* readline.c (bind_arrow_keys_internal):
[deliverable/binutils-gdb.git] / gdb / amd64-windows-tdep.c
CommitLineData
28e7fd62 1/* Copyright (C) 2009-2013 Free Software Foundation, Inc.
d0761299
JB
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18#include "defs.h"
19#include "osabi.h"
20#include "amd64-tdep.h"
21#include "solib.h"
22#include "solib-target.h"
ba581dc1 23#include "gdbtypes.h"
cba6fab5
JB
24#include "gdbcore.h"
25#include "regcache.h"
a8e1bb34 26#include "windows-tdep.h"
84552b16 27#include "frame.h"
9058cc3a
TG
28#include "objfiles.h"
29#include "frame-unwind.h"
30#include "coff/internal.h"
31#include "coff/i386.h"
32#include "coff/pe.h"
33#include "libcoff.h"
ba581dc1
JB
34
35/* The registers used to pass integer arguments during a function call. */
36static int amd64_windows_dummy_call_integer_regs[] =
37{
38 AMD64_RCX_REGNUM, /* %rcx */
39 AMD64_RDX_REGNUM, /* %rdx */
40 8, /* %r8 */
41 9 /* %r9 */
42};
43
44/* Implement the "classify" method in the gdbarch_tdep structure
45 for amd64-windows. */
46
47static void
48amd64_windows_classify (struct type *type, enum amd64_reg_class class[2])
49{
50 switch (TYPE_CODE (type))
51 {
52 case TYPE_CODE_ARRAY:
53 /* Arrays are always passed by memory. */
54 class[0] = class[1] = AMD64_MEMORY;
55 break;
56
57 case TYPE_CODE_STRUCT:
58 case TYPE_CODE_UNION:
59 /* Struct/Union types whose size is 1, 2, 4, or 8 bytes
60 are passed as if they were integers of the same size.
61 Types of different sizes are passed by memory. */
62 if (TYPE_LENGTH (type) == 1
63 || TYPE_LENGTH (type) == 2
64 || TYPE_LENGTH (type) == 4
65 || TYPE_LENGTH (type) == 8)
66 {
67 class[0] = AMD64_INTEGER;
68 class[1] = AMD64_NO_CLASS;
69 }
70 else
71 class[0] = class[1] = AMD64_MEMORY;
72 break;
73
74 default:
75 /* For all the other types, the conventions are the same as
76 with the System V ABI. */
77 amd64_classify (type, class);
78 }
79}
d0761299 80
cba6fab5
JB
81/* Implement the "return_value" gdbarch method for amd64-windows. */
82
83static enum return_value_convention
6a3a010b 84amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
cba6fab5
JB
85 struct type *type, struct regcache *regcache,
86 gdb_byte *readbuf, const gdb_byte *writebuf)
87{
88 int len = TYPE_LENGTH (type);
89 int regnum = -1;
90
91 /* See if our value is returned through a register. If it is, then
92 store the associated register number in REGNUM. */
93 switch (TYPE_CODE (type))
94 {
95 case TYPE_CODE_FLT:
96 case TYPE_CODE_DECFLOAT:
97 /* __m128, __m128i, __m128d, floats, and doubles are returned
98 via XMM0. */
99 if (len == 4 || len == 8 || len == 16)
100 regnum = AMD64_XMM0_REGNUM;
101 break;
102 default:
103 /* All other values that are 1, 2, 4 or 8 bytes long are returned
104 via RAX. */
105 if (len == 1 || len == 2 || len == 4 || len == 8)
106 regnum = AMD64_RAX_REGNUM;
107 break;
108 }
109
110 if (regnum < 0)
111 {
112 /* RAX contains the address where the return value has been stored. */
113 if (readbuf)
114 {
115 ULONGEST addr;
116
117 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
118 read_memory (addr, readbuf, TYPE_LENGTH (type));
119 }
120 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
121 }
122 else
123 {
124 /* Extract the return value from the register where it was stored. */
125 if (readbuf)
126 regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
127 if (writebuf)
128 regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
129 return RETURN_VALUE_REGISTER_CONVENTION;
130 }
131}
132
99e24b90
PM
133/* Check that the code pointed to by PC corresponds to a call to
134 __main, skip it if so. Return PC otherwise. */
135
136static CORE_ADDR
137amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
138{
139 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
140 gdb_byte op;
141
142 target_read_memory (pc, &op, 1);
143 if (op == 0xe8)
144 {
145 gdb_byte buf[4];
146
147 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
148 {
7cbd4a93 149 struct bound_minimal_symbol s;
99e24b90
PM
150 CORE_ADDR call_dest;
151
152 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
153 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93
TT
154 if (s.minsym != NULL
155 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
156 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
99e24b90
PM
157 pc += 5;
158 }
159 }
160
161 return pc;
162}
163
9058cc3a
TG
164struct amd64_windows_frame_cache
165{
166 /* ImageBase for the module. */
167 CORE_ADDR image_base;
168
169 /* Function start and end rva. */
170 CORE_ADDR start_rva;
171 CORE_ADDR end_rva;
172
173 /* Next instruction to be executed. */
174 CORE_ADDR pc;
175
176 /* Current sp. */
177 CORE_ADDR sp;
178
179 /* Address of saved integer and xmm registers. */
180 CORE_ADDR prev_reg_addr[16];
181 CORE_ADDR prev_xmm_addr[16];
182
183 /* These two next fields are set only for machine info frames. */
184
185 /* Likewise for RIP. */
186 CORE_ADDR prev_rip_addr;
187
188 /* Likewise for RSP. */
189 CORE_ADDR prev_rsp_addr;
190
191 /* Address of the previous frame. */
192 CORE_ADDR prev_sp;
193};
194
195/* Convert a Windows register number to gdb. */
196static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
197{
198 AMD64_RAX_REGNUM,
199 AMD64_RCX_REGNUM,
200 AMD64_RDX_REGNUM,
201 AMD64_RBX_REGNUM,
202 AMD64_RSP_REGNUM,
203 AMD64_RBP_REGNUM,
204 AMD64_RSI_REGNUM,
205 AMD64_RDI_REGNUM,
206 AMD64_R8_REGNUM,
207 AMD64_R9_REGNUM,
208 AMD64_R10_REGNUM,
209 AMD64_R11_REGNUM,
210 AMD64_R12_REGNUM,
211 AMD64_R13_REGNUM,
212 AMD64_R14_REGNUM,
213 AMD64_R15_REGNUM
214};
215
216/* Return TRUE iff PC is the the range of the function corresponding to
217 CACHE. */
218
219static int
220pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
221{
222 return (pc >= cache->image_base + cache->start_rva
223 && pc < cache->image_base + cache->end_rva);
224}
225
226/* Try to recognize and decode an epilogue sequence.
227
228 Return -1 if we fail to read the instructions for any reason.
229 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
230
231static int
232amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
233 struct amd64_windows_frame_cache *cache)
234{
235 /* According to MSDN an epilogue "must consist of either an add RSP,constant
236 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
237 register pops and a return or a jmp".
238
239 Furthermore, according to RtlVirtualUnwind, the complete list of
240 epilog marker is:
241 - ret [c3]
242 - ret n [c2 imm16]
243 - rep ret [f3 c3]
244 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
245 - jmp qword ptr imm32 - not handled
246 - rex.w jmp reg [4X ff eY]
247 */
248
249 CORE_ADDR pc = cache->pc;
250 CORE_ADDR cur_sp = cache->sp;
251 struct gdbarch *gdbarch = get_frame_arch (this_frame);
252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
253 gdb_byte op;
254 gdb_byte rex;
255
256 /* We don't care about the instruction deallocating the frame:
257 if it hasn't been executed, the pc is still in the body,
258 if it has been executed, the following epilog decoding will work. */
259
260 /* First decode:
261 - pop reg [41 58-5f] or [58-5f]. */
262
263 while (1)
264 {
265 /* Read opcode. */
266 if (target_read_memory (pc, &op, 1) != 0)
267 return -1;
268
269 if (op >= 0x40 && op <= 0x4f)
270 {
271 /* REX prefix. */
272 rex = op;
273
274 /* Read opcode. */
275 if (target_read_memory (pc + 1, &op, 1) != 0)
276 return -1;
277 }
278 else
279 rex = 0;
280
281 if (op >= 0x58 && op <= 0x5f)
282 {
283 /* pop reg */
284 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
285
286 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
287 cur_sp += 8;
288 }
289 else
290 break;
291
292 /* Allow the user to break this loop. This shouldn't happen as the
293 number of consecutive pop should be small. */
294 QUIT;
295 }
296
297 /* Then decode the marker. */
298
299 /* Read opcode. */
300 if (target_read_memory (pc, &op, 1) != 0)
301 return -1;
302
303 switch (op)
304 {
305 case 0xc3:
306 /* Ret. */
307 cache->prev_rip_addr = cur_sp;
308 cache->prev_sp = cur_sp + 8;
309 return 1;
310
311 case 0xeb:
312 {
313 /* jmp rel8 */
314 gdb_byte rel8;
315 CORE_ADDR npc;
316
317 if (target_read_memory (pc + 1, &rel8, 1) != 0)
318 return -1;
319 npc = pc + 2 + (signed char) rel8;
320
321 /* If the jump is within the function, then this is not a marker,
322 otherwise this is a tail-call. */
323 return !pc_in_range (npc, cache);
324 }
325
326 case 0xec:
327 {
328 /* jmp rel32 */
329 gdb_byte rel32[4];
330 CORE_ADDR npc;
331
332 if (target_read_memory (pc + 1, rel32, 4) != 0)
333 return -1;
334 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
335
336 /* If the jump is within the function, then this is not a marker,
337 otherwise this is a tail-call. */
338 return !pc_in_range (npc, cache);
339 }
340
341 case 0xc2:
342 {
343 /* ret n */
344 gdb_byte imm16[2];
345
346 if (target_read_memory (pc + 1, imm16, 2) != 0)
347 return -1;
348 cache->prev_rip_addr = cur_sp;
349 cache->prev_sp = cur_sp
350 + extract_unsigned_integer (imm16, 4, byte_order);
351 return 1;
352 }
353
354 case 0xf3:
355 {
356 /* rep; ret */
357 gdb_byte op1;
358
359 if (target_read_memory (pc + 2, &op1, 1) != 0)
360 return -1;
361 if (op1 != 0xc3)
362 return 0;
363
364 cache->prev_rip_addr = cur_sp;
365 cache->prev_sp = cur_sp + 8;
366 return 1;
367 }
368
369 case 0x40:
370 case 0x41:
371 case 0x42:
372 case 0x43:
373 case 0x44:
374 case 0x45:
375 case 0x46:
376 case 0x47:
377 case 0x48:
378 case 0x49:
379 case 0x4a:
380 case 0x4b:
381 case 0x4c:
382 case 0x4d:
383 case 0x4e:
384 case 0x4f:
385 /* Got a REX prefix, read next byte. */
386 rex = op;
387 if (target_read_memory (pc + 1, &op, 1) != 0)
388 return -1;
389
390 if (op == 0xff)
391 {
392 /* rex jmp reg */
393 gdb_byte op1;
394 unsigned int reg;
395 gdb_byte buf[8];
396
397 if (target_read_memory (pc + 2, &op1, 1) != 0)
398 return -1;
399 return (op1 & 0xf8) == 0xe0;
400 }
401 else
402 return 0;
403
404 default:
405 /* Not REX, so unknown. */
406 return 0;
407 }
408}
409
410/* Decode and execute unwind insns at UNWIND_INFO. */
411
412static void
413amd64_windows_frame_decode_insns (struct frame_info *this_frame,
414 struct amd64_windows_frame_cache *cache,
415 CORE_ADDR unwind_info)
416{
417 CORE_ADDR save_addr = 0;
418 CORE_ADDR cur_sp = cache->sp;
419 struct gdbarch *gdbarch = get_frame_arch (this_frame);
420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
421 int j;
422
423 for (j = 0; ; j++)
424 {
425 struct external_pex64_unwind_info ex_ui;
426 /* There are at most 256 16-bit unwind insns. */
427 gdb_byte insns[2 * 256];
428 gdb_byte *p;
429 gdb_byte *end_insns;
430 unsigned char codes_count;
431 unsigned char frame_reg;
432 unsigned char frame_off;
433
434 /* Read and decode header. */
435 if (target_read_memory (cache->image_base + unwind_info,
436 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
437 return;
438
439 if (frame_debug)
440 fprintf_unfiltered
441 (gdb_stdlog,
442 "amd64_windows_frame_decodes_insn: "
443 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
444 paddress (gdbarch, unwind_info),
445 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
446 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
447
448 /* Check version. */
449 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1)
450 return;
451
452 if (j == 0
453 && (cache->pc >=
454 cache->image_base + cache->start_rva + ex_ui.SizeOfPrologue))
455 {
456 /* Not in the prologue. We want to detect if the PC points to an
457 epilogue. If so, the epilogue detection+decoding function is
458 sufficient. Otherwise, the unwinder will consider that the PC
459 is in the body of the function and will need to decode unwind
460 info. */
461 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
462 return;
463
464 /* Not in an epilog. Clear possible side effects. */
465 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
466 }
467
468 codes_count = ex_ui.CountOfCodes;
469 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
470
471 if (frame_reg != 0)
472 {
473 /* According to msdn:
474 If an FP reg is used, then any unwind code taking an offset must
475 only be used after the FP reg is established in the prolog. */
476 gdb_byte buf[8];
477 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
478
479 get_frame_register (this_frame, frreg, buf);
480 save_addr = extract_unsigned_integer (buf, 8, byte_order);
481
482 if (frame_debug)
483 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
484 gdbarch_register_name (gdbarch, frreg),
485 paddress (gdbarch, save_addr));
486 }
487
488 /* Read opcodes. */
489 if (codes_count != 0
490 && target_read_memory (cache->image_base + unwind_info
491 + sizeof (ex_ui),
492 insns, codes_count * 2) != 0)
493 return;
494
495 end_insns = &insns[codes_count * 2];
496 for (p = insns; p < end_insns; p += 2)
497 {
498 int reg;
499
500 if (frame_debug)
501 fprintf_unfiltered
502 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
503 (unsigned) (p - insns), p[0], p[1]);
504
505 /* Virtually execute the operation. */
506 if (cache->pc >= cache->image_base + cache->start_rva + p[0])
507 {
508 /* If there is no frame registers defined, the current value of
509 rsp is used instead. */
510 if (frame_reg == 0)
511 save_addr = cur_sp;
512
513 switch (PEX64_UNWCODE_CODE (p[1]))
514 {
515 case UWOP_PUSH_NONVOL:
516 /* Push pre-decrements RSP. */
517 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
518 cache->prev_reg_addr[reg] = cur_sp;
519 cur_sp += 8;
520 break;
521 case UWOP_ALLOC_LARGE:
522 if (PEX64_UNWCODE_INFO (p[1]) == 0)
523 cur_sp +=
524 8 * extract_unsigned_integer (p + 2, 2, byte_order);
525 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
526 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
527 else
528 return;
529 break;
530 case UWOP_ALLOC_SMALL:
531 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
532 break;
533 case UWOP_SET_FPREG:
534 cur_sp = save_addr
535 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
536 break;
537 case UWOP_SAVE_NONVOL:
538 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
539 cache->prev_reg_addr[reg] = save_addr
540 - 8 * extract_unsigned_integer (p + 2, 2, byte_order);
541 break;
542 case UWOP_SAVE_NONVOL_FAR:
543 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
544 cache->prev_reg_addr[reg] = save_addr
545 - 8 * extract_unsigned_integer (p + 2, 4, byte_order);
546 break;
547 case UWOP_SAVE_XMM128:
548 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
549 save_addr
550 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
551 break;
552 case UWOP_SAVE_XMM128_FAR:
553 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
554 save_addr
555 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
556 break;
557 case UWOP_PUSH_MACHFRAME:
558 if (PEX64_UNWCODE_INFO (p[1]) == 0)
559 {
560 cache->prev_rip_addr = cur_sp + 0;
561 cache->prev_rsp_addr = cur_sp + 24;
562 cur_sp += 40;
563 }
564 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
565 {
566 cache->prev_rip_addr = cur_sp + 8;
567 cache->prev_rsp_addr = cur_sp + 32;
568 cur_sp += 48;
569 }
570 else
571 return;
572 break;
573 default:
574 return;
575 }
576 }
577
578 /* Adjust with the length of the opcode. */
579 switch (PEX64_UNWCODE_CODE (p[1]))
580 {
581 case UWOP_PUSH_NONVOL:
582 case UWOP_ALLOC_SMALL:
583 case UWOP_SET_FPREG:
584 case UWOP_PUSH_MACHFRAME:
585 break;
586 case UWOP_ALLOC_LARGE:
587 if (PEX64_UNWCODE_INFO (p[1]) == 0)
588 p += 2;
589 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
590 p += 4;
591 else
592 return;
593 break;
594 case UWOP_SAVE_NONVOL:
595 case UWOP_SAVE_XMM128:
596 p += 2;
597 break;
598 case UWOP_SAVE_NONVOL_FAR:
599 case UWOP_SAVE_XMM128_FAR:
600 p += 4;
601 break;
602 default:
603 return;
604 }
605 }
606 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
607 break;
608 else
609 {
610 /* Read the chained unwind info. */
611 struct external_pex64_runtime_function d;
612 CORE_ADDR chain_vma;
613
614 chain_vma = cache->image_base + unwind_info
615 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2 + 8;
616
617 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
618 return;
619
620 cache->start_rva =
621 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
622 cache->end_rva =
623 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
624 unwind_info =
625 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
626 }
627
628 /* Allow the user to break this loop. */
629 QUIT;
630 }
631 /* PC is saved by the call. */
632 if (cache->prev_rip_addr == 0)
633 cache->prev_rip_addr = cur_sp;
634 cache->prev_sp = cur_sp + 8;
635
636 if (frame_debug)
637 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
638 paddress (gdbarch, cache->prev_sp),
639 paddress (gdbarch, cache->prev_rip_addr));
640}
641
642/* Find SEH unwind info for PC, returning 0 on success.
643
644 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
645 to the base address of the corresponding image, and START_RVA
646 to the rva of the function containing PC. */
647
648static int
649amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
650 CORE_ADDR *unwind_info,
651 CORE_ADDR *image_base,
652 CORE_ADDR *start_rva,
653 CORE_ADDR *end_rva)
654{
655 struct obj_section *sec;
656 pe_data_type *pe;
657 IMAGE_DATA_DIRECTORY *dir;
658 struct objfile *objfile;
659 unsigned long lo, hi;
660 CORE_ADDR base;
661 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
662
663 /* Get the corresponding exception directory. */
664 sec = find_pc_section (pc);
665 if (sec == NULL)
666 return -1;
667 objfile = sec->objfile;
668 pe = pe_data (sec->objfile->obfd);
669 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
670
671 base = pe->pe_opthdr.ImageBase
672 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
673 *image_base = base;
674
675 /* Find the entry.
676
677 Note: This does not handle dynamically added entries (for JIT
678 engines). For this, we would need to ask the kernel directly,
679 which means getting some info from the native layer. For the
680 rest of the code, however, it's probably faster to search
681 the entry ourselves. */
682 lo = 0;
683 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
684 *unwind_info = 0;
685 while (lo <= hi)
686 {
687 unsigned long mid = lo + (hi - lo) / 2;
688 struct external_pex64_runtime_function d;
689 CORE_ADDR sa, ea;
690
691 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
692 (gdb_byte *) &d, sizeof (d)) != 0)
693 return -1;
694
695 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
696 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
697 if (pc < base + sa)
698 hi = mid - 1;
699 else if (pc >= base + ea)
700 lo = mid + 1;
701 else if (pc >= base + sa && pc < base + ea)
702 {
703 /* Got it. */
704 *start_rva = sa;
705 *end_rva = ea;
706 *unwind_info =
707 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
708 break;
709 }
710 else
711 break;
712 }
713
714 if (frame_debug)
715 fprintf_unfiltered
716 (gdb_stdlog,
717 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
718 paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
719
720 if (*unwind_info & 1)
721 {
722 /* Unofficially documented unwind info redirection, when UNWIND_INFO
723 address is odd (http://www.codemachine.com/article_x64deepdive.html).
724 */
725 struct external_pex64_runtime_function d;
726 CORE_ADDR sa, ea;
727
728 if (target_read_memory (base + (*unwind_info & ~1),
729 (gdb_byte *) &d, sizeof (d)) != 0)
730 return -1;
731
732 *start_rva =
733 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
734 *end_rva = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
735 *unwind_info =
736 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
737
738 }
739 return 0;
740}
741
742/* Fill THIS_CACHE using the native amd64-windows unwinding data
743 for THIS_FRAME. */
744
745static struct amd64_windows_frame_cache *
746amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
747{
748 struct gdbarch *gdbarch = get_frame_arch (this_frame);
749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
750 struct amd64_windows_frame_cache *cache;
751 gdb_byte buf[8];
752 struct obj_section *sec;
753 pe_data_type *pe;
754 IMAGE_DATA_DIRECTORY *dir;
755 CORE_ADDR image_base;
756 CORE_ADDR pc;
757 struct objfile *objfile;
758 unsigned long lo, hi;
759 CORE_ADDR unwind_info = 0;
760
761 if (*this_cache)
762 return *this_cache;
763
764 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
765 *this_cache = cache;
766
767 /* Get current PC and SP. */
768 pc = get_frame_pc (this_frame);
769 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
770 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
771 cache->pc = pc;
772
773 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
774 &cache->image_base,
775 &cache->start_rva,
776 &cache->end_rva))
777 return cache;
778
779 if (unwind_info == 0)
780 {
781 /* Assume a leaf function. */
782 cache->prev_sp = cache->sp + 8;
783 cache->prev_rip_addr = cache->sp;
784 }
785 else
786 {
787 /* Decode unwind insns to compute saved addresses. */
788 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
789 }
790 return cache;
791}
792
793/* Implement the "prev_register" method of struct frame_unwind
794 using the standard Windows x64 SEH info. */
795
796static struct value *
797amd64_windows_frame_prev_register (struct frame_info *this_frame,
798 void **this_cache, int regnum)
799{
800 struct gdbarch *gdbarch = get_frame_arch (this_frame);
801 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
802 struct amd64_windows_frame_cache *cache =
803 amd64_windows_frame_cache (this_frame, this_cache);
804 struct value *val;
805 CORE_ADDR prev;
806
807 if (frame_debug)
808 fprintf_unfiltered (gdb_stdlog,
809 "amd64_windows_frame_prev_register %s for sp=%s\n",
810 gdbarch_register_name (gdbarch, regnum),
811 paddress (gdbarch, cache->prev_sp));
812
813 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
814 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
815 else if (regnum == AMD64_RSP_REGNUM)
816 {
817 prev = cache->prev_rsp_addr;
818 if (prev == 0)
819 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
820 }
821 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
822 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
823 else if (regnum == AMD64_RIP_REGNUM)
824 prev = cache->prev_rip_addr;
825 else
826 prev = 0;
827
828 if (prev && frame_debug)
829 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
830
831 if (prev)
832 {
833 /* Register was saved. */
834 return frame_unwind_got_memory (this_frame, regnum, prev);
835 }
836 else
837 {
838 /* Register is either volatile or not modified. */
839 return frame_unwind_got_register (this_frame, regnum, regnum);
840 }
841}
842
843/* Implement the "this_id" method of struct frame_unwind using
844 the standard Windows x64 SEH info. */
845
846static void
847amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
848 struct frame_id *this_id)
849{
850 struct gdbarch *gdbarch = get_frame_arch (this_frame);
851 struct amd64_windows_frame_cache *cache =
852 amd64_windows_frame_cache (this_frame, this_cache);
853
854 *this_id = frame_id_build (cache->prev_sp,
855 cache->image_base + cache->start_rva);
856}
857
858/* Windows x64 SEH unwinder. */
859
860static const struct frame_unwind amd64_windows_frame_unwind =
861{
862 NORMAL_FRAME,
863 default_frame_unwind_stop_reason,
864 &amd64_windows_frame_this_id,
865 &amd64_windows_frame_prev_register,
866 NULL,
867 default_frame_sniffer
868};
869
870/* Implement the "skip_prologue" gdbarch method. */
871
872static CORE_ADDR
873amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
874{
875 CORE_ADDR func_addr;
876 CORE_ADDR unwind_info = 0;
877 CORE_ADDR image_base, start_rva, end_rva;
878 struct external_pex64_unwind_info ex_ui;
879
880 /* Use prologue size from unwind info. */
881 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
882 &image_base, &start_rva, &end_rva) == 0)
883 {
884 if (unwind_info == 0)
885 {
886 /* Leaf function. */
887 return pc;
888 }
889 else if (target_read_memory (image_base + unwind_info,
890 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
891 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
892 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
893 }
894
895 /* See if we can determine the end of the prologue via the symbol
896 table. If so, then return either the PC, or the PC after
897 the prologue, whichever is greater. */
898 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
899 {
900 CORE_ADDR post_prologue_pc
901 = skip_prologue_using_sal (gdbarch, func_addr);
902
903 if (post_prologue_pc != 0)
904 return max (pc, post_prologue_pc);
905 }
906
907 return pc;
908}
909
84552b16
PA
910/* Check Win64 DLL jmp trampolines and find jump destination. */
911
912static CORE_ADDR
913amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
914{
915 CORE_ADDR destination = 0;
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
918
919 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
920 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
921 {
922 /* Get opcode offset and see if we can find a reference in our data. */
923 ULONGEST offset
924 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
925
926 /* Get address of function pointer at end of pc. */
927 CORE_ADDR indirect_addr = pc + offset + 6;
928
929 struct minimal_symbol *indsym
7cbd4a93
TT
930 = (indirect_addr
931 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
932 : NULL);
84552b16
PA
933 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : NULL;
934
935 if (symname)
936 {
937 if (strncmp (symname, "__imp_", 6) == 0
938 || strncmp (symname, "_imp_", 5) == 0)
939 destination
940 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
941 }
942 }
943
944 return destination;
945}
99e24b90 946
83ab93c6
JB
947/* Implement the "auto_wide_charset" gdbarch method. */
948
949static const char *
950amd64_windows_auto_wide_charset (void)
951{
952 return "UTF-16";
953}
954
d0761299
JB
955static void
956amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
957{
ba581dc1
JB
958 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
959
9058cc3a
TG
960 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
961 preferred over the SEH one. The reasons are:
962 - binaries without SEH but with dwarf2 debug info are correcly handled
963 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
964 info).
965 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
966 handled if the dwarf2 unwinder is used).
967
968 The call to amd64_init_abi appends default unwinders, that aren't
969 compatible with the SEH one.
970 */
971 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
972
d0761299
JB
973 amd64_init_abi (info, gdbarch);
974
975 /* On Windows, "long"s are only 32bit. */
976 set_gdbarch_long_bit (gdbarch, 32);
977
ba581dc1
JB
978 /* Function calls. */
979 tdep->call_dummy_num_integer_regs =
980 ARRAY_SIZE (amd64_windows_dummy_call_integer_regs);
981 tdep->call_dummy_integer_regs = amd64_windows_dummy_call_integer_regs;
982 tdep->classify = amd64_windows_classify;
80d19a06 983 tdep->memory_args_by_pointer = 1;
3af6ddfe 984 tdep->integer_param_regs_saved_in_caller_frame = 1;
cba6fab5 985 set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
99e24b90 986 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
84552b16
PA
987 set_gdbarch_skip_trampoline_code (gdbarch,
988 amd64_windows_skip_trampoline_code);
ba581dc1 989
a8e1bb34
JB
990 set_gdbarch_iterate_over_objfiles_in_search_order
991 (gdbarch, windows_iterate_over_objfiles_in_search_order);
992
9058cc3a
TG
993 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
994
83ab93c6
JB
995 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
996
d0761299
JB
997 set_solib_ops (gdbarch, &solib_target_so_ops);
998}
999
693be288
JK
1000/* -Wmissing-prototypes */
1001extern initialize_file_ftype _initialize_amd64_windows_tdep;
1002
d0761299
JB
1003void
1004_initialize_amd64_windows_tdep (void)
1005{
1006 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1007 amd64_windows_init_abi);
1008}
This page took 0.596078 seconds and 4 git commands to generate.