2012-02-02 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
0b302171 3 Copyright (C) 1993-2003, 2005-2012 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
615967cb 21#include "doublest.h"
c906108c 22#include "frame.h"
d2427a71
RH
23#include "frame-unwind.h"
24#include "frame-base.h"
baa490c4 25#include "dwarf2-frame.h"
c906108c
SS
26#include "inferior.h"
27#include "symtab.h"
28#include "value.h"
29#include "gdbcmd.h"
30#include "gdbcore.h"
31#include "dis-asm.h"
32#include "symfile.h"
33#include "objfiles.h"
34#include "gdb_string.h"
c5f0f3d0 35#include "linespec.h"
4e052eda 36#include "regcache.h"
615967cb 37#include "reggroups.h"
dc129d82 38#include "arch-utils.h"
4be87837 39#include "osabi.h"
fe898f56 40#include "block.h"
7d9b040b 41#include "infcall.h"
07ea644b 42#include "trad-frame.h"
dc129d82
JT
43
44#include "elf-bfd.h"
45
46#include "alpha-tdep.h"
47
3a48e6ff
JG
48/* Instruction decoding. The notations for registers, immediates and
49 opcodes are the same as the one used in Compaq's Alpha architecture
50 handbook. */
51
52#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
53
54/* Memory instruction format */
55#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
56#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
57#define MEM_DISP(insn) \
58 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
59
60static const int lda_opcode = 0x08;
61static const int stq_opcode = 0x2d;
62
63/* Branch instruction format */
64#define BR_RA(insn) MEM_RA(insn)
65
46ad3598 66static const int br_opcode = 0x30;
3a48e6ff
JG
67static const int bne_opcode = 0x3d;
68
69/* Operate instruction format */
70#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72#define OPR_RA(insn) MEM_RA(insn)
73#define OPR_RC(insn) ((insn & 0x1f))
74#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
75
76static const int subq_opcode = 0x10;
77static const int subq_function = 0x29;
78
c906108c 79\f
515921d7
JB
80/* Return the name of the REGNO register.
81
82 An empty name corresponds to a register number that used to
0963b4bd 83 be used for a virtual register. That virtual register has
515921d7
JB
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
86
fa88f677 87static const char *
d93859e2 88alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 89{
5ab84872 90 static const char * const register_names[] =
636a6dfc
JT
91 {
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 100 "pc", "", "unique"
636a6dfc
JT
101 };
102
103 if (regno < 0)
5ab84872 104 return NULL;
e8d2d628 105 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
106 return NULL;
107 return register_names[regno];
636a6dfc 108}
d734c450 109
dc129d82 110static int
64a3914f 111alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 112{
4a1be8d2 113 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
114}
115
dc129d82 116static int
64a3914f 117alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 118{
515921d7 119 return (regno == ALPHA_ZERO_REGNUM
64a3914f 120 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
121}
122
dc129d82 123static struct type *
c483c494 124alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 125{
72667056 126 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 127 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 128 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 129 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
130
131 /* Don't need to worry about little vs big endian until
132 some jerk tries to port to alpha-unicosmk. */
b38b6be2 133 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 134 return builtin_type (gdbarch)->builtin_double;
72667056 135
df4df182 136 return builtin_type (gdbarch)->builtin_int64;
0d056799 137}
f8453e34 138
615967cb
RH
139/* Is REGNUM a member of REGGROUP? */
140
141static int
142alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
143 struct reggroup *group)
144{
145 /* Filter out any registers eliminated, but whose regnum is
146 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
147 if (gdbarch_register_name (gdbarch, regnum) == NULL
148 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
149 return 0;
150
df4a182b
RH
151 if (group == all_reggroup)
152 return 1;
153
154 /* Zero should not be saved or restored. Technically it is a general
155 register (just as $f31 would be a float if we represented it), but
156 there's no point displaying it during "info regs", so leave it out
157 of all groups except for "all". */
158 if (regnum == ALPHA_ZERO_REGNUM)
159 return 0;
160
161 /* All other registers are saved and restored. */
162 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
163 return 1;
164
165 /* All other groups are non-overlapping. */
166
167 /* Since this is really a PALcode memory slot... */
168 if (regnum == ALPHA_UNIQUE_REGNUM)
169 return group == system_reggroup;
170
171 /* Force the FPCR to be considered part of the floating point state. */
172 if (regnum == ALPHA_FPCR_REGNUM)
173 return group == float_reggroup;
174
175 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
176 return group == float_reggroup;
177 else
178 return group == general_reggroup;
179}
180
c483c494
RH
181/* The following represents exactly the conversion performed by
182 the LDS instruction. This applies to both single-precision
183 floating point and 32-bit integers. */
184
185static void
e17a4113 186alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 187{
e17a4113
UW
188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
189 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
e17a4113 209 store_unsigned_integer (out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
e17a4113 221 reg = extract_unsigned_integer (in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
e17a4113 223 store_unsigned_integer (out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes or less, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca
DJ
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && TYPE_LENGTH (type) != 8);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
2a1ce6ec
MK
246 gdb_byte in[MAX_REGISTER_SIZE];
247
8dccd430
PA
248 /* Convert to TYPE. */
249 if (!get_frame_register_bytes (frame, regnum, 0,
250 register_size (gdbarch, regnum),
251 in, optimizedp, unavailablep))
252 return 0;
253
254 if (TYPE_LENGTH (valtype) == 4)
d2427a71 255 {
8dccd430
PA
256 alpha_sts (gdbarch, out, in);
257 *optimizedp = *unavailablep = 0;
258 return 1;
d2427a71 259 }
8dccd430
PA
260
261 error (_("Cannot retrieve value from floating point register"));
d2427a71 262}
5868c862 263
d2427a71 264static void
ff2e87ac 265alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 266 struct type *valtype, const gdb_byte *in)
d2427a71 267{
2a1ce6ec
MK
268 gdb_byte out[MAX_REGISTER_SIZE];
269
c483c494 270 switch (TYPE_LENGTH (valtype))
d2427a71 271 {
c483c494 272 case 4:
e17a4113 273 alpha_lds (get_frame_arch (frame), out, in);
c483c494 274 break;
c483c494 275 default:
323e0a4a 276 error (_("Cannot store value in floating point register"));
d2427a71 277 }
ff2e87ac 278 put_frame_register (frame, regnum, out);
5868c862
JT
279}
280
d2427a71
RH
281\f
282/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
d2427a71
RH
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
c906108c 293
d2427a71 294static CORE_ADDR
7d9b040b 295alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 int struct_return, CORE_ADDR struct_addr)
c906108c 299{
e17a4113 300 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
301 int i;
302 int accumulate_size = struct_return ? 8 : 0;
d2427a71 303 struct alpha_arg
c906108c 304 {
f42a0a33 305 const gdb_byte *contents;
d2427a71
RH
306 int len;
307 int offset;
308 };
c88e30c0
RH
309 struct alpha_arg *alpha_args
310 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
52f0bd74 311 struct alpha_arg *m_arg;
2a1ce6ec 312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 313 int required_arg_regs;
7d9b040b 314 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 315
c88e30c0
RH
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
d2427a71
RH
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
4991999e 327 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 328
d2427a71
RH
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (TYPE_CODE (arg_type))
c906108c 331 {
d2427a71
RH
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
0ede8eca 337 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 338 {
0ede8eca
RH
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
df4df182 341 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
342 arg = value_cast (arg_type, arg);
343 }
344 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
345 {
df4df182 346 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
347 arg = value_cast (arg_type, arg);
348 }
349 break;
7b5e1cb3 350
c88e30c0
RH
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && TYPE_LENGTH (arg_type) == 4)
356 {
27067745 357 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (TYPE_LENGTH (arg_type) == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
0fd88904 368 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
7b5e1cb3
RH
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (TYPE_LENGTH (arg_type) == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
0fd88904 389 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
d2427a71
RH
397 default:
398 break;
c906108c 399 }
d2427a71
RH
400 m_arg->len = TYPE_LENGTH (arg_type);
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 403 m_arg->contents = value_contents (arg);
c906108c
SS
404 }
405
d2427a71
RH
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 411
d2427a71 412 /* Make room for the arguments on the stack. */
c88e30c0
RH
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 417 sp -= accumulate_size;
c906108c 418
c88e30c0 419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 420 sp &= ~15;
c906108c 421
d2427a71
RH
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
c906108c 424 {
f42a0a33 425 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 449 }
c88e30c0 450 if (struct_return)
e17a4113
UW
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
c906108c 453
d2427a71
RH
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
09cc52fd
RH
457 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
459 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 461 }
c906108c 462
09cc52fd
RH
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
c88e30c0 466 return sp;
c906108c
SS
467}
468
5ec2bb99
RH
469/* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
d2427a71 471
dc129d82 472static void
5ec2bb99 473alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 474 gdb_byte *valbuf)
140f9984 475{
e17a4113
UW
476 struct gdbarch *gdbarch = get_regcache_arch (regcache);
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7b5e1cb3 478 int length = TYPE_LENGTH (valtype);
2a1ce6ec 479 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
480 ULONGEST l;
481
482 switch (TYPE_CODE (valtype))
483 {
484 case TYPE_CODE_FLT:
7b5e1cb3 485 switch (length)
5ec2bb99
RH
486 {
487 case 4:
488 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 489 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
490 break;
491
492 case 8:
493 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
494 break;
495
24064b5c
RH
496 case 16:
497 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
498 read_memory (l, valbuf, 16);
499 break;
500
5ec2bb99 501 default:
0963b4bd
MS
502 internal_error (__FILE__, __LINE__,
503 _("unknown floating point width"));
5ec2bb99
RH
504 }
505 break;
506
7b5e1cb3
RH
507 case TYPE_CODE_COMPLEX:
508 switch (length)
509 {
510 case 8:
511 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
512 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
513 break;
514
515 case 16:
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 517 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
518 break;
519
520 case 32:
521 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
522 read_memory (l, valbuf, 32);
523 break;
524
525 default:
0963b4bd
MS
526 internal_error (__FILE__, __LINE__,
527 _("unknown floating point width"));
7b5e1cb3
RH
528 }
529 break;
530
5ec2bb99
RH
531 default:
532 /* Assume everything else degenerates to an integer. */
533 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
e17a4113 534 store_unsigned_integer (valbuf, length, byte_order, l);
5ec2bb99
RH
535 break;
536 }
140f9984
JT
537}
538
5ec2bb99
RH
539/* Insert the given value into REGCACHE as if it was being
540 returned by a function. */
0d056799 541
d2427a71 542static void
5ec2bb99 543alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 544 const gdb_byte *valbuf)
c906108c 545{
df4df182 546 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d2427a71 547 int length = TYPE_LENGTH (valtype);
2a1ce6ec 548 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 549 ULONGEST l;
d2427a71 550
5ec2bb99 551 switch (TYPE_CODE (valtype))
c906108c 552 {
5ec2bb99
RH
553 case TYPE_CODE_FLT:
554 switch (length)
555 {
556 case 4:
e17a4113 557 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
558 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
559 break;
5ec2bb99
RH
560
561 case 8:
562 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
563 break;
564
24064b5c
RH
565 case 16:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
323e0a4a 569 error (_("Cannot set a 128-bit long double return value."));
24064b5c 570
5ec2bb99 571 default:
0963b4bd
MS
572 internal_error (__FILE__, __LINE__,
573 _("unknown floating point width"));
5ec2bb99
RH
574 }
575 break;
d2427a71 576
7b5e1cb3
RH
577 case TYPE_CODE_COMPLEX:
578 switch (length)
579 {
580 case 8:
581 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
582 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
583 break;
584
585 case 16:
586 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 587 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
588 break;
589
590 case 32:
591 /* FIXME: 128-bit long doubles are returned like structures:
592 by writing into indirect storage provided by the caller
593 as the first argument. */
323e0a4a 594 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
595
596 default:
0963b4bd
MS
597 internal_error (__FILE__, __LINE__,
598 _("unknown floating point width"));
7b5e1cb3
RH
599 }
600 break;
601
5ec2bb99
RH
602 default:
603 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
604 /* 32-bit values must be sign-extended to 64 bits
605 even if the base data type is unsigned. */
606 if (length == 4)
df4df182 607 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
608 l = unpack_long (valtype, valbuf);
609 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
610 break;
611 }
c906108c
SS
612}
613
9823e921 614static enum return_value_convention
c055b101
CV
615alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
616 struct type *type, struct regcache *regcache,
617 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
618{
619 enum type_code code = TYPE_CODE (type);
620
621 if ((code == TYPE_CODE_STRUCT
622 || code == TYPE_CODE_UNION
623 || code == TYPE_CODE_ARRAY)
624 && gdbarch_tdep (gdbarch)->return_in_memory (type))
625 {
626 if (readbuf)
627 {
628 ULONGEST addr;
629 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
630 read_memory (addr, readbuf, TYPE_LENGTH (type));
631 }
632
633 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
634 }
635
636 if (readbuf)
637 alpha_extract_return_value (type, regcache, readbuf);
638 if (writebuf)
639 alpha_store_return_value (type, regcache, writebuf);
640
641 return RETURN_VALUE_REGISTER_CONVENTION;
642}
643
644static int
645alpha_return_in_memory_always (struct type *type)
646{
647 return 1;
648}
d2427a71 649\f
2a1ce6ec 650static const gdb_byte *
67d57894 651alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 652{
2a1ce6ec 653 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
c906108c 654
2a1ce6ec
MK
655 *len = sizeof(break_insn);
656 return break_insn;
d2427a71 657}
c906108c 658
d2427a71
RH
659\f
660/* This returns the PC of the first insn after the prologue.
661 If we can't find the prologue, then return 0. */
c906108c 662
d2427a71
RH
663CORE_ADDR
664alpha_after_prologue (CORE_ADDR pc)
c906108c 665{
d2427a71
RH
666 struct symtab_and_line sal;
667 CORE_ADDR func_addr, func_end;
c906108c 668
d2427a71 669 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 670 return 0;
c906108c 671
d2427a71
RH
672 sal = find_pc_line (func_addr, 0);
673 if (sal.end < func_end)
674 return sal.end;
c5aa993b 675
d2427a71
RH
676 /* The line after the prologue is after the end of the function. In this
677 case, tell the caller to find the prologue the hard way. */
678 return 0;
c906108c
SS
679}
680
d2427a71
RH
681/* Read an instruction from memory at PC, looking through breakpoints. */
682
683unsigned int
e17a4113 684alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 685{
e17a4113 686 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 687 gdb_byte buf[ALPHA_INSN_SIZE];
d2427a71 688 int status;
c5aa993b 689
8defab1a 690 status = target_read_memory (pc, buf, sizeof (buf));
d2427a71
RH
691 if (status)
692 memory_error (status, pc);
e17a4113 693 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 694}
c5aa993b 695
d2427a71
RH
696/* To skip prologues, I use this predicate. Returns either PC itself
697 if the code at PC does not look like a function prologue; otherwise
698 returns an address that (if we're lucky) follows the prologue. If
699 LENIENT, then we must skip everything which is involved in setting
700 up the frame (it's OK to skip more, just so long as we don't skip
701 anything which might clobber the registers which are being saved. */
c906108c 702
d2427a71 703static CORE_ADDR
6093d2eb 704alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
705{
706 unsigned long inst;
707 int offset;
708 CORE_ADDR post_prologue_pc;
e8d2d628 709 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 710
d2427a71
RH
711 /* Silently return the unaltered pc upon memory errors.
712 This could happen on OSF/1 if decode_line_1 tries to skip the
713 prologue for quickstarted shared library functions when the
714 shared library is not yet mapped in.
715 Reading target memory is slow over serial lines, so we perform
716 this check only if the target has shared libraries (which all
717 Alpha targets do). */
e8d2d628 718 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 719 return pc;
c906108c 720
d2427a71
RH
721 /* See if we can determine the end of the prologue via the symbol table.
722 If so, then return either PC, or the PC after the prologue, whichever
723 is greater. */
c906108c 724
d2427a71
RH
725 post_prologue_pc = alpha_after_prologue (pc);
726 if (post_prologue_pc != 0)
727 return max (pc, post_prologue_pc);
c906108c 728
d2427a71
RH
729 /* Can't determine prologue from the symbol table, need to examine
730 instructions. */
dc1b0db2 731
0963b4bd 732 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
733 instruction and the instructions that save registers on the stack
734 or in the gcc frame. */
e8d2d628 735 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 736 {
e17a4113 737 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 738
d2427a71
RH
739 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
740 continue;
741 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
744 continue;
745 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
746 continue;
c906108c 747
d2427a71
RH
748 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
749 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
750 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
751 continue;
c906108c 752
d2427a71
RH
753 if (inst == 0x47de040f) /* bis sp,sp,fp */
754 continue;
755 if (inst == 0x47fe040f) /* bis zero,sp,fp */
756 continue;
c906108c 757
d2427a71 758 break;
c906108c 759 }
d2427a71
RH
760 return pc + offset;
761}
c906108c 762
46ad3598
UW
763\f
764static const int ldl_l_opcode = 0x2a;
765static const int ldq_l_opcode = 0x2b;
766static const int stl_c_opcode = 0x2e;
767static const int stq_c_opcode = 0x2f;
768
769/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
770 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
771 is found, attempt to step through it. A breakpoint is placed at the end of
772 the sequence. */
773
774int
775alpha_deal_with_atomic_sequence (struct frame_info *frame)
776{
777 struct gdbarch *gdbarch = get_frame_arch (frame);
778 struct address_space *aspace = get_frame_address_space (frame);
779 CORE_ADDR pc = get_frame_pc (frame);
780 CORE_ADDR breaks[2] = {-1, -1};
781 CORE_ADDR loc = pc;
782 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
783 unsigned int insn = alpha_read_insn (gdbarch, loc);
784 int insn_count;
785 int index;
786 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
787 const int atomic_sequence_length = 16; /* Instruction sequence length. */
788 int bc_insn_count = 0; /* Conditional branch instruction count. */
789
790 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
791 if (INSN_OPCODE (insn) != ldl_l_opcode
792 && INSN_OPCODE (insn) != ldq_l_opcode)
793 return 0;
794
795 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
796 instructions. */
797 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
798 {
799 loc += ALPHA_INSN_SIZE;
800 insn = alpha_read_insn (gdbarch, loc);
801
802 /* Assume that there is at most one branch in the atomic
803 sequence. If a branch is found, put a breakpoint in
804 its destination address. */
805 if (INSN_OPCODE (insn) >= br_opcode)
806 {
807 int immediate = (insn & 0x001fffff) << 2;
808
809 immediate = (immediate ^ 0x400000) - 0x400000;
810
811 if (bc_insn_count >= 1)
812 return 0; /* More than one branch found, fallback
813 to the standard single-step code. */
814
815 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
816
817 bc_insn_count++;
818 last_breakpoint++;
819 }
820
821 if (INSN_OPCODE (insn) == stl_c_opcode
822 || INSN_OPCODE (insn) == stq_c_opcode)
823 break;
824 }
825
826 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
827 if (INSN_OPCODE (insn) != stl_c_opcode
828 && INSN_OPCODE (insn) != stq_c_opcode)
829 return 0;
830
831 closing_insn = loc;
832 loc += ALPHA_INSN_SIZE;
833
834 /* Insert a breakpoint right after the end of the atomic sequence. */
835 breaks[0] = loc;
836
837 /* Check for duplicated breakpoints. Check also for a breakpoint
838 placed (branch instruction's destination) anywhere in sequence. */
839 if (last_breakpoint
840 && (breaks[1] == breaks[0]
841 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
842 last_breakpoint = 0;
843
844 /* Effectively inserts the breakpoints. */
845 for (index = 0; index <= last_breakpoint; index++)
846 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
847
848 return 1;
849}
850
d2427a71
RH
851\f
852/* Figure out where the longjmp will land.
853 We expect the first arg to be a pointer to the jmp_buf structure from
854 which we extract the PC (JB_PC) that we will land at. The PC is copied
855 into the "pc". This routine returns true on success. */
c906108c
SS
856
857static int
60ade65d 858alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 859{
e17a4113
UW
860 struct gdbarch *gdbarch = get_frame_arch (frame);
861 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
862 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 863 CORE_ADDR jb_addr;
2a1ce6ec 864 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 865
60ade65d 866 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 867
d2427a71
RH
868 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
869 raw_buffer, tdep->jb_elt_size))
c906108c 870 return 0;
d2427a71 871
e17a4113 872 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 873 return 1;
c906108c
SS
874}
875
d2427a71
RH
876\f
877/* Frame unwinder for signal trampolines. We use alpha tdep bits that
878 describe the location and shape of the sigcontext structure. After
879 that, all registers are in memory, so it's easy. */
880/* ??? Shouldn't we be able to do this generically, rather than with
881 OSABI data specific to Alpha? */
882
883struct alpha_sigtramp_unwind_cache
c906108c 884{
d2427a71
RH
885 CORE_ADDR sigcontext_addr;
886};
c906108c 887
d2427a71 888static struct alpha_sigtramp_unwind_cache *
6834c9bb 889alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
890 void **this_prologue_cache)
891{
892 struct alpha_sigtramp_unwind_cache *info;
893 struct gdbarch_tdep *tdep;
c906108c 894
d2427a71
RH
895 if (*this_prologue_cache)
896 return *this_prologue_cache;
c906108c 897
d2427a71
RH
898 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
899 *this_prologue_cache = info;
c906108c 900
6834c9bb
JB
901 tdep = gdbarch_tdep (get_frame_arch (this_frame));
902 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 903
d2427a71 904 return info;
c906108c
SS
905}
906
138e7be5
MK
907/* Return the address of REGNUM in a sigtramp frame. Since this is
908 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 909
d2427a71 910static CORE_ADDR
be8626e0
MD
911alpha_sigtramp_register_address (struct gdbarch *gdbarch,
912 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 913{
be8626e0 914 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
915
916 if (regnum >= 0 && regnum < 32)
917 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
918 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
919 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
920 else if (regnum == ALPHA_PC_REGNUM)
921 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 922
d2427a71 923 return 0;
c906108c
SS
924}
925
d2427a71
RH
926/* Given a GDB frame, determine the address of the calling function's
927 frame. This will be used to create a new GDB frame struct. */
140f9984 928
dc129d82 929static void
6834c9bb 930alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
931 void **this_prologue_cache,
932 struct frame_id *this_id)
c906108c 933{
6834c9bb 934 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 935 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 936 struct alpha_sigtramp_unwind_cache *info
6834c9bb 937 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
938 CORE_ADDR stack_addr, code_addr;
939
940 /* If the OSABI couldn't locate the sigcontext, give up. */
941 if (info->sigcontext_addr == 0)
942 return;
943
944 /* If we have dynamic signal trampolines, find their start.
945 If we do not, then we must assume there is a symbol record
946 that can provide the start address. */
d2427a71 947 if (tdep->dynamic_sigtramp_offset)
c906108c 948 {
d2427a71 949 int offset;
6834c9bb 950 code_addr = get_frame_pc (this_frame);
e17a4113 951 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
952 if (offset >= 0)
953 code_addr -= offset;
c906108c 954 else
d2427a71 955 code_addr = 0;
c906108c 956 }
d2427a71 957 else
6834c9bb 958 code_addr = get_frame_func (this_frame);
c906108c 959
d2427a71 960 /* The stack address is trivially read from the sigcontext. */
be8626e0 961 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 962 ALPHA_SP_REGNUM);
6834c9bb 963 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 964 ALPHA_REGISTER_SIZE);
c906108c 965
d2427a71 966 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
967}
968
d2427a71 969/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 970
6834c9bb
JB
971static struct value *
972alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
973 void **this_prologue_cache, int regnum)
c906108c 974{
d2427a71 975 struct alpha_sigtramp_unwind_cache *info
6834c9bb 976 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 977 CORE_ADDR addr;
c906108c 978
d2427a71 979 if (info->sigcontext_addr != 0)
c906108c 980 {
d2427a71 981 /* All integer and fp registers are stored in memory. */
6834c9bb 982 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 983 info->sigcontext_addr, regnum);
d2427a71 984 if (addr != 0)
6834c9bb 985 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
986 }
987
d2427a71
RH
988 /* This extra register may actually be in the sigcontext, but our
989 current description of it in alpha_sigtramp_frame_unwind_cache
990 doesn't include it. Too bad. Fall back on whatever's in the
991 outer frame. */
6834c9bb 992 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 993}
c906108c 994
6834c9bb
JB
995static int
996alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
997 struct frame_info *this_frame,
998 void **this_prologue_cache)
d2427a71 999{
6834c9bb
JB
1000 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1001 CORE_ADDR pc = get_frame_pc (this_frame);
d2427a71 1002 char *name;
c906108c 1003
f2524b93
AC
1004 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1005 look at tramp-frame.h and other simplier per-architecture
1006 sigtramp unwinders. */
1007
1008 /* We shouldn't even bother to try if the OSABI didn't register a
1009 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1010 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1011 return 0;
ec7cc0e8 1012 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1013 return 0;
c906108c 1014
d2427a71
RH
1015 /* Otherwise we should be in a signal frame. */
1016 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1017 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1018 return 1;
c906108c 1019
6834c9bb 1020 return 0;
c906108c 1021}
6834c9bb
JB
1022
1023static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1024 SIGTRAMP_FRAME,
8fbca658 1025 default_frame_unwind_stop_reason,
6834c9bb
JB
1026 alpha_sigtramp_frame_this_id,
1027 alpha_sigtramp_frame_prev_register,
1028 NULL,
1029 alpha_sigtramp_frame_sniffer
1030};
1031
d2427a71 1032\f
c906108c 1033
d2427a71
RH
1034/* Heuristic_proc_start may hunt through the text section for a long
1035 time across a 2400 baud serial line. Allows the user to limit this
1036 search. */
1037static unsigned int heuristic_fence_post = 0;
c906108c 1038
d2427a71
RH
1039/* Attempt to locate the start of the function containing PC. We assume that
1040 the previous function ends with an about_to_return insn. Not foolproof by
1041 any means, since gcc is happy to put the epilogue in the middle of a
1042 function. But we're guessing anyway... */
c906108c 1043
d2427a71 1044static CORE_ADDR
be8626e0 1045alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1046{
be8626e0 1047 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1048 CORE_ADDR last_non_nop = pc;
1049 CORE_ADDR fence = pc - heuristic_fence_post;
1050 CORE_ADDR orig_pc = pc;
fbe586ae 1051 CORE_ADDR func;
d6b48e9c 1052 struct inferior *inf;
9e0b60a8 1053
d2427a71
RH
1054 if (pc == 0)
1055 return 0;
9e0b60a8 1056
fbe586ae
RH
1057 /* First see if we can find the start of the function from minimal
1058 symbol information. This can succeed with a binary that doesn't
1059 have debug info, but hasn't been stripped. */
1060 func = get_pc_function_start (pc);
1061 if (func)
1062 return func;
1063
d2427a71
RH
1064 if (heuristic_fence_post == UINT_MAX
1065 || fence < tdep->vm_min_address)
1066 fence = tdep->vm_min_address;
c906108c 1067
d2427a71
RH
1068 /* Search back for previous return; also stop at a 0, which might be
1069 seen for instance before the start of a code section. Don't include
1070 nops, since this usually indicates padding between functions. */
e8d2d628 1071 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1072 {
e17a4113 1073 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1074 switch (insn)
c906108c 1075 {
d2427a71
RH
1076 case 0: /* invalid insn */
1077 case 0x6bfa8001: /* ret $31,($26),1 */
1078 return last_non_nop;
1079
1080 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1081 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1082 break;
1083
1084 default:
1085 last_non_nop = pc;
1086 break;
c906108c 1087 }
d2427a71 1088 }
c906108c 1089
d6b48e9c
PA
1090 inf = current_inferior ();
1091
d2427a71
RH
1092 /* It's not clear to me why we reach this point when stopping quietly,
1093 but with this test, at least we don't print out warnings for every
1094 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1095 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1096 {
1097 static int blurb_printed = 0;
c906108c 1098
d2427a71 1099 if (fence == tdep->vm_min_address)
323e0a4a 1100 warning (_("Hit beginning of text section without finding \
5af949e3 1101enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1102 else
323e0a4a 1103 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1104enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1105
d2427a71
RH
1106 if (!blurb_printed)
1107 {
323e0a4a 1108 printf_filtered (_("\
d2427a71
RH
1109This warning occurs if you are debugging a function without any symbols\n\
1110(for example, in a stripped executable). In that case, you may wish to\n\
1111increase the size of the search with the `set heuristic-fence-post' command.\n\
1112\n\
1113Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1114(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1115 blurb_printed = 1;
1116 }
1117 }
c906108c 1118
d2427a71
RH
1119 return 0;
1120}
c906108c 1121
07ea644b
MD
1122/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1123 something about the traditional layout of alpha stack frames. */
1124
1125struct alpha_heuristic_unwind_cache
1126{
1127 CORE_ADDR vfp;
1128 CORE_ADDR start_pc;
1129 struct trad_frame_saved_reg *saved_regs;
1130 int return_reg;
1131};
1132
3a48e6ff
JG
1133/* If a probing loop sequence starts at PC, simulate it and compute
1134 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1135 FRAME_SIZE unchanged. */
1136
1137static void
1138alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1139 int *frame_size)
1140{
1141 CORE_ADDR cur_pc = *pc;
1142 int cur_frame_size = *frame_size;
1143 int nb_of_iterations, reg_index, reg_probe;
1144 unsigned int insn;
1145
1146 /* The following pattern is recognized as a probing loop:
1147
1148 lda REG_INDEX,NB_OF_ITERATIONS
1149 lda REG_PROBE,<immediate>(sp)
1150
1151 LOOP_START:
1152 stq zero,<immediate>(REG_PROBE)
1153 subq REG_INDEX,0x1,REG_INDEX
1154 lda REG_PROBE,<immediate>(REG_PROBE)
1155 bne REG_INDEX, LOOP_START
1156
1157 lda sp,<immediate>(REG_PROBE)
1158
1159 If anything different is found, the function returns without
1160 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1161 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1162
1163 /* lda REG_INDEX,NB_OF_ITERATIONS */
1164
1165 insn = alpha_read_insn (gdbarch, cur_pc);
1166 if (INSN_OPCODE (insn) != lda_opcode)
1167 return;
1168 reg_index = MEM_RA (insn);
1169 nb_of_iterations = MEM_DISP (insn);
1170
1171 /* lda REG_PROBE,<immediate>(sp) */
1172
1173 cur_pc += ALPHA_INSN_SIZE;
1174 insn = alpha_read_insn (gdbarch, cur_pc);
1175 if (INSN_OPCODE (insn) != lda_opcode
1176 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1177 return;
1178 reg_probe = MEM_RA (insn);
1179 cur_frame_size -= MEM_DISP (insn);
1180
1181 /* stq zero,<immediate>(REG_PROBE) */
1182
1183 cur_pc += ALPHA_INSN_SIZE;
1184 insn = alpha_read_insn (gdbarch, cur_pc);
1185 if (INSN_OPCODE (insn) != stq_opcode
1186 || MEM_RA (insn) != 0x1f
1187 || MEM_RB (insn) != reg_probe)
1188 return;
1189
1190 /* subq REG_INDEX,0x1,REG_INDEX */
1191
1192 cur_pc += ALPHA_INSN_SIZE;
1193 insn = alpha_read_insn (gdbarch, cur_pc);
1194 if (INSN_OPCODE (insn) != subq_opcode
1195 || !OPR_HAS_IMMEDIATE (insn)
1196 || OPR_FUNCTION (insn) != subq_function
1197 || OPR_LIT(insn) != 1
1198 || OPR_RA (insn) != reg_index
1199 || OPR_RC (insn) != reg_index)
1200 return;
1201
1202 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1203
1204 cur_pc += ALPHA_INSN_SIZE;
1205 insn = alpha_read_insn (gdbarch, cur_pc);
1206 if (INSN_OPCODE (insn) != lda_opcode
1207 || MEM_RA (insn) != reg_probe
1208 || MEM_RB (insn) != reg_probe)
1209 return;
1210 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1211
1212 /* bne REG_INDEX, LOOP_START */
1213
1214 cur_pc += ALPHA_INSN_SIZE;
1215 insn = alpha_read_insn (gdbarch, cur_pc);
1216 if (INSN_OPCODE (insn) != bne_opcode
1217 || MEM_RA (insn) != reg_index)
1218 return;
1219
1220 /* lda sp,<immediate>(REG_PROBE) */
1221
1222 cur_pc += ALPHA_INSN_SIZE;
1223 insn = alpha_read_insn (gdbarch, cur_pc);
1224 if (INSN_OPCODE (insn) != lda_opcode
1225 || MEM_RA (insn) != ALPHA_SP_REGNUM
1226 || MEM_RB (insn) != reg_probe)
1227 return;
1228 cur_frame_size -= MEM_DISP (insn);
1229
1230 *pc = cur_pc;
1231 *frame_size = cur_frame_size;
1232}
1233
fbe586ae 1234static struct alpha_heuristic_unwind_cache *
6834c9bb 1235alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1236 void **this_prologue_cache,
1237 CORE_ADDR start_pc)
1238{
6834c9bb 1239 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1240 struct alpha_heuristic_unwind_cache *info;
1241 ULONGEST val;
1242 CORE_ADDR limit_pc, cur_pc;
1243 int frame_reg, frame_size, return_reg, reg;
c906108c 1244
d2427a71
RH
1245 if (*this_prologue_cache)
1246 return *this_prologue_cache;
c906108c 1247
d2427a71
RH
1248 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1249 *this_prologue_cache = info;
6834c9bb 1250 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1251
6834c9bb 1252 limit_pc = get_frame_pc (this_frame);
d2427a71 1253 if (start_pc == 0)
be8626e0 1254 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1255 info->start_pc = start_pc;
c906108c 1256
d2427a71
RH
1257 frame_reg = ALPHA_SP_REGNUM;
1258 frame_size = 0;
1259 return_reg = -1;
c906108c 1260
d2427a71
RH
1261 /* If we've identified a likely place to start, do code scanning. */
1262 if (start_pc != 0)
c5aa993b 1263 {
d2427a71
RH
1264 /* Limit the forward search to 50 instructions. */
1265 if (start_pc + 200 < limit_pc)
1266 limit_pc = start_pc + 200;
c5aa993b 1267
e8d2d628 1268 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1269 {
e17a4113 1270 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1271
d2427a71
RH
1272 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1273 {
1274 if (word & 0x8000)
1275 {
1276 /* Consider only the first stack allocation instruction
0963b4bd 1277 to contain the static size of the frame. */
d2427a71
RH
1278 if (frame_size == 0)
1279 frame_size = (-word) & 0xffff;
1280 }
1281 else
1282 {
1283 /* Exit loop if a positive stack adjustment is found, which
1284 usually means that the stack cleanup code in the function
1285 epilogue is reached. */
1286 break;
1287 }
1288 }
1289 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1290 {
1291 reg = (word & 0x03e00000) >> 21;
1292
d15bfd3a
AC
1293 /* Ignore this instruction if we have already encountered
1294 an instruction saving the same register earlier in the
1295 function code. The current instruction does not tell
1296 us where the original value upon function entry is saved.
1297 All it says is that the function we are scanning reused
1298 that register for some computation of its own, and is now
1299 saving its result. */
07ea644b 1300 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1301 continue;
1302
d2427a71
RH
1303 if (reg == 31)
1304 continue;
1305
1306 /* Do not compute the address where the register was saved yet,
1307 because we don't know yet if the offset will need to be
1308 relative to $sp or $fp (we can not compute the address
1309 relative to $sp if $sp is updated during the execution of
1310 the current subroutine, for instance when doing some alloca).
1311 So just store the offset for the moment, and compute the
1312 address later when we know whether this frame has a frame
1313 pointer or not. */
1314 /* Hack: temporarily add one, so that the offset is non-zero
1315 and we can tell which registers have save offsets below. */
07ea644b 1316 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1317
1318 /* Starting with OSF/1-3.2C, the system libraries are shipped
1319 without local symbols, but they still contain procedure
1320 descriptors without a symbol reference. GDB is currently
1321 unable to find these procedure descriptors and uses
1322 heuristic_proc_desc instead.
1323 As some low level compiler support routines (__div*, __add*)
1324 use a non-standard return address register, we have to
1325 add some heuristics to determine the return address register,
1326 or stepping over these routines will fail.
1327 Usually the return address register is the first register
1328 saved on the stack, but assembler optimization might
1329 rearrange the register saves.
1330 So we recognize only a few registers (t7, t9, ra) within
1331 the procedure prologue as valid return address registers.
1332 If we encounter a return instruction, we extract the
7a9dd1b2 1333 return address register from it.
d2427a71
RH
1334
1335 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1336 e.g. via the minimal symbol table, might obviate this
1337 hack. */
d2427a71
RH
1338 if (return_reg == -1
1339 && cur_pc < (start_pc + 80)
1340 && (reg == ALPHA_T7_REGNUM
1341 || reg == ALPHA_T9_REGNUM
1342 || reg == ALPHA_RA_REGNUM))
1343 return_reg = reg;
1344 }
1345 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1346 return_reg = (word >> 16) & 0x1f;
1347 else if (word == 0x47de040f) /* bis sp,sp,fp */
1348 frame_reg = ALPHA_GCC_FP_REGNUM;
1349 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1350 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1351
1352 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1353 }
c5aa993b 1354
d2427a71
RH
1355 /* If we haven't found a valid return address register yet, keep
1356 searching in the procedure prologue. */
1357 if (return_reg == -1)
1358 {
1359 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1360 {
e17a4113 1361 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1362
d2427a71
RH
1363 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1364 {
1365 reg = (word & 0x03e00000) >> 21;
1366 if (reg == ALPHA_T7_REGNUM
1367 || reg == ALPHA_T9_REGNUM
1368 || reg == ALPHA_RA_REGNUM)
1369 {
1370 return_reg = reg;
1371 break;
1372 }
1373 }
1374 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1375 {
1376 return_reg = (word >> 16) & 0x1f;
1377 break;
1378 }
85b32d22 1379
e8d2d628 1380 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1381 }
1382 }
c906108c 1383 }
c906108c 1384
d2427a71
RH
1385 /* Failing that, do default to the customary RA. */
1386 if (return_reg == -1)
1387 return_reg = ALPHA_RA_REGNUM;
1388 info->return_reg = return_reg;
f8453e34 1389
6834c9bb 1390 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1391 info->vfp = val + frame_size;
c906108c 1392
d2427a71
RH
1393 /* Convert offsets to absolute addresses. See above about adding
1394 one to the offsets to make all detected offsets non-zero. */
1395 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1396 if (trad_frame_addr_p(info->saved_regs, reg))
1397 info->saved_regs[reg].addr += val - 1;
d2427a71 1398
bfd66dd9
JB
1399 /* The stack pointer of the previous frame is computed by popping
1400 the current stack frame. */
1401 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1402 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1403
d2427a71 1404 return info;
c906108c 1405}
c906108c 1406
d2427a71
RH
1407/* Given a GDB frame, determine the address of the calling function's
1408 frame. This will be used to create a new GDB frame struct. */
1409
fbe586ae 1410static void
6834c9bb
JB
1411alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1412 void **this_prologue_cache,
1413 struct frame_id *this_id)
c906108c 1414{
d2427a71 1415 struct alpha_heuristic_unwind_cache *info
6834c9bb 1416 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1417
d2427a71 1418 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1419}
1420
d2427a71
RH
1421/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1422
6834c9bb
JB
1423static struct value *
1424alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1425 void **this_prologue_cache, int regnum)
c906108c 1426{
d2427a71 1427 struct alpha_heuristic_unwind_cache *info
6834c9bb 1428 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1429
1430 /* The PC of the previous frame is stored in the link register of
1431 the current frame. Frob regnum so that we pull the value from
1432 the correct place. */
1433 if (regnum == ALPHA_PC_REGNUM)
1434 regnum = info->return_reg;
1435
6834c9bb 1436 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1437}
1438
d2427a71
RH
1439static const struct frame_unwind alpha_heuristic_frame_unwind = {
1440 NORMAL_FRAME,
8fbca658 1441 default_frame_unwind_stop_reason,
d2427a71 1442 alpha_heuristic_frame_this_id,
6834c9bb
JB
1443 alpha_heuristic_frame_prev_register,
1444 NULL,
1445 default_frame_sniffer
d2427a71 1446};
c906108c 1447
fbe586ae 1448static CORE_ADDR
6834c9bb 1449alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1450 void **this_prologue_cache)
c906108c 1451{
d2427a71 1452 struct alpha_heuristic_unwind_cache *info
6834c9bb 1453 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1454
d2427a71 1455 return info->vfp;
c906108c
SS
1456}
1457
d2427a71
RH
1458static const struct frame_base alpha_heuristic_frame_base = {
1459 &alpha_heuristic_frame_unwind,
1460 alpha_heuristic_frame_base_address,
1461 alpha_heuristic_frame_base_address,
1462 alpha_heuristic_frame_base_address
1463};
1464
c906108c 1465/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1466 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1467
1468static void
fba45db2 1469reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1470{
1471 reinit_frame_cache ();
1472}
1473
d2427a71 1474\f
d2427a71
RH
1475/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1476 dummy frame. The frame ID's base needs to match the TOS value
1477 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1478 breakpoint. */
d734c450 1479
d2427a71 1480static struct frame_id
6834c9bb 1481alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1482{
d2427a71 1483 ULONGEST base;
6834c9bb
JB
1484 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1485 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1486}
1487
dc129d82 1488static CORE_ADDR
d2427a71 1489alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1490{
d2427a71 1491 ULONGEST pc;
11411de3 1492 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1493 return pc;
accc6d1f
JT
1494}
1495
98a8e1e5
RH
1496\f
1497/* Helper routines for alpha*-nat.c files to move register sets to and
1498 from core files. The UNIQUE pointer is allowed to be NULL, as most
1499 targets don't supply this value in their core files. */
1500
1501void
390c1522
UW
1502alpha_supply_int_regs (struct regcache *regcache, int regno,
1503 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1504{
2a1ce6ec 1505 const gdb_byte *regs = r0_r30;
98a8e1e5
RH
1506 int i;
1507
1508 for (i = 0; i < 31; ++i)
1509 if (regno == i || regno == -1)
390c1522 1510 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1511
1512 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1513 {
1514 const gdb_byte zero[8] = { 0 };
1515
1516 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1517 }
98a8e1e5
RH
1518
1519 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1520 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1521
1522 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1523 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1524}
1525
1526void
390c1522
UW
1527alpha_fill_int_regs (const struct regcache *regcache,
1528 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1529{
2a1ce6ec 1530 gdb_byte *regs = r0_r30;
98a8e1e5
RH
1531 int i;
1532
1533 for (i = 0; i < 31; ++i)
1534 if (regno == i || regno == -1)
390c1522 1535 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1536
1537 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1538 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1539
1540 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1541 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1542}
1543
1544void
390c1522
UW
1545alpha_supply_fp_regs (struct regcache *regcache, int regno,
1546 const void *f0_f30, const void *fpcr)
98a8e1e5 1547{
2a1ce6ec 1548 const gdb_byte *regs = f0_f30;
98a8e1e5
RH
1549 int i;
1550
1551 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1552 if (regno == i || regno == -1)
390c1522 1553 regcache_raw_supply (regcache, i,
2a1ce6ec 1554 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1555
1556 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1557 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1558}
1559
1560void
390c1522
UW
1561alpha_fill_fp_regs (const struct regcache *regcache,
1562 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1563{
2a1ce6ec 1564 gdb_byte *regs = f0_f30;
98a8e1e5
RH
1565 int i;
1566
1567 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1568 if (regno == i || regno == -1)
390c1522 1569 regcache_raw_collect (regcache, i,
2a1ce6ec 1570 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1571
1572 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1573 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1574}
1575
d2427a71 1576\f
0de94d4b
JB
1577
1578/* Return nonzero if the G_floating register value in REG is equal to
1579 zero for FP control instructions. */
1580
1581static int
1582fp_register_zero_p (LONGEST reg)
1583{
1584 /* Check that all bits except the sign bit are zero. */
1585 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1586
1587 return ((reg & zero_mask) == 0);
1588}
1589
1590/* Return the value of the sign bit for the G_floating register
1591 value held in REG. */
1592
1593static int
1594fp_register_sign_bit (LONGEST reg)
1595{
1596 const LONGEST sign_mask = (LONGEST) 1 << 63;
1597
1598 return ((reg & sign_mask) != 0);
1599}
1600
ec32e4be
JT
1601/* alpha_software_single_step() is called just before we want to resume
1602 the inferior, if we want to single-step it but there is no hardware
1603 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1604 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1605
1606static CORE_ADDR
0b1b3e42 1607alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
ec32e4be 1608{
e17a4113 1609 struct gdbarch *gdbarch = get_frame_arch (frame);
ec32e4be
JT
1610 unsigned int insn;
1611 unsigned int op;
551e4f2e 1612 int regno;
ec32e4be
JT
1613 int offset;
1614 LONGEST rav;
1615
e17a4113 1616 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1617
0963b4bd 1618 /* Opcode is top 6 bits. */
ec32e4be
JT
1619 op = (insn >> 26) & 0x3f;
1620
1621 if (op == 0x1a)
1622 {
1623 /* Jump format: target PC is:
1624 RB & ~3 */
0b1b3e42 1625 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1626 }
1627
1628 if ((op & 0x30) == 0x30)
1629 {
1630 /* Branch format: target PC is:
1631 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1632 if (op == 0x30 /* BR */
1633 || op == 0x34) /* BSR */
ec32e4be
JT
1634 {
1635 branch_taken:
1636 offset = (insn & 0x001fffff);
1637 if (offset & 0x00100000)
1638 offset |= 0xffe00000;
e8d2d628
MK
1639 offset *= ALPHA_INSN_SIZE;
1640 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1641 }
1642
1643 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1644 regno = (insn >> 21) & 0x1f;
1645 switch (op)
1646 {
1647 case 0x31: /* FBEQ */
1648 case 0x36: /* FBGE */
1649 case 0x37: /* FBGT */
1650 case 0x33: /* FBLE */
1651 case 0x32: /* FBLT */
1652 case 0x35: /* FBNE */
e17a4113 1653 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1654 }
1655
0b1b3e42 1656 rav = get_frame_register_signed (frame, regno);
0de94d4b 1657
ec32e4be
JT
1658 switch (op)
1659 {
1660 case 0x38: /* BLBC */
1661 if ((rav & 1) == 0)
1662 goto branch_taken;
1663 break;
1664 case 0x3c: /* BLBS */
1665 if (rav & 1)
1666 goto branch_taken;
1667 break;
1668 case 0x39: /* BEQ */
1669 if (rav == 0)
1670 goto branch_taken;
1671 break;
1672 case 0x3d: /* BNE */
1673 if (rav != 0)
1674 goto branch_taken;
1675 break;
1676 case 0x3a: /* BLT */
1677 if (rav < 0)
1678 goto branch_taken;
1679 break;
1680 case 0x3b: /* BLE */
1681 if (rav <= 0)
1682 goto branch_taken;
1683 break;
1684 case 0x3f: /* BGT */
1685 if (rav > 0)
1686 goto branch_taken;
1687 break;
1688 case 0x3e: /* BGE */
1689 if (rav >= 0)
1690 goto branch_taken;
1691 break;
d2427a71 1692
0de94d4b
JB
1693 /* Floating point branches. */
1694
1695 case 0x31: /* FBEQ */
1696 if (fp_register_zero_p (rav))
1697 goto branch_taken;
1698 break;
1699 case 0x36: /* FBGE */
1700 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1701 goto branch_taken;
1702 break;
1703 case 0x37: /* FBGT */
1704 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1705 goto branch_taken;
1706 break;
1707 case 0x33: /* FBLE */
1708 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1709 goto branch_taken;
1710 break;
1711 case 0x32: /* FBLT */
1712 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1713 goto branch_taken;
1714 break;
1715 case 0x35: /* FBNE */
1716 if (! fp_register_zero_p (rav))
1717 goto branch_taken;
1718 break;
ec32e4be
JT
1719 }
1720 }
1721
1722 /* Not a branch or branch not taken; target PC is:
1723 pc + 4 */
e8d2d628 1724 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1725}
1726
e6590a1b 1727int
0b1b3e42 1728alpha_software_single_step (struct frame_info *frame)
ec32e4be 1729{
a6d9a66e 1730 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1731 struct address_space *aspace = get_frame_address_space (frame);
e0cd558a 1732 CORE_ADDR pc, next_pc;
ec32e4be 1733
0b1b3e42
UW
1734 pc = get_frame_pc (frame);
1735 next_pc = alpha_next_pc (frame, pc);
ec32e4be 1736
6c95b8df 1737 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b 1738 return 1;
c906108c
SS
1739}
1740
dc129d82 1741\f
dc129d82
JT
1742/* Initialize the current architecture based on INFO. If possible, re-use an
1743 architecture from ARCHES, which is a list of architectures already created
1744 during this debugging session.
1745
1746 Called e.g. at program startup, when reading a core file, and when reading
1747 a binary file. */
1748
1749static struct gdbarch *
1750alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1751{
1752 struct gdbarch_tdep *tdep;
1753 struct gdbarch *gdbarch;
dc129d82
JT
1754
1755 /* Try to determine the ABI of the object we are loading. */
4be87837 1756 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
dc129d82 1757 {
4be87837
DJ
1758 /* If it's an ECOFF file, assume it's OSF/1. */
1759 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
aff87235 1760 info.osabi = GDB_OSABI_OSF1;
dc129d82
JT
1761 }
1762
1763 /* Find a candidate among extant architectures. */
4be87837
DJ
1764 arches = gdbarch_list_lookup_by_info (arches, &info);
1765 if (arches != NULL)
1766 return arches->gdbarch;
dc129d82
JT
1767
1768 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1769 gdbarch = gdbarch_alloc (&info, tdep);
1770
d2427a71
RH
1771 /* Lowest text address. This is used by heuristic_proc_start()
1772 to decide when to stop looking. */
594706e6 1773 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1774
36a6271d 1775 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1776 tdep->sigcontext_addr = NULL;
138e7be5
MK
1777 tdep->sc_pc_offset = 2 * 8;
1778 tdep->sc_regs_offset = 4 * 8;
1779 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1780
0963b4bd 1781 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1782
9823e921
RH
1783 tdep->return_in_memory = alpha_return_in_memory_always;
1784
dc129d82
JT
1785 /* Type sizes */
1786 set_gdbarch_short_bit (gdbarch, 16);
1787 set_gdbarch_int_bit (gdbarch, 32);
1788 set_gdbarch_long_bit (gdbarch, 64);
1789 set_gdbarch_long_long_bit (gdbarch, 64);
1790 set_gdbarch_float_bit (gdbarch, 32);
1791 set_gdbarch_double_bit (gdbarch, 64);
1792 set_gdbarch_long_double_bit (gdbarch, 64);
1793 set_gdbarch_ptr_bit (gdbarch, 64);
1794
1795 /* Register info */
1796 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1797 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1798 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1799 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1800
1801 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1802 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1803
1804 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1805 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1806
c483c494
RH
1807 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1808 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1809 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1810
615967cb
RH
1811 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1812
d2427a71 1813 /* Prologue heuristics. */
dc129d82
JT
1814 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1815
5ef165c2
RH
1816 /* Disassembler. */
1817 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1818
d2427a71 1819 /* Call info. */
dc129d82 1820
9823e921 1821 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1822
1823 /* Settings for calling functions in the inferior. */
c88e30c0 1824 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1825
1826 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1827 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1828
1829 /* Return the unwound PC value. */
1830 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1831
1832 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1833 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1834
95b80706 1835 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
e8d2d628 1836 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1837 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1838
46ad3598
UW
1839 /* Handles single stepping of atomic sequences. */
1840 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1841
44dffaac 1842 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1843 gdbarch_init_osabi (info, gdbarch);
44dffaac 1844
accc6d1f
JT
1845 /* Now that we have tuned the configuration, set a few final things
1846 based on what the OS ABI has told us. */
1847
1848 if (tdep->jb_pc >= 0)
1849 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1850
6834c9bb
JB
1851 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1852 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1853
d2427a71 1854 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1855
d2427a71 1856 return gdbarch;
dc129d82
JT
1857}
1858
baa490c4
RH
1859void
1860alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1861{
6834c9bb 1862 dwarf2_append_unwinders (gdbarch);
336d1bba 1863 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1864}
1865
a78f21af
AC
1866extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1867
c906108c 1868void
fba45db2 1869_initialize_alpha_tdep (void)
c906108c
SS
1870{
1871 struct cmd_list_element *c;
1872
d2427a71 1873 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1874
1875 /* Let the user set the fence post for heuristic_proc_start. */
1876
1877 /* We really would like to have both "0" and "unlimited" work, but
1878 command.c doesn't deal with that. So make it a var_zinteger
1879 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1880 /* We need to throw away the frame cache when we set this, since it
1881 might change our ability to get backtraces. */
1882 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1883 &heuristic_fence_post, _("\
1884Set the distance searched for the start of a function."), _("\
1885Show the distance searched for the start of a function."), _("\
c906108c
SS
1886If you are debugging a stripped executable, GDB needs to search through the\n\
1887program for the start of a function. This command sets the distance of the\n\
323e0a4a 1888search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1889 reinit_frame_cache_sfunc,
0963b4bd
MS
1890 NULL, /* FIXME: i18n: The distance searched for
1891 the start of a function is \"%d\". */
edefbb7c 1892 &setlist, &showlist);
c906108c 1893}
This page took 0.925546 seconds and 4 git commands to generate.