Remove pid_to_ptid
[deliverable/binutils-gdb.git] / gdb / ada-lang.c
CommitLineData
6e681866 1/* Ada language support routines for GDB, the GNU debugger.
10a2c479 2
e2882c85 3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
14f9c5c9 4
a9762ec7 5 This file is part of GDB.
14f9c5c9 6
a9762ec7
JB
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
14f9c5c9 11
a9762ec7
JB
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
14f9c5c9 16
a9762ec7
JB
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
14f9c5c9 19
96d887e8 20
4c4b4cd2 21#include "defs.h"
14f9c5c9 22#include <ctype.h>
14f9c5c9 23#include "demangle.h"
4c4b4cd2
PH
24#include "gdb_regex.h"
25#include "frame.h"
14f9c5c9
AS
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "gdbcmd.h"
29#include "expression.h"
30#include "parser-defs.h"
31#include "language.h"
a53b64ea 32#include "varobj.h"
14f9c5c9
AS
33#include "c-lang.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "objfiles.h"
37#include "breakpoint.h"
38#include "gdbcore.h"
4c4b4cd2
PH
39#include "hashtab.h"
40#include "gdb_obstack.h"
14f9c5c9 41#include "ada-lang.h"
4c4b4cd2 42#include "completer.h"
53ce3c39 43#include <sys/stat.h>
14f9c5c9 44#include "ui-out.h"
fe898f56 45#include "block.h"
04714b91 46#include "infcall.h"
de4f826b 47#include "dictionary.h"
f7f9143b
JB
48#include "annotate.h"
49#include "valprint.h"
9bbc9174 50#include "source.h"
76727919 51#include "observable.h"
2ba95b9b 52#include "vec.h"
692465f1 53#include "stack.h"
fa864999 54#include "gdb_vecs.h"
79d43c61 55#include "typeprint.h"
22cee43f 56#include "namespace.h"
14f9c5c9 57
ccefe4c4 58#include "psymtab.h"
40bc484c 59#include "value.h"
956a9fb9 60#include "mi/mi-common.h"
9ac4176b 61#include "arch-utils.h"
0fcd72ba 62#include "cli/cli-utils.h"
14bc53a8 63#include "common/function-view.h"
d5722aa2 64#include "common/byte-vector.h"
ab816a27 65#include <algorithm>
ccefe4c4 66
4c4b4cd2 67/* Define whether or not the C operator '/' truncates towards zero for
0963b4bd 68 differently signed operands (truncation direction is undefined in C).
4c4b4cd2
PH
69 Copied from valarith.c. */
70
71#ifndef TRUNCATION_TOWARDS_ZERO
72#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73#endif
74
d2e4a39e 75static struct type *desc_base_type (struct type *);
14f9c5c9 76
d2e4a39e 77static struct type *desc_bounds_type (struct type *);
14f9c5c9 78
d2e4a39e 79static struct value *desc_bounds (struct value *);
14f9c5c9 80
d2e4a39e 81static int fat_pntr_bounds_bitpos (struct type *);
14f9c5c9 82
d2e4a39e 83static int fat_pntr_bounds_bitsize (struct type *);
14f9c5c9 84
556bdfd4 85static struct type *desc_data_target_type (struct type *);
14f9c5c9 86
d2e4a39e 87static struct value *desc_data (struct value *);
14f9c5c9 88
d2e4a39e 89static int fat_pntr_data_bitpos (struct type *);
14f9c5c9 90
d2e4a39e 91static int fat_pntr_data_bitsize (struct type *);
14f9c5c9 92
d2e4a39e 93static struct value *desc_one_bound (struct value *, int, int);
14f9c5c9 94
d2e4a39e 95static int desc_bound_bitpos (struct type *, int, int);
14f9c5c9 96
d2e4a39e 97static int desc_bound_bitsize (struct type *, int, int);
14f9c5c9 98
d2e4a39e 99static struct type *desc_index_type (struct type *, int);
14f9c5c9 100
d2e4a39e 101static int desc_arity (struct type *);
14f9c5c9 102
d2e4a39e 103static int ada_type_match (struct type *, struct type *, int);
14f9c5c9 104
d2e4a39e 105static int ada_args_match (struct symbol *, struct value **, int);
14f9c5c9 106
40bc484c 107static struct value *make_array_descriptor (struct type *, struct value *);
14f9c5c9 108
4c4b4cd2 109static void ada_add_block_symbols (struct obstack *,
b5ec771e
PA
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
14f9c5c9 113
22cee43f 114static void ada_add_all_symbols (struct obstack *, const struct block *,
b5ec771e
PA
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
22cee43f 117
d12307c1 118static int is_nonfunction (struct block_symbol *, int);
14f9c5c9 119
76a01679 120static void add_defn_to_vec (struct obstack *, struct symbol *,
f0c5f9b2 121 const struct block *);
14f9c5c9 122
4c4b4cd2
PH
123static int num_defns_collected (struct obstack *);
124
d12307c1 125static struct block_symbol *defns_collected (struct obstack *, int);
14f9c5c9 126
e9d9f57e 127static struct value *resolve_subexp (expression_up *, int *, int,
76a01679 128 struct type *);
14f9c5c9 129
e9d9f57e 130static void replace_operator_with_call (expression_up *, int, int, int,
270140bd 131 struct symbol *, const struct block *);
14f9c5c9 132
d2e4a39e 133static int possible_user_operator_p (enum exp_opcode, struct value **);
14f9c5c9 134
a121b7c1 135static const char *ada_op_name (enum exp_opcode);
4c4b4cd2
PH
136
137static const char *ada_decoded_op_name (enum exp_opcode);
14f9c5c9 138
d2e4a39e 139static int numeric_type_p (struct type *);
14f9c5c9 140
d2e4a39e 141static int integer_type_p (struct type *);
14f9c5c9 142
d2e4a39e 143static int scalar_type_p (struct type *);
14f9c5c9 144
d2e4a39e 145static int discrete_type_p (struct type *);
14f9c5c9 146
aeb5907d
JB
147static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152static struct symbol *find_old_style_renaming_symbol (const char *,
270140bd 153 const struct block *);
aeb5907d 154
a121b7c1 155static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
988f6b3d 156 int, int);
4c4b4cd2 157
d2e4a39e 158static struct value *evaluate_subexp_type (struct expression *, int *);
14f9c5c9 159
b4ba55a1
JB
160static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
d2e4a39e 163static int is_dynamic_field (struct type *, int);
14f9c5c9 164
10a2c479 165static struct type *to_fixed_variant_branch_type (struct type *,
fc1a4b47 166 const gdb_byte *,
4c4b4cd2
PH
167 CORE_ADDR, struct value *);
168
169static struct type *to_fixed_array_type (struct type *, struct value *, int);
14f9c5c9 170
28c85d6c 171static struct type *to_fixed_range_type (struct type *, struct value *);
14f9c5c9 172
d2e4a39e 173static struct type *to_static_fixed_type (struct type *);
f192137b 174static struct type *static_unwrap_type (struct type *type);
14f9c5c9 175
d2e4a39e 176static struct value *unwrap_value (struct value *);
14f9c5c9 177
ad82864c 178static struct type *constrained_packed_array_type (struct type *, long *);
14f9c5c9 179
ad82864c 180static struct type *decode_constrained_packed_array_type (struct type *);
14f9c5c9 181
ad82864c
JB
182static long decode_packed_array_bitsize (struct type *);
183
184static struct value *decode_constrained_packed_array (struct value *);
185
186static int ada_is_packed_array_type (struct type *);
187
188static int ada_is_unconstrained_packed_array_type (struct type *);
14f9c5c9 189
d2e4a39e 190static struct value *value_subscript_packed (struct value *, int,
4c4b4cd2 191 struct value **);
14f9c5c9 192
50810684 193static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
52ce6436 194
4c4b4cd2
PH
195static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
14f9c5c9 197
d2e4a39e 198static int lesseq_defined_than (struct symbol *, struct symbol *);
14f9c5c9 199
d2e4a39e 200static int equiv_types (struct type *, struct type *);
14f9c5c9 201
d2e4a39e 202static int is_name_suffix (const char *);
14f9c5c9 203
73589123
PH
204static int advance_wild_match (const char **, const char *, int);
205
b5ec771e 206static bool wild_match (const char *name, const char *patn);
14f9c5c9 207
d2e4a39e 208static struct value *ada_coerce_ref (struct value *);
14f9c5c9 209
4c4b4cd2
PH
210static LONGEST pos_atr (struct value *);
211
3cb382c9 212static struct value *value_pos_atr (struct type *, struct value *);
14f9c5c9 213
d2e4a39e 214static struct value *value_val_atr (struct type *, struct value *);
14f9c5c9 215
4c4b4cd2
PH
216static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
14f9c5c9 218
108d56a4 219static struct value *ada_search_struct_field (const char *, struct value *, int,
4c4b4cd2
PH
220 struct type *);
221
222static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
0d5cff50 225static int find_struct_field (const char *, struct type *, int,
52ce6436 226 struct type **, int *, int *, int *, int *);
4c4b4cd2 227
d12307c1 228static int ada_resolve_function (struct block_symbol *, int,
4c4b4cd2
PH
229 struct value **, int, const char *,
230 struct type *);
231
4c4b4cd2
PH
232static int ada_is_direct_array_type (struct type *);
233
72d5681a
PH
234static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
714e53ab 236
52ce6436
PH
237static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240static struct value *assign_aggregate (struct value *, struct value *,
0963b4bd
MS
241 struct expression *,
242 int *, enum noside);
52ce6436
PH
243
244static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
852dff6c
JB
268
269static struct type *ada_find_any_type (const char *name);
b5ec771e
PA
270
271static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
4c4b4cd2
PH
274\f
275
ee01b665
JB
276/* The result of a symbol lookup to be stored in our symbol cache. */
277
278struct cache_entry
279{
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
fe978cb0 283 domain_enum domain;
ee01b665
JB
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292};
293
294/* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303#define HASH_SIZE 1009
304
305struct ada_symbol_cache
306{
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312};
313
314static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
76a01679 315
4c4b4cd2 316/* Maximum-sized dynamic type. */
14f9c5c9
AS
317static unsigned int varsize_limit;
318
67cb5b2d 319static const char ada_completer_word_break_characters[] =
4c4b4cd2
PH
320#ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322#else
14f9c5c9 323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
4c4b4cd2 324#endif
14f9c5c9 325
4c4b4cd2 326/* The name of the symbol to use to get the name of the main subprogram. */
76a01679 327static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
4c4b4cd2 328 = "__gnat_ada_main_program_name";
14f9c5c9 329
4c4b4cd2
PH
330/* Limit on the number of warnings to raise per expression evaluation. */
331static int warning_limit = 2;
332
333/* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335static int warnings_issued = 0;
336
337static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339};
340
341static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343};
344
c6044dd1
JB
345/* Maintenance-related settings for this module. */
346
347static struct cmd_list_element *maint_set_ada_cmdlist;
348static struct cmd_list_element *maint_show_ada_cmdlist;
349
350/* Implement the "maintenance set ada" (prefix) command. */
351
352static void
981a3fb3 353maint_set_ada_cmd (const char *args, int from_tty)
c6044dd1 354{
635c7e8a
TT
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
c6044dd1
JB
357}
358
359/* Implement the "maintenance show ada" (prefix) command. */
360
361static void
981a3fb3 362maint_show_ada_cmd (const char *args, int from_tty)
c6044dd1
JB
363{
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365}
366
367/* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369static int ada_ignore_descriptive_types_p = 0;
370
e802dbe0
JB
371 /* Inferior-specific data. */
372
373/* Per-inferior data for this module. */
374
375struct ada_inferior_data
376{
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
3eecfa55
JB
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
e802dbe0
JB
387};
388
389/* Our key to this module's inferior data. */
390static const struct inferior_data *ada_inferior_data;
391
392/* A cleanup routine for our inferior data. */
393static void
394ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395{
396 struct ada_inferior_data *data;
397
9a3c8263 398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
399 if (data != NULL)
400 xfree (data);
401}
402
403/* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411static struct ada_inferior_data *
412get_ada_inferior_data (struct inferior *inf)
413{
414 struct ada_inferior_data *data;
415
9a3c8263 416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
e802dbe0
JB
417 if (data == NULL)
418 {
41bf6aca 419 data = XCNEW (struct ada_inferior_data);
e802dbe0
JB
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424}
425
426/* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429static void
430ada_inferior_exit (struct inferior *inf)
431{
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434}
435
ee01b665
JB
436
437 /* program-space-specific data. */
438
439/* This module's per-program-space data. */
440struct ada_pspace_data
441{
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444};
445
446/* Key to our per-program-space data. */
447static const struct program_space_data *ada_pspace_data_handle;
448
449/* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454static struct ada_pspace_data *
455get_ada_pspace_data (struct program_space *pspace)
456{
457 struct ada_pspace_data *data;
458
9a3c8263
SM
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
ee01b665
JB
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468}
469
470/* The cleanup callback for this module's per-program-space data. */
471
472static void
473ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474{
9a3c8263 475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
ee01b665
JB
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480}
481
4c4b4cd2
PH
482 /* Utilities */
483
720d1a40 484/* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
eed9788b 485 all typedef layers have been peeled. Otherwise, return TYPE.
720d1a40
JB
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511static struct type *
512ada_typedef_target_type (struct type *type)
513{
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517}
518
41d27058
JB
519/* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523static const char *
524ada_unqualified_name (const char *decoded_name)
525{
2b0f535a
JB
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
41d27058
JB
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542}
543
544/* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547static char *
548add_angle_brackets (const char *str)
549{
550 static char *result = NULL;
551
552 xfree (result);
88c15c34 553 result = xstrprintf ("<%s>", str);
41d27058
JB
554 return result;
555}
96d887e8 556
67cb5b2d 557static const char *
4c4b4cd2
PH
558ada_get_gdb_completer_word_break_characters (void)
559{
560 return ada_completer_word_break_characters;
561}
562
e79af960
JB
563/* Print an array element index using the Ada syntax. */
564
565static void
566ada_print_array_index (struct value *index_value, struct ui_file *stream,
79a45b7d 567 const struct value_print_options *options)
e79af960 568{
79a45b7d 569 LA_VALUE_PRINT (index_value, stream, options);
e79af960
JB
570 fprintf_filtered (stream, " => ");
571}
572
f27cf670 573/* Assuming VECT points to an array of *SIZE objects of size
14f9c5c9 574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
f27cf670 575 updating *SIZE as necessary and returning the (new) array. */
14f9c5c9 576
f27cf670
AS
577void *
578grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
14f9c5c9 579{
d2e4a39e
AS
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
4c4b4cd2 584 *size = min_size;
f27cf670 585 vect = xrealloc (vect, *size * element_size);
d2e4a39e 586 }
f27cf670 587 return vect;
14f9c5c9
AS
588}
589
590/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
4c4b4cd2 591 suffix of FIELD_NAME beginning "___". */
14f9c5c9
AS
592
593static int
ebf56fd3 594field_name_match (const char *field_name, const char *target)
14f9c5c9
AS
595{
596 int len = strlen (target);
5b4ee69b 597
d2e4a39e 598 return
4c4b4cd2
PH
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
61012eef 601 || (startswith (field_name + len, "___")
76a01679
JB
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
14f9c5c9
AS
604}
605
606
872c8b51
JB
607/* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
4c4b4cd2
PH
614
615int
616ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618{
619 int fieldno;
872c8b51
JB
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
4c4b4cd2
PH
624 return fieldno;
625
626 if (!maybe_missing)
323e0a4a 627 error (_("Unable to find field %s in struct %s. Aborting"),
872c8b51 628 field_name, TYPE_NAME (struct_type));
4c4b4cd2
PH
629
630 return -1;
631}
632
633/* The length of the prefix of NAME prior to any "___" suffix. */
14f9c5c9
AS
634
635int
d2e4a39e 636ada_name_prefix_len (const char *name)
14f9c5c9
AS
637{
638 if (name == NULL)
639 return 0;
d2e4a39e 640 else
14f9c5c9 641 {
d2e4a39e 642 const char *p = strstr (name, "___");
5b4ee69b 643
14f9c5c9 644 if (p == NULL)
4c4b4cd2 645 return strlen (name);
14f9c5c9 646 else
4c4b4cd2 647 return p - name;
14f9c5c9
AS
648 }
649}
650
4c4b4cd2
PH
651/* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
14f9c5c9 654static int
d2e4a39e 655is_suffix (const char *str, const char *suffix)
14f9c5c9
AS
656{
657 int len1, len2;
5b4ee69b 658
14f9c5c9
AS
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
4c4b4cd2 663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
14f9c5c9
AS
664}
665
4c4b4cd2
PH
666/* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
14f9c5c9 668
d2e4a39e 669static struct value *
4c4b4cd2 670coerce_unspec_val_to_type (struct value *val, struct type *type)
14f9c5c9 671{
61ee279c 672 type = ada_check_typedef (type);
df407dfe 673 if (value_type (val) == type)
4c4b4cd2 674 return val;
d2e4a39e 675 else
14f9c5c9 676 {
4c4b4cd2
PH
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
c1b5a1a6 681 ada_ensure_varsize_limit (type);
4c4b4cd2 682
41e8491f
JK
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
9a0dc9e3 689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
41e8491f 690 }
74bcbdf3 691 set_value_component_location (result, val);
9bbda503
AC
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
42ae5230 694 set_value_address (result, value_address (val));
14f9c5c9
AS
695 return result;
696 }
697}
698
fc1a4b47
AC
699static const gdb_byte *
700cond_offset_host (const gdb_byte *valaddr, long offset)
14f9c5c9
AS
701{
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706}
707
708static CORE_ADDR
ebf56fd3 709cond_offset_target (CORE_ADDR address, long offset)
14f9c5c9
AS
710{
711 if (address == 0)
712 return 0;
d2e4a39e 713 else
14f9c5c9
AS
714 return address + offset;
715}
716
4c4b4cd2
PH
717/* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
a2249542 721
77109804
AC
722/* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
a0b31db1 724static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
77109804 725
14f9c5c9 726static void
a2249542 727lim_warning (const char *format, ...)
14f9c5c9 728{
a2249542 729 va_list args;
a2249542 730
5b4ee69b 731 va_start (args, format);
4c4b4cd2
PH
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
a2249542
MK
734 vwarning (format, args);
735
736 va_end (args);
4c4b4cd2
PH
737}
738
714e53ab
PH
739/* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
c1b5a1a6
JB
743void
744ada_ensure_varsize_limit (const struct type *type)
714e53ab
PH
745{
746 if (TYPE_LENGTH (type) > varsize_limit)
323e0a4a 747 error (_("object size is larger than varsize-limit"));
714e53ab
PH
748}
749
0963b4bd 750/* Maximum value of a SIZE-byte signed integer type. */
4c4b4cd2 751static LONGEST
c3e5cd34 752max_of_size (int size)
4c4b4cd2 753{
76a01679 754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
5b4ee69b 755
76a01679 756 return top_bit | (top_bit - 1);
4c4b4cd2
PH
757}
758
0963b4bd 759/* Minimum value of a SIZE-byte signed integer type. */
4c4b4cd2 760static LONGEST
c3e5cd34 761min_of_size (int size)
4c4b4cd2 762{
c3e5cd34 763 return -max_of_size (size) - 1;
4c4b4cd2
PH
764}
765
0963b4bd 766/* Maximum value of a SIZE-byte unsigned integer type. */
4c4b4cd2 767static ULONGEST
c3e5cd34 768umax_of_size (int size)
4c4b4cd2 769{
76a01679 770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
5b4ee69b 771
76a01679 772 return top_bit | (top_bit - 1);
4c4b4cd2
PH
773}
774
0963b4bd 775/* Maximum value of integral type T, as a signed quantity. */
c3e5cd34
PH
776static LONGEST
777max_of_type (struct type *t)
4c4b4cd2 778{
c3e5cd34
PH
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783}
784
0963b4bd 785/* Minimum value of integral type T, as a signed quantity. */
c3e5cd34
PH
786static LONGEST
787min_of_type (struct type *t)
788{
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
4c4b4cd2
PH
793}
794
795/* The largest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
796LONGEST
797ada_discrete_type_high_bound (struct type *type)
4c4b4cd2 798{
c3345124 799 type = resolve_dynamic_type (type, NULL, 0);
76a01679 800 switch (TYPE_CODE (type))
4c4b4cd2
PH
801 {
802 case TYPE_CODE_RANGE:
690cc4eb 803 return TYPE_HIGH_BOUND (type);
4c4b4cd2 804 case TYPE_CODE_ENUM:
14e75d8e 805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
690cc4eb
PH
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
76a01679 809 case TYPE_CODE_INT:
690cc4eb 810 return max_of_type (type);
4c4b4cd2 811 default:
43bbcdc2 812 error (_("Unexpected type in ada_discrete_type_high_bound."));
4c4b4cd2
PH
813 }
814}
815
14e75d8e 816/* The smallest value in the domain of TYPE, a discrete type, as an integer. */
43bbcdc2
PH
817LONGEST
818ada_discrete_type_low_bound (struct type *type)
4c4b4cd2 819{
c3345124 820 type = resolve_dynamic_type (type, NULL, 0);
76a01679 821 switch (TYPE_CODE (type))
4c4b4cd2
PH
822 {
823 case TYPE_CODE_RANGE:
690cc4eb 824 return TYPE_LOW_BOUND (type);
4c4b4cd2 825 case TYPE_CODE_ENUM:
14e75d8e 826 return TYPE_FIELD_ENUMVAL (type, 0);
690cc4eb
PH
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
76a01679 830 case TYPE_CODE_INT:
690cc4eb 831 return min_of_type (type);
4c4b4cd2 832 default:
43bbcdc2 833 error (_("Unexpected type in ada_discrete_type_low_bound."));
4c4b4cd2
PH
834 }
835}
836
837/* The identity on non-range types. For range types, the underlying
76a01679 838 non-range scalar type. */
4c4b4cd2
PH
839
840static struct type *
18af8284 841get_base_type (struct type *type)
4c4b4cd2
PH
842{
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
76a01679
JB
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
4c4b4cd2
PH
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
14f9c5c9 850}
41246937
JB
851
852/* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857struct value *
858ada_get_decoded_value (struct value *value)
859{
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875}
876
877/* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882struct type *
883ada_get_decoded_type (struct type *type)
884{
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889}
890
4c4b4cd2 891\f
76a01679 892
4c4b4cd2 893 /* Language Selection */
14f9c5c9
AS
894
895/* If the main program is in Ada, return language_ada, otherwise return LANG
ccefe4c4 896 (the main program is in Ada iif the adainit symbol is found). */
d2e4a39e 897
14f9c5c9 898enum language
ccefe4c4 899ada_update_initial_language (enum language lang)
14f9c5c9 900{
d2e4a39e 901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
3b7344d5 902 (struct objfile *) NULL).minsym != NULL)
4c4b4cd2 903 return language_ada;
14f9c5c9
AS
904
905 return lang;
906}
96d887e8
PH
907
908/* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912char *
913ada_main_name (void)
914{
3b7344d5 915 struct bound_minimal_symbol msym;
e83e4e24 916 static gdb::unique_xmalloc_ptr<char> main_program_name;
6c038f32 917
96d887e8
PH
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
3b7344d5 925 if (msym.minsym != NULL)
96d887e8 926 {
f9bc20b9
JB
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
77e371c0 930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
96d887e8 931 if (main_program_name_addr == 0)
323e0a4a 932 error (_("Invalid address for Ada main program name."));
96d887e8 933
f9bc20b9
JB
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
e83e4e24 939 return main_program_name.get ();
96d887e8
PH
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944}
14f9c5c9 945\f
4c4b4cd2 946 /* Symbols */
d2e4a39e 947
4c4b4cd2
PH
948/* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
14f9c5c9 950
d2e4a39e
AS
951const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
14f9c5c9
AS
974};
975
b5ec771e
PA
976/* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
4c4b4cd2 980
b5ec771e
PA
981static char *
982ada_encode_1 (const char *decoded, bool throw_errors)
14f9c5c9 983{
4c4b4cd2
PH
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
d2e4a39e 986 const char *p;
14f9c5c9 987 int k;
d2e4a39e 988
4c4b4cd2 989 if (decoded == NULL)
14f9c5c9
AS
990 return NULL;
991
4c4b4cd2
PH
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
14f9c5c9
AS
994
995 k = 0;
4c4b4cd2 996 for (p = decoded; *p != '\0'; p += 1)
14f9c5c9 997 {
cdc7bb92 998 if (*p == '.')
4c4b4cd2
PH
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
14f9c5c9 1003 else if (*p == '"')
4c4b4cd2
PH
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1265e4aa 1008 mapping->encoded != NULL
61012eef 1009 && !startswith (p, mapping->decoded); mapping += 1)
4c4b4cd2
PH
1010 ;
1011 if (mapping->encoded == NULL)
b5ec771e
PA
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
4c4b4cd2
PH
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
d2e4a39e 1022 else
4c4b4cd2
PH
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
14f9c5c9
AS
1027 }
1028
4c4b4cd2
PH
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
14f9c5c9
AS
1031}
1032
b5ec771e
PA
1033/* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036char *
1037ada_encode (const char *decoded)
1038{
1039 return ada_encode_1 (decoded, true);
1040}
1041
14f9c5c9 1042/* Return NAME folded to lower case, or, if surrounded by single
4c4b4cd2
PH
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
d2e4a39e
AS
1046char *
1047ada_fold_name (const char *name)
14f9c5c9 1048{
d2e4a39e 1049 static char *fold_buffer = NULL;
14f9c5c9
AS
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
d2e4a39e 1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
14f9c5c9
AS
1054
1055 if (name[0] == '\'')
1056 {
d2e4a39e
AS
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
14f9c5c9
AS
1059 }
1060 else
1061 {
1062 int i;
5b4ee69b 1063
14f9c5c9 1064 for (i = 0; i <= len; i += 1)
4c4b4cd2 1065 fold_buffer[i] = tolower (name[i]);
14f9c5c9
AS
1066 }
1067
1068 return fold_buffer;
1069}
1070
529cad9c
PH
1071/* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073static int
1074is_lower_alphanum (const char c)
1075{
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077}
1078
c90092fe
JB
1079/* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
29480c32
JB
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
c90092fe 1086
29480c32
JB
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091static void
1092ada_remove_trailing_digits (const char *encoded, int *len)
1093{
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
5b4ee69b 1097
29480c32
JB
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
61012eef 1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
29480c32 1105 *len = i - 2;
61012eef 1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
29480c32
JB
1107 *len = i - 1;
1108 }
1109}
1110
1111/* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114static void
1115ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116{
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
0963b4bd 1122 the 'P' suffix. The second calls the first one after handling
29480c32
JB
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131}
1132
69fadcdf
JB
1133/* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135static void
1136ada_remove_Xbn_suffix (const char *encoded, int *len)
1137{
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151}
1152
29480c32
JB
1153/* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
14f9c5c9 1156
4c4b4cd2 1157 The resulting string is valid until the next call of ada_decode.
29480c32 1158 If the string is unchanged by decoding, the original string pointer
4c4b4cd2
PH
1159 is returned. */
1160
1161const char *
1162ada_decode (const char *encoded)
14f9c5c9
AS
1163{
1164 int i, j;
1165 int len0;
d2e4a39e 1166 const char *p;
4c4b4cd2 1167 char *decoded;
14f9c5c9 1168 int at_start_name;
4c4b4cd2
PH
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
d2e4a39e 1171
29480c32
JB
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
61012eef 1175 if (startswith (encoded, "_ada_"))
4c4b4cd2 1176 encoded += 5;
14f9c5c9 1177
29480c32
JB
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
4c4b4cd2 1181 if (encoded[0] == '_' || encoded[0] == '<')
14f9c5c9
AS
1182 goto Suppress;
1183
4c4b4cd2 1184 len0 = strlen (encoded);
4c4b4cd2 1185
29480c32
JB
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
529cad9c 1188
4c4b4cd2
PH
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
14f9c5c9
AS
1195 {
1196 if (p[3] == 'X')
4c4b4cd2 1197 len0 = p - encoded;
14f9c5c9 1198 else
4c4b4cd2 1199 goto Suppress;
14f9c5c9 1200 }
4c4b4cd2 1201
29480c32
JB
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
61012eef 1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
14f9c5c9 1207 len0 -= 3;
76a01679 1208
a10967fa
JB
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
61012eef 1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
a10967fa
JB
1214 len0 -= 2;
1215
29480c32
JB
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
61012eef 1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
14f9c5c9
AS
1220 len0 -= 1;
1221
4c4b4cd2 1222 /* Make decoded big enough for possible expansion by operator name. */
29480c32 1223
4c4b4cd2
PH
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
14f9c5c9 1226
29480c32
JB
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
4c4b4cd2 1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
d2e4a39e 1230 {
4c4b4cd2
PH
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
d2e4a39e 1239 }
14f9c5c9 1240
29480c32
JB
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
4c4b4cd2
PH
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
14f9c5c9
AS
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
29480c32 1250 /* Is this a symbol function? */
4c4b4cd2
PH
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
5b4ee69b 1254
4c4b4cd2
PH
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
06d5cf63
JB
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
4c4b4cd2
PH
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
14f9c5c9
AS
1272 at_start_name = 0;
1273
529cad9c
PH
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
61012eef 1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
4c4b4cd2 1278 i += 2;
529cad9c 1279
29480c32
JB
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
529cad9c
PH
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
0963b4bd 1302 of subprograms created by the compiler for each entry. The first
529cad9c
PH
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
4c4b4cd2
PH
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
29480c32
JB
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
4c4b4cd2
PH
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
cdc7bb92 1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
4c4b4cd2 1367 {
29480c32 1368 /* Replace '__' by '.'. */
4c4b4cd2
PH
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
14f9c5c9 1374 else
4c4b4cd2 1375 {
29480c32
JB
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
4c4b4cd2
PH
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
14f9c5c9 1382 }
4c4b4cd2 1383 decoded[j] = '\000';
14f9c5c9 1384
29480c32
JB
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
4c4b4cd2
PH
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
14f9c5c9
AS
1390 goto Suppress;
1391
4c4b4cd2
PH
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
14f9c5c9
AS
1396
1397Suppress:
4c4b4cd2
PH
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
14f9c5c9 1402 else
88c15c34 1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
4c4b4cd2
PH
1404 return decoded;
1405
1406}
1407
1408/* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413static struct htab *decoded_names_store;
1414
1415/* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
0963b4bd 1420 GSYMBOL).
4c4b4cd2
PH
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
0963b4bd 1423 when a decoded name is cached in it. */
4c4b4cd2 1424
45e6c716 1425const char *
f85f34ed 1426ada_decode_symbol (const struct general_symbol_info *arg)
4c4b4cd2 1427{
f85f34ed
TT
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
615b3f62 1430 &gsymbol->language_specific.demangled_name;
5b4ee69b 1431
f85f34ed 1432 if (!gsymbol->ada_mangled)
4c4b4cd2
PH
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
f85f34ed 1435 struct obstack *obstack = gsymbol->language_specific.obstack;
5b4ee69b 1436
f85f34ed 1437 gsymbol->ada_mangled = 1;
5b4ee69b 1438
f85f34ed 1439 if (obstack != NULL)
224c3ddb
SM
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
f85f34ed 1442 else
76a01679 1443 {
f85f34ed
TT
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
76a01679
JB
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
5b4ee69b 1451
76a01679
JB
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
4c4b4cd2 1456 }
14f9c5c9 1457
4c4b4cd2
PH
1458 return *resultp;
1459}
76a01679 1460
2c0b251b 1461static char *
76a01679 1462ada_la_decode (const char *encoded, int options)
4c4b4cd2
PH
1463{
1464 return xstrdup (ada_decode (encoded));
14f9c5c9
AS
1465}
1466
8b302db8
TT
1467/* Implement la_sniff_from_mangled_name for Ada. */
1468
1469static int
1470ada_sniff_from_mangled_name (const char *mangled, char **out)
1471{
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504}
1505
14f9c5c9 1506\f
d2e4a39e 1507
4c4b4cd2 1508 /* Arrays */
14f9c5c9 1509
28c85d6c
JB
1510/* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533void
1534ada_fixup_array_indexes_type (struct type *index_desc_type)
1535{
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
0d5cff50 1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
28c85d6c
JB
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563}
1564
4c4b4cd2 1565/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
14f9c5c9 1566
a121b7c1 1567static const char *bound_name[] = {
d2e4a39e 1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
14f9c5c9
AS
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570};
1571
1572/* Maximum number of array dimensions we are prepared to handle. */
1573
4c4b4cd2 1574#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
14f9c5c9 1575
14f9c5c9 1576
4c4b4cd2
PH
1577/* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
14f9c5c9
AS
1579
1580/* The descriptor or array type, if any, indicated by TYPE; removes
4c4b4cd2
PH
1581 level of indirection, if needed. */
1582
d2e4a39e
AS
1583static struct type *
1584desc_base_type (struct type *type)
14f9c5c9
AS
1585{
1586 if (type == NULL)
1587 return NULL;
61ee279c 1588 type = ada_check_typedef (type);
720d1a40
JB
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1265e4aa
JB
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
61ee279c 1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9
AS
1596 else
1597 return type;
1598}
1599
4c4b4cd2
PH
1600/* True iff TYPE indicates a "thin" array pointer type. */
1601
14f9c5c9 1602static int
d2e4a39e 1603is_thin_pntr (struct type *type)
14f9c5c9 1604{
d2e4a39e 1605 return
14f9c5c9
AS
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608}
1609
4c4b4cd2
PH
1610/* The descriptor type for thin pointer type TYPE. */
1611
d2e4a39e
AS
1612static struct type *
1613thin_descriptor_type (struct type *type)
14f9c5c9 1614{
d2e4a39e 1615 struct type *base_type = desc_base_type (type);
5b4ee69b 1616
14f9c5c9
AS
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
d2e4a39e 1621 else
14f9c5c9 1622 {
d2e4a39e 1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
5b4ee69b 1624
14f9c5c9 1625 if (alt_type == NULL)
4c4b4cd2 1626 return base_type;
14f9c5c9 1627 else
4c4b4cd2 1628 return alt_type;
14f9c5c9
AS
1629 }
1630}
1631
4c4b4cd2
PH
1632/* A pointer to the array data for thin-pointer value VAL. */
1633
d2e4a39e
AS
1634static struct value *
1635thin_data_pntr (struct value *val)
14f9c5c9 1636{
828292f2 1637 struct type *type = ada_check_typedef (value_type (val));
556bdfd4 1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
5b4ee69b 1639
556bdfd4
UW
1640 data_type = lookup_pointer_type (data_type);
1641
14f9c5c9 1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
556bdfd4 1643 return value_cast (data_type, value_copy (val));
d2e4a39e 1644 else
42ae5230 1645 return value_from_longest (data_type, value_address (val));
14f9c5c9
AS
1646}
1647
4c4b4cd2
PH
1648/* True iff TYPE indicates a "thick" array pointer type. */
1649
14f9c5c9 1650static int
d2e4a39e 1651is_thick_pntr (struct type *type)
14f9c5c9
AS
1652{
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2 1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
14f9c5c9
AS
1656}
1657
4c4b4cd2
PH
1658/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
76a01679 1660
d2e4a39e
AS
1661static struct type *
1662desc_bounds_type (struct type *type)
14f9c5c9 1663{
d2e4a39e 1664 struct type *r;
14f9c5c9
AS
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
4c4b4cd2 1674 return NULL;
14f9c5c9
AS
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
61ee279c 1677 return ada_check_typedef (r);
14f9c5c9
AS
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
61ee279c 1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
14f9c5c9
AS
1684 }
1685 return NULL;
1686}
1687
1688/* If ARR is an array descriptor (fat or thin pointer), or pointer to
4c4b4cd2
PH
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
d2e4a39e
AS
1691static struct value *
1692desc_bounds (struct value *arr)
14f9c5c9 1693{
df407dfe 1694 struct type *type = ada_check_typedef (value_type (arr));
5b4ee69b 1695
d2e4a39e 1696 if (is_thin_pntr (type))
14f9c5c9 1697 {
d2e4a39e 1698 struct type *bounds_type =
4c4b4cd2 1699 desc_bounds_type (thin_descriptor_type (type));
14f9c5c9
AS
1700 LONGEST addr;
1701
4cdfadb1 1702 if (bounds_type == NULL)
323e0a4a 1703 error (_("Bad GNAT array descriptor"));
14f9c5c9
AS
1704
1705 /* NOTE: The following calculation is not really kosher, but
d2e4a39e 1706 since desc_type is an XVE-encoded type (and shouldn't be),
4c4b4cd2 1707 the correct calculation is a real pain. FIXME (and fix GCC). */
14f9c5c9 1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4c4b4cd2 1709 addr = value_as_long (arr);
d2e4a39e 1710 else
42ae5230 1711 addr = value_address (arr);
14f9c5c9 1712
d2e4a39e 1713 return
4c4b4cd2
PH
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
14f9c5c9
AS
1716 }
1717
1718 else if (is_thick_pntr (type))
05e522ef
JB
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
14f9c5c9
AS
1739 else
1740 return NULL;
1741}
1742
4c4b4cd2
PH
1743/* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
14f9c5c9 1746static int
d2e4a39e 1747fat_pntr_bounds_bitpos (struct type *type)
14f9c5c9
AS
1748{
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750}
1751
1752/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1753 size of the field containing the address of the bounds data. */
1754
14f9c5c9 1755static int
d2e4a39e 1756fat_pntr_bounds_bitsize (struct type *type)
14f9c5c9
AS
1757{
1758 type = desc_base_type (type);
1759
d2e4a39e 1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
14f9c5c9
AS
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
61ee279c 1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
14f9c5c9
AS
1764}
1765
4c4b4cd2 1766/* If TYPE is the type of an array descriptor (fat or thin pointer) or a
556bdfd4
UW
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
4c4b4cd2 1770
d2e4a39e 1771static struct type *
556bdfd4 1772desc_data_target_type (struct type *type)
14f9c5c9
AS
1773{
1774 type = desc_base_type (type);
1775
4c4b4cd2 1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
14f9c5c9 1777 if (is_thin_pntr (type))
556bdfd4 1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
14f9c5c9 1779 else if (is_thick_pntr (type))
556bdfd4
UW
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
05e522ef 1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
556bdfd4
UW
1786 }
1787
1788 return NULL;
14f9c5c9
AS
1789}
1790
1791/* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
4c4b4cd2 1793
d2e4a39e
AS
1794static struct value *
1795desc_data (struct value *arr)
14f9c5c9 1796{
df407dfe 1797 struct type *type = value_type (arr);
5b4ee69b 1798
14f9c5c9
AS
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
d2e4a39e 1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
323e0a4a 1803 _("Bad GNAT array descriptor"));
14f9c5c9
AS
1804 else
1805 return NULL;
1806}
1807
1808
1809/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1810 position of the field containing the address of the data. */
1811
14f9c5c9 1812static int
d2e4a39e 1813fat_pntr_data_bitpos (struct type *type)
14f9c5c9
AS
1814{
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816}
1817
1818/* If TYPE is the type of an array-descriptor (fat pointer), the bit
4c4b4cd2
PH
1819 size of the field containing the address of the data. */
1820
14f9c5c9 1821static int
d2e4a39e 1822fat_pntr_data_bitsize (struct type *type)
14f9c5c9
AS
1823{
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
d2e4a39e 1828 else
14f9c5c9
AS
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830}
1831
4c4b4cd2 1832/* If BOUNDS is an array-bounds structure (or pointer to one), return
14f9c5c9 1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
d2e4a39e
AS
1836static struct value *
1837desc_one_bound (struct value *bounds, int i, int which)
14f9c5c9 1838{
d2e4a39e 1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
323e0a4a 1840 _("Bad GNAT array descriptor bounds"));
14f9c5c9
AS
1841}
1842
1843/* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
14f9c5c9 1847static int
d2e4a39e 1848desc_bound_bitpos (struct type *type, int i, int which)
14f9c5c9 1849{
d2e4a39e 1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
14f9c5c9
AS
1851}
1852
1853/* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
4c4b4cd2
PH
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
76a01679 1857static int
d2e4a39e 1858desc_bound_bitsize (struct type *type, int i, int which)
14f9c5c9
AS
1859{
1860 type = desc_base_type (type);
1861
d2e4a39e
AS
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
14f9c5c9
AS
1866}
1867
1868/* If TYPE is the type of an array-bounds structure, the type of its
4c4b4cd2
PH
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
d2e4a39e
AS
1871static struct type *
1872desc_index_type (struct type *type, int i)
14f9c5c9
AS
1873{
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
d2e4a39e
AS
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
14f9c5c9
AS
1879 return NULL;
1880}
1881
4c4b4cd2
PH
1882/* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
14f9c5c9 1885static int
d2e4a39e 1886desc_arity (struct type *type)
14f9c5c9
AS
1887{
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893}
1894
4c4b4cd2
PH
1895/* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
76a01679
JB
1899static int
1900ada_is_direct_array_type (struct type *type)
4c4b4cd2
PH
1901{
1902 if (type == NULL)
1903 return 0;
61ee279c 1904 type = ada_check_typedef (type);
4c4b4cd2 1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
76a01679 1906 || ada_is_array_descriptor_type (type));
4c4b4cd2
PH
1907}
1908
52ce6436 1909/* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
0963b4bd 1910 * to one. */
52ce6436 1911
2c0b251b 1912static int
52ce6436
PH
1913ada_is_array_type (struct type *type)
1914{
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920}
1921
4c4b4cd2 1922/* Non-zero iff TYPE is a simple array type or pointer to one. */
14f9c5c9 1923
14f9c5c9 1924int
4c4b4cd2 1925ada_is_simple_array_type (struct type *type)
14f9c5c9
AS
1926{
1927 if (type == NULL)
1928 return 0;
61ee279c 1929 type = ada_check_typedef (type);
14f9c5c9 1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
4c4b4cd2 1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
b0dd7688
JB
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
14f9c5c9
AS
1934}
1935
4c4b4cd2
PH
1936/* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
14f9c5c9 1938int
4c4b4cd2 1939ada_is_array_descriptor_type (struct type *type)
14f9c5c9 1940{
556bdfd4 1941 struct type *data_type = desc_data_target_type (type);
14f9c5c9
AS
1942
1943 if (type == NULL)
1944 return 0;
61ee279c 1945 type = ada_check_typedef (type);
556bdfd4
UW
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
14f9c5c9
AS
1949}
1950
1951/* Non-zero iff type is a partially mal-formed GNAT array
4c4b4cd2 1952 descriptor. FIXME: This is to compensate for some problems with
14f9c5c9 1953 debugging output from GNAT. Re-examine periodically to see if it
4c4b4cd2
PH
1954 is still needed. */
1955
14f9c5c9 1956int
ebf56fd3 1957ada_is_bogus_array_descriptor (struct type *type)
14f9c5c9 1958{
d2e4a39e 1959 return
14f9c5c9
AS
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
4c4b4cd2
PH
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
14f9c5c9
AS
1965}
1966
1967
4c4b4cd2 1968/* If ARR has a record type in the form of a standard GNAT array descriptor,
14f9c5c9 1969 (fat pointer) returns the type of the array data described---specifically,
4c4b4cd2 1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
14f9c5c9 1971 in from the descriptor; otherwise, they are left unspecified. If
4c4b4cd2
PH
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
14f9c5c9 1974 a descriptor. */
d2e4a39e
AS
1975struct type *
1976ada_type_of_array (struct value *arr, int bounds)
14f9c5c9 1977{
ad82864c
JB
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
14f9c5c9 1980
df407dfe
AC
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
d2e4a39e
AS
1983
1984 if (!bounds)
ad82864c
JB
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
14f9c5c9
AS
1995 else
1996 {
d2e4a39e 1997 struct type *elt_type;
14f9c5c9 1998 int arity;
d2e4a39e 1999 struct value *descriptor;
14f9c5c9 2000
df407dfe
AC
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
14f9c5c9 2003
d2e4a39e 2004 if (elt_type == NULL || arity == 0)
df407dfe 2005 return ada_check_typedef (value_type (arr));
14f9c5c9
AS
2006
2007 descriptor = desc_bounds (arr);
d2e4a39e 2008 if (value_as_long (descriptor) == 0)
4c4b4cd2 2009 return NULL;
d2e4a39e 2010 while (arity > 0)
4c4b4cd2 2011 {
e9bb382b
UW
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
4c4b4cd2
PH
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
4c4b4cd2 2016
5b4ee69b 2017 arity -= 1;
0c9c3474
SA
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
4c4b4cd2 2021 elt_type = create_array_type (array_type, elt_type, range_type);
ad82864c
JB
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
e67ad678
JB
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
4c4b4cd2 2043 }
14f9c5c9
AS
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047}
2048
2049/* If ARR does not represent an array, returns ARR unchanged.
4c4b4cd2
PH
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
d2e4a39e
AS
2054struct value *
2055ada_coerce_to_simple_array_ptr (struct value *arr)
14f9c5c9 2056{
df407dfe 2057 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2058 {
d2e4a39e 2059 struct type *arrType = ada_type_of_array (arr, 1);
5b4ee69b 2060
14f9c5c9 2061 if (arrType == NULL)
4c4b4cd2 2062 return NULL;
14f9c5c9
AS
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
ad82864c
JB
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
14f9c5c9
AS
2067 else
2068 return arr;
2069}
2070
2071/* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
4c4b4cd2
PH
2073 be ARR itself if it already is in the proper form). */
2074
720d1a40 2075struct value *
d2e4a39e 2076ada_coerce_to_simple_array (struct value *arr)
14f9c5c9 2077{
df407dfe 2078 if (ada_is_array_descriptor_type (value_type (arr)))
14f9c5c9 2079 {
d2e4a39e 2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
5b4ee69b 2081
14f9c5c9 2082 if (arrVal == NULL)
323e0a4a 2083 error (_("Bounds unavailable for null array pointer."));
c1b5a1a6 2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
14f9c5c9
AS
2085 return value_ind (arrVal);
2086 }
ad82864c
JB
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
d2e4a39e 2089 else
14f9c5c9
AS
2090 return arr;
2091}
2092
2093/* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
4c4b4cd2
PH
2095 packing). For other types, is the identity. */
2096
d2e4a39e
AS
2097struct type *
2098ada_coerce_to_simple_array_type (struct type *type)
14f9c5c9 2099{
ad82864c
JB
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
17280b9f
UW
2102
2103 if (ada_is_array_descriptor_type (type))
556bdfd4 2104 return ada_check_typedef (desc_data_target_type (type));
17280b9f
UW
2105
2106 return type;
14f9c5c9
AS
2107}
2108
4c4b4cd2
PH
2109/* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
ad82864c
JB
2111static int
2112ada_is_packed_array_type (struct type *type)
14f9c5c9
AS
2113{
2114 if (type == NULL)
2115 return 0;
4c4b4cd2 2116 type = desc_base_type (type);
61ee279c 2117 type = ada_check_typedef (type);
d2e4a39e 2118 return
14f9c5c9
AS
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121}
2122
ad82864c
JB
2123/* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126int
2127ada_is_constrained_packed_array_type (struct type *type)
2128{
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131}
2132
2133/* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136static int
2137ada_is_unconstrained_packed_array_type (struct type *type)
2138{
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141}
2142
2143/* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146static long
2147decode_packed_array_bitsize (struct type *type)
2148{
0d5cff50
DE
2149 const char *raw_name;
2150 const char *tail;
ad82864c
JB
2151 long bits;
2152
720d1a40
JB
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
ad82864c
JB
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
720d1a40 2167 gdb_assert (tail != NULL);
ad82864c
JB
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177}
2178
14f9c5c9
AS
2179/* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
4c4b4cd2 2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
4a46959e
JB
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
4c4b4cd2 2195
d2e4a39e 2196static struct type *
ad82864c 2197constrained_packed_array_type (struct type *type, long *elt_bits)
14f9c5c9 2198{
d2e4a39e
AS
2199 struct type *new_elt_type;
2200 struct type *new_type;
99b1c762
JB
2201 struct type *index_type_desc;
2202 struct type *index_type;
14f9c5c9
AS
2203 LONGEST low_bound, high_bound;
2204
61ee279c 2205 type = ada_check_typedef (type);
14f9c5c9
AS
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
99b1c762
JB
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
e9bb382b 2216 new_type = alloc_type_copy (type);
ad82864c
JB
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
99b1c762 2220 create_array_type (new_type, new_elt_type, index_type);
14f9c5c9
AS
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
4a46959e
JB
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
14f9c5c9
AS
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
d2e4a39e 2230 else
14f9c5c9
AS
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
d2e4a39e 2233 TYPE_LENGTH (new_type) =
4c4b4cd2 2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
14f9c5c9
AS
2235 }
2236
876cecd0 2237 TYPE_FIXED_INSTANCE (new_type) = 1;
14f9c5c9
AS
2238 return new_type;
2239}
2240
ad82864c
JB
2241/* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
4c4b4cd2 2243
d2e4a39e 2244static struct type *
ad82864c 2245decode_constrained_packed_array_type (struct type *type)
d2e4a39e 2246{
0d5cff50 2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
727e3d2e 2248 char *name;
0d5cff50 2249 const char *tail;
d2e4a39e 2250 struct type *shadow_type;
14f9c5c9 2251 long bits;
14f9c5c9 2252
727e3d2e
JB
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
4c4b4cd2
PH
2261 type = desc_base_type (type);
2262
14f9c5c9
AS
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
b4ba55a1
JB
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
14f9c5c9 2269 {
323e0a4a 2270 lim_warning (_("could not find bounds information on packed array"));
14f9c5c9
AS
2271 return NULL;
2272 }
f168693b 2273 shadow_type = check_typedef (shadow_type);
14f9c5c9
AS
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
0963b4bd
MS
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
14f9c5c9
AS
2279 return NULL;
2280 }
d2e4a39e 2281
ad82864c
JB
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
14f9c5c9
AS
2284}
2285
ad82864c
JB
2286/* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
14f9c5c9
AS
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
4c4b4cd2 2290 type length is set appropriately. */
14f9c5c9 2291
d2e4a39e 2292static struct value *
ad82864c 2293decode_constrained_packed_array (struct value *arr)
14f9c5c9 2294{
4c4b4cd2 2295 struct type *type;
14f9c5c9 2296
11aa919a
PMR
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
828292f2 2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
284614f0 2306 arr = value_ind (arr);
4c4b4cd2 2307
ad82864c 2308 type = decode_constrained_packed_array_type (value_type (arr));
14f9c5c9
AS
2309 if (type == NULL)
2310 {
323e0a4a 2311 error (_("can't unpack array"));
14f9c5c9
AS
2312 return NULL;
2313 }
61ee279c 2314
50810684 2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
32c9a795 2316 && ada_is_modular_type (value_type (arr)))
61ee279c
PH
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
df407dfe 2325 mod = ada_modulus (value_type (arr)) - 1;
61ee279c
PH
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
df407dfe 2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
61ee279c
PH
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
4c4b4cd2 2340 return coerce_unspec_val_to_type (arr, type);
14f9c5c9
AS
2341}
2342
2343
2344/* The value of the element of packed array ARR at the ARITY indices
4c4b4cd2 2345 given in IND. ARR must be a simple array. */
14f9c5c9 2346
d2e4a39e
AS
2347static struct value *
2348value_subscript_packed (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2349{
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
d2e4a39e
AS
2353 struct type *elt_type;
2354 struct value *v;
14f9c5c9
AS
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
df407dfe 2358 elt_type = ada_check_typedef (value_type (arr));
d2e4a39e 2359 for (i = 0; i < arity; i += 1)
14f9c5c9 2360 {
d2e4a39e 2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
4c4b4cd2
PH
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
0963b4bd
MS
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
14f9c5c9 2366 else
4c4b4cd2
PH
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
323e0a4a 2374 lim_warning (_("don't know bounds of array"));
4c4b4cd2
PH
2375 lowerbound = upperbound = 0;
2376 }
2377
3cb382c9 2378 idx = pos_atr (ind[i]);
4c4b4cd2 2379 if (idx < lowerbound || idx > upperbound)
0963b4bd
MS
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
4c4b4cd2
PH
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
61ee279c 2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
4c4b4cd2 2385 }
14f9c5c9
AS
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
d2e4a39e
AS
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
4c4b4cd2 2391 bits, elt_type);
14f9c5c9
AS
2392 return v;
2393}
2394
4c4b4cd2 2395/* Non-zero iff TYPE includes negative integer values. */
14f9c5c9
AS
2396
2397static int
d2e4a39e 2398has_negatives (struct type *type)
14f9c5c9 2399{
d2e4a39e
AS
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
14f9c5c9 2409}
d2e4a39e 2410
f93fca70 2411/* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
5b639dea 2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
f93fca70 2413 the unpacked buffer.
14f9c5c9 2414
5b639dea
JB
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
f93fca70
JB
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
14f9c5c9 2420
f93fca70 2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
a1c95e6b 2422
f93fca70
JB
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425static void
2426ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430{
a1c95e6b
JB
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
a1c95e6b
JB
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
4c4b4cd2 2441 unsigned long accum; /* Staging area for bits being transferred */
a1c95e6b 2442 int accumSize; /* Number of meaningful bits in accum */
14f9c5c9 2443 unsigned char sign;
a1c95e6b 2444
4c4b4cd2
PH
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
f93fca70 2447 int delta = is_big_endian ? -1 : 1;
14f9c5c9 2448
5b639dea
JB
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
14f9c5c9 2455 srcBitsLeft = bit_size;
086ca51f 2456 src_bytes_left = src_len;
f93fca70 2457 unpacked_bytes_left = unpacked_len;
14f9c5c9 2458 sign = 0;
f93fca70
JB
2459
2460 if (is_big_endian)
14f9c5c9 2461 {
086ca51f 2462 src_idx = src_len - 1;
f93fca70
JB
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
4c4b4cd2 2465 sign = ~0;
d2e4a39e
AS
2466
2467 unusedLS =
4c4b4cd2
PH
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
14f9c5c9 2470
f93fca70
JB
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
4c4b4cd2
PH
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
086ca51f
JB
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
f93fca70 2485 }
14f9c5c9 2486 }
d2e4a39e 2487 else
14f9c5c9
AS
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
086ca51f 2491 src_idx = unpacked_idx = 0;
14f9c5c9
AS
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
f93fca70 2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
4c4b4cd2 2496 sign = ~0;
14f9c5c9 2497 }
d2e4a39e 2498
14f9c5c9 2499 accum = 0;
086ca51f 2500 while (src_bytes_left > 0)
14f9c5c9
AS
2501 {
2502 /* Mask for removing bits of the next source byte that are not
4c4b4cd2 2503 part of the value. */
d2e4a39e 2504 unsigned int unusedMSMask =
4c4b4cd2
PH
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
14f9c5c9 2508 unsigned int signMask = sign & ~unusedMSMask;
5b4ee69b 2509
d2e4a39e 2510 accum |=
086ca51f 2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
14f9c5c9 2512 accumSize += HOST_CHAR_BIT - unusedLS;
d2e4a39e 2513 if (accumSize >= HOST_CHAR_BIT)
4c4b4cd2 2514 {
db297a65 2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
4c4b4cd2
PH
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
4c4b4cd2 2520 }
14f9c5c9
AS
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
086ca51f
JB
2523 src_bytes_left -= 1;
2524 src_idx += delta;
14f9c5c9 2525 }
086ca51f 2526 while (unpacked_bytes_left > 0)
14f9c5c9
AS
2527 {
2528 accum |= sign << accumSize;
db297a65 2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
14f9c5c9 2530 accumSize -= HOST_CHAR_BIT;
9cd4d857
JB
2531 if (accumSize < 0)
2532 accumSize = 0;
14f9c5c9 2533 accum >>= HOST_CHAR_BIT;
086ca51f
JB
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
14f9c5c9 2536 }
f93fca70
JB
2537}
2538
2539/* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548struct value *
2549ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552{
2553 struct value *v;
bfb1c796 2554 const gdb_byte *src; /* First byte containing data to unpack */
f93fca70 2555 gdb_byte *unpacked;
220475ed 2556 const int is_scalar = is_scalar_type (type);
d0a9e810 2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
d5722aa2 2558 gdb::byte_vector staging;
f93fca70
JB
2559
2560 type = ada_check_typedef (type);
2561
d0a9e810 2562 if (obj == NULL)
bfb1c796 2563 src = valaddr + offset;
d0a9e810 2564 else
bfb1c796 2565 src = value_contents (obj) + offset;
d0a9e810
JB
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
d5722aa2
PA
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
d0a9e810
JB
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
d5722aa2 2580 staging.data (), staging.size (),
d0a9e810
JB
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
d5722aa2 2583 type = resolve_dynamic_type (type, staging.data (), 0);
0cafa88c
JB
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
d0a9e810
JB
2595 }
2596
f93fca70
JB
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
bfb1c796 2600 src = valaddr + offset;
f93fca70
JB
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
0cafa88c 2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
bfb1c796 2605 gdb_byte *buf;
0cafa88c 2606
f93fca70 2607 v = value_at (type, value_address (obj) + offset);
bfb1c796
PA
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
f93fca70
JB
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
bfb1c796 2615 src = value_contents (obj) + offset;
f93fca70
JB
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
bfb1c796 2638 unpacked = value_contents_writeable (v);
f93fca70
JB
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
d5722aa2 2646 if (staging.size () == TYPE_LENGTH (type))
f93fca70 2647 {
d0a9e810
JB
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
d5722aa2 2651 memcpy (unpacked, staging.data (), staging.size ());
f93fca70 2652 }
d0a9e810
JB
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
f93fca70 2657
14f9c5c9
AS
2658 return v;
2659}
d2e4a39e 2660
14f9c5c9
AS
2661/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
4c4b4cd2 2663 not overlap. */
14f9c5c9 2664static void
fc1a4b47 2665move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
50810684 2666 int src_offset, int n, int bits_big_endian_p)
14f9c5c9
AS
2667{
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
50810684 2675 if (bits_big_endian_p)
14f9c5c9
AS
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
d2e4a39e 2681 while (n > 0)
4c4b4cd2
PH
2682 {
2683 int unused_right;
5b4ee69b 2684
4c4b4cd2
PH
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
14f9c5c9
AS
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
d2e4a39e 2708 while (n > 0)
4c4b4cd2
PH
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
14f9c5c9
AS
2724 }
2725}
2726
14f9c5c9
AS
2727/* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
4c4b4cd2 2730 floating-point or non-scalar types. */
14f9c5c9 2731
d2e4a39e
AS
2732static struct value *
2733ada_value_assign (struct value *toval, struct value *fromval)
14f9c5c9 2734{
df407dfe
AC
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
14f9c5c9 2737
52ce6436
PH
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
88e3b34b 2746 if (!deprecated_value_modifiable (toval))
323e0a4a 2747 error (_("Left operand of assignment is not a modifiable lvalue."));
14f9c5c9 2748
d2e4a39e 2749 if (VALUE_LVAL (toval) == lval_memory
14f9c5c9 2750 && bits > 0
d2e4a39e 2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
4c4b4cd2 2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
14f9c5c9 2753 {
df407dfe
AC
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
aced2898 2756 int from_size;
224c3ddb 2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
d2e4a39e 2758 struct value *val;
42ae5230 2759 CORE_ADDR to_addr = value_address (toval);
14f9c5c9
AS
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4c4b4cd2 2762 fromval = value_cast (type, fromval);
14f9c5c9 2763
52ce6436 2764 read_memory (to_addr, buffer, len);
aced2898
PH
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
50810684 2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
df407dfe 2769 move_bits (buffer, value_bitpos (toval),
50810684 2770 value_contents (fromval), from_size - bits, bits, 1);
14f9c5c9 2771 else
50810684
UW
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
972daa01 2774 write_memory_with_notification (to_addr, buffer, len);
8cebebb9 2775
14f9c5c9 2776 val = value_copy (toval);
0fd88904 2777 memcpy (value_contents_raw (val), value_contents (fromval),
4c4b4cd2 2778 TYPE_LENGTH (type));
04624583 2779 deprecated_set_value_type (val, type);
d2e4a39e 2780
14f9c5c9
AS
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785}
2786
2787
7c512744
JB
2788/* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
52ce6436
PH
2799static void
2800value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802{
2803 LONGEST offset_in_container =
42ae5230 2804 (LONGEST) (value_address (component) - value_address (container));
7c512744 2805 int bit_offset_in_container =
52ce6436
PH
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
7c512744 2808
52ce6436
PH
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
50810684 2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
7c512744 2817 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436
PH
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
50810684 2821 bits, 1);
52ce6436 2822 else
7c512744 2823 move_bits (value_contents_writeable (container) + offset_in_container,
52ce6436 2824 value_bitpos (container) + bit_offset_in_container,
50810684 2825 value_contents (val), 0, bits, 0);
7c512744
JB
2826}
2827
4c4b4cd2
PH
2828/* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
14f9c5c9
AS
2830 thereto. */
2831
d2e4a39e
AS
2832struct value *
2833ada_value_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2834{
2835 int k;
d2e4a39e
AS
2836 struct value *elt;
2837 struct type *elt_type;
14f9c5c9
AS
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
df407dfe 2841 elt_type = ada_check_typedef (value_type (elt));
d2e4a39e 2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
14f9c5c9
AS
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
323e0a4a 2849 error (_("too many subscripts (%d expected)"), k);
2497b498 2850 elt = value_subscript (elt, pos_atr (ind[k]));
14f9c5c9
AS
2851 }
2852 return elt;
2853}
2854
deede10c
JB
2855/* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
919e6dbe
PMR
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
14f9c5c9 2866
2c0b251b 2867static struct value *
deede10c 2868ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
14f9c5c9
AS
2869{
2870 int k;
919e6dbe 2871 struct value *array_ind = ada_value_ind (arr);
deede10c 2872 struct type *type
919e6dbe
PMR
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
14f9c5c9
AS
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
aa715135 2882 struct value *lwb_value;
14f9c5c9
AS
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
323e0a4a 2885 error (_("too many subscripts (%d expected)"), k);
d2e4a39e 2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
4c4b4cd2 2887 value_copy (arr));
14f9c5c9 2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
aa715135
JG
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
14f9c5c9
AS
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895}
2896
0b5d8877 2897/* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
aa715135
JG
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
0b5d8877 2901static struct value *
f5938064
JG
2902ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
0b5d8877 2904{
b0dd7688 2905 struct type *type0 = ada_check_typedef (type);
aa715135 2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
0c9c3474 2907 struct type *index_type
aa715135 2908 = create_static_range_type (NULL, base_index_type, low, high);
9fe561ab
JB
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
aa715135
JG
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
5b4ee69b 2924
aa715135
JG
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
f5938064 2928 return value_at_lazy (slice_type, base);
0b5d8877
PH
2929}
2930
2931
2932static struct value *
2933ada_value_slice (struct value *array, int low, int high)
2934{
b0dd7688 2935 struct type *type = ada_check_typedef (value_type (array));
aa715135 2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
0c9c3474
SA
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
9fe561ab
JB
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
aa715135 2943 LONGEST low_pos, high_pos;
5b4ee69b 2944
aa715135
JG
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
0b5d8877
PH
2955}
2956
14f9c5c9
AS
2957/* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
4c4b4cd2 2960 type designation. Otherwise, returns 0. */
14f9c5c9
AS
2961
2962int
d2e4a39e 2963ada_array_arity (struct type *type)
14f9c5c9
AS
2964{
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
d2e4a39e 2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9 2974 return desc_arity (desc_bounds_type (type));
d2e4a39e
AS
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9 2977 {
4c4b4cd2 2978 arity += 1;
61ee279c 2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
14f9c5c9 2980 }
d2e4a39e 2981
14f9c5c9
AS
2982 return arity;
2983}
2984
2985/* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
4c4b4cd2 2988 NINDICES is -1. Otherwise, returns NULL. */
14f9c5c9 2989
d2e4a39e
AS
2990struct type *
2991ada_array_element_type (struct type *type, int nindices)
14f9c5c9
AS
2992{
2993 type = desc_base_type (type);
2994
d2e4a39e 2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
14f9c5c9
AS
2996 {
2997 int k;
d2e4a39e 2998 struct type *p_array_type;
14f9c5c9 2999
556bdfd4 3000 p_array_type = desc_data_target_type (type);
14f9c5c9
AS
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
4c4b4cd2 3004 return NULL;
d2e4a39e 3005
4c4b4cd2 3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
14f9c5c9 3007 if (nindices >= 0 && k > nindices)
4c4b4cd2 3008 k = nindices;
d2e4a39e 3009 while (k > 0 && p_array_type != NULL)
4c4b4cd2 3010 {
61ee279c 3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
4c4b4cd2
PH
3012 k -= 1;
3013 }
14f9c5c9
AS
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
4c4b4cd2
PH
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
14f9c5c9
AS
3023 return type;
3024 }
3025
3026 return NULL;
3027}
3028
4c4b4cd2 3029/* The type of nth index in arrays of given type (n numbering from 1).
dd19d49e
UW
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
14f9c5c9 3034
1eea4ebd
UW
3035static struct type *
3036ada_index_type (struct type *type, int n, const char *name)
14f9c5c9 3037{
4c4b4cd2
PH
3038 struct type *result_type;
3039
14f9c5c9
AS
3040 type = desc_base_type (type);
3041
1eea4ebd
UW
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
14f9c5c9 3044
4c4b4cd2 3045 if (ada_is_simple_array_type (type))
14f9c5c9
AS
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
4c4b4cd2 3050 type = TYPE_TARGET_TYPE (type);
262452ec 3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
4c4b4cd2
PH
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
76a01679 3054 perhaps stabsread.c would make more sense. */
1eea4ebd
UW
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
14f9c5c9 3057 }
d2e4a39e 3058 else
1eea4ebd
UW
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
14f9c5c9
AS
3066}
3067
3068/* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
4c4b4cd2 3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
1eea4ebd
UW
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
14f9c5c9 3073
abb68b3e 3074static LONGEST
fb5e3d5c 3075ada_array_bound_from_type (struct type *arr_type, int n, int which)
14f9c5c9 3076{
8a48ac95 3077 struct type *type, *index_type_desc, *index_type;
1ce677a4 3078 int i;
262452ec
JK
3079
3080 gdb_assert (which == 0 || which == 1);
14f9c5c9 3081
ad82864c
JB
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
14f9c5c9 3084
4c4b4cd2 3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
1eea4ebd 3086 return (LONGEST) - which;
14f9c5c9
AS
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
bafffb51
JB
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
262452ec 3106 if (index_type_desc != NULL)
28c85d6c
JB
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
262452ec 3109 else
8a48ac95
JB
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
262452ec 3118
43bbcdc2
PH
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
14f9c5c9
AS
3123}
3124
3125/* Given that arr is an array value, returns the lower bound of the
abb68b3e
JB
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
4c4b4cd2 3128 supplied by run-time quantities other than discriminants. */
14f9c5c9 3129
1eea4ebd 3130static LONGEST
4dc81987 3131ada_array_bound (struct value *arr, int n, int which)
14f9c5c9 3132{
eb479039
JB
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
14f9c5c9 3138
ad82864c
JB
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
4c4b4cd2 3141 else if (ada_is_simple_array_type (arr_type))
1eea4ebd 3142 return ada_array_bound_from_type (arr_type, n, which);
14f9c5c9 3143 else
1eea4ebd 3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
14f9c5c9
AS
3145}
3146
3147/* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
4c4b4cd2
PH
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
14f9c5c9 3152
1eea4ebd 3153static LONGEST
d2e4a39e 3154ada_array_length (struct value *arr, int n)
14f9c5c9 3155{
aa715135
JG
3156 struct type *arr_type, *index_type;
3157 int low, high;
eb479039
JB
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
14f9c5c9 3162
ad82864c
JB
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
14f9c5c9 3165
4c4b4cd2 3166 if (ada_is_simple_array_type (arr_type))
aa715135
JG
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
14f9c5c9 3171 else
aa715135
JG
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
f168693b 3177 arr_type = check_typedef (arr_type);
7150d33c 3178 index_type = ada_index_type (arr_type, n, "length");
aa715135
JG
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
4c4b4cd2
PH
3191}
3192
3193/* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196static struct value *
3197empty_array (struct type *arr_type, int low)
3198{
b0dd7688 3199 struct type *arr_type0 = ada_check_typedef (arr_type);
0c9c3474
SA
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
b0dd7688 3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
5b4ee69b 3204
0b5d8877 3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
14f9c5c9 3206}
14f9c5c9 3207\f
d2e4a39e 3208
4c4b4cd2 3209 /* Name resolution */
14f9c5c9 3210
4c4b4cd2
PH
3211/* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
14f9c5c9 3213
d2e4a39e 3214static const char *
4c4b4cd2 3215ada_decoded_op_name (enum exp_opcode op)
14f9c5c9
AS
3216{
3217 int i;
3218
4c4b4cd2 3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
14f9c5c9
AS
3220 {
3221 if (ada_opname_table[i].op == op)
4c4b4cd2 3222 return ada_opname_table[i].decoded;
14f9c5c9 3223 }
323e0a4a 3224 error (_("Could not find operator name for opcode"));
14f9c5c9
AS
3225}
3226
3227
4c4b4cd2
PH
3228/* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
14f9c5c9
AS
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
4c4b4cd2 3235 return type is preferred. May change (expand) *EXP. */
14f9c5c9 3236
4c4b4cd2 3237static void
e9d9f57e 3238resolve (expression_up *expp, int void_context_p)
14f9c5c9 3239{
30b15541
UW
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
14f9c5c9
AS
3247}
3248
4c4b4cd2
PH
3249/* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
14f9c5c9 3257
d2e4a39e 3258static struct value *
e9d9f57e 3259resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
76a01679 3260 struct type *context_type)
14f9c5c9
AS
3261{
3262 int pc = *pos;
3263 int i;
4c4b4cd2 3264 struct expression *exp; /* Convenience: == *expp. */
14f9c5c9 3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
4c4b4cd2
PH
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
52ce6436 3268 int oplen;
14f9c5c9
AS
3269
3270 argvec = NULL;
3271 nargs = 0;
e9d9f57e 3272 exp = expp->get ();
14f9c5c9 3273
52ce6436
PH
3274 /* Pass one: resolve operands, saving their types and updating *pos,
3275 if needed. */
14f9c5c9
AS
3276 switch (op)
3277 {
4c4b4cd2
PH
3278 case OP_FUNCALL:
3279 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679
JB
3280 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3281 *pos += 7;
4c4b4cd2
PH
3282 else
3283 {
3284 *pos += 3;
3285 resolve_subexp (expp, pos, 0, NULL);
3286 }
3287 nargs = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9
AS
3288 break;
3289
14f9c5c9 3290 case UNOP_ADDR:
4c4b4cd2
PH
3291 *pos += 1;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 break;
3294
52ce6436
PH
3295 case UNOP_QUAL:
3296 *pos += 3;
17466c1a 3297 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
4c4b4cd2
PH
3298 break;
3299
52ce6436 3300 case OP_ATR_MODULUS:
4c4b4cd2
PH
3301 case OP_ATR_SIZE:
3302 case OP_ATR_TAG:
4c4b4cd2
PH
3303 case OP_ATR_FIRST:
3304 case OP_ATR_LAST:
3305 case OP_ATR_LENGTH:
3306 case OP_ATR_POS:
3307 case OP_ATR_VAL:
4c4b4cd2
PH
3308 case OP_ATR_MIN:
3309 case OP_ATR_MAX:
52ce6436
PH
3310 case TERNOP_IN_RANGE:
3311 case BINOP_IN_BOUNDS:
3312 case UNOP_IN_RANGE:
3313 case OP_AGGREGATE:
3314 case OP_OTHERS:
3315 case OP_CHOICES:
3316 case OP_POSITIONAL:
3317 case OP_DISCRETE_RANGE:
3318 case OP_NAME:
3319 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3320 *pos += oplen;
14f9c5c9
AS
3321 break;
3322
3323 case BINOP_ASSIGN:
3324 {
4c4b4cd2
PH
3325 struct value *arg1;
3326
3327 *pos += 1;
3328 arg1 = resolve_subexp (expp, pos, 0, NULL);
3329 if (arg1 == NULL)
3330 resolve_subexp (expp, pos, 1, NULL);
3331 else
df407dfe 3332 resolve_subexp (expp, pos, 1, value_type (arg1));
4c4b4cd2 3333 break;
14f9c5c9
AS
3334 }
3335
4c4b4cd2 3336 case UNOP_CAST:
4c4b4cd2
PH
3337 *pos += 3;
3338 nargs = 1;
3339 break;
14f9c5c9 3340
4c4b4cd2
PH
3341 case BINOP_ADD:
3342 case BINOP_SUB:
3343 case BINOP_MUL:
3344 case BINOP_DIV:
3345 case BINOP_REM:
3346 case BINOP_MOD:
3347 case BINOP_EXP:
3348 case BINOP_CONCAT:
3349 case BINOP_LOGICAL_AND:
3350 case BINOP_LOGICAL_OR:
3351 case BINOP_BITWISE_AND:
3352 case BINOP_BITWISE_IOR:
3353 case BINOP_BITWISE_XOR:
14f9c5c9 3354
4c4b4cd2
PH
3355 case BINOP_EQUAL:
3356 case BINOP_NOTEQUAL:
3357 case BINOP_LESS:
3358 case BINOP_GTR:
3359 case BINOP_LEQ:
3360 case BINOP_GEQ:
14f9c5c9 3361
4c4b4cd2
PH
3362 case BINOP_REPEAT:
3363 case BINOP_SUBSCRIPT:
3364 case BINOP_COMMA:
40c8aaa9
JB
3365 *pos += 1;
3366 nargs = 2;
3367 break;
14f9c5c9 3368
4c4b4cd2
PH
3369 case UNOP_NEG:
3370 case UNOP_PLUS:
3371 case UNOP_LOGICAL_NOT:
3372 case UNOP_ABS:
3373 case UNOP_IND:
3374 *pos += 1;
3375 nargs = 1;
3376 break;
14f9c5c9 3377
4c4b4cd2 3378 case OP_LONG:
edd079d9 3379 case OP_FLOAT:
4c4b4cd2 3380 case OP_VAR_VALUE:
74ea4be4 3381 case OP_VAR_MSYM_VALUE:
4c4b4cd2
PH
3382 *pos += 4;
3383 break;
14f9c5c9 3384
4c4b4cd2
PH
3385 case OP_TYPE:
3386 case OP_BOOL:
3387 case OP_LAST:
4c4b4cd2
PH
3388 case OP_INTERNALVAR:
3389 *pos += 3;
3390 break;
14f9c5c9 3391
4c4b4cd2
PH
3392 case UNOP_MEMVAL:
3393 *pos += 3;
3394 nargs = 1;
3395 break;
3396
67f3407f
DJ
3397 case OP_REGISTER:
3398 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3399 break;
3400
4c4b4cd2
PH
3401 case STRUCTOP_STRUCT:
3402 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3403 nargs = 1;
3404 break;
3405
4c4b4cd2 3406 case TERNOP_SLICE:
4c4b4cd2
PH
3407 *pos += 1;
3408 nargs = 3;
3409 break;
3410
52ce6436 3411 case OP_STRING:
14f9c5c9 3412 break;
4c4b4cd2
PH
3413
3414 default:
323e0a4a 3415 error (_("Unexpected operator during name resolution"));
14f9c5c9
AS
3416 }
3417
8d749320 3418 argvec = XALLOCAVEC (struct value *, nargs + 1);
4c4b4cd2
PH
3419 for (i = 0; i < nargs; i += 1)
3420 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3421 argvec[i] = NULL;
e9d9f57e 3422 exp = expp->get ();
4c4b4cd2
PH
3423
3424 /* Pass two: perform any resolution on principal operator. */
14f9c5c9
AS
3425 switch (op)
3426 {
3427 default:
3428 break;
3429
14f9c5c9 3430 case OP_VAR_VALUE:
4c4b4cd2 3431 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679 3432 {
54d343a2 3433 std::vector<struct block_symbol> candidates;
76a01679
JB
3434 int n_candidates;
3435
3436 n_candidates =
3437 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3438 (exp->elts[pc + 2].symbol),
3439 exp->elts[pc + 1].block, VAR_DOMAIN,
4eeaa230 3440 &candidates);
76a01679
JB
3441
3442 if (n_candidates > 1)
3443 {
3444 /* Types tend to get re-introduced locally, so if there
3445 are any local symbols that are not types, first filter
3446 out all types. */
3447 int j;
3448 for (j = 0; j < n_candidates; j += 1)
d12307c1 3449 switch (SYMBOL_CLASS (candidates[j].symbol))
76a01679
JB
3450 {
3451 case LOC_REGISTER:
3452 case LOC_ARG:
3453 case LOC_REF_ARG:
76a01679
JB
3454 case LOC_REGPARM_ADDR:
3455 case LOC_LOCAL:
76a01679 3456 case LOC_COMPUTED:
76a01679
JB
3457 goto FoundNonType;
3458 default:
3459 break;
3460 }
3461 FoundNonType:
3462 if (j < n_candidates)
3463 {
3464 j = 0;
3465 while (j < n_candidates)
3466 {
d12307c1 3467 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
76a01679
JB
3468 {
3469 candidates[j] = candidates[n_candidates - 1];
3470 n_candidates -= 1;
3471 }
3472 else
3473 j += 1;
3474 }
3475 }
3476 }
3477
3478 if (n_candidates == 0)
323e0a4a 3479 error (_("No definition found for %s"),
76a01679
JB
3480 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481 else if (n_candidates == 1)
3482 i = 0;
3483 else if (deprocedure_p
54d343a2 3484 && !is_nonfunction (candidates.data (), n_candidates))
76a01679 3485 {
06d5cf63 3486 i = ada_resolve_function
54d343a2 3487 (candidates.data (), n_candidates, NULL, 0,
06d5cf63
JB
3488 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3489 context_type);
76a01679 3490 if (i < 0)
323e0a4a 3491 error (_("Could not find a match for %s"),
76a01679
JB
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 }
3494 else
3495 {
323e0a4a 3496 printf_filtered (_("Multiple matches for %s\n"),
76a01679 3497 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
54d343a2 3498 user_select_syms (candidates.data (), n_candidates, 1);
76a01679
JB
3499 i = 0;
3500 }
3501
3502 exp->elts[pc + 1].block = candidates[i].block;
d12307c1 3503 exp->elts[pc + 2].symbol = candidates[i].symbol;
aee1fcdf 3504 innermost_block.update (candidates[i]);
76a01679
JB
3505 }
3506
3507 if (deprocedure_p
3508 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3509 == TYPE_CODE_FUNC))
3510 {
3511 replace_operator_with_call (expp, pc, 0, 0,
3512 exp->elts[pc + 2].symbol,
3513 exp->elts[pc + 1].block);
e9d9f57e 3514 exp = expp->get ();
76a01679 3515 }
14f9c5c9
AS
3516 break;
3517
3518 case OP_FUNCALL:
3519 {
4c4b4cd2 3520 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
76a01679 3521 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
4c4b4cd2 3522 {
54d343a2 3523 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3524 int n_candidates;
3525
3526 n_candidates =
76a01679
JB
3527 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3528 (exp->elts[pc + 5].symbol),
3529 exp->elts[pc + 4].block, VAR_DOMAIN,
4eeaa230 3530 &candidates);
ec6a20c2 3531
4c4b4cd2
PH
3532 if (n_candidates == 1)
3533 i = 0;
3534 else
3535 {
06d5cf63 3536 i = ada_resolve_function
54d343a2 3537 (candidates.data (), n_candidates,
06d5cf63
JB
3538 argvec, nargs,
3539 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3540 context_type);
4c4b4cd2 3541 if (i < 0)
323e0a4a 3542 error (_("Could not find a match for %s"),
4c4b4cd2
PH
3543 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3544 }
3545
3546 exp->elts[pc + 4].block = candidates[i].block;
d12307c1 3547 exp->elts[pc + 5].symbol = candidates[i].symbol;
aee1fcdf 3548 innermost_block.update (candidates[i]);
4c4b4cd2 3549 }
14f9c5c9
AS
3550 }
3551 break;
3552 case BINOP_ADD:
3553 case BINOP_SUB:
3554 case BINOP_MUL:
3555 case BINOP_DIV:
3556 case BINOP_REM:
3557 case BINOP_MOD:
3558 case BINOP_CONCAT:
3559 case BINOP_BITWISE_AND:
3560 case BINOP_BITWISE_IOR:
3561 case BINOP_BITWISE_XOR:
3562 case BINOP_EQUAL:
3563 case BINOP_NOTEQUAL:
3564 case BINOP_LESS:
3565 case BINOP_GTR:
3566 case BINOP_LEQ:
3567 case BINOP_GEQ:
3568 case BINOP_EXP:
3569 case UNOP_NEG:
3570 case UNOP_PLUS:
3571 case UNOP_LOGICAL_NOT:
3572 case UNOP_ABS:
3573 if (possible_user_operator_p (op, argvec))
4c4b4cd2 3574 {
54d343a2 3575 std::vector<struct block_symbol> candidates;
4c4b4cd2
PH
3576 int n_candidates;
3577
3578 n_candidates =
b5ec771e 3579 ada_lookup_symbol_list (ada_decoded_op_name (op),
4c4b4cd2 3580 (struct block *) NULL, VAR_DOMAIN,
4eeaa230 3581 &candidates);
ec6a20c2 3582
54d343a2
TT
3583 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3584 nargs, ada_decoded_op_name (op), NULL);
4c4b4cd2
PH
3585 if (i < 0)
3586 break;
3587
d12307c1
PMR
3588 replace_operator_with_call (expp, pc, nargs, 1,
3589 candidates[i].symbol,
3590 candidates[i].block);
e9d9f57e 3591 exp = expp->get ();
4c4b4cd2 3592 }
14f9c5c9 3593 break;
4c4b4cd2
PH
3594
3595 case OP_TYPE:
b3dbf008 3596 case OP_REGISTER:
4c4b4cd2 3597 return NULL;
14f9c5c9
AS
3598 }
3599
3600 *pos = pc;
ced9779b
JB
3601 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3602 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3603 exp->elts[pc + 1].objfile,
3604 exp->elts[pc + 2].msymbol);
3605 else
3606 return evaluate_subexp_type (exp, pos);
14f9c5c9
AS
3607}
3608
3609/* Return non-zero if formal type FTYPE matches actual type ATYPE. If
4c4b4cd2 3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
5b3d5b7d 3611 a non-pointer. */
14f9c5c9 3612/* The term "match" here is rather loose. The match is heuristic and
5b3d5b7d 3613 liberal. */
14f9c5c9
AS
3614
3615static int
4dc81987 3616ada_type_match (struct type *ftype, struct type *atype, int may_deref)
14f9c5c9 3617{
61ee279c
PH
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
14f9c5c9
AS
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
d2e4a39e 3626 switch (TYPE_CODE (ftype))
14f9c5c9
AS
3627 {
3628 default:
5b3d5b7d 3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
14f9c5c9
AS
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
4c4b4cd2
PH
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
d2e4a39e 3634 else
1265e4aa
JB
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
14f9c5c9
AS
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
4c4b4cd2
PH
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
14f9c5c9
AS
3649
3650 case TYPE_CODE_ARRAY:
d2e4a39e 3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
4c4b4cd2 3652 || ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3653
3654 case TYPE_CODE_STRUCT:
4c4b4cd2
PH
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
14f9c5c9 3658 else
4c4b4cd2
PH
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
14f9c5c9
AS
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666}
3667
3668/* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
4c4b4cd2 3671 argument function. */
14f9c5c9
AS
3672
3673static int
d2e4a39e 3674ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
14f9c5c9
AS
3675{
3676 int i;
d2e4a39e 3677 struct type *func_type = SYMBOL_TYPE (func);
14f9c5c9 3678
1265e4aa
JB
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
14f9c5c9
AS
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
4c4b4cd2 3690 if (actuals[i] == NULL)
76a01679
JB
3691 return 0;
3692 else
3693 {
5b4ee69b
MS
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
df407dfe 3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
4c4b4cd2 3697
76a01679
JB
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
14f9c5c9
AS
3701 }
3702 return 1;
3703}
3704
3705/* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710static int
d2e4a39e 3711return_match (struct type *func_type, struct type *context_type)
14f9c5c9 3712{
d2e4a39e 3713 struct type *return_type;
14f9c5c9
AS
3714
3715 if (func_type == NULL)
3716 return 1;
3717
4c4b4cd2 3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
18af8284 3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
4c4b4cd2 3720 else
18af8284 3721 return_type = get_base_type (func_type);
14f9c5c9
AS
3722 if (return_type == NULL)
3723 return 1;
3724
18af8284 3725 context_type = get_base_type (context_type);
14f9c5c9
AS
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733}
3734
3735
4c4b4cd2 3736/* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
14f9c5c9 3737 function (if any) that matches the types of the NARGS arguments in
4c4b4cd2
PH
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
14f9c5c9
AS
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
4c4b4cd2
PH
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
14f9c5c9 3747
4c4b4cd2 3748static int
d12307c1 3749ada_resolve_function (struct block_symbol syms[],
4c4b4cd2
PH
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
14f9c5c9 3752{
30b15541 3753 int fallback;
14f9c5c9 3754 int k;
4c4b4cd2 3755 int m; /* Number of hits */
14f9c5c9 3756
d2e4a39e 3757 m = 0;
30b15541
UW
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
14f9c5c9
AS
3762 {
3763 for (k = 0; k < nsyms; k += 1)
4c4b4cd2 3764 {
d12307c1 3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4c4b4cd2 3766
d12307c1 3767 if (ada_args_match (syms[k].symbol, args, nargs)
30b15541 3768 && (fallback || return_match (type, context_type)))
4c4b4cd2
PH
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
14f9c5c9
AS
3774 }
3775
dc5c8746
PMR
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
14f9c5c9
AS
3780 if (m == 0)
3781 return -1;
dc5c8746 3782 else if (m > 1 && !parse_completion)
14f9c5c9 3783 {
323e0a4a 3784 printf_filtered (_("Multiple matches for %s\n"), name);
4c4b4cd2 3785 user_select_syms (syms, m, 1);
14f9c5c9
AS
3786 return 0;
3787 }
3788 return 0;
3789}
3790
4c4b4cd2
PH
3791/* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
14f9c5c9 3797static int
0d5cff50 3798encoded_ordered_before (const char *N0, const char *N1)
14f9c5c9
AS
3799{
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
5b4ee69b 3807
d2e4a39e 3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
4c4b4cd2 3809 ;
d2e4a39e 3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
4c4b4cd2 3811 ;
d2e4a39e 3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
4c4b4cd2
PH
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
5b4ee69b 3816
4c4b4cd2
PH
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
14f9c5c9
AS
3826 return (strcmp (N0, N1) < 0);
3827 }
3828}
d2e4a39e 3829
4c4b4cd2
PH
3830/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
d2e4a39e 3833static void
d12307c1 3834sort_choices (struct block_symbol syms[], int nsyms)
14f9c5c9 3835{
4c4b4cd2 3836 int i;
5b4ee69b 3837
d2e4a39e 3838 for (i = 1; i < nsyms; i += 1)
14f9c5c9 3839 {
d12307c1 3840 struct block_symbol sym = syms[i];
14f9c5c9
AS
3841 int j;
3842
d2e4a39e 3843 for (j = i - 1; j >= 0; j -= 1)
4c4b4cd2 3844 {
d12307c1
PMR
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
4c4b4cd2
PH
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
d2e4a39e 3850 syms[j + 1] = sym;
14f9c5c9
AS
3851 }
3852}
3853
d72413e6
PMR
3854/* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856static int print_signatures = 1;
3857
3858/* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863static void
3864ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866{
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895}
3896
4c4b4cd2
PH
3897/* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
14f9c5c9
AS
3901
3902/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
4c4b4cd2 3903 to be re-integrated one of these days. */
14f9c5c9
AS
3904
3905int
d12307c1 3906user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
14f9c5c9
AS
3907{
3908 int i;
8d749320 3909 int *chosen = XALLOCAVEC (int , nsyms);
14f9c5c9
AS
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
717d2f5a 3912 const char *select_mode = multiple_symbols_select_mode ();
14f9c5c9
AS
3913
3914 if (max_results < 1)
323e0a4a 3915 error (_("Request to select 0 symbols!"));
14f9c5c9
AS
3916 if (nsyms <= 1)
3917 return nsyms;
3918
717d2f5a
JB
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921canceled because the command is ambiguous\n\
3922See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
323e0a4a 3930 printf_unfiltered (_("[0] cancel\n"));
14f9c5c9 3931 if (max_results > 1)
323e0a4a 3932 printf_unfiltered (_("[1] all\n"));
14f9c5c9 3933
4c4b4cd2 3934 sort_choices (syms, nsyms);
14f9c5c9
AS
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
d12307c1 3938 if (syms[i].symbol == NULL)
4c4b4cd2
PH
3939 continue;
3940
d12307c1 3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
4c4b4cd2 3942 {
76a01679 3943 struct symtab_and_line sal =
d12307c1 3944 find_function_start_sal (syms[i].symbol, 1);
5b4ee69b 3945
d72413e6
PMR
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
323e0a4a 3949 if (sal.symtab == NULL)
d72413e6 3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
323e0a4a
AC
3951 sal.line);
3952 else
d72413e6 3953 printf_unfiltered (_(" at %s:%d\n"),
05cba821
JK
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
4c4b4cd2
PH
3956 continue;
3957 }
d2e4a39e 3958 else
4c4b4cd2
PH
3959 {
3960 int is_enumeral =
d12307c1
PMR
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
1994afbf
DE
3964 struct symtab *symtab = NULL;
3965
d12307c1
PMR
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
4c4b4cd2 3968
d12307c1 3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
d72413e6
PMR
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
76a01679 3978 else if (is_enumeral
d12307c1 3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
4c4b4cd2 3980 {
a3f17187 3981 printf_unfiltered (("[%d] "), i + first_choice);
d12307c1 3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
79d43c61 3983 gdb_stdout, -1, 0, &type_print_raw_options);
323e0a4a 3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
d12307c1 3985 SYMBOL_PRINT_NAME (syms[i].symbol));
4c4b4cd2 3986 }
d72413e6
PMR
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4c4b4cd2 4003 }
14f9c5c9 4004 }
d2e4a39e 4005
14f9c5c9 4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4c4b4cd2 4007 "overload-choice");
14f9c5c9
AS
4008
4009 for (i = 0; i < n_chosen; i += 1)
4c4b4cd2 4010 syms[i] = syms[chosen[i]];
14f9c5c9
AS
4011
4012 return n_chosen;
4013}
4014
4015/* Read and validate a set of numeric choices from the user in the
4c4b4cd2 4016 range 0 .. N_CHOICES-1. Place the results in increasing
14f9c5c9
AS
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4c4b4cd2 4022 + A choice of 0 means to cancel the selection, throwing an error.
14f9c5c9
AS
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4c4b4cd2 4026 The user is not allowed to choose more than MAX_RESULTS values.
14f9c5c9
AS
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4c4b4cd2 4029 prompts (for use with the -f switch). */
14f9c5c9
AS
4030
4031int
d2e4a39e 4032get_selections (int *choices, int n_choices, int max_results,
a121b7c1 4033 int is_all_choice, const char *annotation_suffix)
14f9c5c9 4034{
d2e4a39e 4035 char *args;
a121b7c1 4036 const char *prompt;
14f9c5c9
AS
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
d2e4a39e 4039
14f9c5c9
AS
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
0bcd0149 4042 prompt = "> ";
14f9c5c9 4043
0bcd0149 4044 args = command_line_input (prompt, 0, annotation_suffix);
d2e4a39e 4045
14f9c5c9 4046 if (args == NULL)
323e0a4a 4047 error_no_arg (_("one or more choice numbers"));
14f9c5c9
AS
4048
4049 n_chosen = 0;
76a01679 4050
4c4b4cd2
PH
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
14f9c5c9
AS
4053 while (1)
4054 {
d2e4a39e 4055 char *args2;
14f9c5c9
AS
4056 int choice, j;
4057
0fcd72ba 4058 args = skip_spaces (args);
14f9c5c9 4059 if (*args == '\0' && n_chosen == 0)
323e0a4a 4060 error_no_arg (_("one or more choice numbers"));
14f9c5c9 4061 else if (*args == '\0')
4c4b4cd2 4062 break;
14f9c5c9
AS
4063
4064 choice = strtol (args, &args2, 10);
d2e4a39e 4065 if (args == args2 || choice < 0
4c4b4cd2 4066 || choice > n_choices + first_choice - 1)
323e0a4a 4067 error (_("Argument must be choice number"));
14f9c5c9
AS
4068 args = args2;
4069
d2e4a39e 4070 if (choice == 0)
323e0a4a 4071 error (_("cancelled"));
14f9c5c9
AS
4072
4073 if (choice < first_choice)
4c4b4cd2
PH
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
14f9c5c9
AS
4080 choice -= first_choice;
4081
d2e4a39e 4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4c4b4cd2
PH
4083 {
4084 }
14f9c5c9
AS
4085
4086 if (j < 0 || choice != choices[j])
4c4b4cd2
PH
4087 {
4088 int k;
5b4ee69b 4089
4c4b4cd2
PH
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
14f9c5c9
AS
4095 }
4096
4097 if (n_chosen > max_results)
323e0a4a 4098 error (_("Select no more than %d of the above"), max_results);
d2e4a39e 4099
14f9c5c9
AS
4100 return n_chosen;
4101}
4102
4c4b4cd2
PH
4103/* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
14f9c5c9
AS
4106
4107static void
e9d9f57e 4108replace_operator_with_call (expression_up *expp, int pc, int nargs,
4c4b4cd2 4109 int oplen, struct symbol *sym,
270140bd 4110 const struct block *block)
14f9c5c9
AS
4111{
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4c4b4cd2 4113 symbol, -oplen for operator being replaced). */
d2e4a39e 4114 struct expression *newexp = (struct expression *)
8c1a34e7 4115 xzalloc (sizeof (struct expression)
4c4b4cd2 4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
e9d9f57e 4117 struct expression *exp = expp->get ();
14f9c5c9
AS
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
3489610d 4121 newexp->gdbarch = exp->gdbarch;
14f9c5c9 4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
d2e4a39e 4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4c4b4cd2 4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
14f9c5c9
AS
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
e9d9f57e 4133 expp->reset (newexp);
d2e4a39e 4134}
14f9c5c9
AS
4135
4136/* Type-class predicates */
4137
4c4b4cd2
PH
4138/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4139 or FLOAT). */
14f9c5c9
AS
4140
4141static int
d2e4a39e 4142numeric_type_p (struct type *type)
14f9c5c9
AS
4143{
4144 if (type == NULL)
4145 return 0;
d2e4a39e
AS
4146 else
4147 {
4148 switch (TYPE_CODE (type))
4c4b4cd2
PH
4149 {
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_FLT:
4152 return 1;
4153 case TYPE_CODE_RANGE:
4154 return (type == TYPE_TARGET_TYPE (type)
4155 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4156 default:
4157 return 0;
4158 }
d2e4a39e 4159 }
14f9c5c9
AS
4160}
4161
4c4b4cd2 4162/* True iff TYPE is integral (an INT or RANGE of INTs). */
14f9c5c9
AS
4163
4164static int
d2e4a39e 4165integer_type_p (struct type *type)
14f9c5c9
AS
4166{
4167 if (type == NULL)
4168 return 0;
d2e4a39e
AS
4169 else
4170 {
4171 switch (TYPE_CODE (type))
4c4b4cd2
PH
4172 {
4173 case TYPE_CODE_INT:
4174 return 1;
4175 case TYPE_CODE_RANGE:
4176 return (type == TYPE_TARGET_TYPE (type)
4177 || integer_type_p (TYPE_TARGET_TYPE (type)));
4178 default:
4179 return 0;
4180 }
d2e4a39e 4181 }
14f9c5c9
AS
4182}
4183
4c4b4cd2 4184/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
14f9c5c9
AS
4185
4186static int
d2e4a39e 4187scalar_type_p (struct type *type)
14f9c5c9
AS
4188{
4189 if (type == NULL)
4190 return 0;
d2e4a39e
AS
4191 else
4192 {
4193 switch (TYPE_CODE (type))
4c4b4cd2
PH
4194 {
4195 case TYPE_CODE_INT:
4196 case TYPE_CODE_RANGE:
4197 case TYPE_CODE_ENUM:
4198 case TYPE_CODE_FLT:
4199 return 1;
4200 default:
4201 return 0;
4202 }
d2e4a39e 4203 }
14f9c5c9
AS
4204}
4205
4c4b4cd2 4206/* True iff TYPE is discrete (INT, RANGE, ENUM). */
14f9c5c9
AS
4207
4208static int
d2e4a39e 4209discrete_type_p (struct type *type)
14f9c5c9
AS
4210{
4211 if (type == NULL)
4212 return 0;
d2e4a39e
AS
4213 else
4214 {
4215 switch (TYPE_CODE (type))
4c4b4cd2
PH
4216 {
4217 case TYPE_CODE_INT:
4218 case TYPE_CODE_RANGE:
4219 case TYPE_CODE_ENUM:
872f0337 4220 case TYPE_CODE_BOOL:
4c4b4cd2
PH
4221 return 1;
4222 default:
4223 return 0;
4224 }
d2e4a39e 4225 }
14f9c5c9
AS
4226}
4227
4c4b4cd2
PH
4228/* Returns non-zero if OP with operands in the vector ARGS could be
4229 a user-defined function. Errs on the side of pre-defined operators
4230 (i.e., result 0). */
14f9c5c9
AS
4231
4232static int
d2e4a39e 4233possible_user_operator_p (enum exp_opcode op, struct value *args[])
14f9c5c9 4234{
76a01679 4235 struct type *type0 =
df407dfe 4236 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
d2e4a39e 4237 struct type *type1 =
df407dfe 4238 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
d2e4a39e 4239
4c4b4cd2
PH
4240 if (type0 == NULL)
4241 return 0;
4242
14f9c5c9
AS
4243 switch (op)
4244 {
4245 default:
4246 return 0;
4247
4248 case BINOP_ADD:
4249 case BINOP_SUB:
4250 case BINOP_MUL:
4251 case BINOP_DIV:
d2e4a39e 4252 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
14f9c5c9
AS
4253
4254 case BINOP_REM:
4255 case BINOP_MOD:
4256 case BINOP_BITWISE_AND:
4257 case BINOP_BITWISE_IOR:
4258 case BINOP_BITWISE_XOR:
d2e4a39e 4259 return (!(integer_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4260
4261 case BINOP_EQUAL:
4262 case BINOP_NOTEQUAL:
4263 case BINOP_LESS:
4264 case BINOP_GTR:
4265 case BINOP_LEQ:
4266 case BINOP_GEQ:
d2e4a39e 4267 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
14f9c5c9
AS
4268
4269 case BINOP_CONCAT:
ee90b9ab 4270 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
14f9c5c9
AS
4271
4272 case BINOP_EXP:
d2e4a39e 4273 return (!(numeric_type_p (type0) && integer_type_p (type1)));
14f9c5c9
AS
4274
4275 case UNOP_NEG:
4276 case UNOP_PLUS:
4277 case UNOP_LOGICAL_NOT:
d2e4a39e
AS
4278 case UNOP_ABS:
4279 return (!numeric_type_p (type0));
14f9c5c9
AS
4280
4281 }
4282}
4283\f
4c4b4cd2 4284 /* Renaming */
14f9c5c9 4285
aeb5907d
JB
4286/* NOTES:
4287
4288 1. In the following, we assume that a renaming type's name may
4289 have an ___XD suffix. It would be nice if this went away at some
4290 point.
4291 2. We handle both the (old) purely type-based representation of
4292 renamings and the (new) variable-based encoding. At some point,
4293 it is devoutly to be hoped that the former goes away
4294 (FIXME: hilfinger-2007-07-09).
4295 3. Subprogram renamings are not implemented, although the XRS
4296 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4297
4298/* If SYM encodes a renaming,
4299
4300 <renaming> renames <renamed entity>,
4301
4302 sets *LEN to the length of the renamed entity's name,
4303 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4304 the string describing the subcomponent selected from the renamed
0963b4bd 4305 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
aeb5907d
JB
4306 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4307 are undefined). Otherwise, returns a value indicating the category
4308 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4309 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4310 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4311 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4312 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4313 may be NULL, in which case they are not assigned.
4314
4315 [Currently, however, GCC does not generate subprogram renamings.] */
4316
4317enum ada_renaming_category
4318ada_parse_renaming (struct symbol *sym,
4319 const char **renamed_entity, int *len,
4320 const char **renaming_expr)
4321{
4322 enum ada_renaming_category kind;
4323 const char *info;
4324 const char *suffix;
4325
4326 if (sym == NULL)
4327 return ADA_NOT_RENAMING;
4328 switch (SYMBOL_CLASS (sym))
14f9c5c9 4329 {
aeb5907d
JB
4330 default:
4331 return ADA_NOT_RENAMING;
4332 case LOC_TYPEDEF:
4333 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4334 renamed_entity, len, renaming_expr);
4335 case LOC_LOCAL:
4336 case LOC_STATIC:
4337 case LOC_COMPUTED:
4338 case LOC_OPTIMIZED_OUT:
4339 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4340 if (info == NULL)
4341 return ADA_NOT_RENAMING;
4342 switch (info[5])
4343 {
4344 case '_':
4345 kind = ADA_OBJECT_RENAMING;
4346 info += 6;
4347 break;
4348 case 'E':
4349 kind = ADA_EXCEPTION_RENAMING;
4350 info += 7;
4351 break;
4352 case 'P':
4353 kind = ADA_PACKAGE_RENAMING;
4354 info += 7;
4355 break;
4356 case 'S':
4357 kind = ADA_SUBPROGRAM_RENAMING;
4358 info += 7;
4359 break;
4360 default:
4361 return ADA_NOT_RENAMING;
4362 }
14f9c5c9 4363 }
4c4b4cd2 4364
aeb5907d
JB
4365 if (renamed_entity != NULL)
4366 *renamed_entity = info;
4367 suffix = strstr (info, "___XE");
4368 if (suffix == NULL || suffix == info)
4369 return ADA_NOT_RENAMING;
4370 if (len != NULL)
4371 *len = strlen (info) - strlen (suffix);
4372 suffix += 5;
4373 if (renaming_expr != NULL)
4374 *renaming_expr = suffix;
4375 return kind;
4376}
4377
4378/* Assuming TYPE encodes a renaming according to the old encoding in
4379 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4380 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4381 ADA_NOT_RENAMING otherwise. */
4382static enum ada_renaming_category
4383parse_old_style_renaming (struct type *type,
4384 const char **renamed_entity, int *len,
4385 const char **renaming_expr)
4386{
4387 enum ada_renaming_category kind;
4388 const char *name;
4389 const char *info;
4390 const char *suffix;
14f9c5c9 4391
aeb5907d
JB
4392 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4393 || TYPE_NFIELDS (type) != 1)
4394 return ADA_NOT_RENAMING;
14f9c5c9 4395
a737d952 4396 name = TYPE_NAME (type);
aeb5907d
JB
4397 if (name == NULL)
4398 return ADA_NOT_RENAMING;
4399
4400 name = strstr (name, "___XR");
4401 if (name == NULL)
4402 return ADA_NOT_RENAMING;
4403 switch (name[5])
4404 {
4405 case '\0':
4406 case '_':
4407 kind = ADA_OBJECT_RENAMING;
4408 break;
4409 case 'E':
4410 kind = ADA_EXCEPTION_RENAMING;
4411 break;
4412 case 'P':
4413 kind = ADA_PACKAGE_RENAMING;
4414 break;
4415 case 'S':
4416 kind = ADA_SUBPROGRAM_RENAMING;
4417 break;
4418 default:
4419 return ADA_NOT_RENAMING;
4420 }
14f9c5c9 4421
aeb5907d
JB
4422 info = TYPE_FIELD_NAME (type, 0);
4423 if (info == NULL)
4424 return ADA_NOT_RENAMING;
4425 if (renamed_entity != NULL)
4426 *renamed_entity = info;
4427 suffix = strstr (info, "___XE");
4428 if (renaming_expr != NULL)
4429 *renaming_expr = suffix + 5;
4430 if (suffix == NULL || suffix == info)
4431 return ADA_NOT_RENAMING;
4432 if (len != NULL)
4433 *len = suffix - info;
4434 return kind;
a5ee536b
JB
4435}
4436
4437/* Compute the value of the given RENAMING_SYM, which is expected to
4438 be a symbol encoding a renaming expression. BLOCK is the block
4439 used to evaluate the renaming. */
52ce6436 4440
a5ee536b
JB
4441static struct value *
4442ada_read_renaming_var_value (struct symbol *renaming_sym,
3977b71f 4443 const struct block *block)
a5ee536b 4444{
bbc13ae3 4445 const char *sym_name;
a5ee536b 4446
bbc13ae3 4447 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4d01a485
PA
4448 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4449 return evaluate_expression (expr.get ());
a5ee536b 4450}
14f9c5c9 4451\f
d2e4a39e 4452
4c4b4cd2 4453 /* Evaluation: Function Calls */
14f9c5c9 4454
4c4b4cd2 4455/* Return an lvalue containing the value VAL. This is the identity on
40bc484c
JB
4456 lvalues, and otherwise has the side-effect of allocating memory
4457 in the inferior where a copy of the value contents is copied. */
14f9c5c9 4458
d2e4a39e 4459static struct value *
40bc484c 4460ensure_lval (struct value *val)
14f9c5c9 4461{
40bc484c
JB
4462 if (VALUE_LVAL (val) == not_lval
4463 || VALUE_LVAL (val) == lval_internalvar)
c3e5cd34 4464 {
df407dfe 4465 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
40bc484c
JB
4466 const CORE_ADDR addr =
4467 value_as_long (value_allocate_space_in_inferior (len));
c3e5cd34 4468
a84a8a0d 4469 VALUE_LVAL (val) = lval_memory;
1a088441 4470 set_value_address (val, addr);
40bc484c 4471 write_memory (addr, value_contents (val), len);
c3e5cd34 4472 }
14f9c5c9
AS
4473
4474 return val;
4475}
4476
4477/* Return the value ACTUAL, converted to be an appropriate value for a
4478 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4479 allocating any necessary descriptors (fat pointers), or copies of
4c4b4cd2 4480 values not residing in memory, updating it as needed. */
14f9c5c9 4481
a93c0eb6 4482struct value *
40bc484c 4483ada_convert_actual (struct value *actual, struct type *formal_type0)
14f9c5c9 4484{
df407dfe 4485 struct type *actual_type = ada_check_typedef (value_type (actual));
61ee279c 4486 struct type *formal_type = ada_check_typedef (formal_type0);
d2e4a39e
AS
4487 struct type *formal_target =
4488 TYPE_CODE (formal_type) == TYPE_CODE_PTR
61ee279c 4489 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
d2e4a39e
AS
4490 struct type *actual_target =
4491 TYPE_CODE (actual_type) == TYPE_CODE_PTR
61ee279c 4492 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
14f9c5c9 4493
4c4b4cd2 4494 if (ada_is_array_descriptor_type (formal_target)
14f9c5c9 4495 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
40bc484c 4496 return make_array_descriptor (formal_type, actual);
a84a8a0d
JB
4497 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4498 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
14f9c5c9 4499 {
a84a8a0d 4500 struct value *result;
5b4ee69b 4501
14f9c5c9 4502 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4c4b4cd2 4503 && ada_is_array_descriptor_type (actual_target))
a84a8a0d 4504 result = desc_data (actual);
cb923fcc 4505 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4c4b4cd2
PH
4506 {
4507 if (VALUE_LVAL (actual) != lval_memory)
4508 {
4509 struct value *val;
5b4ee69b 4510
df407dfe 4511 actual_type = ada_check_typedef (value_type (actual));
4c4b4cd2 4512 val = allocate_value (actual_type);
990a07ab 4513 memcpy ((char *) value_contents_raw (val),
0fd88904 4514 (char *) value_contents (actual),
4c4b4cd2 4515 TYPE_LENGTH (actual_type));
40bc484c 4516 actual = ensure_lval (val);
4c4b4cd2 4517 }
a84a8a0d 4518 result = value_addr (actual);
4c4b4cd2 4519 }
a84a8a0d
JB
4520 else
4521 return actual;
b1af9e97 4522 return value_cast_pointers (formal_type, result, 0);
14f9c5c9
AS
4523 }
4524 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4525 return ada_value_ind (actual);
8344af1e
JB
4526 else if (ada_is_aligner_type (formal_type))
4527 {
4528 /* We need to turn this parameter into an aligner type
4529 as well. */
4530 struct value *aligner = allocate_value (formal_type);
4531 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4532
4533 value_assign_to_component (aligner, component, actual);
4534 return aligner;
4535 }
14f9c5c9
AS
4536
4537 return actual;
4538}
4539
438c98a1
JB
4540/* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4541 type TYPE. This is usually an inefficient no-op except on some targets
4542 (such as AVR) where the representation of a pointer and an address
4543 differs. */
4544
4545static CORE_ADDR
4546value_pointer (struct value *value, struct type *type)
4547{
4548 struct gdbarch *gdbarch = get_type_arch (type);
4549 unsigned len = TYPE_LENGTH (type);
224c3ddb 4550 gdb_byte *buf = (gdb_byte *) alloca (len);
438c98a1
JB
4551 CORE_ADDR addr;
4552
4553 addr = value_address (value);
4554 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4555 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4556 return addr;
4557}
4558
14f9c5c9 4559
4c4b4cd2
PH
4560/* Push a descriptor of type TYPE for array value ARR on the stack at
4561 *SP, updating *SP to reflect the new descriptor. Return either
14f9c5c9 4562 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4c4b4cd2
PH
4563 to-descriptor type rather than a descriptor type), a struct value *
4564 representing a pointer to this descriptor. */
14f9c5c9 4565
d2e4a39e 4566static struct value *
40bc484c 4567make_array_descriptor (struct type *type, struct value *arr)
14f9c5c9 4568{
d2e4a39e
AS
4569 struct type *bounds_type = desc_bounds_type (type);
4570 struct type *desc_type = desc_base_type (type);
4571 struct value *descriptor = allocate_value (desc_type);
4572 struct value *bounds = allocate_value (bounds_type);
14f9c5c9 4573 int i;
d2e4a39e 4574
0963b4bd
MS
4575 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4576 i > 0; i -= 1)
14f9c5c9 4577 {
19f220c3
JK
4578 modify_field (value_type (bounds), value_contents_writeable (bounds),
4579 ada_array_bound (arr, i, 0),
4580 desc_bound_bitpos (bounds_type, i, 0),
4581 desc_bound_bitsize (bounds_type, i, 0));
4582 modify_field (value_type (bounds), value_contents_writeable (bounds),
4583 ada_array_bound (arr, i, 1),
4584 desc_bound_bitpos (bounds_type, i, 1),
4585 desc_bound_bitsize (bounds_type, i, 1));
14f9c5c9 4586 }
d2e4a39e 4587
40bc484c 4588 bounds = ensure_lval (bounds);
d2e4a39e 4589
19f220c3
JK
4590 modify_field (value_type (descriptor),
4591 value_contents_writeable (descriptor),
4592 value_pointer (ensure_lval (arr),
4593 TYPE_FIELD_TYPE (desc_type, 0)),
4594 fat_pntr_data_bitpos (desc_type),
4595 fat_pntr_data_bitsize (desc_type));
4596
4597 modify_field (value_type (descriptor),
4598 value_contents_writeable (descriptor),
4599 value_pointer (bounds,
4600 TYPE_FIELD_TYPE (desc_type, 1)),
4601 fat_pntr_bounds_bitpos (desc_type),
4602 fat_pntr_bounds_bitsize (desc_type));
14f9c5c9 4603
40bc484c 4604 descriptor = ensure_lval (descriptor);
14f9c5c9
AS
4605
4606 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4607 return value_addr (descriptor);
4608 else
4609 return descriptor;
4610}
14f9c5c9 4611\f
3d9434b5
JB
4612 /* Symbol Cache Module */
4613
3d9434b5 4614/* Performance measurements made as of 2010-01-15 indicate that
ee01b665 4615 this cache does bring some noticeable improvements. Depending
3d9434b5
JB
4616 on the type of entity being printed, the cache can make it as much
4617 as an order of magnitude faster than without it.
4618
4619 The descriptive type DWARF extension has significantly reduced
4620 the need for this cache, at least when DWARF is being used. However,
4621 even in this case, some expensive name-based symbol searches are still
4622 sometimes necessary - to find an XVZ variable, mostly. */
4623
ee01b665 4624/* Initialize the contents of SYM_CACHE. */
3d9434b5 4625
ee01b665
JB
4626static void
4627ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4628{
4629 obstack_init (&sym_cache->cache_space);
4630 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4631}
3d9434b5 4632
ee01b665
JB
4633/* Free the memory used by SYM_CACHE. */
4634
4635static void
4636ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
3d9434b5 4637{
ee01b665
JB
4638 obstack_free (&sym_cache->cache_space, NULL);
4639 xfree (sym_cache);
4640}
3d9434b5 4641
ee01b665
JB
4642/* Return the symbol cache associated to the given program space PSPACE.
4643 If not allocated for this PSPACE yet, allocate and initialize one. */
3d9434b5 4644
ee01b665
JB
4645static struct ada_symbol_cache *
4646ada_get_symbol_cache (struct program_space *pspace)
4647{
4648 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
ee01b665 4649
66c168ae 4650 if (pspace_data->sym_cache == NULL)
ee01b665 4651 {
66c168ae
JB
4652 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4653 ada_init_symbol_cache (pspace_data->sym_cache);
ee01b665
JB
4654 }
4655
66c168ae 4656 return pspace_data->sym_cache;
ee01b665 4657}
3d9434b5
JB
4658
4659/* Clear all entries from the symbol cache. */
4660
4661static void
4662ada_clear_symbol_cache (void)
4663{
ee01b665
JB
4664 struct ada_symbol_cache *sym_cache
4665 = ada_get_symbol_cache (current_program_space);
4666
4667 obstack_free (&sym_cache->cache_space, NULL);
4668 ada_init_symbol_cache (sym_cache);
3d9434b5
JB
4669}
4670
fe978cb0 4671/* Search our cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4672 Return it if found, or NULL otherwise. */
4673
4674static struct cache_entry **
fe978cb0 4675find_entry (const char *name, domain_enum domain)
3d9434b5 4676{
ee01b665
JB
4677 struct ada_symbol_cache *sym_cache
4678 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4679 int h = msymbol_hash (name) % HASH_SIZE;
4680 struct cache_entry **e;
4681
ee01b665 4682 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
3d9434b5 4683 {
fe978cb0 4684 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
3d9434b5
JB
4685 return e;
4686 }
4687 return NULL;
4688}
4689
fe978cb0 4690/* Search the symbol cache for an entry matching NAME and DOMAIN.
3d9434b5
JB
4691 Return 1 if found, 0 otherwise.
4692
4693 If an entry was found and SYM is not NULL, set *SYM to the entry's
4694 SYM. Same principle for BLOCK if not NULL. */
96d887e8 4695
96d887e8 4696static int
fe978cb0 4697lookup_cached_symbol (const char *name, domain_enum domain,
f0c5f9b2 4698 struct symbol **sym, const struct block **block)
96d887e8 4699{
fe978cb0 4700 struct cache_entry **e = find_entry (name, domain);
3d9434b5
JB
4701
4702 if (e == NULL)
4703 return 0;
4704 if (sym != NULL)
4705 *sym = (*e)->sym;
4706 if (block != NULL)
4707 *block = (*e)->block;
4708 return 1;
96d887e8
PH
4709}
4710
3d9434b5 4711/* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
fe978cb0 4712 in domain DOMAIN, save this result in our symbol cache. */
3d9434b5 4713
96d887e8 4714static void
fe978cb0 4715cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
270140bd 4716 const struct block *block)
96d887e8 4717{
ee01b665
JB
4718 struct ada_symbol_cache *sym_cache
4719 = ada_get_symbol_cache (current_program_space);
3d9434b5
JB
4720 int h;
4721 char *copy;
4722 struct cache_entry *e;
4723
1994afbf
DE
4724 /* Symbols for builtin types don't have a block.
4725 For now don't cache such symbols. */
4726 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4727 return;
4728
3d9434b5
JB
4729 /* If the symbol is a local symbol, then do not cache it, as a search
4730 for that symbol depends on the context. To determine whether
4731 the symbol is local or not, we check the block where we found it
4732 against the global and static blocks of its associated symtab. */
4733 if (sym
08be3fe3 4734 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4735 GLOBAL_BLOCK) != block
08be3fe3 4736 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
439247b6 4737 STATIC_BLOCK) != block)
3d9434b5
JB
4738 return;
4739
4740 h = msymbol_hash (name) % HASH_SIZE;
e39db4db 4741 e = XOBNEW (&sym_cache->cache_space, cache_entry);
ee01b665
JB
4742 e->next = sym_cache->root[h];
4743 sym_cache->root[h] = e;
224c3ddb
SM
4744 e->name = copy
4745 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
3d9434b5
JB
4746 strcpy (copy, name);
4747 e->sym = sym;
fe978cb0 4748 e->domain = domain;
3d9434b5 4749 e->block = block;
96d887e8 4750}
4c4b4cd2
PH
4751\f
4752 /* Symbol Lookup */
4753
b5ec771e
PA
4754/* Return the symbol name match type that should be used used when
4755 searching for all symbols matching LOOKUP_NAME.
c0431670
JB
4756
4757 LOOKUP_NAME is expected to be a symbol name after transformation
f98b2e33 4758 for Ada lookups. */
c0431670 4759
b5ec771e
PA
4760static symbol_name_match_type
4761name_match_type_from_name (const char *lookup_name)
c0431670 4762{
b5ec771e
PA
4763 return (strstr (lookup_name, "__") == NULL
4764 ? symbol_name_match_type::WILD
4765 : symbol_name_match_type::FULL);
c0431670
JB
4766}
4767
4c4b4cd2
PH
4768/* Return the result of a standard (literal, C-like) lookup of NAME in
4769 given DOMAIN, visible from lexical block BLOCK. */
4770
4771static struct symbol *
4772standard_lookup (const char *name, const struct block *block,
4773 domain_enum domain)
4774{
acbd605d 4775 /* Initialize it just to avoid a GCC false warning. */
d12307c1 4776 struct block_symbol sym = {NULL, NULL};
4c4b4cd2 4777
d12307c1
PMR
4778 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4779 return sym.symbol;
2570f2b7 4780 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
d12307c1
PMR
4781 cache_symbol (name, domain, sym.symbol, sym.block);
4782 return sym.symbol;
4c4b4cd2
PH
4783}
4784
4785
4786/* Non-zero iff there is at least one non-function/non-enumeral symbol
4787 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4788 since they contend in overloading in the same way. */
4789static int
d12307c1 4790is_nonfunction (struct block_symbol syms[], int n)
4c4b4cd2
PH
4791{
4792 int i;
4793
4794 for (i = 0; i < n; i += 1)
d12307c1
PMR
4795 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4796 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4797 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
14f9c5c9
AS
4798 return 1;
4799
4800 return 0;
4801}
4802
4803/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4c4b4cd2 4804 struct types. Otherwise, they may not. */
14f9c5c9
AS
4805
4806static int
d2e4a39e 4807equiv_types (struct type *type0, struct type *type1)
14f9c5c9 4808{
d2e4a39e 4809 if (type0 == type1)
14f9c5c9 4810 return 1;
d2e4a39e 4811 if (type0 == NULL || type1 == NULL
14f9c5c9
AS
4812 || TYPE_CODE (type0) != TYPE_CODE (type1))
4813 return 0;
d2e4a39e 4814 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
14f9c5c9
AS
4815 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4816 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4c4b4cd2 4817 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
14f9c5c9 4818 return 1;
d2e4a39e 4819
14f9c5c9
AS
4820 return 0;
4821}
4822
4823/* True iff SYM0 represents the same entity as SYM1, or one that is
4c4b4cd2 4824 no more defined than that of SYM1. */
14f9c5c9
AS
4825
4826static int
d2e4a39e 4827lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
14f9c5c9
AS
4828{
4829 if (sym0 == sym1)
4830 return 1;
176620f1 4831 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
14f9c5c9
AS
4832 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4833 return 0;
4834
d2e4a39e 4835 switch (SYMBOL_CLASS (sym0))
14f9c5c9
AS
4836 {
4837 case LOC_UNDEF:
4838 return 1;
4839 case LOC_TYPEDEF:
4840 {
4c4b4cd2
PH
4841 struct type *type0 = SYMBOL_TYPE (sym0);
4842 struct type *type1 = SYMBOL_TYPE (sym1);
0d5cff50
DE
4843 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4844 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4c4b4cd2 4845 int len0 = strlen (name0);
5b4ee69b 4846
4c4b4cd2
PH
4847 return
4848 TYPE_CODE (type0) == TYPE_CODE (type1)
4849 && (equiv_types (type0, type1)
4850 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
61012eef 4851 && startswith (name1 + len0, "___XV")));
14f9c5c9
AS
4852 }
4853 case LOC_CONST:
4854 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4c4b4cd2 4855 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
d2e4a39e
AS
4856 default:
4857 return 0;
14f9c5c9
AS
4858 }
4859}
4860
d12307c1 4861/* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4c4b4cd2 4862 records in OBSTACKP. Do nothing if SYM is a duplicate. */
14f9c5c9
AS
4863
4864static void
76a01679
JB
4865add_defn_to_vec (struct obstack *obstackp,
4866 struct symbol *sym,
f0c5f9b2 4867 const struct block *block)
14f9c5c9
AS
4868{
4869 int i;
d12307c1 4870 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
14f9c5c9 4871
529cad9c
PH
4872 /* Do not try to complete stub types, as the debugger is probably
4873 already scanning all symbols matching a certain name at the
4874 time when this function is called. Trying to replace the stub
4875 type by its associated full type will cause us to restart a scan
4876 which may lead to an infinite recursion. Instead, the client
4877 collecting the matching symbols will end up collecting several
4878 matches, with at least one of them complete. It can then filter
4879 out the stub ones if needed. */
4880
4c4b4cd2
PH
4881 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4882 {
d12307c1 4883 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4c4b4cd2 4884 return;
d12307c1 4885 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4c4b4cd2 4886 {
d12307c1 4887 prevDefns[i].symbol = sym;
4c4b4cd2 4888 prevDefns[i].block = block;
4c4b4cd2 4889 return;
76a01679 4890 }
4c4b4cd2
PH
4891 }
4892
4893 {
d12307c1 4894 struct block_symbol info;
4c4b4cd2 4895
d12307c1 4896 info.symbol = sym;
4c4b4cd2 4897 info.block = block;
d12307c1 4898 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4c4b4cd2
PH
4899 }
4900}
4901
d12307c1
PMR
4902/* Number of block_symbol structures currently collected in current vector in
4903 OBSTACKP. */
4c4b4cd2 4904
76a01679
JB
4905static int
4906num_defns_collected (struct obstack *obstackp)
4c4b4cd2 4907{
d12307c1 4908 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4c4b4cd2
PH
4909}
4910
d12307c1
PMR
4911/* Vector of block_symbol structures currently collected in current vector in
4912 OBSTACKP. If FINISH, close off the vector and return its final address. */
4c4b4cd2 4913
d12307c1 4914static struct block_symbol *
4c4b4cd2
PH
4915defns_collected (struct obstack *obstackp, int finish)
4916{
4917 if (finish)
224c3ddb 4918 return (struct block_symbol *) obstack_finish (obstackp);
4c4b4cd2 4919 else
d12307c1 4920 return (struct block_symbol *) obstack_base (obstackp);
4c4b4cd2
PH
4921}
4922
7c7b6655
TT
4923/* Return a bound minimal symbol matching NAME according to Ada
4924 decoding rules. Returns an invalid symbol if there is no such
4925 minimal symbol. Names prefixed with "standard__" are handled
4926 specially: "standard__" is first stripped off, and only static and
4927 global symbols are searched. */
4c4b4cd2 4928
7c7b6655 4929struct bound_minimal_symbol
96d887e8 4930ada_lookup_simple_minsym (const char *name)
4c4b4cd2 4931{
7c7b6655 4932 struct bound_minimal_symbol result;
4c4b4cd2 4933 struct objfile *objfile;
96d887e8 4934 struct minimal_symbol *msymbol;
4c4b4cd2 4935
7c7b6655
TT
4936 memset (&result, 0, sizeof (result));
4937
b5ec771e
PA
4938 symbol_name_match_type match_type = name_match_type_from_name (name);
4939 lookup_name_info lookup_name (name, match_type);
4940
4941 symbol_name_matcher_ftype *match_name
4942 = ada_get_symbol_name_matcher (lookup_name);
4c4b4cd2 4943
96d887e8
PH
4944 ALL_MSYMBOLS (objfile, msymbol)
4945 {
b5ec771e 4946 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
96d887e8 4947 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
7c7b6655
TT
4948 {
4949 result.minsym = msymbol;
4950 result.objfile = objfile;
4951 break;
4952 }
96d887e8 4953 }
4c4b4cd2 4954
7c7b6655 4955 return result;
96d887e8 4956}
4c4b4cd2 4957
96d887e8
PH
4958/* For all subprograms that statically enclose the subprogram of the
4959 selected frame, add symbols matching identifier NAME in DOMAIN
4960 and their blocks to the list of data in OBSTACKP, as for
48b78332
JB
4961 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4962 with a wildcard prefix. */
4c4b4cd2 4963
96d887e8
PH
4964static void
4965add_symbols_from_enclosing_procs (struct obstack *obstackp,
b5ec771e
PA
4966 const lookup_name_info &lookup_name,
4967 domain_enum domain)
96d887e8 4968{
96d887e8 4969}
14f9c5c9 4970
96d887e8
PH
4971/* True if TYPE is definitely an artificial type supplied to a symbol
4972 for which no debugging information was given in the symbol file. */
14f9c5c9 4973
96d887e8
PH
4974static int
4975is_nondebugging_type (struct type *type)
4976{
0d5cff50 4977 const char *name = ada_type_name (type);
5b4ee69b 4978
96d887e8
PH
4979 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4980}
4c4b4cd2 4981
8f17729f
JB
4982/* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4983 that are deemed "identical" for practical purposes.
4984
4985 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4986 types and that their number of enumerals is identical (in other
4987 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4988
4989static int
4990ada_identical_enum_types_p (struct type *type1, struct type *type2)
4991{
4992 int i;
4993
4994 /* The heuristic we use here is fairly conservative. We consider
4995 that 2 enumerate types are identical if they have the same
4996 number of enumerals and that all enumerals have the same
4997 underlying value and name. */
4998
4999 /* All enums in the type should have an identical underlying value. */
5000 for (i = 0; i < TYPE_NFIELDS (type1); i++)
14e75d8e 5001 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
8f17729f
JB
5002 return 0;
5003
5004 /* All enumerals should also have the same name (modulo any numerical
5005 suffix). */
5006 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5007 {
0d5cff50
DE
5008 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5009 const char *name_2 = TYPE_FIELD_NAME (type2, i);
8f17729f
JB
5010 int len_1 = strlen (name_1);
5011 int len_2 = strlen (name_2);
5012
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5014 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5015 if (len_1 != len_2
5016 || strncmp (TYPE_FIELD_NAME (type1, i),
5017 TYPE_FIELD_NAME (type2, i),
5018 len_1) != 0)
5019 return 0;
5020 }
5021
5022 return 1;
5023}
5024
5025/* Return nonzero if all the symbols in SYMS are all enumeral symbols
5026 that are deemed "identical" for practical purposes. Sometimes,
5027 enumerals are not strictly identical, but their types are so similar
5028 that they can be considered identical.
5029
5030 For instance, consider the following code:
5031
5032 type Color is (Black, Red, Green, Blue, White);
5033 type RGB_Color is new Color range Red .. Blue;
5034
5035 Type RGB_Color is a subrange of an implicit type which is a copy
5036 of type Color. If we call that implicit type RGB_ColorB ("B" is
5037 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5038 As a result, when an expression references any of the enumeral
5039 by name (Eg. "print green"), the expression is technically
5040 ambiguous and the user should be asked to disambiguate. But
5041 doing so would only hinder the user, since it wouldn't matter
5042 what choice he makes, the outcome would always be the same.
5043 So, for practical purposes, we consider them as the same. */
5044
5045static int
54d343a2 5046symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
8f17729f
JB
5047{
5048 int i;
5049
5050 /* Before performing a thorough comparison check of each type,
5051 we perform a series of inexpensive checks. We expect that these
5052 checks will quickly fail in the vast majority of cases, and thus
5053 help prevent the unnecessary use of a more expensive comparison.
5054 Said comparison also expects us to make some of these checks
5055 (see ada_identical_enum_types_p). */
5056
5057 /* Quick check: All symbols should have an enum type. */
54d343a2 5058 for (i = 0; i < syms.size (); i++)
d12307c1 5059 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
8f17729f
JB
5060 return 0;
5061
5062 /* Quick check: They should all have the same value. */
54d343a2 5063 for (i = 1; i < syms.size (); i++)
d12307c1 5064 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
8f17729f
JB
5065 return 0;
5066
5067 /* Quick check: They should all have the same number of enumerals. */
54d343a2 5068 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5069 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5070 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5071 return 0;
5072
5073 /* All the sanity checks passed, so we might have a set of
5074 identical enumeration types. Perform a more complete
5075 comparison of the type of each symbol. */
54d343a2 5076 for (i = 1; i < syms.size (); i++)
d12307c1
PMR
5077 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5078 SYMBOL_TYPE (syms[0].symbol)))
8f17729f
JB
5079 return 0;
5080
5081 return 1;
5082}
5083
54d343a2 5084/* Remove any non-debugging symbols in SYMS that definitely
96d887e8
PH
5085 duplicate other symbols in the list (The only case I know of where
5086 this happens is when object files containing stabs-in-ecoff are
5087 linked with files containing ordinary ecoff debugging symbols (or no
5088 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5089 Returns the number of items in the modified list. */
4c4b4cd2 5090
96d887e8 5091static int
54d343a2 5092remove_extra_symbols (std::vector<struct block_symbol> *syms)
96d887e8
PH
5093{
5094 int i, j;
4c4b4cd2 5095
8f17729f
JB
5096 /* We should never be called with less than 2 symbols, as there
5097 cannot be any extra symbol in that case. But it's easy to
5098 handle, since we have nothing to do in that case. */
54d343a2
TT
5099 if (syms->size () < 2)
5100 return syms->size ();
8f17729f 5101
96d887e8 5102 i = 0;
54d343a2 5103 while (i < syms->size ())
96d887e8 5104 {
a35ddb44 5105 int remove_p = 0;
339c13b6
JB
5106
5107 /* If two symbols have the same name and one of them is a stub type,
5108 the get rid of the stub. */
5109
54d343a2
TT
5110 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5111 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
339c13b6 5112 {
54d343a2 5113 for (j = 0; j < syms->size (); j++)
339c13b6
JB
5114 {
5115 if (j != i
54d343a2
TT
5116 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5117 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5118 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5119 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
a35ddb44 5120 remove_p = 1;
339c13b6
JB
5121 }
5122 }
5123
5124 /* Two symbols with the same name, same class and same address
5125 should be identical. */
5126
54d343a2
TT
5127 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5128 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5129 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
96d887e8 5130 {
54d343a2 5131 for (j = 0; j < syms->size (); j += 1)
96d887e8
PH
5132 {
5133 if (i != j
54d343a2
TT
5134 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5135 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5136 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5137 && SYMBOL_CLASS ((*syms)[i].symbol)
5138 == SYMBOL_CLASS ((*syms)[j].symbol)
5139 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5140 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
a35ddb44 5141 remove_p = 1;
4c4b4cd2 5142 }
4c4b4cd2 5143 }
339c13b6 5144
a35ddb44 5145 if (remove_p)
54d343a2 5146 syms->erase (syms->begin () + i);
339c13b6 5147
96d887e8 5148 i += 1;
14f9c5c9 5149 }
8f17729f
JB
5150
5151 /* If all the remaining symbols are identical enumerals, then
5152 just keep the first one and discard the rest.
5153
5154 Unlike what we did previously, we do not discard any entry
5155 unless they are ALL identical. This is because the symbol
5156 comparison is not a strict comparison, but rather a practical
5157 comparison. If all symbols are considered identical, then
5158 we can just go ahead and use the first one and discard the rest.
5159 But if we cannot reduce the list to a single element, we have
5160 to ask the user to disambiguate anyways. And if we have to
5161 present a multiple-choice menu, it's less confusing if the list
5162 isn't missing some choices that were identical and yet distinct. */
54d343a2
TT
5163 if (symbols_are_identical_enums (*syms))
5164 syms->resize (1);
8f17729f 5165
54d343a2 5166 return syms->size ();
14f9c5c9
AS
5167}
5168
96d887e8
PH
5169/* Given a type that corresponds to a renaming entity, use the type name
5170 to extract the scope (package name or function name, fully qualified,
5171 and following the GNAT encoding convention) where this renaming has been
49d83361 5172 defined. */
4c4b4cd2 5173
49d83361 5174static std::string
96d887e8 5175xget_renaming_scope (struct type *renaming_type)
14f9c5c9 5176{
96d887e8 5177 /* The renaming types adhere to the following convention:
0963b4bd 5178 <scope>__<rename>___<XR extension>.
96d887e8
PH
5179 So, to extract the scope, we search for the "___XR" extension,
5180 and then backtrack until we find the first "__". */
76a01679 5181
a737d952 5182 const char *name = TYPE_NAME (renaming_type);
108d56a4
SM
5183 const char *suffix = strstr (name, "___XR");
5184 const char *last;
14f9c5c9 5185
96d887e8
PH
5186 /* Now, backtrack a bit until we find the first "__". Start looking
5187 at suffix - 3, as the <rename> part is at least one character long. */
14f9c5c9 5188
96d887e8
PH
5189 for (last = suffix - 3; last > name; last--)
5190 if (last[0] == '_' && last[1] == '_')
5191 break;
76a01679 5192
96d887e8 5193 /* Make a copy of scope and return it. */
49d83361 5194 return std::string (name, last);
4c4b4cd2
PH
5195}
5196
96d887e8 5197/* Return nonzero if NAME corresponds to a package name. */
4c4b4cd2 5198
96d887e8
PH
5199static int
5200is_package_name (const char *name)
4c4b4cd2 5201{
96d887e8
PH
5202 /* Here, We take advantage of the fact that no symbols are generated
5203 for packages, while symbols are generated for each function.
5204 So the condition for NAME represent a package becomes equivalent
5205 to NAME not existing in our list of symbols. There is only one
5206 small complication with library-level functions (see below). */
4c4b4cd2 5207
96d887e8 5208 char *fun_name;
76a01679 5209
96d887e8
PH
5210 /* If it is a function that has not been defined at library level,
5211 then we should be able to look it up in the symbols. */
5212 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5213 return 0;
14f9c5c9 5214
96d887e8
PH
5215 /* Library-level function names start with "_ada_". See if function
5216 "_ada_" followed by NAME can be found. */
14f9c5c9 5217
96d887e8 5218 /* Do a quick check that NAME does not contain "__", since library-level
e1d5a0d2 5219 functions names cannot contain "__" in them. */
96d887e8
PH
5220 if (strstr (name, "__") != NULL)
5221 return 0;
4c4b4cd2 5222
b435e160 5223 fun_name = xstrprintf ("_ada_%s", name);
14f9c5c9 5224
96d887e8
PH
5225 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5226}
14f9c5c9 5227
96d887e8 5228/* Return nonzero if SYM corresponds to a renaming entity that is
aeb5907d 5229 not visible from FUNCTION_NAME. */
14f9c5c9 5230
96d887e8 5231static int
0d5cff50 5232old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
96d887e8 5233{
aeb5907d
JB
5234 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5235 return 0;
5236
49d83361 5237 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
14f9c5c9 5238
96d887e8 5239 /* If the rename has been defined in a package, then it is visible. */
49d83361
TT
5240 if (is_package_name (scope.c_str ()))
5241 return 0;
14f9c5c9 5242
96d887e8
PH
5243 /* Check that the rename is in the current function scope by checking
5244 that its name starts with SCOPE. */
76a01679 5245
96d887e8
PH
5246 /* If the function name starts with "_ada_", it means that it is
5247 a library-level function. Strip this prefix before doing the
5248 comparison, as the encoding for the renaming does not contain
5249 this prefix. */
61012eef 5250 if (startswith (function_name, "_ada_"))
96d887e8 5251 function_name += 5;
f26caa11 5252
49d83361 5253 return !startswith (function_name, scope.c_str ());
f26caa11
PH
5254}
5255
aeb5907d
JB
5256/* Remove entries from SYMS that corresponds to a renaming entity that
5257 is not visible from the function associated with CURRENT_BLOCK or
5258 that is superfluous due to the presence of more specific renaming
5259 information. Places surviving symbols in the initial entries of
5260 SYMS and returns the number of surviving symbols.
96d887e8
PH
5261
5262 Rationale:
aeb5907d
JB
5263 First, in cases where an object renaming is implemented as a
5264 reference variable, GNAT may produce both the actual reference
5265 variable and the renaming encoding. In this case, we discard the
5266 latter.
5267
5268 Second, GNAT emits a type following a specified encoding for each renaming
96d887e8
PH
5269 entity. Unfortunately, STABS currently does not support the definition
5270 of types that are local to a given lexical block, so all renamings types
5271 are emitted at library level. As a consequence, if an application
5272 contains two renaming entities using the same name, and a user tries to
5273 print the value of one of these entities, the result of the ada symbol
5274 lookup will also contain the wrong renaming type.
f26caa11 5275
96d887e8
PH
5276 This function partially covers for this limitation by attempting to
5277 remove from the SYMS list renaming symbols that should be visible
5278 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5279 method with the current information available. The implementation
5280 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5281
5282 - When the user tries to print a rename in a function while there
5283 is another rename entity defined in a package: Normally, the
5284 rename in the function has precedence over the rename in the
5285 package, so the latter should be removed from the list. This is
5286 currently not the case.
5287
5288 - This function will incorrectly remove valid renames if
5289 the CURRENT_BLOCK corresponds to a function which symbol name
5290 has been changed by an "Export" pragma. As a consequence,
5291 the user will be unable to print such rename entities. */
4c4b4cd2 5292
14f9c5c9 5293static int
54d343a2
TT
5294remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5295 const struct block *current_block)
4c4b4cd2
PH
5296{
5297 struct symbol *current_function;
0d5cff50 5298 const char *current_function_name;
4c4b4cd2 5299 int i;
aeb5907d
JB
5300 int is_new_style_renaming;
5301
5302 /* If there is both a renaming foo___XR... encoded as a variable and
5303 a simple variable foo in the same block, discard the latter.
0963b4bd 5304 First, zero out such symbols, then compress. */
aeb5907d 5305 is_new_style_renaming = 0;
54d343a2 5306 for (i = 0; i < syms->size (); i += 1)
aeb5907d 5307 {
54d343a2
TT
5308 struct symbol *sym = (*syms)[i].symbol;
5309 const struct block *block = (*syms)[i].block;
aeb5907d
JB
5310 const char *name;
5311 const char *suffix;
5312
5313 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5314 continue;
5315 name = SYMBOL_LINKAGE_NAME (sym);
5316 suffix = strstr (name, "___XR");
5317
5318 if (suffix != NULL)
5319 {
5320 int name_len = suffix - name;
5321 int j;
5b4ee69b 5322
aeb5907d 5323 is_new_style_renaming = 1;
54d343a2
TT
5324 for (j = 0; j < syms->size (); j += 1)
5325 if (i != j && (*syms)[j].symbol != NULL
5326 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
aeb5907d 5327 name_len) == 0
54d343a2
TT
5328 && block == (*syms)[j].block)
5329 (*syms)[j].symbol = NULL;
aeb5907d
JB
5330 }
5331 }
5332 if (is_new_style_renaming)
5333 {
5334 int j, k;
5335
54d343a2
TT
5336 for (j = k = 0; j < syms->size (); j += 1)
5337 if ((*syms)[j].symbol != NULL)
aeb5907d 5338 {
54d343a2 5339 (*syms)[k] = (*syms)[j];
aeb5907d
JB
5340 k += 1;
5341 }
5342 return k;
5343 }
4c4b4cd2
PH
5344
5345 /* Extract the function name associated to CURRENT_BLOCK.
5346 Abort if unable to do so. */
76a01679 5347
4c4b4cd2 5348 if (current_block == NULL)
54d343a2 5349 return syms->size ();
76a01679 5350
7f0df278 5351 current_function = block_linkage_function (current_block);
4c4b4cd2 5352 if (current_function == NULL)
54d343a2 5353 return syms->size ();
4c4b4cd2
PH
5354
5355 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5356 if (current_function_name == NULL)
54d343a2 5357 return syms->size ();
4c4b4cd2
PH
5358
5359 /* Check each of the symbols, and remove it from the list if it is
5360 a type corresponding to a renaming that is out of the scope of
5361 the current block. */
5362
5363 i = 0;
54d343a2 5364 while (i < syms->size ())
4c4b4cd2 5365 {
54d343a2 5366 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
aeb5907d 5367 == ADA_OBJECT_RENAMING
54d343a2
TT
5368 && old_renaming_is_invisible ((*syms)[i].symbol,
5369 current_function_name))
5370 syms->erase (syms->begin () + i);
4c4b4cd2
PH
5371 else
5372 i += 1;
5373 }
5374
54d343a2 5375 return syms->size ();
4c4b4cd2
PH
5376}
5377
339c13b6
JB
5378/* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5379 whose name and domain match NAME and DOMAIN respectively.
5380 If no match was found, then extend the search to "enclosing"
5381 routines (in other words, if we're inside a nested function,
5382 search the symbols defined inside the enclosing functions).
d0a8ab18
JB
5383 If WILD_MATCH_P is nonzero, perform the naming matching in
5384 "wild" mode (see function "wild_match" for more info).
339c13b6
JB
5385
5386 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5387
5388static void
b5ec771e
PA
5389ada_add_local_symbols (struct obstack *obstackp,
5390 const lookup_name_info &lookup_name,
5391 const struct block *block, domain_enum domain)
339c13b6
JB
5392{
5393 int block_depth = 0;
5394
5395 while (block != NULL)
5396 {
5397 block_depth += 1;
b5ec771e 5398 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
339c13b6
JB
5399
5400 /* If we found a non-function match, assume that's the one. */
5401 if (is_nonfunction (defns_collected (obstackp, 0),
5402 num_defns_collected (obstackp)))
5403 return;
5404
5405 block = BLOCK_SUPERBLOCK (block);
5406 }
5407
5408 /* If no luck so far, try to find NAME as a local symbol in some lexically
5409 enclosing subprogram. */
5410 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
b5ec771e 5411 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
339c13b6
JB
5412}
5413
ccefe4c4 5414/* An object of this type is used as the user_data argument when
40658b94 5415 calling the map_matching_symbols method. */
ccefe4c4 5416
40658b94 5417struct match_data
ccefe4c4 5418{
40658b94 5419 struct objfile *objfile;
ccefe4c4 5420 struct obstack *obstackp;
40658b94
PH
5421 struct symbol *arg_sym;
5422 int found_sym;
ccefe4c4
TT
5423};
5424
22cee43f 5425/* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
40658b94
PH
5426 to a list of symbols. DATA0 is a pointer to a struct match_data *
5427 containing the obstack that collects the symbol list, the file that SYM
5428 must come from, a flag indicating whether a non-argument symbol has
5429 been found in the current block, and the last argument symbol
5430 passed in SYM within the current block (if any). When SYM is null,
5431 marking the end of a block, the argument symbol is added if no
5432 other has been found. */
ccefe4c4 5433
40658b94
PH
5434static int
5435aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
ccefe4c4 5436{
40658b94
PH
5437 struct match_data *data = (struct match_data *) data0;
5438
5439 if (sym == NULL)
5440 {
5441 if (!data->found_sym && data->arg_sym != NULL)
5442 add_defn_to_vec (data->obstackp,
5443 fixup_symbol_section (data->arg_sym, data->objfile),
5444 block);
5445 data->found_sym = 0;
5446 data->arg_sym = NULL;
5447 }
5448 else
5449 {
5450 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5451 return 0;
5452 else if (SYMBOL_IS_ARGUMENT (sym))
5453 data->arg_sym = sym;
5454 else
5455 {
5456 data->found_sym = 1;
5457 add_defn_to_vec (data->obstackp,
5458 fixup_symbol_section (sym, data->objfile),
5459 block);
5460 }
5461 }
5462 return 0;
5463}
5464
b5ec771e
PA
5465/* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5466 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5467 symbols to OBSTACKP. Return whether we found such symbols. */
22cee43f
PMR
5468
5469static int
5470ada_add_block_renamings (struct obstack *obstackp,
5471 const struct block *block,
b5ec771e
PA
5472 const lookup_name_info &lookup_name,
5473 domain_enum domain)
22cee43f
PMR
5474{
5475 struct using_direct *renaming;
5476 int defns_mark = num_defns_collected (obstackp);
5477
b5ec771e
PA
5478 symbol_name_matcher_ftype *name_match
5479 = ada_get_symbol_name_matcher (lookup_name);
5480
22cee43f
PMR
5481 for (renaming = block_using (block);
5482 renaming != NULL;
5483 renaming = renaming->next)
5484 {
5485 const char *r_name;
22cee43f
PMR
5486
5487 /* Avoid infinite recursions: skip this renaming if we are actually
5488 already traversing it.
5489
5490 Currently, symbol lookup in Ada don't use the namespace machinery from
5491 C++/Fortran support: skip namespace imports that use them. */
5492 if (renaming->searched
5493 || (renaming->import_src != NULL
5494 && renaming->import_src[0] != '\0')
5495 || (renaming->import_dest != NULL
5496 && renaming->import_dest[0] != '\0'))
5497 continue;
5498 renaming->searched = 1;
5499
5500 /* TODO: here, we perform another name-based symbol lookup, which can
5501 pull its own multiple overloads. In theory, we should be able to do
5502 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5503 not a simple name. But in order to do this, we would need to enhance
5504 the DWARF reader to associate a symbol to this renaming, instead of a
5505 name. So, for now, we do something simpler: re-use the C++/Fortran
5506 namespace machinery. */
5507 r_name = (renaming->alias != NULL
5508 ? renaming->alias
5509 : renaming->declaration);
b5ec771e
PA
5510 if (name_match (r_name, lookup_name, NULL))
5511 {
5512 lookup_name_info decl_lookup_name (renaming->declaration,
5513 lookup_name.match_type ());
5514 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5515 1, NULL);
5516 }
22cee43f
PMR
5517 renaming->searched = 0;
5518 }
5519 return num_defns_collected (obstackp) != defns_mark;
5520}
5521
db230ce3
JB
5522/* Implements compare_names, but only applying the comparision using
5523 the given CASING. */
5b4ee69b 5524
40658b94 5525static int
db230ce3
JB
5526compare_names_with_case (const char *string1, const char *string2,
5527 enum case_sensitivity casing)
40658b94
PH
5528{
5529 while (*string1 != '\0' && *string2 != '\0')
5530 {
db230ce3
JB
5531 char c1, c2;
5532
40658b94
PH
5533 if (isspace (*string1) || isspace (*string2))
5534 return strcmp_iw_ordered (string1, string2);
db230ce3
JB
5535
5536 if (casing == case_sensitive_off)
5537 {
5538 c1 = tolower (*string1);
5539 c2 = tolower (*string2);
5540 }
5541 else
5542 {
5543 c1 = *string1;
5544 c2 = *string2;
5545 }
5546 if (c1 != c2)
40658b94 5547 break;
db230ce3 5548
40658b94
PH
5549 string1 += 1;
5550 string2 += 1;
5551 }
db230ce3 5552
40658b94
PH
5553 switch (*string1)
5554 {
5555 case '(':
5556 return strcmp_iw_ordered (string1, string2);
5557 case '_':
5558 if (*string2 == '\0')
5559 {
052874e8 5560 if (is_name_suffix (string1))
40658b94
PH
5561 return 0;
5562 else
1a1d5513 5563 return 1;
40658b94 5564 }
dbb8534f 5565 /* FALLTHROUGH */
40658b94
PH
5566 default:
5567 if (*string2 == '(')
5568 return strcmp_iw_ordered (string1, string2);
5569 else
db230ce3
JB
5570 {
5571 if (casing == case_sensitive_off)
5572 return tolower (*string1) - tolower (*string2);
5573 else
5574 return *string1 - *string2;
5575 }
40658b94 5576 }
ccefe4c4
TT
5577}
5578
db230ce3
JB
5579/* Compare STRING1 to STRING2, with results as for strcmp.
5580 Compatible with strcmp_iw_ordered in that...
5581
5582 strcmp_iw_ordered (STRING1, STRING2) <= 0
5583
5584 ... implies...
5585
5586 compare_names (STRING1, STRING2) <= 0
5587
5588 (they may differ as to what symbols compare equal). */
5589
5590static int
5591compare_names (const char *string1, const char *string2)
5592{
5593 int result;
5594
5595 /* Similar to what strcmp_iw_ordered does, we need to perform
5596 a case-insensitive comparison first, and only resort to
5597 a second, case-sensitive, comparison if the first one was
5598 not sufficient to differentiate the two strings. */
5599
5600 result = compare_names_with_case (string1, string2, case_sensitive_off);
5601 if (result == 0)
5602 result = compare_names_with_case (string1, string2, case_sensitive_on);
5603
5604 return result;
5605}
5606
b5ec771e
PA
5607/* Convenience function to get at the Ada encoded lookup name for
5608 LOOKUP_NAME, as a C string. */
5609
5610static const char *
5611ada_lookup_name (const lookup_name_info &lookup_name)
5612{
5613 return lookup_name.ada ().lookup_name ().c_str ();
5614}
5615
339c13b6 5616/* Add to OBSTACKP all non-local symbols whose name and domain match
b5ec771e
PA
5617 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5618 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5619 symbols otherwise. */
339c13b6
JB
5620
5621static void
b5ec771e
PA
5622add_nonlocal_symbols (struct obstack *obstackp,
5623 const lookup_name_info &lookup_name,
5624 domain_enum domain, int global)
339c13b6
JB
5625{
5626 struct objfile *objfile;
22cee43f 5627 struct compunit_symtab *cu;
40658b94 5628 struct match_data data;
339c13b6 5629
6475f2fe 5630 memset (&data, 0, sizeof data);
ccefe4c4 5631 data.obstackp = obstackp;
339c13b6 5632
b5ec771e
PA
5633 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5634
ccefe4c4 5635 ALL_OBJFILES (objfile)
40658b94
PH
5636 {
5637 data.objfile = objfile;
5638
5639 if (is_wild_match)
b5ec771e
PA
5640 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5641 domain, global,
4186eb54 5642 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5643 symbol_name_match_type::WILD,
5644 NULL);
40658b94 5645 else
b5ec771e
PA
5646 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5647 domain, global,
4186eb54 5648 aux_add_nonlocal_symbols, &data,
b5ec771e
PA
5649 symbol_name_match_type::FULL,
5650 compare_names);
22cee43f
PMR
5651
5652 ALL_OBJFILE_COMPUNITS (objfile, cu)
5653 {
5654 const struct block *global_block
5655 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5656
b5ec771e
PA
5657 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5658 domain))
22cee43f
PMR
5659 data.found_sym = 1;
5660 }
40658b94
PH
5661 }
5662
5663 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5664 {
b5ec771e
PA
5665 const char *name = ada_lookup_name (lookup_name);
5666 std::string name1 = std::string ("<_ada_") + name + '>';
5667
40658b94
PH
5668 ALL_OBJFILES (objfile)
5669 {
40658b94 5670 data.objfile = objfile;
b5ec771e
PA
5671 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5672 domain, global,
0963b4bd
MS
5673 aux_add_nonlocal_symbols,
5674 &data,
b5ec771e
PA
5675 symbol_name_match_type::FULL,
5676 compare_names);
40658b94
PH
5677 }
5678 }
339c13b6
JB
5679}
5680
b5ec771e
PA
5681/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5682 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5683 returning the number of matches. Add these to OBSTACKP.
4eeaa230 5684
22cee43f
PMR
5685 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
4c4b4cd2 5687 is the one match returned (no other matches in that or
d9680e73 5688 enclosing blocks is returned). If there are any matches in or
22cee43f 5689 surrounding BLOCK, then these alone are returned.
4eeaa230 5690
b5ec771e
PA
5691 Names prefixed with "standard__" are handled specially:
5692 "standard__" is first stripped off (by the lookup_name
5693 constructor), and only static and global symbols are searched.
14f9c5c9 5694
22cee43f
PMR
5695 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5696 to lookup global symbols. */
5697
5698static void
5699ada_add_all_symbols (struct obstack *obstackp,
5700 const struct block *block,
b5ec771e 5701 const lookup_name_info &lookup_name,
22cee43f
PMR
5702 domain_enum domain,
5703 int full_search,
5704 int *made_global_lookup_p)
14f9c5c9
AS
5705{
5706 struct symbol *sym;
14f9c5c9 5707
22cee43f
PMR
5708 if (made_global_lookup_p)
5709 *made_global_lookup_p = 0;
339c13b6
JB
5710
5711 /* Special case: If the user specifies a symbol name inside package
5712 Standard, do a non-wild matching of the symbol name without
5713 the "standard__" prefix. This was primarily introduced in order
5714 to allow the user to specifically access the standard exceptions
5715 using, for instance, Standard.Constraint_Error when Constraint_Error
5716 is ambiguous (due to the user defining its own Constraint_Error
5717 entity inside its program). */
b5ec771e
PA
5718 if (lookup_name.ada ().standard_p ())
5719 block = NULL;
4c4b4cd2 5720
339c13b6 5721 /* Check the non-global symbols. If we have ANY match, then we're done. */
14f9c5c9 5722
4eeaa230
DE
5723 if (block != NULL)
5724 {
5725 if (full_search)
b5ec771e 5726 ada_add_local_symbols (obstackp, lookup_name, block, domain);
4eeaa230
DE
5727 else
5728 {
5729 /* In the !full_search case we're are being called by
5730 ada_iterate_over_symbols, and we don't want to search
5731 superblocks. */
b5ec771e 5732 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
4eeaa230 5733 }
22cee43f
PMR
5734 if (num_defns_collected (obstackp) > 0 || !full_search)
5735 return;
4eeaa230 5736 }
d2e4a39e 5737
339c13b6
JB
5738 /* No non-global symbols found. Check our cache to see if we have
5739 already performed this search before. If we have, then return
5740 the same result. */
5741
b5ec771e
PA
5742 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5743 domain, &sym, &block))
4c4b4cd2
PH
5744 {
5745 if (sym != NULL)
b5ec771e 5746 add_defn_to_vec (obstackp, sym, block);
22cee43f 5747 return;
4c4b4cd2 5748 }
14f9c5c9 5749
22cee43f
PMR
5750 if (made_global_lookup_p)
5751 *made_global_lookup_p = 1;
b1eedac9 5752
339c13b6
JB
5753 /* Search symbols from all global blocks. */
5754
b5ec771e 5755 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
d2e4a39e 5756
4c4b4cd2 5757 /* Now add symbols from all per-file blocks if we've gotten no hits
339c13b6 5758 (not strictly correct, but perhaps better than an error). */
d2e4a39e 5759
22cee43f 5760 if (num_defns_collected (obstackp) == 0)
b5ec771e 5761 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
22cee43f
PMR
5762}
5763
b5ec771e
PA
5764/* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5765 is non-zero, enclosing scope and in global scopes, returning the number of
22cee43f 5766 matches.
54d343a2
TT
5767 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5768 found and the blocks and symbol tables (if any) in which they were
5769 found.
22cee43f
PMR
5770
5771 When full_search is non-zero, any non-function/non-enumeral
5772 symbol match within the nest of blocks whose innermost member is BLOCK,
5773 is the one match returned (no other matches in that or
5774 enclosing blocks is returned). If there are any matches in or
5775 surrounding BLOCK, then these alone are returned.
5776
5777 Names prefixed with "standard__" are handled specially: "standard__"
5778 is first stripped off, and only static and global symbols are searched. */
5779
5780static int
b5ec771e
PA
5781ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5782 const struct block *block,
22cee43f 5783 domain_enum domain,
54d343a2 5784 std::vector<struct block_symbol> *results,
22cee43f
PMR
5785 int full_search)
5786{
22cee43f
PMR
5787 int syms_from_global_search;
5788 int ndefns;
ec6a20c2
JB
5789 int results_size;
5790 auto_obstack obstack;
22cee43f 5791
ec6a20c2 5792 ada_add_all_symbols (&obstack, block, lookup_name,
b5ec771e 5793 domain, full_search, &syms_from_global_search);
14f9c5c9 5794
ec6a20c2
JB
5795 ndefns = num_defns_collected (&obstack);
5796
54d343a2
TT
5797 struct block_symbol *base = defns_collected (&obstack, 1);
5798 for (int i = 0; i < ndefns; ++i)
5799 results->push_back (base[i]);
4c4b4cd2 5800
54d343a2 5801 ndefns = remove_extra_symbols (results);
4c4b4cd2 5802
b1eedac9 5803 if (ndefns == 0 && full_search && syms_from_global_search)
b5ec771e 5804 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
14f9c5c9 5805
b1eedac9 5806 if (ndefns == 1 && full_search && syms_from_global_search)
b5ec771e
PA
5807 cache_symbol (ada_lookup_name (lookup_name), domain,
5808 (*results)[0].symbol, (*results)[0].block);
14f9c5c9 5809
54d343a2 5810 ndefns = remove_irrelevant_renamings (results, block);
ec6a20c2 5811
14f9c5c9
AS
5812 return ndefns;
5813}
5814
b5ec771e 5815/* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
54d343a2
TT
5816 in global scopes, returning the number of matches, and filling *RESULTS
5817 with (SYM,BLOCK) tuples.
ec6a20c2 5818
4eeaa230
DE
5819 See ada_lookup_symbol_list_worker for further details. */
5820
5821int
b5ec771e 5822ada_lookup_symbol_list (const char *name, const struct block *block,
54d343a2
TT
5823 domain_enum domain,
5824 std::vector<struct block_symbol> *results)
4eeaa230 5825{
b5ec771e
PA
5826 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5827 lookup_name_info lookup_name (name, name_match_type);
5828
5829 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
4eeaa230
DE
5830}
5831
5832/* Implementation of the la_iterate_over_symbols method. */
5833
5834static void
14bc53a8 5835ada_iterate_over_symbols
b5ec771e
PA
5836 (const struct block *block, const lookup_name_info &name,
5837 domain_enum domain,
14bc53a8 5838 gdb::function_view<symbol_found_callback_ftype> callback)
4eeaa230
DE
5839{
5840 int ndefs, i;
54d343a2 5841 std::vector<struct block_symbol> results;
4eeaa230
DE
5842
5843 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
ec6a20c2 5844
4eeaa230
DE
5845 for (i = 0; i < ndefs; ++i)
5846 {
14bc53a8 5847 if (!callback (results[i].symbol))
4eeaa230
DE
5848 break;
5849 }
5850}
5851
4e5c77fe
JB
5852/* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5853 to 1, but choosing the first symbol found if there are multiple
5854 choices.
5855
5e2336be
JB
5856 The result is stored in *INFO, which must be non-NULL.
5857 If no match is found, INFO->SYM is set to NULL. */
4e5c77fe
JB
5858
5859void
5860ada_lookup_encoded_symbol (const char *name, const struct block *block,
fe978cb0 5861 domain_enum domain,
d12307c1 5862 struct block_symbol *info)
14f9c5c9 5863{
b5ec771e
PA
5864 /* Since we already have an encoded name, wrap it in '<>' to force a
5865 verbatim match. Otherwise, if the name happens to not look like
5866 an encoded name (because it doesn't include a "__"),
5867 ada_lookup_name_info would re-encode/fold it again, and that
5868 would e.g., incorrectly lowercase object renaming names like
5869 "R28b" -> "r28b". */
5870 std::string verbatim = std::string ("<") + name + '>';
5871
5e2336be 5872 gdb_assert (info != NULL);
f98fc17b 5873 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
4e5c77fe 5874}
aeb5907d
JB
5875
5876/* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5877 scope and in global scopes, or NULL if none. NAME is folded and
5878 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
0963b4bd 5879 choosing the first symbol if there are multiple choices.
4e5c77fe
JB
5880 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5881
d12307c1 5882struct block_symbol
aeb5907d 5883ada_lookup_symbol (const char *name, const struct block *block0,
fe978cb0 5884 domain_enum domain, int *is_a_field_of_this)
aeb5907d
JB
5885{
5886 if (is_a_field_of_this != NULL)
5887 *is_a_field_of_this = 0;
5888
54d343a2 5889 std::vector<struct block_symbol> candidates;
f98fc17b 5890 int n_candidates;
f98fc17b
PA
5891
5892 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
f98fc17b
PA
5893
5894 if (n_candidates == 0)
54d343a2 5895 return {};
f98fc17b
PA
5896
5897 block_symbol info = candidates[0];
5898 info.symbol = fixup_symbol_section (info.symbol, NULL);
d12307c1 5899 return info;
4c4b4cd2 5900}
14f9c5c9 5901
d12307c1 5902static struct block_symbol
f606139a
DE
5903ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5904 const char *name,
76a01679 5905 const struct block *block,
21b556f4 5906 const domain_enum domain)
4c4b4cd2 5907{
d12307c1 5908 struct block_symbol sym;
04dccad0
JB
5909
5910 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
d12307c1 5911 if (sym.symbol != NULL)
04dccad0
JB
5912 return sym;
5913
5914 /* If we haven't found a match at this point, try the primitive
5915 types. In other languages, this search is performed before
5916 searching for global symbols in order to short-circuit that
5917 global-symbol search if it happens that the name corresponds
5918 to a primitive type. But we cannot do the same in Ada, because
5919 it is perfectly legitimate for a program to declare a type which
5920 has the same name as a standard type. If looking up a type in
5921 that situation, we have traditionally ignored the primitive type
5922 in favor of user-defined types. This is why, unlike most other
5923 languages, we search the primitive types this late and only after
5924 having searched the global symbols without success. */
5925
5926 if (domain == VAR_DOMAIN)
5927 {
5928 struct gdbarch *gdbarch;
5929
5930 if (block == NULL)
5931 gdbarch = target_gdbarch ();
5932 else
5933 gdbarch = block_gdbarch (block);
d12307c1
PMR
5934 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5935 if (sym.symbol != NULL)
04dccad0
JB
5936 return sym;
5937 }
5938
d12307c1 5939 return (struct block_symbol) {NULL, NULL};
14f9c5c9
AS
5940}
5941
5942
4c4b4cd2
PH
5943/* True iff STR is a possible encoded suffix of a normal Ada name
5944 that is to be ignored for matching purposes. Suffixes of parallel
5945 names (e.g., XVE) are not included here. Currently, the possible suffixes
5823c3ef 5946 are given by any of the regular expressions:
4c4b4cd2 5947
babe1480
JB
5948 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5949 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
9ac7f98e 5950 TKB [subprogram suffix for task bodies]
babe1480 5951 _E[0-9]+[bs]$ [protected object entry suffixes]
61ee279c 5952 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
babe1480
JB
5953
5954 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5955 match is performed. This sequence is used to differentiate homonyms,
5956 is an optional part of a valid name suffix. */
4c4b4cd2 5957
14f9c5c9 5958static int
d2e4a39e 5959is_name_suffix (const char *str)
14f9c5c9
AS
5960{
5961 int k;
4c4b4cd2
PH
5962 const char *matching;
5963 const int len = strlen (str);
5964
babe1480
JB
5965 /* Skip optional leading __[0-9]+. */
5966
4c4b4cd2
PH
5967 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5968 {
babe1480
JB
5969 str += 3;
5970 while (isdigit (str[0]))
5971 str += 1;
4c4b4cd2 5972 }
babe1480
JB
5973
5974 /* [.$][0-9]+ */
4c4b4cd2 5975
babe1480 5976 if (str[0] == '.' || str[0] == '$')
4c4b4cd2 5977 {
babe1480 5978 matching = str + 1;
4c4b4cd2
PH
5979 while (isdigit (matching[0]))
5980 matching += 1;
5981 if (matching[0] == '\0')
5982 return 1;
5983 }
5984
5985 /* ___[0-9]+ */
babe1480 5986
4c4b4cd2
PH
5987 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5988 {
5989 matching = str + 3;
5990 while (isdigit (matching[0]))
5991 matching += 1;
5992 if (matching[0] == '\0')
5993 return 1;
5994 }
5995
9ac7f98e
JB
5996 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5997
5998 if (strcmp (str, "TKB") == 0)
5999 return 1;
6000
529cad9c
PH
6001#if 0
6002 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
0963b4bd
MS
6003 with a N at the end. Unfortunately, the compiler uses the same
6004 convention for other internal types it creates. So treating
529cad9c 6005 all entity names that end with an "N" as a name suffix causes
0963b4bd
MS
6006 some regressions. For instance, consider the case of an enumerated
6007 type. To support the 'Image attribute, it creates an array whose
529cad9c
PH
6008 name ends with N.
6009 Having a single character like this as a suffix carrying some
0963b4bd 6010 information is a bit risky. Perhaps we should change the encoding
529cad9c
PH
6011 to be something like "_N" instead. In the meantime, do not do
6012 the following check. */
6013 /* Protected Object Subprograms */
6014 if (len == 1 && str [0] == 'N')
6015 return 1;
6016#endif
6017
6018 /* _E[0-9]+[bs]$ */
6019 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6020 {
6021 matching = str + 3;
6022 while (isdigit (matching[0]))
6023 matching += 1;
6024 if ((matching[0] == 'b' || matching[0] == 's')
6025 && matching [1] == '\0')
6026 return 1;
6027 }
6028
4c4b4cd2
PH
6029 /* ??? We should not modify STR directly, as we are doing below. This
6030 is fine in this case, but may become problematic later if we find
6031 that this alternative did not work, and want to try matching
6032 another one from the begining of STR. Since we modified it, we
6033 won't be able to find the begining of the string anymore! */
14f9c5c9
AS
6034 if (str[0] == 'X')
6035 {
6036 str += 1;
d2e4a39e 6037 while (str[0] != '_' && str[0] != '\0')
4c4b4cd2
PH
6038 {
6039 if (str[0] != 'n' && str[0] != 'b')
6040 return 0;
6041 str += 1;
6042 }
14f9c5c9 6043 }
babe1480 6044
14f9c5c9
AS
6045 if (str[0] == '\000')
6046 return 1;
babe1480 6047
d2e4a39e 6048 if (str[0] == '_')
14f9c5c9
AS
6049 {
6050 if (str[1] != '_' || str[2] == '\000')
4c4b4cd2 6051 return 0;
d2e4a39e 6052 if (str[2] == '_')
4c4b4cd2 6053 {
61ee279c
PH
6054 if (strcmp (str + 3, "JM") == 0)
6055 return 1;
6056 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6057 the LJM suffix in favor of the JM one. But we will
6058 still accept LJM as a valid suffix for a reasonable
6059 amount of time, just to allow ourselves to debug programs
6060 compiled using an older version of GNAT. */
4c4b4cd2
PH
6061 if (strcmp (str + 3, "LJM") == 0)
6062 return 1;
6063 if (str[3] != 'X')
6064 return 0;
1265e4aa
JB
6065 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6066 || str[4] == 'U' || str[4] == 'P')
4c4b4cd2
PH
6067 return 1;
6068 if (str[4] == 'R' && str[5] != 'T')
6069 return 1;
6070 return 0;
6071 }
6072 if (!isdigit (str[2]))
6073 return 0;
6074 for (k = 3; str[k] != '\0'; k += 1)
6075 if (!isdigit (str[k]) && str[k] != '_')
6076 return 0;
14f9c5c9
AS
6077 return 1;
6078 }
4c4b4cd2 6079 if (str[0] == '$' && isdigit (str[1]))
14f9c5c9 6080 {
4c4b4cd2
PH
6081 for (k = 2; str[k] != '\0'; k += 1)
6082 if (!isdigit (str[k]) && str[k] != '_')
6083 return 0;
14f9c5c9
AS
6084 return 1;
6085 }
6086 return 0;
6087}
d2e4a39e 6088
aeb5907d
JB
6089/* Return non-zero if the string starting at NAME and ending before
6090 NAME_END contains no capital letters. */
529cad9c
PH
6091
6092static int
6093is_valid_name_for_wild_match (const char *name0)
6094{
6095 const char *decoded_name = ada_decode (name0);
6096 int i;
6097
5823c3ef
JB
6098 /* If the decoded name starts with an angle bracket, it means that
6099 NAME0 does not follow the GNAT encoding format. It should then
6100 not be allowed as a possible wild match. */
6101 if (decoded_name[0] == '<')
6102 return 0;
6103
529cad9c
PH
6104 for (i=0; decoded_name[i] != '\0'; i++)
6105 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6106 return 0;
6107
6108 return 1;
6109}
6110
73589123
PH
6111/* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6112 that could start a simple name. Assumes that *NAMEP points into
6113 the string beginning at NAME0. */
4c4b4cd2 6114
14f9c5c9 6115static int
73589123 6116advance_wild_match (const char **namep, const char *name0, int target0)
14f9c5c9 6117{
73589123 6118 const char *name = *namep;
5b4ee69b 6119
5823c3ef 6120 while (1)
14f9c5c9 6121 {
aa27d0b3 6122 int t0, t1;
73589123
PH
6123
6124 t0 = *name;
6125 if (t0 == '_')
6126 {
6127 t1 = name[1];
6128 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6129 {
6130 name += 1;
61012eef 6131 if (name == name0 + 5 && startswith (name0, "_ada"))
73589123
PH
6132 break;
6133 else
6134 name += 1;
6135 }
aa27d0b3
JB
6136 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6137 || name[2] == target0))
73589123
PH
6138 {
6139 name += 2;
6140 break;
6141 }
6142 else
6143 return 0;
6144 }
6145 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6146 name += 1;
6147 else
5823c3ef 6148 return 0;
73589123
PH
6149 }
6150
6151 *namep = name;
6152 return 1;
6153}
6154
b5ec771e
PA
6155/* Return true iff NAME encodes a name of the form prefix.PATN.
6156 Ignores any informational suffixes of NAME (i.e., for which
6157 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6158 simple name. */
73589123 6159
b5ec771e 6160static bool
73589123
PH
6161wild_match (const char *name, const char *patn)
6162{
22e048c9 6163 const char *p;
73589123
PH
6164 const char *name0 = name;
6165
6166 while (1)
6167 {
6168 const char *match = name;
6169
6170 if (*name == *patn)
6171 {
6172 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6173 if (*p != *name)
6174 break;
6175 if (*p == '\0' && is_name_suffix (name))
b5ec771e 6176 return match == name0 || is_valid_name_for_wild_match (name0);
73589123
PH
6177
6178 if (name[-1] == '_')
6179 name -= 1;
6180 }
6181 if (!advance_wild_match (&name, name0, *patn))
b5ec771e 6182 return false;
96d887e8 6183 }
96d887e8
PH
6184}
6185
b5ec771e
PA
6186/* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6187 any trailing suffixes that encode debugging information or leading
6188 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6189 information that is ignored). */
40658b94 6190
b5ec771e 6191static bool
c4d840bd
PH
6192full_match (const char *sym_name, const char *search_name)
6193{
b5ec771e
PA
6194 size_t search_name_len = strlen (search_name);
6195
6196 if (strncmp (sym_name, search_name, search_name_len) == 0
6197 && is_name_suffix (sym_name + search_name_len))
6198 return true;
6199
6200 if (startswith (sym_name, "_ada_")
6201 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6202 && is_name_suffix (sym_name + search_name_len + 5))
6203 return true;
c4d840bd 6204
b5ec771e
PA
6205 return false;
6206}
c4d840bd 6207
b5ec771e
PA
6208/* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6209 *defn_symbols, updating the list of symbols in OBSTACKP (if
6210 necessary). OBJFILE is the section containing BLOCK. */
96d887e8
PH
6211
6212static void
6213ada_add_block_symbols (struct obstack *obstackp,
b5ec771e
PA
6214 const struct block *block,
6215 const lookup_name_info &lookup_name,
6216 domain_enum domain, struct objfile *objfile)
96d887e8 6217{
8157b174 6218 struct block_iterator iter;
96d887e8
PH
6219 /* A matching argument symbol, if any. */
6220 struct symbol *arg_sym;
6221 /* Set true when we find a matching non-argument symbol. */
6222 int found_sym;
6223 struct symbol *sym;
6224
6225 arg_sym = NULL;
6226 found_sym = 0;
b5ec771e
PA
6227 for (sym = block_iter_match_first (block, lookup_name, &iter);
6228 sym != NULL;
6229 sym = block_iter_match_next (lookup_name, &iter))
96d887e8 6230 {
b5ec771e
PA
6231 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6232 SYMBOL_DOMAIN (sym), domain))
6233 {
6234 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6235 {
6236 if (SYMBOL_IS_ARGUMENT (sym))
6237 arg_sym = sym;
6238 else
6239 {
6240 found_sym = 1;
6241 add_defn_to_vec (obstackp,
6242 fixup_symbol_section (sym, objfile),
6243 block);
6244 }
6245 }
6246 }
96d887e8
PH
6247 }
6248
22cee43f
PMR
6249 /* Handle renamings. */
6250
b5ec771e 6251 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
22cee43f
PMR
6252 found_sym = 1;
6253
96d887e8
PH
6254 if (!found_sym && arg_sym != NULL)
6255 {
76a01679
JB
6256 add_defn_to_vec (obstackp,
6257 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6258 block);
96d887e8
PH
6259 }
6260
b5ec771e 6261 if (!lookup_name.ada ().wild_match_p ())
96d887e8
PH
6262 {
6263 arg_sym = NULL;
6264 found_sym = 0;
b5ec771e
PA
6265 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6266 const char *name = ada_lookup_name.c_str ();
6267 size_t name_len = ada_lookup_name.size ();
96d887e8
PH
6268
6269 ALL_BLOCK_SYMBOLS (block, iter, sym)
76a01679 6270 {
4186eb54
KS
6271 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6272 SYMBOL_DOMAIN (sym), domain))
76a01679
JB
6273 {
6274 int cmp;
6275
6276 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6277 if (cmp == 0)
6278 {
61012eef 6279 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
76a01679
JB
6280 if (cmp == 0)
6281 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6282 name_len);
6283 }
6284
6285 if (cmp == 0
6286 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6287 {
2a2d4dc3
AS
6288 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6289 {
6290 if (SYMBOL_IS_ARGUMENT (sym))
6291 arg_sym = sym;
6292 else
6293 {
6294 found_sym = 1;
6295 add_defn_to_vec (obstackp,
6296 fixup_symbol_section (sym, objfile),
6297 block);
6298 }
6299 }
76a01679
JB
6300 }
6301 }
76a01679 6302 }
96d887e8
PH
6303
6304 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6305 They aren't parameters, right? */
6306 if (!found_sym && arg_sym != NULL)
6307 {
6308 add_defn_to_vec (obstackp,
76a01679 6309 fixup_symbol_section (arg_sym, objfile),
2570f2b7 6310 block);
96d887e8
PH
6311 }
6312 }
6313}
6314\f
41d27058
JB
6315
6316 /* Symbol Completion */
6317
b5ec771e 6318/* See symtab.h. */
41d27058 6319
b5ec771e
PA
6320bool
6321ada_lookup_name_info::matches
6322 (const char *sym_name,
6323 symbol_name_match_type match_type,
a207cff2 6324 completion_match_result *comp_match_res) const
41d27058 6325{
b5ec771e
PA
6326 bool match = false;
6327 const char *text = m_encoded_name.c_str ();
6328 size_t text_len = m_encoded_name.size ();
41d27058
JB
6329
6330 /* First, test against the fully qualified name of the symbol. */
6331
6332 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6333 match = true;
41d27058 6334
b5ec771e 6335 if (match && !m_encoded_p)
41d27058
JB
6336 {
6337 /* One needed check before declaring a positive match is to verify
6338 that iff we are doing a verbatim match, the decoded version
6339 of the symbol name starts with '<'. Otherwise, this symbol name
6340 is not a suitable completion. */
6341 const char *sym_name_copy = sym_name;
b5ec771e 6342 bool has_angle_bracket;
41d27058
JB
6343
6344 sym_name = ada_decode (sym_name);
6345 has_angle_bracket = (sym_name[0] == '<');
b5ec771e 6346 match = (has_angle_bracket == m_verbatim_p);
41d27058
JB
6347 sym_name = sym_name_copy;
6348 }
6349
b5ec771e 6350 if (match && !m_verbatim_p)
41d27058
JB
6351 {
6352 /* When doing non-verbatim match, another check that needs to
6353 be done is to verify that the potentially matching symbol name
6354 does not include capital letters, because the ada-mode would
6355 not be able to understand these symbol names without the
6356 angle bracket notation. */
6357 const char *tmp;
6358
6359 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6360 if (*tmp != '\0')
b5ec771e 6361 match = false;
41d27058
JB
6362 }
6363
6364 /* Second: Try wild matching... */
6365
b5ec771e 6366 if (!match && m_wild_match_p)
41d27058
JB
6367 {
6368 /* Since we are doing wild matching, this means that TEXT
6369 may represent an unqualified symbol name. We therefore must
6370 also compare TEXT against the unqualified name of the symbol. */
6371 sym_name = ada_unqualified_name (ada_decode (sym_name));
6372
6373 if (strncmp (sym_name, text, text_len) == 0)
b5ec771e 6374 match = true;
41d27058
JB
6375 }
6376
b5ec771e 6377 /* Finally: If we found a match, prepare the result to return. */
41d27058
JB
6378
6379 if (!match)
b5ec771e 6380 return false;
41d27058 6381
a207cff2 6382 if (comp_match_res != NULL)
b5ec771e 6383 {
a207cff2 6384 std::string &match_str = comp_match_res->match.storage ();
41d27058 6385
b5ec771e 6386 if (!m_encoded_p)
a207cff2 6387 match_str = ada_decode (sym_name);
b5ec771e
PA
6388 else
6389 {
6390 if (m_verbatim_p)
6391 match_str = add_angle_brackets (sym_name);
6392 else
6393 match_str = sym_name;
41d27058 6394
b5ec771e 6395 }
a207cff2
PA
6396
6397 comp_match_res->set_match (match_str.c_str ());
41d27058
JB
6398 }
6399
b5ec771e 6400 return true;
41d27058
JB
6401}
6402
b5ec771e 6403/* Add the list of possible symbol names completing TEXT to TRACKER.
eb3ff9a5 6404 WORD is the entire command on which completion is made. */
41d27058 6405
eb3ff9a5
PA
6406static void
6407ada_collect_symbol_completion_matches (completion_tracker &tracker,
c6756f62 6408 complete_symbol_mode mode,
b5ec771e
PA
6409 symbol_name_match_type name_match_type,
6410 const char *text, const char *word,
eb3ff9a5 6411 enum type_code code)
41d27058 6412{
41d27058 6413 struct symbol *sym;
43f3e411 6414 struct compunit_symtab *s;
41d27058
JB
6415 struct minimal_symbol *msymbol;
6416 struct objfile *objfile;
3977b71f 6417 const struct block *b, *surrounding_static_block = 0;
8157b174 6418 struct block_iterator iter;
41d27058 6419
2f68a895
TT
6420 gdb_assert (code == TYPE_CODE_UNDEF);
6421
1b026119 6422 lookup_name_info lookup_name (text, name_match_type, true);
41d27058
JB
6423
6424 /* First, look at the partial symtab symbols. */
14bc53a8 6425 expand_symtabs_matching (NULL,
b5ec771e
PA
6426 lookup_name,
6427 NULL,
14bc53a8
PA
6428 NULL,
6429 ALL_DOMAIN);
41d27058
JB
6430
6431 /* At this point scan through the misc symbol vectors and add each
6432 symbol you find to the list. Eventually we want to ignore
6433 anything that isn't a text symbol (everything else will be
6434 handled by the psymtab code above). */
6435
6436 ALL_MSYMBOLS (objfile, msymbol)
6437 {
6438 QUIT;
b5ec771e 6439
f9d67a22
PA
6440 if (completion_skip_symbol (mode, msymbol))
6441 continue;
6442
d4c2a405
PA
6443 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6444
6445 /* Ada minimal symbols won't have their language set to Ada. If
6446 we let completion_list_add_name compare using the
6447 default/C-like matcher, then when completing e.g., symbols in a
6448 package named "pck", we'd match internal Ada symbols like
6449 "pckS", which are invalid in an Ada expression, unless you wrap
6450 them in '<' '>' to request a verbatim match.
6451
6452 Unfortunately, some Ada encoded names successfully demangle as
6453 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6454 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6455 with the wrong language set. Paper over that issue here. */
6456 if (symbol_language == language_auto
6457 || symbol_language == language_cplus)
6458 symbol_language = language_ada;
6459
b5ec771e 6460 completion_list_add_name (tracker,
d4c2a405 6461 symbol_language,
b5ec771e 6462 MSYMBOL_LINKAGE_NAME (msymbol),
1b026119 6463 lookup_name, text, word);
41d27058
JB
6464 }
6465
6466 /* Search upwards from currently selected frame (so that we can
6467 complete on local vars. */
6468
6469 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6470 {
6471 if (!BLOCK_SUPERBLOCK (b))
6472 surrounding_static_block = b; /* For elmin of dups */
6473
6474 ALL_BLOCK_SYMBOLS (b, iter, sym)
6475 {
f9d67a22
PA
6476 if (completion_skip_symbol (mode, sym))
6477 continue;
6478
b5ec771e
PA
6479 completion_list_add_name (tracker,
6480 SYMBOL_LANGUAGE (sym),
6481 SYMBOL_LINKAGE_NAME (sym),
1b026119 6482 lookup_name, text, word);
41d27058
JB
6483 }
6484 }
6485
6486 /* Go through the symtabs and check the externs and statics for
43f3e411 6487 symbols which match. */
41d27058 6488
43f3e411 6489 ALL_COMPUNITS (objfile, s)
41d27058
JB
6490 {
6491 QUIT;
43f3e411 6492 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
41d27058
JB
6493 ALL_BLOCK_SYMBOLS (b, iter, sym)
6494 {
f9d67a22
PA
6495 if (completion_skip_symbol (mode, sym))
6496 continue;
6497
b5ec771e
PA
6498 completion_list_add_name (tracker,
6499 SYMBOL_LANGUAGE (sym),
6500 SYMBOL_LINKAGE_NAME (sym),
1b026119 6501 lookup_name, text, word);
41d27058
JB
6502 }
6503 }
6504
43f3e411 6505 ALL_COMPUNITS (objfile, s)
41d27058
JB
6506 {
6507 QUIT;
43f3e411 6508 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
41d27058
JB
6509 /* Don't do this block twice. */
6510 if (b == surrounding_static_block)
6511 continue;
6512 ALL_BLOCK_SYMBOLS (b, iter, sym)
6513 {
f9d67a22
PA
6514 if (completion_skip_symbol (mode, sym))
6515 continue;
6516
b5ec771e
PA
6517 completion_list_add_name (tracker,
6518 SYMBOL_LANGUAGE (sym),
6519 SYMBOL_LINKAGE_NAME (sym),
1b026119 6520 lookup_name, text, word);
41d27058
JB
6521 }
6522 }
41d27058
JB
6523}
6524
963a6417 6525 /* Field Access */
96d887e8 6526
73fb9985
JB
6527/* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6528 for tagged types. */
6529
6530static int
6531ada_is_dispatch_table_ptr_type (struct type *type)
6532{
0d5cff50 6533 const char *name;
73fb9985
JB
6534
6535 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6536 return 0;
6537
6538 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6539 if (name == NULL)
6540 return 0;
6541
6542 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6543}
6544
ac4a2da4
JG
6545/* Return non-zero if TYPE is an interface tag. */
6546
6547static int
6548ada_is_interface_tag (struct type *type)
6549{
6550 const char *name = TYPE_NAME (type);
6551
6552 if (name == NULL)
6553 return 0;
6554
6555 return (strcmp (name, "ada__tags__interface_tag") == 0);
6556}
6557
963a6417
PH
6558/* True if field number FIELD_NUM in struct or union type TYPE is supposed
6559 to be invisible to users. */
96d887e8 6560
963a6417
PH
6561int
6562ada_is_ignored_field (struct type *type, int field_num)
96d887e8 6563{
963a6417
PH
6564 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6565 return 1;
ffde82bf 6566
73fb9985
JB
6567 /* Check the name of that field. */
6568 {
6569 const char *name = TYPE_FIELD_NAME (type, field_num);
6570
6571 /* Anonymous field names should not be printed.
6572 brobecker/2007-02-20: I don't think this can actually happen
6573 but we don't want to print the value of annonymous fields anyway. */
6574 if (name == NULL)
6575 return 1;
6576
ffde82bf
JB
6577 /* Normally, fields whose name start with an underscore ("_")
6578 are fields that have been internally generated by the compiler,
6579 and thus should not be printed. The "_parent" field is special,
6580 however: This is a field internally generated by the compiler
6581 for tagged types, and it contains the components inherited from
6582 the parent type. This field should not be printed as is, but
6583 should not be ignored either. */
61012eef 6584 if (name[0] == '_' && !startswith (name, "_parent"))
73fb9985
JB
6585 return 1;
6586 }
6587
ac4a2da4
JG
6588 /* If this is the dispatch table of a tagged type or an interface tag,
6589 then ignore. */
73fb9985 6590 if (ada_is_tagged_type (type, 1)
ac4a2da4
JG
6591 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6592 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
73fb9985
JB
6593 return 1;
6594
6595 /* Not a special field, so it should not be ignored. */
6596 return 0;
963a6417 6597}
96d887e8 6598
963a6417 6599/* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
0963b4bd 6600 pointer or reference type whose ultimate target has a tag field. */
96d887e8 6601
963a6417
PH
6602int
6603ada_is_tagged_type (struct type *type, int refok)
6604{
988f6b3d 6605 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
963a6417 6606}
96d887e8 6607
963a6417 6608/* True iff TYPE represents the type of X'Tag */
96d887e8 6609
963a6417
PH
6610int
6611ada_is_tag_type (struct type *type)
6612{
460efde1
JB
6613 type = ada_check_typedef (type);
6614
963a6417
PH
6615 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6616 return 0;
6617 else
96d887e8 6618 {
963a6417 6619 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5b4ee69b 6620
963a6417
PH
6621 return (name != NULL
6622 && strcmp (name, "ada__tags__dispatch_table") == 0);
96d887e8 6623 }
96d887e8
PH
6624}
6625
963a6417 6626/* The type of the tag on VAL. */
76a01679 6627
963a6417
PH
6628struct type *
6629ada_tag_type (struct value *val)
96d887e8 6630{
988f6b3d 6631 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
963a6417 6632}
96d887e8 6633
b50d69b5
JG
6634/* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6635 retired at Ada 05). */
6636
6637static int
6638is_ada95_tag (struct value *tag)
6639{
6640 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6641}
6642
963a6417 6643/* The value of the tag on VAL. */
96d887e8 6644
963a6417
PH
6645struct value *
6646ada_value_tag (struct value *val)
6647{
03ee6b2e 6648 return ada_value_struct_elt (val, "_tag", 0);
96d887e8
PH
6649}
6650
963a6417
PH
6651/* The value of the tag on the object of type TYPE whose contents are
6652 saved at VALADDR, if it is non-null, or is at memory address
0963b4bd 6653 ADDRESS. */
96d887e8 6654
963a6417 6655static struct value *
10a2c479 6656value_tag_from_contents_and_address (struct type *type,
fc1a4b47 6657 const gdb_byte *valaddr,
963a6417 6658 CORE_ADDR address)
96d887e8 6659{
b5385fc0 6660 int tag_byte_offset;
963a6417 6661 struct type *tag_type;
5b4ee69b 6662
963a6417 6663 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
52ce6436 6664 NULL, NULL, NULL))
96d887e8 6665 {
fc1a4b47 6666 const gdb_byte *valaddr1 = ((valaddr == NULL)
10a2c479
AC
6667 ? NULL
6668 : valaddr + tag_byte_offset);
963a6417 6669 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
96d887e8 6670
963a6417 6671 return value_from_contents_and_address (tag_type, valaddr1, address1);
96d887e8 6672 }
963a6417
PH
6673 return NULL;
6674}
96d887e8 6675
963a6417
PH
6676static struct type *
6677type_from_tag (struct value *tag)
6678{
6679 const char *type_name = ada_tag_name (tag);
5b4ee69b 6680
963a6417
PH
6681 if (type_name != NULL)
6682 return ada_find_any_type (ada_encode (type_name));
6683 return NULL;
6684}
96d887e8 6685
b50d69b5
JG
6686/* Given a value OBJ of a tagged type, return a value of this
6687 type at the base address of the object. The base address, as
6688 defined in Ada.Tags, it is the address of the primary tag of
6689 the object, and therefore where the field values of its full
6690 view can be fetched. */
6691
6692struct value *
6693ada_tag_value_at_base_address (struct value *obj)
6694{
b50d69b5
JG
6695 struct value *val;
6696 LONGEST offset_to_top = 0;
6697 struct type *ptr_type, *obj_type;
6698 struct value *tag;
6699 CORE_ADDR base_address;
6700
6701 obj_type = value_type (obj);
6702
6703 /* It is the responsability of the caller to deref pointers. */
6704
6705 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6706 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6707 return obj;
6708
6709 tag = ada_value_tag (obj);
6710 if (!tag)
6711 return obj;
6712
6713 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6714
6715 if (is_ada95_tag (tag))
6716 return obj;
6717
08f49010
XR
6718 ptr_type = language_lookup_primitive_type
6719 (language_def (language_ada), target_gdbarch(), "storage_offset");
b50d69b5
JG
6720 ptr_type = lookup_pointer_type (ptr_type);
6721 val = value_cast (ptr_type, tag);
6722 if (!val)
6723 return obj;
6724
6725 /* It is perfectly possible that an exception be raised while
6726 trying to determine the base address, just like for the tag;
6727 see ada_tag_name for more details. We do not print the error
6728 message for the same reason. */
6729
492d29ea 6730 TRY
b50d69b5
JG
6731 {
6732 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6733 }
6734
492d29ea
PA
6735 CATCH (e, RETURN_MASK_ERROR)
6736 {
6737 return obj;
6738 }
6739 END_CATCH
b50d69b5
JG
6740
6741 /* If offset is null, nothing to do. */
6742
6743 if (offset_to_top == 0)
6744 return obj;
6745
6746 /* -1 is a special case in Ada.Tags; however, what should be done
6747 is not quite clear from the documentation. So do nothing for
6748 now. */
6749
6750 if (offset_to_top == -1)
6751 return obj;
6752
08f49010
XR
6753 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6754 from the base address. This was however incompatible with
6755 C++ dispatch table: C++ uses a *negative* value to *add*
6756 to the base address. Ada's convention has therefore been
6757 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6758 use the same convention. Here, we support both cases by
6759 checking the sign of OFFSET_TO_TOP. */
6760
6761 if (offset_to_top > 0)
6762 offset_to_top = -offset_to_top;
6763
6764 base_address = value_address (obj) + offset_to_top;
b50d69b5
JG
6765 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6766
6767 /* Make sure that we have a proper tag at the new address.
6768 Otherwise, offset_to_top is bogus (which can happen when
6769 the object is not initialized yet). */
6770
6771 if (!tag)
6772 return obj;
6773
6774 obj_type = type_from_tag (tag);
6775
6776 if (!obj_type)
6777 return obj;
6778
6779 return value_from_contents_and_address (obj_type, NULL, base_address);
6780}
6781
1b611343
JB
6782/* Return the "ada__tags__type_specific_data" type. */
6783
6784static struct type *
6785ada_get_tsd_type (struct inferior *inf)
963a6417 6786{
1b611343 6787 struct ada_inferior_data *data = get_ada_inferior_data (inf);
4c4b4cd2 6788
1b611343
JB
6789 if (data->tsd_type == 0)
6790 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6791 return data->tsd_type;
6792}
529cad9c 6793
1b611343
JB
6794/* Return the TSD (type-specific data) associated to the given TAG.
6795 TAG is assumed to be the tag of a tagged-type entity.
529cad9c 6796
1b611343 6797 May return NULL if we are unable to get the TSD. */
4c4b4cd2 6798
1b611343
JB
6799static struct value *
6800ada_get_tsd_from_tag (struct value *tag)
4c4b4cd2 6801{
4c4b4cd2 6802 struct value *val;
1b611343 6803 struct type *type;
5b4ee69b 6804
1b611343
JB
6805 /* First option: The TSD is simply stored as a field of our TAG.
6806 Only older versions of GNAT would use this format, but we have
6807 to test it first, because there are no visible markers for
6808 the current approach except the absence of that field. */
529cad9c 6809
1b611343
JB
6810 val = ada_value_struct_elt (tag, "tsd", 1);
6811 if (val)
6812 return val;
e802dbe0 6813
1b611343
JB
6814 /* Try the second representation for the dispatch table (in which
6815 there is no explicit 'tsd' field in the referent of the tag pointer,
6816 and instead the tsd pointer is stored just before the dispatch
6817 table. */
e802dbe0 6818
1b611343
JB
6819 type = ada_get_tsd_type (current_inferior());
6820 if (type == NULL)
6821 return NULL;
6822 type = lookup_pointer_type (lookup_pointer_type (type));
6823 val = value_cast (type, tag);
6824 if (val == NULL)
6825 return NULL;
6826 return value_ind (value_ptradd (val, -1));
e802dbe0
JB
6827}
6828
1b611343
JB
6829/* Given the TSD of a tag (type-specific data), return a string
6830 containing the name of the associated type.
6831
6832 The returned value is good until the next call. May return NULL
6833 if we are unable to determine the tag name. */
6834
6835static char *
6836ada_tag_name_from_tsd (struct value *tsd)
529cad9c 6837{
529cad9c
PH
6838 static char name[1024];
6839 char *p;
1b611343 6840 struct value *val;
529cad9c 6841
1b611343 6842 val = ada_value_struct_elt (tsd, "expanded_name", 1);
4c4b4cd2 6843 if (val == NULL)
1b611343 6844 return NULL;
4c4b4cd2
PH
6845 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6846 for (p = name; *p != '\0'; p += 1)
6847 if (isalpha (*p))
6848 *p = tolower (*p);
1b611343 6849 return name;
4c4b4cd2
PH
6850}
6851
6852/* The type name of the dynamic type denoted by the 'tag value TAG, as
1b611343
JB
6853 a C string.
6854
6855 Return NULL if the TAG is not an Ada tag, or if we were unable to
6856 determine the name of that tag. The result is good until the next
6857 call. */
4c4b4cd2
PH
6858
6859const char *
6860ada_tag_name (struct value *tag)
6861{
1b611343 6862 char *name = NULL;
5b4ee69b 6863
df407dfe 6864 if (!ada_is_tag_type (value_type (tag)))
4c4b4cd2 6865 return NULL;
1b611343
JB
6866
6867 /* It is perfectly possible that an exception be raised while trying
6868 to determine the TAG's name, even under normal circumstances:
6869 The associated variable may be uninitialized or corrupted, for
6870 instance. We do not let any exception propagate past this point.
6871 instead we return NULL.
6872
6873 We also do not print the error message either (which often is very
6874 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6875 the caller print a more meaningful message if necessary. */
492d29ea 6876 TRY
1b611343
JB
6877 {
6878 struct value *tsd = ada_get_tsd_from_tag (tag);
6879
6880 if (tsd != NULL)
6881 name = ada_tag_name_from_tsd (tsd);
6882 }
492d29ea
PA
6883 CATCH (e, RETURN_MASK_ERROR)
6884 {
6885 }
6886 END_CATCH
1b611343
JB
6887
6888 return name;
4c4b4cd2
PH
6889}
6890
6891/* The parent type of TYPE, or NULL if none. */
14f9c5c9 6892
d2e4a39e 6893struct type *
ebf56fd3 6894ada_parent_type (struct type *type)
14f9c5c9
AS
6895{
6896 int i;
6897
61ee279c 6898 type = ada_check_typedef (type);
14f9c5c9
AS
6899
6900 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6901 return NULL;
6902
6903 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6904 if (ada_is_parent_field (type, i))
0c1f74cf
JB
6905 {
6906 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6907
6908 /* If the _parent field is a pointer, then dereference it. */
6909 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6910 parent_type = TYPE_TARGET_TYPE (parent_type);
6911 /* If there is a parallel XVS type, get the actual base type. */
6912 parent_type = ada_get_base_type (parent_type);
6913
6914 return ada_check_typedef (parent_type);
6915 }
14f9c5c9
AS
6916
6917 return NULL;
6918}
6919
4c4b4cd2
PH
6920/* True iff field number FIELD_NUM of structure type TYPE contains the
6921 parent-type (inherited) fields of a derived type. Assumes TYPE is
6922 a structure type with at least FIELD_NUM+1 fields. */
14f9c5c9
AS
6923
6924int
ebf56fd3 6925ada_is_parent_field (struct type *type, int field_num)
14f9c5c9 6926{
61ee279c 6927 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
5b4ee69b 6928
4c4b4cd2 6929 return (name != NULL
61012eef
GB
6930 && (startswith (name, "PARENT")
6931 || startswith (name, "_parent")));
14f9c5c9
AS
6932}
6933
4c4b4cd2 6934/* True iff field number FIELD_NUM of structure type TYPE is a
14f9c5c9 6935 transparent wrapper field (which should be silently traversed when doing
4c4b4cd2 6936 field selection and flattened when printing). Assumes TYPE is a
14f9c5c9 6937 structure type with at least FIELD_NUM+1 fields. Such fields are always
4c4b4cd2 6938 structures. */
14f9c5c9
AS
6939
6940int
ebf56fd3 6941ada_is_wrapper_field (struct type *type, int field_num)
14f9c5c9 6942{
d2e4a39e 6943 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6944
dddc0e16
JB
6945 if (name != NULL && strcmp (name, "RETVAL") == 0)
6946 {
6947 /* This happens in functions with "out" or "in out" parameters
6948 which are passed by copy. For such functions, GNAT describes
6949 the function's return type as being a struct where the return
6950 value is in a field called RETVAL, and where the other "out"
6951 or "in out" parameters are fields of that struct. This is not
6952 a wrapper. */
6953 return 0;
6954 }
6955
d2e4a39e 6956 return (name != NULL
61012eef 6957 && (startswith (name, "PARENT")
4c4b4cd2 6958 || strcmp (name, "REP") == 0
61012eef 6959 || startswith (name, "_parent")
4c4b4cd2 6960 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
14f9c5c9
AS
6961}
6962
4c4b4cd2
PH
6963/* True iff field number FIELD_NUM of structure or union type TYPE
6964 is a variant wrapper. Assumes TYPE is a structure type with at least
6965 FIELD_NUM+1 fields. */
14f9c5c9
AS
6966
6967int
ebf56fd3 6968ada_is_variant_part (struct type *type, int field_num)
14f9c5c9 6969{
d2e4a39e 6970 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
5b4ee69b 6971
14f9c5c9 6972 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
4c4b4cd2 6973 || (is_dynamic_field (type, field_num)
c3e5cd34
PH
6974 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6975 == TYPE_CODE_UNION)));
14f9c5c9
AS
6976}
6977
6978/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
4c4b4cd2 6979 whose discriminants are contained in the record type OUTER_TYPE,
7c964f07
UW
6980 returns the type of the controlling discriminant for the variant.
6981 May return NULL if the type could not be found. */
14f9c5c9 6982
d2e4a39e 6983struct type *
ebf56fd3 6984ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
14f9c5c9 6985{
a121b7c1 6986 const char *name = ada_variant_discrim_name (var_type);
5b4ee69b 6987
988f6b3d 6988 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
14f9c5c9
AS
6989}
6990
4c4b4cd2 6991/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
14f9c5c9 6992 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
4c4b4cd2 6993 represents a 'when others' clause; otherwise 0. */
14f9c5c9
AS
6994
6995int
ebf56fd3 6996ada_is_others_clause (struct type *type, int field_num)
14f9c5c9 6997{
d2e4a39e 6998 const char *name = TYPE_FIELD_NAME (type, field_num);
5b4ee69b 6999
14f9c5c9
AS
7000 return (name != NULL && name[0] == 'O');
7001}
7002
7003/* Assuming that TYPE0 is the type of the variant part of a record,
4c4b4cd2
PH
7004 returns the name of the discriminant controlling the variant.
7005 The value is valid until the next call to ada_variant_discrim_name. */
14f9c5c9 7006
a121b7c1 7007const char *
ebf56fd3 7008ada_variant_discrim_name (struct type *type0)
14f9c5c9 7009{
d2e4a39e 7010 static char *result = NULL;
14f9c5c9 7011 static size_t result_len = 0;
d2e4a39e
AS
7012 struct type *type;
7013 const char *name;
7014 const char *discrim_end;
7015 const char *discrim_start;
14f9c5c9
AS
7016
7017 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7018 type = TYPE_TARGET_TYPE (type0);
7019 else
7020 type = type0;
7021
7022 name = ada_type_name (type);
7023
7024 if (name == NULL || name[0] == '\000')
7025 return "";
7026
7027 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7028 discrim_end -= 1)
7029 {
61012eef 7030 if (startswith (discrim_end, "___XVN"))
4c4b4cd2 7031 break;
14f9c5c9
AS
7032 }
7033 if (discrim_end == name)
7034 return "";
7035
d2e4a39e 7036 for (discrim_start = discrim_end; discrim_start != name + 3;
14f9c5c9
AS
7037 discrim_start -= 1)
7038 {
d2e4a39e 7039 if (discrim_start == name + 1)
4c4b4cd2 7040 return "";
76a01679 7041 if ((discrim_start > name + 3
61012eef 7042 && startswith (discrim_start - 3, "___"))
4c4b4cd2
PH
7043 || discrim_start[-1] == '.')
7044 break;
14f9c5c9
AS
7045 }
7046
7047 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7048 strncpy (result, discrim_start, discrim_end - discrim_start);
d2e4a39e 7049 result[discrim_end - discrim_start] = '\0';
14f9c5c9
AS
7050 return result;
7051}
7052
4c4b4cd2
PH
7053/* Scan STR for a subtype-encoded number, beginning at position K.
7054 Put the position of the character just past the number scanned in
7055 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7056 Return 1 if there was a valid number at the given position, and 0
7057 otherwise. A "subtype-encoded" number consists of the absolute value
7058 in decimal, followed by the letter 'm' to indicate a negative number.
7059 Assumes 0m does not occur. */
14f9c5c9
AS
7060
7061int
d2e4a39e 7062ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
14f9c5c9
AS
7063{
7064 ULONGEST RU;
7065
d2e4a39e 7066 if (!isdigit (str[k]))
14f9c5c9
AS
7067 return 0;
7068
4c4b4cd2 7069 /* Do it the hard way so as not to make any assumption about
14f9c5c9 7070 the relationship of unsigned long (%lu scan format code) and
4c4b4cd2 7071 LONGEST. */
14f9c5c9
AS
7072 RU = 0;
7073 while (isdigit (str[k]))
7074 {
d2e4a39e 7075 RU = RU * 10 + (str[k] - '0');
14f9c5c9
AS
7076 k += 1;
7077 }
7078
d2e4a39e 7079 if (str[k] == 'm')
14f9c5c9
AS
7080 {
7081 if (R != NULL)
4c4b4cd2 7082 *R = (-(LONGEST) (RU - 1)) - 1;
14f9c5c9
AS
7083 k += 1;
7084 }
7085 else if (R != NULL)
7086 *R = (LONGEST) RU;
7087
4c4b4cd2 7088 /* NOTE on the above: Technically, C does not say what the results of
14f9c5c9
AS
7089 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7090 number representable as a LONGEST (although either would probably work
7091 in most implementations). When RU>0, the locution in the then branch
4c4b4cd2 7092 above is always equivalent to the negative of RU. */
14f9c5c9
AS
7093
7094 if (new_k != NULL)
7095 *new_k = k;
7096 return 1;
7097}
7098
4c4b4cd2
PH
7099/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7100 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7101 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
14f9c5c9 7102
d2e4a39e 7103int
ebf56fd3 7104ada_in_variant (LONGEST val, struct type *type, int field_num)
14f9c5c9 7105{
d2e4a39e 7106 const char *name = TYPE_FIELD_NAME (type, field_num);
14f9c5c9
AS
7107 int p;
7108
7109 p = 0;
7110 while (1)
7111 {
d2e4a39e 7112 switch (name[p])
4c4b4cd2
PH
7113 {
7114 case '\0':
7115 return 0;
7116 case 'S':
7117 {
7118 LONGEST W;
5b4ee69b 7119
4c4b4cd2
PH
7120 if (!ada_scan_number (name, p + 1, &W, &p))
7121 return 0;
7122 if (val == W)
7123 return 1;
7124 break;
7125 }
7126 case 'R':
7127 {
7128 LONGEST L, U;
5b4ee69b 7129
4c4b4cd2
PH
7130 if (!ada_scan_number (name, p + 1, &L, &p)
7131 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7132 return 0;
7133 if (val >= L && val <= U)
7134 return 1;
7135 break;
7136 }
7137 case 'O':
7138 return 1;
7139 default:
7140 return 0;
7141 }
7142 }
7143}
7144
0963b4bd 7145/* FIXME: Lots of redundancy below. Try to consolidate. */
4c4b4cd2
PH
7146
7147/* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7148 ARG_TYPE, extract and return the value of one of its (non-static)
7149 fields. FIELDNO says which field. Differs from value_primitive_field
7150 only in that it can handle packed values of arbitrary type. */
14f9c5c9 7151
4c4b4cd2 7152static struct value *
d2e4a39e 7153ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
4c4b4cd2 7154 struct type *arg_type)
14f9c5c9 7155{
14f9c5c9
AS
7156 struct type *type;
7157
61ee279c 7158 arg_type = ada_check_typedef (arg_type);
14f9c5c9
AS
7159 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7160
4c4b4cd2 7161 /* Handle packed fields. */
14f9c5c9
AS
7162
7163 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7164 {
7165 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7166 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
d2e4a39e 7167
0fd88904 7168 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
4c4b4cd2
PH
7169 offset + bit_pos / 8,
7170 bit_pos % 8, bit_size, type);
14f9c5c9
AS
7171 }
7172 else
7173 return value_primitive_field (arg1, offset, fieldno, arg_type);
7174}
7175
52ce6436
PH
7176/* Find field with name NAME in object of type TYPE. If found,
7177 set the following for each argument that is non-null:
7178 - *FIELD_TYPE_P to the field's type;
7179 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7180 an object of that type;
7181 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7182 - *BIT_SIZE_P to its size in bits if the field is packed, and
7183 0 otherwise;
7184 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7185 fields up to but not including the desired field, or by the total
7186 number of fields if not found. A NULL value of NAME never
7187 matches; the function just counts visible fields in this case.
7188
828d5846
XR
7189 Notice that we need to handle when a tagged record hierarchy
7190 has some components with the same name, like in this scenario:
7191
7192 type Top_T is tagged record
7193 N : Integer := 1;
7194 U : Integer := 974;
7195 A : Integer := 48;
7196 end record;
7197
7198 type Middle_T is new Top.Top_T with record
7199 N : Character := 'a';
7200 C : Integer := 3;
7201 end record;
7202
7203 type Bottom_T is new Middle.Middle_T with record
7204 N : Float := 4.0;
7205 C : Character := '5';
7206 X : Integer := 6;
7207 A : Character := 'J';
7208 end record;
7209
7210 Let's say we now have a variable declared and initialized as follow:
7211
7212 TC : Top_A := new Bottom_T;
7213
7214 And then we use this variable to call this function
7215
7216 procedure Assign (Obj: in out Top_T; TV : Integer);
7217
7218 as follow:
7219
7220 Assign (Top_T (B), 12);
7221
7222 Now, we're in the debugger, and we're inside that procedure
7223 then and we want to print the value of obj.c:
7224
7225 Usually, the tagged record or one of the parent type owns the
7226 component to print and there's no issue but in this particular
7227 case, what does it mean to ask for Obj.C? Since the actual
7228 type for object is type Bottom_T, it could mean two things: type
7229 component C from the Middle_T view, but also component C from
7230 Bottom_T. So in that "undefined" case, when the component is
7231 not found in the non-resolved type (which includes all the
7232 components of the parent type), then resolve it and see if we
7233 get better luck once expanded.
7234
7235 In the case of homonyms in the derived tagged type, we don't
7236 guaranty anything, and pick the one that's easiest for us
7237 to program.
7238
0963b4bd 7239 Returns 1 if found, 0 otherwise. */
52ce6436 7240
4c4b4cd2 7241static int
0d5cff50 7242find_struct_field (const char *name, struct type *type, int offset,
76a01679 7243 struct type **field_type_p,
52ce6436
PH
7244 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7245 int *index_p)
4c4b4cd2
PH
7246{
7247 int i;
828d5846 7248 int parent_offset = -1;
4c4b4cd2 7249
61ee279c 7250 type = ada_check_typedef (type);
76a01679 7251
52ce6436
PH
7252 if (field_type_p != NULL)
7253 *field_type_p = NULL;
7254 if (byte_offset_p != NULL)
d5d6fca5 7255 *byte_offset_p = 0;
52ce6436
PH
7256 if (bit_offset_p != NULL)
7257 *bit_offset_p = 0;
7258 if (bit_size_p != NULL)
7259 *bit_size_p = 0;
7260
7261 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
4c4b4cd2
PH
7262 {
7263 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7264 int fld_offset = offset + bit_pos / 8;
0d5cff50 7265 const char *t_field_name = TYPE_FIELD_NAME (type, i);
76a01679 7266
4c4b4cd2
PH
7267 if (t_field_name == NULL)
7268 continue;
7269
828d5846
XR
7270 else if (ada_is_parent_field (type, i))
7271 {
7272 /* This is a field pointing us to the parent type of a tagged
7273 type. As hinted in this function's documentation, we give
7274 preference to fields in the current record first, so what
7275 we do here is just record the index of this field before
7276 we skip it. If it turns out we couldn't find our field
7277 in the current record, then we'll get back to it and search
7278 inside it whether the field might exist in the parent. */
7279
7280 parent_offset = i;
7281 continue;
7282 }
7283
52ce6436 7284 else if (name != NULL && field_name_match (t_field_name, name))
76a01679
JB
7285 {
7286 int bit_size = TYPE_FIELD_BITSIZE (type, i);
5b4ee69b 7287
52ce6436
PH
7288 if (field_type_p != NULL)
7289 *field_type_p = TYPE_FIELD_TYPE (type, i);
7290 if (byte_offset_p != NULL)
7291 *byte_offset_p = fld_offset;
7292 if (bit_offset_p != NULL)
7293 *bit_offset_p = bit_pos % 8;
7294 if (bit_size_p != NULL)
7295 *bit_size_p = bit_size;
76a01679
JB
7296 return 1;
7297 }
4c4b4cd2
PH
7298 else if (ada_is_wrapper_field (type, i))
7299 {
52ce6436
PH
7300 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7301 field_type_p, byte_offset_p, bit_offset_p,
7302 bit_size_p, index_p))
76a01679
JB
7303 return 1;
7304 }
4c4b4cd2
PH
7305 else if (ada_is_variant_part (type, i))
7306 {
52ce6436
PH
7307 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7308 fixed type?? */
4c4b4cd2 7309 int j;
52ce6436
PH
7310 struct type *field_type
7311 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
4c4b4cd2 7312
52ce6436 7313 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7314 {
76a01679
JB
7315 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7316 fld_offset
7317 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7318 field_type_p, byte_offset_p,
52ce6436 7319 bit_offset_p, bit_size_p, index_p))
76a01679 7320 return 1;
4c4b4cd2
PH
7321 }
7322 }
52ce6436
PH
7323 else if (index_p != NULL)
7324 *index_p += 1;
4c4b4cd2 7325 }
828d5846
XR
7326
7327 /* Field not found so far. If this is a tagged type which
7328 has a parent, try finding that field in the parent now. */
7329
7330 if (parent_offset != -1)
7331 {
7332 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7333 int fld_offset = offset + bit_pos / 8;
7334
7335 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7336 fld_offset, field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7338 return 1;
7339 }
7340
4c4b4cd2
PH
7341 return 0;
7342}
7343
0963b4bd 7344/* Number of user-visible fields in record type TYPE. */
4c4b4cd2 7345
52ce6436
PH
7346static int
7347num_visible_fields (struct type *type)
7348{
7349 int n;
5b4ee69b 7350
52ce6436
PH
7351 n = 0;
7352 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7353 return n;
7354}
14f9c5c9 7355
4c4b4cd2 7356/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
14f9c5c9
AS
7357 and search in it assuming it has (class) type TYPE.
7358 If found, return value, else return NULL.
7359
828d5846
XR
7360 Searches recursively through wrapper fields (e.g., '_parent').
7361
7362 In the case of homonyms in the tagged types, please refer to the
7363 long explanation in find_struct_field's function documentation. */
14f9c5c9 7364
4c4b4cd2 7365static struct value *
108d56a4 7366ada_search_struct_field (const char *name, struct value *arg, int offset,
4c4b4cd2 7367 struct type *type)
14f9c5c9
AS
7368{
7369 int i;
828d5846 7370 int parent_offset = -1;
14f9c5c9 7371
5b4ee69b 7372 type = ada_check_typedef (type);
52ce6436 7373 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
14f9c5c9 7374 {
0d5cff50 7375 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9
AS
7376
7377 if (t_field_name == NULL)
4c4b4cd2 7378 continue;
14f9c5c9 7379
828d5846
XR
7380 else if (ada_is_parent_field (type, i))
7381 {
7382 /* This is a field pointing us to the parent type of a tagged
7383 type. As hinted in this function's documentation, we give
7384 preference to fields in the current record first, so what
7385 we do here is just record the index of this field before
7386 we skip it. If it turns out we couldn't find our field
7387 in the current record, then we'll get back to it and search
7388 inside it whether the field might exist in the parent. */
7389
7390 parent_offset = i;
7391 continue;
7392 }
7393
14f9c5c9 7394 else if (field_name_match (t_field_name, name))
4c4b4cd2 7395 return ada_value_primitive_field (arg, offset, i, type);
14f9c5c9
AS
7396
7397 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7398 {
0963b4bd 7399 struct value *v = /* Do not let indent join lines here. */
06d5cf63
JB
7400 ada_search_struct_field (name, arg,
7401 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7402 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7403
4c4b4cd2
PH
7404 if (v != NULL)
7405 return v;
7406 }
14f9c5c9
AS
7407
7408 else if (ada_is_variant_part (type, i))
4c4b4cd2 7409 {
0963b4bd 7410 /* PNH: Do we ever get here? See find_struct_field. */
4c4b4cd2 7411 int j;
5b4ee69b
MS
7412 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7413 i));
4c4b4cd2
PH
7414 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7415
52ce6436 7416 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
4c4b4cd2 7417 {
0963b4bd
MS
7418 struct value *v = ada_search_struct_field /* Force line
7419 break. */
06d5cf63
JB
7420 (name, arg,
7421 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7422 TYPE_FIELD_TYPE (field_type, j));
5b4ee69b 7423
4c4b4cd2
PH
7424 if (v != NULL)
7425 return v;
7426 }
7427 }
14f9c5c9 7428 }
828d5846
XR
7429
7430 /* Field not found so far. If this is a tagged type which
7431 has a parent, try finding that field in the parent now. */
7432
7433 if (parent_offset != -1)
7434 {
7435 struct value *v = ada_search_struct_field (
7436 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7437 TYPE_FIELD_TYPE (type, parent_offset));
7438
7439 if (v != NULL)
7440 return v;
7441 }
7442
14f9c5c9
AS
7443 return NULL;
7444}
d2e4a39e 7445
52ce6436
PH
7446static struct value *ada_index_struct_field_1 (int *, struct value *,
7447 int, struct type *);
7448
7449
7450/* Return field #INDEX in ARG, where the index is that returned by
7451 * find_struct_field through its INDEX_P argument. Adjust the address
7452 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
0963b4bd 7453 * If found, return value, else return NULL. */
52ce6436
PH
7454
7455static struct value *
7456ada_index_struct_field (int index, struct value *arg, int offset,
7457 struct type *type)
7458{
7459 return ada_index_struct_field_1 (&index, arg, offset, type);
7460}
7461
7462
7463/* Auxiliary function for ada_index_struct_field. Like
7464 * ada_index_struct_field, but takes index from *INDEX_P and modifies
0963b4bd 7465 * *INDEX_P. */
52ce6436
PH
7466
7467static struct value *
7468ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7469 struct type *type)
7470{
7471 int i;
7472 type = ada_check_typedef (type);
7473
7474 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7475 {
7476 if (TYPE_FIELD_NAME (type, i) == NULL)
7477 continue;
7478 else if (ada_is_wrapper_field (type, i))
7479 {
0963b4bd 7480 struct value *v = /* Do not let indent join lines here. */
52ce6436
PH
7481 ada_index_struct_field_1 (index_p, arg,
7482 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7483 TYPE_FIELD_TYPE (type, i));
5b4ee69b 7484
52ce6436
PH
7485 if (v != NULL)
7486 return v;
7487 }
7488
7489 else if (ada_is_variant_part (type, i))
7490 {
7491 /* PNH: Do we ever get here? See ada_search_struct_field,
0963b4bd 7492 find_struct_field. */
52ce6436
PH
7493 error (_("Cannot assign this kind of variant record"));
7494 }
7495 else if (*index_p == 0)
7496 return ada_value_primitive_field (arg, offset, i, type);
7497 else
7498 *index_p -= 1;
7499 }
7500 return NULL;
7501}
7502
4c4b4cd2
PH
7503/* Given ARG, a value of type (pointer or reference to a)*
7504 structure/union, extract the component named NAME from the ultimate
7505 target structure/union and return it as a value with its
f5938064 7506 appropriate type.
14f9c5c9 7507
4c4b4cd2
PH
7508 The routine searches for NAME among all members of the structure itself
7509 and (recursively) among all members of any wrapper members
14f9c5c9
AS
7510 (e.g., '_parent').
7511
03ee6b2e
PH
7512 If NO_ERR, then simply return NULL in case of error, rather than
7513 calling error. */
14f9c5c9 7514
d2e4a39e 7515struct value *
a121b7c1 7516ada_value_struct_elt (struct value *arg, const char *name, int no_err)
14f9c5c9 7517{
4c4b4cd2 7518 struct type *t, *t1;
d2e4a39e 7519 struct value *v;
14f9c5c9 7520
4c4b4cd2 7521 v = NULL;
df407dfe 7522 t1 = t = ada_check_typedef (value_type (arg));
4c4b4cd2
PH
7523 if (TYPE_CODE (t) == TYPE_CODE_REF)
7524 {
7525 t1 = TYPE_TARGET_TYPE (t);
7526 if (t1 == NULL)
03ee6b2e 7527 goto BadValue;
61ee279c 7528 t1 = ada_check_typedef (t1);
4c4b4cd2 7529 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679 7530 {
994b9211 7531 arg = coerce_ref (arg);
76a01679
JB
7532 t = t1;
7533 }
4c4b4cd2 7534 }
14f9c5c9 7535
4c4b4cd2
PH
7536 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7537 {
7538 t1 = TYPE_TARGET_TYPE (t);
7539 if (t1 == NULL)
03ee6b2e 7540 goto BadValue;
61ee279c 7541 t1 = ada_check_typedef (t1);
4c4b4cd2 7542 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
76a01679
JB
7543 {
7544 arg = value_ind (arg);
7545 t = t1;
7546 }
4c4b4cd2 7547 else
76a01679 7548 break;
4c4b4cd2 7549 }
14f9c5c9 7550
4c4b4cd2 7551 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
03ee6b2e 7552 goto BadValue;
14f9c5c9 7553
4c4b4cd2
PH
7554 if (t1 == t)
7555 v = ada_search_struct_field (name, arg, 0, t);
7556 else
7557 {
7558 int bit_offset, bit_size, byte_offset;
7559 struct type *field_type;
7560 CORE_ADDR address;
7561
76a01679 7562 if (TYPE_CODE (t) == TYPE_CODE_PTR)
b50d69b5 7563 address = value_address (ada_value_ind (arg));
4c4b4cd2 7564 else
b50d69b5 7565 address = value_address (ada_coerce_ref (arg));
14f9c5c9 7566
828d5846
XR
7567 /* Check to see if this is a tagged type. We also need to handle
7568 the case where the type is a reference to a tagged type, but
7569 we have to be careful to exclude pointers to tagged types.
7570 The latter should be shown as usual (as a pointer), whereas
7571 a reference should mostly be transparent to the user. */
7572
7573 if (ada_is_tagged_type (t1, 0)
7574 || (TYPE_CODE (t1) == TYPE_CODE_REF
7575 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7576 {
7577 /* We first try to find the searched field in the current type.
7578 If not found then let's look in the fixed type. */
7579
7580 if (!find_struct_field (name, t1, 0,
7581 &field_type, &byte_offset, &bit_offset,
7582 &bit_size, NULL))
7583 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7584 address, NULL, 1);
7585 }
7586 else
7587 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7588 address, NULL, 1);
7589
76a01679
JB
7590 if (find_struct_field (name, t1, 0,
7591 &field_type, &byte_offset, &bit_offset,
52ce6436 7592 &bit_size, NULL))
76a01679
JB
7593 {
7594 if (bit_size != 0)
7595 {
714e53ab
PH
7596 if (TYPE_CODE (t) == TYPE_CODE_REF)
7597 arg = ada_coerce_ref (arg);
7598 else
7599 arg = ada_value_ind (arg);
76a01679
JB
7600 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7601 bit_offset, bit_size,
7602 field_type);
7603 }
7604 else
f5938064 7605 v = value_at_lazy (field_type, address + byte_offset);
76a01679
JB
7606 }
7607 }
7608
03ee6b2e
PH
7609 if (v != NULL || no_err)
7610 return v;
7611 else
323e0a4a 7612 error (_("There is no member named %s."), name);
14f9c5c9 7613
03ee6b2e
PH
7614 BadValue:
7615 if (no_err)
7616 return NULL;
7617 else
0963b4bd
MS
7618 error (_("Attempt to extract a component of "
7619 "a value that is not a record."));
14f9c5c9
AS
7620}
7621
3b4de39c 7622/* Return a string representation of type TYPE. */
99bbb428 7623
3b4de39c 7624static std::string
99bbb428
PA
7625type_as_string (struct type *type)
7626{
d7e74731 7627 string_file tmp_stream;
99bbb428 7628
d7e74731 7629 type_print (type, "", &tmp_stream, -1);
99bbb428 7630
d7e74731 7631 return std::move (tmp_stream.string ());
99bbb428
PA
7632}
7633
14f9c5c9 7634/* Given a type TYPE, look up the type of the component of type named NAME.
4c4b4cd2
PH
7635 If DISPP is non-null, add its byte displacement from the beginning of a
7636 structure (pointed to by a value) of type TYPE to *DISPP (does not
14f9c5c9
AS
7637 work for packed fields).
7638
7639 Matches any field whose name has NAME as a prefix, possibly
4c4b4cd2 7640 followed by "___".
14f9c5c9 7641
0963b4bd 7642 TYPE can be either a struct or union. If REFOK, TYPE may also
4c4b4cd2
PH
7643 be a (pointer or reference)+ to a struct or union, and the
7644 ultimate target type will be searched.
14f9c5c9
AS
7645
7646 Looks recursively into variant clauses and parent types.
7647
828d5846
XR
7648 In the case of homonyms in the tagged types, please refer to the
7649 long explanation in find_struct_field's function documentation.
7650
4c4b4cd2
PH
7651 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7652 TYPE is not a type of the right kind. */
14f9c5c9 7653
4c4b4cd2 7654static struct type *
a121b7c1 7655ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
988f6b3d 7656 int noerr)
14f9c5c9
AS
7657{
7658 int i;
828d5846 7659 int parent_offset = -1;
14f9c5c9
AS
7660
7661 if (name == NULL)
7662 goto BadName;
7663
76a01679 7664 if (refok && type != NULL)
4c4b4cd2
PH
7665 while (1)
7666 {
61ee279c 7667 type = ada_check_typedef (type);
76a01679
JB
7668 if (TYPE_CODE (type) != TYPE_CODE_PTR
7669 && TYPE_CODE (type) != TYPE_CODE_REF)
7670 break;
7671 type = TYPE_TARGET_TYPE (type);
4c4b4cd2 7672 }
14f9c5c9 7673
76a01679 7674 if (type == NULL
1265e4aa
JB
7675 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7676 && TYPE_CODE (type) != TYPE_CODE_UNION))
14f9c5c9 7677 {
4c4b4cd2 7678 if (noerr)
76a01679 7679 return NULL;
99bbb428 7680
3b4de39c
PA
7681 error (_("Type %s is not a structure or union type"),
7682 type != NULL ? type_as_string (type).c_str () : _("(null)"));
14f9c5c9
AS
7683 }
7684
7685 type = to_static_fixed_type (type);
7686
7687 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7688 {
0d5cff50 7689 const char *t_field_name = TYPE_FIELD_NAME (type, i);
14f9c5c9 7690 struct type *t;
d2e4a39e 7691
14f9c5c9 7692 if (t_field_name == NULL)
4c4b4cd2 7693 continue;
14f9c5c9 7694
828d5846
XR
7695 else if (ada_is_parent_field (type, i))
7696 {
7697 /* This is a field pointing us to the parent type of a tagged
7698 type. As hinted in this function's documentation, we give
7699 preference to fields in the current record first, so what
7700 we do here is just record the index of this field before
7701 we skip it. If it turns out we couldn't find our field
7702 in the current record, then we'll get back to it and search
7703 inside it whether the field might exist in the parent. */
7704
7705 parent_offset = i;
7706 continue;
7707 }
7708
14f9c5c9 7709 else if (field_name_match (t_field_name, name))
988f6b3d 7710 return TYPE_FIELD_TYPE (type, i);
14f9c5c9
AS
7711
7712 else if (ada_is_wrapper_field (type, i))
4c4b4cd2 7713 {
4c4b4cd2 7714 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
988f6b3d 7715 0, 1);
4c4b4cd2 7716 if (t != NULL)
988f6b3d 7717 return t;
4c4b4cd2 7718 }
14f9c5c9
AS
7719
7720 else if (ada_is_variant_part (type, i))
4c4b4cd2
PH
7721 {
7722 int j;
5b4ee69b
MS
7723 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7724 i));
4c4b4cd2
PH
7725
7726 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7727 {
b1f33ddd
JB
7728 /* FIXME pnh 2008/01/26: We check for a field that is
7729 NOT wrapped in a struct, since the compiler sometimes
7730 generates these for unchecked variant types. Revisit
0963b4bd 7731 if the compiler changes this practice. */
0d5cff50 7732 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
988f6b3d 7733
b1f33ddd
JB
7734 if (v_field_name != NULL
7735 && field_name_match (v_field_name, name))
460efde1 7736 t = TYPE_FIELD_TYPE (field_type, j);
b1f33ddd 7737 else
0963b4bd
MS
7738 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7739 j),
988f6b3d 7740 name, 0, 1);
b1f33ddd 7741
4c4b4cd2 7742 if (t != NULL)
988f6b3d 7743 return t;
4c4b4cd2
PH
7744 }
7745 }
14f9c5c9
AS
7746
7747 }
7748
828d5846
XR
7749 /* Field not found so far. If this is a tagged type which
7750 has a parent, try finding that field in the parent now. */
7751
7752 if (parent_offset != -1)
7753 {
7754 struct type *t;
7755
7756 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7757 name, 0, 1);
7758 if (t != NULL)
7759 return t;
7760 }
7761
14f9c5c9 7762BadName:
d2e4a39e 7763 if (!noerr)
14f9c5c9 7764 {
2b2798cc 7765 const char *name_str = name != NULL ? name : _("<null>");
99bbb428
PA
7766
7767 error (_("Type %s has no component named %s"),
3b4de39c 7768 type_as_string (type).c_str (), name_str);
14f9c5c9
AS
7769 }
7770
7771 return NULL;
7772}
7773
b1f33ddd
JB
7774/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7775 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7776 represents an unchecked union (that is, the variant part of a
0963b4bd 7777 record that is named in an Unchecked_Union pragma). */
b1f33ddd
JB
7778
7779static int
7780is_unchecked_variant (struct type *var_type, struct type *outer_type)
7781{
a121b7c1 7782 const char *discrim_name = ada_variant_discrim_name (var_type);
5b4ee69b 7783
988f6b3d 7784 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
b1f33ddd
JB
7785}
7786
7787
14f9c5c9
AS
7788/* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7789 within a value of type OUTER_TYPE that is stored in GDB at
4c4b4cd2
PH
7790 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7791 numbering from 0) is applicable. Returns -1 if none are. */
14f9c5c9 7792
d2e4a39e 7793int
ebf56fd3 7794ada_which_variant_applies (struct type *var_type, struct type *outer_type,
fc1a4b47 7795 const gdb_byte *outer_valaddr)
14f9c5c9
AS
7796{
7797 int others_clause;
7798 int i;
a121b7c1 7799 const char *discrim_name = ada_variant_discrim_name (var_type);
0c281816
JB
7800 struct value *outer;
7801 struct value *discrim;
14f9c5c9
AS
7802 LONGEST discrim_val;
7803
012370f6
TT
7804 /* Using plain value_from_contents_and_address here causes problems
7805 because we will end up trying to resolve a type that is currently
7806 being constructed. */
7807 outer = value_from_contents_and_address_unresolved (outer_type,
7808 outer_valaddr, 0);
0c281816
JB
7809 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7810 if (discrim == NULL)
14f9c5c9 7811 return -1;
0c281816 7812 discrim_val = value_as_long (discrim);
14f9c5c9
AS
7813
7814 others_clause = -1;
7815 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7816 {
7817 if (ada_is_others_clause (var_type, i))
4c4b4cd2 7818 others_clause = i;
14f9c5c9 7819 else if (ada_in_variant (discrim_val, var_type, i))
4c4b4cd2 7820 return i;
14f9c5c9
AS
7821 }
7822
7823 return others_clause;
7824}
d2e4a39e 7825\f
14f9c5c9
AS
7826
7827
4c4b4cd2 7828 /* Dynamic-Sized Records */
14f9c5c9
AS
7829
7830/* Strategy: The type ostensibly attached to a value with dynamic size
7831 (i.e., a size that is not statically recorded in the debugging
7832 data) does not accurately reflect the size or layout of the value.
7833 Our strategy is to convert these values to values with accurate,
4c4b4cd2 7834 conventional types that are constructed on the fly. */
14f9c5c9
AS
7835
7836/* There is a subtle and tricky problem here. In general, we cannot
7837 determine the size of dynamic records without its data. However,
7838 the 'struct value' data structure, which GDB uses to represent
7839 quantities in the inferior process (the target), requires the size
7840 of the type at the time of its allocation in order to reserve space
7841 for GDB's internal copy of the data. That's why the
7842 'to_fixed_xxx_type' routines take (target) addresses as parameters,
4c4b4cd2 7843 rather than struct value*s.
14f9c5c9
AS
7844
7845 However, GDB's internal history variables ($1, $2, etc.) are
7846 struct value*s containing internal copies of the data that are not, in
7847 general, the same as the data at their corresponding addresses in
7848 the target. Fortunately, the types we give to these values are all
7849 conventional, fixed-size types (as per the strategy described
7850 above), so that we don't usually have to perform the
7851 'to_fixed_xxx_type' conversions to look at their values.
7852 Unfortunately, there is one exception: if one of the internal
7853 history variables is an array whose elements are unconstrained
7854 records, then we will need to create distinct fixed types for each
7855 element selected. */
7856
7857/* The upshot of all of this is that many routines take a (type, host
7858 address, target address) triple as arguments to represent a value.
7859 The host address, if non-null, is supposed to contain an internal
7860 copy of the relevant data; otherwise, the program is to consult the
4c4b4cd2 7861 target at the target address. */
14f9c5c9
AS
7862
7863/* Assuming that VAL0 represents a pointer value, the result of
7864 dereferencing it. Differs from value_ind in its treatment of
4c4b4cd2 7865 dynamic-sized types. */
14f9c5c9 7866
d2e4a39e
AS
7867struct value *
7868ada_value_ind (struct value *val0)
14f9c5c9 7869{
c48db5ca 7870 struct value *val = value_ind (val0);
5b4ee69b 7871
b50d69b5
JG
7872 if (ada_is_tagged_type (value_type (val), 0))
7873 val = ada_tag_value_at_base_address (val);
7874
4c4b4cd2 7875 return ada_to_fixed_value (val);
14f9c5c9
AS
7876}
7877
7878/* The value resulting from dereferencing any "reference to"
4c4b4cd2
PH
7879 qualifiers on VAL0. */
7880
d2e4a39e
AS
7881static struct value *
7882ada_coerce_ref (struct value *val0)
7883{
df407dfe 7884 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
d2e4a39e
AS
7885 {
7886 struct value *val = val0;
5b4ee69b 7887
994b9211 7888 val = coerce_ref (val);
b50d69b5
JG
7889
7890 if (ada_is_tagged_type (value_type (val), 0))
7891 val = ada_tag_value_at_base_address (val);
7892
4c4b4cd2 7893 return ada_to_fixed_value (val);
d2e4a39e
AS
7894 }
7895 else
14f9c5c9
AS
7896 return val0;
7897}
7898
7899/* Return OFF rounded upward if necessary to a multiple of
4c4b4cd2 7900 ALIGNMENT (a power of 2). */
14f9c5c9
AS
7901
7902static unsigned int
ebf56fd3 7903align_value (unsigned int off, unsigned int alignment)
14f9c5c9
AS
7904{
7905 return (off + alignment - 1) & ~(alignment - 1);
7906}
7907
4c4b4cd2 7908/* Return the bit alignment required for field #F of template type TYPE. */
14f9c5c9
AS
7909
7910static unsigned int
ebf56fd3 7911field_alignment (struct type *type, int f)
14f9c5c9 7912{
d2e4a39e 7913 const char *name = TYPE_FIELD_NAME (type, f);
64a1bf19 7914 int len;
14f9c5c9
AS
7915 int align_offset;
7916
64a1bf19
JB
7917 /* The field name should never be null, unless the debugging information
7918 is somehow malformed. In this case, we assume the field does not
7919 require any alignment. */
7920 if (name == NULL)
7921 return 1;
7922
7923 len = strlen (name);
7924
4c4b4cd2
PH
7925 if (!isdigit (name[len - 1]))
7926 return 1;
14f9c5c9 7927
d2e4a39e 7928 if (isdigit (name[len - 2]))
14f9c5c9
AS
7929 align_offset = len - 2;
7930 else
7931 align_offset = len - 1;
7932
61012eef 7933 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
14f9c5c9
AS
7934 return TARGET_CHAR_BIT;
7935
4c4b4cd2
PH
7936 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7937}
7938
852dff6c 7939/* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
4c4b4cd2 7940
852dff6c
JB
7941static struct symbol *
7942ada_find_any_type_symbol (const char *name)
4c4b4cd2
PH
7943{
7944 struct symbol *sym;
7945
7946 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
4186eb54 7947 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4c4b4cd2
PH
7948 return sym;
7949
4186eb54
KS
7950 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7951 return sym;
14f9c5c9
AS
7952}
7953
dddfab26
UW
7954/* Find a type named NAME. Ignores ambiguity. This routine will look
7955 solely for types defined by debug info, it will not search the GDB
7956 primitive types. */
4c4b4cd2 7957
852dff6c 7958static struct type *
ebf56fd3 7959ada_find_any_type (const char *name)
14f9c5c9 7960{
852dff6c 7961 struct symbol *sym = ada_find_any_type_symbol (name);
14f9c5c9 7962
14f9c5c9 7963 if (sym != NULL)
dddfab26 7964 return SYMBOL_TYPE (sym);
14f9c5c9 7965
dddfab26 7966 return NULL;
14f9c5c9
AS
7967}
7968
739593e0
JB
7969/* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7970 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7971 symbol, in which case it is returned. Otherwise, this looks for
7972 symbols whose name is that of NAME_SYM suffixed with "___XR".
7973 Return symbol if found, and NULL otherwise. */
4c4b4cd2
PH
7974
7975struct symbol *
270140bd 7976ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
aeb5907d 7977{
739593e0 7978 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
aeb5907d
JB
7979 struct symbol *sym;
7980
739593e0
JB
7981 if (strstr (name, "___XR") != NULL)
7982 return name_sym;
7983
aeb5907d
JB
7984 sym = find_old_style_renaming_symbol (name, block);
7985
7986 if (sym != NULL)
7987 return sym;
7988
0963b4bd 7989 /* Not right yet. FIXME pnh 7/20/2007. */
852dff6c 7990 sym = ada_find_any_type_symbol (name);
aeb5907d
JB
7991 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7992 return sym;
7993 else
7994 return NULL;
7995}
7996
7997static struct symbol *
270140bd 7998find_old_style_renaming_symbol (const char *name, const struct block *block)
4c4b4cd2 7999{
7f0df278 8000 const struct symbol *function_sym = block_linkage_function (block);
4c4b4cd2
PH
8001 char *rename;
8002
8003 if (function_sym != NULL)
8004 {
8005 /* If the symbol is defined inside a function, NAME is not fully
8006 qualified. This means we need to prepend the function name
8007 as well as adding the ``___XR'' suffix to build the name of
8008 the associated renaming symbol. */
0d5cff50 8009 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
529cad9c
PH
8010 /* Function names sometimes contain suffixes used
8011 for instance to qualify nested subprograms. When building
8012 the XR type name, we need to make sure that this suffix is
8013 not included. So do not include any suffix in the function
8014 name length below. */
69fadcdf 8015 int function_name_len = ada_name_prefix_len (function_name);
76a01679
JB
8016 const int rename_len = function_name_len + 2 /* "__" */
8017 + strlen (name) + 6 /* "___XR\0" */ ;
4c4b4cd2 8018
529cad9c 8019 /* Strip the suffix if necessary. */
69fadcdf
JB
8020 ada_remove_trailing_digits (function_name, &function_name_len);
8021 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8022 ada_remove_Xbn_suffix (function_name, &function_name_len);
529cad9c 8023
4c4b4cd2
PH
8024 /* Library-level functions are a special case, as GNAT adds
8025 a ``_ada_'' prefix to the function name to avoid namespace
aeb5907d 8026 pollution. However, the renaming symbols themselves do not
4c4b4cd2
PH
8027 have this prefix, so we need to skip this prefix if present. */
8028 if (function_name_len > 5 /* "_ada_" */
8029 && strstr (function_name, "_ada_") == function_name)
69fadcdf
JB
8030 {
8031 function_name += 5;
8032 function_name_len -= 5;
8033 }
4c4b4cd2
PH
8034
8035 rename = (char *) alloca (rename_len * sizeof (char));
69fadcdf
JB
8036 strncpy (rename, function_name, function_name_len);
8037 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8038 "__%s___XR", name);
4c4b4cd2
PH
8039 }
8040 else
8041 {
8042 const int rename_len = strlen (name) + 6;
5b4ee69b 8043
4c4b4cd2 8044 rename = (char *) alloca (rename_len * sizeof (char));
88c15c34 8045 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
4c4b4cd2
PH
8046 }
8047
852dff6c 8048 return ada_find_any_type_symbol (rename);
4c4b4cd2
PH
8049}
8050
14f9c5c9 8051/* Because of GNAT encoding conventions, several GDB symbols may match a
4c4b4cd2 8052 given type name. If the type denoted by TYPE0 is to be preferred to
14f9c5c9 8053 that of TYPE1 for purposes of type printing, return non-zero;
4c4b4cd2
PH
8054 otherwise return 0. */
8055
14f9c5c9 8056int
d2e4a39e 8057ada_prefer_type (struct type *type0, struct type *type1)
14f9c5c9
AS
8058{
8059 if (type1 == NULL)
8060 return 1;
8061 else if (type0 == NULL)
8062 return 0;
8063 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8064 return 1;
8065 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8066 return 0;
4c4b4cd2
PH
8067 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8068 return 1;
ad82864c 8069 else if (ada_is_constrained_packed_array_type (type0))
14f9c5c9 8070 return 1;
4c4b4cd2
PH
8071 else if (ada_is_array_descriptor_type (type0)
8072 && !ada_is_array_descriptor_type (type1))
14f9c5c9 8073 return 1;
aeb5907d
JB
8074 else
8075 {
a737d952
TT
8076 const char *type0_name = TYPE_NAME (type0);
8077 const char *type1_name = TYPE_NAME (type1);
aeb5907d
JB
8078
8079 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8080 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8081 return 1;
8082 }
14f9c5c9
AS
8083 return 0;
8084}
8085
e86ca25f
TT
8086/* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8087 null. */
4c4b4cd2 8088
0d5cff50 8089const char *
d2e4a39e 8090ada_type_name (struct type *type)
14f9c5c9 8091{
d2e4a39e 8092 if (type == NULL)
14f9c5c9 8093 return NULL;
e86ca25f 8094 return TYPE_NAME (type);
14f9c5c9
AS
8095}
8096
b4ba55a1
JB
8097/* Search the list of "descriptive" types associated to TYPE for a type
8098 whose name is NAME. */
8099
8100static struct type *
8101find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8102{
931e5bc3 8103 struct type *result, *tmp;
b4ba55a1 8104
c6044dd1
JB
8105 if (ada_ignore_descriptive_types_p)
8106 return NULL;
8107
b4ba55a1
JB
8108 /* If there no descriptive-type info, then there is no parallel type
8109 to be found. */
8110 if (!HAVE_GNAT_AUX_INFO (type))
8111 return NULL;
8112
8113 result = TYPE_DESCRIPTIVE_TYPE (type);
8114 while (result != NULL)
8115 {
0d5cff50 8116 const char *result_name = ada_type_name (result);
b4ba55a1
JB
8117
8118 if (result_name == NULL)
8119 {
8120 warning (_("unexpected null name on descriptive type"));
8121 return NULL;
8122 }
8123
8124 /* If the names match, stop. */
8125 if (strcmp (result_name, name) == 0)
8126 break;
8127
8128 /* Otherwise, look at the next item on the list, if any. */
8129 if (HAVE_GNAT_AUX_INFO (result))
931e5bc3
JG
8130 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8131 else
8132 tmp = NULL;
8133
8134 /* If not found either, try after having resolved the typedef. */
8135 if (tmp != NULL)
8136 result = tmp;
b4ba55a1 8137 else
931e5bc3 8138 {
f168693b 8139 result = check_typedef (result);
931e5bc3
JG
8140 if (HAVE_GNAT_AUX_INFO (result))
8141 result = TYPE_DESCRIPTIVE_TYPE (result);
8142 else
8143 result = NULL;
8144 }
b4ba55a1
JB
8145 }
8146
8147 /* If we didn't find a match, see whether this is a packed array. With
8148 older compilers, the descriptive type information is either absent or
8149 irrelevant when it comes to packed arrays so the above lookup fails.
8150 Fall back to using a parallel lookup by name in this case. */
12ab9e09 8151 if (result == NULL && ada_is_constrained_packed_array_type (type))
b4ba55a1
JB
8152 return ada_find_any_type (name);
8153
8154 return result;
8155}
8156
8157/* Find a parallel type to TYPE with the specified NAME, using the
8158 descriptive type taken from the debugging information, if available,
8159 and otherwise using the (slower) name-based method. */
8160
8161static struct type *
8162ada_find_parallel_type_with_name (struct type *type, const char *name)
8163{
8164 struct type *result = NULL;
8165
8166 if (HAVE_GNAT_AUX_INFO (type))
8167 result = find_parallel_type_by_descriptive_type (type, name);
8168 else
8169 result = ada_find_any_type (name);
8170
8171 return result;
8172}
8173
8174/* Same as above, but specify the name of the parallel type by appending
4c4b4cd2 8175 SUFFIX to the name of TYPE. */
14f9c5c9 8176
d2e4a39e 8177struct type *
ebf56fd3 8178ada_find_parallel_type (struct type *type, const char *suffix)
14f9c5c9 8179{
0d5cff50 8180 char *name;
fe978cb0 8181 const char *type_name = ada_type_name (type);
14f9c5c9 8182 int len;
d2e4a39e 8183
fe978cb0 8184 if (type_name == NULL)
14f9c5c9
AS
8185 return NULL;
8186
fe978cb0 8187 len = strlen (type_name);
14f9c5c9 8188
b4ba55a1 8189 name = (char *) alloca (len + strlen (suffix) + 1);
14f9c5c9 8190
fe978cb0 8191 strcpy (name, type_name);
14f9c5c9
AS
8192 strcpy (name + len, suffix);
8193
b4ba55a1 8194 return ada_find_parallel_type_with_name (type, name);
14f9c5c9
AS
8195}
8196
14f9c5c9 8197/* If TYPE is a variable-size record type, return the corresponding template
4c4b4cd2 8198 type describing its fields. Otherwise, return NULL. */
14f9c5c9 8199
d2e4a39e
AS
8200static struct type *
8201dynamic_template_type (struct type *type)
14f9c5c9 8202{
61ee279c 8203 type = ada_check_typedef (type);
14f9c5c9
AS
8204
8205 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
d2e4a39e 8206 || ada_type_name (type) == NULL)
14f9c5c9 8207 return NULL;
d2e4a39e 8208 else
14f9c5c9
AS
8209 {
8210 int len = strlen (ada_type_name (type));
5b4ee69b 8211
4c4b4cd2
PH
8212 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8213 return type;
14f9c5c9 8214 else
4c4b4cd2 8215 return ada_find_parallel_type (type, "___XVE");
14f9c5c9
AS
8216 }
8217}
8218
8219/* Assuming that TEMPL_TYPE is a union or struct type, returns
4c4b4cd2 8220 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
14f9c5c9 8221
d2e4a39e
AS
8222static int
8223is_dynamic_field (struct type *templ_type, int field_num)
14f9c5c9
AS
8224{
8225 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
5b4ee69b 8226
d2e4a39e 8227 return name != NULL
14f9c5c9
AS
8228 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8229 && strstr (name, "___XVL") != NULL;
8230}
8231
4c4b4cd2
PH
8232/* The index of the variant field of TYPE, or -1 if TYPE does not
8233 represent a variant record type. */
14f9c5c9 8234
d2e4a39e 8235static int
4c4b4cd2 8236variant_field_index (struct type *type)
14f9c5c9
AS
8237{
8238 int f;
8239
4c4b4cd2
PH
8240 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8241 return -1;
8242
8243 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8244 {
8245 if (ada_is_variant_part (type, f))
8246 return f;
8247 }
8248 return -1;
14f9c5c9
AS
8249}
8250
4c4b4cd2
PH
8251/* A record type with no fields. */
8252
d2e4a39e 8253static struct type *
fe978cb0 8254empty_record (struct type *templ)
14f9c5c9 8255{
fe978cb0 8256 struct type *type = alloc_type_copy (templ);
5b4ee69b 8257
14f9c5c9
AS
8258 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8259 TYPE_NFIELDS (type) = 0;
8260 TYPE_FIELDS (type) = NULL;
b1f33ddd 8261 INIT_CPLUS_SPECIFIC (type);
14f9c5c9 8262 TYPE_NAME (type) = "<empty>";
14f9c5c9
AS
8263 TYPE_LENGTH (type) = 0;
8264 return type;
8265}
8266
8267/* An ordinary record type (with fixed-length fields) that describes
4c4b4cd2
PH
8268 the value of type TYPE at VALADDR or ADDRESS (see comments at
8269 the beginning of this section) VAL according to GNAT conventions.
8270 DVAL0 should describe the (portion of a) record that contains any
df407dfe 8271 necessary discriminants. It should be NULL if value_type (VAL) is
14f9c5c9
AS
8272 an outer-level type (i.e., as opposed to a branch of a variant.) A
8273 variant field (unless unchecked) is replaced by a particular branch
4c4b4cd2 8274 of the variant.
14f9c5c9 8275
4c4b4cd2
PH
8276 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8277 length are not statically known are discarded. As a consequence,
8278 VALADDR, ADDRESS and DVAL0 are ignored.
8279
8280 NOTE: Limitations: For now, we assume that dynamic fields and
8281 variants occupy whole numbers of bytes. However, they need not be
8282 byte-aligned. */
8283
8284struct type *
10a2c479 8285ada_template_to_fixed_record_type_1 (struct type *type,
fc1a4b47 8286 const gdb_byte *valaddr,
4c4b4cd2
PH
8287 CORE_ADDR address, struct value *dval0,
8288 int keep_dynamic_fields)
14f9c5c9 8289{
d2e4a39e
AS
8290 struct value *mark = value_mark ();
8291 struct value *dval;
8292 struct type *rtype;
14f9c5c9 8293 int nfields, bit_len;
4c4b4cd2 8294 int variant_field;
14f9c5c9 8295 long off;
d94e4f4f 8296 int fld_bit_len;
14f9c5c9
AS
8297 int f;
8298
4c4b4cd2
PH
8299 /* Compute the number of fields in this record type that are going
8300 to be processed: unless keep_dynamic_fields, this includes only
8301 fields whose position and length are static will be processed. */
8302 if (keep_dynamic_fields)
8303 nfields = TYPE_NFIELDS (type);
8304 else
8305 {
8306 nfields = 0;
76a01679 8307 while (nfields < TYPE_NFIELDS (type)
4c4b4cd2
PH
8308 && !ada_is_variant_part (type, nfields)
8309 && !is_dynamic_field (type, nfields))
8310 nfields++;
8311 }
8312
e9bb382b 8313 rtype = alloc_type_copy (type);
14f9c5c9
AS
8314 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8315 INIT_CPLUS_SPECIFIC (rtype);
8316 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e 8317 TYPE_FIELDS (rtype) = (struct field *)
14f9c5c9
AS
8318 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8319 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8320 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8321 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9 8322
d2e4a39e
AS
8323 off = 0;
8324 bit_len = 0;
4c4b4cd2
PH
8325 variant_field = -1;
8326
14f9c5c9
AS
8327 for (f = 0; f < nfields; f += 1)
8328 {
6c038f32
PH
8329 off = align_value (off, field_alignment (type, f))
8330 + TYPE_FIELD_BITPOS (type, f);
945b3a32 8331 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
d2e4a39e 8332 TYPE_FIELD_BITSIZE (rtype, f) = 0;
14f9c5c9 8333
d2e4a39e 8334 if (ada_is_variant_part (type, f))
4c4b4cd2
PH
8335 {
8336 variant_field = f;
d94e4f4f 8337 fld_bit_len = 0;
4c4b4cd2 8338 }
14f9c5c9 8339 else if (is_dynamic_field (type, f))
4c4b4cd2 8340 {
284614f0
JB
8341 const gdb_byte *field_valaddr = valaddr;
8342 CORE_ADDR field_address = address;
8343 struct type *field_type =
8344 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8345
4c4b4cd2 8346 if (dval0 == NULL)
b5304971
JG
8347 {
8348 /* rtype's length is computed based on the run-time
8349 value of discriminants. If the discriminants are not
8350 initialized, the type size may be completely bogus and
0963b4bd 8351 GDB may fail to allocate a value for it. So check the
b5304971 8352 size first before creating the value. */
c1b5a1a6 8353 ada_ensure_varsize_limit (rtype);
012370f6
TT
8354 /* Using plain value_from_contents_and_address here
8355 causes problems because we will end up trying to
8356 resolve a type that is currently being
8357 constructed. */
8358 dval = value_from_contents_and_address_unresolved (rtype,
8359 valaddr,
8360 address);
9f1f738a 8361 rtype = value_type (dval);
b5304971 8362 }
4c4b4cd2
PH
8363 else
8364 dval = dval0;
8365
284614f0
JB
8366 /* If the type referenced by this field is an aligner type, we need
8367 to unwrap that aligner type, because its size might not be set.
8368 Keeping the aligner type would cause us to compute the wrong
8369 size for this field, impacting the offset of the all the fields
8370 that follow this one. */
8371 if (ada_is_aligner_type (field_type))
8372 {
8373 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8374
8375 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8376 field_address = cond_offset_target (field_address, field_offset);
8377 field_type = ada_aligned_type (field_type);
8378 }
8379
8380 field_valaddr = cond_offset_host (field_valaddr,
8381 off / TARGET_CHAR_BIT);
8382 field_address = cond_offset_target (field_address,
8383 off / TARGET_CHAR_BIT);
8384
8385 /* Get the fixed type of the field. Note that, in this case,
8386 we do not want to get the real type out of the tag: if
8387 the current field is the parent part of a tagged record,
8388 we will get the tag of the object. Clearly wrong: the real
8389 type of the parent is not the real type of the child. We
8390 would end up in an infinite loop. */
8391 field_type = ada_get_base_type (field_type);
8392 field_type = ada_to_fixed_type (field_type, field_valaddr,
8393 field_address, dval, 0);
27f2a97b
JB
8394 /* If the field size is already larger than the maximum
8395 object size, then the record itself will necessarily
8396 be larger than the maximum object size. We need to make
8397 this check now, because the size might be so ridiculously
8398 large (due to an uninitialized variable in the inferior)
8399 that it would cause an overflow when adding it to the
8400 record size. */
c1b5a1a6 8401 ada_ensure_varsize_limit (field_type);
284614f0
JB
8402
8403 TYPE_FIELD_TYPE (rtype, f) = field_type;
4c4b4cd2 8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
27f2a97b
JB
8405 /* The multiplication can potentially overflow. But because
8406 the field length has been size-checked just above, and
8407 assuming that the maximum size is a reasonable value,
8408 an overflow should not happen in practice. So rather than
8409 adding overflow recovery code to this already complex code,
8410 we just assume that it's not going to happen. */
d94e4f4f 8411 fld_bit_len =
4c4b4cd2
PH
8412 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8413 }
14f9c5c9 8414 else
4c4b4cd2 8415 {
5ded5331
JB
8416 /* Note: If this field's type is a typedef, it is important
8417 to preserve the typedef layer.
8418
8419 Otherwise, we might be transforming a typedef to a fat
8420 pointer (encoding a pointer to an unconstrained array),
8421 into a basic fat pointer (encoding an unconstrained
8422 array). As both types are implemented using the same
8423 structure, the typedef is the only clue which allows us
8424 to distinguish between the two options. Stripping it
8425 would prevent us from printing this field appropriately. */
8426 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
4c4b4cd2
PH
8427 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8428 if (TYPE_FIELD_BITSIZE (type, f) > 0)
d94e4f4f 8429 fld_bit_len =
4c4b4cd2
PH
8430 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8431 else
5ded5331
JB
8432 {
8433 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8434
8435 /* We need to be careful of typedefs when computing
8436 the length of our field. If this is a typedef,
8437 get the length of the target type, not the length
8438 of the typedef. */
8439 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8440 field_type = ada_typedef_target_type (field_type);
8441
8442 fld_bit_len =
8443 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8444 }
4c4b4cd2 8445 }
14f9c5c9 8446 if (off + fld_bit_len > bit_len)
4c4b4cd2 8447 bit_len = off + fld_bit_len;
d94e4f4f 8448 off += fld_bit_len;
4c4b4cd2
PH
8449 TYPE_LENGTH (rtype) =
8450 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
14f9c5c9 8451 }
4c4b4cd2
PH
8452
8453 /* We handle the variant part, if any, at the end because of certain
b1f33ddd 8454 odd cases in which it is re-ordered so as NOT to be the last field of
4c4b4cd2
PH
8455 the record. This can happen in the presence of representation
8456 clauses. */
8457 if (variant_field >= 0)
8458 {
8459 struct type *branch_type;
8460
8461 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8462
8463 if (dval0 == NULL)
9f1f738a 8464 {
012370f6
TT
8465 /* Using plain value_from_contents_and_address here causes
8466 problems because we will end up trying to resolve a type
8467 that is currently being constructed. */
8468 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8469 address);
9f1f738a
SA
8470 rtype = value_type (dval);
8471 }
4c4b4cd2
PH
8472 else
8473 dval = dval0;
8474
8475 branch_type =
8476 to_fixed_variant_branch_type
8477 (TYPE_FIELD_TYPE (type, variant_field),
8478 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8479 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8480 if (branch_type == NULL)
8481 {
8482 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8483 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8484 TYPE_NFIELDS (rtype) -= 1;
8485 }
8486 else
8487 {
8488 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8489 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8490 fld_bit_len =
8491 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8492 TARGET_CHAR_BIT;
8493 if (off + fld_bit_len > bit_len)
8494 bit_len = off + fld_bit_len;
8495 TYPE_LENGTH (rtype) =
8496 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8497 }
8498 }
8499
714e53ab
PH
8500 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8501 should contain the alignment of that record, which should be a strictly
8502 positive value. If null or negative, then something is wrong, most
8503 probably in the debug info. In that case, we don't round up the size
0963b4bd 8504 of the resulting type. If this record is not part of another structure,
714e53ab
PH
8505 the current RTYPE length might be good enough for our purposes. */
8506 if (TYPE_LENGTH (type) <= 0)
8507 {
323e0a4a
AC
8508 if (TYPE_NAME (rtype))
8509 warning (_("Invalid type size for `%s' detected: %d."),
8510 TYPE_NAME (rtype), TYPE_LENGTH (type));
8511 else
8512 warning (_("Invalid type size for <unnamed> detected: %d."),
8513 TYPE_LENGTH (type));
714e53ab
PH
8514 }
8515 else
8516 {
8517 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8518 TYPE_LENGTH (type));
8519 }
14f9c5c9
AS
8520
8521 value_free_to_mark (mark);
d2e4a39e 8522 if (TYPE_LENGTH (rtype) > varsize_limit)
323e0a4a 8523 error (_("record type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8524 return rtype;
8525}
8526
4c4b4cd2
PH
8527/* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8528 of 1. */
14f9c5c9 8529
d2e4a39e 8530static struct type *
fc1a4b47 8531template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
4c4b4cd2
PH
8532 CORE_ADDR address, struct value *dval0)
8533{
8534 return ada_template_to_fixed_record_type_1 (type, valaddr,
8535 address, dval0, 1);
8536}
8537
8538/* An ordinary record type in which ___XVL-convention fields and
8539 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8540 static approximations, containing all possible fields. Uses
8541 no runtime values. Useless for use in values, but that's OK,
8542 since the results are used only for type determinations. Works on both
8543 structs and unions. Representation note: to save space, we memorize
8544 the result of this function in the TYPE_TARGET_TYPE of the
8545 template type. */
8546
8547static struct type *
8548template_to_static_fixed_type (struct type *type0)
14f9c5c9
AS
8549{
8550 struct type *type;
8551 int nfields;
8552 int f;
8553
9e195661
PMR
8554 /* No need no do anything if the input type is already fixed. */
8555 if (TYPE_FIXED_INSTANCE (type0))
8556 return type0;
8557
8558 /* Likewise if we already have computed the static approximation. */
4c4b4cd2
PH
8559 if (TYPE_TARGET_TYPE (type0) != NULL)
8560 return TYPE_TARGET_TYPE (type0);
8561
9e195661 8562 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
4c4b4cd2 8563 type = type0;
9e195661
PMR
8564 nfields = TYPE_NFIELDS (type0);
8565
8566 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8567 recompute all over next time. */
8568 TYPE_TARGET_TYPE (type0) = type;
14f9c5c9
AS
8569
8570 for (f = 0; f < nfields; f += 1)
8571 {
460efde1 8572 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
4c4b4cd2 8573 struct type *new_type;
14f9c5c9 8574
4c4b4cd2 8575 if (is_dynamic_field (type0, f))
460efde1
JB
8576 {
8577 field_type = ada_check_typedef (field_type);
8578 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8579 }
14f9c5c9 8580 else
f192137b 8581 new_type = static_unwrap_type (field_type);
9e195661
PMR
8582
8583 if (new_type != field_type)
8584 {
8585 /* Clone TYPE0 only the first time we get a new field type. */
8586 if (type == type0)
8587 {
8588 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8589 TYPE_CODE (type) = TYPE_CODE (type0);
8590 INIT_CPLUS_SPECIFIC (type);
8591 TYPE_NFIELDS (type) = nfields;
8592 TYPE_FIELDS (type) = (struct field *)
8593 TYPE_ALLOC (type, nfields * sizeof (struct field));
8594 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8595 sizeof (struct field) * nfields);
8596 TYPE_NAME (type) = ada_type_name (type0);
9e195661
PMR
8597 TYPE_FIXED_INSTANCE (type) = 1;
8598 TYPE_LENGTH (type) = 0;
8599 }
8600 TYPE_FIELD_TYPE (type, f) = new_type;
8601 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8602 }
14f9c5c9 8603 }
9e195661 8604
14f9c5c9
AS
8605 return type;
8606}
8607
4c4b4cd2 8608/* Given an object of type TYPE whose contents are at VALADDR and
5823c3ef
JB
8609 whose address in memory is ADDRESS, returns a revision of TYPE,
8610 which should be a non-dynamic-sized record, in which the variant
8611 part, if any, is replaced with the appropriate branch. Looks
4c4b4cd2
PH
8612 for discriminant values in DVAL0, which can be NULL if the record
8613 contains the necessary discriminant values. */
8614
d2e4a39e 8615static struct type *
fc1a4b47 8616to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
4c4b4cd2 8617 CORE_ADDR address, struct value *dval0)
14f9c5c9 8618{
d2e4a39e 8619 struct value *mark = value_mark ();
4c4b4cd2 8620 struct value *dval;
d2e4a39e 8621 struct type *rtype;
14f9c5c9
AS
8622 struct type *branch_type;
8623 int nfields = TYPE_NFIELDS (type);
4c4b4cd2 8624 int variant_field = variant_field_index (type);
14f9c5c9 8625
4c4b4cd2 8626 if (variant_field == -1)
14f9c5c9
AS
8627 return type;
8628
4c4b4cd2 8629 if (dval0 == NULL)
9f1f738a
SA
8630 {
8631 dval = value_from_contents_and_address (type, valaddr, address);
8632 type = value_type (dval);
8633 }
4c4b4cd2
PH
8634 else
8635 dval = dval0;
8636
e9bb382b 8637 rtype = alloc_type_copy (type);
14f9c5c9 8638 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
4c4b4cd2
PH
8639 INIT_CPLUS_SPECIFIC (rtype);
8640 TYPE_NFIELDS (rtype) = nfields;
d2e4a39e
AS
8641 TYPE_FIELDS (rtype) =
8642 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8643 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
4c4b4cd2 8644 sizeof (struct field) * nfields);
14f9c5c9 8645 TYPE_NAME (rtype) = ada_type_name (type);
876cecd0 8646 TYPE_FIXED_INSTANCE (rtype) = 1;
14f9c5c9
AS
8647 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8648
4c4b4cd2
PH
8649 branch_type = to_fixed_variant_branch_type
8650 (TYPE_FIELD_TYPE (type, variant_field),
d2e4a39e 8651 cond_offset_host (valaddr,
4c4b4cd2
PH
8652 TYPE_FIELD_BITPOS (type, variant_field)
8653 / TARGET_CHAR_BIT),
d2e4a39e 8654 cond_offset_target (address,
4c4b4cd2
PH
8655 TYPE_FIELD_BITPOS (type, variant_field)
8656 / TARGET_CHAR_BIT), dval);
d2e4a39e 8657 if (branch_type == NULL)
14f9c5c9 8658 {
4c4b4cd2 8659 int f;
5b4ee69b 8660
4c4b4cd2
PH
8661 for (f = variant_field + 1; f < nfields; f += 1)
8662 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
14f9c5c9 8663 TYPE_NFIELDS (rtype) -= 1;
14f9c5c9
AS
8664 }
8665 else
8666 {
4c4b4cd2
PH
8667 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8668 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8669 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
14f9c5c9 8670 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
14f9c5c9 8671 }
4c4b4cd2 8672 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
d2e4a39e 8673
4c4b4cd2 8674 value_free_to_mark (mark);
14f9c5c9
AS
8675 return rtype;
8676}
8677
8678/* An ordinary record type (with fixed-length fields) that describes
8679 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8680 beginning of this section]. Any necessary discriminants' values
4c4b4cd2
PH
8681 should be in DVAL, a record value; it may be NULL if the object
8682 at ADDR itself contains any necessary discriminant values.
8683 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8684 values from the record are needed. Except in the case that DVAL,
8685 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8686 unchecked) is replaced by a particular branch of the variant.
8687
8688 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8689 is questionable and may be removed. It can arise during the
8690 processing of an unconstrained-array-of-record type where all the
8691 variant branches have exactly the same size. This is because in
8692 such cases, the compiler does not bother to use the XVS convention
8693 when encoding the record. I am currently dubious of this
8694 shortcut and suspect the compiler should be altered. FIXME. */
14f9c5c9 8695
d2e4a39e 8696static struct type *
fc1a4b47 8697to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
4c4b4cd2 8698 CORE_ADDR address, struct value *dval)
14f9c5c9 8699{
d2e4a39e 8700 struct type *templ_type;
14f9c5c9 8701
876cecd0 8702 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
8703 return type0;
8704
d2e4a39e 8705 templ_type = dynamic_template_type (type0);
14f9c5c9
AS
8706
8707 if (templ_type != NULL)
8708 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
4c4b4cd2
PH
8709 else if (variant_field_index (type0) >= 0)
8710 {
8711 if (dval == NULL && valaddr == NULL && address == 0)
8712 return type0;
8713 return to_record_with_fixed_variant_part (type0, valaddr, address,
8714 dval);
8715 }
14f9c5c9
AS
8716 else
8717 {
876cecd0 8718 TYPE_FIXED_INSTANCE (type0) = 1;
14f9c5c9
AS
8719 return type0;
8720 }
8721
8722}
8723
8724/* An ordinary record type (with fixed-length fields) that describes
8725 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8726 union type. Any necessary discriminants' values should be in DVAL,
8727 a record value. That is, this routine selects the appropriate
8728 branch of the union at ADDR according to the discriminant value
b1f33ddd 8729 indicated in the union's type name. Returns VAR_TYPE0 itself if
0963b4bd 8730 it represents a variant subject to a pragma Unchecked_Union. */
14f9c5c9 8731
d2e4a39e 8732static struct type *
fc1a4b47 8733to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
4c4b4cd2 8734 CORE_ADDR address, struct value *dval)
14f9c5c9
AS
8735{
8736 int which;
d2e4a39e
AS
8737 struct type *templ_type;
8738 struct type *var_type;
14f9c5c9
AS
8739
8740 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8741 var_type = TYPE_TARGET_TYPE (var_type0);
d2e4a39e 8742 else
14f9c5c9
AS
8743 var_type = var_type0;
8744
8745 templ_type = ada_find_parallel_type (var_type, "___XVU");
8746
8747 if (templ_type != NULL)
8748 var_type = templ_type;
8749
b1f33ddd
JB
8750 if (is_unchecked_variant (var_type, value_type (dval)))
8751 return var_type0;
d2e4a39e
AS
8752 which =
8753 ada_which_variant_applies (var_type,
0fd88904 8754 value_type (dval), value_contents (dval));
14f9c5c9
AS
8755
8756 if (which < 0)
e9bb382b 8757 return empty_record (var_type);
14f9c5c9 8758 else if (is_dynamic_field (var_type, which))
4c4b4cd2 8759 return to_fixed_record_type
d2e4a39e
AS
8760 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8761 valaddr, address, dval);
4c4b4cd2 8762 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
d2e4a39e
AS
8763 return
8764 to_fixed_record_type
8765 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
14f9c5c9
AS
8766 else
8767 return TYPE_FIELD_TYPE (var_type, which);
8768}
8769
8908fca5
JB
8770/* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8771 ENCODING_TYPE, a type following the GNAT conventions for discrete
8772 type encodings, only carries redundant information. */
8773
8774static int
8775ada_is_redundant_range_encoding (struct type *range_type,
8776 struct type *encoding_type)
8777{
108d56a4 8778 const char *bounds_str;
8908fca5
JB
8779 int n;
8780 LONGEST lo, hi;
8781
8782 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8783
005e2509
JB
8784 if (TYPE_CODE (get_base_type (range_type))
8785 != TYPE_CODE (get_base_type (encoding_type)))
8786 {
8787 /* The compiler probably used a simple base type to describe
8788 the range type instead of the range's actual base type,
8789 expecting us to get the real base type from the encoding
8790 anyway. In this situation, the encoding cannot be ignored
8791 as redundant. */
8792 return 0;
8793 }
8794
8908fca5
JB
8795 if (is_dynamic_type (range_type))
8796 return 0;
8797
8798 if (TYPE_NAME (encoding_type) == NULL)
8799 return 0;
8800
8801 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8802 if (bounds_str == NULL)
8803 return 0;
8804
8805 n = 8; /* Skip "___XDLU_". */
8806 if (!ada_scan_number (bounds_str, n, &lo, &n))
8807 return 0;
8808 if (TYPE_LOW_BOUND (range_type) != lo)
8809 return 0;
8810
8811 n += 2; /* Skip the "__" separator between the two bounds. */
8812 if (!ada_scan_number (bounds_str, n, &hi, &n))
8813 return 0;
8814 if (TYPE_HIGH_BOUND (range_type) != hi)
8815 return 0;
8816
8817 return 1;
8818}
8819
8820/* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8821 a type following the GNAT encoding for describing array type
8822 indices, only carries redundant information. */
8823
8824static int
8825ada_is_redundant_index_type_desc (struct type *array_type,
8826 struct type *desc_type)
8827{
8828 struct type *this_layer = check_typedef (array_type);
8829 int i;
8830
8831 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8832 {
8833 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8834 TYPE_FIELD_TYPE (desc_type, i)))
8835 return 0;
8836 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8837 }
8838
8839 return 1;
8840}
8841
14f9c5c9
AS
8842/* Assuming that TYPE0 is an array type describing the type of a value
8843 at ADDR, and that DVAL describes a record containing any
8844 discriminants used in TYPE0, returns a type for the value that
8845 contains no dynamic components (that is, no components whose sizes
8846 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8847 true, gives an error message if the resulting type's size is over
4c4b4cd2 8848 varsize_limit. */
14f9c5c9 8849
d2e4a39e
AS
8850static struct type *
8851to_fixed_array_type (struct type *type0, struct value *dval,
4c4b4cd2 8852 int ignore_too_big)
14f9c5c9 8853{
d2e4a39e
AS
8854 struct type *index_type_desc;
8855 struct type *result;
ad82864c 8856 int constrained_packed_array_p;
931e5bc3 8857 static const char *xa_suffix = "___XA";
14f9c5c9 8858
b0dd7688 8859 type0 = ada_check_typedef (type0);
284614f0 8860 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2 8861 return type0;
14f9c5c9 8862
ad82864c
JB
8863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8864 if (constrained_packed_array_p)
8865 type0 = decode_constrained_packed_array_type (type0);
284614f0 8866
931e5bc3
JG
8867 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8868
8869 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8870 encoding suffixed with 'P' may still be generated. If so,
8871 it should be used to find the XA type. */
8872
8873 if (index_type_desc == NULL)
8874 {
1da0522e 8875 const char *type_name = ada_type_name (type0);
931e5bc3 8876
1da0522e 8877 if (type_name != NULL)
931e5bc3 8878 {
1da0522e 8879 const int len = strlen (type_name);
931e5bc3
JG
8880 char *name = (char *) alloca (len + strlen (xa_suffix));
8881
1da0522e 8882 if (type_name[len - 1] == 'P')
931e5bc3 8883 {
1da0522e 8884 strcpy (name, type_name);
931e5bc3
JG
8885 strcpy (name + len - 1, xa_suffix);
8886 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8887 }
8888 }
8889 }
8890
28c85d6c 8891 ada_fixup_array_indexes_type (index_type_desc);
8908fca5
JB
8892 if (index_type_desc != NULL
8893 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8894 {
8895 /* Ignore this ___XA parallel type, as it does not bring any
8896 useful information. This allows us to avoid creating fixed
8897 versions of the array's index types, which would be identical
8898 to the original ones. This, in turn, can also help avoid
8899 the creation of fixed versions of the array itself. */
8900 index_type_desc = NULL;
8901 }
8902
14f9c5c9
AS
8903 if (index_type_desc == NULL)
8904 {
61ee279c 8905 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
5b4ee69b 8906
14f9c5c9 8907 /* NOTE: elt_type---the fixed version of elt_type0---should never
4c4b4cd2
PH
8908 depend on the contents of the array in properly constructed
8909 debugging data. */
529cad9c
PH
8910 /* Create a fixed version of the array element type.
8911 We're not providing the address of an element here,
e1d5a0d2 8912 and thus the actual object value cannot be inspected to do
529cad9c
PH
8913 the conversion. This should not be a problem, since arrays of
8914 unconstrained objects are not allowed. In particular, all
8915 the elements of an array of a tagged type should all be of
8916 the same type specified in the debugging info. No need to
8917 consult the object tag. */
1ed6ede0 8918 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
14f9c5c9 8919
284614f0
JB
8920 /* Make sure we always create a new array type when dealing with
8921 packed array types, since we're going to fix-up the array
8922 type length and element bitsize a little further down. */
ad82864c 8923 if (elt_type0 == elt_type && !constrained_packed_array_p)
4c4b4cd2 8924 result = type0;
14f9c5c9 8925 else
e9bb382b 8926 result = create_array_type (alloc_type_copy (type0),
4c4b4cd2 8927 elt_type, TYPE_INDEX_TYPE (type0));
14f9c5c9
AS
8928 }
8929 else
8930 {
8931 int i;
8932 struct type *elt_type0;
8933
8934 elt_type0 = type0;
8935 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
4c4b4cd2 8936 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
14f9c5c9
AS
8937
8938 /* NOTE: result---the fixed version of elt_type0---should never
4c4b4cd2
PH
8939 depend on the contents of the array in properly constructed
8940 debugging data. */
529cad9c
PH
8941 /* Create a fixed version of the array element type.
8942 We're not providing the address of an element here,
e1d5a0d2 8943 and thus the actual object value cannot be inspected to do
529cad9c
PH
8944 the conversion. This should not be a problem, since arrays of
8945 unconstrained objects are not allowed. In particular, all
8946 the elements of an array of a tagged type should all be of
8947 the same type specified in the debugging info. No need to
8948 consult the object tag. */
1ed6ede0
JB
8949 result =
8950 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
1ce677a4
UW
8951
8952 elt_type0 = type0;
14f9c5c9 8953 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
4c4b4cd2
PH
8954 {
8955 struct type *range_type =
28c85d6c 8956 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
5b4ee69b 8957
e9bb382b 8958 result = create_array_type (alloc_type_copy (elt_type0),
4c4b4cd2 8959 result, range_type);
1ce677a4 8960 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
4c4b4cd2 8961 }
d2e4a39e 8962 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
323e0a4a 8963 error (_("array type with dynamic size is larger than varsize-limit"));
14f9c5c9
AS
8964 }
8965
2e6fda7d
JB
8966 /* We want to preserve the type name. This can be useful when
8967 trying to get the type name of a value that has already been
8968 printed (for instance, if the user did "print VAR; whatis $". */
8969 TYPE_NAME (result) = TYPE_NAME (type0);
8970
ad82864c 8971 if (constrained_packed_array_p)
284614f0
JB
8972 {
8973 /* So far, the resulting type has been created as if the original
8974 type was a regular (non-packed) array type. As a result, the
8975 bitsize of the array elements needs to be set again, and the array
8976 length needs to be recomputed based on that bitsize. */
8977 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8978 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8979
8980 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8981 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8982 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8983 TYPE_LENGTH (result)++;
8984 }
8985
876cecd0 8986 TYPE_FIXED_INSTANCE (result) = 1;
14f9c5c9 8987 return result;
d2e4a39e 8988}
14f9c5c9
AS
8989
8990
8991/* A standard type (containing no dynamically sized components)
8992 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8993 DVAL describes a record containing any discriminants used in TYPE0,
4c4b4cd2 8994 and may be NULL if there are none, or if the object of type TYPE at
529cad9c
PH
8995 ADDRESS or in VALADDR contains these discriminants.
8996
1ed6ede0
JB
8997 If CHECK_TAG is not null, in the case of tagged types, this function
8998 attempts to locate the object's tag and use it to compute the actual
8999 type. However, when ADDRESS is null, we cannot use it to determine the
9000 location of the tag, and therefore compute the tagged type's actual type.
9001 So we return the tagged type without consulting the tag. */
529cad9c 9002
f192137b
JB
9003static struct type *
9004ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
1ed6ede0 9005 CORE_ADDR address, struct value *dval, int check_tag)
14f9c5c9 9006{
61ee279c 9007 type = ada_check_typedef (type);
d2e4a39e
AS
9008 switch (TYPE_CODE (type))
9009 {
9010 default:
14f9c5c9 9011 return type;
d2e4a39e 9012 case TYPE_CODE_STRUCT:
4c4b4cd2 9013 {
76a01679 9014 struct type *static_type = to_static_fixed_type (type);
1ed6ede0
JB
9015 struct type *fixed_record_type =
9016 to_fixed_record_type (type, valaddr, address, NULL);
5b4ee69b 9017
529cad9c
PH
9018 /* If STATIC_TYPE is a tagged type and we know the object's address,
9019 then we can determine its tag, and compute the object's actual
0963b4bd 9020 type from there. Note that we have to use the fixed record
1ed6ede0
JB
9021 type (the parent part of the record may have dynamic fields
9022 and the way the location of _tag is expressed may depend on
9023 them). */
529cad9c 9024
1ed6ede0 9025 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
76a01679 9026 {
b50d69b5
JG
9027 struct value *tag =
9028 value_tag_from_contents_and_address
9029 (fixed_record_type,
9030 valaddr,
9031 address);
9032 struct type *real_type = type_from_tag (tag);
9033 struct value *obj =
9034 value_from_contents_and_address (fixed_record_type,
9035 valaddr,
9036 address);
9f1f738a 9037 fixed_record_type = value_type (obj);
76a01679 9038 if (real_type != NULL)
b50d69b5
JG
9039 return to_fixed_record_type
9040 (real_type, NULL,
9041 value_address (ada_tag_value_at_base_address (obj)), NULL);
76a01679 9042 }
4af88198
JB
9043
9044 /* Check to see if there is a parallel ___XVZ variable.
9045 If there is, then it provides the actual size of our type. */
9046 else if (ada_type_name (fixed_record_type) != NULL)
9047 {
0d5cff50 9048 const char *name = ada_type_name (fixed_record_type);
224c3ddb
SM
9049 char *xvz_name
9050 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
eccab96d 9051 bool xvz_found = false;
4af88198
JB
9052 LONGEST size;
9053
88c15c34 9054 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
eccab96d
JB
9055 TRY
9056 {
9057 xvz_found = get_int_var_value (xvz_name, size);
9058 }
9059 CATCH (except, RETURN_MASK_ERROR)
9060 {
9061 /* We found the variable, but somehow failed to read
9062 its value. Rethrow the same error, but with a little
9063 bit more information, to help the user understand
9064 what went wrong (Eg: the variable might have been
9065 optimized out). */
9066 throw_error (except.error,
9067 _("unable to read value of %s (%s)"),
9068 xvz_name, except.message);
9069 }
9070 END_CATCH
9071
9072 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
4af88198
JB
9073 {
9074 fixed_record_type = copy_type (fixed_record_type);
9075 TYPE_LENGTH (fixed_record_type) = size;
9076
9077 /* The FIXED_RECORD_TYPE may have be a stub. We have
9078 observed this when the debugging info is STABS, and
9079 apparently it is something that is hard to fix.
9080
9081 In practice, we don't need the actual type definition
9082 at all, because the presence of the XVZ variable allows us
9083 to assume that there must be a XVS type as well, which we
9084 should be able to use later, when we need the actual type
9085 definition.
9086
9087 In the meantime, pretend that the "fixed" type we are
9088 returning is NOT a stub, because this can cause trouble
9089 when using this type to create new types targeting it.
9090 Indeed, the associated creation routines often check
9091 whether the target type is a stub and will try to replace
0963b4bd 9092 it, thus using a type with the wrong size. This, in turn,
4af88198
JB
9093 might cause the new type to have the wrong size too.
9094 Consider the case of an array, for instance, where the size
9095 of the array is computed from the number of elements in
9096 our array multiplied by the size of its element. */
9097 TYPE_STUB (fixed_record_type) = 0;
9098 }
9099 }
1ed6ede0 9100 return fixed_record_type;
4c4b4cd2 9101 }
d2e4a39e 9102 case TYPE_CODE_ARRAY:
4c4b4cd2 9103 return to_fixed_array_type (type, dval, 1);
d2e4a39e
AS
9104 case TYPE_CODE_UNION:
9105 if (dval == NULL)
4c4b4cd2 9106 return type;
d2e4a39e 9107 else
4c4b4cd2 9108 return to_fixed_variant_branch_type (type, valaddr, address, dval);
d2e4a39e 9109 }
14f9c5c9
AS
9110}
9111
f192137b
JB
9112/* The same as ada_to_fixed_type_1, except that it preserves the type
9113 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
96dbd2c1
JB
9114
9115 The typedef layer needs be preserved in order to differentiate between
9116 arrays and array pointers when both types are implemented using the same
9117 fat pointer. In the array pointer case, the pointer is encoded as
9118 a typedef of the pointer type. For instance, considering:
9119
9120 type String_Access is access String;
9121 S1 : String_Access := null;
9122
9123 To the debugger, S1 is defined as a typedef of type String. But
9124 to the user, it is a pointer. So if the user tries to print S1,
9125 we should not dereference the array, but print the array address
9126 instead.
9127
9128 If we didn't preserve the typedef layer, we would lose the fact that
9129 the type is to be presented as a pointer (needs de-reference before
9130 being printed). And we would also use the source-level type name. */
f192137b
JB
9131
9132struct type *
9133ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9134 CORE_ADDR address, struct value *dval, int check_tag)
9135
9136{
9137 struct type *fixed_type =
9138 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9139
96dbd2c1
JB
9140 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9141 then preserve the typedef layer.
9142
9143 Implementation note: We can only check the main-type portion of
9144 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9145 from TYPE now returns a type that has the same instance flags
9146 as TYPE. For instance, if TYPE is a "typedef const", and its
9147 target type is a "struct", then the typedef elimination will return
9148 a "const" version of the target type. See check_typedef for more
9149 details about how the typedef layer elimination is done.
9150
9151 brobecker/2010-11-19: It seems to me that the only case where it is
9152 useful to preserve the typedef layer is when dealing with fat pointers.
9153 Perhaps, we could add a check for that and preserve the typedef layer
9154 only in that situation. But this seems unecessary so far, probably
9155 because we call check_typedef/ada_check_typedef pretty much everywhere.
9156 */
f192137b 9157 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
720d1a40 9158 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
96dbd2c1 9159 == TYPE_MAIN_TYPE (fixed_type)))
f192137b
JB
9160 return type;
9161
9162 return fixed_type;
9163}
9164
14f9c5c9 9165/* A standard (static-sized) type corresponding as well as possible to
4c4b4cd2 9166 TYPE0, but based on no runtime data. */
14f9c5c9 9167
d2e4a39e
AS
9168static struct type *
9169to_static_fixed_type (struct type *type0)
14f9c5c9 9170{
d2e4a39e 9171 struct type *type;
14f9c5c9
AS
9172
9173 if (type0 == NULL)
9174 return NULL;
9175
876cecd0 9176 if (TYPE_FIXED_INSTANCE (type0))
4c4b4cd2
PH
9177 return type0;
9178
61ee279c 9179 type0 = ada_check_typedef (type0);
d2e4a39e 9180
14f9c5c9
AS
9181 switch (TYPE_CODE (type0))
9182 {
9183 default:
9184 return type0;
9185 case TYPE_CODE_STRUCT:
9186 type = dynamic_template_type (type0);
d2e4a39e 9187 if (type != NULL)
4c4b4cd2
PH
9188 return template_to_static_fixed_type (type);
9189 else
9190 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9191 case TYPE_CODE_UNION:
9192 type = ada_find_parallel_type (type0, "___XVU");
9193 if (type != NULL)
4c4b4cd2
PH
9194 return template_to_static_fixed_type (type);
9195 else
9196 return template_to_static_fixed_type (type0);
14f9c5c9
AS
9197 }
9198}
9199
4c4b4cd2
PH
9200/* A static approximation of TYPE with all type wrappers removed. */
9201
d2e4a39e
AS
9202static struct type *
9203static_unwrap_type (struct type *type)
14f9c5c9
AS
9204{
9205 if (ada_is_aligner_type (type))
9206 {
61ee279c 9207 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
14f9c5c9 9208 if (ada_type_name (type1) == NULL)
4c4b4cd2 9209 TYPE_NAME (type1) = ada_type_name (type);
14f9c5c9
AS
9210
9211 return static_unwrap_type (type1);
9212 }
d2e4a39e 9213 else
14f9c5c9 9214 {
d2e4a39e 9215 struct type *raw_real_type = ada_get_base_type (type);
5b4ee69b 9216
d2e4a39e 9217 if (raw_real_type == type)
4c4b4cd2 9218 return type;
14f9c5c9 9219 else
4c4b4cd2 9220 return to_static_fixed_type (raw_real_type);
14f9c5c9
AS
9221 }
9222}
9223
9224/* In some cases, incomplete and private types require
4c4b4cd2 9225 cross-references that are not resolved as records (for example,
14f9c5c9
AS
9226 type Foo;
9227 type FooP is access Foo;
9228 V: FooP;
9229 type Foo is array ...;
4c4b4cd2 9230 ). In these cases, since there is no mechanism for producing
14f9c5c9
AS
9231 cross-references to such types, we instead substitute for FooP a
9232 stub enumeration type that is nowhere resolved, and whose tag is
4c4b4cd2 9233 the name of the actual type. Call these types "non-record stubs". */
14f9c5c9
AS
9234
9235/* A type equivalent to TYPE that is not a non-record stub, if one
4c4b4cd2
PH
9236 exists, otherwise TYPE. */
9237
d2e4a39e 9238struct type *
61ee279c 9239ada_check_typedef (struct type *type)
14f9c5c9 9240{
727e3d2e
JB
9241 if (type == NULL)
9242 return NULL;
9243
720d1a40
JB
9244 /* If our type is a typedef type of a fat pointer, then we're done.
9245 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9246 what allows us to distinguish between fat pointers that represent
9247 array types, and fat pointers that represent array access types
9248 (in both cases, the compiler implements them as fat pointers). */
9249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9250 && is_thick_pntr (ada_typedef_target_type (type)))
9251 return type;
9252
f168693b 9253 type = check_typedef (type);
14f9c5c9 9254 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
529cad9c 9255 || !TYPE_STUB (type)
e86ca25f 9256 || TYPE_NAME (type) == NULL)
14f9c5c9 9257 return type;
d2e4a39e 9258 else
14f9c5c9 9259 {
e86ca25f 9260 const char *name = TYPE_NAME (type);
d2e4a39e 9261 struct type *type1 = ada_find_any_type (name);
5b4ee69b 9262
05e522ef
JB
9263 if (type1 == NULL)
9264 return type;
9265
9266 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9267 stubs pointing to arrays, as we don't create symbols for array
3a867c22
JB
9268 types, only for the typedef-to-array types). If that's the case,
9269 strip the typedef layer. */
9270 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9271 type1 = ada_check_typedef (type1);
9272
9273 return type1;
14f9c5c9
AS
9274 }
9275}
9276
9277/* A value representing the data at VALADDR/ADDRESS as described by
9278 type TYPE0, but with a standard (static-sized) type that correctly
9279 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9280 type, then return VAL0 [this feature is simply to avoid redundant
4c4b4cd2 9281 creation of struct values]. */
14f9c5c9 9282
4c4b4cd2
PH
9283static struct value *
9284ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9285 struct value *val0)
14f9c5c9 9286{
1ed6ede0 9287 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
5b4ee69b 9288
14f9c5c9
AS
9289 if (type == type0 && val0 != NULL)
9290 return val0;
cc0e770c
JB
9291
9292 if (VALUE_LVAL (val0) != lval_memory)
9293 {
9294 /* Our value does not live in memory; it could be a convenience
9295 variable, for instance. Create a not_lval value using val0's
9296 contents. */
9297 return value_from_contents (type, value_contents (val0));
9298 }
9299
9300 return value_from_contents_and_address (type, 0, address);
4c4b4cd2
PH
9301}
9302
9303/* A value representing VAL, but with a standard (static-sized) type
9304 that correctly describes it. Does not necessarily create a new
9305 value. */
9306
0c3acc09 9307struct value *
4c4b4cd2
PH
9308ada_to_fixed_value (struct value *val)
9309{
c48db5ca
JB
9310 val = unwrap_value (val);
9311 val = ada_to_fixed_value_create (value_type (val),
9312 value_address (val),
9313 val);
9314 return val;
14f9c5c9 9315}
d2e4a39e 9316\f
14f9c5c9 9317
14f9c5c9
AS
9318/* Attributes */
9319
4c4b4cd2
PH
9320/* Table mapping attribute numbers to names.
9321 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
14f9c5c9 9322
d2e4a39e 9323static const char *attribute_names[] = {
14f9c5c9
AS
9324 "<?>",
9325
d2e4a39e 9326 "first",
14f9c5c9
AS
9327 "last",
9328 "length",
9329 "image",
14f9c5c9
AS
9330 "max",
9331 "min",
4c4b4cd2
PH
9332 "modulus",
9333 "pos",
9334 "size",
9335 "tag",
14f9c5c9 9336 "val",
14f9c5c9
AS
9337 0
9338};
9339
d2e4a39e 9340const char *
4c4b4cd2 9341ada_attribute_name (enum exp_opcode n)
14f9c5c9 9342{
4c4b4cd2
PH
9343 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9344 return attribute_names[n - OP_ATR_FIRST + 1];
14f9c5c9
AS
9345 else
9346 return attribute_names[0];
9347}
9348
4c4b4cd2 9349/* Evaluate the 'POS attribute applied to ARG. */
14f9c5c9 9350
4c4b4cd2
PH
9351static LONGEST
9352pos_atr (struct value *arg)
14f9c5c9 9353{
24209737
PH
9354 struct value *val = coerce_ref (arg);
9355 struct type *type = value_type (val);
aa715135 9356 LONGEST result;
14f9c5c9 9357
d2e4a39e 9358 if (!discrete_type_p (type))
323e0a4a 9359 error (_("'POS only defined on discrete types"));
14f9c5c9 9360
aa715135
JG
9361 if (!discrete_position (type, value_as_long (val), &result))
9362 error (_("enumeration value is invalid: can't find 'POS"));
14f9c5c9 9363
aa715135 9364 return result;
4c4b4cd2
PH
9365}
9366
9367static struct value *
3cb382c9 9368value_pos_atr (struct type *type, struct value *arg)
4c4b4cd2 9369{
3cb382c9 9370 return value_from_longest (type, pos_atr (arg));
14f9c5c9
AS
9371}
9372
4c4b4cd2 9373/* Evaluate the TYPE'VAL attribute applied to ARG. */
14f9c5c9 9374
d2e4a39e
AS
9375static struct value *
9376value_val_atr (struct type *type, struct value *arg)
14f9c5c9 9377{
d2e4a39e 9378 if (!discrete_type_p (type))
323e0a4a 9379 error (_("'VAL only defined on discrete types"));
df407dfe 9380 if (!integer_type_p (value_type (arg)))
323e0a4a 9381 error (_("'VAL requires integral argument"));
14f9c5c9
AS
9382
9383 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9384 {
9385 long pos = value_as_long (arg);
5b4ee69b 9386
14f9c5c9 9387 if (pos < 0 || pos >= TYPE_NFIELDS (type))
323e0a4a 9388 error (_("argument to 'VAL out of range"));
14e75d8e 9389 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
14f9c5c9
AS
9390 }
9391 else
9392 return value_from_longest (type, value_as_long (arg));
9393}
14f9c5c9 9394\f
d2e4a39e 9395
4c4b4cd2 9396 /* Evaluation */
14f9c5c9 9397
4c4b4cd2
PH
9398/* True if TYPE appears to be an Ada character type.
9399 [At the moment, this is true only for Character and Wide_Character;
9400 It is a heuristic test that could stand improvement]. */
14f9c5c9 9401
d2e4a39e
AS
9402int
9403ada_is_character_type (struct type *type)
14f9c5c9 9404{
7b9f71f2
JB
9405 const char *name;
9406
9407 /* If the type code says it's a character, then assume it really is,
9408 and don't check any further. */
9409 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9410 return 1;
9411
9412 /* Otherwise, assume it's a character type iff it is a discrete type
9413 with a known character type name. */
9414 name = ada_type_name (type);
9415 return (name != NULL
9416 && (TYPE_CODE (type) == TYPE_CODE_INT
9417 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9418 && (strcmp (name, "character") == 0
9419 || strcmp (name, "wide_character") == 0
5a517ebd 9420 || strcmp (name, "wide_wide_character") == 0
7b9f71f2 9421 || strcmp (name, "unsigned char") == 0));
14f9c5c9
AS
9422}
9423
4c4b4cd2 9424/* True if TYPE appears to be an Ada string type. */
14f9c5c9
AS
9425
9426int
ebf56fd3 9427ada_is_string_type (struct type *type)
14f9c5c9 9428{
61ee279c 9429 type = ada_check_typedef (type);
d2e4a39e 9430 if (type != NULL
14f9c5c9 9431 && TYPE_CODE (type) != TYPE_CODE_PTR
76a01679
JB
9432 && (ada_is_simple_array_type (type)
9433 || ada_is_array_descriptor_type (type))
14f9c5c9
AS
9434 && ada_array_arity (type) == 1)
9435 {
9436 struct type *elttype = ada_array_element_type (type, 1);
9437
9438 return ada_is_character_type (elttype);
9439 }
d2e4a39e 9440 else
14f9c5c9
AS
9441 return 0;
9442}
9443
5bf03f13
JB
9444/* The compiler sometimes provides a parallel XVS type for a given
9445 PAD type. Normally, it is safe to follow the PAD type directly,
9446 but older versions of the compiler have a bug that causes the offset
9447 of its "F" field to be wrong. Following that field in that case
9448 would lead to incorrect results, but this can be worked around
9449 by ignoring the PAD type and using the associated XVS type instead.
9450
9451 Set to True if the debugger should trust the contents of PAD types.
9452 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9453static int trust_pad_over_xvs = 1;
14f9c5c9
AS
9454
9455/* True if TYPE is a struct type introduced by the compiler to force the
9456 alignment of a value. Such types have a single field with a
4c4b4cd2 9457 distinctive name. */
14f9c5c9
AS
9458
9459int
ebf56fd3 9460ada_is_aligner_type (struct type *type)
14f9c5c9 9461{
61ee279c 9462 type = ada_check_typedef (type);
714e53ab 9463
5bf03f13 9464 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
714e53ab
PH
9465 return 0;
9466
14f9c5c9 9467 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
4c4b4cd2
PH
9468 && TYPE_NFIELDS (type) == 1
9469 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
14f9c5c9
AS
9470}
9471
9472/* If there is an ___XVS-convention type parallel to SUBTYPE, return
4c4b4cd2 9473 the parallel type. */
14f9c5c9 9474
d2e4a39e
AS
9475struct type *
9476ada_get_base_type (struct type *raw_type)
14f9c5c9 9477{
d2e4a39e
AS
9478 struct type *real_type_namer;
9479 struct type *raw_real_type;
14f9c5c9
AS
9480
9481 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9482 return raw_type;
9483
284614f0
JB
9484 if (ada_is_aligner_type (raw_type))
9485 /* The encoding specifies that we should always use the aligner type.
9486 So, even if this aligner type has an associated XVS type, we should
9487 simply ignore it.
9488
9489 According to the compiler gurus, an XVS type parallel to an aligner
9490 type may exist because of a stabs limitation. In stabs, aligner
9491 types are empty because the field has a variable-sized type, and
9492 thus cannot actually be used as an aligner type. As a result,
9493 we need the associated parallel XVS type to decode the type.
9494 Since the policy in the compiler is to not change the internal
9495 representation based on the debugging info format, we sometimes
9496 end up having a redundant XVS type parallel to the aligner type. */
9497 return raw_type;
9498
14f9c5c9 9499 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
d2e4a39e 9500 if (real_type_namer == NULL
14f9c5c9
AS
9501 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9502 || TYPE_NFIELDS (real_type_namer) != 1)
9503 return raw_type;
9504
f80d3ff2
JB
9505 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9506 {
9507 /* This is an older encoding form where the base type needs to be
9508 looked up by name. We prefer the newer enconding because it is
9509 more efficient. */
9510 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9511 if (raw_real_type == NULL)
9512 return raw_type;
9513 else
9514 return raw_real_type;
9515 }
9516
9517 /* The field in our XVS type is a reference to the base type. */
9518 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
d2e4a39e 9519}
14f9c5c9 9520
4c4b4cd2 9521/* The type of value designated by TYPE, with all aligners removed. */
14f9c5c9 9522
d2e4a39e
AS
9523struct type *
9524ada_aligned_type (struct type *type)
14f9c5c9
AS
9525{
9526 if (ada_is_aligner_type (type))
9527 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9528 else
9529 return ada_get_base_type (type);
9530}
9531
9532
9533/* The address of the aligned value in an object at address VALADDR
4c4b4cd2 9534 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
14f9c5c9 9535
fc1a4b47
AC
9536const gdb_byte *
9537ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
14f9c5c9 9538{
d2e4a39e 9539 if (ada_is_aligner_type (type))
14f9c5c9 9540 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
4c4b4cd2
PH
9541 valaddr +
9542 TYPE_FIELD_BITPOS (type,
9543 0) / TARGET_CHAR_BIT);
14f9c5c9
AS
9544 else
9545 return valaddr;
9546}
9547
4c4b4cd2
PH
9548
9549
14f9c5c9 9550/* The printed representation of an enumeration literal with encoded
4c4b4cd2 9551 name NAME. The value is good to the next call of ada_enum_name. */
d2e4a39e
AS
9552const char *
9553ada_enum_name (const char *name)
14f9c5c9 9554{
4c4b4cd2
PH
9555 static char *result;
9556 static size_t result_len = 0;
e6a959d6 9557 const char *tmp;
14f9c5c9 9558
4c4b4cd2
PH
9559 /* First, unqualify the enumeration name:
9560 1. Search for the last '.' character. If we find one, then skip
177b42fe 9561 all the preceding characters, the unqualified name starts
76a01679 9562 right after that dot.
4c4b4cd2 9563 2. Otherwise, we may be debugging on a target where the compiler
76a01679
JB
9564 translates dots into "__". Search forward for double underscores,
9565 but stop searching when we hit an overloading suffix, which is
9566 of the form "__" followed by digits. */
4c4b4cd2 9567
c3e5cd34
PH
9568 tmp = strrchr (name, '.');
9569 if (tmp != NULL)
4c4b4cd2
PH
9570 name = tmp + 1;
9571 else
14f9c5c9 9572 {
4c4b4cd2
PH
9573 while ((tmp = strstr (name, "__")) != NULL)
9574 {
9575 if (isdigit (tmp[2]))
9576 break;
9577 else
9578 name = tmp + 2;
9579 }
14f9c5c9
AS
9580 }
9581
9582 if (name[0] == 'Q')
9583 {
14f9c5c9 9584 int v;
5b4ee69b 9585
14f9c5c9 9586 if (name[1] == 'U' || name[1] == 'W')
4c4b4cd2
PH
9587 {
9588 if (sscanf (name + 2, "%x", &v) != 1)
9589 return name;
9590 }
14f9c5c9 9591 else
4c4b4cd2 9592 return name;
14f9c5c9 9593
4c4b4cd2 9594 GROW_VECT (result, result_len, 16);
14f9c5c9 9595 if (isascii (v) && isprint (v))
88c15c34 9596 xsnprintf (result, result_len, "'%c'", v);
14f9c5c9 9597 else if (name[1] == 'U')
88c15c34 9598 xsnprintf (result, result_len, "[\"%02x\"]", v);
14f9c5c9 9599 else
88c15c34 9600 xsnprintf (result, result_len, "[\"%04x\"]", v);
14f9c5c9
AS
9601
9602 return result;
9603 }
d2e4a39e 9604 else
4c4b4cd2 9605 {
c3e5cd34
PH
9606 tmp = strstr (name, "__");
9607 if (tmp == NULL)
9608 tmp = strstr (name, "$");
9609 if (tmp != NULL)
4c4b4cd2
PH
9610 {
9611 GROW_VECT (result, result_len, tmp - name + 1);
9612 strncpy (result, name, tmp - name);
9613 result[tmp - name] = '\0';
9614 return result;
9615 }
9616
9617 return name;
9618 }
14f9c5c9
AS
9619}
9620
14f9c5c9
AS
9621/* Evaluate the subexpression of EXP starting at *POS as for
9622 evaluate_type, updating *POS to point just past the evaluated
4c4b4cd2 9623 expression. */
14f9c5c9 9624
d2e4a39e
AS
9625static struct value *
9626evaluate_subexp_type (struct expression *exp, int *pos)
14f9c5c9 9627{
4b27a620 9628 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
14f9c5c9
AS
9629}
9630
9631/* If VAL is wrapped in an aligner or subtype wrapper, return the
4c4b4cd2 9632 value it wraps. */
14f9c5c9 9633
d2e4a39e
AS
9634static struct value *
9635unwrap_value (struct value *val)
14f9c5c9 9636{
df407dfe 9637 struct type *type = ada_check_typedef (value_type (val));
5b4ee69b 9638
14f9c5c9
AS
9639 if (ada_is_aligner_type (type))
9640 {
de4d072f 9641 struct value *v = ada_value_struct_elt (val, "F", 0);
df407dfe 9642 struct type *val_type = ada_check_typedef (value_type (v));
5b4ee69b 9643
14f9c5c9 9644 if (ada_type_name (val_type) == NULL)
4c4b4cd2 9645 TYPE_NAME (val_type) = ada_type_name (type);
14f9c5c9
AS
9646
9647 return unwrap_value (v);
9648 }
d2e4a39e 9649 else
14f9c5c9 9650 {
d2e4a39e 9651 struct type *raw_real_type =
61ee279c 9652 ada_check_typedef (ada_get_base_type (type));
d2e4a39e 9653
5bf03f13
JB
9654 /* If there is no parallel XVS or XVE type, then the value is
9655 already unwrapped. Return it without further modification. */
9656 if ((type == raw_real_type)
9657 && ada_find_parallel_type (type, "___XVE") == NULL)
9658 return val;
14f9c5c9 9659
d2e4a39e 9660 return
4c4b4cd2
PH
9661 coerce_unspec_val_to_type
9662 (val, ada_to_fixed_type (raw_real_type, 0,
42ae5230 9663 value_address (val),
1ed6ede0 9664 NULL, 1));
14f9c5c9
AS
9665 }
9666}
d2e4a39e
AS
9667
9668static struct value *
50eff16b 9669cast_from_fixed (struct type *type, struct value *arg)
14f9c5c9 9670{
50eff16b
UW
9671 struct value *scale = ada_scaling_factor (value_type (arg));
9672 arg = value_cast (value_type (scale), arg);
14f9c5c9 9673
50eff16b
UW
9674 arg = value_binop (arg, scale, BINOP_MUL);
9675 return value_cast (type, arg);
14f9c5c9
AS
9676}
9677
d2e4a39e 9678static struct value *
50eff16b 9679cast_to_fixed (struct type *type, struct value *arg)
14f9c5c9 9680{
50eff16b
UW
9681 if (type == value_type (arg))
9682 return arg;
5b4ee69b 9683
50eff16b
UW
9684 struct value *scale = ada_scaling_factor (type);
9685 if (ada_is_fixed_point_type (value_type (arg)))
9686 arg = cast_from_fixed (value_type (scale), arg);
9687 else
9688 arg = value_cast (value_type (scale), arg);
9689
9690 arg = value_binop (arg, scale, BINOP_DIV);
9691 return value_cast (type, arg);
14f9c5c9
AS
9692}
9693
d99dcf51
JB
9694/* Given two array types T1 and T2, return nonzero iff both arrays
9695 contain the same number of elements. */
9696
9697static int
9698ada_same_array_size_p (struct type *t1, struct type *t2)
9699{
9700 LONGEST lo1, hi1, lo2, hi2;
9701
9702 /* Get the array bounds in order to verify that the size of
9703 the two arrays match. */
9704 if (!get_array_bounds (t1, &lo1, &hi1)
9705 || !get_array_bounds (t2, &lo2, &hi2))
9706 error (_("unable to determine array bounds"));
9707
9708 /* To make things easier for size comparison, normalize a bit
9709 the case of empty arrays by making sure that the difference
9710 between upper bound and lower bound is always -1. */
9711 if (lo1 > hi1)
9712 hi1 = lo1 - 1;
9713 if (lo2 > hi2)
9714 hi2 = lo2 - 1;
9715
9716 return (hi1 - lo1 == hi2 - lo2);
9717}
9718
9719/* Assuming that VAL is an array of integrals, and TYPE represents
9720 an array with the same number of elements, but with wider integral
9721 elements, return an array "casted" to TYPE. In practice, this
9722 means that the returned array is built by casting each element
9723 of the original array into TYPE's (wider) element type. */
9724
9725static struct value *
9726ada_promote_array_of_integrals (struct type *type, struct value *val)
9727{
9728 struct type *elt_type = TYPE_TARGET_TYPE (type);
9729 LONGEST lo, hi;
9730 struct value *res;
9731 LONGEST i;
9732
9733 /* Verify that both val and type are arrays of scalars, and
9734 that the size of val's elements is smaller than the size
9735 of type's element. */
9736 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9737 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9738 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9739 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9740 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9741 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9742
9743 if (!get_array_bounds (type, &lo, &hi))
9744 error (_("unable to determine array bounds"));
9745
9746 res = allocate_value (type);
9747
9748 /* Promote each array element. */
9749 for (i = 0; i < hi - lo + 1; i++)
9750 {
9751 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9752
9753 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9754 value_contents_all (elt), TYPE_LENGTH (elt_type));
9755 }
9756
9757 return res;
9758}
9759
4c4b4cd2
PH
9760/* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9761 return the converted value. */
9762
d2e4a39e
AS
9763static struct value *
9764coerce_for_assign (struct type *type, struct value *val)
14f9c5c9 9765{
df407dfe 9766 struct type *type2 = value_type (val);
5b4ee69b 9767
14f9c5c9
AS
9768 if (type == type2)
9769 return val;
9770
61ee279c
PH
9771 type2 = ada_check_typedef (type2);
9772 type = ada_check_typedef (type);
14f9c5c9 9773
d2e4a39e
AS
9774 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9775 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
14f9c5c9
AS
9776 {
9777 val = ada_value_ind (val);
df407dfe 9778 type2 = value_type (val);
14f9c5c9
AS
9779 }
9780
d2e4a39e 9781 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
14f9c5c9
AS
9782 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9783 {
d99dcf51
JB
9784 if (!ada_same_array_size_p (type, type2))
9785 error (_("cannot assign arrays of different length"));
9786
9787 if (is_integral_type (TYPE_TARGET_TYPE (type))
9788 && is_integral_type (TYPE_TARGET_TYPE (type2))
9789 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 {
9792 /* Allow implicit promotion of the array elements to
9793 a wider type. */
9794 return ada_promote_array_of_integrals (type, val);
9795 }
9796
9797 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9798 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
323e0a4a 9799 error (_("Incompatible types in assignment"));
04624583 9800 deprecated_set_value_type (val, type);
14f9c5c9 9801 }
d2e4a39e 9802 return val;
14f9c5c9
AS
9803}
9804
4c4b4cd2
PH
9805static struct value *
9806ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9807{
9808 struct value *val;
9809 struct type *type1, *type2;
9810 LONGEST v, v1, v2;
9811
994b9211
AC
9812 arg1 = coerce_ref (arg1);
9813 arg2 = coerce_ref (arg2);
18af8284
JB
9814 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9815 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
4c4b4cd2 9816
76a01679
JB
9817 if (TYPE_CODE (type1) != TYPE_CODE_INT
9818 || TYPE_CODE (type2) != TYPE_CODE_INT)
4c4b4cd2
PH
9819 return value_binop (arg1, arg2, op);
9820
76a01679 9821 switch (op)
4c4b4cd2
PH
9822 {
9823 case BINOP_MOD:
9824 case BINOP_DIV:
9825 case BINOP_REM:
9826 break;
9827 default:
9828 return value_binop (arg1, arg2, op);
9829 }
9830
9831 v2 = value_as_long (arg2);
9832 if (v2 == 0)
323e0a4a 9833 error (_("second operand of %s must not be zero."), op_string (op));
4c4b4cd2
PH
9834
9835 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9836 return value_binop (arg1, arg2, op);
9837
9838 v1 = value_as_long (arg1);
9839 switch (op)
9840 {
9841 case BINOP_DIV:
9842 v = v1 / v2;
76a01679
JB
9843 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9844 v += v > 0 ? -1 : 1;
4c4b4cd2
PH
9845 break;
9846 case BINOP_REM:
9847 v = v1 % v2;
76a01679
JB
9848 if (v * v1 < 0)
9849 v -= v2;
4c4b4cd2
PH
9850 break;
9851 default:
9852 /* Should not reach this point. */
9853 v = 0;
9854 }
9855
9856 val = allocate_value (type1);
990a07ab 9857 store_unsigned_integer (value_contents_raw (val),
e17a4113
UW
9858 TYPE_LENGTH (value_type (val)),
9859 gdbarch_byte_order (get_type_arch (type1)), v);
4c4b4cd2
PH
9860 return val;
9861}
9862
9863static int
9864ada_value_equal (struct value *arg1, struct value *arg2)
9865{
df407dfe
AC
9866 if (ada_is_direct_array_type (value_type (arg1))
9867 || ada_is_direct_array_type (value_type (arg2)))
4c4b4cd2 9868 {
79e8fcaa
JB
9869 struct type *arg1_type, *arg2_type;
9870
f58b38bf
JB
9871 /* Automatically dereference any array reference before
9872 we attempt to perform the comparison. */
9873 arg1 = ada_coerce_ref (arg1);
9874 arg2 = ada_coerce_ref (arg2);
79e8fcaa 9875
4c4b4cd2
PH
9876 arg1 = ada_coerce_to_simple_array (arg1);
9877 arg2 = ada_coerce_to_simple_array (arg2);
79e8fcaa
JB
9878
9879 arg1_type = ada_check_typedef (value_type (arg1));
9880 arg2_type = ada_check_typedef (value_type (arg2));
9881
9882 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9883 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
323e0a4a 9884 error (_("Attempt to compare array with non-array"));
4c4b4cd2 9885 /* FIXME: The following works only for types whose
76a01679
JB
9886 representations use all bits (no padding or undefined bits)
9887 and do not have user-defined equality. */
79e8fcaa
JB
9888 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9889 && memcmp (value_contents (arg1), value_contents (arg2),
9890 TYPE_LENGTH (arg1_type)) == 0);
4c4b4cd2
PH
9891 }
9892 return value_equal (arg1, arg2);
9893}
9894
52ce6436
PH
9895/* Total number of component associations in the aggregate starting at
9896 index PC in EXP. Assumes that index PC is the start of an
0963b4bd 9897 OP_AGGREGATE. */
52ce6436
PH
9898
9899static int
9900num_component_specs (struct expression *exp, int pc)
9901{
9902 int n, m, i;
5b4ee69b 9903
52ce6436
PH
9904 m = exp->elts[pc + 1].longconst;
9905 pc += 3;
9906 n = 0;
9907 for (i = 0; i < m; i += 1)
9908 {
9909 switch (exp->elts[pc].opcode)
9910 {
9911 default:
9912 n += 1;
9913 break;
9914 case OP_CHOICES:
9915 n += exp->elts[pc + 1].longconst;
9916 break;
9917 }
9918 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9919 }
9920 return n;
9921}
9922
9923/* Assign the result of evaluating EXP starting at *POS to the INDEXth
9924 component of LHS (a simple array or a record), updating *POS past
9925 the expression, assuming that LHS is contained in CONTAINER. Does
9926 not modify the inferior's memory, nor does it modify LHS (unless
9927 LHS == CONTAINER). */
9928
9929static void
9930assign_component (struct value *container, struct value *lhs, LONGEST index,
9931 struct expression *exp, int *pos)
9932{
9933 struct value *mark = value_mark ();
9934 struct value *elt;
0e2da9f0 9935 struct type *lhs_type = check_typedef (value_type (lhs));
5b4ee69b 9936
0e2da9f0 9937 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
52ce6436 9938 {
22601c15
UW
9939 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9940 struct value *index_val = value_from_longest (index_type, index);
5b4ee69b 9941
52ce6436
PH
9942 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9943 }
9944 else
9945 {
9946 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
c48db5ca 9947 elt = ada_to_fixed_value (elt);
52ce6436
PH
9948 }
9949
9950 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9951 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9952 else
9953 value_assign_to_component (container, elt,
9954 ada_evaluate_subexp (NULL, exp, pos,
9955 EVAL_NORMAL));
9956
9957 value_free_to_mark (mark);
9958}
9959
9960/* Assuming that LHS represents an lvalue having a record or array
9961 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9962 of that aggregate's value to LHS, advancing *POS past the
9963 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9964 lvalue containing LHS (possibly LHS itself). Does not modify
9965 the inferior's memory, nor does it modify the contents of
0963b4bd 9966 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
52ce6436
PH
9967
9968static struct value *
9969assign_aggregate (struct value *container,
9970 struct value *lhs, struct expression *exp,
9971 int *pos, enum noside noside)
9972{
9973 struct type *lhs_type;
9974 int n = exp->elts[*pos+1].longconst;
9975 LONGEST low_index, high_index;
9976 int num_specs;
9977 LONGEST *indices;
9978 int max_indices, num_indices;
52ce6436 9979 int i;
52ce6436
PH
9980
9981 *pos += 3;
9982 if (noside != EVAL_NORMAL)
9983 {
52ce6436
PH
9984 for (i = 0; i < n; i += 1)
9985 ada_evaluate_subexp (NULL, exp, pos, noside);
9986 return container;
9987 }
9988
9989 container = ada_coerce_ref (container);
9990 if (ada_is_direct_array_type (value_type (container)))
9991 container = ada_coerce_to_simple_array (container);
9992 lhs = ada_coerce_ref (lhs);
9993 if (!deprecated_value_modifiable (lhs))
9994 error (_("Left operand of assignment is not a modifiable lvalue."));
9995
0e2da9f0 9996 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
9997 if (ada_is_direct_array_type (lhs_type))
9998 {
9999 lhs = ada_coerce_to_simple_array (lhs);
0e2da9f0 10000 lhs_type = check_typedef (value_type (lhs));
52ce6436
PH
10001 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10002 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
52ce6436
PH
10003 }
10004 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10005 {
10006 low_index = 0;
10007 high_index = num_visible_fields (lhs_type) - 1;
52ce6436
PH
10008 }
10009 else
10010 error (_("Left-hand side must be array or record."));
10011
10012 num_specs = num_component_specs (exp, *pos - 3);
10013 max_indices = 4 * num_specs + 4;
8d749320 10014 indices = XALLOCAVEC (LONGEST, max_indices);
52ce6436
PH
10015 indices[0] = indices[1] = low_index - 1;
10016 indices[2] = indices[3] = high_index + 1;
10017 num_indices = 4;
10018
10019 for (i = 0; i < n; i += 1)
10020 {
10021 switch (exp->elts[*pos].opcode)
10022 {
1fbf5ada
JB
10023 case OP_CHOICES:
10024 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10025 &num_indices, max_indices,
10026 low_index, high_index);
10027 break;
10028 case OP_POSITIONAL:
10029 aggregate_assign_positional (container, lhs, exp, pos, indices,
52ce6436
PH
10030 &num_indices, max_indices,
10031 low_index, high_index);
1fbf5ada
JB
10032 break;
10033 case OP_OTHERS:
10034 if (i != n-1)
10035 error (_("Misplaced 'others' clause"));
10036 aggregate_assign_others (container, lhs, exp, pos, indices,
10037 num_indices, low_index, high_index);
10038 break;
10039 default:
10040 error (_("Internal error: bad aggregate clause"));
52ce6436
PH
10041 }
10042 }
10043
10044 return container;
10045}
10046
10047/* Assign into the component of LHS indexed by the OP_POSITIONAL
10048 construct at *POS, updating *POS past the construct, given that
10049 the positions are relative to lower bound LOW, where HIGH is the
10050 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10051 updating *NUM_INDICES as needed. CONTAINER is as for
0963b4bd 10052 assign_aggregate. */
52ce6436
PH
10053static void
10054aggregate_assign_positional (struct value *container,
10055 struct value *lhs, struct expression *exp,
10056 int *pos, LONGEST *indices, int *num_indices,
10057 int max_indices, LONGEST low, LONGEST high)
10058{
10059 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10060
10061 if (ind - 1 == high)
e1d5a0d2 10062 warning (_("Extra components in aggregate ignored."));
52ce6436
PH
10063 if (ind <= high)
10064 {
10065 add_component_interval (ind, ind, indices, num_indices, max_indices);
10066 *pos += 3;
10067 assign_component (container, lhs, ind, exp, pos);
10068 }
10069 else
10070 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10071}
10072
10073/* Assign into the components of LHS indexed by the OP_CHOICES
10074 construct at *POS, updating *POS past the construct, given that
10075 the allowable indices are LOW..HIGH. Record the indices assigned
10076 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
0963b4bd 10077 needed. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10078static void
10079aggregate_assign_from_choices (struct value *container,
10080 struct value *lhs, struct expression *exp,
10081 int *pos, LONGEST *indices, int *num_indices,
10082 int max_indices, LONGEST low, LONGEST high)
10083{
10084 int j;
10085 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10086 int choice_pos, expr_pc;
10087 int is_array = ada_is_direct_array_type (value_type (lhs));
10088
10089 choice_pos = *pos += 3;
10090
10091 for (j = 0; j < n_choices; j += 1)
10092 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10093 expr_pc = *pos;
10094 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10095
10096 for (j = 0; j < n_choices; j += 1)
10097 {
10098 LONGEST lower, upper;
10099 enum exp_opcode op = exp->elts[choice_pos].opcode;
5b4ee69b 10100
52ce6436
PH
10101 if (op == OP_DISCRETE_RANGE)
10102 {
10103 choice_pos += 1;
10104 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10105 EVAL_NORMAL));
10106 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10107 EVAL_NORMAL));
10108 }
10109 else if (is_array)
10110 {
10111 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10112 EVAL_NORMAL));
10113 upper = lower;
10114 }
10115 else
10116 {
10117 int ind;
0d5cff50 10118 const char *name;
5b4ee69b 10119
52ce6436
PH
10120 switch (op)
10121 {
10122 case OP_NAME:
10123 name = &exp->elts[choice_pos + 2].string;
10124 break;
10125 case OP_VAR_VALUE:
10126 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10127 break;
10128 default:
10129 error (_("Invalid record component association."));
10130 }
10131 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10132 ind = 0;
10133 if (! find_struct_field (name, value_type (lhs), 0,
10134 NULL, NULL, NULL, NULL, &ind))
10135 error (_("Unknown component name: %s."), name);
10136 lower = upper = ind;
10137 }
10138
10139 if (lower <= upper && (lower < low || upper > high))
10140 error (_("Index in component association out of bounds."));
10141
10142 add_component_interval (lower, upper, indices, num_indices,
10143 max_indices);
10144 while (lower <= upper)
10145 {
10146 int pos1;
5b4ee69b 10147
52ce6436
PH
10148 pos1 = expr_pc;
10149 assign_component (container, lhs, lower, exp, &pos1);
10150 lower += 1;
10151 }
10152 }
10153}
10154
10155/* Assign the value of the expression in the OP_OTHERS construct in
10156 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10157 have not been previously assigned. The index intervals already assigned
10158 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
0963b4bd 10159 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
52ce6436
PH
10160static void
10161aggregate_assign_others (struct value *container,
10162 struct value *lhs, struct expression *exp,
10163 int *pos, LONGEST *indices, int num_indices,
10164 LONGEST low, LONGEST high)
10165{
10166 int i;
5ce64950 10167 int expr_pc = *pos + 1;
52ce6436
PH
10168
10169 for (i = 0; i < num_indices - 2; i += 2)
10170 {
10171 LONGEST ind;
5b4ee69b 10172
52ce6436
PH
10173 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10174 {
5ce64950 10175 int localpos;
5b4ee69b 10176
5ce64950
MS
10177 localpos = expr_pc;
10178 assign_component (container, lhs, ind, exp, &localpos);
52ce6436
PH
10179 }
10180 }
10181 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10182}
10183
10184/* Add the interval [LOW .. HIGH] to the sorted set of intervals
10185 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10186 modifying *SIZE as needed. It is an error if *SIZE exceeds
10187 MAX_SIZE. The resulting intervals do not overlap. */
10188static void
10189add_component_interval (LONGEST low, LONGEST high,
10190 LONGEST* indices, int *size, int max_size)
10191{
10192 int i, j;
5b4ee69b 10193
52ce6436
PH
10194 for (i = 0; i < *size; i += 2) {
10195 if (high >= indices[i] && low <= indices[i + 1])
10196 {
10197 int kh;
5b4ee69b 10198
52ce6436
PH
10199 for (kh = i + 2; kh < *size; kh += 2)
10200 if (high < indices[kh])
10201 break;
10202 if (low < indices[i])
10203 indices[i] = low;
10204 indices[i + 1] = indices[kh - 1];
10205 if (high > indices[i + 1])
10206 indices[i + 1] = high;
10207 memcpy (indices + i + 2, indices + kh, *size - kh);
10208 *size -= kh - i - 2;
10209 return;
10210 }
10211 else if (high < indices[i])
10212 break;
10213 }
10214
10215 if (*size == max_size)
10216 error (_("Internal error: miscounted aggregate components."));
10217 *size += 2;
10218 for (j = *size-1; j >= i+2; j -= 1)
10219 indices[j] = indices[j - 2];
10220 indices[i] = low;
10221 indices[i + 1] = high;
10222}
10223
6e48bd2c
JB
10224/* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10225 is different. */
10226
10227static struct value *
b7e22850 10228ada_value_cast (struct type *type, struct value *arg2)
6e48bd2c
JB
10229{
10230 if (type == ada_check_typedef (value_type (arg2)))
10231 return arg2;
10232
10233 if (ada_is_fixed_point_type (type))
10234 return (cast_to_fixed (type, arg2));
10235
10236 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10237 return cast_from_fixed (type, arg2);
6e48bd2c
JB
10238
10239 return value_cast (type, arg2);
10240}
10241
284614f0
JB
10242/* Evaluating Ada expressions, and printing their result.
10243 ------------------------------------------------------
10244
21649b50
JB
10245 1. Introduction:
10246 ----------------
10247
284614f0
JB
10248 We usually evaluate an Ada expression in order to print its value.
10249 We also evaluate an expression in order to print its type, which
10250 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10251 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10252 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10253 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10254 similar.
10255
10256 Evaluating expressions is a little more complicated for Ada entities
10257 than it is for entities in languages such as C. The main reason for
10258 this is that Ada provides types whose definition might be dynamic.
10259 One example of such types is variant records. Or another example
10260 would be an array whose bounds can only be known at run time.
10261
10262 The following description is a general guide as to what should be
10263 done (and what should NOT be done) in order to evaluate an expression
10264 involving such types, and when. This does not cover how the semantic
10265 information is encoded by GNAT as this is covered separatly. For the
10266 document used as the reference for the GNAT encoding, see exp_dbug.ads
10267 in the GNAT sources.
10268
10269 Ideally, we should embed each part of this description next to its
10270 associated code. Unfortunately, the amount of code is so vast right
10271 now that it's hard to see whether the code handling a particular
10272 situation might be duplicated or not. One day, when the code is
10273 cleaned up, this guide might become redundant with the comments
10274 inserted in the code, and we might want to remove it.
10275
21649b50
JB
10276 2. ``Fixing'' an Entity, the Simple Case:
10277 -----------------------------------------
10278
284614f0
JB
10279 When evaluating Ada expressions, the tricky issue is that they may
10280 reference entities whose type contents and size are not statically
10281 known. Consider for instance a variant record:
10282
10283 type Rec (Empty : Boolean := True) is record
10284 case Empty is
10285 when True => null;
10286 when False => Value : Integer;
10287 end case;
10288 end record;
10289 Yes : Rec := (Empty => False, Value => 1);
10290 No : Rec := (empty => True);
10291
10292 The size and contents of that record depends on the value of the
10293 descriminant (Rec.Empty). At this point, neither the debugging
10294 information nor the associated type structure in GDB are able to
10295 express such dynamic types. So what the debugger does is to create
10296 "fixed" versions of the type that applies to the specific object.
10297 We also informally refer to this opperation as "fixing" an object,
10298 which means creating its associated fixed type.
10299
10300 Example: when printing the value of variable "Yes" above, its fixed
10301 type would look like this:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 Value : Integer;
10306 end record;
10307
10308 On the other hand, if we printed the value of "No", its fixed type
10309 would become:
10310
10311 type Rec is record
10312 Empty : Boolean;
10313 end record;
10314
10315 Things become a little more complicated when trying to fix an entity
10316 with a dynamic type that directly contains another dynamic type,
10317 such as an array of variant records, for instance. There are
10318 two possible cases: Arrays, and records.
10319
21649b50
JB
10320 3. ``Fixing'' Arrays:
10321 ---------------------
10322
10323 The type structure in GDB describes an array in terms of its bounds,
10324 and the type of its elements. By design, all elements in the array
10325 have the same type and we cannot represent an array of variant elements
10326 using the current type structure in GDB. When fixing an array,
10327 we cannot fix the array element, as we would potentially need one
10328 fixed type per element of the array. As a result, the best we can do
10329 when fixing an array is to produce an array whose bounds and size
10330 are correct (allowing us to read it from memory), but without having
10331 touched its element type. Fixing each element will be done later,
10332 when (if) necessary.
10333
10334 Arrays are a little simpler to handle than records, because the same
10335 amount of memory is allocated for each element of the array, even if
1b536f04 10336 the amount of space actually used by each element differs from element
21649b50 10337 to element. Consider for instance the following array of type Rec:
284614f0
JB
10338
10339 type Rec_Array is array (1 .. 2) of Rec;
10340
1b536f04
JB
10341 The actual amount of memory occupied by each element might be different
10342 from element to element, depending on the value of their discriminant.
21649b50 10343 But the amount of space reserved for each element in the array remains
1b536f04 10344 fixed regardless. So we simply need to compute that size using
21649b50
JB
10345 the debugging information available, from which we can then determine
10346 the array size (we multiply the number of elements of the array by
10347 the size of each element).
10348
10349 The simplest case is when we have an array of a constrained element
10350 type. For instance, consider the following type declarations:
10351
10352 type Bounded_String (Max_Size : Integer) is
10353 Length : Integer;
10354 Buffer : String (1 .. Max_Size);
10355 end record;
10356 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10357
10358 In this case, the compiler describes the array as an array of
10359 variable-size elements (identified by its XVS suffix) for which
10360 the size can be read in the parallel XVZ variable.
10361
10362 In the case of an array of an unconstrained element type, the compiler
10363 wraps the array element inside a private PAD type. This type should not
10364 be shown to the user, and must be "unwrap"'ed before printing. Note
284614f0
JB
10365 that we also use the adjective "aligner" in our code to designate
10366 these wrapper types.
10367
1b536f04 10368 In some cases, the size allocated for each element is statically
21649b50
JB
10369 known. In that case, the PAD type already has the correct size,
10370 and the array element should remain unfixed.
10371
10372 But there are cases when this size is not statically known.
10373 For instance, assuming that "Five" is an integer variable:
284614f0
JB
10374
10375 type Dynamic is array (1 .. Five) of Integer;
10376 type Wrapper (Has_Length : Boolean := False) is record
10377 Data : Dynamic;
10378 case Has_Length is
10379 when True => Length : Integer;
10380 when False => null;
10381 end case;
10382 end record;
10383 type Wrapper_Array is array (1 .. 2) of Wrapper;
10384
10385 Hello : Wrapper_Array := (others => (Has_Length => True,
10386 Data => (others => 17),
10387 Length => 1));
10388
10389
10390 The debugging info would describe variable Hello as being an
10391 array of a PAD type. The size of that PAD type is not statically
10392 known, but can be determined using a parallel XVZ variable.
10393 In that case, a copy of the PAD type with the correct size should
10394 be used for the fixed array.
10395
21649b50
JB
10396 3. ``Fixing'' record type objects:
10397 ----------------------------------
10398
10399 Things are slightly different from arrays in the case of dynamic
284614f0
JB
10400 record types. In this case, in order to compute the associated
10401 fixed type, we need to determine the size and offset of each of
10402 its components. This, in turn, requires us to compute the fixed
10403 type of each of these components.
10404
10405 Consider for instance the example:
10406
10407 type Bounded_String (Max_Size : Natural) is record
10408 Str : String (1 .. Max_Size);
10409 Length : Natural;
10410 end record;
10411 My_String : Bounded_String (Max_Size => 10);
10412
10413 In that case, the position of field "Length" depends on the size
10414 of field Str, which itself depends on the value of the Max_Size
21649b50 10415 discriminant. In order to fix the type of variable My_String,
284614f0
JB
10416 we need to fix the type of field Str. Therefore, fixing a variant
10417 record requires us to fix each of its components.
10418
10419 However, if a component does not have a dynamic size, the component
10420 should not be fixed. In particular, fields that use a PAD type
10421 should not fixed. Here is an example where this might happen
10422 (assuming type Rec above):
10423
10424 type Container (Big : Boolean) is record
10425 First : Rec;
10426 After : Integer;
10427 case Big is
10428 when True => Another : Integer;
10429 when False => null;
10430 end case;
10431 end record;
10432 My_Container : Container := (Big => False,
10433 First => (Empty => True),
10434 After => 42);
10435
10436 In that example, the compiler creates a PAD type for component First,
10437 whose size is constant, and then positions the component After just
10438 right after it. The offset of component After is therefore constant
10439 in this case.
10440
10441 The debugger computes the position of each field based on an algorithm
10442 that uses, among other things, the actual position and size of the field
21649b50
JB
10443 preceding it. Let's now imagine that the user is trying to print
10444 the value of My_Container. If the type fixing was recursive, we would
284614f0
JB
10445 end up computing the offset of field After based on the size of the
10446 fixed version of field First. And since in our example First has
10447 only one actual field, the size of the fixed type is actually smaller
10448 than the amount of space allocated to that field, and thus we would
10449 compute the wrong offset of field After.
10450
21649b50
JB
10451 To make things more complicated, we need to watch out for dynamic
10452 components of variant records (identified by the ___XVL suffix in
10453 the component name). Even if the target type is a PAD type, the size
10454 of that type might not be statically known. So the PAD type needs
10455 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10456 we might end up with the wrong size for our component. This can be
10457 observed with the following type declarations:
284614f0
JB
10458
10459 type Octal is new Integer range 0 .. 7;
10460 type Octal_Array is array (Positive range <>) of Octal;
10461 pragma Pack (Octal_Array);
10462
10463 type Octal_Buffer (Size : Positive) is record
10464 Buffer : Octal_Array (1 .. Size);
10465 Length : Integer;
10466 end record;
10467
10468 In that case, Buffer is a PAD type whose size is unset and needs
10469 to be computed by fixing the unwrapped type.
10470
21649b50
JB
10471 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10472 ----------------------------------------------------------
10473
10474 Lastly, when should the sub-elements of an entity that remained unfixed
284614f0
JB
10475 thus far, be actually fixed?
10476
10477 The answer is: Only when referencing that element. For instance
10478 when selecting one component of a record, this specific component
10479 should be fixed at that point in time. Or when printing the value
10480 of a record, each component should be fixed before its value gets
10481 printed. Similarly for arrays, the element of the array should be
10482 fixed when printing each element of the array, or when extracting
10483 one element out of that array. On the other hand, fixing should
10484 not be performed on the elements when taking a slice of an array!
10485
31432a67 10486 Note that one of the side effects of miscomputing the offset and
284614f0
JB
10487 size of each field is that we end up also miscomputing the size
10488 of the containing type. This can have adverse results when computing
10489 the value of an entity. GDB fetches the value of an entity based
10490 on the size of its type, and thus a wrong size causes GDB to fetch
10491 the wrong amount of memory. In the case where the computed size is
10492 too small, GDB fetches too little data to print the value of our
31432a67 10493 entity. Results in this case are unpredictable, as we usually read
284614f0
JB
10494 past the buffer containing the data =:-o. */
10495
ced9779b
JB
10496/* Evaluate a subexpression of EXP, at index *POS, and return a value
10497 for that subexpression cast to TO_TYPE. Advance *POS over the
10498 subexpression. */
10499
10500static value *
10501ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10502 enum noside noside, struct type *to_type)
10503{
10504 int pc = *pos;
10505
10506 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10507 || exp->elts[pc].opcode == OP_VAR_VALUE)
10508 {
10509 (*pos) += 4;
10510
10511 value *val;
10512 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10513 {
10514 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10515 return value_zero (to_type, not_lval);
10516
10517 val = evaluate_var_msym_value (noside,
10518 exp->elts[pc + 1].objfile,
10519 exp->elts[pc + 2].msymbol);
10520 }
10521 else
10522 val = evaluate_var_value (noside,
10523 exp->elts[pc + 1].block,
10524 exp->elts[pc + 2].symbol);
10525
10526 if (noside == EVAL_SKIP)
10527 return eval_skip_value (exp);
10528
10529 val = ada_value_cast (to_type, val);
10530
10531 /* Follow the Ada language semantics that do not allow taking
10532 an address of the result of a cast (view conversion in Ada). */
10533 if (VALUE_LVAL (val) == lval_memory)
10534 {
10535 if (value_lazy (val))
10536 value_fetch_lazy (val);
10537 VALUE_LVAL (val) = not_lval;
10538 }
10539 return val;
10540 }
10541
10542 value *val = evaluate_subexp (to_type, exp, pos, noside);
10543 if (noside == EVAL_SKIP)
10544 return eval_skip_value (exp);
10545 return ada_value_cast (to_type, val);
10546}
10547
284614f0
JB
10548/* Implement the evaluate_exp routine in the exp_descriptor structure
10549 for the Ada language. */
10550
52ce6436 10551static struct value *
ebf56fd3 10552ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
4c4b4cd2 10553 int *pos, enum noside noside)
14f9c5c9
AS
10554{
10555 enum exp_opcode op;
b5385fc0 10556 int tem;
14f9c5c9 10557 int pc;
5ec18f2b 10558 int preeval_pos;
14f9c5c9
AS
10559 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10560 struct type *type;
52ce6436 10561 int nargs, oplen;
d2e4a39e 10562 struct value **argvec;
14f9c5c9 10563
d2e4a39e
AS
10564 pc = *pos;
10565 *pos += 1;
14f9c5c9
AS
10566 op = exp->elts[pc].opcode;
10567
d2e4a39e 10568 switch (op)
14f9c5c9
AS
10569 {
10570 default:
10571 *pos -= 1;
6e48bd2c 10572 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
ca1f964d
JG
10573
10574 if (noside == EVAL_NORMAL)
10575 arg1 = unwrap_value (arg1);
6e48bd2c 10576
edd079d9 10577 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
6e48bd2c
JB
10578 then we need to perform the conversion manually, because
10579 evaluate_subexp_standard doesn't do it. This conversion is
10580 necessary in Ada because the different kinds of float/fixed
10581 types in Ada have different representations.
10582
10583 Similarly, we need to perform the conversion from OP_LONG
10584 ourselves. */
edd079d9 10585 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
b7e22850 10586 arg1 = ada_value_cast (expect_type, arg1);
6e48bd2c
JB
10587
10588 return arg1;
4c4b4cd2
PH
10589
10590 case OP_STRING:
10591 {
76a01679 10592 struct value *result;
5b4ee69b 10593
76a01679
JB
10594 *pos -= 1;
10595 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10596 /* The result type will have code OP_STRING, bashed there from
10597 OP_ARRAY. Bash it back. */
df407dfe
AC
10598 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10599 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
76a01679 10600 return result;
4c4b4cd2 10601 }
14f9c5c9
AS
10602
10603 case UNOP_CAST:
10604 (*pos) += 2;
10605 type = exp->elts[pc + 1].type;
ced9779b 10606 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
14f9c5c9 10607
4c4b4cd2
PH
10608 case UNOP_QUAL:
10609 (*pos) += 2;
10610 type = exp->elts[pc + 1].type;
10611 return ada_evaluate_subexp (type, exp, pos, noside);
10612
14f9c5c9
AS
10613 case BINOP_ASSIGN:
10614 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
52ce6436
PH
10615 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10616 {
10617 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10618 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10619 return arg1;
10620 return ada_value_assign (arg1, arg1);
10621 }
003f3813
JB
10622 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10623 except if the lhs of our assignment is a convenience variable.
10624 In the case of assigning to a convenience variable, the lhs
10625 should be exactly the result of the evaluation of the rhs. */
10626 type = value_type (arg1);
10627 if (VALUE_LVAL (arg1) == lval_internalvar)
10628 type = NULL;
10629 arg2 = evaluate_subexp (type, exp, pos, noside);
14f9c5c9 10630 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10631 return arg1;
df407dfe
AC
10632 if (ada_is_fixed_point_type (value_type (arg1)))
10633 arg2 = cast_to_fixed (value_type (arg1), arg2);
10634 else if (ada_is_fixed_point_type (value_type (arg2)))
76a01679 10635 error
323e0a4a 10636 (_("Fixed-point values must be assigned to fixed-point variables"));
d2e4a39e 10637 else
df407dfe 10638 arg2 = coerce_for_assign (value_type (arg1), arg2);
4c4b4cd2 10639 return ada_value_assign (arg1, arg2);
14f9c5c9
AS
10640
10641 case BINOP_ADD:
10642 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10643 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10644 if (noside == EVAL_SKIP)
4c4b4cd2 10645 goto nosideret;
2ac8a782
JB
10646 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10647 return (value_from_longest
10648 (value_type (arg1),
10649 value_as_long (arg1) + value_as_long (arg2)));
c40cc657
JB
10650 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10651 return (value_from_longest
10652 (value_type (arg2),
10653 value_as_long (arg1) + value_as_long (arg2)));
df407dfe
AC
10654 if ((ada_is_fixed_point_type (value_type (arg1))
10655 || ada_is_fixed_point_type (value_type (arg2)))
10656 && value_type (arg1) != value_type (arg2))
323e0a4a 10657 error (_("Operands of fixed-point addition must have the same type"));
b7789565
JB
10658 /* Do the addition, and cast the result to the type of the first
10659 argument. We cannot cast the result to a reference type, so if
10660 ARG1 is a reference type, find its underlying type. */
10661 type = value_type (arg1);
10662 while (TYPE_CODE (type) == TYPE_CODE_REF)
10663 type = TYPE_TARGET_TYPE (type);
f44316fa 10664 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10665 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
14f9c5c9
AS
10666
10667 case BINOP_SUB:
10668 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10669 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10670 if (noside == EVAL_SKIP)
4c4b4cd2 10671 goto nosideret;
2ac8a782
JB
10672 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10673 return (value_from_longest
10674 (value_type (arg1),
10675 value_as_long (arg1) - value_as_long (arg2)));
c40cc657
JB
10676 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10677 return (value_from_longest
10678 (value_type (arg2),
10679 value_as_long (arg1) - value_as_long (arg2)));
df407dfe
AC
10680 if ((ada_is_fixed_point_type (value_type (arg1))
10681 || ada_is_fixed_point_type (value_type (arg2)))
10682 && value_type (arg1) != value_type (arg2))
0963b4bd
MS
10683 error (_("Operands of fixed-point subtraction "
10684 "must have the same type"));
b7789565
JB
10685 /* Do the substraction, and cast the result to the type of the first
10686 argument. We cannot cast the result to a reference type, so if
10687 ARG1 is a reference type, find its underlying type. */
10688 type = value_type (arg1);
10689 while (TYPE_CODE (type) == TYPE_CODE_REF)
10690 type = TYPE_TARGET_TYPE (type);
f44316fa 10691 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
89eef114 10692 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
14f9c5c9
AS
10693
10694 case BINOP_MUL:
10695 case BINOP_DIV:
e1578042
JB
10696 case BINOP_REM:
10697 case BINOP_MOD:
14f9c5c9
AS
10698 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10699 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10700 if (noside == EVAL_SKIP)
4c4b4cd2 10701 goto nosideret;
e1578042 10702 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9c2be529
JB
10703 {
10704 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10705 return value_zero (value_type (arg1), not_lval);
10706 }
14f9c5c9 10707 else
4c4b4cd2 10708 {
a53b7a21 10709 type = builtin_type (exp->gdbarch)->builtin_double;
df407dfe 10710 if (ada_is_fixed_point_type (value_type (arg1)))
a53b7a21 10711 arg1 = cast_from_fixed (type, arg1);
df407dfe 10712 if (ada_is_fixed_point_type (value_type (arg2)))
a53b7a21 10713 arg2 = cast_from_fixed (type, arg2);
f44316fa 10714 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
4c4b4cd2
PH
10715 return ada_value_binop (arg1, arg2, op);
10716 }
10717
4c4b4cd2
PH
10718 case BINOP_EQUAL:
10719 case BINOP_NOTEQUAL:
14f9c5c9 10720 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
df407dfe 10721 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
14f9c5c9 10722 if (noside == EVAL_SKIP)
76a01679 10723 goto nosideret;
4c4b4cd2 10724 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 10725 tem = 0;
4c4b4cd2 10726 else
f44316fa
UW
10727 {
10728 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10729 tem = ada_value_equal (arg1, arg2);
10730 }
4c4b4cd2 10731 if (op == BINOP_NOTEQUAL)
76a01679 10732 tem = !tem;
fbb06eb1
UW
10733 type = language_bool_type (exp->language_defn, exp->gdbarch);
10734 return value_from_longest (type, (LONGEST) tem);
4c4b4cd2
PH
10735
10736 case UNOP_NEG:
10737 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10738 if (noside == EVAL_SKIP)
10739 goto nosideret;
df407dfe
AC
10740 else if (ada_is_fixed_point_type (value_type (arg1)))
10741 return value_cast (value_type (arg1), value_neg (arg1));
14f9c5c9 10742 else
f44316fa
UW
10743 {
10744 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10745 return value_neg (arg1);
10746 }
4c4b4cd2 10747
2330c6c6
JB
10748 case BINOP_LOGICAL_AND:
10749 case BINOP_LOGICAL_OR:
10750 case UNOP_LOGICAL_NOT:
000d5124
JB
10751 {
10752 struct value *val;
10753
10754 *pos -= 1;
10755 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
fbb06eb1
UW
10756 type = language_bool_type (exp->language_defn, exp->gdbarch);
10757 return value_cast (type, val);
000d5124 10758 }
2330c6c6
JB
10759
10760 case BINOP_BITWISE_AND:
10761 case BINOP_BITWISE_IOR:
10762 case BINOP_BITWISE_XOR:
000d5124
JB
10763 {
10764 struct value *val;
10765
10766 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10767 *pos = pc;
10768 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10769
10770 return value_cast (value_type (arg1), val);
10771 }
2330c6c6 10772
14f9c5c9
AS
10773 case OP_VAR_VALUE:
10774 *pos -= 1;
6799def4 10775
14f9c5c9 10776 if (noside == EVAL_SKIP)
4c4b4cd2
PH
10777 {
10778 *pos += 4;
10779 goto nosideret;
10780 }
da5c522f
JB
10781
10782 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
76a01679
JB
10783 /* Only encountered when an unresolved symbol occurs in a
10784 context other than a function call, in which case, it is
52ce6436 10785 invalid. */
323e0a4a 10786 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2 10787 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
da5c522f
JB
10788
10789 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2 10790 {
0c1f74cf 10791 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
31dbc1c5
JB
10792 /* Check to see if this is a tagged type. We also need to handle
10793 the case where the type is a reference to a tagged type, but
10794 we have to be careful to exclude pointers to tagged types.
10795 The latter should be shown as usual (as a pointer), whereas
10796 a reference should mostly be transparent to the user. */
10797 if (ada_is_tagged_type (type, 0)
023db19c 10798 || (TYPE_CODE (type) == TYPE_CODE_REF
31dbc1c5 10799 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
0d72a7c3
JB
10800 {
10801 /* Tagged types are a little special in the fact that the real
10802 type is dynamic and can only be determined by inspecting the
10803 object's tag. This means that we need to get the object's
10804 value first (EVAL_NORMAL) and then extract the actual object
10805 type from its tag.
10806
10807 Note that we cannot skip the final step where we extract
10808 the object type from its tag, because the EVAL_NORMAL phase
10809 results in dynamic components being resolved into fixed ones.
10810 This can cause problems when trying to print the type
10811 description of tagged types whose parent has a dynamic size:
10812 We use the type name of the "_parent" component in order
10813 to print the name of the ancestor type in the type description.
10814 If that component had a dynamic size, the resolution into
10815 a fixed type would result in the loss of that type name,
10816 thus preventing us from printing the name of the ancestor
10817 type in the type description. */
10818 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10819
10820 if (TYPE_CODE (type) != TYPE_CODE_REF)
10821 {
10822 struct type *actual_type;
10823
10824 actual_type = type_from_tag (ada_value_tag (arg1));
10825 if (actual_type == NULL)
10826 /* If, for some reason, we were unable to determine
10827 the actual type from the tag, then use the static
10828 approximation that we just computed as a fallback.
10829 This can happen if the debugging information is
10830 incomplete, for instance. */
10831 actual_type = type;
10832 return value_zero (actual_type, not_lval);
10833 }
10834 else
10835 {
10836 /* In the case of a ref, ada_coerce_ref takes care
10837 of determining the actual type. But the evaluation
10838 should return a ref as it should be valid to ask
10839 for its address; so rebuild a ref after coerce. */
10840 arg1 = ada_coerce_ref (arg1);
a65cfae5 10841 return value_ref (arg1, TYPE_CODE_REF);
0d72a7c3
JB
10842 }
10843 }
0c1f74cf 10844
84754697
JB
10845 /* Records and unions for which GNAT encodings have been
10846 generated need to be statically fixed as well.
10847 Otherwise, non-static fixing produces a type where
10848 all dynamic properties are removed, which prevents "ptype"
10849 from being able to completely describe the type.
10850 For instance, a case statement in a variant record would be
10851 replaced by the relevant components based on the actual
10852 value of the discriminants. */
10853 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10854 && dynamic_template_type (type) != NULL)
10855 || (TYPE_CODE (type) == TYPE_CODE_UNION
10856 && ada_find_parallel_type (type, "___XVU") != NULL))
10857 {
10858 *pos += 4;
10859 return value_zero (to_static_fixed_type (type), not_lval);
10860 }
4c4b4cd2 10861 }
da5c522f
JB
10862
10863 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10864 return ada_to_fixed_value (arg1);
4c4b4cd2
PH
10865
10866 case OP_FUNCALL:
10867 (*pos) += 2;
10868
10869 /* Allocate arg vector, including space for the function to be
10870 called in argvec[0] and a terminating NULL. */
10871 nargs = longest_to_int (exp->elts[pc + 1].longconst);
8d749320 10872 argvec = XALLOCAVEC (struct value *, nargs + 2);
4c4b4cd2
PH
10873
10874 if (exp->elts[*pos].opcode == OP_VAR_VALUE
76a01679 10875 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
323e0a4a 10876 error (_("Unexpected unresolved symbol, %s, during evaluation"),
4c4b4cd2
PH
10877 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10878 else
10879 {
10880 for (tem = 0; tem <= nargs; tem += 1)
10881 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 argvec[tem] = 0;
10883
10884 if (noside == EVAL_SKIP)
10885 goto nosideret;
10886 }
10887
ad82864c
JB
10888 if (ada_is_constrained_packed_array_type
10889 (desc_base_type (value_type (argvec[0]))))
4c4b4cd2 10890 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
284614f0
JB
10891 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10892 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10893 /* This is a packed array that has already been fixed, and
10894 therefore already coerced to a simple array. Nothing further
10895 to do. */
10896 ;
e6c2c623
PMR
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10898 {
10899 /* Make sure we dereference references so that all the code below
10900 feels like it's really handling the referenced value. Wrapping
10901 types (for alignment) may be there, so make sure we strip them as
10902 well. */
10903 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10904 }
10905 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10906 && VALUE_LVAL (argvec[0]) == lval_memory)
10907 argvec[0] = value_addr (argvec[0]);
4c4b4cd2 10908
df407dfe 10909 type = ada_check_typedef (value_type (argvec[0]));
720d1a40
JB
10910
10911 /* Ada allows us to implicitly dereference arrays when subscripting
8f465ea7
JB
10912 them. So, if this is an array typedef (encoding use for array
10913 access types encoded as fat pointers), strip it now. */
720d1a40
JB
10914 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10915 type = ada_typedef_target_type (type);
10916
4c4b4cd2
PH
10917 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10918 {
61ee279c 10919 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
4c4b4cd2
PH
10920 {
10921 case TYPE_CODE_FUNC:
61ee279c 10922 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10923 break;
10924 case TYPE_CODE_ARRAY:
10925 break;
10926 case TYPE_CODE_STRUCT:
10927 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10928 argvec[0] = ada_value_ind (argvec[0]);
61ee279c 10929 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
4c4b4cd2
PH
10930 break;
10931 default:
323e0a4a 10932 error (_("cannot subscript or call something of type `%s'"),
df407dfe 10933 ada_type_name (value_type (argvec[0])));
4c4b4cd2
PH
10934 break;
10935 }
10936 }
10937
10938 switch (TYPE_CODE (type))
10939 {
10940 case TYPE_CODE_FUNC:
10941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
c8ea1972 10942 {
7022349d
PA
10943 if (TYPE_TARGET_TYPE (type) == NULL)
10944 error_call_unknown_return_type (NULL);
10945 return allocate_value (TYPE_TARGET_TYPE (type));
c8ea1972 10946 }
7022349d 10947 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
c8ea1972
PH
10948 case TYPE_CODE_INTERNAL_FUNCTION:
10949 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10950 /* We don't know anything about what the internal
10951 function might return, but we have to return
10952 something. */
10953 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10954 not_lval);
10955 else
10956 return call_internal_function (exp->gdbarch, exp->language_defn,
10957 argvec[0], nargs, argvec + 1);
10958
4c4b4cd2
PH
10959 case TYPE_CODE_STRUCT:
10960 {
10961 int arity;
10962
4c4b4cd2
PH
10963 arity = ada_array_arity (type);
10964 type = ada_array_element_type (type, nargs);
10965 if (type == NULL)
323e0a4a 10966 error (_("cannot subscript or call a record"));
4c4b4cd2 10967 if (arity != nargs)
323e0a4a 10968 error (_("wrong number of subscripts; expecting %d"), arity);
4c4b4cd2 10969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
0a07e705 10970 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10971 return
10972 unwrap_value (ada_value_subscript
10973 (argvec[0], nargs, argvec + 1));
10974 }
10975 case TYPE_CODE_ARRAY:
10976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10977 {
10978 type = ada_array_element_type (type, nargs);
10979 if (type == NULL)
323e0a4a 10980 error (_("element type of array unknown"));
4c4b4cd2 10981 else
0a07e705 10982 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10983 }
10984 return
10985 unwrap_value (ada_value_subscript
10986 (ada_coerce_to_simple_array (argvec[0]),
10987 nargs, argvec + 1));
10988 case TYPE_CODE_PTR: /* Pointer to array */
4c4b4cd2
PH
10989 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10990 {
deede10c 10991 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
4c4b4cd2
PH
10992 type = ada_array_element_type (type, nargs);
10993 if (type == NULL)
323e0a4a 10994 error (_("element type of array unknown"));
4c4b4cd2 10995 else
0a07e705 10996 return value_zero (ada_aligned_type (type), lval_memory);
4c4b4cd2
PH
10997 }
10998 return
deede10c
JB
10999 unwrap_value (ada_value_ptr_subscript (argvec[0],
11000 nargs, argvec + 1));
4c4b4cd2
PH
11001
11002 default:
e1d5a0d2
PH
11003 error (_("Attempt to index or call something other than an "
11004 "array or function"));
4c4b4cd2
PH
11005 }
11006
11007 case TERNOP_SLICE:
11008 {
11009 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11010 struct value *low_bound_val =
11011 evaluate_subexp (NULL_TYPE, exp, pos, noside);
714e53ab
PH
11012 struct value *high_bound_val =
11013 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11014 LONGEST low_bound;
11015 LONGEST high_bound;
5b4ee69b 11016
994b9211
AC
11017 low_bound_val = coerce_ref (low_bound_val);
11018 high_bound_val = coerce_ref (high_bound_val);
aa715135
JG
11019 low_bound = value_as_long (low_bound_val);
11020 high_bound = value_as_long (high_bound_val);
963a6417 11021
4c4b4cd2
PH
11022 if (noside == EVAL_SKIP)
11023 goto nosideret;
11024
4c4b4cd2
PH
11025 /* If this is a reference to an aligner type, then remove all
11026 the aligners. */
df407dfe
AC
11027 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11028 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11029 TYPE_TARGET_TYPE (value_type (array)) =
11030 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
4c4b4cd2 11031
ad82864c 11032 if (ada_is_constrained_packed_array_type (value_type (array)))
323e0a4a 11033 error (_("cannot slice a packed array"));
4c4b4cd2
PH
11034
11035 /* If this is a reference to an array or an array lvalue,
11036 convert to a pointer. */
df407dfe
AC
11037 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11038 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
4c4b4cd2
PH
11039 && VALUE_LVAL (array) == lval_memory))
11040 array = value_addr (array);
11041
1265e4aa 11042 if (noside == EVAL_AVOID_SIDE_EFFECTS
61ee279c 11043 && ada_is_array_descriptor_type (ada_check_typedef
df407dfe 11044 (value_type (array))))
0b5d8877 11045 return empty_array (ada_type_of_array (array, 0), low_bound);
4c4b4cd2
PH
11046
11047 array = ada_coerce_to_simple_array_ptr (array);
11048
714e53ab
PH
11049 /* If we have more than one level of pointer indirection,
11050 dereference the value until we get only one level. */
df407dfe
AC
11051 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11052 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
714e53ab
PH
11053 == TYPE_CODE_PTR))
11054 array = value_ind (array);
11055
11056 /* Make sure we really do have an array type before going further,
11057 to avoid a SEGV when trying to get the index type or the target
11058 type later down the road if the debug info generated by
11059 the compiler is incorrect or incomplete. */
df407dfe 11060 if (!ada_is_simple_array_type (value_type (array)))
323e0a4a 11061 error (_("cannot take slice of non-array"));
714e53ab 11062
828292f2
JB
11063 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11064 == TYPE_CODE_PTR)
4c4b4cd2 11065 {
828292f2
JB
11066 struct type *type0 = ada_check_typedef (value_type (array));
11067
0b5d8877 11068 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
828292f2 11069 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
4c4b4cd2
PH
11070 else
11071 {
11072 struct type *arr_type0 =
828292f2 11073 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
5b4ee69b 11074
f5938064
JG
11075 return ada_value_slice_from_ptr (array, arr_type0,
11076 longest_to_int (low_bound),
11077 longest_to_int (high_bound));
4c4b4cd2
PH
11078 }
11079 }
11080 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11081 return array;
11082 else if (high_bound < low_bound)
df407dfe 11083 return empty_array (value_type (array), low_bound);
4c4b4cd2 11084 else
529cad9c
PH
11085 return ada_value_slice (array, longest_to_int (low_bound),
11086 longest_to_int (high_bound));
4c4b4cd2 11087 }
14f9c5c9 11088
4c4b4cd2
PH
11089 case UNOP_IN_RANGE:
11090 (*pos) += 2;
11091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8008e265 11092 type = check_typedef (exp->elts[pc + 1].type);
14f9c5c9 11093
14f9c5c9 11094 if (noside == EVAL_SKIP)
4c4b4cd2 11095 goto nosideret;
14f9c5c9 11096
4c4b4cd2
PH
11097 switch (TYPE_CODE (type))
11098 {
11099 default:
e1d5a0d2
PH
11100 lim_warning (_("Membership test incompletely implemented; "
11101 "always returns true"));
fbb06eb1
UW
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return value_from_longest (type, (LONGEST) 1);
4c4b4cd2
PH
11104
11105 case TYPE_CODE_RANGE:
030b4912
UW
11106 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11107 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
f44316fa
UW
11108 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11109 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1
UW
11110 type = language_bool_type (exp->language_defn, exp->gdbarch);
11111 return
11112 value_from_longest (type,
4c4b4cd2
PH
11113 (value_less (arg1, arg3)
11114 || value_equal (arg1, arg3))
11115 && (value_less (arg2, arg1)
11116 || value_equal (arg2, arg1)));
11117 }
11118
11119 case BINOP_IN_BOUNDS:
14f9c5c9 11120 (*pos) += 2;
4c4b4cd2
PH
11121 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11122 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11123
4c4b4cd2
PH
11124 if (noside == EVAL_SKIP)
11125 goto nosideret;
14f9c5c9 11126
4c4b4cd2 11127 if (noside == EVAL_AVOID_SIDE_EFFECTS)
fbb06eb1
UW
11128 {
11129 type = language_bool_type (exp->language_defn, exp->gdbarch);
11130 return value_zero (type, not_lval);
11131 }
14f9c5c9 11132
4c4b4cd2 11133 tem = longest_to_int (exp->elts[pc + 1].longconst);
14f9c5c9 11134
1eea4ebd
UW
11135 type = ada_index_type (value_type (arg2), tem, "range");
11136 if (!type)
11137 type = value_type (arg1);
14f9c5c9 11138
1eea4ebd
UW
11139 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11140 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
d2e4a39e 11141
f44316fa
UW
11142 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11144 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11145 return
fbb06eb1 11146 value_from_longest (type,
4c4b4cd2
PH
11147 (value_less (arg1, arg3)
11148 || value_equal (arg1, arg3))
11149 && (value_less (arg2, arg1)
11150 || value_equal (arg2, arg1)));
11151
11152 case TERNOP_IN_RANGE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11155 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11156
11157 if (noside == EVAL_SKIP)
11158 goto nosideret;
11159
f44316fa
UW
11160 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11161 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
fbb06eb1 11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
4c4b4cd2 11163 return
fbb06eb1 11164 value_from_longest (type,
4c4b4cd2
PH
11165 (value_less (arg1, arg3)
11166 || value_equal (arg1, arg3))
11167 && (value_less (arg2, arg1)
11168 || value_equal (arg2, arg1)));
11169
11170 case OP_ATR_FIRST:
11171 case OP_ATR_LAST:
11172 case OP_ATR_LENGTH:
11173 {
76a01679 11174 struct type *type_arg;
5b4ee69b 11175
76a01679
JB
11176 if (exp->elts[*pos].opcode == OP_TYPE)
11177 {
11178 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11179 arg1 = NULL;
5bc23cb3 11180 type_arg = check_typedef (exp->elts[pc + 2].type);
76a01679
JB
11181 }
11182 else
11183 {
11184 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11185 type_arg = NULL;
11186 }
11187
11188 if (exp->elts[*pos].opcode != OP_LONG)
323e0a4a 11189 error (_("Invalid operand to '%s"), ada_attribute_name (op));
76a01679
JB
11190 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11191 *pos += 4;
11192
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195
11196 if (type_arg == NULL)
11197 {
11198 arg1 = ada_coerce_ref (arg1);
11199
ad82864c 11200 if (ada_is_constrained_packed_array_type (value_type (arg1)))
76a01679
JB
11201 arg1 = ada_coerce_to_simple_array (arg1);
11202
aa4fb036 11203 if (op == OP_ATR_LENGTH)
1eea4ebd 11204 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11205 else
11206 {
11207 type = ada_index_type (value_type (arg1), tem,
11208 ada_attribute_name (op));
11209 if (type == NULL)
11210 type = builtin_type (exp->gdbarch)->builtin_int;
11211 }
76a01679
JB
11212
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1eea4ebd 11214 return allocate_value (type);
76a01679
JB
11215
11216 switch (op)
11217 {
11218 default: /* Should never happen. */
323e0a4a 11219 error (_("unexpected attribute encountered"));
76a01679 11220 case OP_ATR_FIRST:
1eea4ebd
UW
11221 return value_from_longest
11222 (type, ada_array_bound (arg1, tem, 0));
76a01679 11223 case OP_ATR_LAST:
1eea4ebd
UW
11224 return value_from_longest
11225 (type, ada_array_bound (arg1, tem, 1));
76a01679 11226 case OP_ATR_LENGTH:
1eea4ebd
UW
11227 return value_from_longest
11228 (type, ada_array_length (arg1, tem));
76a01679
JB
11229 }
11230 }
11231 else if (discrete_type_p (type_arg))
11232 {
11233 struct type *range_type;
0d5cff50 11234 const char *name = ada_type_name (type_arg);
5b4ee69b 11235
76a01679
JB
11236 range_type = NULL;
11237 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
28c85d6c 11238 range_type = to_fixed_range_type (type_arg, NULL);
76a01679
JB
11239 if (range_type == NULL)
11240 range_type = type_arg;
11241 switch (op)
11242 {
11243 default:
323e0a4a 11244 error (_("unexpected attribute encountered"));
76a01679 11245 case OP_ATR_FIRST:
690cc4eb 11246 return value_from_longest
43bbcdc2 11247 (range_type, ada_discrete_type_low_bound (range_type));
76a01679 11248 case OP_ATR_LAST:
690cc4eb 11249 return value_from_longest
43bbcdc2 11250 (range_type, ada_discrete_type_high_bound (range_type));
76a01679 11251 case OP_ATR_LENGTH:
323e0a4a 11252 error (_("the 'length attribute applies only to array types"));
76a01679
JB
11253 }
11254 }
11255 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
323e0a4a 11256 error (_("unimplemented type attribute"));
76a01679
JB
11257 else
11258 {
11259 LONGEST low, high;
11260
ad82864c
JB
11261 if (ada_is_constrained_packed_array_type (type_arg))
11262 type_arg = decode_constrained_packed_array_type (type_arg);
76a01679 11263
aa4fb036 11264 if (op == OP_ATR_LENGTH)
1eea4ebd 11265 type = builtin_type (exp->gdbarch)->builtin_int;
aa4fb036
JB
11266 else
11267 {
11268 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11269 if (type == NULL)
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11271 }
1eea4ebd 11272
76a01679
JB
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11275
11276 switch (op)
11277 {
11278 default:
323e0a4a 11279 error (_("unexpected attribute encountered"));
76a01679 11280 case OP_ATR_FIRST:
1eea4ebd 11281 low = ada_array_bound_from_type (type_arg, tem, 0);
76a01679
JB
11282 return value_from_longest (type, low);
11283 case OP_ATR_LAST:
1eea4ebd 11284 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11285 return value_from_longest (type, high);
11286 case OP_ATR_LENGTH:
1eea4ebd
UW
11287 low = ada_array_bound_from_type (type_arg, tem, 0);
11288 high = ada_array_bound_from_type (type_arg, tem, 1);
76a01679
JB
11289 return value_from_longest (type, high - low + 1);
11290 }
11291 }
14f9c5c9
AS
11292 }
11293
4c4b4cd2
PH
11294 case OP_ATR_TAG:
11295 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11296 if (noside == EVAL_SKIP)
76a01679 11297 goto nosideret;
4c4b4cd2
PH
11298
11299 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11300 return value_zero (ada_tag_type (arg1), not_lval);
4c4b4cd2
PH
11301
11302 return ada_value_tag (arg1);
11303
11304 case OP_ATR_MIN:
11305 case OP_ATR_MAX:
11306 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11307 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11308 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309 if (noside == EVAL_SKIP)
76a01679 11310 goto nosideret;
d2e4a39e 11311 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11312 return value_zero (value_type (arg1), not_lval);
14f9c5c9 11313 else
f44316fa
UW
11314 {
11315 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11316 return value_binop (arg1, arg2,
11317 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11318 }
14f9c5c9 11319
4c4b4cd2
PH
11320 case OP_ATR_MODULUS:
11321 {
31dedfee 11322 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
4c4b4cd2 11323
5b4ee69b 11324 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
76a01679
JB
11325 if (noside == EVAL_SKIP)
11326 goto nosideret;
4c4b4cd2 11327
76a01679 11328 if (!ada_is_modular_type (type_arg))
323e0a4a 11329 error (_("'modulus must be applied to modular type"));
4c4b4cd2 11330
76a01679
JB
11331 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11332 ada_modulus (type_arg));
4c4b4cd2
PH
11333 }
11334
11335
11336 case OP_ATR_POS:
11337 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9
AS
11338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11339 if (noside == EVAL_SKIP)
76a01679 11340 goto nosideret;
3cb382c9
UW
11341 type = builtin_type (exp->gdbarch)->builtin_int;
11342 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11343 return value_zero (type, not_lval);
14f9c5c9 11344 else
3cb382c9 11345 return value_pos_atr (type, arg1);
14f9c5c9 11346
4c4b4cd2
PH
11347 case OP_ATR_SIZE:
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
8c1c099f
JB
11349 type = value_type (arg1);
11350
11351 /* If the argument is a reference, then dereference its type, since
11352 the user is really asking for the size of the actual object,
11353 not the size of the pointer. */
11354 if (TYPE_CODE (type) == TYPE_CODE_REF)
11355 type = TYPE_TARGET_TYPE (type);
11356
4c4b4cd2 11357 if (noside == EVAL_SKIP)
76a01679 11358 goto nosideret;
4c4b4cd2 11359 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
22601c15 11360 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
4c4b4cd2 11361 else
22601c15 11362 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
8c1c099f 11363 TARGET_CHAR_BIT * TYPE_LENGTH (type));
4c4b4cd2
PH
11364
11365 case OP_ATR_VAL:
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
14f9c5c9 11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
4c4b4cd2 11368 type = exp->elts[pc + 2].type;
14f9c5c9 11369 if (noside == EVAL_SKIP)
76a01679 11370 goto nosideret;
4c4b4cd2 11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11372 return value_zero (type, not_lval);
4c4b4cd2 11373 else
76a01679 11374 return value_val_atr (type, arg1);
4c4b4cd2
PH
11375
11376 case BINOP_EXP:
11377 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11378 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11379 if (noside == EVAL_SKIP)
11380 goto nosideret;
11381 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
df407dfe 11382 return value_zero (value_type (arg1), not_lval);
4c4b4cd2 11383 else
f44316fa
UW
11384 {
11385 /* For integer exponentiation operations,
11386 only promote the first argument. */
11387 if (is_integral_type (value_type (arg2)))
11388 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11389 else
11390 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11391
11392 return value_binop (arg1, arg2, op);
11393 }
4c4b4cd2
PH
11394
11395 case UNOP_PLUS:
11396 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11397 if (noside == EVAL_SKIP)
11398 goto nosideret;
11399 else
11400 return arg1;
11401
11402 case UNOP_ABS:
11403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11404 if (noside == EVAL_SKIP)
11405 goto nosideret;
f44316fa 11406 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
df407dfe 11407 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
4c4b4cd2 11408 return value_neg (arg1);
14f9c5c9 11409 else
4c4b4cd2 11410 return arg1;
14f9c5c9
AS
11411
11412 case UNOP_IND:
5ec18f2b 11413 preeval_pos = *pos;
6b0d7253 11414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
14f9c5c9 11415 if (noside == EVAL_SKIP)
4c4b4cd2 11416 goto nosideret;
df407dfe 11417 type = ada_check_typedef (value_type (arg1));
14f9c5c9 11418 if (noside == EVAL_AVOID_SIDE_EFFECTS)
4c4b4cd2
PH
11419 {
11420 if (ada_is_array_descriptor_type (type))
11421 /* GDB allows dereferencing GNAT array descriptors. */
11422 {
11423 struct type *arrType = ada_type_of_array (arg1, 0);
5b4ee69b 11424
4c4b4cd2 11425 if (arrType == NULL)
323e0a4a 11426 error (_("Attempt to dereference null array pointer."));
00a4c844 11427 return value_at_lazy (arrType, 0);
4c4b4cd2
PH
11428 }
11429 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11430 || TYPE_CODE (type) == TYPE_CODE_REF
11431 /* In C you can dereference an array to get the 1st elt. */
11432 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
714e53ab 11433 {
5ec18f2b
JG
11434 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11435 only be determined by inspecting the object's tag.
11436 This means that we need to evaluate completely the
11437 expression in order to get its type. */
11438
023db19c
JB
11439 if ((TYPE_CODE (type) == TYPE_CODE_REF
11440 || TYPE_CODE (type) == TYPE_CODE_PTR)
5ec18f2b
JG
11441 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11442 {
11443 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11444 EVAL_NORMAL);
11445 type = value_type (ada_value_ind (arg1));
11446 }
11447 else
11448 {
11449 type = to_static_fixed_type
11450 (ada_aligned_type
11451 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11452 }
c1b5a1a6 11453 ada_ensure_varsize_limit (type);
714e53ab
PH
11454 return value_zero (type, lval_memory);
11455 }
4c4b4cd2 11456 else if (TYPE_CODE (type) == TYPE_CODE_INT)
6b0d7253
JB
11457 {
11458 /* GDB allows dereferencing an int. */
11459 if (expect_type == NULL)
11460 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11461 lval_memory);
11462 else
11463 {
11464 expect_type =
11465 to_static_fixed_type (ada_aligned_type (expect_type));
11466 return value_zero (expect_type, lval_memory);
11467 }
11468 }
4c4b4cd2 11469 else
323e0a4a 11470 error (_("Attempt to take contents of a non-pointer value."));
4c4b4cd2 11471 }
0963b4bd 11472 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
df407dfe 11473 type = ada_check_typedef (value_type (arg1));
d2e4a39e 11474
96967637
JB
11475 if (TYPE_CODE (type) == TYPE_CODE_INT)
11476 /* GDB allows dereferencing an int. If we were given
11477 the expect_type, then use that as the target type.
11478 Otherwise, assume that the target type is an int. */
11479 {
11480 if (expect_type != NULL)
11481 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11482 arg1));
11483 else
11484 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11485 (CORE_ADDR) value_as_address (arg1));
11486 }
6b0d7253 11487
4c4b4cd2
PH
11488 if (ada_is_array_descriptor_type (type))
11489 /* GDB allows dereferencing GNAT array descriptors. */
11490 return ada_coerce_to_simple_array (arg1);
14f9c5c9 11491 else
4c4b4cd2 11492 return ada_value_ind (arg1);
14f9c5c9
AS
11493
11494 case STRUCTOP_STRUCT:
11495 tem = longest_to_int (exp->elts[pc + 1].longconst);
11496 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
5ec18f2b 11497 preeval_pos = *pos;
14f9c5c9
AS
11498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11499 if (noside == EVAL_SKIP)
4c4b4cd2 11500 goto nosideret;
14f9c5c9 11501 if (noside == EVAL_AVOID_SIDE_EFFECTS)
76a01679 11502 {
df407dfe 11503 struct type *type1 = value_type (arg1);
5b4ee69b 11504
76a01679
JB
11505 if (ada_is_tagged_type (type1, 1))
11506 {
11507 type = ada_lookup_struct_elt_type (type1,
11508 &exp->elts[pc + 2].string,
988f6b3d 11509 1, 1);
5ec18f2b
JG
11510
11511 /* If the field is not found, check if it exists in the
11512 extension of this object's type. This means that we
11513 need to evaluate completely the expression. */
11514
76a01679 11515 if (type == NULL)
5ec18f2b
JG
11516 {
11517 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11518 EVAL_NORMAL);
11519 arg1 = ada_value_struct_elt (arg1,
11520 &exp->elts[pc + 2].string,
11521 0);
11522 arg1 = unwrap_value (arg1);
11523 type = value_type (ada_to_fixed_value (arg1));
11524 }
76a01679
JB
11525 }
11526 else
11527 type =
11528 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
988f6b3d 11529 0);
76a01679
JB
11530
11531 return value_zero (ada_aligned_type (type), lval_memory);
11532 }
14f9c5c9 11533 else
a579cd9a
MW
11534 {
11535 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11536 arg1 = unwrap_value (arg1);
11537 return ada_to_fixed_value (arg1);
11538 }
284614f0 11539
14f9c5c9 11540 case OP_TYPE:
4c4b4cd2
PH
11541 /* The value is not supposed to be used. This is here to make it
11542 easier to accommodate expressions that contain types. */
14f9c5c9
AS
11543 (*pos) += 2;
11544 if (noside == EVAL_SKIP)
4c4b4cd2 11545 goto nosideret;
14f9c5c9 11546 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
a6cfbe68 11547 return allocate_value (exp->elts[pc + 1].type);
14f9c5c9 11548 else
323e0a4a 11549 error (_("Attempt to use a type name as an expression"));
52ce6436
PH
11550
11551 case OP_AGGREGATE:
11552 case OP_CHOICES:
11553 case OP_OTHERS:
11554 case OP_DISCRETE_RANGE:
11555 case OP_POSITIONAL:
11556 case OP_NAME:
11557 if (noside == EVAL_NORMAL)
11558 switch (op)
11559 {
11560 case OP_NAME:
11561 error (_("Undefined name, ambiguous name, or renaming used in "
e1d5a0d2 11562 "component association: %s."), &exp->elts[pc+2].string);
52ce6436
PH
11563 case OP_AGGREGATE:
11564 error (_("Aggregates only allowed on the right of an assignment"));
11565 default:
0963b4bd
MS
11566 internal_error (__FILE__, __LINE__,
11567 _("aggregate apparently mangled"));
52ce6436
PH
11568 }
11569
11570 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11571 *pos += oplen - 1;
11572 for (tem = 0; tem < nargs; tem += 1)
11573 ada_evaluate_subexp (NULL, exp, pos, noside);
11574 goto nosideret;
14f9c5c9
AS
11575 }
11576
11577nosideret:
ced9779b 11578 return eval_skip_value (exp);
14f9c5c9 11579}
14f9c5c9 11580\f
d2e4a39e 11581
4c4b4cd2 11582 /* Fixed point */
14f9c5c9
AS
11583
11584/* If TYPE encodes an Ada fixed-point type, return the suffix of the
11585 type name that encodes the 'small and 'delta information.
4c4b4cd2 11586 Otherwise, return NULL. */
14f9c5c9 11587
d2e4a39e 11588static const char *
ebf56fd3 11589fixed_type_info (struct type *type)
14f9c5c9 11590{
d2e4a39e 11591 const char *name = ada_type_name (type);
14f9c5c9
AS
11592 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11593
d2e4a39e
AS
11594 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11595 {
14f9c5c9 11596 const char *tail = strstr (name, "___XF_");
5b4ee69b 11597
14f9c5c9 11598 if (tail == NULL)
4c4b4cd2 11599 return NULL;
d2e4a39e 11600 else
4c4b4cd2 11601 return tail + 5;
14f9c5c9
AS
11602 }
11603 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11604 return fixed_type_info (TYPE_TARGET_TYPE (type));
11605 else
11606 return NULL;
11607}
11608
4c4b4cd2 11609/* Returns non-zero iff TYPE represents an Ada fixed-point type. */
14f9c5c9
AS
11610
11611int
ebf56fd3 11612ada_is_fixed_point_type (struct type *type)
14f9c5c9
AS
11613{
11614 return fixed_type_info (type) != NULL;
11615}
11616
4c4b4cd2
PH
11617/* Return non-zero iff TYPE represents a System.Address type. */
11618
11619int
11620ada_is_system_address_type (struct type *type)
11621{
11622 return (TYPE_NAME (type)
11623 && strcmp (TYPE_NAME (type), "system__address") == 0);
11624}
11625
14f9c5c9 11626/* Assuming that TYPE is the representation of an Ada fixed-point
50eff16b
UW
11627 type, return the target floating-point type to be used to represent
11628 of this type during internal computation. */
11629
11630static struct type *
11631ada_scaling_type (struct type *type)
11632{
11633 return builtin_type (get_type_arch (type))->builtin_long_double;
11634}
11635
11636/* Assuming that TYPE is the representation of an Ada fixed-point
11637 type, return its delta, or NULL if the type is malformed and the
4c4b4cd2 11638 delta cannot be determined. */
14f9c5c9 11639
50eff16b 11640struct value *
ebf56fd3 11641ada_delta (struct type *type)
14f9c5c9
AS
11642{
11643 const char *encoding = fixed_type_info (type);
50eff16b
UW
11644 struct type *scale_type = ada_scaling_type (type);
11645
11646 long long num, den;
11647
11648 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11649 return nullptr;
d2e4a39e 11650 else
50eff16b
UW
11651 return value_binop (value_from_longest (scale_type, num),
11652 value_from_longest (scale_type, den), BINOP_DIV);
14f9c5c9
AS
11653}
11654
11655/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
4c4b4cd2 11656 factor ('SMALL value) associated with the type. */
14f9c5c9 11657
50eff16b
UW
11658struct value *
11659ada_scaling_factor (struct type *type)
14f9c5c9
AS
11660{
11661 const char *encoding = fixed_type_info (type);
50eff16b
UW
11662 struct type *scale_type = ada_scaling_type (type);
11663
11664 long long num0, den0, num1, den1;
14f9c5c9 11665 int n;
d2e4a39e 11666
50eff16b 11667 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
facc390f 11668 &num0, &den0, &num1, &den1);
14f9c5c9
AS
11669
11670 if (n < 2)
50eff16b 11671 return value_from_longest (scale_type, 1);
14f9c5c9 11672 else if (n == 4)
50eff16b
UW
11673 return value_binop (value_from_longest (scale_type, num1),
11674 value_from_longest (scale_type, den1), BINOP_DIV);
d2e4a39e 11675 else
50eff16b
UW
11676 return value_binop (value_from_longest (scale_type, num0),
11677 value_from_longest (scale_type, den0), BINOP_DIV);
14f9c5c9
AS
11678}
11679
14f9c5c9 11680\f
d2e4a39e 11681
4c4b4cd2 11682 /* Range types */
14f9c5c9
AS
11683
11684/* Scan STR beginning at position K for a discriminant name, and
11685 return the value of that discriminant field of DVAL in *PX. If
11686 PNEW_K is not null, put the position of the character beyond the
11687 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
4c4b4cd2 11688 not alter *PX and *PNEW_K if unsuccessful. */
14f9c5c9
AS
11689
11690static int
108d56a4 11691scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
76a01679 11692 int *pnew_k)
14f9c5c9
AS
11693{
11694 static char *bound_buffer = NULL;
11695 static size_t bound_buffer_len = 0;
5da1a4d3 11696 const char *pstart, *pend, *bound;
d2e4a39e 11697 struct value *bound_val;
14f9c5c9
AS
11698
11699 if (dval == NULL || str == NULL || str[k] == '\0')
11700 return 0;
11701
5da1a4d3
SM
11702 pstart = str + k;
11703 pend = strstr (pstart, "__");
14f9c5c9
AS
11704 if (pend == NULL)
11705 {
5da1a4d3 11706 bound = pstart;
14f9c5c9
AS
11707 k += strlen (bound);
11708 }
d2e4a39e 11709 else
14f9c5c9 11710 {
5da1a4d3
SM
11711 int len = pend - pstart;
11712
11713 /* Strip __ and beyond. */
11714 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11715 strncpy (bound_buffer, pstart, len);
11716 bound_buffer[len] = '\0';
11717
14f9c5c9 11718 bound = bound_buffer;
d2e4a39e 11719 k = pend - str;
14f9c5c9 11720 }
d2e4a39e 11721
df407dfe 11722 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
14f9c5c9
AS
11723 if (bound_val == NULL)
11724 return 0;
11725
11726 *px = value_as_long (bound_val);
11727 if (pnew_k != NULL)
11728 *pnew_k = k;
11729 return 1;
11730}
11731
11732/* Value of variable named NAME in the current environment. If
11733 no such variable found, then if ERR_MSG is null, returns 0, and
4c4b4cd2
PH
11734 otherwise causes an error with message ERR_MSG. */
11735
d2e4a39e 11736static struct value *
edb0c9cb 11737get_var_value (const char *name, const char *err_msg)
14f9c5c9 11738{
b5ec771e 11739 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
14f9c5c9 11740
54d343a2 11741 std::vector<struct block_symbol> syms;
b5ec771e
PA
11742 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11743 get_selected_block (0),
11744 VAR_DOMAIN, &syms, 1);
14f9c5c9
AS
11745
11746 if (nsyms != 1)
11747 {
11748 if (err_msg == NULL)
4c4b4cd2 11749 return 0;
14f9c5c9 11750 else
8a3fe4f8 11751 error (("%s"), err_msg);
14f9c5c9
AS
11752 }
11753
54d343a2 11754 return value_of_variable (syms[0].symbol, syms[0].block);
14f9c5c9 11755}
d2e4a39e 11756
edb0c9cb
PA
11757/* Value of integer variable named NAME in the current environment.
11758 If no such variable is found, returns false. Otherwise, sets VALUE
11759 to the variable's value and returns true. */
4c4b4cd2 11760
edb0c9cb
PA
11761bool
11762get_int_var_value (const char *name, LONGEST &value)
14f9c5c9 11763{
4c4b4cd2 11764 struct value *var_val = get_var_value (name, 0);
d2e4a39e 11765
14f9c5c9 11766 if (var_val == 0)
edb0c9cb
PA
11767 return false;
11768
11769 value = value_as_long (var_val);
11770 return true;
14f9c5c9 11771}
d2e4a39e 11772
14f9c5c9
AS
11773
11774/* Return a range type whose base type is that of the range type named
11775 NAME in the current environment, and whose bounds are calculated
4c4b4cd2 11776 from NAME according to the GNAT range encoding conventions.
1ce677a4
UW
11777 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11778 corresponding range type from debug information; fall back to using it
11779 if symbol lookup fails. If a new type must be created, allocate it
11780 like ORIG_TYPE was. The bounds information, in general, is encoded
11781 in NAME, the base type given in the named range type. */
14f9c5c9 11782
d2e4a39e 11783static struct type *
28c85d6c 11784to_fixed_range_type (struct type *raw_type, struct value *dval)
14f9c5c9 11785{
0d5cff50 11786 const char *name;
14f9c5c9 11787 struct type *base_type;
108d56a4 11788 const char *subtype_info;
14f9c5c9 11789
28c85d6c
JB
11790 gdb_assert (raw_type != NULL);
11791 gdb_assert (TYPE_NAME (raw_type) != NULL);
dddfab26 11792
1ce677a4 11793 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
14f9c5c9
AS
11794 base_type = TYPE_TARGET_TYPE (raw_type);
11795 else
11796 base_type = raw_type;
11797
28c85d6c 11798 name = TYPE_NAME (raw_type);
14f9c5c9
AS
11799 subtype_info = strstr (name, "___XD");
11800 if (subtype_info == NULL)
690cc4eb 11801 {
43bbcdc2
PH
11802 LONGEST L = ada_discrete_type_low_bound (raw_type);
11803 LONGEST U = ada_discrete_type_high_bound (raw_type);
5b4ee69b 11804
690cc4eb
PH
11805 if (L < INT_MIN || U > INT_MAX)
11806 return raw_type;
11807 else
0c9c3474
SA
11808 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11809 L, U);
690cc4eb 11810 }
14f9c5c9
AS
11811 else
11812 {
11813 static char *name_buf = NULL;
11814 static size_t name_len = 0;
11815 int prefix_len = subtype_info - name;
11816 LONGEST L, U;
11817 struct type *type;
108d56a4 11818 const char *bounds_str;
14f9c5c9
AS
11819 int n;
11820
11821 GROW_VECT (name_buf, name_len, prefix_len + 5);
11822 strncpy (name_buf, name, prefix_len);
11823 name_buf[prefix_len] = '\0';
11824
11825 subtype_info += 5;
11826 bounds_str = strchr (subtype_info, '_');
11827 n = 1;
11828
d2e4a39e 11829 if (*subtype_info == 'L')
4c4b4cd2
PH
11830 {
11831 if (!ada_scan_number (bounds_str, n, &L, &n)
11832 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11833 return raw_type;
11834 if (bounds_str[n] == '_')
11835 n += 2;
0963b4bd 11836 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
4c4b4cd2
PH
11837 n += 1;
11838 subtype_info += 1;
11839 }
d2e4a39e 11840 else
4c4b4cd2 11841 {
4c4b4cd2 11842 strcpy (name_buf + prefix_len, "___L");
edb0c9cb 11843 if (!get_int_var_value (name_buf, L))
4c4b4cd2 11844 {
323e0a4a 11845 lim_warning (_("Unknown lower bound, using 1."));
4c4b4cd2
PH
11846 L = 1;
11847 }
11848 }
14f9c5c9 11849
d2e4a39e 11850 if (*subtype_info == 'U')
4c4b4cd2
PH
11851 {
11852 if (!ada_scan_number (bounds_str, n, &U, &n)
11853 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11854 return raw_type;
11855 }
d2e4a39e 11856 else
4c4b4cd2 11857 {
4c4b4cd2 11858 strcpy (name_buf + prefix_len, "___U");
edb0c9cb 11859 if (!get_int_var_value (name_buf, U))
4c4b4cd2 11860 {
323e0a4a 11861 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
4c4b4cd2
PH
11862 U = L;
11863 }
11864 }
14f9c5c9 11865
0c9c3474
SA
11866 type = create_static_range_type (alloc_type_copy (raw_type),
11867 base_type, L, U);
f5a91472
JB
11868 /* create_static_range_type alters the resulting type's length
11869 to match the size of the base_type, which is not what we want.
11870 Set it back to the original range type's length. */
11871 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
d2e4a39e 11872 TYPE_NAME (type) = name;
14f9c5c9
AS
11873 return type;
11874 }
11875}
11876
4c4b4cd2
PH
11877/* True iff NAME is the name of a range type. */
11878
14f9c5c9 11879int
d2e4a39e 11880ada_is_range_type_name (const char *name)
14f9c5c9
AS
11881{
11882 return (name != NULL && strstr (name, "___XD"));
d2e4a39e 11883}
14f9c5c9 11884\f
d2e4a39e 11885
4c4b4cd2
PH
11886 /* Modular types */
11887
11888/* True iff TYPE is an Ada modular type. */
14f9c5c9 11889
14f9c5c9 11890int
d2e4a39e 11891ada_is_modular_type (struct type *type)
14f9c5c9 11892{
18af8284 11893 struct type *subranged_type = get_base_type (type);
14f9c5c9
AS
11894
11895 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
690cc4eb 11896 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
4c4b4cd2 11897 && TYPE_UNSIGNED (subranged_type));
14f9c5c9
AS
11898}
11899
4c4b4cd2
PH
11900/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11901
61ee279c 11902ULONGEST
0056e4d5 11903ada_modulus (struct type *type)
14f9c5c9 11904{
43bbcdc2 11905 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
14f9c5c9 11906}
d2e4a39e 11907\f
f7f9143b
JB
11908
11909/* Ada exception catchpoint support:
11910 ---------------------------------
11911
11912 We support 3 kinds of exception catchpoints:
11913 . catchpoints on Ada exceptions
11914 . catchpoints on unhandled Ada exceptions
11915 . catchpoints on failed assertions
11916
11917 Exceptions raised during failed assertions, or unhandled exceptions
11918 could perfectly be caught with the general catchpoint on Ada exceptions.
11919 However, we can easily differentiate these two special cases, and having
11920 the option to distinguish these two cases from the rest can be useful
11921 to zero-in on certain situations.
11922
11923 Exception catchpoints are a specialized form of breakpoint,
11924 since they rely on inserting breakpoints inside known routines
11925 of the GNAT runtime. The implementation therefore uses a standard
11926 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11927 of breakpoint_ops.
11928
0259addd
JB
11929 Support in the runtime for exception catchpoints have been changed
11930 a few times already, and these changes affect the implementation
11931 of these catchpoints. In order to be able to support several
11932 variants of the runtime, we use a sniffer that will determine
28010a5d 11933 the runtime variant used by the program being debugged. */
f7f9143b 11934
82eacd52
JB
11935/* Ada's standard exceptions.
11936
11937 The Ada 83 standard also defined Numeric_Error. But there so many
11938 situations where it was unclear from the Ada 83 Reference Manual
11939 (RM) whether Constraint_Error or Numeric_Error should be raised,
11940 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11941 Interpretation saying that anytime the RM says that Numeric_Error
11942 should be raised, the implementation may raise Constraint_Error.
11943 Ada 95 went one step further and pretty much removed Numeric_Error
11944 from the list of standard exceptions (it made it a renaming of
11945 Constraint_Error, to help preserve compatibility when compiling
11946 an Ada83 compiler). As such, we do not include Numeric_Error from
11947 this list of standard exceptions. */
3d0b0fa3 11948
a121b7c1 11949static const char *standard_exc[] = {
3d0b0fa3
JB
11950 "constraint_error",
11951 "program_error",
11952 "storage_error",
11953 "tasking_error"
11954};
11955
0259addd
JB
11956typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11957
11958/* A structure that describes how to support exception catchpoints
11959 for a given executable. */
11960
11961struct exception_support_info
11962{
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on exceptions. */
11965 const char *catch_exception_sym;
11966
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on unhandled exceptions. */
11969 const char *catch_exception_unhandled_sym;
11970
11971 /* The name of the symbol to break on in order to insert
11972 a catchpoint on failed assertions. */
11973 const char *catch_assert_sym;
11974
9f757bf7
XR
11975 /* The name of the symbol to break on in order to insert
11976 a catchpoint on exception handling. */
11977 const char *catch_handlers_sym;
11978
0259addd
JB
11979 /* Assuming that the inferior just triggered an unhandled exception
11980 catchpoint, this function is responsible for returning the address
11981 in inferior memory where the name of that exception is stored.
11982 Return zero if the address could not be computed. */
11983 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11984};
11985
11986static CORE_ADDR ada_unhandled_exception_name_addr (void);
11987static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11988
11989/* The following exception support info structure describes how to
11990 implement exception catchpoints with the latest version of the
11991 Ada runtime (as of 2007-03-06). */
11992
11993static const struct exception_support_info default_exception_support_info =
11994{
11995 "__gnat_debug_raise_exception", /* catch_exception_sym */
11996 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11997 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
9f757bf7 11998 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
11999 ada_unhandled_exception_name_addr
12000};
12001
12002/* The following exception support info structure describes how to
12003 implement exception catchpoints with a slightly older version
12004 of the Ada runtime. */
12005
12006static const struct exception_support_info exception_support_info_fallback =
12007{
12008 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12009 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12010 "system__assertions__raise_assert_failure", /* catch_assert_sym */
9f757bf7 12011 "__gnat_begin_handler", /* catch_handlers_sym */
0259addd
JB
12012 ada_unhandled_exception_name_addr_from_raise
12013};
12014
f17011e0
JB
12015/* Return nonzero if we can detect the exception support routines
12016 described in EINFO.
12017
12018 This function errors out if an abnormal situation is detected
12019 (for instance, if we find the exception support routines, but
12020 that support is found to be incomplete). */
12021
12022static int
12023ada_has_this_exception_support (const struct exception_support_info *einfo)
12024{
12025 struct symbol *sym;
12026
12027 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12028 that should be compiled with debugging information. As a result, we
12029 expect to find that symbol in the symtabs. */
12030
12031 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12032 if (sym == NULL)
a6af7abe
JB
12033 {
12034 /* Perhaps we did not find our symbol because the Ada runtime was
12035 compiled without debugging info, or simply stripped of it.
12036 It happens on some GNU/Linux distributions for instance, where
12037 users have to install a separate debug package in order to get
12038 the runtime's debugging info. In that situation, let the user
12039 know why we cannot insert an Ada exception catchpoint.
12040
12041 Note: Just for the purpose of inserting our Ada exception
12042 catchpoint, we could rely purely on the associated minimal symbol.
12043 But we would be operating in degraded mode anyway, since we are
12044 still lacking the debugging info needed later on to extract
12045 the name of the exception being raised (this name is printed in
12046 the catchpoint message, and is also used when trying to catch
12047 a specific exception). We do not handle this case for now. */
3b7344d5 12048 struct bound_minimal_symbol msym
1c8e84b0
JB
12049 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12050
3b7344d5 12051 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
a6af7abe
JB
12052 error (_("Your Ada runtime appears to be missing some debugging "
12053 "information.\nCannot insert Ada exception catchpoint "
12054 "in this configuration."));
12055
12056 return 0;
12057 }
f17011e0
JB
12058
12059 /* Make sure that the symbol we found corresponds to a function. */
12060
12061 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12062 error (_("Symbol \"%s\" is not a function (class = %d)"),
12063 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12064
12065 return 1;
12066}
12067
0259addd
JB
12068/* Inspect the Ada runtime and determine which exception info structure
12069 should be used to provide support for exception catchpoints.
12070
3eecfa55
JB
12071 This function will always set the per-inferior exception_info,
12072 or raise an error. */
0259addd
JB
12073
12074static void
12075ada_exception_support_info_sniffer (void)
12076{
3eecfa55 12077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
0259addd
JB
12078
12079 /* If the exception info is already known, then no need to recompute it. */
3eecfa55 12080 if (data->exception_info != NULL)
0259addd
JB
12081 return;
12082
12083 /* Check the latest (default) exception support info. */
f17011e0 12084 if (ada_has_this_exception_support (&default_exception_support_info))
0259addd 12085 {
3eecfa55 12086 data->exception_info = &default_exception_support_info;
0259addd
JB
12087 return;
12088 }
12089
12090 /* Try our fallback exception suport info. */
f17011e0 12091 if (ada_has_this_exception_support (&exception_support_info_fallback))
0259addd 12092 {
3eecfa55 12093 data->exception_info = &exception_support_info_fallback;
0259addd
JB
12094 return;
12095 }
12096
12097 /* Sometimes, it is normal for us to not be able to find the routine
12098 we are looking for. This happens when the program is linked with
12099 the shared version of the GNAT runtime, and the program has not been
12100 started yet. Inform the user of these two possible causes if
12101 applicable. */
12102
ccefe4c4 12103 if (ada_update_initial_language (language_unknown) != language_ada)
0259addd
JB
12104 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12105
12106 /* If the symbol does not exist, then check that the program is
12107 already started, to make sure that shared libraries have been
12108 loaded. If it is not started, this may mean that the symbol is
12109 in a shared library. */
12110
12111 if (ptid_get_pid (inferior_ptid) == 0)
12112 error (_("Unable to insert catchpoint. Try to start the program first."));
12113
12114 /* At this point, we know that we are debugging an Ada program and
12115 that the inferior has been started, but we still are not able to
0963b4bd 12116 find the run-time symbols. That can mean that we are in
0259addd
JB
12117 configurable run time mode, or that a-except as been optimized
12118 out by the linker... In any case, at this point it is not worth
12119 supporting this feature. */
12120
7dda8cff 12121 error (_("Cannot insert Ada exception catchpoints in this configuration."));
0259addd
JB
12122}
12123
f7f9143b
JB
12124/* True iff FRAME is very likely to be that of a function that is
12125 part of the runtime system. This is all very heuristic, but is
12126 intended to be used as advice as to what frames are uninteresting
12127 to most users. */
12128
12129static int
12130is_known_support_routine (struct frame_info *frame)
12131{
692465f1 12132 enum language func_lang;
f7f9143b 12133 int i;
f35a17b5 12134 const char *fullname;
f7f9143b 12135
4ed6b5be
JB
12136 /* If this code does not have any debugging information (no symtab),
12137 This cannot be any user code. */
f7f9143b 12138
51abb421 12139 symtab_and_line sal = find_frame_sal (frame);
f7f9143b
JB
12140 if (sal.symtab == NULL)
12141 return 1;
12142
4ed6b5be
JB
12143 /* If there is a symtab, but the associated source file cannot be
12144 located, then assume this is not user code: Selecting a frame
12145 for which we cannot display the code would not be very helpful
12146 for the user. This should also take care of case such as VxWorks
12147 where the kernel has some debugging info provided for a few units. */
f7f9143b 12148
f35a17b5
JK
12149 fullname = symtab_to_fullname (sal.symtab);
12150 if (access (fullname, R_OK) != 0)
f7f9143b
JB
12151 return 1;
12152
4ed6b5be
JB
12153 /* Check the unit filename againt the Ada runtime file naming.
12154 We also check the name of the objfile against the name of some
12155 known system libraries that sometimes come with debugging info
12156 too. */
12157
f7f9143b
JB
12158 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12159 {
12160 re_comp (known_runtime_file_name_patterns[i]);
f69c91ad 12161 if (re_exec (lbasename (sal.symtab->filename)))
f7f9143b 12162 return 1;
eb822aa6
DE
12163 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12164 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
4ed6b5be 12165 return 1;
f7f9143b
JB
12166 }
12167
4ed6b5be 12168 /* Check whether the function is a GNAT-generated entity. */
f7f9143b 12169
c6dc63a1
TT
12170 gdb::unique_xmalloc_ptr<char> func_name
12171 = find_frame_funname (frame, &func_lang, NULL);
f7f9143b
JB
12172 if (func_name == NULL)
12173 return 1;
12174
12175 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12176 {
12177 re_comp (known_auxiliary_function_name_patterns[i]);
c6dc63a1
TT
12178 if (re_exec (func_name.get ()))
12179 return 1;
f7f9143b
JB
12180 }
12181
12182 return 0;
12183}
12184
12185/* Find the first frame that contains debugging information and that is not
12186 part of the Ada run-time, starting from FI and moving upward. */
12187
0ef643c8 12188void
f7f9143b
JB
12189ada_find_printable_frame (struct frame_info *fi)
12190{
12191 for (; fi != NULL; fi = get_prev_frame (fi))
12192 {
12193 if (!is_known_support_routine (fi))
12194 {
12195 select_frame (fi);
12196 break;
12197 }
12198 }
12199
12200}
12201
12202/* Assuming that the inferior just triggered an unhandled exception
12203 catchpoint, return the address in inferior memory where the name
12204 of the exception is stored.
12205
12206 Return zero if the address could not be computed. */
12207
12208static CORE_ADDR
12209ada_unhandled_exception_name_addr (void)
0259addd
JB
12210{
12211 return parse_and_eval_address ("e.full_name");
12212}
12213
12214/* Same as ada_unhandled_exception_name_addr, except that this function
12215 should be used when the inferior uses an older version of the runtime,
12216 where the exception name needs to be extracted from a specific frame
12217 several frames up in the callstack. */
12218
12219static CORE_ADDR
12220ada_unhandled_exception_name_addr_from_raise (void)
f7f9143b
JB
12221{
12222 int frame_level;
12223 struct frame_info *fi;
3eecfa55 12224 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
f7f9143b
JB
12225
12226 /* To determine the name of this exception, we need to select
12227 the frame corresponding to RAISE_SYM_NAME. This frame is
12228 at least 3 levels up, so we simply skip the first 3 frames
12229 without checking the name of their associated function. */
12230 fi = get_current_frame ();
12231 for (frame_level = 0; frame_level < 3; frame_level += 1)
12232 if (fi != NULL)
12233 fi = get_prev_frame (fi);
12234
12235 while (fi != NULL)
12236 {
692465f1
JB
12237 enum language func_lang;
12238
c6dc63a1
TT
12239 gdb::unique_xmalloc_ptr<char> func_name
12240 = find_frame_funname (fi, &func_lang, NULL);
55b87a52
KS
12241 if (func_name != NULL)
12242 {
c6dc63a1 12243 if (strcmp (func_name.get (),
55b87a52
KS
12244 data->exception_info->catch_exception_sym) == 0)
12245 break; /* We found the frame we were looking for... */
12246 fi = get_prev_frame (fi);
12247 }
f7f9143b
JB
12248 }
12249
12250 if (fi == NULL)
12251 return 0;
12252
12253 select_frame (fi);
12254 return parse_and_eval_address ("id.full_name");
12255}
12256
12257/* Assuming the inferior just triggered an Ada exception catchpoint
12258 (of any type), return the address in inferior memory where the name
12259 of the exception is stored, if applicable.
12260
45db7c09
PA
12261 Assumes the selected frame is the current frame.
12262
f7f9143b
JB
12263 Return zero if the address could not be computed, or if not relevant. */
12264
12265static CORE_ADDR
761269c8 12266ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12267 struct breakpoint *b)
12268{
3eecfa55
JB
12269 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12270
f7f9143b
JB
12271 switch (ex)
12272 {
761269c8 12273 case ada_catch_exception:
f7f9143b
JB
12274 return (parse_and_eval_address ("e.full_name"));
12275 break;
12276
761269c8 12277 case ada_catch_exception_unhandled:
3eecfa55 12278 return data->exception_info->unhandled_exception_name_addr ();
f7f9143b 12279 break;
9f757bf7
XR
12280
12281 case ada_catch_handlers:
12282 return 0; /* The runtimes does not provide access to the exception
12283 name. */
12284 break;
12285
761269c8 12286 case ada_catch_assert:
f7f9143b
JB
12287 return 0; /* Exception name is not relevant in this case. */
12288 break;
12289
12290 default:
12291 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12292 break;
12293 }
12294
12295 return 0; /* Should never be reached. */
12296}
12297
e547c119
JB
12298/* Assuming the inferior is stopped at an exception catchpoint,
12299 return the message which was associated to the exception, if
12300 available. Return NULL if the message could not be retrieved.
12301
e547c119
JB
12302 Note: The exception message can be associated to an exception
12303 either through the use of the Raise_Exception function, or
12304 more simply (Ada 2005 and later), via:
12305
12306 raise Exception_Name with "exception message";
12307
12308 */
12309
6f46ac85 12310static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12311ada_exception_message_1 (void)
12312{
12313 struct value *e_msg_val;
e547c119 12314 int e_msg_len;
e547c119
JB
12315
12316 /* For runtimes that support this feature, the exception message
12317 is passed as an unbounded string argument called "message". */
12318 e_msg_val = parse_and_eval ("message");
12319 if (e_msg_val == NULL)
12320 return NULL; /* Exception message not supported. */
12321
12322 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12323 gdb_assert (e_msg_val != NULL);
12324 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12325
12326 /* If the message string is empty, then treat it as if there was
12327 no exception message. */
12328 if (e_msg_len <= 0)
12329 return NULL;
12330
6f46ac85
TT
12331 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12332 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12333 e_msg.get ()[e_msg_len] = '\0';
e547c119 12334
e547c119
JB
12335 return e_msg;
12336}
12337
12338/* Same as ada_exception_message_1, except that all exceptions are
12339 contained here (returning NULL instead). */
12340
6f46ac85 12341static gdb::unique_xmalloc_ptr<char>
e547c119
JB
12342ada_exception_message (void)
12343{
6f46ac85 12344 gdb::unique_xmalloc_ptr<char> e_msg;
e547c119
JB
12345
12346 TRY
12347 {
12348 e_msg = ada_exception_message_1 ();
12349 }
12350 CATCH (e, RETURN_MASK_ERROR)
12351 {
6f46ac85 12352 e_msg.reset (nullptr);
e547c119
JB
12353 }
12354 END_CATCH
12355
12356 return e_msg;
12357}
12358
f7f9143b
JB
12359/* Same as ada_exception_name_addr_1, except that it intercepts and contains
12360 any error that ada_exception_name_addr_1 might cause to be thrown.
12361 When an error is intercepted, a warning with the error message is printed,
12362 and zero is returned. */
12363
12364static CORE_ADDR
761269c8 12365ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12366 struct breakpoint *b)
12367{
f7f9143b
JB
12368 CORE_ADDR result = 0;
12369
492d29ea 12370 TRY
f7f9143b
JB
12371 {
12372 result = ada_exception_name_addr_1 (ex, b);
12373 }
12374
492d29ea 12375 CATCH (e, RETURN_MASK_ERROR)
f7f9143b
JB
12376 {
12377 warning (_("failed to get exception name: %s"), e.message);
12378 return 0;
12379 }
492d29ea 12380 END_CATCH
f7f9143b
JB
12381
12382 return result;
12383}
12384
cb7de75e 12385static std::string ada_exception_catchpoint_cond_string
9f757bf7
XR
12386 (const char *excep_string,
12387 enum ada_exception_catchpoint_kind ex);
28010a5d
PA
12388
12389/* Ada catchpoints.
12390
12391 In the case of catchpoints on Ada exceptions, the catchpoint will
12392 stop the target on every exception the program throws. When a user
12393 specifies the name of a specific exception, we translate this
12394 request into a condition expression (in text form), and then parse
12395 it into an expression stored in each of the catchpoint's locations.
12396 We then use this condition to check whether the exception that was
12397 raised is the one the user is interested in. If not, then the
12398 target is resumed again. We store the name of the requested
12399 exception, in order to be able to re-set the condition expression
12400 when symbols change. */
12401
12402/* An instance of this type is used to represent an Ada catchpoint
5625a286 12403 breakpoint location. */
28010a5d 12404
5625a286 12405class ada_catchpoint_location : public bp_location
28010a5d 12406{
5625a286
PA
12407public:
12408 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12409 : bp_location (ops, owner)
12410 {}
28010a5d
PA
12411
12412 /* The condition that checks whether the exception that was raised
12413 is the specific exception the user specified on catchpoint
12414 creation. */
4d01a485 12415 expression_up excep_cond_expr;
28010a5d
PA
12416};
12417
12418/* Implement the DTOR method in the bp_location_ops structure for all
12419 Ada exception catchpoint kinds. */
12420
12421static void
12422ada_catchpoint_location_dtor (struct bp_location *bl)
12423{
12424 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12425
4d01a485 12426 al->excep_cond_expr.reset ();
28010a5d
PA
12427}
12428
12429/* The vtable to be used in Ada catchpoint locations. */
12430
12431static const struct bp_location_ops ada_catchpoint_location_ops =
12432{
12433 ada_catchpoint_location_dtor
12434};
12435
c1fc2657 12436/* An instance of this type is used to represent an Ada catchpoint. */
28010a5d 12437
c1fc2657 12438struct ada_catchpoint : public breakpoint
28010a5d 12439{
28010a5d 12440 /* The name of the specific exception the user specified. */
bc18fbb5 12441 std::string excep_string;
28010a5d
PA
12442};
12443
12444/* Parse the exception condition string in the context of each of the
12445 catchpoint's locations, and store them for later evaluation. */
12446
12447static void
9f757bf7
XR
12448create_excep_cond_exprs (struct ada_catchpoint *c,
12449 enum ada_exception_catchpoint_kind ex)
28010a5d 12450{
28010a5d 12451 struct bp_location *bl;
28010a5d
PA
12452
12453 /* Nothing to do if there's no specific exception to catch. */
bc18fbb5 12454 if (c->excep_string.empty ())
28010a5d
PA
12455 return;
12456
12457 /* Same if there are no locations... */
c1fc2657 12458 if (c->loc == NULL)
28010a5d
PA
12459 return;
12460
12461 /* Compute the condition expression in text form, from the specific
12462 expection we want to catch. */
cb7de75e 12463 std::string cond_string
bc18fbb5 12464 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
28010a5d
PA
12465
12466 /* Iterate over all the catchpoint's locations, and parse an
12467 expression for each. */
c1fc2657 12468 for (bl = c->loc; bl != NULL; bl = bl->next)
28010a5d
PA
12469 {
12470 struct ada_catchpoint_location *ada_loc
12471 = (struct ada_catchpoint_location *) bl;
4d01a485 12472 expression_up exp;
28010a5d
PA
12473
12474 if (!bl->shlib_disabled)
12475 {
bbc13ae3 12476 const char *s;
28010a5d 12477
cb7de75e 12478 s = cond_string.c_str ();
492d29ea 12479 TRY
28010a5d 12480 {
036e657b
JB
12481 exp = parse_exp_1 (&s, bl->address,
12482 block_for_pc (bl->address),
12483 0);
28010a5d 12484 }
492d29ea 12485 CATCH (e, RETURN_MASK_ERROR)
849f2b52
JB
12486 {
12487 warning (_("failed to reevaluate internal exception condition "
12488 "for catchpoint %d: %s"),
c1fc2657 12489 c->number, e.message);
849f2b52 12490 }
492d29ea 12491 END_CATCH
28010a5d
PA
12492 }
12493
b22e99fd 12494 ada_loc->excep_cond_expr = std::move (exp);
28010a5d 12495 }
28010a5d
PA
12496}
12497
28010a5d
PA
12498/* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12499 structure for all exception catchpoint kinds. */
12500
12501static struct bp_location *
761269c8 12502allocate_location_exception (enum ada_exception_catchpoint_kind ex,
28010a5d
PA
12503 struct breakpoint *self)
12504{
5625a286 12505 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
28010a5d
PA
12506}
12507
12508/* Implement the RE_SET method in the breakpoint_ops structure for all
12509 exception catchpoint kinds. */
12510
12511static void
761269c8 12512re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
28010a5d
PA
12513{
12514 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12515
12516 /* Call the base class's method. This updates the catchpoint's
12517 locations. */
2060206e 12518 bkpt_breakpoint_ops.re_set (b);
28010a5d
PA
12519
12520 /* Reparse the exception conditional expressions. One for each
12521 location. */
9f757bf7 12522 create_excep_cond_exprs (c, ex);
28010a5d
PA
12523}
12524
12525/* Returns true if we should stop for this breakpoint hit. If the
12526 user specified a specific exception, we only want to cause a stop
12527 if the program thrown that exception. */
12528
12529static int
12530should_stop_exception (const struct bp_location *bl)
12531{
12532 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12533 const struct ada_catchpoint_location *ada_loc
12534 = (const struct ada_catchpoint_location *) bl;
28010a5d
PA
12535 int stop;
12536
12537 /* With no specific exception, should always stop. */
bc18fbb5 12538 if (c->excep_string.empty ())
28010a5d
PA
12539 return 1;
12540
12541 if (ada_loc->excep_cond_expr == NULL)
12542 {
12543 /* We will have a NULL expression if back when we were creating
12544 the expressions, this location's had failed to parse. */
12545 return 1;
12546 }
12547
12548 stop = 1;
492d29ea 12549 TRY
28010a5d
PA
12550 {
12551 struct value *mark;
12552
12553 mark = value_mark ();
4d01a485 12554 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
28010a5d
PA
12555 value_free_to_mark (mark);
12556 }
492d29ea
PA
12557 CATCH (ex, RETURN_MASK_ALL)
12558 {
12559 exception_fprintf (gdb_stderr, ex,
12560 _("Error in testing exception condition:\n"));
12561 }
12562 END_CATCH
12563
28010a5d
PA
12564 return stop;
12565}
12566
12567/* Implement the CHECK_STATUS method in the breakpoint_ops structure
12568 for all exception catchpoint kinds. */
12569
12570static void
761269c8 12571check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
28010a5d
PA
12572{
12573 bs->stop = should_stop_exception (bs->bp_location_at);
12574}
12575
f7f9143b
JB
12576/* Implement the PRINT_IT method in the breakpoint_ops structure
12577 for all exception catchpoint kinds. */
12578
12579static enum print_stop_action
761269c8 12580print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
f7f9143b 12581{
79a45e25 12582 struct ui_out *uiout = current_uiout;
348d480f
PA
12583 struct breakpoint *b = bs->breakpoint_at;
12584
956a9fb9 12585 annotate_catchpoint (b->number);
f7f9143b 12586
112e8700 12587 if (uiout->is_mi_like_p ())
f7f9143b 12588 {
112e8700 12589 uiout->field_string ("reason",
956a9fb9 12590 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
112e8700 12591 uiout->field_string ("disp", bpdisp_text (b->disposition));
f7f9143b
JB
12592 }
12593
112e8700
SM
12594 uiout->text (b->disposition == disp_del
12595 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12596 uiout->field_int ("bkptno", b->number);
12597 uiout->text (", ");
f7f9143b 12598
45db7c09
PA
12599 /* ada_exception_name_addr relies on the selected frame being the
12600 current frame. Need to do this here because this function may be
12601 called more than once when printing a stop, and below, we'll
12602 select the first frame past the Ada run-time (see
12603 ada_find_printable_frame). */
12604 select_frame (get_current_frame ());
12605
f7f9143b
JB
12606 switch (ex)
12607 {
761269c8
JB
12608 case ada_catch_exception:
12609 case ada_catch_exception_unhandled:
9f757bf7 12610 case ada_catch_handlers:
956a9fb9
JB
12611 {
12612 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12613 char exception_name[256];
12614
12615 if (addr != 0)
12616 {
c714b426
PA
12617 read_memory (addr, (gdb_byte *) exception_name,
12618 sizeof (exception_name) - 1);
956a9fb9
JB
12619 exception_name [sizeof (exception_name) - 1] = '\0';
12620 }
12621 else
12622 {
12623 /* For some reason, we were unable to read the exception
12624 name. This could happen if the Runtime was compiled
12625 without debugging info, for instance. In that case,
12626 just replace the exception name by the generic string
12627 "exception" - it will read as "an exception" in the
12628 notification we are about to print. */
967cff16 12629 memcpy (exception_name, "exception", sizeof ("exception"));
956a9fb9
JB
12630 }
12631 /* In the case of unhandled exception breakpoints, we print
12632 the exception name as "unhandled EXCEPTION_NAME", to make
12633 it clearer to the user which kind of catchpoint just got
12634 hit. We used ui_out_text to make sure that this extra
12635 info does not pollute the exception name in the MI case. */
761269c8 12636 if (ex == ada_catch_exception_unhandled)
112e8700
SM
12637 uiout->text ("unhandled ");
12638 uiout->field_string ("exception-name", exception_name);
956a9fb9
JB
12639 }
12640 break;
761269c8 12641 case ada_catch_assert:
956a9fb9
JB
12642 /* In this case, the name of the exception is not really
12643 important. Just print "failed assertion" to make it clearer
12644 that his program just hit an assertion-failure catchpoint.
12645 We used ui_out_text because this info does not belong in
12646 the MI output. */
112e8700 12647 uiout->text ("failed assertion");
956a9fb9 12648 break;
f7f9143b 12649 }
e547c119 12650
6f46ac85 12651 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
e547c119
JB
12652 if (exception_message != NULL)
12653 {
e547c119 12654 uiout->text (" (");
6f46ac85 12655 uiout->field_string ("exception-message", exception_message.get ());
e547c119 12656 uiout->text (")");
e547c119
JB
12657 }
12658
112e8700 12659 uiout->text (" at ");
956a9fb9 12660 ada_find_printable_frame (get_current_frame ());
f7f9143b
JB
12661
12662 return PRINT_SRC_AND_LOC;
12663}
12664
12665/* Implement the PRINT_ONE method in the breakpoint_ops structure
12666 for all exception catchpoint kinds. */
12667
12668static void
761269c8 12669print_one_exception (enum ada_exception_catchpoint_kind ex,
a6d9a66e 12670 struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12671{
79a45e25 12672 struct ui_out *uiout = current_uiout;
28010a5d 12673 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45b7d
TT
12674 struct value_print_options opts;
12675
12676 get_user_print_options (&opts);
12677 if (opts.addressprint)
f7f9143b
JB
12678 {
12679 annotate_field (4);
112e8700 12680 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
f7f9143b
JB
12681 }
12682
12683 annotate_field (5);
a6d9a66e 12684 *last_loc = b->loc;
f7f9143b
JB
12685 switch (ex)
12686 {
761269c8 12687 case ada_catch_exception:
bc18fbb5 12688 if (!c->excep_string.empty ())
f7f9143b 12689 {
bc18fbb5
TT
12690 std::string msg = string_printf (_("`%s' Ada exception"),
12691 c->excep_string.c_str ());
28010a5d 12692
112e8700 12693 uiout->field_string ("what", msg);
f7f9143b
JB
12694 }
12695 else
112e8700 12696 uiout->field_string ("what", "all Ada exceptions");
f7f9143b
JB
12697
12698 break;
12699
761269c8 12700 case ada_catch_exception_unhandled:
112e8700 12701 uiout->field_string ("what", "unhandled Ada exceptions");
f7f9143b
JB
12702 break;
12703
9f757bf7 12704 case ada_catch_handlers:
bc18fbb5 12705 if (!c->excep_string.empty ())
9f757bf7
XR
12706 {
12707 uiout->field_fmt ("what",
12708 _("`%s' Ada exception handlers"),
bc18fbb5 12709 c->excep_string.c_str ());
9f757bf7
XR
12710 }
12711 else
12712 uiout->field_string ("what", "all Ada exceptions handlers");
12713 break;
12714
761269c8 12715 case ada_catch_assert:
112e8700 12716 uiout->field_string ("what", "failed Ada assertions");
f7f9143b
JB
12717 break;
12718
12719 default:
12720 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12721 break;
12722 }
12723}
12724
12725/* Implement the PRINT_MENTION method in the breakpoint_ops structure
12726 for all exception catchpoint kinds. */
12727
12728static void
761269c8 12729print_mention_exception (enum ada_exception_catchpoint_kind ex,
f7f9143b
JB
12730 struct breakpoint *b)
12731{
28010a5d 12732 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
79a45e25 12733 struct ui_out *uiout = current_uiout;
28010a5d 12734
112e8700 12735 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
00eb2c4a 12736 : _("Catchpoint "));
112e8700
SM
12737 uiout->field_int ("bkptno", b->number);
12738 uiout->text (": ");
00eb2c4a 12739
f7f9143b
JB
12740 switch (ex)
12741 {
761269c8 12742 case ada_catch_exception:
bc18fbb5 12743 if (!c->excep_string.empty ())
00eb2c4a 12744 {
862d101a 12745 std::string info = string_printf (_("`%s' Ada exception"),
bc18fbb5 12746 c->excep_string.c_str ());
862d101a 12747 uiout->text (info.c_str ());
00eb2c4a 12748 }
f7f9143b 12749 else
112e8700 12750 uiout->text (_("all Ada exceptions"));
f7f9143b
JB
12751 break;
12752
761269c8 12753 case ada_catch_exception_unhandled:
112e8700 12754 uiout->text (_("unhandled Ada exceptions"));
f7f9143b 12755 break;
9f757bf7
XR
12756
12757 case ada_catch_handlers:
bc18fbb5 12758 if (!c->excep_string.empty ())
9f757bf7
XR
12759 {
12760 std::string info
12761 = string_printf (_("`%s' Ada exception handlers"),
bc18fbb5 12762 c->excep_string.c_str ());
9f757bf7
XR
12763 uiout->text (info.c_str ());
12764 }
12765 else
12766 uiout->text (_("all Ada exceptions handlers"));
12767 break;
12768
761269c8 12769 case ada_catch_assert:
112e8700 12770 uiout->text (_("failed Ada assertions"));
f7f9143b
JB
12771 break;
12772
12773 default:
12774 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12775 break;
12776 }
12777}
12778
6149aea9
PA
12779/* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12780 for all exception catchpoint kinds. */
12781
12782static void
761269c8 12783print_recreate_exception (enum ada_exception_catchpoint_kind ex,
6149aea9
PA
12784 struct breakpoint *b, struct ui_file *fp)
12785{
28010a5d
PA
12786 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12787
6149aea9
PA
12788 switch (ex)
12789 {
761269c8 12790 case ada_catch_exception:
6149aea9 12791 fprintf_filtered (fp, "catch exception");
bc18fbb5
TT
12792 if (!c->excep_string.empty ())
12793 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
6149aea9
PA
12794 break;
12795
761269c8 12796 case ada_catch_exception_unhandled:
78076abc 12797 fprintf_filtered (fp, "catch exception unhandled");
6149aea9
PA
12798 break;
12799
9f757bf7
XR
12800 case ada_catch_handlers:
12801 fprintf_filtered (fp, "catch handlers");
12802 break;
12803
761269c8 12804 case ada_catch_assert:
6149aea9
PA
12805 fprintf_filtered (fp, "catch assert");
12806 break;
12807
12808 default:
12809 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12810 }
d9b3f62e 12811 print_recreate_thread (b, fp);
6149aea9
PA
12812}
12813
f7f9143b
JB
12814/* Virtual table for "catch exception" breakpoints. */
12815
28010a5d
PA
12816static struct bp_location *
12817allocate_location_catch_exception (struct breakpoint *self)
12818{
761269c8 12819 return allocate_location_exception (ada_catch_exception, self);
28010a5d
PA
12820}
12821
12822static void
12823re_set_catch_exception (struct breakpoint *b)
12824{
761269c8 12825 re_set_exception (ada_catch_exception, b);
28010a5d
PA
12826}
12827
12828static void
12829check_status_catch_exception (bpstat bs)
12830{
761269c8 12831 check_status_exception (ada_catch_exception, bs);
28010a5d
PA
12832}
12833
f7f9143b 12834static enum print_stop_action
348d480f 12835print_it_catch_exception (bpstat bs)
f7f9143b 12836{
761269c8 12837 return print_it_exception (ada_catch_exception, bs);
f7f9143b
JB
12838}
12839
12840static void
a6d9a66e 12841print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12842{
761269c8 12843 print_one_exception (ada_catch_exception, b, last_loc);
f7f9143b
JB
12844}
12845
12846static void
12847print_mention_catch_exception (struct breakpoint *b)
12848{
761269c8 12849 print_mention_exception (ada_catch_exception, b);
f7f9143b
JB
12850}
12851
6149aea9
PA
12852static void
12853print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12854{
761269c8 12855 print_recreate_exception (ada_catch_exception, b, fp);
6149aea9
PA
12856}
12857
2060206e 12858static struct breakpoint_ops catch_exception_breakpoint_ops;
f7f9143b
JB
12859
12860/* Virtual table for "catch exception unhandled" breakpoints. */
12861
28010a5d
PA
12862static struct bp_location *
12863allocate_location_catch_exception_unhandled (struct breakpoint *self)
12864{
761269c8 12865 return allocate_location_exception (ada_catch_exception_unhandled, self);
28010a5d
PA
12866}
12867
12868static void
12869re_set_catch_exception_unhandled (struct breakpoint *b)
12870{
761269c8 12871 re_set_exception (ada_catch_exception_unhandled, b);
28010a5d
PA
12872}
12873
12874static void
12875check_status_catch_exception_unhandled (bpstat bs)
12876{
761269c8 12877 check_status_exception (ada_catch_exception_unhandled, bs);
28010a5d
PA
12878}
12879
f7f9143b 12880static enum print_stop_action
348d480f 12881print_it_catch_exception_unhandled (bpstat bs)
f7f9143b 12882{
761269c8 12883 return print_it_exception (ada_catch_exception_unhandled, bs);
f7f9143b
JB
12884}
12885
12886static void
a6d9a66e
UW
12887print_one_catch_exception_unhandled (struct breakpoint *b,
12888 struct bp_location **last_loc)
f7f9143b 12889{
761269c8 12890 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
f7f9143b
JB
12891}
12892
12893static void
12894print_mention_catch_exception_unhandled (struct breakpoint *b)
12895{
761269c8 12896 print_mention_exception (ada_catch_exception_unhandled, b);
f7f9143b
JB
12897}
12898
6149aea9
PA
12899static void
12900print_recreate_catch_exception_unhandled (struct breakpoint *b,
12901 struct ui_file *fp)
12902{
761269c8 12903 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
6149aea9
PA
12904}
12905
2060206e 12906static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
f7f9143b
JB
12907
12908/* Virtual table for "catch assert" breakpoints. */
12909
28010a5d
PA
12910static struct bp_location *
12911allocate_location_catch_assert (struct breakpoint *self)
12912{
761269c8 12913 return allocate_location_exception (ada_catch_assert, self);
28010a5d
PA
12914}
12915
12916static void
12917re_set_catch_assert (struct breakpoint *b)
12918{
761269c8 12919 re_set_exception (ada_catch_assert, b);
28010a5d
PA
12920}
12921
12922static void
12923check_status_catch_assert (bpstat bs)
12924{
761269c8 12925 check_status_exception (ada_catch_assert, bs);
28010a5d
PA
12926}
12927
f7f9143b 12928static enum print_stop_action
348d480f 12929print_it_catch_assert (bpstat bs)
f7f9143b 12930{
761269c8 12931 return print_it_exception (ada_catch_assert, bs);
f7f9143b
JB
12932}
12933
12934static void
a6d9a66e 12935print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
f7f9143b 12936{
761269c8 12937 print_one_exception (ada_catch_assert, b, last_loc);
f7f9143b
JB
12938}
12939
12940static void
12941print_mention_catch_assert (struct breakpoint *b)
12942{
761269c8 12943 print_mention_exception (ada_catch_assert, b);
f7f9143b
JB
12944}
12945
6149aea9
PA
12946static void
12947print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12948{
761269c8 12949 print_recreate_exception (ada_catch_assert, b, fp);
6149aea9
PA
12950}
12951
2060206e 12952static struct breakpoint_ops catch_assert_breakpoint_ops;
f7f9143b 12953
9f757bf7
XR
12954/* Virtual table for "catch handlers" breakpoints. */
12955
12956static struct bp_location *
12957allocate_location_catch_handlers (struct breakpoint *self)
12958{
12959 return allocate_location_exception (ada_catch_handlers, self);
12960}
12961
12962static void
12963re_set_catch_handlers (struct breakpoint *b)
12964{
12965 re_set_exception (ada_catch_handlers, b);
12966}
12967
12968static void
12969check_status_catch_handlers (bpstat bs)
12970{
12971 check_status_exception (ada_catch_handlers, bs);
12972}
12973
12974static enum print_stop_action
12975print_it_catch_handlers (bpstat bs)
12976{
12977 return print_it_exception (ada_catch_handlers, bs);
12978}
12979
12980static void
12981print_one_catch_handlers (struct breakpoint *b,
12982 struct bp_location **last_loc)
12983{
12984 print_one_exception (ada_catch_handlers, b, last_loc);
12985}
12986
12987static void
12988print_mention_catch_handlers (struct breakpoint *b)
12989{
12990 print_mention_exception (ada_catch_handlers, b);
12991}
12992
12993static void
12994print_recreate_catch_handlers (struct breakpoint *b,
12995 struct ui_file *fp)
12996{
12997 print_recreate_exception (ada_catch_handlers, b, fp);
12998}
12999
13000static struct breakpoint_ops catch_handlers_breakpoint_ops;
13001
f7f9143b
JB
13002/* Split the arguments specified in a "catch exception" command.
13003 Set EX to the appropriate catchpoint type.
28010a5d 13004 Set EXCEP_STRING to the name of the specific exception if
5845583d 13005 specified by the user.
9f757bf7
XR
13006 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13007 "catch handlers" command. False otherwise.
5845583d
JB
13008 If a condition is found at the end of the arguments, the condition
13009 expression is stored in COND_STRING (memory must be deallocated
13010 after use). Otherwise COND_STRING is set to NULL. */
f7f9143b
JB
13011
13012static void
a121b7c1 13013catch_ada_exception_command_split (const char *args,
9f757bf7 13014 bool is_catch_handlers_cmd,
761269c8 13015 enum ada_exception_catchpoint_kind *ex,
bc18fbb5
TT
13016 std::string *excep_string,
13017 std::string *cond_string)
f7f9143b 13018{
bc18fbb5 13019 std::string exception_name;
f7f9143b 13020
bc18fbb5
TT
13021 exception_name = extract_arg (&args);
13022 if (exception_name == "if")
5845583d
JB
13023 {
13024 /* This is not an exception name; this is the start of a condition
13025 expression for a catchpoint on all exceptions. So, "un-get"
13026 this token, and set exception_name to NULL. */
bc18fbb5 13027 exception_name.clear ();
5845583d
JB
13028 args -= 2;
13029 }
f7f9143b 13030
5845583d 13031 /* Check to see if we have a condition. */
f7f9143b 13032
f1735a53 13033 args = skip_spaces (args);
61012eef 13034 if (startswith (args, "if")
5845583d
JB
13035 && (isspace (args[2]) || args[2] == '\0'))
13036 {
13037 args += 2;
f1735a53 13038 args = skip_spaces (args);
5845583d
JB
13039
13040 if (args[0] == '\0')
13041 error (_("Condition missing after `if' keyword"));
bc18fbb5 13042 *cond_string = args;
5845583d
JB
13043
13044 args += strlen (args);
13045 }
13046
13047 /* Check that we do not have any more arguments. Anything else
13048 is unexpected. */
f7f9143b
JB
13049
13050 if (args[0] != '\0')
13051 error (_("Junk at end of expression"));
13052
9f757bf7
XR
13053 if (is_catch_handlers_cmd)
13054 {
13055 /* Catch handling of exceptions. */
13056 *ex = ada_catch_handlers;
13057 *excep_string = exception_name;
13058 }
bc18fbb5 13059 else if (exception_name.empty ())
f7f9143b
JB
13060 {
13061 /* Catch all exceptions. */
761269c8 13062 *ex = ada_catch_exception;
bc18fbb5 13063 excep_string->clear ();
f7f9143b 13064 }
bc18fbb5 13065 else if (exception_name == "unhandled")
f7f9143b
JB
13066 {
13067 /* Catch unhandled exceptions. */
761269c8 13068 *ex = ada_catch_exception_unhandled;
bc18fbb5 13069 excep_string->clear ();
f7f9143b
JB
13070 }
13071 else
13072 {
13073 /* Catch a specific exception. */
761269c8 13074 *ex = ada_catch_exception;
28010a5d 13075 *excep_string = exception_name;
f7f9143b
JB
13076 }
13077}
13078
13079/* Return the name of the symbol on which we should break in order to
13080 implement a catchpoint of the EX kind. */
13081
13082static const char *
761269c8 13083ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
f7f9143b 13084{
3eecfa55
JB
13085 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13086
13087 gdb_assert (data->exception_info != NULL);
0259addd 13088
f7f9143b
JB
13089 switch (ex)
13090 {
761269c8 13091 case ada_catch_exception:
3eecfa55 13092 return (data->exception_info->catch_exception_sym);
f7f9143b 13093 break;
761269c8 13094 case ada_catch_exception_unhandled:
3eecfa55 13095 return (data->exception_info->catch_exception_unhandled_sym);
f7f9143b 13096 break;
761269c8 13097 case ada_catch_assert:
3eecfa55 13098 return (data->exception_info->catch_assert_sym);
f7f9143b 13099 break;
9f757bf7
XR
13100 case ada_catch_handlers:
13101 return (data->exception_info->catch_handlers_sym);
13102 break;
f7f9143b
JB
13103 default:
13104 internal_error (__FILE__, __LINE__,
13105 _("unexpected catchpoint kind (%d)"), ex);
13106 }
13107}
13108
13109/* Return the breakpoint ops "virtual table" used for catchpoints
13110 of the EX kind. */
13111
c0a91b2b 13112static const struct breakpoint_ops *
761269c8 13113ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
f7f9143b
JB
13114{
13115 switch (ex)
13116 {
761269c8 13117 case ada_catch_exception:
f7f9143b
JB
13118 return (&catch_exception_breakpoint_ops);
13119 break;
761269c8 13120 case ada_catch_exception_unhandled:
f7f9143b
JB
13121 return (&catch_exception_unhandled_breakpoint_ops);
13122 break;
761269c8 13123 case ada_catch_assert:
f7f9143b
JB
13124 return (&catch_assert_breakpoint_ops);
13125 break;
9f757bf7
XR
13126 case ada_catch_handlers:
13127 return (&catch_handlers_breakpoint_ops);
13128 break;
f7f9143b
JB
13129 default:
13130 internal_error (__FILE__, __LINE__,
13131 _("unexpected catchpoint kind (%d)"), ex);
13132 }
13133}
13134
13135/* Return the condition that will be used to match the current exception
13136 being raised with the exception that the user wants to catch. This
13137 assumes that this condition is used when the inferior just triggered
13138 an exception catchpoint.
cb7de75e 13139 EX: the type of catchpoints used for catching Ada exceptions. */
f7f9143b 13140
cb7de75e 13141static std::string
9f757bf7
XR
13142ada_exception_catchpoint_cond_string (const char *excep_string,
13143 enum ada_exception_catchpoint_kind ex)
f7f9143b 13144{
3d0b0fa3 13145 int i;
9f757bf7 13146 bool is_standard_exc = false;
cb7de75e 13147 std::string result;
9f757bf7
XR
13148
13149 if (ex == ada_catch_handlers)
13150 {
13151 /* For exception handlers catchpoints, the condition string does
13152 not use the same parameter as for the other exceptions. */
cb7de75e
TT
13153 result = ("long_integer (GNAT_GCC_exception_Access"
13154 "(gcc_exception).all.occurrence.id)");
9f757bf7
XR
13155 }
13156 else
cb7de75e 13157 result = "long_integer (e)";
3d0b0fa3 13158
0963b4bd 13159 /* The standard exceptions are a special case. They are defined in
3d0b0fa3 13160 runtime units that have been compiled without debugging info; if
28010a5d 13161 EXCEP_STRING is the not-fully-qualified name of a standard
3d0b0fa3
JB
13162 exception (e.g. "constraint_error") then, during the evaluation
13163 of the condition expression, the symbol lookup on this name would
0963b4bd 13164 *not* return this standard exception. The catchpoint condition
3d0b0fa3
JB
13165 may then be set only on user-defined exceptions which have the
13166 same not-fully-qualified name (e.g. my_package.constraint_error).
13167
13168 To avoid this unexcepted behavior, these standard exceptions are
0963b4bd 13169 systematically prefixed by "standard". This means that "catch
3d0b0fa3
JB
13170 exception constraint_error" is rewritten into "catch exception
13171 standard.constraint_error".
13172
13173 If an exception named contraint_error is defined in another package of
13174 the inferior program, then the only way to specify this exception as a
13175 breakpoint condition is to use its fully-qualified named:
13176 e.g. my_package.constraint_error. */
13177
13178 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13179 {
28010a5d 13180 if (strcmp (standard_exc [i], excep_string) == 0)
3d0b0fa3 13181 {
9f757bf7
XR
13182 is_standard_exc = true;
13183 break;
3d0b0fa3
JB
13184 }
13185 }
9f757bf7 13186
cb7de75e
TT
13187 result += " = ";
13188
9f757bf7 13189 if (is_standard_exc)
cb7de75e 13190 string_appendf (result, "long_integer (&standard.%s)", excep_string);
9f757bf7 13191 else
cb7de75e 13192 string_appendf (result, "long_integer (&%s)", excep_string);
9f757bf7 13193
9f757bf7 13194 return result;
f7f9143b
JB
13195}
13196
13197/* Return the symtab_and_line that should be used to insert an exception
13198 catchpoint of the TYPE kind.
13199
28010a5d
PA
13200 ADDR_STRING returns the name of the function where the real
13201 breakpoint that implements the catchpoints is set, depending on the
13202 type of catchpoint we need to create. */
f7f9143b
JB
13203
13204static struct symtab_and_line
bc18fbb5 13205ada_exception_sal (enum ada_exception_catchpoint_kind ex,
f2fc3015 13206 const char **addr_string, const struct breakpoint_ops **ops)
f7f9143b
JB
13207{
13208 const char *sym_name;
13209 struct symbol *sym;
f7f9143b 13210
0259addd
JB
13211 /* First, find out which exception support info to use. */
13212 ada_exception_support_info_sniffer ();
13213
13214 /* Then lookup the function on which we will break in order to catch
f7f9143b 13215 the Ada exceptions requested by the user. */
f7f9143b
JB
13216 sym_name = ada_exception_sym_name (ex);
13217 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13218
f17011e0
JB
13219 /* We can assume that SYM is not NULL at this stage. If the symbol
13220 did not exist, ada_exception_support_info_sniffer would have
13221 raised an exception.
f7f9143b 13222
f17011e0
JB
13223 Also, ada_exception_support_info_sniffer should have already
13224 verified that SYM is a function symbol. */
13225 gdb_assert (sym != NULL);
13226 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
f7f9143b
JB
13227
13228 /* Set ADDR_STRING. */
f7f9143b
JB
13229 *addr_string = xstrdup (sym_name);
13230
f7f9143b 13231 /* Set OPS. */
4b9eee8c 13232 *ops = ada_exception_breakpoint_ops (ex);
f7f9143b 13233
f17011e0 13234 return find_function_start_sal (sym, 1);
f7f9143b
JB
13235}
13236
b4a5b78b 13237/* Create an Ada exception catchpoint.
f7f9143b 13238
b4a5b78b 13239 EX_KIND is the kind of exception catchpoint to be created.
5845583d 13240
bc18fbb5 13241 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
2df4d1d5 13242 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
bc18fbb5 13243 of the exception to which this catchpoint applies.
2df4d1d5 13244
bc18fbb5 13245 COND_STRING, if not empty, is the catchpoint condition.
f7f9143b 13246
b4a5b78b
JB
13247 TEMPFLAG, if nonzero, means that the underlying breakpoint
13248 should be temporary.
28010a5d 13249
b4a5b78b 13250 FROM_TTY is the usual argument passed to all commands implementations. */
28010a5d 13251
349774ef 13252void
28010a5d 13253create_ada_exception_catchpoint (struct gdbarch *gdbarch,
761269c8 13254 enum ada_exception_catchpoint_kind ex_kind,
bc18fbb5 13255 const std::string &excep_string,
56ecd069 13256 const std::string &cond_string,
28010a5d 13257 int tempflag,
349774ef 13258 int disabled,
28010a5d
PA
13259 int from_tty)
13260{
f2fc3015 13261 const char *addr_string = NULL;
b4a5b78b 13262 const struct breakpoint_ops *ops = NULL;
bc18fbb5 13263 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
28010a5d 13264
b270e6f9
TT
13265 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13266 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
349774ef 13267 ops, tempflag, disabled, from_tty);
28010a5d 13268 c->excep_string = excep_string;
9f757bf7 13269 create_excep_cond_exprs (c.get (), ex_kind);
56ecd069
XR
13270 if (!cond_string.empty ())
13271 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
b270e6f9 13272 install_breakpoint (0, std::move (c), 1);
f7f9143b
JB
13273}
13274
9ac4176b
PA
13275/* Implement the "catch exception" command. */
13276
13277static void
eb4c3f4a 13278catch_ada_exception_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13279 struct cmd_list_element *command)
13280{
a121b7c1 13281 const char *arg = arg_entry;
9ac4176b
PA
13282 struct gdbarch *gdbarch = get_current_arch ();
13283 int tempflag;
761269c8 13284 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13285 std::string excep_string;
56ecd069 13286 std::string cond_string;
9ac4176b
PA
13287
13288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13289
13290 if (!arg)
13291 arg = "";
9f757bf7 13292 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
bc18fbb5 13293 &cond_string);
9f757bf7
XR
13294 create_ada_exception_catchpoint (gdbarch, ex_kind,
13295 excep_string, cond_string,
13296 tempflag, 1 /* enabled */,
13297 from_tty);
13298}
13299
13300/* Implement the "catch handlers" command. */
13301
13302static void
13303catch_ada_handlers_command (const char *arg_entry, int from_tty,
13304 struct cmd_list_element *command)
13305{
13306 const char *arg = arg_entry;
13307 struct gdbarch *gdbarch = get_current_arch ();
13308 int tempflag;
13309 enum ada_exception_catchpoint_kind ex_kind;
bc18fbb5 13310 std::string excep_string;
56ecd069 13311 std::string cond_string;
9f757bf7
XR
13312
13313 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13314
13315 if (!arg)
13316 arg = "";
13317 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
bc18fbb5 13318 &cond_string);
b4a5b78b
JB
13319 create_ada_exception_catchpoint (gdbarch, ex_kind,
13320 excep_string, cond_string,
349774ef
JB
13321 tempflag, 1 /* enabled */,
13322 from_tty);
9ac4176b
PA
13323}
13324
b4a5b78b 13325/* Split the arguments specified in a "catch assert" command.
5845583d 13326
b4a5b78b
JB
13327 ARGS contains the command's arguments (or the empty string if
13328 no arguments were passed).
5845583d
JB
13329
13330 If ARGS contains a condition, set COND_STRING to that condition
b4a5b78b 13331 (the memory needs to be deallocated after use). */
5845583d 13332
b4a5b78b 13333static void
56ecd069 13334catch_ada_assert_command_split (const char *args, std::string &cond_string)
f7f9143b 13335{
f1735a53 13336 args = skip_spaces (args);
f7f9143b 13337
5845583d 13338 /* Check whether a condition was provided. */
61012eef 13339 if (startswith (args, "if")
5845583d 13340 && (isspace (args[2]) || args[2] == '\0'))
f7f9143b 13341 {
5845583d 13342 args += 2;
f1735a53 13343 args = skip_spaces (args);
5845583d
JB
13344 if (args[0] == '\0')
13345 error (_("condition missing after `if' keyword"));
56ecd069 13346 cond_string.assign (args);
f7f9143b
JB
13347 }
13348
5845583d
JB
13349 /* Otherwise, there should be no other argument at the end of
13350 the command. */
13351 else if (args[0] != '\0')
13352 error (_("Junk at end of arguments."));
f7f9143b
JB
13353}
13354
9ac4176b
PA
13355/* Implement the "catch assert" command. */
13356
13357static void
eb4c3f4a 13358catch_assert_command (const char *arg_entry, int from_tty,
9ac4176b
PA
13359 struct cmd_list_element *command)
13360{
a121b7c1 13361 const char *arg = arg_entry;
9ac4176b
PA
13362 struct gdbarch *gdbarch = get_current_arch ();
13363 int tempflag;
56ecd069 13364 std::string cond_string;
9ac4176b
PA
13365
13366 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13367
13368 if (!arg)
13369 arg = "";
56ecd069 13370 catch_ada_assert_command_split (arg, cond_string);
761269c8 13371 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
241db429 13372 "", cond_string,
349774ef
JB
13373 tempflag, 1 /* enabled */,
13374 from_tty);
9ac4176b 13375}
778865d3
JB
13376
13377/* Return non-zero if the symbol SYM is an Ada exception object. */
13378
13379static int
13380ada_is_exception_sym (struct symbol *sym)
13381{
a737d952 13382 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
778865d3
JB
13383
13384 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13385 && SYMBOL_CLASS (sym) != LOC_BLOCK
13386 && SYMBOL_CLASS (sym) != LOC_CONST
13387 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13388 && type_name != NULL && strcmp (type_name, "exception") == 0);
13389}
13390
13391/* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13392 Ada exception object. This matches all exceptions except the ones
13393 defined by the Ada language. */
13394
13395static int
13396ada_is_non_standard_exception_sym (struct symbol *sym)
13397{
13398 int i;
13399
13400 if (!ada_is_exception_sym (sym))
13401 return 0;
13402
13403 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13404 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13405 return 0; /* A standard exception. */
13406
13407 /* Numeric_Error is also a standard exception, so exclude it.
13408 See the STANDARD_EXC description for more details as to why
13409 this exception is not listed in that array. */
13410 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13411 return 0;
13412
13413 return 1;
13414}
13415
ab816a27 13416/* A helper function for std::sort, comparing two struct ada_exc_info
778865d3
JB
13417 objects.
13418
13419 The comparison is determined first by exception name, and then
13420 by exception address. */
13421
ab816a27 13422bool
cc536b21 13423ada_exc_info::operator< (const ada_exc_info &other) const
778865d3 13424{
778865d3
JB
13425 int result;
13426
ab816a27
TT
13427 result = strcmp (name, other.name);
13428 if (result < 0)
13429 return true;
13430 if (result == 0 && addr < other.addr)
13431 return true;
13432 return false;
13433}
778865d3 13434
ab816a27 13435bool
cc536b21 13436ada_exc_info::operator== (const ada_exc_info &other) const
ab816a27
TT
13437{
13438 return addr == other.addr && strcmp (name, other.name) == 0;
778865d3
JB
13439}
13440
13441/* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13442 routine, but keeping the first SKIP elements untouched.
13443
13444 All duplicates are also removed. */
13445
13446static void
ab816a27 13447sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
778865d3
JB
13448 int skip)
13449{
ab816a27
TT
13450 std::sort (exceptions->begin () + skip, exceptions->end ());
13451 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13452 exceptions->end ());
778865d3
JB
13453}
13454
778865d3
JB
13455/* Add all exceptions defined by the Ada standard whose name match
13456 a regular expression.
13457
13458 If PREG is not NULL, then this regexp_t object is used to
13459 perform the symbol name matching. Otherwise, no name-based
13460 filtering is performed.
13461
13462 EXCEPTIONS is a vector of exceptions to which matching exceptions
13463 gets pushed. */
13464
13465static void
2d7cc5c7 13466ada_add_standard_exceptions (compiled_regex *preg,
ab816a27 13467 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13468{
13469 int i;
13470
13471 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13472 {
13473 if (preg == NULL
2d7cc5c7 13474 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
778865d3
JB
13475 {
13476 struct bound_minimal_symbol msymbol
13477 = ada_lookup_simple_minsym (standard_exc[i]);
13478
13479 if (msymbol.minsym != NULL)
13480 {
13481 struct ada_exc_info info
77e371c0 13482 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
778865d3 13483
ab816a27 13484 exceptions->push_back (info);
778865d3
JB
13485 }
13486 }
13487 }
13488}
13489
13490/* Add all Ada exceptions defined locally and accessible from the given
13491 FRAME.
13492
13493 If PREG is not NULL, then this regexp_t object is used to
13494 perform the symbol name matching. Otherwise, no name-based
13495 filtering is performed.
13496
13497 EXCEPTIONS is a vector of exceptions to which matching exceptions
13498 gets pushed. */
13499
13500static void
2d7cc5c7
PA
13501ada_add_exceptions_from_frame (compiled_regex *preg,
13502 struct frame_info *frame,
ab816a27 13503 std::vector<ada_exc_info> *exceptions)
778865d3 13504{
3977b71f 13505 const struct block *block = get_frame_block (frame, 0);
778865d3
JB
13506
13507 while (block != 0)
13508 {
13509 struct block_iterator iter;
13510 struct symbol *sym;
13511
13512 ALL_BLOCK_SYMBOLS (block, iter, sym)
13513 {
13514 switch (SYMBOL_CLASS (sym))
13515 {
13516 case LOC_TYPEDEF:
13517 case LOC_BLOCK:
13518 case LOC_CONST:
13519 break;
13520 default:
13521 if (ada_is_exception_sym (sym))
13522 {
13523 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13524 SYMBOL_VALUE_ADDRESS (sym)};
13525
ab816a27 13526 exceptions->push_back (info);
778865d3
JB
13527 }
13528 }
13529 }
13530 if (BLOCK_FUNCTION (block) != NULL)
13531 break;
13532 block = BLOCK_SUPERBLOCK (block);
13533 }
13534}
13535
14bc53a8
PA
13536/* Return true if NAME matches PREG or if PREG is NULL. */
13537
13538static bool
2d7cc5c7 13539name_matches_regex (const char *name, compiled_regex *preg)
14bc53a8
PA
13540{
13541 return (preg == NULL
2d7cc5c7 13542 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
14bc53a8
PA
13543}
13544
778865d3
JB
13545/* Add all exceptions defined globally whose name name match
13546 a regular expression, excluding standard exceptions.
13547
13548 The reason we exclude standard exceptions is that they need
13549 to be handled separately: Standard exceptions are defined inside
13550 a runtime unit which is normally not compiled with debugging info,
13551 and thus usually do not show up in our symbol search. However,
13552 if the unit was in fact built with debugging info, we need to
13553 exclude them because they would duplicate the entry we found
13554 during the special loop that specifically searches for those
13555 standard exceptions.
13556
13557 If PREG is not NULL, then this regexp_t object is used to
13558 perform the symbol name matching. Otherwise, no name-based
13559 filtering is performed.
13560
13561 EXCEPTIONS is a vector of exceptions to which matching exceptions
13562 gets pushed. */
13563
13564static void
2d7cc5c7 13565ada_add_global_exceptions (compiled_regex *preg,
ab816a27 13566 std::vector<ada_exc_info> *exceptions)
778865d3
JB
13567{
13568 struct objfile *objfile;
43f3e411 13569 struct compunit_symtab *s;
778865d3 13570
14bc53a8
PA
13571 /* In Ada, the symbol "search name" is a linkage name, whereas the
13572 regular expression used to do the matching refers to the natural
13573 name. So match against the decoded name. */
13574 expand_symtabs_matching (NULL,
b5ec771e 13575 lookup_name_info::match_any (),
14bc53a8
PA
13576 [&] (const char *search_name)
13577 {
13578 const char *decoded = ada_decode (search_name);
13579 return name_matches_regex (decoded, preg);
13580 },
13581 NULL,
13582 VARIABLES_DOMAIN);
778865d3 13583
43f3e411 13584 ALL_COMPUNITS (objfile, s)
778865d3 13585 {
43f3e411 13586 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
778865d3
JB
13587 int i;
13588
13589 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13590 {
13591 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13592 struct block_iterator iter;
13593 struct symbol *sym;
13594
13595 ALL_BLOCK_SYMBOLS (b, iter, sym)
13596 if (ada_is_non_standard_exception_sym (sym)
14bc53a8 13597 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
778865d3
JB
13598 {
13599 struct ada_exc_info info
13600 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13601
ab816a27 13602 exceptions->push_back (info);
778865d3
JB
13603 }
13604 }
13605 }
13606}
13607
13608/* Implements ada_exceptions_list with the regular expression passed
13609 as a regex_t, rather than a string.
13610
13611 If not NULL, PREG is used to filter out exceptions whose names
13612 do not match. Otherwise, all exceptions are listed. */
13613
ab816a27 13614static std::vector<ada_exc_info>
2d7cc5c7 13615ada_exceptions_list_1 (compiled_regex *preg)
778865d3 13616{
ab816a27 13617 std::vector<ada_exc_info> result;
778865d3
JB
13618 int prev_len;
13619
13620 /* First, list the known standard exceptions. These exceptions
13621 need to be handled separately, as they are usually defined in
13622 runtime units that have been compiled without debugging info. */
13623
13624 ada_add_standard_exceptions (preg, &result);
13625
13626 /* Next, find all exceptions whose scope is local and accessible
13627 from the currently selected frame. */
13628
13629 if (has_stack_frames ())
13630 {
ab816a27 13631 prev_len = result.size ();
778865d3
JB
13632 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13633 &result);
ab816a27 13634 if (result.size () > prev_len)
778865d3
JB
13635 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13636 }
13637
13638 /* Add all exceptions whose scope is global. */
13639
ab816a27 13640 prev_len = result.size ();
778865d3 13641 ada_add_global_exceptions (preg, &result);
ab816a27 13642 if (result.size () > prev_len)
778865d3
JB
13643 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13644
778865d3
JB
13645 return result;
13646}
13647
13648/* Return a vector of ada_exc_info.
13649
13650 If REGEXP is NULL, all exceptions are included in the result.
13651 Otherwise, it should contain a valid regular expression,
13652 and only the exceptions whose names match that regular expression
13653 are included in the result.
13654
13655 The exceptions are sorted in the following order:
13656 - Standard exceptions (defined by the Ada language), in
13657 alphabetical order;
13658 - Exceptions only visible from the current frame, in
13659 alphabetical order;
13660 - Exceptions whose scope is global, in alphabetical order. */
13661
ab816a27 13662std::vector<ada_exc_info>
778865d3
JB
13663ada_exceptions_list (const char *regexp)
13664{
2d7cc5c7
PA
13665 if (regexp == NULL)
13666 return ada_exceptions_list_1 (NULL);
778865d3 13667
2d7cc5c7
PA
13668 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13669 return ada_exceptions_list_1 (&reg);
778865d3
JB
13670}
13671
13672/* Implement the "info exceptions" command. */
13673
13674static void
1d12d88f 13675info_exceptions_command (const char *regexp, int from_tty)
778865d3 13676{
778865d3 13677 struct gdbarch *gdbarch = get_current_arch ();
778865d3 13678
ab816a27 13679 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
778865d3
JB
13680
13681 if (regexp != NULL)
13682 printf_filtered
13683 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13684 else
13685 printf_filtered (_("All defined Ada exceptions:\n"));
13686
ab816a27
TT
13687 for (const ada_exc_info &info : exceptions)
13688 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
778865d3
JB
13689}
13690
4c4b4cd2
PH
13691 /* Operators */
13692/* Information about operators given special treatment in functions
13693 below. */
13694/* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13695
13696#define ADA_OPERATORS \
13697 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13698 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13699 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13700 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13701 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13702 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13703 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13704 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13705 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13706 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13707 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13708 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13709 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13710 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13711 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
52ce6436
PH
13712 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13713 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13714 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13715 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
4c4b4cd2
PH
13716
13717static void
554794dc
SDJ
13718ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13719 int *argsp)
4c4b4cd2
PH
13720{
13721 switch (exp->elts[pc - 1].opcode)
13722 {
76a01679 13723 default:
4c4b4cd2
PH
13724 operator_length_standard (exp, pc, oplenp, argsp);
13725 break;
13726
13727#define OP_DEFN(op, len, args, binop) \
13728 case op: *oplenp = len; *argsp = args; break;
13729 ADA_OPERATORS;
13730#undef OP_DEFN
52ce6436
PH
13731
13732 case OP_AGGREGATE:
13733 *oplenp = 3;
13734 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13735 break;
13736
13737 case OP_CHOICES:
13738 *oplenp = 3;
13739 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13740 break;
4c4b4cd2
PH
13741 }
13742}
13743
c0201579
JK
13744/* Implementation of the exp_descriptor method operator_check. */
13745
13746static int
13747ada_operator_check (struct expression *exp, int pos,
13748 int (*objfile_func) (struct objfile *objfile, void *data),
13749 void *data)
13750{
13751 const union exp_element *const elts = exp->elts;
13752 struct type *type = NULL;
13753
13754 switch (elts[pos].opcode)
13755 {
13756 case UNOP_IN_RANGE:
13757 case UNOP_QUAL:
13758 type = elts[pos + 1].type;
13759 break;
13760
13761 default:
13762 return operator_check_standard (exp, pos, objfile_func, data);
13763 }
13764
13765 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13766
13767 if (type && TYPE_OBJFILE (type)
13768 && (*objfile_func) (TYPE_OBJFILE (type), data))
13769 return 1;
13770
13771 return 0;
13772}
13773
a121b7c1 13774static const char *
4c4b4cd2
PH
13775ada_op_name (enum exp_opcode opcode)
13776{
13777 switch (opcode)
13778 {
76a01679 13779 default:
4c4b4cd2 13780 return op_name_standard (opcode);
52ce6436 13781
4c4b4cd2
PH
13782#define OP_DEFN(op, len, args, binop) case op: return #op;
13783 ADA_OPERATORS;
13784#undef OP_DEFN
52ce6436
PH
13785
13786 case OP_AGGREGATE:
13787 return "OP_AGGREGATE";
13788 case OP_CHOICES:
13789 return "OP_CHOICES";
13790 case OP_NAME:
13791 return "OP_NAME";
4c4b4cd2
PH
13792 }
13793}
13794
13795/* As for operator_length, but assumes PC is pointing at the first
13796 element of the operator, and gives meaningful results only for the
52ce6436 13797 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
4c4b4cd2
PH
13798
13799static void
76a01679
JB
13800ada_forward_operator_length (struct expression *exp, int pc,
13801 int *oplenp, int *argsp)
4c4b4cd2 13802{
76a01679 13803 switch (exp->elts[pc].opcode)
4c4b4cd2
PH
13804 {
13805 default:
13806 *oplenp = *argsp = 0;
13807 break;
52ce6436 13808
4c4b4cd2
PH
13809#define OP_DEFN(op, len, args, binop) \
13810 case op: *oplenp = len; *argsp = args; break;
13811 ADA_OPERATORS;
13812#undef OP_DEFN
52ce6436
PH
13813
13814 case OP_AGGREGATE:
13815 *oplenp = 3;
13816 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13817 break;
13818
13819 case OP_CHOICES:
13820 *oplenp = 3;
13821 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13822 break;
13823
13824 case OP_STRING:
13825 case OP_NAME:
13826 {
13827 int len = longest_to_int (exp->elts[pc + 1].longconst);
5b4ee69b 13828
52ce6436
PH
13829 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13830 *argsp = 0;
13831 break;
13832 }
4c4b4cd2
PH
13833 }
13834}
13835
13836static int
13837ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13838{
13839 enum exp_opcode op = exp->elts[elt].opcode;
13840 int oplen, nargs;
13841 int pc = elt;
13842 int i;
76a01679 13843
4c4b4cd2
PH
13844 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13845
76a01679 13846 switch (op)
4c4b4cd2 13847 {
76a01679 13848 /* Ada attributes ('Foo). */
4c4b4cd2
PH
13849 case OP_ATR_FIRST:
13850 case OP_ATR_LAST:
13851 case OP_ATR_LENGTH:
13852 case OP_ATR_IMAGE:
13853 case OP_ATR_MAX:
13854 case OP_ATR_MIN:
13855 case OP_ATR_MODULUS:
13856 case OP_ATR_POS:
13857 case OP_ATR_SIZE:
13858 case OP_ATR_TAG:
13859 case OP_ATR_VAL:
13860 break;
13861
13862 case UNOP_IN_RANGE:
13863 case UNOP_QUAL:
323e0a4a
AC
13864 /* XXX: gdb_sprint_host_address, type_sprint */
13865 fprintf_filtered (stream, _("Type @"));
4c4b4cd2
PH
13866 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13867 fprintf_filtered (stream, " (");
13868 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13869 fprintf_filtered (stream, ")");
13870 break;
13871 case BINOP_IN_BOUNDS:
52ce6436
PH
13872 fprintf_filtered (stream, " (%d)",
13873 longest_to_int (exp->elts[pc + 2].longconst));
4c4b4cd2
PH
13874 break;
13875 case TERNOP_IN_RANGE:
13876 break;
13877
52ce6436
PH
13878 case OP_AGGREGATE:
13879 case OP_OTHERS:
13880 case OP_DISCRETE_RANGE:
13881 case OP_POSITIONAL:
13882 case OP_CHOICES:
13883 break;
13884
13885 case OP_NAME:
13886 case OP_STRING:
13887 {
13888 char *name = &exp->elts[elt + 2].string;
13889 int len = longest_to_int (exp->elts[elt + 1].longconst);
5b4ee69b 13890
52ce6436
PH
13891 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13892 break;
13893 }
13894
4c4b4cd2
PH
13895 default:
13896 return dump_subexp_body_standard (exp, stream, elt);
13897 }
13898
13899 elt += oplen;
13900 for (i = 0; i < nargs; i += 1)
13901 elt = dump_subexp (exp, stream, elt);
13902
13903 return elt;
13904}
13905
13906/* The Ada extension of print_subexp (q.v.). */
13907
76a01679
JB
13908static void
13909ada_print_subexp (struct expression *exp, int *pos,
13910 struct ui_file *stream, enum precedence prec)
4c4b4cd2 13911{
52ce6436 13912 int oplen, nargs, i;
4c4b4cd2
PH
13913 int pc = *pos;
13914 enum exp_opcode op = exp->elts[pc].opcode;
13915
13916 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13917
52ce6436 13918 *pos += oplen;
4c4b4cd2
PH
13919 switch (op)
13920 {
13921 default:
52ce6436 13922 *pos -= oplen;
4c4b4cd2
PH
13923 print_subexp_standard (exp, pos, stream, prec);
13924 return;
13925
13926 case OP_VAR_VALUE:
4c4b4cd2
PH
13927 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13928 return;
13929
13930 case BINOP_IN_BOUNDS:
323e0a4a 13931 /* XXX: sprint_subexp */
4c4b4cd2 13932 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13933 fputs_filtered (" in ", stream);
4c4b4cd2 13934 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13935 fputs_filtered ("'range", stream);
4c4b4cd2 13936 if (exp->elts[pc + 1].longconst > 1)
76a01679
JB
13937 fprintf_filtered (stream, "(%ld)",
13938 (long) exp->elts[pc + 1].longconst);
4c4b4cd2
PH
13939 return;
13940
13941 case TERNOP_IN_RANGE:
4c4b4cd2 13942 if (prec >= PREC_EQUAL)
76a01679 13943 fputs_filtered ("(", stream);
323e0a4a 13944 /* XXX: sprint_subexp */
4c4b4cd2 13945 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13946 fputs_filtered (" in ", stream);
4c4b4cd2
PH
13947 print_subexp (exp, pos, stream, PREC_EQUAL);
13948 fputs_filtered (" .. ", stream);
13949 print_subexp (exp, pos, stream, PREC_EQUAL);
13950 if (prec >= PREC_EQUAL)
76a01679
JB
13951 fputs_filtered (")", stream);
13952 return;
4c4b4cd2
PH
13953
13954 case OP_ATR_FIRST:
13955 case OP_ATR_LAST:
13956 case OP_ATR_LENGTH:
13957 case OP_ATR_IMAGE:
13958 case OP_ATR_MAX:
13959 case OP_ATR_MIN:
13960 case OP_ATR_MODULUS:
13961 case OP_ATR_POS:
13962 case OP_ATR_SIZE:
13963 case OP_ATR_TAG:
13964 case OP_ATR_VAL:
4c4b4cd2 13965 if (exp->elts[*pos].opcode == OP_TYPE)
76a01679
JB
13966 {
13967 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
79d43c61
TT
13968 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13969 &type_print_raw_options);
76a01679
JB
13970 *pos += 3;
13971 }
4c4b4cd2 13972 else
76a01679 13973 print_subexp (exp, pos, stream, PREC_SUFFIX);
4c4b4cd2
PH
13974 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13975 if (nargs > 1)
76a01679
JB
13976 {
13977 int tem;
5b4ee69b 13978
76a01679
JB
13979 for (tem = 1; tem < nargs; tem += 1)
13980 {
13981 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13982 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13983 }
13984 fputs_filtered (")", stream);
13985 }
4c4b4cd2 13986 return;
14f9c5c9 13987
4c4b4cd2 13988 case UNOP_QUAL:
4c4b4cd2
PH
13989 type_print (exp->elts[pc + 1].type, "", stream, 0);
13990 fputs_filtered ("'(", stream);
13991 print_subexp (exp, pos, stream, PREC_PREFIX);
13992 fputs_filtered (")", stream);
13993 return;
14f9c5c9 13994
4c4b4cd2 13995 case UNOP_IN_RANGE:
323e0a4a 13996 /* XXX: sprint_subexp */
4c4b4cd2 13997 print_subexp (exp, pos, stream, PREC_SUFFIX);
0b48a291 13998 fputs_filtered (" in ", stream);
79d43c61
TT
13999 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14000 &type_print_raw_options);
4c4b4cd2 14001 return;
52ce6436
PH
14002
14003 case OP_DISCRETE_RANGE:
14004 print_subexp (exp, pos, stream, PREC_SUFFIX);
14005 fputs_filtered ("..", stream);
14006 print_subexp (exp, pos, stream, PREC_SUFFIX);
14007 return;
14008
14009 case OP_OTHERS:
14010 fputs_filtered ("others => ", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 return;
14013
14014 case OP_CHOICES:
14015 for (i = 0; i < nargs-1; i += 1)
14016 {
14017 if (i > 0)
14018 fputs_filtered ("|", stream);
14019 print_subexp (exp, pos, stream, PREC_SUFFIX);
14020 }
14021 fputs_filtered (" => ", stream);
14022 print_subexp (exp, pos, stream, PREC_SUFFIX);
14023 return;
14024
14025 case OP_POSITIONAL:
14026 print_subexp (exp, pos, stream, PREC_SUFFIX);
14027 return;
14028
14029 case OP_AGGREGATE:
14030 fputs_filtered ("(", stream);
14031 for (i = 0; i < nargs; i += 1)
14032 {
14033 if (i > 0)
14034 fputs_filtered (", ", stream);
14035 print_subexp (exp, pos, stream, PREC_SUFFIX);
14036 }
14037 fputs_filtered (")", stream);
14038 return;
4c4b4cd2
PH
14039 }
14040}
14f9c5c9
AS
14041
14042/* Table mapping opcodes into strings for printing operators
14043 and precedences of the operators. */
14044
d2e4a39e
AS
14045static const struct op_print ada_op_print_tab[] = {
14046 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14047 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14048 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14049 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14050 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14051 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14052 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14053 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14054 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14055 {">=", BINOP_GEQ, PREC_ORDER, 0},
14056 {">", BINOP_GTR, PREC_ORDER, 0},
14057 {"<", BINOP_LESS, PREC_ORDER, 0},
14058 {">>", BINOP_RSH, PREC_SHIFT, 0},
14059 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14060 {"+", BINOP_ADD, PREC_ADD, 0},
14061 {"-", BINOP_SUB, PREC_ADD, 0},
14062 {"&", BINOP_CONCAT, PREC_ADD, 0},
14063 {"*", BINOP_MUL, PREC_MUL, 0},
14064 {"/", BINOP_DIV, PREC_MUL, 0},
14065 {"rem", BINOP_REM, PREC_MUL, 0},
14066 {"mod", BINOP_MOD, PREC_MUL, 0},
14067 {"**", BINOP_EXP, PREC_REPEAT, 0},
14068 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14069 {"-", UNOP_NEG, PREC_PREFIX, 0},
14070 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14071 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14072 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14073 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
4c4b4cd2
PH
14074 {".all", UNOP_IND, PREC_SUFFIX, 1},
14075 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14076 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
f486487f 14077 {NULL, OP_NULL, PREC_SUFFIX, 0}
14f9c5c9
AS
14078};
14079\f
72d5681a
PH
14080enum ada_primitive_types {
14081 ada_primitive_type_int,
14082 ada_primitive_type_long,
14083 ada_primitive_type_short,
14084 ada_primitive_type_char,
14085 ada_primitive_type_float,
14086 ada_primitive_type_double,
14087 ada_primitive_type_void,
14088 ada_primitive_type_long_long,
14089 ada_primitive_type_long_double,
14090 ada_primitive_type_natural,
14091 ada_primitive_type_positive,
14092 ada_primitive_type_system_address,
08f49010 14093 ada_primitive_type_storage_offset,
72d5681a
PH
14094 nr_ada_primitive_types
14095};
6c038f32
PH
14096
14097static void
d4a9a881 14098ada_language_arch_info (struct gdbarch *gdbarch,
72d5681a
PH
14099 struct language_arch_info *lai)
14100{
d4a9a881 14101 const struct builtin_type *builtin = builtin_type (gdbarch);
5b4ee69b 14102
72d5681a 14103 lai->primitive_type_vector
d4a9a881 14104 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
72d5681a 14105 struct type *);
e9bb382b
UW
14106
14107 lai->primitive_type_vector [ada_primitive_type_int]
14108 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14109 0, "integer");
14110 lai->primitive_type_vector [ada_primitive_type_long]
14111 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14112 0, "long_integer");
14113 lai->primitive_type_vector [ada_primitive_type_short]
14114 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14115 0, "short_integer");
14116 lai->string_char_type
14117 = lai->primitive_type_vector [ada_primitive_type_char]
cd7c1778 14118 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
e9bb382b
UW
14119 lai->primitive_type_vector [ada_primitive_type_float]
14120 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
49f190bc 14121 "float", gdbarch_float_format (gdbarch));
e9bb382b
UW
14122 lai->primitive_type_vector [ada_primitive_type_double]
14123 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
49f190bc 14124 "long_float", gdbarch_double_format (gdbarch));
e9bb382b
UW
14125 lai->primitive_type_vector [ada_primitive_type_long_long]
14126 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14127 0, "long_long_integer");
14128 lai->primitive_type_vector [ada_primitive_type_long_double]
5f3bceb6 14129 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
49f190bc 14130 "long_long_float", gdbarch_long_double_format (gdbarch));
e9bb382b
UW
14131 lai->primitive_type_vector [ada_primitive_type_natural]
14132 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14133 0, "natural");
14134 lai->primitive_type_vector [ada_primitive_type_positive]
14135 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14136 0, "positive");
14137 lai->primitive_type_vector [ada_primitive_type_void]
14138 = builtin->builtin_void;
14139
14140 lai->primitive_type_vector [ada_primitive_type_system_address]
77b7c781
UW
14141 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14142 "void"));
72d5681a
PH
14143 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14144 = "system__address";
fbb06eb1 14145
08f49010
XR
14146 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14147 type. This is a signed integral type whose size is the same as
14148 the size of addresses. */
14149 {
14150 unsigned int addr_length = TYPE_LENGTH
14151 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14152
14153 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14154 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14155 "storage_offset");
14156 }
14157
47e729a8 14158 lai->bool_type_symbol = NULL;
fbb06eb1 14159 lai->bool_type_default = builtin->builtin_bool;
6c038f32 14160}
6c038f32
PH
14161\f
14162 /* Language vector */
14163
14164/* Not really used, but needed in the ada_language_defn. */
14165
14166static void
6c7a06a3 14167emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
6c038f32 14168{
6c7a06a3 14169 ada_emit_char (c, type, stream, quoter, 1);
6c038f32
PH
14170}
14171
14172static int
410a0ff2 14173parse (struct parser_state *ps)
6c038f32
PH
14174{
14175 warnings_issued = 0;
410a0ff2 14176 return ada_parse (ps);
6c038f32
PH
14177}
14178
14179static const struct exp_descriptor ada_exp_descriptor = {
14180 ada_print_subexp,
14181 ada_operator_length,
c0201579 14182 ada_operator_check,
6c038f32
PH
14183 ada_op_name,
14184 ada_dump_subexp_body,
14185 ada_evaluate_subexp
14186};
14187
b5ec771e
PA
14188/* symbol_name_matcher_ftype adapter for wild_match. */
14189
14190static bool
14191do_wild_match (const char *symbol_search_name,
14192 const lookup_name_info &lookup_name,
a207cff2 14193 completion_match_result *comp_match_res)
b5ec771e
PA
14194{
14195 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14196}
14197
14198/* symbol_name_matcher_ftype adapter for full_match. */
14199
14200static bool
14201do_full_match (const char *symbol_search_name,
14202 const lookup_name_info &lookup_name,
a207cff2 14203 completion_match_result *comp_match_res)
b5ec771e
PA
14204{
14205 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14206}
14207
14208/* Build the Ada lookup name for LOOKUP_NAME. */
14209
14210ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14211{
14212 const std::string &user_name = lookup_name.name ();
14213
14214 if (user_name[0] == '<')
14215 {
14216 if (user_name.back () == '>')
14217 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14218 else
14219 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14220 m_encoded_p = true;
14221 m_verbatim_p = true;
14222 m_wild_match_p = false;
14223 m_standard_p = false;
14224 }
14225 else
14226 {
14227 m_verbatim_p = false;
14228
14229 m_encoded_p = user_name.find ("__") != std::string::npos;
14230
14231 if (!m_encoded_p)
14232 {
14233 const char *folded = ada_fold_name (user_name.c_str ());
14234 const char *encoded = ada_encode_1 (folded, false);
14235 if (encoded != NULL)
14236 m_encoded_name = encoded;
14237 else
14238 m_encoded_name = user_name;
14239 }
14240 else
14241 m_encoded_name = user_name;
14242
14243 /* Handle the 'package Standard' special case. See description
14244 of m_standard_p. */
14245 if (startswith (m_encoded_name.c_str (), "standard__"))
14246 {
14247 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14248 m_standard_p = true;
14249 }
14250 else
14251 m_standard_p = false;
74ccd7f5 14252
b5ec771e
PA
14253 /* If the name contains a ".", then the user is entering a fully
14254 qualified entity name, and the match must not be done in wild
14255 mode. Similarly, if the user wants to complete what looks
14256 like an encoded name, the match must not be done in wild
14257 mode. Also, in the standard__ special case always do
14258 non-wild matching. */
14259 m_wild_match_p
14260 = (lookup_name.match_type () != symbol_name_match_type::FULL
14261 && !m_encoded_p
14262 && !m_standard_p
14263 && user_name.find ('.') == std::string::npos);
14264 }
14265}
14266
14267/* symbol_name_matcher_ftype method for Ada. This only handles
14268 completion mode. */
14269
14270static bool
14271ada_symbol_name_matches (const char *symbol_search_name,
14272 const lookup_name_info &lookup_name,
a207cff2 14273 completion_match_result *comp_match_res)
74ccd7f5 14274{
b5ec771e
PA
14275 return lookup_name.ada ().matches (symbol_search_name,
14276 lookup_name.match_type (),
a207cff2 14277 comp_match_res);
b5ec771e
PA
14278}
14279
de63c46b
PA
14280/* A name matcher that matches the symbol name exactly, with
14281 strcmp. */
14282
14283static bool
14284literal_symbol_name_matcher (const char *symbol_search_name,
14285 const lookup_name_info &lookup_name,
14286 completion_match_result *comp_match_res)
14287{
14288 const std::string &name = lookup_name.name ();
14289
14290 int cmp = (lookup_name.completion_mode ()
14291 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14292 : strcmp (symbol_search_name, name.c_str ()));
14293 if (cmp == 0)
14294 {
14295 if (comp_match_res != NULL)
14296 comp_match_res->set_match (symbol_search_name);
14297 return true;
14298 }
14299 else
14300 return false;
14301}
14302
b5ec771e
PA
14303/* Implement the "la_get_symbol_name_matcher" language_defn method for
14304 Ada. */
14305
14306static symbol_name_matcher_ftype *
14307ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14308{
de63c46b
PA
14309 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14310 return literal_symbol_name_matcher;
14311
b5ec771e
PA
14312 if (lookup_name.completion_mode ())
14313 return ada_symbol_name_matches;
74ccd7f5 14314 else
b5ec771e
PA
14315 {
14316 if (lookup_name.ada ().wild_match_p ())
14317 return do_wild_match;
14318 else
14319 return do_full_match;
14320 }
74ccd7f5
JB
14321}
14322
a5ee536b
JB
14323/* Implement the "la_read_var_value" language_defn method for Ada. */
14324
14325static struct value *
63e43d3a
PMR
14326ada_read_var_value (struct symbol *var, const struct block *var_block,
14327 struct frame_info *frame)
a5ee536b 14328{
3977b71f 14329 const struct block *frame_block = NULL;
a5ee536b
JB
14330 struct symbol *renaming_sym = NULL;
14331
14332 /* The only case where default_read_var_value is not sufficient
14333 is when VAR is a renaming... */
14334 if (frame)
14335 frame_block = get_frame_block (frame, NULL);
14336 if (frame_block)
14337 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14338 if (renaming_sym != NULL)
14339 return ada_read_renaming_var_value (renaming_sym, frame_block);
14340
14341 /* This is a typical case where we expect the default_read_var_value
14342 function to work. */
63e43d3a 14343 return default_read_var_value (var, var_block, frame);
a5ee536b
JB
14344}
14345
56618e20
TT
14346static const char *ada_extensions[] =
14347{
14348 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14349};
14350
47e77640 14351extern const struct language_defn ada_language_defn = {
6c038f32 14352 "ada", /* Language name */
6abde28f 14353 "Ada",
6c038f32 14354 language_ada,
6c038f32 14355 range_check_off,
6c038f32
PH
14356 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14357 that's not quite what this means. */
6c038f32 14358 array_row_major,
9a044a89 14359 macro_expansion_no,
56618e20 14360 ada_extensions,
6c038f32
PH
14361 &ada_exp_descriptor,
14362 parse,
6c038f32
PH
14363 resolve,
14364 ada_printchar, /* Print a character constant */
14365 ada_printstr, /* Function to print string constant */
14366 emit_char, /* Function to print single char (not used) */
6c038f32 14367 ada_print_type, /* Print a type using appropriate syntax */
be942545 14368 ada_print_typedef, /* Print a typedef using appropriate syntax */
6c038f32
PH
14369 ada_val_print, /* Print a value using appropriate syntax */
14370 ada_value_print, /* Print a top-level value */
a5ee536b 14371 ada_read_var_value, /* la_read_var_value */
6c038f32 14372 NULL, /* Language specific skip_trampoline */
2b2d9e11 14373 NULL, /* name_of_this */
59cc4834 14374 true, /* la_store_sym_names_in_linkage_form_p */
6c038f32
PH
14375 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14376 basic_lookup_transparent_type, /* lookup_transparent_type */
14377 ada_la_decode, /* Language specific symbol demangler */
8b302db8 14378 ada_sniff_from_mangled_name,
0963b4bd
MS
14379 NULL, /* Language specific
14380 class_name_from_physname */
6c038f32
PH
14381 ada_op_print_tab, /* expression operators for printing */
14382 0, /* c-style arrays */
14383 1, /* String lower bound */
6c038f32 14384 ada_get_gdb_completer_word_break_characters,
eb3ff9a5 14385 ada_collect_symbol_completion_matches,
72d5681a 14386 ada_language_arch_info,
e79af960 14387 ada_print_array_index,
41f1b697 14388 default_pass_by_reference,
ae6a3a4c 14389 c_get_string,
43cc5389 14390 c_watch_location_expression,
b5ec771e 14391 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
f8eba3c6 14392 ada_iterate_over_symbols,
5ffa0793 14393 default_search_name_hash,
a53b64ea 14394 &ada_varobj_ops,
bb2ec1b3
TT
14395 NULL,
14396 NULL,
6c038f32
PH
14397 LANG_MAGIC
14398};
14399
5bf03f13
JB
14400/* Command-list for the "set/show ada" prefix command. */
14401static struct cmd_list_element *set_ada_list;
14402static struct cmd_list_element *show_ada_list;
14403
14404/* Implement the "set ada" prefix command. */
14405
14406static void
981a3fb3 14407set_ada_command (const char *arg, int from_tty)
5bf03f13
JB
14408{
14409 printf_unfiltered (_(\
14410"\"set ada\" must be followed by the name of a setting.\n"));
635c7e8a 14411 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
5bf03f13
JB
14412}
14413
14414/* Implement the "show ada" prefix command. */
14415
14416static void
981a3fb3 14417show_ada_command (const char *args, int from_tty)
5bf03f13
JB
14418{
14419 cmd_show_list (show_ada_list, from_tty, "");
14420}
14421
2060206e
PA
14422static void
14423initialize_ada_catchpoint_ops (void)
14424{
14425 struct breakpoint_ops *ops;
14426
14427 initialize_breakpoint_ops ();
14428
14429 ops = &catch_exception_breakpoint_ops;
14430 *ops = bkpt_breakpoint_ops;
2060206e
PA
14431 ops->allocate_location = allocate_location_catch_exception;
14432 ops->re_set = re_set_catch_exception;
14433 ops->check_status = check_status_catch_exception;
14434 ops->print_it = print_it_catch_exception;
14435 ops->print_one = print_one_catch_exception;
14436 ops->print_mention = print_mention_catch_exception;
14437 ops->print_recreate = print_recreate_catch_exception;
14438
14439 ops = &catch_exception_unhandled_breakpoint_ops;
14440 *ops = bkpt_breakpoint_ops;
2060206e
PA
14441 ops->allocate_location = allocate_location_catch_exception_unhandled;
14442 ops->re_set = re_set_catch_exception_unhandled;
14443 ops->check_status = check_status_catch_exception_unhandled;
14444 ops->print_it = print_it_catch_exception_unhandled;
14445 ops->print_one = print_one_catch_exception_unhandled;
14446 ops->print_mention = print_mention_catch_exception_unhandled;
14447 ops->print_recreate = print_recreate_catch_exception_unhandled;
14448
14449 ops = &catch_assert_breakpoint_ops;
14450 *ops = bkpt_breakpoint_ops;
2060206e
PA
14451 ops->allocate_location = allocate_location_catch_assert;
14452 ops->re_set = re_set_catch_assert;
14453 ops->check_status = check_status_catch_assert;
14454 ops->print_it = print_it_catch_assert;
14455 ops->print_one = print_one_catch_assert;
14456 ops->print_mention = print_mention_catch_assert;
14457 ops->print_recreate = print_recreate_catch_assert;
9f757bf7
XR
14458
14459 ops = &catch_handlers_breakpoint_ops;
14460 *ops = bkpt_breakpoint_ops;
14461 ops->allocate_location = allocate_location_catch_handlers;
14462 ops->re_set = re_set_catch_handlers;
14463 ops->check_status = check_status_catch_handlers;
14464 ops->print_it = print_it_catch_handlers;
14465 ops->print_one = print_one_catch_handlers;
14466 ops->print_mention = print_mention_catch_handlers;
14467 ops->print_recreate = print_recreate_catch_handlers;
2060206e
PA
14468}
14469
3d9434b5
JB
14470/* This module's 'new_objfile' observer. */
14471
14472static void
14473ada_new_objfile_observer (struct objfile *objfile)
14474{
14475 ada_clear_symbol_cache ();
14476}
14477
14478/* This module's 'free_objfile' observer. */
14479
14480static void
14481ada_free_objfile_observer (struct objfile *objfile)
14482{
14483 ada_clear_symbol_cache ();
14484}
14485
d2e4a39e 14486void
6c038f32 14487_initialize_ada_language (void)
14f9c5c9 14488{
2060206e
PA
14489 initialize_ada_catchpoint_ops ();
14490
5bf03f13
JB
14491 add_prefix_cmd ("ada", no_class, set_ada_command,
14492 _("Prefix command for changing Ada-specfic settings"),
14493 &set_ada_list, "set ada ", 0, &setlist);
14494
14495 add_prefix_cmd ("ada", no_class, show_ada_command,
14496 _("Generic command for showing Ada-specific settings."),
14497 &show_ada_list, "show ada ", 0, &showlist);
14498
14499 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14500 &trust_pad_over_xvs, _("\
14501Enable or disable an optimization trusting PAD types over XVS types"), _("\
14502Show whether an optimization trusting PAD types over XVS types is activated"),
14503 _("\
14504This is related to the encoding used by the GNAT compiler. The debugger\n\
14505should normally trust the contents of PAD types, but certain older versions\n\
14506of GNAT have a bug that sometimes causes the information in the PAD type\n\
14507to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14508work around this bug. It is always safe to turn this option \"off\", but\n\
14509this incurs a slight performance penalty, so it is recommended to NOT change\n\
14510this option to \"off\" unless necessary."),
14511 NULL, NULL, &set_ada_list, &show_ada_list);
14512
d72413e6
PMR
14513 add_setshow_boolean_cmd ("print-signatures", class_vars,
14514 &print_signatures, _("\
14515Enable or disable the output of formal and return types for functions in the \
14516overloads selection menu"), _("\
14517Show whether the output of formal and return types for functions in the \
14518overloads selection menu is activated"),
14519 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14520
9ac4176b
PA
14521 add_catch_command ("exception", _("\
14522Catch Ada exceptions, when raised.\n\
14523With an argument, catch only exceptions with the given name."),
14524 catch_ada_exception_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
9f757bf7
XR
14528
14529 add_catch_command ("handlers", _("\
14530Catch Ada exceptions, when handled.\n\
14531With an argument, catch only exceptions with the given name."),
14532 catch_ada_handlers_command,
14533 NULL,
14534 CATCH_PERMANENT,
14535 CATCH_TEMPORARY);
9ac4176b
PA
14536 add_catch_command ("assert", _("\
14537Catch failed Ada assertions, when raised.\n\
14538With an argument, catch only exceptions with the given name."),
14539 catch_assert_command,
14540 NULL,
14541 CATCH_PERMANENT,
14542 CATCH_TEMPORARY);
14543
6c038f32 14544 varsize_limit = 65536;
3fcded8f
JB
14545 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14546 &varsize_limit, _("\
14547Set the maximum number of bytes allowed in a variable-size object."), _("\
14548Show the maximum number of bytes allowed in a variable-size object."), _("\
14549Attempts to access an object whose size is not a compile-time constant\n\
14550and exceeds this limit will cause an error."),
14551 NULL, NULL, &setlist, &showlist);
6c038f32 14552
778865d3
JB
14553 add_info ("exceptions", info_exceptions_command,
14554 _("\
14555List all Ada exception names.\n\
14556If a regular expression is passed as an argument, only those matching\n\
14557the regular expression are listed."));
14558
c6044dd1
JB
14559 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14560 _("Set Ada maintenance-related variables."),
14561 &maint_set_ada_cmdlist, "maintenance set ada ",
14562 0/*allow-unknown*/, &maintenance_set_cmdlist);
14563
14564 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14565 _("Show Ada maintenance-related variables"),
14566 &maint_show_ada_cmdlist, "maintenance show ada ",
14567 0/*allow-unknown*/, &maintenance_show_cmdlist);
14568
14569 add_setshow_boolean_cmd
14570 ("ignore-descriptive-types", class_maintenance,
14571 &ada_ignore_descriptive_types_p,
14572 _("Set whether descriptive types generated by GNAT should be ignored."),
14573 _("Show whether descriptive types generated by GNAT should be ignored."),
14574 _("\
14575When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14576DWARF attribute."),
14577 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14578
459a2e4c
TT
14579 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14580 NULL, xcalloc, xfree);
6b69afc4 14581
3d9434b5 14582 /* The ada-lang observers. */
76727919
TT
14583 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14584 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14585 gdb::observers::inferior_exit.attach (ada_inferior_exit);
ee01b665
JB
14586
14587 /* Setup various context-specific data. */
e802dbe0 14588 ada_inferior_data
8e260fc0 14589 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
ee01b665
JB
14590 ada_pspace_data_handle
14591 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14f9c5c9 14592}
This page took 2.485995 seconds and 4 git commands to generate.