[PATCH v2] binutils: arm: Fix disassembly of conditional VDUPs.
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
b811d2c2 3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
d55e5aa6 23#include "gdb_regex.h"
4de283e4
TT
24#include "frame.h"
25#include "symtab.h"
26#include "gdbtypes.h"
14f9c5c9 27#include "gdbcmd.h"
4de283e4
TT
28#include "expression.h"
29#include "parser-defs.h"
30#include "language.h"
31#include "varobj.h"
4de283e4
TT
32#include "inferior.h"
33#include "symfile.h"
34#include "objfiles.h"
35#include "breakpoint.h"
14f9c5c9 36#include "gdbcore.h"
4c4b4cd2 37#include "hashtab.h"
4de283e4
TT
38#include "gdb_obstack.h"
39#include "ada-lang.h"
40#include "completer.h"
4de283e4
TT
41#include "ui-out.h"
42#include "block.h"
04714b91 43#include "infcall.h"
4de283e4
TT
44#include "annotate.h"
45#include "valprint.h"
d55e5aa6 46#include "source.h"
4de283e4 47#include "observable.h"
692465f1 48#include "stack.h"
79d43c61 49#include "typeprint.h"
4de283e4 50#include "namespace.h"
7f6aba03 51#include "cli/cli-style.h"
4de283e4 52
40bc484c 53#include "value.h"
4de283e4
TT
54#include "mi/mi-common.h"
55#include "arch-utils.h"
56#include "cli/cli-utils.h"
268a13a5
TT
57#include "gdbsupport/function-view.h"
58#include "gdbsupport/byte-vector.h"
4de283e4 59#include <algorithm>
ccefe4c4 60
4c4b4cd2 61/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 62 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
63 Copied from valarith.c. */
64
65#ifndef TRUNCATION_TOWARDS_ZERO
66#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67#endif
68
d2e4a39e 69static struct type *desc_base_type (struct type *);
14f9c5c9 70
d2e4a39e 71static struct type *desc_bounds_type (struct type *);
14f9c5c9 72
d2e4a39e 73static struct value *desc_bounds (struct value *);
14f9c5c9 74
d2e4a39e 75static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 76
d2e4a39e 77static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 78
556bdfd4 79static struct type *desc_data_target_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_data (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 88
d2e4a39e 89static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 90
d2e4a39e 91static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 92
d2e4a39e 93static struct type *desc_index_type (struct type *, int);
14f9c5c9 94
d2e4a39e 95static int desc_arity (struct type *);
14f9c5c9 96
d2e4a39e 97static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 98
d2e4a39e 99static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 100
40bc484c 101static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 102
4c4b4cd2 103static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
14f9c5c9 107
22cee43f 108static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
22cee43f 111
d12307c1 112static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 113
76a01679 114static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 115 const struct block *);
14f9c5c9 116
4c4b4cd2
PH
117static int num_defns_collected (struct obstack *);
118
d12307c1 119static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 120
e9d9f57e 121static struct value *resolve_subexp (expression_up *, int *, int,
699bd4cf
TT
122 struct type *, int,
123 innermost_block_tracker *);
14f9c5c9 124
e9d9f57e 125static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 126 struct symbol *, const struct block *);
14f9c5c9 127
d2e4a39e 128static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 129
a121b7c1 130static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
131
132static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 133
d2e4a39e 134static int numeric_type_p (struct type *);
14f9c5c9 135
d2e4a39e 136static int integer_type_p (struct type *);
14f9c5c9 137
d2e4a39e 138static int scalar_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int discrete_type_p (struct type *);
14f9c5c9 141
a121b7c1 142static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 143 int, int);
4c4b4cd2 144
d2e4a39e 145static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 146
b4ba55a1
JB
147static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
d2e4a39e 150static int is_dynamic_field (struct type *, int);
14f9c5c9 151
10a2c479 152static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 153 const gdb_byte *,
4c4b4cd2
PH
154 CORE_ADDR, struct value *);
155
156static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 157
28c85d6c 158static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 159
d2e4a39e 160static struct type *to_static_fixed_type (struct type *);
f192137b 161static struct type *static_unwrap_type (struct type *type);
14f9c5c9 162
d2e4a39e 163static struct value *unwrap_value (struct value *);
14f9c5c9 164
ad82864c 165static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 166
ad82864c 167static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 168
ad82864c
JB
169static long decode_packed_array_bitsize (struct type *);
170
171static struct value *decode_constrained_packed_array (struct value *);
172
173static int ada_is_packed_array_type (struct type *);
174
175static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 176
d2e4a39e 177static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 178 struct value **);
14f9c5c9 179
4c4b4cd2
PH
180static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
14f9c5c9 182
d2e4a39e 183static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 184
d2e4a39e 185static int equiv_types (struct type *, struct type *);
14f9c5c9 186
d2e4a39e 187static int is_name_suffix (const char *);
14f9c5c9 188
73589123
PH
189static int advance_wild_match (const char **, const char *, int);
190
b5ec771e 191static bool wild_match (const char *name, const char *patn);
14f9c5c9 192
d2e4a39e 193static struct value *ada_coerce_ref (struct value *);
14f9c5c9 194
4c4b4cd2
PH
195static LONGEST pos_atr (struct value *);
196
3cb382c9 197static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 198
d2e4a39e 199static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 200
4c4b4cd2
PH
201static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
14f9c5c9 203
108d56a4 204static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
205 struct type *);
206
207static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
0d5cff50 210static int find_struct_field (const char *, struct type *, int,
52ce6436 211 struct type **, int *, int *, int *, int *);
4c4b4cd2 212
d12307c1 213static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2 214 struct value **, int, const char *,
2a612529 215 struct type *, int);
4c4b4cd2 216
4c4b4cd2
PH
217static int ada_is_direct_array_type (struct type *);
218
72d5681a
PH
219static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
714e53ab 221
52ce6436
PH
222static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
226 struct expression *,
227 int *, enum noside);
52ce6436
PH
228
229static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
852dff6c
JB
253
254static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
255
256static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
4c4b4cd2
PH
259\f
260
ee01b665
JB
261/* The result of a symbol lookup to be stored in our symbol cache. */
262
263struct cache_entry
264{
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
fe978cb0 268 domain_enum domain;
ee01b665
JB
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277};
278
279/* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288#define HASH_SIZE 1009
289
290struct ada_symbol_cache
291{
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297};
298
299static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 300
4c4b4cd2 301/* Maximum-sized dynamic type. */
14f9c5c9
AS
302static unsigned int varsize_limit;
303
67cb5b2d 304static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
305#ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307#else
14f9c5c9 308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 309#endif
14f9c5c9 310
4c4b4cd2 311/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 312static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 313 = "__gnat_ada_main_program_name";
14f9c5c9 314
4c4b4cd2
PH
315/* Limit on the number of warnings to raise per expression evaluation. */
316static int warning_limit = 2;
317
318/* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320static int warnings_issued = 0;
321
322static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324};
325
326static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328};
329
c6044dd1
JB
330/* Maintenance-related settings for this module. */
331
332static struct cmd_list_element *maint_set_ada_cmdlist;
333static struct cmd_list_element *maint_show_ada_cmdlist;
334
335/* Implement the "maintenance set ada" (prefix) command. */
336
337static void
981a3fb3 338maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 339{
635c7e8a
TT
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
c6044dd1
JB
342}
343
344/* Implement the "maintenance show ada" (prefix) command. */
345
346static void
981a3fb3 347maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
348{
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350}
351
352/* The "maintenance ada set/show ignore-descriptive-type" value. */
353
491144b5 354static bool ada_ignore_descriptive_types_p = false;
c6044dd1 355
e802dbe0
JB
356 /* Inferior-specific data. */
357
358/* Per-inferior data for this module. */
359
360struct ada_inferior_data
361{
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
f37b313d 366 struct type *tsd_type = nullptr;
3eecfa55
JB
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
f37b313d 371 const struct exception_support_info *exception_info = nullptr;
e802dbe0
JB
372};
373
374/* Our key to this module's inferior data. */
f37b313d 375static const struct inferior_key<ada_inferior_data> ada_inferior_data;
e802dbe0
JB
376
377/* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385static struct ada_inferior_data *
386get_ada_inferior_data (struct inferior *inf)
387{
388 struct ada_inferior_data *data;
389
f37b313d 390 data = ada_inferior_data.get (inf);
e802dbe0 391 if (data == NULL)
f37b313d 392 data = ada_inferior_data.emplace (inf);
e802dbe0
JB
393
394 return data;
395}
396
397/* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400static void
401ada_inferior_exit (struct inferior *inf)
402{
f37b313d 403 ada_inferior_data.clear (inf);
e802dbe0
JB
404}
405
ee01b665
JB
406
407 /* program-space-specific data. */
408
409/* This module's per-program-space data. */
410struct ada_pspace_data
411{
f37b313d
TT
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
ee01b665 418 /* The Ada symbol cache. */
f37b313d 419 struct ada_symbol_cache *sym_cache = nullptr;
ee01b665
JB
420};
421
422/* Key to our per-program-space data. */
f37b313d 423static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
ee01b665
JB
424
425/* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430static struct ada_pspace_data *
431get_ada_pspace_data (struct program_space *pspace)
432{
433 struct ada_pspace_data *data;
434
f37b313d 435 data = ada_pspace_data_handle.get (pspace);
ee01b665 436 if (data == NULL)
f37b313d 437 data = ada_pspace_data_handle.emplace (pspace);
ee01b665
JB
438
439 return data;
440}
441
4c4b4cd2
PH
442 /* Utilities */
443
720d1a40 444/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 445 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471static struct type *
472ada_typedef_target_type (struct type *type)
473{
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477}
478
41d27058
JB
479/* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483static const char *
484ada_unqualified_name (const char *decoded_name)
485{
2b0f535a
JB
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
41d27058
JB
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502}
503
39e7af3e 504/* Return a string starting with '<', followed by STR, and '>'. */
41d27058 505
39e7af3e 506static std::string
41d27058
JB
507add_angle_brackets (const char *str)
508{
39e7af3e 509 return string_printf ("<%s>", str);
41d27058 510}
96d887e8 511
67cb5b2d 512static const char *
4c4b4cd2
PH
513ada_get_gdb_completer_word_break_characters (void)
514{
515 return ada_completer_word_break_characters;
516}
517
e79af960
JB
518/* Print an array element index using the Ada syntax. */
519
520static void
521ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 522 const struct value_print_options *options)
e79af960 523{
79a45b7d 524 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
525 fprintf_filtered (stream, " => ");
526}
527
e2b7af72
JB
528/* la_watch_location_expression for Ada. */
529
de93309a 530static gdb::unique_xmalloc_ptr<char>
e2b7af72
JB
531ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532{
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537}
538
de93309a
SM
539/* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542#define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
f27cf670 545/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 547 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 548
de93309a 549static void *
f27cf670 550grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 551{
d2e4a39e
AS
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
4c4b4cd2 556 *size = min_size;
f27cf670 557 vect = xrealloc (vect, *size * element_size);
d2e4a39e 558 }
f27cf670 559 return vect;
14f9c5c9
AS
560}
561
562/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 563 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
564
565static int
ebf56fd3 566field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
567{
568 int len = strlen (target);
5b4ee69b 569
d2e4a39e 570 return
4c4b4cd2
PH
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
61012eef 573 || (startswith (field_name + len, "___")
76a01679
JB
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
14f9c5c9
AS
576}
577
578
872c8b51
JB
579/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
586
587int
588ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590{
591 int fieldno;
872c8b51
JB
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
596 return fieldno;
597
598 if (!maybe_missing)
323e0a4a 599 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 600 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
601
602 return -1;
603}
604
605/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
606
607int
d2e4a39e 608ada_name_prefix_len (const char *name)
14f9c5c9
AS
609{
610 if (name == NULL)
611 return 0;
d2e4a39e 612 else
14f9c5c9 613 {
d2e4a39e 614 const char *p = strstr (name, "___");
5b4ee69b 615
14f9c5c9 616 if (p == NULL)
4c4b4cd2 617 return strlen (name);
14f9c5c9 618 else
4c4b4cd2 619 return p - name;
14f9c5c9
AS
620 }
621}
622
4c4b4cd2
PH
623/* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
14f9c5c9 626static int
d2e4a39e 627is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
628{
629 int len1, len2;
5b4ee69b 630
14f9c5c9
AS
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
4c4b4cd2 635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
636}
637
4c4b4cd2
PH
638/* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
14f9c5c9 640
d2e4a39e 641static struct value *
4c4b4cd2 642coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 643{
61ee279c 644 type = ada_check_typedef (type);
df407dfe 645 if (value_type (val) == type)
4c4b4cd2 646 return val;
d2e4a39e 647 else
14f9c5c9 648 {
4c4b4cd2
PH
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
c1b5a1a6 653 ada_ensure_varsize_limit (type);
4c4b4cd2 654
41e8491f
JK
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
9a0dc9e3 661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 662 }
74bcbdf3 663 set_value_component_location (result, val);
9bbda503
AC
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
c408a94f
TT
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
14f9c5c9
AS
668 return result;
669 }
670}
671
fc1a4b47
AC
672static const gdb_byte *
673cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
674{
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679}
680
681static CORE_ADDR
ebf56fd3 682cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
683{
684 if (address == 0)
685 return 0;
d2e4a39e 686 else
14f9c5c9
AS
687 return address + offset;
688}
689
4c4b4cd2
PH
690/* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
a2249542 694
77109804
AC
695/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
a0b31db1 697static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 698
14f9c5c9 699static void
a2249542 700lim_warning (const char *format, ...)
14f9c5c9 701{
a2249542 702 va_list args;
a2249542 703
5b4ee69b 704 va_start (args, format);
4c4b4cd2
PH
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
a2249542
MK
707 vwarning (format, args);
708
709 va_end (args);
4c4b4cd2
PH
710}
711
714e53ab
PH
712/* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
c1b5a1a6
JB
716void
717ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
718{
719 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 720 error (_("object size is larger than varsize-limit"));
714e53ab
PH
721}
722
0963b4bd 723/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 724static LONGEST
c3e5cd34 725max_of_size (int size)
4c4b4cd2 726{
76a01679 727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 728
76a01679 729 return top_bit | (top_bit - 1);
4c4b4cd2
PH
730}
731
0963b4bd 732/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 733static LONGEST
c3e5cd34 734min_of_size (int size)
4c4b4cd2 735{
c3e5cd34 736 return -max_of_size (size) - 1;
4c4b4cd2
PH
737}
738
0963b4bd 739/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 740static ULONGEST
c3e5cd34 741umax_of_size (int size)
4c4b4cd2 742{
76a01679 743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 744
76a01679 745 return top_bit | (top_bit - 1);
4c4b4cd2
PH
746}
747
0963b4bd 748/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
749static LONGEST
750max_of_type (struct type *t)
4c4b4cd2 751{
c3e5cd34
PH
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756}
757
0963b4bd 758/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
759static LONGEST
760min_of_type (struct type *t)
761{
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
766}
767
768/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
769LONGEST
770ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 771{
c3345124 772 type = resolve_dynamic_type (type, NULL, 0);
76a01679 773 switch (TYPE_CODE (type))
4c4b4cd2
PH
774 {
775 case TYPE_CODE_RANGE:
690cc4eb 776 return TYPE_HIGH_BOUND (type);
4c4b4cd2 777 case TYPE_CODE_ENUM:
14e75d8e 778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
76a01679 782 case TYPE_CODE_INT:
690cc4eb 783 return max_of_type (type);
4c4b4cd2 784 default:
43bbcdc2 785 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
786 }
787}
788
14e75d8e 789/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
790LONGEST
791ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 792{
c3345124 793 type = resolve_dynamic_type (type, NULL, 0);
76a01679 794 switch (TYPE_CODE (type))
4c4b4cd2
PH
795 {
796 case TYPE_CODE_RANGE:
690cc4eb 797 return TYPE_LOW_BOUND (type);
4c4b4cd2 798 case TYPE_CODE_ENUM:
14e75d8e 799 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
76a01679 803 case TYPE_CODE_INT:
690cc4eb 804 return min_of_type (type);
4c4b4cd2 805 default:
43bbcdc2 806 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
807 }
808}
809
810/* The identity on non-range types. For range types, the underlying
76a01679 811 non-range scalar type. */
4c4b4cd2
PH
812
813static struct type *
18af8284 814get_base_type (struct type *type)
4c4b4cd2
PH
815{
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
76a01679
JB
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
4c4b4cd2
PH
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
14f9c5c9 823}
41246937
JB
824
825/* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
85102364 827 encodings, making the resulting type a static but standard description
41246937
JB
828 of the initial type. */
829
830struct value *
831ada_get_decoded_value (struct value *value)
832{
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848}
849
850/* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855struct type *
856ada_get_decoded_type (struct type *type)
857{
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862}
863
4c4b4cd2 864\f
76a01679 865
4c4b4cd2 866 /* Language Selection */
14f9c5c9
AS
867
868/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 869 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 870
de93309a 871static enum language
ccefe4c4 872ada_update_initial_language (enum language lang)
14f9c5c9 873{
cafb3438 874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
4c4b4cd2 875 return language_ada;
14f9c5c9
AS
876
877 return lang;
878}
96d887e8
PH
879
880/* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884char *
885ada_main_name (void)
886{
3b7344d5 887 struct bound_minimal_symbol msym;
e83e4e24 888 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 889
96d887e8
PH
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
3b7344d5 897 if (msym.minsym != NULL)
96d887e8 898 {
f9bc20b9
JB
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
77e371c0 902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 903 if (main_program_name_addr == 0)
323e0a4a 904 error (_("Invalid address for Ada main program name."));
96d887e8 905
f9bc20b9
JB
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
e83e4e24 911 return main_program_name.get ();
96d887e8
PH
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916}
14f9c5c9 917\f
4c4b4cd2 918 /* Symbols */
d2e4a39e 919
4c4b4cd2
PH
920/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
14f9c5c9 922
d2e4a39e
AS
923const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
14f9c5c9
AS
946};
947
b5ec771e
PA
948/* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
4c4b4cd2 952
b5ec771e
PA
953static char *
954ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 955{
4c4b4cd2
PH
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
d2e4a39e 958 const char *p;
14f9c5c9 959 int k;
d2e4a39e 960
4c4b4cd2 961 if (decoded == NULL)
14f9c5c9
AS
962 return NULL;
963
4c4b4cd2
PH
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
14f9c5c9
AS
966
967 k = 0;
4c4b4cd2 968 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 969 {
cdc7bb92 970 if (*p == '.')
4c4b4cd2
PH
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
14f9c5c9 975 else if (*p == '"')
4c4b4cd2
PH
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
1265e4aa 980 mapping->encoded != NULL
61012eef 981 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
982 ;
983 if (mapping->encoded == NULL)
b5ec771e
PA
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
4c4b4cd2
PH
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
d2e4a39e 994 else
4c4b4cd2
PH
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
14f9c5c9
AS
999 }
1000
4c4b4cd2
PH
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
14f9c5c9
AS
1003}
1004
b5ec771e
PA
1005/* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008char *
1009ada_encode (const char *decoded)
1010{
1011 return ada_encode_1 (decoded, true);
1012}
1013
14f9c5c9 1014/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
de93309a 1018static char *
e0802d59 1019ada_fold_name (gdb::string_view name)
14f9c5c9 1020{
d2e4a39e 1021 static char *fold_buffer = NULL;
14f9c5c9
AS
1022 static size_t fold_buffer_size = 0;
1023
e0802d59 1024 int len = name.size ();
d2e4a39e 1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1026
1027 if (name[0] == '\'')
1028 {
e0802d59 1029 strncpy (fold_buffer, name.data () + 1, len - 2);
d2e4a39e 1030 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1031 }
1032 else
1033 {
1034 int i;
5b4ee69b 1035
14f9c5c9 1036 for (i = 0; i <= len; i += 1)
4c4b4cd2 1037 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1038 }
1039
1040 return fold_buffer;
1041}
1042
529cad9c
PH
1043/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045static int
1046is_lower_alphanum (const char c)
1047{
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049}
1050
c90092fe
JB
1051/* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
29480c32
JB
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
c90092fe 1058
29480c32
JB
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063static void
1064ada_remove_trailing_digits (const char *encoded, int *len)
1065{
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
5b4ee69b 1069
29480c32
JB
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
61012eef 1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1077 *len = i - 2;
61012eef 1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1079 *len = i - 1;
1080 }
1081}
1082
1083/* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086static void
1087ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088{
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
0963b4bd 1094 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103}
1104
1105/* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
f945dedf 1107 replaced by ENCODED. */
14f9c5c9 1108
f945dedf 1109std::string
4c4b4cd2 1110ada_decode (const char *encoded)
14f9c5c9
AS
1111{
1112 int i, j;
1113 int len0;
d2e4a39e 1114 const char *p;
14f9c5c9 1115 int at_start_name;
f945dedf 1116 std::string decoded;
d2e4a39e 1117
0d81f350
JG
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
29480c32
JB
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
61012eef 1126 if (startswith (encoded, "_ada_"))
4c4b4cd2 1127 encoded += 5;
14f9c5c9 1128
29480c32
JB
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
4c4b4cd2 1132 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1133 goto Suppress;
1134
4c4b4cd2 1135 len0 = strlen (encoded);
4c4b4cd2 1136
29480c32
JB
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1139
4c4b4cd2
PH
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1146 {
1147 if (p[3] == 'X')
4c4b4cd2 1148 len0 = p - encoded;
14f9c5c9 1149 else
4c4b4cd2 1150 goto Suppress;
14f9c5c9 1151 }
4c4b4cd2 1152
29480c32
JB
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
61012eef 1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1158 len0 -= 3;
76a01679 1159
a10967fa
JB
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
61012eef 1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1165 len0 -= 2;
1166
29480c32
JB
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
61012eef 1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1171 len0 -= 1;
1172
4c4b4cd2 1173 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1174
f945dedf 1175 decoded.resize (2 * len0 + 1, 'X');
14f9c5c9 1176
29480c32
JB
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
4c4b4cd2 1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1180 {
4c4b4cd2
PH
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
d2e4a39e 1189 }
14f9c5c9 1190
29480c32
JB
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
4c4b4cd2
PH
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
14f9c5c9
AS
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
29480c32 1200 /* Is this a symbol function? */
4c4b4cd2
PH
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
5b4ee69b 1204
4c4b4cd2
PH
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
4c4b4cd2 1211 {
f945dedf 1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
4c4b4cd2
PH
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
14f9c5c9
AS
1222 at_start_name = 0;
1223
529cad9c
PH
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
61012eef 1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1228 i += 2;
529cad9c 1229
29480c32
JB
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
529cad9c
PH
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1252 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
4c4b4cd2
PH
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
29480c32
JB
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
4c4b4cd2
PH
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
cdc7bb92 1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1317 {
29480c32 1318 /* Replace '__' by '.'. */
4c4b4cd2
PH
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
14f9c5c9 1324 else
4c4b4cd2 1325 {
29480c32
JB
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
4c4b4cd2
PH
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
14f9c5c9 1332 }
f945dedf 1333 decoded.resize (j);
14f9c5c9 1334
29480c32
JB
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
f945dedf 1338 for (i = 0; i < decoded.length(); ++i)
4c4b4cd2 1339 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1340 goto Suppress;
1341
f945dedf 1342 return decoded;
14f9c5c9
AS
1343
1344Suppress:
4c4b4cd2 1345 if (encoded[0] == '<')
f945dedf 1346 decoded = encoded;
14f9c5c9 1347 else
f945dedf 1348 decoded = '<' + std::string(encoded) + '>';
4c4b4cd2
PH
1349 return decoded;
1350
1351}
1352
1353/* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358static struct htab *decoded_names_store;
1359
1360/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1365 GSYMBOL).
4c4b4cd2
PH
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1368 when a decoded name is cached in it. */
4c4b4cd2 1369
45e6c716 1370const char *
f85f34ed 1371ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1372{
f85f34ed
TT
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
615b3f62 1375 &gsymbol->language_specific.demangled_name;
5b4ee69b 1376
f85f34ed 1377 if (!gsymbol->ada_mangled)
4c4b4cd2 1378 {
4d4eaa30 1379 std::string decoded = ada_decode (gsymbol->linkage_name ());
f85f34ed 1380 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1381
f85f34ed 1382 gsymbol->ada_mangled = 1;
5b4ee69b 1383
f85f34ed 1384 if (obstack != NULL)
f945dedf 1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
f85f34ed 1386 else
76a01679 1387 {
f85f34ed
TT
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
76a01679 1393 char **slot = (char **) htab_find_slot (decoded_names_store,
f945dedf 1394 decoded.c_str (), INSERT);
5b4ee69b 1395
76a01679 1396 if (*slot == NULL)
f945dedf 1397 *slot = xstrdup (decoded.c_str ());
76a01679
JB
1398 *resultp = *slot;
1399 }
4c4b4cd2 1400 }
14f9c5c9 1401
4c4b4cd2
PH
1402 return *resultp;
1403}
76a01679 1404
2c0b251b 1405static char *
76a01679 1406ada_la_decode (const char *encoded, int options)
4c4b4cd2 1407{
f945dedf 1408 return xstrdup (ada_decode (encoded).c_str ());
14f9c5c9
AS
1409}
1410
8b302db8
TT
1411/* Implement la_sniff_from_mangled_name for Ada. */
1412
1413static int
1414ada_sniff_from_mangled_name (const char *mangled, char **out)
1415{
f945dedf 1416 std::string demangled = ada_decode (mangled);
8b302db8
TT
1417
1418 *out = NULL;
1419
f945dedf 1420 if (demangled != mangled && demangled[0] != '<')
8b302db8
TT
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448}
1449
14f9c5c9 1450\f
d2e4a39e 1451
4c4b4cd2 1452 /* Arrays */
14f9c5c9 1453
28c85d6c
JB
1454/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
85102364 1461 The GNAT encoding used to describe the array index type evolved a bit.
28c85d6c
JB
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477void
1478ada_fixup_array_indexes_type (struct type *index_desc_type)
1479{
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
0d5cff50 1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507}
1508
4c4b4cd2 1509/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1510
a121b7c1 1511static const char *bound_name[] = {
d2e4a39e 1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514};
1515
1516/* Maximum number of array dimensions we are prepared to handle. */
1517
4c4b4cd2 1518#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1519
14f9c5c9 1520
4c4b4cd2
PH
1521/* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
14f9c5c9
AS
1523
1524/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1525 level of indirection, if needed. */
1526
d2e4a39e
AS
1527static struct type *
1528desc_base_type (struct type *type)
14f9c5c9
AS
1529{
1530 if (type == NULL)
1531 return NULL;
61ee279c 1532 type = ada_check_typedef (type);
720d1a40
JB
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1265e4aa
JB
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1540 else
1541 return type;
1542}
1543
4c4b4cd2
PH
1544/* True iff TYPE indicates a "thin" array pointer type. */
1545
14f9c5c9 1546static int
d2e4a39e 1547is_thin_pntr (struct type *type)
14f9c5c9 1548{
d2e4a39e 1549 return
14f9c5c9
AS
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552}
1553
4c4b4cd2
PH
1554/* The descriptor type for thin pointer type TYPE. */
1555
d2e4a39e
AS
1556static struct type *
1557thin_descriptor_type (struct type *type)
14f9c5c9 1558{
d2e4a39e 1559 struct type *base_type = desc_base_type (type);
5b4ee69b 1560
14f9c5c9
AS
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
d2e4a39e 1565 else
14f9c5c9 1566 {
d2e4a39e 1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1568
14f9c5c9 1569 if (alt_type == NULL)
4c4b4cd2 1570 return base_type;
14f9c5c9 1571 else
4c4b4cd2 1572 return alt_type;
14f9c5c9
AS
1573 }
1574}
1575
4c4b4cd2
PH
1576/* A pointer to the array data for thin-pointer value VAL. */
1577
d2e4a39e
AS
1578static struct value *
1579thin_data_pntr (struct value *val)
14f9c5c9 1580{
828292f2 1581 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1583
556bdfd4
UW
1584 data_type = lookup_pointer_type (data_type);
1585
14f9c5c9 1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1587 return value_cast (data_type, value_copy (val));
d2e4a39e 1588 else
42ae5230 1589 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1590}
1591
4c4b4cd2
PH
1592/* True iff TYPE indicates a "thick" array pointer type. */
1593
14f9c5c9 1594static int
d2e4a39e 1595is_thick_pntr (struct type *type)
14f9c5c9
AS
1596{
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1600}
1601
4c4b4cd2
PH
1602/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1604
d2e4a39e
AS
1605static struct type *
1606desc_bounds_type (struct type *type)
14f9c5c9 1607{
d2e4a39e 1608 struct type *r;
14f9c5c9
AS
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
4c4b4cd2 1618 return NULL;
14f9c5c9
AS
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
61ee279c 1621 return ada_check_typedef (r);
14f9c5c9
AS
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
61ee279c 1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1628 }
1629 return NULL;
1630}
1631
1632/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
d2e4a39e
AS
1635static struct value *
1636desc_bounds (struct value *arr)
14f9c5c9 1637{
df407dfe 1638 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1639
d2e4a39e 1640 if (is_thin_pntr (type))
14f9c5c9 1641 {
d2e4a39e 1642 struct type *bounds_type =
4c4b4cd2 1643 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1644 LONGEST addr;
1645
4cdfadb1 1646 if (bounds_type == NULL)
323e0a4a 1647 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1648
1649 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1650 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1651 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1653 addr = value_as_long (arr);
d2e4a39e 1654 else
42ae5230 1655 addr = value_address (arr);
14f9c5c9 1656
d2e4a39e 1657 return
4c4b4cd2
PH
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1660 }
1661
1662 else if (is_thick_pntr (type))
05e522ef
JB
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
14f9c5c9
AS
1683 else
1684 return NULL;
1685}
1686
4c4b4cd2
PH
1687/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
14f9c5c9 1690static int
d2e4a39e 1691fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1692{
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694}
1695
1696/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1697 size of the field containing the address of the bounds data. */
1698
14f9c5c9 1699static int
d2e4a39e 1700fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1701{
1702 type = desc_base_type (type);
1703
d2e4a39e 1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
61ee279c 1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1708}
1709
4c4b4cd2 1710/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
4c4b4cd2 1714
d2e4a39e 1715static struct type *
556bdfd4 1716desc_data_target_type (struct type *type)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
4c4b4cd2 1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1721 if (is_thin_pntr (type))
556bdfd4 1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1723 else if (is_thick_pntr (type))
556bdfd4
UW
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1730 }
1731
1732 return NULL;
14f9c5c9
AS
1733}
1734
1735/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
4c4b4cd2 1737
d2e4a39e
AS
1738static struct value *
1739desc_data (struct value *arr)
14f9c5c9 1740{
df407dfe 1741 struct type *type = value_type (arr);
5b4ee69b 1742
14f9c5c9
AS
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
d2e4a39e 1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1747 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1748 else
1749 return NULL;
1750}
1751
1752
1753/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1754 position of the field containing the address of the data. */
1755
14f9c5c9 1756static int
d2e4a39e 1757fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1758{
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760}
1761
1762/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1763 size of the field containing the address of the data. */
1764
14f9c5c9 1765static int
d2e4a39e 1766fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1767{
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1772 else
14f9c5c9
AS
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774}
1775
4c4b4cd2 1776/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
d2e4a39e
AS
1780static struct value *
1781desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1782{
d2e4a39e 1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1784 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1785}
1786
1787/* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
14f9c5c9 1791static int
d2e4a39e 1792desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1793{
d2e4a39e 1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1795}
1796
1797/* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
76a01679 1801static int
d2e4a39e 1802desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1803{
1804 type = desc_base_type (type);
1805
d2e4a39e
AS
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1810}
1811
1812/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
d2e4a39e
AS
1815static struct type *
1816desc_index_type (struct type *type, int i)
14f9c5c9
AS
1817{
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
14f9c5c9
AS
1823 return NULL;
1824}
1825
4c4b4cd2
PH
1826/* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
14f9c5c9 1829static int
d2e4a39e 1830desc_arity (struct type *type)
14f9c5c9
AS
1831{
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837}
1838
4c4b4cd2
PH
1839/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
76a01679
JB
1843static int
1844ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1845{
1846 if (type == NULL)
1847 return 0;
61ee279c 1848 type = ada_check_typedef (type);
4c4b4cd2 1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1850 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1851}
1852
52ce6436 1853/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1854 * to one. */
52ce6436 1855
2c0b251b 1856static int
52ce6436
PH
1857ada_is_array_type (struct type *type)
1858{
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864}
1865
4c4b4cd2 1866/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1867
14f9c5c9 1868int
4c4b4cd2 1869ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1870{
1871 if (type == NULL)
1872 return 0;
61ee279c 1873 type = ada_check_typedef (type);
14f9c5c9 1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1878}
1879
4c4b4cd2
PH
1880/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
14f9c5c9 1882int
4c4b4cd2 1883ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1884{
556bdfd4 1885 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1886
1887 if (type == NULL)
1888 return 0;
61ee279c 1889 type = ada_check_typedef (type);
556bdfd4
UW
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1893}
1894
1895/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1896 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1897 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1898 is still needed. */
1899
14f9c5c9 1900int
ebf56fd3 1901ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1902{
d2e4a39e 1903 return
14f9c5c9
AS
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1909}
1910
1911
4c4b4cd2 1912/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1913 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1915 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1918 a descriptor. */
de93309a
SM
1919
1920static struct type *
d2e4a39e 1921ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1922{
ad82864c
JB
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1925
df407dfe
AC
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
d2e4a39e
AS
1928
1929 if (!bounds)
ad82864c
JB
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
14f9c5c9
AS
1940 else
1941 {
d2e4a39e 1942 struct type *elt_type;
14f9c5c9 1943 int arity;
d2e4a39e 1944 struct value *descriptor;
14f9c5c9 1945
df407dfe
AC
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
14f9c5c9 1948
d2e4a39e 1949 if (elt_type == NULL || arity == 0)
df407dfe 1950 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1951
1952 descriptor = desc_bounds (arr);
d2e4a39e 1953 if (value_as_long (descriptor) == 0)
4c4b4cd2 1954 return NULL;
d2e4a39e 1955 while (arity > 0)
4c4b4cd2 1956 {
e9bb382b
UW
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1961
5b4ee69b 1962 arity -= 1;
0c9c3474
SA
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
4c4b4cd2 1966 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
4c4b4cd2 1988 }
14f9c5c9
AS
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992}
1993
1994/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
d2e4a39e
AS
1999struct value *
2000ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2001{
df407dfe 2002 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2003 {
d2e4a39e 2004 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2005
14f9c5c9 2006 if (arrType == NULL)
4c4b4cd2 2007 return NULL;
14f9c5c9
AS
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
ad82864c
JB
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2012 else
2013 return arr;
2014}
2015
2016/* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2018 be ARR itself if it already is in the proper form). */
2019
720d1a40 2020struct value *
d2e4a39e 2021ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2022{
df407dfe 2023 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2024 {
d2e4a39e 2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2026
14f9c5c9 2027 if (arrVal == NULL)
323e0a4a 2028 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2030 return value_ind (arrVal);
2031 }
ad82864c
JB
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
d2e4a39e 2034 else
14f9c5c9
AS
2035 return arr;
2036}
2037
2038/* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2040 packing). For other types, is the identity. */
2041
d2e4a39e
AS
2042struct type *
2043ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2044{
ad82864c
JB
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
17280b9f
UW
2047
2048 if (ada_is_array_descriptor_type (type))
556bdfd4 2049 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2050
2051 return type;
14f9c5c9
AS
2052}
2053
4c4b4cd2
PH
2054/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
ad82864c
JB
2056static int
2057ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2058{
2059 if (type == NULL)
2060 return 0;
4c4b4cd2 2061 type = desc_base_type (type);
61ee279c 2062 type = ada_check_typedef (type);
d2e4a39e 2063 return
14f9c5c9
AS
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066}
2067
ad82864c
JB
2068/* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071int
2072ada_is_constrained_packed_array_type (struct type *type)
2073{
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076}
2077
2078/* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081static int
2082ada_is_unconstrained_packed_array_type (struct type *type)
2083{
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086}
2087
2088/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091static long
2092decode_packed_array_bitsize (struct type *type)
2093{
0d5cff50
DE
2094 const char *raw_name;
2095 const char *tail;
ad82864c
JB
2096 long bits;
2097
720d1a40
JB
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
720d1a40 2112 gdb_assert (tail != NULL);
ad82864c
JB
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122}
2123
14f9c5c9
AS
2124/* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
4c4b4cd2 2140
d2e4a39e 2141static struct type *
ad82864c 2142constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2143{
d2e4a39e
AS
2144 struct type *new_elt_type;
2145 struct type *new_type;
99b1c762
JB
2146 struct type *index_type_desc;
2147 struct type *index_type;
14f9c5c9
AS
2148 LONGEST low_bound, high_bound;
2149
61ee279c 2150 type = ada_check_typedef (type);
14f9c5c9
AS
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
99b1c762
JB
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
e9bb382b 2161 new_type = alloc_type_copy (type);
ad82864c
JB
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
99b1c762 2165 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
4a46959e
JB
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2175 else
14f9c5c9
AS
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2178 TYPE_LENGTH (new_type) =
4c4b4cd2 2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2180 }
2181
876cecd0 2182 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2183 return new_type;
2184}
2185
ad82864c
JB
2186/* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2188
d2e4a39e 2189static struct type *
ad82864c 2190decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2191{
0d5cff50 2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2193 char *name;
0d5cff50 2194 const char *tail;
d2e4a39e 2195 struct type *shadow_type;
14f9c5c9 2196 long bits;
14f9c5c9 2197
727e3d2e
JB
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2206 type = desc_base_type (type);
2207
14f9c5c9
AS
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
b4ba55a1
JB
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
14f9c5c9 2214 {
323e0a4a 2215 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2216 return NULL;
2217 }
f168693b 2218 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
0963b4bd
MS
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
14f9c5c9
AS
2224 return NULL;
2225 }
d2e4a39e 2226
ad82864c
JB
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2229}
2230
ad82864c
JB
2231/* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
4c4b4cd2 2235 type length is set appropriately. */
14f9c5c9 2236
d2e4a39e 2237static struct value *
ad82864c 2238decode_constrained_packed_array (struct value *arr)
14f9c5c9 2239{
4c4b4cd2 2240 struct type *type;
14f9c5c9 2241
11aa919a
PMR
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
828292f2 2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2251 arr = value_ind (arr);
4c4b4cd2 2252
ad82864c 2253 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2254 if (type == NULL)
2255 {
323e0a4a 2256 error (_("can't unpack array"));
14f9c5c9
AS
2257 return NULL;
2258 }
61ee279c 2259
d5a22e77 2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
32c9a795 2261 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
df407dfe 2270 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
df407dfe 2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
4c4b4cd2 2285 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2286}
2287
2288
2289/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2290 given in IND. ARR must be a simple array. */
14f9c5c9 2291
d2e4a39e
AS
2292static struct value *
2293value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2294{
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
d2e4a39e
AS
2298 struct type *elt_type;
2299 struct value *v;
14f9c5c9
AS
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
df407dfe 2303 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2304 for (i = 0; i < arity; i += 1)
14f9c5c9 2305 {
d2e4a39e 2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
0963b4bd
MS
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
14f9c5c9 2311 else
4c4b4cd2
PH
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
323e0a4a 2319 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2320 lowerbound = upperbound = 0;
2321 }
2322
3cb382c9 2323 idx = pos_atr (ind[i]);
4c4b4cd2 2324 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
4c4b4cd2
PH
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2330 }
14f9c5c9
AS
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2336 bits, elt_type);
14f9c5c9
AS
2337 return v;
2338}
2339
4c4b4cd2 2340/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2341
2342static int
d2e4a39e 2343has_negatives (struct type *type)
14f9c5c9 2344{
d2e4a39e
AS
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
4e962e74 2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
d2e4a39e 2353 }
14f9c5c9 2354}
d2e4a39e 2355
f93fca70 2356/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2358 the unpacked buffer.
14f9c5c9 2359
5b639dea
JB
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
f93fca70
JB
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
14f9c5c9 2365
f93fca70 2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2367
f93fca70
JB
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370static void
2371ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375{
a1c95e6b
JB
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
a1c95e6b
JB
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
4c4b4cd2 2386 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2387 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2388 unsigned char sign;
a1c95e6b 2389
4c4b4cd2
PH
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
f93fca70 2392 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2393
5b639dea
JB
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
14f9c5c9 2400 srcBitsLeft = bit_size;
086ca51f 2401 src_bytes_left = src_len;
f93fca70 2402 unpacked_bytes_left = unpacked_len;
14f9c5c9 2403 sign = 0;
f93fca70
JB
2404
2405 if (is_big_endian)
14f9c5c9 2406 {
086ca51f 2407 src_idx = src_len - 1;
f93fca70
JB
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2410 sign = ~0;
d2e4a39e
AS
2411
2412 unusedLS =
4c4b4cd2
PH
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
14f9c5c9 2415
f93fca70
JB
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
4c4b4cd2
PH
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
086ca51f
JB
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2430 }
14f9c5c9 2431 }
d2e4a39e 2432 else
14f9c5c9
AS
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
086ca51f 2436 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
f93fca70 2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2441 sign = ~0;
14f9c5c9 2442 }
d2e4a39e 2443
14f9c5c9 2444 accum = 0;
086ca51f 2445 while (src_bytes_left > 0)
14f9c5c9
AS
2446 {
2447 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2448 part of the value. */
d2e4a39e 2449 unsigned int unusedMSMask =
4c4b4cd2
PH
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
14f9c5c9 2453 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2454
d2e4a39e 2455 accum |=
086ca51f 2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2457 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2458 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2459 {
db297a65 2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
4c4b4cd2 2465 }
14f9c5c9
AS
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
086ca51f
JB
2468 src_bytes_left -= 1;
2469 src_idx += delta;
14f9c5c9 2470 }
086ca51f 2471 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2472 {
2473 accum |= sign << accumSize;
db297a65 2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2475 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2476 if (accumSize < 0)
2477 accumSize = 0;
14f9c5c9 2478 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
14f9c5c9 2481 }
f93fca70
JB
2482}
2483
2484/* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493struct value *
2494ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497{
2498 struct value *v;
bfb1c796 2499 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2500 gdb_byte *unpacked;
220475ed 2501 const int is_scalar = is_scalar_type (type);
d5a22e77 2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d5722aa2 2503 gdb::byte_vector staging;
f93fca70
JB
2504
2505 type = ada_check_typedef (type);
2506
d0a9e810 2507 if (obj == NULL)
bfb1c796 2508 src = valaddr + offset;
d0a9e810 2509 else
bfb1c796 2510 src = value_contents (obj) + offset;
d0a9e810
JB
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
d0a9e810
JB
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2525 staging.data (), staging.size (),
d0a9e810
JB
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
d5722aa2 2528 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
d0a9e810
JB
2540 }
2541
f93fca70
JB
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
bfb1c796 2545 src = valaddr + offset;
f93fca70
JB
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
0cafa88c 2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2550 gdb_byte *buf;
0cafa88c 2551
f93fca70 2552 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
f93fca70
JB
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
bfb1c796 2560 src = value_contents (obj) + offset;
f93fca70
JB
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
bfb1c796 2583 unpacked = value_contents_writeable (v);
f93fca70
JB
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
d5722aa2 2591 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2592 {
d0a9e810
JB
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
d5722aa2 2596 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2597 }
d0a9e810
JB
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2602
14f9c5c9
AS
2603 return v;
2604}
d2e4a39e 2605
14f9c5c9
AS
2606/* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2609 floating-point or non-scalar types. */
14f9c5c9 2610
d2e4a39e
AS
2611static struct value *
2612ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2613{
df407dfe
AC
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
14f9c5c9 2616
52ce6436
PH
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
88e3b34b 2625 if (!deprecated_value_modifiable (toval))
323e0a4a 2626 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2627
d2e4a39e 2628 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2629 && bits > 0
d2e4a39e 2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2632 {
df407dfe
AC
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2635 int from_size;
224c3ddb 2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2637 struct value *val;
42ae5230 2638 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2641 fromval = value_cast (type, fromval);
14f9c5c9 2642
52ce6436 2643 read_memory (to_addr, buffer, len);
aced2898
PH
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
d48e62f4 2647
d5a22e77 2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
d48e62f4
TT
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
972daa01 2655 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2656
14f9c5c9 2657 val = value_copy (toval);
0fd88904 2658 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2659 TYPE_LENGTH (type));
04624583 2660 deprecated_set_value_type (val, type);
d2e4a39e 2661
14f9c5c9
AS
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666}
2667
2668
7c512744
JB
2669/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
52ce6436
PH
2680static void
2681value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683{
2684 LONGEST offset_in_container =
42ae5230 2685 (LONGEST) (value_address (component) - value_address (container));
7c512744 2686 int bit_offset_in_container =
52ce6436
PH
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
7c512744 2689
52ce6436
PH
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
d5a22e77 2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2a62dfa9
JB
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
a99bc3d2
JB
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2a62dfa9 2709 }
52ce6436 2710 else
a99bc3d2
JB
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
7c512744
JB
2714}
2715
736ade86
XR
2716/* Determine if TYPE is an access to an unconstrained array. */
2717
d91e9ea8 2718bool
736ade86
XR
2719ada_is_access_to_unconstrained_array (struct type *type)
2720{
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723}
2724
4c4b4cd2
PH
2725/* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2727 thereto. */
2728
d2e4a39e
AS
2729struct value *
2730ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2731{
2732 int k;
d2e4a39e
AS
2733 struct value *elt;
2734 struct type *elt_type;
14f9c5c9
AS
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
df407dfe 2738 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
b9c50e9a
XR
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
14f9c5c9 2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2748 error (_("too many subscripts (%d expected)"), k);
b9c50e9a 2749
2497b498 2750 elt = value_subscript (elt, pos_atr (ind[k]));
b9c50e9a
XR
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
14f9c5c9 2771 }
b9c50e9a 2772
14f9c5c9
AS
2773 return elt;
2774}
2775
deede10c
JB
2776/* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
14f9c5c9 2787
2c0b251b 2788static struct value *
deede10c 2789ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2790{
2791 int k;
919e6dbe 2792 struct value *array_ind = ada_value_ind (arr);
deede10c 2793 struct type *type
919e6dbe
PMR
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
aa715135 2803 struct value *lwb_value;
14f9c5c9
AS
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2806 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2808 value_copy (arr));
14f9c5c9 2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816}
2817
0b5d8877 2818/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
0b5d8877 2822static struct value *
f5938064
JG
2823ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
0b5d8877 2825{
b0dd7688 2826 struct type *type0 = ada_check_typedef (type);
aa715135 2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2828 struct type *index_type
aa715135 2829 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
5b4ee69b 2845
aa715135
JG
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2849 return value_at_lazy (slice_type, base);
0b5d8877
PH
2850}
2851
2852
2853static struct value *
2854ada_value_slice (struct value *array, int low, int high)
2855{
b0dd7688 2856 struct type *type = ada_check_typedef (value_type (array));
aa715135 2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2864 LONGEST low_pos, high_pos;
5b4ee69b 2865
aa715135
JG
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2876}
2877
14f9c5c9
AS
2878/* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2881 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2882
2883int
d2e4a39e 2884ada_array_arity (struct type *type)
14f9c5c9
AS
2885{
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
d2e4a39e 2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2895 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2898 {
4c4b4cd2 2899 arity += 1;
61ee279c 2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2901 }
d2e4a39e 2902
14f9c5c9
AS
2903 return arity;
2904}
2905
2906/* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2909 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2910
d2e4a39e
AS
2911struct type *
2912ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2913{
2914 type = desc_base_type (type);
2915
d2e4a39e 2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2917 {
2918 int k;
d2e4a39e 2919 struct type *p_array_type;
14f9c5c9 2920
556bdfd4 2921 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
4c4b4cd2 2925 return NULL;
d2e4a39e 2926
4c4b4cd2 2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2928 if (nindices >= 0 && k > nindices)
4c4b4cd2 2929 k = nindices;
d2e4a39e 2930 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2931 {
61ee279c 2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2933 k -= 1;
2934 }
14f9c5c9
AS
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
14f9c5c9
AS
2944 return type;
2945 }
2946
2947 return NULL;
2948}
2949
4c4b4cd2 2950/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
14f9c5c9 2955
1eea4ebd
UW
2956static struct type *
2957ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2958{
4c4b4cd2
PH
2959 struct type *result_type;
2960
14f9c5c9
AS
2961 type = desc_base_type (type);
2962
1eea4ebd
UW
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2965
4c4b4cd2 2966 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
4c4b4cd2 2971 type = TYPE_TARGET_TYPE (type);
262452ec 2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2975 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
14f9c5c9 2978 }
d2e4a39e 2979 else
1eea4ebd
UW
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
14f9c5c9
AS
2987}
2988
2989/* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
14f9c5c9 2994
abb68b3e 2995static LONGEST
fb5e3d5c 2996ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 2997{
8a48ac95 2998 struct type *type, *index_type_desc, *index_type;
1ce677a4 2999 int i;
262452ec
JK
3000
3001 gdb_assert (which == 0 || which == 1);
14f9c5c9 3002
ad82864c
JB
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3005
4c4b4cd2 3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3007 return (LONGEST) - which;
14f9c5c9
AS
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
bafffb51
JB
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
262452ec 3027 if (index_type_desc != NULL)
28c85d6c
JB
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
262452ec 3030 else
8a48ac95
JB
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
262452ec 3039
43bbcdc2
PH
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3044}
3045
3046/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3049 supplied by run-time quantities other than discriminants. */
14f9c5c9 3050
1eea4ebd 3051static LONGEST
4dc81987 3052ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3053{
eb479039
JB
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
14f9c5c9 3059
ad82864c
JB
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3062 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3063 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3064 else
1eea4ebd 3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
14f9c5c9 3073
1eea4ebd 3074static LONGEST
d2e4a39e 3075ada_array_length (struct value *arr, int n)
14f9c5c9 3076{
aa715135
JG
3077 struct type *arr_type, *index_type;
3078 int low, high;
eb479039
JB
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
14f9c5c9 3083
ad82864c
JB
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3086
4c4b4cd2 3087 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
14f9c5c9 3092 else
aa715135
JG
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
f168693b 3098 arr_type = check_typedef (arr_type);
7150d33c 3099 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
4c4b4cd2
PH
3112}
3113
bff8c71f
TT
3114/* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
4c4b4cd2
PH
3117
3118static struct value *
bff8c71f 3119empty_array (struct type *arr_type, int low, int high)
4c4b4cd2 3120{
b0dd7688 3121 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3122 struct type *index_type
3123 = create_static_range_type
bff8c71f
TT
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
b0dd7688 3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3127
0b5d8877 3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3129}
14f9c5c9 3130\f
d2e4a39e 3131
4c4b4cd2 3132 /* Name resolution */
14f9c5c9 3133
4c4b4cd2
PH
3134/* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
14f9c5c9 3136
d2e4a39e 3137static const char *
4c4b4cd2 3138ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3139{
3140 int i;
3141
4c4b4cd2 3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3143 {
3144 if (ada_opname_table[i].op == op)
4c4b4cd2 3145 return ada_opname_table[i].decoded;
14f9c5c9 3146 }
323e0a4a 3147 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3148}
3149
de93309a
SM
3150/* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
14f9c5c9 3155
de93309a
SM
3156static int
3157encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9 3158{
de93309a
SM
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
30b15541 3166
de93309a
SM
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
30b15541 3175
de93309a
SM
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
14f9c5c9
AS
3187}
3188
de93309a
SM
3189/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
14f9c5c9 3191
de93309a
SM
3192static void
3193sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3194{
14f9c5c9 3195 int i;
14f9c5c9 3196
de93309a 3197 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3198 {
de93309a
SM
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3203 {
987012b8
CB
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
de93309a
SM
3206 break;
3207 syms[j + 1] = syms[j];
4c4b4cd2 3208 }
de93309a
SM
3209 syms[j + 1] = sym;
3210 }
3211}
14f9c5c9 3212
de93309a
SM
3213/* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215static bool print_signatures = true;
4c4b4cd2 3216
de93309a
SM
3217/* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
4c4b4cd2 3221
de93309a
SM
3222static void
3223ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225{
3226 struct type *type = SYMBOL_TYPE (sym);
14f9c5c9 3227
987012b8 3228 fprintf_filtered (stream, "%s", sym->print_name ());
de93309a
SM
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
4c4b4cd2 3233
de93309a
SM
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
14f9c5c9 3237
de93309a
SM
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254}
14f9c5c9 3255
de93309a
SM
3256/* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
14f9c5c9 3259
de93309a
SM
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
14f9c5c9 3262
de93309a
SM
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
14f9c5c9 3266
de93309a 3267 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9 3268
de93309a
SM
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
14f9c5c9 3271
de93309a
SM
3272static int
3273get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275{
992a7040 3276 const char *args;
de93309a
SM
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
14f9c5c9 3280
de93309a
SM
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
4c4b4cd2 3284
de93309a 3285 args = command_line_input (prompt, annotation_suffix);
4c4b4cd2 3286
de93309a
SM
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3289
de93309a 3290 n_chosen = 0;
4c4b4cd2 3291
de93309a
SM
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
14f9c5c9 3295 {
de93309a
SM
3296 char *args2;
3297 int choice, j;
76a01679 3298
de93309a
SM
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
76a01679 3304
de93309a
SM
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
76a01679 3310
de93309a
SM
3311 if (choice == 0)
3312 error (_("cancelled"));
76a01679 3313
de93309a
SM
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
76a01679 3320 }
de93309a 3321 choice -= first_choice;
76a01679 3322
de93309a 3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
76a01679 3324 {
76a01679 3325 }
4c4b4cd2 3326
de93309a 3327 if (j < 0 || choice != choices[j])
4c4b4cd2 3328 {
de93309a 3329 int k;
4c4b4cd2 3330
de93309a
SM
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
4c4b4cd2 3335 }
14f9c5c9
AS
3336 }
3337
de93309a
SM
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
14f9c5c9
AS
3342}
3343
de93309a
SM
3344/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
14f9c5c9
AS
3351
3352static int
de93309a 3353user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9 3354{
de93309a
SM
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9 3360
de93309a
SM
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
14f9c5c9 3365
de93309a
SM
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368canceled because the command is ambiguous\n\
3369See set/show multiple-symbol."));
14f9c5c9 3370
de93309a
SM
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
14f9c5c9 3376
de93309a
SM
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
14f9c5c9 3380
de93309a 3381 sort_choices (syms, nsyms);
14f9c5c9 3382
de93309a
SM
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
14f9c5c9 3387
de93309a
SM
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
14f9c5c9 3392
de93309a
SM
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
76a01679
JB
3407 else
3408 {
de93309a
SM
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
4c4b4cd2 3414
de93309a
SM
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
987012b8 3434 syms[i].symbol->print_name ());
de93309a
SM
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
76a01679 3452 }
14f9c5c9 3453 }
14f9c5c9 3454
de93309a
SM
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
14f9c5c9 3457
de93309a
SM
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
14f9c5c9 3460
de93309a
SM
3461 return n_chosen;
3462}
14f9c5c9 3463
de93309a
SM
3464/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3472
de93309a
SM
3473static void
3474resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476{
3477 struct type *context_type = NULL;
3478 int pc = 0;
14f9c5c9 3479
de93309a
SM
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
14f9c5c9 3482
de93309a
SM
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484}
4c4b4cd2 3485
de93309a
SM
3486/* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
14f9c5c9 3494
de93309a
SM
3495static struct value *
3496resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
14f9c5c9 3499{
de93309a
SM
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
14f9c5c9 3507
de93309a
SM
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
4c4b4cd2 3511
de93309a
SM
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
4c4b4cd2 3524 }
de93309a
SM
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
14f9c5c9 3527
de93309a
SM
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
14f9c5c9 3656 }
14f9c5c9 3657
de93309a
SM
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
4c4b4cd2 3664
de93309a
SM
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
14f9c5c9 3667 {
de93309a
SM
3668 default:
3669 break;
5b4ee69b 3670
de93309a
SM
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3673 {
de93309a
SM
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
5b4ee69b 3676
de93309a 3677 n_candidates =
987012b8 3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
d2e4a39e 3681
de93309a
SM
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
4c4b4cd2 3717
de93309a
SM
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
987012b8 3720 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
987012b8 3728 exp->elts[pc + 2].symbol->linkage_name (),
de93309a
SM
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
987012b8 3732 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
987012b8 3737 exp->elts[pc + 2].symbol->print_name ());
de93309a
SM
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
5b4ee69b 3741
de93309a
SM
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
14f9c5c9 3746
de93309a
SM
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
4c4b4cd2 3750 {
de93309a
SM
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
4c4b4cd2 3755 }
de93309a
SM
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
987012b8 3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
14f9c5c9 3770
de93309a
SM
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
987012b8 3778 exp->elts[pc + 5].symbol->linkage_name (),
de93309a
SM
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
987012b8 3782 exp->elts[pc + 5].symbol->print_name ());
de93309a 3783 }
d72413e6 3784
de93309a
SM
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
d72413e6 3816
de93309a
SM
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
d72413e6 3821
de93309a
SM
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
d72413e6 3827
de93309a
SM
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
d72413e6 3834
de93309a
SM
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
d72413e6 3838 }
d72413e6 3839
de93309a
SM
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847}
14f9c5c9 3848
de93309a
SM
3849/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852/* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
14f9c5c9 3854
de93309a
SM
3855static int
3856ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3857{
de93309a
SM
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
14f9c5c9 3860
de93309a
SM
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
14f9c5c9 3865
de93309a 3866 switch (TYPE_CODE (ftype))
14f9c5c9 3867 {
de93309a
SM
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3874 else
de93309a
SM
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
4c4b4cd2 3881 {
de93309a
SM
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
4c4b4cd2 3888 }
d2e4a39e 3889
de93309a
SM
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
14f9c5c9 3893
de93309a
SM
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
14f9c5c9 3901
de93309a
SM
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
14f9c5c9
AS
3906}
3907
de93309a
SM
3908/* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
14f9c5c9 3912
de93309a
SM
3913static int
3914ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915{
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3918
de93309a
SM
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
14f9c5c9 3924
de93309a
SM
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
14f9c5c9 3927
de93309a
SM
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
14f9c5c9 3937
de93309a
SM
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943}
d2e4a39e 3944
de93309a
SM
3945/* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
14f9c5c9 3949
de93309a
SM
3950static int
3951return_match (struct type *func_type, struct type *context_type)
3952{
3953 struct type *return_type;
d2e4a39e 3954
de93309a
SM
3955 if (func_type == NULL)
3956 return 1;
14f9c5c9 3957
de93309a
SM
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
76a01679 3964
de93309a 3965 context_type = get_base_type (context_type);
14f9c5c9 3966
de93309a
SM
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973}
14f9c5c9 3974
14f9c5c9 3975
de93309a
SM
3976/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
14f9c5c9 3982
de93309a
SM
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
14f9c5c9 3987
de93309a
SM
3988static int
3989ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993{
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
14f9c5c9 3997
de93309a
SM
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 4005 {
de93309a 4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
5b4ee69b 4007
de93309a
SM
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4c4b4cd2 4014 }
14f9c5c9
AS
4015 }
4016
de93309a
SM
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
14f9c5c9
AS
4030}
4031
4c4b4cd2
PH
4032/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4035
4036static void
e9d9f57e 4037replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4038 int oplen, struct symbol *sym,
270140bd 4039 const struct block *block)
14f9c5c9
AS
4040{
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4042 symbol, -oplen for operator being replaced). */
d2e4a39e 4043 struct expression *newexp = (struct expression *)
8c1a34e7 4044 xzalloc (sizeof (struct expression)
4c4b4cd2 4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4046 struct expression *exp = expp->get ();
14f9c5c9
AS
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
3489610d 4050 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
e9d9f57e 4062 expp->reset (newexp);
d2e4a39e 4063}
14f9c5c9
AS
4064
4065/* Type-class predicates */
4066
4c4b4cd2
PH
4067/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
14f9c5c9
AS
4069
4070static int
d2e4a39e 4071numeric_type_p (struct type *type)
14f9c5c9
AS
4072{
4073 if (type == NULL)
4074 return 0;
d2e4a39e
AS
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4c4b4cd2
PH
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
d2e4a39e 4088 }
14f9c5c9
AS
4089}
4090
4c4b4cd2 4091/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4092
4093static int
d2e4a39e 4094integer_type_p (struct type *type)
14f9c5c9
AS
4095{
4096 if (type == NULL)
4097 return 0;
d2e4a39e
AS
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4c4b4cd2
PH
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
d2e4a39e 4110 }
14f9c5c9
AS
4111}
4112
4c4b4cd2 4113/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4114
4115static int
d2e4a39e 4116scalar_type_p (struct type *type)
14f9c5c9
AS
4117{
4118 if (type == NULL)
4119 return 0;
d2e4a39e
AS
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4c4b4cd2
PH
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
d2e4a39e 4132 }
14f9c5c9
AS
4133}
4134
4c4b4cd2 4135/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4136
4137static int
d2e4a39e 4138discrete_type_p (struct type *type)
14f9c5c9
AS
4139{
4140 if (type == NULL)
4141 return 0;
d2e4a39e
AS
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4c4b4cd2
PH
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
872f0337 4149 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4150 return 1;
4151 default:
4152 return 0;
4153 }
d2e4a39e 4154 }
14f9c5c9
AS
4155}
4156
4c4b4cd2
PH
4157/* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
14f9c5c9
AS
4160
4161static int
d2e4a39e 4162possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4163{
76a01679 4164 struct type *type0 =
df407dfe 4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4166 struct type *type1 =
df407dfe 4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4168
4c4b4cd2
PH
4169 if (type0 == NULL)
4170 return 0;
4171
14f9c5c9
AS
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
d2e4a39e 4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
d2e4a39e 4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
d2e4a39e 4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4197
4198 case BINOP_CONCAT:
ee90b9ab 4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4200
4201 case BINOP_EXP:
d2e4a39e 4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
14f9c5c9
AS
4209
4210 }
4211}
4212\f
4c4b4cd2 4213 /* Renaming */
14f9c5c9 4214
aeb5907d
JB
4215/* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227/* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
0963b4bd 4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246enum ada_renaming_category
4247ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250{
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
14f9c5c9 4258 {
aeb5907d
JB
4259 default:
4260 return ADA_NOT_RENAMING;
aeb5907d
JB
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
987012b8 4265 info = strstr (sym->linkage_name (), "___XR");
aeb5907d
JB
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
14f9c5c9 4289 }
4c4b4cd2 4290
de93309a
SM
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302}
4303
4304/* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308static struct value *
4309ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311{
4312 const char *sym_name;
4313
987012b8 4314 sym_name = renaming_sym->linkage_name ();
de93309a
SM
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317}
4318\f
4319
4320 /* Evaluation: Function Calls */
4321
4322/* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326static struct value *
4327ensure_lval (struct value *val)
4328{
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342}
4343
4344/* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356static struct value *
4357ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358{
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
aeb5907d 4392
de93309a
SM
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
52ce6436 4395
de93309a
SM
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
a5ee536b 4403
de93309a
SM
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
d2e4a39e 4408
de93309a
SM
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
14f9c5c9 4414
de93309a
SM
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
14f9c5c9 4421
de93309a
SM
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
c3e5cd34 4431
de93309a
SM
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
c3e5cd34 4454 }
14f9c5c9 4455
de93309a
SM
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
14f9c5c9
AS
4467}
4468
4469/* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4472 values not residing in memory, updating it as needed. */
14f9c5c9 4473
a93c0eb6 4474struct value *
40bc484c 4475ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4476{
df407dfe 4477 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4478 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4485
4c4b4cd2 4486 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4488 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4491 {
a84a8a0d 4492 struct value *result;
5b4ee69b 4493
14f9c5c9 4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4495 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4496 result = desc_data (actual);
cb923fcc 4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
5b4ee69b 4502
df407dfe 4503 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4504 val = allocate_value (actual_type);
990a07ab 4505 memcpy ((char *) value_contents_raw (val),
0fd88904 4506 (char *) value_contents (actual),
4c4b4cd2 4507 TYPE_LENGTH (actual_type));
40bc484c 4508 actual = ensure_lval (val);
4c4b4cd2 4509 }
a84a8a0d 4510 result = value_addr (actual);
4c4b4cd2 4511 }
a84a8a0d
JB
4512 else
4513 return actual;
b1af9e97 4514 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
8344af1e
JB
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
14f9c5c9
AS
4528
4529 return actual;
4530}
4531
438c98a1
JB
4532/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537static CORE_ADDR
4538value_pointer (struct value *value, struct type *type)
4539{
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
224c3ddb 4542 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
34877895 4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
438c98a1
JB
4548 return addr;
4549}
4550
14f9c5c9 4551
4c4b4cd2
PH
4552/* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
14f9c5c9 4557
d2e4a39e 4558static struct value *
40bc484c 4559make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4560{
d2e4a39e
AS
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4565 int i;
d2e4a39e 4566
0963b4bd
MS
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
14f9c5c9 4569 {
19f220c3
JK
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4578 }
d2e4a39e 4579
40bc484c 4580 bounds = ensure_lval (bounds);
d2e4a39e 4581
19f220c3
JK
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4595
40bc484c 4596 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602}
14f9c5c9 4603\f
3d9434b5
JB
4604 /* Symbol Cache Module */
4605
3d9434b5 4606/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4607 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
ee01b665 4616/* Initialize the contents of SYM_CACHE. */
3d9434b5 4617
ee01b665
JB
4618static void
4619ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620{
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623}
3d9434b5 4624
ee01b665
JB
4625/* Free the memory used by SYM_CACHE. */
4626
4627static void
4628ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4629{
ee01b665
JB
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632}
3d9434b5 4633
ee01b665
JB
4634/* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4636
ee01b665
JB
4637static struct ada_symbol_cache *
4638ada_get_symbol_cache (struct program_space *pspace)
4639{
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4641
66c168ae 4642 if (pspace_data->sym_cache == NULL)
ee01b665 4643 {
66c168ae
JB
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4646 }
4647
66c168ae 4648 return pspace_data->sym_cache;
ee01b665 4649}
3d9434b5
JB
4650
4651/* Clear all entries from the symbol cache. */
4652
4653static void
4654ada_clear_symbol_cache (void)
4655{
ee01b665
JB
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4661}
4662
fe978cb0 4663/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4664 Return it if found, or NULL otherwise. */
4665
4666static struct cache_entry **
fe978cb0 4667find_entry (const char *name, domain_enum domain)
3d9434b5 4668{
ee01b665
JB
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
ee01b665 4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4675 {
fe978cb0 4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4677 return e;
4678 }
4679 return NULL;
4680}
4681
fe978cb0 4682/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4687
96d887e8 4688static int
fe978cb0 4689lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4690 struct symbol **sym, const struct block **block)
96d887e8 4691{
fe978cb0 4692 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
96d887e8
PH
4701}
4702
3d9434b5 4703/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4704 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4705
96d887e8 4706static void
fe978cb0 4707cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4708 const struct block *block)
96d887e8 4709{
ee01b665
JB
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
3d9434b5 4712 int h;
3d9434b5
JB
4713 struct cache_entry *e;
4714
1994afbf
DE
4715 /* Symbols for builtin types don't have a block.
4716 For now don't cache such symbols. */
4717 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4718 return;
4719
3d9434b5
JB
4720 /* If the symbol is a local symbol, then do not cache it, as a search
4721 for that symbol depends on the context. To determine whether
4722 the symbol is local or not, we check the block where we found it
4723 against the global and static blocks of its associated symtab. */
4724 if (sym
08be3fe3 4725 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4726 GLOBAL_BLOCK) != block
08be3fe3 4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4728 STATIC_BLOCK) != block)
3d9434b5
JB
4729 return;
4730
4731 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4732 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4733 e->next = sym_cache->root[h];
4734 sym_cache->root[h] = e;
2ef5453b 4735 e->name = obstack_strdup (&sym_cache->cache_space, name);
3d9434b5 4736 e->sym = sym;
fe978cb0 4737 e->domain = domain;
3d9434b5 4738 e->block = block;
96d887e8 4739}
4c4b4cd2
PH
4740\f
4741 /* Symbol Lookup */
4742
b5ec771e
PA
4743/* Return the symbol name match type that should be used used when
4744 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4745
4746 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4747 for Ada lookups. */
c0431670 4748
b5ec771e
PA
4749static symbol_name_match_type
4750name_match_type_from_name (const char *lookup_name)
c0431670 4751{
b5ec771e
PA
4752 return (strstr (lookup_name, "__") == NULL
4753 ? symbol_name_match_type::WILD
4754 : symbol_name_match_type::FULL);
c0431670
JB
4755}
4756
4c4b4cd2
PH
4757/* Return the result of a standard (literal, C-like) lookup of NAME in
4758 given DOMAIN, visible from lexical block BLOCK. */
4759
4760static struct symbol *
4761standard_lookup (const char *name, const struct block *block,
4762 domain_enum domain)
4763{
acbd605d 4764 /* Initialize it just to avoid a GCC false warning. */
6640a367 4765 struct block_symbol sym = {};
4c4b4cd2 4766
d12307c1
PMR
4767 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4768 return sym.symbol;
a2cd4f14 4769 ada_lookup_encoded_symbol (name, block, domain, &sym);
d12307c1
PMR
4770 cache_symbol (name, domain, sym.symbol, sym.block);
4771 return sym.symbol;
4c4b4cd2
PH
4772}
4773
4774
4775/* Non-zero iff there is at least one non-function/non-enumeral symbol
4776 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4777 since they contend in overloading in the same way. */
4778static int
d12307c1 4779is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4780{
4781 int i;
4782
4783 for (i = 0; i < n; i += 1)
d12307c1
PMR
4784 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4785 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4786 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4787 return 1;
4788
4789 return 0;
4790}
4791
4792/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4793 struct types. Otherwise, they may not. */
14f9c5c9
AS
4794
4795static int
d2e4a39e 4796equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4797{
d2e4a39e 4798 if (type0 == type1)
14f9c5c9 4799 return 1;
d2e4a39e 4800 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4801 || TYPE_CODE (type0) != TYPE_CODE (type1))
4802 return 0;
d2e4a39e 4803 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4804 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4805 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4806 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4807 return 1;
d2e4a39e 4808
14f9c5c9
AS
4809 return 0;
4810}
4811
4812/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4813 no more defined than that of SYM1. */
14f9c5c9
AS
4814
4815static int
d2e4a39e 4816lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4817{
4818 if (sym0 == sym1)
4819 return 1;
176620f1 4820 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4821 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4822 return 0;
4823
d2e4a39e 4824 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4825 {
4826 case LOC_UNDEF:
4827 return 1;
4828 case LOC_TYPEDEF:
4829 {
4c4b4cd2
PH
4830 struct type *type0 = SYMBOL_TYPE (sym0);
4831 struct type *type1 = SYMBOL_TYPE (sym1);
987012b8
CB
4832 const char *name0 = sym0->linkage_name ();
4833 const char *name1 = sym1->linkage_name ();
4c4b4cd2 4834 int len0 = strlen (name0);
5b4ee69b 4835
4c4b4cd2
PH
4836 return
4837 TYPE_CODE (type0) == TYPE_CODE (type1)
4838 && (equiv_types (type0, type1)
4839 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4840 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4841 }
4842 case LOC_CONST:
4843 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4844 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4b610737
TT
4845
4846 case LOC_STATIC:
4847 {
987012b8
CB
4848 const char *name0 = sym0->linkage_name ();
4849 const char *name1 = sym1->linkage_name ();
4b610737
TT
4850 return (strcmp (name0, name1) == 0
4851 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4852 }
4853
d2e4a39e
AS
4854 default:
4855 return 0;
14f9c5c9
AS
4856 }
4857}
4858
d12307c1 4859/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4860 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4861
4862static void
76a01679
JB
4863add_defn_to_vec (struct obstack *obstackp,
4864 struct symbol *sym,
f0c5f9b2 4865 const struct block *block)
14f9c5c9
AS
4866{
4867 int i;
d12307c1 4868 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4869
529cad9c
PH
4870 /* Do not try to complete stub types, as the debugger is probably
4871 already scanning all symbols matching a certain name at the
4872 time when this function is called. Trying to replace the stub
4873 type by its associated full type will cause us to restart a scan
4874 which may lead to an infinite recursion. Instead, the client
4875 collecting the matching symbols will end up collecting several
4876 matches, with at least one of them complete. It can then filter
4877 out the stub ones if needed. */
4878
4c4b4cd2
PH
4879 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4880 {
d12307c1 4881 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4882 return;
d12307c1 4883 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4884 {
d12307c1 4885 prevDefns[i].symbol = sym;
4c4b4cd2 4886 prevDefns[i].block = block;
4c4b4cd2 4887 return;
76a01679 4888 }
4c4b4cd2
PH
4889 }
4890
4891 {
d12307c1 4892 struct block_symbol info;
4c4b4cd2 4893
d12307c1 4894 info.symbol = sym;
4c4b4cd2 4895 info.block = block;
d12307c1 4896 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4897 }
4898}
4899
d12307c1
PMR
4900/* Number of block_symbol structures currently collected in current vector in
4901 OBSTACKP. */
4c4b4cd2 4902
76a01679
JB
4903static int
4904num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4905{
d12307c1 4906 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4907}
4908
d12307c1
PMR
4909/* Vector of block_symbol structures currently collected in current vector in
4910 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4911
d12307c1 4912static struct block_symbol *
4c4b4cd2
PH
4913defns_collected (struct obstack *obstackp, int finish)
4914{
4915 if (finish)
224c3ddb 4916 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4917 else
d12307c1 4918 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4919}
4920
7c7b6655
TT
4921/* Return a bound minimal symbol matching NAME according to Ada
4922 decoding rules. Returns an invalid symbol if there is no such
4923 minimal symbol. Names prefixed with "standard__" are handled
4924 specially: "standard__" is first stripped off, and only static and
4925 global symbols are searched. */
4c4b4cd2 4926
7c7b6655 4927struct bound_minimal_symbol
96d887e8 4928ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4929{
7c7b6655 4930 struct bound_minimal_symbol result;
4c4b4cd2 4931
7c7b6655
TT
4932 memset (&result, 0, sizeof (result));
4933
b5ec771e
PA
4934 symbol_name_match_type match_type = name_match_type_from_name (name);
4935 lookup_name_info lookup_name (name, match_type);
4936
4937 symbol_name_matcher_ftype *match_name
4938 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4939
2030c079 4940 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 4941 {
7932255d 4942 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf 4943 {
c9d95fa3 4944 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
5325b9bf
TT
4945 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4946 {
4947 result.minsym = msymbol;
4948 result.objfile = objfile;
4949 break;
4950 }
4951 }
4952 }
4c4b4cd2 4953
7c7b6655 4954 return result;
96d887e8 4955}
4c4b4cd2 4956
96d887e8
PH
4957/* For all subprograms that statically enclose the subprogram of the
4958 selected frame, add symbols matching identifier NAME in DOMAIN
4959 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4960 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4961 with a wildcard prefix. */
4c4b4cd2 4962
96d887e8
PH
4963static void
4964add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4965 const lookup_name_info &lookup_name,
4966 domain_enum domain)
96d887e8 4967{
96d887e8 4968}
14f9c5c9 4969
96d887e8
PH
4970/* True if TYPE is definitely an artificial type supplied to a symbol
4971 for which no debugging information was given in the symbol file. */
14f9c5c9 4972
96d887e8
PH
4973static int
4974is_nondebugging_type (struct type *type)
4975{
0d5cff50 4976 const char *name = ada_type_name (type);
5b4ee69b 4977
96d887e8
PH
4978 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4979}
4c4b4cd2 4980
8f17729f
JB
4981/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4982 that are deemed "identical" for practical purposes.
4983
4984 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4985 types and that their number of enumerals is identical (in other
4986 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4987
4988static int
4989ada_identical_enum_types_p (struct type *type1, struct type *type2)
4990{
4991 int i;
4992
4993 /* The heuristic we use here is fairly conservative. We consider
4994 that 2 enumerate types are identical if they have the same
4995 number of enumerals and that all enumerals have the same
4996 underlying value and name. */
4997
4998 /* All enums in the type should have an identical underlying value. */
4999 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5000 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5001 return 0;
5002
5003 /* All enumerals should also have the same name (modulo any numerical
5004 suffix). */
5005 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5006 {
0d5cff50
DE
5007 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5008 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5009 int len_1 = strlen (name_1);
5010 int len_2 = strlen (name_2);
5011
5012 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5014 if (len_1 != len_2
5015 || strncmp (TYPE_FIELD_NAME (type1, i),
5016 TYPE_FIELD_NAME (type2, i),
5017 len_1) != 0)
5018 return 0;
5019 }
5020
5021 return 1;
5022}
5023
5024/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5025 that are deemed "identical" for practical purposes. Sometimes,
5026 enumerals are not strictly identical, but their types are so similar
5027 that they can be considered identical.
5028
5029 For instance, consider the following code:
5030
5031 type Color is (Black, Red, Green, Blue, White);
5032 type RGB_Color is new Color range Red .. Blue;
5033
5034 Type RGB_Color is a subrange of an implicit type which is a copy
5035 of type Color. If we call that implicit type RGB_ColorB ("B" is
5036 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5037 As a result, when an expression references any of the enumeral
5038 by name (Eg. "print green"), the expression is technically
5039 ambiguous and the user should be asked to disambiguate. But
5040 doing so would only hinder the user, since it wouldn't matter
5041 what choice he makes, the outcome would always be the same.
5042 So, for practical purposes, we consider them as the same. */
5043
5044static int
54d343a2 5045symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5046{
5047 int i;
5048
5049 /* Before performing a thorough comparison check of each type,
5050 we perform a series of inexpensive checks. We expect that these
5051 checks will quickly fail in the vast majority of cases, and thus
5052 help prevent the unnecessary use of a more expensive comparison.
5053 Said comparison also expects us to make some of these checks
5054 (see ada_identical_enum_types_p). */
5055
5056 /* Quick check: All symbols should have an enum type. */
54d343a2 5057 for (i = 0; i < syms.size (); i++)
d12307c1 5058 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5059 return 0;
5060
5061 /* Quick check: They should all have the same value. */
54d343a2 5062 for (i = 1; i < syms.size (); i++)
d12307c1 5063 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5064 return 0;
5065
5066 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5067 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5068 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5069 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5070 return 0;
5071
5072 /* All the sanity checks passed, so we might have a set of
5073 identical enumeration types. Perform a more complete
5074 comparison of the type of each symbol. */
54d343a2 5075 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5076 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5077 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5078 return 0;
5079
5080 return 1;
5081}
5082
54d343a2 5083/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5084 duplicate other symbols in the list (The only case I know of where
5085 this happens is when object files containing stabs-in-ecoff are
5086 linked with files containing ordinary ecoff debugging symbols (or no
5087 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5088 Returns the number of items in the modified list. */
4c4b4cd2 5089
96d887e8 5090static int
54d343a2 5091remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5092{
5093 int i, j;
4c4b4cd2 5094
8f17729f
JB
5095 /* We should never be called with less than 2 symbols, as there
5096 cannot be any extra symbol in that case. But it's easy to
5097 handle, since we have nothing to do in that case. */
54d343a2
TT
5098 if (syms->size () < 2)
5099 return syms->size ();
8f17729f 5100
96d887e8 5101 i = 0;
54d343a2 5102 while (i < syms->size ())
96d887e8 5103 {
a35ddb44 5104 int remove_p = 0;
339c13b6
JB
5105
5106 /* If two symbols have the same name and one of them is a stub type,
5107 the get rid of the stub. */
5108
54d343a2 5109 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
987012b8 5110 && (*syms)[i].symbol->linkage_name () != NULL)
339c13b6 5111 {
54d343a2 5112 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5113 {
5114 if (j != i
54d343a2 5115 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
987012b8
CB
5116 && (*syms)[j].symbol->linkage_name () != NULL
5117 && strcmp ((*syms)[i].symbol->linkage_name (),
5118 (*syms)[j].symbol->linkage_name ()) == 0)
a35ddb44 5119 remove_p = 1;
339c13b6
JB
5120 }
5121 }
5122
5123 /* Two symbols with the same name, same class and same address
5124 should be identical. */
5125
987012b8 5126 else if ((*syms)[i].symbol->linkage_name () != NULL
54d343a2
TT
5127 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5128 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5129 {
54d343a2 5130 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5131 {
5132 if (i != j
987012b8
CB
5133 && (*syms)[j].symbol->linkage_name () != NULL
5134 && strcmp ((*syms)[i].symbol->linkage_name (),
5135 (*syms)[j].symbol->linkage_name ()) == 0
54d343a2
TT
5136 && SYMBOL_CLASS ((*syms)[i].symbol)
5137 == SYMBOL_CLASS ((*syms)[j].symbol)
5138 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5139 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5140 remove_p = 1;
4c4b4cd2 5141 }
4c4b4cd2 5142 }
339c13b6 5143
a35ddb44 5144 if (remove_p)
54d343a2 5145 syms->erase (syms->begin () + i);
339c13b6 5146
96d887e8 5147 i += 1;
14f9c5c9 5148 }
8f17729f
JB
5149
5150 /* If all the remaining symbols are identical enumerals, then
5151 just keep the first one and discard the rest.
5152
5153 Unlike what we did previously, we do not discard any entry
5154 unless they are ALL identical. This is because the symbol
5155 comparison is not a strict comparison, but rather a practical
5156 comparison. If all symbols are considered identical, then
5157 we can just go ahead and use the first one and discard the rest.
5158 But if we cannot reduce the list to a single element, we have
5159 to ask the user to disambiguate anyways. And if we have to
5160 present a multiple-choice menu, it's less confusing if the list
5161 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5162 if (symbols_are_identical_enums (*syms))
5163 syms->resize (1);
8f17729f 5164
54d343a2 5165 return syms->size ();
14f9c5c9
AS
5166}
5167
96d887e8
PH
5168/* Given a type that corresponds to a renaming entity, use the type name
5169 to extract the scope (package name or function name, fully qualified,
5170 and following the GNAT encoding convention) where this renaming has been
49d83361 5171 defined. */
4c4b4cd2 5172
49d83361 5173static std::string
96d887e8 5174xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5175{
96d887e8 5176 /* The renaming types adhere to the following convention:
0963b4bd 5177 <scope>__<rename>___<XR extension>.
96d887e8
PH
5178 So, to extract the scope, we search for the "___XR" extension,
5179 and then backtrack until we find the first "__". */
76a01679 5180
a737d952 5181 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5182 const char *suffix = strstr (name, "___XR");
5183 const char *last;
14f9c5c9 5184
96d887e8
PH
5185 /* Now, backtrack a bit until we find the first "__". Start looking
5186 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5187
96d887e8
PH
5188 for (last = suffix - 3; last > name; last--)
5189 if (last[0] == '_' && last[1] == '_')
5190 break;
76a01679 5191
96d887e8 5192 /* Make a copy of scope and return it. */
49d83361 5193 return std::string (name, last);
4c4b4cd2
PH
5194}
5195
96d887e8 5196/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5197
96d887e8
PH
5198static int
5199is_package_name (const char *name)
4c4b4cd2 5200{
96d887e8
PH
5201 /* Here, We take advantage of the fact that no symbols are generated
5202 for packages, while symbols are generated for each function.
5203 So the condition for NAME represent a package becomes equivalent
5204 to NAME not existing in our list of symbols. There is only one
5205 small complication with library-level functions (see below). */
4c4b4cd2 5206
96d887e8
PH
5207 /* If it is a function that has not been defined at library level,
5208 then we should be able to look it up in the symbols. */
5209 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5210 return 0;
14f9c5c9 5211
96d887e8
PH
5212 /* Library-level function names start with "_ada_". See if function
5213 "_ada_" followed by NAME can be found. */
14f9c5c9 5214
96d887e8 5215 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5216 functions names cannot contain "__" in them. */
96d887e8
PH
5217 if (strstr (name, "__") != NULL)
5218 return 0;
4c4b4cd2 5219
528e1572 5220 std::string fun_name = string_printf ("_ada_%s", name);
14f9c5c9 5221
528e1572 5222 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
96d887e8 5223}
14f9c5c9 5224
96d887e8 5225/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5226 not visible from FUNCTION_NAME. */
14f9c5c9 5227
96d887e8 5228static int
0d5cff50 5229old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5230{
aeb5907d
JB
5231 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5232 return 0;
5233
49d83361 5234 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5235
96d887e8 5236 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5237 if (is_package_name (scope.c_str ()))
5238 return 0;
14f9c5c9 5239
96d887e8
PH
5240 /* Check that the rename is in the current function scope by checking
5241 that its name starts with SCOPE. */
76a01679 5242
96d887e8
PH
5243 /* If the function name starts with "_ada_", it means that it is
5244 a library-level function. Strip this prefix before doing the
5245 comparison, as the encoding for the renaming does not contain
5246 this prefix. */
61012eef 5247 if (startswith (function_name, "_ada_"))
96d887e8 5248 function_name += 5;
f26caa11 5249
49d83361 5250 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5251}
5252
aeb5907d
JB
5253/* Remove entries from SYMS that corresponds to a renaming entity that
5254 is not visible from the function associated with CURRENT_BLOCK or
5255 that is superfluous due to the presence of more specific renaming
5256 information. Places surviving symbols in the initial entries of
5257 SYMS and returns the number of surviving symbols.
96d887e8
PH
5258
5259 Rationale:
aeb5907d
JB
5260 First, in cases where an object renaming is implemented as a
5261 reference variable, GNAT may produce both the actual reference
5262 variable and the renaming encoding. In this case, we discard the
5263 latter.
5264
5265 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5266 entity. Unfortunately, STABS currently does not support the definition
5267 of types that are local to a given lexical block, so all renamings types
5268 are emitted at library level. As a consequence, if an application
5269 contains two renaming entities using the same name, and a user tries to
5270 print the value of one of these entities, the result of the ada symbol
5271 lookup will also contain the wrong renaming type.
f26caa11 5272
96d887e8
PH
5273 This function partially covers for this limitation by attempting to
5274 remove from the SYMS list renaming symbols that should be visible
5275 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5276 method with the current information available. The implementation
5277 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5278
5279 - When the user tries to print a rename in a function while there
5280 is another rename entity defined in a package: Normally, the
5281 rename in the function has precedence over the rename in the
5282 package, so the latter should be removed from the list. This is
5283 currently not the case.
5284
5285 - This function will incorrectly remove valid renames if
5286 the CURRENT_BLOCK corresponds to a function which symbol name
5287 has been changed by an "Export" pragma. As a consequence,
5288 the user will be unable to print such rename entities. */
4c4b4cd2 5289
14f9c5c9 5290static int
54d343a2
TT
5291remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5292 const struct block *current_block)
4c4b4cd2
PH
5293{
5294 struct symbol *current_function;
0d5cff50 5295 const char *current_function_name;
4c4b4cd2 5296 int i;
aeb5907d
JB
5297 int is_new_style_renaming;
5298
5299 /* If there is both a renaming foo___XR... encoded as a variable and
5300 a simple variable foo in the same block, discard the latter.
0963b4bd 5301 First, zero out such symbols, then compress. */
aeb5907d 5302 is_new_style_renaming = 0;
54d343a2 5303 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5304 {
54d343a2
TT
5305 struct symbol *sym = (*syms)[i].symbol;
5306 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5307 const char *name;
5308 const char *suffix;
5309
5310 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5311 continue;
987012b8 5312 name = sym->linkage_name ();
aeb5907d
JB
5313 suffix = strstr (name, "___XR");
5314
5315 if (suffix != NULL)
5316 {
5317 int name_len = suffix - name;
5318 int j;
5b4ee69b 5319
aeb5907d 5320 is_new_style_renaming = 1;
54d343a2
TT
5321 for (j = 0; j < syms->size (); j += 1)
5322 if (i != j && (*syms)[j].symbol != NULL
987012b8 5323 && strncmp (name, (*syms)[j].symbol->linkage_name (),
aeb5907d 5324 name_len) == 0
54d343a2
TT
5325 && block == (*syms)[j].block)
5326 (*syms)[j].symbol = NULL;
aeb5907d
JB
5327 }
5328 }
5329 if (is_new_style_renaming)
5330 {
5331 int j, k;
5332
54d343a2
TT
5333 for (j = k = 0; j < syms->size (); j += 1)
5334 if ((*syms)[j].symbol != NULL)
aeb5907d 5335 {
54d343a2 5336 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5337 k += 1;
5338 }
5339 return k;
5340 }
4c4b4cd2
PH
5341
5342 /* Extract the function name associated to CURRENT_BLOCK.
5343 Abort if unable to do so. */
76a01679 5344
4c4b4cd2 5345 if (current_block == NULL)
54d343a2 5346 return syms->size ();
76a01679 5347
7f0df278 5348 current_function = block_linkage_function (current_block);
4c4b4cd2 5349 if (current_function == NULL)
54d343a2 5350 return syms->size ();
4c4b4cd2 5351
987012b8 5352 current_function_name = current_function->linkage_name ();
4c4b4cd2 5353 if (current_function_name == NULL)
54d343a2 5354 return syms->size ();
4c4b4cd2
PH
5355
5356 /* Check each of the symbols, and remove it from the list if it is
5357 a type corresponding to a renaming that is out of the scope of
5358 the current block. */
5359
5360 i = 0;
54d343a2 5361 while (i < syms->size ())
4c4b4cd2 5362 {
54d343a2 5363 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5364 == ADA_OBJECT_RENAMING
54d343a2
TT
5365 && old_renaming_is_invisible ((*syms)[i].symbol,
5366 current_function_name))
5367 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5368 else
5369 i += 1;
5370 }
5371
54d343a2 5372 return syms->size ();
4c4b4cd2
PH
5373}
5374
339c13b6
JB
5375/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5376 whose name and domain match NAME and DOMAIN respectively.
5377 If no match was found, then extend the search to "enclosing"
5378 routines (in other words, if we're inside a nested function,
5379 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5380 If WILD_MATCH_P is nonzero, perform the naming matching in
5381 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5382
5383 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5384
5385static void
b5ec771e
PA
5386ada_add_local_symbols (struct obstack *obstackp,
5387 const lookup_name_info &lookup_name,
5388 const struct block *block, domain_enum domain)
339c13b6
JB
5389{
5390 int block_depth = 0;
5391
5392 while (block != NULL)
5393 {
5394 block_depth += 1;
b5ec771e 5395 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5396
5397 /* If we found a non-function match, assume that's the one. */
5398 if (is_nonfunction (defns_collected (obstackp, 0),
5399 num_defns_collected (obstackp)))
5400 return;
5401
5402 block = BLOCK_SUPERBLOCK (block);
5403 }
5404
5405 /* If no luck so far, try to find NAME as a local symbol in some lexically
5406 enclosing subprogram. */
5407 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5408 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5409}
5410
ccefe4c4 5411/* An object of this type is used as the user_data argument when
40658b94 5412 calling the map_matching_symbols method. */
ccefe4c4 5413
40658b94 5414struct match_data
ccefe4c4 5415{
40658b94 5416 struct objfile *objfile;
ccefe4c4 5417 struct obstack *obstackp;
40658b94
PH
5418 struct symbol *arg_sym;
5419 int found_sym;
ccefe4c4
TT
5420};
5421
199b4314
TT
5422/* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5423 to a list of symbols. DATA is a pointer to a struct match_data *
40658b94
PH
5424 containing the obstack that collects the symbol list, the file that SYM
5425 must come from, a flag indicating whether a non-argument symbol has
5426 been found in the current block, and the last argument symbol
5427 passed in SYM within the current block (if any). When SYM is null,
5428 marking the end of a block, the argument symbol is added if no
5429 other has been found. */
ccefe4c4 5430
199b4314
TT
5431static bool
5432aux_add_nonlocal_symbols (struct block_symbol *bsym,
5433 struct match_data *data)
ccefe4c4 5434{
199b4314
TT
5435 const struct block *block = bsym->block;
5436 struct symbol *sym = bsym->symbol;
5437
40658b94
PH
5438 if (sym == NULL)
5439 {
5440 if (!data->found_sym && data->arg_sym != NULL)
5441 add_defn_to_vec (data->obstackp,
5442 fixup_symbol_section (data->arg_sym, data->objfile),
5443 block);
5444 data->found_sym = 0;
5445 data->arg_sym = NULL;
5446 }
5447 else
5448 {
5449 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
199b4314 5450 return true;
40658b94
PH
5451 else if (SYMBOL_IS_ARGUMENT (sym))
5452 data->arg_sym = sym;
5453 else
5454 {
5455 data->found_sym = 1;
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (sym, data->objfile),
5458 block);
5459 }
5460 }
199b4314 5461 return true;
40658b94
PH
5462}
5463
b5ec771e
PA
5464/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5465 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5466 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5467
5468static int
5469ada_add_block_renamings (struct obstack *obstackp,
5470 const struct block *block,
b5ec771e
PA
5471 const lookup_name_info &lookup_name,
5472 domain_enum domain)
22cee43f
PMR
5473{
5474 struct using_direct *renaming;
5475 int defns_mark = num_defns_collected (obstackp);
5476
b5ec771e
PA
5477 symbol_name_matcher_ftype *name_match
5478 = ada_get_symbol_name_matcher (lookup_name);
5479
22cee43f
PMR
5480 for (renaming = block_using (block);
5481 renaming != NULL;
5482 renaming = renaming->next)
5483 {
5484 const char *r_name;
22cee43f
PMR
5485
5486 /* Avoid infinite recursions: skip this renaming if we are actually
5487 already traversing it.
5488
5489 Currently, symbol lookup in Ada don't use the namespace machinery from
5490 C++/Fortran support: skip namespace imports that use them. */
5491 if (renaming->searched
5492 || (renaming->import_src != NULL
5493 && renaming->import_src[0] != '\0')
5494 || (renaming->import_dest != NULL
5495 && renaming->import_dest[0] != '\0'))
5496 continue;
5497 renaming->searched = 1;
5498
5499 /* TODO: here, we perform another name-based symbol lookup, which can
5500 pull its own multiple overloads. In theory, we should be able to do
5501 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5502 not a simple name. But in order to do this, we would need to enhance
5503 the DWARF reader to associate a symbol to this renaming, instead of a
5504 name. So, for now, we do something simpler: re-use the C++/Fortran
5505 namespace machinery. */
5506 r_name = (renaming->alias != NULL
5507 ? renaming->alias
5508 : renaming->declaration);
b5ec771e
PA
5509 if (name_match (r_name, lookup_name, NULL))
5510 {
5511 lookup_name_info decl_lookup_name (renaming->declaration,
5512 lookup_name.match_type ());
5513 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5514 1, NULL);
5515 }
22cee43f
PMR
5516 renaming->searched = 0;
5517 }
5518 return num_defns_collected (obstackp) != defns_mark;
5519}
5520
db230ce3
JB
5521/* Implements compare_names, but only applying the comparision using
5522 the given CASING. */
5b4ee69b 5523
40658b94 5524static int
db230ce3
JB
5525compare_names_with_case (const char *string1, const char *string2,
5526 enum case_sensitivity casing)
40658b94
PH
5527{
5528 while (*string1 != '\0' && *string2 != '\0')
5529 {
db230ce3
JB
5530 char c1, c2;
5531
40658b94
PH
5532 if (isspace (*string1) || isspace (*string2))
5533 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5534
5535 if (casing == case_sensitive_off)
5536 {
5537 c1 = tolower (*string1);
5538 c2 = tolower (*string2);
5539 }
5540 else
5541 {
5542 c1 = *string1;
5543 c2 = *string2;
5544 }
5545 if (c1 != c2)
40658b94 5546 break;
db230ce3 5547
40658b94
PH
5548 string1 += 1;
5549 string2 += 1;
5550 }
db230ce3 5551
40658b94
PH
5552 switch (*string1)
5553 {
5554 case '(':
5555 return strcmp_iw_ordered (string1, string2);
5556 case '_':
5557 if (*string2 == '\0')
5558 {
052874e8 5559 if (is_name_suffix (string1))
40658b94
PH
5560 return 0;
5561 else
1a1d5513 5562 return 1;
40658b94 5563 }
dbb8534f 5564 /* FALLTHROUGH */
40658b94
PH
5565 default:
5566 if (*string2 == '(')
5567 return strcmp_iw_ordered (string1, string2);
5568 else
db230ce3
JB
5569 {
5570 if (casing == case_sensitive_off)
5571 return tolower (*string1) - tolower (*string2);
5572 else
5573 return *string1 - *string2;
5574 }
40658b94 5575 }
ccefe4c4
TT
5576}
5577
db230ce3
JB
5578/* Compare STRING1 to STRING2, with results as for strcmp.
5579 Compatible with strcmp_iw_ordered in that...
5580
5581 strcmp_iw_ordered (STRING1, STRING2) <= 0
5582
5583 ... implies...
5584
5585 compare_names (STRING1, STRING2) <= 0
5586
5587 (they may differ as to what symbols compare equal). */
5588
5589static int
5590compare_names (const char *string1, const char *string2)
5591{
5592 int result;
5593
5594 /* Similar to what strcmp_iw_ordered does, we need to perform
5595 a case-insensitive comparison first, and only resort to
5596 a second, case-sensitive, comparison if the first one was
5597 not sufficient to differentiate the two strings. */
5598
5599 result = compare_names_with_case (string1, string2, case_sensitive_off);
5600 if (result == 0)
5601 result = compare_names_with_case (string1, string2, case_sensitive_on);
5602
5603 return result;
5604}
5605
b5ec771e
PA
5606/* Convenience function to get at the Ada encoded lookup name for
5607 LOOKUP_NAME, as a C string. */
5608
5609static const char *
5610ada_lookup_name (const lookup_name_info &lookup_name)
5611{
5612 return lookup_name.ada ().lookup_name ().c_str ();
5613}
5614
339c13b6 5615/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5616 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5617 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5618 symbols otherwise. */
339c13b6
JB
5619
5620static void
b5ec771e
PA
5621add_nonlocal_symbols (struct obstack *obstackp,
5622 const lookup_name_info &lookup_name,
5623 domain_enum domain, int global)
339c13b6 5624{
40658b94 5625 struct match_data data;
339c13b6 5626
6475f2fe 5627 memset (&data, 0, sizeof data);
ccefe4c4 5628 data.obstackp = obstackp;
339c13b6 5629
b5ec771e
PA
5630 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5631
199b4314
TT
5632 auto callback = [&] (struct block_symbol *bsym)
5633 {
5634 return aux_add_nonlocal_symbols (bsym, &data);
5635 };
5636
2030c079 5637 for (objfile *objfile : current_program_space->objfiles ())
40658b94
PH
5638 {
5639 data.objfile = objfile;
5640
b054970d
TT
5641 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5642 domain, global, callback,
5643 (is_wild_match
5644 ? NULL : compare_names));
22cee43f 5645
b669c953 5646 for (compunit_symtab *cu : objfile->compunits ())
22cee43f
PMR
5647 {
5648 const struct block *global_block
5649 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5650
b5ec771e
PA
5651 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5652 domain))
22cee43f
PMR
5653 data.found_sym = 1;
5654 }
40658b94
PH
5655 }
5656
5657 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5658 {
b5ec771e 5659 const char *name = ada_lookup_name (lookup_name);
e0802d59
TT
5660 std::string bracket_name = std::string ("<_ada_") + name + '>';
5661 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
b5ec771e 5662
2030c079 5663 for (objfile *objfile : current_program_space->objfiles ())
40658b94 5664 {
40658b94 5665 data.objfile = objfile;
b054970d 5666 objfile->sf->qf->map_matching_symbols (objfile, name1,
199b4314 5667 domain, global, callback,
b5ec771e 5668 compare_names);
40658b94
PH
5669 }
5670 }
339c13b6
JB
5671}
5672
b5ec771e
PA
5673/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5674 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5675 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5676
22cee43f
PMR
5677 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5678 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5679 is the one match returned (no other matches in that or
d9680e73 5680 enclosing blocks is returned). If there are any matches in or
22cee43f 5681 surrounding BLOCK, then these alone are returned.
4eeaa230 5682
b5ec771e
PA
5683 Names prefixed with "standard__" are handled specially:
5684 "standard__" is first stripped off (by the lookup_name
5685 constructor), and only static and global symbols are searched.
14f9c5c9 5686
22cee43f
PMR
5687 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5688 to lookup global symbols. */
5689
5690static void
5691ada_add_all_symbols (struct obstack *obstackp,
5692 const struct block *block,
b5ec771e 5693 const lookup_name_info &lookup_name,
22cee43f
PMR
5694 domain_enum domain,
5695 int full_search,
5696 int *made_global_lookup_p)
14f9c5c9
AS
5697{
5698 struct symbol *sym;
14f9c5c9 5699
22cee43f
PMR
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 0;
339c13b6
JB
5702
5703 /* Special case: If the user specifies a symbol name inside package
5704 Standard, do a non-wild matching of the symbol name without
5705 the "standard__" prefix. This was primarily introduced in order
5706 to allow the user to specifically access the standard exceptions
5707 using, for instance, Standard.Constraint_Error when Constraint_Error
5708 is ambiguous (due to the user defining its own Constraint_Error
5709 entity inside its program). */
b5ec771e
PA
5710 if (lookup_name.ada ().standard_p ())
5711 block = NULL;
4c4b4cd2 5712
339c13b6 5713 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5714
4eeaa230
DE
5715 if (block != NULL)
5716 {
5717 if (full_search)
b5ec771e 5718 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5719 else
5720 {
5721 /* In the !full_search case we're are being called by
5722 ada_iterate_over_symbols, and we don't want to search
5723 superblocks. */
b5ec771e 5724 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5725 }
22cee43f
PMR
5726 if (num_defns_collected (obstackp) > 0 || !full_search)
5727 return;
4eeaa230 5728 }
d2e4a39e 5729
339c13b6
JB
5730 /* No non-global symbols found. Check our cache to see if we have
5731 already performed this search before. If we have, then return
5732 the same result. */
5733
b5ec771e
PA
5734 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5735 domain, &sym, &block))
4c4b4cd2
PH
5736 {
5737 if (sym != NULL)
b5ec771e 5738 add_defn_to_vec (obstackp, sym, block);
22cee43f 5739 return;
4c4b4cd2 5740 }
14f9c5c9 5741
22cee43f
PMR
5742 if (made_global_lookup_p)
5743 *made_global_lookup_p = 1;
b1eedac9 5744
339c13b6
JB
5745 /* Search symbols from all global blocks. */
5746
b5ec771e 5747 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5748
4c4b4cd2 5749 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5750 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5751
22cee43f 5752 if (num_defns_collected (obstackp) == 0)
b5ec771e 5753 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5754}
5755
b5ec771e
PA
5756/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5757 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5758 matches.
54d343a2
TT
5759 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5760 found and the blocks and symbol tables (if any) in which they were
5761 found.
22cee43f
PMR
5762
5763 When full_search is non-zero, any non-function/non-enumeral
5764 symbol match within the nest of blocks whose innermost member is BLOCK,
5765 is the one match returned (no other matches in that or
5766 enclosing blocks is returned). If there are any matches in or
5767 surrounding BLOCK, then these alone are returned.
5768
5769 Names prefixed with "standard__" are handled specially: "standard__"
5770 is first stripped off, and only static and global symbols are searched. */
5771
5772static int
b5ec771e
PA
5773ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5774 const struct block *block,
22cee43f 5775 domain_enum domain,
54d343a2 5776 std::vector<struct block_symbol> *results,
22cee43f
PMR
5777 int full_search)
5778{
22cee43f
PMR
5779 int syms_from_global_search;
5780 int ndefns;
ec6a20c2 5781 auto_obstack obstack;
22cee43f 5782
ec6a20c2 5783 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5784 domain, full_search, &syms_from_global_search);
14f9c5c9 5785
ec6a20c2
JB
5786 ndefns = num_defns_collected (&obstack);
5787
54d343a2
TT
5788 struct block_symbol *base = defns_collected (&obstack, 1);
5789 for (int i = 0; i < ndefns; ++i)
5790 results->push_back (base[i]);
4c4b4cd2 5791
54d343a2 5792 ndefns = remove_extra_symbols (results);
4c4b4cd2 5793
b1eedac9 5794 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5795 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5796
b1eedac9 5797 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5798 cache_symbol (ada_lookup_name (lookup_name), domain,
5799 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5800
54d343a2 5801 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5802
14f9c5c9
AS
5803 return ndefns;
5804}
5805
b5ec771e 5806/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5807 in global scopes, returning the number of matches, and filling *RESULTS
5808 with (SYM,BLOCK) tuples.
ec6a20c2 5809
4eeaa230
DE
5810 See ada_lookup_symbol_list_worker for further details. */
5811
5812int
b5ec771e 5813ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5814 domain_enum domain,
5815 std::vector<struct block_symbol> *results)
4eeaa230 5816{
b5ec771e
PA
5817 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5818 lookup_name_info lookup_name (name, name_match_type);
5819
5820 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5821}
5822
5823/* Implementation of the la_iterate_over_symbols method. */
5824
6969f124 5825static bool
14bc53a8 5826ada_iterate_over_symbols
b5ec771e
PA
5827 (const struct block *block, const lookup_name_info &name,
5828 domain_enum domain,
14bc53a8 5829 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5830{
5831 int ndefs, i;
54d343a2 5832 std::vector<struct block_symbol> results;
4eeaa230
DE
5833
5834 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5835
4eeaa230
DE
5836 for (i = 0; i < ndefs; ++i)
5837 {
7e41c8db 5838 if (!callback (&results[i]))
6969f124 5839 return false;
4eeaa230 5840 }
6969f124
TT
5841
5842 return true;
4eeaa230
DE
5843}
5844
4e5c77fe
JB
5845/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5846 to 1, but choosing the first symbol found if there are multiple
5847 choices.
5848
5e2336be
JB
5849 The result is stored in *INFO, which must be non-NULL.
5850 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5851
5852void
5853ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5854 domain_enum domain,
d12307c1 5855 struct block_symbol *info)
14f9c5c9 5856{
b5ec771e
PA
5857 /* Since we already have an encoded name, wrap it in '<>' to force a
5858 verbatim match. Otherwise, if the name happens to not look like
5859 an encoded name (because it doesn't include a "__"),
5860 ada_lookup_name_info would re-encode/fold it again, and that
5861 would e.g., incorrectly lowercase object renaming names like
5862 "R28b" -> "r28b". */
5863 std::string verbatim = std::string ("<") + name + '>';
5864
5e2336be 5865 gdb_assert (info != NULL);
65392b3e 5866 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
4e5c77fe 5867}
aeb5907d
JB
5868
5869/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5870 scope and in global scopes, or NULL if none. NAME is folded and
5871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
65392b3e 5872 choosing the first symbol if there are multiple choices. */
4e5c77fe 5873
d12307c1 5874struct block_symbol
aeb5907d 5875ada_lookup_symbol (const char *name, const struct block *block0,
65392b3e 5876 domain_enum domain)
aeb5907d 5877{
54d343a2 5878 std::vector<struct block_symbol> candidates;
f98fc17b 5879 int n_candidates;
f98fc17b
PA
5880
5881 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5882
5883 if (n_candidates == 0)
54d343a2 5884 return {};
f98fc17b
PA
5885
5886 block_symbol info = candidates[0];
5887 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5888 return info;
4c4b4cd2 5889}
14f9c5c9 5890
d12307c1 5891static struct block_symbol
f606139a
DE
5892ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5893 const char *name,
76a01679 5894 const struct block *block,
21b556f4 5895 const domain_enum domain)
4c4b4cd2 5896{
d12307c1 5897 struct block_symbol sym;
04dccad0 5898
65392b3e 5899 sym = ada_lookup_symbol (name, block_static_block (block), domain);
d12307c1 5900 if (sym.symbol != NULL)
04dccad0
JB
5901 return sym;
5902
5903 /* If we haven't found a match at this point, try the primitive
5904 types. In other languages, this search is performed before
5905 searching for global symbols in order to short-circuit that
5906 global-symbol search if it happens that the name corresponds
5907 to a primitive type. But we cannot do the same in Ada, because
5908 it is perfectly legitimate for a program to declare a type which
5909 has the same name as a standard type. If looking up a type in
5910 that situation, we have traditionally ignored the primitive type
5911 in favor of user-defined types. This is why, unlike most other
5912 languages, we search the primitive types this late and only after
5913 having searched the global symbols without success. */
5914
5915 if (domain == VAR_DOMAIN)
5916 {
5917 struct gdbarch *gdbarch;
5918
5919 if (block == NULL)
5920 gdbarch = target_gdbarch ();
5921 else
5922 gdbarch = block_gdbarch (block);
d12307c1
PMR
5923 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5924 if (sym.symbol != NULL)
04dccad0
JB
5925 return sym;
5926 }
5927
6640a367 5928 return {};
14f9c5c9
AS
5929}
5930
5931
4c4b4cd2
PH
5932/* True iff STR is a possible encoded suffix of a normal Ada name
5933 that is to be ignored for matching purposes. Suffixes of parallel
5934 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5935 are given by any of the regular expressions:
4c4b4cd2 5936
babe1480
JB
5937 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5938 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5939 TKB [subprogram suffix for task bodies]
babe1480 5940 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5941 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5942
5943 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5944 match is performed. This sequence is used to differentiate homonyms,
5945 is an optional part of a valid name suffix. */
4c4b4cd2 5946
14f9c5c9 5947static int
d2e4a39e 5948is_name_suffix (const char *str)
14f9c5c9
AS
5949{
5950 int k;
4c4b4cd2
PH
5951 const char *matching;
5952 const int len = strlen (str);
5953
babe1480
JB
5954 /* Skip optional leading __[0-9]+. */
5955
4c4b4cd2
PH
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5957 {
babe1480
JB
5958 str += 3;
5959 while (isdigit (str[0]))
5960 str += 1;
4c4b4cd2 5961 }
babe1480
JB
5962
5963 /* [.$][0-9]+ */
4c4b4cd2 5964
babe1480 5965 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5966 {
babe1480 5967 matching = str + 1;
4c4b4cd2
PH
5968 while (isdigit (matching[0]))
5969 matching += 1;
5970 if (matching[0] == '\0')
5971 return 1;
5972 }
5973
5974 /* ___[0-9]+ */
babe1480 5975
4c4b4cd2
PH
5976 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5977 {
5978 matching = str + 3;
5979 while (isdigit (matching[0]))
5980 matching += 1;
5981 if (matching[0] == '\0')
5982 return 1;
5983 }
5984
9ac7f98e
JB
5985 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5986
5987 if (strcmp (str, "TKB") == 0)
5988 return 1;
5989
529cad9c
PH
5990#if 0
5991 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5992 with a N at the end. Unfortunately, the compiler uses the same
5993 convention for other internal types it creates. So treating
529cad9c 5994 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5995 some regressions. For instance, consider the case of an enumerated
5996 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5997 name ends with N.
5998 Having a single character like this as a suffix carrying some
0963b4bd 5999 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6000 to be something like "_N" instead. In the meantime, do not do
6001 the following check. */
6002 /* Protected Object Subprograms */
6003 if (len == 1 && str [0] == 'N')
6004 return 1;
6005#endif
6006
6007 /* _E[0-9]+[bs]$ */
6008 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6009 {
6010 matching = str + 3;
6011 while (isdigit (matching[0]))
6012 matching += 1;
6013 if ((matching[0] == 'b' || matching[0] == 's')
6014 && matching [1] == '\0')
6015 return 1;
6016 }
6017
4c4b4cd2
PH
6018 /* ??? We should not modify STR directly, as we are doing below. This
6019 is fine in this case, but may become problematic later if we find
6020 that this alternative did not work, and want to try matching
6021 another one from the begining of STR. Since we modified it, we
6022 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6023 if (str[0] == 'X')
6024 {
6025 str += 1;
d2e4a39e 6026 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6027 {
6028 if (str[0] != 'n' && str[0] != 'b')
6029 return 0;
6030 str += 1;
6031 }
14f9c5c9 6032 }
babe1480 6033
14f9c5c9
AS
6034 if (str[0] == '\000')
6035 return 1;
babe1480 6036
d2e4a39e 6037 if (str[0] == '_')
14f9c5c9
AS
6038 {
6039 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6040 return 0;
d2e4a39e 6041 if (str[2] == '_')
4c4b4cd2 6042 {
61ee279c
PH
6043 if (strcmp (str + 3, "JM") == 0)
6044 return 1;
6045 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6046 the LJM suffix in favor of the JM one. But we will
6047 still accept LJM as a valid suffix for a reasonable
6048 amount of time, just to allow ourselves to debug programs
6049 compiled using an older version of GNAT. */
4c4b4cd2
PH
6050 if (strcmp (str + 3, "LJM") == 0)
6051 return 1;
6052 if (str[3] != 'X')
6053 return 0;
1265e4aa
JB
6054 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6055 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6056 return 1;
6057 if (str[4] == 'R' && str[5] != 'T')
6058 return 1;
6059 return 0;
6060 }
6061 if (!isdigit (str[2]))
6062 return 0;
6063 for (k = 3; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6065 return 0;
14f9c5c9
AS
6066 return 1;
6067 }
4c4b4cd2 6068 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6069 {
4c4b4cd2
PH
6070 for (k = 2; str[k] != '\0'; k += 1)
6071 if (!isdigit (str[k]) && str[k] != '_')
6072 return 0;
14f9c5c9
AS
6073 return 1;
6074 }
6075 return 0;
6076}
d2e4a39e 6077
aeb5907d
JB
6078/* Return non-zero if the string starting at NAME and ending before
6079 NAME_END contains no capital letters. */
529cad9c
PH
6080
6081static int
6082is_valid_name_for_wild_match (const char *name0)
6083{
f945dedf 6084 std::string decoded_name = ada_decode (name0);
529cad9c
PH
6085 int i;
6086
5823c3ef
JB
6087 /* If the decoded name starts with an angle bracket, it means that
6088 NAME0 does not follow the GNAT encoding format. It should then
6089 not be allowed as a possible wild match. */
6090 if (decoded_name[0] == '<')
6091 return 0;
6092
529cad9c
PH
6093 for (i=0; decoded_name[i] != '\0'; i++)
6094 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6095 return 0;
6096
6097 return 1;
6098}
6099
73589123
PH
6100/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6101 that could start a simple name. Assumes that *NAMEP points into
6102 the string beginning at NAME0. */
4c4b4cd2 6103
14f9c5c9 6104static int
73589123 6105advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6106{
73589123 6107 const char *name = *namep;
5b4ee69b 6108
5823c3ef 6109 while (1)
14f9c5c9 6110 {
aa27d0b3 6111 int t0, t1;
73589123
PH
6112
6113 t0 = *name;
6114 if (t0 == '_')
6115 {
6116 t1 = name[1];
6117 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6118 {
6119 name += 1;
61012eef 6120 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6121 break;
6122 else
6123 name += 1;
6124 }
aa27d0b3
JB
6125 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6126 || name[2] == target0))
73589123
PH
6127 {
6128 name += 2;
6129 break;
6130 }
6131 else
6132 return 0;
6133 }
6134 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6135 name += 1;
6136 else
5823c3ef 6137 return 0;
73589123
PH
6138 }
6139
6140 *namep = name;
6141 return 1;
6142}
6143
b5ec771e
PA
6144/* Return true iff NAME encodes a name of the form prefix.PATN.
6145 Ignores any informational suffixes of NAME (i.e., for which
6146 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6147 simple name. */
73589123 6148
b5ec771e 6149static bool
73589123
PH
6150wild_match (const char *name, const char *patn)
6151{
22e048c9 6152 const char *p;
73589123
PH
6153 const char *name0 = name;
6154
6155 while (1)
6156 {
6157 const char *match = name;
6158
6159 if (*name == *patn)
6160 {
6161 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6162 if (*p != *name)
6163 break;
6164 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6165 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6166
6167 if (name[-1] == '_')
6168 name -= 1;
6169 }
6170 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6171 return false;
96d887e8 6172 }
96d887e8
PH
6173}
6174
b5ec771e
PA
6175/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6176 any trailing suffixes that encode debugging information or leading
6177 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6178 information that is ignored). */
40658b94 6179
b5ec771e 6180static bool
c4d840bd
PH
6181full_match (const char *sym_name, const char *search_name)
6182{
b5ec771e
PA
6183 size_t search_name_len = strlen (search_name);
6184
6185 if (strncmp (sym_name, search_name, search_name_len) == 0
6186 && is_name_suffix (sym_name + search_name_len))
6187 return true;
6188
6189 if (startswith (sym_name, "_ada_")
6190 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6191 && is_name_suffix (sym_name + search_name_len + 5))
6192 return true;
c4d840bd 6193
b5ec771e
PA
6194 return false;
6195}
c4d840bd 6196
b5ec771e
PA
6197/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6198 *defn_symbols, updating the list of symbols in OBSTACKP (if
6199 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6200
6201static void
6202ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6203 const struct block *block,
6204 const lookup_name_info &lookup_name,
6205 domain_enum domain, struct objfile *objfile)
96d887e8 6206{
8157b174 6207 struct block_iterator iter;
96d887e8
PH
6208 /* A matching argument symbol, if any. */
6209 struct symbol *arg_sym;
6210 /* Set true when we find a matching non-argument symbol. */
6211 int found_sym;
6212 struct symbol *sym;
6213
6214 arg_sym = NULL;
6215 found_sym = 0;
b5ec771e
PA
6216 for (sym = block_iter_match_first (block, lookup_name, &iter);
6217 sym != NULL;
6218 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6219 {
c1b5c1eb 6220 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
b5ec771e
PA
6221 {
6222 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6223 {
6224 if (SYMBOL_IS_ARGUMENT (sym))
6225 arg_sym = sym;
6226 else
6227 {
6228 found_sym = 1;
6229 add_defn_to_vec (obstackp,
6230 fixup_symbol_section (sym, objfile),
6231 block);
6232 }
6233 }
6234 }
96d887e8
PH
6235 }
6236
22cee43f
PMR
6237 /* Handle renamings. */
6238
b5ec771e 6239 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6240 found_sym = 1;
6241
96d887e8
PH
6242 if (!found_sym && arg_sym != NULL)
6243 {
76a01679
JB
6244 add_defn_to_vec (obstackp,
6245 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6246 block);
96d887e8
PH
6247 }
6248
b5ec771e 6249 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6250 {
6251 arg_sym = NULL;
6252 found_sym = 0;
b5ec771e
PA
6253 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6254 const char *name = ada_lookup_name.c_str ();
6255 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6256
6257 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6258 {
c1b5c1eb 6259 if (symbol_matches_domain (sym->language (),
4186eb54 6260 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6261 {
6262 int cmp;
6263
987012b8 6264 cmp = (int) '_' - (int) sym->linkage_name ()[0];
76a01679
JB
6265 if (cmp == 0)
6266 {
987012b8 6267 cmp = !startswith (sym->linkage_name (), "_ada_");
76a01679 6268 if (cmp == 0)
987012b8 6269 cmp = strncmp (name, sym->linkage_name () + 5,
76a01679
JB
6270 name_len);
6271 }
6272
6273 if (cmp == 0
987012b8 6274 && is_name_suffix (sym->linkage_name () + name_len + 5))
76a01679 6275 {
2a2d4dc3
AS
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
76a01679
JB
6288 }
6289 }
76a01679 6290 }
96d887e8
PH
6291
6292 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6293 They aren't parameters, right? */
6294 if (!found_sym && arg_sym != NULL)
6295 {
6296 add_defn_to_vec (obstackp,
76a01679 6297 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6298 block);
96d887e8
PH
6299 }
6300 }
6301}
6302\f
41d27058
JB
6303
6304 /* Symbol Completion */
6305
b5ec771e 6306/* See symtab.h. */
41d27058 6307
b5ec771e
PA
6308bool
6309ada_lookup_name_info::matches
6310 (const char *sym_name,
6311 symbol_name_match_type match_type,
a207cff2 6312 completion_match_result *comp_match_res) const
41d27058 6313{
b5ec771e
PA
6314 bool match = false;
6315 const char *text = m_encoded_name.c_str ();
6316 size_t text_len = m_encoded_name.size ();
41d27058
JB
6317
6318 /* First, test against the fully qualified name of the symbol. */
6319
6320 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6321 match = true;
41d27058 6322
f945dedf 6323 std::string decoded_name = ada_decode (sym_name);
b5ec771e 6324 if (match && !m_encoded_p)
41d27058
JB
6325 {
6326 /* One needed check before declaring a positive match is to verify
6327 that iff we are doing a verbatim match, the decoded version
6328 of the symbol name starts with '<'. Otherwise, this symbol name
6329 is not a suitable completion. */
41d27058 6330
f945dedf 6331 bool has_angle_bracket = (decoded_name[0] == '<');
b5ec771e 6332 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6333 }
6334
b5ec771e 6335 if (match && !m_verbatim_p)
41d27058
JB
6336 {
6337 /* When doing non-verbatim match, another check that needs to
6338 be done is to verify that the potentially matching symbol name
6339 does not include capital letters, because the ada-mode would
6340 not be able to understand these symbol names without the
6341 angle bracket notation. */
6342 const char *tmp;
6343
6344 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6345 if (*tmp != '\0')
b5ec771e 6346 match = false;
41d27058
JB
6347 }
6348
6349 /* Second: Try wild matching... */
6350
b5ec771e 6351 if (!match && m_wild_match_p)
41d27058
JB
6352 {
6353 /* Since we are doing wild matching, this means that TEXT
6354 may represent an unqualified symbol name. We therefore must
6355 also compare TEXT against the unqualified name of the symbol. */
f945dedf 6356 sym_name = ada_unqualified_name (decoded_name.c_str ());
41d27058
JB
6357
6358 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6359 match = true;
41d27058
JB
6360 }
6361
b5ec771e 6362 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6363
6364 if (!match)
b5ec771e 6365 return false;
41d27058 6366
a207cff2 6367 if (comp_match_res != NULL)
b5ec771e 6368 {
a207cff2 6369 std::string &match_str = comp_match_res->match.storage ();
41d27058 6370
b5ec771e 6371 if (!m_encoded_p)
a207cff2 6372 match_str = ada_decode (sym_name);
b5ec771e
PA
6373 else
6374 {
6375 if (m_verbatim_p)
6376 match_str = add_angle_brackets (sym_name);
6377 else
6378 match_str = sym_name;
41d27058 6379
b5ec771e 6380 }
a207cff2
PA
6381
6382 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6383 }
6384
b5ec771e 6385 return true;
41d27058
JB
6386}
6387
b5ec771e 6388/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6389 WORD is the entire command on which completion is made. */
41d27058 6390
eb3ff9a5
PA
6391static void
6392ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6393 complete_symbol_mode mode,
b5ec771e
PA
6394 symbol_name_match_type name_match_type,
6395 const char *text, const char *word,
eb3ff9a5 6396 enum type_code code)
41d27058 6397{
41d27058 6398 struct symbol *sym;
3977b71f 6399 const struct block *b, *surrounding_static_block = 0;
8157b174 6400 struct block_iterator iter;
41d27058 6401
2f68a895
TT
6402 gdb_assert (code == TYPE_CODE_UNDEF);
6403
1b026119 6404 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6405
6406 /* First, look at the partial symtab symbols. */
14bc53a8 6407 expand_symtabs_matching (NULL,
b5ec771e
PA
6408 lookup_name,
6409 NULL,
14bc53a8
PA
6410 NULL,
6411 ALL_DOMAIN);
41d27058
JB
6412
6413 /* At this point scan through the misc symbol vectors and add each
6414 symbol you find to the list. Eventually we want to ignore
6415 anything that isn't a text symbol (everything else will be
6416 handled by the psymtab code above). */
6417
2030c079 6418 for (objfile *objfile : current_program_space->objfiles ())
5325b9bf 6419 {
7932255d 6420 for (minimal_symbol *msymbol : objfile->msymbols ())
5325b9bf
TT
6421 {
6422 QUIT;
6423
6424 if (completion_skip_symbol (mode, msymbol))
6425 continue;
6426
c1b5c1eb 6427 language symbol_language = msymbol->language ();
5325b9bf
TT
6428
6429 /* Ada minimal symbols won't have their language set to Ada. If
6430 we let completion_list_add_name compare using the
6431 default/C-like matcher, then when completing e.g., symbols in a
6432 package named "pck", we'd match internal Ada symbols like
6433 "pckS", which are invalid in an Ada expression, unless you wrap
6434 them in '<' '>' to request a verbatim match.
6435
6436 Unfortunately, some Ada encoded names successfully demangle as
6437 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6438 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6439 with the wrong language set. Paper over that issue here. */
6440 if (symbol_language == language_auto
6441 || symbol_language == language_cplus)
6442 symbol_language = language_ada;
6443
6444 completion_list_add_name (tracker,
6445 symbol_language,
c9d95fa3 6446 msymbol->linkage_name (),
5325b9bf
TT
6447 lookup_name, text, word);
6448 }
6449 }
41d27058
JB
6450
6451 /* Search upwards from currently selected frame (so that we can
6452 complete on local vars. */
6453
6454 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6455 {
6456 if (!BLOCK_SUPERBLOCK (b))
6457 surrounding_static_block = b; /* For elmin of dups */
6458
6459 ALL_BLOCK_SYMBOLS (b, iter, sym)
6460 {
f9d67a22
PA
6461 if (completion_skip_symbol (mode, sym))
6462 continue;
6463
b5ec771e 6464 completion_list_add_name (tracker,
c1b5c1eb 6465 sym->language (),
987012b8 6466 sym->linkage_name (),
1b026119 6467 lookup_name, text, word);
41d27058
JB
6468 }
6469 }
6470
6471 /* Go through the symtabs and check the externs and statics for
43f3e411 6472 symbols which match. */
41d27058 6473
2030c079 6474 for (objfile *objfile : current_program_space->objfiles ())
41d27058 6475 {
b669c953 6476 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6477 {
6478 QUIT;
6479 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6480 ALL_BLOCK_SYMBOLS (b, iter, sym)
6481 {
6482 if (completion_skip_symbol (mode, sym))
6483 continue;
f9d67a22 6484
d8aeb77f 6485 completion_list_add_name (tracker,
c1b5c1eb 6486 sym->language (),
987012b8 6487 sym->linkage_name (),
d8aeb77f
TT
6488 lookup_name, text, word);
6489 }
6490 }
41d27058 6491 }
41d27058 6492
2030c079 6493 for (objfile *objfile : current_program_space->objfiles ())
d8aeb77f 6494 {
b669c953 6495 for (compunit_symtab *s : objfile->compunits ())
d8aeb77f
TT
6496 {
6497 QUIT;
6498 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6499 /* Don't do this block twice. */
6500 if (b == surrounding_static_block)
6501 continue;
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
f9d67a22 6506
d8aeb77f 6507 completion_list_add_name (tracker,
c1b5c1eb 6508 sym->language (),
987012b8 6509 sym->linkage_name (),
d8aeb77f
TT
6510 lookup_name, text, word);
6511 }
6512 }
41d27058 6513 }
41d27058
JB
6514}
6515
963a6417 6516 /* Field Access */
96d887e8 6517
73fb9985
JB
6518/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6519 for tagged types. */
6520
6521static int
6522ada_is_dispatch_table_ptr_type (struct type *type)
6523{
0d5cff50 6524 const char *name;
73fb9985
JB
6525
6526 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6527 return 0;
6528
6529 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6530 if (name == NULL)
6531 return 0;
6532
6533 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6534}
6535
ac4a2da4
JG
6536/* Return non-zero if TYPE is an interface tag. */
6537
6538static int
6539ada_is_interface_tag (struct type *type)
6540{
6541 const char *name = TYPE_NAME (type);
6542
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__interface_tag") == 0);
6547}
6548
963a6417
PH
6549/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6550 to be invisible to users. */
96d887e8 6551
963a6417
PH
6552int
6553ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6554{
963a6417
PH
6555 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6556 return 1;
ffde82bf 6557
73fb9985
JB
6558 /* Check the name of that field. */
6559 {
6560 const char *name = TYPE_FIELD_NAME (type, field_num);
6561
6562 /* Anonymous field names should not be printed.
6563 brobecker/2007-02-20: I don't think this can actually happen
30baf67b 6564 but we don't want to print the value of anonymous fields anyway. */
73fb9985
JB
6565 if (name == NULL)
6566 return 1;
6567
ffde82bf
JB
6568 /* Normally, fields whose name start with an underscore ("_")
6569 are fields that have been internally generated by the compiler,
6570 and thus should not be printed. The "_parent" field is special,
6571 however: This is a field internally generated by the compiler
6572 for tagged types, and it contains the components inherited from
6573 the parent type. This field should not be printed as is, but
6574 should not be ignored either. */
61012eef 6575 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6576 return 1;
6577 }
6578
ac4a2da4
JG
6579 /* If this is the dispatch table of a tagged type or an interface tag,
6580 then ignore. */
73fb9985 6581 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6582 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6583 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6584 return 1;
6585
6586 /* Not a special field, so it should not be ignored. */
6587 return 0;
963a6417 6588}
96d887e8 6589
963a6417 6590/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6591 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6592
963a6417
PH
6593int
6594ada_is_tagged_type (struct type *type, int refok)
6595{
988f6b3d 6596 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6597}
96d887e8 6598
963a6417 6599/* True iff TYPE represents the type of X'Tag */
96d887e8 6600
963a6417
PH
6601int
6602ada_is_tag_type (struct type *type)
6603{
460efde1
JB
6604 type = ada_check_typedef (type);
6605
963a6417
PH
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6607 return 0;
6608 else
96d887e8 6609 {
963a6417 6610 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6611
963a6417
PH
6612 return (name != NULL
6613 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6614 }
96d887e8
PH
6615}
6616
963a6417 6617/* The type of the tag on VAL. */
76a01679 6618
de93309a 6619static struct type *
963a6417 6620ada_tag_type (struct value *val)
96d887e8 6621{
988f6b3d 6622 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6623}
96d887e8 6624
b50d69b5
JG
6625/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6626 retired at Ada 05). */
6627
6628static int
6629is_ada95_tag (struct value *tag)
6630{
6631 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6632}
6633
963a6417 6634/* The value of the tag on VAL. */
96d887e8 6635
de93309a 6636static struct value *
963a6417
PH
6637ada_value_tag (struct value *val)
6638{
03ee6b2e 6639 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6640}
6641
963a6417
PH
6642/* The value of the tag on the object of type TYPE whose contents are
6643 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6644 ADDRESS. */
96d887e8 6645
963a6417 6646static struct value *
10a2c479 6647value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6648 const gdb_byte *valaddr,
963a6417 6649 CORE_ADDR address)
96d887e8 6650{
b5385fc0 6651 int tag_byte_offset;
963a6417 6652 struct type *tag_type;
5b4ee69b 6653
963a6417 6654 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6655 NULL, NULL, NULL))
96d887e8 6656 {
fc1a4b47 6657 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6658 ? NULL
6659 : valaddr + tag_byte_offset);
963a6417 6660 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6661
963a6417 6662 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6663 }
963a6417
PH
6664 return NULL;
6665}
96d887e8 6666
963a6417
PH
6667static struct type *
6668type_from_tag (struct value *tag)
6669{
6670 const char *type_name = ada_tag_name (tag);
5b4ee69b 6671
963a6417
PH
6672 if (type_name != NULL)
6673 return ada_find_any_type (ada_encode (type_name));
6674 return NULL;
6675}
96d887e8 6676
b50d69b5
JG
6677/* Given a value OBJ of a tagged type, return a value of this
6678 type at the base address of the object. The base address, as
6679 defined in Ada.Tags, it is the address of the primary tag of
6680 the object, and therefore where the field values of its full
6681 view can be fetched. */
6682
6683struct value *
6684ada_tag_value_at_base_address (struct value *obj)
6685{
b50d69b5
JG
6686 struct value *val;
6687 LONGEST offset_to_top = 0;
6688 struct type *ptr_type, *obj_type;
6689 struct value *tag;
6690 CORE_ADDR base_address;
6691
6692 obj_type = value_type (obj);
6693
6694 /* It is the responsability of the caller to deref pointers. */
6695
6696 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6697 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6698 return obj;
6699
6700 tag = ada_value_tag (obj);
6701 if (!tag)
6702 return obj;
6703
6704 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6705
6706 if (is_ada95_tag (tag))
6707 return obj;
6708
08f49010
XR
6709 ptr_type = language_lookup_primitive_type
6710 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6711 ptr_type = lookup_pointer_type (ptr_type);
6712 val = value_cast (ptr_type, tag);
6713 if (!val)
6714 return obj;
6715
6716 /* It is perfectly possible that an exception be raised while
6717 trying to determine the base address, just like for the tag;
6718 see ada_tag_name for more details. We do not print the error
6719 message for the same reason. */
6720
a70b8144 6721 try
b50d69b5
JG
6722 {
6723 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6724 }
6725
230d2906 6726 catch (const gdb_exception_error &e)
492d29ea
PA
6727 {
6728 return obj;
6729 }
b50d69b5
JG
6730
6731 /* If offset is null, nothing to do. */
6732
6733 if (offset_to_top == 0)
6734 return obj;
6735
6736 /* -1 is a special case in Ada.Tags; however, what should be done
6737 is not quite clear from the documentation. So do nothing for
6738 now. */
6739
6740 if (offset_to_top == -1)
6741 return obj;
6742
08f49010
XR
6743 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6744 from the base address. This was however incompatible with
6745 C++ dispatch table: C++ uses a *negative* value to *add*
6746 to the base address. Ada's convention has therefore been
6747 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6748 use the same convention. Here, we support both cases by
6749 checking the sign of OFFSET_TO_TOP. */
6750
6751 if (offset_to_top > 0)
6752 offset_to_top = -offset_to_top;
6753
6754 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6755 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6756
6757 /* Make sure that we have a proper tag at the new address.
6758 Otherwise, offset_to_top is bogus (which can happen when
6759 the object is not initialized yet). */
6760
6761 if (!tag)
6762 return obj;
6763
6764 obj_type = type_from_tag (tag);
6765
6766 if (!obj_type)
6767 return obj;
6768
6769 return value_from_contents_and_address (obj_type, NULL, base_address);
6770}
6771
1b611343
JB
6772/* Return the "ada__tags__type_specific_data" type. */
6773
6774static struct type *
6775ada_get_tsd_type (struct inferior *inf)
963a6417 6776{
1b611343 6777 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6778
1b611343
JB
6779 if (data->tsd_type == 0)
6780 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6781 return data->tsd_type;
6782}
529cad9c 6783
1b611343
JB
6784/* Return the TSD (type-specific data) associated to the given TAG.
6785 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6786
1b611343 6787 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6788
1b611343
JB
6789static struct value *
6790ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6791{
4c4b4cd2 6792 struct value *val;
1b611343 6793 struct type *type;
5b4ee69b 6794
1b611343
JB
6795 /* First option: The TSD is simply stored as a field of our TAG.
6796 Only older versions of GNAT would use this format, but we have
6797 to test it first, because there are no visible markers for
6798 the current approach except the absence of that field. */
529cad9c 6799
1b611343
JB
6800 val = ada_value_struct_elt (tag, "tsd", 1);
6801 if (val)
6802 return val;
e802dbe0 6803
1b611343
JB
6804 /* Try the second representation for the dispatch table (in which
6805 there is no explicit 'tsd' field in the referent of the tag pointer,
6806 and instead the tsd pointer is stored just before the dispatch
6807 table. */
e802dbe0 6808
1b611343
JB
6809 type = ada_get_tsd_type (current_inferior());
6810 if (type == NULL)
6811 return NULL;
6812 type = lookup_pointer_type (lookup_pointer_type (type));
6813 val = value_cast (type, tag);
6814 if (val == NULL)
6815 return NULL;
6816 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6817}
6818
1b611343
JB
6819/* Given the TSD of a tag (type-specific data), return a string
6820 containing the name of the associated type.
6821
6822 The returned value is good until the next call. May return NULL
6823 if we are unable to determine the tag name. */
6824
6825static char *
6826ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6827{
529cad9c
PH
6828 static char name[1024];
6829 char *p;
1b611343 6830 struct value *val;
529cad9c 6831
1b611343 6832 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6833 if (val == NULL)
1b611343 6834 return NULL;
4c4b4cd2
PH
6835 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6836 for (p = name; *p != '\0'; p += 1)
6837 if (isalpha (*p))
6838 *p = tolower (*p);
1b611343 6839 return name;
4c4b4cd2
PH
6840}
6841
6842/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6843 a C string.
6844
6845 Return NULL if the TAG is not an Ada tag, or if we were unable to
6846 determine the name of that tag. The result is good until the next
6847 call. */
4c4b4cd2
PH
6848
6849const char *
6850ada_tag_name (struct value *tag)
6851{
1b611343 6852 char *name = NULL;
5b4ee69b 6853
df407dfe 6854 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6855 return NULL;
1b611343
JB
6856
6857 /* It is perfectly possible that an exception be raised while trying
6858 to determine the TAG's name, even under normal circumstances:
6859 The associated variable may be uninitialized or corrupted, for
6860 instance. We do not let any exception propagate past this point.
6861 instead we return NULL.
6862
6863 We also do not print the error message either (which often is very
6864 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6865 the caller print a more meaningful message if necessary. */
a70b8144 6866 try
1b611343
JB
6867 {
6868 struct value *tsd = ada_get_tsd_from_tag (tag);
6869
6870 if (tsd != NULL)
6871 name = ada_tag_name_from_tsd (tsd);
6872 }
230d2906 6873 catch (const gdb_exception_error &e)
492d29ea
PA
6874 {
6875 }
1b611343
JB
6876
6877 return name;
4c4b4cd2
PH
6878}
6879
6880/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6881
d2e4a39e 6882struct type *
ebf56fd3 6883ada_parent_type (struct type *type)
14f9c5c9
AS
6884{
6885 int i;
6886
61ee279c 6887 type = ada_check_typedef (type);
14f9c5c9
AS
6888
6889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6890 return NULL;
6891
6892 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6893 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6894 {
6895 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6896
6897 /* If the _parent field is a pointer, then dereference it. */
6898 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6899 parent_type = TYPE_TARGET_TYPE (parent_type);
6900 /* If there is a parallel XVS type, get the actual base type. */
6901 parent_type = ada_get_base_type (parent_type);
6902
6903 return ada_check_typedef (parent_type);
6904 }
14f9c5c9
AS
6905
6906 return NULL;
6907}
6908
4c4b4cd2
PH
6909/* True iff field number FIELD_NUM of structure type TYPE contains the
6910 parent-type (inherited) fields of a derived type. Assumes TYPE is
6911 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6912
6913int
ebf56fd3 6914ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6915{
61ee279c 6916 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6917
4c4b4cd2 6918 return (name != NULL
61012eef
GB
6919 && (startswith (name, "PARENT")
6920 || startswith (name, "_parent")));
14f9c5c9
AS
6921}
6922
4c4b4cd2 6923/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6924 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6925 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6926 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6927 structures. */
14f9c5c9
AS
6928
6929int
ebf56fd3 6930ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6931{
d2e4a39e 6932 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6933
dddc0e16
JB
6934 if (name != NULL && strcmp (name, "RETVAL") == 0)
6935 {
6936 /* This happens in functions with "out" or "in out" parameters
6937 which are passed by copy. For such functions, GNAT describes
6938 the function's return type as being a struct where the return
6939 value is in a field called RETVAL, and where the other "out"
6940 or "in out" parameters are fields of that struct. This is not
6941 a wrapper. */
6942 return 0;
6943 }
6944
d2e4a39e 6945 return (name != NULL
61012eef 6946 && (startswith (name, "PARENT")
4c4b4cd2 6947 || strcmp (name, "REP") == 0
61012eef 6948 || startswith (name, "_parent")
4c4b4cd2 6949 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6950}
6951
4c4b4cd2
PH
6952/* True iff field number FIELD_NUM of structure or union type TYPE
6953 is a variant wrapper. Assumes TYPE is a structure type with at least
6954 FIELD_NUM+1 fields. */
14f9c5c9
AS
6955
6956int
ebf56fd3 6957ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6958{
8ecb59f8
TT
6959 /* Only Ada types are eligible. */
6960 if (!ADA_TYPE_P (type))
6961 return 0;
6962
d2e4a39e 6963 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6964
14f9c5c9 6965 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6966 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6967 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6968 == TYPE_CODE_UNION)));
14f9c5c9
AS
6969}
6970
6971/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6972 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6973 returns the type of the controlling discriminant for the variant.
6974 May return NULL if the type could not be found. */
14f9c5c9 6975
d2e4a39e 6976struct type *
ebf56fd3 6977ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6978{
a121b7c1 6979 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6980
988f6b3d 6981 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6982}
6983
4c4b4cd2 6984/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6985 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6986 represents a 'when others' clause; otherwise 0. */
14f9c5c9 6987
de93309a 6988static int
ebf56fd3 6989ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6990{
d2e4a39e 6991 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6992
14f9c5c9
AS
6993 return (name != NULL && name[0] == 'O');
6994}
6995
6996/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6997 returns the name of the discriminant controlling the variant.
6998 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6999
a121b7c1 7000const char *
ebf56fd3 7001ada_variant_discrim_name (struct type *type0)
14f9c5c9 7002{
d2e4a39e 7003 static char *result = NULL;
14f9c5c9 7004 static size_t result_len = 0;
d2e4a39e
AS
7005 struct type *type;
7006 const char *name;
7007 const char *discrim_end;
7008 const char *discrim_start;
14f9c5c9
AS
7009
7010 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7011 type = TYPE_TARGET_TYPE (type0);
7012 else
7013 type = type0;
7014
7015 name = ada_type_name (type);
7016
7017 if (name == NULL || name[0] == '\000')
7018 return "";
7019
7020 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7021 discrim_end -= 1)
7022 {
61012eef 7023 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7024 break;
14f9c5c9
AS
7025 }
7026 if (discrim_end == name)
7027 return "";
7028
d2e4a39e 7029 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7030 discrim_start -= 1)
7031 {
d2e4a39e 7032 if (discrim_start == name + 1)
4c4b4cd2 7033 return "";
76a01679 7034 if ((discrim_start > name + 3
61012eef 7035 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7036 || discrim_start[-1] == '.')
7037 break;
14f9c5c9
AS
7038 }
7039
7040 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7041 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7042 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7043 return result;
7044}
7045
4c4b4cd2
PH
7046/* Scan STR for a subtype-encoded number, beginning at position K.
7047 Put the position of the character just past the number scanned in
7048 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7049 Return 1 if there was a valid number at the given position, and 0
7050 otherwise. A "subtype-encoded" number consists of the absolute value
7051 in decimal, followed by the letter 'm' to indicate a negative number.
7052 Assumes 0m does not occur. */
14f9c5c9
AS
7053
7054int
d2e4a39e 7055ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7056{
7057 ULONGEST RU;
7058
d2e4a39e 7059 if (!isdigit (str[k]))
14f9c5c9
AS
7060 return 0;
7061
4c4b4cd2 7062 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7063 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7064 LONGEST. */
14f9c5c9
AS
7065 RU = 0;
7066 while (isdigit (str[k]))
7067 {
d2e4a39e 7068 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7069 k += 1;
7070 }
7071
d2e4a39e 7072 if (str[k] == 'm')
14f9c5c9
AS
7073 {
7074 if (R != NULL)
4c4b4cd2 7075 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7076 k += 1;
7077 }
7078 else if (R != NULL)
7079 *R = (LONGEST) RU;
7080
4c4b4cd2 7081 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7082 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7083 number representable as a LONGEST (although either would probably work
7084 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7085 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7086
7087 if (new_k != NULL)
7088 *new_k = k;
7089 return 1;
7090}
7091
4c4b4cd2
PH
7092/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7093 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7094 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7095
de93309a 7096static int
ebf56fd3 7097ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7098{
d2e4a39e 7099 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7100 int p;
7101
7102 p = 0;
7103 while (1)
7104 {
d2e4a39e 7105 switch (name[p])
4c4b4cd2
PH
7106 {
7107 case '\0':
7108 return 0;
7109 case 'S':
7110 {
7111 LONGEST W;
5b4ee69b 7112
4c4b4cd2
PH
7113 if (!ada_scan_number (name, p + 1, &W, &p))
7114 return 0;
7115 if (val == W)
7116 return 1;
7117 break;
7118 }
7119 case 'R':
7120 {
7121 LONGEST L, U;
5b4ee69b 7122
4c4b4cd2
PH
7123 if (!ada_scan_number (name, p + 1, &L, &p)
7124 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7125 return 0;
7126 if (val >= L && val <= U)
7127 return 1;
7128 break;
7129 }
7130 case 'O':
7131 return 1;
7132 default:
7133 return 0;
7134 }
7135 }
7136}
7137
0963b4bd 7138/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7139
7140/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7141 ARG_TYPE, extract and return the value of one of its (non-static)
7142 fields. FIELDNO says which field. Differs from value_primitive_field
7143 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7144
4c4b4cd2 7145static struct value *
d2e4a39e 7146ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7147 struct type *arg_type)
14f9c5c9 7148{
14f9c5c9
AS
7149 struct type *type;
7150
61ee279c 7151 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7152 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7153
4504bbde
TT
7154 /* Handle packed fields. It might be that the field is not packed
7155 relative to its containing structure, but the structure itself is
7156 packed; in this case we must take the bit-field path. */
7157 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
14f9c5c9
AS
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7160 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7161
0fd88904 7162 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7163 offset + bit_pos / 8,
7164 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7165 }
7166 else
7167 return value_primitive_field (arg1, offset, fieldno, arg_type);
7168}
7169
52ce6436
PH
7170/* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7177 0 otherwise;
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7182
828d5846
XR
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7185
7186 type Top_T is tagged record
7187 N : Integer := 1;
7188 U : Integer := 974;
7189 A : Integer := 48;
7190 end record;
7191
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7194 C : Integer := 3;
7195 end record;
7196
7197 type Bottom_T is new Middle.Middle_T with record
7198 N : Float := 4.0;
7199 C : Character := '5';
7200 X : Integer := 6;
7201 A : Character := 'J';
7202 end record;
7203
7204 Let's say we now have a variable declared and initialized as follow:
7205
7206 TC : Top_A := new Bottom_T;
7207
7208 And then we use this variable to call this function
7209
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7211
7212 as follow:
7213
7214 Assign (Top_T (B), 12);
7215
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7218
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7228
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7231 to program.
7232
0963b4bd 7233 Returns 1 if found, 0 otherwise. */
52ce6436 7234
4c4b4cd2 7235static int
0d5cff50 7236find_struct_field (const char *name, struct type *type, int offset,
76a01679 7237 struct type **field_type_p,
52ce6436
PH
7238 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7239 int *index_p)
4c4b4cd2
PH
7240{
7241 int i;
828d5846 7242 int parent_offset = -1;
4c4b4cd2 7243
61ee279c 7244 type = ada_check_typedef (type);
76a01679 7245
52ce6436
PH
7246 if (field_type_p != NULL)
7247 *field_type_p = NULL;
7248 if (byte_offset_p != NULL)
d5d6fca5 7249 *byte_offset_p = 0;
52ce6436
PH
7250 if (bit_offset_p != NULL)
7251 *bit_offset_p = 0;
7252 if (bit_size_p != NULL)
7253 *bit_size_p = 0;
7254
7255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7256 {
7257 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7258 int fld_offset = offset + bit_pos / 8;
0d5cff50 7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7260
4c4b4cd2
PH
7261 if (t_field_name == NULL)
7262 continue;
7263
828d5846
XR
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
52ce6436 7278 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7279 {
7280 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7281
52ce6436
PH
7282 if (field_type_p != NULL)
7283 *field_type_p = TYPE_FIELD_TYPE (type, i);
7284 if (byte_offset_p != NULL)
7285 *byte_offset_p = fld_offset;
7286 if (bit_offset_p != NULL)
7287 *bit_offset_p = bit_pos % 8;
7288 if (bit_size_p != NULL)
7289 *bit_size_p = bit_size;
76a01679
JB
7290 return 1;
7291 }
4c4b4cd2
PH
7292 else if (ada_is_wrapper_field (type, i))
7293 {
52ce6436
PH
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7295 field_type_p, byte_offset_p, bit_offset_p,
7296 bit_size_p, index_p))
76a01679
JB
7297 return 1;
7298 }
4c4b4cd2
PH
7299 else if (ada_is_variant_part (type, i))
7300 {
52ce6436
PH
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7302 fixed type?? */
4c4b4cd2 7303 int j;
52ce6436
PH
7304 struct type *field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7306
52ce6436 7307 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7308 {
76a01679
JB
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7310 fld_offset
7311 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7312 field_type_p, byte_offset_p,
52ce6436 7313 bit_offset_p, bit_size_p, index_p))
76a01679 7314 return 1;
4c4b4cd2
PH
7315 }
7316 }
52ce6436
PH
7317 else if (index_p != NULL)
7318 *index_p += 1;
4c4b4cd2 7319 }
828d5846
XR
7320
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7323
7324 if (parent_offset != -1)
7325 {
7326 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7327 int fld_offset = offset + bit_pos / 8;
7328
7329 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7330 fld_offset, field_type_p, byte_offset_p,
7331 bit_offset_p, bit_size_p, index_p))
7332 return 1;
7333 }
7334
4c4b4cd2
PH
7335 return 0;
7336}
7337
0963b4bd 7338/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7339
52ce6436
PH
7340static int
7341num_visible_fields (struct type *type)
7342{
7343 int n;
5b4ee69b 7344
52ce6436
PH
7345 n = 0;
7346 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7347 return n;
7348}
14f9c5c9 7349
4c4b4cd2 7350/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7353
828d5846
XR
7354 Searches recursively through wrapper fields (e.g., '_parent').
7355
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
14f9c5c9 7358
4c4b4cd2 7359static struct value *
108d56a4 7360ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7361 struct type *type)
14f9c5c9
AS
7362{
7363 int i;
828d5846 7364 int parent_offset = -1;
14f9c5c9 7365
5b4ee69b 7366 type = ada_check_typedef (type);
52ce6436 7367 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7368 {
0d5cff50 7369 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7370
7371 if (t_field_name == NULL)
4c4b4cd2 7372 continue;
14f9c5c9 7373
828d5846
XR
7374 else if (ada_is_parent_field (type, i))
7375 {
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7383
7384 parent_offset = i;
7385 continue;
7386 }
7387
14f9c5c9 7388 else if (field_name_match (t_field_name, name))
4c4b4cd2 7389 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7390
7391 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7392 {
0963b4bd 7393 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7394 ada_search_struct_field (name, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7397
4c4b4cd2
PH
7398 if (v != NULL)
7399 return v;
7400 }
14f9c5c9
AS
7401
7402 else if (ada_is_variant_part (type, i))
4c4b4cd2 7403 {
0963b4bd 7404 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7405 int j;
5b4ee69b
MS
7406 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 i));
4c4b4cd2
PH
7408 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409
52ce6436 7410 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7411 {
0963b4bd
MS
7412 struct value *v = ada_search_struct_field /* Force line
7413 break. */
06d5cf63
JB
7414 (name, arg,
7415 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7416 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7417
4c4b4cd2
PH
7418 if (v != NULL)
7419 return v;
7420 }
7421 }
14f9c5c9 7422 }
828d5846
XR
7423
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7426
7427 if (parent_offset != -1)
7428 {
7429 struct value *v = ada_search_struct_field (
7430 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7431 TYPE_FIELD_TYPE (type, parent_offset));
7432
7433 if (v != NULL)
7434 return v;
7435 }
7436
14f9c5c9
AS
7437 return NULL;
7438}
d2e4a39e 7439
52ce6436
PH
7440static struct value *ada_index_struct_field_1 (int *, struct value *,
7441 int, struct type *);
7442
7443
7444/* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7447 * If found, return value, else return NULL. */
52ce6436
PH
7448
7449static struct value *
7450ada_index_struct_field (int index, struct value *arg, int offset,
7451 struct type *type)
7452{
7453 return ada_index_struct_field_1 (&index, arg, offset, type);
7454}
7455
7456
7457/* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7459 * *INDEX_P. */
52ce6436
PH
7460
7461static struct value *
7462ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7463 struct type *type)
7464{
7465 int i;
7466 type = ada_check_typedef (type);
7467
7468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7469 {
7470 if (TYPE_FIELD_NAME (type, i) == NULL)
7471 continue;
7472 else if (ada_is_wrapper_field (type, i))
7473 {
0963b4bd 7474 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7475 ada_index_struct_field_1 (index_p, arg,
7476 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7477 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7478
52ce6436
PH
7479 if (v != NULL)
7480 return v;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7486 find_struct_field. */
52ce6436
PH
7487 error (_("Cannot assign this kind of variant record"));
7488 }
7489 else if (*index_p == 0)
7490 return ada_value_primitive_field (arg, offset, i, type);
7491 else
7492 *index_p -= 1;
7493 }
7494 return NULL;
7495}
7496
3b4de39c 7497/* Return a string representation of type TYPE. */
99bbb428 7498
3b4de39c 7499static std::string
99bbb428
PA
7500type_as_string (struct type *type)
7501{
d7e74731 7502 string_file tmp_stream;
99bbb428 7503
d7e74731 7504 type_print (type, "", &tmp_stream, -1);
99bbb428 7505
d7e74731 7506 return std::move (tmp_stream.string ());
99bbb428
PA
7507}
7508
14f9c5c9 7509/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7510 If DISPP is non-null, add its byte displacement from the beginning of a
7511 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7512 work for packed fields).
7513
7514 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7515 followed by "___".
14f9c5c9 7516
0963b4bd 7517 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7518 be a (pointer or reference)+ to a struct or union, and the
7519 ultimate target type will be searched.
14f9c5c9
AS
7520
7521 Looks recursively into variant clauses and parent types.
7522
828d5846
XR
7523 In the case of homonyms in the tagged types, please refer to the
7524 long explanation in find_struct_field's function documentation.
7525
4c4b4cd2
PH
7526 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7527 TYPE is not a type of the right kind. */
14f9c5c9 7528
4c4b4cd2 7529static struct type *
a121b7c1 7530ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7531 int noerr)
14f9c5c9
AS
7532{
7533 int i;
828d5846 7534 int parent_offset = -1;
14f9c5c9
AS
7535
7536 if (name == NULL)
7537 goto BadName;
7538
76a01679 7539 if (refok && type != NULL)
4c4b4cd2
PH
7540 while (1)
7541 {
61ee279c 7542 type = ada_check_typedef (type);
76a01679
JB
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7547 }
14f9c5c9 7548
76a01679 7549 if (type == NULL
1265e4aa
JB
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7552 {
4c4b4cd2 7553 if (noerr)
76a01679 7554 return NULL;
99bbb428 7555
3b4de39c
PA
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
0d5cff50 7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7565 struct type *t;
d2e4a39e 7566
14f9c5c9 7567 if (t_field_name == NULL)
4c4b4cd2 7568 continue;
14f9c5c9 7569
828d5846
XR
7570 else if (ada_is_parent_field (type, i))
7571 {
7572 /* This is a field pointing us to the parent type of a tagged
7573 type. As hinted in this function's documentation, we give
7574 preference to fields in the current record first, so what
7575 we do here is just record the index of this field before
7576 we skip it. If it turns out we couldn't find our field
7577 in the current record, then we'll get back to it and search
7578 inside it whether the field might exist in the parent. */
7579
7580 parent_offset = i;
7581 continue;
7582 }
7583
14f9c5c9 7584 else if (field_name_match (t_field_name, name))
988f6b3d 7585 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7586
7587 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7588 {
4c4b4cd2 7589 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7590 0, 1);
4c4b4cd2 7591 if (t != NULL)
988f6b3d 7592 return t;
4c4b4cd2 7593 }
14f9c5c9
AS
7594
7595 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7596 {
7597 int j;
5b4ee69b
MS
7598 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7599 i));
4c4b4cd2
PH
7600
7601 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7602 {
b1f33ddd
JB
7603 /* FIXME pnh 2008/01/26: We check for a field that is
7604 NOT wrapped in a struct, since the compiler sometimes
7605 generates these for unchecked variant types. Revisit
0963b4bd 7606 if the compiler changes this practice. */
0d5cff50 7607 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7608
b1f33ddd
JB
7609 if (v_field_name != NULL
7610 && field_name_match (v_field_name, name))
460efde1 7611 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7612 else
0963b4bd
MS
7613 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7614 j),
988f6b3d 7615 name, 0, 1);
b1f33ddd 7616
4c4b4cd2 7617 if (t != NULL)
988f6b3d 7618 return t;
4c4b4cd2
PH
7619 }
7620 }
14f9c5c9
AS
7621
7622 }
7623
828d5846
XR
7624 /* Field not found so far. If this is a tagged type which
7625 has a parent, try finding that field in the parent now. */
7626
7627 if (parent_offset != -1)
7628 {
7629 struct type *t;
7630
7631 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7632 name, 0, 1);
7633 if (t != NULL)
7634 return t;
7635 }
7636
14f9c5c9 7637BadName:
d2e4a39e 7638 if (!noerr)
14f9c5c9 7639 {
2b2798cc 7640 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7641
7642 error (_("Type %s has no component named %s"),
3b4de39c 7643 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7644 }
7645
7646 return NULL;
7647}
7648
b1f33ddd
JB
7649/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7650 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7651 represents an unchecked union (that is, the variant part of a
0963b4bd 7652 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7653
7654static int
7655is_unchecked_variant (struct type *var_type, struct type *outer_type)
7656{
a121b7c1 7657 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7658
988f6b3d 7659 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7660}
7661
7662
14f9c5c9 7663/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
d8af9068 7664 within OUTER, determine which variant clause (field number in VAR_TYPE,
4c4b4cd2 7665 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7666
d2e4a39e 7667int
d8af9068 7668ada_which_variant_applies (struct type *var_type, struct value *outer)
14f9c5c9
AS
7669{
7670 int others_clause;
7671 int i;
a121b7c1 7672 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816 7673 struct value *discrim;
14f9c5c9
AS
7674 LONGEST discrim_val;
7675
012370f6
TT
7676 /* Using plain value_from_contents_and_address here causes problems
7677 because we will end up trying to resolve a type that is currently
7678 being constructed. */
0c281816
JB
7679 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7680 if (discrim == NULL)
14f9c5c9 7681 return -1;
0c281816 7682 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7683
7684 others_clause = -1;
7685 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7686 {
7687 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7688 others_clause = i;
14f9c5c9 7689 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7690 return i;
14f9c5c9
AS
7691 }
7692
7693 return others_clause;
7694}
d2e4a39e 7695\f
14f9c5c9
AS
7696
7697
4c4b4cd2 7698 /* Dynamic-Sized Records */
14f9c5c9
AS
7699
7700/* Strategy: The type ostensibly attached to a value with dynamic size
7701 (i.e., a size that is not statically recorded in the debugging
7702 data) does not accurately reflect the size or layout of the value.
7703 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7704 conventional types that are constructed on the fly. */
14f9c5c9
AS
7705
7706/* There is a subtle and tricky problem here. In general, we cannot
7707 determine the size of dynamic records without its data. However,
7708 the 'struct value' data structure, which GDB uses to represent
7709 quantities in the inferior process (the target), requires the size
7710 of the type at the time of its allocation in order to reserve space
7711 for GDB's internal copy of the data. That's why the
7712 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7713 rather than struct value*s.
14f9c5c9
AS
7714
7715 However, GDB's internal history variables ($1, $2, etc.) are
7716 struct value*s containing internal copies of the data that are not, in
7717 general, the same as the data at their corresponding addresses in
7718 the target. Fortunately, the types we give to these values are all
7719 conventional, fixed-size types (as per the strategy described
7720 above), so that we don't usually have to perform the
7721 'to_fixed_xxx_type' conversions to look at their values.
7722 Unfortunately, there is one exception: if one of the internal
7723 history variables is an array whose elements are unconstrained
7724 records, then we will need to create distinct fixed types for each
7725 element selected. */
7726
7727/* The upshot of all of this is that many routines take a (type, host
7728 address, target address) triple as arguments to represent a value.
7729 The host address, if non-null, is supposed to contain an internal
7730 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7731 target at the target address. */
14f9c5c9
AS
7732
7733/* Assuming that VAL0 represents a pointer value, the result of
7734 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7735 dynamic-sized types. */
14f9c5c9 7736
d2e4a39e
AS
7737struct value *
7738ada_value_ind (struct value *val0)
14f9c5c9 7739{
c48db5ca 7740 struct value *val = value_ind (val0);
5b4ee69b 7741
b50d69b5
JG
7742 if (ada_is_tagged_type (value_type (val), 0))
7743 val = ada_tag_value_at_base_address (val);
7744
4c4b4cd2 7745 return ada_to_fixed_value (val);
14f9c5c9
AS
7746}
7747
7748/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7749 qualifiers on VAL0. */
7750
d2e4a39e
AS
7751static struct value *
7752ada_coerce_ref (struct value *val0)
7753{
df407dfe 7754 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7755 {
7756 struct value *val = val0;
5b4ee69b 7757
994b9211 7758 val = coerce_ref (val);
b50d69b5
JG
7759
7760 if (ada_is_tagged_type (value_type (val), 0))
7761 val = ada_tag_value_at_base_address (val);
7762
4c4b4cd2 7763 return ada_to_fixed_value (val);
d2e4a39e
AS
7764 }
7765 else
14f9c5c9
AS
7766 return val0;
7767}
7768
7769/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7770 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7771
7772static unsigned int
ebf56fd3 7773align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7774{
7775 return (off + alignment - 1) & ~(alignment - 1);
7776}
7777
4c4b4cd2 7778/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7779
7780static unsigned int
ebf56fd3 7781field_alignment (struct type *type, int f)
14f9c5c9 7782{
d2e4a39e 7783 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7784 int len;
14f9c5c9
AS
7785 int align_offset;
7786
64a1bf19
JB
7787 /* The field name should never be null, unless the debugging information
7788 is somehow malformed. In this case, we assume the field does not
7789 require any alignment. */
7790 if (name == NULL)
7791 return 1;
7792
7793 len = strlen (name);
7794
4c4b4cd2
PH
7795 if (!isdigit (name[len - 1]))
7796 return 1;
14f9c5c9 7797
d2e4a39e 7798 if (isdigit (name[len - 2]))
14f9c5c9
AS
7799 align_offset = len - 2;
7800 else
7801 align_offset = len - 1;
7802
61012eef 7803 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7804 return TARGET_CHAR_BIT;
7805
4c4b4cd2
PH
7806 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7807}
7808
852dff6c 7809/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7810
852dff6c
JB
7811static struct symbol *
7812ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7813{
7814 struct symbol *sym;
7815
7816 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7817 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7818 return sym;
7819
4186eb54
KS
7820 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7821 return sym;
14f9c5c9
AS
7822}
7823
dddfab26
UW
7824/* Find a type named NAME. Ignores ambiguity. This routine will look
7825 solely for types defined by debug info, it will not search the GDB
7826 primitive types. */
4c4b4cd2 7827
852dff6c 7828static struct type *
ebf56fd3 7829ada_find_any_type (const char *name)
14f9c5c9 7830{
852dff6c 7831 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7832
14f9c5c9 7833 if (sym != NULL)
dddfab26 7834 return SYMBOL_TYPE (sym);
14f9c5c9 7835
dddfab26 7836 return NULL;
14f9c5c9
AS
7837}
7838
739593e0
JB
7839/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7840 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7841 symbol, in which case it is returned. Otherwise, this looks for
7842 symbols whose name is that of NAME_SYM suffixed with "___XR".
7843 Return symbol if found, and NULL otherwise. */
4c4b4cd2 7844
c0e70c62
TT
7845static bool
7846ada_is_renaming_symbol (struct symbol *name_sym)
aeb5907d 7847{
987012b8 7848 const char *name = name_sym->linkage_name ();
c0e70c62 7849 return strstr (name, "___XR") != NULL;
4c4b4cd2
PH
7850}
7851
14f9c5c9 7852/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7853 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7854 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7855 otherwise return 0. */
7856
14f9c5c9 7857int
d2e4a39e 7858ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7859{
7860 if (type1 == NULL)
7861 return 1;
7862 else if (type0 == NULL)
7863 return 0;
7864 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7865 return 1;
7866 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7867 return 0;
4c4b4cd2
PH
7868 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7869 return 1;
ad82864c 7870 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7871 return 1;
4c4b4cd2
PH
7872 else if (ada_is_array_descriptor_type (type0)
7873 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7874 return 1;
aeb5907d
JB
7875 else
7876 {
a737d952
TT
7877 const char *type0_name = TYPE_NAME (type0);
7878 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
7879
7880 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7881 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7882 return 1;
7883 }
14f9c5c9
AS
7884 return 0;
7885}
7886
e86ca25f
TT
7887/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7888 null. */
4c4b4cd2 7889
0d5cff50 7890const char *
d2e4a39e 7891ada_type_name (struct type *type)
14f9c5c9 7892{
d2e4a39e 7893 if (type == NULL)
14f9c5c9 7894 return NULL;
e86ca25f 7895 return TYPE_NAME (type);
14f9c5c9
AS
7896}
7897
b4ba55a1
JB
7898/* Search the list of "descriptive" types associated to TYPE for a type
7899 whose name is NAME. */
7900
7901static struct type *
7902find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7903{
931e5bc3 7904 struct type *result, *tmp;
b4ba55a1 7905
c6044dd1
JB
7906 if (ada_ignore_descriptive_types_p)
7907 return NULL;
7908
b4ba55a1
JB
7909 /* If there no descriptive-type info, then there is no parallel type
7910 to be found. */
7911 if (!HAVE_GNAT_AUX_INFO (type))
7912 return NULL;
7913
7914 result = TYPE_DESCRIPTIVE_TYPE (type);
7915 while (result != NULL)
7916 {
0d5cff50 7917 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7918
7919 if (result_name == NULL)
7920 {
7921 warning (_("unexpected null name on descriptive type"));
7922 return NULL;
7923 }
7924
7925 /* If the names match, stop. */
7926 if (strcmp (result_name, name) == 0)
7927 break;
7928
7929 /* Otherwise, look at the next item on the list, if any. */
7930 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
7931 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7932 else
7933 tmp = NULL;
7934
7935 /* If not found either, try after having resolved the typedef. */
7936 if (tmp != NULL)
7937 result = tmp;
b4ba55a1 7938 else
931e5bc3 7939 {
f168693b 7940 result = check_typedef (result);
931e5bc3
JG
7941 if (HAVE_GNAT_AUX_INFO (result))
7942 result = TYPE_DESCRIPTIVE_TYPE (result);
7943 else
7944 result = NULL;
7945 }
b4ba55a1
JB
7946 }
7947
7948 /* If we didn't find a match, see whether this is a packed array. With
7949 older compilers, the descriptive type information is either absent or
7950 irrelevant when it comes to packed arrays so the above lookup fails.
7951 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7952 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7953 return ada_find_any_type (name);
7954
7955 return result;
7956}
7957
7958/* Find a parallel type to TYPE with the specified NAME, using the
7959 descriptive type taken from the debugging information, if available,
7960 and otherwise using the (slower) name-based method. */
7961
7962static struct type *
7963ada_find_parallel_type_with_name (struct type *type, const char *name)
7964{
7965 struct type *result = NULL;
7966
7967 if (HAVE_GNAT_AUX_INFO (type))
7968 result = find_parallel_type_by_descriptive_type (type, name);
7969 else
7970 result = ada_find_any_type (name);
7971
7972 return result;
7973}
7974
7975/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7976 SUFFIX to the name of TYPE. */
14f9c5c9 7977
d2e4a39e 7978struct type *
ebf56fd3 7979ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7980{
0d5cff50 7981 char *name;
fe978cb0 7982 const char *type_name = ada_type_name (type);
14f9c5c9 7983 int len;
d2e4a39e 7984
fe978cb0 7985 if (type_name == NULL)
14f9c5c9
AS
7986 return NULL;
7987
fe978cb0 7988 len = strlen (type_name);
14f9c5c9 7989
b4ba55a1 7990 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 7991
fe978cb0 7992 strcpy (name, type_name);
14f9c5c9
AS
7993 strcpy (name + len, suffix);
7994
b4ba55a1 7995 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7996}
7997
14f9c5c9 7998/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7999 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8000
d2e4a39e
AS
8001static struct type *
8002dynamic_template_type (struct type *type)
14f9c5c9 8003{
61ee279c 8004 type = ada_check_typedef (type);
14f9c5c9
AS
8005
8006 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8007 || ada_type_name (type) == NULL)
14f9c5c9 8008 return NULL;
d2e4a39e 8009 else
14f9c5c9
AS
8010 {
8011 int len = strlen (ada_type_name (type));
5b4ee69b 8012
4c4b4cd2
PH
8013 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8014 return type;
14f9c5c9 8015 else
4c4b4cd2 8016 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8017 }
8018}
8019
8020/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8021 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8022
d2e4a39e
AS
8023static int
8024is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8025{
8026 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8027
d2e4a39e 8028 return name != NULL
14f9c5c9
AS
8029 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8030 && strstr (name, "___XVL") != NULL;
8031}
8032
4c4b4cd2
PH
8033/* The index of the variant field of TYPE, or -1 if TYPE does not
8034 represent a variant record type. */
14f9c5c9 8035
d2e4a39e 8036static int
4c4b4cd2 8037variant_field_index (struct type *type)
14f9c5c9
AS
8038{
8039 int f;
8040
4c4b4cd2
PH
8041 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8042 return -1;
8043
8044 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8045 {
8046 if (ada_is_variant_part (type, f))
8047 return f;
8048 }
8049 return -1;
14f9c5c9
AS
8050}
8051
4c4b4cd2
PH
8052/* A record type with no fields. */
8053
d2e4a39e 8054static struct type *
fe978cb0 8055empty_record (struct type *templ)
14f9c5c9 8056{
fe978cb0 8057 struct type *type = alloc_type_copy (templ);
5b4ee69b 8058
14f9c5c9
AS
8059 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8060 TYPE_NFIELDS (type) = 0;
8061 TYPE_FIELDS (type) = NULL;
8ecb59f8 8062 INIT_NONE_SPECIFIC (type);
14f9c5c9 8063 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8064 TYPE_LENGTH (type) = 0;
8065 return type;
8066}
8067
8068/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8069 the value of type TYPE at VALADDR or ADDRESS (see comments at
8070 the beginning of this section) VAL according to GNAT conventions.
8071 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8072 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8073 an outer-level type (i.e., as opposed to a branch of a variant.) A
8074 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8075 of the variant.
14f9c5c9 8076
4c4b4cd2
PH
8077 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8078 length are not statically known are discarded. As a consequence,
8079 VALADDR, ADDRESS and DVAL0 are ignored.
8080
8081 NOTE: Limitations: For now, we assume that dynamic fields and
8082 variants occupy whole numbers of bytes. However, they need not be
8083 byte-aligned. */
8084
8085struct type *
10a2c479 8086ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8087 const gdb_byte *valaddr,
4c4b4cd2
PH
8088 CORE_ADDR address, struct value *dval0,
8089 int keep_dynamic_fields)
14f9c5c9 8090{
d2e4a39e
AS
8091 struct value *mark = value_mark ();
8092 struct value *dval;
8093 struct type *rtype;
14f9c5c9 8094 int nfields, bit_len;
4c4b4cd2 8095 int variant_field;
14f9c5c9 8096 long off;
d94e4f4f 8097 int fld_bit_len;
14f9c5c9
AS
8098 int f;
8099
4c4b4cd2
PH
8100 /* Compute the number of fields in this record type that are going
8101 to be processed: unless keep_dynamic_fields, this includes only
8102 fields whose position and length are static will be processed. */
8103 if (keep_dynamic_fields)
8104 nfields = TYPE_NFIELDS (type);
8105 else
8106 {
8107 nfields = 0;
76a01679 8108 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8109 && !ada_is_variant_part (type, nfields)
8110 && !is_dynamic_field (type, nfields))
8111 nfields++;
8112 }
8113
e9bb382b 8114 rtype = alloc_type_copy (type);
14f9c5c9 8115 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8116 INIT_NONE_SPECIFIC (rtype);
14f9c5c9 8117 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8118 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8119 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8120 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8121 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8122 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8123
d2e4a39e
AS
8124 off = 0;
8125 bit_len = 0;
4c4b4cd2
PH
8126 variant_field = -1;
8127
14f9c5c9
AS
8128 for (f = 0; f < nfields; f += 1)
8129 {
6c038f32
PH
8130 off = align_value (off, field_alignment (type, f))
8131 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8132 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8133 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8134
d2e4a39e 8135 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8136 {
8137 variant_field = f;
d94e4f4f 8138 fld_bit_len = 0;
4c4b4cd2 8139 }
14f9c5c9 8140 else if (is_dynamic_field (type, f))
4c4b4cd2 8141 {
284614f0
JB
8142 const gdb_byte *field_valaddr = valaddr;
8143 CORE_ADDR field_address = address;
8144 struct type *field_type =
8145 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8146
4c4b4cd2 8147 if (dval0 == NULL)
b5304971
JG
8148 {
8149 /* rtype's length is computed based on the run-time
8150 value of discriminants. If the discriminants are not
8151 initialized, the type size may be completely bogus and
0963b4bd 8152 GDB may fail to allocate a value for it. So check the
b5304971 8153 size first before creating the value. */
c1b5a1a6 8154 ada_ensure_varsize_limit (rtype);
012370f6
TT
8155 /* Using plain value_from_contents_and_address here
8156 causes problems because we will end up trying to
8157 resolve a type that is currently being
8158 constructed. */
8159 dval = value_from_contents_and_address_unresolved (rtype,
8160 valaddr,
8161 address);
9f1f738a 8162 rtype = value_type (dval);
b5304971 8163 }
4c4b4cd2
PH
8164 else
8165 dval = dval0;
8166
284614f0
JB
8167 /* If the type referenced by this field is an aligner type, we need
8168 to unwrap that aligner type, because its size might not be set.
8169 Keeping the aligner type would cause us to compute the wrong
8170 size for this field, impacting the offset of the all the fields
8171 that follow this one. */
8172 if (ada_is_aligner_type (field_type))
8173 {
8174 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8175
8176 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8177 field_address = cond_offset_target (field_address, field_offset);
8178 field_type = ada_aligned_type (field_type);
8179 }
8180
8181 field_valaddr = cond_offset_host (field_valaddr,
8182 off / TARGET_CHAR_BIT);
8183 field_address = cond_offset_target (field_address,
8184 off / TARGET_CHAR_BIT);
8185
8186 /* Get the fixed type of the field. Note that, in this case,
8187 we do not want to get the real type out of the tag: if
8188 the current field is the parent part of a tagged record,
8189 we will get the tag of the object. Clearly wrong: the real
8190 type of the parent is not the real type of the child. We
8191 would end up in an infinite loop. */
8192 field_type = ada_get_base_type (field_type);
8193 field_type = ada_to_fixed_type (field_type, field_valaddr,
8194 field_address, dval, 0);
27f2a97b
JB
8195 /* If the field size is already larger than the maximum
8196 object size, then the record itself will necessarily
8197 be larger than the maximum object size. We need to make
8198 this check now, because the size might be so ridiculously
8199 large (due to an uninitialized variable in the inferior)
8200 that it would cause an overflow when adding it to the
8201 record size. */
c1b5a1a6 8202 ada_ensure_varsize_limit (field_type);
284614f0
JB
8203
8204 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8205 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8206 /* The multiplication can potentially overflow. But because
8207 the field length has been size-checked just above, and
8208 assuming that the maximum size is a reasonable value,
8209 an overflow should not happen in practice. So rather than
8210 adding overflow recovery code to this already complex code,
8211 we just assume that it's not going to happen. */
d94e4f4f 8212 fld_bit_len =
4c4b4cd2
PH
8213 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8214 }
14f9c5c9 8215 else
4c4b4cd2 8216 {
5ded5331
JB
8217 /* Note: If this field's type is a typedef, it is important
8218 to preserve the typedef layer.
8219
8220 Otherwise, we might be transforming a typedef to a fat
8221 pointer (encoding a pointer to an unconstrained array),
8222 into a basic fat pointer (encoding an unconstrained
8223 array). As both types are implemented using the same
8224 structure, the typedef is the only clue which allows us
8225 to distinguish between the two options. Stripping it
8226 would prevent us from printing this field appropriately. */
8227 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8228 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8229 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8230 fld_bit_len =
4c4b4cd2
PH
8231 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8232 else
5ded5331
JB
8233 {
8234 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8235
8236 /* We need to be careful of typedefs when computing
8237 the length of our field. If this is a typedef,
8238 get the length of the target type, not the length
8239 of the typedef. */
8240 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8241 field_type = ada_typedef_target_type (field_type);
8242
8243 fld_bit_len =
8244 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8245 }
4c4b4cd2 8246 }
14f9c5c9 8247 if (off + fld_bit_len > bit_len)
4c4b4cd2 8248 bit_len = off + fld_bit_len;
d94e4f4f 8249 off += fld_bit_len;
4c4b4cd2
PH
8250 TYPE_LENGTH (rtype) =
8251 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8252 }
4c4b4cd2
PH
8253
8254 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8255 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8256 the record. This can happen in the presence of representation
8257 clauses. */
8258 if (variant_field >= 0)
8259 {
8260 struct type *branch_type;
8261
8262 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8263
8264 if (dval0 == NULL)
9f1f738a 8265 {
012370f6
TT
8266 /* Using plain value_from_contents_and_address here causes
8267 problems because we will end up trying to resolve a type
8268 that is currently being constructed. */
8269 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8270 address);
9f1f738a
SA
8271 rtype = value_type (dval);
8272 }
4c4b4cd2
PH
8273 else
8274 dval = dval0;
8275
8276 branch_type =
8277 to_fixed_variant_branch_type
8278 (TYPE_FIELD_TYPE (type, variant_field),
8279 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8280 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8281 if (branch_type == NULL)
8282 {
8283 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8284 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8285 TYPE_NFIELDS (rtype) -= 1;
8286 }
8287 else
8288 {
8289 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8290 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8291 fld_bit_len =
8292 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8293 TARGET_CHAR_BIT;
8294 if (off + fld_bit_len > bit_len)
8295 bit_len = off + fld_bit_len;
8296 TYPE_LENGTH (rtype) =
8297 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8298 }
8299 }
8300
714e53ab
PH
8301 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8302 should contain the alignment of that record, which should be a strictly
8303 positive value. If null or negative, then something is wrong, most
8304 probably in the debug info. In that case, we don't round up the size
0963b4bd 8305 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8306 the current RTYPE length might be good enough for our purposes. */
8307 if (TYPE_LENGTH (type) <= 0)
8308 {
323e0a4a 8309 if (TYPE_NAME (rtype))
cc1defb1
KS
8310 warning (_("Invalid type size for `%s' detected: %s."),
8311 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
323e0a4a 8312 else
cc1defb1
KS
8313 warning (_("Invalid type size for <unnamed> detected: %s."),
8314 pulongest (TYPE_LENGTH (type)));
714e53ab
PH
8315 }
8316 else
8317 {
8318 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8319 TYPE_LENGTH (type));
8320 }
14f9c5c9
AS
8321
8322 value_free_to_mark (mark);
d2e4a39e 8323 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8324 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8325 return rtype;
8326}
8327
4c4b4cd2
PH
8328/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8329 of 1. */
14f9c5c9 8330
d2e4a39e 8331static struct type *
fc1a4b47 8332template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8333 CORE_ADDR address, struct value *dval0)
8334{
8335 return ada_template_to_fixed_record_type_1 (type, valaddr,
8336 address, dval0, 1);
8337}
8338
8339/* An ordinary record type in which ___XVL-convention fields and
8340 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8341 static approximations, containing all possible fields. Uses
8342 no runtime values. Useless for use in values, but that's OK,
8343 since the results are used only for type determinations. Works on both
8344 structs and unions. Representation note: to save space, we memorize
8345 the result of this function in the TYPE_TARGET_TYPE of the
8346 template type. */
8347
8348static struct type *
8349template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8350{
8351 struct type *type;
8352 int nfields;
8353 int f;
8354
9e195661
PMR
8355 /* No need no do anything if the input type is already fixed. */
8356 if (TYPE_FIXED_INSTANCE (type0))
8357 return type0;
8358
8359 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8360 if (TYPE_TARGET_TYPE (type0) != NULL)
8361 return TYPE_TARGET_TYPE (type0);
8362
9e195661 8363 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8364 type = type0;
9e195661
PMR
8365 nfields = TYPE_NFIELDS (type0);
8366
8367 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8368 recompute all over next time. */
8369 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8370
8371 for (f = 0; f < nfields; f += 1)
8372 {
460efde1 8373 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8374 struct type *new_type;
14f9c5c9 8375
4c4b4cd2 8376 if (is_dynamic_field (type0, f))
460efde1
JB
8377 {
8378 field_type = ada_check_typedef (field_type);
8379 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8380 }
14f9c5c9 8381 else
f192137b 8382 new_type = static_unwrap_type (field_type);
9e195661
PMR
8383
8384 if (new_type != field_type)
8385 {
8386 /* Clone TYPE0 only the first time we get a new field type. */
8387 if (type == type0)
8388 {
8389 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8390 TYPE_CODE (type) = TYPE_CODE (type0);
8ecb59f8 8391 INIT_NONE_SPECIFIC (type);
9e195661
PMR
8392 TYPE_NFIELDS (type) = nfields;
8393 TYPE_FIELDS (type) = (struct field *)
8394 TYPE_ALLOC (type, nfields * sizeof (struct field));
8395 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8396 sizeof (struct field) * nfields);
8397 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8398 TYPE_FIXED_INSTANCE (type) = 1;
8399 TYPE_LENGTH (type) = 0;
8400 }
8401 TYPE_FIELD_TYPE (type, f) = new_type;
8402 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8403 }
14f9c5c9 8404 }
9e195661 8405
14f9c5c9
AS
8406 return type;
8407}
8408
4c4b4cd2 8409/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8410 whose address in memory is ADDRESS, returns a revision of TYPE,
8411 which should be a non-dynamic-sized record, in which the variant
8412 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8413 for discriminant values in DVAL0, which can be NULL if the record
8414 contains the necessary discriminant values. */
8415
d2e4a39e 8416static struct type *
fc1a4b47 8417to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8418 CORE_ADDR address, struct value *dval0)
14f9c5c9 8419{
d2e4a39e 8420 struct value *mark = value_mark ();
4c4b4cd2 8421 struct value *dval;
d2e4a39e 8422 struct type *rtype;
14f9c5c9
AS
8423 struct type *branch_type;
8424 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8425 int variant_field = variant_field_index (type);
14f9c5c9 8426
4c4b4cd2 8427 if (variant_field == -1)
14f9c5c9
AS
8428 return type;
8429
4c4b4cd2 8430 if (dval0 == NULL)
9f1f738a
SA
8431 {
8432 dval = value_from_contents_and_address (type, valaddr, address);
8433 type = value_type (dval);
8434 }
4c4b4cd2
PH
8435 else
8436 dval = dval0;
8437
e9bb382b 8438 rtype = alloc_type_copy (type);
14f9c5c9 8439 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8ecb59f8 8440 INIT_NONE_SPECIFIC (rtype);
4c4b4cd2 8441 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8442 TYPE_FIELDS (rtype) =
8443 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8444 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8445 sizeof (struct field) * nfields);
14f9c5c9 8446 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8447 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8448 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8449
4c4b4cd2
PH
8450 branch_type = to_fixed_variant_branch_type
8451 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8452 cond_offset_host (valaddr,
4c4b4cd2
PH
8453 TYPE_FIELD_BITPOS (type, variant_field)
8454 / TARGET_CHAR_BIT),
d2e4a39e 8455 cond_offset_target (address,
4c4b4cd2
PH
8456 TYPE_FIELD_BITPOS (type, variant_field)
8457 / TARGET_CHAR_BIT), dval);
d2e4a39e 8458 if (branch_type == NULL)
14f9c5c9 8459 {
4c4b4cd2 8460 int f;
5b4ee69b 8461
4c4b4cd2
PH
8462 for (f = variant_field + 1; f < nfields; f += 1)
8463 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8464 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8465 }
8466 else
8467 {
4c4b4cd2
PH
8468 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8469 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8470 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8471 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8472 }
4c4b4cd2 8473 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8474
4c4b4cd2 8475 value_free_to_mark (mark);
14f9c5c9
AS
8476 return rtype;
8477}
8478
8479/* An ordinary record type (with fixed-length fields) that describes
8480 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8481 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8482 should be in DVAL, a record value; it may be NULL if the object
8483 at ADDR itself contains any necessary discriminant values.
8484 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8485 values from the record are needed. Except in the case that DVAL,
8486 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8487 unchecked) is replaced by a particular branch of the variant.
8488
8489 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8490 is questionable and may be removed. It can arise during the
8491 processing of an unconstrained-array-of-record type where all the
8492 variant branches have exactly the same size. This is because in
8493 such cases, the compiler does not bother to use the XVS convention
8494 when encoding the record. I am currently dubious of this
8495 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8496
d2e4a39e 8497static struct type *
fc1a4b47 8498to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8499 CORE_ADDR address, struct value *dval)
14f9c5c9 8500{
d2e4a39e 8501 struct type *templ_type;
14f9c5c9 8502
876cecd0 8503 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8504 return type0;
8505
d2e4a39e 8506 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8507
8508 if (templ_type != NULL)
8509 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8510 else if (variant_field_index (type0) >= 0)
8511 {
8512 if (dval == NULL && valaddr == NULL && address == 0)
8513 return type0;
8514 return to_record_with_fixed_variant_part (type0, valaddr, address,
8515 dval);
8516 }
14f9c5c9
AS
8517 else
8518 {
876cecd0 8519 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8520 return type0;
8521 }
8522
8523}
8524
8525/* An ordinary record type (with fixed-length fields) that describes
8526 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8527 union type. Any necessary discriminants' values should be in DVAL,
8528 a record value. That is, this routine selects the appropriate
8529 branch of the union at ADDR according to the discriminant value
b1f33ddd 8530 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8531 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8532
d2e4a39e 8533static struct type *
fc1a4b47 8534to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8535 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8536{
8537 int which;
d2e4a39e
AS
8538 struct type *templ_type;
8539 struct type *var_type;
14f9c5c9
AS
8540
8541 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8542 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8543 else
14f9c5c9
AS
8544 var_type = var_type0;
8545
8546 templ_type = ada_find_parallel_type (var_type, "___XVU");
8547
8548 if (templ_type != NULL)
8549 var_type = templ_type;
8550
b1f33ddd
JB
8551 if (is_unchecked_variant (var_type, value_type (dval)))
8552 return var_type0;
d8af9068 8553 which = ada_which_variant_applies (var_type, dval);
14f9c5c9
AS
8554
8555 if (which < 0)
e9bb382b 8556 return empty_record (var_type);
14f9c5c9 8557 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8558 return to_fixed_record_type
d2e4a39e
AS
8559 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8560 valaddr, address, dval);
4c4b4cd2 8561 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8562 return
8563 to_fixed_record_type
8564 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8565 else
8566 return TYPE_FIELD_TYPE (var_type, which);
8567}
8568
8908fca5
JB
8569/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8570 ENCODING_TYPE, a type following the GNAT conventions for discrete
8571 type encodings, only carries redundant information. */
8572
8573static int
8574ada_is_redundant_range_encoding (struct type *range_type,
8575 struct type *encoding_type)
8576{
108d56a4 8577 const char *bounds_str;
8908fca5
JB
8578 int n;
8579 LONGEST lo, hi;
8580
8581 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8582
005e2509
JB
8583 if (TYPE_CODE (get_base_type (range_type))
8584 != TYPE_CODE (get_base_type (encoding_type)))
8585 {
8586 /* The compiler probably used a simple base type to describe
8587 the range type instead of the range's actual base type,
8588 expecting us to get the real base type from the encoding
8589 anyway. In this situation, the encoding cannot be ignored
8590 as redundant. */
8591 return 0;
8592 }
8593
8908fca5
JB
8594 if (is_dynamic_type (range_type))
8595 return 0;
8596
8597 if (TYPE_NAME (encoding_type) == NULL)
8598 return 0;
8599
8600 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8601 if (bounds_str == NULL)
8602 return 0;
8603
8604 n = 8; /* Skip "___XDLU_". */
8605 if (!ada_scan_number (bounds_str, n, &lo, &n))
8606 return 0;
8607 if (TYPE_LOW_BOUND (range_type) != lo)
8608 return 0;
8609
8610 n += 2; /* Skip the "__" separator between the two bounds. */
8611 if (!ada_scan_number (bounds_str, n, &hi, &n))
8612 return 0;
8613 if (TYPE_HIGH_BOUND (range_type) != hi)
8614 return 0;
8615
8616 return 1;
8617}
8618
8619/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8620 a type following the GNAT encoding for describing array type
8621 indices, only carries redundant information. */
8622
8623static int
8624ada_is_redundant_index_type_desc (struct type *array_type,
8625 struct type *desc_type)
8626{
8627 struct type *this_layer = check_typedef (array_type);
8628 int i;
8629
8630 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8631 {
8632 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8633 TYPE_FIELD_TYPE (desc_type, i)))
8634 return 0;
8635 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8636 }
8637
8638 return 1;
8639}
8640
14f9c5c9
AS
8641/* Assuming that TYPE0 is an array type describing the type of a value
8642 at ADDR, and that DVAL describes a record containing any
8643 discriminants used in TYPE0, returns a type for the value that
8644 contains no dynamic components (that is, no components whose sizes
8645 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8646 true, gives an error message if the resulting type's size is over
4c4b4cd2 8647 varsize_limit. */
14f9c5c9 8648
d2e4a39e
AS
8649static struct type *
8650to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8651 int ignore_too_big)
14f9c5c9 8652{
d2e4a39e
AS
8653 struct type *index_type_desc;
8654 struct type *result;
ad82864c 8655 int constrained_packed_array_p;
931e5bc3 8656 static const char *xa_suffix = "___XA";
14f9c5c9 8657
b0dd7688 8658 type0 = ada_check_typedef (type0);
284614f0 8659 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8660 return type0;
14f9c5c9 8661
ad82864c
JB
8662 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8663 if (constrained_packed_array_p)
8664 type0 = decode_constrained_packed_array_type (type0);
284614f0 8665
931e5bc3
JG
8666 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8667
8668 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8669 encoding suffixed with 'P' may still be generated. If so,
8670 it should be used to find the XA type. */
8671
8672 if (index_type_desc == NULL)
8673 {
1da0522e 8674 const char *type_name = ada_type_name (type0);
931e5bc3 8675
1da0522e 8676 if (type_name != NULL)
931e5bc3 8677 {
1da0522e 8678 const int len = strlen (type_name);
931e5bc3
JG
8679 char *name = (char *) alloca (len + strlen (xa_suffix));
8680
1da0522e 8681 if (type_name[len - 1] == 'P')
931e5bc3 8682 {
1da0522e 8683 strcpy (name, type_name);
931e5bc3
JG
8684 strcpy (name + len - 1, xa_suffix);
8685 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8686 }
8687 }
8688 }
8689
28c85d6c 8690 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8691 if (index_type_desc != NULL
8692 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8693 {
8694 /* Ignore this ___XA parallel type, as it does not bring any
8695 useful information. This allows us to avoid creating fixed
8696 versions of the array's index types, which would be identical
8697 to the original ones. This, in turn, can also help avoid
8698 the creation of fixed versions of the array itself. */
8699 index_type_desc = NULL;
8700 }
8701
14f9c5c9
AS
8702 if (index_type_desc == NULL)
8703 {
61ee279c 8704 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8705
14f9c5c9 8706 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8707 depend on the contents of the array in properly constructed
8708 debugging data. */
529cad9c
PH
8709 /* Create a fixed version of the array element type.
8710 We're not providing the address of an element here,
e1d5a0d2 8711 and thus the actual object value cannot be inspected to do
529cad9c
PH
8712 the conversion. This should not be a problem, since arrays of
8713 unconstrained objects are not allowed. In particular, all
8714 the elements of an array of a tagged type should all be of
8715 the same type specified in the debugging info. No need to
8716 consult the object tag. */
1ed6ede0 8717 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8718
284614f0
JB
8719 /* Make sure we always create a new array type when dealing with
8720 packed array types, since we're going to fix-up the array
8721 type length and element bitsize a little further down. */
ad82864c 8722 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8723 result = type0;
14f9c5c9 8724 else
e9bb382b 8725 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8726 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8727 }
8728 else
8729 {
8730 int i;
8731 struct type *elt_type0;
8732
8733 elt_type0 = type0;
8734 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8735 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8736
8737 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8738 depend on the contents of the array in properly constructed
8739 debugging data. */
529cad9c
PH
8740 /* Create a fixed version of the array element type.
8741 We're not providing the address of an element here,
e1d5a0d2 8742 and thus the actual object value cannot be inspected to do
529cad9c
PH
8743 the conversion. This should not be a problem, since arrays of
8744 unconstrained objects are not allowed. In particular, all
8745 the elements of an array of a tagged type should all be of
8746 the same type specified in the debugging info. No need to
8747 consult the object tag. */
1ed6ede0
JB
8748 result =
8749 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8750
8751 elt_type0 = type0;
14f9c5c9 8752 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8753 {
8754 struct type *range_type =
28c85d6c 8755 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8756
e9bb382b 8757 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8758 result, range_type);
1ce677a4 8759 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8760 }
d2e4a39e 8761 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8762 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8763 }
8764
2e6fda7d
JB
8765 /* We want to preserve the type name. This can be useful when
8766 trying to get the type name of a value that has already been
8767 printed (for instance, if the user did "print VAR; whatis $". */
8768 TYPE_NAME (result) = TYPE_NAME (type0);
8769
ad82864c 8770 if (constrained_packed_array_p)
284614f0
JB
8771 {
8772 /* So far, the resulting type has been created as if the original
8773 type was a regular (non-packed) array type. As a result, the
8774 bitsize of the array elements needs to be set again, and the array
8775 length needs to be recomputed based on that bitsize. */
8776 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8777 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8778
8779 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8780 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8781 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8782 TYPE_LENGTH (result)++;
8783 }
8784
876cecd0 8785 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8786 return result;
d2e4a39e 8787}
14f9c5c9
AS
8788
8789
8790/* A standard type (containing no dynamically sized components)
8791 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8792 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8793 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8794 ADDRESS or in VALADDR contains these discriminants.
8795
1ed6ede0
JB
8796 If CHECK_TAG is not null, in the case of tagged types, this function
8797 attempts to locate the object's tag and use it to compute the actual
8798 type. However, when ADDRESS is null, we cannot use it to determine the
8799 location of the tag, and therefore compute the tagged type's actual type.
8800 So we return the tagged type without consulting the tag. */
529cad9c 8801
f192137b
JB
8802static struct type *
8803ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 8804 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 8805{
61ee279c 8806 type = ada_check_typedef (type);
8ecb59f8
TT
8807
8808 /* Only un-fixed types need to be handled here. */
8809 if (!HAVE_GNAT_AUX_INFO (type))
8810 return type;
8811
d2e4a39e
AS
8812 switch (TYPE_CODE (type))
8813 {
8814 default:
14f9c5c9 8815 return type;
d2e4a39e 8816 case TYPE_CODE_STRUCT:
4c4b4cd2 8817 {
76a01679 8818 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
8819 struct type *fixed_record_type =
8820 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 8821
529cad9c
PH
8822 /* If STATIC_TYPE is a tagged type and we know the object's address,
8823 then we can determine its tag, and compute the object's actual
0963b4bd 8824 type from there. Note that we have to use the fixed record
1ed6ede0
JB
8825 type (the parent part of the record may have dynamic fields
8826 and the way the location of _tag is expressed may depend on
8827 them). */
529cad9c 8828
1ed6ede0 8829 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 8830 {
b50d69b5
JG
8831 struct value *tag =
8832 value_tag_from_contents_and_address
8833 (fixed_record_type,
8834 valaddr,
8835 address);
8836 struct type *real_type = type_from_tag (tag);
8837 struct value *obj =
8838 value_from_contents_and_address (fixed_record_type,
8839 valaddr,
8840 address);
9f1f738a 8841 fixed_record_type = value_type (obj);
76a01679 8842 if (real_type != NULL)
b50d69b5
JG
8843 return to_fixed_record_type
8844 (real_type, NULL,
8845 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 8846 }
4af88198
JB
8847
8848 /* Check to see if there is a parallel ___XVZ variable.
8849 If there is, then it provides the actual size of our type. */
8850 else if (ada_type_name (fixed_record_type) != NULL)
8851 {
0d5cff50 8852 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
8853 char *xvz_name
8854 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 8855 bool xvz_found = false;
4af88198
JB
8856 LONGEST size;
8857
88c15c34 8858 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
a70b8144 8859 try
eccab96d
JB
8860 {
8861 xvz_found = get_int_var_value (xvz_name, size);
8862 }
230d2906 8863 catch (const gdb_exception_error &except)
eccab96d
JB
8864 {
8865 /* We found the variable, but somehow failed to read
8866 its value. Rethrow the same error, but with a little
8867 bit more information, to help the user understand
8868 what went wrong (Eg: the variable might have been
8869 optimized out). */
8870 throw_error (except.error,
8871 _("unable to read value of %s (%s)"),
3d6e9d23 8872 xvz_name, except.what ());
eccab96d 8873 }
eccab96d
JB
8874
8875 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
8876 {
8877 fixed_record_type = copy_type (fixed_record_type);
8878 TYPE_LENGTH (fixed_record_type) = size;
8879
8880 /* The FIXED_RECORD_TYPE may have be a stub. We have
8881 observed this when the debugging info is STABS, and
8882 apparently it is something that is hard to fix.
8883
8884 In practice, we don't need the actual type definition
8885 at all, because the presence of the XVZ variable allows us
8886 to assume that there must be a XVS type as well, which we
8887 should be able to use later, when we need the actual type
8888 definition.
8889
8890 In the meantime, pretend that the "fixed" type we are
8891 returning is NOT a stub, because this can cause trouble
8892 when using this type to create new types targeting it.
8893 Indeed, the associated creation routines often check
8894 whether the target type is a stub and will try to replace
0963b4bd 8895 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8896 might cause the new type to have the wrong size too.
8897 Consider the case of an array, for instance, where the size
8898 of the array is computed from the number of elements in
8899 our array multiplied by the size of its element. */
8900 TYPE_STUB (fixed_record_type) = 0;
8901 }
8902 }
1ed6ede0 8903 return fixed_record_type;
4c4b4cd2 8904 }
d2e4a39e 8905 case TYPE_CODE_ARRAY:
4c4b4cd2 8906 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8907 case TYPE_CODE_UNION:
8908 if (dval == NULL)
4c4b4cd2 8909 return type;
d2e4a39e 8910 else
4c4b4cd2 8911 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8912 }
14f9c5c9
AS
8913}
8914
f192137b
JB
8915/* The same as ada_to_fixed_type_1, except that it preserves the type
8916 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8917
8918 The typedef layer needs be preserved in order to differentiate between
8919 arrays and array pointers when both types are implemented using the same
8920 fat pointer. In the array pointer case, the pointer is encoded as
8921 a typedef of the pointer type. For instance, considering:
8922
8923 type String_Access is access String;
8924 S1 : String_Access := null;
8925
8926 To the debugger, S1 is defined as a typedef of type String. But
8927 to the user, it is a pointer. So if the user tries to print S1,
8928 we should not dereference the array, but print the array address
8929 instead.
8930
8931 If we didn't preserve the typedef layer, we would lose the fact that
8932 the type is to be presented as a pointer (needs de-reference before
8933 being printed). And we would also use the source-level type name. */
f192137b
JB
8934
8935struct type *
8936ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8937 CORE_ADDR address, struct value *dval, int check_tag)
8938
8939{
8940 struct type *fixed_type =
8941 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8942
96dbd2c1
JB
8943 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8944 then preserve the typedef layer.
8945
8946 Implementation note: We can only check the main-type portion of
8947 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8948 from TYPE now returns a type that has the same instance flags
8949 as TYPE. For instance, if TYPE is a "typedef const", and its
8950 target type is a "struct", then the typedef elimination will return
8951 a "const" version of the target type. See check_typedef for more
8952 details about how the typedef layer elimination is done.
8953
8954 brobecker/2010-11-19: It seems to me that the only case where it is
8955 useful to preserve the typedef layer is when dealing with fat pointers.
8956 Perhaps, we could add a check for that and preserve the typedef layer
85102364 8957 only in that situation. But this seems unnecessary so far, probably
96dbd2c1
JB
8958 because we call check_typedef/ada_check_typedef pretty much everywhere.
8959 */
f192137b 8960 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8961 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8962 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8963 return type;
8964
8965 return fixed_type;
8966}
8967
14f9c5c9 8968/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8969 TYPE0, but based on no runtime data. */
14f9c5c9 8970
d2e4a39e
AS
8971static struct type *
8972to_static_fixed_type (struct type *type0)
14f9c5c9 8973{
d2e4a39e 8974 struct type *type;
14f9c5c9
AS
8975
8976 if (type0 == NULL)
8977 return NULL;
8978
876cecd0 8979 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8980 return type0;
8981
61ee279c 8982 type0 = ada_check_typedef (type0);
d2e4a39e 8983
14f9c5c9
AS
8984 switch (TYPE_CODE (type0))
8985 {
8986 default:
8987 return type0;
8988 case TYPE_CODE_STRUCT:
8989 type = dynamic_template_type (type0);
d2e4a39e 8990 if (type != NULL)
4c4b4cd2
PH
8991 return template_to_static_fixed_type (type);
8992 else
8993 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8994 case TYPE_CODE_UNION:
8995 type = ada_find_parallel_type (type0, "___XVU");
8996 if (type != NULL)
4c4b4cd2
PH
8997 return template_to_static_fixed_type (type);
8998 else
8999 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9000 }
9001}
9002
4c4b4cd2
PH
9003/* A static approximation of TYPE with all type wrappers removed. */
9004
d2e4a39e
AS
9005static struct type *
9006static_unwrap_type (struct type *type)
14f9c5c9
AS
9007{
9008 if (ada_is_aligner_type (type))
9009 {
61ee279c 9010 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9011 if (ada_type_name (type1) == NULL)
4c4b4cd2 9012 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9013
9014 return static_unwrap_type (type1);
9015 }
d2e4a39e 9016 else
14f9c5c9 9017 {
d2e4a39e 9018 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9019
d2e4a39e 9020 if (raw_real_type == type)
4c4b4cd2 9021 return type;
14f9c5c9 9022 else
4c4b4cd2 9023 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9024 }
9025}
9026
9027/* In some cases, incomplete and private types require
4c4b4cd2 9028 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9029 type Foo;
9030 type FooP is access Foo;
9031 V: FooP;
9032 type Foo is array ...;
4c4b4cd2 9033 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9034 cross-references to such types, we instead substitute for FooP a
9035 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9036 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9037
9038/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9039 exists, otherwise TYPE. */
9040
d2e4a39e 9041struct type *
61ee279c 9042ada_check_typedef (struct type *type)
14f9c5c9 9043{
727e3d2e
JB
9044 if (type == NULL)
9045 return NULL;
9046
736ade86
XR
9047 /* If our type is an access to an unconstrained array, which is encoded
9048 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
720d1a40
JB
9049 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9050 what allows us to distinguish between fat pointers that represent
9051 array types, and fat pointers that represent array access types
9052 (in both cases, the compiler implements them as fat pointers). */
736ade86 9053 if (ada_is_access_to_unconstrained_array (type))
720d1a40
JB
9054 return type;
9055
f168693b 9056 type = check_typedef (type);
14f9c5c9 9057 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9058 || !TYPE_STUB (type)
e86ca25f 9059 || TYPE_NAME (type) == NULL)
14f9c5c9 9060 return type;
d2e4a39e 9061 else
14f9c5c9 9062 {
e86ca25f 9063 const char *name = TYPE_NAME (type);
d2e4a39e 9064 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9065
05e522ef
JB
9066 if (type1 == NULL)
9067 return type;
9068
9069 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9070 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9071 types, only for the typedef-to-array types). If that's the case,
9072 strip the typedef layer. */
9073 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9074 type1 = ada_check_typedef (type1);
9075
9076 return type1;
14f9c5c9
AS
9077 }
9078}
9079
9080/* A value representing the data at VALADDR/ADDRESS as described by
9081 type TYPE0, but with a standard (static-sized) type that correctly
9082 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9083 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9084 creation of struct values]. */
14f9c5c9 9085
4c4b4cd2
PH
9086static struct value *
9087ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9088 struct value *val0)
14f9c5c9 9089{
1ed6ede0 9090 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9091
14f9c5c9
AS
9092 if (type == type0 && val0 != NULL)
9093 return val0;
cc0e770c
JB
9094
9095 if (VALUE_LVAL (val0) != lval_memory)
9096 {
9097 /* Our value does not live in memory; it could be a convenience
9098 variable, for instance. Create a not_lval value using val0's
9099 contents. */
9100 return value_from_contents (type, value_contents (val0));
9101 }
9102
9103 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9104}
9105
9106/* A value representing VAL, but with a standard (static-sized) type
9107 that correctly describes it. Does not necessarily create a new
9108 value. */
9109
0c3acc09 9110struct value *
4c4b4cd2
PH
9111ada_to_fixed_value (struct value *val)
9112{
c48db5ca 9113 val = unwrap_value (val);
d8ce9127 9114 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
c48db5ca 9115 return val;
14f9c5c9 9116}
d2e4a39e 9117\f
14f9c5c9 9118
14f9c5c9
AS
9119/* Attributes */
9120
4c4b4cd2
PH
9121/* Table mapping attribute numbers to names.
9122 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9123
d2e4a39e 9124static const char *attribute_names[] = {
14f9c5c9
AS
9125 "<?>",
9126
d2e4a39e 9127 "first",
14f9c5c9
AS
9128 "last",
9129 "length",
9130 "image",
14f9c5c9
AS
9131 "max",
9132 "min",
4c4b4cd2
PH
9133 "modulus",
9134 "pos",
9135 "size",
9136 "tag",
14f9c5c9 9137 "val",
14f9c5c9
AS
9138 0
9139};
9140
de93309a 9141static const char *
4c4b4cd2 9142ada_attribute_name (enum exp_opcode n)
14f9c5c9 9143{
4c4b4cd2
PH
9144 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9145 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9146 else
9147 return attribute_names[0];
9148}
9149
4c4b4cd2 9150/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9151
4c4b4cd2
PH
9152static LONGEST
9153pos_atr (struct value *arg)
14f9c5c9 9154{
24209737
PH
9155 struct value *val = coerce_ref (arg);
9156 struct type *type = value_type (val);
aa715135 9157 LONGEST result;
14f9c5c9 9158
d2e4a39e 9159 if (!discrete_type_p (type))
323e0a4a 9160 error (_("'POS only defined on discrete types"));
14f9c5c9 9161
aa715135
JG
9162 if (!discrete_position (type, value_as_long (val), &result))
9163 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9164
aa715135 9165 return result;
4c4b4cd2
PH
9166}
9167
9168static struct value *
3cb382c9 9169value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9170{
3cb382c9 9171 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9172}
9173
4c4b4cd2 9174/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9175
d2e4a39e
AS
9176static struct value *
9177value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9178{
d2e4a39e 9179 if (!discrete_type_p (type))
323e0a4a 9180 error (_("'VAL only defined on discrete types"));
df407dfe 9181 if (!integer_type_p (value_type (arg)))
323e0a4a 9182 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9183
9184 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9185 {
9186 long pos = value_as_long (arg);
5b4ee69b 9187
14f9c5c9 9188 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9189 error (_("argument to 'VAL out of range"));
14e75d8e 9190 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9191 }
9192 else
9193 return value_from_longest (type, value_as_long (arg));
9194}
14f9c5c9 9195\f
d2e4a39e 9196
4c4b4cd2 9197 /* Evaluation */
14f9c5c9 9198
4c4b4cd2
PH
9199/* True if TYPE appears to be an Ada character type.
9200 [At the moment, this is true only for Character and Wide_Character;
9201 It is a heuristic test that could stand improvement]. */
14f9c5c9 9202
fc913e53 9203bool
d2e4a39e 9204ada_is_character_type (struct type *type)
14f9c5c9 9205{
7b9f71f2
JB
9206 const char *name;
9207
9208 /* If the type code says it's a character, then assume it really is,
9209 and don't check any further. */
9210 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
fc913e53 9211 return true;
7b9f71f2
JB
9212
9213 /* Otherwise, assume it's a character type iff it is a discrete type
9214 with a known character type name. */
9215 name = ada_type_name (type);
9216 return (name != NULL
9217 && (TYPE_CODE (type) == TYPE_CODE_INT
9218 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9219 && (strcmp (name, "character") == 0
9220 || strcmp (name, "wide_character") == 0
5a517ebd 9221 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9222 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9223}
9224
4c4b4cd2 9225/* True if TYPE appears to be an Ada string type. */
14f9c5c9 9226
fc913e53 9227bool
ebf56fd3 9228ada_is_string_type (struct type *type)
14f9c5c9 9229{
61ee279c 9230 type = ada_check_typedef (type);
d2e4a39e 9231 if (type != NULL
14f9c5c9 9232 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9233 && (ada_is_simple_array_type (type)
9234 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9235 && ada_array_arity (type) == 1)
9236 {
9237 struct type *elttype = ada_array_element_type (type, 1);
9238
9239 return ada_is_character_type (elttype);
9240 }
d2e4a39e 9241 else
fc913e53 9242 return false;
14f9c5c9
AS
9243}
9244
5bf03f13
JB
9245/* The compiler sometimes provides a parallel XVS type for a given
9246 PAD type. Normally, it is safe to follow the PAD type directly,
9247 but older versions of the compiler have a bug that causes the offset
9248 of its "F" field to be wrong. Following that field in that case
9249 would lead to incorrect results, but this can be worked around
9250 by ignoring the PAD type and using the associated XVS type instead.
9251
9252 Set to True if the debugger should trust the contents of PAD types.
9253 Otherwise, ignore the PAD type if there is a parallel XVS type. */
491144b5 9254static bool trust_pad_over_xvs = true;
14f9c5c9
AS
9255
9256/* True if TYPE is a struct type introduced by the compiler to force the
9257 alignment of a value. Such types have a single field with a
4c4b4cd2 9258 distinctive name. */
14f9c5c9
AS
9259
9260int
ebf56fd3 9261ada_is_aligner_type (struct type *type)
14f9c5c9 9262{
61ee279c 9263 type = ada_check_typedef (type);
714e53ab 9264
5bf03f13 9265 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9266 return 0;
9267
14f9c5c9 9268 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9269 && TYPE_NFIELDS (type) == 1
9270 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9271}
9272
9273/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9274 the parallel type. */
14f9c5c9 9275
d2e4a39e
AS
9276struct type *
9277ada_get_base_type (struct type *raw_type)
14f9c5c9 9278{
d2e4a39e
AS
9279 struct type *real_type_namer;
9280 struct type *raw_real_type;
14f9c5c9
AS
9281
9282 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9283 return raw_type;
9284
284614f0
JB
9285 if (ada_is_aligner_type (raw_type))
9286 /* The encoding specifies that we should always use the aligner type.
9287 So, even if this aligner type has an associated XVS type, we should
9288 simply ignore it.
9289
9290 According to the compiler gurus, an XVS type parallel to an aligner
9291 type may exist because of a stabs limitation. In stabs, aligner
9292 types are empty because the field has a variable-sized type, and
9293 thus cannot actually be used as an aligner type. As a result,
9294 we need the associated parallel XVS type to decode the type.
9295 Since the policy in the compiler is to not change the internal
9296 representation based on the debugging info format, we sometimes
9297 end up having a redundant XVS type parallel to the aligner type. */
9298 return raw_type;
9299
14f9c5c9 9300 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9301 if (real_type_namer == NULL
14f9c5c9
AS
9302 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9303 || TYPE_NFIELDS (real_type_namer) != 1)
9304 return raw_type;
9305
f80d3ff2
JB
9306 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9307 {
9308 /* This is an older encoding form where the base type needs to be
85102364 9309 looked up by name. We prefer the newer encoding because it is
f80d3ff2
JB
9310 more efficient. */
9311 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9312 if (raw_real_type == NULL)
9313 return raw_type;
9314 else
9315 return raw_real_type;
9316 }
9317
9318 /* The field in our XVS type is a reference to the base type. */
9319 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9320}
14f9c5c9 9321
4c4b4cd2 9322/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9323
d2e4a39e
AS
9324struct type *
9325ada_aligned_type (struct type *type)
14f9c5c9
AS
9326{
9327 if (ada_is_aligner_type (type))
9328 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9329 else
9330 return ada_get_base_type (type);
9331}
9332
9333
9334/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9335 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9336
fc1a4b47
AC
9337const gdb_byte *
9338ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9339{
d2e4a39e 9340 if (ada_is_aligner_type (type))
14f9c5c9 9341 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9342 valaddr +
9343 TYPE_FIELD_BITPOS (type,
9344 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9345 else
9346 return valaddr;
9347}
9348
4c4b4cd2
PH
9349
9350
14f9c5c9 9351/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9352 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9353const char *
9354ada_enum_name (const char *name)
14f9c5c9 9355{
4c4b4cd2
PH
9356 static char *result;
9357 static size_t result_len = 0;
e6a959d6 9358 const char *tmp;
14f9c5c9 9359
4c4b4cd2
PH
9360 /* First, unqualify the enumeration name:
9361 1. Search for the last '.' character. If we find one, then skip
177b42fe 9362 all the preceding characters, the unqualified name starts
76a01679 9363 right after that dot.
4c4b4cd2 9364 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9365 translates dots into "__". Search forward for double underscores,
9366 but stop searching when we hit an overloading suffix, which is
9367 of the form "__" followed by digits. */
4c4b4cd2 9368
c3e5cd34
PH
9369 tmp = strrchr (name, '.');
9370 if (tmp != NULL)
4c4b4cd2
PH
9371 name = tmp + 1;
9372 else
14f9c5c9 9373 {
4c4b4cd2
PH
9374 while ((tmp = strstr (name, "__")) != NULL)
9375 {
9376 if (isdigit (tmp[2]))
9377 break;
9378 else
9379 name = tmp + 2;
9380 }
14f9c5c9
AS
9381 }
9382
9383 if (name[0] == 'Q')
9384 {
14f9c5c9 9385 int v;
5b4ee69b 9386
14f9c5c9 9387 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9388 {
9389 if (sscanf (name + 2, "%x", &v) != 1)
9390 return name;
9391 }
272560b5
TT
9392 else if (((name[1] >= '0' && name[1] <= '9')
9393 || (name[1] >= 'a' && name[1] <= 'z'))
9394 && name[2] == '\0')
9395 {
9396 GROW_VECT (result, result_len, 4);
9397 xsnprintf (result, result_len, "'%c'", name[1]);
9398 return result;
9399 }
14f9c5c9 9400 else
4c4b4cd2 9401 return name;
14f9c5c9 9402
4c4b4cd2 9403 GROW_VECT (result, result_len, 16);
14f9c5c9 9404 if (isascii (v) && isprint (v))
88c15c34 9405 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9406 else if (name[1] == 'U')
88c15c34 9407 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9408 else
88c15c34 9409 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9410
9411 return result;
9412 }
d2e4a39e 9413 else
4c4b4cd2 9414 {
c3e5cd34
PH
9415 tmp = strstr (name, "__");
9416 if (tmp == NULL)
9417 tmp = strstr (name, "$");
9418 if (tmp != NULL)
4c4b4cd2
PH
9419 {
9420 GROW_VECT (result, result_len, tmp - name + 1);
9421 strncpy (result, name, tmp - name);
9422 result[tmp - name] = '\0';
9423 return result;
9424 }
9425
9426 return name;
9427 }
14f9c5c9
AS
9428}
9429
14f9c5c9
AS
9430/* Evaluate the subexpression of EXP starting at *POS as for
9431 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9432 expression. */
14f9c5c9 9433
d2e4a39e
AS
9434static struct value *
9435evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9436{
4b27a620 9437 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9438}
9439
9440/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9441 value it wraps. */
14f9c5c9 9442
d2e4a39e
AS
9443static struct value *
9444unwrap_value (struct value *val)
14f9c5c9 9445{
df407dfe 9446 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9447
14f9c5c9
AS
9448 if (ada_is_aligner_type (type))
9449 {
de4d072f 9450 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9451 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9452
14f9c5c9 9453 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9454 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9455
9456 return unwrap_value (v);
9457 }
d2e4a39e 9458 else
14f9c5c9 9459 {
d2e4a39e 9460 struct type *raw_real_type =
61ee279c 9461 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9462
5bf03f13
JB
9463 /* If there is no parallel XVS or XVE type, then the value is
9464 already unwrapped. Return it without further modification. */
9465 if ((type == raw_real_type)
9466 && ada_find_parallel_type (type, "___XVE") == NULL)
9467 return val;
14f9c5c9 9468
d2e4a39e 9469 return
4c4b4cd2
PH
9470 coerce_unspec_val_to_type
9471 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9472 value_address (val),
1ed6ede0 9473 NULL, 1));
14f9c5c9
AS
9474 }
9475}
d2e4a39e
AS
9476
9477static struct value *
50eff16b 9478cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9479{
50eff16b
UW
9480 struct value *scale = ada_scaling_factor (value_type (arg));
9481 arg = value_cast (value_type (scale), arg);
14f9c5c9 9482
50eff16b
UW
9483 arg = value_binop (arg, scale, BINOP_MUL);
9484 return value_cast (type, arg);
14f9c5c9
AS
9485}
9486
d2e4a39e 9487static struct value *
50eff16b 9488cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9489{
50eff16b
UW
9490 if (type == value_type (arg))
9491 return arg;
5b4ee69b 9492
50eff16b
UW
9493 struct value *scale = ada_scaling_factor (type);
9494 if (ada_is_fixed_point_type (value_type (arg)))
9495 arg = cast_from_fixed (value_type (scale), arg);
9496 else
9497 arg = value_cast (value_type (scale), arg);
9498
9499 arg = value_binop (arg, scale, BINOP_DIV);
9500 return value_cast (type, arg);
14f9c5c9
AS
9501}
9502
d99dcf51
JB
9503/* Given two array types T1 and T2, return nonzero iff both arrays
9504 contain the same number of elements. */
9505
9506static int
9507ada_same_array_size_p (struct type *t1, struct type *t2)
9508{
9509 LONGEST lo1, hi1, lo2, hi2;
9510
9511 /* Get the array bounds in order to verify that the size of
9512 the two arrays match. */
9513 if (!get_array_bounds (t1, &lo1, &hi1)
9514 || !get_array_bounds (t2, &lo2, &hi2))
9515 error (_("unable to determine array bounds"));
9516
9517 /* To make things easier for size comparison, normalize a bit
9518 the case of empty arrays by making sure that the difference
9519 between upper bound and lower bound is always -1. */
9520 if (lo1 > hi1)
9521 hi1 = lo1 - 1;
9522 if (lo2 > hi2)
9523 hi2 = lo2 - 1;
9524
9525 return (hi1 - lo1 == hi2 - lo2);
9526}
9527
9528/* Assuming that VAL is an array of integrals, and TYPE represents
9529 an array with the same number of elements, but with wider integral
9530 elements, return an array "casted" to TYPE. In practice, this
9531 means that the returned array is built by casting each element
9532 of the original array into TYPE's (wider) element type. */
9533
9534static struct value *
9535ada_promote_array_of_integrals (struct type *type, struct value *val)
9536{
9537 struct type *elt_type = TYPE_TARGET_TYPE (type);
9538 LONGEST lo, hi;
9539 struct value *res;
9540 LONGEST i;
9541
9542 /* Verify that both val and type are arrays of scalars, and
9543 that the size of val's elements is smaller than the size
9544 of type's element. */
9545 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9546 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9547 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9548 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9549 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9550 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9551
9552 if (!get_array_bounds (type, &lo, &hi))
9553 error (_("unable to determine array bounds"));
9554
9555 res = allocate_value (type);
9556
9557 /* Promote each array element. */
9558 for (i = 0; i < hi - lo + 1; i++)
9559 {
9560 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9561
9562 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9563 value_contents_all (elt), TYPE_LENGTH (elt_type));
9564 }
9565
9566 return res;
9567}
9568
4c4b4cd2
PH
9569/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9570 return the converted value. */
9571
d2e4a39e
AS
9572static struct value *
9573coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9574{
df407dfe 9575 struct type *type2 = value_type (val);
5b4ee69b 9576
14f9c5c9
AS
9577 if (type == type2)
9578 return val;
9579
61ee279c
PH
9580 type2 = ada_check_typedef (type2);
9581 type = ada_check_typedef (type);
14f9c5c9 9582
d2e4a39e
AS
9583 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9584 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9585 {
9586 val = ada_value_ind (val);
df407dfe 9587 type2 = value_type (val);
14f9c5c9
AS
9588 }
9589
d2e4a39e 9590 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9591 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9592 {
d99dcf51
JB
9593 if (!ada_same_array_size_p (type, type2))
9594 error (_("cannot assign arrays of different length"));
9595
9596 if (is_integral_type (TYPE_TARGET_TYPE (type))
9597 && is_integral_type (TYPE_TARGET_TYPE (type2))
9598 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9599 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9600 {
9601 /* Allow implicit promotion of the array elements to
9602 a wider type. */
9603 return ada_promote_array_of_integrals (type, val);
9604 }
9605
9606 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9607 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9608 error (_("Incompatible types in assignment"));
04624583 9609 deprecated_set_value_type (val, type);
14f9c5c9 9610 }
d2e4a39e 9611 return val;
14f9c5c9
AS
9612}
9613
4c4b4cd2
PH
9614static struct value *
9615ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9616{
9617 struct value *val;
9618 struct type *type1, *type2;
9619 LONGEST v, v1, v2;
9620
994b9211
AC
9621 arg1 = coerce_ref (arg1);
9622 arg2 = coerce_ref (arg2);
18af8284
JB
9623 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9624 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9625
76a01679
JB
9626 if (TYPE_CODE (type1) != TYPE_CODE_INT
9627 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9628 return value_binop (arg1, arg2, op);
9629
76a01679 9630 switch (op)
4c4b4cd2
PH
9631 {
9632 case BINOP_MOD:
9633 case BINOP_DIV:
9634 case BINOP_REM:
9635 break;
9636 default:
9637 return value_binop (arg1, arg2, op);
9638 }
9639
9640 v2 = value_as_long (arg2);
9641 if (v2 == 0)
323e0a4a 9642 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9643
9644 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9645 return value_binop (arg1, arg2, op);
9646
9647 v1 = value_as_long (arg1);
9648 switch (op)
9649 {
9650 case BINOP_DIV:
9651 v = v1 / v2;
76a01679
JB
9652 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9653 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9654 break;
9655 case BINOP_REM:
9656 v = v1 % v2;
76a01679
JB
9657 if (v * v1 < 0)
9658 v -= v2;
4c4b4cd2
PH
9659 break;
9660 default:
9661 /* Should not reach this point. */
9662 v = 0;
9663 }
9664
9665 val = allocate_value (type1);
990a07ab 9666 store_unsigned_integer (value_contents_raw (val),
e17a4113 9667 TYPE_LENGTH (value_type (val)),
34877895 9668 type_byte_order (type1), v);
4c4b4cd2
PH
9669 return val;
9670}
9671
9672static int
9673ada_value_equal (struct value *arg1, struct value *arg2)
9674{
df407dfe
AC
9675 if (ada_is_direct_array_type (value_type (arg1))
9676 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9677 {
79e8fcaa
JB
9678 struct type *arg1_type, *arg2_type;
9679
f58b38bf
JB
9680 /* Automatically dereference any array reference before
9681 we attempt to perform the comparison. */
9682 arg1 = ada_coerce_ref (arg1);
9683 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9684
4c4b4cd2
PH
9685 arg1 = ada_coerce_to_simple_array (arg1);
9686 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9687
9688 arg1_type = ada_check_typedef (value_type (arg1));
9689 arg2_type = ada_check_typedef (value_type (arg2));
9690
9691 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9692 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9693 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9694 /* FIXME: The following works only for types whose
76a01679
JB
9695 representations use all bits (no padding or undefined bits)
9696 and do not have user-defined equality. */
79e8fcaa
JB
9697 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9698 && memcmp (value_contents (arg1), value_contents (arg2),
9699 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9700 }
9701 return value_equal (arg1, arg2);
9702}
9703
52ce6436
PH
9704/* Total number of component associations in the aggregate starting at
9705 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9706 OP_AGGREGATE. */
52ce6436
PH
9707
9708static int
9709num_component_specs (struct expression *exp, int pc)
9710{
9711 int n, m, i;
5b4ee69b 9712
52ce6436
PH
9713 m = exp->elts[pc + 1].longconst;
9714 pc += 3;
9715 n = 0;
9716 for (i = 0; i < m; i += 1)
9717 {
9718 switch (exp->elts[pc].opcode)
9719 {
9720 default:
9721 n += 1;
9722 break;
9723 case OP_CHOICES:
9724 n += exp->elts[pc + 1].longconst;
9725 break;
9726 }
9727 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9728 }
9729 return n;
9730}
9731
9732/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9733 component of LHS (a simple array or a record), updating *POS past
9734 the expression, assuming that LHS is contained in CONTAINER. Does
9735 not modify the inferior's memory, nor does it modify LHS (unless
9736 LHS == CONTAINER). */
9737
9738static void
9739assign_component (struct value *container, struct value *lhs, LONGEST index,
9740 struct expression *exp, int *pos)
9741{
9742 struct value *mark = value_mark ();
9743 struct value *elt;
0e2da9f0 9744 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9745
0e2da9f0 9746 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9747 {
22601c15
UW
9748 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9749 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9750
52ce6436
PH
9751 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9752 }
9753 else
9754 {
9755 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9756 elt = ada_to_fixed_value (elt);
52ce6436
PH
9757 }
9758
9759 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9760 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9761 else
9762 value_assign_to_component (container, elt,
9763 ada_evaluate_subexp (NULL, exp, pos,
9764 EVAL_NORMAL));
9765
9766 value_free_to_mark (mark);
9767}
9768
9769/* Assuming that LHS represents an lvalue having a record or array
9770 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9771 of that aggregate's value to LHS, advancing *POS past the
9772 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9773 lvalue containing LHS (possibly LHS itself). Does not modify
9774 the inferior's memory, nor does it modify the contents of
0963b4bd 9775 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9776
9777static struct value *
9778assign_aggregate (struct value *container,
9779 struct value *lhs, struct expression *exp,
9780 int *pos, enum noside noside)
9781{
9782 struct type *lhs_type;
9783 int n = exp->elts[*pos+1].longconst;
9784 LONGEST low_index, high_index;
9785 int num_specs;
9786 LONGEST *indices;
9787 int max_indices, num_indices;
52ce6436 9788 int i;
52ce6436
PH
9789
9790 *pos += 3;
9791 if (noside != EVAL_NORMAL)
9792 {
52ce6436
PH
9793 for (i = 0; i < n; i += 1)
9794 ada_evaluate_subexp (NULL, exp, pos, noside);
9795 return container;
9796 }
9797
9798 container = ada_coerce_ref (container);
9799 if (ada_is_direct_array_type (value_type (container)))
9800 container = ada_coerce_to_simple_array (container);
9801 lhs = ada_coerce_ref (lhs);
9802 if (!deprecated_value_modifiable (lhs))
9803 error (_("Left operand of assignment is not a modifiable lvalue."));
9804
0e2da9f0 9805 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9806 if (ada_is_direct_array_type (lhs_type))
9807 {
9808 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 9809 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9810 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9811 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
9812 }
9813 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9814 {
9815 low_index = 0;
9816 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
9817 }
9818 else
9819 error (_("Left-hand side must be array or record."));
9820
9821 num_specs = num_component_specs (exp, *pos - 3);
9822 max_indices = 4 * num_specs + 4;
8d749320 9823 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
9824 indices[0] = indices[1] = low_index - 1;
9825 indices[2] = indices[3] = high_index + 1;
9826 num_indices = 4;
9827
9828 for (i = 0; i < n; i += 1)
9829 {
9830 switch (exp->elts[*pos].opcode)
9831 {
1fbf5ada
JB
9832 case OP_CHOICES:
9833 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9834 &num_indices, max_indices,
9835 low_index, high_index);
9836 break;
9837 case OP_POSITIONAL:
9838 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
9839 &num_indices, max_indices,
9840 low_index, high_index);
1fbf5ada
JB
9841 break;
9842 case OP_OTHERS:
9843 if (i != n-1)
9844 error (_("Misplaced 'others' clause"));
9845 aggregate_assign_others (container, lhs, exp, pos, indices,
9846 num_indices, low_index, high_index);
9847 break;
9848 default:
9849 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
9850 }
9851 }
9852
9853 return container;
9854}
9855
9856/* Assign into the component of LHS indexed by the OP_POSITIONAL
9857 construct at *POS, updating *POS past the construct, given that
9858 the positions are relative to lower bound LOW, where HIGH is the
9859 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9860 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 9861 assign_aggregate. */
52ce6436
PH
9862static void
9863aggregate_assign_positional (struct value *container,
9864 struct value *lhs, struct expression *exp,
9865 int *pos, LONGEST *indices, int *num_indices,
9866 int max_indices, LONGEST low, LONGEST high)
9867{
9868 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9869
9870 if (ind - 1 == high)
e1d5a0d2 9871 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
9872 if (ind <= high)
9873 {
9874 add_component_interval (ind, ind, indices, num_indices, max_indices);
9875 *pos += 3;
9876 assign_component (container, lhs, ind, exp, pos);
9877 }
9878 else
9879 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9880}
9881
9882/* Assign into the components of LHS indexed by the OP_CHOICES
9883 construct at *POS, updating *POS past the construct, given that
9884 the allowable indices are LOW..HIGH. Record the indices assigned
9885 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 9886 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9887static void
9888aggregate_assign_from_choices (struct value *container,
9889 struct value *lhs, struct expression *exp,
9890 int *pos, LONGEST *indices, int *num_indices,
9891 int max_indices, LONGEST low, LONGEST high)
9892{
9893 int j;
9894 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9895 int choice_pos, expr_pc;
9896 int is_array = ada_is_direct_array_type (value_type (lhs));
9897
9898 choice_pos = *pos += 3;
9899
9900 for (j = 0; j < n_choices; j += 1)
9901 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9902 expr_pc = *pos;
9903 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9904
9905 for (j = 0; j < n_choices; j += 1)
9906 {
9907 LONGEST lower, upper;
9908 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 9909
52ce6436
PH
9910 if (op == OP_DISCRETE_RANGE)
9911 {
9912 choice_pos += 1;
9913 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9914 EVAL_NORMAL));
9915 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9916 EVAL_NORMAL));
9917 }
9918 else if (is_array)
9919 {
9920 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9921 EVAL_NORMAL));
9922 upper = lower;
9923 }
9924 else
9925 {
9926 int ind;
0d5cff50 9927 const char *name;
5b4ee69b 9928
52ce6436
PH
9929 switch (op)
9930 {
9931 case OP_NAME:
9932 name = &exp->elts[choice_pos + 2].string;
9933 break;
9934 case OP_VAR_VALUE:
987012b8 9935 name = exp->elts[choice_pos + 2].symbol->natural_name ();
52ce6436
PH
9936 break;
9937 default:
9938 error (_("Invalid record component association."));
9939 }
9940 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9941 ind = 0;
9942 if (! find_struct_field (name, value_type (lhs), 0,
9943 NULL, NULL, NULL, NULL, &ind))
9944 error (_("Unknown component name: %s."), name);
9945 lower = upper = ind;
9946 }
9947
9948 if (lower <= upper && (lower < low || upper > high))
9949 error (_("Index in component association out of bounds."));
9950
9951 add_component_interval (lower, upper, indices, num_indices,
9952 max_indices);
9953 while (lower <= upper)
9954 {
9955 int pos1;
5b4ee69b 9956
52ce6436
PH
9957 pos1 = expr_pc;
9958 assign_component (container, lhs, lower, exp, &pos1);
9959 lower += 1;
9960 }
9961 }
9962}
9963
9964/* Assign the value of the expression in the OP_OTHERS construct in
9965 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9966 have not been previously assigned. The index intervals already assigned
9967 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9968 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9969static void
9970aggregate_assign_others (struct value *container,
9971 struct value *lhs, struct expression *exp,
9972 int *pos, LONGEST *indices, int num_indices,
9973 LONGEST low, LONGEST high)
9974{
9975 int i;
5ce64950 9976 int expr_pc = *pos + 1;
52ce6436
PH
9977
9978 for (i = 0; i < num_indices - 2; i += 2)
9979 {
9980 LONGEST ind;
5b4ee69b 9981
52ce6436
PH
9982 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9983 {
5ce64950 9984 int localpos;
5b4ee69b 9985
5ce64950
MS
9986 localpos = expr_pc;
9987 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9988 }
9989 }
9990 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9991}
9992
9993/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9994 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9995 modifying *SIZE as needed. It is an error if *SIZE exceeds
9996 MAX_SIZE. The resulting intervals do not overlap. */
9997static void
9998add_component_interval (LONGEST low, LONGEST high,
9999 LONGEST* indices, int *size, int max_size)
10000{
10001 int i, j;
5b4ee69b 10002
52ce6436
PH
10003 for (i = 0; i < *size; i += 2) {
10004 if (high >= indices[i] && low <= indices[i + 1])
10005 {
10006 int kh;
5b4ee69b 10007
52ce6436
PH
10008 for (kh = i + 2; kh < *size; kh += 2)
10009 if (high < indices[kh])
10010 break;
10011 if (low < indices[i])
10012 indices[i] = low;
10013 indices[i + 1] = indices[kh - 1];
10014 if (high > indices[i + 1])
10015 indices[i + 1] = high;
10016 memcpy (indices + i + 2, indices + kh, *size - kh);
10017 *size -= kh - i - 2;
10018 return;
10019 }
10020 else if (high < indices[i])
10021 break;
10022 }
10023
10024 if (*size == max_size)
10025 error (_("Internal error: miscounted aggregate components."));
10026 *size += 2;
10027 for (j = *size-1; j >= i+2; j -= 1)
10028 indices[j] = indices[j - 2];
10029 indices[i] = low;
10030 indices[i + 1] = high;
10031}
10032
6e48bd2c
JB
10033/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10034 is different. */
10035
10036static struct value *
b7e22850 10037ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10038{
10039 if (type == ada_check_typedef (value_type (arg2)))
10040 return arg2;
10041
10042 if (ada_is_fixed_point_type (type))
95f39a5b 10043 return cast_to_fixed (type, arg2);
6e48bd2c
JB
10044
10045 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10046 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10047
10048 return value_cast (type, arg2);
10049}
10050
284614f0
JB
10051/* Evaluating Ada expressions, and printing their result.
10052 ------------------------------------------------------
10053
21649b50
JB
10054 1. Introduction:
10055 ----------------
10056
284614f0
JB
10057 We usually evaluate an Ada expression in order to print its value.
10058 We also evaluate an expression in order to print its type, which
10059 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10060 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10061 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10062 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10063 similar.
10064
10065 Evaluating expressions is a little more complicated for Ada entities
10066 than it is for entities in languages such as C. The main reason for
10067 this is that Ada provides types whose definition might be dynamic.
10068 One example of such types is variant records. Or another example
10069 would be an array whose bounds can only be known at run time.
10070
10071 The following description is a general guide as to what should be
10072 done (and what should NOT be done) in order to evaluate an expression
10073 involving such types, and when. This does not cover how the semantic
10074 information is encoded by GNAT as this is covered separatly. For the
10075 document used as the reference for the GNAT encoding, see exp_dbug.ads
10076 in the GNAT sources.
10077
10078 Ideally, we should embed each part of this description next to its
10079 associated code. Unfortunately, the amount of code is so vast right
10080 now that it's hard to see whether the code handling a particular
10081 situation might be duplicated or not. One day, when the code is
10082 cleaned up, this guide might become redundant with the comments
10083 inserted in the code, and we might want to remove it.
10084
21649b50
JB
10085 2. ``Fixing'' an Entity, the Simple Case:
10086 -----------------------------------------
10087
284614f0
JB
10088 When evaluating Ada expressions, the tricky issue is that they may
10089 reference entities whose type contents and size are not statically
10090 known. Consider for instance a variant record:
10091
10092 type Rec (Empty : Boolean := True) is record
10093 case Empty is
10094 when True => null;
10095 when False => Value : Integer;
10096 end case;
10097 end record;
10098 Yes : Rec := (Empty => False, Value => 1);
10099 No : Rec := (empty => True);
10100
10101 The size and contents of that record depends on the value of the
10102 descriminant (Rec.Empty). At this point, neither the debugging
10103 information nor the associated type structure in GDB are able to
10104 express such dynamic types. So what the debugger does is to create
10105 "fixed" versions of the type that applies to the specific object.
30baf67b 10106 We also informally refer to this operation as "fixing" an object,
284614f0
JB
10107 which means creating its associated fixed type.
10108
10109 Example: when printing the value of variable "Yes" above, its fixed
10110 type would look like this:
10111
10112 type Rec is record
10113 Empty : Boolean;
10114 Value : Integer;
10115 end record;
10116
10117 On the other hand, if we printed the value of "No", its fixed type
10118 would become:
10119
10120 type Rec is record
10121 Empty : Boolean;
10122 end record;
10123
10124 Things become a little more complicated when trying to fix an entity
10125 with a dynamic type that directly contains another dynamic type,
10126 such as an array of variant records, for instance. There are
10127 two possible cases: Arrays, and records.
10128
21649b50
JB
10129 3. ``Fixing'' Arrays:
10130 ---------------------
10131
10132 The type structure in GDB describes an array in terms of its bounds,
10133 and the type of its elements. By design, all elements in the array
10134 have the same type and we cannot represent an array of variant elements
10135 using the current type structure in GDB. When fixing an array,
10136 we cannot fix the array element, as we would potentially need one
10137 fixed type per element of the array. As a result, the best we can do
10138 when fixing an array is to produce an array whose bounds and size
10139 are correct (allowing us to read it from memory), but without having
10140 touched its element type. Fixing each element will be done later,
10141 when (if) necessary.
10142
10143 Arrays are a little simpler to handle than records, because the same
10144 amount of memory is allocated for each element of the array, even if
1b536f04 10145 the amount of space actually used by each element differs from element
21649b50 10146 to element. Consider for instance the following array of type Rec:
284614f0
JB
10147
10148 type Rec_Array is array (1 .. 2) of Rec;
10149
1b536f04
JB
10150 The actual amount of memory occupied by each element might be different
10151 from element to element, depending on the value of their discriminant.
21649b50 10152 But the amount of space reserved for each element in the array remains
1b536f04 10153 fixed regardless. So we simply need to compute that size using
21649b50
JB
10154 the debugging information available, from which we can then determine
10155 the array size (we multiply the number of elements of the array by
10156 the size of each element).
10157
10158 The simplest case is when we have an array of a constrained element
10159 type. For instance, consider the following type declarations:
10160
10161 type Bounded_String (Max_Size : Integer) is
10162 Length : Integer;
10163 Buffer : String (1 .. Max_Size);
10164 end record;
10165 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10166
10167 In this case, the compiler describes the array as an array of
10168 variable-size elements (identified by its XVS suffix) for which
10169 the size can be read in the parallel XVZ variable.
10170
10171 In the case of an array of an unconstrained element type, the compiler
10172 wraps the array element inside a private PAD type. This type should not
10173 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10174 that we also use the adjective "aligner" in our code to designate
10175 these wrapper types.
10176
1b536f04 10177 In some cases, the size allocated for each element is statically
21649b50
JB
10178 known. In that case, the PAD type already has the correct size,
10179 and the array element should remain unfixed.
10180
10181 But there are cases when this size is not statically known.
10182 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10183
10184 type Dynamic is array (1 .. Five) of Integer;
10185 type Wrapper (Has_Length : Boolean := False) is record
10186 Data : Dynamic;
10187 case Has_Length is
10188 when True => Length : Integer;
10189 when False => null;
10190 end case;
10191 end record;
10192 type Wrapper_Array is array (1 .. 2) of Wrapper;
10193
10194 Hello : Wrapper_Array := (others => (Has_Length => True,
10195 Data => (others => 17),
10196 Length => 1));
10197
10198
10199 The debugging info would describe variable Hello as being an
10200 array of a PAD type. The size of that PAD type is not statically
10201 known, but can be determined using a parallel XVZ variable.
10202 In that case, a copy of the PAD type with the correct size should
10203 be used for the fixed array.
10204
21649b50
JB
10205 3. ``Fixing'' record type objects:
10206 ----------------------------------
10207
10208 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10209 record types. In this case, in order to compute the associated
10210 fixed type, we need to determine the size and offset of each of
10211 its components. This, in turn, requires us to compute the fixed
10212 type of each of these components.
10213
10214 Consider for instance the example:
10215
10216 type Bounded_String (Max_Size : Natural) is record
10217 Str : String (1 .. Max_Size);
10218 Length : Natural;
10219 end record;
10220 My_String : Bounded_String (Max_Size => 10);
10221
10222 In that case, the position of field "Length" depends on the size
10223 of field Str, which itself depends on the value of the Max_Size
21649b50 10224 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10225 we need to fix the type of field Str. Therefore, fixing a variant
10226 record requires us to fix each of its components.
10227
10228 However, if a component does not have a dynamic size, the component
10229 should not be fixed. In particular, fields that use a PAD type
10230 should not fixed. Here is an example where this might happen
10231 (assuming type Rec above):
10232
10233 type Container (Big : Boolean) is record
10234 First : Rec;
10235 After : Integer;
10236 case Big is
10237 when True => Another : Integer;
10238 when False => null;
10239 end case;
10240 end record;
10241 My_Container : Container := (Big => False,
10242 First => (Empty => True),
10243 After => 42);
10244
10245 In that example, the compiler creates a PAD type for component First,
10246 whose size is constant, and then positions the component After just
10247 right after it. The offset of component After is therefore constant
10248 in this case.
10249
10250 The debugger computes the position of each field based on an algorithm
10251 that uses, among other things, the actual position and size of the field
21649b50
JB
10252 preceding it. Let's now imagine that the user is trying to print
10253 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10254 end up computing the offset of field After based on the size of the
10255 fixed version of field First. And since in our example First has
10256 only one actual field, the size of the fixed type is actually smaller
10257 than the amount of space allocated to that field, and thus we would
10258 compute the wrong offset of field After.
10259
21649b50
JB
10260 To make things more complicated, we need to watch out for dynamic
10261 components of variant records (identified by the ___XVL suffix in
10262 the component name). Even if the target type is a PAD type, the size
10263 of that type might not be statically known. So the PAD type needs
10264 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10265 we might end up with the wrong size for our component. This can be
10266 observed with the following type declarations:
284614f0
JB
10267
10268 type Octal is new Integer range 0 .. 7;
10269 type Octal_Array is array (Positive range <>) of Octal;
10270 pragma Pack (Octal_Array);
10271
10272 type Octal_Buffer (Size : Positive) is record
10273 Buffer : Octal_Array (1 .. Size);
10274 Length : Integer;
10275 end record;
10276
10277 In that case, Buffer is a PAD type whose size is unset and needs
10278 to be computed by fixing the unwrapped type.
10279
21649b50
JB
10280 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10281 ----------------------------------------------------------
10282
10283 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10284 thus far, be actually fixed?
10285
10286 The answer is: Only when referencing that element. For instance
10287 when selecting one component of a record, this specific component
10288 should be fixed at that point in time. Or when printing the value
10289 of a record, each component should be fixed before its value gets
10290 printed. Similarly for arrays, the element of the array should be
10291 fixed when printing each element of the array, or when extracting
10292 one element out of that array. On the other hand, fixing should
10293 not be performed on the elements when taking a slice of an array!
10294
31432a67 10295 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10296 size of each field is that we end up also miscomputing the size
10297 of the containing type. This can have adverse results when computing
10298 the value of an entity. GDB fetches the value of an entity based
10299 on the size of its type, and thus a wrong size causes GDB to fetch
10300 the wrong amount of memory. In the case where the computed size is
10301 too small, GDB fetches too little data to print the value of our
31432a67 10302 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10303 past the buffer containing the data =:-o. */
10304
ced9779b
JB
10305/* Evaluate a subexpression of EXP, at index *POS, and return a value
10306 for that subexpression cast to TO_TYPE. Advance *POS over the
10307 subexpression. */
10308
10309static value *
10310ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10311 enum noside noside, struct type *to_type)
10312{
10313 int pc = *pos;
10314
10315 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10316 || exp->elts[pc].opcode == OP_VAR_VALUE)
10317 {
10318 (*pos) += 4;
10319
10320 value *val;
10321 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10322 {
10323 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10324 return value_zero (to_type, not_lval);
10325
10326 val = evaluate_var_msym_value (noside,
10327 exp->elts[pc + 1].objfile,
10328 exp->elts[pc + 2].msymbol);
10329 }
10330 else
10331 val = evaluate_var_value (noside,
10332 exp->elts[pc + 1].block,
10333 exp->elts[pc + 2].symbol);
10334
10335 if (noside == EVAL_SKIP)
10336 return eval_skip_value (exp);
10337
10338 val = ada_value_cast (to_type, val);
10339
10340 /* Follow the Ada language semantics that do not allow taking
10341 an address of the result of a cast (view conversion in Ada). */
10342 if (VALUE_LVAL (val) == lval_memory)
10343 {
10344 if (value_lazy (val))
10345 value_fetch_lazy (val);
10346 VALUE_LVAL (val) = not_lval;
10347 }
10348 return val;
10349 }
10350
10351 value *val = evaluate_subexp (to_type, exp, pos, noside);
10352 if (noside == EVAL_SKIP)
10353 return eval_skip_value (exp);
10354 return ada_value_cast (to_type, val);
10355}
10356
284614f0
JB
10357/* Implement the evaluate_exp routine in the exp_descriptor structure
10358 for the Ada language. */
10359
52ce6436 10360static struct value *
ebf56fd3 10361ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10362 int *pos, enum noside noside)
14f9c5c9
AS
10363{
10364 enum exp_opcode op;
b5385fc0 10365 int tem;
14f9c5c9 10366 int pc;
5ec18f2b 10367 int preeval_pos;
14f9c5c9
AS
10368 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10369 struct type *type;
52ce6436 10370 int nargs, oplen;
d2e4a39e 10371 struct value **argvec;
14f9c5c9 10372
d2e4a39e
AS
10373 pc = *pos;
10374 *pos += 1;
14f9c5c9
AS
10375 op = exp->elts[pc].opcode;
10376
d2e4a39e 10377 switch (op)
14f9c5c9
AS
10378 {
10379 default:
10380 *pos -= 1;
6e48bd2c 10381 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10382
10383 if (noside == EVAL_NORMAL)
10384 arg1 = unwrap_value (arg1);
6e48bd2c 10385
edd079d9 10386 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10387 then we need to perform the conversion manually, because
10388 evaluate_subexp_standard doesn't do it. This conversion is
10389 necessary in Ada because the different kinds of float/fixed
10390 types in Ada have different representations.
10391
10392 Similarly, we need to perform the conversion from OP_LONG
10393 ourselves. */
edd079d9 10394 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10395 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10396
10397 return arg1;
4c4b4cd2
PH
10398
10399 case OP_STRING:
10400 {
76a01679 10401 struct value *result;
5b4ee69b 10402
76a01679
JB
10403 *pos -= 1;
10404 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10405 /* The result type will have code OP_STRING, bashed there from
10406 OP_ARRAY. Bash it back. */
df407dfe
AC
10407 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10408 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10409 return result;
4c4b4cd2 10410 }
14f9c5c9
AS
10411
10412 case UNOP_CAST:
10413 (*pos) += 2;
10414 type = exp->elts[pc + 1].type;
ced9779b 10415 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10416
4c4b4cd2
PH
10417 case UNOP_QUAL:
10418 (*pos) += 2;
10419 type = exp->elts[pc + 1].type;
10420 return ada_evaluate_subexp (type, exp, pos, noside);
10421
14f9c5c9
AS
10422 case BINOP_ASSIGN:
10423 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10424 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10425 {
10426 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10427 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10428 return arg1;
10429 return ada_value_assign (arg1, arg1);
10430 }
003f3813
JB
10431 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10432 except if the lhs of our assignment is a convenience variable.
10433 In the case of assigning to a convenience variable, the lhs
10434 should be exactly the result of the evaluation of the rhs. */
10435 type = value_type (arg1);
10436 if (VALUE_LVAL (arg1) == lval_internalvar)
10437 type = NULL;
10438 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10439 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10440 return arg1;
f411722c
TT
10441 if (VALUE_LVAL (arg1) == lval_internalvar)
10442 {
10443 /* Nothing. */
10444 }
10445 else if (ada_is_fixed_point_type (value_type (arg1)))
df407dfe
AC
10446 arg2 = cast_to_fixed (value_type (arg1), arg2);
10447 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10448 error
323e0a4a 10449 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10450 else
df407dfe 10451 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10452 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10453
10454 case BINOP_ADD:
10455 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10456 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10457 if (noside == EVAL_SKIP)
4c4b4cd2 10458 goto nosideret;
2ac8a782
JB
10459 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10460 return (value_from_longest
10461 (value_type (arg1),
10462 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10463 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10464 return (value_from_longest
10465 (value_type (arg2),
10466 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10467 if ((ada_is_fixed_point_type (value_type (arg1))
10468 || ada_is_fixed_point_type (value_type (arg2)))
10469 && value_type (arg1) != value_type (arg2))
323e0a4a 10470 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10471 /* Do the addition, and cast the result to the type of the first
10472 argument. We cannot cast the result to a reference type, so if
10473 ARG1 is a reference type, find its underlying type. */
10474 type = value_type (arg1);
10475 while (TYPE_CODE (type) == TYPE_CODE_REF)
10476 type = TYPE_TARGET_TYPE (type);
f44316fa 10477 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10478 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10479
10480 case BINOP_SUB:
10481 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10482 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10483 if (noside == EVAL_SKIP)
4c4b4cd2 10484 goto nosideret;
2ac8a782
JB
10485 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10486 return (value_from_longest
10487 (value_type (arg1),
10488 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10489 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10490 return (value_from_longest
10491 (value_type (arg2),
10492 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10493 if ((ada_is_fixed_point_type (value_type (arg1))
10494 || ada_is_fixed_point_type (value_type (arg2)))
10495 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10496 error (_("Operands of fixed-point subtraction "
10497 "must have the same type"));
b7789565
JB
10498 /* Do the substraction, and cast the result to the type of the first
10499 argument. We cannot cast the result to a reference type, so if
10500 ARG1 is a reference type, find its underlying type. */
10501 type = value_type (arg1);
10502 while (TYPE_CODE (type) == TYPE_CODE_REF)
10503 type = TYPE_TARGET_TYPE (type);
f44316fa 10504 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10505 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10506
10507 case BINOP_MUL:
10508 case BINOP_DIV:
e1578042
JB
10509 case BINOP_REM:
10510 case BINOP_MOD:
14f9c5c9
AS
10511 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10512 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10513 if (noside == EVAL_SKIP)
4c4b4cd2 10514 goto nosideret;
e1578042 10515 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10516 {
10517 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10518 return value_zero (value_type (arg1), not_lval);
10519 }
14f9c5c9 10520 else
4c4b4cd2 10521 {
a53b7a21 10522 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10523 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10524 arg1 = cast_from_fixed (type, arg1);
df407dfe 10525 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10526 arg2 = cast_from_fixed (type, arg2);
f44316fa 10527 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10528 return ada_value_binop (arg1, arg2, op);
10529 }
10530
4c4b4cd2
PH
10531 case BINOP_EQUAL:
10532 case BINOP_NOTEQUAL:
14f9c5c9 10533 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10534 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10535 if (noside == EVAL_SKIP)
76a01679 10536 goto nosideret;
4c4b4cd2 10537 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10538 tem = 0;
4c4b4cd2 10539 else
f44316fa
UW
10540 {
10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10542 tem = ada_value_equal (arg1, arg2);
10543 }
4c4b4cd2 10544 if (op == BINOP_NOTEQUAL)
76a01679 10545 tem = !tem;
fbb06eb1
UW
10546 type = language_bool_type (exp->language_defn, exp->gdbarch);
10547 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10548
10549 case UNOP_NEG:
10550 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10551 if (noside == EVAL_SKIP)
10552 goto nosideret;
df407dfe
AC
10553 else if (ada_is_fixed_point_type (value_type (arg1)))
10554 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10555 else
f44316fa
UW
10556 {
10557 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10558 return value_neg (arg1);
10559 }
4c4b4cd2 10560
2330c6c6
JB
10561 case BINOP_LOGICAL_AND:
10562 case BINOP_LOGICAL_OR:
10563 case UNOP_LOGICAL_NOT:
000d5124
JB
10564 {
10565 struct value *val;
10566
10567 *pos -= 1;
10568 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10569 type = language_bool_type (exp->language_defn, exp->gdbarch);
10570 return value_cast (type, val);
000d5124 10571 }
2330c6c6
JB
10572
10573 case BINOP_BITWISE_AND:
10574 case BINOP_BITWISE_IOR:
10575 case BINOP_BITWISE_XOR:
000d5124
JB
10576 {
10577 struct value *val;
10578
10579 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10580 *pos = pc;
10581 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10582
10583 return value_cast (value_type (arg1), val);
10584 }
2330c6c6 10585
14f9c5c9
AS
10586 case OP_VAR_VALUE:
10587 *pos -= 1;
6799def4 10588
14f9c5c9 10589 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10590 {
10591 *pos += 4;
10592 goto nosideret;
10593 }
da5c522f
JB
10594
10595 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10596 /* Only encountered when an unresolved symbol occurs in a
10597 context other than a function call, in which case, it is
52ce6436 10598 invalid. */
323e0a4a 10599 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10600 exp->elts[pc + 2].symbol->print_name ());
da5c522f
JB
10601
10602 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10603 {
0c1f74cf 10604 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10605 /* Check to see if this is a tagged type. We also need to handle
10606 the case where the type is a reference to a tagged type, but
10607 we have to be careful to exclude pointers to tagged types.
10608 The latter should be shown as usual (as a pointer), whereas
10609 a reference should mostly be transparent to the user. */
10610 if (ada_is_tagged_type (type, 0)
023db19c 10611 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10612 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10613 {
10614 /* Tagged types are a little special in the fact that the real
10615 type is dynamic and can only be determined by inspecting the
10616 object's tag. This means that we need to get the object's
10617 value first (EVAL_NORMAL) and then extract the actual object
10618 type from its tag.
10619
10620 Note that we cannot skip the final step where we extract
10621 the object type from its tag, because the EVAL_NORMAL phase
10622 results in dynamic components being resolved into fixed ones.
10623 This can cause problems when trying to print the type
10624 description of tagged types whose parent has a dynamic size:
10625 We use the type name of the "_parent" component in order
10626 to print the name of the ancestor type in the type description.
10627 If that component had a dynamic size, the resolution into
10628 a fixed type would result in the loss of that type name,
10629 thus preventing us from printing the name of the ancestor
10630 type in the type description. */
10631 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10632
10633 if (TYPE_CODE (type) != TYPE_CODE_REF)
10634 {
10635 struct type *actual_type;
10636
10637 actual_type = type_from_tag (ada_value_tag (arg1));
10638 if (actual_type == NULL)
10639 /* If, for some reason, we were unable to determine
10640 the actual type from the tag, then use the static
10641 approximation that we just computed as a fallback.
10642 This can happen if the debugging information is
10643 incomplete, for instance. */
10644 actual_type = type;
10645 return value_zero (actual_type, not_lval);
10646 }
10647 else
10648 {
10649 /* In the case of a ref, ada_coerce_ref takes care
10650 of determining the actual type. But the evaluation
10651 should return a ref as it should be valid to ask
10652 for its address; so rebuild a ref after coerce. */
10653 arg1 = ada_coerce_ref (arg1);
a65cfae5 10654 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10655 }
10656 }
0c1f74cf 10657
84754697
JB
10658 /* Records and unions for which GNAT encodings have been
10659 generated need to be statically fixed as well.
10660 Otherwise, non-static fixing produces a type where
10661 all dynamic properties are removed, which prevents "ptype"
10662 from being able to completely describe the type.
10663 For instance, a case statement in a variant record would be
10664 replaced by the relevant components based on the actual
10665 value of the discriminants. */
10666 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10667 && dynamic_template_type (type) != NULL)
10668 || (TYPE_CODE (type) == TYPE_CODE_UNION
10669 && ada_find_parallel_type (type, "___XVU") != NULL))
10670 {
10671 *pos += 4;
10672 return value_zero (to_static_fixed_type (type), not_lval);
10673 }
4c4b4cd2 10674 }
da5c522f
JB
10675
10676 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10677 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10678
10679 case OP_FUNCALL:
10680 (*pos) += 2;
10681
10682 /* Allocate arg vector, including space for the function to be
10683 called in argvec[0] and a terminating NULL. */
10684 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10685 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10686
10687 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10688 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10689 error (_("Unexpected unresolved symbol, %s, during evaluation"),
987012b8 10690 exp->elts[pc + 5].symbol->print_name ());
4c4b4cd2
PH
10691 else
10692 {
10693 for (tem = 0; tem <= nargs; tem += 1)
10694 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10695 argvec[tem] = 0;
10696
10697 if (noside == EVAL_SKIP)
10698 goto nosideret;
10699 }
10700
ad82864c
JB
10701 if (ada_is_constrained_packed_array_type
10702 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10703 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10704 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10705 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10706 /* This is a packed array that has already been fixed, and
10707 therefore already coerced to a simple array. Nothing further
10708 to do. */
10709 ;
e6c2c623
PMR
10710 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10711 {
10712 /* Make sure we dereference references so that all the code below
10713 feels like it's really handling the referenced value. Wrapping
10714 types (for alignment) may be there, so make sure we strip them as
10715 well. */
10716 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10717 }
10718 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10719 && VALUE_LVAL (argvec[0]) == lval_memory)
10720 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10721
df407dfe 10722 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10723
10724 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10725 them. So, if this is an array typedef (encoding use for array
10726 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10727 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10728 type = ada_typedef_target_type (type);
10729
4c4b4cd2
PH
10730 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10731 {
61ee279c 10732 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10733 {
10734 case TYPE_CODE_FUNC:
61ee279c 10735 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10736 break;
10737 case TYPE_CODE_ARRAY:
10738 break;
10739 case TYPE_CODE_STRUCT:
10740 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10741 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10742 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10743 break;
10744 default:
323e0a4a 10745 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10746 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10747 break;
10748 }
10749 }
10750
10751 switch (TYPE_CODE (type))
10752 {
10753 case TYPE_CODE_FUNC:
10754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10755 {
7022349d
PA
10756 if (TYPE_TARGET_TYPE (type) == NULL)
10757 error_call_unknown_return_type (NULL);
10758 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10759 }
e71585ff
PA
10760 return call_function_by_hand (argvec[0], NULL,
10761 gdb::make_array_view (argvec + 1,
10762 nargs));
c8ea1972
PH
10763 case TYPE_CODE_INTERNAL_FUNCTION:
10764 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10765 /* We don't know anything about what the internal
10766 function might return, but we have to return
10767 something. */
10768 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10769 not_lval);
10770 else
10771 return call_internal_function (exp->gdbarch, exp->language_defn,
10772 argvec[0], nargs, argvec + 1);
10773
4c4b4cd2
PH
10774 case TYPE_CODE_STRUCT:
10775 {
10776 int arity;
10777
4c4b4cd2
PH
10778 arity = ada_array_arity (type);
10779 type = ada_array_element_type (type, nargs);
10780 if (type == NULL)
323e0a4a 10781 error (_("cannot subscript or call a record"));
4c4b4cd2 10782 if (arity != nargs)
323e0a4a 10783 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10785 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10786 return
10787 unwrap_value (ada_value_subscript
10788 (argvec[0], nargs, argvec + 1));
10789 }
10790 case TYPE_CODE_ARRAY:
10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 {
10793 type = ada_array_element_type (type, nargs);
10794 if (type == NULL)
323e0a4a 10795 error (_("element type of array unknown"));
4c4b4cd2 10796 else
0a07e705 10797 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10798 }
10799 return
10800 unwrap_value (ada_value_subscript
10801 (ada_coerce_to_simple_array (argvec[0]),
10802 nargs, argvec + 1));
10803 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10804 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10805 {
deede10c 10806 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10807 type = ada_array_element_type (type, nargs);
10808 if (type == NULL)
323e0a4a 10809 error (_("element type of array unknown"));
4c4b4cd2 10810 else
0a07e705 10811 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10812 }
10813 return
deede10c
JB
10814 unwrap_value (ada_value_ptr_subscript (argvec[0],
10815 nargs, argvec + 1));
4c4b4cd2
PH
10816
10817 default:
e1d5a0d2
PH
10818 error (_("Attempt to index or call something other than an "
10819 "array or function"));
4c4b4cd2
PH
10820 }
10821
10822 case TERNOP_SLICE:
10823 {
10824 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10825 struct value *low_bound_val =
10826 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
10827 struct value *high_bound_val =
10828 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10829 LONGEST low_bound;
10830 LONGEST high_bound;
5b4ee69b 10831
994b9211
AC
10832 low_bound_val = coerce_ref (low_bound_val);
10833 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
10834 low_bound = value_as_long (low_bound_val);
10835 high_bound = value_as_long (high_bound_val);
963a6417 10836
4c4b4cd2
PH
10837 if (noside == EVAL_SKIP)
10838 goto nosideret;
10839
4c4b4cd2
PH
10840 /* If this is a reference to an aligner type, then remove all
10841 the aligners. */
df407dfe
AC
10842 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10843 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10844 TYPE_TARGET_TYPE (value_type (array)) =
10845 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 10846
ad82864c 10847 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 10848 error (_("cannot slice a packed array"));
4c4b4cd2
PH
10849
10850 /* If this is a reference to an array or an array lvalue,
10851 convert to a pointer. */
df407dfe
AC
10852 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10853 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
10854 && VALUE_LVAL (array) == lval_memory))
10855 array = value_addr (array);
10856
1265e4aa 10857 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 10858 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 10859 (value_type (array))))
bff8c71f
TT
10860 return empty_array (ada_type_of_array (array, 0), low_bound,
10861 high_bound);
4c4b4cd2
PH
10862
10863 array = ada_coerce_to_simple_array_ptr (array);
10864
714e53ab
PH
10865 /* If we have more than one level of pointer indirection,
10866 dereference the value until we get only one level. */
df407dfe
AC
10867 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10868 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
10869 == TYPE_CODE_PTR))
10870 array = value_ind (array);
10871
10872 /* Make sure we really do have an array type before going further,
10873 to avoid a SEGV when trying to get the index type or the target
10874 type later down the road if the debug info generated by
10875 the compiler is incorrect or incomplete. */
df407dfe 10876 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 10877 error (_("cannot take slice of non-array"));
714e53ab 10878
828292f2
JB
10879 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10880 == TYPE_CODE_PTR)
4c4b4cd2 10881 {
828292f2
JB
10882 struct type *type0 = ada_check_typedef (value_type (array));
10883
0b5d8877 10884 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
bff8c71f 10885 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
4c4b4cd2
PH
10886 else
10887 {
10888 struct type *arr_type0 =
828292f2 10889 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 10890
f5938064
JG
10891 return ada_value_slice_from_ptr (array, arr_type0,
10892 longest_to_int (low_bound),
10893 longest_to_int (high_bound));
4c4b4cd2
PH
10894 }
10895 }
10896 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10897 return array;
10898 else if (high_bound < low_bound)
bff8c71f 10899 return empty_array (value_type (array), low_bound, high_bound);
4c4b4cd2 10900 else
529cad9c
PH
10901 return ada_value_slice (array, longest_to_int (low_bound),
10902 longest_to_int (high_bound));
4c4b4cd2 10903 }
14f9c5c9 10904
4c4b4cd2
PH
10905 case UNOP_IN_RANGE:
10906 (*pos) += 2;
10907 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 10908 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 10909
14f9c5c9 10910 if (noside == EVAL_SKIP)
4c4b4cd2 10911 goto nosideret;
14f9c5c9 10912
4c4b4cd2
PH
10913 switch (TYPE_CODE (type))
10914 {
10915 default:
e1d5a0d2
PH
10916 lim_warning (_("Membership test incompletely implemented; "
10917 "always returns true"));
fbb06eb1
UW
10918 type = language_bool_type (exp->language_defn, exp->gdbarch);
10919 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
10920
10921 case TYPE_CODE_RANGE:
030b4912
UW
10922 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10923 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
10924 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10925 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
10926 type = language_bool_type (exp->language_defn, exp->gdbarch);
10927 return
10928 value_from_longest (type,
4c4b4cd2
PH
10929 (value_less (arg1, arg3)
10930 || value_equal (arg1, arg3))
10931 && (value_less (arg2, arg1)
10932 || value_equal (arg2, arg1)));
10933 }
10934
10935 case BINOP_IN_BOUNDS:
14f9c5c9 10936 (*pos) += 2;
4c4b4cd2
PH
10937 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10938 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10939
4c4b4cd2
PH
10940 if (noside == EVAL_SKIP)
10941 goto nosideret;
14f9c5c9 10942
4c4b4cd2 10943 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
10944 {
10945 type = language_bool_type (exp->language_defn, exp->gdbarch);
10946 return value_zero (type, not_lval);
10947 }
14f9c5c9 10948
4c4b4cd2 10949 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 10950
1eea4ebd
UW
10951 type = ada_index_type (value_type (arg2), tem, "range");
10952 if (!type)
10953 type = value_type (arg1);
14f9c5c9 10954
1eea4ebd
UW
10955 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10956 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 10957
f44316fa
UW
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10961 return
fbb06eb1 10962 value_from_longest (type,
4c4b4cd2
PH
10963 (value_less (arg1, arg3)
10964 || value_equal (arg1, arg3))
10965 && (value_less (arg2, arg1)
10966 || value_equal (arg2, arg1)));
10967
10968 case TERNOP_IN_RANGE:
10969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10970 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10971 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972
10973 if (noside == EVAL_SKIP)
10974 goto nosideret;
10975
f44316fa
UW
10976 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 10979 return
fbb06eb1 10980 value_from_longest (type,
4c4b4cd2
PH
10981 (value_less (arg1, arg3)
10982 || value_equal (arg1, arg3))
10983 && (value_less (arg2, arg1)
10984 || value_equal (arg2, arg1)));
10985
10986 case OP_ATR_FIRST:
10987 case OP_ATR_LAST:
10988 case OP_ATR_LENGTH:
10989 {
76a01679 10990 struct type *type_arg;
5b4ee69b 10991
76a01679
JB
10992 if (exp->elts[*pos].opcode == OP_TYPE)
10993 {
10994 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10995 arg1 = NULL;
5bc23cb3 10996 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
10997 }
10998 else
10999 {
11000 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001 type_arg = NULL;
11002 }
11003
11004 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11005 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11006 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11007 *pos += 4;
11008
11009 if (noside == EVAL_SKIP)
11010 goto nosideret;
680e1bee
TT
11011 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11012 {
11013 if (type_arg == NULL)
11014 type_arg = value_type (arg1);
76a01679 11015
680e1bee
TT
11016 if (ada_is_constrained_packed_array_type (type_arg))
11017 type_arg = decode_constrained_packed_array_type (type_arg);
11018
11019 if (!discrete_type_p (type_arg))
11020 {
11021 switch (op)
11022 {
11023 default: /* Should never happen. */
11024 error (_("unexpected attribute encountered"));
11025 case OP_ATR_FIRST:
11026 case OP_ATR_LAST:
11027 type_arg = ada_index_type (type_arg, tem,
11028 ada_attribute_name (op));
11029 break;
11030 case OP_ATR_LENGTH:
11031 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11032 break;
11033 }
11034 }
11035
11036 return value_zero (type_arg, not_lval);
11037 }
11038 else if (type_arg == NULL)
76a01679
JB
11039 {
11040 arg1 = ada_coerce_ref (arg1);
11041
ad82864c 11042 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11043 arg1 = ada_coerce_to_simple_array (arg1);
11044
aa4fb036 11045 if (op == OP_ATR_LENGTH)
1eea4ebd 11046 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11047 else
11048 {
11049 type = ada_index_type (value_type (arg1), tem,
11050 ada_attribute_name (op));
11051 if (type == NULL)
11052 type = builtin_type (exp->gdbarch)->builtin_int;
11053 }
76a01679 11054
76a01679
JB
11055 switch (op)
11056 {
11057 default: /* Should never happen. */
323e0a4a 11058 error (_("unexpected attribute encountered"));
76a01679 11059 case OP_ATR_FIRST:
1eea4ebd
UW
11060 return value_from_longest
11061 (type, ada_array_bound (arg1, tem, 0));
76a01679 11062 case OP_ATR_LAST:
1eea4ebd
UW
11063 return value_from_longest
11064 (type, ada_array_bound (arg1, tem, 1));
76a01679 11065 case OP_ATR_LENGTH:
1eea4ebd
UW
11066 return value_from_longest
11067 (type, ada_array_length (arg1, tem));
76a01679
JB
11068 }
11069 }
11070 else if (discrete_type_p (type_arg))
11071 {
11072 struct type *range_type;
0d5cff50 11073 const char *name = ada_type_name (type_arg);
5b4ee69b 11074
76a01679
JB
11075 range_type = NULL;
11076 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11077 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11078 if (range_type == NULL)
11079 range_type = type_arg;
11080 switch (op)
11081 {
11082 default:
323e0a4a 11083 error (_("unexpected attribute encountered"));
76a01679 11084 case OP_ATR_FIRST:
690cc4eb 11085 return value_from_longest
43bbcdc2 11086 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11087 case OP_ATR_LAST:
690cc4eb 11088 return value_from_longest
43bbcdc2 11089 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11090 case OP_ATR_LENGTH:
323e0a4a 11091 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11092 }
11093 }
11094 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11095 error (_("unimplemented type attribute"));
76a01679
JB
11096 else
11097 {
11098 LONGEST low, high;
11099
ad82864c
JB
11100 if (ada_is_constrained_packed_array_type (type_arg))
11101 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11102
aa4fb036 11103 if (op == OP_ATR_LENGTH)
1eea4ebd 11104 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11105 else
11106 {
11107 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11108 if (type == NULL)
11109 type = builtin_type (exp->gdbarch)->builtin_int;
11110 }
1eea4ebd 11111
76a01679
JB
11112 switch (op)
11113 {
11114 default:
323e0a4a 11115 error (_("unexpected attribute encountered"));
76a01679 11116 case OP_ATR_FIRST:
1eea4ebd 11117 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11118 return value_from_longest (type, low);
11119 case OP_ATR_LAST:
1eea4ebd 11120 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11121 return value_from_longest (type, high);
11122 case OP_ATR_LENGTH:
1eea4ebd
UW
11123 low = ada_array_bound_from_type (type_arg, tem, 0);
11124 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11125 return value_from_longest (type, high - low + 1);
11126 }
11127 }
14f9c5c9
AS
11128 }
11129
4c4b4cd2
PH
11130 case OP_ATR_TAG:
11131 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11132 if (noside == EVAL_SKIP)
76a01679 11133 goto nosideret;
4c4b4cd2
PH
11134
11135 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11136 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11137
11138 return ada_value_tag (arg1);
11139
11140 case OP_ATR_MIN:
11141 case OP_ATR_MAX:
11142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11143 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11144 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145 if (noside == EVAL_SKIP)
76a01679 11146 goto nosideret;
d2e4a39e 11147 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11148 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11149 else
f44316fa
UW
11150 {
11151 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152 return value_binop (arg1, arg2,
11153 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11154 }
14f9c5c9 11155
4c4b4cd2
PH
11156 case OP_ATR_MODULUS:
11157 {
31dedfee 11158 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11159
5b4ee69b 11160 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11161 if (noside == EVAL_SKIP)
11162 goto nosideret;
4c4b4cd2 11163
76a01679 11164 if (!ada_is_modular_type (type_arg))
323e0a4a 11165 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11166
76a01679
JB
11167 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11168 ada_modulus (type_arg));
4c4b4cd2
PH
11169 }
11170
11171
11172 case OP_ATR_POS:
11173 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11174 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11175 if (noside == EVAL_SKIP)
76a01679 11176 goto nosideret;
3cb382c9
UW
11177 type = builtin_type (exp->gdbarch)->builtin_int;
11178 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11179 return value_zero (type, not_lval);
14f9c5c9 11180 else
3cb382c9 11181 return value_pos_atr (type, arg1);
14f9c5c9 11182
4c4b4cd2
PH
11183 case OP_ATR_SIZE:
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11185 type = value_type (arg1);
11186
11187 /* If the argument is a reference, then dereference its type, since
11188 the user is really asking for the size of the actual object,
11189 not the size of the pointer. */
11190 if (TYPE_CODE (type) == TYPE_CODE_REF)
11191 type = TYPE_TARGET_TYPE (type);
11192
4c4b4cd2 11193 if (noside == EVAL_SKIP)
76a01679 11194 goto nosideret;
4c4b4cd2 11195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11196 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11197 else
22601c15 11198 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11199 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11200
11201 case OP_ATR_VAL:
11202 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11204 type = exp->elts[pc + 2].type;
14f9c5c9 11205 if (noside == EVAL_SKIP)
76a01679 11206 goto nosideret;
4c4b4cd2 11207 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11208 return value_zero (type, not_lval);
4c4b4cd2 11209 else
76a01679 11210 return value_val_atr (type, arg1);
4c4b4cd2
PH
11211
11212 case BINOP_EXP:
11213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11214 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11215 if (noside == EVAL_SKIP)
11216 goto nosideret;
11217 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11218 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11219 else
f44316fa
UW
11220 {
11221 /* For integer exponentiation operations,
11222 only promote the first argument. */
11223 if (is_integral_type (value_type (arg2)))
11224 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11225 else
11226 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11227
11228 return value_binop (arg1, arg2, op);
11229 }
4c4b4cd2
PH
11230
11231 case UNOP_PLUS:
11232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11233 if (noside == EVAL_SKIP)
11234 goto nosideret;
11235 else
11236 return arg1;
11237
11238 case UNOP_ABS:
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
f44316fa 11242 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11243 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11244 return value_neg (arg1);
14f9c5c9 11245 else
4c4b4cd2 11246 return arg1;
14f9c5c9
AS
11247
11248 case UNOP_IND:
5ec18f2b 11249 preeval_pos = *pos;
6b0d7253 11250 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11251 if (noside == EVAL_SKIP)
4c4b4cd2 11252 goto nosideret;
df407dfe 11253 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11254 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11255 {
11256 if (ada_is_array_descriptor_type (type))
11257 /* GDB allows dereferencing GNAT array descriptors. */
11258 {
11259 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11260
4c4b4cd2 11261 if (arrType == NULL)
323e0a4a 11262 error (_("Attempt to dereference null array pointer."));
00a4c844 11263 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11264 }
11265 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11266 || TYPE_CODE (type) == TYPE_CODE_REF
11267 /* In C you can dereference an array to get the 1st elt. */
11268 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11269 {
5ec18f2b
JG
11270 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11271 only be determined by inspecting the object's tag.
11272 This means that we need to evaluate completely the
11273 expression in order to get its type. */
11274
023db19c
JB
11275 if ((TYPE_CODE (type) == TYPE_CODE_REF
11276 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11277 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11278 {
11279 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11280 EVAL_NORMAL);
11281 type = value_type (ada_value_ind (arg1));
11282 }
11283 else
11284 {
11285 type = to_static_fixed_type
11286 (ada_aligned_type
11287 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11288 }
c1b5a1a6 11289 ada_ensure_varsize_limit (type);
714e53ab
PH
11290 return value_zero (type, lval_memory);
11291 }
4c4b4cd2 11292 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11293 {
11294 /* GDB allows dereferencing an int. */
11295 if (expect_type == NULL)
11296 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11297 lval_memory);
11298 else
11299 {
11300 expect_type =
11301 to_static_fixed_type (ada_aligned_type (expect_type));
11302 return value_zero (expect_type, lval_memory);
11303 }
11304 }
4c4b4cd2 11305 else
323e0a4a 11306 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11307 }
0963b4bd 11308 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11309 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11310
96967637
JB
11311 if (TYPE_CODE (type) == TYPE_CODE_INT)
11312 /* GDB allows dereferencing an int. If we were given
11313 the expect_type, then use that as the target type.
11314 Otherwise, assume that the target type is an int. */
11315 {
11316 if (expect_type != NULL)
11317 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11318 arg1));
11319 else
11320 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11321 (CORE_ADDR) value_as_address (arg1));
11322 }
6b0d7253 11323
4c4b4cd2
PH
11324 if (ada_is_array_descriptor_type (type))
11325 /* GDB allows dereferencing GNAT array descriptors. */
11326 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11327 else
4c4b4cd2 11328 return ada_value_ind (arg1);
14f9c5c9
AS
11329
11330 case STRUCTOP_STRUCT:
11331 tem = longest_to_int (exp->elts[pc + 1].longconst);
11332 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11333 preeval_pos = *pos;
14f9c5c9
AS
11334 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11335 if (noside == EVAL_SKIP)
4c4b4cd2 11336 goto nosideret;
14f9c5c9 11337 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11338 {
df407dfe 11339 struct type *type1 = value_type (arg1);
5b4ee69b 11340
76a01679
JB
11341 if (ada_is_tagged_type (type1, 1))
11342 {
11343 type = ada_lookup_struct_elt_type (type1,
11344 &exp->elts[pc + 2].string,
988f6b3d 11345 1, 1);
5ec18f2b
JG
11346
11347 /* If the field is not found, check if it exists in the
11348 extension of this object's type. This means that we
11349 need to evaluate completely the expression. */
11350
76a01679 11351 if (type == NULL)
5ec18f2b
JG
11352 {
11353 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11354 EVAL_NORMAL);
11355 arg1 = ada_value_struct_elt (arg1,
11356 &exp->elts[pc + 2].string,
11357 0);
11358 arg1 = unwrap_value (arg1);
11359 type = value_type (ada_to_fixed_value (arg1));
11360 }
76a01679
JB
11361 }
11362 else
11363 type =
11364 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11365 0);
76a01679
JB
11366
11367 return value_zero (ada_aligned_type (type), lval_memory);
11368 }
14f9c5c9 11369 else
a579cd9a
MW
11370 {
11371 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11372 arg1 = unwrap_value (arg1);
11373 return ada_to_fixed_value (arg1);
11374 }
284614f0 11375
14f9c5c9 11376 case OP_TYPE:
4c4b4cd2
PH
11377 /* The value is not supposed to be used. This is here to make it
11378 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11379 (*pos) += 2;
11380 if (noside == EVAL_SKIP)
4c4b4cd2 11381 goto nosideret;
14f9c5c9 11382 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11383 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11384 else
323e0a4a 11385 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11386
11387 case OP_AGGREGATE:
11388 case OP_CHOICES:
11389 case OP_OTHERS:
11390 case OP_DISCRETE_RANGE:
11391 case OP_POSITIONAL:
11392 case OP_NAME:
11393 if (noside == EVAL_NORMAL)
11394 switch (op)
11395 {
11396 case OP_NAME:
11397 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11398 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11399 case OP_AGGREGATE:
11400 error (_("Aggregates only allowed on the right of an assignment"));
11401 default:
0963b4bd
MS
11402 internal_error (__FILE__, __LINE__,
11403 _("aggregate apparently mangled"));
52ce6436
PH
11404 }
11405
11406 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11407 *pos += oplen - 1;
11408 for (tem = 0; tem < nargs; tem += 1)
11409 ada_evaluate_subexp (NULL, exp, pos, noside);
11410 goto nosideret;
14f9c5c9
AS
11411 }
11412
11413nosideret:
ced9779b 11414 return eval_skip_value (exp);
14f9c5c9 11415}
14f9c5c9 11416\f
d2e4a39e 11417
4c4b4cd2 11418 /* Fixed point */
14f9c5c9
AS
11419
11420/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11421 type name that encodes the 'small and 'delta information.
4c4b4cd2 11422 Otherwise, return NULL. */
14f9c5c9 11423
d2e4a39e 11424static const char *
ebf56fd3 11425fixed_type_info (struct type *type)
14f9c5c9 11426{
d2e4a39e 11427 const char *name = ada_type_name (type);
14f9c5c9
AS
11428 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11429
d2e4a39e
AS
11430 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11431 {
14f9c5c9 11432 const char *tail = strstr (name, "___XF_");
5b4ee69b 11433
14f9c5c9 11434 if (tail == NULL)
4c4b4cd2 11435 return NULL;
d2e4a39e 11436 else
4c4b4cd2 11437 return tail + 5;
14f9c5c9
AS
11438 }
11439 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11440 return fixed_type_info (TYPE_TARGET_TYPE (type));
11441 else
11442 return NULL;
11443}
11444
4c4b4cd2 11445/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11446
11447int
ebf56fd3 11448ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11449{
11450 return fixed_type_info (type) != NULL;
11451}
11452
4c4b4cd2
PH
11453/* Return non-zero iff TYPE represents a System.Address type. */
11454
11455int
11456ada_is_system_address_type (struct type *type)
11457{
11458 return (TYPE_NAME (type)
11459 && strcmp (TYPE_NAME (type), "system__address") == 0);
11460}
11461
14f9c5c9 11462/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11463 type, return the target floating-point type to be used to represent
11464 of this type during internal computation. */
11465
11466static struct type *
11467ada_scaling_type (struct type *type)
11468{
11469 return builtin_type (get_type_arch (type))->builtin_long_double;
11470}
11471
11472/* Assuming that TYPE is the representation of an Ada fixed-point
11473 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11474 delta cannot be determined. */
14f9c5c9 11475
50eff16b 11476struct value *
ebf56fd3 11477ada_delta (struct type *type)
14f9c5c9
AS
11478{
11479 const char *encoding = fixed_type_info (type);
50eff16b
UW
11480 struct type *scale_type = ada_scaling_type (type);
11481
11482 long long num, den;
11483
11484 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11485 return nullptr;
d2e4a39e 11486 else
50eff16b
UW
11487 return value_binop (value_from_longest (scale_type, num),
11488 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11489}
11490
11491/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11492 factor ('SMALL value) associated with the type. */
14f9c5c9 11493
50eff16b
UW
11494struct value *
11495ada_scaling_factor (struct type *type)
14f9c5c9
AS
11496{
11497 const char *encoding = fixed_type_info (type);
50eff16b
UW
11498 struct type *scale_type = ada_scaling_type (type);
11499
11500 long long num0, den0, num1, den1;
14f9c5c9 11501 int n;
d2e4a39e 11502
50eff16b 11503 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11504 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11505
11506 if (n < 2)
50eff16b 11507 return value_from_longest (scale_type, 1);
14f9c5c9 11508 else if (n == 4)
50eff16b
UW
11509 return value_binop (value_from_longest (scale_type, num1),
11510 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11511 else
50eff16b
UW
11512 return value_binop (value_from_longest (scale_type, num0),
11513 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11514}
11515
14f9c5c9 11516\f
d2e4a39e 11517
4c4b4cd2 11518 /* Range types */
14f9c5c9
AS
11519
11520/* Scan STR beginning at position K for a discriminant name, and
11521 return the value of that discriminant field of DVAL in *PX. If
11522 PNEW_K is not null, put the position of the character beyond the
11523 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11524 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11525
11526static int
108d56a4 11527scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11528 int *pnew_k)
14f9c5c9
AS
11529{
11530 static char *bound_buffer = NULL;
11531 static size_t bound_buffer_len = 0;
5da1a4d3 11532 const char *pstart, *pend, *bound;
d2e4a39e 11533 struct value *bound_val;
14f9c5c9
AS
11534
11535 if (dval == NULL || str == NULL || str[k] == '\0')
11536 return 0;
11537
5da1a4d3
SM
11538 pstart = str + k;
11539 pend = strstr (pstart, "__");
14f9c5c9
AS
11540 if (pend == NULL)
11541 {
5da1a4d3 11542 bound = pstart;
14f9c5c9
AS
11543 k += strlen (bound);
11544 }
d2e4a39e 11545 else
14f9c5c9 11546 {
5da1a4d3
SM
11547 int len = pend - pstart;
11548
11549 /* Strip __ and beyond. */
11550 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11551 strncpy (bound_buffer, pstart, len);
11552 bound_buffer[len] = '\0';
11553
14f9c5c9 11554 bound = bound_buffer;
d2e4a39e 11555 k = pend - str;
14f9c5c9 11556 }
d2e4a39e 11557
df407dfe 11558 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11559 if (bound_val == NULL)
11560 return 0;
11561
11562 *px = value_as_long (bound_val);
11563 if (pnew_k != NULL)
11564 *pnew_k = k;
11565 return 1;
11566}
11567
11568/* Value of variable named NAME in the current environment. If
11569 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11570 otherwise causes an error with message ERR_MSG. */
11571
d2e4a39e 11572static struct value *
edb0c9cb 11573get_var_value (const char *name, const char *err_msg)
14f9c5c9 11574{
b5ec771e 11575 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11576
54d343a2 11577 std::vector<struct block_symbol> syms;
b5ec771e
PA
11578 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11579 get_selected_block (0),
11580 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11581
11582 if (nsyms != 1)
11583 {
11584 if (err_msg == NULL)
4c4b4cd2 11585 return 0;
14f9c5c9 11586 else
8a3fe4f8 11587 error (("%s"), err_msg);
14f9c5c9
AS
11588 }
11589
54d343a2 11590 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11591}
d2e4a39e 11592
edb0c9cb
PA
11593/* Value of integer variable named NAME in the current environment.
11594 If no such variable is found, returns false. Otherwise, sets VALUE
11595 to the variable's value and returns true. */
4c4b4cd2 11596
edb0c9cb
PA
11597bool
11598get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11599{
4c4b4cd2 11600 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11601
14f9c5c9 11602 if (var_val == 0)
edb0c9cb
PA
11603 return false;
11604
11605 value = value_as_long (var_val);
11606 return true;
14f9c5c9 11607}
d2e4a39e 11608
14f9c5c9
AS
11609
11610/* Return a range type whose base type is that of the range type named
11611 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11612 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11613 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11614 corresponding range type from debug information; fall back to using it
11615 if symbol lookup fails. If a new type must be created, allocate it
11616 like ORIG_TYPE was. The bounds information, in general, is encoded
11617 in NAME, the base type given in the named range type. */
14f9c5c9 11618
d2e4a39e 11619static struct type *
28c85d6c 11620to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11621{
0d5cff50 11622 const char *name;
14f9c5c9 11623 struct type *base_type;
108d56a4 11624 const char *subtype_info;
14f9c5c9 11625
28c85d6c
JB
11626 gdb_assert (raw_type != NULL);
11627 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11628
1ce677a4 11629 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11630 base_type = TYPE_TARGET_TYPE (raw_type);
11631 else
11632 base_type = raw_type;
11633
28c85d6c 11634 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11635 subtype_info = strstr (name, "___XD");
11636 if (subtype_info == NULL)
690cc4eb 11637 {
43bbcdc2
PH
11638 LONGEST L = ada_discrete_type_low_bound (raw_type);
11639 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11640
690cc4eb
PH
11641 if (L < INT_MIN || U > INT_MAX)
11642 return raw_type;
11643 else
0c9c3474
SA
11644 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11645 L, U);
690cc4eb 11646 }
14f9c5c9
AS
11647 else
11648 {
11649 static char *name_buf = NULL;
11650 static size_t name_len = 0;
11651 int prefix_len = subtype_info - name;
11652 LONGEST L, U;
11653 struct type *type;
108d56a4 11654 const char *bounds_str;
14f9c5c9
AS
11655 int n;
11656
11657 GROW_VECT (name_buf, name_len, prefix_len + 5);
11658 strncpy (name_buf, name, prefix_len);
11659 name_buf[prefix_len] = '\0';
11660
11661 subtype_info += 5;
11662 bounds_str = strchr (subtype_info, '_');
11663 n = 1;
11664
d2e4a39e 11665 if (*subtype_info == 'L')
4c4b4cd2
PH
11666 {
11667 if (!ada_scan_number (bounds_str, n, &L, &n)
11668 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11669 return raw_type;
11670 if (bounds_str[n] == '_')
11671 n += 2;
0963b4bd 11672 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11673 n += 1;
11674 subtype_info += 1;
11675 }
d2e4a39e 11676 else
4c4b4cd2 11677 {
4c4b4cd2 11678 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11679 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11680 {
323e0a4a 11681 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11682 L = 1;
11683 }
11684 }
14f9c5c9 11685
d2e4a39e 11686 if (*subtype_info == 'U')
4c4b4cd2
PH
11687 {
11688 if (!ada_scan_number (bounds_str, n, &U, &n)
11689 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11690 return raw_type;
11691 }
d2e4a39e 11692 else
4c4b4cd2 11693 {
4c4b4cd2 11694 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11695 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11696 {
323e0a4a 11697 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11698 U = L;
11699 }
11700 }
14f9c5c9 11701
0c9c3474
SA
11702 type = create_static_range_type (alloc_type_copy (raw_type),
11703 base_type, L, U);
f5a91472
JB
11704 /* create_static_range_type alters the resulting type's length
11705 to match the size of the base_type, which is not what we want.
11706 Set it back to the original range type's length. */
11707 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11708 TYPE_NAME (type) = name;
14f9c5c9
AS
11709 return type;
11710 }
11711}
11712
4c4b4cd2
PH
11713/* True iff NAME is the name of a range type. */
11714
14f9c5c9 11715int
d2e4a39e 11716ada_is_range_type_name (const char *name)
14f9c5c9
AS
11717{
11718 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11719}
14f9c5c9 11720\f
d2e4a39e 11721
4c4b4cd2
PH
11722 /* Modular types */
11723
11724/* True iff TYPE is an Ada modular type. */
14f9c5c9 11725
14f9c5c9 11726int
d2e4a39e 11727ada_is_modular_type (struct type *type)
14f9c5c9 11728{
18af8284 11729 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11730
11731 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11732 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11733 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11734}
11735
4c4b4cd2
PH
11736/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11737
61ee279c 11738ULONGEST
0056e4d5 11739ada_modulus (struct type *type)
14f9c5c9 11740{
43bbcdc2 11741 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11742}
d2e4a39e 11743\f
f7f9143b
JB
11744
11745/* Ada exception catchpoint support:
11746 ---------------------------------
11747
11748 We support 3 kinds of exception catchpoints:
11749 . catchpoints on Ada exceptions
11750 . catchpoints on unhandled Ada exceptions
11751 . catchpoints on failed assertions
11752
11753 Exceptions raised during failed assertions, or unhandled exceptions
11754 could perfectly be caught with the general catchpoint on Ada exceptions.
11755 However, we can easily differentiate these two special cases, and having
11756 the option to distinguish these two cases from the rest can be useful
11757 to zero-in on certain situations.
11758
11759 Exception catchpoints are a specialized form of breakpoint,
11760 since they rely on inserting breakpoints inside known routines
11761 of the GNAT runtime. The implementation therefore uses a standard
11762 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11763 of breakpoint_ops.
11764
0259addd
JB
11765 Support in the runtime for exception catchpoints have been changed
11766 a few times already, and these changes affect the implementation
11767 of these catchpoints. In order to be able to support several
11768 variants of the runtime, we use a sniffer that will determine
28010a5d 11769 the runtime variant used by the program being debugged. */
f7f9143b 11770
82eacd52
JB
11771/* Ada's standard exceptions.
11772
11773 The Ada 83 standard also defined Numeric_Error. But there so many
11774 situations where it was unclear from the Ada 83 Reference Manual
11775 (RM) whether Constraint_Error or Numeric_Error should be raised,
11776 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11777 Interpretation saying that anytime the RM says that Numeric_Error
11778 should be raised, the implementation may raise Constraint_Error.
11779 Ada 95 went one step further and pretty much removed Numeric_Error
11780 from the list of standard exceptions (it made it a renaming of
11781 Constraint_Error, to help preserve compatibility when compiling
11782 an Ada83 compiler). As such, we do not include Numeric_Error from
11783 this list of standard exceptions. */
3d0b0fa3 11784
a121b7c1 11785static const char *standard_exc[] = {
3d0b0fa3
JB
11786 "constraint_error",
11787 "program_error",
11788 "storage_error",
11789 "tasking_error"
11790};
11791
0259addd
JB
11792typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11793
11794/* A structure that describes how to support exception catchpoints
11795 for a given executable. */
11796
11797struct exception_support_info
11798{
11799 /* The name of the symbol to break on in order to insert
11800 a catchpoint on exceptions. */
11801 const char *catch_exception_sym;
11802
11803 /* The name of the symbol to break on in order to insert
11804 a catchpoint on unhandled exceptions. */
11805 const char *catch_exception_unhandled_sym;
11806
11807 /* The name of the symbol to break on in order to insert
11808 a catchpoint on failed assertions. */
11809 const char *catch_assert_sym;
11810
9f757bf7
XR
11811 /* The name of the symbol to break on in order to insert
11812 a catchpoint on exception handling. */
11813 const char *catch_handlers_sym;
11814
0259addd
JB
11815 /* Assuming that the inferior just triggered an unhandled exception
11816 catchpoint, this function is responsible for returning the address
11817 in inferior memory where the name of that exception is stored.
11818 Return zero if the address could not be computed. */
11819 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11820};
11821
11822static CORE_ADDR ada_unhandled_exception_name_addr (void);
11823static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11824
11825/* The following exception support info structure describes how to
11826 implement exception catchpoints with the latest version of the
ca683e3a 11827 Ada runtime (as of 2019-08-??). */
0259addd
JB
11828
11829static const struct exception_support_info default_exception_support_info =
ca683e3a
AO
11830{
11831 "__gnat_debug_raise_exception", /* catch_exception_sym */
11832 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11833 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11834 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11835 ada_unhandled_exception_name_addr
11836};
11837
11838/* The following exception support info structure describes how to
11839 implement exception catchpoints with an earlier version of the
11840 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11841
11842static const struct exception_support_info exception_support_info_v0 =
0259addd
JB
11843{
11844 "__gnat_debug_raise_exception", /* catch_exception_sym */
11845 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11846 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11847 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11848 ada_unhandled_exception_name_addr
11849};
11850
11851/* The following exception support info structure describes how to
11852 implement exception catchpoints with a slightly older version
11853 of the Ada runtime. */
11854
11855static const struct exception_support_info exception_support_info_fallback =
11856{
11857 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11858 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11859 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 11860 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11861 ada_unhandled_exception_name_addr_from_raise
11862};
11863
f17011e0
JB
11864/* Return nonzero if we can detect the exception support routines
11865 described in EINFO.
11866
11867 This function errors out if an abnormal situation is detected
11868 (for instance, if we find the exception support routines, but
11869 that support is found to be incomplete). */
11870
11871static int
11872ada_has_this_exception_support (const struct exception_support_info *einfo)
11873{
11874 struct symbol *sym;
11875
11876 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11877 that should be compiled with debugging information. As a result, we
11878 expect to find that symbol in the symtabs. */
11879
11880 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11881 if (sym == NULL)
a6af7abe
JB
11882 {
11883 /* Perhaps we did not find our symbol because the Ada runtime was
11884 compiled without debugging info, or simply stripped of it.
11885 It happens on some GNU/Linux distributions for instance, where
11886 users have to install a separate debug package in order to get
11887 the runtime's debugging info. In that situation, let the user
11888 know why we cannot insert an Ada exception catchpoint.
11889
11890 Note: Just for the purpose of inserting our Ada exception
11891 catchpoint, we could rely purely on the associated minimal symbol.
11892 But we would be operating in degraded mode anyway, since we are
11893 still lacking the debugging info needed later on to extract
11894 the name of the exception being raised (this name is printed in
11895 the catchpoint message, and is also used when trying to catch
11896 a specific exception). We do not handle this case for now. */
3b7344d5 11897 struct bound_minimal_symbol msym
1c8e84b0
JB
11898 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11899
3b7344d5 11900 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
11901 error (_("Your Ada runtime appears to be missing some debugging "
11902 "information.\nCannot insert Ada exception catchpoint "
11903 "in this configuration."));
11904
11905 return 0;
11906 }
f17011e0
JB
11907
11908 /* Make sure that the symbol we found corresponds to a function. */
11909
11910 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
ca683e3a
AO
11911 {
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11913 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11914 return 0;
11915 }
11916
11917 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11918 if (sym == NULL)
11919 {
11920 struct bound_minimal_symbol msym
11921 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11922
11923 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11924 error (_("Your Ada runtime appears to be missing some debugging "
11925 "information.\nCannot insert Ada exception catchpoint "
11926 "in this configuration."));
11927
11928 return 0;
11929 }
11930
11931 /* Make sure that the symbol we found corresponds to a function. */
11932
11933 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11934 {
11935 error (_("Symbol \"%s\" is not a function (class = %d)"),
987012b8 11936 sym->linkage_name (), SYMBOL_CLASS (sym));
ca683e3a
AO
11937 return 0;
11938 }
f17011e0
JB
11939
11940 return 1;
11941}
11942
0259addd
JB
11943/* Inspect the Ada runtime and determine which exception info structure
11944 should be used to provide support for exception catchpoints.
11945
3eecfa55
JB
11946 This function will always set the per-inferior exception_info,
11947 or raise an error. */
0259addd
JB
11948
11949static void
11950ada_exception_support_info_sniffer (void)
11951{
3eecfa55 11952 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
11953
11954 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 11955 if (data->exception_info != NULL)
0259addd
JB
11956 return;
11957
11958 /* Check the latest (default) exception support info. */
f17011e0 11959 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 11960 {
3eecfa55 11961 data->exception_info = &default_exception_support_info;
0259addd
JB
11962 return;
11963 }
11964
ca683e3a
AO
11965 /* Try the v0 exception suport info. */
11966 if (ada_has_this_exception_support (&exception_support_info_v0))
11967 {
11968 data->exception_info = &exception_support_info_v0;
11969 return;
11970 }
11971
0259addd 11972 /* Try our fallback exception suport info. */
f17011e0 11973 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 11974 {
3eecfa55 11975 data->exception_info = &exception_support_info_fallback;
0259addd
JB
11976 return;
11977 }
11978
11979 /* Sometimes, it is normal for us to not be able to find the routine
11980 we are looking for. This happens when the program is linked with
11981 the shared version of the GNAT runtime, and the program has not been
11982 started yet. Inform the user of these two possible causes if
11983 applicable. */
11984
ccefe4c4 11985 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
11986 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11987
11988 /* If the symbol does not exist, then check that the program is
11989 already started, to make sure that shared libraries have been
11990 loaded. If it is not started, this may mean that the symbol is
11991 in a shared library. */
11992
e99b03dc 11993 if (inferior_ptid.pid () == 0)
0259addd
JB
11994 error (_("Unable to insert catchpoint. Try to start the program first."));
11995
11996 /* At this point, we know that we are debugging an Ada program and
11997 that the inferior has been started, but we still are not able to
0963b4bd 11998 find the run-time symbols. That can mean that we are in
0259addd
JB
11999 configurable run time mode, or that a-except as been optimized
12000 out by the linker... In any case, at this point it is not worth
12001 supporting this feature. */
12002
7dda8cff 12003 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12004}
12005
f7f9143b
JB
12006/* True iff FRAME is very likely to be that of a function that is
12007 part of the runtime system. This is all very heuristic, but is
12008 intended to be used as advice as to what frames are uninteresting
12009 to most users. */
12010
12011static int
12012is_known_support_routine (struct frame_info *frame)
12013{
692465f1 12014 enum language func_lang;
f7f9143b 12015 int i;
f35a17b5 12016 const char *fullname;
f7f9143b 12017
4ed6b5be
JB
12018 /* If this code does not have any debugging information (no symtab),
12019 This cannot be any user code. */
f7f9143b 12020
51abb421 12021 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12022 if (sal.symtab == NULL)
12023 return 1;
12024
4ed6b5be
JB
12025 /* If there is a symtab, but the associated source file cannot be
12026 located, then assume this is not user code: Selecting a frame
12027 for which we cannot display the code would not be very helpful
12028 for the user. This should also take care of case such as VxWorks
12029 where the kernel has some debugging info provided for a few units. */
f7f9143b 12030
f35a17b5
JK
12031 fullname = symtab_to_fullname (sal.symtab);
12032 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12033 return 1;
12034
85102364 12035 /* Check the unit filename against the Ada runtime file naming.
4ed6b5be
JB
12036 We also check the name of the objfile against the name of some
12037 known system libraries that sometimes come with debugging info
12038 too. */
12039
f7f9143b
JB
12040 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12041 {
12042 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12043 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12044 return 1;
eb822aa6
DE
12045 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12046 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12047 return 1;
f7f9143b
JB
12048 }
12049
4ed6b5be 12050 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12051
c6dc63a1
TT
12052 gdb::unique_xmalloc_ptr<char> func_name
12053 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12054 if (func_name == NULL)
12055 return 1;
12056
12057 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12058 {
12059 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12060 if (re_exec (func_name.get ()))
12061 return 1;
f7f9143b
JB
12062 }
12063
12064 return 0;
12065}
12066
12067/* Find the first frame that contains debugging information and that is not
12068 part of the Ada run-time, starting from FI and moving upward. */
12069
0ef643c8 12070void
f7f9143b
JB
12071ada_find_printable_frame (struct frame_info *fi)
12072{
12073 for (; fi != NULL; fi = get_prev_frame (fi))
12074 {
12075 if (!is_known_support_routine (fi))
12076 {
12077 select_frame (fi);
12078 break;
12079 }
12080 }
12081
12082}
12083
12084/* Assuming that the inferior just triggered an unhandled exception
12085 catchpoint, return the address in inferior memory where the name
12086 of the exception is stored.
12087
12088 Return zero if the address could not be computed. */
12089
12090static CORE_ADDR
12091ada_unhandled_exception_name_addr (void)
0259addd
JB
12092{
12093 return parse_and_eval_address ("e.full_name");
12094}
12095
12096/* Same as ada_unhandled_exception_name_addr, except that this function
12097 should be used when the inferior uses an older version of the runtime,
12098 where the exception name needs to be extracted from a specific frame
12099 several frames up in the callstack. */
12100
12101static CORE_ADDR
12102ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12103{
12104 int frame_level;
12105 struct frame_info *fi;
3eecfa55 12106 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12107
12108 /* To determine the name of this exception, we need to select
12109 the frame corresponding to RAISE_SYM_NAME. This frame is
12110 at least 3 levels up, so we simply skip the first 3 frames
12111 without checking the name of their associated function. */
12112 fi = get_current_frame ();
12113 for (frame_level = 0; frame_level < 3; frame_level += 1)
12114 if (fi != NULL)
12115 fi = get_prev_frame (fi);
12116
12117 while (fi != NULL)
12118 {
692465f1
JB
12119 enum language func_lang;
12120
c6dc63a1
TT
12121 gdb::unique_xmalloc_ptr<char> func_name
12122 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12123 if (func_name != NULL)
12124 {
c6dc63a1 12125 if (strcmp (func_name.get (),
55b87a52
KS
12126 data->exception_info->catch_exception_sym) == 0)
12127 break; /* We found the frame we were looking for... */
55b87a52 12128 }
fb44b1a7 12129 fi = get_prev_frame (fi);
f7f9143b
JB
12130 }
12131
12132 if (fi == NULL)
12133 return 0;
12134
12135 select_frame (fi);
12136 return parse_and_eval_address ("id.full_name");
12137}
12138
12139/* Assuming the inferior just triggered an Ada exception catchpoint
12140 (of any type), return the address in inferior memory where the name
12141 of the exception is stored, if applicable.
12142
45db7c09
PA
12143 Assumes the selected frame is the current frame.
12144
f7f9143b
JB
12145 Return zero if the address could not be computed, or if not relevant. */
12146
12147static CORE_ADDR
761269c8 12148ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12149 struct breakpoint *b)
12150{
3eecfa55
JB
12151 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12152
f7f9143b
JB
12153 switch (ex)
12154 {
761269c8 12155 case ada_catch_exception:
f7f9143b
JB
12156 return (parse_and_eval_address ("e.full_name"));
12157 break;
12158
761269c8 12159 case ada_catch_exception_unhandled:
3eecfa55 12160 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12161 break;
9f757bf7
XR
12162
12163 case ada_catch_handlers:
12164 return 0; /* The runtimes does not provide access to the exception
12165 name. */
12166 break;
12167
761269c8 12168 case ada_catch_assert:
f7f9143b
JB
12169 return 0; /* Exception name is not relevant in this case. */
12170 break;
12171
12172 default:
12173 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12174 break;
12175 }
12176
12177 return 0; /* Should never be reached. */
12178}
12179
e547c119
JB
12180/* Assuming the inferior is stopped at an exception catchpoint,
12181 return the message which was associated to the exception, if
12182 available. Return NULL if the message could not be retrieved.
12183
e547c119
JB
12184 Note: The exception message can be associated to an exception
12185 either through the use of the Raise_Exception function, or
12186 more simply (Ada 2005 and later), via:
12187
12188 raise Exception_Name with "exception message";
12189
12190 */
12191
6f46ac85 12192static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12193ada_exception_message_1 (void)
12194{
12195 struct value *e_msg_val;
e547c119 12196 int e_msg_len;
e547c119
JB
12197
12198 /* For runtimes that support this feature, the exception message
12199 is passed as an unbounded string argument called "message". */
12200 e_msg_val = parse_and_eval ("message");
12201 if (e_msg_val == NULL)
12202 return NULL; /* Exception message not supported. */
12203
12204 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12205 gdb_assert (e_msg_val != NULL);
12206 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12207
12208 /* If the message string is empty, then treat it as if there was
12209 no exception message. */
12210 if (e_msg_len <= 0)
12211 return NULL;
12212
6f46ac85
TT
12213 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12214 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12215 e_msg.get ()[e_msg_len] = '\0';
e547c119 12216
e547c119
JB
12217 return e_msg;
12218}
12219
12220/* Same as ada_exception_message_1, except that all exceptions are
12221 contained here (returning NULL instead). */
12222
6f46ac85 12223static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12224ada_exception_message (void)
12225{
6f46ac85 12226 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119 12227
a70b8144 12228 try
e547c119
JB
12229 {
12230 e_msg = ada_exception_message_1 ();
12231 }
230d2906 12232 catch (const gdb_exception_error &e)
e547c119 12233 {
6f46ac85 12234 e_msg.reset (nullptr);
e547c119 12235 }
e547c119
JB
12236
12237 return e_msg;
12238}
12239
f7f9143b
JB
12240/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12241 any error that ada_exception_name_addr_1 might cause to be thrown.
12242 When an error is intercepted, a warning with the error message is printed,
12243 and zero is returned. */
12244
12245static CORE_ADDR
761269c8 12246ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12247 struct breakpoint *b)
12248{
f7f9143b
JB
12249 CORE_ADDR result = 0;
12250
a70b8144 12251 try
f7f9143b
JB
12252 {
12253 result = ada_exception_name_addr_1 (ex, b);
12254 }
12255
230d2906 12256 catch (const gdb_exception_error &e)
f7f9143b 12257 {
3d6e9d23 12258 warning (_("failed to get exception name: %s"), e.what ());
f7f9143b
JB
12259 return 0;
12260 }
12261
12262 return result;
12263}
12264
cb7de75e 12265static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12266 (const char *excep_string,
12267 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12268
12269/* Ada catchpoints.
12270
12271 In the case of catchpoints on Ada exceptions, the catchpoint will
12272 stop the target on every exception the program throws. When a user
12273 specifies the name of a specific exception, we translate this
12274 request into a condition expression (in text form), and then parse
12275 it into an expression stored in each of the catchpoint's locations.
12276 We then use this condition to check whether the exception that was
12277 raised is the one the user is interested in. If not, then the
12278 target is resumed again. We store the name of the requested
12279 exception, in order to be able to re-set the condition expression
12280 when symbols change. */
12281
12282/* An instance of this type is used to represent an Ada catchpoint
5625a286 12283 breakpoint location. */
28010a5d 12284
5625a286 12285class ada_catchpoint_location : public bp_location
28010a5d 12286{
5625a286 12287public:
5f486660 12288 ada_catchpoint_location (breakpoint *owner)
f06f1252 12289 : bp_location (owner, bp_loc_software_breakpoint)
5625a286 12290 {}
28010a5d
PA
12291
12292 /* The condition that checks whether the exception that was raised
12293 is the specific exception the user specified on catchpoint
12294 creation. */
4d01a485 12295 expression_up excep_cond_expr;
28010a5d
PA
12296};
12297
c1fc2657 12298/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12299
c1fc2657 12300struct ada_catchpoint : public breakpoint
28010a5d 12301{
37f6a7f4
TT
12302 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12303 : m_kind (kind)
12304 {
12305 }
12306
28010a5d 12307 /* The name of the specific exception the user specified. */
bc18fbb5 12308 std::string excep_string;
37f6a7f4
TT
12309
12310 /* What kind of catchpoint this is. */
12311 enum ada_exception_catchpoint_kind m_kind;
28010a5d
PA
12312};
12313
12314/* Parse the exception condition string in the context of each of the
12315 catchpoint's locations, and store them for later evaluation. */
12316
12317static void
9f757bf7
XR
12318create_excep_cond_exprs (struct ada_catchpoint *c,
12319 enum ada_exception_catchpoint_kind ex)
28010a5d 12320{
fccf9de1
TT
12321 struct bp_location *bl;
12322
28010a5d 12323 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12324 if (c->excep_string.empty ())
28010a5d
PA
12325 return;
12326
12327 /* Same if there are no locations... */
c1fc2657 12328 if (c->loc == NULL)
28010a5d
PA
12329 return;
12330
fccf9de1
TT
12331 /* Compute the condition expression in text form, from the specific
12332 expection we want to catch. */
12333 std::string cond_string
12334 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d 12335
fccf9de1
TT
12336 /* Iterate over all the catchpoint's locations, and parse an
12337 expression for each. */
12338 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12339 {
12340 struct ada_catchpoint_location *ada_loc
fccf9de1 12341 = (struct ada_catchpoint_location *) bl;
4d01a485 12342 expression_up exp;
28010a5d 12343
fccf9de1 12344 if (!bl->shlib_disabled)
28010a5d 12345 {
bbc13ae3 12346 const char *s;
28010a5d 12347
cb7de75e 12348 s = cond_string.c_str ();
a70b8144 12349 try
28010a5d 12350 {
fccf9de1
TT
12351 exp = parse_exp_1 (&s, bl->address,
12352 block_for_pc (bl->address),
036e657b 12353 0);
28010a5d 12354 }
230d2906 12355 catch (const gdb_exception_error &e)
849f2b52
JB
12356 {
12357 warning (_("failed to reevaluate internal exception condition "
12358 "for catchpoint %d: %s"),
3d6e9d23 12359 c->number, e.what ());
849f2b52 12360 }
28010a5d
PA
12361 }
12362
b22e99fd 12363 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12364 }
28010a5d
PA
12365}
12366
28010a5d
PA
12367/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12368 structure for all exception catchpoint kinds. */
12369
12370static struct bp_location *
37f6a7f4 12371allocate_location_exception (struct breakpoint *self)
28010a5d 12372{
5f486660 12373 return new ada_catchpoint_location (self);
28010a5d
PA
12374}
12375
12376/* Implement the RE_SET method in the breakpoint_ops structure for all
12377 exception catchpoint kinds. */
12378
12379static void
37f6a7f4 12380re_set_exception (struct breakpoint *b)
28010a5d
PA
12381{
12382 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12383
12384 /* Call the base class's method. This updates the catchpoint's
12385 locations. */
2060206e 12386 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12387
12388 /* Reparse the exception conditional expressions. One for each
12389 location. */
37f6a7f4 12390 create_excep_cond_exprs (c, c->m_kind);
28010a5d
PA
12391}
12392
12393/* Returns true if we should stop for this breakpoint hit. If the
12394 user specified a specific exception, we only want to cause a stop
12395 if the program thrown that exception. */
12396
12397static int
12398should_stop_exception (const struct bp_location *bl)
12399{
12400 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12401 const struct ada_catchpoint_location *ada_loc
12402 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12403 int stop;
12404
37f6a7f4
TT
12405 struct internalvar *var = lookup_internalvar ("_ada_exception");
12406 if (c->m_kind == ada_catch_assert)
12407 clear_internalvar (var);
12408 else
12409 {
12410 try
12411 {
12412 const char *expr;
12413
12414 if (c->m_kind == ada_catch_handlers)
12415 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12416 ".all.occurrence.id");
12417 else
12418 expr = "e";
12419
12420 struct value *exc = parse_and_eval (expr);
12421 set_internalvar (var, exc);
12422 }
12423 catch (const gdb_exception_error &ex)
12424 {
12425 clear_internalvar (var);
12426 }
12427 }
12428
28010a5d 12429 /* With no specific exception, should always stop. */
bc18fbb5 12430 if (c->excep_string.empty ())
28010a5d
PA
12431 return 1;
12432
12433 if (ada_loc->excep_cond_expr == NULL)
12434 {
12435 /* We will have a NULL expression if back when we were creating
12436 the expressions, this location's had failed to parse. */
12437 return 1;
12438 }
12439
12440 stop = 1;
a70b8144 12441 try
28010a5d
PA
12442 {
12443 struct value *mark;
12444
12445 mark = value_mark ();
4d01a485 12446 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12447 value_free_to_mark (mark);
12448 }
230d2906 12449 catch (const gdb_exception &ex)
492d29ea
PA
12450 {
12451 exception_fprintf (gdb_stderr, ex,
12452 _("Error in testing exception condition:\n"));
12453 }
492d29ea 12454
28010a5d
PA
12455 return stop;
12456}
12457
12458/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12459 for all exception catchpoint kinds. */
12460
12461static void
37f6a7f4 12462check_status_exception (bpstat bs)
28010a5d
PA
12463{
12464 bs->stop = should_stop_exception (bs->bp_location_at);
12465}
12466
f7f9143b
JB
12467/* Implement the PRINT_IT method in the breakpoint_ops structure
12468 for all exception catchpoint kinds. */
12469
12470static enum print_stop_action
37f6a7f4 12471print_it_exception (bpstat bs)
f7f9143b 12472{
79a45e25 12473 struct ui_out *uiout = current_uiout;
348d480f
PA
12474 struct breakpoint *b = bs->breakpoint_at;
12475
956a9fb9 12476 annotate_catchpoint (b->number);
f7f9143b 12477
112e8700 12478 if (uiout->is_mi_like_p ())
f7f9143b 12479 {
112e8700 12480 uiout->field_string ("reason",
956a9fb9 12481 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12482 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12483 }
12484
112e8700
SM
12485 uiout->text (b->disposition == disp_del
12486 ? "\nTemporary catchpoint " : "\nCatchpoint ");
381befee 12487 uiout->field_signed ("bkptno", b->number);
112e8700 12488 uiout->text (", ");
f7f9143b 12489
45db7c09
PA
12490 /* ada_exception_name_addr relies on the selected frame being the
12491 current frame. Need to do this here because this function may be
12492 called more than once when printing a stop, and below, we'll
12493 select the first frame past the Ada run-time (see
12494 ada_find_printable_frame). */
12495 select_frame (get_current_frame ());
12496
37f6a7f4
TT
12497 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12498 switch (c->m_kind)
f7f9143b 12499 {
761269c8
JB
12500 case ada_catch_exception:
12501 case ada_catch_exception_unhandled:
9f757bf7 12502 case ada_catch_handlers:
956a9fb9 12503 {
37f6a7f4 12504 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
956a9fb9
JB
12505 char exception_name[256];
12506
12507 if (addr != 0)
12508 {
c714b426
PA
12509 read_memory (addr, (gdb_byte *) exception_name,
12510 sizeof (exception_name) - 1);
956a9fb9
JB
12511 exception_name [sizeof (exception_name) - 1] = '\0';
12512 }
12513 else
12514 {
12515 /* For some reason, we were unable to read the exception
12516 name. This could happen if the Runtime was compiled
12517 without debugging info, for instance. In that case,
12518 just replace the exception name by the generic string
12519 "exception" - it will read as "an exception" in the
12520 notification we are about to print. */
967cff16 12521 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12522 }
12523 /* In the case of unhandled exception breakpoints, we print
12524 the exception name as "unhandled EXCEPTION_NAME", to make
12525 it clearer to the user which kind of catchpoint just got
12526 hit. We used ui_out_text to make sure that this extra
12527 info does not pollute the exception name in the MI case. */
37f6a7f4 12528 if (c->m_kind == ada_catch_exception_unhandled)
112e8700
SM
12529 uiout->text ("unhandled ");
12530 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12531 }
12532 break;
761269c8 12533 case ada_catch_assert:
956a9fb9
JB
12534 /* In this case, the name of the exception is not really
12535 important. Just print "failed assertion" to make it clearer
12536 that his program just hit an assertion-failure catchpoint.
12537 We used ui_out_text because this info does not belong in
12538 the MI output. */
112e8700 12539 uiout->text ("failed assertion");
956a9fb9 12540 break;
f7f9143b 12541 }
e547c119 12542
6f46ac85 12543 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12544 if (exception_message != NULL)
12545 {
e547c119 12546 uiout->text (" (");
6f46ac85 12547 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12548 uiout->text (")");
e547c119
JB
12549 }
12550
112e8700 12551 uiout->text (" at ");
956a9fb9 12552 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12553
12554 return PRINT_SRC_AND_LOC;
12555}
12556
12557/* Implement the PRINT_ONE method in the breakpoint_ops structure
12558 for all exception catchpoint kinds. */
12559
12560static void
37f6a7f4 12561print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12562{
79a45e25 12563 struct ui_out *uiout = current_uiout;
28010a5d 12564 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12565 struct value_print_options opts;
12566
12567 get_user_print_options (&opts);
f06f1252 12568
79a45b7d 12569 if (opts.addressprint)
f06f1252 12570 uiout->field_skip ("addr");
f7f9143b
JB
12571
12572 annotate_field (5);
37f6a7f4 12573 switch (c->m_kind)
f7f9143b 12574 {
761269c8 12575 case ada_catch_exception:
bc18fbb5 12576 if (!c->excep_string.empty ())
f7f9143b 12577 {
bc18fbb5
TT
12578 std::string msg = string_printf (_("`%s' Ada exception"),
12579 c->excep_string.c_str ());
28010a5d 12580
112e8700 12581 uiout->field_string ("what", msg);
f7f9143b
JB
12582 }
12583 else
112e8700 12584 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12585
12586 break;
12587
761269c8 12588 case ada_catch_exception_unhandled:
112e8700 12589 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12590 break;
12591
9f757bf7 12592 case ada_catch_handlers:
bc18fbb5 12593 if (!c->excep_string.empty ())
9f757bf7
XR
12594 {
12595 uiout->field_fmt ("what",
12596 _("`%s' Ada exception handlers"),
bc18fbb5 12597 c->excep_string.c_str ());
9f757bf7
XR
12598 }
12599 else
12600 uiout->field_string ("what", "all Ada exceptions handlers");
12601 break;
12602
761269c8 12603 case ada_catch_assert:
112e8700 12604 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12605 break;
12606
12607 default:
12608 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12609 break;
12610 }
12611}
12612
12613/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12614 for all exception catchpoint kinds. */
12615
12616static void
37f6a7f4 12617print_mention_exception (struct breakpoint *b)
f7f9143b 12618{
28010a5d 12619 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12620 struct ui_out *uiout = current_uiout;
28010a5d 12621
112e8700 12622 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12623 : _("Catchpoint "));
381befee 12624 uiout->field_signed ("bkptno", b->number);
112e8700 12625 uiout->text (": ");
00eb2c4a 12626
37f6a7f4 12627 switch (c->m_kind)
f7f9143b 12628 {
761269c8 12629 case ada_catch_exception:
bc18fbb5 12630 if (!c->excep_string.empty ())
00eb2c4a 12631 {
862d101a 12632 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12633 c->excep_string.c_str ());
862d101a 12634 uiout->text (info.c_str ());
00eb2c4a 12635 }
f7f9143b 12636 else
112e8700 12637 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12638 break;
12639
761269c8 12640 case ada_catch_exception_unhandled:
112e8700 12641 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12642 break;
9f757bf7
XR
12643
12644 case ada_catch_handlers:
bc18fbb5 12645 if (!c->excep_string.empty ())
9f757bf7
XR
12646 {
12647 std::string info
12648 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12649 c->excep_string.c_str ());
9f757bf7
XR
12650 uiout->text (info.c_str ());
12651 }
12652 else
12653 uiout->text (_("all Ada exceptions handlers"));
12654 break;
12655
761269c8 12656 case ada_catch_assert:
112e8700 12657 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12658 break;
12659
12660 default:
12661 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12662 break;
12663 }
12664}
12665
6149aea9
PA
12666/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12667 for all exception catchpoint kinds. */
12668
12669static void
37f6a7f4 12670print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
6149aea9 12671{
28010a5d
PA
12672 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12673
37f6a7f4 12674 switch (c->m_kind)
6149aea9 12675 {
761269c8 12676 case ada_catch_exception:
6149aea9 12677 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12678 if (!c->excep_string.empty ())
12679 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12680 break;
12681
761269c8 12682 case ada_catch_exception_unhandled:
78076abc 12683 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12684 break;
12685
9f757bf7
XR
12686 case ada_catch_handlers:
12687 fprintf_filtered (fp, "catch handlers");
12688 break;
12689
761269c8 12690 case ada_catch_assert:
6149aea9
PA
12691 fprintf_filtered (fp, "catch assert");
12692 break;
12693
12694 default:
12695 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12696 }
d9b3f62e 12697 print_recreate_thread (b, fp);
6149aea9
PA
12698}
12699
37f6a7f4 12700/* Virtual tables for various breakpoint types. */
2060206e 12701static struct breakpoint_ops catch_exception_breakpoint_ops;
2060206e 12702static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
2060206e 12703static struct breakpoint_ops catch_assert_breakpoint_ops;
9f757bf7
XR
12704static struct breakpoint_ops catch_handlers_breakpoint_ops;
12705
f06f1252
TT
12706/* See ada-lang.h. */
12707
12708bool
12709is_ada_exception_catchpoint (breakpoint *bp)
12710{
12711 return (bp->ops == &catch_exception_breakpoint_ops
12712 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12713 || bp->ops == &catch_assert_breakpoint_ops
12714 || bp->ops == &catch_handlers_breakpoint_ops);
12715}
12716
f7f9143b
JB
12717/* Split the arguments specified in a "catch exception" command.
12718 Set EX to the appropriate catchpoint type.
28010a5d 12719 Set EXCEP_STRING to the name of the specific exception if
5845583d 12720 specified by the user.
9f757bf7
XR
12721 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12722 "catch handlers" command. False otherwise.
5845583d
JB
12723 If a condition is found at the end of the arguments, the condition
12724 expression is stored in COND_STRING (memory must be deallocated
12725 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
12726
12727static void
a121b7c1 12728catch_ada_exception_command_split (const char *args,
9f757bf7 12729 bool is_catch_handlers_cmd,
761269c8 12730 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
12731 std::string *excep_string,
12732 std::string *cond_string)
f7f9143b 12733{
bc18fbb5 12734 std::string exception_name;
f7f9143b 12735
bc18fbb5
TT
12736 exception_name = extract_arg (&args);
12737 if (exception_name == "if")
5845583d
JB
12738 {
12739 /* This is not an exception name; this is the start of a condition
12740 expression for a catchpoint on all exceptions. So, "un-get"
12741 this token, and set exception_name to NULL. */
bc18fbb5 12742 exception_name.clear ();
5845583d
JB
12743 args -= 2;
12744 }
f7f9143b 12745
5845583d 12746 /* Check to see if we have a condition. */
f7f9143b 12747
f1735a53 12748 args = skip_spaces (args);
61012eef 12749 if (startswith (args, "if")
5845583d
JB
12750 && (isspace (args[2]) || args[2] == '\0'))
12751 {
12752 args += 2;
f1735a53 12753 args = skip_spaces (args);
5845583d
JB
12754
12755 if (args[0] == '\0')
12756 error (_("Condition missing after `if' keyword"));
bc18fbb5 12757 *cond_string = args;
5845583d
JB
12758
12759 args += strlen (args);
12760 }
12761
12762 /* Check that we do not have any more arguments. Anything else
12763 is unexpected. */
f7f9143b
JB
12764
12765 if (args[0] != '\0')
12766 error (_("Junk at end of expression"));
12767
9f757bf7
XR
12768 if (is_catch_handlers_cmd)
12769 {
12770 /* Catch handling of exceptions. */
12771 *ex = ada_catch_handlers;
12772 *excep_string = exception_name;
12773 }
bc18fbb5 12774 else if (exception_name.empty ())
f7f9143b
JB
12775 {
12776 /* Catch all exceptions. */
761269c8 12777 *ex = ada_catch_exception;
bc18fbb5 12778 excep_string->clear ();
f7f9143b 12779 }
bc18fbb5 12780 else if (exception_name == "unhandled")
f7f9143b
JB
12781 {
12782 /* Catch unhandled exceptions. */
761269c8 12783 *ex = ada_catch_exception_unhandled;
bc18fbb5 12784 excep_string->clear ();
f7f9143b
JB
12785 }
12786 else
12787 {
12788 /* Catch a specific exception. */
761269c8 12789 *ex = ada_catch_exception;
28010a5d 12790 *excep_string = exception_name;
f7f9143b
JB
12791 }
12792}
12793
12794/* Return the name of the symbol on which we should break in order to
12795 implement a catchpoint of the EX kind. */
12796
12797static const char *
761269c8 12798ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 12799{
3eecfa55
JB
12800 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12801
12802 gdb_assert (data->exception_info != NULL);
0259addd 12803
f7f9143b
JB
12804 switch (ex)
12805 {
761269c8 12806 case ada_catch_exception:
3eecfa55 12807 return (data->exception_info->catch_exception_sym);
f7f9143b 12808 break;
761269c8 12809 case ada_catch_exception_unhandled:
3eecfa55 12810 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 12811 break;
761269c8 12812 case ada_catch_assert:
3eecfa55 12813 return (data->exception_info->catch_assert_sym);
f7f9143b 12814 break;
9f757bf7
XR
12815 case ada_catch_handlers:
12816 return (data->exception_info->catch_handlers_sym);
12817 break;
f7f9143b
JB
12818 default:
12819 internal_error (__FILE__, __LINE__,
12820 _("unexpected catchpoint kind (%d)"), ex);
12821 }
12822}
12823
12824/* Return the breakpoint ops "virtual table" used for catchpoints
12825 of the EX kind. */
12826
c0a91b2b 12827static const struct breakpoint_ops *
761269c8 12828ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
12829{
12830 switch (ex)
12831 {
761269c8 12832 case ada_catch_exception:
f7f9143b
JB
12833 return (&catch_exception_breakpoint_ops);
12834 break;
761269c8 12835 case ada_catch_exception_unhandled:
f7f9143b
JB
12836 return (&catch_exception_unhandled_breakpoint_ops);
12837 break;
761269c8 12838 case ada_catch_assert:
f7f9143b
JB
12839 return (&catch_assert_breakpoint_ops);
12840 break;
9f757bf7
XR
12841 case ada_catch_handlers:
12842 return (&catch_handlers_breakpoint_ops);
12843 break;
f7f9143b
JB
12844 default:
12845 internal_error (__FILE__, __LINE__,
12846 _("unexpected catchpoint kind (%d)"), ex);
12847 }
12848}
12849
12850/* Return the condition that will be used to match the current exception
12851 being raised with the exception that the user wants to catch. This
12852 assumes that this condition is used when the inferior just triggered
12853 an exception catchpoint.
cb7de75e 12854 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 12855
cb7de75e 12856static std::string
9f757bf7
XR
12857ada_exception_catchpoint_cond_string (const char *excep_string,
12858 enum ada_exception_catchpoint_kind ex)
f7f9143b 12859{
3d0b0fa3 12860 int i;
fccf9de1 12861 bool is_standard_exc = false;
cb7de75e 12862 std::string result;
9f757bf7
XR
12863
12864 if (ex == ada_catch_handlers)
12865 {
12866 /* For exception handlers catchpoints, the condition string does
12867 not use the same parameter as for the other exceptions. */
fccf9de1
TT
12868 result = ("long_integer (GNAT_GCC_exception_Access"
12869 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
12870 }
12871 else
fccf9de1 12872 result = "long_integer (e)";
3d0b0fa3 12873
0963b4bd 12874 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 12875 runtime units that have been compiled without debugging info; if
28010a5d 12876 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
12877 exception (e.g. "constraint_error") then, during the evaluation
12878 of the condition expression, the symbol lookup on this name would
0963b4bd 12879 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
12880 may then be set only on user-defined exceptions which have the
12881 same not-fully-qualified name (e.g. my_package.constraint_error).
12882
12883 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 12884 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
12885 exception constraint_error" is rewritten into "catch exception
12886 standard.constraint_error".
12887
85102364 12888 If an exception named constraint_error is defined in another package of
3d0b0fa3
JB
12889 the inferior program, then the only way to specify this exception as a
12890 breakpoint condition is to use its fully-qualified named:
fccf9de1 12891 e.g. my_package.constraint_error. */
3d0b0fa3
JB
12892
12893 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12894 {
28010a5d 12895 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 12896 {
fccf9de1 12897 is_standard_exc = true;
9f757bf7 12898 break;
3d0b0fa3
JB
12899 }
12900 }
9f757bf7 12901
fccf9de1
TT
12902 result += " = ";
12903
12904 if (is_standard_exc)
12905 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12906 else
12907 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 12908
9f757bf7 12909 return result;
f7f9143b
JB
12910}
12911
12912/* Return the symtab_and_line that should be used to insert an exception
12913 catchpoint of the TYPE kind.
12914
28010a5d
PA
12915 ADDR_STRING returns the name of the function where the real
12916 breakpoint that implements the catchpoints is set, depending on the
12917 type of catchpoint we need to create. */
f7f9143b
JB
12918
12919static struct symtab_and_line
bc18fbb5 12920ada_exception_sal (enum ada_exception_catchpoint_kind ex,
cc12f4a8 12921 std::string *addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
12922{
12923 const char *sym_name;
12924 struct symbol *sym;
f7f9143b 12925
0259addd
JB
12926 /* First, find out which exception support info to use. */
12927 ada_exception_support_info_sniffer ();
12928
12929 /* Then lookup the function on which we will break in order to catch
f7f9143b 12930 the Ada exceptions requested by the user. */
f7f9143b
JB
12931 sym_name = ada_exception_sym_name (ex);
12932 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12933
57aff202
JB
12934 if (sym == NULL)
12935 error (_("Catchpoint symbol not found: %s"), sym_name);
12936
12937 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12938 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
f7f9143b
JB
12939
12940 /* Set ADDR_STRING. */
cc12f4a8 12941 *addr_string = sym_name;
f7f9143b 12942
f7f9143b 12943 /* Set OPS. */
4b9eee8c 12944 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 12945
f17011e0 12946 return find_function_start_sal (sym, 1);
f7f9143b
JB
12947}
12948
b4a5b78b 12949/* Create an Ada exception catchpoint.
f7f9143b 12950
b4a5b78b 12951 EX_KIND is the kind of exception catchpoint to be created.
5845583d 12952
bc18fbb5 12953 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 12954 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 12955 of the exception to which this catchpoint applies.
2df4d1d5 12956
bc18fbb5 12957 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 12958
b4a5b78b
JB
12959 TEMPFLAG, if nonzero, means that the underlying breakpoint
12960 should be temporary.
28010a5d 12961
b4a5b78b 12962 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 12963
349774ef 12964void
28010a5d 12965create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 12966 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 12967 const std::string &excep_string,
56ecd069 12968 const std::string &cond_string,
28010a5d 12969 int tempflag,
349774ef 12970 int disabled,
28010a5d
PA
12971 int from_tty)
12972{
cc12f4a8 12973 std::string addr_string;
b4a5b78b 12974 const struct breakpoint_ops *ops = NULL;
bc18fbb5 12975 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 12976
37f6a7f4 12977 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
cc12f4a8 12978 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
349774ef 12979 ops, tempflag, disabled, from_tty);
28010a5d 12980 c->excep_string = excep_string;
9f757bf7 12981 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
12982 if (!cond_string.empty ())
12983 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 12984 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
12985}
12986
9ac4176b
PA
12987/* Implement the "catch exception" command. */
12988
12989static void
eb4c3f4a 12990catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
12991 struct cmd_list_element *command)
12992{
a121b7c1 12993 const char *arg = arg_entry;
9ac4176b
PA
12994 struct gdbarch *gdbarch = get_current_arch ();
12995 int tempflag;
761269c8 12996 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 12997 std::string excep_string;
56ecd069 12998 std::string cond_string;
9ac4176b
PA
12999
13000 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13001
13002 if (!arg)
13003 arg = "";
9f757bf7 13004 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13005 &cond_string);
9f757bf7
XR
13006 create_ada_exception_catchpoint (gdbarch, ex_kind,
13007 excep_string, cond_string,
13008 tempflag, 1 /* enabled */,
13009 from_tty);
13010}
13011
13012/* Implement the "catch handlers" command. */
13013
13014static void
13015catch_ada_handlers_command (const char *arg_entry, int from_tty,
13016 struct cmd_list_element *command)
13017{
13018 const char *arg = arg_entry;
13019 struct gdbarch *gdbarch = get_current_arch ();
13020 int tempflag;
13021 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13022 std::string excep_string;
56ecd069 13023 std::string cond_string;
9f757bf7
XR
13024
13025 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13026
13027 if (!arg)
13028 arg = "";
13029 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13030 &cond_string);
b4a5b78b
JB
13031 create_ada_exception_catchpoint (gdbarch, ex_kind,
13032 excep_string, cond_string,
349774ef
JB
13033 tempflag, 1 /* enabled */,
13034 from_tty);
9ac4176b
PA
13035}
13036
71bed2db
TT
13037/* Completion function for the Ada "catch" commands. */
13038
13039static void
13040catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13041 const char *text, const char *word)
13042{
13043 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13044
13045 for (const ada_exc_info &info : exceptions)
13046 {
13047 if (startswith (info.name, word))
b02f78f9 13048 tracker.add_completion (make_unique_xstrdup (info.name));
71bed2db
TT
13049 }
13050}
13051
b4a5b78b 13052/* Split the arguments specified in a "catch assert" command.
5845583d 13053
b4a5b78b
JB
13054 ARGS contains the command's arguments (or the empty string if
13055 no arguments were passed).
5845583d
JB
13056
13057 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13058 (the memory needs to be deallocated after use). */
5845583d 13059
b4a5b78b 13060static void
56ecd069 13061catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13062{
f1735a53 13063 args = skip_spaces (args);
f7f9143b 13064
5845583d 13065 /* Check whether a condition was provided. */
61012eef 13066 if (startswith (args, "if")
5845583d 13067 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13068 {
5845583d 13069 args += 2;
f1735a53 13070 args = skip_spaces (args);
5845583d
JB
13071 if (args[0] == '\0')
13072 error (_("condition missing after `if' keyword"));
56ecd069 13073 cond_string.assign (args);
f7f9143b
JB
13074 }
13075
5845583d
JB
13076 /* Otherwise, there should be no other argument at the end of
13077 the command. */
13078 else if (args[0] != '\0')
13079 error (_("Junk at end of arguments."));
f7f9143b
JB
13080}
13081
9ac4176b
PA
13082/* Implement the "catch assert" command. */
13083
13084static void
eb4c3f4a 13085catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13086 struct cmd_list_element *command)
13087{
a121b7c1 13088 const char *arg = arg_entry;
9ac4176b
PA
13089 struct gdbarch *gdbarch = get_current_arch ();
13090 int tempflag;
56ecd069 13091 std::string cond_string;
9ac4176b
PA
13092
13093 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13094
13095 if (!arg)
13096 arg = "";
56ecd069 13097 catch_ada_assert_command_split (arg, cond_string);
761269c8 13098 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13099 "", cond_string,
349774ef
JB
13100 tempflag, 1 /* enabled */,
13101 from_tty);
9ac4176b 13102}
778865d3
JB
13103
13104/* Return non-zero if the symbol SYM is an Ada exception object. */
13105
13106static int
13107ada_is_exception_sym (struct symbol *sym)
13108{
a737d952 13109 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13110
13111 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13112 && SYMBOL_CLASS (sym) != LOC_BLOCK
13113 && SYMBOL_CLASS (sym) != LOC_CONST
13114 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13115 && type_name != NULL && strcmp (type_name, "exception") == 0);
13116}
13117
13118/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13119 Ada exception object. This matches all exceptions except the ones
13120 defined by the Ada language. */
13121
13122static int
13123ada_is_non_standard_exception_sym (struct symbol *sym)
13124{
13125 int i;
13126
13127 if (!ada_is_exception_sym (sym))
13128 return 0;
13129
13130 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
987012b8 13131 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
778865d3
JB
13132 return 0; /* A standard exception. */
13133
13134 /* Numeric_Error is also a standard exception, so exclude it.
13135 See the STANDARD_EXC description for more details as to why
13136 this exception is not listed in that array. */
987012b8 13137 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
778865d3
JB
13138 return 0;
13139
13140 return 1;
13141}
13142
ab816a27 13143/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13144 objects.
13145
13146 The comparison is determined first by exception name, and then
13147 by exception address. */
13148
ab816a27 13149bool
cc536b21 13150ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13151{
778865d3
JB
13152 int result;
13153
ab816a27
TT
13154 result = strcmp (name, other.name);
13155 if (result < 0)
13156 return true;
13157 if (result == 0 && addr < other.addr)
13158 return true;
13159 return false;
13160}
778865d3 13161
ab816a27 13162bool
cc536b21 13163ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13164{
13165 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13166}
13167
13168/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13169 routine, but keeping the first SKIP elements untouched.
13170
13171 All duplicates are also removed. */
13172
13173static void
ab816a27 13174sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13175 int skip)
13176{
ab816a27
TT
13177 std::sort (exceptions->begin () + skip, exceptions->end ());
13178 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13179 exceptions->end ());
778865d3
JB
13180}
13181
778865d3
JB
13182/* Add all exceptions defined by the Ada standard whose name match
13183 a regular expression.
13184
13185 If PREG is not NULL, then this regexp_t object is used to
13186 perform the symbol name matching. Otherwise, no name-based
13187 filtering is performed.
13188
13189 EXCEPTIONS is a vector of exceptions to which matching exceptions
13190 gets pushed. */
13191
13192static void
2d7cc5c7 13193ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13194 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13195{
13196 int i;
13197
13198 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13199 {
13200 if (preg == NULL
2d7cc5c7 13201 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13202 {
13203 struct bound_minimal_symbol msymbol
13204 = ada_lookup_simple_minsym (standard_exc[i]);
13205
13206 if (msymbol.minsym != NULL)
13207 {
13208 struct ada_exc_info info
77e371c0 13209 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13210
ab816a27 13211 exceptions->push_back (info);
778865d3
JB
13212 }
13213 }
13214 }
13215}
13216
13217/* Add all Ada exceptions defined locally and accessible from the given
13218 FRAME.
13219
13220 If PREG is not NULL, then this regexp_t object is used to
13221 perform the symbol name matching. Otherwise, no name-based
13222 filtering is performed.
13223
13224 EXCEPTIONS is a vector of exceptions to which matching exceptions
13225 gets pushed. */
13226
13227static void
2d7cc5c7
PA
13228ada_add_exceptions_from_frame (compiled_regex *preg,
13229 struct frame_info *frame,
ab816a27 13230 std::vector<ada_exc_info> *exceptions)
778865d3 13231{
3977b71f 13232 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13233
13234 while (block != 0)
13235 {
13236 struct block_iterator iter;
13237 struct symbol *sym;
13238
13239 ALL_BLOCK_SYMBOLS (block, iter, sym)
13240 {
13241 switch (SYMBOL_CLASS (sym))
13242 {
13243 case LOC_TYPEDEF:
13244 case LOC_BLOCK:
13245 case LOC_CONST:
13246 break;
13247 default:
13248 if (ada_is_exception_sym (sym))
13249 {
987012b8 13250 struct ada_exc_info info = {sym->print_name (),
778865d3
JB
13251 SYMBOL_VALUE_ADDRESS (sym)};
13252
ab816a27 13253 exceptions->push_back (info);
778865d3
JB
13254 }
13255 }
13256 }
13257 if (BLOCK_FUNCTION (block) != NULL)
13258 break;
13259 block = BLOCK_SUPERBLOCK (block);
13260 }
13261}
13262
14bc53a8
PA
13263/* Return true if NAME matches PREG or if PREG is NULL. */
13264
13265static bool
2d7cc5c7 13266name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13267{
13268 return (preg == NULL
f945dedf 13269 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
14bc53a8
PA
13270}
13271
778865d3
JB
13272/* Add all exceptions defined globally whose name name match
13273 a regular expression, excluding standard exceptions.
13274
13275 The reason we exclude standard exceptions is that they need
13276 to be handled separately: Standard exceptions are defined inside
13277 a runtime unit which is normally not compiled with debugging info,
13278 and thus usually do not show up in our symbol search. However,
13279 if the unit was in fact built with debugging info, we need to
13280 exclude them because they would duplicate the entry we found
13281 during the special loop that specifically searches for those
13282 standard exceptions.
13283
13284 If PREG is not NULL, then this regexp_t object is used to
13285 perform the symbol name matching. Otherwise, no name-based
13286 filtering is performed.
13287
13288 EXCEPTIONS is a vector of exceptions to which matching exceptions
13289 gets pushed. */
13290
13291static void
2d7cc5c7 13292ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13293 std::vector<ada_exc_info> *exceptions)
778865d3 13294{
14bc53a8
PA
13295 /* In Ada, the symbol "search name" is a linkage name, whereas the
13296 regular expression used to do the matching refers to the natural
13297 name. So match against the decoded name. */
13298 expand_symtabs_matching (NULL,
b5ec771e 13299 lookup_name_info::match_any (),
14bc53a8
PA
13300 [&] (const char *search_name)
13301 {
f945dedf
CB
13302 std::string decoded = ada_decode (search_name);
13303 return name_matches_regex (decoded.c_str (), preg);
14bc53a8
PA
13304 },
13305 NULL,
13306 VARIABLES_DOMAIN);
778865d3 13307
2030c079 13308 for (objfile *objfile : current_program_space->objfiles ())
778865d3 13309 {
b669c953 13310 for (compunit_symtab *s : objfile->compunits ())
778865d3 13311 {
d8aeb77f
TT
13312 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13313 int i;
778865d3 13314
d8aeb77f
TT
13315 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13316 {
582942f4 13317 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
d8aeb77f
TT
13318 struct block_iterator iter;
13319 struct symbol *sym;
778865d3 13320
d8aeb77f
TT
13321 ALL_BLOCK_SYMBOLS (b, iter, sym)
13322 if (ada_is_non_standard_exception_sym (sym)
987012b8 13323 && name_matches_regex (sym->natural_name (), preg))
d8aeb77f
TT
13324 {
13325 struct ada_exc_info info
987012b8 13326 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
d8aeb77f
TT
13327
13328 exceptions->push_back (info);
13329 }
13330 }
778865d3
JB
13331 }
13332 }
13333}
13334
13335/* Implements ada_exceptions_list with the regular expression passed
13336 as a regex_t, rather than a string.
13337
13338 If not NULL, PREG is used to filter out exceptions whose names
13339 do not match. Otherwise, all exceptions are listed. */
13340
ab816a27 13341static std::vector<ada_exc_info>
2d7cc5c7 13342ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13343{
ab816a27 13344 std::vector<ada_exc_info> result;
778865d3
JB
13345 int prev_len;
13346
13347 /* First, list the known standard exceptions. These exceptions
13348 need to be handled separately, as they are usually defined in
13349 runtime units that have been compiled without debugging info. */
13350
13351 ada_add_standard_exceptions (preg, &result);
13352
13353 /* Next, find all exceptions whose scope is local and accessible
13354 from the currently selected frame. */
13355
13356 if (has_stack_frames ())
13357 {
ab816a27 13358 prev_len = result.size ();
778865d3
JB
13359 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13360 &result);
ab816a27 13361 if (result.size () > prev_len)
778865d3
JB
13362 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13363 }
13364
13365 /* Add all exceptions whose scope is global. */
13366
ab816a27 13367 prev_len = result.size ();
778865d3 13368 ada_add_global_exceptions (preg, &result);
ab816a27 13369 if (result.size () > prev_len)
778865d3
JB
13370 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13371
778865d3
JB
13372 return result;
13373}
13374
13375/* Return a vector of ada_exc_info.
13376
13377 If REGEXP is NULL, all exceptions are included in the result.
13378 Otherwise, it should contain a valid regular expression,
13379 and only the exceptions whose names match that regular expression
13380 are included in the result.
13381
13382 The exceptions are sorted in the following order:
13383 - Standard exceptions (defined by the Ada language), in
13384 alphabetical order;
13385 - Exceptions only visible from the current frame, in
13386 alphabetical order;
13387 - Exceptions whose scope is global, in alphabetical order. */
13388
ab816a27 13389std::vector<ada_exc_info>
778865d3
JB
13390ada_exceptions_list (const char *regexp)
13391{
2d7cc5c7
PA
13392 if (regexp == NULL)
13393 return ada_exceptions_list_1 (NULL);
778865d3 13394
2d7cc5c7
PA
13395 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13396 return ada_exceptions_list_1 (&reg);
778865d3
JB
13397}
13398
13399/* Implement the "info exceptions" command. */
13400
13401static void
1d12d88f 13402info_exceptions_command (const char *regexp, int from_tty)
778865d3 13403{
778865d3 13404 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13405
ab816a27 13406 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13407
13408 if (regexp != NULL)
13409 printf_filtered
13410 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13411 else
13412 printf_filtered (_("All defined Ada exceptions:\n"));
13413
ab816a27
TT
13414 for (const ada_exc_info &info : exceptions)
13415 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13416}
13417
4c4b4cd2
PH
13418 /* Operators */
13419/* Information about operators given special treatment in functions
13420 below. */
13421/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13422
13423#define ADA_OPERATORS \
13424 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13425 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13426 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13427 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13428 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13429 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13430 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13431 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13432 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13433 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13434 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13435 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13436 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13437 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13438 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13439 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13440 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13441 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13442 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13443
13444static void
554794dc
SDJ
13445ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13446 int *argsp)
4c4b4cd2
PH
13447{
13448 switch (exp->elts[pc - 1].opcode)
13449 {
76a01679 13450 default:
4c4b4cd2
PH
13451 operator_length_standard (exp, pc, oplenp, argsp);
13452 break;
13453
13454#define OP_DEFN(op, len, args, binop) \
13455 case op: *oplenp = len; *argsp = args; break;
13456 ADA_OPERATORS;
13457#undef OP_DEFN
52ce6436
PH
13458
13459 case OP_AGGREGATE:
13460 *oplenp = 3;
13461 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13462 break;
13463
13464 case OP_CHOICES:
13465 *oplenp = 3;
13466 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13467 break;
4c4b4cd2
PH
13468 }
13469}
13470
c0201579
JK
13471/* Implementation of the exp_descriptor method operator_check. */
13472
13473static int
13474ada_operator_check (struct expression *exp, int pos,
13475 int (*objfile_func) (struct objfile *objfile, void *data),
13476 void *data)
13477{
13478 const union exp_element *const elts = exp->elts;
13479 struct type *type = NULL;
13480
13481 switch (elts[pos].opcode)
13482 {
13483 case UNOP_IN_RANGE:
13484 case UNOP_QUAL:
13485 type = elts[pos + 1].type;
13486 break;
13487
13488 default:
13489 return operator_check_standard (exp, pos, objfile_func, data);
13490 }
13491
13492 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13493
13494 if (type && TYPE_OBJFILE (type)
13495 && (*objfile_func) (TYPE_OBJFILE (type), data))
13496 return 1;
13497
13498 return 0;
13499}
13500
a121b7c1 13501static const char *
4c4b4cd2
PH
13502ada_op_name (enum exp_opcode opcode)
13503{
13504 switch (opcode)
13505 {
76a01679 13506 default:
4c4b4cd2 13507 return op_name_standard (opcode);
52ce6436 13508
4c4b4cd2
PH
13509#define OP_DEFN(op, len, args, binop) case op: return #op;
13510 ADA_OPERATORS;
13511#undef OP_DEFN
52ce6436
PH
13512
13513 case OP_AGGREGATE:
13514 return "OP_AGGREGATE";
13515 case OP_CHOICES:
13516 return "OP_CHOICES";
13517 case OP_NAME:
13518 return "OP_NAME";
4c4b4cd2
PH
13519 }
13520}
13521
13522/* As for operator_length, but assumes PC is pointing at the first
13523 element of the operator, and gives meaningful results only for the
52ce6436 13524 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13525
13526static void
76a01679
JB
13527ada_forward_operator_length (struct expression *exp, int pc,
13528 int *oplenp, int *argsp)
4c4b4cd2 13529{
76a01679 13530 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13531 {
13532 default:
13533 *oplenp = *argsp = 0;
13534 break;
52ce6436 13535
4c4b4cd2
PH
13536#define OP_DEFN(op, len, args, binop) \
13537 case op: *oplenp = len; *argsp = args; break;
13538 ADA_OPERATORS;
13539#undef OP_DEFN
52ce6436
PH
13540
13541 case OP_AGGREGATE:
13542 *oplenp = 3;
13543 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13544 break;
13545
13546 case OP_CHOICES:
13547 *oplenp = 3;
13548 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13549 break;
13550
13551 case OP_STRING:
13552 case OP_NAME:
13553 {
13554 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13555
52ce6436
PH
13556 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13557 *argsp = 0;
13558 break;
13559 }
4c4b4cd2
PH
13560 }
13561}
13562
13563static int
13564ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13565{
13566 enum exp_opcode op = exp->elts[elt].opcode;
13567 int oplen, nargs;
13568 int pc = elt;
13569 int i;
76a01679 13570
4c4b4cd2
PH
13571 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13572
76a01679 13573 switch (op)
4c4b4cd2 13574 {
76a01679 13575 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13576 case OP_ATR_FIRST:
13577 case OP_ATR_LAST:
13578 case OP_ATR_LENGTH:
13579 case OP_ATR_IMAGE:
13580 case OP_ATR_MAX:
13581 case OP_ATR_MIN:
13582 case OP_ATR_MODULUS:
13583 case OP_ATR_POS:
13584 case OP_ATR_SIZE:
13585 case OP_ATR_TAG:
13586 case OP_ATR_VAL:
13587 break;
13588
13589 case UNOP_IN_RANGE:
13590 case UNOP_QUAL:
323e0a4a
AC
13591 /* XXX: gdb_sprint_host_address, type_sprint */
13592 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13593 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13594 fprintf_filtered (stream, " (");
13595 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13596 fprintf_filtered (stream, ")");
13597 break;
13598 case BINOP_IN_BOUNDS:
52ce6436
PH
13599 fprintf_filtered (stream, " (%d)",
13600 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13601 break;
13602 case TERNOP_IN_RANGE:
13603 break;
13604
52ce6436
PH
13605 case OP_AGGREGATE:
13606 case OP_OTHERS:
13607 case OP_DISCRETE_RANGE:
13608 case OP_POSITIONAL:
13609 case OP_CHOICES:
13610 break;
13611
13612 case OP_NAME:
13613 case OP_STRING:
13614 {
13615 char *name = &exp->elts[elt + 2].string;
13616 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13617
52ce6436
PH
13618 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13619 break;
13620 }
13621
4c4b4cd2
PH
13622 default:
13623 return dump_subexp_body_standard (exp, stream, elt);
13624 }
13625
13626 elt += oplen;
13627 for (i = 0; i < nargs; i += 1)
13628 elt = dump_subexp (exp, stream, elt);
13629
13630 return elt;
13631}
13632
13633/* The Ada extension of print_subexp (q.v.). */
13634
76a01679
JB
13635static void
13636ada_print_subexp (struct expression *exp, int *pos,
13637 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13638{
52ce6436 13639 int oplen, nargs, i;
4c4b4cd2
PH
13640 int pc = *pos;
13641 enum exp_opcode op = exp->elts[pc].opcode;
13642
13643 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13644
52ce6436 13645 *pos += oplen;
4c4b4cd2
PH
13646 switch (op)
13647 {
13648 default:
52ce6436 13649 *pos -= oplen;
4c4b4cd2
PH
13650 print_subexp_standard (exp, pos, stream, prec);
13651 return;
13652
13653 case OP_VAR_VALUE:
987012b8 13654 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
4c4b4cd2
PH
13655 return;
13656
13657 case BINOP_IN_BOUNDS:
323e0a4a 13658 /* XXX: sprint_subexp */
4c4b4cd2 13659 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13660 fputs_filtered (" in ", stream);
4c4b4cd2 13661 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13662 fputs_filtered ("'range", stream);
4c4b4cd2 13663 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13664 fprintf_filtered (stream, "(%ld)",
13665 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13666 return;
13667
13668 case TERNOP_IN_RANGE:
4c4b4cd2 13669 if (prec >= PREC_EQUAL)
76a01679 13670 fputs_filtered ("(", stream);
323e0a4a 13671 /* XXX: sprint_subexp */
4c4b4cd2 13672 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13673 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13674 print_subexp (exp, pos, stream, PREC_EQUAL);
13675 fputs_filtered (" .. ", stream);
13676 print_subexp (exp, pos, stream, PREC_EQUAL);
13677 if (prec >= PREC_EQUAL)
76a01679
JB
13678 fputs_filtered (")", stream);
13679 return;
4c4b4cd2
PH
13680
13681 case OP_ATR_FIRST:
13682 case OP_ATR_LAST:
13683 case OP_ATR_LENGTH:
13684 case OP_ATR_IMAGE:
13685 case OP_ATR_MAX:
13686 case OP_ATR_MIN:
13687 case OP_ATR_MODULUS:
13688 case OP_ATR_POS:
13689 case OP_ATR_SIZE:
13690 case OP_ATR_TAG:
13691 case OP_ATR_VAL:
4c4b4cd2 13692 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13693 {
13694 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13695 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13696 &type_print_raw_options);
76a01679
JB
13697 *pos += 3;
13698 }
4c4b4cd2 13699 else
76a01679 13700 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13701 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13702 if (nargs > 1)
76a01679
JB
13703 {
13704 int tem;
5b4ee69b 13705
76a01679
JB
13706 for (tem = 1; tem < nargs; tem += 1)
13707 {
13708 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13709 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13710 }
13711 fputs_filtered (")", stream);
13712 }
4c4b4cd2 13713 return;
14f9c5c9 13714
4c4b4cd2 13715 case UNOP_QUAL:
4c4b4cd2
PH
13716 type_print (exp->elts[pc + 1].type, "", stream, 0);
13717 fputs_filtered ("'(", stream);
13718 print_subexp (exp, pos, stream, PREC_PREFIX);
13719 fputs_filtered (")", stream);
13720 return;
14f9c5c9 13721
4c4b4cd2 13722 case UNOP_IN_RANGE:
323e0a4a 13723 /* XXX: sprint_subexp */
4c4b4cd2 13724 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13725 fputs_filtered (" in ", stream);
79d43c61
TT
13726 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13727 &type_print_raw_options);
4c4b4cd2 13728 return;
52ce6436
PH
13729
13730 case OP_DISCRETE_RANGE:
13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 fputs_filtered ("..", stream);
13733 print_subexp (exp, pos, stream, PREC_SUFFIX);
13734 return;
13735
13736 case OP_OTHERS:
13737 fputs_filtered ("others => ", stream);
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 return;
13740
13741 case OP_CHOICES:
13742 for (i = 0; i < nargs-1; i += 1)
13743 {
13744 if (i > 0)
13745 fputs_filtered ("|", stream);
13746 print_subexp (exp, pos, stream, PREC_SUFFIX);
13747 }
13748 fputs_filtered (" => ", stream);
13749 print_subexp (exp, pos, stream, PREC_SUFFIX);
13750 return;
13751
13752 case OP_POSITIONAL:
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 return;
13755
13756 case OP_AGGREGATE:
13757 fputs_filtered ("(", stream);
13758 for (i = 0; i < nargs; i += 1)
13759 {
13760 if (i > 0)
13761 fputs_filtered (", ", stream);
13762 print_subexp (exp, pos, stream, PREC_SUFFIX);
13763 }
13764 fputs_filtered (")", stream);
13765 return;
4c4b4cd2
PH
13766 }
13767}
14f9c5c9
AS
13768
13769/* Table mapping opcodes into strings for printing operators
13770 and precedences of the operators. */
13771
d2e4a39e
AS
13772static const struct op_print ada_op_print_tab[] = {
13773 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13774 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13775 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13776 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13777 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13778 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13779 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13780 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13781 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13782 {">=", BINOP_GEQ, PREC_ORDER, 0},
13783 {">", BINOP_GTR, PREC_ORDER, 0},
13784 {"<", BINOP_LESS, PREC_ORDER, 0},
13785 {">>", BINOP_RSH, PREC_SHIFT, 0},
13786 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13787 {"+", BINOP_ADD, PREC_ADD, 0},
13788 {"-", BINOP_SUB, PREC_ADD, 0},
13789 {"&", BINOP_CONCAT, PREC_ADD, 0},
13790 {"*", BINOP_MUL, PREC_MUL, 0},
13791 {"/", BINOP_DIV, PREC_MUL, 0},
13792 {"rem", BINOP_REM, PREC_MUL, 0},
13793 {"mod", BINOP_MOD, PREC_MUL, 0},
13794 {"**", BINOP_EXP, PREC_REPEAT, 0},
13795 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13796 {"-", UNOP_NEG, PREC_PREFIX, 0},
13797 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13798 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13799 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13800 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
13801 {".all", UNOP_IND, PREC_SUFFIX, 1},
13802 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13803 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 13804 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
13805};
13806\f
72d5681a
PH
13807enum ada_primitive_types {
13808 ada_primitive_type_int,
13809 ada_primitive_type_long,
13810 ada_primitive_type_short,
13811 ada_primitive_type_char,
13812 ada_primitive_type_float,
13813 ada_primitive_type_double,
13814 ada_primitive_type_void,
13815 ada_primitive_type_long_long,
13816 ada_primitive_type_long_double,
13817 ada_primitive_type_natural,
13818 ada_primitive_type_positive,
13819 ada_primitive_type_system_address,
08f49010 13820 ada_primitive_type_storage_offset,
72d5681a
PH
13821 nr_ada_primitive_types
13822};
6c038f32
PH
13823
13824static void
d4a9a881 13825ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
13826 struct language_arch_info *lai)
13827{
d4a9a881 13828 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 13829
72d5681a 13830 lai->primitive_type_vector
d4a9a881 13831 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 13832 struct type *);
e9bb382b
UW
13833
13834 lai->primitive_type_vector [ada_primitive_type_int]
13835 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13836 0, "integer");
13837 lai->primitive_type_vector [ada_primitive_type_long]
13838 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13839 0, "long_integer");
13840 lai->primitive_type_vector [ada_primitive_type_short]
13841 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13842 0, "short_integer");
13843 lai->string_char_type
13844 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 13845 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
13846 lai->primitive_type_vector [ada_primitive_type_float]
13847 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 13848 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
13849 lai->primitive_type_vector [ada_primitive_type_double]
13850 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 13851 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
13852 lai->primitive_type_vector [ada_primitive_type_long_long]
13853 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13854 0, "long_long_integer");
13855 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 13856 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 13857 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
13858 lai->primitive_type_vector [ada_primitive_type_natural]
13859 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13860 0, "natural");
13861 lai->primitive_type_vector [ada_primitive_type_positive]
13862 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13863 0, "positive");
13864 lai->primitive_type_vector [ada_primitive_type_void]
13865 = builtin->builtin_void;
13866
13867 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
13868 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13869 "void"));
72d5681a
PH
13870 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13871 = "system__address";
fbb06eb1 13872
08f49010
XR
13873 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13874 type. This is a signed integral type whose size is the same as
13875 the size of addresses. */
13876 {
13877 unsigned int addr_length = TYPE_LENGTH
13878 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13879
13880 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13881 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13882 "storage_offset");
13883 }
13884
47e729a8 13885 lai->bool_type_symbol = NULL;
fbb06eb1 13886 lai->bool_type_default = builtin->builtin_bool;
6c038f32 13887}
6c038f32
PH
13888\f
13889 /* Language vector */
13890
13891/* Not really used, but needed in the ada_language_defn. */
13892
13893static void
6c7a06a3 13894emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 13895{
6c7a06a3 13896 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
13897}
13898
13899static int
410a0ff2 13900parse (struct parser_state *ps)
6c038f32
PH
13901{
13902 warnings_issued = 0;
410a0ff2 13903 return ada_parse (ps);
6c038f32
PH
13904}
13905
13906static const struct exp_descriptor ada_exp_descriptor = {
13907 ada_print_subexp,
13908 ada_operator_length,
c0201579 13909 ada_operator_check,
6c038f32
PH
13910 ada_op_name,
13911 ada_dump_subexp_body,
13912 ada_evaluate_subexp
13913};
13914
b5ec771e
PA
13915/* symbol_name_matcher_ftype adapter for wild_match. */
13916
13917static bool
13918do_wild_match (const char *symbol_search_name,
13919 const lookup_name_info &lookup_name,
a207cff2 13920 completion_match_result *comp_match_res)
b5ec771e
PA
13921{
13922 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13923}
13924
13925/* symbol_name_matcher_ftype adapter for full_match. */
13926
13927static bool
13928do_full_match (const char *symbol_search_name,
13929 const lookup_name_info &lookup_name,
a207cff2 13930 completion_match_result *comp_match_res)
b5ec771e
PA
13931{
13932 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13933}
13934
a2cd4f14
JB
13935/* symbol_name_matcher_ftype for exact (verbatim) matches. */
13936
13937static bool
13938do_exact_match (const char *symbol_search_name,
13939 const lookup_name_info &lookup_name,
13940 completion_match_result *comp_match_res)
13941{
13942 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13943}
13944
b5ec771e
PA
13945/* Build the Ada lookup name for LOOKUP_NAME. */
13946
13947ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13948{
e0802d59 13949 gdb::string_view user_name = lookup_name.name ();
b5ec771e
PA
13950
13951 if (user_name[0] == '<')
13952 {
13953 if (user_name.back () == '>')
e0802d59
TT
13954 m_encoded_name
13955 = user_name.substr (1, user_name.size () - 2).to_string ();
b5ec771e 13956 else
e0802d59
TT
13957 m_encoded_name
13958 = user_name.substr (1, user_name.size () - 1).to_string ();
b5ec771e
PA
13959 m_encoded_p = true;
13960 m_verbatim_p = true;
13961 m_wild_match_p = false;
13962 m_standard_p = false;
13963 }
13964 else
13965 {
13966 m_verbatim_p = false;
13967
e0802d59 13968 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
b5ec771e
PA
13969
13970 if (!m_encoded_p)
13971 {
e0802d59 13972 const char *folded = ada_fold_name (user_name);
b5ec771e
PA
13973 const char *encoded = ada_encode_1 (folded, false);
13974 if (encoded != NULL)
13975 m_encoded_name = encoded;
13976 else
e0802d59 13977 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13978 }
13979 else
e0802d59 13980 m_encoded_name = user_name.to_string ();
b5ec771e
PA
13981
13982 /* Handle the 'package Standard' special case. See description
13983 of m_standard_p. */
13984 if (startswith (m_encoded_name.c_str (), "standard__"))
13985 {
13986 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13987 m_standard_p = true;
13988 }
13989 else
13990 m_standard_p = false;
74ccd7f5 13991
b5ec771e
PA
13992 /* If the name contains a ".", then the user is entering a fully
13993 qualified entity name, and the match must not be done in wild
13994 mode. Similarly, if the user wants to complete what looks
13995 like an encoded name, the match must not be done in wild
13996 mode. Also, in the standard__ special case always do
13997 non-wild matching. */
13998 m_wild_match_p
13999 = (lookup_name.match_type () != symbol_name_match_type::FULL
14000 && !m_encoded_p
14001 && !m_standard_p
14002 && user_name.find ('.') == std::string::npos);
14003 }
14004}
14005
14006/* symbol_name_matcher_ftype method for Ada. This only handles
14007 completion mode. */
14008
14009static bool
14010ada_symbol_name_matches (const char *symbol_search_name,
14011 const lookup_name_info &lookup_name,
a207cff2 14012 completion_match_result *comp_match_res)
74ccd7f5 14013{
b5ec771e
PA
14014 return lookup_name.ada ().matches (symbol_search_name,
14015 lookup_name.match_type (),
a207cff2 14016 comp_match_res);
b5ec771e
PA
14017}
14018
de63c46b
PA
14019/* A name matcher that matches the symbol name exactly, with
14020 strcmp. */
14021
14022static bool
14023literal_symbol_name_matcher (const char *symbol_search_name,
14024 const lookup_name_info &lookup_name,
14025 completion_match_result *comp_match_res)
14026{
e0802d59 14027 gdb::string_view name_view = lookup_name.name ();
de63c46b 14028
e0802d59
TT
14029 if (lookup_name.completion_mode ()
14030 ? (strncmp (symbol_search_name, name_view.data (),
14031 name_view.size ()) == 0)
14032 : symbol_search_name == name_view)
de63c46b
PA
14033 {
14034 if (comp_match_res != NULL)
14035 comp_match_res->set_match (symbol_search_name);
14036 return true;
14037 }
14038 else
14039 return false;
14040}
14041
b5ec771e
PA
14042/* Implement the "la_get_symbol_name_matcher" language_defn method for
14043 Ada. */
14044
14045static symbol_name_matcher_ftype *
14046ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14047{
de63c46b
PA
14048 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14049 return literal_symbol_name_matcher;
14050
b5ec771e
PA
14051 if (lookup_name.completion_mode ())
14052 return ada_symbol_name_matches;
74ccd7f5 14053 else
b5ec771e
PA
14054 {
14055 if (lookup_name.ada ().wild_match_p ())
14056 return do_wild_match;
a2cd4f14
JB
14057 else if (lookup_name.ada ().verbatim_p ())
14058 return do_exact_match;
b5ec771e
PA
14059 else
14060 return do_full_match;
14061 }
74ccd7f5
JB
14062}
14063
a5ee536b
JB
14064/* Implement the "la_read_var_value" language_defn method for Ada. */
14065
14066static struct value *
63e43d3a
PMR
14067ada_read_var_value (struct symbol *var, const struct block *var_block,
14068 struct frame_info *frame)
a5ee536b 14069{
a5ee536b
JB
14070 /* The only case where default_read_var_value is not sufficient
14071 is when VAR is a renaming... */
c0e70c62
TT
14072 if (frame != nullptr)
14073 {
14074 const struct block *frame_block = get_frame_block (frame, NULL);
14075 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14076 return ada_read_renaming_var_value (var, frame_block);
14077 }
a5ee536b
JB
14078
14079 /* This is a typical case where we expect the default_read_var_value
14080 function to work. */
63e43d3a 14081 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14082}
14083
56618e20
TT
14084static const char *ada_extensions[] =
14085{
14086 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14087};
14088
47e77640 14089extern const struct language_defn ada_language_defn = {
6c038f32 14090 "ada", /* Language name */
6abde28f 14091 "Ada",
6c038f32 14092 language_ada,
6c038f32 14093 range_check_off,
6c038f32
PH
14094 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14095 that's not quite what this means. */
6c038f32 14096 array_row_major,
9a044a89 14097 macro_expansion_no,
56618e20 14098 ada_extensions,
6c038f32
PH
14099 &ada_exp_descriptor,
14100 parse,
6c038f32
PH
14101 resolve,
14102 ada_printchar, /* Print a character constant */
14103 ada_printstr, /* Function to print string constant */
14104 emit_char, /* Function to print single char (not used) */
6c038f32 14105 ada_print_type, /* Print a type using appropriate syntax */
be942545 14106 ada_print_typedef, /* Print a typedef using appropriate syntax */
26792ee0 14107 ada_value_print_inner, /* la_value_print_inner */
6c038f32 14108 ada_value_print, /* Print a top-level value */
a5ee536b 14109 ada_read_var_value, /* la_read_var_value */
6c038f32 14110 NULL, /* Language specific skip_trampoline */
2b2d9e11 14111 NULL, /* name_of_this */
59cc4834 14112 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14113 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14114 basic_lookup_transparent_type, /* lookup_transparent_type */
14115 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14116 ada_sniff_from_mangled_name,
0963b4bd
MS
14117 NULL, /* Language specific
14118 class_name_from_physname */
6c038f32
PH
14119 ada_op_print_tab, /* expression operators for printing */
14120 0, /* c-style arrays */
14121 1, /* String lower bound */
6c038f32 14122 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14123 ada_collect_symbol_completion_matches,
72d5681a 14124 ada_language_arch_info,
e79af960 14125 ada_print_array_index,
41f1b697 14126 default_pass_by_reference,
e2b7af72 14127 ada_watch_location_expression,
b5ec771e 14128 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14129 ada_iterate_over_symbols,
5ffa0793 14130 default_search_name_hash,
a53b64ea 14131 &ada_varobj_ops,
bb2ec1b3 14132 NULL,
721b08c6 14133 NULL,
4be290b2 14134 ada_is_string_type,
721b08c6 14135 "(...)" /* la_struct_too_deep_ellipsis */
6c038f32
PH
14136};
14137
5bf03f13
JB
14138/* Command-list for the "set/show ada" prefix command. */
14139static struct cmd_list_element *set_ada_list;
14140static struct cmd_list_element *show_ada_list;
14141
14142/* Implement the "set ada" prefix command. */
14143
14144static void
981a3fb3 14145set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14146{
14147 printf_unfiltered (_(\
14148"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14149 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14150}
14151
14152/* Implement the "show ada" prefix command. */
14153
14154static void
981a3fb3 14155show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14156{
14157 cmd_show_list (show_ada_list, from_tty, "");
14158}
14159
2060206e
PA
14160static void
14161initialize_ada_catchpoint_ops (void)
14162{
14163 struct breakpoint_ops *ops;
14164
14165 initialize_breakpoint_ops ();
14166
14167 ops = &catch_exception_breakpoint_ops;
14168 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14169 ops->allocate_location = allocate_location_exception;
14170 ops->re_set = re_set_exception;
14171 ops->check_status = check_status_exception;
14172 ops->print_it = print_it_exception;
14173 ops->print_one = print_one_exception;
14174 ops->print_mention = print_mention_exception;
14175 ops->print_recreate = print_recreate_exception;
2060206e
PA
14176
14177 ops = &catch_exception_unhandled_breakpoint_ops;
14178 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14179 ops->allocate_location = allocate_location_exception;
14180 ops->re_set = re_set_exception;
14181 ops->check_status = check_status_exception;
14182 ops->print_it = print_it_exception;
14183 ops->print_one = print_one_exception;
14184 ops->print_mention = print_mention_exception;
14185 ops->print_recreate = print_recreate_exception;
2060206e
PA
14186
14187 ops = &catch_assert_breakpoint_ops;
14188 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14189 ops->allocate_location = allocate_location_exception;
14190 ops->re_set = re_set_exception;
14191 ops->check_status = check_status_exception;
14192 ops->print_it = print_it_exception;
14193 ops->print_one = print_one_exception;
14194 ops->print_mention = print_mention_exception;
14195 ops->print_recreate = print_recreate_exception;
9f757bf7
XR
14196
14197 ops = &catch_handlers_breakpoint_ops;
14198 *ops = bkpt_breakpoint_ops;
37f6a7f4
TT
14199 ops->allocate_location = allocate_location_exception;
14200 ops->re_set = re_set_exception;
14201 ops->check_status = check_status_exception;
14202 ops->print_it = print_it_exception;
14203 ops->print_one = print_one_exception;
14204 ops->print_mention = print_mention_exception;
14205 ops->print_recreate = print_recreate_exception;
2060206e
PA
14206}
14207
3d9434b5
JB
14208/* This module's 'new_objfile' observer. */
14209
14210static void
14211ada_new_objfile_observer (struct objfile *objfile)
14212{
14213 ada_clear_symbol_cache ();
14214}
14215
14216/* This module's 'free_objfile' observer. */
14217
14218static void
14219ada_free_objfile_observer (struct objfile *objfile)
14220{
14221 ada_clear_symbol_cache ();
14222}
14223
6c265988 14224void _initialize_ada_language ();
d2e4a39e 14225void
6c265988 14226_initialize_ada_language ()
14f9c5c9 14227{
2060206e
PA
14228 initialize_ada_catchpoint_ops ();
14229
5bf03f13 14230 add_prefix_cmd ("ada", no_class, set_ada_command,
590042fc 14231 _("Prefix command for changing Ada-specific settings."),
5bf03f13
JB
14232 &set_ada_list, "set ada ", 0, &setlist);
14233
14234 add_prefix_cmd ("ada", no_class, show_ada_command,
14235 _("Generic command for showing Ada-specific settings."),
14236 &show_ada_list, "show ada ", 0, &showlist);
14237
14238 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14239 &trust_pad_over_xvs, _("\
590042fc
PW
14240Enable or disable an optimization trusting PAD types over XVS types."), _("\
14241Show whether an optimization trusting PAD types over XVS types is activated."),
5bf03f13
JB
14242 _("\
14243This is related to the encoding used by the GNAT compiler. The debugger\n\
14244should normally trust the contents of PAD types, but certain older versions\n\
14245of GNAT have a bug that sometimes causes the information in the PAD type\n\
14246to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14247work around this bug. It is always safe to turn this option \"off\", but\n\
14248this incurs a slight performance penalty, so it is recommended to NOT change\n\
14249this option to \"off\" unless necessary."),
14250 NULL, NULL, &set_ada_list, &show_ada_list);
14251
d72413e6
PMR
14252 add_setshow_boolean_cmd ("print-signatures", class_vars,
14253 &print_signatures, _("\
14254Enable or disable the output of formal and return types for functions in the \
590042fc 14255overloads selection menu."), _("\
d72413e6 14256Show whether the output of formal and return types for functions in the \
590042fc 14257overloads selection menu is activated."),
d72413e6
PMR
14258 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14259
9ac4176b
PA
14260 add_catch_command ("exception", _("\
14261Catch Ada exceptions, when raised.\n\
9bf7038b 14262Usage: catch exception [ARG] [if CONDITION]\n\
60a90376
JB
14263Without any argument, stop when any Ada exception is raised.\n\
14264If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14265being raised does not have a handler (and will therefore lead to the task's\n\
14266termination).\n\
14267Otherwise, the catchpoint only stops when the name of the exception being\n\
9bf7038b
TT
14268raised is the same as ARG.\n\
14269CONDITION is a boolean expression that is evaluated to see whether the\n\
14270exception should cause a stop."),
9ac4176b 14271 catch_ada_exception_command,
71bed2db 14272 catch_ada_completer,
9ac4176b
PA
14273 CATCH_PERMANENT,
14274 CATCH_TEMPORARY);
9f757bf7
XR
14275
14276 add_catch_command ("handlers", _("\
14277Catch Ada exceptions, when handled.\n\
9bf7038b
TT
14278Usage: catch handlers [ARG] [if CONDITION]\n\
14279Without any argument, stop when any Ada exception is handled.\n\
14280With an argument, catch only exceptions with the given name.\n\
14281CONDITION is a boolean expression that is evaluated to see whether the\n\
14282exception should cause a stop."),
9f757bf7 14283 catch_ada_handlers_command,
71bed2db 14284 catch_ada_completer,
9f757bf7
XR
14285 CATCH_PERMANENT,
14286 CATCH_TEMPORARY);
9ac4176b
PA
14287 add_catch_command ("assert", _("\
14288Catch failed Ada assertions, when raised.\n\
9bf7038b
TT
14289Usage: catch assert [if CONDITION]\n\
14290CONDITION is a boolean expression that is evaluated to see whether the\n\
14291exception should cause a stop."),
9ac4176b
PA
14292 catch_assert_command,
14293 NULL,
14294 CATCH_PERMANENT,
14295 CATCH_TEMPORARY);
14296
6c038f32 14297 varsize_limit = 65536;
3fcded8f
JB
14298 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14299 &varsize_limit, _("\
14300Set the maximum number of bytes allowed in a variable-size object."), _("\
14301Show the maximum number of bytes allowed in a variable-size object."), _("\
14302Attempts to access an object whose size is not a compile-time constant\n\
14303and exceeds this limit will cause an error."),
14304 NULL, NULL, &setlist, &showlist);
6c038f32 14305
778865d3
JB
14306 add_info ("exceptions", info_exceptions_command,
14307 _("\
14308List all Ada exception names.\n\
9bf7038b 14309Usage: info exceptions [REGEXP]\n\
778865d3
JB
14310If a regular expression is passed as an argument, only those matching\n\
14311the regular expression are listed."));
14312
c6044dd1
JB
14313 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14314 _("Set Ada maintenance-related variables."),
14315 &maint_set_ada_cmdlist, "maintenance set ada ",
14316 0/*allow-unknown*/, &maintenance_set_cmdlist);
14317
14318 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
590042fc 14319 _("Show Ada maintenance-related variables."),
c6044dd1
JB
14320 &maint_show_ada_cmdlist, "maintenance show ada ",
14321 0/*allow-unknown*/, &maintenance_show_cmdlist);
14322
14323 add_setshow_boolean_cmd
14324 ("ignore-descriptive-types", class_maintenance,
14325 &ada_ignore_descriptive_types_p,
14326 _("Set whether descriptive types generated by GNAT should be ignored."),
14327 _("Show whether descriptive types generated by GNAT should be ignored."),
14328 _("\
14329When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14330DWARF attribute."),
14331 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14332
459a2e4c
TT
14333 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14334 NULL, xcalloc, xfree);
6b69afc4 14335
3d9434b5 14336 /* The ada-lang observers. */
76727919
TT
14337 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14338 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14339 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14f9c5c9 14340}
This page took 2.654638 seconds and 4 git commands to generate.