5654 return 1;
5655 }
5656
4c4b4cd2
PH
5657 /* ??? We should not modify STR directly, as we are doing below. This
5658 is fine in this case, but may become problematic later if we find
5659 that this alternative did not work, and want to try matching
5660 another one from the begining of STR. Since we modified it, we
5661 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5662 if (str[0] == 'X')
5663 {
5664 str += 1;
d2e4a39e 5665 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5666 {
5667 if (str[0] != 'n' && str[0] != 'b')
5668 return 0;
5669 str += 1;
5670 }
14f9c5c9 5671 }
babe1480 5672
14f9c5c9
AS
5673 if (str[0] == '\000')
5674 return 1;
babe1480 5675
d2e4a39e 5676 if (str[0] == '_')
14f9c5c9
AS
5677 {
5678 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5679 return 0;
d2e4a39e 5680 if (str[2] == '_')
4c4b4cd2 5681 {
61ee279c
PH
5682 if (strcmp (str + 3, "JM") == 0)
5683 return 1;
5684 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5685 the LJM suffix in favor of the JM one. But we will
5686 still accept LJM as a valid suffix for a reasonable
5687 amount of time, just to allow ourselves to debug programs
5688 compiled using an older version of GNAT. */
4c4b4cd2
PH
5689 if (strcmp (str + 3, "LJM") == 0)
5690 return 1;
5691 if (str[3] != 'X')
5692 return 0;
1265e4aa
JB
5693 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5694 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5695 return 1;
5696 if (str[4] == 'R' && str[5] != 'T')
5697 return 1;
5698 return 0;
5699 }
5700 if (!isdigit (str[2]))
5701 return 0;
5702 for (k = 3; str[k] != '\0'; k += 1)
5703 if (!isdigit (str[k]) && str[k] != '_')
5704 return 0;
14f9c5c9
AS
5705 return 1;
5706 }
4c4b4cd2 5707 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5708 {
4c4b4cd2
PH
5709 for (k = 2; str[k] != '\0'; k += 1)
5710 if (!isdigit (str[k]) && str[k] != '_')
5711 return 0;
14f9c5c9
AS
5712 return 1;
5713 }
5714 return 0;
5715}
d2e4a39e 5716
aeb5907d
JB
5717/* Return non-zero if the string starting at NAME and ending before
5718 NAME_END contains no capital letters. */
529cad9c
PH
5719
5720static int
5721is_valid_name_for_wild_match (const char *name0)
5722{
5723 const char *decoded_name = ada_decode (name0);
5724 int i;
5725
5823c3ef
JB
5726 /* If the decoded name starts with an angle bracket, it means that
5727 NAME0 does not follow the GNAT encoding format. It should then
5728 not be allowed as a possible wild match. */
5729 if (decoded_name[0] == '<')
5730 return 0;
5731
529cad9c
PH
5732 for (i=0; decoded_name[i] != '\0'; i++)
5733 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5734 return 0;
5735
5736 return 1;
5737}
5738
73589123
PH
5739/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5740 that could start a simple name. Assumes that *NAMEP points into
5741 the string beginning at NAME0. */
4c4b4cd2 5742
14f9c5c9 5743static int
73589123 5744advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5745{
73589123 5746 const char *name = *namep;
5b4ee69b 5747
5823c3ef 5748 while (1)
14f9c5c9 5749 {
aa27d0b3 5750 int t0, t1;
73589123
PH
5751
5752 t0 = *name;
5753 if (t0 == '_')
5754 {
5755 t1 = name[1];
5756 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5757 {
5758 name += 1;
5759 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5760 break;
5761 else
5762 name += 1;
5763 }
aa27d0b3
JB
5764 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5765 || name[2] == target0))
73589123
PH
5766 {
5767 name += 2;
5768 break;
5769 }
5770 else
5771 return 0;
5772 }
5773 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5774 name += 1;
5775 else
5823c3ef 5776 return 0;
73589123
PH
5777 }
5778
5779 *namep = name;
5780 return 1;
5781}
5782
5783/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5784 informational suffixes of NAME (i.e., for which is_name_suffix is
5785 true). Assumes that PATN is a lower-cased Ada simple name. */
5786
5787static int
5788wild_match (const char *name, const char *patn)
5789{
22e048c9 5790 const char *p;
73589123
PH
5791 const char *name0 = name;
5792
5793 while (1)
5794 {
5795 const char *match = name;
5796
5797 if (*name == *patn)
5798 {
5799 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5800 if (*p != *name)
5801 break;
5802 if (*p == '\0' && is_name_suffix (name))
5803 return match != name0 && !is_valid_name_for_wild_match (name0);
5804
5805 if (name[-1] == '_')
5806 name -= 1;
5807 }
5808 if (!advance_wild_match (&name, name0, *patn))
5809 return 1;
96d887e8 5810 }
96d887e8
PH
5811}
5812
40658b94
PH
5813/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5814 informational suffix. */
5815
c4d840bd
PH
5816static int
5817full_match (const char *sym_name, const char *search_name)
5818{
40658b94 5819 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5820}
5821
5822
96d887e8
PH
5823/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5824 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5825 (if necessary). If WILD, treat as NAME with a wildcard prefix.
4eeaa230 5826 OBJFILE is the section containing BLOCK. */
96d887e8
PH
5827
5828static void
5829ada_add_block_symbols (struct obstack *obstackp,
f0c5f9b2 5830 const struct block *block, const char *name,
96d887e8 5831 domain_enum domain, struct objfile *objfile,
2570f2b7 5832 int wild)
96d887e8 5833{
8157b174 5834 struct block_iterator iter;
96d887e8
PH
5835 int name_len = strlen (name);
5836 /* A matching argument symbol, if any. */
5837 struct symbol *arg_sym;
5838 /* Set true when we find a matching non-argument symbol. */
5839 int found_sym;
5840 struct symbol *sym;
5841
5842 arg_sym = NULL;
5843 found_sym = 0;
5844 if (wild)
5845 {
8157b174
TT
5846 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5847 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5848 {
4186eb54
KS
5849 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5850 SYMBOL_DOMAIN (sym), domain)
73589123 5851 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5852 {
2a2d4dc3
AS
5853 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5854 continue;
5855 else if (SYMBOL_IS_ARGUMENT (sym))
5856 arg_sym = sym;
5857 else
5858 {
76a01679
JB
5859 found_sym = 1;
5860 add_defn_to_vec (obstackp,
5861 fixup_symbol_section (sym, objfile),
2570f2b7 5862 block);
76a01679
JB
5863 }
5864 }
5865 }
96d887e8
PH
5866 }
5867 else
5868 {
8157b174
TT
5869 for (sym = block_iter_match_first (block, name, full_match, &iter);
5870 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5871 {
4186eb54
KS
5872 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5873 SYMBOL_DOMAIN (sym), domain))
76a01679 5874 {
c4d840bd
PH
5875 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5876 {
5877 if (SYMBOL_IS_ARGUMENT (sym))
5878 arg_sym = sym;
5879 else
2a2d4dc3 5880 {
c4d840bd
PH
5881 found_sym = 1;
5882 add_defn_to_vec (obstackp,
5883 fixup_symbol_section (sym, objfile),
5884 block);
2a2d4dc3 5885 }
c4d840bd 5886 }
76a01679
JB
5887 }
5888 }
96d887e8
PH
5889 }
5890
5891 if (!found_sym && arg_sym != NULL)
5892 {
76a01679
JB
5893 add_defn_to_vec (obstackp,
5894 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5895 block);
96d887e8
PH
5896 }
5897
5898 if (!wild)
5899 {
5900 arg_sym = NULL;
5901 found_sym = 0;
5902
5903 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5904 {
4186eb54
KS
5905 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5906 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5907 {
5908 int cmp;
5909
5910 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5911 if (cmp == 0)
5912 {
5913 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5914 if (cmp == 0)
5915 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5916 name_len);
5917 }
5918
5919 if (cmp == 0
5920 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5921 {
2a2d4dc3
AS
5922 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5923 {
5924 if (SYMBOL_IS_ARGUMENT (sym))
5925 arg_sym = sym;
5926 else
5927 {
5928 found_sym = 1;
5929 add_defn_to_vec (obstackp,
5930 fixup_symbol_section (sym, objfile),
5931 block);
5932 }
5933 }
76a01679
JB
5934 }
5935 }
76a01679 5936 }
96d887e8
PH
5937
5938 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5939 They aren't parameters, right? */
5940 if (!found_sym && arg_sym != NULL)
5941 {
5942 add_defn_to_vec (obstackp,
76a01679 5943 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5944 block);
96d887e8
PH
5945 }
5946 }
5947}
5948\f
41d27058
JB
5949
5950 /* Symbol Completion */
5951
5952/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5953 name in a form that's appropriate for the completion. The result
5954 does not need to be deallocated, but is only good until the next call.
5955
5956 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5957 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5958 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5959 in its encoded form. */
5960
5961static const char *
5962symbol_completion_match (const char *sym_name,
5963 const char *text, int text_len,
6ea35997 5964 int wild_match_p, int encoded_p)
41d27058 5965{
41d27058
JB
5966 const int verbatim_match = (text[0] == '<');
5967 int match = 0;
5968
5969 if (verbatim_match)
5970 {
5971 /* Strip the leading angle bracket. */
5972 text = text + 1;
5973 text_len--;
5974 }
5975
5976 /* First, test against the fully qualified name of the symbol. */
5977
5978 if (strncmp (sym_name, text, text_len) == 0)
5979 match = 1;
5980
6ea35997 5981 if (match && !encoded_p)
41d27058
JB
5982 {
5983 /* One needed check before declaring a positive match is to verify
5984 that iff we are doing a verbatim match, the decoded version
5985 of the symbol name starts with '<'. Otherwise, this symbol name
5986 is not a suitable completion. */
5987 const char *sym_name_copy = sym_name;
5988 int has_angle_bracket;
5989
5990 sym_name = ada_decode (sym_name);
5991 has_angle_bracket = (sym_name[0] == '<');
5992 match = (has_angle_bracket == verbatim_match);
5993 sym_name = sym_name_copy;
5994 }
5995
5996 if (match && !verbatim_match)
5997 {
5998 /* When doing non-verbatim match, another check that needs to
5999 be done is to verify that the potentially matching symbol name
6000 does not include capital letters, because the ada-mode would
6001 not be able to understand these symbol names without the
6002 angle bracket notation. */
6003 const char *tmp;
6004
6005 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6006 if (*tmp != '\0')
6007 match = 0;
6008 }
6009
6010 /* Second: Try wild matching... */
6011
e701b3c0 6012 if (!match && wild_match_p)
41d27058
JB
6013 {
6014 /* Since we are doing wild matching, this means that TEXT
6015 may represent an unqualified symbol name. We therefore must
6016 also compare TEXT against the unqualified name of the symbol. */
6017 sym_name = ada_unqualified_name (ada_decode (sym_name));
6018
6019 if (strncmp (sym_name, text, text_len) == 0)
6020 match = 1;
6021 }
6022
6023 /* Finally: If we found a mach, prepare the result to return. */
6024
6025 if (!match)
6026 return NULL;
6027
6028 if (verbatim_match)
6029 sym_name = add_angle_brackets (sym_name);
6030
6ea35997 6031 if (!encoded_p)
41d27058
JB
6032 sym_name = ada_decode (sym_name);
6033
6034 return sym_name;
6035}
6036
6037/* A companion function to ada_make_symbol_completion_list().
6038 Check if SYM_NAME represents a symbol which name would be suitable
6039 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6040 it is appended at the end of the given string vector SV.
6041
6042 ORIG_TEXT is the string original string from the user command
6043 that needs to be completed. WORD is the entire command on which
6044 completion should be performed. These two parameters are used to
6045 determine which part of the symbol name should be added to the
6046 completion vector.
c0af1706 6047 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 6048 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
6049 encoded formed (in which case the completion should also be
6050 encoded). */
6051
6052static void
d6565258 6053symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
6054 const char *sym_name,
6055 const char *text, int text_len,
6056 const char *orig_text, const char *word,
cb8e9b97 6057 int wild_match_p, int encoded_p)
41d27058
JB
6058{
6059 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 6060 wild_match_p, encoded_p);
41d27058
JB
6061 char *completion;
6062
6063 if (match == NULL)
6064 return;
6065
6066 /* We found a match, so add the appropriate completion to the given
6067 string vector. */
6068
6069 if (word == orig_text)
6070 {
6071 completion = xmalloc (strlen (match) + 5);
6072 strcpy (completion, match);
6073 }
6074 else if (word > orig_text)
6075 {
6076 /* Return some portion of sym_name. */
6077 completion = xmalloc (strlen (match) + 5);
6078 strcpy (completion, match + (word - orig_text));
6079 }
6080 else
6081 {
6082 /* Return some of ORIG_TEXT plus sym_name. */
6083 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
6084 strncpy (completion, word, orig_text - word);
6085 completion[orig_text - word] = '\0';
6086 strcat (completion, match);
6087 }
6088
d6565258 6089 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
6090}
6091
ccefe4c4 6092/* An object of this type is passed as the user_data argument to the
bb4142cf 6093 expand_symtabs_matching method. */
ccefe4c4
TT
6094struct add_partial_datum
6095{
6096 VEC(char_ptr) **completions;
6f937416 6097 const char *text;
ccefe4c4 6098 int text_len;
6f937416
PA
6099 const char *text0;
6100 const char *word;
ccefe4c4
TT
6101 int wild_match;
6102 int encoded;
6103};
6104
bb4142cf
DE
6105/* A callback for expand_symtabs_matching. */
6106
7b08b9eb 6107static int
bb4142cf 6108ada_complete_symbol_matcher (const char *name, void *user_data)
ccefe4c4
TT
6109{
6110 struct add_partial_datum *data = user_data;
7b08b9eb
JK
6111
6112 return symbol_completion_match (name, data->text, data->text_len,
6113 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
6114}
6115
49c4e619
TT
6116/* Return a list of possible symbol names completing TEXT0. WORD is
6117 the entire command on which completion is made. */
41d27058 6118
49c4e619 6119static VEC (char_ptr) *
6f937416
PA
6120ada_make_symbol_completion_list (const char *text0, const char *word,
6121 enum type_code code)
41d27058
JB
6122{
6123 char *text;
6124 int text_len;
b1ed564a
JB
6125 int wild_match_p;
6126 int encoded_p;
2ba95b9b 6127 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
6128 struct symbol *sym;
6129 struct symtab *s;
41d27058
JB
6130 struct minimal_symbol *msymbol;
6131 struct objfile *objfile;
3977b71f 6132 const struct block *b, *surrounding_static_block = 0;
41d27058 6133 int i;
8157b174 6134 struct block_iterator iter;
b8fea896 6135 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
41d27058 6136
2f68a895
TT
6137 gdb_assert (code == TYPE_CODE_UNDEF);
6138
41d27058
JB
6139 if (text0[0] == '<')
6140 {
6141 text = xstrdup (text0);
6142 make_cleanup (xfree, text);
6143 text_len = strlen (text);
b1ed564a
JB
6144 wild_match_p = 0;
6145 encoded_p = 1;
41d27058
JB
6146 }
6147 else
6148 {
6149 text = xstrdup (ada_encode (text0));
6150 make_cleanup (xfree, text);
6151 text_len = strlen (text);
6152 for (i = 0; i < text_len; i++)
6153 text[i] = tolower (text[i]);
6154
b1ed564a 6155 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
6156 /* If the name contains a ".", then the user is entering a fully
6157 qualified entity name, and the match must not be done in wild
6158 mode. Similarly, if the user wants to complete what looks like
6159 an encoded name, the match must not be done in wild mode. */
b1ed564a 6160 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
6161 }
6162
6163 /* First, look at the partial symtab symbols. */
41d27058 6164 {
ccefe4c4
TT
6165 struct add_partial_datum data;
6166
6167 data.completions = &completions;
6168 data.text = text;
6169 data.text_len = text_len;
6170 data.text0 = text0;
6171 data.word = word;
b1ed564a
JB
6172 data.wild_match = wild_match_p;
6173 data.encoded = encoded_p;
bb4142cf
DE
6174 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, ALL_DOMAIN,
6175 &data);
41d27058
JB
6176 }
6177
6178 /* At this point scan through the misc symbol vectors and add each
6179 symbol you find to the list. Eventually we want to ignore
6180 anything that isn't a text symbol (everything else will be
6181 handled by the psymtab code above). */
6182
6183 ALL_MSYMBOLS (objfile, msymbol)
6184 {
6185 QUIT;
efd66ac6 6186 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
6187 text, text_len, text0, word, wild_match_p,
6188 encoded_p);
41d27058
JB
6189 }
6190
6191 /* Search upwards from currently selected frame (so that we can
6192 complete on local vars. */
6193
6194 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6195 {
6196 if (!BLOCK_SUPERBLOCK (b))
6197 surrounding_static_block = b; /* For elmin of dups */
6198
6199 ALL_BLOCK_SYMBOLS (b, iter, sym)
6200 {
d6565258 6201 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6202 text, text_len, text0, word,
b1ed564a 6203 wild_match_p, encoded_p);
41d27058
JB
6204 }
6205 }
6206
6207 /* Go through the symtabs and check the externs and statics for
6208 symbols which match. */
6209
6210 ALL_SYMTABS (objfile, s)
6211 {
6212 QUIT;
6213 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
6214 ALL_BLOCK_SYMBOLS (b, iter, sym)
6215 {
d6565258 6216 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6217 text, text_len, text0, word,
b1ed564a 6218 wild_match_p, encoded_p);
41d27058
JB
6219 }
6220 }
6221
6222 ALL_SYMTABS (objfile, s)
6223 {
6224 QUIT;
6225 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6226 /* Don't do this block twice. */
6227 if (b == surrounding_static_block)
6228 continue;
6229 ALL_BLOCK_SYMBOLS (b, iter, sym)
6230 {
d6565258 6231 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 6232 text, text_len, text0, word,
b1ed564a 6233 wild_match_p, encoded_p);
41d27058
JB
6234 }
6235 }
6236
b8fea896 6237 do_cleanups (old_chain);
49c4e619 6238 return completions;
41d27058
JB
6239}
6240
963a6417 6241 /* Field Access */
96d887e8 6242
73fb9985
JB
6243/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6244 for tagged types. */
6245
6246static int
6247ada_is_dispatch_table_ptr_type (struct type *type)
6248{
0d5cff50 6249 const char *name;
73fb9985
JB
6250
6251 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6252 return 0;
6253
6254 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6255 if (name == NULL)
6256 return 0;
6257
6258 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6259}
6260
ac4a2da4
JG
6261/* Return non-zero if TYPE is an interface tag. */
6262
6263static int
6264ada_is_interface_tag (struct type *type)
6265{
6266 const char *name = TYPE_NAME (type);
6267
6268 if (name == NULL)
6269 return 0;
6270
6271 return (strcmp (name, "ada__tags__interface_tag") == 0);
6272}
6273
963a6417
PH
6274/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6275 to be invisible to users. */
96d887e8 6276
963a6417
PH
6277int
6278ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6279{
963a6417
PH
6280 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6281 return 1;
ffde82bf 6282
73fb9985
JB
6283 /* Check the name of that field. */
6284 {
6285 const char *name = TYPE_FIELD_NAME (type, field_num);
6286
6287 /* Anonymous field names should not be printed.
6288 brobecker/2007-02-20: I don't think this can actually happen
6289 but we don't want to print the value of annonymous fields anyway. */
6290 if (name == NULL)
6291 return 1;
6292
ffde82bf
JB
6293 /* Normally, fields whose name start with an underscore ("_")
6294 are fields that have been internally generated by the compiler,
6295 and thus should not be printed. The "_parent" field is special,
6296 however: This is a field internally generated by the compiler
6297 for tagged types, and it contains the components inherited from
6298 the parent type. This field should not be printed as is, but
6299 should not be ignored either. */
73fb9985
JB
6300 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6301 return 1;
6302 }
6303
ac4a2da4
JG
6304 /* If this is the dispatch table of a tagged type or an interface tag,
6305 then ignore. */
73fb9985 6306 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6307 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6308 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6309 return 1;
6310
6311 /* Not a special field, so it should not be ignored. */
6312 return 0;
963a6417 6313}
96d887e8 6314
963a6417 6315/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6316 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6317
963a6417
PH
6318int
6319ada_is_tagged_type (struct type *type, int refok)
6320{
6321 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6322}
96d887e8 6323
963a6417 6324/* True iff TYPE represents the type of X'Tag */
96d887e8 6325
963a6417
PH
6326int
6327ada_is_tag_type (struct type *type)
6328{
6329 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6330 return 0;
6331 else
96d887e8 6332 {
963a6417 6333 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6334
963a6417
PH
6335 return (name != NULL
6336 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6337 }
96d887e8
PH
6338}
6339
963a6417 6340/* The type of the tag on VAL. */
76a01679 6341
963a6417
PH
6342struct type *
6343ada_tag_type (struct value *val)
96d887e8 6344{
df407dfe 6345 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6346}
96d887e8 6347
b50d69b5
JG
6348/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6349 retired at Ada 05). */
6350
6351static int
6352is_ada95_tag (struct value *tag)
6353{
6354 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6355}
6356
963a6417 6357/* The value of the tag on VAL. */
96d887e8 6358
963a6417
PH
6359struct value *
6360ada_value_tag (struct value *val)
6361{
03ee6b2e 6362 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6363}
6364
963a6417
PH
6365/* The value of the tag on the object of type TYPE whose contents are
6366 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6367 ADDRESS. */
96d887e8 6368
963a6417 6369static struct value *
10a2c479 6370value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6371 const gdb_byte *valaddr,
963a6417 6372 CORE_ADDR address)
96d887e8 6373{
b5385fc0 6374 int tag_byte_offset;
963a6417 6375 struct type *tag_type;
5b4ee69b 6376
963a6417 6377 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6378 NULL, NULL, NULL))
96d887e8 6379 {
fc1a4b47 6380 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6381 ? NULL
6382 : valaddr + tag_byte_offset);
963a6417 6383 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6384
963a6417 6385 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6386 }
963a6417
PH
6387 return NULL;
6388}
96d887e8 6389
963a6417
PH
6390static struct type *
6391type_from_tag (struct value *tag)
6392{
6393 const char *type_name = ada_tag_name (tag);
5b4ee69b 6394
963a6417
PH
6395 if (type_name != NULL)
6396 return ada_find_any_type (ada_encode (type_name));
6397 return NULL;
6398}
96d887e8 6399
b50d69b5
JG
6400/* Given a value OBJ of a tagged type, return a value of this
6401 type at the base address of the object. The base address, as
6402 defined in Ada.Tags, it is the address of the primary tag of
6403 the object, and therefore where the field values of its full
6404 view can be fetched. */
6405
6406struct value *
6407ada_tag_value_at_base_address (struct value *obj)
6408{
6409 volatile struct gdb_exception e;
6410 struct value *val;
6411 LONGEST offset_to_top = 0;
6412 struct type *ptr_type, *obj_type;
6413 struct value *tag;
6414 CORE_ADDR base_address;
6415
6416 obj_type = value_type (obj);
6417
6418 /* It is the responsability of the caller to deref pointers. */
6419
6420 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6421 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6422 return obj;
6423
6424 tag = ada_value_tag (obj);
6425 if (!tag)
6426 return obj;
6427
6428 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6429
6430 if (is_ada95_tag (tag))
6431 return obj;
6432
6433 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6434 ptr_type = lookup_pointer_type (ptr_type);
6435 val = value_cast (ptr_type, tag);
6436 if (!val)
6437 return obj;
6438
6439 /* It is perfectly possible that an exception be raised while
6440 trying to determine the base address, just like for the tag;
6441 see ada_tag_name for more details. We do not print the error
6442 message for the same reason. */
6443
6444 TRY_CATCH (e, RETURN_MASK_ERROR)
6445 {
6446 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6447 }
6448
6449 if (e.reason < 0)
6450 return obj;
6451
6452 /* If offset is null, nothing to do. */
6453
6454 if (offset_to_top == 0)
6455 return obj;
6456
6457 /* -1 is a special case in Ada.Tags; however, what should be done
6458 is not quite clear from the documentation. So do nothing for
6459 now. */
6460
6461 if (offset_to_top == -1)
6462 return obj;
6463
6464 base_address = value_address (obj) - offset_to_top;
6465 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6466
6467 /* Make sure that we have a proper tag at the new address.
6468 Otherwise, offset_to_top is bogus (which can happen when
6469 the object is not initialized yet). */
6470
6471 if (!tag)
6472 return obj;
6473
6474 obj_type = type_from_tag (tag);
6475
6476 if (!obj_type)
6477 return obj;
6478
6479 return value_from_contents_and_address (obj_type, NULL, base_address);
6480}
6481
1b611343
JB
6482/* Return the "ada__tags__type_specific_data" type. */
6483
6484static struct type *
6485ada_get_tsd_type (struct inferior *inf)
963a6417 6486{
1b611343 6487 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6488
1b611343
JB
6489 if (data->tsd_type == 0)
6490 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6491 return data->tsd_type;
6492}
529cad9c 6493
1b611343
JB
6494/* Return the TSD (type-specific data) associated to the given TAG.
6495 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6496
1b611343 6497 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6498
1b611343
JB
6499static struct value *
6500ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6501{
4c4b4cd2 6502 struct value *val;
1b611343 6503 struct type *type;
5b4ee69b 6504
1b611343
JB
6505 /* First option: The TSD is simply stored as a field of our TAG.
6506 Only older versions of GNAT would use this format, but we have
6507 to test it first, because there are no visible markers for
6508 the current approach except the absence of that field. */
529cad9c 6509
1b611343
JB
6510 val = ada_value_struct_elt (tag, "tsd", 1);
6511 if (val)
6512 return val;
e802dbe0 6513
1b611343
JB
6514 /* Try the second representation for the dispatch table (in which
6515 there is no explicit 'tsd' field in the referent of the tag pointer,
6516 and instead the tsd pointer is stored just before the dispatch
6517 table. */
e802dbe0 6518
1b611343
JB
6519 type = ada_get_tsd_type (current_inferior());
6520 if (type == NULL)
6521 return NULL;
6522 type = lookup_pointer_type (lookup_pointer_type (type));
6523 val = value_cast (type, tag);
6524 if (val == NULL)
6525 return NULL;
6526 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6527}
6528
1b611343
JB
6529/* Given the TSD of a tag (type-specific data), return a string
6530 containing the name of the associated type.
6531
6532 The returned value is good until the next call. May return NULL
6533 if we are unable to determine the tag name. */
6534
6535static char *
6536ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6537{
529cad9c
PH
6538 static char name[1024];
6539 char *p;
1b611343 6540 struct value *val;
529cad9c 6541
1b611343 6542 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6543 if (val == NULL)
1b611343 6544 return NULL;
4c4b4cd2
PH
6545 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6546 for (p = name; *p != '\0'; p += 1)
6547 if (isalpha (*p))
6548 *p = tolower (*p);
1b611343 6549 return name;
4c4b4cd2
PH
6550}
6551
6552/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6553 a C string.
6554
6555 Return NULL if the TAG is not an Ada tag, or if we were unable to
6556 determine the name of that tag. The result is good until the next
6557 call. */
4c4b4cd2
PH
6558
6559const char *
6560ada_tag_name (struct value *tag)
6561{
1b611343
JB
6562 volatile struct gdb_exception e;
6563 char *name = NULL;
5b4ee69b 6564
df407dfe 6565 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6566 return NULL;
1b611343
JB
6567
6568 /* It is perfectly possible that an exception be raised while trying
6569 to determine the TAG's name, even under normal circumstances:
6570 The associated variable may be uninitialized or corrupted, for
6571 instance. We do not let any exception propagate past this point.
6572 instead we return NULL.
6573
6574 We also do not print the error message either (which often is very
6575 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6576 the caller print a more meaningful message if necessary. */
6577 TRY_CATCH (e, RETURN_MASK_ERROR)
6578 {
6579 struct value *tsd = ada_get_tsd_from_tag (tag);
6580
6581 if (tsd != NULL)
6582 name = ada_tag_name_from_tsd (tsd);
6583 }
6584
6585 return name;
4c4b4cd2
PH
6586}
6587
6588/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6589
d2e4a39e 6590struct type *
ebf56fd3 6591ada_parent_type (struct type *type)
14f9c5c9
AS
6592{
6593 int i;
6594
61ee279c 6595 type = ada_check_typedef (type);
14f9c5c9
AS
6596
6597 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6598 return NULL;
6599
6600 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6601 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6602 {
6603 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6604
6605 /* If the _parent field is a pointer, then dereference it. */
6606 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6607 parent_type = TYPE_TARGET_TYPE (parent_type);
6608 /* If there is a parallel XVS type, get the actual base type. */
6609 parent_type = ada_get_base_type (parent_type);
6610
6611 return ada_check_typedef (parent_type);
6612 }
14f9c5c9
AS
6613
6614 return NULL;
6615}
6616
4c4b4cd2
PH
6617/* True iff field number FIELD_NUM of structure type TYPE contains the
6618 parent-type (inherited) fields of a derived type. Assumes TYPE is
6619 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6620
6621int
ebf56fd3 6622ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6623{
61ee279c 6624 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6625
4c4b4cd2
PH
6626 return (name != NULL
6627 && (strncmp (name, "PARENT", 6) == 0
6628 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6629}
6630
4c4b4cd2 6631/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6632 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6633 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6634 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6635 structures. */
14f9c5c9
AS
6636
6637int
ebf56fd3 6638ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6639{
d2e4a39e 6640 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6641
d2e4a39e 6642 return (name != NULL
4c4b4cd2
PH
6643 && (strncmp (name, "PARENT", 6) == 0
6644 || strcmp (name, "REP") == 0
6645 || strncmp (name, "_parent", 7) == 0
6646 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6647}
6648
4c4b4cd2
PH
6649/* True iff field number FIELD_NUM of structure or union type TYPE
6650 is a variant wrapper. Assumes TYPE is a structure type with at least
6651 FIELD_NUM+1 fields. */
14f9c5c9
AS
6652
6653int
ebf56fd3 6654ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6655{
d2e4a39e 6656 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6657
14f9c5c9 6658 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6659 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6660 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6661 == TYPE_CODE_UNION)));
14f9c5c9
AS
6662}
6663
6664/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6665 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6666 returns the type of the controlling discriminant for the variant.
6667 May return NULL if the type could not be found. */
14f9c5c9 6668
d2e4a39e 6669struct type *
ebf56fd3 6670ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6671{
d2e4a39e 6672 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6673
7c964f07 6674 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6675}
6676
4c4b4cd2 6677/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6678 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6679 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6680
6681int
ebf56fd3 6682ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6683{
d2e4a39e 6684 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6685
14f9c5c9
AS
6686 return (name != NULL && name[0] == 'O');
6687}
6688
6689/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6690 returns the name of the discriminant controlling the variant.
6691 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6692
d2e4a39e 6693char *
ebf56fd3 6694ada_variant_discrim_name (struct type *type0)
14f9c5c9 6695{
d2e4a39e 6696 static char *result = NULL;
14f9c5c9 6697 static size_t result_len = 0;
d2e4a39e
AS
6698 struct type *type;
6699 const char *name;
6700 const char *discrim_end;
6701 const char *discrim_start;
14f9c5c9
AS
6702
6703 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6704 type = TYPE_TARGET_TYPE (type0);
6705 else
6706 type = type0;
6707
6708 name = ada_type_name (type);
6709
6710 if (name == NULL || name[0] == '\000')
6711 return "";
6712
6713 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6714 discrim_end -= 1)
6715 {
4c4b4cd2
PH
6716 if (strncmp (discrim_end, "___XVN", 6) == 0)
6717 break;
14f9c5c9
AS
6718 }
6719 if (discrim_end == name)
6720 return "";
6721
d2e4a39e 6722 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6723 discrim_start -= 1)
6724 {
d2e4a39e 6725 if (discrim_start == name + 1)
4c4b4cd2 6726 return "";
76a01679 6727 if ((discrim_start > name + 3
4c4b4cd2
PH
6728 && strncmp (discrim_start - 3, "___", 3) == 0)
6729 || discrim_start[-1] == '.')
6730 break;
14f9c5c9
AS
6731 }
6732
6733 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6734 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6735 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6736 return result;
6737}
6738
4c4b4cd2
PH
6739/* Scan STR for a subtype-encoded number, beginning at position K.
6740 Put the position of the character just past the number scanned in
6741 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6742 Return 1 if there was a valid number at the given position, and 0
6743 otherwise. A "subtype-encoded" number consists of the absolute value
6744 in decimal, followed by the letter 'm' to indicate a negative number.
6745 Assumes 0m does not occur. */
14f9c5c9
AS
6746
6747int
d2e4a39e 6748ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6749{
6750 ULONGEST RU;
6751
d2e4a39e 6752 if (!isdigit (str[k]))
14f9c5c9
AS
6753 return 0;
6754
4c4b4cd2 6755 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6756 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6757 LONGEST. */
14f9c5c9
AS
6758 RU = 0;
6759 while (isdigit (str[k]))
6760 {
d2e4a39e 6761 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6762 k += 1;
6763 }
6764
d2e4a39e 6765 if (str[k] == 'm')
14f9c5c9
AS
6766 {
6767 if (R != NULL)
4c4b4cd2 6768 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6769 k += 1;
6770 }
6771 else if (R != NULL)
6772 *R = (LONGEST) RU;
6773
4c4b4cd2 6774 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6775 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6776 number representable as a LONGEST (although either would probably work
6777 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6778 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6779
6780 if (new_k != NULL)
6781 *new_k = k;
6782 return 1;
6783}
6784
4c4b4cd2
PH
6785/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6786 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6787 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6788
d2e4a39e 6789int
ebf56fd3 6790ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6791{
d2e4a39e 6792 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6793 int p;
6794
6795 p = 0;
6796 while (1)
6797 {
d2e4a39e 6798 switch (name[p])
4c4b4cd2
PH
6799 {
6800 case '\0':
6801 return 0;
6802 case 'S':
6803 {
6804 LONGEST W;
5b4ee69b 6805
4c4b4cd2
PH
6806 if (!ada_scan_number (name, p + 1, &W, &p))
6807 return 0;
6808 if (val == W)
6809 return 1;
6810 break;
6811 }
6812 case 'R':
6813 {
6814 LONGEST L, U;
5b4ee69b 6815
4c4b4cd2
PH
6816 if (!ada_scan_number (name, p + 1, &L, &p)
6817 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6818 return 0;
6819 if (val >= L && val <= U)
6820 return 1;
6821 break;
6822 }
6823 case 'O':
6824 return 1;
6825 default:
6826 return 0;
6827 }
6828 }
6829}
6830
0963b4bd 6831/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6832
6833/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6834 ARG_TYPE, extract and return the value of one of its (non-static)
6835 fields. FIELDNO says which field. Differs from value_primitive_field
6836 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6837
4c4b4cd2 6838static struct value *
d2e4a39e 6839ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6840 struct type *arg_type)
14f9c5c9 6841{
14f9c5c9
AS
6842 struct type *type;
6843
61ee279c 6844 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6845 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6846
4c4b4cd2 6847 /* Handle packed fields. */
14f9c5c9
AS
6848
6849 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6850 {
6851 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6852 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6853
0fd88904 6854 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6855 offset + bit_pos / 8,
6856 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6857 }
6858 else
6859 return value_primitive_field (arg1, offset, fieldno, arg_type);
6860}
6861
52ce6436
PH
6862/* Find field with name NAME in object of type TYPE. If found,
6863 set the following for each argument that is non-null:
6864 - *FIELD_TYPE_P to the field's type;
6865 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6866 an object of that type;
6867 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6868 - *BIT_SIZE_P to its size in bits if the field is packed, and
6869 0 otherwise;
6870 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6871 fields up to but not including the desired field, or by the total
6872 number of fields if not found. A NULL value of NAME never
6873 matches; the function just counts visible fields in this case.
6874
0963b4bd 6875 Returns 1 if found, 0 otherwise. */
52ce6436 6876
4c4b4cd2 6877static int
0d5cff50 6878find_struct_field (const char *name, struct type *type, int offset,
76a01679 6879 struct type **field_type_p,
52ce6436
PH
6880 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6881 int *index_p)
4c4b4cd2
PH
6882{
6883 int i;
6884
61ee279c 6885 type = ada_check_typedef (type);
76a01679 6886
52ce6436
PH
6887 if (field_type_p != NULL)
6888 *field_type_p = NULL;
6889 if (byte_offset_p != NULL)
d5d6fca5 6890 *byte_offset_p = 0;
52ce6436
PH
6891 if (bit_offset_p != NULL)
6892 *bit_offset_p = 0;
6893 if (bit_size_p != NULL)
6894 *bit_size_p = 0;
6895
6896 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6897 {
6898 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6899 int fld_offset = offset + bit_pos / 8;
0d5cff50 6900 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6901
4c4b4cd2
PH
6902 if (t_field_name == NULL)
6903 continue;
6904
52ce6436 6905 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6906 {
6907 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6908
52ce6436
PH
6909 if (field_type_p != NULL)
6910 *field_type_p = TYPE_FIELD_TYPE (type, i);
6911 if (byte_offset_p != NULL)
6912 *byte_offset_p = fld_offset;
6913 if (bit_offset_p != NULL)
6914 *bit_offset_p = bit_pos % 8;
6915 if (bit_size_p != NULL)
6916 *bit_size_p = bit_size;
76a01679
JB
6917 return 1;
6918 }
4c4b4cd2
PH
6919 else if (ada_is_wrapper_field (type, i))
6920 {
52ce6436
PH
6921 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6922 field_type_p, byte_offset_p, bit_offset_p,
6923 bit_size_p, index_p))
76a01679
JB
6924 return 1;
6925 }
4c4b4cd2
PH
6926 else if (ada_is_variant_part (type, i))
6927 {
52ce6436
PH
6928 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6929 fixed type?? */
4c4b4cd2 6930 int j;
52ce6436
PH
6931 struct type *field_type
6932 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6933
52ce6436 6934 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6935 {
76a01679
JB
6936 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6937 fld_offset
6938 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6939 field_type_p, byte_offset_p,
52ce6436 6940 bit_offset_p, bit_size_p, index_p))
76a01679 6941 return 1;
4c4b4cd2
PH
6942 }
6943 }
52ce6436
PH
6944 else if (index_p != NULL)
6945 *index_p += 1;
4c4b4cd2
PH
6946 }
6947 return 0;
6948}
6949
0963b4bd 6950/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6951
52ce6436
PH
6952static int
6953num_visible_fields (struct type *type)
6954{
6955 int n;
5b4ee69b 6956
52ce6436
PH
6957 n = 0;
6958 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6959 return n;
6960}
14f9c5c9 6961
4c4b4cd2 6962/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6963 and search in it assuming it has (class) type TYPE.
6964 If found, return value, else return NULL.
6965
4c4b4cd2 6966 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6967
4c4b4cd2 6968static struct value *
d2e4a39e 6969ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6970 struct type *type)
14f9c5c9
AS
6971{
6972 int i;
14f9c5c9 6973
5b4ee69b 6974 type = ada_check_typedef (type);
52ce6436 6975 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6976 {
0d5cff50 6977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6978
6979 if (t_field_name == NULL)
4c4b4cd2 6980 continue;
14f9c5c9
AS
6981
6982 else if (field_name_match (t_field_name, name))
4c4b4cd2 6983 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6984
6985 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6986 {
0963b4bd 6987 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6988 ada_search_struct_field (name, arg,
6989 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6990 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6991
4c4b4cd2
PH
6992 if (v != NULL)
6993 return v;
6994 }
14f9c5c9
AS
6995
6996 else if (ada_is_variant_part (type, i))
4c4b4cd2 6997 {
0963b4bd 6998 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6999 int j;
5b4ee69b
MS
7000 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7001 i));
4c4b4cd2
PH
7002 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7003
52ce6436 7004 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7005 {
0963b4bd
MS
7006 struct value *v = ada_search_struct_field /* Force line
7007 break. */
06d5cf63
JB
7008 (name, arg,
7009 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7010 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7011
4c4b4cd2
PH
7012 if (v != NULL)
7013 return v;
7014 }
7015 }
14f9c5c9
AS
7016 }
7017 return NULL;
7018}
d2e4a39e 7019
52ce6436
PH
7020static struct value *ada_index_struct_field_1 (int *, struct value *,
7021 int, struct type *);
7022
7023
7024/* Return field #INDEX in ARG, where the index is that returned by
7025 * find_struct_field through its INDEX_P argument. Adjust the address
7026 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7027 * If found, return value, else return NULL. */
52ce6436
PH
7028
7029static struct value *
7030ada_index_struct_field (int index, struct value *arg, int offset,
7031 struct type *type)
7032{
7033 return ada_index_struct_field_1 (&index, arg, offset, type);
7034}
7035
7036
7037/* Auxiliary function for ada_index_struct_field. Like
7038 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7039 * *INDEX_P. */
52ce6436
PH
7040
7041static struct value *
7042ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7043 struct type *type)
7044{
7045 int i;
7046 type = ada_check_typedef (type);
7047
7048 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7049 {
7050 if (TYPE_FIELD_NAME (type, i) == NULL)
7051 continue;
7052 else if (ada_is_wrapper_field (type, i))
7053 {
0963b4bd 7054 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7055 ada_index_struct_field_1 (index_p, arg,
7056 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7057 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7058
52ce6436
PH
7059 if (v != NULL)
7060 return v;
7061 }
7062
7063 else if (ada_is_variant_part (type, i))
7064 {
7065 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7066 find_struct_field. */
52ce6436
PH
7067 error (_("Cannot assign this kind of variant record"));
7068 }
7069 else if (*index_p == 0)
7070 return ada_value_primitive_field (arg, offset, i, type);
7071 else
7072 *index_p -= 1;
7073 }
7074 return NULL;
7075}
7076
4c4b4cd2
PH
7077/* Given ARG, a value of type (pointer or reference to a)*
7078 structure/union, extract the component named NAME from the ultimate
7079 target structure/union and return it as a value with its
f5938064 7080 appropriate type.
14f9c5c9 7081
4c4b4cd2
PH
7082 The routine searches for NAME among all members of the structure itself
7083 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7084 (e.g., '_parent').
7085
03ee6b2e
PH
7086 If NO_ERR, then simply return NULL in case of error, rather than
7087 calling error. */
14f9c5c9 7088
d2e4a39e 7089struct value *
03ee6b2e 7090ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 7091{
4c4b4cd2 7092 struct type *t, *t1;
d2e4a39e 7093 struct value *v;
14f9c5c9 7094
4c4b4cd2 7095 v = NULL;
df407dfe 7096 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7097 if (TYPE_CODE (t) == TYPE_CODE_REF)
7098 {
7099 t1 = TYPE_TARGET_TYPE (t);
7100 if (t1 == NULL)
03ee6b2e 7101 goto BadValue;
61ee279c 7102 t1 = ada_check_typedef (t1);
4c4b4cd2 7103 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7104 {
994b9211 7105 arg = coerce_ref (arg);
76a01679
JB
7106 t = t1;
7107 }
4c4b4cd2 7108 }
14f9c5c9 7109
4c4b4cd2
PH
7110 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7111 {
7112 t1 = TYPE_TARGET_TYPE (t);
7113 if (t1 == NULL)
03ee6b2e 7114 goto BadValue;
61ee279c 7115 t1 = ada_check_typedef (t1);
4c4b4cd2 7116 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7117 {
7118 arg = value_ind (arg);
7119 t = t1;
7120 }
4c4b4cd2 7121 else
76a01679 7122 break;
4c4b4cd2 7123 }
14f9c5c9 7124
4c4b4cd2 7125 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7126 goto BadValue;
14f9c5c9 7127
4c4b4cd2
PH
7128 if (t1 == t)
7129 v = ada_search_struct_field (name, arg, 0, t);
7130 else
7131 {
7132 int bit_offset, bit_size, byte_offset;
7133 struct type *field_type;
7134 CORE_ADDR address;
7135
76a01679 7136 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7137 address = value_address (ada_value_ind (arg));
4c4b4cd2 7138 else
b50d69b5 7139 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7140
1ed6ede0 7141 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
7142 if (find_struct_field (name, t1, 0,
7143 &field_type, &byte_offset, &bit_offset,
52ce6436 7144 &bit_size, NULL))
76a01679
JB
7145 {
7146 if (bit_size != 0)
7147 {
714e53ab
PH
7148 if (TYPE_CODE (t) == TYPE_CODE_REF)
7149 arg = ada_coerce_ref (arg);
7150 else
7151 arg = ada_value_ind (arg);
76a01679
JB
7152 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7153 bit_offset, bit_size,
7154 field_type);
7155 }
7156 else
f5938064 7157 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7158 }
7159 }
7160
03ee6b2e
PH
7161 if (v != NULL || no_err)
7162 return v;
7163 else
323e0a4a 7164 error (_("There is no member named %s."), name);
14f9c5c9 7165
03ee6b2e
PH
7166 BadValue:
7167 if (no_err)
7168 return NULL;
7169 else
0963b4bd
MS
7170 error (_("Attempt to extract a component of "
7171 "a value that is not a record."));
14f9c5c9
AS
7172}
7173
7174/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7175 If DISPP is non-null, add its byte displacement from the beginning of a
7176 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7177 work for packed fields).
7178
7179 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7180 followed by "___".
14f9c5c9 7181
0963b4bd 7182 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7183 be a (pointer or reference)+ to a struct or union, and the
7184 ultimate target type will be searched.
14f9c5c9
AS
7185
7186 Looks recursively into variant clauses and parent types.
7187
4c4b4cd2
PH
7188 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7189 TYPE is not a type of the right kind. */
14f9c5c9 7190
4c4b4cd2 7191static struct type *
76a01679
JB
7192ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7193 int noerr, int *dispp)
14f9c5c9
AS
7194{
7195 int i;
7196
7197 if (name == NULL)
7198 goto BadName;
7199
76a01679 7200 if (refok && type != NULL)
4c4b4cd2
PH
7201 while (1)
7202 {
61ee279c 7203 type = ada_check_typedef (type);
76a01679
JB
7204 if (TYPE_CODE (type) != TYPE_CODE_PTR
7205 && TYPE_CODE (type) != TYPE_CODE_REF)
7206 break;
7207 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7208 }
14f9c5c9 7209
76a01679 7210 if (type == NULL
1265e4aa
JB
7211 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7212 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7213 {
4c4b4cd2 7214 if (noerr)
76a01679 7215 return NULL;
4c4b4cd2 7216 else
76a01679
JB
7217 {
7218 target_terminal_ours ();
7219 gdb_flush (gdb_stdout);
323e0a4a
AC
7220 if (type == NULL)
7221 error (_("Type (null) is not a structure or union type"));
7222 else
7223 {
7224 /* XXX: type_sprint */
7225 fprintf_unfiltered (gdb_stderr, _("Type "));
7226 type_print (type, "", gdb_stderr, -1);
7227 error (_(" is not a structure or union type"));
7228 }
76a01679 7229 }
14f9c5c9
AS
7230 }
7231
7232 type = to_static_fixed_type (type);
7233
7234 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7235 {
0d5cff50 7236 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7237 struct type *t;
7238 int disp;
d2e4a39e 7239
14f9c5c9 7240 if (t_field_name == NULL)
4c4b4cd2 7241 continue;
14f9c5c9
AS
7242
7243 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
7244 {
7245 if (dispp != NULL)
7246 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 7247 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7248 }
14f9c5c9
AS
7249
7250 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
7251 {
7252 disp = 0;
7253 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7254 0, 1, &disp);
7255 if (t != NULL)
7256 {
7257 if (dispp != NULL)
7258 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7259 return t;
7260 }
7261 }
14f9c5c9
AS
7262
7263 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7264 {
7265 int j;
5b4ee69b
MS
7266 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7267 i));
4c4b4cd2
PH
7268
7269 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7270 {
b1f33ddd
JB
7271 /* FIXME pnh 2008/01/26: We check for a field that is
7272 NOT wrapped in a struct, since the compiler sometimes
7273 generates these for unchecked variant types. Revisit
0963b4bd 7274 if the compiler changes this practice. */
0d5cff50 7275 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 7276 disp = 0;
b1f33ddd
JB
7277 if (v_field_name != NULL
7278 && field_name_match (v_field_name, name))
7279 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7280 else
0963b4bd
MS
7281 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7282 j),
b1f33ddd
JB
7283 name, 0, 1, &disp);
7284
4c4b4cd2
PH
7285 if (t != NULL)
7286 {
7287 if (dispp != NULL)
7288 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7289 return t;
7290 }
7291 }
7292 }
14f9c5c9
AS
7293
7294 }
7295
7296BadName:
d2e4a39e 7297 if (!noerr)
14f9c5c9
AS
7298 {
7299 target_terminal_ours ();
7300 gdb_flush (gdb_stdout);
323e0a4a
AC
7301 if (name == NULL)
7302 {
7303 /* XXX: type_sprint */
7304 fprintf_unfiltered (gdb_stderr, _("Type "));
7305 type_print (type, "", gdb_stderr, -1);
7306 error (_(" has no component named <null>"));
7307 }
7308 else
7309 {
7310 /* XXX: type_sprint */
7311 fprintf_unfiltered (gdb_stderr, _("Type "));
7312 type_print (type, "", gdb_stderr, -1);
7313 error (_(" has no component named %s"), name);
7314 }
14f9c5c9
AS
7315 }
7316
7317 return NULL;
7318}
7319
b1f33ddd
JB
7320/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7321 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7322 represents an unchecked union (that is, the variant part of a
0963b4bd 7323 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7324
7325static int
7326is_unchecked_variant (struct type *var_type, struct type *outer_type)
7327{
7328 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7329
b1f33ddd
JB
7330 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7331 == NULL);
7332}
7333
7334
14f9c5c9
AS
7335/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7336 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7337 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7338 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7339
d2e4a39e 7340int
ebf56fd3 7341ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7342 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7343{
7344 int others_clause;
7345 int i;
d2e4a39e 7346 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7347 struct value *outer;
7348 struct value *discrim;
14f9c5c9
AS
7349 LONGEST discrim_val;
7350
012370f6
TT
7351 /* Using plain value_from_contents_and_address here causes problems
7352 because we will end up trying to resolve a type that is currently
7353 being constructed. */
7354 outer = value_from_contents_and_address_unresolved (outer_type,
7355 outer_valaddr, 0);
0c281816
JB
7356 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7357 if (discrim == NULL)
14f9c5c9 7358 return -1;
0c281816 7359 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7360
7361 others_clause = -1;
7362 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7363 {
7364 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7365 others_clause = i;
14f9c5c9 7366 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7367 return i;
14f9c5c9
AS
7368 }
7369
7370 return others_clause;
7371}
d2e4a39e 7372\f
14f9c5c9
AS
7373
7374
4c4b4cd2 7375 /* Dynamic-Sized Records */
14f9c5c9
AS
7376
7377/* Strategy: The type ostensibly attached to a value with dynamic size
7378 (i.e., a size that is not statically recorded in the debugging
7379 data) does not accurately reflect the size or layout of the value.
7380 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7381 conventional types that are constructed on the fly. */
14f9c5c9
AS
7382
7383/* There is a subtle and tricky problem here. In general, we cannot
7384 determine the size of dynamic records without its data. However,
7385 the 'struct value' data structure, which GDB uses to represent
7386 quantities in the inferior process (the target), requires the size
7387 of the type at the time of its allocation in order to reserve space
7388 for GDB's internal copy of the data. That's why the
7389 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7390 rather than struct value*s.
14f9c5c9
AS
7391
7392 However, GDB's internal history variables ($1, $2, etc.) are
7393 struct value*s containing internal copies of the data that are not, in
7394 general, the same as the data at their corresponding addresses in
7395 the target. Fortunately, the types we give to these values are all
7396 conventional, fixed-size types (as per the strategy described
7397 above), so that we don't usually have to perform the
7398 'to_fixed_xxx_type' conversions to look at their values.
7399 Unfortunately, there is one exception: if one of the internal
7400 history variables is an array whose elements are unconstrained
7401 records, then we will need to create distinct fixed types for each
7402 element selected. */
7403
7404/* The upshot of all of this is that many routines take a (type, host
7405 address, target address) triple as arguments to represent a value.
7406 The host address, if non-null, is supposed to contain an internal
7407 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7408 target at the target address. */
14f9c5c9
AS
7409
7410/* Assuming that VAL0 represents a pointer value, the result of
7411 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7412 dynamic-sized types. */
14f9c5c9 7413
d2e4a39e
AS
7414struct value *
7415ada_value_ind (struct value *val0)
14f9c5c9 7416{
c48db5ca 7417 struct value *val = value_ind (val0);
5b4ee69b 7418
b50d69b5
JG
7419 if (ada_is_tagged_type (value_type (val), 0))
7420 val = ada_tag_value_at_base_address (val);
7421
4c4b4cd2 7422 return ada_to_fixed_value (val);
14f9c5c9
AS
7423}
7424
7425/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7426 qualifiers on VAL0. */
7427
d2e4a39e
AS
7428static struct value *
7429ada_coerce_ref (struct value *val0)
7430{
df407dfe 7431 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7432 {
7433 struct value *val = val0;
5b4ee69b 7434
994b9211 7435 val = coerce_ref (val);
b50d69b5
JG
7436
7437 if (ada_is_tagged_type (value_type (val), 0))
7438 val = ada_tag_value_at_base_address (val);
7439
4c4b4cd2 7440 return ada_to_fixed_value (val);
d2e4a39e
AS
7441 }
7442 else
14f9c5c9
AS
7443 return val0;
7444}
7445
7446/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7447 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7448
7449static unsigned int
ebf56fd3 7450align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7451{
7452 return (off + alignment - 1) & ~(alignment - 1);
7453}
7454
4c4b4cd2 7455/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7456
7457static unsigned int
ebf56fd3 7458field_alignment (struct type *type, int f)
14f9c5c9 7459{
d2e4a39e 7460 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7461 int len;
14f9c5c9
AS
7462 int align_offset;
7463
64a1bf19
JB
7464 /* The field name should never be null, unless the debugging information
7465 is somehow malformed. In this case, we assume the field does not
7466 require any alignment. */
7467 if (name == NULL)
7468 return 1;
7469
7470 len = strlen (name);
7471
4c4b4cd2
PH
7472 if (!isdigit (name[len - 1]))
7473 return 1;
14f9c5c9 7474
d2e4a39e 7475 if (isdigit (name[len - 2]))
14f9c5c9
AS
7476 align_offset = len - 2;
7477 else
7478 align_offset = len - 1;
7479
4c4b4cd2 7480 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7481 return TARGET_CHAR_BIT;
7482
4c4b4cd2
PH
7483 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7484}
7485
852dff6c 7486/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7487
852dff6c
JB
7488static struct symbol *
7489ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7490{
7491 struct symbol *sym;
7492
7493 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7494 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7495 return sym;
7496
4186eb54
KS
7497 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7498 return sym;
14f9c5c9
AS
7499}
7500
dddfab26
UW
7501/* Find a type named NAME. Ignores ambiguity. This routine will look
7502 solely for types defined by debug info, it will not search the GDB
7503 primitive types. */
4c4b4cd2 7504
852dff6c 7505static struct type *
ebf56fd3 7506ada_find_any_type (const char *name)
14f9c5c9 7507{
852dff6c 7508 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7509
14f9c5c9 7510 if (sym != NULL)
dddfab26 7511 return SYMBOL_TYPE (sym);
14f9c5c9 7512
dddfab26 7513 return NULL;
14f9c5c9
AS
7514}
7515
739593e0
JB
7516/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7517 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7518 symbol, in which case it is returned. Otherwise, this looks for
7519 symbols whose name is that of NAME_SYM suffixed with "___XR".
7520 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7521
7522struct symbol *
270140bd 7523ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7524{
739593e0 7525 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7526 struct symbol *sym;
7527
739593e0
JB
7528 if (strstr (name, "___XR") != NULL)
7529 return name_sym;
7530
aeb5907d
JB
7531 sym = find_old_style_renaming_symbol (name, block);
7532
7533 if (sym != NULL)
7534 return sym;
7535
0963b4bd 7536 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7537 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7538 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7539 return sym;
7540 else
7541 return NULL;
7542}
7543
7544static struct symbol *
270140bd 7545find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7546{
7f0df278 7547 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7548 char *rename;
7549
7550 if (function_sym != NULL)
7551 {
7552 /* If the symbol is defined inside a function, NAME is not fully
7553 qualified. This means we need to prepend the function name
7554 as well as adding the ``___XR'' suffix to build the name of
7555 the associated renaming symbol. */
0d5cff50 7556 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7557 /* Function names sometimes contain suffixes used
7558 for instance to qualify nested subprograms. When building
7559 the XR type name, we need to make sure that this suffix is
7560 not included. So do not include any suffix in the function
7561 name length below. */
69fadcdf 7562 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7563 const int rename_len = function_name_len + 2 /* "__" */
7564 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7565
529cad9c 7566 /* Strip the suffix if necessary. */
69fadcdf
JB
7567 ada_remove_trailing_digits (function_name, &function_name_len);
7568 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7569 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7570
4c4b4cd2
PH
7571 /* Library-level functions are a special case, as GNAT adds
7572 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7573 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7574 have this prefix, so we need to skip this prefix if present. */
7575 if (function_name_len > 5 /* "_ada_" */
7576 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7577 {
7578 function_name += 5;
7579 function_name_len -= 5;
7580 }
4c4b4cd2
PH
7581
7582 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7583 strncpy (rename, function_name, function_name_len);
7584 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7585 "__%s___XR", name);
4c4b4cd2
PH
7586 }
7587 else
7588 {
7589 const int rename_len = strlen (name) + 6;
5b4ee69b 7590
4c4b4cd2 7591 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7592 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7593 }
7594
852dff6c 7595 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7596}
7597
14f9c5c9 7598/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7599 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7600 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7601 otherwise return 0. */
7602
14f9c5c9 7603int
d2e4a39e 7604ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7605{
7606 if (type1 == NULL)
7607 return 1;
7608 else if (type0 == NULL)
7609 return 0;
7610 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7611 return 1;
7612 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7613 return 0;
4c4b4cd2
PH
7614 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7615 return 1;
ad82864c 7616 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7617 return 1;
4c4b4cd2
PH
7618 else if (ada_is_array_descriptor_type (type0)
7619 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7620 return 1;
aeb5907d
JB
7621 else
7622 {
7623 const char *type0_name = type_name_no_tag (type0);
7624 const char *type1_name = type_name_no_tag (type1);
7625
7626 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7627 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7628 return 1;
7629 }
14f9c5c9
AS
7630 return 0;
7631}
7632
7633/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7634 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7635
0d5cff50 7636const char *
d2e4a39e 7637ada_type_name (struct type *type)
14f9c5c9 7638{
d2e4a39e 7639 if (type == NULL)
14f9c5c9
AS
7640 return NULL;
7641 else if (TYPE_NAME (type) != NULL)
7642 return TYPE_NAME (type);
7643 else
7644 return TYPE_TAG_NAME (type);
7645}
7646
b4ba55a1
JB
7647/* Search the list of "descriptive" types associated to TYPE for a type
7648 whose name is NAME. */
7649
7650static struct type *
7651find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7652{
7653 struct type *result;
7654
c6044dd1
JB
7655 if (ada_ignore_descriptive_types_p)
7656 return NULL;
7657
b4ba55a1
JB
7658 /* If there no descriptive-type info, then there is no parallel type
7659 to be found. */
7660 if (!HAVE_GNAT_AUX_INFO (type))
7661 return NULL;
7662
7663 result = TYPE_DESCRIPTIVE_TYPE (type);
7664 while (result != NULL)
7665 {
0d5cff50 7666 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7667
7668 if (result_name == NULL)
7669 {
7670 warning (_("unexpected null name on descriptive type"));
7671 return NULL;
7672 }
7673
7674 /* If the names match, stop. */
7675 if (strcmp (result_name, name) == 0)
7676 break;
7677
7678 /* Otherwise, look at the next item on the list, if any. */
7679 if (HAVE_GNAT_AUX_INFO (result))
7680 result = TYPE_DESCRIPTIVE_TYPE (result);
7681 else
7682 result = NULL;
7683 }
7684
7685 /* If we didn't find a match, see whether this is a packed array. With
7686 older compilers, the descriptive type information is either absent or
7687 irrelevant when it comes to packed arrays so the above lookup fails.
7688 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7689 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7690 return ada_find_any_type (name);
7691
7692 return result;
7693}
7694
7695/* Find a parallel type to TYPE with the specified NAME, using the
7696 descriptive type taken from the debugging information, if available,
7697 and otherwise using the (slower) name-based method. */
7698
7699static struct type *
7700ada_find_parallel_type_with_name (struct type *type, const char *name)
7701{
7702 struct type *result = NULL;
7703
7704 if (HAVE_GNAT_AUX_INFO (type))
7705 result = find_parallel_type_by_descriptive_type (type, name);
7706 else
7707 result = ada_find_any_type (name);
7708
7709 return result;
7710}
7711
7712/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7713 SUFFIX to the name of TYPE. */
14f9c5c9 7714
d2e4a39e 7715struct type *
ebf56fd3 7716ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7717{
0d5cff50
DE
7718 char *name;
7719 const char *typename = ada_type_name (type);
14f9c5c9 7720 int len;
d2e4a39e 7721
14f9c5c9
AS
7722 if (typename == NULL)
7723 return NULL;
7724
7725 len = strlen (typename);
7726
b4ba55a1 7727 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7728
7729 strcpy (name, typename);
7730 strcpy (name + len, suffix);
7731
b4ba55a1 7732 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7733}
7734
14f9c5c9 7735/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7736 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7737
d2e4a39e
AS
7738static struct type *
7739dynamic_template_type (struct type *type)
14f9c5c9 7740{
61ee279c 7741 type = ada_check_typedef (type);
14f9c5c9
AS
7742
7743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7744 || ada_type_name (type) == NULL)
14f9c5c9 7745 return NULL;
d2e4a39e 7746 else
14f9c5c9
AS
7747 {
7748 int len = strlen (ada_type_name (type));
5b4ee69b 7749
4c4b4cd2
PH
7750 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7751 return type;
14f9c5c9 7752 else
4c4b4cd2 7753 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7754 }
7755}
7756
7757/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7758 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7759
d2e4a39e
AS
7760static int
7761is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7762{
7763 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7764
d2e4a39e 7765 return name != NULL
14f9c5c9
AS
7766 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7767 && strstr (name, "___XVL") != NULL;
7768}
7769
4c4b4cd2
PH
7770/* The index of the variant field of TYPE, or -1 if TYPE does not
7771 represent a variant record type. */
14f9c5c9 7772
d2e4a39e 7773static int
4c4b4cd2 7774variant_field_index (struct type *type)
14f9c5c9
AS
7775{
7776 int f;
7777
4c4b4cd2
PH
7778 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7779 return -1;
7780
7781 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7782 {
7783 if (ada_is_variant_part (type, f))
7784 return f;
7785 }
7786 return -1;
14f9c5c9
AS
7787}
7788
4c4b4cd2
PH
7789/* A record type with no fields. */
7790
d2e4a39e 7791static struct type *
e9bb382b 7792empty_record (struct type *template)
14f9c5c9 7793{
e9bb382b 7794 struct type *type = alloc_type_copy (template);
5b4ee69b 7795
14f9c5c9
AS
7796 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7797 TYPE_NFIELDS (type) = 0;
7798 TYPE_FIELDS (type) = NULL;
b1f33ddd 7799 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7800 TYPE_NAME (type) = "<empty>";
7801 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7802 TYPE_LENGTH (type) = 0;
7803 return type;
7804}
7805
7806/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7807 the value of type TYPE at VALADDR or ADDRESS (see comments at
7808 the beginning of this section) VAL according to GNAT conventions.
7809 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7810 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7811 an outer-level type (i.e., as opposed to a branch of a variant.) A
7812 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7813 of the variant.
14f9c5c9 7814
4c4b4cd2
PH
7815 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7816 length are not statically known are discarded. As a consequence,
7817 VALADDR, ADDRESS and DVAL0 are ignored.
7818
7819 NOTE: Limitations: For now, we assume that dynamic fields and
7820 variants occupy whole numbers of bytes. However, they need not be
7821 byte-aligned. */
7822
7823struct type *
10a2c479 7824ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7825 const gdb_byte *valaddr,
4c4b4cd2
PH
7826 CORE_ADDR address, struct value *dval0,
7827 int keep_dynamic_fields)
14f9c5c9 7828{
d2e4a39e
AS
7829 struct value *mark = value_mark ();
7830 struct value *dval;
7831 struct type *rtype;
14f9c5c9 7832 int nfields, bit_len;
4c4b4cd2 7833 int variant_field;
14f9c5c9 7834 long off;
d94e4f4f 7835 int fld_bit_len;
14f9c5c9
AS
7836 int f;
7837
4c4b4cd2
PH
7838 /* Compute the number of fields in this record type that are going
7839 to be processed: unless keep_dynamic_fields, this includes only
7840 fields whose position and length are static will be processed. */
7841 if (keep_dynamic_fields)
7842 nfields = TYPE_NFIELDS (type);
7843 else
7844 {
7845 nfields = 0;
76a01679 7846 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7847 && !ada_is_variant_part (type, nfields)
7848 && !is_dynamic_field (type, nfields))
7849 nfields++;
7850 }
7851
e9bb382b 7852 rtype = alloc_type_copy (type);
14f9c5c9
AS
7853 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7854 INIT_CPLUS_SPECIFIC (rtype);
7855 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7856 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7857 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7858 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7859 TYPE_NAME (rtype) = ada_type_name (type);
7860 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7861 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7862
d2e4a39e
AS
7863 off = 0;
7864 bit_len = 0;
4c4b4cd2
PH
7865 variant_field = -1;
7866
14f9c5c9
AS
7867 for (f = 0; f < nfields; f += 1)
7868 {
6c038f32
PH
7869 off = align_value (off, field_alignment (type, f))
7870 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7871 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7872 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7873
d2e4a39e 7874 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7875 {
7876 variant_field = f;
d94e4f4f 7877 fld_bit_len = 0;
4c4b4cd2 7878 }
14f9c5c9 7879 else if (is_dynamic_field (type, f))
4c4b4cd2 7880 {
284614f0
JB
7881 const gdb_byte *field_valaddr = valaddr;
7882 CORE_ADDR field_address = address;
7883 struct type *field_type =
7884 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7885
4c4b4cd2 7886 if (dval0 == NULL)
b5304971
JG
7887 {
7888 /* rtype's length is computed based on the run-time
7889 value of discriminants. If the discriminants are not
7890 initialized, the type size may be completely bogus and
0963b4bd 7891 GDB may fail to allocate a value for it. So check the
b5304971
JG
7892 size first before creating the value. */
7893 check_size (rtype);
012370f6
TT
7894 /* Using plain value_from_contents_and_address here
7895 causes problems because we will end up trying to
7896 resolve a type that is currently being
7897 constructed. */
7898 dval = value_from_contents_and_address_unresolved (rtype,
7899 valaddr,
7900 address);
9f1f738a 7901 rtype = value_type (dval);
b5304971 7902 }
4c4b4cd2
PH
7903 else
7904 dval = dval0;
7905
284614f0
JB
7906 /* If the type referenced by this field is an aligner type, we need
7907 to unwrap that aligner type, because its size might not be set.
7908 Keeping the aligner type would cause us to compute the wrong
7909 size for this field, impacting the offset of the all the fields
7910 that follow this one. */
7911 if (ada_is_aligner_type (field_type))
7912 {
7913 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7914
7915 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7916 field_address = cond_offset_target (field_address, field_offset);
7917 field_type = ada_aligned_type (field_type);
7918 }
7919
7920 field_valaddr = cond_offset_host (field_valaddr,
7921 off / TARGET_CHAR_BIT);
7922 field_address = cond_offset_target (field_address,
7923 off / TARGET_CHAR_BIT);
7924
7925 /* Get the fixed type of the field. Note that, in this case,
7926 we do not want to get the real type out of the tag: if
7927 the current field is the parent part of a tagged record,
7928 we will get the tag of the object. Clearly wrong: the real
7929 type of the parent is not the real type of the child. We
7930 would end up in an infinite loop. */
7931 field_type = ada_get_base_type (field_type);
7932 field_type = ada_to_fixed_type (field_type, field_valaddr,
7933 field_address, dval, 0);
27f2a97b
JB
7934 /* If the field size is already larger than the maximum
7935 object size, then the record itself will necessarily
7936 be larger than the maximum object size. We need to make
7937 this check now, because the size might be so ridiculously
7938 large (due to an uninitialized variable in the inferior)
7939 that it would cause an overflow when adding it to the
7940 record size. */
7941 check_size (field_type);
284614f0
JB
7942
7943 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7944 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7945 /* The multiplication can potentially overflow. But because
7946 the field length has been size-checked just above, and
7947 assuming that the maximum size is a reasonable value,
7948 an overflow should not happen in practice. So rather than
7949 adding overflow recovery code to this already complex code,
7950 we just assume that it's not going to happen. */
d94e4f4f 7951 fld_bit_len =
4c4b4cd2
PH
7952 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7953 }
14f9c5c9 7954 else
4c4b4cd2 7955 {
5ded5331
JB
7956 /* Note: If this field's type is a typedef, it is important
7957 to preserve the typedef layer.
7958
7959 Otherwise, we might be transforming a typedef to a fat
7960 pointer (encoding a pointer to an unconstrained array),
7961 into a basic fat pointer (encoding an unconstrained
7962 array). As both types are implemented using the same
7963 structure, the typedef is the only clue which allows us
7964 to distinguish between the two options. Stripping it
7965 would prevent us from printing this field appropriately. */
7966 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
7967 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7968 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7969 fld_bit_len =
4c4b4cd2
PH
7970 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7971 else
5ded5331
JB
7972 {
7973 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7974
7975 /* We need to be careful of typedefs when computing
7976 the length of our field. If this is a typedef,
7977 get the length of the target type, not the length
7978 of the typedef. */
7979 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7980 field_type = ada_typedef_target_type (field_type);
7981
7982 fld_bit_len =
7983 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7984 }
4c4b4cd2 7985 }
14f9c5c9 7986 if (off + fld_bit_len > bit_len)
4c4b4cd2 7987 bit_len = off + fld_bit_len;
d94e4f4f 7988 off += fld_bit_len;
4c4b4cd2
PH
7989 TYPE_LENGTH (rtype) =
7990 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7991 }
4c4b4cd2
PH
7992
7993 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7994 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7995 the record. This can happen in the presence of representation
7996 clauses. */
7997 if (variant_field >= 0)
7998 {
7999 struct type *branch_type;
8000
8001 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8002
8003 if (dval0 == NULL)
9f1f738a 8004 {
012370f6
TT
8005 /* Using plain value_from_contents_and_address here causes
8006 problems because we will end up trying to resolve a type
8007 that is currently being constructed. */
8008 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8009 address);
9f1f738a
SA
8010 rtype = value_type (dval);
8011 }
4c4b4cd2
PH
8012 else
8013 dval = dval0;
8014
8015 branch_type =
8016 to_fixed_variant_branch_type
8017 (TYPE_FIELD_TYPE (type, variant_field),
8018 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8019 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8020 if (branch_type == NULL)
8021 {
8022 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8023 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8024 TYPE_NFIELDS (rtype) -= 1;
8025 }
8026 else
8027 {
8028 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8029 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8030 fld_bit_len =
8031 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8032 TARGET_CHAR_BIT;
8033 if (off + fld_bit_len > bit_len)
8034 bit_len = off + fld_bit_len;
8035 TYPE_LENGTH (rtype) =
8036 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8037 }
8038 }
8039
714e53ab
PH
8040 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8041 should contain the alignment of that record, which should be a strictly
8042 positive value. If null or negative, then something is wrong, most
8043 probably in the debug info. In that case, we don't round up the size
0963b4bd 8044 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8045 the current RTYPE length might be good enough for our purposes. */
8046 if (TYPE_LENGTH (type) <= 0)
8047 {
323e0a4a
AC
8048 if (TYPE_NAME (rtype))
8049 warning (_("Invalid type size for `%s' detected: %d."),
8050 TYPE_NAME (rtype), TYPE_LENGTH (type));
8051 else
8052 warning (_("Invalid type size for <unnamed> detected: %d."),
8053 TYPE_LENGTH (type));
714e53ab
PH
8054 }
8055 else
8056 {
8057 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8058 TYPE_LENGTH (type));
8059 }
14f9c5c9
AS
8060
8061 value_free_to_mark (mark);
d2e4a39e 8062 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8063 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8064 return rtype;
8065}
8066
4c4b4cd2
PH
8067/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8068 of 1. */
14f9c5c9 8069
d2e4a39e 8070static struct type *
fc1a4b47 8071template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8072 CORE_ADDR address, struct value *dval0)
8073{
8074 return ada_template_to_fixed_record_type_1 (type, valaddr,
8075 address, dval0, 1);
8076}
8077
8078/* An ordinary record type in which ___XVL-convention fields and
8079 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8080 static approximations, containing all possible fields. Uses
8081 no runtime values. Useless for use in values, but that's OK,
8082 since the results are used only for type determinations. Works on both
8083 structs and unions. Representation note: to save space, we memorize
8084 the result of this function in the TYPE_TARGET_TYPE of the
8085 template type. */
8086
8087static struct type *
8088template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8089{
8090 struct type *type;
8091 int nfields;
8092 int f;
8093
4c4b4cd2
PH
8094 if (TYPE_TARGET_TYPE (type0) != NULL)
8095 return TYPE_TARGET_TYPE (type0);
8096
8097 nfields = TYPE_NFIELDS (type0);
8098 type = type0;
14f9c5c9
AS
8099
8100 for (f = 0; f < nfields; f += 1)
8101 {
61ee279c 8102 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 8103 struct type *new_type;
14f9c5c9 8104
4c4b4cd2
PH
8105 if (is_dynamic_field (type0, f))
8106 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 8107 else
f192137b 8108 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
8109 if (type == type0 && new_type != field_type)
8110 {
e9bb382b 8111 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
8112 TYPE_CODE (type) = TYPE_CODE (type0);
8113 INIT_CPLUS_SPECIFIC (type);
8114 TYPE_NFIELDS (type) = nfields;
8115 TYPE_FIELDS (type) = (struct field *)
8116 TYPE_ALLOC (type, nfields * sizeof (struct field));
8117 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8118 sizeof (struct field) * nfields);
8119 TYPE_NAME (type) = ada_type_name (type0);
8120 TYPE_TAG_NAME (type) = NULL;
876cecd0 8121 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
8122 TYPE_LENGTH (type) = 0;
8123 }
8124 TYPE_FIELD_TYPE (type, f) = new_type;
8125 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 8126 }
14f9c5c9
AS
8127 return type;
8128}
8129
4c4b4cd2 8130/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8131 whose address in memory is ADDRESS, returns a revision of TYPE,
8132 which should be a non-dynamic-sized record, in which the variant
8133 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8134 for discriminant values in DVAL0, which can be NULL if the record
8135 contains the necessary discriminant values. */
8136
d2e4a39e 8137static struct type *
fc1a4b47 8138to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8139 CORE_ADDR address, struct value *dval0)
14f9c5c9 8140{
d2e4a39e 8141 struct value *mark = value_mark ();
4c4b4cd2 8142 struct value *dval;
d2e4a39e 8143 struct type *rtype;
14f9c5c9
AS
8144 struct type *branch_type;
8145 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8146 int variant_field = variant_field_index (type);
14f9c5c9 8147
4c4b4cd2 8148 if (variant_field == -1)
14f9c5c9
AS
8149 return type;
8150
4c4b4cd2 8151 if (dval0 == NULL)
9f1f738a
SA
8152 {
8153 dval = value_from_contents_and_address (type, valaddr, address);
8154 type = value_type (dval);
8155 }
4c4b4cd2
PH
8156 else
8157 dval = dval0;
8158
e9bb382b 8159 rtype = alloc_type_copy (type);
14f9c5c9 8160 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8161 INIT_CPLUS_SPECIFIC (rtype);
8162 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8163 TYPE_FIELDS (rtype) =
8164 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8165 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8166 sizeof (struct field) * nfields);
14f9c5c9
AS
8167 TYPE_NAME (rtype) = ada_type_name (type);
8168 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 8169 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8170 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8171
4c4b4cd2
PH
8172 branch_type = to_fixed_variant_branch_type
8173 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8174 cond_offset_host (valaddr,
4c4b4cd2
PH
8175 TYPE_FIELD_BITPOS (type, variant_field)
8176 / TARGET_CHAR_BIT),
d2e4a39e 8177 cond_offset_target (address,
4c4b4cd2
PH
8178 TYPE_FIELD_BITPOS (type, variant_field)
8179 / TARGET_CHAR_BIT), dval);
d2e4a39e 8180 if (branch_type == NULL)
14f9c5c9 8181 {
4c4b4cd2 8182 int f;
5b4ee69b 8183
4c4b4cd2
PH
8184 for (f = variant_field + 1; f < nfields; f += 1)
8185 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8186 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8187 }
8188 else
8189 {
4c4b4cd2
PH
8190 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8191 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8192 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8193 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8194 }
4c4b4cd2 8195 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8196
4c4b4cd2 8197 value_free_to_mark (mark);
14f9c5c9
AS
8198 return rtype;
8199}
8200
8201/* An ordinary record type (with fixed-length fields) that describes
8202 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8203 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8204 should be in DVAL, a record value; it may be NULL if the object
8205 at ADDR itself contains any necessary discriminant values.
8206 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8207 values from the record are needed. Except in the case that DVAL,
8208 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8209 unchecked) is replaced by a particular branch of the variant.
8210
8211 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8212 is questionable and may be removed. It can arise during the
8213 processing of an unconstrained-array-of-record type where all the
8214 variant branches have exactly the same size. This is because in
8215 such cases, the compiler does not bother to use the XVS convention
8216 when encoding the record. I am currently dubious of this
8217 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8218
d2e4a39e 8219static struct type *
fc1a4b47 8220to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8221 CORE_ADDR address, struct value *dval)
14f9c5c9 8222{
d2e4a39e 8223 struct type *templ_type;
14f9c5c9 8224
876cecd0 8225 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8226 return type0;
8227
d2e4a39e 8228 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8229
8230 if (templ_type != NULL)
8231 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8232 else if (variant_field_index (type0) >= 0)
8233 {
8234 if (dval == NULL && valaddr == NULL && address == 0)
8235 return type0;
8236 return to_record_with_fixed_variant_part (type0, valaddr, address,
8237 dval);
8238 }
14f9c5c9
AS
8239 else
8240 {
876cecd0 8241 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8242 return type0;
8243 }
8244
8245}
8246
8247/* An ordinary record type (with fixed-length fields) that describes
8248 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8249 union type. Any necessary discriminants' values should be in DVAL,
8250 a record value. That is, this routine selects the appropriate
8251 branch of the union at ADDR according to the discriminant value
b1f33ddd 8252 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8253 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8254
d2e4a39e 8255static struct type *
fc1a4b47 8256to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8257 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8258{
8259 int which;
d2e4a39e
AS
8260 struct type *templ_type;
8261 struct type *var_type;
14f9c5c9
AS
8262
8263 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8264 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8265 else
14f9c5c9
AS
8266 var_type = var_type0;
8267
8268 templ_type = ada_find_parallel_type (var_type, "___XVU");
8269
8270 if (templ_type != NULL)
8271 var_type = templ_type;
8272
b1f33ddd
JB
8273 if (is_unchecked_variant (var_type, value_type (dval)))
8274 return var_type0;
d2e4a39e
AS
8275 which =
8276 ada_which_variant_applies (var_type,
0fd88904 8277 value_type (dval), value_contents (dval));
14f9c5c9
AS
8278
8279 if (which < 0)
e9bb382b 8280 return empty_record (var_type);
14f9c5c9 8281 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8282 return to_fixed_record_type
d2e4a39e
AS
8283 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8284 valaddr, address, dval);
4c4b4cd2 8285 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8286 return
8287 to_fixed_record_type
8288 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8289 else
8290 return TYPE_FIELD_TYPE (var_type, which);
8291}
8292
8293/* Assuming that TYPE0 is an array type describing the type of a value
8294 at ADDR, and that DVAL describes a record containing any
8295 discriminants used in TYPE0, returns a type for the value that
8296 contains no dynamic components (that is, no components whose sizes
8297 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8298 true, gives an error message if the resulting type's size is over
4c4b4cd2 8299 varsize_limit. */
14f9c5c9 8300
d2e4a39e
AS
8301static struct type *
8302to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8303 int ignore_too_big)
14f9c5c9 8304{
d2e4a39e
AS
8305 struct type *index_type_desc;
8306 struct type *result;
ad82864c 8307 int constrained_packed_array_p;
14f9c5c9 8308
b0dd7688 8309 type0 = ada_check_typedef (type0);
284614f0 8310 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8311 return type0;
14f9c5c9 8312
ad82864c
JB
8313 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8314 if (constrained_packed_array_p)
8315 type0 = decode_constrained_packed_array_type (type0);
284614f0 8316
14f9c5c9 8317 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 8318 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
8319 if (index_type_desc == NULL)
8320 {
61ee279c 8321 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8322
14f9c5c9 8323 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8324 depend on the contents of the array in properly constructed
8325 debugging data. */
529cad9c
PH
8326 /* Create a fixed version of the array element type.
8327 We're not providing the address of an element here,
e1d5a0d2 8328 and thus the actual object value cannot be inspected to do
529cad9c
PH
8329 the conversion. This should not be a problem, since arrays of
8330 unconstrained objects are not allowed. In particular, all
8331 the elements of an array of a tagged type should all be of
8332 the same type specified in the debugging info. No need to
8333 consult the object tag. */
1ed6ede0 8334 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8335
284614f0
JB
8336 /* Make sure we always create a new array type when dealing with
8337 packed array types, since we're going to fix-up the array
8338 type length and element bitsize a little further down. */
ad82864c 8339 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8340 result = type0;
14f9c5c9 8341 else
e9bb382b 8342 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8343 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8344 }
8345 else
8346 {
8347 int i;
8348 struct type *elt_type0;
8349
8350 elt_type0 = type0;
8351 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8352 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8353
8354 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8355 depend on the contents of the array in properly constructed
8356 debugging data. */
529cad9c
PH
8357 /* Create a fixed version of the array element type.
8358 We're not providing the address of an element here,
e1d5a0d2 8359 and thus the actual object value cannot be inspected to do
529cad9c
PH
8360 the conversion. This should not be a problem, since arrays of
8361 unconstrained objects are not allowed. In particular, all
8362 the elements of an array of a tagged type should all be of
8363 the same type specified in the debugging info. No need to
8364 consult the object tag. */
1ed6ede0
JB
8365 result =
8366 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8367
8368 elt_type0 = type0;
14f9c5c9 8369 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8370 {
8371 struct type *range_type =
28c85d6c 8372 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8373
e9bb382b 8374 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8375 result, range_type);
1ce677a4 8376 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8377 }
d2e4a39e 8378 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8379 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8380 }
8381
2e6fda7d
JB
8382 /* We want to preserve the type name. This can be useful when
8383 trying to get the type name of a value that has already been
8384 printed (for instance, if the user did "print VAR; whatis $". */
8385 TYPE_NAME (result) = TYPE_NAME (type0);
8386
ad82864c 8387 if (constrained_packed_array_p)
284614f0
JB
8388 {
8389 /* So far, the resulting type has been created as if the original
8390 type was a regular (non-packed) array type. As a result, the
8391 bitsize of the array elements needs to be set again, and the array
8392 length needs to be recomputed based on that bitsize. */
8393 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8394 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8395
8396 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8397 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8398 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8399 TYPE_LENGTH (result)++;
8400 }
8401
876cecd0 8402 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8403 return result;
d2e4a39e 8404}
14f9c5c9
AS
8405
8406
8407/* A standard type (containing no dynamically sized components)
8408 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8409 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8410 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8411 ADDRESS or in VALADDR contains these discriminants.
8412
1ed6ede0
JB
8413 If CHECK_TAG is not null, in the case of tagged types, this function
8414 attempts to locate the object's tag and use it to compute the actual
8415 type. However, when ADDRESS is null, we cannot use it to determine the
8416 location of the tag, and therefore compute the tagged type's actual type.
8417 So we return the tagged type without consulting the tag. */
529cad9c 8418
f192137b
JB
8419static struct type *
8420ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8421 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8422{
61ee279c 8423 type = ada_check_typedef (type);
d2e4a39e
AS
8424 switch (TYPE_CODE (type))
8425 {
8426 default:
14f9c5c9 8427 return type;
d2e4a39e 8428 case TYPE_CODE_STRUCT:
4c4b4cd2 8429 {
76a01679 8430 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8431 struct type *fixed_record_type =
8432 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8433
529cad9c
PH
8434 /* If STATIC_TYPE is a tagged type and we know the object's address,
8435 then we can determine its tag, and compute the object's actual
0963b4bd 8436 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8437 type (the parent part of the record may have dynamic fields
8438 and the way the location of _tag is expressed may depend on
8439 them). */
529cad9c 8440
1ed6ede0 8441 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8442 {
b50d69b5
JG
8443 struct value *tag =
8444 value_tag_from_contents_and_address
8445 (fixed_record_type,
8446 valaddr,
8447 address);
8448 struct type *real_type = type_from_tag (tag);
8449 struct value *obj =
8450 value_from_contents_and_address (fixed_record_type,
8451 valaddr,
8452 address);
9f1f738a 8453 fixed_record_type = value_type (obj);
76a01679 8454 if (real_type != NULL)
b50d69b5
JG
8455 return to_fixed_record_type
8456 (real_type, NULL,
8457 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8458 }
4af88198
JB
8459
8460 /* Check to see if there is a parallel ___XVZ variable.
8461 If there is, then it provides the actual size of our type. */
8462 else if (ada_type_name (fixed_record_type) != NULL)
8463 {
0d5cff50 8464 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8465 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8466 int xvz_found = 0;
8467 LONGEST size;
8468
88c15c34 8469 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8470 size = get_int_var_value (xvz_name, &xvz_found);
8471 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8472 {
8473 fixed_record_type = copy_type (fixed_record_type);
8474 TYPE_LENGTH (fixed_record_type) = size;
8475
8476 /* The FIXED_RECORD_TYPE may have be a stub. We have
8477 observed this when the debugging info is STABS, and
8478 apparently it is something that is hard to fix.
8479
8480 In practice, we don't need the actual type definition
8481 at all, because the presence of the XVZ variable allows us
8482 to assume that there must be a XVS type as well, which we
8483 should be able to use later, when we need the actual type
8484 definition.
8485
8486 In the meantime, pretend that the "fixed" type we are
8487 returning is NOT a stub, because this can cause trouble
8488 when using this type to create new types targeting it.
8489 Indeed, the associated creation routines often check
8490 whether the target type is a stub and will try to replace
0963b4bd 8491 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8492 might cause the new type to have the wrong size too.
8493 Consider the case of an array, for instance, where the size
8494 of the array is computed from the number of elements in
8495 our array multiplied by the size of its element. */
8496 TYPE_STUB (fixed_record_type) = 0;
8497 }
8498 }
1ed6ede0 8499 return fixed_record_type;
4c4b4cd2 8500 }
d2e4a39e 8501 case TYPE_CODE_ARRAY:
4c4b4cd2 8502 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8503 case TYPE_CODE_UNION:
8504 if (dval == NULL)
4c4b4cd2 8505 return type;
d2e4a39e 8506 else
4c4b4cd2 8507 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8508 }
14f9c5c9
AS
8509}
8510
f192137b
JB
8511/* The same as ada_to_fixed_type_1, except that it preserves the type
8512 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8513
8514 The typedef layer needs be preserved in order to differentiate between
8515 arrays and array pointers when both types are implemented using the same
8516 fat pointer. In the array pointer case, the pointer is encoded as
8517 a typedef of the pointer type. For instance, considering:
8518
8519 type String_Access is access String;
8520 S1 : String_Access := null;
8521
8522 To the debugger, S1 is defined as a typedef of type String. But
8523 to the user, it is a pointer. So if the user tries to print S1,
8524 we should not dereference the array, but print the array address
8525 instead.
8526
8527 If we didn't preserve the typedef layer, we would lose the fact that
8528 the type is to be presented as a pointer (needs de-reference before
8529 being printed). And we would also use the source-level type name. */
f192137b
JB
8530
8531struct type *
8532ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8533 CORE_ADDR address, struct value *dval, int check_tag)
8534
8535{
8536 struct type *fixed_type =
8537 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8538
96dbd2c1
JB
8539 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8540 then preserve the typedef layer.
8541
8542 Implementation note: We can only check the main-type portion of
8543 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8544 from TYPE now returns a type that has the same instance flags
8545 as TYPE. For instance, if TYPE is a "typedef const", and its
8546 target type is a "struct", then the typedef elimination will return
8547 a "const" version of the target type. See check_typedef for more
8548 details about how the typedef layer elimination is done.
8549
8550 brobecker/2010-11-19: It seems to me that the only case where it is
8551 useful to preserve the typedef layer is when dealing with fat pointers.
8552 Perhaps, we could add a check for that and preserve the typedef layer
8553 only in that situation. But this seems unecessary so far, probably
8554 because we call check_typedef/ada_check_typedef pretty much everywhere.
8555 */
f192137b 8556 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8557 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8558 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8559 return type;
8560
8561 return fixed_type;
8562}
8563
14f9c5c9 8564/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8565 TYPE0, but based on no runtime data. */
14f9c5c9 8566
d2e4a39e
AS
8567static struct type *
8568to_static_fixed_type (struct type *type0)
14f9c5c9 8569{
d2e4a39e 8570 struct type *type;
14f9c5c9
AS
8571
8572 if (type0 == NULL)
8573 return NULL;
8574
876cecd0 8575 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8576 return type0;
8577
61ee279c 8578 type0 = ada_check_typedef (type0);
d2e4a39e 8579
14f9c5c9
AS
8580 switch (TYPE_CODE (type0))
8581 {
8582 default:
8583 return type0;
8584 case TYPE_CODE_STRUCT:
8585 type = dynamic_template_type (type0);
d2e4a39e 8586 if (type != NULL)
4c4b4cd2
PH
8587 return template_to_static_fixed_type (type);
8588 else
8589 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8590 case TYPE_CODE_UNION:
8591 type = ada_find_parallel_type (type0, "___XVU");
8592 if (type != NULL)
4c4b4cd2
PH
8593 return template_to_static_fixed_type (type);
8594 else
8595 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8596 }
8597}
8598
4c4b4cd2
PH
8599/* A static approximation of TYPE with all type wrappers removed. */
8600
d2e4a39e
AS
8601static struct type *
8602static_unwrap_type (struct type *type)
14f9c5c9
AS
8603{
8604 if (ada_is_aligner_type (type))
8605 {
61ee279c 8606 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8607 if (ada_type_name (type1) == NULL)
4c4b4cd2 8608 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8609
8610 return static_unwrap_type (type1);
8611 }
d2e4a39e 8612 else
14f9c5c9 8613 {
d2e4a39e 8614 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8615
d2e4a39e 8616 if (raw_real_type == type)
4c4b4cd2 8617 return type;
14f9c5c9 8618 else
4c4b4cd2 8619 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8620 }
8621}
8622
8623/* In some cases, incomplete and private types require
4c4b4cd2 8624 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8625 type Foo;
8626 type FooP is access Foo;
8627 V: FooP;
8628 type Foo is array ...;
4c4b4cd2 8629 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8630 cross-references to such types, we instead substitute for FooP a
8631 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8632 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8633
8634/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8635 exists, otherwise TYPE. */
8636
d2e4a39e 8637struct type *
61ee279c 8638ada_check_typedef (struct type *type)
14f9c5c9 8639{
727e3d2e
JB
8640 if (type == NULL)
8641 return NULL;
8642
720d1a40
JB
8643 /* If our type is a typedef type of a fat pointer, then we're done.
8644 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8645 what allows us to distinguish between fat pointers that represent
8646 array types, and fat pointers that represent array access types
8647 (in both cases, the compiler implements them as fat pointers). */
8648 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8649 && is_thick_pntr (ada_typedef_target_type (type)))
8650 return type;
8651
14f9c5c9
AS
8652 CHECK_TYPEDEF (type);
8653 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8654 || !TYPE_STUB (type)
14f9c5c9
AS
8655 || TYPE_TAG_NAME (type) == NULL)
8656 return type;
d2e4a39e 8657 else
14f9c5c9 8658 {
0d5cff50 8659 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8660 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8661
05e522ef
JB
8662 if (type1 == NULL)
8663 return type;
8664
8665 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8666 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8667 types, only for the typedef-to-array types). If that's the case,
8668 strip the typedef layer. */
8669 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8670 type1 = ada_check_typedef (type1);
8671
8672 return type1;
14f9c5c9
AS
8673 }
8674}
8675
8676/* A value representing the data at VALADDR/ADDRESS as described by
8677 type TYPE0, but with a standard (static-sized) type that correctly
8678 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8679 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8680 creation of struct values]. */
14f9c5c9 8681
4c4b4cd2
PH
8682static struct value *
8683ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8684 struct value *val0)
14f9c5c9 8685{
1ed6ede0 8686 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8687
14f9c5c9
AS
8688 if (type == type0 && val0 != NULL)
8689 return val0;
d2e4a39e 8690 else
4c4b4cd2
PH
8691 return value_from_contents_and_address (type, 0, address);
8692}
8693
8694/* A value representing VAL, but with a standard (static-sized) type
8695 that correctly describes it. Does not necessarily create a new
8696 value. */
8697
0c3acc09 8698struct value *
4c4b4cd2
PH
8699ada_to_fixed_value (struct value *val)
8700{
c48db5ca
JB
8701 val = unwrap_value (val);
8702 val = ada_to_fixed_value_create (value_type (val),
8703 value_address (val),
8704 val);
8705 return val;
14f9c5c9 8706}
d2e4a39e 8707\f
14f9c5c9 8708
14f9c5c9
AS
8709/* Attributes */
8710
4c4b4cd2
PH
8711/* Table mapping attribute numbers to names.
8712 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8713
d2e4a39e 8714static const char *attribute_names[] = {
14f9c5c9
AS
8715 "<?>",
8716
d2e4a39e 8717 "first",
14f9c5c9
AS
8718 "last",
8719 "length",
8720 "image",
14f9c5c9
AS
8721 "max",
8722 "min",
4c4b4cd2
PH
8723 "modulus",
8724 "pos",
8725 "size",
8726 "tag",
14f9c5c9 8727 "val",
14f9c5c9
AS
8728 0
8729};
8730
d2e4a39e 8731const char *
4c4b4cd2 8732ada_attribute_name (enum exp_opcode n)
14f9c5c9 8733{
4c4b4cd2
PH
8734 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8735 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8736 else
8737 return attribute_names[0];
8738}
8739
4c4b4cd2 8740/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8741
4c4b4cd2
PH
8742static LONGEST
8743pos_atr (struct value *arg)
14f9c5c9 8744{
24209737
PH
8745 struct value *val = coerce_ref (arg);
8746 struct type *type = value_type (val);
14f9c5c9 8747
d2e4a39e 8748 if (!discrete_type_p (type))
323e0a4a 8749 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8750
8751 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8752 {
8753 int i;
24209737 8754 LONGEST v = value_as_long (val);
14f9c5c9 8755
d2e4a39e 8756 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8757 {
14e75d8e 8758 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8759 return i;
8760 }
323e0a4a 8761 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8762 }
8763 else
24209737 8764 return value_as_long (val);
4c4b4cd2
PH
8765}
8766
8767static struct value *
3cb382c9 8768value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8769{
3cb382c9 8770 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8771}
8772
4c4b4cd2 8773/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8774
d2e4a39e
AS
8775static struct value *
8776value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8777{
d2e4a39e 8778 if (!discrete_type_p (type))
323e0a4a 8779 error (_("'VAL only defined on discrete types"));
df407dfe 8780 if (!integer_type_p (value_type (arg)))
323e0a4a 8781 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8782
8783 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8784 {
8785 long pos = value_as_long (arg);
5b4ee69b 8786
14f9c5c9 8787 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8788 error (_("argument to 'VAL out of range"));
14e75d8e 8789 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8790 }
8791 else
8792 return value_from_longest (type, value_as_long (arg));
8793}
14f9c5c9 8794\f
d2e4a39e 8795
4c4b4cd2 8796 /* Evaluation */
14f9c5c9 8797
4c4b4cd2
PH
8798/* True if TYPE appears to be an Ada character type.
8799 [At the moment, this is true only for Character and Wide_Character;
8800 It is a heuristic test that could stand improvement]. */
14f9c5c9 8801
d2e4a39e
AS
8802int
8803ada_is_character_type (struct type *type)
14f9c5c9 8804{
7b9f71f2
JB
8805 const char *name;
8806
8807 /* If the type code says it's a character, then assume it really is,
8808 and don't check any further. */
8809 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8810 return 1;
8811
8812 /* Otherwise, assume it's a character type iff it is a discrete type
8813 with a known character type name. */
8814 name = ada_type_name (type);
8815 return (name != NULL
8816 && (TYPE_CODE (type) == TYPE_CODE_INT
8817 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8818 && (strcmp (name, "character") == 0
8819 || strcmp (name, "wide_character") == 0
5a517ebd 8820 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8821 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8822}
8823
4c4b4cd2 8824/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8825
8826int
ebf56fd3 8827ada_is_string_type (struct type *type)
14f9c5c9 8828{
61ee279c 8829 type = ada_check_typedef (type);
d2e4a39e 8830 if (type != NULL
14f9c5c9 8831 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8832 && (ada_is_simple_array_type (type)
8833 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8834 && ada_array_arity (type) == 1)
8835 {
8836 struct type *elttype = ada_array_element_type (type, 1);
8837
8838 return ada_is_character_type (elttype);
8839 }
d2e4a39e 8840 else
14f9c5c9
AS
8841 return 0;
8842}
8843
5bf03f13
JB
8844/* The compiler sometimes provides a parallel XVS type for a given
8845 PAD type. Normally, it is safe to follow the PAD type directly,
8846 but older versions of the compiler have a bug that causes the offset
8847 of its "F" field to be wrong. Following that field in that case
8848 would lead to incorrect results, but this can be worked around
8849 by ignoring the PAD type and using the associated XVS type instead.
8850
8851 Set to True if the debugger should trust the contents of PAD types.
8852 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8853static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8854
8855/* True if TYPE is a struct type introduced by the compiler to force the
8856 alignment of a value. Such types have a single field with a
4c4b4cd2 8857 distinctive name. */
14f9c5c9
AS
8858
8859int
ebf56fd3 8860ada_is_aligner_type (struct type *type)
14f9c5c9 8861{
61ee279c 8862 type = ada_check_typedef (type);
714e53ab 8863
5bf03f13 8864 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8865 return 0;
8866
14f9c5c9 8867 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8868 && TYPE_NFIELDS (type) == 1
8869 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8870}
8871
8872/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8873 the parallel type. */
14f9c5c9 8874
d2e4a39e
AS
8875struct type *
8876ada_get_base_type (struct type *raw_type)
14f9c5c9 8877{
d2e4a39e
AS
8878 struct type *real_type_namer;
8879 struct type *raw_real_type;
14f9c5c9
AS
8880
8881 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8882 return raw_type;
8883
284614f0
JB
8884 if (ada_is_aligner_type (raw_type))
8885 /* The encoding specifies that we should always use the aligner type.
8886 So, even if this aligner type has an associated XVS type, we should
8887 simply ignore it.
8888
8889 According to the compiler gurus, an XVS type parallel to an aligner
8890 type may exist because of a stabs limitation. In stabs, aligner
8891 types are empty because the field has a variable-sized type, and
8892 thus cannot actually be used as an aligner type. As a result,
8893 we need the associated parallel XVS type to decode the type.
8894 Since the policy in the compiler is to not change the internal
8895 representation based on the debugging info format, we sometimes
8896 end up having a redundant XVS type parallel to the aligner type. */
8897 return raw_type;
8898
14f9c5c9 8899 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8900 if (real_type_namer == NULL
14f9c5c9
AS
8901 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8902 || TYPE_NFIELDS (real_type_namer) != 1)
8903 return raw_type;
8904
f80d3ff2
JB
8905 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8906 {
8907 /* This is an older encoding form where the base type needs to be
8908 looked up by name. We prefer the newer enconding because it is
8909 more efficient. */
8910 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8911 if (raw_real_type == NULL)
8912 return raw_type;
8913 else
8914 return raw_real_type;
8915 }
8916
8917 /* The field in our XVS type is a reference to the base type. */
8918 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8919}
14f9c5c9 8920
4c4b4cd2 8921/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8922
d2e4a39e
AS
8923struct type *
8924ada_aligned_type (struct type *type)
14f9c5c9
AS
8925{
8926 if (ada_is_aligner_type (type))
8927 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8928 else
8929 return ada_get_base_type (type);
8930}
8931
8932
8933/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8934 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8935
fc1a4b47
AC
8936const gdb_byte *
8937ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8938{
d2e4a39e 8939 if (ada_is_aligner_type (type))
14f9c5c9 8940 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8941 valaddr +
8942 TYPE_FIELD_BITPOS (type,
8943 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8944 else
8945 return valaddr;
8946}
8947
4c4b4cd2
PH
8948
8949
14f9c5c9 8950/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8951 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8952const char *
8953ada_enum_name (const char *name)
14f9c5c9 8954{
4c4b4cd2
PH
8955 static char *result;
8956 static size_t result_len = 0;
d2e4a39e 8957 char *tmp;
14f9c5c9 8958
4c4b4cd2
PH
8959 /* First, unqualify the enumeration name:
8960 1. Search for the last '.' character. If we find one, then skip
177b42fe 8961 all the preceding characters, the unqualified name starts
76a01679 8962 right after that dot.
4c4b4cd2 8963 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8964 translates dots into "__". Search forward for double underscores,
8965 but stop searching when we hit an overloading suffix, which is
8966 of the form "__" followed by digits. */
4c4b4cd2 8967
c3e5cd34
PH
8968 tmp = strrchr (name, '.');
8969 if (tmp != NULL)
4c4b4cd2
PH
8970 name = tmp + 1;
8971 else
14f9c5c9 8972 {
4c4b4cd2
PH
8973 while ((tmp = strstr (name, "__")) != NULL)
8974 {
8975 if (isdigit (tmp[2]))
8976 break;
8977 else
8978 name = tmp + 2;
8979 }
14f9c5c9
AS
8980 }
8981
8982 if (name[0] == 'Q')
8983 {
14f9c5c9 8984 int v;
5b4ee69b 8985
14f9c5c9 8986 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8987 {
8988 if (sscanf (name + 2, "%x", &v) != 1)
8989 return name;
8990 }
14f9c5c9 8991 else
4c4b4cd2 8992 return name;
14f9c5c9 8993
4c4b4cd2 8994 GROW_VECT (result, result_len, 16);
14f9c5c9 8995 if (isascii (v) && isprint (v))
88c15c34 8996 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8997 else if (name[1] == 'U')
88c15c34 8998 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8999 else
88c15c34 9000 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9001
9002 return result;
9003 }
d2e4a39e 9004 else
4c4b4cd2 9005 {
c3e5cd34
PH
9006 tmp = strstr (name, "__");
9007 if (tmp == NULL)
9008 tmp = strstr (name, "$");
9009 if (tmp != NULL)
4c4b4cd2
PH
9010 {
9011 GROW_VECT (result, result_len, tmp - name + 1);
9012 strncpy (result, name, tmp - name);
9013 result[tmp - name] = '\0';
9014 return result;
9015 }
9016
9017 return name;
9018 }
14f9c5c9
AS
9019}
9020
14f9c5c9
AS
9021/* Evaluate the subexpression of EXP starting at *POS as for
9022 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9023 expression. */
14f9c5c9 9024
d2e4a39e
AS
9025static struct value *
9026evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9027{
4b27a620 9028 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9029}
9030
9031/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9032 value it wraps. */
14f9c5c9 9033
d2e4a39e
AS
9034static struct value *
9035unwrap_value (struct value *val)
14f9c5c9 9036{
df407dfe 9037 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9038
14f9c5c9
AS
9039 if (ada_is_aligner_type (type))
9040 {
de4d072f 9041 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9042 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9043
14f9c5c9 9044 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9045 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9046
9047 return unwrap_value (v);
9048 }
d2e4a39e 9049 else
14f9c5c9 9050 {
d2e4a39e 9051 struct type *raw_real_type =
61ee279c 9052 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9053
5bf03f13
JB
9054 /* If there is no parallel XVS or XVE type, then the value is
9055 already unwrapped. Return it without further modification. */
9056 if ((type == raw_real_type)
9057 && ada_find_parallel_type (type, "___XVE") == NULL)
9058 return val;
14f9c5c9 9059
d2e4a39e 9060 return
4c4b4cd2
PH
9061 coerce_unspec_val_to_type
9062 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9063 value_address (val),
1ed6ede0 9064 NULL, 1));
14f9c5c9
AS
9065 }
9066}
d2e4a39e
AS
9067
9068static struct value *
9069cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
9070{
9071 LONGEST val;
9072
df407dfe 9073 if (type == value_type (arg))
14f9c5c9 9074 return arg;
df407dfe 9075 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 9076 val = ada_float_to_fixed (type,
df407dfe 9077 ada_fixed_to_float (value_type (arg),
4c4b4cd2 9078 value_as_long (arg)));
d2e4a39e 9079 else
14f9c5c9 9080 {
a53b7a21 9081 DOUBLEST argd = value_as_double (arg);
5b4ee69b 9082
14f9c5c9
AS
9083 val = ada_float_to_fixed (type, argd);
9084 }
9085
9086 return value_from_longest (type, val);
9087}
9088
d2e4a39e 9089static struct value *
a53b7a21 9090cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9091{
df407dfe 9092 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 9093 value_as_long (arg));
5b4ee69b 9094
a53b7a21 9095 return value_from_double (type, val);
14f9c5c9
AS
9096}
9097
d99dcf51
JB
9098/* Given two array types T1 and T2, return nonzero iff both arrays
9099 contain the same number of elements. */
9100
9101static int
9102ada_same_array_size_p (struct type *t1, struct type *t2)
9103{
9104 LONGEST lo1, hi1, lo2, hi2;
9105
9106 /* Get the array bounds in order to verify that the size of
9107 the two arrays match. */
9108 if (!get_array_bounds (t1, &lo1, &hi1)
9109 || !get_array_bounds (t2, &lo2, &hi2))
9110 error (_("unable to determine array bounds"));
9111
9112 /* To make things easier for size comparison, normalize a bit
9113 the case of empty arrays by making sure that the difference
9114 between upper bound and lower bound is always -1. */
9115 if (lo1 > hi1)
9116 hi1 = lo1 - 1;
9117 if (lo2 > hi2)
9118 hi2 = lo2 - 1;
9119
9120 return (hi1 - lo1 == hi2 - lo2);
9121}
9122
9123/* Assuming that VAL is an array of integrals, and TYPE represents
9124 an array with the same number of elements, but with wider integral
9125 elements, return an array "casted" to TYPE. In practice, this
9126 means that the returned array is built by casting each element
9127 of the original array into TYPE's (wider) element type. */
9128
9129static struct value *
9130ada_promote_array_of_integrals (struct type *type, struct value *val)
9131{
9132 struct type *elt_type = TYPE_TARGET_TYPE (type);
9133 LONGEST lo, hi;
9134 struct value *res;
9135 LONGEST i;
9136
9137 /* Verify that both val and type are arrays of scalars, and
9138 that the size of val's elements is smaller than the size
9139 of type's element. */
9140 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9141 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9142 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9143 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9144 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9145 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9146
9147 if (!get_array_bounds (type, &lo, &hi))
9148 error (_("unable to determine array bounds"));
9149
9150 res = allocate_value (type);
9151
9152 /* Promote each array element. */
9153 for (i = 0; i < hi - lo + 1; i++)
9154 {
9155 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9156
9157 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9158 value_contents_all (elt), TYPE_LENGTH (elt_type));
9159 }
9160
9161 return res;
9162}
9163
4c4b4cd2
PH
9164/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9165 return the converted value. */
9166
d2e4a39e
AS
9167static struct value *
9168coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9169{
df407dfe 9170 struct type *type2 = value_type (val);
5b4ee69b 9171
14f9c5c9
AS
9172 if (type == type2)
9173 return val;
9174
61ee279c
PH
9175 type2 = ada_check_typedef (type2);
9176 type = ada_check_typedef (type);
14f9c5c9 9177
d2e4a39e
AS
9178 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9179 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9180 {
9181 val = ada_value_ind (val);
df407dfe 9182 type2 = value_type (val);
14f9c5c9
AS
9183 }
9184
d2e4a39e 9185 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9186 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9187 {
d99dcf51
JB
9188 if (!ada_same_array_size_p (type, type2))
9189 error (_("cannot assign arrays of different length"));
9190
9191 if (is_integral_type (TYPE_TARGET_TYPE (type))
9192 && is_integral_type (TYPE_TARGET_TYPE (type2))
9193 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9194 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9195 {
9196 /* Allow implicit promotion of the array elements to
9197 a wider type. */
9198 return ada_promote_array_of_integrals (type, val);
9199 }
9200
9201 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9202 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9203 error (_("Incompatible types in assignment"));
04624583 9204 deprecated_set_value_type (val, type);
14f9c5c9 9205 }
d2e4a39e 9206 return val;
14f9c5c9
AS
9207}
9208
4c4b4cd2
PH
9209static struct value *
9210ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9211{
9212 struct value *val;
9213 struct type *type1, *type2;
9214 LONGEST v, v1, v2;
9215
994b9211
AC
9216 arg1 = coerce_ref (arg1);
9217 arg2 = coerce_ref (arg2);
18af8284
JB
9218 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9219 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9220
76a01679
JB
9221 if (TYPE_CODE (type1) != TYPE_CODE_INT
9222 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9223 return value_binop (arg1, arg2, op);
9224
76a01679 9225 switch (op)
4c4b4cd2
PH
9226 {
9227 case BINOP_MOD:
9228 case BINOP_DIV:
9229 case BINOP_REM:
9230 break;
9231 default:
9232 return value_binop (arg1, arg2, op);
9233 }
9234
9235 v2 = value_as_long (arg2);
9236 if (v2 == 0)
323e0a4a 9237 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9238
9239 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9240 return value_binop (arg1, arg2, op);
9241
9242 v1 = value_as_long (arg1);
9243 switch (op)
9244 {
9245 case BINOP_DIV:
9246 v = v1 / v2;
76a01679
JB
9247 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9248 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9249 break;
9250 case BINOP_REM:
9251 v = v1 % v2;
76a01679
JB
9252 if (v * v1 < 0)
9253 v -= v2;
4c4b4cd2
PH
9254 break;
9255 default:
9256 /* Should not reach this point. */
9257 v = 0;
9258 }
9259
9260 val = allocate_value (type1);
990a07ab 9261 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9262 TYPE_LENGTH (value_type (val)),
9263 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9264 return val;
9265}
9266
9267static int
9268ada_value_equal (struct value *arg1, struct value *arg2)
9269{
df407dfe
AC
9270 if (ada_is_direct_array_type (value_type (arg1))
9271 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9272 {
f58b38bf
JB
9273 /* Automatically dereference any array reference before
9274 we attempt to perform the comparison. */
9275 arg1 = ada_coerce_ref (arg1);
9276 arg2 = ada_coerce_ref (arg2);
9277
4c4b4cd2
PH
9278 arg1 = ada_coerce_to_simple_array (arg1);
9279 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
9280 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9281 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 9282 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9283 /* FIXME: The following works only for types whose
76a01679
JB
9284 representations use all bits (no padding or undefined bits)
9285 and do not have user-defined equality. */
9286 return
df407dfe 9287 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 9288 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 9289 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
9290 }
9291 return value_equal (arg1, arg2);
9292}
9293
52ce6436
PH
9294/* Total number of component associations in the aggregate starting at
9295 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9296 OP_AGGREGATE. */
52ce6436
PH
9297
9298static int
9299num_component_specs (struct expression *exp, int pc)
9300{
9301 int n, m, i;
5b4ee69b 9302
52ce6436
PH
9303 m = exp->elts[pc + 1].longconst;
9304 pc += 3;
9305 n = 0;
9306 for (i = 0; i < m; i += 1)
9307 {
9308 switch (exp->elts[pc].opcode)
9309 {
9310 default:
9311 n += 1;
9312 break;
9313 case OP_CHOICES:
9314 n += exp->elts[pc + 1].longconst;
9315 break;
9316 }
9317 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9318 }
9319 return n;
9320}
9321
9322/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9323 component of LHS (a simple array or a record), updating *POS past
9324 the expression, assuming that LHS is contained in CONTAINER. Does
9325 not modify the inferior's memory, nor does it modify LHS (unless
9326 LHS == CONTAINER). */
9327
9328static void
9329assign_component (struct value *container, struct value *lhs, LONGEST index,
9330 struct expression *exp, int *pos)
9331{
9332 struct value *mark = value_mark ();
9333 struct value *elt;
5b4ee69b 9334
52ce6436
PH
9335 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9336 {
22601c15
UW
9337 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9338 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9339
52ce6436
PH
9340 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9341 }
9342 else
9343 {
9344 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9345 elt = ada_to_fixed_value (elt);
52ce6436
PH
9346 }
9347
9348 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9349 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9350 else
9351 value_assign_to_component (container, elt,
9352 ada_evaluate_subexp (NULL, exp, pos,
9353 EVAL_NORMAL));
9354
9355 value_free_to_mark (mark);
9356}
9357
9358/* Assuming that LHS represents an lvalue having a record or array
9359 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9360 of that aggregate's value to LHS, advancing *POS past the
9361 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9362 lvalue containing LHS (possibly LHS itself). Does not modify
9363 the inferior's memory, nor does it modify the contents of
0963b4bd 9364 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9365
9366static struct value *
9367assign_aggregate (struct value *container,
9368 struct value *lhs, struct expression *exp,
9369 int *pos, enum noside noside)
9370{
9371 struct type *lhs_type;
9372 int n = exp->elts[*pos+1].longconst;
9373 LONGEST low_index, high_index;
9374 int num_specs;
9375 LONGEST *indices;
9376 int max_indices, num_indices;
52ce6436 9377 int i;
52ce6436
PH
9378
9379 *pos += 3;
9380 if (noside != EVAL_NORMAL)
9381 {
52ce6436
PH
9382 for (i = 0; i < n; i += 1)
9383 ada_evaluate_subexp (NULL, exp, pos, noside);
9384 return container;
9385 }
9386
9387 container = ada_coerce_ref (container);
9388 if (ada_is_direct_array_type (value_type (container)))
9389 container = ada_coerce_to_simple_array (container);
9390 lhs = ada_coerce_ref (lhs);
9391 if (!deprecated_value_modifiable (lhs))
9392 error (_("Left operand of assignment is not a modifiable lvalue."));
9393
9394 lhs_type = value_type (lhs);
9395 if (ada_is_direct_array_type (lhs_type))
9396 {
9397 lhs = ada_coerce_to_simple_array (lhs);
9398 lhs_type = value_type (lhs);
9399 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9400 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9401 }
9402 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9403 {
9404 low_index = 0;
9405 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9406 }
9407 else
9408 error (_("Left-hand side must be array or record."));
9409
9410 num_specs = num_component_specs (exp, *pos - 3);
9411 max_indices = 4 * num_specs + 4;
9412 indices = alloca (max_indices * sizeof (indices[0]));
9413 indices[0] = indices[1] = low_index - 1;
9414 indices[2] = indices[3] = high_index + 1;
9415 num_indices = 4;
9416
9417 for (i = 0; i < n; i += 1)
9418 {
9419 switch (exp->elts[*pos].opcode)
9420 {
1fbf5ada
JB
9421 case OP_CHOICES:
9422 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9423 &num_indices, max_indices,
9424 low_index, high_index);
9425 break;
9426 case OP_POSITIONAL:
9427 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9428 &num_indices, max_indices,
9429 low_index, high_index);
1fbf5ada
JB
9430 break;
9431 case OP_OTHERS:
9432 if (i != n-1)
9433 error (_("Misplaced 'others' clause"));
9434 aggregate_assign_others (container, lhs, exp, pos, indices,
9435 num_indices, low_index, high_index);
9436 break;
9437 default:
9438 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9439 }
9440 }
9441
9442 return container;
9443}
9444
9445/* Assign into the component of LHS indexed by the OP_POSITIONAL
9446 construct at *POS, updating *POS past the construct, given that
9447 the positions are relative to lower bound LOW, where HIGH is the
9448 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9449 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9450 assign_aggregate. */
52ce6436
PH
9451static void
9452aggregate_assign_positional (struct value *container,
9453 struct value *lhs, struct expression *exp,
9454 int *pos, LONGEST *indices, int *num_indices,
9455 int max_indices, LONGEST low, LONGEST high)
9456{
9457 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9458
9459 if (ind - 1 == high)
e1d5a0d2 9460 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9461 if (ind <= high)
9462 {
9463 add_component_interval (ind, ind, indices, num_indices, max_indices);
9464 *pos += 3;
9465 assign_component (container, lhs, ind, exp, pos);
9466 }
9467 else
9468 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9469}
9470
9471/* Assign into the components of LHS indexed by the OP_CHOICES
9472 construct at *POS, updating *POS past the construct, given that
9473 the allowable indices are LOW..HIGH. Record the indices assigned
9474 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9475 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9476static void
9477aggregate_assign_from_choices (struct value *container,
9478 struct value *lhs, struct expression *exp,
9479 int *pos, LONGEST *indices, int *num_indices,
9480 int max_indices, LONGEST low, LONGEST high)
9481{
9482 int j;
9483 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9484 int choice_pos, expr_pc;
9485 int is_array = ada_is_direct_array_type (value_type (lhs));
9486
9487 choice_pos = *pos += 3;
9488
9489 for (j = 0; j < n_choices; j += 1)
9490 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9491 expr_pc = *pos;
9492 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9493
9494 for (j = 0; j < n_choices; j += 1)
9495 {
9496 LONGEST lower, upper;
9497 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9498
52ce6436
PH
9499 if (op == OP_DISCRETE_RANGE)
9500 {
9501 choice_pos += 1;
9502 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9503 EVAL_NORMAL));
9504 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9505 EVAL_NORMAL));
9506 }
9507 else if (is_array)
9508 {
9509 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9510 EVAL_NORMAL));
9511 upper = lower;
9512 }
9513 else
9514 {
9515 int ind;
0d5cff50 9516 const char *name;
5b4ee69b 9517
52ce6436
PH
9518 switch (op)
9519 {
9520 case OP_NAME:
9521 name = &exp->elts[choice_pos + 2].string;
9522 break;
9523 case OP_VAR_VALUE:
9524 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9525 break;
9526 default:
9527 error (_("Invalid record component association."));
9528 }
9529 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9530 ind = 0;
9531 if (! find_struct_field (name, value_type (lhs), 0,
9532 NULL, NULL, NULL, NULL, &ind))
9533 error (_("Unknown component name: %s."), name);
9534 lower = upper = ind;
9535 }
9536
9537 if (lower <= upper && (lower < low || upper > high))
9538 error (_("Index in component association out of bounds."));
9539
9540 add_component_interval (lower, upper, indices, num_indices,
9541 max_indices);
9542 while (lower <= upper)
9543 {
9544 int pos1;
5b4ee69b 9545
52ce6436
PH
9546 pos1 = expr_pc;
9547 assign_component (container, lhs, lower, exp, &pos1);
9548 lower += 1;
9549 }
9550 }
9551}
9552
9553/* Assign the value of the expression in the OP_OTHERS construct in
9554 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9555 have not been previously assigned. The index intervals already assigned
9556 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9557 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9558static void
9559aggregate_assign_others (struct value *container,
9560 struct value *lhs, struct expression *exp,
9561 int *pos, LONGEST *indices, int num_indices,
9562 LONGEST low, LONGEST high)
9563{
9564 int i;
5ce64950 9565 int expr_pc = *pos + 1;
52ce6436
PH
9566
9567 for (i = 0; i < num_indices - 2; i += 2)
9568 {
9569 LONGEST ind;
5b4ee69b 9570
52ce6436
PH
9571 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9572 {
5ce64950 9573 int localpos;
5b4ee69b 9574
5ce64950
MS
9575 localpos = expr_pc;
9576 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9577 }
9578 }
9579 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9580}
9581
9582/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9583 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9584 modifying *SIZE as needed. It is an error if *SIZE exceeds
9585 MAX_SIZE. The resulting intervals do not overlap. */
9586static void
9587add_component_interval (LONGEST low, LONGEST high,
9588 LONGEST* indices, int *size, int max_size)
9589{
9590 int i, j;
5b4ee69b 9591
52ce6436
PH
9592 for (i = 0; i < *size; i += 2) {
9593 if (high >= indices[i] && low <= indices[i + 1])
9594 {
9595 int kh;
5b4ee69b 9596
52ce6436
PH
9597 for (kh = i + 2; kh < *size; kh += 2)
9598 if (high < indices[kh])
9599 break;
9600 if (low < indices[i])
9601 indices[i] = low;
9602 indices[i + 1] = indices[kh - 1];
9603 if (high > indices[i + 1])
9604 indices[i + 1] = high;
9605 memcpy (indices + i + 2, indices + kh, *size - kh);
9606 *size -= kh - i - 2;
9607 return;
9608 }
9609 else if (high < indices[i])
9610 break;
9611 }
9612
9613 if (*size == max_size)
9614 error (_("Internal error: miscounted aggregate components."));
9615 *size += 2;
9616 for (j = *size-1; j >= i+2; j -= 1)
9617 indices[j] = indices[j - 2];
9618 indices[i] = low;
9619 indices[i + 1] = high;
9620}
9621
6e48bd2c
JB
9622/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9623 is different. */
9624
9625static struct value *
9626ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9627{
9628 if (type == ada_check_typedef (value_type (arg2)))
9629 return arg2;
9630
9631 if (ada_is_fixed_point_type (type))
9632 return (cast_to_fixed (type, arg2));
9633
9634 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9635 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9636
9637 return value_cast (type, arg2);
9638}
9639
284614f0
JB
9640/* Evaluating Ada expressions, and printing their result.
9641 ------------------------------------------------------
9642
21649b50
JB
9643 1. Introduction:
9644 ----------------
9645
284614f0
JB
9646 We usually evaluate an Ada expression in order to print its value.
9647 We also evaluate an expression in order to print its type, which
9648 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9649 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9650 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9651 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9652 similar.
9653
9654 Evaluating expressions is a little more complicated for Ada entities
9655 than it is for entities in languages such as C. The main reason for
9656 this is that Ada provides types whose definition might be dynamic.
9657 One example of such types is variant records. Or another example
9658 would be an array whose bounds can only be known at run time.
9659
9660 The following description is a general guide as to what should be
9661 done (and what should NOT be done) in order to evaluate an expression
9662 involving such types, and when. This does not cover how the semantic
9663 information is encoded by GNAT as this is covered separatly. For the
9664 document used as the reference for the GNAT encoding, see exp_dbug.ads
9665 in the GNAT sources.
9666
9667 Ideally, we should embed each part of this description next to its
9668 associated code. Unfortunately, the amount of code is so vast right
9669 now that it's hard to see whether the code handling a particular
9670 situation might be duplicated or not. One day, when the code is
9671 cleaned up, this guide might become redundant with the comments
9672 inserted in the code, and we might want to remove it.
9673
21649b50
JB
9674 2. ``Fixing'' an Entity, the Simple Case:
9675 -----------------------------------------
9676
284614f0
JB
9677 When evaluating Ada expressions, the tricky issue is that they may
9678 reference entities whose type contents and size are not statically
9679 known. Consider for instance a variant record:
9680
9681 type Rec (Empty : Boolean := True) is record
9682 case Empty is
9683 when True => null;
9684 when False => Value : Integer;
9685 end case;
9686 end record;
9687 Yes : Rec := (Empty => False, Value => 1);
9688 No : Rec := (empty => True);
9689
9690 The size and contents of that record depends on the value of the
9691 descriminant (Rec.Empty). At this point, neither the debugging
9692 information nor the associated type structure in GDB are able to
9693 express such dynamic types. So what the debugger does is to create
9694 "fixed" versions of the type that applies to the specific object.
9695 We also informally refer to this opperation as "fixing" an object,
9696 which means creating its associated fixed type.
9697
9698 Example: when printing the value of variable "Yes" above, its fixed
9699 type would look like this:
9700
9701 type Rec is record
9702 Empty : Boolean;
9703 Value : Integer;
9704 end record;
9705
9706 On the other hand, if we printed the value of "No", its fixed type
9707 would become:
9708
9709 type Rec is record
9710 Empty : Boolean;
9711 end record;
9712
9713 Things become a little more complicated when trying to fix an entity
9714 with a dynamic type that directly contains another dynamic type,
9715 such as an array of variant records, for instance. There are
9716 two possible cases: Arrays, and records.
9717
21649b50
JB
9718 3. ``Fixing'' Arrays:
9719 ---------------------
9720
9721 The type structure in GDB describes an array in terms of its bounds,
9722 and the type of its elements. By design, all elements in the array
9723 have the same type and we cannot represent an array of variant elements
9724 using the current type structure in GDB. When fixing an array,
9725 we cannot fix the array element, as we would potentially need one
9726 fixed type per element of the array. As a result, the best we can do
9727 when fixing an array is to produce an array whose bounds and size
9728 are correct (allowing us to read it from memory), but without having
9729 touched its element type. Fixing each element will be done later,
9730 when (if) necessary.
9731
9732 Arrays are a little simpler to handle than records, because the same
9733 amount of memory is allocated for each element of the array, even if
1b536f04 9734 the amount of space actually used by each element differs from element
21649b50 9735 to element. Consider for instance the following array of type Rec:
284614f0
JB
9736
9737 type Rec_Array is array (1 .. 2) of Rec;
9738
1b536f04
JB
9739 The actual amount of memory occupied by each element might be different
9740 from element to element, depending on the value of their discriminant.
21649b50 9741 But the amount of space reserved for each element in the array remains
1b536f04 9742 fixed regardless. So we simply need to compute that size using
21649b50
JB
9743 the debugging information available, from which we can then determine
9744 the array size (we multiply the number of elements of the array by
9745 the size of each element).
9746
9747 The simplest case is when we have an array of a constrained element
9748 type. For instance, consider the following type declarations:
9749
9750 type Bounded_String (Max_Size : Integer) is
9751 Length : Integer;
9752 Buffer : String (1 .. Max_Size);
9753 end record;
9754 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9755
9756 In this case, the compiler describes the array as an array of
9757 variable-size elements (identified by its XVS suffix) for which
9758 the size can be read in the parallel XVZ variable.
9759
9760 In the case of an array of an unconstrained element type, the compiler
9761 wraps the array element inside a private PAD type. This type should not
9762 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9763 that we also use the adjective "aligner" in our code to designate
9764 these wrapper types.
9765
1b536f04 9766 In some cases, the size allocated for each element is statically
21649b50
JB
9767 known. In that case, the PAD type already has the correct size,
9768 and the array element should remain unfixed.
9769
9770 But there are cases when this size is not statically known.
9771 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9772
9773 type Dynamic is array (1 .. Five) of Integer;
9774 type Wrapper (Has_Length : Boolean := False) is record
9775 Data : Dynamic;
9776 case Has_Length is
9777 when True => Length : Integer;
9778 when False => null;
9779 end case;
9780 end record;
9781 type Wrapper_Array is array (1 .. 2) of Wrapper;
9782
9783 Hello : Wrapper_Array := (others => (Has_Length => True,
9784 Data => (others => 17),
9785 Length => 1));
9786
9787
9788 The debugging info would describe variable Hello as being an
9789 array of a PAD type. The size of that PAD type is not statically
9790 known, but can be determined using a parallel XVZ variable.
9791 In that case, a copy of the PAD type with the correct size should
9792 be used for the fixed array.
9793
21649b50
JB
9794 3. ``Fixing'' record type objects:
9795 ----------------------------------
9796
9797 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9798 record types. In this case, in order to compute the associated
9799 fixed type, we need to determine the size and offset of each of
9800 its components. This, in turn, requires us to compute the fixed
9801 type of each of these components.
9802
9803 Consider for instance the example:
9804
9805 type Bounded_String (Max_Size : Natural) is record
9806 Str : String (1 .. Max_Size);
9807 Length : Natural;
9808 end record;
9809 My_String : Bounded_String (Max_Size => 10);
9810
9811 In that case, the position of field "Length" depends on the size
9812 of field Str, which itself depends on the value of the Max_Size
21649b50 9813 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9814 we need to fix the type of field Str. Therefore, fixing a variant
9815 record requires us to fix each of its components.
9816
9817 However, if a component does not have a dynamic size, the component
9818 should not be fixed. In particular, fields that use a PAD type
9819 should not fixed. Here is an example where this might happen
9820 (assuming type Rec above):
9821
9822 type Container (Big : Boolean) is record
9823 First : Rec;
9824 After : Integer;
9825 case Big is
9826 when True => Another : Integer;
9827 when False => null;
9828 end case;
9829 end record;
9830 My_Container : Container := (Big => False,
9831 First => (Empty => True),
9832 After => 42);
9833
9834 In that example, the compiler creates a PAD type for component First,
9835 whose size is constant, and then positions the component After just
9836 right after it. The offset of component After is therefore constant
9837 in this case.
9838
9839 The debugger computes the position of each field based on an algorithm
9840 that uses, among other things, the actual position and size of the field
21649b50
JB
9841 preceding it. Let's now imagine that the user is trying to print
9842 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9843 end up computing the offset of field After based on the size of the
9844 fixed version of field First. And since in our example First has
9845 only one actual field, the size of the fixed type is actually smaller
9846 than the amount of space allocated to that field, and thus we would
9847 compute the wrong offset of field After.
9848
21649b50
JB
9849 To make things more complicated, we need to watch out for dynamic
9850 components of variant records (identified by the ___XVL suffix in
9851 the component name). Even if the target type is a PAD type, the size
9852 of that type might not be statically known. So the PAD type needs
9853 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9854 we might end up with the wrong size for our component. This can be
9855 observed with the following type declarations:
284614f0
JB
9856
9857 type Octal is new Integer range 0 .. 7;
9858 type Octal_Array is array (Positive range <>) of Octal;
9859 pragma Pack (Octal_Array);
9860
9861 type Octal_Buffer (Size : Positive) is record
9862 Buffer : Octal_Array (1 .. Size);
9863 Length : Integer;
9864 end record;
9865
9866 In that case, Buffer is a PAD type whose size is unset and needs
9867 to be computed by fixing the unwrapped type.
9868
21649b50
JB
9869 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9870 ----------------------------------------------------------
9871
9872 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9873 thus far, be actually fixed?
9874
9875 The answer is: Only when referencing that element. For instance
9876 when selecting one component of a record, this specific component
9877 should be fixed at that point in time. Or when printing the value
9878 of a record, each component should be fixed before its value gets
9879 printed. Similarly for arrays, the element of the array should be
9880 fixed when printing each element of the array, or when extracting
9881 one element out of that array. On the other hand, fixing should
9882 not be performed on the elements when taking a slice of an array!
9883
9884 Note that one of the side-effects of miscomputing the offset and
9885 size of each field is that we end up also miscomputing the size
9886 of the containing type. This can have adverse results when computing
9887 the value of an entity. GDB fetches the value of an entity based
9888 on the size of its type, and thus a wrong size causes GDB to fetch
9889 the wrong amount of memory. In the case where the computed size is
9890 too small, GDB fetches too little data to print the value of our
9891 entiry. Results in this case as unpredicatble, as we usually read
9892 past the buffer containing the data =:-o. */
9893
9894/* Implement the evaluate_exp routine in the exp_descriptor structure
9895 for the Ada language. */
9896
52ce6436 9897static struct value *
ebf56fd3 9898ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9899 int *pos, enum noside noside)
14f9c5c9
AS
9900{
9901 enum exp_opcode op;
b5385fc0 9902 int tem;
14f9c5c9 9903 int pc;
5ec18f2b 9904 int preeval_pos;
14f9c5c9
AS
9905 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9906 struct type *type;
52ce6436 9907 int nargs, oplen;
d2e4a39e 9908 struct value **argvec;
14f9c5c9 9909
d2e4a39e
AS
9910 pc = *pos;
9911 *pos += 1;
14f9c5c9
AS
9912 op = exp->elts[pc].opcode;
9913
d2e4a39e 9914 switch (op)
14f9c5c9
AS
9915 {
9916 default:
9917 *pos -= 1;
6e48bd2c 9918 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
9919
9920 if (noside == EVAL_NORMAL)
9921 arg1 = unwrap_value (arg1);
6e48bd2c
JB
9922
9923 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9924 then we need to perform the conversion manually, because
9925 evaluate_subexp_standard doesn't do it. This conversion is
9926 necessary in Ada because the different kinds of float/fixed
9927 types in Ada have different representations.
9928
9929 Similarly, we need to perform the conversion from OP_LONG
9930 ourselves. */
9931 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9932 arg1 = ada_value_cast (expect_type, arg1, noside);
9933
9934 return arg1;
4c4b4cd2
PH
9935
9936 case OP_STRING:
9937 {
76a01679 9938 struct value *result;
5b4ee69b 9939
76a01679
JB
9940 *pos -= 1;
9941 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9942 /* The result type will have code OP_STRING, bashed there from
9943 OP_ARRAY. Bash it back. */
df407dfe
AC
9944 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9945 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9946 return result;
4c4b4cd2 9947 }
14f9c5c9
AS
9948
9949 case UNOP_CAST:
9950 (*pos) += 2;
9951 type = exp->elts[pc + 1].type;
9952 arg1 = evaluate_subexp (type, exp, pos, noside);
9953 if (noside == EVAL_SKIP)
4c4b4cd2 9954 goto nosideret;
6e48bd2c 9955 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9956 return arg1;
9957
4c4b4cd2
PH
9958 case UNOP_QUAL:
9959 (*pos) += 2;
9960 type = exp->elts[pc + 1].type;
9961 return ada_evaluate_subexp (type, exp, pos, noside);
9962
14f9c5c9
AS
9963 case BINOP_ASSIGN:
9964 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9965 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9966 {
9967 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9968 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9969 return arg1;
9970 return ada_value_assign (arg1, arg1);
9971 }
003f3813
JB
9972 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9973 except if the lhs of our assignment is a convenience variable.
9974 In the case of assigning to a convenience variable, the lhs
9975 should be exactly the result of the evaluation of the rhs. */
9976 type = value_type (arg1);
9977 if (VALUE_LVAL (arg1) == lval_internalvar)
9978 type = NULL;
9979 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9980 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9981 return arg1;
df407dfe
AC
9982 if (ada_is_fixed_point_type (value_type (arg1)))
9983 arg2 = cast_to_fixed (value_type (arg1), arg2);
9984 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9985 error
323e0a4a 9986 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9987 else
df407dfe 9988 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9989 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9990
9991 case BINOP_ADD:
9992 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9993 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9994 if (noside == EVAL_SKIP)
4c4b4cd2 9995 goto nosideret;
2ac8a782
JB
9996 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9997 return (value_from_longest
9998 (value_type (arg1),
9999 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10000 if ((ada_is_fixed_point_type (value_type (arg1))
10001 || ada_is_fixed_point_type (value_type (arg2)))
10002 && value_type (arg1) != value_type (arg2))
323e0a4a 10003 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10004 /* Do the addition, and cast the result to the type of the first
10005 argument. We cannot cast the result to a reference type, so if
10006 ARG1 is a reference type, find its underlying type. */
10007 type = value_type (arg1);
10008 while (TYPE_CODE (type) == TYPE_CODE_REF)
10009 type = TYPE_TARGET_TYPE (type);
f44316fa 10010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10011 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10012
10013 case BINOP_SUB:
10014 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10015 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10016 if (noside == EVAL_SKIP)
4c4b4cd2 10017 goto nosideret;
2ac8a782
JB
10018 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10019 return (value_from_longest
10020 (value_type (arg1),
10021 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10022 if ((ada_is_fixed_point_type (value_type (arg1))
10023 || ada_is_fixed_point_type (value_type (arg2)))
10024 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10025 error (_("Operands of fixed-point subtraction "
10026 "must have the same type"));
b7789565
JB
10027 /* Do the substraction, and cast the result to the type of the first
10028 argument. We cannot cast the result to a reference type, so if
10029 ARG1 is a reference type, find its underlying type. */
10030 type = value_type (arg1);
10031 while (TYPE_CODE (type) == TYPE_CODE_REF)
10032 type = TYPE_TARGET_TYPE (type);
f44316fa 10033 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10034 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10035
10036 case BINOP_MUL:
10037 case BINOP_DIV:
e1578042
JB
10038 case BINOP_REM:
10039 case BINOP_MOD:
14f9c5c9
AS
10040 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10042 if (noside == EVAL_SKIP)
4c4b4cd2 10043 goto nosideret;
e1578042 10044 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10045 {
10046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10047 return value_zero (value_type (arg1), not_lval);
10048 }
14f9c5c9 10049 else
4c4b4cd2 10050 {
a53b7a21 10051 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10052 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10053 arg1 = cast_from_fixed (type, arg1);
df407dfe 10054 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10055 arg2 = cast_from_fixed (type, arg2);
f44316fa 10056 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10057 return ada_value_binop (arg1, arg2, op);
10058 }
10059
4c4b4cd2
PH
10060 case BINOP_EQUAL:
10061 case BINOP_NOTEQUAL:
14f9c5c9 10062 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10063 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10064 if (noside == EVAL_SKIP)
76a01679 10065 goto nosideret;
4c4b4cd2 10066 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10067 tem = 0;
4c4b4cd2 10068 else
f44316fa
UW
10069 {
10070 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10071 tem = ada_value_equal (arg1, arg2);
10072 }
4c4b4cd2 10073 if (op == BINOP_NOTEQUAL)
76a01679 10074 tem = !tem;
fbb06eb1
UW
10075 type = language_bool_type (exp->language_defn, exp->gdbarch);
10076 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10077
10078 case UNOP_NEG:
10079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10080 if (noside == EVAL_SKIP)
10081 goto nosideret;
df407dfe
AC
10082 else if (ada_is_fixed_point_type (value_type (arg1)))
10083 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10084 else
f44316fa
UW
10085 {
10086 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10087 return value_neg (arg1);
10088 }
4c4b4cd2 10089
2330c6c6
JB
10090 case BINOP_LOGICAL_AND:
10091 case BINOP_LOGICAL_OR:
10092 case UNOP_LOGICAL_NOT:
000d5124
JB
10093 {
10094 struct value *val;
10095
10096 *pos -= 1;
10097 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10098 type = language_bool_type (exp->language_defn, exp->gdbarch);
10099 return value_cast (type, val);
000d5124 10100 }
2330c6c6
JB
10101
10102 case BINOP_BITWISE_AND:
10103 case BINOP_BITWISE_IOR:
10104 case BINOP_BITWISE_XOR:
000d5124
JB
10105 {
10106 struct value *val;
10107
10108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10109 *pos = pc;
10110 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10111
10112 return value_cast (value_type (arg1), val);
10113 }
2330c6c6 10114
14f9c5c9
AS
10115 case OP_VAR_VALUE:
10116 *pos -= 1;
6799def4 10117
14f9c5c9 10118 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10119 {
10120 *pos += 4;
10121 goto nosideret;
10122 }
da5c522f
JB
10123
10124 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10125 /* Only encountered when an unresolved symbol occurs in a
10126 context other than a function call, in which case, it is
52ce6436 10127 invalid. */
323e0a4a 10128 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10129 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10130
10131 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10132 {
0c1f74cf 10133 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10134 /* Check to see if this is a tagged type. We also need to handle
10135 the case where the type is a reference to a tagged type, but
10136 we have to be careful to exclude pointers to tagged types.
10137 The latter should be shown as usual (as a pointer), whereas
10138 a reference should mostly be transparent to the user. */
10139 if (ada_is_tagged_type (type, 0)
023db19c 10140 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10141 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10142 {
10143 /* Tagged types are a little special in the fact that the real
10144 type is dynamic and can only be determined by inspecting the
10145 object's tag. This means that we need to get the object's
10146 value first (EVAL_NORMAL) and then extract the actual object
10147 type from its tag.
10148
10149 Note that we cannot skip the final step where we extract
10150 the object type from its tag, because the EVAL_NORMAL phase
10151 results in dynamic components being resolved into fixed ones.
10152 This can cause problems when trying to print the type
10153 description of tagged types whose parent has a dynamic size:
10154 We use the type name of the "_parent" component in order
10155 to print the name of the ancestor type in the type description.
10156 If that component had a dynamic size, the resolution into
10157 a fixed type would result in the loss of that type name,
10158 thus preventing us from printing the name of the ancestor
10159 type in the type description. */
10160 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10161
10162 if (TYPE_CODE (type) != TYPE_CODE_REF)
10163 {
10164 struct type *actual_type;
10165
10166 actual_type = type_from_tag (ada_value_tag (arg1));
10167 if (actual_type == NULL)
10168 /* If, for some reason, we were unable to determine
10169 the actual type from the tag, then use the static
10170 approximation that we just computed as a fallback.
10171 This can happen if the debugging information is
10172 incomplete, for instance. */
10173 actual_type = type;
10174 return value_zero (actual_type, not_lval);
10175 }
10176 else
10177 {
10178 /* In the case of a ref, ada_coerce_ref takes care
10179 of determining the actual type. But the evaluation
10180 should return a ref as it should be valid to ask
10181 for its address; so rebuild a ref after coerce. */
10182 arg1 = ada_coerce_ref (arg1);
10183 return value_ref (arg1);
10184 }
10185 }
0c1f74cf 10186
84754697
JB
10187 /* Records and unions for which GNAT encodings have been
10188 generated need to be statically fixed as well.
10189 Otherwise, non-static fixing produces a type where
10190 all dynamic properties are removed, which prevents "ptype"
10191 from being able to completely describe the type.
10192 For instance, a case statement in a variant record would be
10193 replaced by the relevant components based on the actual
10194 value of the discriminants. */
10195 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10196 && dynamic_template_type (type) != NULL)
10197 || (TYPE_CODE (type) == TYPE_CODE_UNION
10198 && ada_find_parallel_type (type, "___XVU") != NULL))
10199 {
10200 *pos += 4;
10201 return value_zero (to_static_fixed_type (type), not_lval);
10202 }
4c4b4cd2 10203 }
da5c522f
JB
10204
10205 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10206 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10207
10208 case OP_FUNCALL:
10209 (*pos) += 2;
10210
10211 /* Allocate arg vector, including space for the function to be
10212 called in argvec[0] and a terminating NULL. */
10213 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10214 argvec =
10215 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
10216
10217 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10218 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10219 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10220 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10221 else
10222 {
10223 for (tem = 0; tem <= nargs; tem += 1)
10224 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10225 argvec[tem] = 0;
10226
10227 if (noside == EVAL_SKIP)
10228 goto nosideret;
10229 }
10230
ad82864c
JB
10231 if (ada_is_constrained_packed_array_type
10232 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10233 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10234 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10235 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10236 /* This is a packed array that has already been fixed, and
10237 therefore already coerced to a simple array. Nothing further
10238 to do. */
10239 ;
df407dfe
AC
10240 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
10241 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 10242 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
10243 argvec[0] = value_addr (argvec[0]);
10244
df407dfe 10245 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10246
10247 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10248 them. So, if this is an array typedef (encoding use for array
10249 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10250 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10251 type = ada_typedef_target_type (type);
10252
4c4b4cd2
PH
10253 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10254 {
61ee279c 10255 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10256 {
10257 case TYPE_CODE_FUNC:
61ee279c 10258 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10259 break;
10260 case TYPE_CODE_ARRAY:
10261 break;
10262 case TYPE_CODE_STRUCT:
10263 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10264 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10265 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10266 break;
10267 default:
323e0a4a 10268 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10269 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10270 break;
10271 }
10272 }
10273
10274 switch (TYPE_CODE (type))
10275 {
10276 case TYPE_CODE_FUNC:
10277 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
10278 {
10279 struct type *rtype = TYPE_TARGET_TYPE (type);
10280
10281 if (TYPE_GNU_IFUNC (type))
10282 return allocate_value (TYPE_TARGET_TYPE (rtype));
10283 return allocate_value (rtype);
10284 }
4c4b4cd2 10285 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
10286 case TYPE_CODE_INTERNAL_FUNCTION:
10287 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10288 /* We don't know anything about what the internal
10289 function might return, but we have to return
10290 something. */
10291 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10292 not_lval);
10293 else
10294 return call_internal_function (exp->gdbarch, exp->language_defn,
10295 argvec[0], nargs, argvec + 1);
10296
4c4b4cd2
PH
10297 case TYPE_CODE_STRUCT:
10298 {
10299 int arity;
10300
4c4b4cd2
PH
10301 arity = ada_array_arity (type);
10302 type = ada_array_element_type (type, nargs);
10303 if (type == NULL)
323e0a4a 10304 error (_("cannot subscript or call a record"));
4c4b4cd2 10305 if (arity != nargs)
323e0a4a 10306 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10307 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10308 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10309 return
10310 unwrap_value (ada_value_subscript
10311 (argvec[0], nargs, argvec + 1));
10312 }
10313 case TYPE_CODE_ARRAY:
10314 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10315 {
10316 type = ada_array_element_type (type, nargs);
10317 if (type == NULL)
323e0a4a 10318 error (_("element type of array unknown"));
4c4b4cd2 10319 else
0a07e705 10320 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10321 }
10322 return
10323 unwrap_value (ada_value_subscript
10324 (ada_coerce_to_simple_array (argvec[0]),
10325 nargs, argvec + 1));
10326 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10327 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10328 {
deede10c 10329 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10330 type = ada_array_element_type (type, nargs);
10331 if (type == NULL)
323e0a4a 10332 error (_("element type of array unknown"));
4c4b4cd2 10333 else
0a07e705 10334 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10335 }
10336 return
deede10c
JB
10337 unwrap_value (ada_value_ptr_subscript (argvec[0],
10338 nargs, argvec + 1));
4c4b4cd2
PH
10339
10340 default:
e1d5a0d2
PH
10341 error (_("Attempt to index or call something other than an "
10342 "array or function"));
4c4b4cd2
PH
10343 }
10344
10345 case TERNOP_SLICE:
10346 {
10347 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10348 struct value *low_bound_val =
10349 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10350 struct value *high_bound_val =
10351 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10352 LONGEST low_bound;
10353 LONGEST high_bound;
5b4ee69b 10354
994b9211
AC
10355 low_bound_val = coerce_ref (low_bound_val);
10356 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
10357 low_bound = pos_atr (low_bound_val);
10358 high_bound = pos_atr (high_bound_val);
963a6417 10359
4c4b4cd2
PH
10360 if (noside == EVAL_SKIP)
10361 goto nosideret;
10362
4c4b4cd2
PH
10363 /* If this is a reference to an aligner type, then remove all
10364 the aligners. */
df407dfe
AC
10365 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10366 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10367 TYPE_TARGET_TYPE (value_type (array)) =
10368 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10369
ad82864c 10370 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10371 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10372
10373 /* If this is a reference to an array or an array lvalue,
10374 convert to a pointer. */
df407dfe
AC
10375 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10376 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10377 && VALUE_LVAL (array) == lval_memory))
10378 array = value_addr (array);
10379
1265e4aa 10380 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10381 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10382 (value_type (array))))
0b5d8877 10383 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
10384
10385 array = ada_coerce_to_simple_array_ptr (array);
10386
714e53ab
PH
10387 /* If we have more than one level of pointer indirection,
10388 dereference the value until we get only one level. */
df407dfe
AC
10389 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10390 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10391 == TYPE_CODE_PTR))
10392 array = value_ind (array);
10393
10394 /* Make sure we really do have an array type before going further,
10395 to avoid a SEGV when trying to get the index type or the target
10396 type later down the road if the debug info generated by
10397 the compiler is incorrect or incomplete. */
df407dfe 10398 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10399 error (_("cannot take slice of non-array"));
714e53ab 10400
828292f2
JB
10401 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10402 == TYPE_CODE_PTR)
4c4b4cd2 10403 {
828292f2
JB
10404 struct type *type0 = ada_check_typedef (value_type (array));
10405
0b5d8877 10406 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 10407 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
10408 else
10409 {
10410 struct type *arr_type0 =
828292f2 10411 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10412
f5938064
JG
10413 return ada_value_slice_from_ptr (array, arr_type0,
10414 longest_to_int (low_bound),
10415 longest_to_int (high_bound));
4c4b4cd2
PH
10416 }
10417 }
10418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10419 return array;
10420 else if (high_bound < low_bound)
df407dfe 10421 return empty_array (value_type (array), low_bound);
4c4b4cd2 10422 else
529cad9c
PH
10423 return ada_value_slice (array, longest_to_int (low_bound),
10424 longest_to_int (high_bound));
4c4b4cd2 10425 }
14f9c5c9 10426
4c4b4cd2
PH
10427 case UNOP_IN_RANGE:
10428 (*pos) += 2;
10429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10430 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10431
14f9c5c9 10432 if (noside == EVAL_SKIP)
4c4b4cd2 10433 goto nosideret;
14f9c5c9 10434
4c4b4cd2
PH
10435 switch (TYPE_CODE (type))
10436 {
10437 default:
e1d5a0d2
PH
10438 lim_warning (_("Membership test incompletely implemented; "
10439 "always returns true"));
fbb06eb1
UW
10440 type = language_bool_type (exp->language_defn, exp->gdbarch);
10441 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10442
10443 case TYPE_CODE_RANGE:
030b4912
UW
10444 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10445 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10447 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10448 type = language_bool_type (exp->language_defn, exp->gdbarch);
10449 return
10450 value_from_longest (type,
4c4b4cd2
PH
10451 (value_less (arg1, arg3)
10452 || value_equal (arg1, arg3))
10453 && (value_less (arg2, arg1)
10454 || value_equal (arg2, arg1)));
10455 }
10456
10457 case BINOP_IN_BOUNDS:
14f9c5c9 10458 (*pos) += 2;
4c4b4cd2
PH
10459 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10460 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10461
4c4b4cd2
PH
10462 if (noside == EVAL_SKIP)
10463 goto nosideret;
14f9c5c9 10464
4c4b4cd2 10465 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10466 {
10467 type = language_bool_type (exp->language_defn, exp->gdbarch);
10468 return value_zero (type, not_lval);
10469 }
14f9c5c9 10470
4c4b4cd2 10471 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10472
1eea4ebd
UW
10473 type = ada_index_type (value_type (arg2), tem, "range");
10474 if (!type)
10475 type = value_type (arg1);
14f9c5c9 10476
1eea4ebd
UW
10477 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10478 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10479
f44316fa
UW
10480 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10481 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10482 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10483 return
fbb06eb1 10484 value_from_longest (type,
4c4b4cd2
PH
10485 (value_less (arg1, arg3)
10486 || value_equal (arg1, arg3))
10487 && (value_less (arg2, arg1)
10488 || value_equal (arg2, arg1)));
10489
10490 case TERNOP_IN_RANGE:
10491 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10492 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10493 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10494
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
10497
f44316fa
UW
10498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10499 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10500 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10501 return
fbb06eb1 10502 value_from_longest (type,
4c4b4cd2
PH
10503 (value_less (arg1, arg3)
10504 || value_equal (arg1, arg3))
10505 && (value_less (arg2, arg1)
10506 || value_equal (arg2, arg1)));
10507
10508 case OP_ATR_FIRST:
10509 case OP_ATR_LAST:
10510 case OP_ATR_LENGTH:
10511 {
76a01679 10512 struct type *type_arg;
5b4ee69b 10513
76a01679
JB
10514 if (exp->elts[*pos].opcode == OP_TYPE)
10515 {
10516 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10517 arg1 = NULL;
5bc23cb3 10518 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10519 }
10520 else
10521 {
10522 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10523 type_arg = NULL;
10524 }
10525
10526 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 10527 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
10528 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10529 *pos += 4;
10530
10531 if (noside == EVAL_SKIP)
10532 goto nosideret;
10533
10534 if (type_arg == NULL)
10535 {
10536 arg1 = ada_coerce_ref (arg1);
10537
ad82864c 10538 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
10539 arg1 = ada_coerce_to_simple_array (arg1);
10540
aa4fb036 10541 if (op == OP_ATR_LENGTH)
1eea4ebd 10542 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10543 else
10544 {
10545 type = ada_index_type (value_type (arg1), tem,
10546 ada_attribute_name (op));
10547 if (type == NULL)
10548 type = builtin_type (exp->gdbarch)->builtin_int;
10549 }
76a01679
JB
10550
10551 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 10552 return allocate_value (type);
76a01679
JB
10553
10554 switch (op)
10555 {
10556 default: /* Should never happen. */
323e0a4a 10557 error (_("unexpected attribute encountered"));
76a01679 10558 case OP_ATR_FIRST:
1eea4ebd
UW
10559 return value_from_longest
10560 (type, ada_array_bound (arg1, tem, 0));
76a01679 10561 case OP_ATR_LAST:
1eea4ebd
UW
10562 return value_from_longest
10563 (type, ada_array_bound (arg1, tem, 1));
76a01679 10564 case OP_ATR_LENGTH:
1eea4ebd
UW
10565 return value_from_longest
10566 (type, ada_array_length (arg1, tem));
76a01679
JB
10567 }
10568 }
10569 else if (discrete_type_p (type_arg))
10570 {
10571 struct type *range_type;
0d5cff50 10572 const char *name = ada_type_name (type_arg);
5b4ee69b 10573
76a01679
JB
10574 range_type = NULL;
10575 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10576 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10577 if (range_type == NULL)
10578 range_type = type_arg;
10579 switch (op)
10580 {
10581 default:
323e0a4a 10582 error (_("unexpected attribute encountered"));
76a01679 10583 case OP_ATR_FIRST:
690cc4eb 10584 return value_from_longest
43bbcdc2 10585 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10586 case OP_ATR_LAST:
690cc4eb 10587 return value_from_longest
43bbcdc2 10588 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10589 case OP_ATR_LENGTH:
323e0a4a 10590 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10591 }
10592 }
10593 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10594 error (_("unimplemented type attribute"));
76a01679
JB
10595 else
10596 {
10597 LONGEST low, high;
10598
ad82864c
JB
10599 if (ada_is_constrained_packed_array_type (type_arg))
10600 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10601
aa4fb036 10602 if (op == OP_ATR_LENGTH)
1eea4ebd 10603 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
10604 else
10605 {
10606 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10607 if (type == NULL)
10608 type = builtin_type (exp->gdbarch)->builtin_int;
10609 }
1eea4ebd 10610
76a01679
JB
10611 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10612 return allocate_value (type);
10613
10614 switch (op)
10615 {
10616 default:
323e0a4a 10617 error (_("unexpected attribute encountered"));
76a01679 10618 case OP_ATR_FIRST:
1eea4ebd 10619 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10620 return value_from_longest (type, low);
10621 case OP_ATR_LAST:
1eea4ebd 10622 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10623 return value_from_longest (type, high);
10624 case OP_ATR_LENGTH:
1eea4ebd
UW
10625 low = ada_array_bound_from_type (type_arg, tem, 0);
10626 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10627 return value_from_longest (type, high - low + 1);
10628 }
10629 }
14f9c5c9
AS
10630 }
10631
4c4b4cd2
PH
10632 case OP_ATR_TAG:
10633 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10634 if (noside == EVAL_SKIP)
76a01679 10635 goto nosideret;
4c4b4cd2
PH
10636
10637 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10638 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10639
10640 return ada_value_tag (arg1);
10641
10642 case OP_ATR_MIN:
10643 case OP_ATR_MAX:
10644 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10645 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10646 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10647 if (noside == EVAL_SKIP)
76a01679 10648 goto nosideret;
d2e4a39e 10649 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10650 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10651 else
f44316fa
UW
10652 {
10653 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10654 return value_binop (arg1, arg2,
10655 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10656 }
14f9c5c9 10657
4c4b4cd2
PH
10658 case OP_ATR_MODULUS:
10659 {
31dedfee 10660 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10661
5b4ee69b 10662 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10663 if (noside == EVAL_SKIP)
10664 goto nosideret;
4c4b4cd2 10665
76a01679 10666 if (!ada_is_modular_type (type_arg))
323e0a4a 10667 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10668
76a01679
JB
10669 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10670 ada_modulus (type_arg));
4c4b4cd2
PH
10671 }
10672
10673
10674 case OP_ATR_POS:
10675 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10676 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10677 if (noside == EVAL_SKIP)
76a01679 10678 goto nosideret;
3cb382c9
UW
10679 type = builtin_type (exp->gdbarch)->builtin_int;
10680 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10681 return value_zero (type, not_lval);
14f9c5c9 10682 else
3cb382c9 10683 return value_pos_atr (type, arg1);
14f9c5c9 10684
4c4b4cd2
PH
10685 case OP_ATR_SIZE:
10686 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10687 type = value_type (arg1);
10688
10689 /* If the argument is a reference, then dereference its type, since
10690 the user is really asking for the size of the actual object,
10691 not the size of the pointer. */
10692 if (TYPE_CODE (type) == TYPE_CODE_REF)
10693 type = TYPE_TARGET_TYPE (type);
10694
4c4b4cd2 10695 if (noside == EVAL_SKIP)
76a01679 10696 goto nosideret;
4c4b4cd2 10697 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10698 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10699 else
22601c15 10700 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10701 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10702
10703 case OP_ATR_VAL:
10704 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10705 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10706 type = exp->elts[pc + 2].type;
14f9c5c9 10707 if (noside == EVAL_SKIP)
76a01679 10708 goto nosideret;
4c4b4cd2 10709 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10710 return value_zero (type, not_lval);
4c4b4cd2 10711 else
76a01679 10712 return value_val_atr (type, arg1);
4c4b4cd2
PH
10713
10714 case BINOP_EXP:
10715 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10716 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10717 if (noside == EVAL_SKIP)
10718 goto nosideret;
10719 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10720 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10721 else
f44316fa
UW
10722 {
10723 /* For integer exponentiation operations,
10724 only promote the first argument. */
10725 if (is_integral_type (value_type (arg2)))
10726 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10727 else
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729
10730 return value_binop (arg1, arg2, op);
10731 }
4c4b4cd2
PH
10732
10733 case UNOP_PLUS:
10734 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
10737 else
10738 return arg1;
10739
10740 case UNOP_ABS:
10741 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10742 if (noside == EVAL_SKIP)
10743 goto nosideret;
f44316fa 10744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10745 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10746 return value_neg (arg1);
14f9c5c9 10747 else
4c4b4cd2 10748 return arg1;
14f9c5c9
AS
10749
10750 case UNOP_IND:
5ec18f2b 10751 preeval_pos = *pos;
6b0d7253 10752 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10753 if (noside == EVAL_SKIP)
4c4b4cd2 10754 goto nosideret;
df407dfe 10755 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10756 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10757 {
10758 if (ada_is_array_descriptor_type (type))
10759 /* GDB allows dereferencing GNAT array descriptors. */
10760 {
10761 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10762
4c4b4cd2 10763 if (arrType == NULL)
323e0a4a 10764 error (_("Attempt to dereference null array pointer."));
00a4c844 10765 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10766 }
10767 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10768 || TYPE_CODE (type) == TYPE_CODE_REF
10769 /* In C you can dereference an array to get the 1st elt. */
10770 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 10771 {
5ec18f2b
JG
10772 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10773 only be determined by inspecting the object's tag.
10774 This means that we need to evaluate completely the
10775 expression in order to get its type. */
10776
023db19c
JB
10777 if ((TYPE_CODE (type) == TYPE_CODE_REF
10778 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
10779 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10780 {
10781 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10782 EVAL_NORMAL);
10783 type = value_type (ada_value_ind (arg1));
10784 }
10785 else
10786 {
10787 type = to_static_fixed_type
10788 (ada_aligned_type
10789 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10790 }
10791 check_size (type);
714e53ab
PH
10792 return value_zero (type, lval_memory);
10793 }
4c4b4cd2 10794 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10795 {
10796 /* GDB allows dereferencing an int. */
10797 if (expect_type == NULL)
10798 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10799 lval_memory);
10800 else
10801 {
10802 expect_type =
10803 to_static_fixed_type (ada_aligned_type (expect_type));
10804 return value_zero (expect_type, lval_memory);
10805 }
10806 }
4c4b4cd2 10807 else
323e0a4a 10808 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10809 }
0963b4bd 10810 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10811 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10812
96967637
JB
10813 if (TYPE_CODE (type) == TYPE_CODE_INT)
10814 /* GDB allows dereferencing an int. If we were given
10815 the expect_type, then use that as the target type.
10816 Otherwise, assume that the target type is an int. */
10817 {
10818 if (expect_type != NULL)
10819 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10820 arg1));
10821 else
10822 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10823 (CORE_ADDR) value_as_address (arg1));
10824 }
6b0d7253 10825
4c4b4cd2
PH
10826 if (ada_is_array_descriptor_type (type))
10827 /* GDB allows dereferencing GNAT array descriptors. */
10828 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10829 else
4c4b4cd2 10830 return ada_value_ind (arg1);
14f9c5c9
AS
10831
10832 case STRUCTOP_STRUCT:
10833 tem = longest_to_int (exp->elts[pc + 1].longconst);
10834 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 10835 preeval_pos = *pos;
14f9c5c9
AS
10836 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10837 if (noside == EVAL_SKIP)
4c4b4cd2 10838 goto nosideret;
14f9c5c9 10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10840 {
df407dfe 10841 struct type *type1 = value_type (arg1);
5b4ee69b 10842
76a01679
JB
10843 if (ada_is_tagged_type (type1, 1))
10844 {
10845 type = ada_lookup_struct_elt_type (type1,
10846 &exp->elts[pc + 2].string,
10847 1, 1, NULL);
5ec18f2b
JG
10848
10849 /* If the field is not found, check if it exists in the
10850 extension of this object's type. This means that we
10851 need to evaluate completely the expression. */
10852
76a01679 10853 if (type == NULL)
5ec18f2b
JG
10854 {
10855 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
10856 EVAL_NORMAL);
10857 arg1 = ada_value_struct_elt (arg1,
10858 &exp->elts[pc + 2].string,
10859 0);
10860 arg1 = unwrap_value (arg1);
10861 type = value_type (ada_to_fixed_value (arg1));
10862 }
76a01679
JB
10863 }
10864 else
10865 type =
10866 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10867 0, NULL);
10868
10869 return value_zero (ada_aligned_type (type), lval_memory);
10870 }
14f9c5c9 10871 else
284614f0
JB
10872 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10873 arg1 = unwrap_value (arg1);
10874 return ada_to_fixed_value (arg1);
10875
14f9c5c9 10876 case OP_TYPE:
4c4b4cd2
PH
10877 /* The value is not supposed to be used. This is here to make it
10878 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10879 (*pos) += 2;
10880 if (noside == EVAL_SKIP)
4c4b4cd2 10881 goto nosideret;
14f9c5c9 10882 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10883 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10884 else
323e0a4a 10885 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10886
10887 case OP_AGGREGATE:
10888 case OP_CHOICES:
10889 case OP_OTHERS:
10890 case OP_DISCRETE_RANGE:
10891 case OP_POSITIONAL:
10892 case OP_NAME:
10893 if (noside == EVAL_NORMAL)
10894 switch (op)
10895 {
10896 case OP_NAME:
10897 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10898 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10899 case OP_AGGREGATE:
10900 error (_("Aggregates only allowed on the right of an assignment"));
10901 default:
0963b4bd
MS
10902 internal_error (__FILE__, __LINE__,
10903 _("aggregate apparently mangled"));
52ce6436
PH
10904 }
10905
10906 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10907 *pos += oplen - 1;
10908 for (tem = 0; tem < nargs; tem += 1)
10909 ada_evaluate_subexp (NULL, exp, pos, noside);
10910 goto nosideret;
14f9c5c9
AS
10911 }
10912
10913nosideret:
22601c15 10914 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10915}
14f9c5c9 10916\f
d2e4a39e 10917
4c4b4cd2 10918 /* Fixed point */
14f9c5c9
AS
10919
10920/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10921 type name that encodes the 'small and 'delta information.
4c4b4cd2 10922 Otherwise, return NULL. */
14f9c5c9 10923
d2e4a39e 10924static const char *
ebf56fd3 10925fixed_type_info (struct type *type)
14f9c5c9 10926{
d2e4a39e 10927 const char *name = ada_type_name (type);
14f9c5c9
AS
10928 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10929
d2e4a39e
AS
10930 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10931 {
14f9c5c9 10932 const char *tail = strstr (name, "___XF_");
5b4ee69b 10933
14f9c5c9 10934 if (tail == NULL)
4c4b4cd2 10935 return NULL;
d2e4a39e 10936 else
4c4b4cd2 10937 return tail + 5;
14f9c5c9
AS
10938 }
10939 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10940 return fixed_type_info (TYPE_TARGET_TYPE (type));
10941 else
10942 return NULL;
10943}
10944
4c4b4cd2 10945/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10946
10947int
ebf56fd3 10948ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10949{
10950 return fixed_type_info (type) != NULL;
10951}
10952
4c4b4cd2
PH
10953/* Return non-zero iff TYPE represents a System.Address type. */
10954
10955int
10956ada_is_system_address_type (struct type *type)
10957{
10958 return (TYPE_NAME (type)
10959 && strcmp (TYPE_NAME (type), "system__address") == 0);
10960}
10961
14f9c5c9
AS
10962/* Assuming that TYPE is the representation of an Ada fixed-point
10963 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10964 delta cannot be determined. */
14f9c5c9
AS
10965
10966DOUBLEST
ebf56fd3 10967ada_delta (struct type *type)
14f9c5c9
AS
10968{
10969 const char *encoding = fixed_type_info (type);
facc390f 10970 DOUBLEST num, den;
14f9c5c9 10971
facc390f
JB
10972 /* Strictly speaking, num and den are encoded as integer. However,
10973 they may not fit into a long, and they will have to be converted
10974 to DOUBLEST anyway. So scan them as DOUBLEST. */
10975 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10976 &num, &den) < 2)
14f9c5c9 10977 return -1.0;
d2e4a39e 10978 else
facc390f 10979 return num / den;
14f9c5c9
AS
10980}
10981
10982/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10983 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10984
10985static DOUBLEST
ebf56fd3 10986scaling_factor (struct type *type)
14f9c5c9
AS
10987{
10988 const char *encoding = fixed_type_info (type);
facc390f 10989 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10990 int n;
d2e4a39e 10991
facc390f
JB
10992 /* Strictly speaking, num's and den's are encoded as integer. However,
10993 they may not fit into a long, and they will have to be converted
10994 to DOUBLEST anyway. So scan them as DOUBLEST. */
10995 n = sscanf (encoding,
10996 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10997 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10998 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10999
11000 if (n < 2)
11001 return 1.0;
11002 else if (n == 4)
facc390f 11003 return num1 / den1;
d2e4a39e 11004 else
facc390f 11005 return num0 / den0;
14f9c5c9
AS
11006}
11007
11008
11009/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 11010 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
11011
11012DOUBLEST
ebf56fd3 11013ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 11014{
d2e4a39e 11015 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
11016}
11017
4c4b4cd2
PH
11018/* The representation of a fixed-point value of type TYPE
11019 corresponding to the value X. */
14f9c5c9
AS
11020
11021LONGEST
ebf56fd3 11022ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
11023{
11024 return (LONGEST) (x / scaling_factor (type) + 0.5);
11025}
11026
14f9c5c9 11027\f
d2e4a39e 11028
4c4b4cd2 11029 /* Range types */
14f9c5c9
AS
11030
11031/* Scan STR beginning at position K for a discriminant name, and
11032 return the value of that discriminant field of DVAL in *PX. If
11033 PNEW_K is not null, put the position of the character beyond the
11034 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11035 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11036
11037static int
07d8f827 11038scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 11039 int *pnew_k)
14f9c5c9
AS
11040{
11041 static char *bound_buffer = NULL;
11042 static size_t bound_buffer_len = 0;
11043 char *bound;
11044 char *pend;
d2e4a39e 11045 struct value *bound_val;
14f9c5c9
AS
11046
11047 if (dval == NULL || str == NULL || str[k] == '\0')
11048 return 0;
11049
d2e4a39e 11050 pend = strstr (str + k, "__");
14f9c5c9
AS
11051 if (pend == NULL)
11052 {
d2e4a39e 11053 bound = str + k;
14f9c5c9
AS
11054 k += strlen (bound);
11055 }
d2e4a39e 11056 else
14f9c5c9 11057 {
d2e4a39e 11058 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 11059 bound = bound_buffer;
d2e4a39e
AS
11060 strncpy (bound_buffer, str + k, pend - (str + k));
11061 bound[pend - (str + k)] = '\0';
11062 k = pend - str;
14f9c5c9 11063 }
d2e4a39e 11064
df407dfe 11065 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11066 if (bound_val == NULL)
11067 return 0;
11068
11069 *px = value_as_long (bound_val);
11070 if (pnew_k != NULL)
11071 *pnew_k = k;
11072 return 1;
11073}
11074
11075/* Value of variable named NAME in the current environment. If
11076 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11077 otherwise causes an error with message ERR_MSG. */
11078
d2e4a39e
AS
11079static struct value *
11080get_var_value (char *name, char *err_msg)
14f9c5c9 11081{
4c4b4cd2 11082 struct ada_symbol_info *syms;
14f9c5c9
AS
11083 int nsyms;
11084
4c4b4cd2 11085 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
4eeaa230 11086 &syms);
14f9c5c9
AS
11087
11088 if (nsyms != 1)
11089 {
11090 if (err_msg == NULL)
4c4b4cd2 11091 return 0;
14f9c5c9 11092 else
8a3fe4f8 11093 error (("%s"), err_msg);
14f9c5c9
AS
11094 }
11095
4c4b4cd2 11096 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 11097}
d2e4a39e 11098
14f9c5c9 11099/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
11100 no such variable found, returns 0, and sets *FLAG to 0. If
11101 successful, sets *FLAG to 1. */
11102
14f9c5c9 11103LONGEST
4c4b4cd2 11104get_int_var_value (char *name, int *flag)
14f9c5c9 11105{
4c4b4cd2 11106 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11107
14f9c5c9
AS
11108 if (var_val == 0)
11109 {
11110 if (flag != NULL)
4c4b4cd2 11111 *flag = 0;
14f9c5c9
AS
11112 return 0;
11113 }
11114 else
11115 {
11116 if (flag != NULL)
4c4b4cd2 11117 *flag = 1;
14f9c5c9
AS
11118 return value_as_long (var_val);
11119 }
11120}
d2e4a39e 11121
14f9c5c9
AS
11122
11123/* Return a range type whose base type is that of the range type named
11124 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11125 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11126 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11127 corresponding range type from debug information; fall back to using it
11128 if symbol lookup fails. If a new type must be created, allocate it
11129 like ORIG_TYPE was. The bounds information, in general, is encoded
11130 in NAME, the base type given in the named range type. */
14f9c5c9 11131
d2e4a39e 11132static struct type *
28c85d6c 11133to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11134{
0d5cff50 11135 const char *name;
14f9c5c9 11136 struct type *base_type;
d2e4a39e 11137 char *subtype_info;
14f9c5c9 11138
28c85d6c
JB
11139 gdb_assert (raw_type != NULL);
11140 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11141
1ce677a4 11142 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11143 base_type = TYPE_TARGET_TYPE (raw_type);
11144 else
11145 base_type = raw_type;
11146
28c85d6c 11147 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11148 subtype_info = strstr (name, "___XD");
11149 if (subtype_info == NULL)
690cc4eb 11150 {
43bbcdc2
PH
11151 LONGEST L = ada_discrete_type_low_bound (raw_type);
11152 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11153
690cc4eb
PH
11154 if (L < INT_MIN || U > INT_MAX)
11155 return raw_type;
11156 else
0c9c3474
SA
11157 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11158 L, U);
690cc4eb 11159 }
14f9c5c9
AS
11160 else
11161 {
11162 static char *name_buf = NULL;
11163 static size_t name_len = 0;
11164 int prefix_len = subtype_info - name;
11165 LONGEST L, U;
11166 struct type *type;
11167 char *bounds_str;
11168 int n;
11169
11170 GROW_VECT (name_buf, name_len, prefix_len + 5);
11171 strncpy (name_buf, name, prefix_len);
11172 name_buf[prefix_len] = '\0';
11173
11174 subtype_info += 5;
11175 bounds_str = strchr (subtype_info, '_');
11176 n = 1;
11177
d2e4a39e 11178 if (*subtype_info == 'L')
4c4b4cd2
PH
11179 {
11180 if (!ada_scan_number (bounds_str, n, &L, &n)
11181 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11182 return raw_type;
11183 if (bounds_str[n] == '_')
11184 n += 2;
0963b4bd 11185 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11186 n += 1;
11187 subtype_info += 1;
11188 }
d2e4a39e 11189 else
4c4b4cd2
PH
11190 {
11191 int ok;
5b4ee69b 11192
4c4b4cd2
PH
11193 strcpy (name_buf + prefix_len, "___L");
11194 L = get_int_var_value (name_buf, &ok);
11195 if (!ok)
11196 {
323e0a4a 11197 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11198 L = 1;
11199 }
11200 }
14f9c5c9 11201
d2e4a39e 11202 if (*subtype_info == 'U')
4c4b4cd2
PH
11203 {
11204 if (!ada_scan_number (bounds_str, n, &U, &n)
11205 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11206 return raw_type;
11207 }
d2e4a39e 11208 else
4c4b4cd2
PH
11209 {
11210 int ok;
5b4ee69b 11211
4c4b4cd2
PH
11212 strcpy (name_buf + prefix_len, "___U");
11213 U = get_int_var_value (name_buf, &ok);
11214 if (!ok)
11215 {
323e0a4a 11216 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11217 U = L;
11218 }
11219 }
14f9c5c9 11220
0c9c3474
SA
11221 type = create_static_range_type (alloc_type_copy (raw_type),
11222 base_type, L, U);
d2e4a39e 11223 TYPE_NAME (type) = name;
14f9c5c9
AS
11224 return type;
11225 }
11226}
11227
4c4b4cd2
PH
11228/* True iff NAME is the name of a range type. */
11229
14f9c5c9 11230int
d2e4a39e 11231ada_is_range_type_name (const char *name)
14f9c5c9
AS
11232{
11233 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11234}
14f9c5c9 11235\f
d2e4a39e 11236
4c4b4cd2
PH
11237 /* Modular types */
11238
11239/* True iff TYPE is an Ada modular type. */
14f9c5c9 11240
14f9c5c9 11241int
d2e4a39e 11242ada_is_modular_type (struct type *type)
14f9c5c9 11243{
18af8284 11244 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11245
11246 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11247 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11248 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11249}
11250
4c4b4cd2
PH
11251/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11252
61ee279c 11253ULONGEST
0056e4d5 11254ada_modulus (struct type *type)
14f9c5c9 11255{
43bbcdc2 11256 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11257}
d2e4a39e 11258\f
f7f9143b
JB
11259
11260/* Ada exception catchpoint support:
11261 ---------------------------------
11262
11263 We support 3 kinds of exception catchpoints:
11264 . catchpoints on Ada exceptions
11265 . catchpoints on unhandled Ada exceptions
11266 . catchpoints on failed assertions
11267
11268 Exceptions raised during failed assertions, or unhandled exceptions
11269 could perfectly be caught with the general catchpoint on Ada exceptions.
11270 However, we can easily differentiate these two special cases, and having
11271 the option to distinguish these two cases from the rest can be useful
11272 to zero-in on certain situations.
11273
11274 Exception catchpoints are a specialized form of breakpoint,
11275 since they rely on inserting breakpoints inside known routines
11276 of the GNAT runtime. The implementation therefore uses a standard
11277 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11278 of breakpoint_ops.
11279
0259addd
JB
11280 Support in the runtime for exception catchpoints have been changed
11281 a few times already, and these changes affect the implementation
11282 of these catchpoints. In order to be able to support several
11283 variants of the runtime, we use a sniffer that will determine
28010a5d 11284 the runtime variant used by the program being debugged. */
f7f9143b 11285
82eacd52
JB
11286/* Ada's standard exceptions.
11287
11288 The Ada 83 standard also defined Numeric_Error. But there so many
11289 situations where it was unclear from the Ada 83 Reference Manual
11290 (RM) whether Constraint_Error or Numeric_Error should be raised,
11291 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11292 Interpretation saying that anytime the RM says that Numeric_Error
11293 should be raised, the implementation may raise Constraint_Error.
11294 Ada 95 went one step further and pretty much removed Numeric_Error
11295 from the list of standard exceptions (it made it a renaming of
11296 Constraint_Error, to help preserve compatibility when compiling
11297 an Ada83 compiler). As such, we do not include Numeric_Error from
11298 this list of standard exceptions. */
3d0b0fa3
JB
11299
11300static char *standard_exc[] = {
11301 "constraint_error",
11302 "program_error",
11303 "storage_error",
11304 "tasking_error"
11305};
11306
0259addd
JB
11307typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11308
11309/* A structure that describes how to support exception catchpoints
11310 for a given executable. */
11311
11312struct exception_support_info
11313{
11314 /* The name of the symbol to break on in order to insert
11315 a catchpoint on exceptions. */
11316 const char *catch_exception_sym;
11317
11318 /* The name of the symbol to break on in order to insert
11319 a catchpoint on unhandled exceptions. */
11320 const char *catch_exception_unhandled_sym;
11321
11322 /* The name of the symbol to break on in order to insert
11323 a catchpoint on failed assertions. */
11324 const char *catch_assert_sym;
11325
11326 /* Assuming that the inferior just triggered an unhandled exception
11327 catchpoint, this function is responsible for returning the address
11328 in inferior memory where the name of that exception is stored.
11329 Return zero if the address could not be computed. */
11330 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11331};
11332
11333static CORE_ADDR ada_unhandled_exception_name_addr (void);
11334static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11335
11336/* The following exception support info structure describes how to
11337 implement exception catchpoints with the latest version of the
11338 Ada runtime (as of 2007-03-06). */
11339
11340static const struct exception_support_info default_exception_support_info =
11341{
11342 "__gnat_debug_raise_exception", /* catch_exception_sym */
11343 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11344 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11345 ada_unhandled_exception_name_addr
11346};
11347
11348/* The following exception support info structure describes how to
11349 implement exception catchpoints with a slightly older version
11350 of the Ada runtime. */
11351
11352static const struct exception_support_info exception_support_info_fallback =
11353{
11354 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11355 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11356 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11357 ada_unhandled_exception_name_addr_from_raise
11358};
11359
f17011e0
JB
11360/* Return nonzero if we can detect the exception support routines
11361 described in EINFO.
11362
11363 This function errors out if an abnormal situation is detected
11364 (for instance, if we find the exception support routines, but
11365 that support is found to be incomplete). */
11366
11367static int
11368ada_has_this_exception_support (const struct exception_support_info *einfo)
11369{
11370 struct symbol *sym;
11371
11372 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11373 that should be compiled with debugging information. As a result, we
11374 expect to find that symbol in the symtabs. */
11375
11376 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11377 if (sym == NULL)
a6af7abe
JB
11378 {
11379 /* Perhaps we did not find our symbol because the Ada runtime was
11380 compiled without debugging info, or simply stripped of it.
11381 It happens on some GNU/Linux distributions for instance, where
11382 users have to install a separate debug package in order to get
11383 the runtime's debugging info. In that situation, let the user
11384 know why we cannot insert an Ada exception catchpoint.
11385
11386 Note: Just for the purpose of inserting our Ada exception
11387 catchpoint, we could rely purely on the associated minimal symbol.
11388 But we would be operating in degraded mode anyway, since we are
11389 still lacking the debugging info needed later on to extract
11390 the name of the exception being raised (this name is printed in
11391 the catchpoint message, and is also used when trying to catch
11392 a specific exception). We do not handle this case for now. */
3b7344d5 11393 struct bound_minimal_symbol msym
1c8e84b0
JB
11394 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11395
3b7344d5 11396 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11397 error (_("Your Ada runtime appears to be missing some debugging "
11398 "information.\nCannot insert Ada exception catchpoint "
11399 "in this configuration."));
11400
11401 return 0;
11402 }
f17011e0
JB
11403
11404 /* Make sure that the symbol we found corresponds to a function. */
11405
11406 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11407 error (_("Symbol \"%s\" is not a function (class = %d)"),
11408 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11409
11410 return 1;
11411}
11412
0259addd
JB
11413/* Inspect the Ada runtime and determine which exception info structure
11414 should be used to provide support for exception catchpoints.
11415
3eecfa55
JB
11416 This function will always set the per-inferior exception_info,
11417 or raise an error. */
0259addd
JB
11418
11419static void
11420ada_exception_support_info_sniffer (void)
11421{
3eecfa55 11422 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11423
11424 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11425 if (data->exception_info != NULL)
0259addd
JB
11426 return;
11427
11428 /* Check the latest (default) exception support info. */
f17011e0 11429 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11430 {
3eecfa55 11431 data->exception_info = &default_exception_support_info;
0259addd
JB
11432 return;
11433 }
11434
11435 /* Try our fallback exception suport info. */
f17011e0 11436 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11437 {
3eecfa55 11438 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11439 return;
11440 }
11441
11442 /* Sometimes, it is normal for us to not be able to find the routine
11443 we are looking for. This happens when the program is linked with
11444 the shared version of the GNAT runtime, and the program has not been
11445 started yet. Inform the user of these two possible causes if
11446 applicable. */
11447
ccefe4c4 11448 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11449 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11450
11451 /* If the symbol does not exist, then check that the program is
11452 already started, to make sure that shared libraries have been
11453 loaded. If it is not started, this may mean that the symbol is
11454 in a shared library. */
11455
11456 if (ptid_get_pid (inferior_ptid) == 0)
11457 error (_("Unable to insert catchpoint. Try to start the program first."));
11458
11459 /* At this point, we know that we are debugging an Ada program and
11460 that the inferior has been started, but we still are not able to
0963b4bd 11461 find the run-time symbols. That can mean that we are in
0259addd
JB
11462 configurable run time mode, or that a-except as been optimized
11463 out by the linker... In any case, at this point it is not worth
11464 supporting this feature. */
11465
7dda8cff 11466 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
11467}
11468
f7f9143b
JB
11469/* True iff FRAME is very likely to be that of a function that is
11470 part of the runtime system. This is all very heuristic, but is
11471 intended to be used as advice as to what frames are uninteresting
11472 to most users. */
11473
11474static int
11475is_known_support_routine (struct frame_info *frame)
11476{
4ed6b5be 11477 struct symtab_and_line sal;
55b87a52 11478 char *func_name;
692465f1 11479 enum language func_lang;
f7f9143b 11480 int i;
f35a17b5 11481 const char *fullname;
f7f9143b 11482
4ed6b5be
JB
11483 /* If this code does not have any debugging information (no symtab),
11484 This cannot be any user code. */
f7f9143b 11485
4ed6b5be 11486 find_frame_sal (frame, &sal);
f7f9143b
JB
11487 if (sal.symtab == NULL)
11488 return 1;
11489
4ed6b5be
JB
11490 /* If there is a symtab, but the associated source file cannot be
11491 located, then assume this is not user code: Selecting a frame
11492 for which we cannot display the code would not be very helpful
11493 for the user. This should also take care of case such as VxWorks
11494 where the kernel has some debugging info provided for a few units. */
f7f9143b 11495
f35a17b5
JK
11496 fullname = symtab_to_fullname (sal.symtab);
11497 if (access (fullname, R_OK) != 0)
f7f9143b
JB
11498 return 1;
11499
4ed6b5be
JB
11500 /* Check the unit filename againt the Ada runtime file naming.
11501 We also check the name of the objfile against the name of some
11502 known system libraries that sometimes come with debugging info
11503 too. */
11504
f7f9143b
JB
11505 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11506 {
11507 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 11508 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 11509 return 1;
4ed6b5be 11510 if (sal.symtab->objfile != NULL
4262abfb 11511 && re_exec (objfile_name (sal.symtab->objfile)))
4ed6b5be 11512 return 1;
f7f9143b
JB
11513 }
11514
4ed6b5be 11515 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 11516
e9e07ba6 11517 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
11518 if (func_name == NULL)
11519 return 1;
11520
11521 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11522 {
11523 re_comp (known_auxiliary_function_name_patterns[i]);
11524 if (re_exec (func_name))
55b87a52
KS
11525 {
11526 xfree (func_name);
11527 return 1;
11528 }
f7f9143b
JB
11529 }
11530
55b87a52 11531 xfree (func_name);
f7f9143b
JB
11532 return 0;
11533}
11534
11535/* Find the first frame that contains debugging information and that is not
11536 part of the Ada run-time, starting from FI and moving upward. */
11537
0ef643c8 11538void
f7f9143b
JB
11539ada_find_printable_frame (struct frame_info *fi)
11540{
11541 for (; fi != NULL; fi = get_prev_frame (fi))
11542 {
11543 if (!is_known_support_routine (fi))
11544 {
11545 select_frame (fi);
11546 break;
11547 }
11548 }
11549
11550}
11551
11552/* Assuming that the inferior just triggered an unhandled exception
11553 catchpoint, return the address in inferior memory where the name
11554 of the exception is stored.
11555
11556 Return zero if the address could not be computed. */
11557
11558static CORE_ADDR
11559ada_unhandled_exception_name_addr (void)
0259addd
JB
11560{
11561 return parse_and_eval_address ("e.full_name");
11562}
11563
11564/* Same as ada_unhandled_exception_name_addr, except that this function
11565 should be used when the inferior uses an older version of the runtime,
11566 where the exception name needs to be extracted from a specific frame
11567 several frames up in the callstack. */
11568
11569static CORE_ADDR
11570ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
11571{
11572 int frame_level;
11573 struct frame_info *fi;
3eecfa55 11574 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
55b87a52 11575 struct cleanup *old_chain;
f7f9143b
JB
11576
11577 /* To determine the name of this exception, we need to select
11578 the frame corresponding to RAISE_SYM_NAME. This frame is
11579 at least 3 levels up, so we simply skip the first 3 frames
11580 without checking the name of their associated function. */
11581 fi = get_current_frame ();
11582 for (frame_level = 0; frame_level < 3; frame_level += 1)
11583 if (fi != NULL)
11584 fi = get_prev_frame (fi);
11585
55b87a52 11586 old_chain = make_cleanup (null_cleanup, NULL);
f7f9143b
JB
11587 while (fi != NULL)
11588 {
55b87a52 11589 char *func_name;
692465f1
JB
11590 enum language func_lang;
11591
e9e07ba6 11592 find_frame_funname (fi, &func_name, &func_lang, NULL);
55b87a52
KS
11593 if (func_name != NULL)
11594 {
11595 make_cleanup (xfree, func_name);
11596
11597 if (strcmp (func_name,
11598 data->exception_info->catch_exception_sym) == 0)
11599 break; /* We found the frame we were looking for... */
11600 fi = get_prev_frame (fi);
11601 }
f7f9143b 11602 }
55b87a52 11603 do_cleanups (old_chain);
f7f9143b
JB
11604
11605 if (fi == NULL)
11606 return 0;
11607
11608 select_frame (fi);
11609 return parse_and_eval_address ("id.full_name");
11610}
11611
11612/* Assuming the inferior just triggered an Ada exception catchpoint
11613 (of any type), return the address in inferior memory where the name
11614 of the exception is stored, if applicable.
11615
11616 Return zero if the address could not be computed, or if not relevant. */
11617
11618static CORE_ADDR
761269c8 11619ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11620 struct breakpoint *b)
11621{
3eecfa55
JB
11622 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11623
f7f9143b
JB
11624 switch (ex)
11625 {
761269c8 11626 case ada_catch_exception:
f7f9143b
JB
11627 return (parse_and_eval_address ("e.full_name"));
11628 break;
11629
761269c8 11630 case ada_catch_exception_unhandled:
3eecfa55 11631 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11632 break;
11633
761269c8 11634 case ada_catch_assert:
f7f9143b
JB
11635 return 0; /* Exception name is not relevant in this case. */
11636 break;
11637
11638 default:
11639 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11640 break;
11641 }
11642
11643 return 0; /* Should never be reached. */
11644}
11645
11646/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11647 any error that ada_exception_name_addr_1 might cause to be thrown.
11648 When an error is intercepted, a warning with the error message is printed,
11649 and zero is returned. */
11650
11651static CORE_ADDR
761269c8 11652ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
11653 struct breakpoint *b)
11654{
bfd189b1 11655 volatile struct gdb_exception e;
f7f9143b
JB
11656 CORE_ADDR result = 0;
11657
11658 TRY_CATCH (e, RETURN_MASK_ERROR)
11659 {
11660 result = ada_exception_name_addr_1 (ex, b);
11661 }
11662
11663 if (e.reason < 0)
11664 {
11665 warning (_("failed to get exception name: %s"), e.message);
11666 return 0;
11667 }
11668
11669 return result;
11670}
11671
28010a5d
PA
11672static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11673
11674/* Ada catchpoints.
11675
11676 In the case of catchpoints on Ada exceptions, the catchpoint will
11677 stop the target on every exception the program throws. When a user
11678 specifies the name of a specific exception, we translate this
11679 request into a condition expression (in text form), and then parse
11680 it into an expression stored in each of the catchpoint's locations.
11681 We then use this condition to check whether the exception that was
11682 raised is the one the user is interested in. If not, then the
11683 target is resumed again. We store the name of the requested
11684 exception, in order to be able to re-set the condition expression
11685 when symbols change. */
11686
11687/* An instance of this type is used to represent an Ada catchpoint
11688 breakpoint location. It includes a "struct bp_location" as a kind
11689 of base class; users downcast to "struct bp_location *" when
11690 needed. */
11691
11692struct ada_catchpoint_location
11693{
11694 /* The base class. */
11695 struct bp_location base;
11696
11697 /* The condition that checks whether the exception that was raised
11698 is the specific exception the user specified on catchpoint
11699 creation. */
11700 struct expression *excep_cond_expr;
11701};
11702
11703/* Implement the DTOR method in the bp_location_ops structure for all
11704 Ada exception catchpoint kinds. */
11705
11706static void
11707ada_catchpoint_location_dtor (struct bp_location *bl)
11708{
11709 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11710
11711 xfree (al->excep_cond_expr);
11712}
11713
11714/* The vtable to be used in Ada catchpoint locations. */
11715
11716static const struct bp_location_ops ada_catchpoint_location_ops =
11717{
11718 ada_catchpoint_location_dtor
11719};
11720
11721/* An instance of this type is used to represent an Ada catchpoint.
11722 It includes a "struct breakpoint" as a kind of base class; users
11723 downcast to "struct breakpoint *" when needed. */
11724
11725struct ada_catchpoint
11726{
11727 /* The base class. */
11728 struct breakpoint base;
11729
11730 /* The name of the specific exception the user specified. */
11731 char *excep_string;
11732};
11733
11734/* Parse the exception condition string in the context of each of the
11735 catchpoint's locations, and store them for later evaluation. */
11736
11737static void
11738create_excep_cond_exprs (struct ada_catchpoint *c)
11739{
11740 struct cleanup *old_chain;
11741 struct bp_location *bl;
11742 char *cond_string;
11743
11744 /* Nothing to do if there's no specific exception to catch. */
11745 if (c->excep_string == NULL)
11746 return;
11747
11748 /* Same if there are no locations... */
11749 if (c->base.loc == NULL)
11750 return;
11751
11752 /* Compute the condition expression in text form, from the specific
11753 expection we want to catch. */
11754 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11755 old_chain = make_cleanup (xfree, cond_string);
11756
11757 /* Iterate over all the catchpoint's locations, and parse an
11758 expression for each. */
11759 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11760 {
11761 struct ada_catchpoint_location *ada_loc
11762 = (struct ada_catchpoint_location *) bl;
11763 struct expression *exp = NULL;
11764
11765 if (!bl->shlib_disabled)
11766 {
11767 volatile struct gdb_exception e;
bbc13ae3 11768 const char *s;
28010a5d
PA
11769
11770 s = cond_string;
11771 TRY_CATCH (e, RETURN_MASK_ERROR)
11772 {
1bb9788d
TT
11773 exp = parse_exp_1 (&s, bl->address,
11774 block_for_pc (bl->address), 0);
28010a5d
PA
11775 }
11776 if (e.reason < 0)
849f2b52
JB
11777 {
11778 warning (_("failed to reevaluate internal exception condition "
11779 "for catchpoint %d: %s"),
11780 c->base.number, e.message);
11781 /* There is a bug in GCC on sparc-solaris when building with
11782 optimization which causes EXP to change unexpectedly
11783 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11784 The problem should be fixed starting with GCC 4.9.
11785 In the meantime, work around it by forcing EXP back
11786 to NULL. */
11787 exp = NULL;
11788 }
28010a5d
PA
11789 }
11790
11791 ada_loc->excep_cond_expr = exp;
11792 }
11793
11794 do_cleanups (old_chain);
11795}
11796
11797/* Implement the DTOR method in the breakpoint_ops structure for all
11798 exception catchpoint kinds. */
11799
11800static void
761269c8 11801dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11802{
11803 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11804
11805 xfree (c->excep_string);
348d480f 11806
2060206e 11807 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11808}
11809
11810/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11811 structure for all exception catchpoint kinds. */
11812
11813static struct bp_location *
761269c8 11814allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
11815 struct breakpoint *self)
11816{
11817 struct ada_catchpoint_location *loc;
11818
11819 loc = XNEW (struct ada_catchpoint_location);
11820 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11821 loc->excep_cond_expr = NULL;
11822 return &loc->base;
11823}
11824
11825/* Implement the RE_SET method in the breakpoint_ops structure for all
11826 exception catchpoint kinds. */
11827
11828static void
761269c8 11829re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
11830{
11831 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11832
11833 /* Call the base class's method. This updates the catchpoint's
11834 locations. */
2060206e 11835 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11836
11837 /* Reparse the exception conditional expressions. One for each
11838 location. */
11839 create_excep_cond_exprs (c);
11840}
11841
11842/* Returns true if we should stop for this breakpoint hit. If the
11843 user specified a specific exception, we only want to cause a stop
11844 if the program thrown that exception. */
11845
11846static int
11847should_stop_exception (const struct bp_location *bl)
11848{
11849 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11850 const struct ada_catchpoint_location *ada_loc
11851 = (const struct ada_catchpoint_location *) bl;
11852 volatile struct gdb_exception ex;
11853 int stop;
11854
11855 /* With no specific exception, should always stop. */
11856 if (c->excep_string == NULL)
11857 return 1;
11858
11859 if (ada_loc->excep_cond_expr == NULL)
11860 {
11861 /* We will have a NULL expression if back when we were creating
11862 the expressions, this location's had failed to parse. */
11863 return 1;
11864 }
11865
11866 stop = 1;
11867 TRY_CATCH (ex, RETURN_MASK_ALL)
11868 {
11869 struct value *mark;
11870
11871 mark = value_mark ();
11872 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11873 value_free_to_mark (mark);
11874 }
11875 if (ex.reason < 0)
11876 exception_fprintf (gdb_stderr, ex,
11877 _("Error in testing exception condition:\n"));
11878 return stop;
11879}
11880
11881/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11882 for all exception catchpoint kinds. */
11883
11884static void
761269c8 11885check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
11886{
11887 bs->stop = should_stop_exception (bs->bp_location_at);
11888}
11889
f7f9143b
JB
11890/* Implement the PRINT_IT method in the breakpoint_ops structure
11891 for all exception catchpoint kinds. */
11892
11893static enum print_stop_action
761269c8 11894print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11895{
79a45e25 11896 struct ui_out *uiout = current_uiout;
348d480f
PA
11897 struct breakpoint *b = bs->breakpoint_at;
11898
956a9fb9 11899 annotate_catchpoint (b->number);
f7f9143b 11900
956a9fb9 11901 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11902 {
956a9fb9
JB
11903 ui_out_field_string (uiout, "reason",
11904 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11905 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11906 }
11907
00eb2c4a
JB
11908 ui_out_text (uiout,
11909 b->disposition == disp_del ? "\nTemporary catchpoint "
11910 : "\nCatchpoint ");
956a9fb9
JB
11911 ui_out_field_int (uiout, "bkptno", b->number);
11912 ui_out_text (uiout, ", ");
f7f9143b 11913
f7f9143b
JB
11914 switch (ex)
11915 {
761269c8
JB
11916 case ada_catch_exception:
11917 case ada_catch_exception_unhandled:
956a9fb9
JB
11918 {
11919 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11920 char exception_name[256];
11921
11922 if (addr != 0)
11923 {
c714b426
PA
11924 read_memory (addr, (gdb_byte *) exception_name,
11925 sizeof (exception_name) - 1);
956a9fb9
JB
11926 exception_name [sizeof (exception_name) - 1] = '\0';
11927 }
11928 else
11929 {
11930 /* For some reason, we were unable to read the exception
11931 name. This could happen if the Runtime was compiled
11932 without debugging info, for instance. In that case,
11933 just replace the exception name by the generic string
11934 "exception" - it will read as "an exception" in the
11935 notification we are about to print. */
967cff16 11936 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11937 }
11938 /* In the case of unhandled exception breakpoints, we print
11939 the exception name as "unhandled EXCEPTION_NAME", to make
11940 it clearer to the user which kind of catchpoint just got
11941 hit. We used ui_out_text to make sure that this extra
11942 info does not pollute the exception name in the MI case. */
761269c8 11943 if (ex == ada_catch_exception_unhandled)
956a9fb9
JB
11944 ui_out_text (uiout, "unhandled ");
11945 ui_out_field_string (uiout, "exception-name", exception_name);
11946 }
11947 break;
761269c8 11948 case ada_catch_assert:
956a9fb9
JB
11949 /* In this case, the name of the exception is not really
11950 important. Just print "failed assertion" to make it clearer
11951 that his program just hit an assertion-failure catchpoint.
11952 We used ui_out_text because this info does not belong in
11953 the MI output. */
11954 ui_out_text (uiout, "failed assertion");
11955 break;
f7f9143b 11956 }
956a9fb9
JB
11957 ui_out_text (uiout, " at ");
11958 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11959
11960 return PRINT_SRC_AND_LOC;
11961}
11962
11963/* Implement the PRINT_ONE method in the breakpoint_ops structure
11964 for all exception catchpoint kinds. */
11965
11966static void
761269c8 11967print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 11968 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11969{
79a45e25 11970 struct ui_out *uiout = current_uiout;
28010a5d 11971 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11972 struct value_print_options opts;
11973
11974 get_user_print_options (&opts);
11975 if (opts.addressprint)
f7f9143b
JB
11976 {
11977 annotate_field (4);
5af949e3 11978 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11979 }
11980
11981 annotate_field (5);
a6d9a66e 11982 *last_loc = b->loc;
f7f9143b
JB
11983 switch (ex)
11984 {
761269c8 11985 case ada_catch_exception:
28010a5d 11986 if (c->excep_string != NULL)
f7f9143b 11987 {
28010a5d
PA
11988 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11989
f7f9143b
JB
11990 ui_out_field_string (uiout, "what", msg);
11991 xfree (msg);
11992 }
11993 else
11994 ui_out_field_string (uiout, "what", "all Ada exceptions");
11995
11996 break;
11997
761269c8 11998 case ada_catch_exception_unhandled:
f7f9143b
JB
11999 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12000 break;
12001
761269c8 12002 case ada_catch_assert:
f7f9143b
JB
12003 ui_out_field_string (uiout, "what", "failed Ada assertions");
12004 break;
12005
12006 default:
12007 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12008 break;
12009 }
12010}
12011
12012/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12013 for all exception catchpoint kinds. */
12014
12015static void
761269c8 12016print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12017 struct breakpoint *b)
12018{
28010a5d 12019 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12020 struct ui_out *uiout = current_uiout;
28010a5d 12021
00eb2c4a
JB
12022 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12023 : _("Catchpoint "));
12024 ui_out_field_int (uiout, "bkptno", b->number);
12025 ui_out_text (uiout, ": ");
12026
f7f9143b
JB
12027 switch (ex)
12028 {
761269c8 12029 case ada_catch_exception:
28010a5d 12030 if (c->excep_string != NULL)
00eb2c4a
JB
12031 {
12032 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12033 struct cleanup *old_chain = make_cleanup (xfree, info);
12034
12035 ui_out_text (uiout, info);
12036 do_cleanups (old_chain);
12037 }
f7f9143b 12038 else
00eb2c4a 12039 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
12040 break;
12041
761269c8 12042 case ada_catch_exception_unhandled:
00eb2c4a 12043 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
12044 break;
12045
761269c8 12046 case ada_catch_assert:
00eb2c4a 12047 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
12048 break;
12049
12050 default:
12051 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12052 break;
12053 }
12054}
12055
6149aea9
PA
12056/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12057 for all exception catchpoint kinds. */
12058
12059static void
761269c8 12060print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12061 struct breakpoint *b, struct ui_file *fp)
12062{
28010a5d
PA
12063 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12064
6149aea9
PA
12065 switch (ex)
12066 {
761269c8 12067 case ada_catch_exception:
6149aea9 12068 fprintf_filtered (fp, "catch exception");
28010a5d
PA
12069 if (c->excep_string != NULL)
12070 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
12071 break;
12072
761269c8 12073 case ada_catch_exception_unhandled:
78076abc 12074 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12075 break;
12076
761269c8 12077 case ada_catch_assert:
6149aea9
PA
12078 fprintf_filtered (fp, "catch assert");
12079 break;
12080
12081 default:
12082 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12083 }
d9b3f62e 12084 print_recreate_thread (b, fp);
6149aea9
PA
12085}
12086
f7f9143b
JB
12087/* Virtual table for "catch exception" breakpoints. */
12088
28010a5d
PA
12089static void
12090dtor_catch_exception (struct breakpoint *b)
12091{
761269c8 12092 dtor_exception (ada_catch_exception, b);
28010a5d
PA
12093}
12094
12095static struct bp_location *
12096allocate_location_catch_exception (struct breakpoint *self)
12097{
761269c8 12098 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12099}
12100
12101static void
12102re_set_catch_exception (struct breakpoint *b)
12103{
761269c8 12104 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12105}
12106
12107static void
12108check_status_catch_exception (bpstat bs)
12109{
761269c8 12110 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12111}
12112
f7f9143b 12113static enum print_stop_action
348d480f 12114print_it_catch_exception (bpstat bs)
f7f9143b 12115{
761269c8 12116 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12117}
12118
12119static void
a6d9a66e 12120print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12121{
761269c8 12122 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12123}
12124
12125static void
12126print_mention_catch_exception (struct breakpoint *b)
12127{
761269c8 12128 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12129}
12130
6149aea9
PA
12131static void
12132print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12133{
761269c8 12134 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12135}
12136
2060206e 12137static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12138
12139/* Virtual table for "catch exception unhandled" breakpoints. */
12140
28010a5d
PA
12141static void
12142dtor_catch_exception_unhandled (struct breakpoint *b)
12143{
761269c8 12144 dtor_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12145}
12146
12147static struct bp_location *
12148allocate_location_catch_exception_unhandled (struct breakpoint *self)
12149{
761269c8 12150 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12151}
12152
12153static void
12154re_set_catch_exception_unhandled (struct breakpoint *b)
12155{
761269c8 12156 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12157}
12158
12159static void
12160check_status_catch_exception_unhandled (bpstat bs)
12161{
761269c8 12162 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12163}
12164
f7f9143b 12165static enum print_stop_action
348d480f 12166print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12167{
761269c8 12168 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12169}
12170
12171static void
a6d9a66e
UW
12172print_one_catch_exception_unhandled (struct breakpoint *b,
12173 struct bp_location **last_loc)
f7f9143b 12174{
761269c8 12175 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12176}
12177
12178static void
12179print_mention_catch_exception_unhandled (struct breakpoint *b)
12180{
761269c8 12181 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12182}
12183
6149aea9
PA
12184static void
12185print_recreate_catch_exception_unhandled (struct breakpoint *b,
12186 struct ui_file *fp)
12187{
761269c8 12188 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12189}
12190
2060206e 12191static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12192
12193/* Virtual table for "catch assert" breakpoints. */
12194
28010a5d
PA
12195static void
12196dtor_catch_assert (struct breakpoint *b)
12197{
761269c8 12198 dtor_exception (ada_catch_assert, b);
28010a5d
PA
12199}
12200
12201static struct bp_location *
12202allocate_location_catch_assert (struct breakpoint *self)
12203{
761269c8 12204 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12205}
12206
12207static void
12208re_set_catch_assert (struct breakpoint *b)
12209{
761269c8 12210 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12211}
12212
12213static void
12214check_status_catch_assert (bpstat bs)
12215{
761269c8 12216 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12217}
12218
f7f9143b 12219static enum print_stop_action
348d480f 12220print_it_catch_assert (bpstat bs)
f7f9143b 12221{
761269c8 12222 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12223}
12224
12225static void
a6d9a66e 12226print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12227{
761269c8 12228 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12229}
12230
12231static void
12232print_mention_catch_assert (struct breakpoint *b)
12233{
761269c8 12234 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12235}
12236
6149aea9
PA
12237static void
12238print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12239{
761269c8 12240 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12241}
12242
2060206e 12243static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12244
f7f9143b
JB
12245/* Return a newly allocated copy of the first space-separated token
12246 in ARGSP, and then adjust ARGSP to point immediately after that
12247 token.
12248
12249 Return NULL if ARGPS does not contain any more tokens. */
12250
12251static char *
12252ada_get_next_arg (char **argsp)
12253{
12254 char *args = *argsp;
12255 char *end;
12256 char *result;
12257
0fcd72ba 12258 args = skip_spaces (args);
f7f9143b
JB
12259 if (args[0] == '\0')
12260 return NULL; /* No more arguments. */
12261
12262 /* Find the end of the current argument. */
12263
0fcd72ba 12264 end = skip_to_space (args);
f7f9143b
JB
12265
12266 /* Adjust ARGSP to point to the start of the next argument. */
12267
12268 *argsp = end;
12269
12270 /* Make a copy of the current argument and return it. */
12271
12272 result = xmalloc (end - args + 1);
12273 strncpy (result, args, end - args);
12274 result[end - args] = '\0';
12275
12276 return result;
12277}
12278
12279/* Split the arguments specified in a "catch exception" command.
12280 Set EX to the appropriate catchpoint type.
28010a5d 12281 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
12282 specified by the user.
12283 If a condition is found at the end of the arguments, the condition
12284 expression is stored in COND_STRING (memory must be deallocated
12285 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12286
12287static void
12288catch_ada_exception_command_split (char *args,
761269c8 12289 enum ada_exception_catchpoint_kind *ex,
5845583d
JB
12290 char **excep_string,
12291 char **cond_string)
f7f9143b
JB
12292{
12293 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12294 char *exception_name;
5845583d 12295 char *cond = NULL;
f7f9143b
JB
12296
12297 exception_name = ada_get_next_arg (&args);
5845583d
JB
12298 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12299 {
12300 /* This is not an exception name; this is the start of a condition
12301 expression for a catchpoint on all exceptions. So, "un-get"
12302 this token, and set exception_name to NULL. */
12303 xfree (exception_name);
12304 exception_name = NULL;
12305 args -= 2;
12306 }
f7f9143b
JB
12307 make_cleanup (xfree, exception_name);
12308
5845583d 12309 /* Check to see if we have a condition. */
f7f9143b 12310
0fcd72ba 12311 args = skip_spaces (args);
5845583d
JB
12312 if (strncmp (args, "if", 2) == 0
12313 && (isspace (args[2]) || args[2] == '\0'))
12314 {
12315 args += 2;
12316 args = skip_spaces (args);
12317
12318 if (args[0] == '\0')
12319 error (_("Condition missing after `if' keyword"));
12320 cond = xstrdup (args);
12321 make_cleanup (xfree, cond);
12322
12323 args += strlen (args);
12324 }
12325
12326 /* Check that we do not have any more arguments. Anything else
12327 is unexpected. */
f7f9143b
JB
12328
12329 if (args[0] != '\0')
12330 error (_("Junk at end of expression"));
12331
12332 discard_cleanups (old_chain);
12333
12334 if (exception_name == NULL)
12335 {
12336 /* Catch all exceptions. */
761269c8 12337 *ex = ada_catch_exception;
28010a5d 12338 *excep_string = NULL;
f7f9143b
JB
12339 }
12340 else if (strcmp (exception_name, "unhandled") == 0)
12341 {
12342 /* Catch unhandled exceptions. */
761269c8 12343 *ex = ada_catch_exception_unhandled;
28010a5d 12344 *excep_string = NULL;
f7f9143b
JB
12345 }
12346 else
12347 {
12348 /* Catch a specific exception. */
761269c8 12349 *ex = ada_catch_exception;
28010a5d 12350 *excep_string = exception_name;
f7f9143b 12351 }
5845583d 12352 *cond_string = cond;
f7f9143b
JB
12353}
12354
12355/* Return the name of the symbol on which we should break in order to
12356 implement a catchpoint of the EX kind. */
12357
12358static const char *
761269c8 12359ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12360{
3eecfa55
JB
12361 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12362
12363 gdb_assert (data->exception_info != NULL);
0259addd 12364
f7f9143b
JB
12365 switch (ex)
12366 {
761269c8 12367 case ada_catch_exception:
3eecfa55 12368 return (data->exception_info->catch_exception_sym);
f7f9143b 12369 break;
761269c8 12370 case ada_catch_exception_unhandled:
3eecfa55 12371 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12372 break;
761269c8 12373 case ada_catch_assert:
3eecfa55 12374 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
12375 break;
12376 default:
12377 internal_error (__FILE__, __LINE__,
12378 _("unexpected catchpoint kind (%d)"), ex);
12379 }
12380}
12381
12382/* Return the breakpoint ops "virtual table" used for catchpoints
12383 of the EX kind. */
12384
c0a91b2b 12385static const struct breakpoint_ops *
761269c8 12386ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12387{
12388 switch (ex)
12389 {
761269c8 12390 case ada_catch_exception:
f7f9143b
JB
12391 return (&catch_exception_breakpoint_ops);
12392 break;
761269c8 12393 case ada_catch_exception_unhandled:
f7f9143b
JB
12394 return (&catch_exception_unhandled_breakpoint_ops);
12395 break;
761269c8 12396 case ada_catch_assert:
f7f9143b
JB
12397 return (&catch_assert_breakpoint_ops);
12398 break;
12399 default:
12400 internal_error (__FILE__, __LINE__,
12401 _("unexpected catchpoint kind (%d)"), ex);
12402 }
12403}
12404
12405/* Return the condition that will be used to match the current exception
12406 being raised with the exception that the user wants to catch. This
12407 assumes that this condition is used when the inferior just triggered
12408 an exception catchpoint.
12409
12410 The string returned is a newly allocated string that needs to be
12411 deallocated later. */
12412
12413static char *
28010a5d 12414ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 12415{
3d0b0fa3
JB
12416 int i;
12417
0963b4bd 12418 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12419 runtime units that have been compiled without debugging info; if
28010a5d 12420 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12421 exception (e.g. "constraint_error") then, during the evaluation
12422 of the condition expression, the symbol lookup on this name would
0963b4bd 12423 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12424 may then be set only on user-defined exceptions which have the
12425 same not-fully-qualified name (e.g. my_package.constraint_error).
12426
12427 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12428 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12429 exception constraint_error" is rewritten into "catch exception
12430 standard.constraint_error".
12431
12432 If an exception named contraint_error is defined in another package of
12433 the inferior program, then the only way to specify this exception as a
12434 breakpoint condition is to use its fully-qualified named:
12435 e.g. my_package.constraint_error. */
12436
12437 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12438 {
28010a5d 12439 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
12440 {
12441 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 12442 excep_string);
3d0b0fa3
JB
12443 }
12444 }
28010a5d 12445 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
12446}
12447
12448/* Return the symtab_and_line that should be used to insert an exception
12449 catchpoint of the TYPE kind.
12450
28010a5d
PA
12451 EXCEP_STRING should contain the name of a specific exception that
12452 the catchpoint should catch, or NULL otherwise.
f7f9143b 12453
28010a5d
PA
12454 ADDR_STRING returns the name of the function where the real
12455 breakpoint that implements the catchpoints is set, depending on the
12456 type of catchpoint we need to create. */
f7f9143b
JB
12457
12458static struct symtab_and_line
761269c8 12459ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 12460 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12461{
12462 const char *sym_name;
12463 struct symbol *sym;
f7f9143b 12464
0259addd
JB
12465 /* First, find out which exception support info to use. */
12466 ada_exception_support_info_sniffer ();
12467
12468 /* Then lookup the function on which we will break in order to catch
f7f9143b 12469 the Ada exceptions requested by the user. */
f7f9143b
JB
12470 sym_name = ada_exception_sym_name (ex);
12471 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12472
f17011e0
JB
12473 /* We can assume that SYM is not NULL at this stage. If the symbol
12474 did not exist, ada_exception_support_info_sniffer would have
12475 raised an exception.
f7f9143b 12476
f17011e0
JB
12477 Also, ada_exception_support_info_sniffer should have already
12478 verified that SYM is a function symbol. */
12479 gdb_assert (sym != NULL);
12480 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
12481
12482 /* Set ADDR_STRING. */
f7f9143b
JB
12483 *addr_string = xstrdup (sym_name);
12484
f7f9143b 12485 /* Set OPS. */
4b9eee8c 12486 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12487
f17011e0 12488 return find_function_start_sal (sym, 1);
f7f9143b
JB
12489}
12490
b4a5b78b 12491/* Create an Ada exception catchpoint.
f7f9143b 12492
b4a5b78b 12493 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12494
2df4d1d5
JB
12495 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12496 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12497 of the exception to which this catchpoint applies. When not NULL,
12498 the string must be allocated on the heap, and its deallocation
12499 is no longer the responsibility of the caller.
12500
12501 COND_STRING, if not NULL, is the catchpoint condition. This string
12502 must be allocated on the heap, and its deallocation is no longer
12503 the responsibility of the caller.
f7f9143b 12504
b4a5b78b
JB
12505 TEMPFLAG, if nonzero, means that the underlying breakpoint
12506 should be temporary.
28010a5d 12507
b4a5b78b 12508 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12509
349774ef 12510void
28010a5d 12511create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12512 enum ada_exception_catchpoint_kind ex_kind,
28010a5d 12513 char *excep_string,
5845583d 12514 char *cond_string,
28010a5d 12515 int tempflag,
349774ef 12516 int disabled,
28010a5d
PA
12517 int from_tty)
12518{
12519 struct ada_catchpoint *c;
b4a5b78b
JB
12520 char *addr_string = NULL;
12521 const struct breakpoint_ops *ops = NULL;
12522 struct symtab_and_line sal
12523 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
28010a5d
PA
12524
12525 c = XNEW (struct ada_catchpoint);
12526 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
349774ef 12527 ops, tempflag, disabled, from_tty);
28010a5d
PA
12528 c->excep_string = excep_string;
12529 create_excep_cond_exprs (c);
5845583d
JB
12530 if (cond_string != NULL)
12531 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 12532 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
12533}
12534
9ac4176b
PA
12535/* Implement the "catch exception" command. */
12536
12537static void
12538catch_ada_exception_command (char *arg, int from_tty,
12539 struct cmd_list_element *command)
12540{
12541 struct gdbarch *gdbarch = get_current_arch ();
12542 int tempflag;
761269c8 12543 enum ada_exception_catchpoint_kind ex_kind;
28010a5d 12544 char *excep_string = NULL;
5845583d 12545 char *cond_string = NULL;
9ac4176b
PA
12546
12547 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12548
12549 if (!arg)
12550 arg = "";
b4a5b78b
JB
12551 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12552 &cond_string);
12553 create_ada_exception_catchpoint (gdbarch, ex_kind,
12554 excep_string, cond_string,
349774ef
JB
12555 tempflag, 1 /* enabled */,
12556 from_tty);
9ac4176b
PA
12557}
12558
b4a5b78b 12559/* Split the arguments specified in a "catch assert" command.
5845583d 12560
b4a5b78b
JB
12561 ARGS contains the command's arguments (or the empty string if
12562 no arguments were passed).
5845583d
JB
12563
12564 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 12565 (the memory needs to be deallocated after use). */
5845583d 12566
b4a5b78b
JB
12567static void
12568catch_ada_assert_command_split (char *args, char **cond_string)
f7f9143b 12569{
5845583d 12570 args = skip_spaces (args);
f7f9143b 12571
5845583d
JB
12572 /* Check whether a condition was provided. */
12573 if (strncmp (args, "if", 2) == 0
12574 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 12575 {
5845583d 12576 args += 2;
0fcd72ba 12577 args = skip_spaces (args);
5845583d
JB
12578 if (args[0] == '\0')
12579 error (_("condition missing after `if' keyword"));
12580 *cond_string = xstrdup (args);
f7f9143b
JB
12581 }
12582
5845583d
JB
12583 /* Otherwise, there should be no other argument at the end of
12584 the command. */
12585 else if (args[0] != '\0')
12586 error (_("Junk at end of arguments."));
f7f9143b
JB
12587}
12588
9ac4176b
PA
12589/* Implement the "catch assert" command. */
12590
12591static void
12592catch_assert_command (char *arg, int from_tty,
12593 struct cmd_list_element *command)
12594{
12595 struct gdbarch *gdbarch = get_current_arch ();
12596 int tempflag;
5845583d 12597 char *cond_string = NULL;
9ac4176b
PA
12598
12599 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12600
12601 if (!arg)
12602 arg = "";
b4a5b78b 12603 catch_ada_assert_command_split (arg, &cond_string);
761269c8 12604 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
b4a5b78b 12605 NULL, cond_string,
349774ef
JB
12606 tempflag, 1 /* enabled */,
12607 from_tty);
9ac4176b 12608}
778865d3
JB
12609
12610/* Return non-zero if the symbol SYM is an Ada exception object. */
12611
12612static int
12613ada_is_exception_sym (struct symbol *sym)
12614{
12615 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12616
12617 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12618 && SYMBOL_CLASS (sym) != LOC_BLOCK
12619 && SYMBOL_CLASS (sym) != LOC_CONST
12620 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12621 && type_name != NULL && strcmp (type_name, "exception") == 0);
12622}
12623
12624/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12625 Ada exception object. This matches all exceptions except the ones
12626 defined by the Ada language. */
12627
12628static int
12629ada_is_non_standard_exception_sym (struct symbol *sym)
12630{
12631 int i;
12632
12633 if (!ada_is_exception_sym (sym))
12634 return 0;
12635
12636 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12637 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12638 return 0; /* A standard exception. */
12639
12640 /* Numeric_Error is also a standard exception, so exclude it.
12641 See the STANDARD_EXC description for more details as to why
12642 this exception is not listed in that array. */
12643 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12644 return 0;
12645
12646 return 1;
12647}
12648
12649/* A helper function for qsort, comparing two struct ada_exc_info
12650 objects.
12651
12652 The comparison is determined first by exception name, and then
12653 by exception address. */
12654
12655static int
12656compare_ada_exception_info (const void *a, const void *b)
12657{
12658 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12659 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12660 int result;
12661
12662 result = strcmp (exc_a->name, exc_b->name);
12663 if (result != 0)
12664 return result;
12665
12666 if (exc_a->addr < exc_b->addr)
12667 return -1;
12668 if (exc_a->addr > exc_b->addr)
12669 return 1;
12670
12671 return 0;
12672}
12673
12674/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12675 routine, but keeping the first SKIP elements untouched.
12676
12677 All duplicates are also removed. */
12678
12679static void
12680sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12681 int skip)
12682{
12683 struct ada_exc_info *to_sort
12684 = VEC_address (ada_exc_info, *exceptions) + skip;
12685 int to_sort_len
12686 = VEC_length (ada_exc_info, *exceptions) - skip;
12687 int i, j;
12688
12689 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12690 compare_ada_exception_info);
12691
12692 for (i = 1, j = 1; i < to_sort_len; i++)
12693 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12694 to_sort[j++] = to_sort[i];
12695 to_sort_len = j;
12696 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12697}
12698
12699/* A function intended as the "name_matcher" callback in the struct
12700 quick_symbol_functions' expand_symtabs_matching method.
12701
12702 SEARCH_NAME is the symbol's search name.
12703
12704 If USER_DATA is not NULL, it is a pointer to a regext_t object
12705 used to match the symbol (by natural name). Otherwise, when USER_DATA
12706 is null, no filtering is performed, and all symbols are a positive
12707 match. */
12708
12709static int
12710ada_exc_search_name_matches (const char *search_name, void *user_data)
12711{
12712 regex_t *preg = user_data;
12713
12714 if (preg == NULL)
12715 return 1;
12716
12717 /* In Ada, the symbol "search name" is a linkage name, whereas
12718 the regular expression used to do the matching refers to
12719 the natural name. So match against the decoded name. */
12720 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12721}
12722
12723/* Add all exceptions defined by the Ada standard whose name match
12724 a regular expression.
12725
12726 If PREG is not NULL, then this regexp_t object is used to
12727 perform the symbol name matching. Otherwise, no name-based
12728 filtering is performed.
12729
12730 EXCEPTIONS is a vector of exceptions to which matching exceptions
12731 gets pushed. */
12732
12733static void
12734ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12735{
12736 int i;
12737
12738 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12739 {
12740 if (preg == NULL
12741 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12742 {
12743 struct bound_minimal_symbol msymbol
12744 = ada_lookup_simple_minsym (standard_exc[i]);
12745
12746 if (msymbol.minsym != NULL)
12747 {
12748 struct ada_exc_info info
77e371c0 12749 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3
JB
12750
12751 VEC_safe_push (ada_exc_info, *exceptions, &info);
12752 }
12753 }
12754 }
12755}
12756
12757/* Add all Ada exceptions defined locally and accessible from the given
12758 FRAME.
12759
12760 If PREG is not NULL, then this regexp_t object is used to
12761 perform the symbol name matching. Otherwise, no name-based
12762 filtering is performed.
12763
12764 EXCEPTIONS is a vector of exceptions to which matching exceptions
12765 gets pushed. */
12766
12767static void
12768ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12769 VEC(ada_exc_info) **exceptions)
12770{
3977b71f 12771 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
12772
12773 while (block != 0)
12774 {
12775 struct block_iterator iter;
12776 struct symbol *sym;
12777
12778 ALL_BLOCK_SYMBOLS (block, iter, sym)
12779 {
12780 switch (SYMBOL_CLASS (sym))
12781 {
12782 case LOC_TYPEDEF:
12783 case LOC_BLOCK:
12784 case LOC_CONST:
12785 break;
12786 default:
12787 if (ada_is_exception_sym (sym))
12788 {
12789 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12790 SYMBOL_VALUE_ADDRESS (sym)};
12791
12792 VEC_safe_push (ada_exc_info, *exceptions, &info);
12793 }
12794 }
12795 }
12796 if (BLOCK_FUNCTION (block) != NULL)
12797 break;
12798 block = BLOCK_SUPERBLOCK (block);
12799 }
12800}
12801
12802/* Add all exceptions defined globally whose name name match
12803 a regular expression, excluding standard exceptions.
12804
12805 The reason we exclude standard exceptions is that they need
12806 to be handled separately: Standard exceptions are defined inside
12807 a runtime unit which is normally not compiled with debugging info,
12808 and thus usually do not show up in our symbol search. However,
12809 if the unit was in fact built with debugging info, we need to
12810 exclude them because they would duplicate the entry we found
12811 during the special loop that specifically searches for those
12812 standard exceptions.
12813
12814 If PREG is not NULL, then this regexp_t object is used to
12815 perform the symbol name matching. Otherwise, no name-based
12816 filtering is performed.
12817
12818 EXCEPTIONS is a vector of exceptions to which matching exceptions
12819 gets pushed. */
12820
12821static void
12822ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12823{
12824 struct objfile *objfile;
12825 struct symtab *s;
12826
bb4142cf
DE
12827 expand_symtabs_matching (NULL, ada_exc_search_name_matches,
12828 VARIABLES_DOMAIN, preg);
778865d3
JB
12829
12830 ALL_PRIMARY_SYMTABS (objfile, s)
12831 {
346d1dfe 12832 const struct blockvector *bv = BLOCKVECTOR (s);
778865d3
JB
12833 int i;
12834
12835 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12836 {
12837 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12838 struct block_iterator iter;
12839 struct symbol *sym;
12840
12841 ALL_BLOCK_SYMBOLS (b, iter, sym)
12842 if (ada_is_non_standard_exception_sym (sym)
12843 && (preg == NULL
12844 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12845 0, NULL, 0) == 0))
12846 {
12847 struct ada_exc_info info
12848 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12849
12850 VEC_safe_push (ada_exc_info, *exceptions, &info);
12851 }
12852 }
12853 }
12854}
12855
12856/* Implements ada_exceptions_list with the regular expression passed
12857 as a regex_t, rather than a string.
12858
12859 If not NULL, PREG is used to filter out exceptions whose names
12860 do not match. Otherwise, all exceptions are listed. */
12861
12862static VEC(ada_exc_info) *
12863ada_exceptions_list_1 (regex_t *preg)
12864{
12865 VEC(ada_exc_info) *result = NULL;
12866 struct cleanup *old_chain
12867 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12868 int prev_len;
12869
12870 /* First, list the known standard exceptions. These exceptions
12871 need to be handled separately, as they are usually defined in
12872 runtime units that have been compiled without debugging info. */
12873
12874 ada_add_standard_exceptions (preg, &result);
12875
12876 /* Next, find all exceptions whose scope is local and accessible
12877 from the currently selected frame. */
12878
12879 if (has_stack_frames ())
12880 {
12881 prev_len = VEC_length (ada_exc_info, result);
12882 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12883 &result);
12884 if (VEC_length (ada_exc_info, result) > prev_len)
12885 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12886 }
12887
12888 /* Add all exceptions whose scope is global. */
12889
12890 prev_len = VEC_length (ada_exc_info, result);
12891 ada_add_global_exceptions (preg, &result);
12892 if (VEC_length (ada_exc_info, result) > prev_len)
12893 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12894
12895 discard_cleanups (old_chain);
12896 return result;
12897}
12898
12899/* Return a vector of ada_exc_info.
12900
12901 If REGEXP is NULL, all exceptions are included in the result.
12902 Otherwise, it should contain a valid regular expression,
12903 and only the exceptions whose names match that regular expression
12904 are included in the result.
12905
12906 The exceptions are sorted in the following order:
12907 - Standard exceptions (defined by the Ada language), in
12908 alphabetical order;
12909 - Exceptions only visible from the current frame, in
12910 alphabetical order;
12911 - Exceptions whose scope is global, in alphabetical order. */
12912
12913VEC(ada_exc_info) *
12914ada_exceptions_list (const char *regexp)
12915{
12916 VEC(ada_exc_info) *result = NULL;
12917 struct cleanup *old_chain = NULL;
12918 regex_t reg;
12919
12920 if (regexp != NULL)
12921 old_chain = compile_rx_or_error (&reg, regexp,
12922 _("invalid regular expression"));
12923
12924 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12925
12926 if (old_chain != NULL)
12927 do_cleanups (old_chain);
12928 return result;
12929}
12930
12931/* Implement the "info exceptions" command. */
12932
12933static void
12934info_exceptions_command (char *regexp, int from_tty)
12935{
12936 VEC(ada_exc_info) *exceptions;
12937 struct cleanup *cleanup;
12938 struct gdbarch *gdbarch = get_current_arch ();
12939 int ix;
12940 struct ada_exc_info *info;
12941
12942 exceptions = ada_exceptions_list (regexp);
12943 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12944
12945 if (regexp != NULL)
12946 printf_filtered
12947 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12948 else
12949 printf_filtered (_("All defined Ada exceptions:\n"));
12950
12951 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12952 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12953
12954 do_cleanups (cleanup);
12955}
12956
4c4b4cd2
PH
12957 /* Operators */
12958/* Information about operators given special treatment in functions
12959 below. */
12960/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12961
12962#define ADA_OPERATORS \
12963 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12964 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12965 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12966 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12967 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12968 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12969 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12970 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12971 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12972 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12973 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12974 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12975 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12976 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12977 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12978 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12979 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12980 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12981 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12982
12983static void
554794dc
SDJ
12984ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12985 int *argsp)
4c4b4cd2
PH
12986{
12987 switch (exp->elts[pc - 1].opcode)
12988 {
76a01679 12989 default:
4c4b4cd2
PH
12990 operator_length_standard (exp, pc, oplenp, argsp);
12991 break;
12992
12993#define OP_DEFN(op, len, args, binop) \
12994 case op: *oplenp = len; *argsp = args; break;
12995 ADA_OPERATORS;
12996#undef OP_DEFN
52ce6436
PH
12997
12998 case OP_AGGREGATE:
12999 *oplenp = 3;
13000 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13001 break;
13002
13003 case OP_CHOICES:
13004 *oplenp = 3;
13005 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13006 break;
4c4b4cd2
PH
13007 }
13008}
13009
c0201579
JK
13010/* Implementation of the exp_descriptor method operator_check. */
13011
13012static int
13013ada_operator_check (struct expression *exp, int pos,
13014 int (*objfile_func) (struct objfile *objfile, void *data),
13015 void *data)
13016{
13017 const union exp_element *const elts = exp->elts;
13018 struct type *type = NULL;
13019
13020 switch (elts[pos].opcode)
13021 {
13022 case UNOP_IN_RANGE:
13023 case UNOP_QUAL:
13024 type = elts[pos + 1].type;
13025 break;
13026
13027 default:
13028 return operator_check_standard (exp, pos, objfile_func, data);
13029 }
13030
13031 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13032
13033 if (type && TYPE_OBJFILE (type)
13034 && (*objfile_func) (TYPE_OBJFILE (type), data))
13035 return 1;
13036
13037 return 0;
13038}
13039
4c4b4cd2
PH
13040static char *
13041ada_op_name (enum exp_opcode opcode)
13042{
13043 switch (opcode)
13044 {
76a01679 13045 default:
4c4b4cd2 13046 return op_name_standard (opcode);
52ce6436 13047
4c4b4cd2
PH
13048#define OP_DEFN(op, len, args, binop) case op: return #op;
13049 ADA_OPERATORS;
13050#undef OP_DEFN
52ce6436
PH
13051
13052 case OP_AGGREGATE:
13053 return "OP_AGGREGATE";
13054 case OP_CHOICES:
13055 return "OP_CHOICES";
13056 case OP_NAME:
13057 return "OP_NAME";
4c4b4cd2
PH
13058 }
13059}
13060
13061/* As for operator_length, but assumes PC is pointing at the first
13062 element of the operator, and gives meaningful results only for the
52ce6436 13063 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13064
13065static void
76a01679
JB
13066ada_forward_operator_length (struct expression *exp, int pc,
13067 int *oplenp, int *argsp)
4c4b4cd2 13068{
76a01679 13069 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13070 {
13071 default:
13072 *oplenp = *argsp = 0;
13073 break;
52ce6436 13074
4c4b4cd2
PH
13075#define OP_DEFN(op, len, args, binop) \
13076 case op: *oplenp = len; *argsp = args; break;
13077 ADA_OPERATORS;
13078#undef OP_DEFN
52ce6436
PH
13079
13080 case OP_AGGREGATE:
13081 *oplenp = 3;
13082 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13083 break;
13084
13085 case OP_CHOICES:
13086 *oplenp = 3;
13087 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13088 break;
13089
13090 case OP_STRING:
13091 case OP_NAME:
13092 {
13093 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13094
52ce6436
PH
13095 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13096 *argsp = 0;
13097 break;
13098 }
4c4b4cd2
PH
13099 }
13100}
13101
13102static int
13103ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13104{
13105 enum exp_opcode op = exp->elts[elt].opcode;
13106 int oplen, nargs;
13107 int pc = elt;
13108 int i;
76a01679 13109
4c4b4cd2
PH
13110 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13111
76a01679 13112 switch (op)
4c4b4cd2 13113 {
76a01679 13114 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13115 case OP_ATR_FIRST:
13116 case OP_ATR_LAST:
13117 case OP_ATR_LENGTH:
13118 case OP_ATR_IMAGE:
13119 case OP_ATR_MAX:
13120 case OP_ATR_MIN:
13121 case OP_ATR_MODULUS:
13122 case OP_ATR_POS:
13123 case OP_ATR_SIZE:
13124 case OP_ATR_TAG:
13125 case OP_ATR_VAL:
13126 break;
13127
13128 case UNOP_IN_RANGE:
13129 case UNOP_QUAL:
323e0a4a
AC
13130 /* XXX: gdb_sprint_host_address, type_sprint */
13131 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13132 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13133 fprintf_filtered (stream, " (");
13134 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13135 fprintf_filtered (stream, ")");
13136 break;
13137 case BINOP_IN_BOUNDS:
52ce6436
PH
13138 fprintf_filtered (stream, " (%d)",
13139 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13140 break;
13141 case TERNOP_IN_RANGE:
13142 break;
13143
52ce6436
PH
13144 case OP_AGGREGATE:
13145 case OP_OTHERS:
13146 case OP_DISCRETE_RANGE:
13147 case OP_POSITIONAL:
13148 case OP_CHOICES:
13149 break;
13150
13151 case OP_NAME:
13152 case OP_STRING:
13153 {
13154 char *name = &exp->elts[elt + 2].string;
13155 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13156
52ce6436
PH
13157 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13158 break;
13159 }
13160
4c4b4cd2
PH
13161 default:
13162 return dump_subexp_body_standard (exp, stream, elt);
13163 }
13164
13165 elt += oplen;
13166 for (i = 0; i < nargs; i += 1)
13167 elt = dump_subexp (exp, stream, elt);
13168
13169 return elt;
13170}
13171
13172/* The Ada extension of print_subexp (q.v.). */
13173
76a01679
JB
13174static void
13175ada_print_subexp (struct expression *exp, int *pos,
13176 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13177{
52ce6436 13178 int oplen, nargs, i;
4c4b4cd2
PH
13179 int pc = *pos;
13180 enum exp_opcode op = exp->elts[pc].opcode;
13181
13182 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13183
52ce6436 13184 *pos += oplen;
4c4b4cd2
PH
13185 switch (op)
13186 {
13187 default:
52ce6436 13188 *pos -= oplen;
4c4b4cd2
PH
13189 print_subexp_standard (exp, pos, stream, prec);
13190 return;
13191
13192 case OP_VAR_VALUE:
4c4b4cd2
PH
13193 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13194 return;
13195
13196 case BINOP_IN_BOUNDS:
323e0a4a 13197 /* XXX: sprint_subexp */
4c4b4cd2 13198 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13199 fputs_filtered (" in ", stream);
4c4b4cd2 13200 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13201 fputs_filtered ("'range", stream);
4c4b4cd2 13202 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13203 fprintf_filtered (stream, "(%ld)",
13204 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13205 return;
13206
13207 case TERNOP_IN_RANGE:
4c4b4cd2 13208 if (prec >= PREC_EQUAL)
76a01679 13209 fputs_filtered ("(", stream);
323e0a4a 13210 /* XXX: sprint_subexp */
4c4b4cd2 13211 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13212 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13213 print_subexp (exp, pos, stream, PREC_EQUAL);
13214 fputs_filtered (" .. ", stream);
13215 print_subexp (exp, pos, stream, PREC_EQUAL);
13216 if (prec >= PREC_EQUAL)
76a01679
JB
13217 fputs_filtered (")", stream);
13218 return;
4c4b4cd2
PH
13219
13220 case OP_ATR_FIRST:
13221 case OP_ATR_LAST:
13222 case OP_ATR_LENGTH:
13223 case OP_ATR_IMAGE:
13224 case OP_ATR_MAX:
13225 case OP_ATR_MIN:
13226 case OP_ATR_MODULUS:
13227 case OP_ATR_POS:
13228 case OP_ATR_SIZE:
13229 case OP_ATR_TAG:
13230 case OP_ATR_VAL:
4c4b4cd2 13231 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13232 {
13233 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13234 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13235 &type_print_raw_options);
76a01679
JB
13236 *pos += 3;
13237 }
4c4b4cd2 13238 else
76a01679 13239 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13240 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13241 if (nargs > 1)
76a01679
JB
13242 {
13243 int tem;
5b4ee69b 13244
76a01679
JB
13245 for (tem = 1; tem < nargs; tem += 1)
13246 {
13247 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13248 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13249 }
13250 fputs_filtered (")", stream);
13251 }
4c4b4cd2 13252 return;
14f9c5c9 13253
4c4b4cd2 13254 case UNOP_QUAL:
4c4b4cd2
PH
13255 type_print (exp->elts[pc + 1].type, "", stream, 0);
13256 fputs_filtered ("'(", stream);
13257 print_subexp (exp, pos, stream, PREC_PREFIX);
13258 fputs_filtered (")", stream);
13259 return;
14f9c5c9 13260
4c4b4cd2 13261 case UNOP_IN_RANGE:
323e0a4a 13262 /* XXX: sprint_subexp */
4c4b4cd2 13263 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13264 fputs_filtered (" in ", stream);
79d43c61
TT
13265 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13266 &type_print_raw_options);
4c4b4cd2 13267 return;
52ce6436
PH
13268
13269 case OP_DISCRETE_RANGE:
13270 print_subexp (exp, pos, stream, PREC_SUFFIX);
13271 fputs_filtered ("..", stream);
13272 print_subexp (exp, pos, stream, PREC_SUFFIX);
13273 return;
13274
13275 case OP_OTHERS:
13276 fputs_filtered ("others => ", stream);
13277 print_subexp (exp, pos, stream, PREC_SUFFIX);
13278 return;
13279
13280 case OP_CHOICES:
13281 for (i = 0; i < nargs-1; i += 1)
13282 {
13283 if (i > 0)
13284 fputs_filtered ("|", stream);
13285 print_subexp (exp, pos, stream, PREC_SUFFIX);
13286 }
13287 fputs_filtered (" => ", stream);
13288 print_subexp (exp, pos, stream, PREC_SUFFIX);
13289 return;
13290
13291 case OP_POSITIONAL:
13292 print_subexp (exp, pos, stream, PREC_SUFFIX);
13293 return;
13294
13295 case OP_AGGREGATE:
13296 fputs_filtered ("(", stream);
13297 for (i = 0; i < nargs; i += 1)
13298 {
13299 if (i > 0)
13300 fputs_filtered (", ", stream);
13301 print_subexp (exp, pos, stream, PREC_SUFFIX);
13302 }
13303 fputs_filtered (")", stream);
13304 return;
4c4b4cd2
PH
13305 }
13306}
14f9c5c9
AS
13307
13308/* Table mapping opcodes into strings for printing operators
13309 and precedences of the operators. */
13310
d2e4a39e
AS
13311static const struct op_print ada_op_print_tab[] = {
13312 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13313 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13314 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13315 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13316 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13317 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13318 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13319 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13320 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13321 {">=", BINOP_GEQ, PREC_ORDER, 0},
13322 {">", BINOP_GTR, PREC_ORDER, 0},
13323 {"<", BINOP_LESS, PREC_ORDER, 0},
13324 {">>", BINOP_RSH, PREC_SHIFT, 0},
13325 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13326 {"+", BINOP_ADD, PREC_ADD, 0},
13327 {"-", BINOP_SUB, PREC_ADD, 0},
13328 {"&", BINOP_CONCAT, PREC_ADD, 0},
13329 {"*", BINOP_MUL, PREC_MUL, 0},
13330 {"/", BINOP_DIV, PREC_MUL, 0},
13331 {"rem", BINOP_REM, PREC_MUL, 0},
13332 {"mod", BINOP_MOD, PREC_MUL, 0},
13333 {"**", BINOP_EXP, PREC_REPEAT, 0},
13334 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13335 {"-", UNOP_NEG, PREC_PREFIX, 0},
13336 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13337 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13338 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13339 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13340 {".all", UNOP_IND, PREC_SUFFIX, 1},
13341 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13342 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 13343 {NULL, 0, 0, 0}
14f9c5c9
AS
13344};
13345\f
72d5681a
PH
13346enum ada_primitive_types {
13347 ada_primitive_type_int,
13348 ada_primitive_type_long,
13349 ada_primitive_type_short,
13350 ada_primitive_type_char,
13351 ada_primitive_type_float,
13352 ada_primitive_type_double,
13353 ada_primitive_type_void,
13354 ada_primitive_type_long_long,
13355 ada_primitive_type_long_double,
13356 ada_primitive_type_natural,
13357 ada_primitive_type_positive,
13358 ada_primitive_type_system_address,
13359 nr_ada_primitive_types
13360};
6c038f32
PH
13361
13362static void
d4a9a881 13363ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13364 struct language_arch_info *lai)
13365{
d4a9a881 13366 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13367
72d5681a 13368 lai->primitive_type_vector
d4a9a881 13369 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13370 struct type *);
e9bb382b
UW
13371
13372 lai->primitive_type_vector [ada_primitive_type_int]
13373 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13374 0, "integer");
13375 lai->primitive_type_vector [ada_primitive_type_long]
13376 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13377 0, "long_integer");
13378 lai->primitive_type_vector [ada_primitive_type_short]
13379 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13380 0, "short_integer");
13381 lai->string_char_type
13382 = lai->primitive_type_vector [ada_primitive_type_char]
13383 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13384 lai->primitive_type_vector [ada_primitive_type_float]
13385 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13386 "float", NULL);
13387 lai->primitive_type_vector [ada_primitive_type_double]
13388 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13389 "long_float", NULL);
13390 lai->primitive_type_vector [ada_primitive_type_long_long]
13391 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13392 0, "long_long_integer");
13393 lai->primitive_type_vector [ada_primitive_type_long_double]
13394 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13395 "long_long_float", NULL);
13396 lai->primitive_type_vector [ada_primitive_type_natural]
13397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13398 0, "natural");
13399 lai->primitive_type_vector [ada_primitive_type_positive]
13400 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13401 0, "positive");
13402 lai->primitive_type_vector [ada_primitive_type_void]
13403 = builtin->builtin_void;
13404
13405 lai->primitive_type_vector [ada_primitive_type_system_address]
13406 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
13407 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13408 = "system__address";
fbb06eb1 13409
47e729a8 13410 lai->bool_type_symbol = NULL;
fbb06eb1 13411 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13412}
6c038f32
PH
13413\f
13414 /* Language vector */
13415
13416/* Not really used, but needed in the ada_language_defn. */
13417
13418static void
6c7a06a3 13419emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13420{
6c7a06a3 13421 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13422}
13423
13424static int
410a0ff2 13425parse (struct parser_state *ps)
6c038f32
PH
13426{
13427 warnings_issued = 0;
410a0ff2 13428 return ada_parse (ps);
6c038f32
PH
13429}
13430
13431static const struct exp_descriptor ada_exp_descriptor = {
13432 ada_print_subexp,
13433 ada_operator_length,
c0201579 13434 ada_operator_check,
6c038f32
PH
13435 ada_op_name,
13436 ada_dump_subexp_body,
13437 ada_evaluate_subexp
13438};
13439
1a119f36 13440/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
13441 for Ada. */
13442
1a119f36
JB
13443static symbol_name_cmp_ftype
13444ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
13445{
13446 if (should_use_wild_match (lookup_name))
13447 return wild_match;
13448 else
13449 return compare_names;
13450}
13451
a5ee536b
JB
13452/* Implement the "la_read_var_value" language_defn method for Ada. */
13453
13454static struct value *
13455ada_read_var_value (struct symbol *var, struct frame_info *frame)
13456{
3977b71f 13457 const struct block *frame_block = NULL;
a5ee536b
JB
13458 struct symbol *renaming_sym = NULL;
13459
13460 /* The only case where default_read_var_value is not sufficient
13461 is when VAR is a renaming... */
13462 if (frame)
13463 frame_block = get_frame_block (frame, NULL);
13464 if (frame_block)
13465 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13466 if (renaming_sym != NULL)
13467 return ada_read_renaming_var_value (renaming_sym, frame_block);
13468
13469 /* This is a typical case where we expect the default_read_var_value
13470 function to work. */
13471 return default_read_var_value (var, frame);
13472}
13473
6c038f32
PH
13474const struct language_defn ada_language_defn = {
13475 "ada", /* Language name */
6abde28f 13476 "Ada",
6c038f32 13477 language_ada,
6c038f32 13478 range_check_off,
6c038f32
PH
13479 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13480 that's not quite what this means. */
6c038f32 13481 array_row_major,
9a044a89 13482 macro_expansion_no,
6c038f32
PH
13483 &ada_exp_descriptor,
13484 parse,
13485 ada_error,
13486 resolve,
13487 ada_printchar, /* Print a character constant */
13488 ada_printstr, /* Function to print string constant */
13489 emit_char, /* Function to print single char (not used) */
6c038f32 13490 ada_print_type, /* Print a type using appropriate syntax */
be942545 13491 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
13492 ada_val_print, /* Print a value using appropriate syntax */
13493 ada_value_print, /* Print a top-level value */
a5ee536b 13494 ada_read_var_value, /* la_read_var_value */
6c038f32 13495 NULL, /* Language specific skip_trampoline */
2b2d9e11 13496 NULL, /* name_of_this */
6c038f32
PH
13497 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13498 basic_lookup_transparent_type, /* lookup_transparent_type */
13499 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
13500 NULL, /* Language specific
13501 class_name_from_physname */
6c038f32
PH
13502 ada_op_print_tab, /* expression operators for printing */
13503 0, /* c-style arrays */
13504 1, /* String lower bound */
6c038f32 13505 ada_get_gdb_completer_word_break_characters,
41d27058 13506 ada_make_symbol_completion_list,
72d5681a 13507 ada_language_arch_info,
e79af960 13508 ada_print_array_index,
41f1b697 13509 default_pass_by_reference,
ae6a3a4c 13510 c_get_string,
1a119f36 13511 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 13512 ada_iterate_over_symbols,
a53b64ea 13513 &ada_varobj_ops,
6c038f32
PH
13514 LANG_MAGIC
13515};
13516
2c0b251b
PA
13517/* Provide a prototype to silence -Wmissing-prototypes. */
13518extern initialize_file_ftype _initialize_ada_language;
13519
5bf03f13
JB
13520/* Command-list for the "set/show ada" prefix command. */
13521static struct cmd_list_element *set_ada_list;
13522static struct cmd_list_element *show_ada_list;
13523
13524/* Implement the "set ada" prefix command. */
13525
13526static void
13527set_ada_command (char *arg, int from_tty)
13528{
13529 printf_unfiltered (_(\
13530"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 13531 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
13532}
13533
13534/* Implement the "show ada" prefix command. */
13535
13536static void
13537show_ada_command (char *args, int from_tty)
13538{
13539 cmd_show_list (show_ada_list, from_tty, "");
13540}
13541
2060206e
PA
13542static void
13543initialize_ada_catchpoint_ops (void)
13544{
13545 struct breakpoint_ops *ops;
13546
13547 initialize_breakpoint_ops ();
13548
13549 ops = &catch_exception_breakpoint_ops;
13550 *ops = bkpt_breakpoint_ops;
13551 ops->dtor = dtor_catch_exception;
13552 ops->allocate_location = allocate_location_catch_exception;
13553 ops->re_set = re_set_catch_exception;
13554 ops->check_status = check_status_catch_exception;
13555 ops->print_it = print_it_catch_exception;
13556 ops->print_one = print_one_catch_exception;
13557 ops->print_mention = print_mention_catch_exception;
13558 ops->print_recreate = print_recreate_catch_exception;
13559
13560 ops = &catch_exception_unhandled_breakpoint_ops;
13561 *ops = bkpt_breakpoint_ops;
13562 ops->dtor = dtor_catch_exception_unhandled;
13563 ops->allocate_location = allocate_location_catch_exception_unhandled;
13564 ops->re_set = re_set_catch_exception_unhandled;
13565 ops->check_status = check_status_catch_exception_unhandled;
13566 ops->print_it = print_it_catch_exception_unhandled;
13567 ops->print_one = print_one_catch_exception_unhandled;
13568 ops->print_mention = print_mention_catch_exception_unhandled;
13569 ops->print_recreate = print_recreate_catch_exception_unhandled;
13570
13571 ops = &catch_assert_breakpoint_ops;
13572 *ops = bkpt_breakpoint_ops;
13573 ops->dtor = dtor_catch_assert;
13574 ops->allocate_location = allocate_location_catch_assert;
13575 ops->re_set = re_set_catch_assert;
13576 ops->check_status = check_status_catch_assert;
13577 ops->print_it = print_it_catch_assert;
13578 ops->print_one = print_one_catch_assert;
13579 ops->print_mention = print_mention_catch_assert;
13580 ops->print_recreate = print_recreate_catch_assert;
13581}
13582
3d9434b5
JB
13583/* This module's 'new_objfile' observer. */
13584
13585static void
13586ada_new_objfile_observer (struct objfile *objfile)
13587{
13588 ada_clear_symbol_cache ();
13589}
13590
13591/* This module's 'free_objfile' observer. */
13592
13593static void
13594ada_free_objfile_observer (struct objfile *objfile)
13595{
13596 ada_clear_symbol_cache ();
13597}
13598
d2e4a39e 13599void
6c038f32 13600_initialize_ada_language (void)
14f9c5c9 13601{
6c038f32
PH
13602 add_language (&ada_language_defn);
13603
2060206e
PA
13604 initialize_ada_catchpoint_ops ();
13605
5bf03f13
JB
13606 add_prefix_cmd ("ada", no_class, set_ada_command,
13607 _("Prefix command for changing Ada-specfic settings"),
13608 &set_ada_list, "set ada ", 0, &setlist);
13609
13610 add_prefix_cmd ("ada", no_class, show_ada_command,
13611 _("Generic command for showing Ada-specific settings."),
13612 &show_ada_list, "show ada ", 0, &showlist);
13613
13614 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13615 &trust_pad_over_xvs, _("\
13616Enable or disable an optimization trusting PAD types over XVS types"), _("\
13617Show whether an optimization trusting PAD types over XVS types is activated"),
13618 _("\
13619This is related to the encoding used by the GNAT compiler. The debugger\n\
13620should normally trust the contents of PAD types, but certain older versions\n\
13621of GNAT have a bug that sometimes causes the information in the PAD type\n\
13622to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13623work around this bug. It is always safe to turn this option \"off\", but\n\
13624this incurs a slight performance penalty, so it is recommended to NOT change\n\
13625this option to \"off\" unless necessary."),
13626 NULL, NULL, &set_ada_list, &show_ada_list);
13627
9ac4176b
PA
13628 add_catch_command ("exception", _("\
13629Catch Ada exceptions, when raised.\n\
13630With an argument, catch only exceptions with the given name."),
13631 catch_ada_exception_command,
13632 NULL,
13633 CATCH_PERMANENT,
13634 CATCH_TEMPORARY);
13635 add_catch_command ("assert", _("\
13636Catch failed Ada assertions, when raised.\n\
13637With an argument, catch only exceptions with the given name."),
13638 catch_assert_command,
13639 NULL,
13640 CATCH_PERMANENT,
13641 CATCH_TEMPORARY);
13642
6c038f32 13643 varsize_limit = 65536;
6c038f32 13644
778865d3
JB
13645 add_info ("exceptions", info_exceptions_command,
13646 _("\
13647List all Ada exception names.\n\
13648If a regular expression is passed as an argument, only those matching\n\
13649the regular expression are listed."));
13650
c6044dd1
JB
13651 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
13652 _("Set Ada maintenance-related variables."),
13653 &maint_set_ada_cmdlist, "maintenance set ada ",
13654 0/*allow-unknown*/, &maintenance_set_cmdlist);
13655
13656 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
13657 _("Show Ada maintenance-related variables"),
13658 &maint_show_ada_cmdlist, "maintenance show ada ",
13659 0/*allow-unknown*/, &maintenance_show_cmdlist);
13660
13661 add_setshow_boolean_cmd
13662 ("ignore-descriptive-types", class_maintenance,
13663 &ada_ignore_descriptive_types_p,
13664 _("Set whether descriptive types generated by GNAT should be ignored."),
13665 _("Show whether descriptive types generated by GNAT should be ignored."),
13666 _("\
13667When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13668DWARF attribute."),
13669 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13670
6c038f32
PH
13671 obstack_init (&symbol_list_obstack);
13672
13673 decoded_names_store = htab_create_alloc
13674 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13675 NULL, xcalloc, xfree);
6b69afc4 13676
3d9434b5
JB
13677 /* The ada-lang observers. */
13678 observer_attach_new_objfile (ada_new_objfile_observer);
13679 observer_attach_free_objfile (ada_free_objfile_observer);
e802dbe0 13680 observer_attach_inferior_exit (ada_inferior_exit);
ee01b665
JB
13681
13682 /* Setup various context-specific data. */
e802dbe0 13683 ada_inferior_data
8e260fc0 13684 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
13685 ada_pspace_data_handle
13686 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 13687}
This page took 2.309257 seconds and 4 git commands to generate.