gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
0b302171
JB
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
14f9c5c9 5
a9762ec7 6 This file is part of GDB.
14f9c5c9 7
a9762ec7
JB
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
14f9c5c9 12
a9762ec7
JB
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
14f9c5c9 17
a9762ec7
JB
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 20
96d887e8 21
4c4b4cd2 22#include "defs.h"
14f9c5c9 23#include <stdio.h>
0c30c098 24#include "gdb_string.h"
14f9c5c9
AS
25#include <ctype.h>
26#include <stdarg.h>
27#include "demangle.h"
4c4b4cd2
PH
28#include "gdb_regex.h"
29#include "frame.h"
14f9c5c9
AS
30#include "symtab.h"
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "expression.h"
34#include "parser-defs.h"
35#include "language.h"
36#include "c-lang.h"
37#include "inferior.h"
38#include "symfile.h"
39#include "objfiles.h"
40#include "breakpoint.h"
41#include "gdbcore.h"
4c4b4cd2
PH
42#include "hashtab.h"
43#include "gdb_obstack.h"
14f9c5c9 44#include "ada-lang.h"
4c4b4cd2
PH
45#include "completer.h"
46#include "gdb_stat.h"
47#ifdef UI_OUT
14f9c5c9 48#include "ui-out.h"
4c4b4cd2 49#endif
fe898f56 50#include "block.h"
04714b91 51#include "infcall.h"
de4f826b 52#include "dictionary.h"
60250e8b 53#include "exceptions.h"
f7f9143b
JB
54#include "annotate.h"
55#include "valprint.h"
9bbc9174 56#include "source.h"
0259addd 57#include "observer.h"
2ba95b9b 58#include "vec.h"
692465f1 59#include "stack.h"
fa864999 60#include "gdb_vecs.h"
14f9c5c9 61
ccefe4c4 62#include "psymtab.h"
40bc484c 63#include "value.h"
956a9fb9 64#include "mi/mi-common.h"
9ac4176b 65#include "arch-utils.h"
28010a5d 66#include "exceptions.h"
0fcd72ba 67#include "cli/cli-utils.h"
ccefe4c4 68
4c4b4cd2 69/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 70 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
71 Copied from valarith.c. */
72
73#ifndef TRUNCATION_TOWARDS_ZERO
74#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75#endif
76
d2e4a39e 77static struct type *desc_base_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct type *desc_bounds_type (struct type *);
14f9c5c9 80
d2e4a39e 81static struct value *desc_bounds (struct value *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 84
d2e4a39e 85static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 86
556bdfd4 87static struct type *desc_data_target_type (struct type *);
14f9c5c9 88
d2e4a39e 89static struct value *desc_data (struct value *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 92
d2e4a39e 93static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 94
d2e4a39e 95static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 100
d2e4a39e 101static struct type *desc_index_type (struct type *, int);
14f9c5c9 102
d2e4a39e 103static int desc_arity (struct type *);
14f9c5c9 104
d2e4a39e 105static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 106
d2e4a39e 107static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 108
40658b94
PH
109static int full_match (const char *, const char *);
110
40bc484c 111static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 112
4c4b4cd2 113static void ada_add_block_symbols (struct obstack *,
76a01679 114 struct block *, const char *,
2570f2b7 115 domain_enum, struct objfile *, int);
14f9c5c9 116
4c4b4cd2 117static int is_nonfunction (struct ada_symbol_info *, int);
14f9c5c9 118
76a01679 119static void add_defn_to_vec (struct obstack *, struct symbol *,
2570f2b7 120 struct block *);
14f9c5c9 121
4c4b4cd2
PH
122static int num_defns_collected (struct obstack *);
123
124static struct ada_symbol_info *defns_collected (struct obstack *, int);
14f9c5c9 125
4c4b4cd2 126static struct value *resolve_subexp (struct expression **, int *, int,
76a01679 127 struct type *);
14f9c5c9 128
d2e4a39e 129static void replace_operator_with_call (struct expression **, int, int, int,
4c4b4cd2 130 struct symbol *, struct block *);
14f9c5c9 131
d2e4a39e 132static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 133
4c4b4cd2
PH
134static char *ada_op_name (enum exp_opcode);
135
136static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 137
d2e4a39e 138static int numeric_type_p (struct type *);
14f9c5c9 139
d2e4a39e 140static int integer_type_p (struct type *);
14f9c5c9 141
d2e4a39e 142static int scalar_type_p (struct type *);
14f9c5c9 143
d2e4a39e 144static int discrete_type_p (struct type *);
14f9c5c9 145
aeb5907d
JB
146static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
4c4b4cd2 154static struct type *ada_lookup_struct_elt_type (struct type *, char *,
76a01679 155 int, int, int *);
4c4b4cd2 156
d2e4a39e 157static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 158
b4ba55a1
JB
159static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
d2e4a39e 162static int is_dynamic_field (struct type *, int);
14f9c5c9 163
10a2c479 164static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 165 const gdb_byte *,
4c4b4cd2
PH
166 CORE_ADDR, struct value *);
167
168static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 169
28c85d6c 170static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 171
d2e4a39e 172static struct type *to_static_fixed_type (struct type *);
f192137b 173static struct type *static_unwrap_type (struct type *type);
14f9c5c9 174
d2e4a39e 175static struct value *unwrap_value (struct value *);
14f9c5c9 176
ad82864c 177static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 178
ad82864c 179static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 180
ad82864c
JB
181static long decode_packed_array_bitsize (struct type *);
182
183static struct value *decode_constrained_packed_array (struct value *);
184
185static int ada_is_packed_array_type (struct type *);
186
187static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 188
d2e4a39e 189static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 190 struct value **);
14f9c5c9 191
50810684 192static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 193
4c4b4cd2
PH
194static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
14f9c5c9 196
d2e4a39e 197static struct value *get_var_value (char *, char *);
14f9c5c9 198
d2e4a39e 199static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 200
d2e4a39e 201static int equiv_types (struct type *, struct type *);
14f9c5c9 202
d2e4a39e 203static int is_name_suffix (const char *);
14f9c5c9 204
73589123
PH
205static int advance_wild_match (const char **, const char *, int);
206
207static int wild_match (const char *, const char *);
14f9c5c9 208
d2e4a39e 209static struct value *ada_coerce_ref (struct value *);
14f9c5c9 210
4c4b4cd2
PH
211static LONGEST pos_atr (struct value *);
212
3cb382c9 213static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 214
d2e4a39e 215static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 216
4c4b4cd2
PH
217static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
14f9c5c9 219
4c4b4cd2
PH
220static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
0d5cff50 226static int find_struct_field (const char *, struct type *, int,
52ce6436 227 struct type **, int *, int *, int *, int *);
4c4b4cd2
PH
228
229static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
4c4b4cd2
PH
232static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
4c4b4cd2
PH
236static int ada_is_direct_array_type (struct type *);
237
72d5681a
PH
238static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
714e53ab
PH
240
241static void check_size (const struct type *);
52ce6436
PH
242
243static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
247 struct expression *,
248 int *, enum noside);
52ce6436
PH
249
250static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
852dff6c
JB
274
275static struct type *ada_find_any_type (const char *name);
4c4b4cd2
PH
276\f
277
76a01679 278
4c4b4cd2 279/* Maximum-sized dynamic type. */
14f9c5c9
AS
280static unsigned int varsize_limit;
281
4c4b4cd2
PH
282/* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284static char *ada_completer_word_break_characters =
285#ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287#else
14f9c5c9 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 289#endif
14f9c5c9 290
4c4b4cd2 291/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 292static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 293 = "__gnat_ada_main_program_name";
14f9c5c9 294
4c4b4cd2
PH
295/* Limit on the number of warnings to raise per expression evaluation. */
296static int warning_limit = 2;
297
298/* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300static int warnings_issued = 0;
301
302static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304};
305
306static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308};
309
310/* Space for allocating results of ada_lookup_symbol_list. */
311static struct obstack symbol_list_obstack;
312
e802dbe0
JB
313 /* Inferior-specific data. */
314
315/* Per-inferior data for this module. */
316
317struct ada_inferior_data
318{
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
3eecfa55
JB
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
e802dbe0
JB
329};
330
331/* Our key to this module's inferior data. */
332static const struct inferior_data *ada_inferior_data;
333
334/* A cleanup routine for our inferior data. */
335static void
336ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337{
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343}
344
345/* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353static struct ada_inferior_data *
354get_ada_inferior_data (struct inferior *inf)
355{
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366}
367
368/* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371static void
372ada_inferior_exit (struct inferior *inf)
373{
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376}
377
4c4b4cd2
PH
378 /* Utilities */
379
720d1a40 380/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 381 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407static struct type *
408ada_typedef_target_type (struct type *type)
409{
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413}
414
41d27058
JB
415/* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419static const char *
420ada_unqualified_name (const char *decoded_name)
421{
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430}
431
432/* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435static char *
436add_angle_brackets (const char *str)
437{
438 static char *result = NULL;
439
440 xfree (result);
88c15c34 441 result = xstrprintf ("<%s>", str);
41d27058
JB
442 return result;
443}
96d887e8 444
4c4b4cd2
PH
445static char *
446ada_get_gdb_completer_word_break_characters (void)
447{
448 return ada_completer_word_break_characters;
449}
450
e79af960
JB
451/* Print an array element index using the Ada syntax. */
452
453static void
454ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 455 const struct value_print_options *options)
e79af960 456{
79a45b7d 457 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
458 fprintf_filtered (stream, " => ");
459}
460
f27cf670 461/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 463 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 464
f27cf670
AS
465void *
466grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 467{
d2e4a39e
AS
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
4c4b4cd2 472 *size = min_size;
f27cf670 473 vect = xrealloc (vect, *size * element_size);
d2e4a39e 474 }
f27cf670 475 return vect;
14f9c5c9
AS
476}
477
478/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 479 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
480
481static int
ebf56fd3 482field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
483{
484 int len = strlen (target);
5b4ee69b 485
d2e4a39e 486 return
4c4b4cd2
PH
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
76a01679
JB
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
14f9c5c9
AS
492}
493
494
872c8b51
JB
495/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
502
503int
504ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506{
507 int fieldno;
872c8b51
JB
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
512 return fieldno;
513
514 if (!maybe_missing)
323e0a4a 515 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 516 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
517
518 return -1;
519}
520
521/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
522
523int
d2e4a39e 524ada_name_prefix_len (const char *name)
14f9c5c9
AS
525{
526 if (name == NULL)
527 return 0;
d2e4a39e 528 else
14f9c5c9 529 {
d2e4a39e 530 const char *p = strstr (name, "___");
5b4ee69b 531
14f9c5c9 532 if (p == NULL)
4c4b4cd2 533 return strlen (name);
14f9c5c9 534 else
4c4b4cd2 535 return p - name;
14f9c5c9
AS
536 }
537}
538
4c4b4cd2
PH
539/* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
14f9c5c9 542static int
d2e4a39e 543is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
544{
545 int len1, len2;
5b4ee69b 546
14f9c5c9
AS
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
4c4b4cd2 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
552}
553
4c4b4cd2
PH
554/* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
14f9c5c9 556
d2e4a39e 557static struct value *
4c4b4cd2 558coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 559{
61ee279c 560 type = ada_check_typedef (type);
df407dfe 561 if (value_type (val) == type)
4c4b4cd2 562 return val;
d2e4a39e 563 else
14f9c5c9 564 {
4c4b4cd2
PH
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
714e53ab 569 check_size (type);
4c4b4cd2 570
41e8491f
JK
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
74bcbdf3 580 set_value_component_location (result, val);
9bbda503
AC
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
42ae5230 583 set_value_address (result, value_address (val));
14f9c5c9
AS
584 return result;
585 }
586}
587
fc1a4b47
AC
588static const gdb_byte *
589cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
590{
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595}
596
597static CORE_ADDR
ebf56fd3 598cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
599{
600 if (address == 0)
601 return 0;
d2e4a39e 602 else
14f9c5c9
AS
603 return address + offset;
604}
605
4c4b4cd2
PH
606/* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
a2249542 610
77109804
AC
611/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
a0b31db1 613static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 614
14f9c5c9 615static void
a2249542 616lim_warning (const char *format, ...)
14f9c5c9 617{
a2249542 618 va_list args;
a2249542 619
5b4ee69b 620 va_start (args, format);
4c4b4cd2
PH
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
a2249542
MK
623 vwarning (format, args);
624
625 va_end (args);
4c4b4cd2
PH
626}
627
714e53ab
PH
628/* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632static void
633check_size (const struct type *type)
634{
635 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 636 error (_("object size is larger than varsize-limit"));
714e53ab
PH
637}
638
0963b4bd 639/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 640static LONGEST
c3e5cd34 641max_of_size (int size)
4c4b4cd2 642{
76a01679 643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 644
76a01679 645 return top_bit | (top_bit - 1);
4c4b4cd2
PH
646}
647
0963b4bd 648/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 649static LONGEST
c3e5cd34 650min_of_size (int size)
4c4b4cd2 651{
c3e5cd34 652 return -max_of_size (size) - 1;
4c4b4cd2
PH
653}
654
0963b4bd 655/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 656static ULONGEST
c3e5cd34 657umax_of_size (int size)
4c4b4cd2 658{
76a01679 659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 660
76a01679 661 return top_bit | (top_bit - 1);
4c4b4cd2
PH
662}
663
0963b4bd 664/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
665static LONGEST
666max_of_type (struct type *t)
4c4b4cd2 667{
c3e5cd34
PH
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672}
673
0963b4bd 674/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
675static LONGEST
676min_of_type (struct type *t)
677{
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
682}
683
684/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
685LONGEST
686ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 687{
76a01679 688 switch (TYPE_CODE (type))
4c4b4cd2
PH
689 {
690 case TYPE_CODE_RANGE:
690cc4eb 691 return TYPE_HIGH_BOUND (type);
4c4b4cd2 692 case TYPE_CODE_ENUM:
14e75d8e 693 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
76a01679 697 case TYPE_CODE_INT:
690cc4eb 698 return max_of_type (type);
4c4b4cd2 699 default:
43bbcdc2 700 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
701 }
702}
703
14e75d8e 704/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
705LONGEST
706ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 707{
76a01679 708 switch (TYPE_CODE (type))
4c4b4cd2
PH
709 {
710 case TYPE_CODE_RANGE:
690cc4eb 711 return TYPE_LOW_BOUND (type);
4c4b4cd2 712 case TYPE_CODE_ENUM:
14e75d8e 713 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
76a01679 717 case TYPE_CODE_INT:
690cc4eb 718 return min_of_type (type);
4c4b4cd2 719 default:
43bbcdc2 720 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
721 }
722}
723
724/* The identity on non-range types. For range types, the underlying
76a01679 725 non-range scalar type. */
4c4b4cd2
PH
726
727static struct type *
18af8284 728get_base_type (struct type *type)
4c4b4cd2
PH
729{
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
76a01679
JB
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
4c4b4cd2
PH
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
14f9c5c9 737}
41246937
JB
738
739/* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744struct value *
745ada_get_decoded_value (struct value *value)
746{
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762}
763
764/* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769struct type *
770ada_get_decoded_type (struct type *type)
771{
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776}
777
4c4b4cd2 778\f
76a01679 779
4c4b4cd2 780 /* Language Selection */
14f9c5c9
AS
781
782/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 783 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 784
14f9c5c9 785enum language
ccefe4c4 786ada_update_initial_language (enum language lang)
14f9c5c9 787{
d2e4a39e 788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
4c4b4cd2
PH
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
14f9c5c9
AS
791
792 return lang;
793}
96d887e8
PH
794
795/* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799char *
800ada_main_name (void)
801{
802 struct minimal_symbol *msym;
f9bc20b9 803 static char *main_program_name = NULL;
6c038f32 804
96d887e8
PH
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
f9bc20b9
JB
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
96d887e8
PH
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
323e0a4a 819 error (_("Invalid address for Ada main program name."));
96d887e8 820
f9bc20b9
JB
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
96d887e8
PH
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832}
14f9c5c9 833\f
4c4b4cd2 834 /* Symbols */
d2e4a39e 835
4c4b4cd2
PH
836/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
14f9c5c9 838
d2e4a39e
AS
839const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
14f9c5c9
AS
862};
863
4c4b4cd2
PH
864/* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
14f9c5c9 867char *
4c4b4cd2 868ada_encode (const char *decoded)
14f9c5c9 869{
4c4b4cd2
PH
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
d2e4a39e 872 const char *p;
14f9c5c9 873 int k;
d2e4a39e 874
4c4b4cd2 875 if (decoded == NULL)
14f9c5c9
AS
876 return NULL;
877
4c4b4cd2
PH
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
14f9c5c9
AS
880
881 k = 0;
4c4b4cd2 882 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 883 {
cdc7bb92 884 if (*p == '.')
4c4b4cd2
PH
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
14f9c5c9 889 else if (*p == '"')
4c4b4cd2
PH
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
1265e4aa
JB
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
4c4b4cd2
PH
897 ;
898 if (mapping->encoded == NULL)
323e0a4a 899 error (_("invalid Ada operator name: %s"), p);
4c4b4cd2
PH
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
d2e4a39e 904 else
4c4b4cd2
PH
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
14f9c5c9
AS
909 }
910
4c4b4cd2
PH
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
14f9c5c9
AS
913}
914
915/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
d2e4a39e
AS
919char *
920ada_fold_name (const char *name)
14f9c5c9 921{
d2e4a39e 922 static char *fold_buffer = NULL;
14f9c5c9
AS
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
d2e4a39e 926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
927
928 if (name[0] == '\'')
929 {
d2e4a39e
AS
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
932 }
933 else
934 {
935 int i;
5b4ee69b 936
14f9c5c9 937 for (i = 0; i <= len; i += 1)
4c4b4cd2 938 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
939 }
940
941 return fold_buffer;
942}
943
529cad9c
PH
944/* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946static int
947is_lower_alphanum (const char c)
948{
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950}
951
c90092fe
JB
952/* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
29480c32
JB
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
c90092fe 959
29480c32
JB
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964static void
965ada_remove_trailing_digits (const char *encoded, int *len)
966{
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
5b4ee69b 970
29480c32
JB
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982}
983
984/* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987static void
988ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989{
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
0963b4bd 995 the 'P' suffix. The second calls the first one after handling
29480c32
JB
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004}
1005
69fadcdf
JB
1006/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008static void
1009ada_remove_Xbn_suffix (const char *encoded, int *len)
1010{
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024}
1025
29480c32
JB
1026/* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
14f9c5c9 1029
4c4b4cd2 1030 The resulting string is valid until the next call of ada_decode.
29480c32 1031 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1032 is returned. */
1033
1034const char *
1035ada_decode (const char *encoded)
14f9c5c9
AS
1036{
1037 int i, j;
1038 int len0;
d2e4a39e 1039 const char *p;
4c4b4cd2 1040 char *decoded;
14f9c5c9 1041 int at_start_name;
4c4b4cd2
PH
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
d2e4a39e 1044
29480c32
JB
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
4c4b4cd2
PH
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
14f9c5c9 1050
29480c32
JB
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
4c4b4cd2 1054 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1055 goto Suppress;
1056
4c4b4cd2 1057 len0 = strlen (encoded);
4c4b4cd2 1058
29480c32
JB
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1061
4c4b4cd2
PH
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1068 {
1069 if (p[3] == 'X')
4c4b4cd2 1070 len0 = p - encoded;
14f9c5c9 1071 else
4c4b4cd2 1072 goto Suppress;
14f9c5c9 1073 }
4c4b4cd2 1074
29480c32
JB
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
4c4b4cd2 1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
14f9c5c9 1080 len0 -= 3;
76a01679 1081
a10967fa
JB
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
29480c32
JB
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
4c4b4cd2 1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
14f9c5c9
AS
1093 len0 -= 1;
1094
4c4b4cd2 1095 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1096
4c4b4cd2
PH
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
14f9c5c9 1099
29480c32
JB
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
4c4b4cd2 1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1103 {
4c4b4cd2
PH
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
d2e4a39e 1112 }
14f9c5c9 1113
29480c32
JB
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
4c4b4cd2
PH
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
14f9c5c9
AS
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
29480c32 1123 /* Is this a symbol function? */
4c4b4cd2
PH
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
5b4ee69b 1127
4c4b4cd2
PH
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
14f9c5c9
AS
1145 at_start_name = 0;
1146
529cad9c
PH
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
4c4b4cd2
PH
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
529cad9c 1152
29480c32
JB
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
529cad9c
PH
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1175 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
4c4b4cd2
PH
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
29480c32
JB
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
4c4b4cd2
PH
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
cdc7bb92 1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1240 {
29480c32 1241 /* Replace '__' by '.'. */
4c4b4cd2
PH
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
14f9c5c9 1247 else
4c4b4cd2 1248 {
29480c32
JB
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
4c4b4cd2
PH
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
14f9c5c9 1255 }
4c4b4cd2 1256 decoded[j] = '\000';
14f9c5c9 1257
29480c32
JB
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
4c4b4cd2
PH
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1263 goto Suppress;
1264
4c4b4cd2
PH
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
14f9c5c9
AS
1269
1270Suppress:
4c4b4cd2
PH
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
14f9c5c9 1275 else
88c15c34 1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1277 return decoded;
1278
1279}
1280
1281/* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286static struct htab *decoded_names_store;
1287
1288/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1293 GSYMBOL).
4c4b4cd2
PH
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1296 when a decoded name is cached in it. */
4c4b4cd2 1297
76a01679
JB
1298char *
1299ada_decode_symbol (const struct general_symbol_info *gsymbol)
4c4b4cd2 1300{
76a01679 1301 char **resultp =
afa16725 1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
5b4ee69b 1303
4c4b4cd2
PH
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
5b4ee69b 1307
714835d5 1308 if (gsymbol->obj_section != NULL)
76a01679 1309 {
714835d5 1310 struct objfile *objf = gsymbol->obj_section->objfile;
5b4ee69b 1311
714835d5
UW
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
76a01679 1314 }
4c4b4cd2 1315 /* Sometimes, we can't find a corresponding objfile, in which
76a01679
JB
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
4c4b4cd2 1319 if (*resultp == NULL)
76a01679
JB
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
5b4ee69b 1323
76a01679
JB
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
4c4b4cd2 1328 }
14f9c5c9 1329
4c4b4cd2
PH
1330 return *resultp;
1331}
76a01679 1332
2c0b251b 1333static char *
76a01679 1334ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1335{
1336 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1337}
1338
1339/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
4c4b4cd2
PH
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
14f9c5c9 1345
2c0b251b 1346static int
40658b94 1347match_name (const char *sym_name, const char *name, int wild)
14f9c5c9
AS
1348{
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
73589123 1352 return wild_match (sym_name, name) == 0;
d2e4a39e
AS
1353 else
1354 {
1355 int len_name = strlen (name);
5b4ee69b 1356
4c4b4cd2
PH
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
d2e4a39e 1362 }
14f9c5c9 1363}
14f9c5c9 1364\f
d2e4a39e 1365
4c4b4cd2 1366 /* Arrays */
14f9c5c9 1367
28c85d6c
JB
1368/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391void
1392ada_fixup_array_indexes_type (struct type *index_desc_type)
1393{
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
0d5cff50 1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421}
1422
4c4b4cd2 1423/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1424
d2e4a39e
AS
1425static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428};
1429
1430/* Maximum number of array dimensions we are prepared to handle. */
1431
4c4b4cd2 1432#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1433
14f9c5c9 1434
4c4b4cd2
PH
1435/* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
14f9c5c9
AS
1437
1438/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1439 level of indirection, if needed. */
1440
d2e4a39e
AS
1441static struct type *
1442desc_base_type (struct type *type)
14f9c5c9
AS
1443{
1444 if (type == NULL)
1445 return NULL;
61ee279c 1446 type = ada_check_typedef (type);
720d1a40
JB
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1265e4aa
JB
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1454 else
1455 return type;
1456}
1457
4c4b4cd2
PH
1458/* True iff TYPE indicates a "thin" array pointer type. */
1459
14f9c5c9 1460static int
d2e4a39e 1461is_thin_pntr (struct type *type)
14f9c5c9 1462{
d2e4a39e 1463 return
14f9c5c9
AS
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466}
1467
4c4b4cd2
PH
1468/* The descriptor type for thin pointer type TYPE. */
1469
d2e4a39e
AS
1470static struct type *
1471thin_descriptor_type (struct type *type)
14f9c5c9 1472{
d2e4a39e 1473 struct type *base_type = desc_base_type (type);
5b4ee69b 1474
14f9c5c9
AS
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
d2e4a39e 1479 else
14f9c5c9 1480 {
d2e4a39e 1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1482
14f9c5c9 1483 if (alt_type == NULL)
4c4b4cd2 1484 return base_type;
14f9c5c9 1485 else
4c4b4cd2 1486 return alt_type;
14f9c5c9
AS
1487 }
1488}
1489
4c4b4cd2
PH
1490/* A pointer to the array data for thin-pointer value VAL. */
1491
d2e4a39e
AS
1492static struct value *
1493thin_data_pntr (struct value *val)
14f9c5c9 1494{
828292f2 1495 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1497
556bdfd4
UW
1498 data_type = lookup_pointer_type (data_type);
1499
14f9c5c9 1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1501 return value_cast (data_type, value_copy (val));
d2e4a39e 1502 else
42ae5230 1503 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1504}
1505
4c4b4cd2
PH
1506/* True iff TYPE indicates a "thick" array pointer type. */
1507
14f9c5c9 1508static int
d2e4a39e 1509is_thick_pntr (struct type *type)
14f9c5c9
AS
1510{
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1514}
1515
4c4b4cd2
PH
1516/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1518
d2e4a39e
AS
1519static struct type *
1520desc_bounds_type (struct type *type)
14f9c5c9 1521{
d2e4a39e 1522 struct type *r;
14f9c5c9
AS
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
4c4b4cd2 1532 return NULL;
14f9c5c9
AS
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
61ee279c 1535 return ada_check_typedef (r);
14f9c5c9
AS
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
61ee279c 1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1542 }
1543 return NULL;
1544}
1545
1546/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
d2e4a39e
AS
1549static struct value *
1550desc_bounds (struct value *arr)
14f9c5c9 1551{
df407dfe 1552 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1553
d2e4a39e 1554 if (is_thin_pntr (type))
14f9c5c9 1555 {
d2e4a39e 1556 struct type *bounds_type =
4c4b4cd2 1557 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1558 LONGEST addr;
1559
4cdfadb1 1560 if (bounds_type == NULL)
323e0a4a 1561 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1562
1563 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1564 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1565 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1567 addr = value_as_long (arr);
d2e4a39e 1568 else
42ae5230 1569 addr = value_address (arr);
14f9c5c9 1570
d2e4a39e 1571 return
4c4b4cd2
PH
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1574 }
1575
1576 else if (is_thick_pntr (type))
05e522ef
JB
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
14f9c5c9
AS
1597 else
1598 return NULL;
1599}
1600
4c4b4cd2
PH
1601/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
14f9c5c9 1604static int
d2e4a39e 1605fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1606{
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608}
1609
1610/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1611 size of the field containing the address of the bounds data. */
1612
14f9c5c9 1613static int
d2e4a39e 1614fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1615{
1616 type = desc_base_type (type);
1617
d2e4a39e 1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
61ee279c 1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1622}
1623
4c4b4cd2 1624/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
4c4b4cd2 1628
d2e4a39e 1629static struct type *
556bdfd4 1630desc_data_target_type (struct type *type)
14f9c5c9
AS
1631{
1632 type = desc_base_type (type);
1633
4c4b4cd2 1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1635 if (is_thin_pntr (type))
556bdfd4 1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1637 else if (is_thick_pntr (type))
556bdfd4
UW
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1644 }
1645
1646 return NULL;
14f9c5c9
AS
1647}
1648
1649/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
4c4b4cd2 1651
d2e4a39e
AS
1652static struct value *
1653desc_data (struct value *arr)
14f9c5c9 1654{
df407dfe 1655 struct type *type = value_type (arr);
5b4ee69b 1656
14f9c5c9
AS
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
d2e4a39e 1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1661 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1662 else
1663 return NULL;
1664}
1665
1666
1667/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1668 position of the field containing the address of the data. */
1669
14f9c5c9 1670static int
d2e4a39e 1671fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1672{
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674}
1675
1676/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1677 size of the field containing the address of the data. */
1678
14f9c5c9 1679static int
d2e4a39e 1680fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1681{
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1686 else
14f9c5c9
AS
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688}
1689
4c4b4cd2 1690/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
d2e4a39e
AS
1694static struct value *
1695desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1696{
d2e4a39e 1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1698 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1699}
1700
1701/* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
14f9c5c9 1705static int
d2e4a39e 1706desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1707{
d2e4a39e 1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1709}
1710
1711/* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
76a01679 1715static int
d2e4a39e 1716desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1717{
1718 type = desc_base_type (type);
1719
d2e4a39e
AS
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1724}
1725
1726/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
d2e4a39e
AS
1729static struct type *
1730desc_index_type (struct type *type, int i)
14f9c5c9
AS
1731{
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
14f9c5c9
AS
1737 return NULL;
1738}
1739
4c4b4cd2
PH
1740/* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
14f9c5c9 1743static int
d2e4a39e 1744desc_arity (struct type *type)
14f9c5c9
AS
1745{
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751}
1752
4c4b4cd2
PH
1753/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
76a01679
JB
1757static int
1758ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1759{
1760 if (type == NULL)
1761 return 0;
61ee279c 1762 type = ada_check_typedef (type);
4c4b4cd2 1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1764 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1765}
1766
52ce6436 1767/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1768 * to one. */
52ce6436 1769
2c0b251b 1770static int
52ce6436
PH
1771ada_is_array_type (struct type *type)
1772{
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778}
1779
4c4b4cd2 1780/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1781
14f9c5c9 1782int
4c4b4cd2 1783ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1784{
1785 if (type == NULL)
1786 return 0;
61ee279c 1787 type = ada_check_typedef (type);
14f9c5c9 1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1792}
1793
4c4b4cd2
PH
1794/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
14f9c5c9 1796int
4c4b4cd2 1797ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1798{
556bdfd4 1799 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1800
1801 if (type == NULL)
1802 return 0;
61ee279c 1803 type = ada_check_typedef (type);
556bdfd4
UW
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1807}
1808
1809/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1810 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1811 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1812 is still needed. */
1813
14f9c5c9 1814int
ebf56fd3 1815ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1816{
d2e4a39e 1817 return
14f9c5c9
AS
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1823}
1824
1825
4c4b4cd2 1826/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1827 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1829 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1832 a descriptor. */
d2e4a39e
AS
1833struct type *
1834ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1835{
ad82864c
JB
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1838
df407dfe
AC
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
d2e4a39e
AS
1841
1842 if (!bounds)
ad82864c
JB
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
14f9c5c9
AS
1853 else
1854 {
d2e4a39e 1855 struct type *elt_type;
14f9c5c9 1856 int arity;
d2e4a39e 1857 struct value *descriptor;
14f9c5c9 1858
df407dfe
AC
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
14f9c5c9 1861
d2e4a39e 1862 if (elt_type == NULL || arity == 0)
df407dfe 1863 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
1864
1865 descriptor = desc_bounds (arr);
d2e4a39e 1866 if (value_as_long (descriptor) == 0)
4c4b4cd2 1867 return NULL;
d2e4a39e 1868 while (arity > 0)
4c4b4cd2 1869 {
e9bb382b
UW
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 1874
5b4ee69b 1875 arity -= 1;
df407dfe 1876 create_range_type (range_type, value_type (low),
529cad9c
PH
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
4c4b4cd2 1879 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
4c4b4cd2 1901 }
14f9c5c9
AS
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905}
1906
1907/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
d2e4a39e
AS
1912struct value *
1913ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 1914{
df407dfe 1915 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1916 {
d2e4a39e 1917 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 1918
14f9c5c9 1919 if (arrType == NULL)
4c4b4cd2 1920 return NULL;
14f9c5c9
AS
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
ad82864c
JB
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
14f9c5c9
AS
1925 else
1926 return arr;
1927}
1928
1929/* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
1931 be ARR itself if it already is in the proper form). */
1932
720d1a40 1933struct value *
d2e4a39e 1934ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 1935{
df407dfe 1936 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 1937 {
d2e4a39e 1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 1939
14f9c5c9 1940 if (arrVal == NULL)
323e0a4a 1941 error (_("Bounds unavailable for null array pointer."));
529cad9c 1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
1943 return value_ind (arrVal);
1944 }
ad82864c
JB
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
d2e4a39e 1947 else
14f9c5c9
AS
1948 return arr;
1949}
1950
1951/* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
1953 packing). For other types, is the identity. */
1954
d2e4a39e
AS
1955struct type *
1956ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 1957{
ad82864c
JB
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
17280b9f
UW
1960
1961 if (ada_is_array_descriptor_type (type))
556bdfd4 1962 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
1963
1964 return type;
14f9c5c9
AS
1965}
1966
4c4b4cd2
PH
1967/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
ad82864c
JB
1969static int
1970ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
1971{
1972 if (type == NULL)
1973 return 0;
4c4b4cd2 1974 type = desc_base_type (type);
61ee279c 1975 type = ada_check_typedef (type);
d2e4a39e 1976 return
14f9c5c9
AS
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979}
1980
ad82864c
JB
1981/* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984int
1985ada_is_constrained_packed_array_type (struct type *type)
1986{
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989}
1990
1991/* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994static int
1995ada_is_unconstrained_packed_array_type (struct type *type)
1996{
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999}
2000
2001/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004static long
2005decode_packed_array_bitsize (struct type *type)
2006{
0d5cff50
DE
2007 const char *raw_name;
2008 const char *tail;
ad82864c
JB
2009 long bits;
2010
720d1a40
JB
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
720d1a40 2025 gdb_assert (tail != NULL);
ad82864c
JB
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035}
2036
14f9c5c9
AS
2037/* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2
PH
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
d2e4a39e 2046static struct type *
ad82864c 2047constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2048{
d2e4a39e
AS
2049 struct type *new_elt_type;
2050 struct type *new_type;
99b1c762
JB
2051 struct type *index_type_desc;
2052 struct type *index_type;
14f9c5c9
AS
2053 LONGEST low_bound, high_bound;
2054
61ee279c 2055 type = ada_check_typedef (type);
14f9c5c9
AS
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
99b1c762
JB
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
e9bb382b 2066 new_type = alloc_type_copy (type);
ad82864c
JB
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
99b1c762 2070 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
99b1c762 2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2078 else
14f9c5c9
AS
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2081 TYPE_LENGTH (new_type) =
4c4b4cd2 2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2083 }
2084
876cecd0 2085 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2086 return new_type;
2087}
2088
ad82864c
JB
2089/* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2091
d2e4a39e 2092static struct type *
ad82864c 2093decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2094{
0d5cff50 2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2096 char *name;
0d5cff50 2097 const char *tail;
d2e4a39e 2098 struct type *shadow_type;
14f9c5c9 2099 long bits;
14f9c5c9 2100
727e3d2e
JB
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2109 type = desc_base_type (type);
2110
14f9c5c9
AS
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
b4ba55a1
JB
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
14f9c5c9 2117 {
323e0a4a 2118 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2119 return NULL;
2120 }
cb249c71 2121 CHECK_TYPEDEF (shadow_type);
14f9c5c9
AS
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
0963b4bd
MS
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
14f9c5c9
AS
2127 return NULL;
2128 }
d2e4a39e 2129
ad82864c
JB
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2132}
2133
ad82864c
JB
2134/* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
4c4b4cd2 2138 type length is set appropriately. */
14f9c5c9 2139
d2e4a39e 2140static struct value *
ad82864c 2141decode_constrained_packed_array (struct value *arr)
14f9c5c9 2142{
4c4b4cd2 2143 struct type *type;
14f9c5c9 2144
4c4b4cd2 2145 arr = ada_coerce_ref (arr);
284614f0
JB
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
828292f2 2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2154 arr = value_ind (arr);
4c4b4cd2 2155
ad82864c 2156 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2157 if (type == NULL)
2158 {
323e0a4a 2159 error (_("can't unpack array"));
14f9c5c9
AS
2160 return NULL;
2161 }
61ee279c 2162
50810684 2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2164 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
df407dfe 2173 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
df407dfe 2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
4c4b4cd2 2188 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2189}
2190
2191
2192/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2193 given in IND. ARR must be a simple array. */
14f9c5c9 2194
d2e4a39e
AS
2195static struct value *
2196value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2197{
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
d2e4a39e
AS
2201 struct type *elt_type;
2202 struct value *v;
14f9c5c9
AS
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
df407dfe 2206 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2207 for (i = 0; i < arity; i += 1)
14f9c5c9 2208 {
d2e4a39e 2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
0963b4bd
MS
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
14f9c5c9 2214 else
4c4b4cd2
PH
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
323e0a4a 2222 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2223 lowerbound = upperbound = 0;
2224 }
2225
3cb382c9 2226 idx = pos_atr (ind[i]);
4c4b4cd2 2227 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
4c4b4cd2
PH
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2233 }
14f9c5c9
AS
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2239 bits, elt_type);
14f9c5c9
AS
2240 return v;
2241}
2242
4c4b4cd2 2243/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2244
2245static int
d2e4a39e 2246has_negatives (struct type *type)
14f9c5c9 2247{
d2e4a39e
AS
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
14f9c5c9 2257}
d2e4a39e 2258
14f9c5c9
AS
2259
2260/* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
0963b4bd 2263 assigning through the result will set the field fetched from.
4c4b4cd2
PH
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
14f9c5c9 2268
d2e4a39e 2269struct value *
fc1a4b47 2270ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
a2bd3dcd 2271 long offset, int bit_offset, int bit_size,
4c4b4cd2 2272 struct type *type)
14f9c5c9 2273{
d2e4a39e 2274 struct value *v;
4c4b4cd2
PH
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
d2e4a39e 2283 unsigned char *unpacked;
4c4b4cd2 2284 unsigned long accum; /* Staging area for bits being transferred */
14f9c5c9
AS
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
4c4b4cd2
PH
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
50810684 2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
14f9c5c9 2290
61ee279c 2291 type = ada_check_typedef (type);
14f9c5c9
AS
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
d2e4a39e 2296 bytes = (unsigned char *) (valaddr + offset);
14f9c5c9 2297 }
9214ee5f 2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
14f9c5c9 2299 {
53ba8333 2300 v = value_at (type, value_address (obj));
d2e4a39e 2301 bytes = (unsigned char *) alloca (len);
53ba8333 2302 read_memory (value_address (v) + offset, bytes, len);
14f9c5c9 2303 }
d2e4a39e 2304 else
14f9c5c9
AS
2305 {
2306 v = allocate_value (type);
0fd88904 2307 bytes = (unsigned char *) value_contents (obj) + offset;
14f9c5c9 2308 }
d2e4a39e
AS
2309
2310 if (obj != NULL)
14f9c5c9 2311 {
53ba8333 2312 long new_offset = offset;
5b4ee69b 2313
74bcbdf3 2314 set_value_component_location (v, obj);
9bbda503
AC
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
df407dfe 2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
4c4b4cd2 2318 {
53ba8333 2319 ++new_offset;
9bbda503 2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
4c4b4cd2 2321 }
53ba8333
JB
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
14f9c5c9
AS
2328 }
2329 else
9bbda503 2330 set_value_bitsize (v, bit_size);
0fd88904 2331 unpacked = (unsigned char *) value_contents (v);
14f9c5c9
AS
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
50810684 2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
14f9c5c9 2343 {
d2e4a39e 2344 src = len - 1;
1265e4aa
JB
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2347 sign = ~0;
d2e4a39e
AS
2348
2349 unusedLS =
4c4b4cd2
PH
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
14f9c5c9
AS
2352
2353 switch (TYPE_CODE (type))
4c4b4cd2
PH
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
529cad9c 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
0056e4d5 2364 ntarg = targ + 1;
4c4b4cd2
PH
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
14f9c5c9 2371 }
d2e4a39e 2372 else
14f9c5c9
AS
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
d2e4a39e 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2381 sign = ~0;
14f9c5c9 2382 }
d2e4a39e 2383
14f9c5c9
AS
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2388 part of the value. */
d2e4a39e 2389 unsigned int unusedMSMask =
4c4b4cd2
PH
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
14f9c5c9 2393 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2394
d2e4a39e 2395 accum |=
4c4b4cd2 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2397 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2398 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2
PH
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
14f9c5c9
AS
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422}
d2e4a39e 2423
14f9c5c9
AS
2424/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2426 not overlap. */
14f9c5c9 2427static void
fc1a4b47 2428move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2429 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2430{
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
50810684 2438 if (bits_big_endian_p)
14f9c5c9
AS
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
d2e4a39e 2444 while (n > 0)
4c4b4cd2
PH
2445 {
2446 int unused_right;
5b4ee69b 2447
4c4b4cd2
PH
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
14f9c5c9
AS
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
d2e4a39e 2471 while (n > 0)
4c4b4cd2
PH
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
14f9c5c9
AS
2487 }
2488}
2489
14f9c5c9
AS
2490/* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2493 floating-point or non-scalar types. */
14f9c5c9 2494
d2e4a39e
AS
2495static struct value *
2496ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2497{
df407dfe
AC
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
14f9c5c9 2500
52ce6436
PH
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
88e3b34b 2509 if (!deprecated_value_modifiable (toval))
323e0a4a 2510 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2511
d2e4a39e 2512 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2513 && bits > 0
d2e4a39e 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2516 {
df407dfe
AC
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2519 int from_size;
d2e4a39e
AS
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
42ae5230 2522 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2525 fromval = value_cast (type, fromval);
14f9c5c9 2526
52ce6436 2527 read_memory (to_addr, buffer, len);
aced2898
PH
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2532 move_bits (buffer, value_bitpos (toval),
50810684 2533 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2534 else
50810684
UW
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
52ce6436 2537 write_memory (to_addr, buffer, len);
8cebebb9
PP
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
14f9c5c9 2540 val = value_copy (toval);
0fd88904 2541 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2542 TYPE_LENGTH (type));
04624583 2543 deprecated_set_value_type (val, type);
d2e4a39e 2544
14f9c5c9
AS
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549}
2550
2551
52ce6436
PH
2552/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557static void
2558value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560{
2561 LONGEST offset_in_container =
42ae5230 2562 (LONGEST) (value_address (component) - value_address (container));
52ce6436
PH
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
50810684 2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
52ce6436
PH
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2579 bits, 1);
52ce6436
PH
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
50810684 2583 value_contents (val), 0, bits, 0);
52ce6436
PH
2584}
2585
4c4b4cd2
PH
2586/* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2588 thereto. */
2589
d2e4a39e
AS
2590struct value *
2591ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2592{
2593 int k;
d2e4a39e
AS
2594 struct value *elt;
2595 struct type *elt_type;
14f9c5c9
AS
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
df407dfe 2599 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2607 error (_("too many subscripts (%d expected)"), k);
2497b498 2608 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2609 }
2610 return elt;
2611}
2612
2613/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
4c4b4cd2 2615 IND. Does not read the entire array into memory. */
14f9c5c9 2616
2c0b251b 2617static struct value *
d2e4a39e 2618ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
4c4b4cd2 2619 struct value **ind)
14f9c5c9
AS
2620{
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
14f9c5c9
AS
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2628 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2630 value_copy (arr));
14f9c5c9 2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2497b498 2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
14f9c5c9
AS
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637}
2638
0b5d8877 2639/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
f5938064
JG
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
0963b4bd 2642 per Ada rules. */
0b5d8877 2643static struct value *
f5938064
JG
2644ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
0b5d8877 2646{
b0dd7688 2647 struct type *type0 = ada_check_typedef (type);
6c038f32 2648 CORE_ADDR base = value_as_address (array_ptr)
b0dd7688
JB
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
6c038f32 2651 struct type *index_type =
b0dd7688 2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
0b5d8877 2653 low, high);
6c038f32 2654 struct type *slice_type =
b0dd7688 2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
5b4ee69b 2656
f5938064 2657 return value_at_lazy (slice_type, base);
0b5d8877
PH
2658}
2659
2660
2661static struct value *
2662ada_value_slice (struct value *array, int low, int high)
2663{
b0dd7688 2664 struct type *type = ada_check_typedef (value_type (array));
6c038f32 2665 struct type *index_type =
0b5d8877 2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
6c038f32 2667 struct type *slice_type =
0b5d8877 2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
5b4ee69b 2669
6c038f32 2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
0b5d8877
PH
2671}
2672
14f9c5c9
AS
2673/* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2676 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2677
2678int
d2e4a39e 2679ada_array_arity (struct type *type)
14f9c5c9
AS
2680{
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
d2e4a39e 2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2690 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2693 {
4c4b4cd2 2694 arity += 1;
61ee279c 2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2696 }
d2e4a39e 2697
14f9c5c9
AS
2698 return arity;
2699}
2700
2701/* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2704 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2705
d2e4a39e
AS
2706struct type *
2707ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2708{
2709 type = desc_base_type (type);
2710
d2e4a39e 2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2712 {
2713 int k;
d2e4a39e 2714 struct type *p_array_type;
14f9c5c9 2715
556bdfd4 2716 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
4c4b4cd2 2720 return NULL;
d2e4a39e 2721
4c4b4cd2 2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 2723 if (nindices >= 0 && k > nindices)
4c4b4cd2 2724 k = nindices;
d2e4a39e 2725 while (k > 0 && p_array_type != NULL)
4c4b4cd2 2726 {
61ee279c 2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
2728 k -= 1;
2729 }
14f9c5c9
AS
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
14f9c5c9
AS
2739 return type;
2740 }
2741
2742 return NULL;
2743}
2744
4c4b4cd2 2745/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
14f9c5c9 2750
1eea4ebd
UW
2751static struct type *
2752ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 2753{
4c4b4cd2
PH
2754 struct type *result_type;
2755
14f9c5c9
AS
2756 type = desc_base_type (type);
2757
1eea4ebd
UW
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
14f9c5c9 2760
4c4b4cd2 2761 if (ada_is_simple_array_type (type))
14f9c5c9
AS
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
4c4b4cd2 2766 type = TYPE_TARGET_TYPE (type);
262452ec 2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 2770 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
14f9c5c9 2773 }
d2e4a39e 2774 else
1eea4ebd
UW
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
14f9c5c9
AS
2782}
2783
2784/* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
14f9c5c9 2789
abb68b3e 2790static LONGEST
1eea4ebd 2791ada_array_bound_from_type (struct type * arr_type, int n, int which)
14f9c5c9 2792{
1ce677a4 2793 struct type *type, *elt_type, *index_type_desc, *index_type;
1ce677a4 2794 int i;
262452ec
JK
2795
2796 gdb_assert (which == 0 || which == 1);
14f9c5c9 2797
ad82864c
JB
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 2800
4c4b4cd2 2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 2802 return (LONGEST) - which;
14f9c5c9
AS
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
1ce677a4
UW
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
14f9c5c9 2813 index_type_desc = ada_find_parallel_type (type, "___XA");
28c85d6c 2814 ada_fixup_array_indexes_type (index_type_desc);
262452ec 2815 if (index_type_desc != NULL)
28c85d6c
JB
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
262452ec 2818 else
1ce677a4 2819 index_type = TYPE_INDEX_TYPE (elt_type);
262452ec 2820
43bbcdc2
PH
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
2825}
2826
2827/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 2830 supplied by run-time quantities other than discriminants. */
14f9c5c9 2831
1eea4ebd 2832static LONGEST
4dc81987 2833ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 2834{
df407dfe 2835 struct type *arr_type = value_type (arr);
14f9c5c9 2836
ad82864c
JB
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 2839 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 2840 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 2841 else
1eea4ebd 2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
2843}
2844
2845/* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
14f9c5c9 2850
1eea4ebd 2851static LONGEST
d2e4a39e 2852ada_array_length (struct value *arr, int n)
14f9c5c9 2853{
df407dfe 2854 struct type *arr_type = ada_check_typedef (value_type (arr));
14f9c5c9 2855
ad82864c
JB
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 2858
4c4b4cd2 2859 if (ada_is_simple_array_type (arr_type))
1eea4ebd
UW
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
14f9c5c9 2862 else
1eea4ebd
UW
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
4c4b4cd2
PH
2865}
2866
2867/* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870static struct value *
2871empty_array (struct type *arr_type, int low)
2872{
b0dd7688 2873 struct type *arr_type0 = ada_check_typedef (arr_type);
6c038f32 2874 struct type *index_type =
b0dd7688 2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
0b5d8877 2876 low, low - 1);
b0dd7688 2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 2878
0b5d8877 2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 2880}
14f9c5c9 2881\f
d2e4a39e 2882
4c4b4cd2 2883 /* Name resolution */
14f9c5c9 2884
4c4b4cd2
PH
2885/* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
14f9c5c9 2887
d2e4a39e 2888static const char *
4c4b4cd2 2889ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
2890{
2891 int i;
2892
4c4b4cd2 2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
2894 {
2895 if (ada_opname_table[i].op == op)
4c4b4cd2 2896 return ada_opname_table[i].decoded;
14f9c5c9 2897 }
323e0a4a 2898 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
2899}
2900
2901
4c4b4cd2
PH
2902/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 2909 return type is preferred. May change (expand) *EXP. */
14f9c5c9 2910
4c4b4cd2
PH
2911static void
2912resolve (struct expression **expp, int void_context_p)
14f9c5c9 2913{
30b15541
UW
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
2921}
2922
4c4b4cd2
PH
2923/* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
14f9c5c9 2931
d2e4a39e 2932static struct value *
4c4b4cd2 2933resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
76a01679 2934 struct type *context_type)
14f9c5c9
AS
2935{
2936 int pc = *pos;
2937 int i;
4c4b4cd2 2938 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
52ce6436 2942 int oplen;
14f9c5c9
AS
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
52ce6436
PH
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
14f9c5c9
AS
2950 switch (op)
2951 {
4c4b4cd2
PH
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
4c4b4cd2
PH
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
2962 break;
2963
14f9c5c9 2964 case UNOP_ADDR:
4c4b4cd2
PH
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
52ce6436
PH
2969 case UNOP_QUAL:
2970 *pos += 3;
17466c1a 2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
2972 break;
2973
52ce6436 2974 case OP_ATR_MODULUS:
4c4b4cd2
PH
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
4c4b4cd2
PH
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
4c4b4cd2
PH
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
52ce6436
PH
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
14f9c5c9
AS
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
4c4b4cd2
PH
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
df407dfe 3006 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3007 break;
14f9c5c9
AS
3008 }
3009
4c4b4cd2 3010 case UNOP_CAST:
4c4b4cd2
PH
3011 *pos += 3;
3012 nargs = 1;
3013 break;
14f9c5c9 3014
4c4b4cd2
PH
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
14f9c5c9 3028
4c4b4cd2
PH
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
14f9c5c9 3035
4c4b4cd2
PH
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
40c8aaa9
JB
3039 *pos += 1;
3040 nargs = 2;
3041 break;
14f9c5c9 3042
4c4b4cd2
PH
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
14f9c5c9 3051
4c4b4cd2
PH
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
14f9c5c9 3057
4c4b4cd2
PH
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
4c4b4cd2
PH
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
14f9c5c9 3064
4c4b4cd2
PH
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
67f3407f
DJ
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
4c4b4cd2
PH
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
4c4b4cd2 3079 case TERNOP_SLICE:
4c4b4cd2
PH
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
52ce6436 3084 case OP_STRING:
14f9c5c9 3085 break;
4c4b4cd2
PH
3086
3087 default:
323e0a4a 3088 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3089 }
3090
76a01679 3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
4c4b4cd2
PH
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
14f9c5c9 3103 case OP_VAR_VALUE:
4c4b4cd2 3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
d9680e73 3113 &candidates, 1);
76a01679
JB
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
76a01679
JB
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
76a01679 3129 case LOC_COMPUTED:
76a01679
JB
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
323e0a4a 3152 error (_("No definition found for %s"),
76a01679
JB
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
06d5cf63
JB
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
76a01679 3163 if (i < 0)
323e0a4a 3164 error (_("Could not find a match for %s"),
76a01679
JB
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
323e0a4a 3169 printf_filtered (_("Multiple matches for %s\n"),
76a01679
JB
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
1265e4aa
JB
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
76a01679
JB
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
14f9c5c9
AS
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
4c4b4cd2 3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2
PH
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
76a01679
JB
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
d9680e73 3205 &candidates, 1);
4c4b4cd2
PH
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
06d5cf63
JB
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
4c4b4cd2 3215 if (i < 0)
323e0a4a 3216 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
1265e4aa
JB
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
4c4b4cd2
PH
3224 innermost_block = candidates[i].block;
3225 }
14f9c5c9
AS
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
4c4b4cd2
PH
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
d9680e73 3257 &candidates, 1);
4c4b4cd2 3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
76a01679 3259 ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3260 if (i < 0)
3261 break;
3262
76a01679
JB
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
4c4b4cd2
PH
3265 exp = *expp;
3266 }
14f9c5c9 3267 break;
4c4b4cd2
PH
3268
3269 case OP_TYPE:
b3dbf008 3270 case OP_REGISTER:
4c4b4cd2 3271 return NULL;
14f9c5c9
AS
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276}
3277
3278/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3280 a non-pointer. */
14f9c5c9 3281/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3282 liberal. */
14f9c5c9
AS
3283
3284static int
4dc81987 3285ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3286{
61ee279c
PH
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
14f9c5c9
AS
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
d2e4a39e 3295 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3296 {
3297 default:
5b3d5b7d 3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3303 else
1265e4aa
JB
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
14f9c5c9
AS
3318
3319 case TYPE_CODE_ARRAY:
d2e4a39e 3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3321 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3322
3323 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
14f9c5c9 3327 else
4c4b4cd2
PH
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335}
3336
3337/* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3340 argument function. */
14f9c5c9
AS
3341
3342static int
d2e4a39e 3343ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3344{
3345 int i;
d2e4a39e 3346 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3347
1265e4aa
JB
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
4c4b4cd2 3359 if (actuals[i] == NULL)
76a01679
JB
3360 return 0;
3361 else
3362 {
5b4ee69b
MS
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
df407dfe 3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3366
76a01679
JB
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
14f9c5c9
AS
3370 }
3371 return 1;
3372}
3373
3374/* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379static int
d2e4a39e 3380return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3381{
d2e4a39e 3382 struct type *return_type;
14f9c5c9
AS
3383
3384 if (func_type == NULL)
3385 return 1;
3386
4c4b4cd2 3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3389 else
18af8284 3390 return_type = get_base_type (func_type);
14f9c5c9
AS
3391 if (return_type == NULL)
3392 return 1;
3393
18af8284 3394 context_type = get_base_type (context_type);
14f9c5c9
AS
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402}
3403
3404
4c4b4cd2 3405/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3406 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
14f9c5c9
AS
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
14f9c5c9 3416
4c4b4cd2
PH
3417static int
3418ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
14f9c5c9 3421{
30b15541 3422 int fallback;
14f9c5c9 3423 int k;
4c4b4cd2 3424 int m; /* Number of hits */
14f9c5c9 3425
d2e4a39e 3426 m = 0;
30b15541
UW
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3431 {
3432 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3433 {
61ee279c 3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
4c4b4cd2
PH
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
30b15541 3437 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
14f9c5c9
AS
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
323e0a4a 3449 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3450 user_select_syms (syms, m, 1);
14f9c5c9
AS
3451 return 0;
3452 }
3453 return 0;
3454}
3455
4c4b4cd2
PH
3456/* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
14f9c5c9 3462static int
0d5cff50 3463encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3464{
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
5b4ee69b 3472
d2e4a39e 3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3474 ;
d2e4a39e 3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3476 ;
d2e4a39e 3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
5b4ee69b 3481
4c4b4cd2
PH
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
14f9c5c9
AS
3491 return (strcmp (N0, N1) < 0);
3492 }
3493}
d2e4a39e 3494
4c4b4cd2
PH
3495/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
d2e4a39e 3498static void
4c4b4cd2 3499sort_choices (struct ada_symbol_info syms[], int nsyms)
14f9c5c9 3500{
4c4b4cd2 3501 int i;
5b4ee69b 3502
d2e4a39e 3503 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3504 {
4c4b4cd2 3505 struct ada_symbol_info sym = syms[i];
14f9c5c9
AS
3506 int j;
3507
d2e4a39e 3508 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2
PH
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
d2e4a39e 3515 syms[j + 1] = sym;
14f9c5c9
AS
3516 }
3517}
3518
4c4b4cd2
PH
3519/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
14f9c5c9
AS
3523
3524/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3525 to be re-integrated one of these days. */
14f9c5c9
AS
3526
3527int
4c4b4cd2 3528user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
14f9c5c9
AS
3529{
3530 int i;
d2e4a39e 3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
14f9c5c9
AS
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3534 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3535
3536 if (max_results < 1)
323e0a4a 3537 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3538 if (nsyms <= 1)
3539 return nsyms;
3540
717d2f5a
JB
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543canceled because the command is ambiguous\n\
3544See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
323e0a4a 3552 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3553 if (max_results > 1)
323e0a4a 3554 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3555
4c4b4cd2 3556 sort_choices (syms, nsyms);
14f9c5c9
AS
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
4c4b4cd2
PH
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
76a01679
JB
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
5b4ee69b 3567
323e0a4a
AC
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
4c4b4cd2
PH
3577 continue;
3578 }
d2e4a39e 3579 else
4c4b4cd2
PH
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
6f38eac8 3585 struct symtab *symtab = syms[i].sym->symtab;
4c4b4cd2
PH
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
323e0a4a 3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
4c4b4cd2
PH
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
76a01679
JB
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
4c4b4cd2 3594 {
a3f17187 3595 printf_unfiltered (("[%d] "), i + first_choice);
76a01679
JB
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
323e0a4a 3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
4c4b4cd2
PH
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
323e0a4a
AC
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
4c4b4cd2
PH
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
323e0a4a
AC
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
4c4b4cd2
PH
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
14f9c5c9 3615 }
d2e4a39e 3616
14f9c5c9 3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 3618 "overload-choice");
14f9c5c9
AS
3619
3620 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 3621 syms[i] = syms[chosen[i]];
14f9c5c9
AS
3622
3623 return n_chosen;
3624}
3625
3626/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 3627 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
4c4b4cd2 3633 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
4c4b4cd2 3637 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 3640 prompts (for use with the -f switch). */
14f9c5c9
AS
3641
3642int
d2e4a39e 3643get_selections (int *choices, int n_choices, int max_results,
4c4b4cd2 3644 int is_all_choice, char *annotation_suffix)
14f9c5c9 3645{
d2e4a39e 3646 char *args;
0bcd0149 3647 char *prompt;
14f9c5c9
AS
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 3650
14f9c5c9
AS
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
0bcd0149 3653 prompt = "> ";
14f9c5c9 3654
0bcd0149 3655 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 3656
14f9c5c9 3657 if (args == NULL)
323e0a4a 3658 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
3659
3660 n_chosen = 0;
76a01679 3661
4c4b4cd2
PH
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
14f9c5c9
AS
3664 while (1)
3665 {
d2e4a39e 3666 char *args2;
14f9c5c9
AS
3667 int choice, j;
3668
0fcd72ba 3669 args = skip_spaces (args);
14f9c5c9 3670 if (*args == '\0' && n_chosen == 0)
323e0a4a 3671 error_no_arg (_("one or more choice numbers"));
14f9c5c9 3672 else if (*args == '\0')
4c4b4cd2 3673 break;
14f9c5c9
AS
3674
3675 choice = strtol (args, &args2, 10);
d2e4a39e 3676 if (args == args2 || choice < 0
4c4b4cd2 3677 || choice > n_choices + first_choice - 1)
323e0a4a 3678 error (_("Argument must be choice number"));
14f9c5c9
AS
3679 args = args2;
3680
d2e4a39e 3681 if (choice == 0)
323e0a4a 3682 error (_("cancelled"));
14f9c5c9
AS
3683
3684 if (choice < first_choice)
4c4b4cd2
PH
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
14f9c5c9
AS
3691 choice -= first_choice;
3692
d2e4a39e 3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
3694 {
3695 }
14f9c5c9
AS
3696
3697 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
3698 {
3699 int k;
5b4ee69b 3700
4c4b4cd2
PH
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
14f9c5c9
AS
3706 }
3707
3708 if (n_chosen > max_results)
323e0a4a 3709 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 3710
14f9c5c9
AS
3711 return n_chosen;
3712}
3713
4c4b4cd2
PH
3714/* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
3717
3718static void
d2e4a39e 3719replace_operator_with_call (struct expression **expp, int pc, int nargs,
4c4b4cd2
PH
3720 int oplen, struct symbol *sym,
3721 struct block *block)
14f9c5c9
AS
3722{
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 3724 symbol, -oplen for operator being replaced). */
d2e4a39e 3725 struct expression *newexp = (struct expression *)
8c1a34e7 3726 xzalloc (sizeof (struct expression)
4c4b4cd2 3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
d2e4a39e 3728 struct expression *exp = *expp;
14f9c5c9
AS
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3489610d 3732 newexp->gdbarch = exp->gdbarch;
14f9c5c9 3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
aacb1f0a 3745 xfree (exp);
d2e4a39e 3746}
14f9c5c9
AS
3747
3748/* Type-class predicates */
3749
4c4b4cd2
PH
3750/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
14f9c5c9
AS
3752
3753static int
d2e4a39e 3754numeric_type_p (struct type *type)
14f9c5c9
AS
3755{
3756 if (type == NULL)
3757 return 0;
d2e4a39e
AS
3758 else
3759 {
3760 switch (TYPE_CODE (type))
4c4b4cd2
PH
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
d2e4a39e 3771 }
14f9c5c9
AS
3772}
3773
4c4b4cd2 3774/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
3775
3776static int
d2e4a39e 3777integer_type_p (struct type *type)
14f9c5c9
AS
3778{
3779 if (type == NULL)
3780 return 0;
d2e4a39e
AS
3781 else
3782 {
3783 switch (TYPE_CODE (type))
4c4b4cd2
PH
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
d2e4a39e 3793 }
14f9c5c9
AS
3794}
3795
4c4b4cd2 3796/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
3797
3798static int
d2e4a39e 3799scalar_type_p (struct type *type)
14f9c5c9
AS
3800{
3801 if (type == NULL)
3802 return 0;
d2e4a39e
AS
3803 else
3804 {
3805 switch (TYPE_CODE (type))
4c4b4cd2
PH
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
d2e4a39e 3815 }
14f9c5c9
AS
3816}
3817
4c4b4cd2 3818/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
3819
3820static int
d2e4a39e 3821discrete_type_p (struct type *type)
14f9c5c9
AS
3822{
3823 if (type == NULL)
3824 return 0;
d2e4a39e
AS
3825 else
3826 {
3827 switch (TYPE_CODE (type))
4c4b4cd2
PH
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
872f0337 3832 case TYPE_CODE_BOOL:
4c4b4cd2
PH
3833 return 1;
3834 default:
3835 return 0;
3836 }
d2e4a39e 3837 }
14f9c5c9
AS
3838}
3839
4c4b4cd2
PH
3840/* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
14f9c5c9
AS
3843
3844static int
d2e4a39e 3845possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 3846{
76a01679 3847 struct type *type0 =
df407dfe 3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 3849 struct type *type1 =
df407dfe 3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 3851
4c4b4cd2
PH
3852 if (type0 == NULL)
3853 return 0;
3854
14f9c5c9
AS
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
d2e4a39e 3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
d2e4a39e 3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
d2e4a39e 3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
3880
3881 case BINOP_CONCAT:
ee90b9ab 3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
3883
3884 case BINOP_EXP:
d2e4a39e 3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
14f9c5c9
AS
3892
3893 }
3894}
3895\f
4c4b4cd2 3896 /* Renaming */
14f9c5c9 3897
aeb5907d
JB
3898/* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910/* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
0963b4bd 3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929enum ada_renaming_category
3930ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933{
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
14f9c5c9 3941 {
aeb5907d
JB
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
14f9c5c9 3975 }
4c4b4cd2 3976
aeb5907d
JB
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988}
3989
3990/* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994static enum ada_renaming_category
3995parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998{
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
14f9c5c9 4003
aeb5907d
JB
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
14f9c5c9 4007
aeb5907d
JB
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
14f9c5c9 4033
aeb5907d
JB
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
a5ee536b
JB
4047}
4048
4049/* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
52ce6436 4052
a5ee536b
JB
4053static struct value *
4054ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056{
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070}
14f9c5c9 4071\f
d2e4a39e 4072
4c4b4cd2 4073 /* Evaluation: Function Calls */
14f9c5c9 4074
4c4b4cd2 4075/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4078
d2e4a39e 4079static struct value *
40bc484c 4080ensure_lval (struct value *val)
14f9c5c9 4081{
40bc484c
JB
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4084 {
df407dfe 4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4088
40bc484c 4089 set_value_address (val, addr);
a84a8a0d 4090 VALUE_LVAL (val) = lval_memory;
40bc484c 4091 write_memory (addr, value_contents (val), len);
c3e5cd34 4092 }
14f9c5c9
AS
4093
4094 return val;
4095}
4096
4097/* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4100 values not residing in memory, updating it as needed. */
14f9c5c9 4101
a93c0eb6 4102struct value *
40bc484c 4103ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4104{
df407dfe 4105 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4106 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4113
4c4b4cd2 4114 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4116 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4119 {
a84a8a0d 4120 struct value *result;
5b4ee69b 4121
14f9c5c9 4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4123 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4124 result = desc_data (actual);
14f9c5c9 4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
5b4ee69b 4130
df407dfe 4131 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4132 val = allocate_value (actual_type);
990a07ab 4133 memcpy ((char *) value_contents_raw (val),
0fd88904 4134 (char *) value_contents (actual),
4c4b4cd2 4135 TYPE_LENGTH (actual_type));
40bc484c 4136 actual = ensure_lval (val);
4c4b4cd2 4137 }
a84a8a0d 4138 result = value_addr (actual);
4c4b4cd2 4139 }
a84a8a0d
JB
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
14f9c5c9
AS
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148}
4149
438c98a1
JB
4150/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155static CORE_ADDR
4156value_pointer (struct value *value, struct type *type)
4157{
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167}
4168
14f9c5c9 4169
4c4b4cd2
PH
4170/* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
14f9c5c9 4175
d2e4a39e 4176static struct value *
40bc484c 4177make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4178{
d2e4a39e
AS
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4183 int i;
d2e4a39e 4184
0963b4bd
MS
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
14f9c5c9 4187 {
19f220c3
JK
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4196 }
d2e4a39e 4197
40bc484c 4198 bounds = ensure_lval (bounds);
d2e4a39e 4199
19f220c3
JK
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4213
40bc484c 4214 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220}
14f9c5c9 4221\f
963a6417 4222/* Dummy definitions for an experimental caching module that is not
0963b4bd 4223 * used in the public sources. */
96d887e8 4224
96d887e8
PH
4225static int
4226lookup_cached_symbol (const char *name, domain_enum namespace,
2570f2b7 4227 struct symbol **sym, struct block **block)
96d887e8
PH
4228{
4229 return 0;
4230}
4231
4232static void
4233cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
2570f2b7 4234 struct block *block)
96d887e8
PH
4235{
4236}
4c4b4cd2
PH
4237\f
4238 /* Symbol Lookup */
4239
c0431670
JB
4240/* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246static int
4247should_use_wild_match (const char *lookup_name)
4248{
4249 return (strstr (lookup_name, "__") == NULL);
4250}
4251
4c4b4cd2
PH
4252/* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255static struct symbol *
4256standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258{
4259 struct symbol *sym;
4c4b4cd2 4260
2570f2b7 4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4c4b4cd2 4262 return sym;
2570f2b7
UW
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4c4b4cd2
PH
4265 return sym;
4266}
4267
4268
4269/* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272static int
4273is_nonfunction (struct ada_symbol_info syms[], int n)
4274{
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
14f9c5c9
AS
4281 return 1;
4282
4283 return 0;
4284}
4285
4286/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4287 struct types. Otherwise, they may not. */
14f9c5c9
AS
4288
4289static int
d2e4a39e 4290equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4291{
d2e4a39e 4292 if (type0 == type1)
14f9c5c9 4293 return 1;
d2e4a39e 4294 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
d2e4a39e 4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4301 return 1;
d2e4a39e 4302
14f9c5c9
AS
4303 return 0;
4304}
4305
4306/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4307 no more defined than that of SYM1. */
14f9c5c9
AS
4308
4309static int
d2e4a39e 4310lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4311{
4312 if (sym0 == sym1)
4313 return 1;
176620f1 4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
d2e4a39e 4318 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4c4b4cd2
PH
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4328 int len0 = strlen (name0);
5b4ee69b 4329
4c4b4cd2
PH
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
14f9c5c9
AS
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4339 default:
4340 return 0;
14f9c5c9
AS
4341 }
4342}
4343
4c4b4cd2
PH
4344/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4346
4347static void
76a01679
JB
4348add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
2570f2b7 4350 struct block *block)
14f9c5c9
AS
4351{
4352 int i;
4c4b4cd2 4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4354
529cad9c
PH
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4c4b4cd2
PH
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4c4b4cd2 4372 return;
76a01679 4373 }
4c4b4cd2
PH
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4c4b4cd2
PH
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383}
4384
4385/* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
76a01679
JB
4388static int
4389num_defns_collected (struct obstack *obstackp)
4c4b4cd2
PH
4390{
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392}
4393
4394/* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
76a01679 4398static struct ada_symbol_info *
4c4b4cd2
PH
4399defns_collected (struct obstack *obstackp, int finish)
4400{
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405}
4406
96d887e8 4407/* Return a minimal symbol matching NAME according to Ada decoding
2e6e0353
JB
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
96d887e8 4410 first stripped off, and only static and global symbols are searched. */
4c4b4cd2 4411
96d887e8
PH
4412struct minimal_symbol *
4413ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4414{
4c4b4cd2 4415 struct objfile *objfile;
96d887e8 4416 struct minimal_symbol *msymbol;
dc4024cd 4417 const int wild_match_p = should_use_wild_match (name);
4c4b4cd2 4418
c0431670
JB
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
96d887e8 4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
c0431670 4427 name += sizeof ("standard__") - 1;
4c4b4cd2 4428
96d887e8
PH
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
dc4024cd 4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
96d887e8
PH
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4c4b4cd2 4435
96d887e8
PH
4436 return NULL;
4437}
4c4b4cd2 4438
96d887e8
PH
4439/* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4c4b4cd2 4444
96d887e8
PH
4445static void
4446add_symbols_from_enclosing_procs (struct obstack *obstackp,
76a01679 4447 const char *name, domain_enum namespace,
48b78332 4448 int wild_match_p)
96d887e8 4449{
96d887e8 4450}
14f9c5c9 4451
96d887e8
PH
4452/* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
14f9c5c9 4454
96d887e8
PH
4455static int
4456is_nondebugging_type (struct type *type)
4457{
0d5cff50 4458 const char *name = ada_type_name (type);
5b4ee69b 4459
96d887e8
PH
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461}
4c4b4cd2 4462
8f17729f
JB
4463/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470static int
4471ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472{
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 4482 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
0d5cff50
DE
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504}
4505
4506/* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526static int
4527symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528{
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563}
4564
96d887e8
PH
4565/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4c4b4cd2 4571
96d887e8
PH
4572static int
4573remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574{
4575 int i, j;
4c4b4cd2 4576
8f17729f
JB
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
96d887e8
PH
4583 i = 0;
4584 while (i < nsyms)
4585 {
a35ddb44 4586 int remove_p = 0;
339c13b6
JB
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
a35ddb44 4601 remove_p = 1;
339c13b6
JB
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
96d887e8
PH
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
76a01679 4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
96d887e8
PH
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
a35ddb44 4621 remove_p = 1;
4c4b4cd2 4622 }
4c4b4cd2 4623 }
339c13b6 4624
a35ddb44 4625 if (remove_p)
339c13b6
JB
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
96d887e8 4632 i += 1;
14f9c5c9 4633 }
8f17729f
JB
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
96d887e8 4650 return nsyms;
14f9c5c9
AS
4651}
4652
96d887e8
PH
4653/* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4c4b4cd2 4657
96d887e8
PH
4658static char *
4659xget_renaming_scope (struct type *renaming_type)
14f9c5c9 4660{
96d887e8 4661 /* The renaming types adhere to the following convention:
0963b4bd 4662 <scope>__<rename>___<XR extension>.
96d887e8
PH
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
76a01679 4665
96d887e8
PH
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
14f9c5c9 4671
96d887e8
PH
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 4674
96d887e8
PH
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
76a01679 4678
96d887e8 4679 /* Make a copy of scope and return it. */
14f9c5c9 4680
96d887e8
PH
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
14f9c5c9 4683
96d887e8
PH
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4c4b4cd2 4686
96d887e8 4687 return scope;
4c4b4cd2
PH
4688}
4689
96d887e8 4690/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 4691
96d887e8
PH
4692static int
4693is_package_name (const char *name)
4c4b4cd2 4694{
96d887e8
PH
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4c4b4cd2 4700
96d887e8 4701 char *fun_name;
76a01679 4702
96d887e8
PH
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
14f9c5c9 4707
96d887e8
PH
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
14f9c5c9 4710
96d887e8 4711 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 4712 functions names cannot contain "__" in them. */
96d887e8
PH
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4c4b4cd2 4715
b435e160 4716 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 4717
96d887e8
PH
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719}
14f9c5c9 4720
96d887e8 4721/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 4722 not visible from FUNCTION_NAME. */
14f9c5c9 4723
96d887e8 4724static int
0d5cff50 4725old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 4726{
aeb5907d
JB
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
d2e4a39e 4733
96d887e8 4734 make_cleanup (xfree, scope);
14f9c5c9 4735
96d887e8
PH
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
aeb5907d 4738 return 0;
14f9c5c9 4739
96d887e8
PH
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
76a01679 4742
96d887e8
PH
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
f26caa11 4749
aeb5907d 4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
f26caa11
PH
4751}
4752
aeb5907d
JB
4753/* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
96d887e8
PH
4758
4759 Rationale:
aeb5907d
JB
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
f26caa11 4772
96d887e8
PH
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4c4b4cd2 4789
14f9c5c9 4790static int
aeb5907d
JB
4791remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4c4b4cd2
PH
4793{
4794 struct symbol *current_function;
0d5cff50 4795 const char *current_function_name;
4c4b4cd2 4796 int i;
aeb5907d
JB
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
0963b4bd 4801 First, zero out such symbols, then compress. */
aeb5907d
JB
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
5b4ee69b 4819
aeb5907d
JB
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4c4b4cd2
PH
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
76a01679 4844
4c4b4cd2
PH
4845 if (current_block == NULL)
4846 return nsyms;
76a01679 4847
7f0df278 4848 current_function = block_linkage_function (current_block);
4c4b4cd2
PH
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
aeb5907d
JB
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4c4b4cd2
PH
4866 {
4867 int j;
5b4ee69b 4868
aeb5907d 4869 for (j = i + 1; j < nsyms; j += 1)
76a01679 4870 syms[j - 1] = syms[j];
4c4b4cd2
PH
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878}
4879
339c13b6
JB
4880/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890static void
4891ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
d0a8ab18 4893 int wild_match_p)
339c13b6
JB
4894{
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
d0a8ab18
JB
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
339c13b6
JB
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
d0a8ab18 4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
339c13b6
JB
4915}
4916
ccefe4c4 4917/* An object of this type is used as the user_data argument when
40658b94 4918 calling the map_matching_symbols method. */
ccefe4c4 4919
40658b94 4920struct match_data
ccefe4c4 4921{
40658b94 4922 struct objfile *objfile;
ccefe4c4 4923 struct obstack *obstackp;
40658b94
PH
4924 struct symbol *arg_sym;
4925 int found_sym;
ccefe4c4
TT
4926};
4927
40658b94
PH
4928/* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
ccefe4c4 4936
40658b94
PH
4937static int
4938aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 4939{
40658b94
PH
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966}
4967
4968/* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
5b4ee69b 4972
40658b94
PH
4973static int
4974compare_names (const char *string1, const char *string2)
4975{
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
052874e8 4992 if (is_name_suffix (string1))
40658b94
PH
4993 return 0;
4994 else
1a1d5513 4995 return 1;
40658b94 4996 }
dbb8534f 4997 /* FALLTHROUGH */
40658b94
PH
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
ccefe4c4
TT
5004}
5005
339c13b6
JB
5006/* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010static void
40658b94
PH
5011add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
339c13b6
JB
5014{
5015 struct objfile *objfile;
40658b94 5016 struct match_data data;
339c13b6 5017
6475f2fe 5018 memset (&data, 0, sizeof data);
ccefe4c4 5019 data.obstackp = obstackp;
339c13b6 5020
ccefe4c4 5021 ALL_OBJFILES (objfile)
40658b94
PH
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
0963b4bd
MS
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
40658b94
PH
5047 full_match, compare_names);
5048 }
5049 }
339c13b6
JB
5050}
5051
4c4b4cd2 5052/* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
9f88c959
JB
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4c4b4cd2 5055 indicating the symbols found and the blocks and symbol tables (if
9f88c959
JB
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4c4b4cd2
PH
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
d9680e73
TT
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
9f88c959 5064 Names prefixed with "standard__" are handled specially: "standard__"
4c4b4cd2 5065 is first stripped off, and only static and global symbols are searched. */
14f9c5c9
AS
5066
5067int
4c4b4cd2 5068ada_lookup_symbol_list (const char *name0, const struct block *block0,
d9680e73
TT
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
14f9c5c9
AS
5072{
5073 struct symbol *sym;
14f9c5c9 5074 struct block *block;
4c4b4cd2 5075 const char *name;
82ccd55e 5076 const int wild_match_p = should_use_wild_match (name0);
14f9c5c9 5077 int cacheIfUnique;
4c4b4cd2 5078 int ndefns;
14f9c5c9 5079
4c4b4cd2
PH
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
14f9c5c9 5082
14f9c5c9
AS
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
4c4b4cd2 5087 name = name0;
76a01679
JB
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
339c13b6
JB
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
4c4b4cd2
PH
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
4c4b4cd2
PH
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
339c13b6 5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5106
339c13b6 5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
82ccd55e 5108 wild_match_p);
d9680e73 5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
14f9c5c9 5110 goto done;
d2e4a39e 5111
339c13b6
JB
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
14f9c5c9 5116 cacheIfUnique = 1;
2570f2b7 5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
4c4b4cd2
PH
5118 {
5119 if (sym != NULL)
2570f2b7 5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
4c4b4cd2
PH
5121 goto done;
5122 }
14f9c5c9 5123
339c13b6
JB
5124 /* Search symbols from all global blocks. */
5125
40658b94 5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
82ccd55e 5127 wild_match_p);
d2e4a39e 5128
4c4b4cd2 5129 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5130 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5131
4c4b4cd2 5132 if (num_defns_collected (&symbol_list_obstack) == 0)
40658b94 5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
82ccd55e 5134 wild_match_p);
14f9c5c9 5135
4c4b4cd2
PH
5136done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
2ad01556 5142 if (ndefns == 0 && full_search)
2570f2b7 5143 cache_symbol (name0, namespace, NULL, NULL);
14f9c5c9 5144
2ad01556 5145 if (ndefns == 1 && full_search && cacheIfUnique)
2570f2b7 5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
14f9c5c9 5147
aeb5907d 5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
14f9c5c9 5149
14f9c5c9
AS
5150 return ndefns;
5151}
5152
f8eba3c6
TT
5153/* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161char *
5162ada_name_for_lookup (const char *name)
5163{
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176}
5177
5178/* Implementation of the la_iterate_over_symbols method. */
5179
5180static void
5181ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
8e704927 5183 symbol_found_callback_ftype *callback,
f8eba3c6
TT
5184 void *data)
5185{
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
d9680e73 5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
f8eba3c6
TT
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195}
5196
4e5c77fe
JB
5197/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5e2336be
JB
5201 The result is stored in *INFO, which must be non-NULL.
5202 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5203
5204void
5205ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5e2336be 5207 struct ada_symbol_info *info)
14f9c5c9 5208{
4c4b4cd2 5209 struct ada_symbol_info *candidates;
14f9c5c9
AS
5210 int n_candidates;
5211
5e2336be
JB
5212 gdb_assert (info != NULL);
5213 memset (info, 0, sizeof (struct ada_symbol_info));
4e5c77fe
JB
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
d9680e73 5216 1);
14f9c5c9
AS
5217
5218 if (n_candidates == 0)
4e5c77fe 5219 return;
4c4b4cd2 5220
5e2336be
JB
5221 *info = candidates[0];
5222 info->sym = fixup_symbol_section (info->sym, NULL);
4e5c77fe 5223}
aeb5907d
JB
5224
5225/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5228 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
aeb5907d
JB
5231struct symbol *
5232ada_lookup_symbol (const char *name, const struct block *block0,
21b556f4 5233 domain_enum namespace, int *is_a_field_of_this)
aeb5907d 5234{
5e2336be 5235 struct ada_symbol_info info;
4e5c77fe 5236
aeb5907d
JB
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
4e5c77fe 5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5e2336be
JB
5241 block0, namespace, &info);
5242 return info.sym;
4c4b4cd2 5243}
14f9c5c9 5244
4c4b4cd2
PH
5245static struct symbol *
5246ada_lookup_symbol_nonlocal (const char *name,
76a01679 5247 const struct block *block,
21b556f4 5248 const domain_enum domain)
4c4b4cd2 5249{
94af9270 5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
14f9c5c9
AS
5251}
5252
5253
4c4b4cd2
PH
5254/* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5257 are given by any of the regular expressions:
4c4b4cd2 5258
babe1480
JB
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5261 TKB [subprogram suffix for task bodies]
babe1480 5262 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
4c4b4cd2 5268
14f9c5c9 5269static int
d2e4a39e 5270is_name_suffix (const char *str)
14f9c5c9
AS
5271{
5272 int k;
4c4b4cd2
PH
5273 const char *matching;
5274 const int len = strlen (str);
5275
babe1480
JB
5276 /* Skip optional leading __[0-9]+. */
5277
4c4b4cd2
PH
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
babe1480
JB
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
4c4b4cd2 5283 }
babe1480
JB
5284
5285 /* [.$][0-9]+ */
4c4b4cd2 5286
babe1480 5287 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5288 {
babe1480 5289 matching = str + 1;
4c4b4cd2
PH
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
babe1480 5297
4c4b4cd2
PH
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
9ac7f98e
JB
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
529cad9c
PH
5312#if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
529cad9c 5316 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
0963b4bd 5321 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327#endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
4c4b4cd2
PH
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
d2e4a39e 5348 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
14f9c5c9 5354 }
babe1480 5355
14f9c5c9
AS
5356 if (str[0] == '\000')
5357 return 1;
babe1480 5358
d2e4a39e 5359 if (str[0] == '_')
14f9c5c9
AS
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 5362 return 0;
d2e4a39e 5363 if (str[2] == '_')
4c4b4cd2 5364 {
61ee279c
PH
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
4c4b4cd2
PH
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
1265e4aa
JB
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
14f9c5c9
AS
5388 return 1;
5389 }
4c4b4cd2 5390 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 5391 {
4c4b4cd2
PH
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
14f9c5c9
AS
5395 return 1;
5396 }
5397 return 0;
5398}
d2e4a39e 5399
aeb5907d
JB
5400/* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
529cad9c
PH
5402
5403static int
5404is_valid_name_for_wild_match (const char *name0)
5405{
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5823c3ef
JB
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
529cad9c
PH
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420}
5421
73589123
PH
5422/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
4c4b4cd2 5425
14f9c5c9 5426static int
73589123 5427advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 5428{
73589123 5429 const char *name = *namep;
5b4ee69b 5430
5823c3ef 5431 while (1)
14f9c5c9 5432 {
aa27d0b3 5433 int t0, t1;
73589123
PH
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
aa27d0b3
JB
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
73589123
PH
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5823c3ef 5459 return 0;
73589123
PH
5460 }
5461
5462 *namep = name;
5463 return 1;
5464}
5465
5466/* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470static int
5471wild_match (const char *name, const char *patn)
5472{
5473 const char *p, *n;
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
96d887e8 5493 }
96d887e8
PH
5494}
5495
40658b94
PH
5496/* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
c4d840bd
PH
5499static int
5500full_match (const char *sym_name, const char *search_name)
5501{
40658b94 5502 return !match_name (sym_name, search_name, 0);
c4d840bd
PH
5503}
5504
5505
96d887e8
PH
5506/* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
0963b4bd 5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
96d887e8
PH
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512static void
5513ada_add_block_symbols (struct obstack *obstackp,
76a01679 5514 struct block *block, const char *name,
96d887e8 5515 domain_enum domain, struct objfile *objfile,
2570f2b7 5516 int wild)
96d887e8 5517{
8157b174 5518 struct block_iterator iter;
96d887e8
PH
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
8157b174
TT
5530 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5531 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
76a01679 5532 {
5eeb2539
AR
5533 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5534 SYMBOL_DOMAIN (sym), domain)
73589123 5535 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
76a01679 5536 {
2a2d4dc3
AS
5537 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5538 continue;
5539 else if (SYMBOL_IS_ARGUMENT (sym))
5540 arg_sym = sym;
5541 else
5542 {
76a01679
JB
5543 found_sym = 1;
5544 add_defn_to_vec (obstackp,
5545 fixup_symbol_section (sym, objfile),
2570f2b7 5546 block);
76a01679
JB
5547 }
5548 }
5549 }
96d887e8
PH
5550 }
5551 else
5552 {
8157b174
TT
5553 for (sym = block_iter_match_first (block, name, full_match, &iter);
5554 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
76a01679 5555 {
5eeb2539
AR
5556 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5557 SYMBOL_DOMAIN (sym), domain))
76a01679 5558 {
c4d840bd
PH
5559 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5560 {
5561 if (SYMBOL_IS_ARGUMENT (sym))
5562 arg_sym = sym;
5563 else
2a2d4dc3 5564 {
c4d840bd
PH
5565 found_sym = 1;
5566 add_defn_to_vec (obstackp,
5567 fixup_symbol_section (sym, objfile),
5568 block);
2a2d4dc3 5569 }
c4d840bd 5570 }
76a01679
JB
5571 }
5572 }
96d887e8
PH
5573 }
5574
5575 if (!found_sym && arg_sym != NULL)
5576 {
76a01679
JB
5577 add_defn_to_vec (obstackp,
5578 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5579 block);
96d887e8
PH
5580 }
5581
5582 if (!wild)
5583 {
5584 arg_sym = NULL;
5585 found_sym = 0;
5586
5587 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 5588 {
5eeb2539
AR
5589 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5590 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
5591 {
5592 int cmp;
5593
5594 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5595 if (cmp == 0)
5596 {
5597 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5598 if (cmp == 0)
5599 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5600 name_len);
5601 }
5602
5603 if (cmp == 0
5604 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5605 {
2a2d4dc3
AS
5606 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5607 {
5608 if (SYMBOL_IS_ARGUMENT (sym))
5609 arg_sym = sym;
5610 else
5611 {
5612 found_sym = 1;
5613 add_defn_to_vec (obstackp,
5614 fixup_symbol_section (sym, objfile),
5615 block);
5616 }
5617 }
76a01679
JB
5618 }
5619 }
76a01679 5620 }
96d887e8
PH
5621
5622 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5623 They aren't parameters, right? */
5624 if (!found_sym && arg_sym != NULL)
5625 {
5626 add_defn_to_vec (obstackp,
76a01679 5627 fixup_symbol_section (arg_sym, objfile),
2570f2b7 5628 block);
96d887e8
PH
5629 }
5630 }
5631}
5632\f
41d27058
JB
5633
5634 /* Symbol Completion */
5635
5636/* If SYM_NAME is a completion candidate for TEXT, return this symbol
5637 name in a form that's appropriate for the completion. The result
5638 does not need to be deallocated, but is only good until the next call.
5639
5640 TEXT_LEN is equal to the length of TEXT.
e701b3c0 5641 Perform a wild match if WILD_MATCH_P is set.
6ea35997 5642 ENCODED_P should be set if TEXT represents the start of a symbol name
41d27058
JB
5643 in its encoded form. */
5644
5645static const char *
5646symbol_completion_match (const char *sym_name,
5647 const char *text, int text_len,
6ea35997 5648 int wild_match_p, int encoded_p)
41d27058 5649{
41d27058
JB
5650 const int verbatim_match = (text[0] == '<');
5651 int match = 0;
5652
5653 if (verbatim_match)
5654 {
5655 /* Strip the leading angle bracket. */
5656 text = text + 1;
5657 text_len--;
5658 }
5659
5660 /* First, test against the fully qualified name of the symbol. */
5661
5662 if (strncmp (sym_name, text, text_len) == 0)
5663 match = 1;
5664
6ea35997 5665 if (match && !encoded_p)
41d27058
JB
5666 {
5667 /* One needed check before declaring a positive match is to verify
5668 that iff we are doing a verbatim match, the decoded version
5669 of the symbol name starts with '<'. Otherwise, this symbol name
5670 is not a suitable completion. */
5671 const char *sym_name_copy = sym_name;
5672 int has_angle_bracket;
5673
5674 sym_name = ada_decode (sym_name);
5675 has_angle_bracket = (sym_name[0] == '<');
5676 match = (has_angle_bracket == verbatim_match);
5677 sym_name = sym_name_copy;
5678 }
5679
5680 if (match && !verbatim_match)
5681 {
5682 /* When doing non-verbatim match, another check that needs to
5683 be done is to verify that the potentially matching symbol name
5684 does not include capital letters, because the ada-mode would
5685 not be able to understand these symbol names without the
5686 angle bracket notation. */
5687 const char *tmp;
5688
5689 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5690 if (*tmp != '\0')
5691 match = 0;
5692 }
5693
5694 /* Second: Try wild matching... */
5695
e701b3c0 5696 if (!match && wild_match_p)
41d27058
JB
5697 {
5698 /* Since we are doing wild matching, this means that TEXT
5699 may represent an unqualified symbol name. We therefore must
5700 also compare TEXT against the unqualified name of the symbol. */
5701 sym_name = ada_unqualified_name (ada_decode (sym_name));
5702
5703 if (strncmp (sym_name, text, text_len) == 0)
5704 match = 1;
5705 }
5706
5707 /* Finally: If we found a mach, prepare the result to return. */
5708
5709 if (!match)
5710 return NULL;
5711
5712 if (verbatim_match)
5713 sym_name = add_angle_brackets (sym_name);
5714
6ea35997 5715 if (!encoded_p)
41d27058
JB
5716 sym_name = ada_decode (sym_name);
5717
5718 return sym_name;
5719}
5720
5721/* A companion function to ada_make_symbol_completion_list().
5722 Check if SYM_NAME represents a symbol which name would be suitable
5723 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5724 it is appended at the end of the given string vector SV.
5725
5726 ORIG_TEXT is the string original string from the user command
5727 that needs to be completed. WORD is the entire command on which
5728 completion should be performed. These two parameters are used to
5729 determine which part of the symbol name should be added to the
5730 completion vector.
c0af1706 5731 if WILD_MATCH_P is set, then wild matching is performed.
cb8e9b97 5732 ENCODED_P should be set if TEXT represents a symbol name in its
41d27058
JB
5733 encoded formed (in which case the completion should also be
5734 encoded). */
5735
5736static void
d6565258 5737symbol_completion_add (VEC(char_ptr) **sv,
41d27058
JB
5738 const char *sym_name,
5739 const char *text, int text_len,
5740 const char *orig_text, const char *word,
cb8e9b97 5741 int wild_match_p, int encoded_p)
41d27058
JB
5742{
5743 const char *match = symbol_completion_match (sym_name, text, text_len,
cb8e9b97 5744 wild_match_p, encoded_p);
41d27058
JB
5745 char *completion;
5746
5747 if (match == NULL)
5748 return;
5749
5750 /* We found a match, so add the appropriate completion to the given
5751 string vector. */
5752
5753 if (word == orig_text)
5754 {
5755 completion = xmalloc (strlen (match) + 5);
5756 strcpy (completion, match);
5757 }
5758 else if (word > orig_text)
5759 {
5760 /* Return some portion of sym_name. */
5761 completion = xmalloc (strlen (match) + 5);
5762 strcpy (completion, match + (word - orig_text));
5763 }
5764 else
5765 {
5766 /* Return some of ORIG_TEXT plus sym_name. */
5767 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5768 strncpy (completion, word, orig_text - word);
5769 completion[orig_text - word] = '\0';
5770 strcat (completion, match);
5771 }
5772
d6565258 5773 VEC_safe_push (char_ptr, *sv, completion);
41d27058
JB
5774}
5775
ccefe4c4 5776/* An object of this type is passed as the user_data argument to the
7b08b9eb 5777 expand_partial_symbol_names method. */
ccefe4c4
TT
5778struct add_partial_datum
5779{
5780 VEC(char_ptr) **completions;
5781 char *text;
5782 int text_len;
5783 char *text0;
5784 char *word;
5785 int wild_match;
5786 int encoded;
5787};
5788
7b08b9eb
JK
5789/* A callback for expand_partial_symbol_names. */
5790static int
e078317b 5791ada_expand_partial_symbol_name (const char *name, void *user_data)
ccefe4c4
TT
5792{
5793 struct add_partial_datum *data = user_data;
7b08b9eb
JK
5794
5795 return symbol_completion_match (name, data->text, data->text_len,
5796 data->wild_match, data->encoded) != NULL;
ccefe4c4
TT
5797}
5798
41d27058
JB
5799/* Return a list of possible symbol names completing TEXT0. The list
5800 is NULL terminated. WORD is the entire command on which completion
5801 is made. */
5802
5803static char **
5804ada_make_symbol_completion_list (char *text0, char *word)
5805{
5806 char *text;
5807 int text_len;
b1ed564a
JB
5808 int wild_match_p;
5809 int encoded_p;
2ba95b9b 5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
41d27058
JB
5811 struct symbol *sym;
5812 struct symtab *s;
41d27058
JB
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
8157b174 5817 struct block_iterator iter;
41d27058
JB
5818
5819 if (text0[0] == '<')
5820 {
5821 text = xstrdup (text0);
5822 make_cleanup (xfree, text);
5823 text_len = strlen (text);
b1ed564a
JB
5824 wild_match_p = 0;
5825 encoded_p = 1;
41d27058
JB
5826 }
5827 else
5828 {
5829 text = xstrdup (ada_encode (text0));
5830 make_cleanup (xfree, text);
5831 text_len = strlen (text);
5832 for (i = 0; i < text_len; i++)
5833 text[i] = tolower (text[i]);
5834
b1ed564a 5835 encoded_p = (strstr (text0, "__") != NULL);
41d27058
JB
5836 /* If the name contains a ".", then the user is entering a fully
5837 qualified entity name, and the match must not be done in wild
5838 mode. Similarly, if the user wants to complete what looks like
5839 an encoded name, the match must not be done in wild mode. */
b1ed564a 5840 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
41d27058
JB
5841 }
5842
5843 /* First, look at the partial symtab symbols. */
41d27058 5844 {
ccefe4c4
TT
5845 struct add_partial_datum data;
5846
5847 data.completions = &completions;
5848 data.text = text;
5849 data.text_len = text_len;
5850 data.text0 = text0;
5851 data.word = word;
b1ed564a
JB
5852 data.wild_match = wild_match_p;
5853 data.encoded = encoded_p;
7b08b9eb 5854 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
41d27058
JB
5855 }
5856
5857 /* At this point scan through the misc symbol vectors and add each
5858 symbol you find to the list. Eventually we want to ignore
5859 anything that isn't a text symbol (everything else will be
5860 handled by the psymtab code above). */
5861
5862 ALL_MSYMBOLS (objfile, msymbol)
5863 {
5864 QUIT;
d6565258 5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
b1ed564a
JB
5866 text, text_len, text0, word, wild_match_p,
5867 encoded_p);
41d27058
JB
5868 }
5869
5870 /* Search upwards from currently selected frame (so that we can
5871 complete on local vars. */
5872
5873 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5874 {
5875 if (!BLOCK_SUPERBLOCK (b))
5876 surrounding_static_block = b; /* For elmin of dups */
5877
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
d6565258 5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5881 text, text_len, text0, word,
b1ed564a 5882 wild_match_p, encoded_p);
41d27058
JB
5883 }
5884 }
5885
5886 /* Go through the symtabs and check the externs and statics for
5887 symbols which match. */
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
d6565258 5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5896 text, text_len, text0, word,
b1ed564a 5897 wild_match_p, encoded_p);
41d27058
JB
5898 }
5899 }
5900
5901 ALL_SYMTABS (objfile, s)
5902 {
5903 QUIT;
5904 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5905 /* Don't do this block twice. */
5906 if (b == surrounding_static_block)
5907 continue;
5908 ALL_BLOCK_SYMBOLS (b, iter, sym)
5909 {
d6565258 5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
41d27058 5911 text, text_len, text0, word,
b1ed564a 5912 wild_match_p, encoded_p);
41d27058
JB
5913 }
5914 }
5915
5916 /* Append the closing NULL entry. */
2ba95b9b 5917 VEC_safe_push (char_ptr, completions, NULL);
41d27058 5918
2ba95b9b
JB
5919 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5920 return the copy. It's unfortunate that we have to make a copy
5921 of an array that we're about to destroy, but there is nothing much
5922 we can do about it. Fortunately, it's typically not a very large
5923 array. */
5924 {
5925 const size_t completions_size =
5926 VEC_length (char_ptr, completions) * sizeof (char *);
dc19db01 5927 char **result = xmalloc (completions_size);
2ba95b9b
JB
5928
5929 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5930
5931 VEC_free (char_ptr, completions);
5932 return result;
5933 }
41d27058
JB
5934}
5935
963a6417 5936 /* Field Access */
96d887e8 5937
73fb9985
JB
5938/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5939 for tagged types. */
5940
5941static int
5942ada_is_dispatch_table_ptr_type (struct type *type)
5943{
0d5cff50 5944 const char *name;
73fb9985
JB
5945
5946 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5947 return 0;
5948
5949 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5950 if (name == NULL)
5951 return 0;
5952
5953 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5954}
5955
963a6417
PH
5956/* True if field number FIELD_NUM in struct or union type TYPE is supposed
5957 to be invisible to users. */
96d887e8 5958
963a6417
PH
5959int
5960ada_is_ignored_field (struct type *type, int field_num)
96d887e8 5961{
963a6417
PH
5962 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5963 return 1;
ffde82bf 5964
73fb9985
JB
5965 /* Check the name of that field. */
5966 {
5967 const char *name = TYPE_FIELD_NAME (type, field_num);
5968
5969 /* Anonymous field names should not be printed.
5970 brobecker/2007-02-20: I don't think this can actually happen
5971 but we don't want to print the value of annonymous fields anyway. */
5972 if (name == NULL)
5973 return 1;
5974
ffde82bf
JB
5975 /* Normally, fields whose name start with an underscore ("_")
5976 are fields that have been internally generated by the compiler,
5977 and thus should not be printed. The "_parent" field is special,
5978 however: This is a field internally generated by the compiler
5979 for tagged types, and it contains the components inherited from
5980 the parent type. This field should not be printed as is, but
5981 should not be ignored either. */
73fb9985
JB
5982 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5983 return 1;
5984 }
5985
5986 /* If this is the dispatch table of a tagged type, then ignore. */
5987 if (ada_is_tagged_type (type, 1)
5988 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5989 return 1;
5990
5991 /* Not a special field, so it should not be ignored. */
5992 return 0;
963a6417 5993}
96d887e8 5994
963a6417 5995/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 5996 pointer or reference type whose ultimate target has a tag field. */
96d887e8 5997
963a6417
PH
5998int
5999ada_is_tagged_type (struct type *type, int refok)
6000{
6001 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6002}
96d887e8 6003
963a6417 6004/* True iff TYPE represents the type of X'Tag */
96d887e8 6005
963a6417
PH
6006int
6007ada_is_tag_type (struct type *type)
6008{
6009 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6010 return 0;
6011 else
96d887e8 6012 {
963a6417 6013 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6014
963a6417
PH
6015 return (name != NULL
6016 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6017 }
96d887e8
PH
6018}
6019
963a6417 6020/* The type of the tag on VAL. */
76a01679 6021
963a6417
PH
6022struct type *
6023ada_tag_type (struct value *val)
96d887e8 6024{
df407dfe 6025 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
963a6417 6026}
96d887e8 6027
963a6417 6028/* The value of the tag on VAL. */
96d887e8 6029
963a6417
PH
6030struct value *
6031ada_value_tag (struct value *val)
6032{
03ee6b2e 6033 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6034}
6035
963a6417
PH
6036/* The value of the tag on the object of type TYPE whose contents are
6037 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6038 ADDRESS. */
96d887e8 6039
963a6417 6040static struct value *
10a2c479 6041value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6042 const gdb_byte *valaddr,
963a6417 6043 CORE_ADDR address)
96d887e8 6044{
b5385fc0 6045 int tag_byte_offset;
963a6417 6046 struct type *tag_type;
5b4ee69b 6047
963a6417 6048 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6049 NULL, NULL, NULL))
96d887e8 6050 {
fc1a4b47 6051 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6052 ? NULL
6053 : valaddr + tag_byte_offset);
963a6417 6054 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6055
963a6417 6056 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6057 }
963a6417
PH
6058 return NULL;
6059}
96d887e8 6060
963a6417
PH
6061static struct type *
6062type_from_tag (struct value *tag)
6063{
6064 const char *type_name = ada_tag_name (tag);
5b4ee69b 6065
963a6417
PH
6066 if (type_name != NULL)
6067 return ada_find_any_type (ada_encode (type_name));
6068 return NULL;
6069}
96d887e8 6070
1b611343
JB
6071/* Return the "ada__tags__type_specific_data" type. */
6072
6073static struct type *
6074ada_get_tsd_type (struct inferior *inf)
963a6417 6075{
1b611343 6076 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6077
1b611343
JB
6078 if (data->tsd_type == 0)
6079 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6080 return data->tsd_type;
6081}
529cad9c 6082
1b611343
JB
6083/* Return the TSD (type-specific data) associated to the given TAG.
6084 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6085
1b611343 6086 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6087
1b611343
JB
6088static struct value *
6089ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6090{
4c4b4cd2 6091 struct value *val;
1b611343 6092 struct type *type;
5b4ee69b 6093
1b611343
JB
6094 /* First option: The TSD is simply stored as a field of our TAG.
6095 Only older versions of GNAT would use this format, but we have
6096 to test it first, because there are no visible markers for
6097 the current approach except the absence of that field. */
529cad9c 6098
1b611343
JB
6099 val = ada_value_struct_elt (tag, "tsd", 1);
6100 if (val)
6101 return val;
e802dbe0 6102
1b611343
JB
6103 /* Try the second representation for the dispatch table (in which
6104 there is no explicit 'tsd' field in the referent of the tag pointer,
6105 and instead the tsd pointer is stored just before the dispatch
6106 table. */
e802dbe0 6107
1b611343
JB
6108 type = ada_get_tsd_type (current_inferior());
6109 if (type == NULL)
6110 return NULL;
6111 type = lookup_pointer_type (lookup_pointer_type (type));
6112 val = value_cast (type, tag);
6113 if (val == NULL)
6114 return NULL;
6115 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6116}
6117
1b611343
JB
6118/* Given the TSD of a tag (type-specific data), return a string
6119 containing the name of the associated type.
6120
6121 The returned value is good until the next call. May return NULL
6122 if we are unable to determine the tag name. */
6123
6124static char *
6125ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6126{
529cad9c
PH
6127 static char name[1024];
6128 char *p;
1b611343 6129 struct value *val;
529cad9c 6130
1b611343 6131 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6132 if (val == NULL)
1b611343 6133 return NULL;
4c4b4cd2
PH
6134 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6135 for (p = name; *p != '\0'; p += 1)
6136 if (isalpha (*p))
6137 *p = tolower (*p);
1b611343 6138 return name;
4c4b4cd2
PH
6139}
6140
6141/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6142 a C string.
6143
6144 Return NULL if the TAG is not an Ada tag, or if we were unable to
6145 determine the name of that tag. The result is good until the next
6146 call. */
4c4b4cd2
PH
6147
6148const char *
6149ada_tag_name (struct value *tag)
6150{
1b611343
JB
6151 volatile struct gdb_exception e;
6152 char *name = NULL;
5b4ee69b 6153
df407dfe 6154 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6155 return NULL;
1b611343
JB
6156
6157 /* It is perfectly possible that an exception be raised while trying
6158 to determine the TAG's name, even under normal circumstances:
6159 The associated variable may be uninitialized or corrupted, for
6160 instance. We do not let any exception propagate past this point.
6161 instead we return NULL.
6162
6163 We also do not print the error message either (which often is very
6164 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6165 the caller print a more meaningful message if necessary. */
6166 TRY_CATCH (e, RETURN_MASK_ERROR)
6167 {
6168 struct value *tsd = ada_get_tsd_from_tag (tag);
6169
6170 if (tsd != NULL)
6171 name = ada_tag_name_from_tsd (tsd);
6172 }
6173
6174 return name;
4c4b4cd2
PH
6175}
6176
6177/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6178
d2e4a39e 6179struct type *
ebf56fd3 6180ada_parent_type (struct type *type)
14f9c5c9
AS
6181{
6182 int i;
6183
61ee279c 6184 type = ada_check_typedef (type);
14f9c5c9
AS
6185
6186 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6187 return NULL;
6188
6189 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6190 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6191 {
6192 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6193
6194 /* If the _parent field is a pointer, then dereference it. */
6195 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6196 parent_type = TYPE_TARGET_TYPE (parent_type);
6197 /* If there is a parallel XVS type, get the actual base type. */
6198 parent_type = ada_get_base_type (parent_type);
6199
6200 return ada_check_typedef (parent_type);
6201 }
14f9c5c9
AS
6202
6203 return NULL;
6204}
6205
4c4b4cd2
PH
6206/* True iff field number FIELD_NUM of structure type TYPE contains the
6207 parent-type (inherited) fields of a derived type. Assumes TYPE is
6208 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6209
6210int
ebf56fd3 6211ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6212{
61ee279c 6213 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6214
4c4b4cd2
PH
6215 return (name != NULL
6216 && (strncmp (name, "PARENT", 6) == 0
6217 || strncmp (name, "_parent", 7) == 0));
14f9c5c9
AS
6218}
6219
4c4b4cd2 6220/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6221 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6222 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6223 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6224 structures. */
14f9c5c9
AS
6225
6226int
ebf56fd3 6227ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6228{
d2e4a39e 6229 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6230
d2e4a39e 6231 return (name != NULL
4c4b4cd2
PH
6232 && (strncmp (name, "PARENT", 6) == 0
6233 || strcmp (name, "REP") == 0
6234 || strncmp (name, "_parent", 7) == 0
6235 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6236}
6237
4c4b4cd2
PH
6238/* True iff field number FIELD_NUM of structure or union type TYPE
6239 is a variant wrapper. Assumes TYPE is a structure type with at least
6240 FIELD_NUM+1 fields. */
14f9c5c9
AS
6241
6242int
ebf56fd3 6243ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6244{
d2e4a39e 6245 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6246
14f9c5c9 6247 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6248 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6249 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6250 == TYPE_CODE_UNION)));
14f9c5c9
AS
6251}
6252
6253/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6254 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6255 returns the type of the controlling discriminant for the variant.
6256 May return NULL if the type could not be found. */
14f9c5c9 6257
d2e4a39e 6258struct type *
ebf56fd3 6259ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6260{
d2e4a39e 6261 char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6262
7c964f07 6263 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
14f9c5c9
AS
6264}
6265
4c4b4cd2 6266/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6267 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6268 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6269
6270int
ebf56fd3 6271ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6272{
d2e4a39e 6273 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6274
14f9c5c9
AS
6275 return (name != NULL && name[0] == 'O');
6276}
6277
6278/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
6279 returns the name of the discriminant controlling the variant.
6280 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 6281
d2e4a39e 6282char *
ebf56fd3 6283ada_variant_discrim_name (struct type *type0)
14f9c5c9 6284{
d2e4a39e 6285 static char *result = NULL;
14f9c5c9 6286 static size_t result_len = 0;
d2e4a39e
AS
6287 struct type *type;
6288 const char *name;
6289 const char *discrim_end;
6290 const char *discrim_start;
14f9c5c9
AS
6291
6292 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6293 type = TYPE_TARGET_TYPE (type0);
6294 else
6295 type = type0;
6296
6297 name = ada_type_name (type);
6298
6299 if (name == NULL || name[0] == '\000')
6300 return "";
6301
6302 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6303 discrim_end -= 1)
6304 {
4c4b4cd2
PH
6305 if (strncmp (discrim_end, "___XVN", 6) == 0)
6306 break;
14f9c5c9
AS
6307 }
6308 if (discrim_end == name)
6309 return "";
6310
d2e4a39e 6311 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
6312 discrim_start -= 1)
6313 {
d2e4a39e 6314 if (discrim_start == name + 1)
4c4b4cd2 6315 return "";
76a01679 6316 if ((discrim_start > name + 3
4c4b4cd2
PH
6317 && strncmp (discrim_start - 3, "___", 3) == 0)
6318 || discrim_start[-1] == '.')
6319 break;
14f9c5c9
AS
6320 }
6321
6322 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6323 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 6324 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
6325 return result;
6326}
6327
4c4b4cd2
PH
6328/* Scan STR for a subtype-encoded number, beginning at position K.
6329 Put the position of the character just past the number scanned in
6330 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6331 Return 1 if there was a valid number at the given position, and 0
6332 otherwise. A "subtype-encoded" number consists of the absolute value
6333 in decimal, followed by the letter 'm' to indicate a negative number.
6334 Assumes 0m does not occur. */
14f9c5c9
AS
6335
6336int
d2e4a39e 6337ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
6338{
6339 ULONGEST RU;
6340
d2e4a39e 6341 if (!isdigit (str[k]))
14f9c5c9
AS
6342 return 0;
6343
4c4b4cd2 6344 /* Do it the hard way so as not to make any assumption about
14f9c5c9 6345 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 6346 LONGEST. */
14f9c5c9
AS
6347 RU = 0;
6348 while (isdigit (str[k]))
6349 {
d2e4a39e 6350 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
6351 k += 1;
6352 }
6353
d2e4a39e 6354 if (str[k] == 'm')
14f9c5c9
AS
6355 {
6356 if (R != NULL)
4c4b4cd2 6357 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
6358 k += 1;
6359 }
6360 else if (R != NULL)
6361 *R = (LONGEST) RU;
6362
4c4b4cd2 6363 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
6364 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6365 number representable as a LONGEST (although either would probably work
6366 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 6367 above is always equivalent to the negative of RU. */
14f9c5c9
AS
6368
6369 if (new_k != NULL)
6370 *new_k = k;
6371 return 1;
6372}
6373
4c4b4cd2
PH
6374/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6375 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6376 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 6377
d2e4a39e 6378int
ebf56fd3 6379ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 6380{
d2e4a39e 6381 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
6382 int p;
6383
6384 p = 0;
6385 while (1)
6386 {
d2e4a39e 6387 switch (name[p])
4c4b4cd2
PH
6388 {
6389 case '\0':
6390 return 0;
6391 case 'S':
6392 {
6393 LONGEST W;
5b4ee69b 6394
4c4b4cd2
PH
6395 if (!ada_scan_number (name, p + 1, &W, &p))
6396 return 0;
6397 if (val == W)
6398 return 1;
6399 break;
6400 }
6401 case 'R':
6402 {
6403 LONGEST L, U;
5b4ee69b 6404
4c4b4cd2
PH
6405 if (!ada_scan_number (name, p + 1, &L, &p)
6406 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6407 return 0;
6408 if (val >= L && val <= U)
6409 return 1;
6410 break;
6411 }
6412 case 'O':
6413 return 1;
6414 default:
6415 return 0;
6416 }
6417 }
6418}
6419
0963b4bd 6420/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
6421
6422/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6423 ARG_TYPE, extract and return the value of one of its (non-static)
6424 fields. FIELDNO says which field. Differs from value_primitive_field
6425 only in that it can handle packed values of arbitrary type. */
14f9c5c9 6426
4c4b4cd2 6427static struct value *
d2e4a39e 6428ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 6429 struct type *arg_type)
14f9c5c9 6430{
14f9c5c9
AS
6431 struct type *type;
6432
61ee279c 6433 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
6434 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6435
4c4b4cd2 6436 /* Handle packed fields. */
14f9c5c9
AS
6437
6438 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6439 {
6440 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6441 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 6442
0fd88904 6443 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
6444 offset + bit_pos / 8,
6445 bit_pos % 8, bit_size, type);
14f9c5c9
AS
6446 }
6447 else
6448 return value_primitive_field (arg1, offset, fieldno, arg_type);
6449}
6450
52ce6436
PH
6451/* Find field with name NAME in object of type TYPE. If found,
6452 set the following for each argument that is non-null:
6453 - *FIELD_TYPE_P to the field's type;
6454 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6455 an object of that type;
6456 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6457 - *BIT_SIZE_P to its size in bits if the field is packed, and
6458 0 otherwise;
6459 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6460 fields up to but not including the desired field, or by the total
6461 number of fields if not found. A NULL value of NAME never
6462 matches; the function just counts visible fields in this case.
6463
0963b4bd 6464 Returns 1 if found, 0 otherwise. */
52ce6436 6465
4c4b4cd2 6466static int
0d5cff50 6467find_struct_field (const char *name, struct type *type, int offset,
76a01679 6468 struct type **field_type_p,
52ce6436
PH
6469 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6470 int *index_p)
4c4b4cd2
PH
6471{
6472 int i;
6473
61ee279c 6474 type = ada_check_typedef (type);
76a01679 6475
52ce6436
PH
6476 if (field_type_p != NULL)
6477 *field_type_p = NULL;
6478 if (byte_offset_p != NULL)
d5d6fca5 6479 *byte_offset_p = 0;
52ce6436
PH
6480 if (bit_offset_p != NULL)
6481 *bit_offset_p = 0;
6482 if (bit_size_p != NULL)
6483 *bit_size_p = 0;
6484
6485 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
6486 {
6487 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6488 int fld_offset = offset + bit_pos / 8;
0d5cff50 6489 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 6490
4c4b4cd2
PH
6491 if (t_field_name == NULL)
6492 continue;
6493
52ce6436 6494 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
6495 {
6496 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 6497
52ce6436
PH
6498 if (field_type_p != NULL)
6499 *field_type_p = TYPE_FIELD_TYPE (type, i);
6500 if (byte_offset_p != NULL)
6501 *byte_offset_p = fld_offset;
6502 if (bit_offset_p != NULL)
6503 *bit_offset_p = bit_pos % 8;
6504 if (bit_size_p != NULL)
6505 *bit_size_p = bit_size;
76a01679
JB
6506 return 1;
6507 }
4c4b4cd2
PH
6508 else if (ada_is_wrapper_field (type, i))
6509 {
52ce6436
PH
6510 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6511 field_type_p, byte_offset_p, bit_offset_p,
6512 bit_size_p, index_p))
76a01679
JB
6513 return 1;
6514 }
4c4b4cd2
PH
6515 else if (ada_is_variant_part (type, i))
6516 {
52ce6436
PH
6517 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6518 fixed type?? */
4c4b4cd2 6519 int j;
52ce6436
PH
6520 struct type *field_type
6521 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6522
52ce6436 6523 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6524 {
76a01679
JB
6525 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6526 fld_offset
6527 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6528 field_type_p, byte_offset_p,
52ce6436 6529 bit_offset_p, bit_size_p, index_p))
76a01679 6530 return 1;
4c4b4cd2
PH
6531 }
6532 }
52ce6436
PH
6533 else if (index_p != NULL)
6534 *index_p += 1;
4c4b4cd2
PH
6535 }
6536 return 0;
6537}
6538
0963b4bd 6539/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 6540
52ce6436
PH
6541static int
6542num_visible_fields (struct type *type)
6543{
6544 int n;
5b4ee69b 6545
52ce6436
PH
6546 n = 0;
6547 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6548 return n;
6549}
14f9c5c9 6550
4c4b4cd2 6551/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
6552 and search in it assuming it has (class) type TYPE.
6553 If found, return value, else return NULL.
6554
4c4b4cd2 6555 Searches recursively through wrapper fields (e.g., '_parent'). */
14f9c5c9 6556
4c4b4cd2 6557static struct value *
d2e4a39e 6558ada_search_struct_field (char *name, struct value *arg, int offset,
4c4b4cd2 6559 struct type *type)
14f9c5c9
AS
6560{
6561 int i;
14f9c5c9 6562
5b4ee69b 6563 type = ada_check_typedef (type);
52ce6436 6564 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 6565 {
0d5cff50 6566 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6567
6568 if (t_field_name == NULL)
4c4b4cd2 6569 continue;
14f9c5c9
AS
6570
6571 else if (field_name_match (t_field_name, name))
4c4b4cd2 6572 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
6573
6574 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 6575 {
0963b4bd 6576 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
6577 ada_search_struct_field (name, arg,
6578 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6579 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6580
4c4b4cd2
PH
6581 if (v != NULL)
6582 return v;
6583 }
14f9c5c9
AS
6584
6585 else if (ada_is_variant_part (type, i))
4c4b4cd2 6586 {
0963b4bd 6587 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 6588 int j;
5b4ee69b
MS
6589 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6590 i));
4c4b4cd2
PH
6591 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6592
52ce6436 6593 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 6594 {
0963b4bd
MS
6595 struct value *v = ada_search_struct_field /* Force line
6596 break. */
06d5cf63
JB
6597 (name, arg,
6598 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6599 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 6600
4c4b4cd2
PH
6601 if (v != NULL)
6602 return v;
6603 }
6604 }
14f9c5c9
AS
6605 }
6606 return NULL;
6607}
d2e4a39e 6608
52ce6436
PH
6609static struct value *ada_index_struct_field_1 (int *, struct value *,
6610 int, struct type *);
6611
6612
6613/* Return field #INDEX in ARG, where the index is that returned by
6614 * find_struct_field through its INDEX_P argument. Adjust the address
6615 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 6616 * If found, return value, else return NULL. */
52ce6436
PH
6617
6618static struct value *
6619ada_index_struct_field (int index, struct value *arg, int offset,
6620 struct type *type)
6621{
6622 return ada_index_struct_field_1 (&index, arg, offset, type);
6623}
6624
6625
6626/* Auxiliary function for ada_index_struct_field. Like
6627 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 6628 * *INDEX_P. */
52ce6436
PH
6629
6630static struct value *
6631ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6632 struct type *type)
6633{
6634 int i;
6635 type = ada_check_typedef (type);
6636
6637 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6638 {
6639 if (TYPE_FIELD_NAME (type, i) == NULL)
6640 continue;
6641 else if (ada_is_wrapper_field (type, i))
6642 {
0963b4bd 6643 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
6644 ada_index_struct_field_1 (index_p, arg,
6645 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6646 TYPE_FIELD_TYPE (type, i));
5b4ee69b 6647
52ce6436
PH
6648 if (v != NULL)
6649 return v;
6650 }
6651
6652 else if (ada_is_variant_part (type, i))
6653 {
6654 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 6655 find_struct_field. */
52ce6436
PH
6656 error (_("Cannot assign this kind of variant record"));
6657 }
6658 else if (*index_p == 0)
6659 return ada_value_primitive_field (arg, offset, i, type);
6660 else
6661 *index_p -= 1;
6662 }
6663 return NULL;
6664}
6665
4c4b4cd2
PH
6666/* Given ARG, a value of type (pointer or reference to a)*
6667 structure/union, extract the component named NAME from the ultimate
6668 target structure/union and return it as a value with its
f5938064 6669 appropriate type.
14f9c5c9 6670
4c4b4cd2
PH
6671 The routine searches for NAME among all members of the structure itself
6672 and (recursively) among all members of any wrapper members
14f9c5c9
AS
6673 (e.g., '_parent').
6674
03ee6b2e
PH
6675 If NO_ERR, then simply return NULL in case of error, rather than
6676 calling error. */
14f9c5c9 6677
d2e4a39e 6678struct value *
03ee6b2e 6679ada_value_struct_elt (struct value *arg, char *name, int no_err)
14f9c5c9 6680{
4c4b4cd2 6681 struct type *t, *t1;
d2e4a39e 6682 struct value *v;
14f9c5c9 6683
4c4b4cd2 6684 v = NULL;
df407dfe 6685 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
6686 if (TYPE_CODE (t) == TYPE_CODE_REF)
6687 {
6688 t1 = TYPE_TARGET_TYPE (t);
6689 if (t1 == NULL)
03ee6b2e 6690 goto BadValue;
61ee279c 6691 t1 = ada_check_typedef (t1);
4c4b4cd2 6692 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 6693 {
994b9211 6694 arg = coerce_ref (arg);
76a01679
JB
6695 t = t1;
6696 }
4c4b4cd2 6697 }
14f9c5c9 6698
4c4b4cd2
PH
6699 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6700 {
6701 t1 = TYPE_TARGET_TYPE (t);
6702 if (t1 == NULL)
03ee6b2e 6703 goto BadValue;
61ee279c 6704 t1 = ada_check_typedef (t1);
4c4b4cd2 6705 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
6706 {
6707 arg = value_ind (arg);
6708 t = t1;
6709 }
4c4b4cd2 6710 else
76a01679 6711 break;
4c4b4cd2 6712 }
14f9c5c9 6713
4c4b4cd2 6714 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 6715 goto BadValue;
14f9c5c9 6716
4c4b4cd2
PH
6717 if (t1 == t)
6718 v = ada_search_struct_field (name, arg, 0, t);
6719 else
6720 {
6721 int bit_offset, bit_size, byte_offset;
6722 struct type *field_type;
6723 CORE_ADDR address;
6724
76a01679
JB
6725 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6726 address = value_as_address (arg);
4c4b4cd2 6727 else
0fd88904 6728 address = unpack_pointer (t, value_contents (arg));
14f9c5c9 6729
1ed6ede0 6730 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
76a01679
JB
6731 if (find_struct_field (name, t1, 0,
6732 &field_type, &byte_offset, &bit_offset,
52ce6436 6733 &bit_size, NULL))
76a01679
JB
6734 {
6735 if (bit_size != 0)
6736 {
714e53ab
PH
6737 if (TYPE_CODE (t) == TYPE_CODE_REF)
6738 arg = ada_coerce_ref (arg);
6739 else
6740 arg = ada_value_ind (arg);
76a01679
JB
6741 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6742 bit_offset, bit_size,
6743 field_type);
6744 }
6745 else
f5938064 6746 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
6747 }
6748 }
6749
03ee6b2e
PH
6750 if (v != NULL || no_err)
6751 return v;
6752 else
323e0a4a 6753 error (_("There is no member named %s."), name);
14f9c5c9 6754
03ee6b2e
PH
6755 BadValue:
6756 if (no_err)
6757 return NULL;
6758 else
0963b4bd
MS
6759 error (_("Attempt to extract a component of "
6760 "a value that is not a record."));
14f9c5c9
AS
6761}
6762
6763/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
6764 If DISPP is non-null, add its byte displacement from the beginning of a
6765 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
6766 work for packed fields).
6767
6768 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 6769 followed by "___".
14f9c5c9 6770
0963b4bd 6771 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
6772 be a (pointer or reference)+ to a struct or union, and the
6773 ultimate target type will be searched.
14f9c5c9
AS
6774
6775 Looks recursively into variant clauses and parent types.
6776
4c4b4cd2
PH
6777 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6778 TYPE is not a type of the right kind. */
14f9c5c9 6779
4c4b4cd2 6780static struct type *
76a01679
JB
6781ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6782 int noerr, int *dispp)
14f9c5c9
AS
6783{
6784 int i;
6785
6786 if (name == NULL)
6787 goto BadName;
6788
76a01679 6789 if (refok && type != NULL)
4c4b4cd2
PH
6790 while (1)
6791 {
61ee279c 6792 type = ada_check_typedef (type);
76a01679
JB
6793 if (TYPE_CODE (type) != TYPE_CODE_PTR
6794 && TYPE_CODE (type) != TYPE_CODE_REF)
6795 break;
6796 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 6797 }
14f9c5c9 6798
76a01679 6799 if (type == NULL
1265e4aa
JB
6800 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6801 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 6802 {
4c4b4cd2 6803 if (noerr)
76a01679 6804 return NULL;
4c4b4cd2 6805 else
76a01679
JB
6806 {
6807 target_terminal_ours ();
6808 gdb_flush (gdb_stdout);
323e0a4a
AC
6809 if (type == NULL)
6810 error (_("Type (null) is not a structure or union type"));
6811 else
6812 {
6813 /* XXX: type_sprint */
6814 fprintf_unfiltered (gdb_stderr, _("Type "));
6815 type_print (type, "", gdb_stderr, -1);
6816 error (_(" is not a structure or union type"));
6817 }
76a01679 6818 }
14f9c5c9
AS
6819 }
6820
6821 type = to_static_fixed_type (type);
6822
6823 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6824 {
0d5cff50 6825 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
6826 struct type *t;
6827 int disp;
d2e4a39e 6828
14f9c5c9 6829 if (t_field_name == NULL)
4c4b4cd2 6830 continue;
14f9c5c9
AS
6831
6832 else if (field_name_match (t_field_name, name))
4c4b4cd2
PH
6833 {
6834 if (dispp != NULL)
6835 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
61ee279c 6836 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 6837 }
14f9c5c9
AS
6838
6839 else if (ada_is_wrapper_field (type, i))
4c4b4cd2
PH
6840 {
6841 disp = 0;
6842 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6843 0, 1, &disp);
6844 if (t != NULL)
6845 {
6846 if (dispp != NULL)
6847 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6848 return t;
6849 }
6850 }
14f9c5c9
AS
6851
6852 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
6853 {
6854 int j;
5b4ee69b
MS
6855 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6856 i));
4c4b4cd2
PH
6857
6858 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6859 {
b1f33ddd
JB
6860 /* FIXME pnh 2008/01/26: We check for a field that is
6861 NOT wrapped in a struct, since the compiler sometimes
6862 generates these for unchecked variant types. Revisit
0963b4bd 6863 if the compiler changes this practice. */
0d5cff50 6864 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
4c4b4cd2 6865 disp = 0;
b1f33ddd
JB
6866 if (v_field_name != NULL
6867 && field_name_match (v_field_name, name))
6868 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6869 else
0963b4bd
MS
6870 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6871 j),
b1f33ddd
JB
6872 name, 0, 1, &disp);
6873
4c4b4cd2
PH
6874 if (t != NULL)
6875 {
6876 if (dispp != NULL)
6877 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6878 return t;
6879 }
6880 }
6881 }
14f9c5c9
AS
6882
6883 }
6884
6885BadName:
d2e4a39e 6886 if (!noerr)
14f9c5c9
AS
6887 {
6888 target_terminal_ours ();
6889 gdb_flush (gdb_stdout);
323e0a4a
AC
6890 if (name == NULL)
6891 {
6892 /* XXX: type_sprint */
6893 fprintf_unfiltered (gdb_stderr, _("Type "));
6894 type_print (type, "", gdb_stderr, -1);
6895 error (_(" has no component named <null>"));
6896 }
6897 else
6898 {
6899 /* XXX: type_sprint */
6900 fprintf_unfiltered (gdb_stderr, _("Type "));
6901 type_print (type, "", gdb_stderr, -1);
6902 error (_(" has no component named %s"), name);
6903 }
14f9c5c9
AS
6904 }
6905
6906 return NULL;
6907}
6908
b1f33ddd
JB
6909/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6910 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6911 represents an unchecked union (that is, the variant part of a
0963b4bd 6912 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
6913
6914static int
6915is_unchecked_variant (struct type *var_type, struct type *outer_type)
6916{
6917 char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 6918
b1f33ddd
JB
6919 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6920 == NULL);
6921}
6922
6923
14f9c5c9
AS
6924/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6925 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
6926 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6927 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 6928
d2e4a39e 6929int
ebf56fd3 6930ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 6931 const gdb_byte *outer_valaddr)
14f9c5c9
AS
6932{
6933 int others_clause;
6934 int i;
d2e4a39e 6935 char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
6936 struct value *outer;
6937 struct value *discrim;
14f9c5c9
AS
6938 LONGEST discrim_val;
6939
0c281816
JB
6940 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6941 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6942 if (discrim == NULL)
14f9c5c9 6943 return -1;
0c281816 6944 discrim_val = value_as_long (discrim);
14f9c5c9
AS
6945
6946 others_clause = -1;
6947 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6948 {
6949 if (ada_is_others_clause (var_type, i))
4c4b4cd2 6950 others_clause = i;
14f9c5c9 6951 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 6952 return i;
14f9c5c9
AS
6953 }
6954
6955 return others_clause;
6956}
d2e4a39e 6957\f
14f9c5c9
AS
6958
6959
4c4b4cd2 6960 /* Dynamic-Sized Records */
14f9c5c9
AS
6961
6962/* Strategy: The type ostensibly attached to a value with dynamic size
6963 (i.e., a size that is not statically recorded in the debugging
6964 data) does not accurately reflect the size or layout of the value.
6965 Our strategy is to convert these values to values with accurate,
4c4b4cd2 6966 conventional types that are constructed on the fly. */
14f9c5c9
AS
6967
6968/* There is a subtle and tricky problem here. In general, we cannot
6969 determine the size of dynamic records without its data. However,
6970 the 'struct value' data structure, which GDB uses to represent
6971 quantities in the inferior process (the target), requires the size
6972 of the type at the time of its allocation in order to reserve space
6973 for GDB's internal copy of the data. That's why the
6974 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 6975 rather than struct value*s.
14f9c5c9
AS
6976
6977 However, GDB's internal history variables ($1, $2, etc.) are
6978 struct value*s containing internal copies of the data that are not, in
6979 general, the same as the data at their corresponding addresses in
6980 the target. Fortunately, the types we give to these values are all
6981 conventional, fixed-size types (as per the strategy described
6982 above), so that we don't usually have to perform the
6983 'to_fixed_xxx_type' conversions to look at their values.
6984 Unfortunately, there is one exception: if one of the internal
6985 history variables is an array whose elements are unconstrained
6986 records, then we will need to create distinct fixed types for each
6987 element selected. */
6988
6989/* The upshot of all of this is that many routines take a (type, host
6990 address, target address) triple as arguments to represent a value.
6991 The host address, if non-null, is supposed to contain an internal
6992 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 6993 target at the target address. */
14f9c5c9
AS
6994
6995/* Assuming that VAL0 represents a pointer value, the result of
6996 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 6997 dynamic-sized types. */
14f9c5c9 6998
d2e4a39e
AS
6999struct value *
7000ada_value_ind (struct value *val0)
14f9c5c9 7001{
c48db5ca 7002 struct value *val = value_ind (val0);
5b4ee69b 7003
4c4b4cd2 7004 return ada_to_fixed_value (val);
14f9c5c9
AS
7005}
7006
7007/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7008 qualifiers on VAL0. */
7009
d2e4a39e
AS
7010static struct value *
7011ada_coerce_ref (struct value *val0)
7012{
df407dfe 7013 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7014 {
7015 struct value *val = val0;
5b4ee69b 7016
994b9211 7017 val = coerce_ref (val);
4c4b4cd2 7018 return ada_to_fixed_value (val);
d2e4a39e
AS
7019 }
7020 else
14f9c5c9
AS
7021 return val0;
7022}
7023
7024/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7025 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7026
7027static unsigned int
ebf56fd3 7028align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7029{
7030 return (off + alignment - 1) & ~(alignment - 1);
7031}
7032
4c4b4cd2 7033/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7034
7035static unsigned int
ebf56fd3 7036field_alignment (struct type *type, int f)
14f9c5c9 7037{
d2e4a39e 7038 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7039 int len;
14f9c5c9
AS
7040 int align_offset;
7041
64a1bf19
JB
7042 /* The field name should never be null, unless the debugging information
7043 is somehow malformed. In this case, we assume the field does not
7044 require any alignment. */
7045 if (name == NULL)
7046 return 1;
7047
7048 len = strlen (name);
7049
4c4b4cd2
PH
7050 if (!isdigit (name[len - 1]))
7051 return 1;
14f9c5c9 7052
d2e4a39e 7053 if (isdigit (name[len - 2]))
14f9c5c9
AS
7054 align_offset = len - 2;
7055 else
7056 align_offset = len - 1;
7057
4c4b4cd2 7058 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
14f9c5c9
AS
7059 return TARGET_CHAR_BIT;
7060
4c4b4cd2
PH
7061 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7062}
7063
852dff6c 7064/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7065
852dff6c
JB
7066static struct symbol *
7067ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7068{
7069 struct symbol *sym;
7070
7071 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7072 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7073 return sym;
7074
7075 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7076 return sym;
14f9c5c9
AS
7077}
7078
dddfab26
UW
7079/* Find a type named NAME. Ignores ambiguity. This routine will look
7080 solely for types defined by debug info, it will not search the GDB
7081 primitive types. */
4c4b4cd2 7082
852dff6c 7083static struct type *
ebf56fd3 7084ada_find_any_type (const char *name)
14f9c5c9 7085{
852dff6c 7086 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7087
14f9c5c9 7088 if (sym != NULL)
dddfab26 7089 return SYMBOL_TYPE (sym);
14f9c5c9 7090
dddfab26 7091 return NULL;
14f9c5c9
AS
7092}
7093
739593e0
JB
7094/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7095 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7096 symbol, in which case it is returned. Otherwise, this looks for
7097 symbols whose name is that of NAME_SYM suffixed with "___XR".
7098 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7099
7100struct symbol *
739593e0 7101ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
aeb5907d 7102{
739593e0 7103 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7104 struct symbol *sym;
7105
739593e0
JB
7106 if (strstr (name, "___XR") != NULL)
7107 return name_sym;
7108
aeb5907d
JB
7109 sym = find_old_style_renaming_symbol (name, block);
7110
7111 if (sym != NULL)
7112 return sym;
7113
0963b4bd 7114 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7115 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7116 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7117 return sym;
7118 else
7119 return NULL;
7120}
7121
7122static struct symbol *
7123find_old_style_renaming_symbol (const char *name, struct block *block)
4c4b4cd2 7124{
7f0df278 7125 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
7126 char *rename;
7127
7128 if (function_sym != NULL)
7129 {
7130 /* If the symbol is defined inside a function, NAME is not fully
7131 qualified. This means we need to prepend the function name
7132 as well as adding the ``___XR'' suffix to build the name of
7133 the associated renaming symbol. */
0d5cff50 7134 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
7135 /* Function names sometimes contain suffixes used
7136 for instance to qualify nested subprograms. When building
7137 the XR type name, we need to make sure that this suffix is
7138 not included. So do not include any suffix in the function
7139 name length below. */
69fadcdf 7140 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
7141 const int rename_len = function_name_len + 2 /* "__" */
7142 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 7143
529cad9c 7144 /* Strip the suffix if necessary. */
69fadcdf
JB
7145 ada_remove_trailing_digits (function_name, &function_name_len);
7146 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7147 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 7148
4c4b4cd2
PH
7149 /* Library-level functions are a special case, as GNAT adds
7150 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 7151 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
7152 have this prefix, so we need to skip this prefix if present. */
7153 if (function_name_len > 5 /* "_ada_" */
7154 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
7155 {
7156 function_name += 5;
7157 function_name_len -= 5;
7158 }
4c4b4cd2
PH
7159
7160 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
7161 strncpy (rename, function_name, function_name_len);
7162 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7163 "__%s___XR", name);
4c4b4cd2
PH
7164 }
7165 else
7166 {
7167 const int rename_len = strlen (name) + 6;
5b4ee69b 7168
4c4b4cd2 7169 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 7170 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
7171 }
7172
852dff6c 7173 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
7174}
7175
14f9c5c9 7176/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 7177 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 7178 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
7179 otherwise return 0. */
7180
14f9c5c9 7181int
d2e4a39e 7182ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
7183{
7184 if (type1 == NULL)
7185 return 1;
7186 else if (type0 == NULL)
7187 return 0;
7188 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7189 return 1;
7190 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7191 return 0;
4c4b4cd2
PH
7192 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7193 return 1;
ad82864c 7194 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 7195 return 1;
4c4b4cd2
PH
7196 else if (ada_is_array_descriptor_type (type0)
7197 && !ada_is_array_descriptor_type (type1))
14f9c5c9 7198 return 1;
aeb5907d
JB
7199 else
7200 {
7201 const char *type0_name = type_name_no_tag (type0);
7202 const char *type1_name = type_name_no_tag (type1);
7203
7204 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7205 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7206 return 1;
7207 }
14f9c5c9
AS
7208 return 0;
7209}
7210
7211/* The name of TYPE, which is either its TYPE_NAME, or, if that is
4c4b4cd2
PH
7212 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7213
0d5cff50 7214const char *
d2e4a39e 7215ada_type_name (struct type *type)
14f9c5c9 7216{
d2e4a39e 7217 if (type == NULL)
14f9c5c9
AS
7218 return NULL;
7219 else if (TYPE_NAME (type) != NULL)
7220 return TYPE_NAME (type);
7221 else
7222 return TYPE_TAG_NAME (type);
7223}
7224
b4ba55a1
JB
7225/* Search the list of "descriptive" types associated to TYPE for a type
7226 whose name is NAME. */
7227
7228static struct type *
7229find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7230{
7231 struct type *result;
7232
7233 /* If there no descriptive-type info, then there is no parallel type
7234 to be found. */
7235 if (!HAVE_GNAT_AUX_INFO (type))
7236 return NULL;
7237
7238 result = TYPE_DESCRIPTIVE_TYPE (type);
7239 while (result != NULL)
7240 {
0d5cff50 7241 const char *result_name = ada_type_name (result);
b4ba55a1
JB
7242
7243 if (result_name == NULL)
7244 {
7245 warning (_("unexpected null name on descriptive type"));
7246 return NULL;
7247 }
7248
7249 /* If the names match, stop. */
7250 if (strcmp (result_name, name) == 0)
7251 break;
7252
7253 /* Otherwise, look at the next item on the list, if any. */
7254 if (HAVE_GNAT_AUX_INFO (result))
7255 result = TYPE_DESCRIPTIVE_TYPE (result);
7256 else
7257 result = NULL;
7258 }
7259
7260 /* If we didn't find a match, see whether this is a packed array. With
7261 older compilers, the descriptive type information is either absent or
7262 irrelevant when it comes to packed arrays so the above lookup fails.
7263 Fall back to using a parallel lookup by name in this case. */
12ab9e09 7264 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
7265 return ada_find_any_type (name);
7266
7267 return result;
7268}
7269
7270/* Find a parallel type to TYPE with the specified NAME, using the
7271 descriptive type taken from the debugging information, if available,
7272 and otherwise using the (slower) name-based method. */
7273
7274static struct type *
7275ada_find_parallel_type_with_name (struct type *type, const char *name)
7276{
7277 struct type *result = NULL;
7278
7279 if (HAVE_GNAT_AUX_INFO (type))
7280 result = find_parallel_type_by_descriptive_type (type, name);
7281 else
7282 result = ada_find_any_type (name);
7283
7284 return result;
7285}
7286
7287/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 7288 SUFFIX to the name of TYPE. */
14f9c5c9 7289
d2e4a39e 7290struct type *
ebf56fd3 7291ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 7292{
0d5cff50
DE
7293 char *name;
7294 const char *typename = ada_type_name (type);
14f9c5c9 7295 int len;
d2e4a39e 7296
14f9c5c9
AS
7297 if (typename == NULL)
7298 return NULL;
7299
7300 len = strlen (typename);
7301
b4ba55a1 7302 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9
AS
7303
7304 strcpy (name, typename);
7305 strcpy (name + len, suffix);
7306
b4ba55a1 7307 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
7308}
7309
14f9c5c9 7310/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 7311 type describing its fields. Otherwise, return NULL. */
14f9c5c9 7312
d2e4a39e
AS
7313static struct type *
7314dynamic_template_type (struct type *type)
14f9c5c9 7315{
61ee279c 7316 type = ada_check_typedef (type);
14f9c5c9
AS
7317
7318 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 7319 || ada_type_name (type) == NULL)
14f9c5c9 7320 return NULL;
d2e4a39e 7321 else
14f9c5c9
AS
7322 {
7323 int len = strlen (ada_type_name (type));
5b4ee69b 7324
4c4b4cd2
PH
7325 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7326 return type;
14f9c5c9 7327 else
4c4b4cd2 7328 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
7329 }
7330}
7331
7332/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 7333 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 7334
d2e4a39e
AS
7335static int
7336is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
7337{
7338 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 7339
d2e4a39e 7340 return name != NULL
14f9c5c9
AS
7341 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7342 && strstr (name, "___XVL") != NULL;
7343}
7344
4c4b4cd2
PH
7345/* The index of the variant field of TYPE, or -1 if TYPE does not
7346 represent a variant record type. */
14f9c5c9 7347
d2e4a39e 7348static int
4c4b4cd2 7349variant_field_index (struct type *type)
14f9c5c9
AS
7350{
7351 int f;
7352
4c4b4cd2
PH
7353 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7354 return -1;
7355
7356 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7357 {
7358 if (ada_is_variant_part (type, f))
7359 return f;
7360 }
7361 return -1;
14f9c5c9
AS
7362}
7363
4c4b4cd2
PH
7364/* A record type with no fields. */
7365
d2e4a39e 7366static struct type *
e9bb382b 7367empty_record (struct type *template)
14f9c5c9 7368{
e9bb382b 7369 struct type *type = alloc_type_copy (template);
5b4ee69b 7370
14f9c5c9
AS
7371 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7372 TYPE_NFIELDS (type) = 0;
7373 TYPE_FIELDS (type) = NULL;
b1f33ddd 7374 INIT_CPLUS_SPECIFIC (type);
14f9c5c9
AS
7375 TYPE_NAME (type) = "<empty>";
7376 TYPE_TAG_NAME (type) = NULL;
14f9c5c9
AS
7377 TYPE_LENGTH (type) = 0;
7378 return type;
7379}
7380
7381/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
7382 the value of type TYPE at VALADDR or ADDRESS (see comments at
7383 the beginning of this section) VAL according to GNAT conventions.
7384 DVAL0 should describe the (portion of a) record that contains any
df407dfe 7385 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
7386 an outer-level type (i.e., as opposed to a branch of a variant.) A
7387 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 7388 of the variant.
14f9c5c9 7389
4c4b4cd2
PH
7390 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7391 length are not statically known are discarded. As a consequence,
7392 VALADDR, ADDRESS and DVAL0 are ignored.
7393
7394 NOTE: Limitations: For now, we assume that dynamic fields and
7395 variants occupy whole numbers of bytes. However, they need not be
7396 byte-aligned. */
7397
7398struct type *
10a2c479 7399ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 7400 const gdb_byte *valaddr,
4c4b4cd2
PH
7401 CORE_ADDR address, struct value *dval0,
7402 int keep_dynamic_fields)
14f9c5c9 7403{
d2e4a39e
AS
7404 struct value *mark = value_mark ();
7405 struct value *dval;
7406 struct type *rtype;
14f9c5c9 7407 int nfields, bit_len;
4c4b4cd2 7408 int variant_field;
14f9c5c9 7409 long off;
d94e4f4f 7410 int fld_bit_len;
14f9c5c9
AS
7411 int f;
7412
4c4b4cd2
PH
7413 /* Compute the number of fields in this record type that are going
7414 to be processed: unless keep_dynamic_fields, this includes only
7415 fields whose position and length are static will be processed. */
7416 if (keep_dynamic_fields)
7417 nfields = TYPE_NFIELDS (type);
7418 else
7419 {
7420 nfields = 0;
76a01679 7421 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
7422 && !ada_is_variant_part (type, nfields)
7423 && !is_dynamic_field (type, nfields))
7424 nfields++;
7425 }
7426
e9bb382b 7427 rtype = alloc_type_copy (type);
14f9c5c9
AS
7428 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7429 INIT_CPLUS_SPECIFIC (rtype);
7430 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 7431 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
7432 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7433 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7434 TYPE_NAME (rtype) = ada_type_name (type);
7435 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7436 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 7437
d2e4a39e
AS
7438 off = 0;
7439 bit_len = 0;
4c4b4cd2
PH
7440 variant_field = -1;
7441
14f9c5c9
AS
7442 for (f = 0; f < nfields; f += 1)
7443 {
6c038f32
PH
7444 off = align_value (off, field_alignment (type, f))
7445 + TYPE_FIELD_BITPOS (type, f);
945b3a32 7446 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 7447 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 7448
d2e4a39e 7449 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
7450 {
7451 variant_field = f;
d94e4f4f 7452 fld_bit_len = 0;
4c4b4cd2 7453 }
14f9c5c9 7454 else if (is_dynamic_field (type, f))
4c4b4cd2 7455 {
284614f0
JB
7456 const gdb_byte *field_valaddr = valaddr;
7457 CORE_ADDR field_address = address;
7458 struct type *field_type =
7459 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7460
4c4b4cd2 7461 if (dval0 == NULL)
b5304971
JG
7462 {
7463 /* rtype's length is computed based on the run-time
7464 value of discriminants. If the discriminants are not
7465 initialized, the type size may be completely bogus and
0963b4bd 7466 GDB may fail to allocate a value for it. So check the
b5304971
JG
7467 size first before creating the value. */
7468 check_size (rtype);
7469 dval = value_from_contents_and_address (rtype, valaddr, address);
7470 }
4c4b4cd2
PH
7471 else
7472 dval = dval0;
7473
284614f0
JB
7474 /* If the type referenced by this field is an aligner type, we need
7475 to unwrap that aligner type, because its size might not be set.
7476 Keeping the aligner type would cause us to compute the wrong
7477 size for this field, impacting the offset of the all the fields
7478 that follow this one. */
7479 if (ada_is_aligner_type (field_type))
7480 {
7481 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7482
7483 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7484 field_address = cond_offset_target (field_address, field_offset);
7485 field_type = ada_aligned_type (field_type);
7486 }
7487
7488 field_valaddr = cond_offset_host (field_valaddr,
7489 off / TARGET_CHAR_BIT);
7490 field_address = cond_offset_target (field_address,
7491 off / TARGET_CHAR_BIT);
7492
7493 /* Get the fixed type of the field. Note that, in this case,
7494 we do not want to get the real type out of the tag: if
7495 the current field is the parent part of a tagged record,
7496 we will get the tag of the object. Clearly wrong: the real
7497 type of the parent is not the real type of the child. We
7498 would end up in an infinite loop. */
7499 field_type = ada_get_base_type (field_type);
7500 field_type = ada_to_fixed_type (field_type, field_valaddr,
7501 field_address, dval, 0);
27f2a97b
JB
7502 /* If the field size is already larger than the maximum
7503 object size, then the record itself will necessarily
7504 be larger than the maximum object size. We need to make
7505 this check now, because the size might be so ridiculously
7506 large (due to an uninitialized variable in the inferior)
7507 that it would cause an overflow when adding it to the
7508 record size. */
7509 check_size (field_type);
284614f0
JB
7510
7511 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 7512 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
7513 /* The multiplication can potentially overflow. But because
7514 the field length has been size-checked just above, and
7515 assuming that the maximum size is a reasonable value,
7516 an overflow should not happen in practice. So rather than
7517 adding overflow recovery code to this already complex code,
7518 we just assume that it's not going to happen. */
d94e4f4f 7519 fld_bit_len =
4c4b4cd2
PH
7520 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7521 }
14f9c5c9 7522 else
4c4b4cd2 7523 {
9f0dec2d
JB
7524 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7525
720d1a40
JB
7526 /* If our field is a typedef type (most likely a typedef of
7527 a fat pointer, encoding an array access), then we need to
7528 look at its target type to determine its characteristics.
7529 In particular, we would miscompute the field size if we took
7530 the size of the typedef (zero), instead of the size of
7531 the target type. */
7532 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7533 field_type = ada_typedef_target_type (field_type);
7534
9f0dec2d 7535 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2
PH
7536 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7537 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 7538 fld_bit_len =
4c4b4cd2
PH
7539 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7540 else
d94e4f4f 7541 fld_bit_len =
9f0dec2d 7542 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
4c4b4cd2 7543 }
14f9c5c9 7544 if (off + fld_bit_len > bit_len)
4c4b4cd2 7545 bit_len = off + fld_bit_len;
d94e4f4f 7546 off += fld_bit_len;
4c4b4cd2
PH
7547 TYPE_LENGTH (rtype) =
7548 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 7549 }
4c4b4cd2
PH
7550
7551 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 7552 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
7553 the record. This can happen in the presence of representation
7554 clauses. */
7555 if (variant_field >= 0)
7556 {
7557 struct type *branch_type;
7558
7559 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7560
7561 if (dval0 == NULL)
7562 dval = value_from_contents_and_address (rtype, valaddr, address);
7563 else
7564 dval = dval0;
7565
7566 branch_type =
7567 to_fixed_variant_branch_type
7568 (TYPE_FIELD_TYPE (type, variant_field),
7569 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7570 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7571 if (branch_type == NULL)
7572 {
7573 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7574 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7575 TYPE_NFIELDS (rtype) -= 1;
7576 }
7577 else
7578 {
7579 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7580 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7581 fld_bit_len =
7582 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7583 TARGET_CHAR_BIT;
7584 if (off + fld_bit_len > bit_len)
7585 bit_len = off + fld_bit_len;
7586 TYPE_LENGTH (rtype) =
7587 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7588 }
7589 }
7590
714e53ab
PH
7591 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7592 should contain the alignment of that record, which should be a strictly
7593 positive value. If null or negative, then something is wrong, most
7594 probably in the debug info. In that case, we don't round up the size
0963b4bd 7595 of the resulting type. If this record is not part of another structure,
714e53ab
PH
7596 the current RTYPE length might be good enough for our purposes. */
7597 if (TYPE_LENGTH (type) <= 0)
7598 {
323e0a4a
AC
7599 if (TYPE_NAME (rtype))
7600 warning (_("Invalid type size for `%s' detected: %d."),
7601 TYPE_NAME (rtype), TYPE_LENGTH (type));
7602 else
7603 warning (_("Invalid type size for <unnamed> detected: %d."),
7604 TYPE_LENGTH (type));
714e53ab
PH
7605 }
7606 else
7607 {
7608 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7609 TYPE_LENGTH (type));
7610 }
14f9c5c9
AS
7611
7612 value_free_to_mark (mark);
d2e4a39e 7613 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 7614 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7615 return rtype;
7616}
7617
4c4b4cd2
PH
7618/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7619 of 1. */
14f9c5c9 7620
d2e4a39e 7621static struct type *
fc1a4b47 7622template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
7623 CORE_ADDR address, struct value *dval0)
7624{
7625 return ada_template_to_fixed_record_type_1 (type, valaddr,
7626 address, dval0, 1);
7627}
7628
7629/* An ordinary record type in which ___XVL-convention fields and
7630 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7631 static approximations, containing all possible fields. Uses
7632 no runtime values. Useless for use in values, but that's OK,
7633 since the results are used only for type determinations. Works on both
7634 structs and unions. Representation note: to save space, we memorize
7635 the result of this function in the TYPE_TARGET_TYPE of the
7636 template type. */
7637
7638static struct type *
7639template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
7640{
7641 struct type *type;
7642 int nfields;
7643 int f;
7644
4c4b4cd2
PH
7645 if (TYPE_TARGET_TYPE (type0) != NULL)
7646 return TYPE_TARGET_TYPE (type0);
7647
7648 nfields = TYPE_NFIELDS (type0);
7649 type = type0;
14f9c5c9
AS
7650
7651 for (f = 0; f < nfields; f += 1)
7652 {
61ee279c 7653 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
4c4b4cd2 7654 struct type *new_type;
14f9c5c9 7655
4c4b4cd2
PH
7656 if (is_dynamic_field (type0, f))
7657 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
14f9c5c9 7658 else
f192137b 7659 new_type = static_unwrap_type (field_type);
4c4b4cd2
PH
7660 if (type == type0 && new_type != field_type)
7661 {
e9bb382b 7662 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
4c4b4cd2
PH
7663 TYPE_CODE (type) = TYPE_CODE (type0);
7664 INIT_CPLUS_SPECIFIC (type);
7665 TYPE_NFIELDS (type) = nfields;
7666 TYPE_FIELDS (type) = (struct field *)
7667 TYPE_ALLOC (type, nfields * sizeof (struct field));
7668 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7669 sizeof (struct field) * nfields);
7670 TYPE_NAME (type) = ada_type_name (type0);
7671 TYPE_TAG_NAME (type) = NULL;
876cecd0 7672 TYPE_FIXED_INSTANCE (type) = 1;
4c4b4cd2
PH
7673 TYPE_LENGTH (type) = 0;
7674 }
7675 TYPE_FIELD_TYPE (type, f) = new_type;
7676 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
14f9c5c9 7677 }
14f9c5c9
AS
7678 return type;
7679}
7680
4c4b4cd2 7681/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
7682 whose address in memory is ADDRESS, returns a revision of TYPE,
7683 which should be a non-dynamic-sized record, in which the variant
7684 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
7685 for discriminant values in DVAL0, which can be NULL if the record
7686 contains the necessary discriminant values. */
7687
d2e4a39e 7688static struct type *
fc1a4b47 7689to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 7690 CORE_ADDR address, struct value *dval0)
14f9c5c9 7691{
d2e4a39e 7692 struct value *mark = value_mark ();
4c4b4cd2 7693 struct value *dval;
d2e4a39e 7694 struct type *rtype;
14f9c5c9
AS
7695 struct type *branch_type;
7696 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 7697 int variant_field = variant_field_index (type);
14f9c5c9 7698
4c4b4cd2 7699 if (variant_field == -1)
14f9c5c9
AS
7700 return type;
7701
4c4b4cd2
PH
7702 if (dval0 == NULL)
7703 dval = value_from_contents_and_address (type, valaddr, address);
7704 else
7705 dval = dval0;
7706
e9bb382b 7707 rtype = alloc_type_copy (type);
14f9c5c9 7708 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
7709 INIT_CPLUS_SPECIFIC (rtype);
7710 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
7711 TYPE_FIELDS (rtype) =
7712 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7713 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 7714 sizeof (struct field) * nfields);
14f9c5c9
AS
7715 TYPE_NAME (rtype) = ada_type_name (type);
7716 TYPE_TAG_NAME (rtype) = NULL;
876cecd0 7717 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
7718 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7719
4c4b4cd2
PH
7720 branch_type = to_fixed_variant_branch_type
7721 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 7722 cond_offset_host (valaddr,
4c4b4cd2
PH
7723 TYPE_FIELD_BITPOS (type, variant_field)
7724 / TARGET_CHAR_BIT),
d2e4a39e 7725 cond_offset_target (address,
4c4b4cd2
PH
7726 TYPE_FIELD_BITPOS (type, variant_field)
7727 / TARGET_CHAR_BIT), dval);
d2e4a39e 7728 if (branch_type == NULL)
14f9c5c9 7729 {
4c4b4cd2 7730 int f;
5b4ee69b 7731
4c4b4cd2
PH
7732 for (f = variant_field + 1; f < nfields; f += 1)
7733 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 7734 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
7735 }
7736 else
7737 {
4c4b4cd2
PH
7738 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7739 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7740 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 7741 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 7742 }
4c4b4cd2 7743 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 7744
4c4b4cd2 7745 value_free_to_mark (mark);
14f9c5c9
AS
7746 return rtype;
7747}
7748
7749/* An ordinary record type (with fixed-length fields) that describes
7750 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7751 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
7752 should be in DVAL, a record value; it may be NULL if the object
7753 at ADDR itself contains any necessary discriminant values.
7754 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7755 values from the record are needed. Except in the case that DVAL,
7756 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7757 unchecked) is replaced by a particular branch of the variant.
7758
7759 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7760 is questionable and may be removed. It can arise during the
7761 processing of an unconstrained-array-of-record type where all the
7762 variant branches have exactly the same size. This is because in
7763 such cases, the compiler does not bother to use the XVS convention
7764 when encoding the record. I am currently dubious of this
7765 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 7766
d2e4a39e 7767static struct type *
fc1a4b47 7768to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 7769 CORE_ADDR address, struct value *dval)
14f9c5c9 7770{
d2e4a39e 7771 struct type *templ_type;
14f9c5c9 7772
876cecd0 7773 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
7774 return type0;
7775
d2e4a39e 7776 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
7777
7778 if (templ_type != NULL)
7779 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
7780 else if (variant_field_index (type0) >= 0)
7781 {
7782 if (dval == NULL && valaddr == NULL && address == 0)
7783 return type0;
7784 return to_record_with_fixed_variant_part (type0, valaddr, address,
7785 dval);
7786 }
14f9c5c9
AS
7787 else
7788 {
876cecd0 7789 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
7790 return type0;
7791 }
7792
7793}
7794
7795/* An ordinary record type (with fixed-length fields) that describes
7796 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7797 union type. Any necessary discriminants' values should be in DVAL,
7798 a record value. That is, this routine selects the appropriate
7799 branch of the union at ADDR according to the discriminant value
b1f33ddd 7800 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 7801 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 7802
d2e4a39e 7803static struct type *
fc1a4b47 7804to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 7805 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
7806{
7807 int which;
d2e4a39e
AS
7808 struct type *templ_type;
7809 struct type *var_type;
14f9c5c9
AS
7810
7811 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7812 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 7813 else
14f9c5c9
AS
7814 var_type = var_type0;
7815
7816 templ_type = ada_find_parallel_type (var_type, "___XVU");
7817
7818 if (templ_type != NULL)
7819 var_type = templ_type;
7820
b1f33ddd
JB
7821 if (is_unchecked_variant (var_type, value_type (dval)))
7822 return var_type0;
d2e4a39e
AS
7823 which =
7824 ada_which_variant_applies (var_type,
0fd88904 7825 value_type (dval), value_contents (dval));
14f9c5c9
AS
7826
7827 if (which < 0)
e9bb382b 7828 return empty_record (var_type);
14f9c5c9 7829 else if (is_dynamic_field (var_type, which))
4c4b4cd2 7830 return to_fixed_record_type
d2e4a39e
AS
7831 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7832 valaddr, address, dval);
4c4b4cd2 7833 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
7834 return
7835 to_fixed_record_type
7836 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
7837 else
7838 return TYPE_FIELD_TYPE (var_type, which);
7839}
7840
7841/* Assuming that TYPE0 is an array type describing the type of a value
7842 at ADDR, and that DVAL describes a record containing any
7843 discriminants used in TYPE0, returns a type for the value that
7844 contains no dynamic components (that is, no components whose sizes
7845 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7846 true, gives an error message if the resulting type's size is over
4c4b4cd2 7847 varsize_limit. */
14f9c5c9 7848
d2e4a39e
AS
7849static struct type *
7850to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 7851 int ignore_too_big)
14f9c5c9 7852{
d2e4a39e
AS
7853 struct type *index_type_desc;
7854 struct type *result;
ad82864c 7855 int constrained_packed_array_p;
14f9c5c9 7856
b0dd7688 7857 type0 = ada_check_typedef (type0);
284614f0 7858 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 7859 return type0;
14f9c5c9 7860
ad82864c
JB
7861 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7862 if (constrained_packed_array_p)
7863 type0 = decode_constrained_packed_array_type (type0);
284614f0 7864
14f9c5c9 7865 index_type_desc = ada_find_parallel_type (type0, "___XA");
28c85d6c 7866 ada_fixup_array_indexes_type (index_type_desc);
14f9c5c9
AS
7867 if (index_type_desc == NULL)
7868 {
61ee279c 7869 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 7870
14f9c5c9 7871 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
7872 depend on the contents of the array in properly constructed
7873 debugging data. */
529cad9c
PH
7874 /* Create a fixed version of the array element type.
7875 We're not providing the address of an element here,
e1d5a0d2 7876 and thus the actual object value cannot be inspected to do
529cad9c
PH
7877 the conversion. This should not be a problem, since arrays of
7878 unconstrained objects are not allowed. In particular, all
7879 the elements of an array of a tagged type should all be of
7880 the same type specified in the debugging info. No need to
7881 consult the object tag. */
1ed6ede0 7882 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 7883
284614f0
JB
7884 /* Make sure we always create a new array type when dealing with
7885 packed array types, since we're going to fix-up the array
7886 type length and element bitsize a little further down. */
ad82864c 7887 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 7888 result = type0;
14f9c5c9 7889 else
e9bb382b 7890 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 7891 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
7892 }
7893 else
7894 {
7895 int i;
7896 struct type *elt_type0;
7897
7898 elt_type0 = type0;
7899 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 7900 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
7901
7902 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
7903 depend on the contents of the array in properly constructed
7904 debugging data. */
529cad9c
PH
7905 /* Create a fixed version of the array element type.
7906 We're not providing the address of an element here,
e1d5a0d2 7907 and thus the actual object value cannot be inspected to do
529cad9c
PH
7908 the conversion. This should not be a problem, since arrays of
7909 unconstrained objects are not allowed. In particular, all
7910 the elements of an array of a tagged type should all be of
7911 the same type specified in the debugging info. No need to
7912 consult the object tag. */
1ed6ede0
JB
7913 result =
7914 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
7915
7916 elt_type0 = type0;
14f9c5c9 7917 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
7918 {
7919 struct type *range_type =
28c85d6c 7920 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 7921
e9bb382b 7922 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 7923 result, range_type);
1ce677a4 7924 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 7925 }
d2e4a39e 7926 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 7927 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
7928 }
7929
2e6fda7d
JB
7930 /* We want to preserve the type name. This can be useful when
7931 trying to get the type name of a value that has already been
7932 printed (for instance, if the user did "print VAR; whatis $". */
7933 TYPE_NAME (result) = TYPE_NAME (type0);
7934
ad82864c 7935 if (constrained_packed_array_p)
284614f0
JB
7936 {
7937 /* So far, the resulting type has been created as if the original
7938 type was a regular (non-packed) array type. As a result, the
7939 bitsize of the array elements needs to be set again, and the array
7940 length needs to be recomputed based on that bitsize. */
7941 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7942 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7943
7944 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7945 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7946 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7947 TYPE_LENGTH (result)++;
7948 }
7949
876cecd0 7950 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 7951 return result;
d2e4a39e 7952}
14f9c5c9
AS
7953
7954
7955/* A standard type (containing no dynamically sized components)
7956 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7957 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 7958 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
7959 ADDRESS or in VALADDR contains these discriminants.
7960
1ed6ede0
JB
7961 If CHECK_TAG is not null, in the case of tagged types, this function
7962 attempts to locate the object's tag and use it to compute the actual
7963 type. However, when ADDRESS is null, we cannot use it to determine the
7964 location of the tag, and therefore compute the tagged type's actual type.
7965 So we return the tagged type without consulting the tag. */
529cad9c 7966
f192137b
JB
7967static struct type *
7968ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 7969 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 7970{
61ee279c 7971 type = ada_check_typedef (type);
d2e4a39e
AS
7972 switch (TYPE_CODE (type))
7973 {
7974 default:
14f9c5c9 7975 return type;
d2e4a39e 7976 case TYPE_CODE_STRUCT:
4c4b4cd2 7977 {
76a01679 7978 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
7979 struct type *fixed_record_type =
7980 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 7981
529cad9c
PH
7982 /* If STATIC_TYPE is a tagged type and we know the object's address,
7983 then we can determine its tag, and compute the object's actual
0963b4bd 7984 type from there. Note that we have to use the fixed record
1ed6ede0
JB
7985 type (the parent part of the record may have dynamic fields
7986 and the way the location of _tag is expressed may depend on
7987 them). */
529cad9c 7988
1ed6ede0 7989 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679
JB
7990 {
7991 struct type *real_type =
1ed6ede0
JB
7992 type_from_tag (value_tag_from_contents_and_address
7993 (fixed_record_type,
7994 valaddr,
7995 address));
5b4ee69b 7996
76a01679 7997 if (real_type != NULL)
1ed6ede0 7998 return to_fixed_record_type (real_type, valaddr, address, NULL);
76a01679 7999 }
4af88198
JB
8000
8001 /* Check to see if there is a parallel ___XVZ variable.
8002 If there is, then it provides the actual size of our type. */
8003 else if (ada_type_name (fixed_record_type) != NULL)
8004 {
0d5cff50 8005 const char *name = ada_type_name (fixed_record_type);
4af88198
JB
8006 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8007 int xvz_found = 0;
8008 LONGEST size;
8009
88c15c34 8010 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
4af88198
JB
8011 size = get_int_var_value (xvz_name, &xvz_found);
8012 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8013 {
8014 fixed_record_type = copy_type (fixed_record_type);
8015 TYPE_LENGTH (fixed_record_type) = size;
8016
8017 /* The FIXED_RECORD_TYPE may have be a stub. We have
8018 observed this when the debugging info is STABS, and
8019 apparently it is something that is hard to fix.
8020
8021 In practice, we don't need the actual type definition
8022 at all, because the presence of the XVZ variable allows us
8023 to assume that there must be a XVS type as well, which we
8024 should be able to use later, when we need the actual type
8025 definition.
8026
8027 In the meantime, pretend that the "fixed" type we are
8028 returning is NOT a stub, because this can cause trouble
8029 when using this type to create new types targeting it.
8030 Indeed, the associated creation routines often check
8031 whether the target type is a stub and will try to replace
0963b4bd 8032 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
8033 might cause the new type to have the wrong size too.
8034 Consider the case of an array, for instance, where the size
8035 of the array is computed from the number of elements in
8036 our array multiplied by the size of its element. */
8037 TYPE_STUB (fixed_record_type) = 0;
8038 }
8039 }
1ed6ede0 8040 return fixed_record_type;
4c4b4cd2 8041 }
d2e4a39e 8042 case TYPE_CODE_ARRAY:
4c4b4cd2 8043 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
8044 case TYPE_CODE_UNION:
8045 if (dval == NULL)
4c4b4cd2 8046 return type;
d2e4a39e 8047 else
4c4b4cd2 8048 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 8049 }
14f9c5c9
AS
8050}
8051
f192137b
JB
8052/* The same as ada_to_fixed_type_1, except that it preserves the type
8053 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
8054
8055 The typedef layer needs be preserved in order to differentiate between
8056 arrays and array pointers when both types are implemented using the same
8057 fat pointer. In the array pointer case, the pointer is encoded as
8058 a typedef of the pointer type. For instance, considering:
8059
8060 type String_Access is access String;
8061 S1 : String_Access := null;
8062
8063 To the debugger, S1 is defined as a typedef of type String. But
8064 to the user, it is a pointer. So if the user tries to print S1,
8065 we should not dereference the array, but print the array address
8066 instead.
8067
8068 If we didn't preserve the typedef layer, we would lose the fact that
8069 the type is to be presented as a pointer (needs de-reference before
8070 being printed). And we would also use the source-level type name. */
f192137b
JB
8071
8072struct type *
8073ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8074 CORE_ADDR address, struct value *dval, int check_tag)
8075
8076{
8077 struct type *fixed_type =
8078 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8079
96dbd2c1
JB
8080 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8081 then preserve the typedef layer.
8082
8083 Implementation note: We can only check the main-type portion of
8084 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8085 from TYPE now returns a type that has the same instance flags
8086 as TYPE. For instance, if TYPE is a "typedef const", and its
8087 target type is a "struct", then the typedef elimination will return
8088 a "const" version of the target type. See check_typedef for more
8089 details about how the typedef layer elimination is done.
8090
8091 brobecker/2010-11-19: It seems to me that the only case where it is
8092 useful to preserve the typedef layer is when dealing with fat pointers.
8093 Perhaps, we could add a check for that and preserve the typedef layer
8094 only in that situation. But this seems unecessary so far, probably
8095 because we call check_typedef/ada_check_typedef pretty much everywhere.
8096 */
f192137b 8097 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 8098 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 8099 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
8100 return type;
8101
8102 return fixed_type;
8103}
8104
14f9c5c9 8105/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 8106 TYPE0, but based on no runtime data. */
14f9c5c9 8107
d2e4a39e
AS
8108static struct type *
8109to_static_fixed_type (struct type *type0)
14f9c5c9 8110{
d2e4a39e 8111 struct type *type;
14f9c5c9
AS
8112
8113 if (type0 == NULL)
8114 return NULL;
8115
876cecd0 8116 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8117 return type0;
8118
61ee279c 8119 type0 = ada_check_typedef (type0);
d2e4a39e 8120
14f9c5c9
AS
8121 switch (TYPE_CODE (type0))
8122 {
8123 default:
8124 return type0;
8125 case TYPE_CODE_STRUCT:
8126 type = dynamic_template_type (type0);
d2e4a39e 8127 if (type != NULL)
4c4b4cd2
PH
8128 return template_to_static_fixed_type (type);
8129 else
8130 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8131 case TYPE_CODE_UNION:
8132 type = ada_find_parallel_type (type0, "___XVU");
8133 if (type != NULL)
4c4b4cd2
PH
8134 return template_to_static_fixed_type (type);
8135 else
8136 return template_to_static_fixed_type (type0);
14f9c5c9
AS
8137 }
8138}
8139
4c4b4cd2
PH
8140/* A static approximation of TYPE with all type wrappers removed. */
8141
d2e4a39e
AS
8142static struct type *
8143static_unwrap_type (struct type *type)
14f9c5c9
AS
8144{
8145 if (ada_is_aligner_type (type))
8146 {
61ee279c 8147 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 8148 if (ada_type_name (type1) == NULL)
4c4b4cd2 8149 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
8150
8151 return static_unwrap_type (type1);
8152 }
d2e4a39e 8153 else
14f9c5c9 8154 {
d2e4a39e 8155 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 8156
d2e4a39e 8157 if (raw_real_type == type)
4c4b4cd2 8158 return type;
14f9c5c9 8159 else
4c4b4cd2 8160 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
8161 }
8162}
8163
8164/* In some cases, incomplete and private types require
4c4b4cd2 8165 cross-references that are not resolved as records (for example,
14f9c5c9
AS
8166 type Foo;
8167 type FooP is access Foo;
8168 V: FooP;
8169 type Foo is array ...;
4c4b4cd2 8170 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
8171 cross-references to such types, we instead substitute for FooP a
8172 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 8173 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
8174
8175/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
8176 exists, otherwise TYPE. */
8177
d2e4a39e 8178struct type *
61ee279c 8179ada_check_typedef (struct type *type)
14f9c5c9 8180{
727e3d2e
JB
8181 if (type == NULL)
8182 return NULL;
8183
720d1a40
JB
8184 /* If our type is a typedef type of a fat pointer, then we're done.
8185 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8186 what allows us to distinguish between fat pointers that represent
8187 array types, and fat pointers that represent array access types
8188 (in both cases, the compiler implements them as fat pointers). */
8189 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8190 && is_thick_pntr (ada_typedef_target_type (type)))
8191 return type;
8192
14f9c5c9
AS
8193 CHECK_TYPEDEF (type);
8194 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 8195 || !TYPE_STUB (type)
14f9c5c9
AS
8196 || TYPE_TAG_NAME (type) == NULL)
8197 return type;
d2e4a39e 8198 else
14f9c5c9 8199 {
0d5cff50 8200 const char *name = TYPE_TAG_NAME (type);
d2e4a39e 8201 struct type *type1 = ada_find_any_type (name);
5b4ee69b 8202
05e522ef
JB
8203 if (type1 == NULL)
8204 return type;
8205
8206 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8207 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
8208 types, only for the typedef-to-array types). If that's the case,
8209 strip the typedef layer. */
8210 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8211 type1 = ada_check_typedef (type1);
8212
8213 return type1;
14f9c5c9
AS
8214 }
8215}
8216
8217/* A value representing the data at VALADDR/ADDRESS as described by
8218 type TYPE0, but with a standard (static-sized) type that correctly
8219 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8220 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 8221 creation of struct values]. */
14f9c5c9 8222
4c4b4cd2
PH
8223static struct value *
8224ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8225 struct value *val0)
14f9c5c9 8226{
1ed6ede0 8227 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 8228
14f9c5c9
AS
8229 if (type == type0 && val0 != NULL)
8230 return val0;
d2e4a39e 8231 else
4c4b4cd2
PH
8232 return value_from_contents_and_address (type, 0, address);
8233}
8234
8235/* A value representing VAL, but with a standard (static-sized) type
8236 that correctly describes it. Does not necessarily create a new
8237 value. */
8238
0c3acc09 8239struct value *
4c4b4cd2
PH
8240ada_to_fixed_value (struct value *val)
8241{
c48db5ca
JB
8242 val = unwrap_value (val);
8243 val = ada_to_fixed_value_create (value_type (val),
8244 value_address (val),
8245 val);
8246 return val;
14f9c5c9 8247}
d2e4a39e 8248\f
14f9c5c9 8249
14f9c5c9
AS
8250/* Attributes */
8251
4c4b4cd2
PH
8252/* Table mapping attribute numbers to names.
8253 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 8254
d2e4a39e 8255static const char *attribute_names[] = {
14f9c5c9
AS
8256 "<?>",
8257
d2e4a39e 8258 "first",
14f9c5c9
AS
8259 "last",
8260 "length",
8261 "image",
14f9c5c9
AS
8262 "max",
8263 "min",
4c4b4cd2
PH
8264 "modulus",
8265 "pos",
8266 "size",
8267 "tag",
14f9c5c9 8268 "val",
14f9c5c9
AS
8269 0
8270};
8271
d2e4a39e 8272const char *
4c4b4cd2 8273ada_attribute_name (enum exp_opcode n)
14f9c5c9 8274{
4c4b4cd2
PH
8275 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8276 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
8277 else
8278 return attribute_names[0];
8279}
8280
4c4b4cd2 8281/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 8282
4c4b4cd2
PH
8283static LONGEST
8284pos_atr (struct value *arg)
14f9c5c9 8285{
24209737
PH
8286 struct value *val = coerce_ref (arg);
8287 struct type *type = value_type (val);
14f9c5c9 8288
d2e4a39e 8289 if (!discrete_type_p (type))
323e0a4a 8290 error (_("'POS only defined on discrete types"));
14f9c5c9
AS
8291
8292 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8293 {
8294 int i;
24209737 8295 LONGEST v = value_as_long (val);
14f9c5c9 8296
d2e4a39e 8297 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2 8298 {
14e75d8e 8299 if (v == TYPE_FIELD_ENUMVAL (type, i))
4c4b4cd2
PH
8300 return i;
8301 }
323e0a4a 8302 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9
AS
8303 }
8304 else
24209737 8305 return value_as_long (val);
4c4b4cd2
PH
8306}
8307
8308static struct value *
3cb382c9 8309value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 8310{
3cb382c9 8311 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
8312}
8313
4c4b4cd2 8314/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 8315
d2e4a39e
AS
8316static struct value *
8317value_val_atr (struct type *type, struct value *arg)
14f9c5c9 8318{
d2e4a39e 8319 if (!discrete_type_p (type))
323e0a4a 8320 error (_("'VAL only defined on discrete types"));
df407dfe 8321 if (!integer_type_p (value_type (arg)))
323e0a4a 8322 error (_("'VAL requires integral argument"));
14f9c5c9
AS
8323
8324 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8325 {
8326 long pos = value_as_long (arg);
5b4ee69b 8327
14f9c5c9 8328 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 8329 error (_("argument to 'VAL out of range"));
14e75d8e 8330 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
8331 }
8332 else
8333 return value_from_longest (type, value_as_long (arg));
8334}
14f9c5c9 8335\f
d2e4a39e 8336
4c4b4cd2 8337 /* Evaluation */
14f9c5c9 8338
4c4b4cd2
PH
8339/* True if TYPE appears to be an Ada character type.
8340 [At the moment, this is true only for Character and Wide_Character;
8341 It is a heuristic test that could stand improvement]. */
14f9c5c9 8342
d2e4a39e
AS
8343int
8344ada_is_character_type (struct type *type)
14f9c5c9 8345{
7b9f71f2
JB
8346 const char *name;
8347
8348 /* If the type code says it's a character, then assume it really is,
8349 and don't check any further. */
8350 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8351 return 1;
8352
8353 /* Otherwise, assume it's a character type iff it is a discrete type
8354 with a known character type name. */
8355 name = ada_type_name (type);
8356 return (name != NULL
8357 && (TYPE_CODE (type) == TYPE_CODE_INT
8358 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8359 && (strcmp (name, "character") == 0
8360 || strcmp (name, "wide_character") == 0
5a517ebd 8361 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 8362 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
8363}
8364
4c4b4cd2 8365/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
8366
8367int
ebf56fd3 8368ada_is_string_type (struct type *type)
14f9c5c9 8369{
61ee279c 8370 type = ada_check_typedef (type);
d2e4a39e 8371 if (type != NULL
14f9c5c9 8372 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
8373 && (ada_is_simple_array_type (type)
8374 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
8375 && ada_array_arity (type) == 1)
8376 {
8377 struct type *elttype = ada_array_element_type (type, 1);
8378
8379 return ada_is_character_type (elttype);
8380 }
d2e4a39e 8381 else
14f9c5c9
AS
8382 return 0;
8383}
8384
5bf03f13
JB
8385/* The compiler sometimes provides a parallel XVS type for a given
8386 PAD type. Normally, it is safe to follow the PAD type directly,
8387 but older versions of the compiler have a bug that causes the offset
8388 of its "F" field to be wrong. Following that field in that case
8389 would lead to incorrect results, but this can be worked around
8390 by ignoring the PAD type and using the associated XVS type instead.
8391
8392 Set to True if the debugger should trust the contents of PAD types.
8393 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8394static int trust_pad_over_xvs = 1;
14f9c5c9
AS
8395
8396/* True if TYPE is a struct type introduced by the compiler to force the
8397 alignment of a value. Such types have a single field with a
4c4b4cd2 8398 distinctive name. */
14f9c5c9
AS
8399
8400int
ebf56fd3 8401ada_is_aligner_type (struct type *type)
14f9c5c9 8402{
61ee279c 8403 type = ada_check_typedef (type);
714e53ab 8404
5bf03f13 8405 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
8406 return 0;
8407
14f9c5c9 8408 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
8409 && TYPE_NFIELDS (type) == 1
8410 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
8411}
8412
8413/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 8414 the parallel type. */
14f9c5c9 8415
d2e4a39e
AS
8416struct type *
8417ada_get_base_type (struct type *raw_type)
14f9c5c9 8418{
d2e4a39e
AS
8419 struct type *real_type_namer;
8420 struct type *raw_real_type;
14f9c5c9
AS
8421
8422 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8423 return raw_type;
8424
284614f0
JB
8425 if (ada_is_aligner_type (raw_type))
8426 /* The encoding specifies that we should always use the aligner type.
8427 So, even if this aligner type has an associated XVS type, we should
8428 simply ignore it.
8429
8430 According to the compiler gurus, an XVS type parallel to an aligner
8431 type may exist because of a stabs limitation. In stabs, aligner
8432 types are empty because the field has a variable-sized type, and
8433 thus cannot actually be used as an aligner type. As a result,
8434 we need the associated parallel XVS type to decode the type.
8435 Since the policy in the compiler is to not change the internal
8436 representation based on the debugging info format, we sometimes
8437 end up having a redundant XVS type parallel to the aligner type. */
8438 return raw_type;
8439
14f9c5c9 8440 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 8441 if (real_type_namer == NULL
14f9c5c9
AS
8442 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8443 || TYPE_NFIELDS (real_type_namer) != 1)
8444 return raw_type;
8445
f80d3ff2
JB
8446 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8447 {
8448 /* This is an older encoding form where the base type needs to be
8449 looked up by name. We prefer the newer enconding because it is
8450 more efficient. */
8451 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8452 if (raw_real_type == NULL)
8453 return raw_type;
8454 else
8455 return raw_real_type;
8456 }
8457
8458 /* The field in our XVS type is a reference to the base type. */
8459 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 8460}
14f9c5c9 8461
4c4b4cd2 8462/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 8463
d2e4a39e
AS
8464struct type *
8465ada_aligned_type (struct type *type)
14f9c5c9
AS
8466{
8467 if (ada_is_aligner_type (type))
8468 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8469 else
8470 return ada_get_base_type (type);
8471}
8472
8473
8474/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 8475 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 8476
fc1a4b47
AC
8477const gdb_byte *
8478ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 8479{
d2e4a39e 8480 if (ada_is_aligner_type (type))
14f9c5c9 8481 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
8482 valaddr +
8483 TYPE_FIELD_BITPOS (type,
8484 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
8485 else
8486 return valaddr;
8487}
8488
4c4b4cd2
PH
8489
8490
14f9c5c9 8491/* The printed representation of an enumeration literal with encoded
4c4b4cd2 8492 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
8493const char *
8494ada_enum_name (const char *name)
14f9c5c9 8495{
4c4b4cd2
PH
8496 static char *result;
8497 static size_t result_len = 0;
d2e4a39e 8498 char *tmp;
14f9c5c9 8499
4c4b4cd2
PH
8500 /* First, unqualify the enumeration name:
8501 1. Search for the last '.' character. If we find one, then skip
177b42fe 8502 all the preceding characters, the unqualified name starts
76a01679 8503 right after that dot.
4c4b4cd2 8504 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
8505 translates dots into "__". Search forward for double underscores,
8506 but stop searching when we hit an overloading suffix, which is
8507 of the form "__" followed by digits. */
4c4b4cd2 8508
c3e5cd34
PH
8509 tmp = strrchr (name, '.');
8510 if (tmp != NULL)
4c4b4cd2
PH
8511 name = tmp + 1;
8512 else
14f9c5c9 8513 {
4c4b4cd2
PH
8514 while ((tmp = strstr (name, "__")) != NULL)
8515 {
8516 if (isdigit (tmp[2]))
8517 break;
8518 else
8519 name = tmp + 2;
8520 }
14f9c5c9
AS
8521 }
8522
8523 if (name[0] == 'Q')
8524 {
14f9c5c9 8525 int v;
5b4ee69b 8526
14f9c5c9 8527 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
8528 {
8529 if (sscanf (name + 2, "%x", &v) != 1)
8530 return name;
8531 }
14f9c5c9 8532 else
4c4b4cd2 8533 return name;
14f9c5c9 8534
4c4b4cd2 8535 GROW_VECT (result, result_len, 16);
14f9c5c9 8536 if (isascii (v) && isprint (v))
88c15c34 8537 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 8538 else if (name[1] == 'U')
88c15c34 8539 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 8540 else
88c15c34 8541 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
8542
8543 return result;
8544 }
d2e4a39e 8545 else
4c4b4cd2 8546 {
c3e5cd34
PH
8547 tmp = strstr (name, "__");
8548 if (tmp == NULL)
8549 tmp = strstr (name, "$");
8550 if (tmp != NULL)
4c4b4cd2
PH
8551 {
8552 GROW_VECT (result, result_len, tmp - name + 1);
8553 strncpy (result, name, tmp - name);
8554 result[tmp - name] = '\0';
8555 return result;
8556 }
8557
8558 return name;
8559 }
14f9c5c9
AS
8560}
8561
14f9c5c9
AS
8562/* Evaluate the subexpression of EXP starting at *POS as for
8563 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 8564 expression. */
14f9c5c9 8565
d2e4a39e
AS
8566static struct value *
8567evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 8568{
4b27a620 8569 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
8570}
8571
8572/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 8573 value it wraps. */
14f9c5c9 8574
d2e4a39e
AS
8575static struct value *
8576unwrap_value (struct value *val)
14f9c5c9 8577{
df407dfe 8578 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 8579
14f9c5c9
AS
8580 if (ada_is_aligner_type (type))
8581 {
de4d072f 8582 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 8583 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 8584
14f9c5c9 8585 if (ada_type_name (val_type) == NULL)
4c4b4cd2 8586 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
8587
8588 return unwrap_value (v);
8589 }
d2e4a39e 8590 else
14f9c5c9 8591 {
d2e4a39e 8592 struct type *raw_real_type =
61ee279c 8593 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 8594
5bf03f13
JB
8595 /* If there is no parallel XVS or XVE type, then the value is
8596 already unwrapped. Return it without further modification. */
8597 if ((type == raw_real_type)
8598 && ada_find_parallel_type (type, "___XVE") == NULL)
8599 return val;
14f9c5c9 8600
d2e4a39e 8601 return
4c4b4cd2
PH
8602 coerce_unspec_val_to_type
8603 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 8604 value_address (val),
1ed6ede0 8605 NULL, 1));
14f9c5c9
AS
8606 }
8607}
d2e4a39e
AS
8608
8609static struct value *
8610cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9
AS
8611{
8612 LONGEST val;
8613
df407dfe 8614 if (type == value_type (arg))
14f9c5c9 8615 return arg;
df407dfe 8616 else if (ada_is_fixed_point_type (value_type (arg)))
d2e4a39e 8617 val = ada_float_to_fixed (type,
df407dfe 8618 ada_fixed_to_float (value_type (arg),
4c4b4cd2 8619 value_as_long (arg)));
d2e4a39e 8620 else
14f9c5c9 8621 {
a53b7a21 8622 DOUBLEST argd = value_as_double (arg);
5b4ee69b 8623
14f9c5c9
AS
8624 val = ada_float_to_fixed (type, argd);
8625 }
8626
8627 return value_from_longest (type, val);
8628}
8629
d2e4a39e 8630static struct value *
a53b7a21 8631cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 8632{
df407dfe 8633 DOUBLEST val = ada_fixed_to_float (value_type (arg),
4c4b4cd2 8634 value_as_long (arg));
5b4ee69b 8635
a53b7a21 8636 return value_from_double (type, val);
14f9c5c9
AS
8637}
8638
4c4b4cd2
PH
8639/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8640 return the converted value. */
8641
d2e4a39e
AS
8642static struct value *
8643coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 8644{
df407dfe 8645 struct type *type2 = value_type (val);
5b4ee69b 8646
14f9c5c9
AS
8647 if (type == type2)
8648 return val;
8649
61ee279c
PH
8650 type2 = ada_check_typedef (type2);
8651 type = ada_check_typedef (type);
14f9c5c9 8652
d2e4a39e
AS
8653 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8654 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
8655 {
8656 val = ada_value_ind (val);
df407dfe 8657 type2 = value_type (val);
14f9c5c9
AS
8658 }
8659
d2e4a39e 8660 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
8661 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8662 {
8663 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
4c4b4cd2
PH
8664 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8665 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
323e0a4a 8666 error (_("Incompatible types in assignment"));
04624583 8667 deprecated_set_value_type (val, type);
14f9c5c9 8668 }
d2e4a39e 8669 return val;
14f9c5c9
AS
8670}
8671
4c4b4cd2
PH
8672static struct value *
8673ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8674{
8675 struct value *val;
8676 struct type *type1, *type2;
8677 LONGEST v, v1, v2;
8678
994b9211
AC
8679 arg1 = coerce_ref (arg1);
8680 arg2 = coerce_ref (arg2);
18af8284
JB
8681 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8682 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 8683
76a01679
JB
8684 if (TYPE_CODE (type1) != TYPE_CODE_INT
8685 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
8686 return value_binop (arg1, arg2, op);
8687
76a01679 8688 switch (op)
4c4b4cd2
PH
8689 {
8690 case BINOP_MOD:
8691 case BINOP_DIV:
8692 case BINOP_REM:
8693 break;
8694 default:
8695 return value_binop (arg1, arg2, op);
8696 }
8697
8698 v2 = value_as_long (arg2);
8699 if (v2 == 0)
323e0a4a 8700 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
8701
8702 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8703 return value_binop (arg1, arg2, op);
8704
8705 v1 = value_as_long (arg1);
8706 switch (op)
8707 {
8708 case BINOP_DIV:
8709 v = v1 / v2;
76a01679
JB
8710 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8711 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
8712 break;
8713 case BINOP_REM:
8714 v = v1 % v2;
76a01679
JB
8715 if (v * v1 < 0)
8716 v -= v2;
4c4b4cd2
PH
8717 break;
8718 default:
8719 /* Should not reach this point. */
8720 v = 0;
8721 }
8722
8723 val = allocate_value (type1);
990a07ab 8724 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
8725 TYPE_LENGTH (value_type (val)),
8726 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
8727 return val;
8728}
8729
8730static int
8731ada_value_equal (struct value *arg1, struct value *arg2)
8732{
df407dfe
AC
8733 if (ada_is_direct_array_type (value_type (arg1))
8734 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 8735 {
f58b38bf
JB
8736 /* Automatically dereference any array reference before
8737 we attempt to perform the comparison. */
8738 arg1 = ada_coerce_ref (arg1);
8739 arg2 = ada_coerce_ref (arg2);
8740
4c4b4cd2
PH
8741 arg1 = ada_coerce_to_simple_array (arg1);
8742 arg2 = ada_coerce_to_simple_array (arg2);
df407dfe
AC
8743 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8744 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
323e0a4a 8745 error (_("Attempt to compare array with non-array"));
4c4b4cd2 8746 /* FIXME: The following works only for types whose
76a01679
JB
8747 representations use all bits (no padding or undefined bits)
8748 and do not have user-defined equality. */
8749 return
df407dfe 8750 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
0fd88904 8751 && memcmp (value_contents (arg1), value_contents (arg2),
df407dfe 8752 TYPE_LENGTH (value_type (arg1))) == 0;
4c4b4cd2
PH
8753 }
8754 return value_equal (arg1, arg2);
8755}
8756
52ce6436
PH
8757/* Total number of component associations in the aggregate starting at
8758 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 8759 OP_AGGREGATE. */
52ce6436
PH
8760
8761static int
8762num_component_specs (struct expression *exp, int pc)
8763{
8764 int n, m, i;
5b4ee69b 8765
52ce6436
PH
8766 m = exp->elts[pc + 1].longconst;
8767 pc += 3;
8768 n = 0;
8769 for (i = 0; i < m; i += 1)
8770 {
8771 switch (exp->elts[pc].opcode)
8772 {
8773 default:
8774 n += 1;
8775 break;
8776 case OP_CHOICES:
8777 n += exp->elts[pc + 1].longconst;
8778 break;
8779 }
8780 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8781 }
8782 return n;
8783}
8784
8785/* Assign the result of evaluating EXP starting at *POS to the INDEXth
8786 component of LHS (a simple array or a record), updating *POS past
8787 the expression, assuming that LHS is contained in CONTAINER. Does
8788 not modify the inferior's memory, nor does it modify LHS (unless
8789 LHS == CONTAINER). */
8790
8791static void
8792assign_component (struct value *container, struct value *lhs, LONGEST index,
8793 struct expression *exp, int *pos)
8794{
8795 struct value *mark = value_mark ();
8796 struct value *elt;
5b4ee69b 8797
52ce6436
PH
8798 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8799 {
22601c15
UW
8800 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8801 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 8802
52ce6436
PH
8803 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8804 }
8805 else
8806 {
8807 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 8808 elt = ada_to_fixed_value (elt);
52ce6436
PH
8809 }
8810
8811 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8812 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8813 else
8814 value_assign_to_component (container, elt,
8815 ada_evaluate_subexp (NULL, exp, pos,
8816 EVAL_NORMAL));
8817
8818 value_free_to_mark (mark);
8819}
8820
8821/* Assuming that LHS represents an lvalue having a record or array
8822 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8823 of that aggregate's value to LHS, advancing *POS past the
8824 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8825 lvalue containing LHS (possibly LHS itself). Does not modify
8826 the inferior's memory, nor does it modify the contents of
0963b4bd 8827 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
8828
8829static struct value *
8830assign_aggregate (struct value *container,
8831 struct value *lhs, struct expression *exp,
8832 int *pos, enum noside noside)
8833{
8834 struct type *lhs_type;
8835 int n = exp->elts[*pos+1].longconst;
8836 LONGEST low_index, high_index;
8837 int num_specs;
8838 LONGEST *indices;
8839 int max_indices, num_indices;
8840 int is_array_aggregate;
8841 int i;
52ce6436
PH
8842
8843 *pos += 3;
8844 if (noside != EVAL_NORMAL)
8845 {
52ce6436
PH
8846 for (i = 0; i < n; i += 1)
8847 ada_evaluate_subexp (NULL, exp, pos, noside);
8848 return container;
8849 }
8850
8851 container = ada_coerce_ref (container);
8852 if (ada_is_direct_array_type (value_type (container)))
8853 container = ada_coerce_to_simple_array (container);
8854 lhs = ada_coerce_ref (lhs);
8855 if (!deprecated_value_modifiable (lhs))
8856 error (_("Left operand of assignment is not a modifiable lvalue."));
8857
8858 lhs_type = value_type (lhs);
8859 if (ada_is_direct_array_type (lhs_type))
8860 {
8861 lhs = ada_coerce_to_simple_array (lhs);
8862 lhs_type = value_type (lhs);
8863 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8864 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8865 is_array_aggregate = 1;
8866 }
8867 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8868 {
8869 low_index = 0;
8870 high_index = num_visible_fields (lhs_type) - 1;
8871 is_array_aggregate = 0;
8872 }
8873 else
8874 error (_("Left-hand side must be array or record."));
8875
8876 num_specs = num_component_specs (exp, *pos - 3);
8877 max_indices = 4 * num_specs + 4;
8878 indices = alloca (max_indices * sizeof (indices[0]));
8879 indices[0] = indices[1] = low_index - 1;
8880 indices[2] = indices[3] = high_index + 1;
8881 num_indices = 4;
8882
8883 for (i = 0; i < n; i += 1)
8884 {
8885 switch (exp->elts[*pos].opcode)
8886 {
1fbf5ada
JB
8887 case OP_CHOICES:
8888 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8889 &num_indices, max_indices,
8890 low_index, high_index);
8891 break;
8892 case OP_POSITIONAL:
8893 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
8894 &num_indices, max_indices,
8895 low_index, high_index);
1fbf5ada
JB
8896 break;
8897 case OP_OTHERS:
8898 if (i != n-1)
8899 error (_("Misplaced 'others' clause"));
8900 aggregate_assign_others (container, lhs, exp, pos, indices,
8901 num_indices, low_index, high_index);
8902 break;
8903 default:
8904 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
8905 }
8906 }
8907
8908 return container;
8909}
8910
8911/* Assign into the component of LHS indexed by the OP_POSITIONAL
8912 construct at *POS, updating *POS past the construct, given that
8913 the positions are relative to lower bound LOW, where HIGH is the
8914 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8915 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 8916 assign_aggregate. */
52ce6436
PH
8917static void
8918aggregate_assign_positional (struct value *container,
8919 struct value *lhs, struct expression *exp,
8920 int *pos, LONGEST *indices, int *num_indices,
8921 int max_indices, LONGEST low, LONGEST high)
8922{
8923 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8924
8925 if (ind - 1 == high)
e1d5a0d2 8926 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
8927 if (ind <= high)
8928 {
8929 add_component_interval (ind, ind, indices, num_indices, max_indices);
8930 *pos += 3;
8931 assign_component (container, lhs, ind, exp, pos);
8932 }
8933 else
8934 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8935}
8936
8937/* Assign into the components of LHS indexed by the OP_CHOICES
8938 construct at *POS, updating *POS past the construct, given that
8939 the allowable indices are LOW..HIGH. Record the indices assigned
8940 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 8941 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
8942static void
8943aggregate_assign_from_choices (struct value *container,
8944 struct value *lhs, struct expression *exp,
8945 int *pos, LONGEST *indices, int *num_indices,
8946 int max_indices, LONGEST low, LONGEST high)
8947{
8948 int j;
8949 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8950 int choice_pos, expr_pc;
8951 int is_array = ada_is_direct_array_type (value_type (lhs));
8952
8953 choice_pos = *pos += 3;
8954
8955 for (j = 0; j < n_choices; j += 1)
8956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8957 expr_pc = *pos;
8958 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8959
8960 for (j = 0; j < n_choices; j += 1)
8961 {
8962 LONGEST lower, upper;
8963 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 8964
52ce6436
PH
8965 if (op == OP_DISCRETE_RANGE)
8966 {
8967 choice_pos += 1;
8968 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8969 EVAL_NORMAL));
8970 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8971 EVAL_NORMAL));
8972 }
8973 else if (is_array)
8974 {
8975 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8976 EVAL_NORMAL));
8977 upper = lower;
8978 }
8979 else
8980 {
8981 int ind;
0d5cff50 8982 const char *name;
5b4ee69b 8983
52ce6436
PH
8984 switch (op)
8985 {
8986 case OP_NAME:
8987 name = &exp->elts[choice_pos + 2].string;
8988 break;
8989 case OP_VAR_VALUE:
8990 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8991 break;
8992 default:
8993 error (_("Invalid record component association."));
8994 }
8995 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8996 ind = 0;
8997 if (! find_struct_field (name, value_type (lhs), 0,
8998 NULL, NULL, NULL, NULL, &ind))
8999 error (_("Unknown component name: %s."), name);
9000 lower = upper = ind;
9001 }
9002
9003 if (lower <= upper && (lower < low || upper > high))
9004 error (_("Index in component association out of bounds."));
9005
9006 add_component_interval (lower, upper, indices, num_indices,
9007 max_indices);
9008 while (lower <= upper)
9009 {
9010 int pos1;
5b4ee69b 9011
52ce6436
PH
9012 pos1 = expr_pc;
9013 assign_component (container, lhs, lower, exp, &pos1);
9014 lower += 1;
9015 }
9016 }
9017}
9018
9019/* Assign the value of the expression in the OP_OTHERS construct in
9020 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9021 have not been previously assigned. The index intervals already assigned
9022 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 9023 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
9024static void
9025aggregate_assign_others (struct value *container,
9026 struct value *lhs, struct expression *exp,
9027 int *pos, LONGEST *indices, int num_indices,
9028 LONGEST low, LONGEST high)
9029{
9030 int i;
5ce64950 9031 int expr_pc = *pos + 1;
52ce6436
PH
9032
9033 for (i = 0; i < num_indices - 2; i += 2)
9034 {
9035 LONGEST ind;
5b4ee69b 9036
52ce6436
PH
9037 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9038 {
5ce64950 9039 int localpos;
5b4ee69b 9040
5ce64950
MS
9041 localpos = expr_pc;
9042 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
9043 }
9044 }
9045 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9046}
9047
9048/* Add the interval [LOW .. HIGH] to the sorted set of intervals
9049 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9050 modifying *SIZE as needed. It is an error if *SIZE exceeds
9051 MAX_SIZE. The resulting intervals do not overlap. */
9052static void
9053add_component_interval (LONGEST low, LONGEST high,
9054 LONGEST* indices, int *size, int max_size)
9055{
9056 int i, j;
5b4ee69b 9057
52ce6436
PH
9058 for (i = 0; i < *size; i += 2) {
9059 if (high >= indices[i] && low <= indices[i + 1])
9060 {
9061 int kh;
5b4ee69b 9062
52ce6436
PH
9063 for (kh = i + 2; kh < *size; kh += 2)
9064 if (high < indices[kh])
9065 break;
9066 if (low < indices[i])
9067 indices[i] = low;
9068 indices[i + 1] = indices[kh - 1];
9069 if (high > indices[i + 1])
9070 indices[i + 1] = high;
9071 memcpy (indices + i + 2, indices + kh, *size - kh);
9072 *size -= kh - i - 2;
9073 return;
9074 }
9075 else if (high < indices[i])
9076 break;
9077 }
9078
9079 if (*size == max_size)
9080 error (_("Internal error: miscounted aggregate components."));
9081 *size += 2;
9082 for (j = *size-1; j >= i+2; j -= 1)
9083 indices[j] = indices[j - 2];
9084 indices[i] = low;
9085 indices[i + 1] = high;
9086}
9087
6e48bd2c
JB
9088/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9089 is different. */
9090
9091static struct value *
9092ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9093{
9094 if (type == ada_check_typedef (value_type (arg2)))
9095 return arg2;
9096
9097 if (ada_is_fixed_point_type (type))
9098 return (cast_to_fixed (type, arg2));
9099
9100 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9101 return cast_from_fixed (type, arg2);
6e48bd2c
JB
9102
9103 return value_cast (type, arg2);
9104}
9105
284614f0
JB
9106/* Evaluating Ada expressions, and printing their result.
9107 ------------------------------------------------------
9108
21649b50
JB
9109 1. Introduction:
9110 ----------------
9111
284614f0
JB
9112 We usually evaluate an Ada expression in order to print its value.
9113 We also evaluate an expression in order to print its type, which
9114 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9115 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9116 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9117 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9118 similar.
9119
9120 Evaluating expressions is a little more complicated for Ada entities
9121 than it is for entities in languages such as C. The main reason for
9122 this is that Ada provides types whose definition might be dynamic.
9123 One example of such types is variant records. Or another example
9124 would be an array whose bounds can only be known at run time.
9125
9126 The following description is a general guide as to what should be
9127 done (and what should NOT be done) in order to evaluate an expression
9128 involving such types, and when. This does not cover how the semantic
9129 information is encoded by GNAT as this is covered separatly. For the
9130 document used as the reference for the GNAT encoding, see exp_dbug.ads
9131 in the GNAT sources.
9132
9133 Ideally, we should embed each part of this description next to its
9134 associated code. Unfortunately, the amount of code is so vast right
9135 now that it's hard to see whether the code handling a particular
9136 situation might be duplicated or not. One day, when the code is
9137 cleaned up, this guide might become redundant with the comments
9138 inserted in the code, and we might want to remove it.
9139
21649b50
JB
9140 2. ``Fixing'' an Entity, the Simple Case:
9141 -----------------------------------------
9142
284614f0
JB
9143 When evaluating Ada expressions, the tricky issue is that they may
9144 reference entities whose type contents and size are not statically
9145 known. Consider for instance a variant record:
9146
9147 type Rec (Empty : Boolean := True) is record
9148 case Empty is
9149 when True => null;
9150 when False => Value : Integer;
9151 end case;
9152 end record;
9153 Yes : Rec := (Empty => False, Value => 1);
9154 No : Rec := (empty => True);
9155
9156 The size and contents of that record depends on the value of the
9157 descriminant (Rec.Empty). At this point, neither the debugging
9158 information nor the associated type structure in GDB are able to
9159 express such dynamic types. So what the debugger does is to create
9160 "fixed" versions of the type that applies to the specific object.
9161 We also informally refer to this opperation as "fixing" an object,
9162 which means creating its associated fixed type.
9163
9164 Example: when printing the value of variable "Yes" above, its fixed
9165 type would look like this:
9166
9167 type Rec is record
9168 Empty : Boolean;
9169 Value : Integer;
9170 end record;
9171
9172 On the other hand, if we printed the value of "No", its fixed type
9173 would become:
9174
9175 type Rec is record
9176 Empty : Boolean;
9177 end record;
9178
9179 Things become a little more complicated when trying to fix an entity
9180 with a dynamic type that directly contains another dynamic type,
9181 such as an array of variant records, for instance. There are
9182 two possible cases: Arrays, and records.
9183
21649b50
JB
9184 3. ``Fixing'' Arrays:
9185 ---------------------
9186
9187 The type structure in GDB describes an array in terms of its bounds,
9188 and the type of its elements. By design, all elements in the array
9189 have the same type and we cannot represent an array of variant elements
9190 using the current type structure in GDB. When fixing an array,
9191 we cannot fix the array element, as we would potentially need one
9192 fixed type per element of the array. As a result, the best we can do
9193 when fixing an array is to produce an array whose bounds and size
9194 are correct (allowing us to read it from memory), but without having
9195 touched its element type. Fixing each element will be done later,
9196 when (if) necessary.
9197
9198 Arrays are a little simpler to handle than records, because the same
9199 amount of memory is allocated for each element of the array, even if
1b536f04 9200 the amount of space actually used by each element differs from element
21649b50 9201 to element. Consider for instance the following array of type Rec:
284614f0
JB
9202
9203 type Rec_Array is array (1 .. 2) of Rec;
9204
1b536f04
JB
9205 The actual amount of memory occupied by each element might be different
9206 from element to element, depending on the value of their discriminant.
21649b50 9207 But the amount of space reserved for each element in the array remains
1b536f04 9208 fixed regardless. So we simply need to compute that size using
21649b50
JB
9209 the debugging information available, from which we can then determine
9210 the array size (we multiply the number of elements of the array by
9211 the size of each element).
9212
9213 The simplest case is when we have an array of a constrained element
9214 type. For instance, consider the following type declarations:
9215
9216 type Bounded_String (Max_Size : Integer) is
9217 Length : Integer;
9218 Buffer : String (1 .. Max_Size);
9219 end record;
9220 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9221
9222 In this case, the compiler describes the array as an array of
9223 variable-size elements (identified by its XVS suffix) for which
9224 the size can be read in the parallel XVZ variable.
9225
9226 In the case of an array of an unconstrained element type, the compiler
9227 wraps the array element inside a private PAD type. This type should not
9228 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
9229 that we also use the adjective "aligner" in our code to designate
9230 these wrapper types.
9231
1b536f04 9232 In some cases, the size allocated for each element is statically
21649b50
JB
9233 known. In that case, the PAD type already has the correct size,
9234 and the array element should remain unfixed.
9235
9236 But there are cases when this size is not statically known.
9237 For instance, assuming that "Five" is an integer variable:
284614f0
JB
9238
9239 type Dynamic is array (1 .. Five) of Integer;
9240 type Wrapper (Has_Length : Boolean := False) is record
9241 Data : Dynamic;
9242 case Has_Length is
9243 when True => Length : Integer;
9244 when False => null;
9245 end case;
9246 end record;
9247 type Wrapper_Array is array (1 .. 2) of Wrapper;
9248
9249 Hello : Wrapper_Array := (others => (Has_Length => True,
9250 Data => (others => 17),
9251 Length => 1));
9252
9253
9254 The debugging info would describe variable Hello as being an
9255 array of a PAD type. The size of that PAD type is not statically
9256 known, but can be determined using a parallel XVZ variable.
9257 In that case, a copy of the PAD type with the correct size should
9258 be used for the fixed array.
9259
21649b50
JB
9260 3. ``Fixing'' record type objects:
9261 ----------------------------------
9262
9263 Things are slightly different from arrays in the case of dynamic
284614f0
JB
9264 record types. In this case, in order to compute the associated
9265 fixed type, we need to determine the size and offset of each of
9266 its components. This, in turn, requires us to compute the fixed
9267 type of each of these components.
9268
9269 Consider for instance the example:
9270
9271 type Bounded_String (Max_Size : Natural) is record
9272 Str : String (1 .. Max_Size);
9273 Length : Natural;
9274 end record;
9275 My_String : Bounded_String (Max_Size => 10);
9276
9277 In that case, the position of field "Length" depends on the size
9278 of field Str, which itself depends on the value of the Max_Size
21649b50 9279 discriminant. In order to fix the type of variable My_String,
284614f0
JB
9280 we need to fix the type of field Str. Therefore, fixing a variant
9281 record requires us to fix each of its components.
9282
9283 However, if a component does not have a dynamic size, the component
9284 should not be fixed. In particular, fields that use a PAD type
9285 should not fixed. Here is an example where this might happen
9286 (assuming type Rec above):
9287
9288 type Container (Big : Boolean) is record
9289 First : Rec;
9290 After : Integer;
9291 case Big is
9292 when True => Another : Integer;
9293 when False => null;
9294 end case;
9295 end record;
9296 My_Container : Container := (Big => False,
9297 First => (Empty => True),
9298 After => 42);
9299
9300 In that example, the compiler creates a PAD type for component First,
9301 whose size is constant, and then positions the component After just
9302 right after it. The offset of component After is therefore constant
9303 in this case.
9304
9305 The debugger computes the position of each field based on an algorithm
9306 that uses, among other things, the actual position and size of the field
21649b50
JB
9307 preceding it. Let's now imagine that the user is trying to print
9308 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
9309 end up computing the offset of field After based on the size of the
9310 fixed version of field First. And since in our example First has
9311 only one actual field, the size of the fixed type is actually smaller
9312 than the amount of space allocated to that field, and thus we would
9313 compute the wrong offset of field After.
9314
21649b50
JB
9315 To make things more complicated, we need to watch out for dynamic
9316 components of variant records (identified by the ___XVL suffix in
9317 the component name). Even if the target type is a PAD type, the size
9318 of that type might not be statically known. So the PAD type needs
9319 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9320 we might end up with the wrong size for our component. This can be
9321 observed with the following type declarations:
284614f0
JB
9322
9323 type Octal is new Integer range 0 .. 7;
9324 type Octal_Array is array (Positive range <>) of Octal;
9325 pragma Pack (Octal_Array);
9326
9327 type Octal_Buffer (Size : Positive) is record
9328 Buffer : Octal_Array (1 .. Size);
9329 Length : Integer;
9330 end record;
9331
9332 In that case, Buffer is a PAD type whose size is unset and needs
9333 to be computed by fixing the unwrapped type.
9334
21649b50
JB
9335 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9336 ----------------------------------------------------------
9337
9338 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
9339 thus far, be actually fixed?
9340
9341 The answer is: Only when referencing that element. For instance
9342 when selecting one component of a record, this specific component
9343 should be fixed at that point in time. Or when printing the value
9344 of a record, each component should be fixed before its value gets
9345 printed. Similarly for arrays, the element of the array should be
9346 fixed when printing each element of the array, or when extracting
9347 one element out of that array. On the other hand, fixing should
9348 not be performed on the elements when taking a slice of an array!
9349
9350 Note that one of the side-effects of miscomputing the offset and
9351 size of each field is that we end up also miscomputing the size
9352 of the containing type. This can have adverse results when computing
9353 the value of an entity. GDB fetches the value of an entity based
9354 on the size of its type, and thus a wrong size causes GDB to fetch
9355 the wrong amount of memory. In the case where the computed size is
9356 too small, GDB fetches too little data to print the value of our
9357 entiry. Results in this case as unpredicatble, as we usually read
9358 past the buffer containing the data =:-o. */
9359
9360/* Implement the evaluate_exp routine in the exp_descriptor structure
9361 for the Ada language. */
9362
52ce6436 9363static struct value *
ebf56fd3 9364ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 9365 int *pos, enum noside noside)
14f9c5c9
AS
9366{
9367 enum exp_opcode op;
b5385fc0 9368 int tem;
14f9c5c9
AS
9369 int pc;
9370 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9371 struct type *type;
52ce6436 9372 int nargs, oplen;
d2e4a39e 9373 struct value **argvec;
14f9c5c9 9374
d2e4a39e
AS
9375 pc = *pos;
9376 *pos += 1;
14f9c5c9
AS
9377 op = exp->elts[pc].opcode;
9378
d2e4a39e 9379 switch (op)
14f9c5c9
AS
9380 {
9381 default:
9382 *pos -= 1;
6e48bd2c
JB
9383 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9384 arg1 = unwrap_value (arg1);
9385
9386 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9387 then we need to perform the conversion manually, because
9388 evaluate_subexp_standard doesn't do it. This conversion is
9389 necessary in Ada because the different kinds of float/fixed
9390 types in Ada have different representations.
9391
9392 Similarly, we need to perform the conversion from OP_LONG
9393 ourselves. */
9394 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9395 arg1 = ada_value_cast (expect_type, arg1, noside);
9396
9397 return arg1;
4c4b4cd2
PH
9398
9399 case OP_STRING:
9400 {
76a01679 9401 struct value *result;
5b4ee69b 9402
76a01679
JB
9403 *pos -= 1;
9404 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9405 /* The result type will have code OP_STRING, bashed there from
9406 OP_ARRAY. Bash it back. */
df407dfe
AC
9407 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9408 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 9409 return result;
4c4b4cd2 9410 }
14f9c5c9
AS
9411
9412 case UNOP_CAST:
9413 (*pos) += 2;
9414 type = exp->elts[pc + 1].type;
9415 arg1 = evaluate_subexp (type, exp, pos, noside);
9416 if (noside == EVAL_SKIP)
4c4b4cd2 9417 goto nosideret;
6e48bd2c 9418 arg1 = ada_value_cast (type, arg1, noside);
14f9c5c9
AS
9419 return arg1;
9420
4c4b4cd2
PH
9421 case UNOP_QUAL:
9422 (*pos) += 2;
9423 type = exp->elts[pc + 1].type;
9424 return ada_evaluate_subexp (type, exp, pos, noside);
9425
14f9c5c9
AS
9426 case BINOP_ASSIGN:
9427 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
9428 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9429 {
9430 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9431 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9432 return arg1;
9433 return ada_value_assign (arg1, arg1);
9434 }
003f3813
JB
9435 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9436 except if the lhs of our assignment is a convenience variable.
9437 In the case of assigning to a convenience variable, the lhs
9438 should be exactly the result of the evaluation of the rhs. */
9439 type = value_type (arg1);
9440 if (VALUE_LVAL (arg1) == lval_internalvar)
9441 type = NULL;
9442 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 9443 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9444 return arg1;
df407dfe
AC
9445 if (ada_is_fixed_point_type (value_type (arg1)))
9446 arg2 = cast_to_fixed (value_type (arg1), arg2);
9447 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 9448 error
323e0a4a 9449 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 9450 else
df407dfe 9451 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 9452 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
9453
9454 case BINOP_ADD:
9455 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9456 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9457 if (noside == EVAL_SKIP)
4c4b4cd2 9458 goto nosideret;
2ac8a782
JB
9459 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9460 return (value_from_longest
9461 (value_type (arg1),
9462 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
9463 if ((ada_is_fixed_point_type (value_type (arg1))
9464 || ada_is_fixed_point_type (value_type (arg2)))
9465 && value_type (arg1) != value_type (arg2))
323e0a4a 9466 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
9467 /* Do the addition, and cast the result to the type of the first
9468 argument. We cannot cast the result to a reference type, so if
9469 ARG1 is a reference type, find its underlying type. */
9470 type = value_type (arg1);
9471 while (TYPE_CODE (type) == TYPE_CODE_REF)
9472 type = TYPE_TARGET_TYPE (type);
f44316fa 9473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9474 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
9475
9476 case BINOP_SUB:
9477 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9478 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9479 if (noside == EVAL_SKIP)
4c4b4cd2 9480 goto nosideret;
2ac8a782
JB
9481 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9482 return (value_from_longest
9483 (value_type (arg1),
9484 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
9485 if ((ada_is_fixed_point_type (value_type (arg1))
9486 || ada_is_fixed_point_type (value_type (arg2)))
9487 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
9488 error (_("Operands of fixed-point subtraction "
9489 "must have the same type"));
b7789565
JB
9490 /* Do the substraction, and cast the result to the type of the first
9491 argument. We cannot cast the result to a reference type, so if
9492 ARG1 is a reference type, find its underlying type. */
9493 type = value_type (arg1);
9494 while (TYPE_CODE (type) == TYPE_CODE_REF)
9495 type = TYPE_TARGET_TYPE (type);
f44316fa 9496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 9497 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
9498
9499 case BINOP_MUL:
9500 case BINOP_DIV:
e1578042
JB
9501 case BINOP_REM:
9502 case BINOP_MOD:
14f9c5c9
AS
9503 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9504 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9505 if (noside == EVAL_SKIP)
4c4b4cd2 9506 goto nosideret;
e1578042 9507 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
9508 {
9509 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9510 return value_zero (value_type (arg1), not_lval);
9511 }
14f9c5c9 9512 else
4c4b4cd2 9513 {
a53b7a21 9514 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 9515 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 9516 arg1 = cast_from_fixed (type, arg1);
df407dfe 9517 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 9518 arg2 = cast_from_fixed (type, arg2);
f44316fa 9519 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
9520 return ada_value_binop (arg1, arg2, op);
9521 }
9522
4c4b4cd2
PH
9523 case BINOP_EQUAL:
9524 case BINOP_NOTEQUAL:
14f9c5c9 9525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 9526 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 9527 if (noside == EVAL_SKIP)
76a01679 9528 goto nosideret;
4c4b4cd2 9529 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 9530 tem = 0;
4c4b4cd2 9531 else
f44316fa
UW
9532 {
9533 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9534 tem = ada_value_equal (arg1, arg2);
9535 }
4c4b4cd2 9536 if (op == BINOP_NOTEQUAL)
76a01679 9537 tem = !tem;
fbb06eb1
UW
9538 type = language_bool_type (exp->language_defn, exp->gdbarch);
9539 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
9540
9541 case UNOP_NEG:
9542 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9543 if (noside == EVAL_SKIP)
9544 goto nosideret;
df407dfe
AC
9545 else if (ada_is_fixed_point_type (value_type (arg1)))
9546 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 9547 else
f44316fa
UW
9548 {
9549 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9550 return value_neg (arg1);
9551 }
4c4b4cd2 9552
2330c6c6
JB
9553 case BINOP_LOGICAL_AND:
9554 case BINOP_LOGICAL_OR:
9555 case UNOP_LOGICAL_NOT:
000d5124
JB
9556 {
9557 struct value *val;
9558
9559 *pos -= 1;
9560 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
9561 type = language_bool_type (exp->language_defn, exp->gdbarch);
9562 return value_cast (type, val);
000d5124 9563 }
2330c6c6
JB
9564
9565 case BINOP_BITWISE_AND:
9566 case BINOP_BITWISE_IOR:
9567 case BINOP_BITWISE_XOR:
000d5124
JB
9568 {
9569 struct value *val;
9570
9571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9572 *pos = pc;
9573 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9574
9575 return value_cast (value_type (arg1), val);
9576 }
2330c6c6 9577
14f9c5c9
AS
9578 case OP_VAR_VALUE:
9579 *pos -= 1;
6799def4 9580
14f9c5c9 9581 if (noside == EVAL_SKIP)
4c4b4cd2
PH
9582 {
9583 *pos += 4;
9584 goto nosideret;
9585 }
9586 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
9587 /* Only encountered when an unresolved symbol occurs in a
9588 context other than a function call, in which case, it is
52ce6436 9589 invalid. */
323e0a4a 9590 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 9591 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
14f9c5c9 9592 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 9593 {
0c1f74cf 9594 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
9595 /* Check to see if this is a tagged type. We also need to handle
9596 the case where the type is a reference to a tagged type, but
9597 we have to be careful to exclude pointers to tagged types.
9598 The latter should be shown as usual (as a pointer), whereas
9599 a reference should mostly be transparent to the user. */
9600 if (ada_is_tagged_type (type, 0)
9601 || (TYPE_CODE(type) == TYPE_CODE_REF
9602 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0c1f74cf
JB
9603 {
9604 /* Tagged types are a little special in the fact that the real
9605 type is dynamic and can only be determined by inspecting the
9606 object's tag. This means that we need to get the object's
9607 value first (EVAL_NORMAL) and then extract the actual object
9608 type from its tag.
9609
9610 Note that we cannot skip the final step where we extract
9611 the object type from its tag, because the EVAL_NORMAL phase
9612 results in dynamic components being resolved into fixed ones.
9613 This can cause problems when trying to print the type
9614 description of tagged types whose parent has a dynamic size:
9615 We use the type name of the "_parent" component in order
9616 to print the name of the ancestor type in the type description.
9617 If that component had a dynamic size, the resolution into
9618 a fixed type would result in the loss of that type name,
9619 thus preventing us from printing the name of the ancestor
9620 type in the type description. */
b79819ba
JB
9621 struct type *actual_type;
9622
0c1f74cf 9623 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
b79819ba
JB
9624 actual_type = type_from_tag (ada_value_tag (arg1));
9625 if (actual_type == NULL)
9626 /* If, for some reason, we were unable to determine
9627 the actual type from the tag, then use the static
9628 approximation that we just computed as a fallback.
9629 This can happen if the debugging information is
9630 incomplete, for instance. */
9631 actual_type = type;
9632
9633 return value_zero (actual_type, not_lval);
0c1f74cf
JB
9634 }
9635
4c4b4cd2
PH
9636 *pos += 4;
9637 return value_zero
9638 (to_static_fixed_type
9639 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9640 not_lval);
9641 }
d2e4a39e 9642 else
4c4b4cd2 9643 {
284614f0 9644 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
4c4b4cd2
PH
9645 return ada_to_fixed_value (arg1);
9646 }
9647
9648 case OP_FUNCALL:
9649 (*pos) += 2;
9650
9651 /* Allocate arg vector, including space for the function to be
9652 called in argvec[0] and a terminating NULL. */
9653 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9654 argvec =
9655 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9656
9657 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 9658 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 9659 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
9660 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9661 else
9662 {
9663 for (tem = 0; tem <= nargs; tem += 1)
9664 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9665 argvec[tem] = 0;
9666
9667 if (noside == EVAL_SKIP)
9668 goto nosideret;
9669 }
9670
ad82864c
JB
9671 if (ada_is_constrained_packed_array_type
9672 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 9673 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
9674 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9675 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9676 /* This is a packed array that has already been fixed, and
9677 therefore already coerced to a simple array. Nothing further
9678 to do. */
9679 ;
df407dfe
AC
9680 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9681 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
76a01679 9682 && VALUE_LVAL (argvec[0]) == lval_memory))
4c4b4cd2
PH
9683 argvec[0] = value_addr (argvec[0]);
9684
df407dfe 9685 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
9686
9687 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
9688 them. So, if this is an array typedef (encoding use for array
9689 access types encoded as fat pointers), strip it now. */
720d1a40
JB
9690 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9691 type = ada_typedef_target_type (type);
9692
4c4b4cd2
PH
9693 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9694 {
61ee279c 9695 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
9696 {
9697 case TYPE_CODE_FUNC:
61ee279c 9698 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9699 break;
9700 case TYPE_CODE_ARRAY:
9701 break;
9702 case TYPE_CODE_STRUCT:
9703 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9704 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 9705 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
9706 break;
9707 default:
323e0a4a 9708 error (_("cannot subscript or call something of type `%s'"),
df407dfe 9709 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
9710 break;
9711 }
9712 }
9713
9714 switch (TYPE_CODE (type))
9715 {
9716 case TYPE_CODE_FUNC:
9717 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972
PH
9718 {
9719 struct type *rtype = TYPE_TARGET_TYPE (type);
9720
9721 if (TYPE_GNU_IFUNC (type))
9722 return allocate_value (TYPE_TARGET_TYPE (rtype));
9723 return allocate_value (rtype);
9724 }
4c4b4cd2 9725 return call_function_by_hand (argvec[0], nargs, argvec + 1);
c8ea1972
PH
9726 case TYPE_CODE_INTERNAL_FUNCTION:
9727 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9728 /* We don't know anything about what the internal
9729 function might return, but we have to return
9730 something. */
9731 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9732 not_lval);
9733 else
9734 return call_internal_function (exp->gdbarch, exp->language_defn,
9735 argvec[0], nargs, argvec + 1);
9736
4c4b4cd2
PH
9737 case TYPE_CODE_STRUCT:
9738 {
9739 int arity;
9740
4c4b4cd2
PH
9741 arity = ada_array_arity (type);
9742 type = ada_array_element_type (type, nargs);
9743 if (type == NULL)
323e0a4a 9744 error (_("cannot subscript or call a record"));
4c4b4cd2 9745 if (arity != nargs)
323e0a4a 9746 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 9747 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 9748 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9749 return
9750 unwrap_value (ada_value_subscript
9751 (argvec[0], nargs, argvec + 1));
9752 }
9753 case TYPE_CODE_ARRAY:
9754 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9755 {
9756 type = ada_array_element_type (type, nargs);
9757 if (type == NULL)
323e0a4a 9758 error (_("element type of array unknown"));
4c4b4cd2 9759 else
0a07e705 9760 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9761 }
9762 return
9763 unwrap_value (ada_value_subscript
9764 (ada_coerce_to_simple_array (argvec[0]),
9765 nargs, argvec + 1));
9766 case TYPE_CODE_PTR: /* Pointer to array */
9767 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9768 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9769 {
9770 type = ada_array_element_type (type, nargs);
9771 if (type == NULL)
323e0a4a 9772 error (_("element type of array unknown"));
4c4b4cd2 9773 else
0a07e705 9774 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
9775 }
9776 return
9777 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9778 nargs, argvec + 1));
9779
9780 default:
e1d5a0d2
PH
9781 error (_("Attempt to index or call something other than an "
9782 "array or function"));
4c4b4cd2
PH
9783 }
9784
9785 case TERNOP_SLICE:
9786 {
9787 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9788 struct value *low_bound_val =
9789 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
9790 struct value *high_bound_val =
9791 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9792 LONGEST low_bound;
9793 LONGEST high_bound;
5b4ee69b 9794
994b9211
AC
9795 low_bound_val = coerce_ref (low_bound_val);
9796 high_bound_val = coerce_ref (high_bound_val);
714e53ab
PH
9797 low_bound = pos_atr (low_bound_val);
9798 high_bound = pos_atr (high_bound_val);
963a6417 9799
4c4b4cd2
PH
9800 if (noside == EVAL_SKIP)
9801 goto nosideret;
9802
4c4b4cd2
PH
9803 /* If this is a reference to an aligner type, then remove all
9804 the aligners. */
df407dfe
AC
9805 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9806 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9807 TYPE_TARGET_TYPE (value_type (array)) =
9808 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 9809
ad82864c 9810 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 9811 error (_("cannot slice a packed array"));
4c4b4cd2
PH
9812
9813 /* If this is a reference to an array or an array lvalue,
9814 convert to a pointer. */
df407dfe
AC
9815 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9816 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
9817 && VALUE_LVAL (array) == lval_memory))
9818 array = value_addr (array);
9819
1265e4aa 9820 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 9821 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 9822 (value_type (array))))
0b5d8877 9823 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
9824
9825 array = ada_coerce_to_simple_array_ptr (array);
9826
714e53ab
PH
9827 /* If we have more than one level of pointer indirection,
9828 dereference the value until we get only one level. */
df407dfe
AC
9829 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9830 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
9831 == TYPE_CODE_PTR))
9832 array = value_ind (array);
9833
9834 /* Make sure we really do have an array type before going further,
9835 to avoid a SEGV when trying to get the index type or the target
9836 type later down the road if the debug info generated by
9837 the compiler is incorrect or incomplete. */
df407dfe 9838 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 9839 error (_("cannot take slice of non-array"));
714e53ab 9840
828292f2
JB
9841 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9842 == TYPE_CODE_PTR)
4c4b4cd2 9843 {
828292f2
JB
9844 struct type *type0 = ada_check_typedef (value_type (array));
9845
0b5d8877 9846 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 9847 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
9848 else
9849 {
9850 struct type *arr_type0 =
828292f2 9851 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 9852
f5938064
JG
9853 return ada_value_slice_from_ptr (array, arr_type0,
9854 longest_to_int (low_bound),
9855 longest_to_int (high_bound));
4c4b4cd2
PH
9856 }
9857 }
9858 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9859 return array;
9860 else if (high_bound < low_bound)
df407dfe 9861 return empty_array (value_type (array), low_bound);
4c4b4cd2 9862 else
529cad9c
PH
9863 return ada_value_slice (array, longest_to_int (low_bound),
9864 longest_to_int (high_bound));
4c4b4cd2 9865 }
14f9c5c9 9866
4c4b4cd2
PH
9867 case UNOP_IN_RANGE:
9868 (*pos) += 2;
9869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 9870 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 9871
14f9c5c9 9872 if (noside == EVAL_SKIP)
4c4b4cd2 9873 goto nosideret;
14f9c5c9 9874
4c4b4cd2
PH
9875 switch (TYPE_CODE (type))
9876 {
9877 default:
e1d5a0d2
PH
9878 lim_warning (_("Membership test incompletely implemented; "
9879 "always returns true"));
fbb06eb1
UW
9880 type = language_bool_type (exp->language_defn, exp->gdbarch);
9881 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
9882
9883 case TYPE_CODE_RANGE:
030b4912
UW
9884 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9885 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
9886 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9887 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
9888 type = language_bool_type (exp->language_defn, exp->gdbarch);
9889 return
9890 value_from_longest (type,
4c4b4cd2
PH
9891 (value_less (arg1, arg3)
9892 || value_equal (arg1, arg3))
9893 && (value_less (arg2, arg1)
9894 || value_equal (arg2, arg1)));
9895 }
9896
9897 case BINOP_IN_BOUNDS:
14f9c5c9 9898 (*pos) += 2;
4c4b4cd2
PH
9899 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9900 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 9901
4c4b4cd2
PH
9902 if (noside == EVAL_SKIP)
9903 goto nosideret;
14f9c5c9 9904
4c4b4cd2 9905 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
9906 {
9907 type = language_bool_type (exp->language_defn, exp->gdbarch);
9908 return value_zero (type, not_lval);
9909 }
14f9c5c9 9910
4c4b4cd2 9911 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 9912
1eea4ebd
UW
9913 type = ada_index_type (value_type (arg2), tem, "range");
9914 if (!type)
9915 type = value_type (arg1);
14f9c5c9 9916
1eea4ebd
UW
9917 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9918 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 9919
f44316fa
UW
9920 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9922 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9923 return
fbb06eb1 9924 value_from_longest (type,
4c4b4cd2
PH
9925 (value_less (arg1, arg3)
9926 || value_equal (arg1, arg3))
9927 && (value_less (arg2, arg1)
9928 || value_equal (arg2, arg1)));
9929
9930 case TERNOP_IN_RANGE:
9931 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9932 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9933 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9934
9935 if (noside == EVAL_SKIP)
9936 goto nosideret;
9937
f44316fa
UW
9938 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9939 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 9940 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 9941 return
fbb06eb1 9942 value_from_longest (type,
4c4b4cd2
PH
9943 (value_less (arg1, arg3)
9944 || value_equal (arg1, arg3))
9945 && (value_less (arg2, arg1)
9946 || value_equal (arg2, arg1)));
9947
9948 case OP_ATR_FIRST:
9949 case OP_ATR_LAST:
9950 case OP_ATR_LENGTH:
9951 {
76a01679 9952 struct type *type_arg;
5b4ee69b 9953
76a01679
JB
9954 if (exp->elts[*pos].opcode == OP_TYPE)
9955 {
9956 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9957 arg1 = NULL;
5bc23cb3 9958 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
9959 }
9960 else
9961 {
9962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9963 type_arg = NULL;
9964 }
9965
9966 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 9967 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
9968 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9969 *pos += 4;
9970
9971 if (noside == EVAL_SKIP)
9972 goto nosideret;
9973
9974 if (type_arg == NULL)
9975 {
9976 arg1 = ada_coerce_ref (arg1);
9977
ad82864c 9978 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
9979 arg1 = ada_coerce_to_simple_array (arg1);
9980
1eea4ebd
UW
9981 type = ada_index_type (value_type (arg1), tem,
9982 ada_attribute_name (op));
9983 if (type == NULL)
9984 type = builtin_type (exp->gdbarch)->builtin_int;
76a01679
JB
9985
9986 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 9987 return allocate_value (type);
76a01679
JB
9988
9989 switch (op)
9990 {
9991 default: /* Should never happen. */
323e0a4a 9992 error (_("unexpected attribute encountered"));
76a01679 9993 case OP_ATR_FIRST:
1eea4ebd
UW
9994 return value_from_longest
9995 (type, ada_array_bound (arg1, tem, 0));
76a01679 9996 case OP_ATR_LAST:
1eea4ebd
UW
9997 return value_from_longest
9998 (type, ada_array_bound (arg1, tem, 1));
76a01679 9999 case OP_ATR_LENGTH:
1eea4ebd
UW
10000 return value_from_longest
10001 (type, ada_array_length (arg1, tem));
76a01679
JB
10002 }
10003 }
10004 else if (discrete_type_p (type_arg))
10005 {
10006 struct type *range_type;
0d5cff50 10007 const char *name = ada_type_name (type_arg);
5b4ee69b 10008
76a01679
JB
10009 range_type = NULL;
10010 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 10011 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
10012 if (range_type == NULL)
10013 range_type = type_arg;
10014 switch (op)
10015 {
10016 default:
323e0a4a 10017 error (_("unexpected attribute encountered"));
76a01679 10018 case OP_ATR_FIRST:
690cc4eb 10019 return value_from_longest
43bbcdc2 10020 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 10021 case OP_ATR_LAST:
690cc4eb 10022 return value_from_longest
43bbcdc2 10023 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 10024 case OP_ATR_LENGTH:
323e0a4a 10025 error (_("the 'length attribute applies only to array types"));
76a01679
JB
10026 }
10027 }
10028 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 10029 error (_("unimplemented type attribute"));
76a01679
JB
10030 else
10031 {
10032 LONGEST low, high;
10033
ad82864c
JB
10034 if (ada_is_constrained_packed_array_type (type_arg))
10035 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 10036
1eea4ebd 10037 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
76a01679 10038 if (type == NULL)
1eea4ebd
UW
10039 type = builtin_type (exp->gdbarch)->builtin_int;
10040
76a01679
JB
10041 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10042 return allocate_value (type);
10043
10044 switch (op)
10045 {
10046 default:
323e0a4a 10047 error (_("unexpected attribute encountered"));
76a01679 10048 case OP_ATR_FIRST:
1eea4ebd 10049 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
10050 return value_from_longest (type, low);
10051 case OP_ATR_LAST:
1eea4ebd 10052 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10053 return value_from_longest (type, high);
10054 case OP_ATR_LENGTH:
1eea4ebd
UW
10055 low = ada_array_bound_from_type (type_arg, tem, 0);
10056 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
10057 return value_from_longest (type, high - low + 1);
10058 }
10059 }
14f9c5c9
AS
10060 }
10061
4c4b4cd2
PH
10062 case OP_ATR_TAG:
10063 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10064 if (noside == EVAL_SKIP)
76a01679 10065 goto nosideret;
4c4b4cd2
PH
10066
10067 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10068 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
10069
10070 return ada_value_tag (arg1);
10071
10072 case OP_ATR_MIN:
10073 case OP_ATR_MAX:
10074 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10076 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10077 if (noside == EVAL_SKIP)
76a01679 10078 goto nosideret;
d2e4a39e 10079 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10080 return value_zero (value_type (arg1), not_lval);
14f9c5c9 10081 else
f44316fa
UW
10082 {
10083 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10084 return value_binop (arg1, arg2,
10085 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10086 }
14f9c5c9 10087
4c4b4cd2
PH
10088 case OP_ATR_MODULUS:
10089 {
31dedfee 10090 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 10091
5b4ee69b 10092 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
10093 if (noside == EVAL_SKIP)
10094 goto nosideret;
4c4b4cd2 10095
76a01679 10096 if (!ada_is_modular_type (type_arg))
323e0a4a 10097 error (_("'modulus must be applied to modular type"));
4c4b4cd2 10098
76a01679
JB
10099 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10100 ada_modulus (type_arg));
4c4b4cd2
PH
10101 }
10102
10103
10104 case OP_ATR_POS:
10105 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
10106 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10107 if (noside == EVAL_SKIP)
76a01679 10108 goto nosideret;
3cb382c9
UW
10109 type = builtin_type (exp->gdbarch)->builtin_int;
10110 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 return value_zero (type, not_lval);
14f9c5c9 10112 else
3cb382c9 10113 return value_pos_atr (type, arg1);
14f9c5c9 10114
4c4b4cd2
PH
10115 case OP_ATR_SIZE:
10116 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
10117 type = value_type (arg1);
10118
10119 /* If the argument is a reference, then dereference its type, since
10120 the user is really asking for the size of the actual object,
10121 not the size of the pointer. */
10122 if (TYPE_CODE (type) == TYPE_CODE_REF)
10123 type = TYPE_TARGET_TYPE (type);
10124
4c4b4cd2 10125 if (noside == EVAL_SKIP)
76a01679 10126 goto nosideret;
4c4b4cd2 10127 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 10128 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 10129 else
22601c15 10130 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 10131 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
10132
10133 case OP_ATR_VAL:
10134 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 10135 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 10136 type = exp->elts[pc + 2].type;
14f9c5c9 10137 if (noside == EVAL_SKIP)
76a01679 10138 goto nosideret;
4c4b4cd2 10139 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10140 return value_zero (type, not_lval);
4c4b4cd2 10141 else
76a01679 10142 return value_val_atr (type, arg1);
4c4b4cd2
PH
10143
10144 case BINOP_EXP:
10145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 if (noside == EVAL_SKIP)
10148 goto nosideret;
10149 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 10150 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 10151 else
f44316fa
UW
10152 {
10153 /* For integer exponentiation operations,
10154 only promote the first argument. */
10155 if (is_integral_type (value_type (arg2)))
10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10157 else
10158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10159
10160 return value_binop (arg1, arg2, op);
10161 }
4c4b4cd2
PH
10162
10163 case UNOP_PLUS:
10164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167 else
10168 return arg1;
10169
10170 case UNOP_ABS:
10171 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10172 if (noside == EVAL_SKIP)
10173 goto nosideret;
f44316fa 10174 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 10175 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 10176 return value_neg (arg1);
14f9c5c9 10177 else
4c4b4cd2 10178 return arg1;
14f9c5c9
AS
10179
10180 case UNOP_IND:
6b0d7253 10181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 10182 if (noside == EVAL_SKIP)
4c4b4cd2 10183 goto nosideret;
df407dfe 10184 type = ada_check_typedef (value_type (arg1));
14f9c5c9 10185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
10186 {
10187 if (ada_is_array_descriptor_type (type))
10188 /* GDB allows dereferencing GNAT array descriptors. */
10189 {
10190 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 10191
4c4b4cd2 10192 if (arrType == NULL)
323e0a4a 10193 error (_("Attempt to dereference null array pointer."));
00a4c844 10194 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
10195 }
10196 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10197 || TYPE_CODE (type) == TYPE_CODE_REF
10198 /* In C you can dereference an array to get the 1st elt. */
10199 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab
PH
10200 {
10201 type = to_static_fixed_type
10202 (ada_aligned_type
10203 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10204 check_size (type);
10205 return value_zero (type, lval_memory);
10206 }
4c4b4cd2 10207 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
10208 {
10209 /* GDB allows dereferencing an int. */
10210 if (expect_type == NULL)
10211 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10212 lval_memory);
10213 else
10214 {
10215 expect_type =
10216 to_static_fixed_type (ada_aligned_type (expect_type));
10217 return value_zero (expect_type, lval_memory);
10218 }
10219 }
4c4b4cd2 10220 else
323e0a4a 10221 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 10222 }
0963b4bd 10223 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 10224 type = ada_check_typedef (value_type (arg1));
d2e4a39e 10225
96967637
JB
10226 if (TYPE_CODE (type) == TYPE_CODE_INT)
10227 /* GDB allows dereferencing an int. If we were given
10228 the expect_type, then use that as the target type.
10229 Otherwise, assume that the target type is an int. */
10230 {
10231 if (expect_type != NULL)
10232 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10233 arg1));
10234 else
10235 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10236 (CORE_ADDR) value_as_address (arg1));
10237 }
6b0d7253 10238
4c4b4cd2
PH
10239 if (ada_is_array_descriptor_type (type))
10240 /* GDB allows dereferencing GNAT array descriptors. */
10241 return ada_coerce_to_simple_array (arg1);
14f9c5c9 10242 else
4c4b4cd2 10243 return ada_value_ind (arg1);
14f9c5c9
AS
10244
10245 case STRUCTOP_STRUCT:
10246 tem = longest_to_int (exp->elts[pc + 1].longconst);
10247 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10249 if (noside == EVAL_SKIP)
4c4b4cd2 10250 goto nosideret;
14f9c5c9 10251 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10252 {
df407dfe 10253 struct type *type1 = value_type (arg1);
5b4ee69b 10254
76a01679
JB
10255 if (ada_is_tagged_type (type1, 1))
10256 {
10257 type = ada_lookup_struct_elt_type (type1,
10258 &exp->elts[pc + 2].string,
10259 1, 1, NULL);
10260 if (type == NULL)
10261 /* In this case, we assume that the field COULD exist
10262 in some extension of the type. Return an object of
10263 "type" void, which will match any formal
0963b4bd 10264 (see ada_type_match). */
30b15541
UW
10265 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10266 lval_memory);
76a01679
JB
10267 }
10268 else
10269 type =
10270 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10271 0, NULL);
10272
10273 return value_zero (ada_aligned_type (type), lval_memory);
10274 }
14f9c5c9 10275 else
284614f0
JB
10276 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10277 arg1 = unwrap_value (arg1);
10278 return ada_to_fixed_value (arg1);
10279
14f9c5c9 10280 case OP_TYPE:
4c4b4cd2
PH
10281 /* The value is not supposed to be used. This is here to make it
10282 easier to accommodate expressions that contain types. */
14f9c5c9
AS
10283 (*pos) += 2;
10284 if (noside == EVAL_SKIP)
4c4b4cd2 10285 goto nosideret;
14f9c5c9 10286 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 10287 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 10288 else
323e0a4a 10289 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
10290
10291 case OP_AGGREGATE:
10292 case OP_CHOICES:
10293 case OP_OTHERS:
10294 case OP_DISCRETE_RANGE:
10295 case OP_POSITIONAL:
10296 case OP_NAME:
10297 if (noside == EVAL_NORMAL)
10298 switch (op)
10299 {
10300 case OP_NAME:
10301 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 10302 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
10303 case OP_AGGREGATE:
10304 error (_("Aggregates only allowed on the right of an assignment"));
10305 default:
0963b4bd
MS
10306 internal_error (__FILE__, __LINE__,
10307 _("aggregate apparently mangled"));
52ce6436
PH
10308 }
10309
10310 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10311 *pos += oplen - 1;
10312 for (tem = 0; tem < nargs; tem += 1)
10313 ada_evaluate_subexp (NULL, exp, pos, noside);
10314 goto nosideret;
14f9c5c9
AS
10315 }
10316
10317nosideret:
22601c15 10318 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
14f9c5c9 10319}
14f9c5c9 10320\f
d2e4a39e 10321
4c4b4cd2 10322 /* Fixed point */
14f9c5c9
AS
10323
10324/* If TYPE encodes an Ada fixed-point type, return the suffix of the
10325 type name that encodes the 'small and 'delta information.
4c4b4cd2 10326 Otherwise, return NULL. */
14f9c5c9 10327
d2e4a39e 10328static const char *
ebf56fd3 10329fixed_type_info (struct type *type)
14f9c5c9 10330{
d2e4a39e 10331 const char *name = ada_type_name (type);
14f9c5c9
AS
10332 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10333
d2e4a39e
AS
10334 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10335 {
14f9c5c9 10336 const char *tail = strstr (name, "___XF_");
5b4ee69b 10337
14f9c5c9 10338 if (tail == NULL)
4c4b4cd2 10339 return NULL;
d2e4a39e 10340 else
4c4b4cd2 10341 return tail + 5;
14f9c5c9
AS
10342 }
10343 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10344 return fixed_type_info (TYPE_TARGET_TYPE (type));
10345 else
10346 return NULL;
10347}
10348
4c4b4cd2 10349/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
10350
10351int
ebf56fd3 10352ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
10353{
10354 return fixed_type_info (type) != NULL;
10355}
10356
4c4b4cd2
PH
10357/* Return non-zero iff TYPE represents a System.Address type. */
10358
10359int
10360ada_is_system_address_type (struct type *type)
10361{
10362 return (TYPE_NAME (type)
10363 && strcmp (TYPE_NAME (type), "system__address") == 0);
10364}
10365
14f9c5c9
AS
10366/* Assuming that TYPE is the representation of an Ada fixed-point
10367 type, return its delta, or -1 if the type is malformed and the
4c4b4cd2 10368 delta cannot be determined. */
14f9c5c9
AS
10369
10370DOUBLEST
ebf56fd3 10371ada_delta (struct type *type)
14f9c5c9
AS
10372{
10373 const char *encoding = fixed_type_info (type);
facc390f 10374 DOUBLEST num, den;
14f9c5c9 10375
facc390f
JB
10376 /* Strictly speaking, num and den are encoded as integer. However,
10377 they may not fit into a long, and they will have to be converted
10378 to DOUBLEST anyway. So scan them as DOUBLEST. */
10379 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10380 &num, &den) < 2)
14f9c5c9 10381 return -1.0;
d2e4a39e 10382 else
facc390f 10383 return num / den;
14f9c5c9
AS
10384}
10385
10386/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 10387 factor ('SMALL value) associated with the type. */
14f9c5c9
AS
10388
10389static DOUBLEST
ebf56fd3 10390scaling_factor (struct type *type)
14f9c5c9
AS
10391{
10392 const char *encoding = fixed_type_info (type);
facc390f 10393 DOUBLEST num0, den0, num1, den1;
14f9c5c9 10394 int n;
d2e4a39e 10395
facc390f
JB
10396 /* Strictly speaking, num's and den's are encoded as integer. However,
10397 they may not fit into a long, and they will have to be converted
10398 to DOUBLEST anyway. So scan them as DOUBLEST. */
10399 n = sscanf (encoding,
10400 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10401 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10402 &num0, &den0, &num1, &den1);
14f9c5c9
AS
10403
10404 if (n < 2)
10405 return 1.0;
10406 else if (n == 4)
facc390f 10407 return num1 / den1;
d2e4a39e 10408 else
facc390f 10409 return num0 / den0;
14f9c5c9
AS
10410}
10411
10412
10413/* Assuming that X is the representation of a value of fixed-point
4c4b4cd2 10414 type TYPE, return its floating-point equivalent. */
14f9c5c9
AS
10415
10416DOUBLEST
ebf56fd3 10417ada_fixed_to_float (struct type *type, LONGEST x)
14f9c5c9 10418{
d2e4a39e 10419 return (DOUBLEST) x *scaling_factor (type);
14f9c5c9
AS
10420}
10421
4c4b4cd2
PH
10422/* The representation of a fixed-point value of type TYPE
10423 corresponding to the value X. */
14f9c5c9
AS
10424
10425LONGEST
ebf56fd3 10426ada_float_to_fixed (struct type *type, DOUBLEST x)
14f9c5c9
AS
10427{
10428 return (LONGEST) (x / scaling_factor (type) + 0.5);
10429}
10430
14f9c5c9 10431\f
d2e4a39e 10432
4c4b4cd2 10433 /* Range types */
14f9c5c9
AS
10434
10435/* Scan STR beginning at position K for a discriminant name, and
10436 return the value of that discriminant field of DVAL in *PX. If
10437 PNEW_K is not null, put the position of the character beyond the
10438 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 10439 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
10440
10441static int
07d8f827 10442scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
76a01679 10443 int *pnew_k)
14f9c5c9
AS
10444{
10445 static char *bound_buffer = NULL;
10446 static size_t bound_buffer_len = 0;
10447 char *bound;
10448 char *pend;
d2e4a39e 10449 struct value *bound_val;
14f9c5c9
AS
10450
10451 if (dval == NULL || str == NULL || str[k] == '\0')
10452 return 0;
10453
d2e4a39e 10454 pend = strstr (str + k, "__");
14f9c5c9
AS
10455 if (pend == NULL)
10456 {
d2e4a39e 10457 bound = str + k;
14f9c5c9
AS
10458 k += strlen (bound);
10459 }
d2e4a39e 10460 else
14f9c5c9 10461 {
d2e4a39e 10462 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
14f9c5c9 10463 bound = bound_buffer;
d2e4a39e
AS
10464 strncpy (bound_buffer, str + k, pend - (str + k));
10465 bound[pend - (str + k)] = '\0';
10466 k = pend - str;
14f9c5c9 10467 }
d2e4a39e 10468
df407dfe 10469 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
10470 if (bound_val == NULL)
10471 return 0;
10472
10473 *px = value_as_long (bound_val);
10474 if (pnew_k != NULL)
10475 *pnew_k = k;
10476 return 1;
10477}
10478
10479/* Value of variable named NAME in the current environment. If
10480 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
10481 otherwise causes an error with message ERR_MSG. */
10482
d2e4a39e
AS
10483static struct value *
10484get_var_value (char *name, char *err_msg)
14f9c5c9 10485{
4c4b4cd2 10486 struct ada_symbol_info *syms;
14f9c5c9
AS
10487 int nsyms;
10488
4c4b4cd2 10489 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
d9680e73 10490 &syms, 1);
14f9c5c9
AS
10491
10492 if (nsyms != 1)
10493 {
10494 if (err_msg == NULL)
4c4b4cd2 10495 return 0;
14f9c5c9 10496 else
8a3fe4f8 10497 error (("%s"), err_msg);
14f9c5c9
AS
10498 }
10499
4c4b4cd2 10500 return value_of_variable (syms[0].sym, syms[0].block);
14f9c5c9 10501}
d2e4a39e 10502
14f9c5c9 10503/* Value of integer variable named NAME in the current environment. If
4c4b4cd2
PH
10504 no such variable found, returns 0, and sets *FLAG to 0. If
10505 successful, sets *FLAG to 1. */
10506
14f9c5c9 10507LONGEST
4c4b4cd2 10508get_int_var_value (char *name, int *flag)
14f9c5c9 10509{
4c4b4cd2 10510 struct value *var_val = get_var_value (name, 0);
d2e4a39e 10511
14f9c5c9
AS
10512 if (var_val == 0)
10513 {
10514 if (flag != NULL)
4c4b4cd2 10515 *flag = 0;
14f9c5c9
AS
10516 return 0;
10517 }
10518 else
10519 {
10520 if (flag != NULL)
4c4b4cd2 10521 *flag = 1;
14f9c5c9
AS
10522 return value_as_long (var_val);
10523 }
10524}
d2e4a39e 10525
14f9c5c9
AS
10526
10527/* Return a range type whose base type is that of the range type named
10528 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 10529 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
10530 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10531 corresponding range type from debug information; fall back to using it
10532 if symbol lookup fails. If a new type must be created, allocate it
10533 like ORIG_TYPE was. The bounds information, in general, is encoded
10534 in NAME, the base type given in the named range type. */
14f9c5c9 10535
d2e4a39e 10536static struct type *
28c85d6c 10537to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 10538{
0d5cff50 10539 const char *name;
14f9c5c9 10540 struct type *base_type;
d2e4a39e 10541 char *subtype_info;
14f9c5c9 10542
28c85d6c
JB
10543 gdb_assert (raw_type != NULL);
10544 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 10545
1ce677a4 10546 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
10547 base_type = TYPE_TARGET_TYPE (raw_type);
10548 else
10549 base_type = raw_type;
10550
28c85d6c 10551 name = TYPE_NAME (raw_type);
14f9c5c9
AS
10552 subtype_info = strstr (name, "___XD");
10553 if (subtype_info == NULL)
690cc4eb 10554 {
43bbcdc2
PH
10555 LONGEST L = ada_discrete_type_low_bound (raw_type);
10556 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 10557
690cc4eb
PH
10558 if (L < INT_MIN || U > INT_MAX)
10559 return raw_type;
10560 else
28c85d6c 10561 return create_range_type (alloc_type_copy (raw_type), raw_type,
43bbcdc2
PH
10562 ada_discrete_type_low_bound (raw_type),
10563 ada_discrete_type_high_bound (raw_type));
690cc4eb 10564 }
14f9c5c9
AS
10565 else
10566 {
10567 static char *name_buf = NULL;
10568 static size_t name_len = 0;
10569 int prefix_len = subtype_info - name;
10570 LONGEST L, U;
10571 struct type *type;
10572 char *bounds_str;
10573 int n;
10574
10575 GROW_VECT (name_buf, name_len, prefix_len + 5);
10576 strncpy (name_buf, name, prefix_len);
10577 name_buf[prefix_len] = '\0';
10578
10579 subtype_info += 5;
10580 bounds_str = strchr (subtype_info, '_');
10581 n = 1;
10582
d2e4a39e 10583 if (*subtype_info == 'L')
4c4b4cd2
PH
10584 {
10585 if (!ada_scan_number (bounds_str, n, &L, &n)
10586 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10587 return raw_type;
10588 if (bounds_str[n] == '_')
10589 n += 2;
0963b4bd 10590 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
10591 n += 1;
10592 subtype_info += 1;
10593 }
d2e4a39e 10594 else
4c4b4cd2
PH
10595 {
10596 int ok;
5b4ee69b 10597
4c4b4cd2
PH
10598 strcpy (name_buf + prefix_len, "___L");
10599 L = get_int_var_value (name_buf, &ok);
10600 if (!ok)
10601 {
323e0a4a 10602 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
10603 L = 1;
10604 }
10605 }
14f9c5c9 10606
d2e4a39e 10607 if (*subtype_info == 'U')
4c4b4cd2
PH
10608 {
10609 if (!ada_scan_number (bounds_str, n, &U, &n)
10610 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10611 return raw_type;
10612 }
d2e4a39e 10613 else
4c4b4cd2
PH
10614 {
10615 int ok;
5b4ee69b 10616
4c4b4cd2
PH
10617 strcpy (name_buf + prefix_len, "___U");
10618 U = get_int_var_value (name_buf, &ok);
10619 if (!ok)
10620 {
323e0a4a 10621 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
10622 U = L;
10623 }
10624 }
14f9c5c9 10625
28c85d6c 10626 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
d2e4a39e 10627 TYPE_NAME (type) = name;
14f9c5c9
AS
10628 return type;
10629 }
10630}
10631
4c4b4cd2
PH
10632/* True iff NAME is the name of a range type. */
10633
14f9c5c9 10634int
d2e4a39e 10635ada_is_range_type_name (const char *name)
14f9c5c9
AS
10636{
10637 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 10638}
14f9c5c9 10639\f
d2e4a39e 10640
4c4b4cd2
PH
10641 /* Modular types */
10642
10643/* True iff TYPE is an Ada modular type. */
14f9c5c9 10644
14f9c5c9 10645int
d2e4a39e 10646ada_is_modular_type (struct type *type)
14f9c5c9 10647{
18af8284 10648 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
10649
10650 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 10651 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 10652 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
10653}
10654
4c4b4cd2
PH
10655/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10656
61ee279c 10657ULONGEST
0056e4d5 10658ada_modulus (struct type *type)
14f9c5c9 10659{
43bbcdc2 10660 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 10661}
d2e4a39e 10662\f
f7f9143b
JB
10663
10664/* Ada exception catchpoint support:
10665 ---------------------------------
10666
10667 We support 3 kinds of exception catchpoints:
10668 . catchpoints on Ada exceptions
10669 . catchpoints on unhandled Ada exceptions
10670 . catchpoints on failed assertions
10671
10672 Exceptions raised during failed assertions, or unhandled exceptions
10673 could perfectly be caught with the general catchpoint on Ada exceptions.
10674 However, we can easily differentiate these two special cases, and having
10675 the option to distinguish these two cases from the rest can be useful
10676 to zero-in on certain situations.
10677
10678 Exception catchpoints are a specialized form of breakpoint,
10679 since they rely on inserting breakpoints inside known routines
10680 of the GNAT runtime. The implementation therefore uses a standard
10681 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10682 of breakpoint_ops.
10683
0259addd
JB
10684 Support in the runtime for exception catchpoints have been changed
10685 a few times already, and these changes affect the implementation
10686 of these catchpoints. In order to be able to support several
10687 variants of the runtime, we use a sniffer that will determine
28010a5d 10688 the runtime variant used by the program being debugged. */
f7f9143b
JB
10689
10690/* The different types of catchpoints that we introduced for catching
10691 Ada exceptions. */
10692
10693enum exception_catchpoint_kind
10694{
10695 ex_catch_exception,
10696 ex_catch_exception_unhandled,
10697 ex_catch_assert
10698};
10699
3d0b0fa3
JB
10700/* Ada's standard exceptions. */
10701
10702static char *standard_exc[] = {
10703 "constraint_error",
10704 "program_error",
10705 "storage_error",
10706 "tasking_error"
10707};
10708
0259addd
JB
10709typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10710
10711/* A structure that describes how to support exception catchpoints
10712 for a given executable. */
10713
10714struct exception_support_info
10715{
10716 /* The name of the symbol to break on in order to insert
10717 a catchpoint on exceptions. */
10718 const char *catch_exception_sym;
10719
10720 /* The name of the symbol to break on in order to insert
10721 a catchpoint on unhandled exceptions. */
10722 const char *catch_exception_unhandled_sym;
10723
10724 /* The name of the symbol to break on in order to insert
10725 a catchpoint on failed assertions. */
10726 const char *catch_assert_sym;
10727
10728 /* Assuming that the inferior just triggered an unhandled exception
10729 catchpoint, this function is responsible for returning the address
10730 in inferior memory where the name of that exception is stored.
10731 Return zero if the address could not be computed. */
10732 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10733};
10734
10735static CORE_ADDR ada_unhandled_exception_name_addr (void);
10736static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10737
10738/* The following exception support info structure describes how to
10739 implement exception catchpoints with the latest version of the
10740 Ada runtime (as of 2007-03-06). */
10741
10742static const struct exception_support_info default_exception_support_info =
10743{
10744 "__gnat_debug_raise_exception", /* catch_exception_sym */
10745 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10746 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10747 ada_unhandled_exception_name_addr
10748};
10749
10750/* The following exception support info structure describes how to
10751 implement exception catchpoints with a slightly older version
10752 of the Ada runtime. */
10753
10754static const struct exception_support_info exception_support_info_fallback =
10755{
10756 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10757 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10758 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10759 ada_unhandled_exception_name_addr_from_raise
10760};
10761
f17011e0
JB
10762/* Return nonzero if we can detect the exception support routines
10763 described in EINFO.
10764
10765 This function errors out if an abnormal situation is detected
10766 (for instance, if we find the exception support routines, but
10767 that support is found to be incomplete). */
10768
10769static int
10770ada_has_this_exception_support (const struct exception_support_info *einfo)
10771{
10772 struct symbol *sym;
10773
10774 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10775 that should be compiled with debugging information. As a result, we
10776 expect to find that symbol in the symtabs. */
10777
10778 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10779 if (sym == NULL)
a6af7abe
JB
10780 {
10781 /* Perhaps we did not find our symbol because the Ada runtime was
10782 compiled without debugging info, or simply stripped of it.
10783 It happens on some GNU/Linux distributions for instance, where
10784 users have to install a separate debug package in order to get
10785 the runtime's debugging info. In that situation, let the user
10786 know why we cannot insert an Ada exception catchpoint.
10787
10788 Note: Just for the purpose of inserting our Ada exception
10789 catchpoint, we could rely purely on the associated minimal symbol.
10790 But we would be operating in degraded mode anyway, since we are
10791 still lacking the debugging info needed later on to extract
10792 the name of the exception being raised (this name is printed in
10793 the catchpoint message, and is also used when trying to catch
10794 a specific exception). We do not handle this case for now. */
10795 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10796 error (_("Your Ada runtime appears to be missing some debugging "
10797 "information.\nCannot insert Ada exception catchpoint "
10798 "in this configuration."));
10799
10800 return 0;
10801 }
f17011e0
JB
10802
10803 /* Make sure that the symbol we found corresponds to a function. */
10804
10805 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10806 error (_("Symbol \"%s\" is not a function (class = %d)"),
10807 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10808
10809 return 1;
10810}
10811
0259addd
JB
10812/* Inspect the Ada runtime and determine which exception info structure
10813 should be used to provide support for exception catchpoints.
10814
3eecfa55
JB
10815 This function will always set the per-inferior exception_info,
10816 or raise an error. */
0259addd
JB
10817
10818static void
10819ada_exception_support_info_sniffer (void)
10820{
3eecfa55 10821 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
10822 struct symbol *sym;
10823
10824 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 10825 if (data->exception_info != NULL)
0259addd
JB
10826 return;
10827
10828 /* Check the latest (default) exception support info. */
f17011e0 10829 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 10830 {
3eecfa55 10831 data->exception_info = &default_exception_support_info;
0259addd
JB
10832 return;
10833 }
10834
10835 /* Try our fallback exception suport info. */
f17011e0 10836 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 10837 {
3eecfa55 10838 data->exception_info = &exception_support_info_fallback;
0259addd
JB
10839 return;
10840 }
10841
10842 /* Sometimes, it is normal for us to not be able to find the routine
10843 we are looking for. This happens when the program is linked with
10844 the shared version of the GNAT runtime, and the program has not been
10845 started yet. Inform the user of these two possible causes if
10846 applicable. */
10847
ccefe4c4 10848 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
10849 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10850
10851 /* If the symbol does not exist, then check that the program is
10852 already started, to make sure that shared libraries have been
10853 loaded. If it is not started, this may mean that the symbol is
10854 in a shared library. */
10855
10856 if (ptid_get_pid (inferior_ptid) == 0)
10857 error (_("Unable to insert catchpoint. Try to start the program first."));
10858
10859 /* At this point, we know that we are debugging an Ada program and
10860 that the inferior has been started, but we still are not able to
0963b4bd 10861 find the run-time symbols. That can mean that we are in
0259addd
JB
10862 configurable run time mode, or that a-except as been optimized
10863 out by the linker... In any case, at this point it is not worth
10864 supporting this feature. */
10865
7dda8cff 10866 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
10867}
10868
f7f9143b
JB
10869/* True iff FRAME is very likely to be that of a function that is
10870 part of the runtime system. This is all very heuristic, but is
10871 intended to be used as advice as to what frames are uninteresting
10872 to most users. */
10873
10874static int
10875is_known_support_routine (struct frame_info *frame)
10876{
4ed6b5be 10877 struct symtab_and_line sal;
0d5cff50 10878 const char *func_name;
692465f1 10879 enum language func_lang;
f7f9143b 10880 int i;
f7f9143b 10881
4ed6b5be
JB
10882 /* If this code does not have any debugging information (no symtab),
10883 This cannot be any user code. */
f7f9143b 10884
4ed6b5be 10885 find_frame_sal (frame, &sal);
f7f9143b
JB
10886 if (sal.symtab == NULL)
10887 return 1;
10888
4ed6b5be
JB
10889 /* If there is a symtab, but the associated source file cannot be
10890 located, then assume this is not user code: Selecting a frame
10891 for which we cannot display the code would not be very helpful
10892 for the user. This should also take care of case such as VxWorks
10893 where the kernel has some debugging info provided for a few units. */
f7f9143b 10894
9bbc9174 10895 if (symtab_to_fullname (sal.symtab) == NULL)
f7f9143b
JB
10896 return 1;
10897
4ed6b5be
JB
10898 /* Check the unit filename againt the Ada runtime file naming.
10899 We also check the name of the objfile against the name of some
10900 known system libraries that sometimes come with debugging info
10901 too. */
10902
f7f9143b
JB
10903 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10904 {
10905 re_comp (known_runtime_file_name_patterns[i]);
10906 if (re_exec (sal.symtab->filename))
10907 return 1;
4ed6b5be
JB
10908 if (sal.symtab->objfile != NULL
10909 && re_exec (sal.symtab->objfile->name))
10910 return 1;
f7f9143b
JB
10911 }
10912
4ed6b5be 10913 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 10914
e9e07ba6 10915 find_frame_funname (frame, &func_name, &func_lang, NULL);
f7f9143b
JB
10916 if (func_name == NULL)
10917 return 1;
10918
10919 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10920 {
10921 re_comp (known_auxiliary_function_name_patterns[i]);
10922 if (re_exec (func_name))
10923 return 1;
10924 }
10925
10926 return 0;
10927}
10928
10929/* Find the first frame that contains debugging information and that is not
10930 part of the Ada run-time, starting from FI and moving upward. */
10931
0ef643c8 10932void
f7f9143b
JB
10933ada_find_printable_frame (struct frame_info *fi)
10934{
10935 for (; fi != NULL; fi = get_prev_frame (fi))
10936 {
10937 if (!is_known_support_routine (fi))
10938 {
10939 select_frame (fi);
10940 break;
10941 }
10942 }
10943
10944}
10945
10946/* Assuming that the inferior just triggered an unhandled exception
10947 catchpoint, return the address in inferior memory where the name
10948 of the exception is stored.
10949
10950 Return zero if the address could not be computed. */
10951
10952static CORE_ADDR
10953ada_unhandled_exception_name_addr (void)
0259addd
JB
10954{
10955 return parse_and_eval_address ("e.full_name");
10956}
10957
10958/* Same as ada_unhandled_exception_name_addr, except that this function
10959 should be used when the inferior uses an older version of the runtime,
10960 where the exception name needs to be extracted from a specific frame
10961 several frames up in the callstack. */
10962
10963static CORE_ADDR
10964ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
10965{
10966 int frame_level;
10967 struct frame_info *fi;
3eecfa55 10968 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
10969
10970 /* To determine the name of this exception, we need to select
10971 the frame corresponding to RAISE_SYM_NAME. This frame is
10972 at least 3 levels up, so we simply skip the first 3 frames
10973 without checking the name of their associated function. */
10974 fi = get_current_frame ();
10975 for (frame_level = 0; frame_level < 3; frame_level += 1)
10976 if (fi != NULL)
10977 fi = get_prev_frame (fi);
10978
10979 while (fi != NULL)
10980 {
0d5cff50 10981 const char *func_name;
692465f1
JB
10982 enum language func_lang;
10983
e9e07ba6 10984 find_frame_funname (fi, &func_name, &func_lang, NULL);
f7f9143b 10985 if (func_name != NULL
3eecfa55 10986 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
f7f9143b
JB
10987 break; /* We found the frame we were looking for... */
10988 fi = get_prev_frame (fi);
10989 }
10990
10991 if (fi == NULL)
10992 return 0;
10993
10994 select_frame (fi);
10995 return parse_and_eval_address ("id.full_name");
10996}
10997
10998/* Assuming the inferior just triggered an Ada exception catchpoint
10999 (of any type), return the address in inferior memory where the name
11000 of the exception is stored, if applicable.
11001
11002 Return zero if the address could not be computed, or if not relevant. */
11003
11004static CORE_ADDR
11005ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11006 struct breakpoint *b)
11007{
3eecfa55
JB
11008 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11009
f7f9143b
JB
11010 switch (ex)
11011 {
11012 case ex_catch_exception:
11013 return (parse_and_eval_address ("e.full_name"));
11014 break;
11015
11016 case ex_catch_exception_unhandled:
3eecfa55 11017 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b
JB
11018 break;
11019
11020 case ex_catch_assert:
11021 return 0; /* Exception name is not relevant in this case. */
11022 break;
11023
11024 default:
11025 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11026 break;
11027 }
11028
11029 return 0; /* Should never be reached. */
11030}
11031
11032/* Same as ada_exception_name_addr_1, except that it intercepts and contains
11033 any error that ada_exception_name_addr_1 might cause to be thrown.
11034 When an error is intercepted, a warning with the error message is printed,
11035 and zero is returned. */
11036
11037static CORE_ADDR
11038ada_exception_name_addr (enum exception_catchpoint_kind ex,
11039 struct breakpoint *b)
11040{
bfd189b1 11041 volatile struct gdb_exception e;
f7f9143b
JB
11042 CORE_ADDR result = 0;
11043
11044 TRY_CATCH (e, RETURN_MASK_ERROR)
11045 {
11046 result = ada_exception_name_addr_1 (ex, b);
11047 }
11048
11049 if (e.reason < 0)
11050 {
11051 warning (_("failed to get exception name: %s"), e.message);
11052 return 0;
11053 }
11054
11055 return result;
11056}
11057
28010a5d
PA
11058static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11059 char *, char **,
c0a91b2b 11060 const struct breakpoint_ops **);
28010a5d
PA
11061static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11062
11063/* Ada catchpoints.
11064
11065 In the case of catchpoints on Ada exceptions, the catchpoint will
11066 stop the target on every exception the program throws. When a user
11067 specifies the name of a specific exception, we translate this
11068 request into a condition expression (in text form), and then parse
11069 it into an expression stored in each of the catchpoint's locations.
11070 We then use this condition to check whether the exception that was
11071 raised is the one the user is interested in. If not, then the
11072 target is resumed again. We store the name of the requested
11073 exception, in order to be able to re-set the condition expression
11074 when symbols change. */
11075
11076/* An instance of this type is used to represent an Ada catchpoint
11077 breakpoint location. It includes a "struct bp_location" as a kind
11078 of base class; users downcast to "struct bp_location *" when
11079 needed. */
11080
11081struct ada_catchpoint_location
11082{
11083 /* The base class. */
11084 struct bp_location base;
11085
11086 /* The condition that checks whether the exception that was raised
11087 is the specific exception the user specified on catchpoint
11088 creation. */
11089 struct expression *excep_cond_expr;
11090};
11091
11092/* Implement the DTOR method in the bp_location_ops structure for all
11093 Ada exception catchpoint kinds. */
11094
11095static void
11096ada_catchpoint_location_dtor (struct bp_location *bl)
11097{
11098 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11099
11100 xfree (al->excep_cond_expr);
11101}
11102
11103/* The vtable to be used in Ada catchpoint locations. */
11104
11105static const struct bp_location_ops ada_catchpoint_location_ops =
11106{
11107 ada_catchpoint_location_dtor
11108};
11109
11110/* An instance of this type is used to represent an Ada catchpoint.
11111 It includes a "struct breakpoint" as a kind of base class; users
11112 downcast to "struct breakpoint *" when needed. */
11113
11114struct ada_catchpoint
11115{
11116 /* The base class. */
11117 struct breakpoint base;
11118
11119 /* The name of the specific exception the user specified. */
11120 char *excep_string;
11121};
11122
11123/* Parse the exception condition string in the context of each of the
11124 catchpoint's locations, and store them for later evaluation. */
11125
11126static void
11127create_excep_cond_exprs (struct ada_catchpoint *c)
11128{
11129 struct cleanup *old_chain;
11130 struct bp_location *bl;
11131 char *cond_string;
11132
11133 /* Nothing to do if there's no specific exception to catch. */
11134 if (c->excep_string == NULL)
11135 return;
11136
11137 /* Same if there are no locations... */
11138 if (c->base.loc == NULL)
11139 return;
11140
11141 /* Compute the condition expression in text form, from the specific
11142 expection we want to catch. */
11143 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11144 old_chain = make_cleanup (xfree, cond_string);
11145
11146 /* Iterate over all the catchpoint's locations, and parse an
11147 expression for each. */
11148 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11149 {
11150 struct ada_catchpoint_location *ada_loc
11151 = (struct ada_catchpoint_location *) bl;
11152 struct expression *exp = NULL;
11153
11154 if (!bl->shlib_disabled)
11155 {
11156 volatile struct gdb_exception e;
11157 char *s;
11158
11159 s = cond_string;
11160 TRY_CATCH (e, RETURN_MASK_ERROR)
11161 {
11162 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11163 }
11164 if (e.reason < 0)
11165 warning (_("failed to reevaluate internal exception condition "
11166 "for catchpoint %d: %s"),
11167 c->base.number, e.message);
11168 }
11169
11170 ada_loc->excep_cond_expr = exp;
11171 }
11172
11173 do_cleanups (old_chain);
11174}
11175
11176/* Implement the DTOR method in the breakpoint_ops structure for all
11177 exception catchpoint kinds. */
11178
11179static void
11180dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11181{
11182 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11183
11184 xfree (c->excep_string);
348d480f 11185
2060206e 11186 bkpt_breakpoint_ops.dtor (b);
28010a5d
PA
11187}
11188
11189/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11190 structure for all exception catchpoint kinds. */
11191
11192static struct bp_location *
11193allocate_location_exception (enum exception_catchpoint_kind ex,
11194 struct breakpoint *self)
11195{
11196 struct ada_catchpoint_location *loc;
11197
11198 loc = XNEW (struct ada_catchpoint_location);
11199 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11200 loc->excep_cond_expr = NULL;
11201 return &loc->base;
11202}
11203
11204/* Implement the RE_SET method in the breakpoint_ops structure for all
11205 exception catchpoint kinds. */
11206
11207static void
11208re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11209{
11210 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11211
11212 /* Call the base class's method. This updates the catchpoint's
11213 locations. */
2060206e 11214 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
11215
11216 /* Reparse the exception conditional expressions. One for each
11217 location. */
11218 create_excep_cond_exprs (c);
11219}
11220
11221/* Returns true if we should stop for this breakpoint hit. If the
11222 user specified a specific exception, we only want to cause a stop
11223 if the program thrown that exception. */
11224
11225static int
11226should_stop_exception (const struct bp_location *bl)
11227{
11228 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11229 const struct ada_catchpoint_location *ada_loc
11230 = (const struct ada_catchpoint_location *) bl;
11231 volatile struct gdb_exception ex;
11232 int stop;
11233
11234 /* With no specific exception, should always stop. */
11235 if (c->excep_string == NULL)
11236 return 1;
11237
11238 if (ada_loc->excep_cond_expr == NULL)
11239 {
11240 /* We will have a NULL expression if back when we were creating
11241 the expressions, this location's had failed to parse. */
11242 return 1;
11243 }
11244
11245 stop = 1;
11246 TRY_CATCH (ex, RETURN_MASK_ALL)
11247 {
11248 struct value *mark;
11249
11250 mark = value_mark ();
11251 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11252 value_free_to_mark (mark);
11253 }
11254 if (ex.reason < 0)
11255 exception_fprintf (gdb_stderr, ex,
11256 _("Error in testing exception condition:\n"));
11257 return stop;
11258}
11259
11260/* Implement the CHECK_STATUS method in the breakpoint_ops structure
11261 for all exception catchpoint kinds. */
11262
11263static void
11264check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11265{
11266 bs->stop = should_stop_exception (bs->bp_location_at);
11267}
11268
f7f9143b
JB
11269/* Implement the PRINT_IT method in the breakpoint_ops structure
11270 for all exception catchpoint kinds. */
11271
11272static enum print_stop_action
348d480f 11273print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
f7f9143b 11274{
79a45e25 11275 struct ui_out *uiout = current_uiout;
348d480f
PA
11276 struct breakpoint *b = bs->breakpoint_at;
11277
956a9fb9 11278 annotate_catchpoint (b->number);
f7f9143b 11279
956a9fb9 11280 if (ui_out_is_mi_like_p (uiout))
f7f9143b 11281 {
956a9fb9
JB
11282 ui_out_field_string (uiout, "reason",
11283 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11284 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
f7f9143b
JB
11285 }
11286
00eb2c4a
JB
11287 ui_out_text (uiout,
11288 b->disposition == disp_del ? "\nTemporary catchpoint "
11289 : "\nCatchpoint ");
956a9fb9
JB
11290 ui_out_field_int (uiout, "bkptno", b->number);
11291 ui_out_text (uiout, ", ");
f7f9143b 11292
f7f9143b
JB
11293 switch (ex)
11294 {
11295 case ex_catch_exception:
f7f9143b 11296 case ex_catch_exception_unhandled:
956a9fb9
JB
11297 {
11298 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11299 char exception_name[256];
11300
11301 if (addr != 0)
11302 {
11303 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11304 exception_name [sizeof (exception_name) - 1] = '\0';
11305 }
11306 else
11307 {
11308 /* For some reason, we were unable to read the exception
11309 name. This could happen if the Runtime was compiled
11310 without debugging info, for instance. In that case,
11311 just replace the exception name by the generic string
11312 "exception" - it will read as "an exception" in the
11313 notification we are about to print. */
967cff16 11314 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
11315 }
11316 /* In the case of unhandled exception breakpoints, we print
11317 the exception name as "unhandled EXCEPTION_NAME", to make
11318 it clearer to the user which kind of catchpoint just got
11319 hit. We used ui_out_text to make sure that this extra
11320 info does not pollute the exception name in the MI case. */
11321 if (ex == ex_catch_exception_unhandled)
11322 ui_out_text (uiout, "unhandled ");
11323 ui_out_field_string (uiout, "exception-name", exception_name);
11324 }
11325 break;
f7f9143b 11326 case ex_catch_assert:
956a9fb9
JB
11327 /* In this case, the name of the exception is not really
11328 important. Just print "failed assertion" to make it clearer
11329 that his program just hit an assertion-failure catchpoint.
11330 We used ui_out_text because this info does not belong in
11331 the MI output. */
11332 ui_out_text (uiout, "failed assertion");
11333 break;
f7f9143b 11334 }
956a9fb9
JB
11335 ui_out_text (uiout, " at ");
11336 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
11337
11338 return PRINT_SRC_AND_LOC;
11339}
11340
11341/* Implement the PRINT_ONE method in the breakpoint_ops structure
11342 for all exception catchpoint kinds. */
11343
11344static void
11345print_one_exception (enum exception_catchpoint_kind ex,
a6d9a66e 11346 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11347{
79a45e25 11348 struct ui_out *uiout = current_uiout;
28010a5d 11349 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
11350 struct value_print_options opts;
11351
11352 get_user_print_options (&opts);
11353 if (opts.addressprint)
f7f9143b
JB
11354 {
11355 annotate_field (4);
5af949e3 11356 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
11357 }
11358
11359 annotate_field (5);
a6d9a66e 11360 *last_loc = b->loc;
f7f9143b
JB
11361 switch (ex)
11362 {
11363 case ex_catch_exception:
28010a5d 11364 if (c->excep_string != NULL)
f7f9143b 11365 {
28010a5d
PA
11366 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11367
f7f9143b
JB
11368 ui_out_field_string (uiout, "what", msg);
11369 xfree (msg);
11370 }
11371 else
11372 ui_out_field_string (uiout, "what", "all Ada exceptions");
11373
11374 break;
11375
11376 case ex_catch_exception_unhandled:
11377 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11378 break;
11379
11380 case ex_catch_assert:
11381 ui_out_field_string (uiout, "what", "failed Ada assertions");
11382 break;
11383
11384 default:
11385 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11386 break;
11387 }
11388}
11389
11390/* Implement the PRINT_MENTION method in the breakpoint_ops structure
11391 for all exception catchpoint kinds. */
11392
11393static void
11394print_mention_exception (enum exception_catchpoint_kind ex,
11395 struct breakpoint *b)
11396{
28010a5d 11397 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 11398 struct ui_out *uiout = current_uiout;
28010a5d 11399
00eb2c4a
JB
11400 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11401 : _("Catchpoint "));
11402 ui_out_field_int (uiout, "bkptno", b->number);
11403 ui_out_text (uiout, ": ");
11404
f7f9143b
JB
11405 switch (ex)
11406 {
11407 case ex_catch_exception:
28010a5d 11408 if (c->excep_string != NULL)
00eb2c4a
JB
11409 {
11410 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11411 struct cleanup *old_chain = make_cleanup (xfree, info);
11412
11413 ui_out_text (uiout, info);
11414 do_cleanups (old_chain);
11415 }
f7f9143b 11416 else
00eb2c4a 11417 ui_out_text (uiout, _("all Ada exceptions"));
f7f9143b
JB
11418 break;
11419
11420 case ex_catch_exception_unhandled:
00eb2c4a 11421 ui_out_text (uiout, _("unhandled Ada exceptions"));
f7f9143b
JB
11422 break;
11423
11424 case ex_catch_assert:
00eb2c4a 11425 ui_out_text (uiout, _("failed Ada assertions"));
f7f9143b
JB
11426 break;
11427
11428 default:
11429 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11430 break;
11431 }
11432}
11433
6149aea9
PA
11434/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11435 for all exception catchpoint kinds. */
11436
11437static void
11438print_recreate_exception (enum exception_catchpoint_kind ex,
11439 struct breakpoint *b, struct ui_file *fp)
11440{
28010a5d
PA
11441 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11442
6149aea9
PA
11443 switch (ex)
11444 {
11445 case ex_catch_exception:
11446 fprintf_filtered (fp, "catch exception");
28010a5d
PA
11447 if (c->excep_string != NULL)
11448 fprintf_filtered (fp, " %s", c->excep_string);
6149aea9
PA
11449 break;
11450
11451 case ex_catch_exception_unhandled:
78076abc 11452 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
11453 break;
11454
11455 case ex_catch_assert:
11456 fprintf_filtered (fp, "catch assert");
11457 break;
11458
11459 default:
11460 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11461 }
d9b3f62e 11462 print_recreate_thread (b, fp);
6149aea9
PA
11463}
11464
f7f9143b
JB
11465/* Virtual table for "catch exception" breakpoints. */
11466
28010a5d
PA
11467static void
11468dtor_catch_exception (struct breakpoint *b)
11469{
11470 dtor_exception (ex_catch_exception, b);
11471}
11472
11473static struct bp_location *
11474allocate_location_catch_exception (struct breakpoint *self)
11475{
11476 return allocate_location_exception (ex_catch_exception, self);
11477}
11478
11479static void
11480re_set_catch_exception (struct breakpoint *b)
11481{
11482 re_set_exception (ex_catch_exception, b);
11483}
11484
11485static void
11486check_status_catch_exception (bpstat bs)
11487{
11488 check_status_exception (ex_catch_exception, bs);
11489}
11490
f7f9143b 11491static enum print_stop_action
348d480f 11492print_it_catch_exception (bpstat bs)
f7f9143b 11493{
348d480f 11494 return print_it_exception (ex_catch_exception, bs);
f7f9143b
JB
11495}
11496
11497static void
a6d9a66e 11498print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11499{
a6d9a66e 11500 print_one_exception (ex_catch_exception, b, last_loc);
f7f9143b
JB
11501}
11502
11503static void
11504print_mention_catch_exception (struct breakpoint *b)
11505{
11506 print_mention_exception (ex_catch_exception, b);
11507}
11508
6149aea9
PA
11509static void
11510print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11511{
11512 print_recreate_exception (ex_catch_exception, b, fp);
11513}
11514
2060206e 11515static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
11516
11517/* Virtual table for "catch exception unhandled" breakpoints. */
11518
28010a5d
PA
11519static void
11520dtor_catch_exception_unhandled (struct breakpoint *b)
11521{
11522 dtor_exception (ex_catch_exception_unhandled, b);
11523}
11524
11525static struct bp_location *
11526allocate_location_catch_exception_unhandled (struct breakpoint *self)
11527{
11528 return allocate_location_exception (ex_catch_exception_unhandled, self);
11529}
11530
11531static void
11532re_set_catch_exception_unhandled (struct breakpoint *b)
11533{
11534 re_set_exception (ex_catch_exception_unhandled, b);
11535}
11536
11537static void
11538check_status_catch_exception_unhandled (bpstat bs)
11539{
11540 check_status_exception (ex_catch_exception_unhandled, bs);
11541}
11542
f7f9143b 11543static enum print_stop_action
348d480f 11544print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 11545{
348d480f 11546 return print_it_exception (ex_catch_exception_unhandled, bs);
f7f9143b
JB
11547}
11548
11549static void
a6d9a66e
UW
11550print_one_catch_exception_unhandled (struct breakpoint *b,
11551 struct bp_location **last_loc)
f7f9143b 11552{
a6d9a66e 11553 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
11554}
11555
11556static void
11557print_mention_catch_exception_unhandled (struct breakpoint *b)
11558{
11559 print_mention_exception (ex_catch_exception_unhandled, b);
11560}
11561
6149aea9
PA
11562static void
11563print_recreate_catch_exception_unhandled (struct breakpoint *b,
11564 struct ui_file *fp)
11565{
11566 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11567}
11568
2060206e 11569static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
11570
11571/* Virtual table for "catch assert" breakpoints. */
11572
28010a5d
PA
11573static void
11574dtor_catch_assert (struct breakpoint *b)
11575{
11576 dtor_exception (ex_catch_assert, b);
11577}
11578
11579static struct bp_location *
11580allocate_location_catch_assert (struct breakpoint *self)
11581{
11582 return allocate_location_exception (ex_catch_assert, self);
11583}
11584
11585static void
11586re_set_catch_assert (struct breakpoint *b)
11587{
11588 return re_set_exception (ex_catch_assert, b);
11589}
11590
11591static void
11592check_status_catch_assert (bpstat bs)
11593{
11594 check_status_exception (ex_catch_assert, bs);
11595}
11596
f7f9143b 11597static enum print_stop_action
348d480f 11598print_it_catch_assert (bpstat bs)
f7f9143b 11599{
348d480f 11600 return print_it_exception (ex_catch_assert, bs);
f7f9143b
JB
11601}
11602
11603static void
a6d9a66e 11604print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 11605{
a6d9a66e 11606 print_one_exception (ex_catch_assert, b, last_loc);
f7f9143b
JB
11607}
11608
11609static void
11610print_mention_catch_assert (struct breakpoint *b)
11611{
11612 print_mention_exception (ex_catch_assert, b);
11613}
11614
6149aea9
PA
11615static void
11616print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11617{
11618 print_recreate_exception (ex_catch_assert, b, fp);
11619}
11620
2060206e 11621static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 11622
f7f9143b
JB
11623/* Return a newly allocated copy of the first space-separated token
11624 in ARGSP, and then adjust ARGSP to point immediately after that
11625 token.
11626
11627 Return NULL if ARGPS does not contain any more tokens. */
11628
11629static char *
11630ada_get_next_arg (char **argsp)
11631{
11632 char *args = *argsp;
11633 char *end;
11634 char *result;
11635
0fcd72ba 11636 args = skip_spaces (args);
f7f9143b
JB
11637 if (args[0] == '\0')
11638 return NULL; /* No more arguments. */
11639
11640 /* Find the end of the current argument. */
11641
0fcd72ba 11642 end = skip_to_space (args);
f7f9143b
JB
11643
11644 /* Adjust ARGSP to point to the start of the next argument. */
11645
11646 *argsp = end;
11647
11648 /* Make a copy of the current argument and return it. */
11649
11650 result = xmalloc (end - args + 1);
11651 strncpy (result, args, end - args);
11652 result[end - args] = '\0';
11653
11654 return result;
11655}
11656
11657/* Split the arguments specified in a "catch exception" command.
11658 Set EX to the appropriate catchpoint type.
28010a5d 11659 Set EXCEP_STRING to the name of the specific exception if
5845583d
JB
11660 specified by the user.
11661 If a condition is found at the end of the arguments, the condition
11662 expression is stored in COND_STRING (memory must be deallocated
11663 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
11664
11665static void
11666catch_ada_exception_command_split (char *args,
11667 enum exception_catchpoint_kind *ex,
5845583d
JB
11668 char **excep_string,
11669 char **cond_string)
f7f9143b
JB
11670{
11671 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11672 char *exception_name;
5845583d 11673 char *cond = NULL;
f7f9143b
JB
11674
11675 exception_name = ada_get_next_arg (&args);
5845583d
JB
11676 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11677 {
11678 /* This is not an exception name; this is the start of a condition
11679 expression for a catchpoint on all exceptions. So, "un-get"
11680 this token, and set exception_name to NULL. */
11681 xfree (exception_name);
11682 exception_name = NULL;
11683 args -= 2;
11684 }
f7f9143b
JB
11685 make_cleanup (xfree, exception_name);
11686
5845583d 11687 /* Check to see if we have a condition. */
f7f9143b 11688
0fcd72ba 11689 args = skip_spaces (args);
5845583d
JB
11690 if (strncmp (args, "if", 2) == 0
11691 && (isspace (args[2]) || args[2] == '\0'))
11692 {
11693 args += 2;
11694 args = skip_spaces (args);
11695
11696 if (args[0] == '\0')
11697 error (_("Condition missing after `if' keyword"));
11698 cond = xstrdup (args);
11699 make_cleanup (xfree, cond);
11700
11701 args += strlen (args);
11702 }
11703
11704 /* Check that we do not have any more arguments. Anything else
11705 is unexpected. */
f7f9143b
JB
11706
11707 if (args[0] != '\0')
11708 error (_("Junk at end of expression"));
11709
11710 discard_cleanups (old_chain);
11711
11712 if (exception_name == NULL)
11713 {
11714 /* Catch all exceptions. */
11715 *ex = ex_catch_exception;
28010a5d 11716 *excep_string = NULL;
f7f9143b
JB
11717 }
11718 else if (strcmp (exception_name, "unhandled") == 0)
11719 {
11720 /* Catch unhandled exceptions. */
11721 *ex = ex_catch_exception_unhandled;
28010a5d 11722 *excep_string = NULL;
f7f9143b
JB
11723 }
11724 else
11725 {
11726 /* Catch a specific exception. */
11727 *ex = ex_catch_exception;
28010a5d 11728 *excep_string = exception_name;
f7f9143b 11729 }
5845583d 11730 *cond_string = cond;
f7f9143b
JB
11731}
11732
11733/* Return the name of the symbol on which we should break in order to
11734 implement a catchpoint of the EX kind. */
11735
11736static const char *
11737ada_exception_sym_name (enum exception_catchpoint_kind ex)
11738{
3eecfa55
JB
11739 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11740
11741 gdb_assert (data->exception_info != NULL);
0259addd 11742
f7f9143b
JB
11743 switch (ex)
11744 {
11745 case ex_catch_exception:
3eecfa55 11746 return (data->exception_info->catch_exception_sym);
f7f9143b
JB
11747 break;
11748 case ex_catch_exception_unhandled:
3eecfa55 11749 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b
JB
11750 break;
11751 case ex_catch_assert:
3eecfa55 11752 return (data->exception_info->catch_assert_sym);
f7f9143b
JB
11753 break;
11754 default:
11755 internal_error (__FILE__, __LINE__,
11756 _("unexpected catchpoint kind (%d)"), ex);
11757 }
11758}
11759
11760/* Return the breakpoint ops "virtual table" used for catchpoints
11761 of the EX kind. */
11762
c0a91b2b 11763static const struct breakpoint_ops *
4b9eee8c 11764ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
f7f9143b
JB
11765{
11766 switch (ex)
11767 {
11768 case ex_catch_exception:
11769 return (&catch_exception_breakpoint_ops);
11770 break;
11771 case ex_catch_exception_unhandled:
11772 return (&catch_exception_unhandled_breakpoint_ops);
11773 break;
11774 case ex_catch_assert:
11775 return (&catch_assert_breakpoint_ops);
11776 break;
11777 default:
11778 internal_error (__FILE__, __LINE__,
11779 _("unexpected catchpoint kind (%d)"), ex);
11780 }
11781}
11782
11783/* Return the condition that will be used to match the current exception
11784 being raised with the exception that the user wants to catch. This
11785 assumes that this condition is used when the inferior just triggered
11786 an exception catchpoint.
11787
11788 The string returned is a newly allocated string that needs to be
11789 deallocated later. */
11790
11791static char *
28010a5d 11792ada_exception_catchpoint_cond_string (const char *excep_string)
f7f9143b 11793{
3d0b0fa3
JB
11794 int i;
11795
0963b4bd 11796 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 11797 runtime units that have been compiled without debugging info; if
28010a5d 11798 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
11799 exception (e.g. "constraint_error") then, during the evaluation
11800 of the condition expression, the symbol lookup on this name would
0963b4bd 11801 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
11802 may then be set only on user-defined exceptions which have the
11803 same not-fully-qualified name (e.g. my_package.constraint_error).
11804
11805 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 11806 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
11807 exception constraint_error" is rewritten into "catch exception
11808 standard.constraint_error".
11809
11810 If an exception named contraint_error is defined in another package of
11811 the inferior program, then the only way to specify this exception as a
11812 breakpoint condition is to use its fully-qualified named:
11813 e.g. my_package.constraint_error. */
11814
11815 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11816 {
28010a5d 11817 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3
JB
11818 {
11819 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
28010a5d 11820 excep_string);
3d0b0fa3
JB
11821 }
11822 }
28010a5d 11823 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
f7f9143b
JB
11824}
11825
11826/* Return the symtab_and_line that should be used to insert an exception
11827 catchpoint of the TYPE kind.
11828
28010a5d
PA
11829 EXCEP_STRING should contain the name of a specific exception that
11830 the catchpoint should catch, or NULL otherwise.
f7f9143b 11831
28010a5d
PA
11832 ADDR_STRING returns the name of the function where the real
11833 breakpoint that implements the catchpoints is set, depending on the
11834 type of catchpoint we need to create. */
f7f9143b
JB
11835
11836static struct symtab_and_line
28010a5d 11837ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
c0a91b2b 11838 char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
11839{
11840 const char *sym_name;
11841 struct symbol *sym;
f7f9143b 11842
0259addd
JB
11843 /* First, find out which exception support info to use. */
11844 ada_exception_support_info_sniffer ();
11845
11846 /* Then lookup the function on which we will break in order to catch
f7f9143b 11847 the Ada exceptions requested by the user. */
f7f9143b
JB
11848 sym_name = ada_exception_sym_name (ex);
11849 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11850
f17011e0
JB
11851 /* We can assume that SYM is not NULL at this stage. If the symbol
11852 did not exist, ada_exception_support_info_sniffer would have
11853 raised an exception.
f7f9143b 11854
f17011e0
JB
11855 Also, ada_exception_support_info_sniffer should have already
11856 verified that SYM is a function symbol. */
11857 gdb_assert (sym != NULL);
11858 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
11859
11860 /* Set ADDR_STRING. */
f7f9143b
JB
11861 *addr_string = xstrdup (sym_name);
11862
f7f9143b 11863 /* Set OPS. */
4b9eee8c 11864 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 11865
f17011e0 11866 return find_function_start_sal (sym, 1);
f7f9143b
JB
11867}
11868
11869/* Parse the arguments (ARGS) of the "catch exception" command.
11870
f7f9143b
JB
11871 If the user asked the catchpoint to catch only a specific
11872 exception, then save the exception name in ADDR_STRING.
11873
5845583d
JB
11874 If the user provided a condition, then set COND_STRING to
11875 that condition expression (the memory must be deallocated
11876 after use). Otherwise, set COND_STRING to NULL.
11877
f7f9143b
JB
11878 See ada_exception_sal for a description of all the remaining
11879 function arguments of this function. */
11880
9ac4176b 11881static struct symtab_and_line
f7f9143b 11882ada_decode_exception_location (char *args, char **addr_string,
28010a5d 11883 char **excep_string,
5845583d 11884 char **cond_string,
c0a91b2b 11885 const struct breakpoint_ops **ops)
f7f9143b
JB
11886{
11887 enum exception_catchpoint_kind ex;
11888
5845583d 11889 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
28010a5d
PA
11890 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11891}
11892
11893/* Create an Ada exception catchpoint. */
11894
11895static void
11896create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11897 struct symtab_and_line sal,
11898 char *addr_string,
11899 char *excep_string,
5845583d 11900 char *cond_string,
c0a91b2b 11901 const struct breakpoint_ops *ops,
28010a5d
PA
11902 int tempflag,
11903 int from_tty)
11904{
11905 struct ada_catchpoint *c;
11906
11907 c = XNEW (struct ada_catchpoint);
11908 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11909 ops, tempflag, from_tty);
11910 c->excep_string = excep_string;
11911 create_excep_cond_exprs (c);
5845583d
JB
11912 if (cond_string != NULL)
11913 set_breakpoint_condition (&c->base, cond_string, from_tty);
3ea46bff 11914 install_breakpoint (0, &c->base, 1);
f7f9143b
JB
11915}
11916
9ac4176b
PA
11917/* Implement the "catch exception" command. */
11918
11919static void
11920catch_ada_exception_command (char *arg, int from_tty,
11921 struct cmd_list_element *command)
11922{
11923 struct gdbarch *gdbarch = get_current_arch ();
11924 int tempflag;
11925 struct symtab_and_line sal;
11926 char *addr_string = NULL;
28010a5d 11927 char *excep_string = NULL;
5845583d 11928 char *cond_string = NULL;
c0a91b2b 11929 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11930
11931 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11932
11933 if (!arg)
11934 arg = "";
5845583d
JB
11935 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11936 &cond_string, &ops);
28010a5d 11937 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11938 excep_string, cond_string, ops,
11939 tempflag, from_tty);
9ac4176b
PA
11940}
11941
5845583d
JB
11942/* Assuming that ARGS contains the arguments of a "catch assert"
11943 command, parse those arguments and return a symtab_and_line object
11944 for a failed assertion catchpoint.
11945
11946 Set ADDR_STRING to the name of the function where the real
11947 breakpoint that implements the catchpoint is set.
11948
11949 If ARGS contains a condition, set COND_STRING to that condition
11950 (the memory needs to be deallocated after use). Otherwise, set
11951 COND_STRING to NULL. */
11952
9ac4176b 11953static struct symtab_and_line
f7f9143b 11954ada_decode_assert_location (char *args, char **addr_string,
5845583d 11955 char **cond_string,
c0a91b2b 11956 const struct breakpoint_ops **ops)
f7f9143b 11957{
5845583d 11958 args = skip_spaces (args);
f7f9143b 11959
5845583d
JB
11960 /* Check whether a condition was provided. */
11961 if (strncmp (args, "if", 2) == 0
11962 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 11963 {
5845583d 11964 args += 2;
0fcd72ba 11965 args = skip_spaces (args);
5845583d
JB
11966 if (args[0] == '\0')
11967 error (_("condition missing after `if' keyword"));
11968 *cond_string = xstrdup (args);
f7f9143b
JB
11969 }
11970
5845583d
JB
11971 /* Otherwise, there should be no other argument at the end of
11972 the command. */
11973 else if (args[0] != '\0')
11974 error (_("Junk at end of arguments."));
11975
28010a5d 11976 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
f7f9143b
JB
11977}
11978
9ac4176b
PA
11979/* Implement the "catch assert" command. */
11980
11981static void
11982catch_assert_command (char *arg, int from_tty,
11983 struct cmd_list_element *command)
11984{
11985 struct gdbarch *gdbarch = get_current_arch ();
11986 int tempflag;
11987 struct symtab_and_line sal;
11988 char *addr_string = NULL;
5845583d 11989 char *cond_string = NULL;
c0a91b2b 11990 const struct breakpoint_ops *ops = NULL;
9ac4176b
PA
11991
11992 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11993
11994 if (!arg)
11995 arg = "";
5845583d 11996 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
28010a5d 11997 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
5845583d
JB
11998 NULL, cond_string, ops, tempflag,
11999 from_tty);
9ac4176b 12000}
4c4b4cd2
PH
12001 /* Operators */
12002/* Information about operators given special treatment in functions
12003 below. */
12004/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12005
12006#define ADA_OPERATORS \
12007 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12008 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12009 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12010 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12011 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12012 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12013 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12014 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12015 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12016 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12017 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12018 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12019 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12020 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12021 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
12022 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12023 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12024 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12025 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
12026
12027static void
554794dc
SDJ
12028ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12029 int *argsp)
4c4b4cd2
PH
12030{
12031 switch (exp->elts[pc - 1].opcode)
12032 {
76a01679 12033 default:
4c4b4cd2
PH
12034 operator_length_standard (exp, pc, oplenp, argsp);
12035 break;
12036
12037#define OP_DEFN(op, len, args, binop) \
12038 case op: *oplenp = len; *argsp = args; break;
12039 ADA_OPERATORS;
12040#undef OP_DEFN
52ce6436
PH
12041
12042 case OP_AGGREGATE:
12043 *oplenp = 3;
12044 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12045 break;
12046
12047 case OP_CHOICES:
12048 *oplenp = 3;
12049 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12050 break;
4c4b4cd2
PH
12051 }
12052}
12053
c0201579
JK
12054/* Implementation of the exp_descriptor method operator_check. */
12055
12056static int
12057ada_operator_check (struct expression *exp, int pos,
12058 int (*objfile_func) (struct objfile *objfile, void *data),
12059 void *data)
12060{
12061 const union exp_element *const elts = exp->elts;
12062 struct type *type = NULL;
12063
12064 switch (elts[pos].opcode)
12065 {
12066 case UNOP_IN_RANGE:
12067 case UNOP_QUAL:
12068 type = elts[pos + 1].type;
12069 break;
12070
12071 default:
12072 return operator_check_standard (exp, pos, objfile_func, data);
12073 }
12074
12075 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12076
12077 if (type && TYPE_OBJFILE (type)
12078 && (*objfile_func) (TYPE_OBJFILE (type), data))
12079 return 1;
12080
12081 return 0;
12082}
12083
4c4b4cd2
PH
12084static char *
12085ada_op_name (enum exp_opcode opcode)
12086{
12087 switch (opcode)
12088 {
76a01679 12089 default:
4c4b4cd2 12090 return op_name_standard (opcode);
52ce6436 12091
4c4b4cd2
PH
12092#define OP_DEFN(op, len, args, binop) case op: return #op;
12093 ADA_OPERATORS;
12094#undef OP_DEFN
52ce6436
PH
12095
12096 case OP_AGGREGATE:
12097 return "OP_AGGREGATE";
12098 case OP_CHOICES:
12099 return "OP_CHOICES";
12100 case OP_NAME:
12101 return "OP_NAME";
4c4b4cd2
PH
12102 }
12103}
12104
12105/* As for operator_length, but assumes PC is pointing at the first
12106 element of the operator, and gives meaningful results only for the
52ce6436 12107 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
12108
12109static void
76a01679
JB
12110ada_forward_operator_length (struct expression *exp, int pc,
12111 int *oplenp, int *argsp)
4c4b4cd2 12112{
76a01679 12113 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
12114 {
12115 default:
12116 *oplenp = *argsp = 0;
12117 break;
52ce6436 12118
4c4b4cd2
PH
12119#define OP_DEFN(op, len, args, binop) \
12120 case op: *oplenp = len; *argsp = args; break;
12121 ADA_OPERATORS;
12122#undef OP_DEFN
52ce6436
PH
12123
12124 case OP_AGGREGATE:
12125 *oplenp = 3;
12126 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12127 break;
12128
12129 case OP_CHOICES:
12130 *oplenp = 3;
12131 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12132 break;
12133
12134 case OP_STRING:
12135 case OP_NAME:
12136 {
12137 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 12138
52ce6436
PH
12139 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12140 *argsp = 0;
12141 break;
12142 }
4c4b4cd2
PH
12143 }
12144}
12145
12146static int
12147ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12148{
12149 enum exp_opcode op = exp->elts[elt].opcode;
12150 int oplen, nargs;
12151 int pc = elt;
12152 int i;
76a01679 12153
4c4b4cd2
PH
12154 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12155
76a01679 12156 switch (op)
4c4b4cd2 12157 {
76a01679 12158 /* Ada attributes ('Foo). */
4c4b4cd2
PH
12159 case OP_ATR_FIRST:
12160 case OP_ATR_LAST:
12161 case OP_ATR_LENGTH:
12162 case OP_ATR_IMAGE:
12163 case OP_ATR_MAX:
12164 case OP_ATR_MIN:
12165 case OP_ATR_MODULUS:
12166 case OP_ATR_POS:
12167 case OP_ATR_SIZE:
12168 case OP_ATR_TAG:
12169 case OP_ATR_VAL:
12170 break;
12171
12172 case UNOP_IN_RANGE:
12173 case UNOP_QUAL:
323e0a4a
AC
12174 /* XXX: gdb_sprint_host_address, type_sprint */
12175 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
12176 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12177 fprintf_filtered (stream, " (");
12178 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12179 fprintf_filtered (stream, ")");
12180 break;
12181 case BINOP_IN_BOUNDS:
52ce6436
PH
12182 fprintf_filtered (stream, " (%d)",
12183 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
12184 break;
12185 case TERNOP_IN_RANGE:
12186 break;
12187
52ce6436
PH
12188 case OP_AGGREGATE:
12189 case OP_OTHERS:
12190 case OP_DISCRETE_RANGE:
12191 case OP_POSITIONAL:
12192 case OP_CHOICES:
12193 break;
12194
12195 case OP_NAME:
12196 case OP_STRING:
12197 {
12198 char *name = &exp->elts[elt + 2].string;
12199 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 12200
52ce6436
PH
12201 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12202 break;
12203 }
12204
4c4b4cd2
PH
12205 default:
12206 return dump_subexp_body_standard (exp, stream, elt);
12207 }
12208
12209 elt += oplen;
12210 for (i = 0; i < nargs; i += 1)
12211 elt = dump_subexp (exp, stream, elt);
12212
12213 return elt;
12214}
12215
12216/* The Ada extension of print_subexp (q.v.). */
12217
76a01679
JB
12218static void
12219ada_print_subexp (struct expression *exp, int *pos,
12220 struct ui_file *stream, enum precedence prec)
4c4b4cd2 12221{
52ce6436 12222 int oplen, nargs, i;
4c4b4cd2
PH
12223 int pc = *pos;
12224 enum exp_opcode op = exp->elts[pc].opcode;
12225
12226 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12227
52ce6436 12228 *pos += oplen;
4c4b4cd2
PH
12229 switch (op)
12230 {
12231 default:
52ce6436 12232 *pos -= oplen;
4c4b4cd2
PH
12233 print_subexp_standard (exp, pos, stream, prec);
12234 return;
12235
12236 case OP_VAR_VALUE:
4c4b4cd2
PH
12237 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12238 return;
12239
12240 case BINOP_IN_BOUNDS:
323e0a4a 12241 /* XXX: sprint_subexp */
4c4b4cd2 12242 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12243 fputs_filtered (" in ", stream);
4c4b4cd2 12244 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12245 fputs_filtered ("'range", stream);
4c4b4cd2 12246 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
12247 fprintf_filtered (stream, "(%ld)",
12248 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
12249 return;
12250
12251 case TERNOP_IN_RANGE:
4c4b4cd2 12252 if (prec >= PREC_EQUAL)
76a01679 12253 fputs_filtered ("(", stream);
323e0a4a 12254 /* XXX: sprint_subexp */
4c4b4cd2 12255 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12256 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12257 print_subexp (exp, pos, stream, PREC_EQUAL);
12258 fputs_filtered (" .. ", stream);
12259 print_subexp (exp, pos, stream, PREC_EQUAL);
12260 if (prec >= PREC_EQUAL)
76a01679
JB
12261 fputs_filtered (")", stream);
12262 return;
4c4b4cd2
PH
12263
12264 case OP_ATR_FIRST:
12265 case OP_ATR_LAST:
12266 case OP_ATR_LENGTH:
12267 case OP_ATR_IMAGE:
12268 case OP_ATR_MAX:
12269 case OP_ATR_MIN:
12270 case OP_ATR_MODULUS:
12271 case OP_ATR_POS:
12272 case OP_ATR_SIZE:
12273 case OP_ATR_TAG:
12274 case OP_ATR_VAL:
4c4b4cd2 12275 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
12276 {
12277 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12278 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12279 *pos += 3;
12280 }
4c4b4cd2 12281 else
76a01679 12282 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
12283 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12284 if (nargs > 1)
76a01679
JB
12285 {
12286 int tem;
5b4ee69b 12287
76a01679
JB
12288 for (tem = 1; tem < nargs; tem += 1)
12289 {
12290 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12291 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12292 }
12293 fputs_filtered (")", stream);
12294 }
4c4b4cd2 12295 return;
14f9c5c9 12296
4c4b4cd2 12297 case UNOP_QUAL:
4c4b4cd2
PH
12298 type_print (exp->elts[pc + 1].type, "", stream, 0);
12299 fputs_filtered ("'(", stream);
12300 print_subexp (exp, pos, stream, PREC_PREFIX);
12301 fputs_filtered (")", stream);
12302 return;
14f9c5c9 12303
4c4b4cd2 12304 case UNOP_IN_RANGE:
323e0a4a 12305 /* XXX: sprint_subexp */
4c4b4cd2 12306 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 12307 fputs_filtered (" in ", stream);
4c4b4cd2
PH
12308 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12309 return;
52ce6436
PH
12310
12311 case OP_DISCRETE_RANGE:
12312 print_subexp (exp, pos, stream, PREC_SUFFIX);
12313 fputs_filtered ("..", stream);
12314 print_subexp (exp, pos, stream, PREC_SUFFIX);
12315 return;
12316
12317 case OP_OTHERS:
12318 fputs_filtered ("others => ", stream);
12319 print_subexp (exp, pos, stream, PREC_SUFFIX);
12320 return;
12321
12322 case OP_CHOICES:
12323 for (i = 0; i < nargs-1; i += 1)
12324 {
12325 if (i > 0)
12326 fputs_filtered ("|", stream);
12327 print_subexp (exp, pos, stream, PREC_SUFFIX);
12328 }
12329 fputs_filtered (" => ", stream);
12330 print_subexp (exp, pos, stream, PREC_SUFFIX);
12331 return;
12332
12333 case OP_POSITIONAL:
12334 print_subexp (exp, pos, stream, PREC_SUFFIX);
12335 return;
12336
12337 case OP_AGGREGATE:
12338 fputs_filtered ("(", stream);
12339 for (i = 0; i < nargs; i += 1)
12340 {
12341 if (i > 0)
12342 fputs_filtered (", ", stream);
12343 print_subexp (exp, pos, stream, PREC_SUFFIX);
12344 }
12345 fputs_filtered (")", stream);
12346 return;
4c4b4cd2
PH
12347 }
12348}
14f9c5c9
AS
12349
12350/* Table mapping opcodes into strings for printing operators
12351 and precedences of the operators. */
12352
d2e4a39e
AS
12353static const struct op_print ada_op_print_tab[] = {
12354 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12355 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12356 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12357 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12358 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12359 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12360 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12361 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12362 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12363 {">=", BINOP_GEQ, PREC_ORDER, 0},
12364 {">", BINOP_GTR, PREC_ORDER, 0},
12365 {"<", BINOP_LESS, PREC_ORDER, 0},
12366 {">>", BINOP_RSH, PREC_SHIFT, 0},
12367 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12368 {"+", BINOP_ADD, PREC_ADD, 0},
12369 {"-", BINOP_SUB, PREC_ADD, 0},
12370 {"&", BINOP_CONCAT, PREC_ADD, 0},
12371 {"*", BINOP_MUL, PREC_MUL, 0},
12372 {"/", BINOP_DIV, PREC_MUL, 0},
12373 {"rem", BINOP_REM, PREC_MUL, 0},
12374 {"mod", BINOP_MOD, PREC_MUL, 0},
12375 {"**", BINOP_EXP, PREC_REPEAT, 0},
12376 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12377 {"-", UNOP_NEG, PREC_PREFIX, 0},
12378 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12379 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12380 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12381 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
12382 {".all", UNOP_IND, PREC_SUFFIX, 1},
12383 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12384 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
d2e4a39e 12385 {NULL, 0, 0, 0}
14f9c5c9
AS
12386};
12387\f
72d5681a
PH
12388enum ada_primitive_types {
12389 ada_primitive_type_int,
12390 ada_primitive_type_long,
12391 ada_primitive_type_short,
12392 ada_primitive_type_char,
12393 ada_primitive_type_float,
12394 ada_primitive_type_double,
12395 ada_primitive_type_void,
12396 ada_primitive_type_long_long,
12397 ada_primitive_type_long_double,
12398 ada_primitive_type_natural,
12399 ada_primitive_type_positive,
12400 ada_primitive_type_system_address,
12401 nr_ada_primitive_types
12402};
6c038f32
PH
12403
12404static void
d4a9a881 12405ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
12406 struct language_arch_info *lai)
12407{
d4a9a881 12408 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 12409
72d5681a 12410 lai->primitive_type_vector
d4a9a881 12411 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 12412 struct type *);
e9bb382b
UW
12413
12414 lai->primitive_type_vector [ada_primitive_type_int]
12415 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12416 0, "integer");
12417 lai->primitive_type_vector [ada_primitive_type_long]
12418 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12419 0, "long_integer");
12420 lai->primitive_type_vector [ada_primitive_type_short]
12421 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12422 0, "short_integer");
12423 lai->string_char_type
12424 = lai->primitive_type_vector [ada_primitive_type_char]
12425 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12426 lai->primitive_type_vector [ada_primitive_type_float]
12427 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12428 "float", NULL);
12429 lai->primitive_type_vector [ada_primitive_type_double]
12430 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12431 "long_float", NULL);
12432 lai->primitive_type_vector [ada_primitive_type_long_long]
12433 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12434 0, "long_long_integer");
12435 lai->primitive_type_vector [ada_primitive_type_long_double]
12436 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12437 "long_long_float", NULL);
12438 lai->primitive_type_vector [ada_primitive_type_natural]
12439 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12440 0, "natural");
12441 lai->primitive_type_vector [ada_primitive_type_positive]
12442 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12443 0, "positive");
12444 lai->primitive_type_vector [ada_primitive_type_void]
12445 = builtin->builtin_void;
12446
12447 lai->primitive_type_vector [ada_primitive_type_system_address]
12448 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
72d5681a
PH
12449 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12450 = "system__address";
fbb06eb1 12451
47e729a8 12452 lai->bool_type_symbol = NULL;
fbb06eb1 12453 lai->bool_type_default = builtin->builtin_bool;
6c038f32 12454}
6c038f32
PH
12455\f
12456 /* Language vector */
12457
12458/* Not really used, but needed in the ada_language_defn. */
12459
12460static void
6c7a06a3 12461emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 12462{
6c7a06a3 12463 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
12464}
12465
12466static int
12467parse (void)
12468{
12469 warnings_issued = 0;
12470 return ada_parse ();
12471}
12472
12473static const struct exp_descriptor ada_exp_descriptor = {
12474 ada_print_subexp,
12475 ada_operator_length,
c0201579 12476 ada_operator_check,
6c038f32
PH
12477 ada_op_name,
12478 ada_dump_subexp_body,
12479 ada_evaluate_subexp
12480};
12481
1a119f36 12482/* Implement the "la_get_symbol_name_cmp" language_defn method
74ccd7f5
JB
12483 for Ada. */
12484
1a119f36
JB
12485static symbol_name_cmp_ftype
12486ada_get_symbol_name_cmp (const char *lookup_name)
74ccd7f5
JB
12487{
12488 if (should_use_wild_match (lookup_name))
12489 return wild_match;
12490 else
12491 return compare_names;
12492}
12493
a5ee536b
JB
12494/* Implement the "la_read_var_value" language_defn method for Ada. */
12495
12496static struct value *
12497ada_read_var_value (struct symbol *var, struct frame_info *frame)
12498{
12499 struct block *frame_block = NULL;
12500 struct symbol *renaming_sym = NULL;
12501
12502 /* The only case where default_read_var_value is not sufficient
12503 is when VAR is a renaming... */
12504 if (frame)
12505 frame_block = get_frame_block (frame, NULL);
12506 if (frame_block)
12507 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12508 if (renaming_sym != NULL)
12509 return ada_read_renaming_var_value (renaming_sym, frame_block);
12510
12511 /* This is a typical case where we expect the default_read_var_value
12512 function to work. */
12513 return default_read_var_value (var, frame);
12514}
12515
6c038f32
PH
12516const struct language_defn ada_language_defn = {
12517 "ada", /* Language name */
12518 language_ada,
6c038f32
PH
12519 range_check_off,
12520 type_check_off,
12521 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12522 that's not quite what this means. */
6c038f32 12523 array_row_major,
9a044a89 12524 macro_expansion_no,
6c038f32
PH
12525 &ada_exp_descriptor,
12526 parse,
12527 ada_error,
12528 resolve,
12529 ada_printchar, /* Print a character constant */
12530 ada_printstr, /* Function to print string constant */
12531 emit_char, /* Function to print single char (not used) */
6c038f32 12532 ada_print_type, /* Print a type using appropriate syntax */
be942545 12533 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
12534 ada_val_print, /* Print a value using appropriate syntax */
12535 ada_value_print, /* Print a top-level value */
a5ee536b 12536 ada_read_var_value, /* la_read_var_value */
6c038f32 12537 NULL, /* Language specific skip_trampoline */
2b2d9e11 12538 NULL, /* name_of_this */
6c038f32
PH
12539 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12540 basic_lookup_transparent_type, /* lookup_transparent_type */
12541 ada_la_decode, /* Language specific symbol demangler */
0963b4bd
MS
12542 NULL, /* Language specific
12543 class_name_from_physname */
6c038f32
PH
12544 ada_op_print_tab, /* expression operators for printing */
12545 0, /* c-style arrays */
12546 1, /* String lower bound */
6c038f32 12547 ada_get_gdb_completer_word_break_characters,
41d27058 12548 ada_make_symbol_completion_list,
72d5681a 12549 ada_language_arch_info,
e79af960 12550 ada_print_array_index,
41f1b697 12551 default_pass_by_reference,
ae6a3a4c 12552 c_get_string,
1a119f36 12553 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
f8eba3c6 12554 ada_iterate_over_symbols,
6c038f32
PH
12555 LANG_MAGIC
12556};
12557
2c0b251b
PA
12558/* Provide a prototype to silence -Wmissing-prototypes. */
12559extern initialize_file_ftype _initialize_ada_language;
12560
5bf03f13
JB
12561/* Command-list for the "set/show ada" prefix command. */
12562static struct cmd_list_element *set_ada_list;
12563static struct cmd_list_element *show_ada_list;
12564
12565/* Implement the "set ada" prefix command. */
12566
12567static void
12568set_ada_command (char *arg, int from_tty)
12569{
12570 printf_unfiltered (_(\
12571"\"set ada\" must be followed by the name of a setting.\n"));
12572 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12573}
12574
12575/* Implement the "show ada" prefix command. */
12576
12577static void
12578show_ada_command (char *args, int from_tty)
12579{
12580 cmd_show_list (show_ada_list, from_tty, "");
12581}
12582
2060206e
PA
12583static void
12584initialize_ada_catchpoint_ops (void)
12585{
12586 struct breakpoint_ops *ops;
12587
12588 initialize_breakpoint_ops ();
12589
12590 ops = &catch_exception_breakpoint_ops;
12591 *ops = bkpt_breakpoint_ops;
12592 ops->dtor = dtor_catch_exception;
12593 ops->allocate_location = allocate_location_catch_exception;
12594 ops->re_set = re_set_catch_exception;
12595 ops->check_status = check_status_catch_exception;
12596 ops->print_it = print_it_catch_exception;
12597 ops->print_one = print_one_catch_exception;
12598 ops->print_mention = print_mention_catch_exception;
12599 ops->print_recreate = print_recreate_catch_exception;
12600
12601 ops = &catch_exception_unhandled_breakpoint_ops;
12602 *ops = bkpt_breakpoint_ops;
12603 ops->dtor = dtor_catch_exception_unhandled;
12604 ops->allocate_location = allocate_location_catch_exception_unhandled;
12605 ops->re_set = re_set_catch_exception_unhandled;
12606 ops->check_status = check_status_catch_exception_unhandled;
12607 ops->print_it = print_it_catch_exception_unhandled;
12608 ops->print_one = print_one_catch_exception_unhandled;
12609 ops->print_mention = print_mention_catch_exception_unhandled;
12610 ops->print_recreate = print_recreate_catch_exception_unhandled;
12611
12612 ops = &catch_assert_breakpoint_ops;
12613 *ops = bkpt_breakpoint_ops;
12614 ops->dtor = dtor_catch_assert;
12615 ops->allocate_location = allocate_location_catch_assert;
12616 ops->re_set = re_set_catch_assert;
12617 ops->check_status = check_status_catch_assert;
12618 ops->print_it = print_it_catch_assert;
12619 ops->print_one = print_one_catch_assert;
12620 ops->print_mention = print_mention_catch_assert;
12621 ops->print_recreate = print_recreate_catch_assert;
12622}
12623
d2e4a39e 12624void
6c038f32 12625_initialize_ada_language (void)
14f9c5c9 12626{
6c038f32
PH
12627 add_language (&ada_language_defn);
12628
2060206e
PA
12629 initialize_ada_catchpoint_ops ();
12630
5bf03f13
JB
12631 add_prefix_cmd ("ada", no_class, set_ada_command,
12632 _("Prefix command for changing Ada-specfic settings"),
12633 &set_ada_list, "set ada ", 0, &setlist);
12634
12635 add_prefix_cmd ("ada", no_class, show_ada_command,
12636 _("Generic command for showing Ada-specific settings."),
12637 &show_ada_list, "show ada ", 0, &showlist);
12638
12639 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12640 &trust_pad_over_xvs, _("\
12641Enable or disable an optimization trusting PAD types over XVS types"), _("\
12642Show whether an optimization trusting PAD types over XVS types is activated"),
12643 _("\
12644This is related to the encoding used by the GNAT compiler. The debugger\n\
12645should normally trust the contents of PAD types, but certain older versions\n\
12646of GNAT have a bug that sometimes causes the information in the PAD type\n\
12647to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12648work around this bug. It is always safe to turn this option \"off\", but\n\
12649this incurs a slight performance penalty, so it is recommended to NOT change\n\
12650this option to \"off\" unless necessary."),
12651 NULL, NULL, &set_ada_list, &show_ada_list);
12652
9ac4176b
PA
12653 add_catch_command ("exception", _("\
12654Catch Ada exceptions, when raised.\n\
12655With an argument, catch only exceptions with the given name."),
12656 catch_ada_exception_command,
12657 NULL,
12658 CATCH_PERMANENT,
12659 CATCH_TEMPORARY);
12660 add_catch_command ("assert", _("\
12661Catch failed Ada assertions, when raised.\n\
12662With an argument, catch only exceptions with the given name."),
12663 catch_assert_command,
12664 NULL,
12665 CATCH_PERMANENT,
12666 CATCH_TEMPORARY);
12667
6c038f32 12668 varsize_limit = 65536;
6c038f32
PH
12669
12670 obstack_init (&symbol_list_obstack);
12671
12672 decoded_names_store = htab_create_alloc
12673 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12674 NULL, xcalloc, xfree);
6b69afc4 12675
e802dbe0
JB
12676 /* Setup per-inferior data. */
12677 observer_attach_inferior_exit (ada_inferior_exit);
12678 ada_inferior_data
12679 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
14f9c5c9 12680}
This page took 2.378976 seconds and 4 git commands to generate.