windows-nat: Don't change current_event.dwThreadId in handle_output_debug_string()
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
32d0add0 3 Copyright (C) 1993-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
615967cb 21#include "doublest.h"
c906108c 22#include "frame.h"
d2427a71
RH
23#include "frame-unwind.h"
24#include "frame-base.h"
baa490c4 25#include "dwarf2-frame.h"
c906108c
SS
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
c5f0f3d0 34#include "linespec.h"
4e052eda 35#include "regcache.h"
615967cb 36#include "reggroups.h"
dc129d82 37#include "arch-utils.h"
4be87837 38#include "osabi.h"
fe898f56 39#include "block.h"
7d9b040b 40#include "infcall.h"
07ea644b 41#include "trad-frame.h"
dc129d82
JT
42
43#include "elf-bfd.h"
44
45#include "alpha-tdep.h"
46
3a48e6ff
JG
47/* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53/* Memory instruction format */
54#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56#define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59static const int lda_opcode = 0x08;
60static const int stq_opcode = 0x2d;
61
62/* Branch instruction format */
63#define BR_RA(insn) MEM_RA(insn)
64
46ad3598 65static const int br_opcode = 0x30;
3a48e6ff
JG
66static const int bne_opcode = 0x3d;
67
68/* Operate instruction format */
69#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71#define OPR_RA(insn) MEM_RA(insn)
72#define OPR_RC(insn) ((insn & 0x1f))
73#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75static const int subq_opcode = 0x10;
76static const int subq_function = 0x29;
77
c906108c 78\f
515921d7
JB
79/* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
0963b4bd 82 be used for a virtual register. That virtual register has
515921d7
JB
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
fa88f677 86static const char *
d93859e2 87alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 88{
5ab84872 89 static const char * const register_names[] =
636a6dfc
JT
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 99 "pc", "", "unique"
636a6dfc
JT
100 };
101
102 if (regno < 0)
5ab84872 103 return NULL;
e8d2d628 104 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
105 return NULL;
106 return register_names[regno];
636a6dfc 107}
d734c450 108
dc129d82 109static int
64a3914f 110alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 111{
4a1be8d2 112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
113}
114
dc129d82 115static int
64a3914f 116alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 117{
515921d7 118 return (regno == ALPHA_ZERO_REGNUM
64a3914f 119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
120}
121
dc129d82 122static struct type *
c483c494 123alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 124{
72667056 125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 126 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 127 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
b38b6be2 132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 133 return builtin_type (gdbarch)->builtin_double;
72667056 134
df4df182 135 return builtin_type (gdbarch)->builtin_int64;
0d056799 136}
f8453e34 137
615967cb
RH
138/* Is REGNUM a member of REGGROUP? */
139
140static int
141alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143{
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
148 return 0;
149
df4a182b
RH
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178}
179
c483c494
RH
180/* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184static void
e17a4113 185alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 186{
e17a4113
UW
187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
c483c494
RH
189 ULONGEST frac = (mem >> 0) & 0x7fffff;
190 ULONGEST sign = (mem >> 31) & 1;
191 ULONGEST exp_msb = (mem >> 30) & 1;
192 ULONGEST exp_low = (mem >> 23) & 0x7f;
193 ULONGEST exp, reg;
194
195 exp = (exp_msb << 10) | exp_low;
196 if (exp_msb)
197 {
198 if (exp_low == 0x7f)
199 exp = 0x7ff;
200 }
201 else
202 {
203 if (exp_low != 0x00)
204 exp |= 0x380;
205 }
206
207 reg = (sign << 63) | (exp << 52) | (frac << 29);
e17a4113 208 store_unsigned_integer (out, 8, byte_order, reg);
c483c494
RH
209}
210
211/* Similarly, this represents exactly the conversion performed by
212 the STS instruction. */
213
39efb398 214static void
e17a4113 215alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 216{
e17a4113 217 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
218 ULONGEST reg, mem;
219
e17a4113 220 reg = extract_unsigned_integer (in, 8, byte_order);
c483c494 221 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
e17a4113 222 store_unsigned_integer (out, 4, byte_order, mem);
c483c494
RH
223}
224
d2427a71
RH
225/* The alpha needs a conversion between register and memory format if the
226 register is a floating point register and memory format is float, as the
227 register format must be double or memory format is an integer with 4
228 bytes or less, as the representation of integers in floating point
0963b4bd 229 registers is different. */
d2427a71 230
c483c494 231static int
0963b4bd
MS
232alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
233 struct type *type)
14696584 234{
83acabca
DJ
235 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
236 && TYPE_LENGTH (type) != 8);
14696584
RH
237}
238
8dccd430 239static int
ff2e87ac 240alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
241 struct type *valtype, gdb_byte *out,
242 int *optimizedp, int *unavailablep)
5868c862 243{
8dccd430 244 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
245 gdb_byte in[MAX_REGISTER_SIZE];
246
8dccd430
PA
247 /* Convert to TYPE. */
248 if (!get_frame_register_bytes (frame, regnum, 0,
249 register_size (gdbarch, regnum),
250 in, optimizedp, unavailablep))
251 return 0;
252
253 if (TYPE_LENGTH (valtype) == 4)
d2427a71 254 {
8dccd430
PA
255 alpha_sts (gdbarch, out, in);
256 *optimizedp = *unavailablep = 0;
257 return 1;
d2427a71 258 }
8dccd430
PA
259
260 error (_("Cannot retrieve value from floating point register"));
d2427a71 261}
5868c862 262
d2427a71 263static void
ff2e87ac 264alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 265 struct type *valtype, const gdb_byte *in)
d2427a71 266{
2a1ce6ec
MK
267 gdb_byte out[MAX_REGISTER_SIZE];
268
c483c494 269 switch (TYPE_LENGTH (valtype))
d2427a71 270 {
c483c494 271 case 4:
e17a4113 272 alpha_lds (get_frame_arch (frame), out, in);
c483c494 273 break;
c483c494 274 default:
323e0a4a 275 error (_("Cannot store value in floating point register"));
d2427a71 276 }
ff2e87ac 277 put_frame_register (frame, regnum, out);
5868c862
JT
278}
279
d2427a71
RH
280\f
281/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
282 the stack. The register arguments are stored in ARG_REG_BUFFER, and
283 then moved into the register file; this simplifies the passing of a
284 large struct which extends from the registers to the stack, plus avoids
285 three ptrace invocations per word.
286
287 We don't bother tracking which register values should go in integer
288 regs or fp regs; we load the same values into both.
289
d2427a71
RH
290 If the called function is returning a structure, the address of the
291 structure to be returned is passed as a hidden first argument. */
c906108c 292
d2427a71 293static CORE_ADDR
7d9b040b 294alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
295 struct regcache *regcache, CORE_ADDR bp_addr,
296 int nargs, struct value **args, CORE_ADDR sp,
297 int struct_return, CORE_ADDR struct_addr)
c906108c 298{
e17a4113 299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
300 int i;
301 int accumulate_size = struct_return ? 8 : 0;
d2427a71 302 struct alpha_arg
c906108c 303 {
f42a0a33 304 const gdb_byte *contents;
d2427a71
RH
305 int len;
306 int offset;
307 };
c88e30c0
RH
308 struct alpha_arg *alpha_args
309 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 310 struct alpha_arg *m_arg;
2a1ce6ec 311 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 312 int required_arg_regs;
7d9b040b 313 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 314
c88e30c0
RH
315 /* The ABI places the address of the called function in T12. */
316 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
317
318 /* Set the return address register to point to the entry point
319 of the program, where a breakpoint lies in wait. */
320 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
321
322 /* Lay out the arguments in memory. */
d2427a71
RH
323 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
324 {
325 struct value *arg = args[i];
4991999e 326 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 327
d2427a71
RH
328 /* Cast argument to long if necessary as the compiler does it too. */
329 switch (TYPE_CODE (arg_type))
c906108c 330 {
d2427a71
RH
331 case TYPE_CODE_INT:
332 case TYPE_CODE_BOOL:
333 case TYPE_CODE_CHAR:
334 case TYPE_CODE_RANGE:
335 case TYPE_CODE_ENUM:
0ede8eca 336 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 337 {
0ede8eca
RH
338 /* 32-bit values must be sign-extended to 64 bits
339 even if the base data type is unsigned. */
df4df182 340 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
341 arg = value_cast (arg_type, arg);
342 }
343 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
344 {
df4df182 345 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
346 arg = value_cast (arg_type, arg);
347 }
348 break;
7b5e1cb3 349
c88e30c0
RH
350 case TYPE_CODE_FLT:
351 /* "float" arguments loaded in registers must be passed in
352 register format, aka "double". */
353 if (accumulate_size < sizeof (arg_reg_buffer)
354 && TYPE_LENGTH (arg_type) == 4)
355 {
27067745 356 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
357 arg = value_cast (arg_type, arg);
358 }
359 /* Tru64 5.1 has a 128-bit long double, and passes this by
360 invisible reference. No one else uses this data type. */
361 else if (TYPE_LENGTH (arg_type) == 16)
362 {
363 /* Allocate aligned storage. */
364 sp = (sp & -16) - 16;
365
366 /* Write the real data into the stack. */
0fd88904 367 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
368
369 /* Construct the indirection. */
370 arg_type = lookup_pointer_type (arg_type);
371 arg = value_from_pointer (arg_type, sp);
372 }
373 break;
7b5e1cb3
RH
374
375 case TYPE_CODE_COMPLEX:
376 /* ??? The ABI says that complex values are passed as two
377 separate scalar values. This distinction only matters
378 for complex float. However, GCC does not implement this. */
379
380 /* Tru64 5.1 has a 128-bit long double, and passes this by
381 invisible reference. */
382 if (TYPE_LENGTH (arg_type) == 32)
383 {
384 /* Allocate aligned storage. */
385 sp = (sp & -16) - 16;
386
387 /* Write the real data into the stack. */
0fd88904 388 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
389
390 /* Construct the indirection. */
391 arg_type = lookup_pointer_type (arg_type);
392 arg = value_from_pointer (arg_type, sp);
393 }
394 break;
395
d2427a71
RH
396 default:
397 break;
c906108c 398 }
d2427a71
RH
399 m_arg->len = TYPE_LENGTH (arg_type);
400 m_arg->offset = accumulate_size;
401 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 402 m_arg->contents = value_contents (arg);
c906108c
SS
403 }
404
d2427a71
RH
405 /* Determine required argument register loads, loading an argument register
406 is expensive as it uses three ptrace calls. */
407 required_arg_regs = accumulate_size / 8;
408 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
409 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 410
d2427a71 411 /* Make room for the arguments on the stack. */
c88e30c0
RH
412 if (accumulate_size < sizeof(arg_reg_buffer))
413 accumulate_size = 0;
414 else
415 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 416 sp -= accumulate_size;
c906108c 417
c88e30c0 418 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 419 sp &= ~15;
c906108c 420
d2427a71
RH
421 /* `Push' arguments on the stack. */
422 for (i = nargs; m_arg--, --i >= 0;)
c906108c 423 {
f42a0a33 424 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
425 int offset = m_arg->offset;
426 int len = m_arg->len;
427
428 /* Copy the bytes destined for registers into arg_reg_buffer. */
429 if (offset < sizeof(arg_reg_buffer))
430 {
431 if (offset + len <= sizeof(arg_reg_buffer))
432 {
433 memcpy (arg_reg_buffer + offset, contents, len);
434 continue;
435 }
436 else
437 {
438 int tlen = sizeof(arg_reg_buffer) - offset;
439 memcpy (arg_reg_buffer + offset, contents, tlen);
440 offset += tlen;
441 contents += tlen;
442 len -= tlen;
443 }
444 }
445
446 /* Everything else goes to the stack. */
447 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 448 }
c88e30c0 449 if (struct_return)
e17a4113
UW
450 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
451 byte_order, struct_addr);
c906108c 452
d2427a71
RH
453 /* Load the argument registers. */
454 for (i = 0; i < required_arg_regs; i++)
455 {
09cc52fd
RH
456 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
457 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
458 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
459 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 460 }
c906108c 461
09cc52fd
RH
462 /* Finally, update the stack pointer. */
463 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
464
c88e30c0 465 return sp;
c906108c
SS
466}
467
5ec2bb99
RH
468/* Extract from REGCACHE the value about to be returned from a function
469 and copy it into VALBUF. */
d2427a71 470
dc129d82 471static void
5ec2bb99 472alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 473 gdb_byte *valbuf)
140f9984 474{
e17a4113
UW
475 struct gdbarch *gdbarch = get_regcache_arch (regcache);
476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 477 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
478 ULONGEST l;
479
480 switch (TYPE_CODE (valtype))
481 {
482 case TYPE_CODE_FLT:
744a8059 483 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
484 {
485 case 4:
486 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 487 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
488 break;
489
490 case 8:
491 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
492 break;
493
24064b5c
RH
494 case 16:
495 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
496 read_memory (l, valbuf, 16);
497 break;
498
5ec2bb99 499 default:
0963b4bd
MS
500 internal_error (__FILE__, __LINE__,
501 _("unknown floating point width"));
5ec2bb99
RH
502 }
503 break;
504
7b5e1cb3 505 case TYPE_CODE_COMPLEX:
744a8059 506 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
507 {
508 case 8:
509 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
510 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
511 break;
512
513 case 16:
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 515 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
516 break;
517
518 case 32:
a9933661 519 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
520 read_memory (l, valbuf, 32);
521 break;
522
523 default:
0963b4bd
MS
524 internal_error (__FILE__, __LINE__,
525 _("unknown floating point width"));
7b5e1cb3
RH
526 }
527 break;
528
5ec2bb99
RH
529 default:
530 /* Assume everything else degenerates to an integer. */
531 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 532 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
533 break;
534 }
140f9984
JT
535}
536
5ec2bb99
RH
537/* Insert the given value into REGCACHE as if it was being
538 returned by a function. */
0d056799 539
d2427a71 540static void
5ec2bb99 541alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 542 const gdb_byte *valbuf)
c906108c 543{
df4df182 544 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2a1ce6ec 545 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 546 ULONGEST l;
d2427a71 547
5ec2bb99 548 switch (TYPE_CODE (valtype))
c906108c 549 {
5ec2bb99 550 case TYPE_CODE_FLT:
744a8059 551 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
552 {
553 case 4:
e17a4113 554 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
556 break;
5ec2bb99
RH
557
558 case 8:
559 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
560 break;
561
24064b5c
RH
562 case 16:
563 /* FIXME: 128-bit long doubles are returned like structures:
564 by writing into indirect storage provided by the caller
565 as the first argument. */
323e0a4a 566 error (_("Cannot set a 128-bit long double return value."));
24064b5c 567
5ec2bb99 568 default:
0963b4bd
MS
569 internal_error (__FILE__, __LINE__,
570 _("unknown floating point width"));
5ec2bb99
RH
571 }
572 break;
d2427a71 573
7b5e1cb3 574 case TYPE_CODE_COMPLEX:
744a8059 575 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
576 {
577 case 8:
578 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
579 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
580 break;
581
582 case 16:
583 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
585 break;
586
587 case 32:
588 /* FIXME: 128-bit long doubles are returned like structures:
589 by writing into indirect storage provided by the caller
590 as the first argument. */
323e0a4a 591 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
592
593 default:
0963b4bd
MS
594 internal_error (__FILE__, __LINE__,
595 _("unknown floating point width"));
7b5e1cb3
RH
596 }
597 break;
598
5ec2bb99
RH
599 default:
600 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
601 /* 32-bit values must be sign-extended to 64 bits
602 even if the base data type is unsigned. */
744a8059 603 if (TYPE_LENGTH (valtype) == 4)
df4df182 604 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
605 l = unpack_long (valtype, valbuf);
606 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
607 break;
608 }
c906108c
SS
609}
610
9823e921 611static enum return_value_convention
6a3a010b 612alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
613 struct type *type, struct regcache *regcache,
614 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
615{
616 enum type_code code = TYPE_CODE (type);
617
618 if ((code == TYPE_CODE_STRUCT
619 || code == TYPE_CODE_UNION
620 || code == TYPE_CODE_ARRAY)
621 && gdbarch_tdep (gdbarch)->return_in_memory (type))
622 {
623 if (readbuf)
624 {
625 ULONGEST addr;
626 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
627 read_memory (addr, readbuf, TYPE_LENGTH (type));
628 }
629
630 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
631 }
632
633 if (readbuf)
634 alpha_extract_return_value (type, regcache, readbuf);
635 if (writebuf)
636 alpha_store_return_value (type, regcache, writebuf);
637
638 return RETURN_VALUE_REGISTER_CONVENTION;
639}
640
641static int
642alpha_return_in_memory_always (struct type *type)
643{
644 return 1;
645}
d2427a71 646\f
2a1ce6ec 647static const gdb_byte *
67d57894 648alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 649{
2a1ce6ec 650 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 651
2a1ce6ec
MK
652 *len = sizeof(break_insn);
653 return break_insn;
d2427a71 654}
c906108c 655
d2427a71
RH
656\f
657/* This returns the PC of the first insn after the prologue.
658 If we can't find the prologue, then return 0. */
c906108c 659
d2427a71
RH
660CORE_ADDR
661alpha_after_prologue (CORE_ADDR pc)
c906108c 662{
d2427a71
RH
663 struct symtab_and_line sal;
664 CORE_ADDR func_addr, func_end;
c906108c 665
d2427a71 666 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 667 return 0;
c906108c 668
d2427a71
RH
669 sal = find_pc_line (func_addr, 0);
670 if (sal.end < func_end)
671 return sal.end;
c5aa993b 672
d2427a71
RH
673 /* The line after the prologue is after the end of the function. In this
674 case, tell the caller to find the prologue the hard way. */
675 return 0;
c906108c
SS
676}
677
d2427a71
RH
678/* Read an instruction from memory at PC, looking through breakpoints. */
679
680unsigned int
e17a4113 681alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 682{
e17a4113 683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 684 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 685 int status;
c5aa993b 686
8defab1a 687 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
688 if (status)
689 memory_error (status, pc);
e17a4113 690 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 691}
c5aa993b 692
d2427a71
RH
693/* To skip prologues, I use this predicate. Returns either PC itself
694 if the code at PC does not look like a function prologue; otherwise
695 returns an address that (if we're lucky) follows the prologue. If
696 LENIENT, then we must skip everything which is involved in setting
697 up the frame (it's OK to skip more, just so long as we don't skip
698 anything which might clobber the registers which are being saved. */
c906108c 699
d2427a71 700static CORE_ADDR
6093d2eb 701alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
702{
703 unsigned long inst;
704 int offset;
705 CORE_ADDR post_prologue_pc;
e8d2d628 706 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 707
d2427a71
RH
708 /* Silently return the unaltered pc upon memory errors.
709 This could happen on OSF/1 if decode_line_1 tries to skip the
710 prologue for quickstarted shared library functions when the
711 shared library is not yet mapped in.
712 Reading target memory is slow over serial lines, so we perform
713 this check only if the target has shared libraries (which all
714 Alpha targets do). */
e8d2d628 715 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 716 return pc;
c906108c 717
d2427a71
RH
718 /* See if we can determine the end of the prologue via the symbol table.
719 If so, then return either PC, or the PC after the prologue, whichever
720 is greater. */
c906108c 721
d2427a71
RH
722 post_prologue_pc = alpha_after_prologue (pc);
723 if (post_prologue_pc != 0)
724 return max (pc, post_prologue_pc);
c906108c 725
d2427a71
RH
726 /* Can't determine prologue from the symbol table, need to examine
727 instructions. */
dc1b0db2 728
0963b4bd 729 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
730 instruction and the instructions that save registers on the stack
731 or in the gcc frame. */
e8d2d628 732 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 733 {
e17a4113 734 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 735
d2427a71
RH
736 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
739 continue;
740 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
741 continue;
742 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
743 continue;
c906108c 744
d2427a71
RH
745 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
746 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
747 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
748 continue;
c906108c 749
d2427a71
RH
750 if (inst == 0x47de040f) /* bis sp,sp,fp */
751 continue;
752 if (inst == 0x47fe040f) /* bis zero,sp,fp */
753 continue;
c906108c 754
d2427a71 755 break;
c906108c 756 }
d2427a71
RH
757 return pc + offset;
758}
c906108c 759
46ad3598
UW
760\f
761static const int ldl_l_opcode = 0x2a;
762static const int ldq_l_opcode = 0x2b;
763static const int stl_c_opcode = 0x2e;
764static const int stq_c_opcode = 0x2f;
765
766/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
767 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
768 is found, attempt to step through it. A breakpoint is placed at the end of
769 the sequence. */
770
693be288 771static int
46ad3598
UW
772alpha_deal_with_atomic_sequence (struct frame_info *frame)
773{
774 struct gdbarch *gdbarch = get_frame_arch (frame);
775 struct address_space *aspace = get_frame_address_space (frame);
776 CORE_ADDR pc = get_frame_pc (frame);
777 CORE_ADDR breaks[2] = {-1, -1};
778 CORE_ADDR loc = pc;
779 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
780 unsigned int insn = alpha_read_insn (gdbarch, loc);
781 int insn_count;
782 int index;
783 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
784 const int atomic_sequence_length = 16; /* Instruction sequence length. */
785 int bc_insn_count = 0; /* Conditional branch instruction count. */
786
787 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
788 if (INSN_OPCODE (insn) != ldl_l_opcode
789 && INSN_OPCODE (insn) != ldq_l_opcode)
790 return 0;
791
792 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
793 instructions. */
794 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
795 {
796 loc += ALPHA_INSN_SIZE;
797 insn = alpha_read_insn (gdbarch, loc);
798
799 /* Assume that there is at most one branch in the atomic
800 sequence. If a branch is found, put a breakpoint in
801 its destination address. */
802 if (INSN_OPCODE (insn) >= br_opcode)
803 {
804 int immediate = (insn & 0x001fffff) << 2;
805
806 immediate = (immediate ^ 0x400000) - 0x400000;
807
808 if (bc_insn_count >= 1)
809 return 0; /* More than one branch found, fallback
810 to the standard single-step code. */
811
812 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
813
814 bc_insn_count++;
815 last_breakpoint++;
816 }
817
818 if (INSN_OPCODE (insn) == stl_c_opcode
819 || INSN_OPCODE (insn) == stq_c_opcode)
820 break;
821 }
822
823 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
824 if (INSN_OPCODE (insn) != stl_c_opcode
825 && INSN_OPCODE (insn) != stq_c_opcode)
826 return 0;
827
828 closing_insn = loc;
829 loc += ALPHA_INSN_SIZE;
830
831 /* Insert a breakpoint right after the end of the atomic sequence. */
832 breaks[0] = loc;
833
834 /* Check for duplicated breakpoints. Check also for a breakpoint
835 placed (branch instruction's destination) anywhere in sequence. */
836 if (last_breakpoint
837 && (breaks[1] == breaks[0]
838 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
839 last_breakpoint = 0;
840
841 /* Effectively inserts the breakpoints. */
842 for (index = 0; index <= last_breakpoint; index++)
843 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
844
845 return 1;
846}
847
d2427a71
RH
848\f
849/* Figure out where the longjmp will land.
850 We expect the first arg to be a pointer to the jmp_buf structure from
851 which we extract the PC (JB_PC) that we will land at. The PC is copied
852 into the "pc". This routine returns true on success. */
c906108c
SS
853
854static int
60ade65d 855alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 856{
e17a4113
UW
857 struct gdbarch *gdbarch = get_frame_arch (frame);
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 860 CORE_ADDR jb_addr;
2a1ce6ec 861 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 862
60ade65d 863 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 864
d2427a71
RH
865 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
866 raw_buffer, tdep->jb_elt_size))
c906108c 867 return 0;
d2427a71 868
e17a4113 869 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 870 return 1;
c906108c
SS
871}
872
d2427a71
RH
873\f
874/* Frame unwinder for signal trampolines. We use alpha tdep bits that
875 describe the location and shape of the sigcontext structure. After
876 that, all registers are in memory, so it's easy. */
877/* ??? Shouldn't we be able to do this generically, rather than with
878 OSABI data specific to Alpha? */
879
880struct alpha_sigtramp_unwind_cache
c906108c 881{
d2427a71
RH
882 CORE_ADDR sigcontext_addr;
883};
c906108c 884
d2427a71 885static struct alpha_sigtramp_unwind_cache *
6834c9bb 886alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
887 void **this_prologue_cache)
888{
889 struct alpha_sigtramp_unwind_cache *info;
890 struct gdbarch_tdep *tdep;
c906108c 891
d2427a71
RH
892 if (*this_prologue_cache)
893 return *this_prologue_cache;
c906108c 894
d2427a71
RH
895 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
896 *this_prologue_cache = info;
c906108c 897
6834c9bb
JB
898 tdep = gdbarch_tdep (get_frame_arch (this_frame));
899 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 900
d2427a71 901 return info;
c906108c
SS
902}
903
138e7be5
MK
904/* Return the address of REGNUM in a sigtramp frame. Since this is
905 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 906
d2427a71 907static CORE_ADDR
be8626e0
MD
908alpha_sigtramp_register_address (struct gdbarch *gdbarch,
909 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 910{
be8626e0 911 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
912
913 if (regnum >= 0 && regnum < 32)
914 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
915 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
916 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
917 else if (regnum == ALPHA_PC_REGNUM)
918 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 919
d2427a71 920 return 0;
c906108c
SS
921}
922
d2427a71
RH
923/* Given a GDB frame, determine the address of the calling function's
924 frame. This will be used to create a new GDB frame struct. */
140f9984 925
dc129d82 926static void
6834c9bb 927alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
928 void **this_prologue_cache,
929 struct frame_id *this_id)
c906108c 930{
6834c9bb 931 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 933 struct alpha_sigtramp_unwind_cache *info
6834c9bb 934 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
935 CORE_ADDR stack_addr, code_addr;
936
937 /* If the OSABI couldn't locate the sigcontext, give up. */
938 if (info->sigcontext_addr == 0)
939 return;
940
941 /* If we have dynamic signal trampolines, find their start.
942 If we do not, then we must assume there is a symbol record
943 that can provide the start address. */
d2427a71 944 if (tdep->dynamic_sigtramp_offset)
c906108c 945 {
d2427a71 946 int offset;
6834c9bb 947 code_addr = get_frame_pc (this_frame);
e17a4113 948 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
949 if (offset >= 0)
950 code_addr -= offset;
c906108c 951 else
d2427a71 952 code_addr = 0;
c906108c 953 }
d2427a71 954 else
6834c9bb 955 code_addr = get_frame_func (this_frame);
c906108c 956
d2427a71 957 /* The stack address is trivially read from the sigcontext. */
be8626e0 958 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 959 ALPHA_SP_REGNUM);
6834c9bb 960 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 961 ALPHA_REGISTER_SIZE);
c906108c 962
d2427a71 963 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
964}
965
d2427a71 966/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 967
6834c9bb
JB
968static struct value *
969alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
970 void **this_prologue_cache, int regnum)
c906108c 971{
d2427a71 972 struct alpha_sigtramp_unwind_cache *info
6834c9bb 973 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 974 CORE_ADDR addr;
c906108c 975
d2427a71 976 if (info->sigcontext_addr != 0)
c906108c 977 {
d2427a71 978 /* All integer and fp registers are stored in memory. */
6834c9bb 979 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 980 info->sigcontext_addr, regnum);
d2427a71 981 if (addr != 0)
6834c9bb 982 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
983 }
984
d2427a71
RH
985 /* This extra register may actually be in the sigcontext, but our
986 current description of it in alpha_sigtramp_frame_unwind_cache
987 doesn't include it. Too bad. Fall back on whatever's in the
988 outer frame. */
6834c9bb 989 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 990}
c906108c 991
6834c9bb
JB
992static int
993alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
994 struct frame_info *this_frame,
995 void **this_prologue_cache)
d2427a71 996{
6834c9bb
JB
997 struct gdbarch *gdbarch = get_frame_arch (this_frame);
998 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 999 const char *name;
c906108c 1000
f2524b93
AC
1001 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1002 look at tramp-frame.h and other simplier per-architecture
1003 sigtramp unwinders. */
1004
1005 /* We shouldn't even bother to try if the OSABI didn't register a
1006 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1007 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1008 return 0;
ec7cc0e8 1009 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1010 return 0;
c906108c 1011
d2427a71
RH
1012 /* Otherwise we should be in a signal frame. */
1013 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1014 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1015 return 1;
c906108c 1016
6834c9bb 1017 return 0;
c906108c 1018}
6834c9bb
JB
1019
1020static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1021 SIGTRAMP_FRAME,
8fbca658 1022 default_frame_unwind_stop_reason,
6834c9bb
JB
1023 alpha_sigtramp_frame_this_id,
1024 alpha_sigtramp_frame_prev_register,
1025 NULL,
1026 alpha_sigtramp_frame_sniffer
1027};
1028
d2427a71 1029\f
c906108c 1030
d2427a71
RH
1031/* Heuristic_proc_start may hunt through the text section for a long
1032 time across a 2400 baud serial line. Allows the user to limit this
1033 search. */
44096aee 1034static int heuristic_fence_post = 0;
c906108c 1035
d2427a71
RH
1036/* Attempt to locate the start of the function containing PC. We assume that
1037 the previous function ends with an about_to_return insn. Not foolproof by
1038 any means, since gcc is happy to put the epilogue in the middle of a
1039 function. But we're guessing anyway... */
c906108c 1040
d2427a71 1041static CORE_ADDR
be8626e0 1042alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1043{
be8626e0 1044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1045 CORE_ADDR last_non_nop = pc;
1046 CORE_ADDR fence = pc - heuristic_fence_post;
1047 CORE_ADDR orig_pc = pc;
fbe586ae 1048 CORE_ADDR func;
d6b48e9c 1049 struct inferior *inf;
9e0b60a8 1050
d2427a71
RH
1051 if (pc == 0)
1052 return 0;
9e0b60a8 1053
fbe586ae
RH
1054 /* First see if we can find the start of the function from minimal
1055 symbol information. This can succeed with a binary that doesn't
1056 have debug info, but hasn't been stripped. */
1057 func = get_pc_function_start (pc);
1058 if (func)
1059 return func;
1060
44096aee 1061 if (heuristic_fence_post == -1
d2427a71
RH
1062 || fence < tdep->vm_min_address)
1063 fence = tdep->vm_min_address;
c906108c 1064
d2427a71
RH
1065 /* Search back for previous return; also stop at a 0, which might be
1066 seen for instance before the start of a code section. Don't include
1067 nops, since this usually indicates padding between functions. */
e8d2d628 1068 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1069 {
e17a4113 1070 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1071 switch (insn)
c906108c 1072 {
d2427a71
RH
1073 case 0: /* invalid insn */
1074 case 0x6bfa8001: /* ret $31,($26),1 */
1075 return last_non_nop;
1076
1077 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1078 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1079 break;
1080
1081 default:
1082 last_non_nop = pc;
1083 break;
c906108c 1084 }
d2427a71 1085 }
c906108c 1086
d6b48e9c
PA
1087 inf = current_inferior ();
1088
d2427a71
RH
1089 /* It's not clear to me why we reach this point when stopping quietly,
1090 but with this test, at least we don't print out warnings for every
1091 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1092 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1093 {
1094 static int blurb_printed = 0;
c906108c 1095
d2427a71 1096 if (fence == tdep->vm_min_address)
323e0a4a 1097 warning (_("Hit beginning of text section without finding \
5af949e3 1098enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1099 else
323e0a4a 1100 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1101enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1102
d2427a71
RH
1103 if (!blurb_printed)
1104 {
323e0a4a 1105 printf_filtered (_("\
d2427a71
RH
1106This warning occurs if you are debugging a function without any symbols\n\
1107(for example, in a stripped executable). In that case, you may wish to\n\
1108increase the size of the search with the `set heuristic-fence-post' command.\n\
1109\n\
1110Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1111(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1112 blurb_printed = 1;
1113 }
1114 }
c906108c 1115
d2427a71
RH
1116 return 0;
1117}
c906108c 1118
07ea644b
MD
1119/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1120 something about the traditional layout of alpha stack frames. */
1121
1122struct alpha_heuristic_unwind_cache
1123{
1124 CORE_ADDR vfp;
1125 CORE_ADDR start_pc;
1126 struct trad_frame_saved_reg *saved_regs;
1127 int return_reg;
1128};
1129
3a48e6ff
JG
1130/* If a probing loop sequence starts at PC, simulate it and compute
1131 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1132 FRAME_SIZE unchanged. */
1133
1134static void
1135alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1136 int *frame_size)
1137{
1138 CORE_ADDR cur_pc = *pc;
1139 int cur_frame_size = *frame_size;
1140 int nb_of_iterations, reg_index, reg_probe;
1141 unsigned int insn;
1142
1143 /* The following pattern is recognized as a probing loop:
1144
1145 lda REG_INDEX,NB_OF_ITERATIONS
1146 lda REG_PROBE,<immediate>(sp)
1147
1148 LOOP_START:
1149 stq zero,<immediate>(REG_PROBE)
1150 subq REG_INDEX,0x1,REG_INDEX
1151 lda REG_PROBE,<immediate>(REG_PROBE)
1152 bne REG_INDEX, LOOP_START
1153
1154 lda sp,<immediate>(REG_PROBE)
1155
1156 If anything different is found, the function returns without
1157 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1158 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1159
1160 /* lda REG_INDEX,NB_OF_ITERATIONS */
1161
1162 insn = alpha_read_insn (gdbarch, cur_pc);
1163 if (INSN_OPCODE (insn) != lda_opcode)
1164 return;
1165 reg_index = MEM_RA (insn);
1166 nb_of_iterations = MEM_DISP (insn);
1167
1168 /* lda REG_PROBE,<immediate>(sp) */
1169
1170 cur_pc += ALPHA_INSN_SIZE;
1171 insn = alpha_read_insn (gdbarch, cur_pc);
1172 if (INSN_OPCODE (insn) != lda_opcode
1173 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1174 return;
1175 reg_probe = MEM_RA (insn);
1176 cur_frame_size -= MEM_DISP (insn);
1177
1178 /* stq zero,<immediate>(REG_PROBE) */
1179
1180 cur_pc += ALPHA_INSN_SIZE;
1181 insn = alpha_read_insn (gdbarch, cur_pc);
1182 if (INSN_OPCODE (insn) != stq_opcode
1183 || MEM_RA (insn) != 0x1f
1184 || MEM_RB (insn) != reg_probe)
1185 return;
1186
1187 /* subq REG_INDEX,0x1,REG_INDEX */
1188
1189 cur_pc += ALPHA_INSN_SIZE;
1190 insn = alpha_read_insn (gdbarch, cur_pc);
1191 if (INSN_OPCODE (insn) != subq_opcode
1192 || !OPR_HAS_IMMEDIATE (insn)
1193 || OPR_FUNCTION (insn) != subq_function
1194 || OPR_LIT(insn) != 1
1195 || OPR_RA (insn) != reg_index
1196 || OPR_RC (insn) != reg_index)
1197 return;
1198
1199 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1200
1201 cur_pc += ALPHA_INSN_SIZE;
1202 insn = alpha_read_insn (gdbarch, cur_pc);
1203 if (INSN_OPCODE (insn) != lda_opcode
1204 || MEM_RA (insn) != reg_probe
1205 || MEM_RB (insn) != reg_probe)
1206 return;
1207 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1208
1209 /* bne REG_INDEX, LOOP_START */
1210
1211 cur_pc += ALPHA_INSN_SIZE;
1212 insn = alpha_read_insn (gdbarch, cur_pc);
1213 if (INSN_OPCODE (insn) != bne_opcode
1214 || MEM_RA (insn) != reg_index)
1215 return;
1216
1217 /* lda sp,<immediate>(REG_PROBE) */
1218
1219 cur_pc += ALPHA_INSN_SIZE;
1220 insn = alpha_read_insn (gdbarch, cur_pc);
1221 if (INSN_OPCODE (insn) != lda_opcode
1222 || MEM_RA (insn) != ALPHA_SP_REGNUM
1223 || MEM_RB (insn) != reg_probe)
1224 return;
1225 cur_frame_size -= MEM_DISP (insn);
1226
1227 *pc = cur_pc;
1228 *frame_size = cur_frame_size;
1229}
1230
fbe586ae 1231static struct alpha_heuristic_unwind_cache *
6834c9bb 1232alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1233 void **this_prologue_cache,
1234 CORE_ADDR start_pc)
1235{
6834c9bb 1236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1237 struct alpha_heuristic_unwind_cache *info;
1238 ULONGEST val;
1239 CORE_ADDR limit_pc, cur_pc;
1240 int frame_reg, frame_size, return_reg, reg;
c906108c 1241
d2427a71
RH
1242 if (*this_prologue_cache)
1243 return *this_prologue_cache;
c906108c 1244
d2427a71
RH
1245 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1246 *this_prologue_cache = info;
6834c9bb 1247 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1248
6834c9bb 1249 limit_pc = get_frame_pc (this_frame);
d2427a71 1250 if (start_pc == 0)
be8626e0 1251 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1252 info->start_pc = start_pc;
c906108c 1253
d2427a71
RH
1254 frame_reg = ALPHA_SP_REGNUM;
1255 frame_size = 0;
1256 return_reg = -1;
c906108c 1257
d2427a71
RH
1258 /* If we've identified a likely place to start, do code scanning. */
1259 if (start_pc != 0)
c5aa993b 1260 {
d2427a71
RH
1261 /* Limit the forward search to 50 instructions. */
1262 if (start_pc + 200 < limit_pc)
1263 limit_pc = start_pc + 200;
c5aa993b 1264
e8d2d628 1265 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1266 {
e17a4113 1267 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1268
d2427a71
RH
1269 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1270 {
1271 if (word & 0x8000)
1272 {
1273 /* Consider only the first stack allocation instruction
0963b4bd 1274 to contain the static size of the frame. */
d2427a71
RH
1275 if (frame_size == 0)
1276 frame_size = (-word) & 0xffff;
1277 }
1278 else
1279 {
1280 /* Exit loop if a positive stack adjustment is found, which
1281 usually means that the stack cleanup code in the function
1282 epilogue is reached. */
1283 break;
1284 }
1285 }
1286 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1287 {
1288 reg = (word & 0x03e00000) >> 21;
1289
d15bfd3a
AC
1290 /* Ignore this instruction if we have already encountered
1291 an instruction saving the same register earlier in the
1292 function code. The current instruction does not tell
1293 us where the original value upon function entry is saved.
1294 All it says is that the function we are scanning reused
1295 that register for some computation of its own, and is now
1296 saving its result. */
07ea644b 1297 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1298 continue;
1299
d2427a71
RH
1300 if (reg == 31)
1301 continue;
1302
1303 /* Do not compute the address where the register was saved yet,
1304 because we don't know yet if the offset will need to be
1305 relative to $sp or $fp (we can not compute the address
1306 relative to $sp if $sp is updated during the execution of
1307 the current subroutine, for instance when doing some alloca).
1308 So just store the offset for the moment, and compute the
1309 address later when we know whether this frame has a frame
1310 pointer or not. */
1311 /* Hack: temporarily add one, so that the offset is non-zero
1312 and we can tell which registers have save offsets below. */
07ea644b 1313 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1314
1315 /* Starting with OSF/1-3.2C, the system libraries are shipped
1316 without local symbols, but they still contain procedure
1317 descriptors without a symbol reference. GDB is currently
1318 unable to find these procedure descriptors and uses
1319 heuristic_proc_desc instead.
1320 As some low level compiler support routines (__div*, __add*)
1321 use a non-standard return address register, we have to
1322 add some heuristics to determine the return address register,
1323 or stepping over these routines will fail.
1324 Usually the return address register is the first register
1325 saved on the stack, but assembler optimization might
1326 rearrange the register saves.
1327 So we recognize only a few registers (t7, t9, ra) within
1328 the procedure prologue as valid return address registers.
1329 If we encounter a return instruction, we extract the
7a9dd1b2 1330 return address register from it.
d2427a71
RH
1331
1332 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1333 e.g. via the minimal symbol table, might obviate this
1334 hack. */
d2427a71
RH
1335 if (return_reg == -1
1336 && cur_pc < (start_pc + 80)
1337 && (reg == ALPHA_T7_REGNUM
1338 || reg == ALPHA_T9_REGNUM
1339 || reg == ALPHA_RA_REGNUM))
1340 return_reg = reg;
1341 }
1342 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1343 return_reg = (word >> 16) & 0x1f;
1344 else if (word == 0x47de040f) /* bis sp,sp,fp */
1345 frame_reg = ALPHA_GCC_FP_REGNUM;
1346 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1347 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1348
1349 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1350 }
c5aa993b 1351
d2427a71
RH
1352 /* If we haven't found a valid return address register yet, keep
1353 searching in the procedure prologue. */
1354 if (return_reg == -1)
1355 {
1356 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1357 {
e17a4113 1358 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1359
d2427a71
RH
1360 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1361 {
1362 reg = (word & 0x03e00000) >> 21;
1363 if (reg == ALPHA_T7_REGNUM
1364 || reg == ALPHA_T9_REGNUM
1365 || reg == ALPHA_RA_REGNUM)
1366 {
1367 return_reg = reg;
1368 break;
1369 }
1370 }
1371 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1372 {
1373 return_reg = (word >> 16) & 0x1f;
1374 break;
1375 }
85b32d22 1376
e8d2d628 1377 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1378 }
1379 }
c906108c 1380 }
c906108c 1381
d2427a71
RH
1382 /* Failing that, do default to the customary RA. */
1383 if (return_reg == -1)
1384 return_reg = ALPHA_RA_REGNUM;
1385 info->return_reg = return_reg;
f8453e34 1386
6834c9bb 1387 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1388 info->vfp = val + frame_size;
c906108c 1389
d2427a71
RH
1390 /* Convert offsets to absolute addresses. See above about adding
1391 one to the offsets to make all detected offsets non-zero. */
1392 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1393 if (trad_frame_addr_p(info->saved_regs, reg))
1394 info->saved_regs[reg].addr += val - 1;
d2427a71 1395
bfd66dd9
JB
1396 /* The stack pointer of the previous frame is computed by popping
1397 the current stack frame. */
1398 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1399 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1400
d2427a71 1401 return info;
c906108c 1402}
c906108c 1403
d2427a71
RH
1404/* Given a GDB frame, determine the address of the calling function's
1405 frame. This will be used to create a new GDB frame struct. */
1406
fbe586ae 1407static void
6834c9bb
JB
1408alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1409 void **this_prologue_cache,
1410 struct frame_id *this_id)
c906108c 1411{
d2427a71 1412 struct alpha_heuristic_unwind_cache *info
6834c9bb 1413 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1414
d2427a71 1415 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1416}
1417
d2427a71
RH
1418/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1419
6834c9bb
JB
1420static struct value *
1421alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1422 void **this_prologue_cache, int regnum)
c906108c 1423{
d2427a71 1424 struct alpha_heuristic_unwind_cache *info
6834c9bb 1425 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1426
1427 /* The PC of the previous frame is stored in the link register of
1428 the current frame. Frob regnum so that we pull the value from
1429 the correct place. */
1430 if (regnum == ALPHA_PC_REGNUM)
1431 regnum = info->return_reg;
1432
6834c9bb 1433 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1434}
1435
d2427a71
RH
1436static const struct frame_unwind alpha_heuristic_frame_unwind = {
1437 NORMAL_FRAME,
8fbca658 1438 default_frame_unwind_stop_reason,
d2427a71 1439 alpha_heuristic_frame_this_id,
6834c9bb
JB
1440 alpha_heuristic_frame_prev_register,
1441 NULL,
1442 default_frame_sniffer
d2427a71 1443};
c906108c 1444
fbe586ae 1445static CORE_ADDR
6834c9bb 1446alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1447 void **this_prologue_cache)
c906108c 1448{
d2427a71 1449 struct alpha_heuristic_unwind_cache *info
6834c9bb 1450 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1451
d2427a71 1452 return info->vfp;
c906108c
SS
1453}
1454
d2427a71
RH
1455static const struct frame_base alpha_heuristic_frame_base = {
1456 &alpha_heuristic_frame_unwind,
1457 alpha_heuristic_frame_base_address,
1458 alpha_heuristic_frame_base_address,
1459 alpha_heuristic_frame_base_address
1460};
1461
c906108c 1462/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1463 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1464
1465static void
fba45db2 1466reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1467{
1468 reinit_frame_cache ();
1469}
1470
d2427a71 1471\f
d2427a71
RH
1472/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1473 dummy frame. The frame ID's base needs to match the TOS value
1474 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1475 breakpoint. */
d734c450 1476
d2427a71 1477static struct frame_id
6834c9bb 1478alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1479{
d2427a71 1480 ULONGEST base;
6834c9bb
JB
1481 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1482 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1483}
1484
dc129d82 1485static CORE_ADDR
d2427a71 1486alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1487{
d2427a71 1488 ULONGEST pc;
11411de3 1489 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1490 return pc;
accc6d1f
JT
1491}
1492
98a8e1e5
RH
1493\f
1494/* Helper routines for alpha*-nat.c files to move register sets to and
1495 from core files. The UNIQUE pointer is allowed to be NULL, as most
1496 targets don't supply this value in their core files. */
1497
1498void
390c1522
UW
1499alpha_supply_int_regs (struct regcache *regcache, int regno,
1500 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1501{
2a1ce6ec 1502 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1503 int i;
1504
1505 for (i = 0; i < 31; ++i)
1506 if (regno == i || regno == -1)
390c1522 1507 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1508
1509 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1510 {
1511 const gdb_byte zero[8] = { 0 };
1512
1513 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1514 }
98a8e1e5
RH
1515
1516 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1517 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1518
1519 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1520 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1521}
1522
1523void
390c1522
UW
1524alpha_fill_int_regs (const struct regcache *regcache,
1525 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1526{
2a1ce6ec 1527 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1528 int i;
1529
1530 for (i = 0; i < 31; ++i)
1531 if (regno == i || regno == -1)
390c1522 1532 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1533
1534 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1535 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1536
1537 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1538 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1539}
1540
1541void
390c1522
UW
1542alpha_supply_fp_regs (struct regcache *regcache, int regno,
1543 const void *f0_f30, const void *fpcr)
98a8e1e5 1544{
2a1ce6ec 1545 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1546 int i;
1547
1548 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1549 if (regno == i || regno == -1)
390c1522 1550 regcache_raw_supply (regcache, i,
2a1ce6ec 1551 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1552
1553 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1554 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1555}
1556
1557void
390c1522
UW
1558alpha_fill_fp_regs (const struct regcache *regcache,
1559 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1560{
2a1ce6ec 1561 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1562 int i;
1563
1564 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1565 if (regno == i || regno == -1)
390c1522 1566 regcache_raw_collect (regcache, i,
2a1ce6ec 1567 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1568
1569 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1570 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1571}
1572
d2427a71 1573\f
0de94d4b
JB
1574
1575/* Return nonzero if the G_floating register value in REG is equal to
1576 zero for FP control instructions. */
1577
1578static int
1579fp_register_zero_p (LONGEST reg)
1580{
1581 /* Check that all bits except the sign bit are zero. */
1582 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1583
1584 return ((reg & zero_mask) == 0);
1585}
1586
1587/* Return the value of the sign bit for the G_floating register
1588 value held in REG. */
1589
1590static int
1591fp_register_sign_bit (LONGEST reg)
1592{
1593 const LONGEST sign_mask = (LONGEST) 1 << 63;
1594
1595 return ((reg & sign_mask) != 0);
1596}
1597
ec32e4be
JT
1598/* alpha_software_single_step() is called just before we want to resume
1599 the inferior, if we want to single-step it but there is no hardware
1600 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1601 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1602
1603static CORE_ADDR
0b1b3e42 1604alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1605{
e17a4113 1606 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1607 unsigned int insn;
1608 unsigned int op;
551e4f2e 1609 int regno;
ec32e4be
JT
1610 int offset;
1611 LONGEST rav;
1612
e17a4113 1613 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1614
0963b4bd 1615 /* Opcode is top 6 bits. */
ec32e4be
JT
1616 op = (insn >> 26) & 0x3f;
1617
1618 if (op == 0x1a)
1619 {
1620 /* Jump format: target PC is:
1621 RB & ~3 */
0b1b3e42 1622 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1623 }
1624
1625 if ((op & 0x30) == 0x30)
1626 {
1627 /* Branch format: target PC is:
1628 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1629 if (op == 0x30 /* BR */
1630 || op == 0x34) /* BSR */
ec32e4be
JT
1631 {
1632 branch_taken:
1633 offset = (insn & 0x001fffff);
1634 if (offset & 0x00100000)
1635 offset |= 0xffe00000;
e8d2d628
MK
1636 offset *= ALPHA_INSN_SIZE;
1637 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1638 }
1639
1640 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1641 regno = (insn >> 21) & 0x1f;
1642 switch (op)
1643 {
1644 case 0x31: /* FBEQ */
1645 case 0x36: /* FBGE */
1646 case 0x37: /* FBGT */
1647 case 0x33: /* FBLE */
1648 case 0x32: /* FBLT */
1649 case 0x35: /* FBNE */
e17a4113 1650 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1651 }
1652
0b1b3e42 1653 rav = get_frame_register_signed (frame, regno);
0de94d4b 1654
ec32e4be
JT
1655 switch (op)
1656 {
1657 case 0x38: /* BLBC */
1658 if ((rav & 1) == 0)
1659 goto branch_taken;
1660 break;
1661 case 0x3c: /* BLBS */
1662 if (rav & 1)
1663 goto branch_taken;
1664 break;
1665 case 0x39: /* BEQ */
1666 if (rav == 0)
1667 goto branch_taken;
1668 break;
1669 case 0x3d: /* BNE */
1670 if (rav != 0)
1671 goto branch_taken;
1672 break;
1673 case 0x3a: /* BLT */
1674 if (rav < 0)
1675 goto branch_taken;
1676 break;
1677 case 0x3b: /* BLE */
1678 if (rav <= 0)
1679 goto branch_taken;
1680 break;
1681 case 0x3f: /* BGT */
1682 if (rav > 0)
1683 goto branch_taken;
1684 break;
1685 case 0x3e: /* BGE */
1686 if (rav >= 0)
1687 goto branch_taken;
1688 break;
d2427a71 1689
0de94d4b
JB
1690 /* Floating point branches. */
1691
1692 case 0x31: /* FBEQ */
1693 if (fp_register_zero_p (rav))
1694 goto branch_taken;
1695 break;
1696 case 0x36: /* FBGE */
1697 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1698 goto branch_taken;
1699 break;
1700 case 0x37: /* FBGT */
1701 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1702 goto branch_taken;
1703 break;
1704 case 0x33: /* FBLE */
1705 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1706 goto branch_taken;
1707 break;
1708 case 0x32: /* FBLT */
1709 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1710 goto branch_taken;
1711 break;
1712 case 0x35: /* FBNE */
1713 if (! fp_register_zero_p (rav))
1714 goto branch_taken;
1715 break;
ec32e4be
JT
1716 }
1717 }
1718
1719 /* Not a branch or branch not taken; target PC is:
1720 pc + 4 */
e8d2d628 1721 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1722}
1723
e6590a1b 1724int
0b1b3e42 1725alpha_software_single_step (struct frame_info *frame)
ec32e4be 1726{
a6d9a66e 1727 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1728 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1729 CORE_ADDR pc, next_pc;
ec32e4be 1730
0b1b3e42
UW
1731 pc = get_frame_pc (frame);
1732 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1733
6c95b8df 1734 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1735 return 1;
c906108c
SS
1736}
1737
dc129d82 1738\f
dc129d82
JT
1739/* Initialize the current architecture based on INFO. If possible, re-use an
1740 architecture from ARCHES, which is a list of architectures already created
1741 during this debugging session.
1742
1743 Called e.g. at program startup, when reading a core file, and when reading
1744 a binary file. */
1745
1746static struct gdbarch *
1747alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1748{
1749 struct gdbarch_tdep *tdep;
1750 struct gdbarch *gdbarch;
dc129d82 1751
dc129d82 1752 /* Find a candidate among extant architectures. */
4be87837
DJ
1753 arches = gdbarch_list_lookup_by_info (arches, &info);
1754 if (arches != NULL)
1755 return arches->gdbarch;
dc129d82
JT
1756
1757 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1758 gdbarch = gdbarch_alloc (&info, tdep);
1759
d2427a71
RH
1760 /* Lowest text address. This is used by heuristic_proc_start()
1761 to decide when to stop looking. */
594706e6 1762 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1763
36a6271d 1764 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1765 tdep->sigcontext_addr = NULL;
138e7be5
MK
1766 tdep->sc_pc_offset = 2 * 8;
1767 tdep->sc_regs_offset = 4 * 8;
1768 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1769
0963b4bd 1770 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1771
9823e921
RH
1772 tdep->return_in_memory = alpha_return_in_memory_always;
1773
dc129d82
JT
1774 /* Type sizes */
1775 set_gdbarch_short_bit (gdbarch, 16);
1776 set_gdbarch_int_bit (gdbarch, 32);
1777 set_gdbarch_long_bit (gdbarch, 64);
1778 set_gdbarch_long_long_bit (gdbarch, 64);
1779 set_gdbarch_float_bit (gdbarch, 32);
1780 set_gdbarch_double_bit (gdbarch, 64);
1781 set_gdbarch_long_double_bit (gdbarch, 64);
1782 set_gdbarch_ptr_bit (gdbarch, 64);
1783
1784 /* Register info */
1785 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1786 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1787 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1788 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1789
1790 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1791 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1792
1793 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1794 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1795
c483c494
RH
1796 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1797 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1798 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1799
615967cb
RH
1800 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1801
d2427a71 1802 /* Prologue heuristics. */
dc129d82
JT
1803 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1804
5ef165c2
RH
1805 /* Disassembler. */
1806 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1807
d2427a71 1808 /* Call info. */
dc129d82 1809
9823e921 1810 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1811
1812 /* Settings for calling functions in the inferior. */
c88e30c0 1813 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1814
1815 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1816 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1817
1818 /* Return the unwound PC value. */
1819 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1820
1821 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1822 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1823
95b80706 1824 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1825 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1826 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1827
46ad3598
UW
1828 /* Handles single stepping of atomic sequences. */
1829 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1830
44dffaac 1831 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1832 gdbarch_init_osabi (info, gdbarch);
44dffaac 1833
accc6d1f
JT
1834 /* Now that we have tuned the configuration, set a few final things
1835 based on what the OS ABI has told us. */
1836
1837 if (tdep->jb_pc >= 0)
1838 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1839
6834c9bb
JB
1840 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1841 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1842
d2427a71 1843 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1844
d2427a71 1845 return gdbarch;
dc129d82
JT
1846}
1847
baa490c4
RH
1848void
1849alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1850{
6834c9bb 1851 dwarf2_append_unwinders (gdbarch);
336d1bba 1852 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1853}
1854
a78f21af
AC
1855extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1856
c906108c 1857void
fba45db2 1858_initialize_alpha_tdep (void)
c906108c
SS
1859{
1860 struct cmd_list_element *c;
1861
d2427a71 1862 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1863
1864 /* Let the user set the fence post for heuristic_proc_start. */
1865
1866 /* We really would like to have both "0" and "unlimited" work, but
1867 command.c doesn't deal with that. So make it a var_zinteger
1868 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1869 /* We need to throw away the frame cache when we set this, since it
1870 might change our ability to get backtraces. */
1871 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1872 &heuristic_fence_post, _("\
1873Set the distance searched for the start of a function."), _("\
1874Show the distance searched for the start of a function."), _("\
c906108c
SS
1875If you are debugging a stripped executable, GDB needs to search through the\n\
1876program for the start of a function. This command sets the distance of the\n\
323e0a4a 1877search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1878 reinit_frame_cache_sfunc,
0963b4bd
MS
1879 NULL, /* FIXME: i18n: The distance searched for
1880 the start of a function is \"%d\". */
edefbb7c 1881 &setlist, &showlist);
c906108c 1882}
This page took 1.226869 seconds and 4 git commands to generate.