Remove cmd_cfunc_ftype
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
0fd88904 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
d2427a71
RH
22#include "frame-unwind.h"
23#include "frame-base.h"
baa490c4 24#include "dwarf2-frame.h"
c906108c
SS
25#include "inferior.h"
26#include "symtab.h"
27#include "value.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "dis-asm.h"
31#include "symfile.h"
32#include "objfiles.h"
c5f0f3d0 33#include "linespec.h"
4e052eda 34#include "regcache.h"
615967cb 35#include "reggroups.h"
dc129d82 36#include "arch-utils.h"
4be87837 37#include "osabi.h"
fe898f56 38#include "block.h"
7d9b040b 39#include "infcall.h"
07ea644b 40#include "trad-frame.h"
dc129d82
JT
41
42#include "elf-bfd.h"
43
44#include "alpha-tdep.h"
325fac50 45#include <algorithm>
dc129d82 46
3a48e6ff
JG
47/* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51#define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53/* Memory instruction format */
54#define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55#define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56#define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59static const int lda_opcode = 0x08;
60static const int stq_opcode = 0x2d;
61
62/* Branch instruction format */
63#define BR_RA(insn) MEM_RA(insn)
64
46ad3598 65static const int br_opcode = 0x30;
3a48e6ff
JG
66static const int bne_opcode = 0x3d;
67
68/* Operate instruction format */
69#define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70#define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71#define OPR_RA(insn) MEM_RA(insn)
72#define OPR_RC(insn) ((insn & 0x1f))
73#define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75static const int subq_opcode = 0x10;
76static const int subq_function = 0x29;
77
c906108c 78\f
515921d7
JB
79/* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
0963b4bd 82 be used for a virtual register. That virtual register has
515921d7
JB
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
fa88f677 86static const char *
d93859e2 87alpha_register_name (struct gdbarch *gdbarch, int regno)
636a6dfc 88{
5ab84872 89 static const char * const register_names[] =
636a6dfc
JT
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
44d88583 99 "pc", "", "unique"
636a6dfc
JT
100 };
101
102 if (regno < 0)
5ab84872 103 return NULL;
e8d2d628 104 if (regno >= ARRAY_SIZE(register_names))
5ab84872
RH
105 return NULL;
106 return register_names[regno];
636a6dfc 107}
d734c450 108
dc129d82 109static int
64a3914f 110alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
d734c450 111{
4a1be8d2 112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
113}
114
dc129d82 115static int
64a3914f 116alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
d734c450 117{
515921d7 118 return (regno == ALPHA_ZERO_REGNUM
64a3914f 119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
d734c450
JT
120}
121
dc129d82 122static struct type *
c483c494 123alpha_register_type (struct gdbarch *gdbarch, int regno)
0d056799 124{
72667056 125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
0dfff4cb 126 return builtin_type (gdbarch)->builtin_data_ptr;
72667056 127 if (regno == ALPHA_PC_REGNUM)
0dfff4cb 128 return builtin_type (gdbarch)->builtin_func_ptr;
72667056
RH
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
b38b6be2 132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
27067745 133 return builtin_type (gdbarch)->builtin_double;
72667056 134
df4df182 135 return builtin_type (gdbarch)->builtin_int64;
0d056799 136}
f8453e34 137
615967cb
RH
138/* Is REGNUM a member of REGGROUP? */
139
140static int
141alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 struct reggroup *group)
143{
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
ec7cc0e8
UW
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
615967cb
RH
148 return 0;
149
df4a182b
RH
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
615967cb
RH
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178}
179
c483c494
RH
180/* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184static void
e17a4113 185alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 186{
e17a4113 187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9a3c8263
SM
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
c483c494
RH
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
9a3c8263 209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
c483c494
RH
210}
211
212/* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
39efb398 215static void
e17a4113 216alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
c483c494 217{
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c483c494
RH
219 ULONGEST reg, mem;
220
9a3c8263 221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
c483c494 222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
9a3c8263 223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
c483c494
RH
224}
225
d2427a71
RH
226/* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
68fce50f 229 bytes, as the representation of integers in floating point
0963b4bd 230 registers is different. */
d2427a71 231
c483c494 232static int
0963b4bd
MS
233alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
14696584 235{
83acabca 236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
68fce50f 237 && TYPE_LENGTH (type) == 4);
14696584
RH
238}
239
8dccd430 240static int
ff2e87ac 241alpha_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
5868c862 244{
8dccd430 245 struct gdbarch *gdbarch = get_frame_arch (frame);
fbe654c8 246 struct value *value = get_frame_register_value (frame, regnum);
2a1ce6ec 247
fbe654c8
AH
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
255 value_free (value);
256 return 0;
257 }
258
259 /* Convert to VALTYPE. */
8dccd430 260
68fce50f 261 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
262 alpha_sts (gdbarch, out, value_contents_all (value));
263
264 release_value (value);
265 value_free (value);
68fce50f 266 return 1;
d2427a71 267}
5868c862 268
d2427a71 269static void
ff2e87ac 270alpha_value_to_register (struct frame_info *frame, int regnum,
5b819568 271 struct type *valtype, const gdb_byte *in)
d2427a71 272{
fbe654c8 273 gdb_byte out[ALPHA_REGISTER_SIZE];
2a1ce6ec 274
68fce50f 275 gdb_assert (TYPE_LENGTH (valtype) == 4);
fbe654c8
AH
276 gdb_assert (register_size (get_frame_arch (frame), regnum)
277 <= ALPHA_REGISTER_SIZE);
68fce50f
YQ
278 alpha_lds (get_frame_arch (frame), out, in);
279
ff2e87ac 280 put_frame_register (frame, regnum, out);
5868c862
JT
281}
282
d2427a71
RH
283\f
284/* The alpha passes the first six arguments in the registers, the rest on
c88e30c0
RH
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
d2427a71
RH
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
c906108c 295
d2427a71 296static CORE_ADDR
7d9b040b 297alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
c88e30c0
RH
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
c906108c 301{
e17a4113 302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71
RH
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
d2427a71 305 struct alpha_arg
c906108c 306 {
f42a0a33 307 const gdb_byte *contents;
d2427a71
RH
308 int len;
309 int offset;
310 };
8d749320 311 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
52f0bd74 312 struct alpha_arg *m_arg;
2a1ce6ec 313 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
d2427a71 314 int required_arg_regs;
7d9b040b 315 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 316
c88e30c0
RH
317 /* The ABI places the address of the called function in T12. */
318 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
319
320 /* Set the return address register to point to the entry point
321 of the program, where a breakpoint lies in wait. */
322 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
323
324 /* Lay out the arguments in memory. */
d2427a71
RH
325 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
326 {
327 struct value *arg = args[i];
4991999e 328 struct type *arg_type = check_typedef (value_type (arg));
c88e30c0 329
d2427a71
RH
330 /* Cast argument to long if necessary as the compiler does it too. */
331 switch (TYPE_CODE (arg_type))
c906108c 332 {
d2427a71
RH
333 case TYPE_CODE_INT:
334 case TYPE_CODE_BOOL:
335 case TYPE_CODE_CHAR:
336 case TYPE_CODE_RANGE:
337 case TYPE_CODE_ENUM:
0ede8eca 338 if (TYPE_LENGTH (arg_type) == 4)
d2427a71 339 {
0ede8eca
RH
340 /* 32-bit values must be sign-extended to 64 bits
341 even if the base data type is unsigned. */
df4df182 342 arg_type = builtin_type (gdbarch)->builtin_int32;
0ede8eca
RH
343 arg = value_cast (arg_type, arg);
344 }
345 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
346 {
df4df182 347 arg_type = builtin_type (gdbarch)->builtin_int64;
d2427a71
RH
348 arg = value_cast (arg_type, arg);
349 }
350 break;
7b5e1cb3 351
c88e30c0
RH
352 case TYPE_CODE_FLT:
353 /* "float" arguments loaded in registers must be passed in
354 register format, aka "double". */
355 if (accumulate_size < sizeof (arg_reg_buffer)
356 && TYPE_LENGTH (arg_type) == 4)
357 {
27067745 358 arg_type = builtin_type (gdbarch)->builtin_double;
c88e30c0
RH
359 arg = value_cast (arg_type, arg);
360 }
361 /* Tru64 5.1 has a 128-bit long double, and passes this by
362 invisible reference. No one else uses this data type. */
363 else if (TYPE_LENGTH (arg_type) == 16)
364 {
365 /* Allocate aligned storage. */
366 sp = (sp & -16) - 16;
367
368 /* Write the real data into the stack. */
0fd88904 369 write_memory (sp, value_contents (arg), 16);
c88e30c0
RH
370
371 /* Construct the indirection. */
372 arg_type = lookup_pointer_type (arg_type);
373 arg = value_from_pointer (arg_type, sp);
374 }
375 break;
7b5e1cb3
RH
376
377 case TYPE_CODE_COMPLEX:
378 /* ??? The ABI says that complex values are passed as two
379 separate scalar values. This distinction only matters
380 for complex float. However, GCC does not implement this. */
381
382 /* Tru64 5.1 has a 128-bit long double, and passes this by
383 invisible reference. */
384 if (TYPE_LENGTH (arg_type) == 32)
385 {
386 /* Allocate aligned storage. */
387 sp = (sp & -16) - 16;
388
389 /* Write the real data into the stack. */
0fd88904 390 write_memory (sp, value_contents (arg), 32);
7b5e1cb3
RH
391
392 /* Construct the indirection. */
393 arg_type = lookup_pointer_type (arg_type);
394 arg = value_from_pointer (arg_type, sp);
395 }
396 break;
397
d2427a71
RH
398 default:
399 break;
c906108c 400 }
d2427a71
RH
401 m_arg->len = TYPE_LENGTH (arg_type);
402 m_arg->offset = accumulate_size;
403 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
f42a0a33 404 m_arg->contents = value_contents (arg);
c906108c
SS
405 }
406
d2427a71
RH
407 /* Determine required argument register loads, loading an argument register
408 is expensive as it uses three ptrace calls. */
409 required_arg_regs = accumulate_size / 8;
410 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
411 required_arg_regs = ALPHA_NUM_ARG_REGS;
c906108c 412
d2427a71 413 /* Make room for the arguments on the stack. */
c88e30c0
RH
414 if (accumulate_size < sizeof(arg_reg_buffer))
415 accumulate_size = 0;
416 else
417 accumulate_size -= sizeof(arg_reg_buffer);
d2427a71 418 sp -= accumulate_size;
c906108c 419
c88e30c0 420 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
d2427a71 421 sp &= ~15;
c906108c 422
d2427a71
RH
423 /* `Push' arguments on the stack. */
424 for (i = nargs; m_arg--, --i >= 0;)
c906108c 425 {
f42a0a33 426 const gdb_byte *contents = m_arg->contents;
c88e30c0
RH
427 int offset = m_arg->offset;
428 int len = m_arg->len;
429
430 /* Copy the bytes destined for registers into arg_reg_buffer. */
431 if (offset < sizeof(arg_reg_buffer))
432 {
433 if (offset + len <= sizeof(arg_reg_buffer))
434 {
435 memcpy (arg_reg_buffer + offset, contents, len);
436 continue;
437 }
438 else
439 {
440 int tlen = sizeof(arg_reg_buffer) - offset;
441 memcpy (arg_reg_buffer + offset, contents, tlen);
442 offset += tlen;
443 contents += tlen;
444 len -= tlen;
445 }
446 }
447
448 /* Everything else goes to the stack. */
449 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
c906108c 450 }
c88e30c0 451 if (struct_return)
e17a4113
UW
452 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
453 byte_order, struct_addr);
c906108c 454
d2427a71
RH
455 /* Load the argument registers. */
456 for (i = 0; i < required_arg_regs; i++)
457 {
09cc52fd
RH
458 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
459 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
460 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
461 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
d2427a71 462 }
c906108c 463
09cc52fd
RH
464 /* Finally, update the stack pointer. */
465 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
466
c88e30c0 467 return sp;
c906108c
SS
468}
469
5ec2bb99
RH
470/* Extract from REGCACHE the value about to be returned from a function
471 and copy it into VALBUF. */
d2427a71 472
dc129d82 473static void
5ec2bb99 474alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
5b819568 475 gdb_byte *valbuf)
140f9984 476{
ac7936df 477 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2a1ce6ec 479 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99
RH
480 ULONGEST l;
481
482 switch (TYPE_CODE (valtype))
483 {
484 case TYPE_CODE_FLT:
744a8059 485 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
486 {
487 case 4:
488 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
e17a4113 489 alpha_sts (gdbarch, valbuf, raw_buffer);
5ec2bb99
RH
490 break;
491
492 case 8:
493 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
494 break;
495
24064b5c
RH
496 case 16:
497 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
498 read_memory (l, valbuf, 16);
499 break;
500
5ec2bb99 501 default:
0963b4bd
MS
502 internal_error (__FILE__, __LINE__,
503 _("unknown floating point width"));
5ec2bb99
RH
504 }
505 break;
506
7b5e1cb3 507 case TYPE_CODE_COMPLEX:
744a8059 508 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
509 {
510 case 8:
511 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
512 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
513 break;
514
515 case 16:
516 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 517 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
518 break;
519
520 case 32:
a9933661 521 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
7b5e1cb3
RH
522 read_memory (l, valbuf, 32);
523 break;
524
525 default:
0963b4bd
MS
526 internal_error (__FILE__, __LINE__,
527 _("unknown floating point width"));
7b5e1cb3
RH
528 }
529 break;
530
5ec2bb99
RH
531 default:
532 /* Assume everything else degenerates to an integer. */
533 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
744a8059 534 store_unsigned_integer (valbuf, TYPE_LENGTH (valtype), byte_order, l);
5ec2bb99
RH
535 break;
536 }
140f9984
JT
537}
538
5ec2bb99
RH
539/* Insert the given value into REGCACHE as if it was being
540 returned by a function. */
0d056799 541
d2427a71 542static void
5ec2bb99 543alpha_store_return_value (struct type *valtype, struct regcache *regcache,
5b819568 544 const gdb_byte *valbuf)
c906108c 545{
ac7936df 546 struct gdbarch *gdbarch = regcache->arch ();
2a1ce6ec 547 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
5ec2bb99 548 ULONGEST l;
d2427a71 549
5ec2bb99 550 switch (TYPE_CODE (valtype))
c906108c 551 {
5ec2bb99 552 case TYPE_CODE_FLT:
744a8059 553 switch (TYPE_LENGTH (valtype))
5ec2bb99
RH
554 {
555 case 4:
e17a4113 556 alpha_lds (gdbarch, raw_buffer, valbuf);
f75d70cc
RH
557 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
558 break;
5ec2bb99
RH
559
560 case 8:
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
562 break;
563
24064b5c
RH
564 case 16:
565 /* FIXME: 128-bit long doubles are returned like structures:
566 by writing into indirect storage provided by the caller
567 as the first argument. */
323e0a4a 568 error (_("Cannot set a 128-bit long double return value."));
24064b5c 569
5ec2bb99 570 default:
0963b4bd
MS
571 internal_error (__FILE__, __LINE__,
572 _("unknown floating point width"));
5ec2bb99
RH
573 }
574 break;
d2427a71 575
7b5e1cb3 576 case TYPE_CODE_COMPLEX:
744a8059 577 switch (TYPE_LENGTH (valtype))
7b5e1cb3
RH
578 {
579 case 8:
580 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
581 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
582 break;
583
584 case 16:
585 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
2a1ce6ec 586 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
7b5e1cb3
RH
587 break;
588
589 case 32:
590 /* FIXME: 128-bit long doubles are returned like structures:
591 by writing into indirect storage provided by the caller
592 as the first argument. */
323e0a4a 593 error (_("Cannot set a 128-bit long double return value."));
7b5e1cb3
RH
594
595 default:
0963b4bd
MS
596 internal_error (__FILE__, __LINE__,
597 _("unknown floating point width"));
7b5e1cb3
RH
598 }
599 break;
600
5ec2bb99
RH
601 default:
602 /* Assume everything else degenerates to an integer. */
0ede8eca
RH
603 /* 32-bit values must be sign-extended to 64 bits
604 even if the base data type is unsigned. */
744a8059 605 if (TYPE_LENGTH (valtype) == 4)
df4df182 606 valtype = builtin_type (gdbarch)->builtin_int32;
5ec2bb99
RH
607 l = unpack_long (valtype, valbuf);
608 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
609 break;
610 }
c906108c
SS
611}
612
9823e921 613static enum return_value_convention
6a3a010b 614alpha_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
615 struct type *type, struct regcache *regcache,
616 gdb_byte *readbuf, const gdb_byte *writebuf)
9823e921
RH
617{
618 enum type_code code = TYPE_CODE (type);
619
620 if ((code == TYPE_CODE_STRUCT
621 || code == TYPE_CODE_UNION
622 || code == TYPE_CODE_ARRAY)
623 && gdbarch_tdep (gdbarch)->return_in_memory (type))
624 {
625 if (readbuf)
626 {
627 ULONGEST addr;
628 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
629 read_memory (addr, readbuf, TYPE_LENGTH (type));
630 }
631
632 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
633 }
634
635 if (readbuf)
636 alpha_extract_return_value (type, regcache, readbuf);
637 if (writebuf)
638 alpha_store_return_value (type, regcache, writebuf);
639
640 return RETURN_VALUE_REGISTER_CONVENTION;
641}
642
643static int
644alpha_return_in_memory_always (struct type *type)
645{
646 return 1;
647}
d2427a71 648\f
c906108c 649
04180708 650constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
598cc9dc 651
04180708 652typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
c906108c 653
d2427a71
RH
654\f
655/* This returns the PC of the first insn after the prologue.
656 If we can't find the prologue, then return 0. */
c906108c 657
d2427a71
RH
658CORE_ADDR
659alpha_after_prologue (CORE_ADDR pc)
c906108c 660{
d2427a71
RH
661 struct symtab_and_line sal;
662 CORE_ADDR func_addr, func_end;
c906108c 663
d2427a71 664 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
c5aa993b 665 return 0;
c906108c 666
d2427a71
RH
667 sal = find_pc_line (func_addr, 0);
668 if (sal.end < func_end)
669 return sal.end;
c5aa993b 670
d2427a71
RH
671 /* The line after the prologue is after the end of the function. In this
672 case, tell the caller to find the prologue the hard way. */
673 return 0;
c906108c
SS
674}
675
d2427a71
RH
676/* Read an instruction from memory at PC, looking through breakpoints. */
677
678unsigned int
e17a4113 679alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 680{
e17a4113 681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e8d2d628 682 gdb_byte buf[ALPHA_INSN_SIZE];
d09f2c3f 683 int res;
c5aa993b 684
d09f2c3f
PA
685 res = target_read_memory (pc, buf, sizeof (buf));
686 if (res != 0)
687 memory_error (TARGET_XFER_E_IO, pc);
e17a4113 688 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
d2427a71 689}
c5aa993b 690
d2427a71
RH
691/* To skip prologues, I use this predicate. Returns either PC itself
692 if the code at PC does not look like a function prologue; otherwise
693 returns an address that (if we're lucky) follows the prologue. If
694 LENIENT, then we must skip everything which is involved in setting
695 up the frame (it's OK to skip more, just so long as we don't skip
696 anything which might clobber the registers which are being saved. */
c906108c 697
d2427a71 698static CORE_ADDR
6093d2eb 699alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71
RH
700{
701 unsigned long inst;
702 int offset;
703 CORE_ADDR post_prologue_pc;
e8d2d628 704 gdb_byte buf[ALPHA_INSN_SIZE];
c906108c 705
d2427a71
RH
706 /* Silently return the unaltered pc upon memory errors.
707 This could happen on OSF/1 if decode_line_1 tries to skip the
708 prologue for quickstarted shared library functions when the
709 shared library is not yet mapped in.
710 Reading target memory is slow over serial lines, so we perform
711 this check only if the target has shared libraries (which all
712 Alpha targets do). */
e8d2d628 713 if (target_read_memory (pc, buf, sizeof (buf)))
d2427a71 714 return pc;
c906108c 715
d2427a71
RH
716 /* See if we can determine the end of the prologue via the symbol table.
717 If so, then return either PC, or the PC after the prologue, whichever
718 is greater. */
c906108c 719
d2427a71
RH
720 post_prologue_pc = alpha_after_prologue (pc);
721 if (post_prologue_pc != 0)
325fac50 722 return std::max (pc, post_prologue_pc);
c906108c 723
d2427a71
RH
724 /* Can't determine prologue from the symbol table, need to examine
725 instructions. */
dc1b0db2 726
0963b4bd 727 /* Skip the typical prologue instructions. These are the stack adjustment
d2427a71
RH
728 instruction and the instructions that save registers on the stack
729 or in the gcc frame. */
e8d2d628 730 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
d2427a71 731 {
e17a4113 732 inst = alpha_read_insn (gdbarch, pc + offset);
c906108c 733
d2427a71
RH
734 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
735 continue;
736 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
739 continue;
740 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
741 continue;
c906108c 742
d2427a71
RH
743 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
744 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
745 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
746 continue;
c906108c 747
d2427a71
RH
748 if (inst == 0x47de040f) /* bis sp,sp,fp */
749 continue;
750 if (inst == 0x47fe040f) /* bis zero,sp,fp */
751 continue;
c906108c 752
d2427a71 753 break;
c906108c 754 }
d2427a71
RH
755 return pc + offset;
756}
c906108c 757
46ad3598
UW
758\f
759static const int ldl_l_opcode = 0x2a;
760static const int ldq_l_opcode = 0x2b;
761static const int stl_c_opcode = 0x2e;
762static const int stq_c_opcode = 0x2f;
763
764/* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
765 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
766 is found, attempt to step through it. A breakpoint is placed at the end of
767 the sequence. */
768
a0ff9e1a 769static std::vector<CORE_ADDR>
f5ea389a 770alpha_deal_with_atomic_sequence (struct regcache *regcache)
46ad3598 771{
ac7936df 772 struct gdbarch *gdbarch = regcache->arch ();
7ab2d087 773 CORE_ADDR pc = regcache_read_pc (regcache);
46ad3598
UW
774 CORE_ADDR breaks[2] = {-1, -1};
775 CORE_ADDR loc = pc;
776 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
777 unsigned int insn = alpha_read_insn (gdbarch, loc);
778 int insn_count;
779 int index;
780 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
781 const int atomic_sequence_length = 16; /* Instruction sequence length. */
782 int bc_insn_count = 0; /* Conditional branch instruction count. */
783
784 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
785 if (INSN_OPCODE (insn) != ldl_l_opcode
786 && INSN_OPCODE (insn) != ldq_l_opcode)
a0ff9e1a 787 return {};
46ad3598
UW
788
789 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
790 instructions. */
791 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
792 {
793 loc += ALPHA_INSN_SIZE;
794 insn = alpha_read_insn (gdbarch, loc);
795
796 /* Assume that there is at most one branch in the atomic
797 sequence. If a branch is found, put a breakpoint in
798 its destination address. */
799 if (INSN_OPCODE (insn) >= br_opcode)
800 {
801 int immediate = (insn & 0x001fffff) << 2;
802
803 immediate = (immediate ^ 0x400000) - 0x400000;
804
805 if (bc_insn_count >= 1)
a0ff9e1a
SM
806 return {}; /* More than one branch found, fallback
807 to the standard single-step code. */
46ad3598
UW
808
809 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
810
811 bc_insn_count++;
812 last_breakpoint++;
813 }
814
815 if (INSN_OPCODE (insn) == stl_c_opcode
816 || INSN_OPCODE (insn) == stq_c_opcode)
817 break;
818 }
819
820 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
821 if (INSN_OPCODE (insn) != stl_c_opcode
822 && INSN_OPCODE (insn) != stq_c_opcode)
a0ff9e1a 823 return {};
46ad3598
UW
824
825 closing_insn = loc;
826 loc += ALPHA_INSN_SIZE;
827
828 /* Insert a breakpoint right after the end of the atomic sequence. */
829 breaks[0] = loc;
830
831 /* Check for duplicated breakpoints. Check also for a breakpoint
832 placed (branch instruction's destination) anywhere in sequence. */
833 if (last_breakpoint
834 && (breaks[1] == breaks[0]
835 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
836 last_breakpoint = 0;
837
a0ff9e1a
SM
838 std::vector<CORE_ADDR> next_pcs;
839
46ad3598 840 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 841 next_pcs.push_back (breaks[index]);
46ad3598 842
93f9a11f 843 return next_pcs;
46ad3598
UW
844}
845
d2427a71
RH
846\f
847/* Figure out where the longjmp will land.
848 We expect the first arg to be a pointer to the jmp_buf structure from
849 which we extract the PC (JB_PC) that we will land at. The PC is copied
850 into the "pc". This routine returns true on success. */
c906108c
SS
851
852static int
60ade65d 853alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 854{
e17a4113
UW
855 struct gdbarch *gdbarch = get_frame_arch (frame);
856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
d2427a71 858 CORE_ADDR jb_addr;
2a1ce6ec 859 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
c906108c 860
60ade65d 861 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
c906108c 862
d2427a71
RH
863 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
864 raw_buffer, tdep->jb_elt_size))
c906108c 865 return 0;
d2427a71 866
e17a4113 867 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
d2427a71 868 return 1;
c906108c
SS
869}
870
d2427a71
RH
871\f
872/* Frame unwinder for signal trampolines. We use alpha tdep bits that
873 describe the location and shape of the sigcontext structure. After
874 that, all registers are in memory, so it's easy. */
875/* ??? Shouldn't we be able to do this generically, rather than with
876 OSABI data specific to Alpha? */
877
878struct alpha_sigtramp_unwind_cache
c906108c 879{
d2427a71
RH
880 CORE_ADDR sigcontext_addr;
881};
c906108c 882
d2427a71 883static struct alpha_sigtramp_unwind_cache *
6834c9bb 884alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
885 void **this_prologue_cache)
886{
887 struct alpha_sigtramp_unwind_cache *info;
888 struct gdbarch_tdep *tdep;
c906108c 889
d2427a71 890 if (*this_prologue_cache)
9a3c8263 891 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
c906108c 892
d2427a71
RH
893 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
894 *this_prologue_cache = info;
c906108c 895
6834c9bb
JB
896 tdep = gdbarch_tdep (get_frame_arch (this_frame));
897 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
c906108c 898
d2427a71 899 return info;
c906108c
SS
900}
901
138e7be5
MK
902/* Return the address of REGNUM in a sigtramp frame. Since this is
903 all arithmetic, it doesn't seem worthwhile to cache it. */
c5aa993b 904
d2427a71 905static CORE_ADDR
be8626e0
MD
906alpha_sigtramp_register_address (struct gdbarch *gdbarch,
907 CORE_ADDR sigcontext_addr, int regnum)
d2427a71 908{
be8626e0 909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
138e7be5
MK
910
911 if (regnum >= 0 && regnum < 32)
912 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
913 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
914 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
915 else if (regnum == ALPHA_PC_REGNUM)
916 return sigcontext_addr + tdep->sc_pc_offset;
c5aa993b 917
d2427a71 918 return 0;
c906108c
SS
919}
920
d2427a71
RH
921/* Given a GDB frame, determine the address of the calling function's
922 frame. This will be used to create a new GDB frame struct. */
140f9984 923
dc129d82 924static void
6834c9bb 925alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
d2427a71
RH
926 void **this_prologue_cache,
927 struct frame_id *this_id)
c906108c 928{
6834c9bb 929 struct gdbarch *gdbarch = get_frame_arch (this_frame);
be8626e0 930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71 931 struct alpha_sigtramp_unwind_cache *info
6834c9bb 932 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71
RH
933 CORE_ADDR stack_addr, code_addr;
934
935 /* If the OSABI couldn't locate the sigcontext, give up. */
936 if (info->sigcontext_addr == 0)
937 return;
938
939 /* If we have dynamic signal trampolines, find their start.
940 If we do not, then we must assume there is a symbol record
941 that can provide the start address. */
d2427a71 942 if (tdep->dynamic_sigtramp_offset)
c906108c 943 {
d2427a71 944 int offset;
6834c9bb 945 code_addr = get_frame_pc (this_frame);
e17a4113 946 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
d2427a71
RH
947 if (offset >= 0)
948 code_addr -= offset;
c906108c 949 else
d2427a71 950 code_addr = 0;
c906108c 951 }
d2427a71 952 else
6834c9bb 953 code_addr = get_frame_func (this_frame);
c906108c 954
d2427a71 955 /* The stack address is trivially read from the sigcontext. */
be8626e0 956 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
d2427a71 957 ALPHA_SP_REGNUM);
6834c9bb 958 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
b21fd293 959 ALPHA_REGISTER_SIZE);
c906108c 960
d2427a71 961 *this_id = frame_id_build (stack_addr, code_addr);
c906108c
SS
962}
963
d2427a71 964/* Retrieve the value of REGNUM in FRAME. Don't give up! */
c906108c 965
6834c9bb
JB
966static struct value *
967alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
968 void **this_prologue_cache, int regnum)
c906108c 969{
d2427a71 970 struct alpha_sigtramp_unwind_cache *info
6834c9bb 971 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
d2427a71 972 CORE_ADDR addr;
c906108c 973
d2427a71 974 if (info->sigcontext_addr != 0)
c906108c 975 {
d2427a71 976 /* All integer and fp registers are stored in memory. */
6834c9bb 977 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
be8626e0 978 info->sigcontext_addr, regnum);
d2427a71 979 if (addr != 0)
6834c9bb 980 return frame_unwind_got_memory (this_frame, regnum, addr);
c906108c
SS
981 }
982
d2427a71
RH
983 /* This extra register may actually be in the sigcontext, but our
984 current description of it in alpha_sigtramp_frame_unwind_cache
985 doesn't include it. Too bad. Fall back on whatever's in the
986 outer frame. */
6834c9bb 987 return frame_unwind_got_register (this_frame, regnum, regnum);
d2427a71 988}
c906108c 989
6834c9bb
JB
990static int
991alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
992 struct frame_info *this_frame,
993 void **this_prologue_cache)
d2427a71 994{
6834c9bb
JB
995 struct gdbarch *gdbarch = get_frame_arch (this_frame);
996 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 997 const char *name;
c906108c 998
f2524b93
AC
999 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
1000 look at tramp-frame.h and other simplier per-architecture
1001 sigtramp unwinders. */
1002
1003 /* We shouldn't even bother to try if the OSABI didn't register a
1004 sigcontext_addr handler or pc_in_sigtramp hander. */
ec7cc0e8 1005 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
6834c9bb 1006 return 0;
ec7cc0e8 1007 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
6834c9bb 1008 return 0;
c906108c 1009
d2427a71
RH
1010 /* Otherwise we should be in a signal frame. */
1011 find_pc_partial_function (pc, &name, NULL, NULL);
e17a4113 1012 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
6834c9bb 1013 return 1;
c906108c 1014
6834c9bb 1015 return 0;
c906108c 1016}
6834c9bb
JB
1017
1018static const struct frame_unwind alpha_sigtramp_frame_unwind = {
1019 SIGTRAMP_FRAME,
8fbca658 1020 default_frame_unwind_stop_reason,
6834c9bb
JB
1021 alpha_sigtramp_frame_this_id,
1022 alpha_sigtramp_frame_prev_register,
1023 NULL,
1024 alpha_sigtramp_frame_sniffer
1025};
1026
d2427a71 1027\f
c906108c 1028
d2427a71
RH
1029/* Heuristic_proc_start may hunt through the text section for a long
1030 time across a 2400 baud serial line. Allows the user to limit this
1031 search. */
44096aee 1032static int heuristic_fence_post = 0;
c906108c 1033
d2427a71
RH
1034/* Attempt to locate the start of the function containing PC. We assume that
1035 the previous function ends with an about_to_return insn. Not foolproof by
1036 any means, since gcc is happy to put the epilogue in the middle of a
1037 function. But we're guessing anyway... */
c906108c 1038
d2427a71 1039static CORE_ADDR
be8626e0 1040alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
d2427a71 1041{
be8626e0 1042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d2427a71
RH
1043 CORE_ADDR last_non_nop = pc;
1044 CORE_ADDR fence = pc - heuristic_fence_post;
1045 CORE_ADDR orig_pc = pc;
fbe586ae 1046 CORE_ADDR func;
d6b48e9c 1047 struct inferior *inf;
9e0b60a8 1048
d2427a71
RH
1049 if (pc == 0)
1050 return 0;
9e0b60a8 1051
fbe586ae
RH
1052 /* First see if we can find the start of the function from minimal
1053 symbol information. This can succeed with a binary that doesn't
1054 have debug info, but hasn't been stripped. */
1055 func = get_pc_function_start (pc);
1056 if (func)
1057 return func;
1058
44096aee 1059 if (heuristic_fence_post == -1
d2427a71
RH
1060 || fence < tdep->vm_min_address)
1061 fence = tdep->vm_min_address;
c906108c 1062
d2427a71
RH
1063 /* Search back for previous return; also stop at a 0, which might be
1064 seen for instance before the start of a code section. Don't include
1065 nops, since this usually indicates padding between functions. */
e8d2d628 1066 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
c906108c 1067 {
e17a4113 1068 unsigned int insn = alpha_read_insn (gdbarch, pc);
d2427a71 1069 switch (insn)
c906108c 1070 {
d2427a71
RH
1071 case 0: /* invalid insn */
1072 case 0x6bfa8001: /* ret $31,($26),1 */
1073 return last_non_nop;
1074
1075 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1076 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1077 break;
1078
1079 default:
1080 last_non_nop = pc;
1081 break;
c906108c 1082 }
d2427a71 1083 }
c906108c 1084
d6b48e9c
PA
1085 inf = current_inferior ();
1086
d2427a71
RH
1087 /* It's not clear to me why we reach this point when stopping quietly,
1088 but with this test, at least we don't print out warnings for every
1089 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
16c381f0 1090 if (inf->control.stop_soon == NO_STOP_QUIETLY)
d2427a71
RH
1091 {
1092 static int blurb_printed = 0;
c906108c 1093
d2427a71 1094 if (fence == tdep->vm_min_address)
323e0a4a 1095 warning (_("Hit beginning of text section without finding \
5af949e3 1096enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1097 else
323e0a4a 1098 warning (_("Hit heuristic-fence-post without finding \
5af949e3 1099enclosing function for address %s"), paddress (gdbarch, orig_pc));
c906108c 1100
d2427a71
RH
1101 if (!blurb_printed)
1102 {
323e0a4a 1103 printf_filtered (_("\
d2427a71
RH
1104This warning occurs if you are debugging a function without any symbols\n\
1105(for example, in a stripped executable). In that case, you may wish to\n\
1106increase the size of the search with the `set heuristic-fence-post' command.\n\
1107\n\
1108Otherwise, you told GDB there was a function where there isn't one, or\n\
323e0a4a 1109(more likely) you have encountered a bug in GDB.\n"));
d2427a71
RH
1110 blurb_printed = 1;
1111 }
1112 }
c906108c 1113
d2427a71
RH
1114 return 0;
1115}
c906108c 1116
07ea644b
MD
1117/* Fallback alpha frame unwinder. Uses instruction scanning and knows
1118 something about the traditional layout of alpha stack frames. */
1119
1120struct alpha_heuristic_unwind_cache
1121{
1122 CORE_ADDR vfp;
1123 CORE_ADDR start_pc;
1124 struct trad_frame_saved_reg *saved_regs;
1125 int return_reg;
1126};
1127
3a48e6ff
JG
1128/* If a probing loop sequence starts at PC, simulate it and compute
1129 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1130 FRAME_SIZE unchanged. */
1131
1132static void
1133alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1134 int *frame_size)
1135{
1136 CORE_ADDR cur_pc = *pc;
1137 int cur_frame_size = *frame_size;
1138 int nb_of_iterations, reg_index, reg_probe;
1139 unsigned int insn;
1140
1141 /* The following pattern is recognized as a probing loop:
1142
1143 lda REG_INDEX,NB_OF_ITERATIONS
1144 lda REG_PROBE,<immediate>(sp)
1145
1146 LOOP_START:
1147 stq zero,<immediate>(REG_PROBE)
1148 subq REG_INDEX,0x1,REG_INDEX
1149 lda REG_PROBE,<immediate>(REG_PROBE)
1150 bne REG_INDEX, LOOP_START
1151
1152 lda sp,<immediate>(REG_PROBE)
1153
1154 If anything different is found, the function returns without
1155 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
0963b4bd 1156 after this sequence, and FRAME_SIZE will be updated. */
3a48e6ff
JG
1157
1158 /* lda REG_INDEX,NB_OF_ITERATIONS */
1159
1160 insn = alpha_read_insn (gdbarch, cur_pc);
1161 if (INSN_OPCODE (insn) != lda_opcode)
1162 return;
1163 reg_index = MEM_RA (insn);
1164 nb_of_iterations = MEM_DISP (insn);
1165
1166 /* lda REG_PROBE,<immediate>(sp) */
1167
1168 cur_pc += ALPHA_INSN_SIZE;
1169 insn = alpha_read_insn (gdbarch, cur_pc);
1170 if (INSN_OPCODE (insn) != lda_opcode
1171 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1172 return;
1173 reg_probe = MEM_RA (insn);
1174 cur_frame_size -= MEM_DISP (insn);
1175
1176 /* stq zero,<immediate>(REG_PROBE) */
1177
1178 cur_pc += ALPHA_INSN_SIZE;
1179 insn = alpha_read_insn (gdbarch, cur_pc);
1180 if (INSN_OPCODE (insn) != stq_opcode
1181 || MEM_RA (insn) != 0x1f
1182 || MEM_RB (insn) != reg_probe)
1183 return;
1184
1185 /* subq REG_INDEX,0x1,REG_INDEX */
1186
1187 cur_pc += ALPHA_INSN_SIZE;
1188 insn = alpha_read_insn (gdbarch, cur_pc);
1189 if (INSN_OPCODE (insn) != subq_opcode
1190 || !OPR_HAS_IMMEDIATE (insn)
1191 || OPR_FUNCTION (insn) != subq_function
1192 || OPR_LIT(insn) != 1
1193 || OPR_RA (insn) != reg_index
1194 || OPR_RC (insn) != reg_index)
1195 return;
1196
1197 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1198
1199 cur_pc += ALPHA_INSN_SIZE;
1200 insn = alpha_read_insn (gdbarch, cur_pc);
1201 if (INSN_OPCODE (insn) != lda_opcode
1202 || MEM_RA (insn) != reg_probe
1203 || MEM_RB (insn) != reg_probe)
1204 return;
1205 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1206
1207 /* bne REG_INDEX, LOOP_START */
1208
1209 cur_pc += ALPHA_INSN_SIZE;
1210 insn = alpha_read_insn (gdbarch, cur_pc);
1211 if (INSN_OPCODE (insn) != bne_opcode
1212 || MEM_RA (insn) != reg_index)
1213 return;
1214
1215 /* lda sp,<immediate>(REG_PROBE) */
1216
1217 cur_pc += ALPHA_INSN_SIZE;
1218 insn = alpha_read_insn (gdbarch, cur_pc);
1219 if (INSN_OPCODE (insn) != lda_opcode
1220 || MEM_RA (insn) != ALPHA_SP_REGNUM
1221 || MEM_RB (insn) != reg_probe)
1222 return;
1223 cur_frame_size -= MEM_DISP (insn);
1224
1225 *pc = cur_pc;
1226 *frame_size = cur_frame_size;
1227}
1228
fbe586ae 1229static struct alpha_heuristic_unwind_cache *
6834c9bb 1230alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
d2427a71
RH
1231 void **this_prologue_cache,
1232 CORE_ADDR start_pc)
1233{
6834c9bb 1234 struct gdbarch *gdbarch = get_frame_arch (this_frame);
d2427a71
RH
1235 struct alpha_heuristic_unwind_cache *info;
1236 ULONGEST val;
1237 CORE_ADDR limit_pc, cur_pc;
1238 int frame_reg, frame_size, return_reg, reg;
c906108c 1239
d2427a71 1240 if (*this_prologue_cache)
9a3c8263 1241 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
c906108c 1242
d2427a71
RH
1243 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1244 *this_prologue_cache = info;
6834c9bb 1245 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1246
6834c9bb 1247 limit_pc = get_frame_pc (this_frame);
d2427a71 1248 if (start_pc == 0)
be8626e0 1249 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
d2427a71 1250 info->start_pc = start_pc;
c906108c 1251
d2427a71
RH
1252 frame_reg = ALPHA_SP_REGNUM;
1253 frame_size = 0;
1254 return_reg = -1;
c906108c 1255
d2427a71
RH
1256 /* If we've identified a likely place to start, do code scanning. */
1257 if (start_pc != 0)
c5aa993b 1258 {
d2427a71
RH
1259 /* Limit the forward search to 50 instructions. */
1260 if (start_pc + 200 < limit_pc)
1261 limit_pc = start_pc + 200;
c5aa993b 1262
e8d2d628 1263 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
d2427a71 1264 {
e17a4113 1265 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1266
d2427a71
RH
1267 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1268 {
1269 if (word & 0x8000)
1270 {
1271 /* Consider only the first stack allocation instruction
0963b4bd 1272 to contain the static size of the frame. */
d2427a71
RH
1273 if (frame_size == 0)
1274 frame_size = (-word) & 0xffff;
1275 }
1276 else
1277 {
1278 /* Exit loop if a positive stack adjustment is found, which
1279 usually means that the stack cleanup code in the function
1280 epilogue is reached. */
1281 break;
1282 }
1283 }
1284 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1285 {
1286 reg = (word & 0x03e00000) >> 21;
1287
d15bfd3a
AC
1288 /* Ignore this instruction if we have already encountered
1289 an instruction saving the same register earlier in the
1290 function code. The current instruction does not tell
1291 us where the original value upon function entry is saved.
1292 All it says is that the function we are scanning reused
1293 that register for some computation of its own, and is now
1294 saving its result. */
07ea644b 1295 if (trad_frame_addr_p(info->saved_regs, reg))
d15bfd3a
AC
1296 continue;
1297
d2427a71
RH
1298 if (reg == 31)
1299 continue;
1300
1301 /* Do not compute the address where the register was saved yet,
1302 because we don't know yet if the offset will need to be
1303 relative to $sp or $fp (we can not compute the address
1304 relative to $sp if $sp is updated during the execution of
1305 the current subroutine, for instance when doing some alloca).
1306 So just store the offset for the moment, and compute the
1307 address later when we know whether this frame has a frame
1308 pointer or not. */
1309 /* Hack: temporarily add one, so that the offset is non-zero
1310 and we can tell which registers have save offsets below. */
07ea644b 1311 info->saved_regs[reg].addr = (word & 0xffff) + 1;
d2427a71
RH
1312
1313 /* Starting with OSF/1-3.2C, the system libraries are shipped
1314 without local symbols, but they still contain procedure
1315 descriptors without a symbol reference. GDB is currently
1316 unable to find these procedure descriptors and uses
1317 heuristic_proc_desc instead.
1318 As some low level compiler support routines (__div*, __add*)
1319 use a non-standard return address register, we have to
1320 add some heuristics to determine the return address register,
1321 or stepping over these routines will fail.
1322 Usually the return address register is the first register
1323 saved on the stack, but assembler optimization might
1324 rearrange the register saves.
1325 So we recognize only a few registers (t7, t9, ra) within
1326 the procedure prologue as valid return address registers.
1327 If we encounter a return instruction, we extract the
7a9dd1b2 1328 return address register from it.
d2427a71
RH
1329
1330 FIXME: Rewriting GDB to access the procedure descriptors,
0963b4bd
MS
1331 e.g. via the minimal symbol table, might obviate this
1332 hack. */
d2427a71
RH
1333 if (return_reg == -1
1334 && cur_pc < (start_pc + 80)
1335 && (reg == ALPHA_T7_REGNUM
1336 || reg == ALPHA_T9_REGNUM
1337 || reg == ALPHA_RA_REGNUM))
1338 return_reg = reg;
1339 }
1340 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1341 return_reg = (word >> 16) & 0x1f;
1342 else if (word == 0x47de040f) /* bis sp,sp,fp */
1343 frame_reg = ALPHA_GCC_FP_REGNUM;
1344 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1345 frame_reg = ALPHA_GCC_FP_REGNUM;
3a48e6ff
JG
1346
1347 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
d2427a71 1348 }
c5aa993b 1349
d2427a71
RH
1350 /* If we haven't found a valid return address register yet, keep
1351 searching in the procedure prologue. */
1352 if (return_reg == -1)
1353 {
1354 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1355 {
e17a4113 1356 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
c5aa993b 1357
d2427a71
RH
1358 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1359 {
1360 reg = (word & 0x03e00000) >> 21;
1361 if (reg == ALPHA_T7_REGNUM
1362 || reg == ALPHA_T9_REGNUM
1363 || reg == ALPHA_RA_REGNUM)
1364 {
1365 return_reg = reg;
1366 break;
1367 }
1368 }
1369 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1370 {
1371 return_reg = (word >> 16) & 0x1f;
1372 break;
1373 }
85b32d22 1374
e8d2d628 1375 cur_pc += ALPHA_INSN_SIZE;
d2427a71
RH
1376 }
1377 }
c906108c 1378 }
c906108c 1379
d2427a71
RH
1380 /* Failing that, do default to the customary RA. */
1381 if (return_reg == -1)
1382 return_reg = ALPHA_RA_REGNUM;
1383 info->return_reg = return_reg;
f8453e34 1384
6834c9bb 1385 val = get_frame_register_unsigned (this_frame, frame_reg);
d2427a71 1386 info->vfp = val + frame_size;
c906108c 1387
d2427a71
RH
1388 /* Convert offsets to absolute addresses. See above about adding
1389 one to the offsets to make all detected offsets non-zero. */
1390 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
07ea644b
MD
1391 if (trad_frame_addr_p(info->saved_regs, reg))
1392 info->saved_regs[reg].addr += val - 1;
d2427a71 1393
bfd66dd9
JB
1394 /* The stack pointer of the previous frame is computed by popping
1395 the current stack frame. */
1396 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1397 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1398
d2427a71 1399 return info;
c906108c 1400}
c906108c 1401
d2427a71
RH
1402/* Given a GDB frame, determine the address of the calling function's
1403 frame. This will be used to create a new GDB frame struct. */
1404
fbe586ae 1405static void
6834c9bb
JB
1406alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1407 void **this_prologue_cache,
1408 struct frame_id *this_id)
c906108c 1409{
d2427a71 1410 struct alpha_heuristic_unwind_cache *info
6834c9bb 1411 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1412
d2427a71 1413 *this_id = frame_id_build (info->vfp, info->start_pc);
c906108c
SS
1414}
1415
d2427a71
RH
1416/* Retrieve the value of REGNUM in FRAME. Don't give up! */
1417
6834c9bb
JB
1418static struct value *
1419alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1420 void **this_prologue_cache, int regnum)
c906108c 1421{
d2427a71 1422 struct alpha_heuristic_unwind_cache *info
6834c9bb 1423 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
d2427a71
RH
1424
1425 /* The PC of the previous frame is stored in the link register of
1426 the current frame. Frob regnum so that we pull the value from
1427 the correct place. */
1428 if (regnum == ALPHA_PC_REGNUM)
1429 regnum = info->return_reg;
1430
6834c9bb 1431 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
95b80706
JT
1432}
1433
d2427a71
RH
1434static const struct frame_unwind alpha_heuristic_frame_unwind = {
1435 NORMAL_FRAME,
8fbca658 1436 default_frame_unwind_stop_reason,
d2427a71 1437 alpha_heuristic_frame_this_id,
6834c9bb
JB
1438 alpha_heuristic_frame_prev_register,
1439 NULL,
1440 default_frame_sniffer
d2427a71 1441};
c906108c 1442
fbe586ae 1443static CORE_ADDR
6834c9bb 1444alpha_heuristic_frame_base_address (struct frame_info *this_frame,
d2427a71 1445 void **this_prologue_cache)
c906108c 1446{
d2427a71 1447 struct alpha_heuristic_unwind_cache *info
6834c9bb 1448 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
c906108c 1449
d2427a71 1450 return info->vfp;
c906108c
SS
1451}
1452
d2427a71
RH
1453static const struct frame_base alpha_heuristic_frame_base = {
1454 &alpha_heuristic_frame_unwind,
1455 alpha_heuristic_frame_base_address,
1456 alpha_heuristic_frame_base_address,
1457 alpha_heuristic_frame_base_address
1458};
1459
c906108c 1460/* Just like reinit_frame_cache, but with the right arguments to be
d2427a71 1461 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
c906108c
SS
1462
1463static void
fba45db2 1464reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
1465{
1466 reinit_frame_cache ();
1467}
1468
d2427a71 1469\f
d2427a71
RH
1470/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1471 dummy frame. The frame ID's base needs to match the TOS value
1472 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1473 breakpoint. */
d734c450 1474
d2427a71 1475static struct frame_id
6834c9bb 1476alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
0d056799 1477{
d2427a71 1478 ULONGEST base;
6834c9bb
JB
1479 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1480 return frame_id_build (base, get_frame_pc (this_frame));
0d056799
JT
1481}
1482
dc129d82 1483static CORE_ADDR
d2427a71 1484alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
accc6d1f 1485{
d2427a71 1486 ULONGEST pc;
11411de3 1487 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
d2427a71 1488 return pc;
accc6d1f
JT
1489}
1490
98a8e1e5
RH
1491\f
1492/* Helper routines for alpha*-nat.c files to move register sets to and
1493 from core files. The UNIQUE pointer is allowed to be NULL, as most
1494 targets don't supply this value in their core files. */
1495
1496void
390c1522
UW
1497alpha_supply_int_regs (struct regcache *regcache, int regno,
1498 const void *r0_r30, const void *pc, const void *unique)
98a8e1e5 1499{
9a3c8263 1500 const gdb_byte *regs = (const gdb_byte *) r0_r30;
98a8e1e5
RH
1501 int i;
1502
1503 for (i = 0; i < 31; ++i)
1504 if (regno == i || regno == -1)
390c1522 1505 regcache_raw_supply (regcache, i, regs + i * 8);
98a8e1e5
RH
1506
1507 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
4a1be8d2
PA
1508 {
1509 const gdb_byte zero[8] = { 0 };
1510
1511 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, zero);
1512 }
98a8e1e5
RH
1513
1514 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1515 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1516
1517 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
390c1522 1518 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1519}
1520
1521void
390c1522
UW
1522alpha_fill_int_regs (const struct regcache *regcache,
1523 int regno, void *r0_r30, void *pc, void *unique)
98a8e1e5 1524{
9a3c8263 1525 gdb_byte *regs = (gdb_byte *) r0_r30;
98a8e1e5
RH
1526 int i;
1527
1528 for (i = 0; i < 31; ++i)
1529 if (regno == i || regno == -1)
390c1522 1530 regcache_raw_collect (regcache, i, regs + i * 8);
98a8e1e5
RH
1531
1532 if (regno == ALPHA_PC_REGNUM || regno == -1)
390c1522 1533 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
98a8e1e5
RH
1534
1535 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
390c1522 1536 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
98a8e1e5
RH
1537}
1538
1539void
390c1522
UW
1540alpha_supply_fp_regs (struct regcache *regcache, int regno,
1541 const void *f0_f30, const void *fpcr)
98a8e1e5 1542{
9a3c8263 1543 const gdb_byte *regs = (const gdb_byte *) f0_f30;
98a8e1e5
RH
1544 int i;
1545
1546 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1547 if (regno == i || regno == -1)
390c1522 1548 regcache_raw_supply (regcache, i,
2a1ce6ec 1549 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1550
1551 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1552 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1553}
1554
1555void
390c1522
UW
1556alpha_fill_fp_regs (const struct regcache *regcache,
1557 int regno, void *f0_f30, void *fpcr)
98a8e1e5 1558{
9a3c8263 1559 gdb_byte *regs = (gdb_byte *) f0_f30;
98a8e1e5
RH
1560 int i;
1561
1562 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1563 if (regno == i || regno == -1)
390c1522 1564 regcache_raw_collect (regcache, i,
2a1ce6ec 1565 regs + (i - ALPHA_FP0_REGNUM) * 8);
98a8e1e5
RH
1566
1567 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
390c1522 1568 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
98a8e1e5
RH
1569}
1570
d2427a71 1571\f
0de94d4b
JB
1572
1573/* Return nonzero if the G_floating register value in REG is equal to
1574 zero for FP control instructions. */
1575
1576static int
1577fp_register_zero_p (LONGEST reg)
1578{
1579 /* Check that all bits except the sign bit are zero. */
1580 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1581
1582 return ((reg & zero_mask) == 0);
1583}
1584
1585/* Return the value of the sign bit for the G_floating register
1586 value held in REG. */
1587
1588static int
1589fp_register_sign_bit (LONGEST reg)
1590{
1591 const LONGEST sign_mask = (LONGEST) 1 << 63;
1592
1593 return ((reg & sign_mask) != 0);
1594}
1595
ec32e4be
JT
1596/* alpha_software_single_step() is called just before we want to resume
1597 the inferior, if we want to single-step it but there is no hardware
1598 or kernel single-step support (NetBSD on Alpha, for example). We find
e0cd558a 1599 the target of the coming instruction and breakpoint it. */
ec32e4be
JT
1600
1601static CORE_ADDR
7ab2d087 1602alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
ec32e4be 1603{
ac7936df 1604 struct gdbarch *gdbarch = regcache->arch ();
ec32e4be
JT
1605 unsigned int insn;
1606 unsigned int op;
551e4f2e 1607 int regno;
ec32e4be
JT
1608 int offset;
1609 LONGEST rav;
1610
e17a4113 1611 insn = alpha_read_insn (gdbarch, pc);
ec32e4be 1612
0963b4bd 1613 /* Opcode is top 6 bits. */
ec32e4be
JT
1614 op = (insn >> 26) & 0x3f;
1615
1616 if (op == 0x1a)
1617 {
1618 /* Jump format: target PC is:
1619 RB & ~3 */
7ab2d087 1620 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
ec32e4be
JT
1621 }
1622
1623 if ((op & 0x30) == 0x30)
1624 {
1625 /* Branch format: target PC is:
1626 (new PC) + (4 * sext(displacement)) */
f8bf5763
PM
1627 if (op == 0x30 /* BR */
1628 || op == 0x34) /* BSR */
ec32e4be
JT
1629 {
1630 branch_taken:
1631 offset = (insn & 0x001fffff);
1632 if (offset & 0x00100000)
1633 offset |= 0xffe00000;
e8d2d628
MK
1634 offset *= ALPHA_INSN_SIZE;
1635 return (pc + ALPHA_INSN_SIZE + offset);
ec32e4be
JT
1636 }
1637
1638 /* Need to determine if branch is taken; read RA. */
551e4f2e
JB
1639 regno = (insn >> 21) & 0x1f;
1640 switch (op)
1641 {
1642 case 0x31: /* FBEQ */
1643 case 0x36: /* FBGE */
1644 case 0x37: /* FBGT */
1645 case 0x33: /* FBLE */
1646 case 0x32: /* FBLT */
1647 case 0x35: /* FBNE */
e17a4113 1648 regno += gdbarch_fp0_regnum (gdbarch);
551e4f2e
JB
1649 }
1650
7ab2d087 1651 rav = regcache_raw_get_signed (regcache, regno);
0de94d4b 1652
ec32e4be
JT
1653 switch (op)
1654 {
1655 case 0x38: /* BLBC */
1656 if ((rav & 1) == 0)
1657 goto branch_taken;
1658 break;
1659 case 0x3c: /* BLBS */
1660 if (rav & 1)
1661 goto branch_taken;
1662 break;
1663 case 0x39: /* BEQ */
1664 if (rav == 0)
1665 goto branch_taken;
1666 break;
1667 case 0x3d: /* BNE */
1668 if (rav != 0)
1669 goto branch_taken;
1670 break;
1671 case 0x3a: /* BLT */
1672 if (rav < 0)
1673 goto branch_taken;
1674 break;
1675 case 0x3b: /* BLE */
1676 if (rav <= 0)
1677 goto branch_taken;
1678 break;
1679 case 0x3f: /* BGT */
1680 if (rav > 0)
1681 goto branch_taken;
1682 break;
1683 case 0x3e: /* BGE */
1684 if (rav >= 0)
1685 goto branch_taken;
1686 break;
d2427a71 1687
0de94d4b
JB
1688 /* Floating point branches. */
1689
1690 case 0x31: /* FBEQ */
1691 if (fp_register_zero_p (rav))
1692 goto branch_taken;
1693 break;
1694 case 0x36: /* FBGE */
1695 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1696 goto branch_taken;
1697 break;
1698 case 0x37: /* FBGT */
1699 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1700 goto branch_taken;
1701 break;
1702 case 0x33: /* FBLE */
1703 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1704 goto branch_taken;
1705 break;
1706 case 0x32: /* FBLT */
1707 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1708 goto branch_taken;
1709 break;
1710 case 0x35: /* FBNE */
1711 if (! fp_register_zero_p (rav))
1712 goto branch_taken;
1713 break;
ec32e4be
JT
1714 }
1715 }
1716
1717 /* Not a branch or branch not taken; target PC is:
1718 pc + 4 */
e8d2d628 1719 return (pc + ALPHA_INSN_SIZE);
ec32e4be
JT
1720}
1721
a0ff9e1a 1722std::vector<CORE_ADDR>
f5ea389a 1723alpha_software_single_step (struct regcache *regcache)
ec32e4be 1724{
ac7936df 1725 struct gdbarch *gdbarch = regcache->arch ();
93f9a11f 1726 CORE_ADDR pc;
ec32e4be 1727
a0ff9e1a 1728 pc = alpha_next_pc (regcache, regcache_read_pc (regcache));
ec32e4be 1729
a0ff9e1a 1730 return {pc};
c906108c
SS
1731}
1732
dc129d82 1733\f
dc129d82
JT
1734/* Initialize the current architecture based on INFO. If possible, re-use an
1735 architecture from ARCHES, which is a list of architectures already created
1736 during this debugging session.
1737
1738 Called e.g. at program startup, when reading a core file, and when reading
1739 a binary file. */
1740
1741static struct gdbarch *
1742alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1743{
1744 struct gdbarch_tdep *tdep;
1745 struct gdbarch *gdbarch;
dc129d82 1746
dc129d82 1747 /* Find a candidate among extant architectures. */
4be87837
DJ
1748 arches = gdbarch_list_lookup_by_info (arches, &info);
1749 if (arches != NULL)
1750 return arches->gdbarch;
dc129d82 1751
cdd238da 1752 tdep = XCNEW (struct gdbarch_tdep);
dc129d82
JT
1753 gdbarch = gdbarch_alloc (&info, tdep);
1754
d2427a71
RH
1755 /* Lowest text address. This is used by heuristic_proc_start()
1756 to decide when to stop looking. */
594706e6 1757 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
d9b023cc 1758
36a6271d 1759 tdep->dynamic_sigtramp_offset = NULL;
5868c862 1760 tdep->sigcontext_addr = NULL;
138e7be5
MK
1761 tdep->sc_pc_offset = 2 * 8;
1762 tdep->sc_regs_offset = 4 * 8;
1763 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
36a6271d 1764
0963b4bd 1765 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
accc6d1f 1766
9823e921
RH
1767 tdep->return_in_memory = alpha_return_in_memory_always;
1768
dc129d82
JT
1769 /* Type sizes */
1770 set_gdbarch_short_bit (gdbarch, 16);
1771 set_gdbarch_int_bit (gdbarch, 32);
1772 set_gdbarch_long_bit (gdbarch, 64);
1773 set_gdbarch_long_long_bit (gdbarch, 64);
53375380
PA
1774 set_gdbarch_wchar_bit (gdbarch, 64);
1775 set_gdbarch_wchar_signed (gdbarch, 0);
dc129d82
JT
1776 set_gdbarch_float_bit (gdbarch, 32);
1777 set_gdbarch_double_bit (gdbarch, 64);
1778 set_gdbarch_long_double_bit (gdbarch, 64);
1779 set_gdbarch_ptr_bit (gdbarch, 64);
1780
1781 /* Register info */
1782 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1783 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
dc129d82
JT
1784 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1785 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1786
1787 set_gdbarch_register_name (gdbarch, alpha_register_name);
c483c494 1788 set_gdbarch_register_type (gdbarch, alpha_register_type);
dc129d82
JT
1789
1790 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1791 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1792
c483c494
RH
1793 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1794 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1795 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
dc129d82 1796
615967cb
RH
1797 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1798
d2427a71 1799 /* Prologue heuristics. */
dc129d82
JT
1800 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1801
d2427a71 1802 /* Call info. */
dc129d82 1803
9823e921 1804 set_gdbarch_return_value (gdbarch, alpha_return_value);
dc129d82
JT
1805
1806 /* Settings for calling functions in the inferior. */
c88e30c0 1807 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
d2427a71
RH
1808
1809 /* Methods for saving / extracting a dummy frame's ID. */
6834c9bb 1810 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
d2427a71
RH
1811
1812 /* Return the unwound PC value. */
1813 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
dc129d82
JT
1814
1815 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
36a6271d 1816 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
dc129d82 1817
04180708
YQ
1818 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1819 alpha_breakpoint::kind_from_pc);
1820 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1821 alpha_breakpoint::bp_from_kind);
e8d2d628 1822 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
9d519230 1823 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
95b80706 1824
46ad3598
UW
1825 /* Handles single stepping of atomic sequences. */
1826 set_gdbarch_software_single_step (gdbarch, alpha_deal_with_atomic_sequence);
1827
44dffaac 1828 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1829 gdbarch_init_osabi (info, gdbarch);
44dffaac 1830
accc6d1f
JT
1831 /* Now that we have tuned the configuration, set a few final things
1832 based on what the OS ABI has told us. */
1833
1834 if (tdep->jb_pc >= 0)
1835 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1836
6834c9bb
JB
1837 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1838 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
dc129d82 1839
d2427a71 1840 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
accc6d1f 1841
d2427a71 1842 return gdbarch;
dc129d82
JT
1843}
1844
baa490c4
RH
1845void
1846alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1847{
6834c9bb 1848 dwarf2_append_unwinders (gdbarch);
336d1bba 1849 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
baa490c4
RH
1850}
1851
c906108c 1852void
fba45db2 1853_initialize_alpha_tdep (void)
c906108c 1854{
c906108c 1855
d2427a71 1856 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
c906108c
SS
1857
1858 /* Let the user set the fence post for heuristic_proc_start. */
1859
1860 /* We really would like to have both "0" and "unlimited" work, but
1861 command.c doesn't deal with that. So make it a var_zinteger
1862 because the user can always use "999999" or some such for unlimited. */
edefbb7c
AC
1863 /* We need to throw away the frame cache when we set this, since it
1864 might change our ability to get backtraces. */
1865 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
7915a72c
AC
1866 &heuristic_fence_post, _("\
1867Set the distance searched for the start of a function."), _("\
1868Show the distance searched for the start of a function."), _("\
c906108c
SS
1869If you are debugging a stripped executable, GDB needs to search through the\n\
1870program for the start of a function. This command sets the distance of the\n\
323e0a4a 1871search. The only need to set it is when debugging a stripped executable."),
2c5b56ce 1872 reinit_frame_cache_sfunc,
0963b4bd
MS
1873 NULL, /* FIXME: i18n: The distance searched for
1874 the start of a function is \"%d\". */
edefbb7c 1875 &setlist, &showlist);
c906108c 1876}
This page took 1.226096 seconds and 4 git commands to generate.