Rename _doprnt -> _bfd_doprnt to fix DJGPP bfd build (and likely others)
[deliverable/binutils-gdb.git] / gdb / arc-tdep.c
CommitLineData
ad0a504f
AK
1/* Target dependent code for ARC arhitecture, for GDB.
2
61baf725 3 Copyright 2005-2017 Free Software Foundation, Inc.
ad0a504f
AK
4 Contributed by Synopsys Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21/* GDB header files. */
22#include "defs.h"
23#include "arch-utils.h"
24#include "disasm.h"
25#include "dwarf2-frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "objfiles.h"
fe5f7374 31#include "prologue-value.h"
ad0a504f
AK
32#include "trad-frame.h"
33
34/* ARC header files. */
35#include "opcode/arc.h"
eea78757 36#include "opcodes/arc-dis.h"
ad0a504f
AK
37#include "arc-tdep.h"
38
39/* Standard headers. */
40#include <algorithm>
41
42/* Default target descriptions. */
43#include "features/arc-v2.c"
44#include "features/arc-arcompact.c"
45
fe5f7374 46/* The frame unwind cache for ARC. */
ad0a504f
AK
47
48struct arc_frame_cache
49{
50 /* The stack pointer at the time this frame was created; i.e. the caller's
51 stack pointer when this function was called. It is used to identify this
52 frame. */
53 CORE_ADDR prev_sp;
54
fe5f7374
AK
55 /* Register that is a base for this frame - FP for normal frame, SP for
56 non-FP frames. */
57 int frame_base_reg;
58
59 /* Offset from the previous SP to the current frame base. If GCC uses
60 `SUB SP,SP,offset` to allocate space for local variables, then it will be
61 done after setting up a frame pointer, but it still will be considered
62 part of prologue, therefore SP will be lesser than FP at the end of the
63 prologue analysis. In this case that would be an offset from old SP to a
64 new FP. But in case of non-FP frames, frame base is an SP and thus that
65 would be an offset from old SP to new SP. What is important is that this
66 is an offset from old SP to a known register, so it can be used to find
67 old SP.
68
69 Using FP is preferable, when possible, because SP can change in function
70 body after prologue due to alloca, variadic arguments or other shenanigans.
71 If that is the case in the caller frame, then PREV_SP will point to SP at
72 the moment of function call, but it will be different from SP value at the
73 end of the caller prologue. As a result it will not be possible to
74 reconstruct caller's frame and go past it in the backtrace. Those things
75 are unlikely to happen to FP - FP value at the moment of function call (as
76 stored on stack in callee prologue) is also an FP value at the end of the
77 caller's prologue. */
78
79 LONGEST frame_base_offset;
80
81 /* Store addresses for registers saved in prologue. During prologue analysis
82 GDB stores offsets relatively to "old SP", then after old SP is evaluated,
83 offsets are replaced with absolute addresses. */
ad0a504f
AK
84 struct trad_frame_saved_reg *saved_regs;
85};
86
87/* Global debug flag. */
88
89int arc_debug;
90
3be78afd
AK
91/* List of "maintenance print arc" commands. */
92
93static struct cmd_list_element *maintenance_print_arc_list = NULL;
94
ad0a504f
AK
95/* XML target description features. */
96
97static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2";
98static const char
99 core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2";
100static const char
101 core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact";
102static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal";
103
104/* XML target description known registers. */
105
106static const char *const core_v2_register_names[] = {
107 "r0", "r1", "r2", "r3",
108 "r4", "r5", "r6", "r7",
109 "r8", "r9", "r10", "r11",
110 "r12", "r13", "r14", "r15",
111 "r16", "r17", "r18", "r19",
112 "r20", "r21", "r22", "r23",
113 "r24", "r25", "gp", "fp",
114 "sp", "ilink", "r30", "blink",
115 "r32", "r33", "r34", "r35",
116 "r36", "r37", "r38", "r39",
117 "r40", "r41", "r42", "r43",
118 "r44", "r45", "r46", "r47",
119 "r48", "r49", "r50", "r51",
120 "r52", "r53", "r54", "r55",
121 "r56", "r57", "accl", "acch",
296ec4fa 122 "lp_count", "reserved", "limm", "pcl",
ad0a504f
AK
123};
124
125static const char *const aux_minimal_register_names[] = {
126 "pc", "status32",
127};
128
129static const char *const core_arcompact_register_names[] = {
130 "r0", "r1", "r2", "r3",
131 "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11",
133 "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19",
135 "r20", "r21", "r22", "r23",
136 "r24", "r25", "gp", "fp",
137 "sp", "ilink1", "ilink2", "blink",
138 "r32", "r33", "r34", "r35",
139 "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43",
141 "r44", "r45", "r46", "r47",
142 "r48", "r49", "r50", "r51",
143 "r52", "r53", "r54", "r55",
144 "r56", "r57", "r58", "r59",
296ec4fa 145 "lp_count", "reserved", "limm", "pcl",
ad0a504f
AK
146};
147
a87dc45a
AK
148static char *arc_disassembler_options = NULL;
149
fe5f7374
AK
150/* Functions are sorted in the order as they are used in the
151 _initialize_arc_tdep (), which uses the same order as gdbarch.h. Static
152 functions are defined before the first invocation. */
153
eea78757
AK
154/* Returns an unsigned value of OPERAND_NUM in instruction INSN.
155 For relative branch instructions returned value is an offset, not an actual
156 branch target. */
157
158static ULONGEST
159arc_insn_get_operand_value (const struct arc_instruction &insn,
160 unsigned int operand_num)
161{
162 switch (insn.operands[operand_num].kind)
163 {
164 case ARC_OPERAND_KIND_LIMM:
165 gdb_assert (insn.limm_p);
166 return insn.limm_value;
167 case ARC_OPERAND_KIND_SHIMM:
168 return insn.operands[operand_num].value;
169 default:
170 /* Value in instruction is a register number. */
171 struct regcache *regcache = get_current_regcache ();
172 ULONGEST value;
173 regcache_cooked_read_unsigned (regcache,
174 insn.operands[operand_num].value,
175 &value);
176 return value;
177 }
178}
179
180/* Like arc_insn_get_operand_value, but returns a signed value. */
181
182static LONGEST
183arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
184 unsigned int operand_num)
185{
186 switch (insn.operands[operand_num].kind)
187 {
188 case ARC_OPERAND_KIND_LIMM:
189 gdb_assert (insn.limm_p);
190 /* Convert unsigned raw value to signed one. This assumes 2's
191 complement arithmetic, but so is the LONG_MIN value from generic
192 defs.h and that assumption is true for ARC. */
193 gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
194 return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
195 case ARC_OPERAND_KIND_SHIMM:
196 /* Sign conversion has been done by binutils. */
197 return insn.operands[operand_num].value;
198 default:
199 /* Value in instruction is a register number. */
200 struct regcache *regcache = get_current_regcache ();
201 LONGEST value;
202 regcache_cooked_read_signed (regcache,
203 insn.operands[operand_num].value,
204 &value);
205 return value;
206 }
207}
208
209/* Get register with base address of memory operation. */
210
211int
212arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
213{
214 /* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */
215 if (insn.insn_class == PUSH || insn.insn_class == POP)
216 return ARC_SP_REGNUM;
217
218 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
219
220 /* Other instructions all have at least two operands: operand 0 is data,
221 operand 1 is address. Operand 2 is offset from address. However, see
222 comment to arc_instruction.operands - in some cases, third operand may be
223 missing, namely if it is 0. */
224 gdb_assert (insn.operands_count >= 2);
225 return insn.operands[1].value;
226}
227
228/* Get offset of a memory operation INSN. */
229
230CORE_ADDR
231arc_insn_get_memory_offset (const struct arc_instruction &insn)
232{
233 /* POP_S and PUSH_S have offset as an implicit argument in a
234 disassembler. */
235 if (insn.insn_class == POP)
236 return 4;
237 else if (insn.insn_class == PUSH)
238 return -4;
239
240 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
241
242 /* Other instructions all have at least two operands: operand 0 is data,
243 operand 1 is address. Operand 2 is offset from address. However, see
244 comment to arc_instruction.operands - in some cases, third operand may be
245 missing, namely if it is 0. */
246 if (insn.operands_count < 3)
247 return 0;
248
249 CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
250 /* Handle scaling. */
251 if (insn.writeback_mode == ARC_WRITEBACK_AS)
252 {
253 /* Byte data size is not valid for AS. Halfword means shift by 1 bit.
254 Word and double word means shift by 2 bits. */
255 gdb_assert (insn.data_size_mode != ARC_SCALING_B);
256 if (insn.data_size_mode == ARC_SCALING_H)
257 value <<= 1;
258 else
259 value <<= 2;
260 }
261 return value;
262}
263
eea78757
AK
264CORE_ADDR
265arc_insn_get_branch_target (const struct arc_instruction &insn)
266{
267 gdb_assert (insn.is_control_flow);
268
269 /* BI [c]: PC = nextPC + (c << 2). */
270 if (insn.insn_class == BI)
271 {
272 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
273 return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
274 }
275 /* BIH [c]: PC = nextPC + (c << 1). */
276 else if (insn.insn_class == BIH)
277 {
278 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
279 return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
280 }
281 /* JLI and EI. */
282 /* JLI and EI depend on optional AUX registers. Not supported right now. */
283 else if (insn.insn_class == JLI)
284 {
285 fprintf_unfiltered (gdb_stderr,
286 "JLI_S instruction is not supported by the GDB.");
287 return 0;
288 }
289 else if (insn.insn_class == EI)
290 {
291 fprintf_unfiltered (gdb_stderr,
292 "EI_S instruction is not supported by the GDB.");
293 return 0;
294 }
295 /* LEAVE_S: PC = BLINK. */
296 else if (insn.insn_class == LEAVE)
297 {
298 struct regcache *regcache = get_current_regcache ();
299 ULONGEST value;
300 regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
301 return value;
302 }
303 /* BBIT0/1, BRcc: PC = currentPC + operand. */
304 else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
305 || insn.insn_class == BRCC)
306 {
307 /* Most instructions has branch target as their sole argument. However
308 conditional brcc/bbit has it as a third operand. */
309 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);
310
311 /* Offset is relative to the 4-byte aligned address of the current
312 instruction, hence last two bits should be truncated. */
313 return pcrel_addr + align_down (insn.address, 4);
314 }
315 /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */
316 else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
317 {
318 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);
319
320 /* Offset is relative to the 4-byte aligned address of the current
321 instruction, hence last two bits should be truncated. */
322 return pcrel_addr + align_down (insn.address, 4);
323 }
324 /* J, Jcc, JL, JLcc: PC = operand. */
325 else if (insn.insn_class == JUMP)
326 {
327 /* All jumps are single-operand. */
328 return arc_insn_get_operand_value (insn, 0);
329 }
330
331 /* This is some new and unknown instruction. */
332 gdb_assert_not_reached ("Unknown branch instruction.");
333}
334
335/* Dump INSN into gdb_stdlog. */
336
337void
338arc_insn_dump (const struct arc_instruction &insn)
339{
340 struct gdbarch *gdbarch = target_gdbarch ();
341
342 arc_print ("Dumping arc_instruction at %s\n",
343 paddress (gdbarch, insn.address));
344 arc_print ("\tlength = %u\n", insn.length);
345
346 if (!insn.valid)
347 {
348 arc_print ("\tThis is not a valid ARC instruction.\n");
349 return;
350 }
351
352 arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
353 arc_print ("\tcc = 0x%x\n", insn.condition_code);
354 arc_print ("\tinsn_class = %u\n", insn.insn_class);
355 arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
356 arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);
357
358 CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
359 arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));
360
361 if (insn.is_control_flow)
362 {
363 CORE_ADDR t = arc_insn_get_branch_target (insn);
364 arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
365 }
366
367 arc_print ("\tlimm_p = %i\n", insn.limm_p);
368 if (insn.limm_p)
369 arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);
370
371 if (insn.insn_class == STORE || insn.insn_class == LOAD
372 || insn.insn_class == PUSH || insn.insn_class == POP)
373 {
374 arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
375 arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
376 arc_print ("\tmemory_base_register = %s\n",
377 gdbarch_register_name (gdbarch,
378 arc_insn_get_memory_base_reg (insn)));
379 /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
380 LONGEST for a nicer representation. */
381 arc_print ("\taddr_offset = %s\n",
382 plongest (arc_insn_get_memory_offset (insn)));
383 }
384
385 arc_print ("\toperands_count = %u\n", insn.operands_count);
386 for (unsigned int i = 0; i < insn.operands_count; ++i)
387 {
388 int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);
389
390 arc_print ("\toperand[%u] = {\n", i);
391 arc_print ("\t\tis_reg = %i\n", is_reg);
392 if (is_reg)
393 arc_print ("\t\tregister = %s\n",
394 gdbarch_register_name (gdbarch, insn.operands[i].value));
395 /* Don't know if this value is signed or not, so print both
396 representations. This tends to look quite ugly, especially for big
397 numbers. */
398 arc_print ("\t\tunsigned value = %s\n",
399 pulongest (arc_insn_get_operand_value (insn, i)));
400 arc_print ("\t\tsigned value = %s\n",
401 plongest (arc_insn_get_operand_value_signed (insn, i)));
402 arc_print ("\t}\n");
403 }
404}
405
406CORE_ADDR
407arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
408{
409 /* In ARC long immediate is always 4 bytes. */
410 return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
411}
412
ad0a504f
AK
413/* Implement the "write_pc" gdbarch method.
414
415 In ARC PC register is a normal register so in most cases setting PC value
416 is a straightforward process: debugger just writes PC value. However it
417 gets trickier in case when current instruction is an instruction in delay
418 slot. In this case CPU will execute instruction at current PC value, then
419 will set PC to the current value of BTA register; also current instruction
420 cannot be branch/jump and some of the other instruction types. Thus if
421 debugger would try to just change PC value in this case, this instruction
422 will get executed, but then core will "jump" to the original branch target.
423
424 Whether current instruction is a delay-slot instruction or not is indicated
425 by DE bit in STATUS32 register indicates if current instruction is a delay
426 slot instruction. This bit is writable by debug host, which allows debug
427 host to prevent core from jumping after the delay slot instruction. It
428 also works in another direction: setting this bit will make core to treat
429 any current instructions as a delay slot instruction and to set PC to the
430 current value of BTA register.
431
432 To workaround issues with changing PC register while in delay slot
433 instruction, debugger should check for the STATUS32.DE bit and reset it if
434 it is set. No other change is required in this function. Most common
435 case, where this function might be required is calling inferior functions
436 from debugger. Generic GDB logic handles this pretty well: current values
437 of registers are stored, value of PC is changed (that is the job of this
438 function), and after inferior function is executed, GDB restores all
439 registers, include BTA and STATUS32, which also means that core is returned
440 to its original state of being halted on delay slot instructions.
441
442 This method is useless for ARC 600, because it doesn't have externally
443 exposed BTA register. In the case of ARC 600 it is impossible to restore
444 core to its state in all occasions thus core should never be halted (from
445 the perspective of debugger host) in the delay slot. */
446
447static void
448arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
449{
450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
451
452 if (arc_debug)
453 debug_printf ("arc: Writing PC, new value=%s\n",
454 paddress (gdbarch, new_pc));
455
456 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
457 new_pc);
458
459 ULONGEST status32;
460 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
461 &status32);
462
463 /* Mask for DE bit is 0x40. */
464 if (status32 & 0x40)
465 {
466 if (arc_debug)
467 {
468 debug_printf ("arc: Changing PC while in delay slot. Will "
469 "reset STATUS32.DE bit to zero. Value of STATUS32 "
470 "register is 0x%s\n",
471 phex (status32, ARC_REGISTER_SIZE));
472 }
473
474 /* Reset bit and write to the cache. */
475 status32 &= ~0x40;
476 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
477 status32);
478 }
479}
480
481/* Implement the "virtual_frame_pointer" gdbarch method.
482
483 According to ABI the FP (r27) is used to point to the middle of the current
484 stack frame, just below the saved FP and before local variables, register
485 spill area and outgoing args. However for optimization levels above O2 and
486 in any case in leaf functions, the frame pointer is usually not set at all.
487 The exception being when handling nested functions.
488
489 We use this function to return a "virtual" frame pointer, marking the start
490 of the current stack frame as a register-offset pair. If the FP is not
491 being used, then it should return SP, with an offset of the frame size.
492
493 The current implementation doesn't actually know the frame size, nor
494 whether the FP is actually being used, so for now we just return SP and an
495 offset of zero. This is no worse than other architectures, but is needed
496 to avoid assertion failures.
497
498 TODO: Can we determine the frame size to get a correct offset?
499
500 PC is a program counter where we need the virtual FP. REG_PTR is the base
501 register used for the virtual FP. OFFSET_PTR is the offset used for the
502 virtual FP. */
503
504static void
505arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
506 int *reg_ptr, LONGEST *offset_ptr)
507{
508 *reg_ptr = gdbarch_sp_regnum (gdbarch);
509 *offset_ptr = 0;
510}
511
512/* Implement the "dummy_id" gdbarch method.
513
514 Tear down a dummy frame created by arc_push_dummy_call (). This data has
515 to be constructed manually from the data in our hand. The stack pointer
516 and program counter can be obtained from the frame info. */
517
518static struct frame_id
519arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
520{
521 return frame_id_build (get_frame_sp (this_frame),
522 get_frame_pc (this_frame));
523}
524
525/* Implement the "push_dummy_call" gdbarch method.
526
527 Stack Frame Layout
528
529 This shows the layout of the stack frame for the general case of a
530 function call; a given function might not have a variable number of
531 arguments or local variables, or might not save any registers, so it would
532 not have the corresponding frame areas. Additionally, a leaf function
533 (i.e. one which calls no other functions) does not need to save the
534 contents of the BLINK register (which holds its return address), and a
535 function might not have a frame pointer.
536
537 The stack grows downward, so SP points below FP in memory; SP always
538 points to the last used word on the stack, not the first one.
539
540 | | |
541 | arg word N | | caller's
542 | : | | frame
543 | arg word 10 | |
544 | arg word 9 | |
545 old SP ---> +-----------------------+ --+
546 | | |
547 | callee-saved | |
548 | registers | |
549 | including fp, blink | |
550 | | | callee's
551 new FP ---> +-----------------------+ | frame
552 | | |
553 | local | |
554 | variables | |
555 | | |
556 | register | |
557 | spill area | |
558 | | |
559 | outgoing args | |
560 | | |
561 new SP ---> +-----------------------+ --+
562 | |
563 | unused |
564 | |
565 |
566 |
567 V
568 downwards
569
570 The list of arguments to be passed to a function is considered to be a
571 sequence of _N_ words (as though all the parameters were stored in order in
572 memory with each parameter occupying an integral number of words). Words
573 1..8 are passed in registers 0..7; if the function has more than 8 words of
574 arguments then words 9..@em N are passed on the stack in the caller's frame.
575
576 If the function has a variable number of arguments, e.g. it has a form such
577 as `function (p1, p2, ...);' and _P_ words are required to hold the values
578 of the named parameters (which are passed in registers 0..@em P -1), then
579 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
580 top of the frame so that the anonymous parameter words occupy a continuous
581 region.
582
583 Any arguments are already in target byte order. We just need to store
584 them!
585
586 BP_ADDR is the return address where breakpoint must be placed. NARGS is
587 the number of arguments to the function. ARGS is the arguments values (in
588 target byte order). SP is the Current value of SP register. STRUCT_RETURN
589 is TRUE if structures are returned by the function. STRUCT_ADDR is the
590 hidden address for returning a struct. Returns SP of a new frame. */
591
592static CORE_ADDR
593arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
594 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
595 struct value **args, CORE_ADDR sp, int struct_return,
596 CORE_ADDR struct_addr)
597{
598 if (arc_debug)
599 debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs);
600
601 int arg_reg = ARC_FIRST_ARG_REGNUM;
602
603 /* Push the return address. */
604 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
605
606 /* Are we returning a value using a structure return instead of a normal
607 value return? If so, struct_addr is the address of the reserved space for
608 the return structure to be written on the stack, and that address is
609 passed to that function as a hidden first argument. */
610 if (struct_return)
611 {
612 /* Pass the return address in the first argument register. */
613 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
614
615 if (arc_debug)
616 debug_printf ("arc: struct return address %s passed in R%d",
617 print_core_address (gdbarch, struct_addr), arg_reg);
618
619 arg_reg++;
620 }
621
622 if (nargs > 0)
623 {
624 unsigned int total_space = 0;
625
626 /* How much space do the arguments occupy in total? Must round each
627 argument's size up to an integral number of words. */
628 for (int i = 0; i < nargs; i++)
629 {
630 unsigned int len = TYPE_LENGTH (value_type (args[i]));
631 unsigned int space = align_up (len, 4);
632
633 total_space += space;
634
635 if (arc_debug)
636 debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space);
637 }
638
639 /* Allocate a buffer to hold a memory image of the arguments. */
640 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
641
642 /* Now copy all of the arguments into the buffer, correctly aligned. */
643 gdb_byte *data = memory_image;
644 for (int i = 0; i < nargs; i++)
645 {
646 unsigned int len = TYPE_LENGTH (value_type (args[i]));
647 unsigned int space = align_up (len, 4);
648
649 memcpy (data, value_contents (args[i]), (size_t) len);
650 if (arc_debug)
651 debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n",
652 i, *((int *) value_contents (args[i])), len);
653
654 data += space;
655 }
656
657 /* Now load as much as possible of the memory image into registers. */
658 data = memory_image;
659 while (arg_reg <= ARC_LAST_ARG_REGNUM)
660 {
661 if (arc_debug)
662 debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n",
663 data[0], data[1], data[2], data[3], arg_reg);
664
665 /* Note we don't use write_unsigned here, since that would convert
666 the byte order, but we are already in the correct byte order. */
667 regcache_cooked_write (regcache, arg_reg, data);
668
669 data += ARC_REGISTER_SIZE;
670 total_space -= ARC_REGISTER_SIZE;
671
672 /* All the data is now in registers. */
673 if (total_space == 0)
674 break;
675
676 arg_reg++;
677 }
678
679 /* If there is any data left, push it onto the stack (in a single write
680 operation). */
681 if (total_space > 0)
682 {
683 if (arc_debug)
684 debug_printf ("arc: passing %d bytes on stack\n", total_space);
685
686 sp -= total_space;
687 write_memory (sp, data, (int) total_space);
688 }
689
690 xfree (memory_image);
691 }
692
693 /* Finally, update the SP register. */
694 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
695
696 return sp;
697}
698
699/* Implement the "push_dummy_code" gdbarch method.
700
701 We don't actually push any code. We just identify where a breakpoint can
702 be inserted to which we are can return and the resume address where we
703 should be called.
704
705 ARC does not necessarily have an executable stack, so we can't put the
706 return breakpoint there. Instead we put it at the entry point of the
707 function. This means the SP is unchanged.
708
709 SP is a current stack pointer FUNADDR is an address of the function to be
710 called. ARGS is arguments to pass. NARGS is a number of args to pass.
711 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
712 the function is called. BP_ADDR is an address where breakpoint should be
713 set. Returns the updated stack pointer. */
714
715static CORE_ADDR
716arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
717 struct value **args, int nargs, struct type *value_type,
718 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
719 struct regcache *regcache)
720{
721 *real_pc = funaddr;
722 *bp_addr = entry_point_address ();
723 return sp;
724}
725
726/* Implement the "cannot_fetch_register" gdbarch method. */
727
728static int
729arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
730{
296ec4fa
AK
731 /* Assume that register is readable if it is unknown. LIMM and RESERVED are
732 not real registers, but specific register numbers. They are available as
733 regnums to align architectural register numbers with GDB internal regnums,
734 but they shouldn't appear in target descriptions generated by
735 GDB-servers. */
736 switch (regnum)
737 {
738 case ARC_RESERVED_REGNUM:
739 case ARC_LIMM_REGNUM:
740 return true;
741 default:
742 return false;
743 }
ad0a504f
AK
744}
745
746/* Implement the "cannot_store_register" gdbarch method. */
747
748static int
749arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
750{
296ec4fa
AK
751 /* Assume that register is writable if it is unknown. See comment in
752 arc_cannot_fetch_register about LIMM and RESERVED. */
ad0a504f
AK
753 switch (regnum)
754 {
296ec4fa
AK
755 case ARC_RESERVED_REGNUM:
756 case ARC_LIMM_REGNUM:
ad0a504f 757 case ARC_PCL_REGNUM:
296ec4fa 758 return true;
ad0a504f 759 default:
296ec4fa 760 return false;
ad0a504f
AK
761 }
762}
763
764/* Get the return value of a function from the registers/memory used to
765 return it, according to the convention used by the ABI - 4-bytes values are
766 in the R0, while 8-byte values are in the R0-R1.
767
768 TODO: This implementation ignores the case of "complex double", where
769 according to ABI, value is returned in the R0-R3 registers.
770
771 TYPE is a returned value's type. VALBUF is a buffer for the returned
772 value. */
773
774static void
775arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
776 struct regcache *regcache, gdb_byte *valbuf)
777{
778 unsigned int len = TYPE_LENGTH (type);
779
780 if (arc_debug)
781 debug_printf ("arc: extract_return_value\n");
782
783 if (len <= ARC_REGISTER_SIZE)
784 {
785 ULONGEST val;
786
787 /* Get the return value from one register. */
788 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
789 store_unsigned_integer (valbuf, (int) len,
790 gdbarch_byte_order (gdbarch), val);
791
792 if (arc_debug)
793 debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE));
794 }
795 else if (len <= ARC_REGISTER_SIZE * 2)
796 {
797 ULONGEST low, high;
798
799 /* Get the return value from two registers. */
800 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
801 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
802
803 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
804 gdbarch_byte_order (gdbarch), low);
805 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
806 (int) len - ARC_REGISTER_SIZE,
807 gdbarch_byte_order (gdbarch), high);
808
809 if (arc_debug)
810 debug_printf ("arc: returning 0x%s%s\n",
811 phex (high, ARC_REGISTER_SIZE),
812 phex (low, ARC_REGISTER_SIZE));
813 }
814 else
815 error (_("arc: extract_return_value: type length %u too large"), len);
816}
817
818
819/* Store the return value of a function into the registers/memory used to
820 return it, according to the convention used by the ABI.
821
822 TODO: This implementation ignores the case of "complex double", where
823 according to ABI, value is returned in the R0-R3 registers.
824
825 TYPE is a returned value's type. VALBUF is a buffer with the value to
826 return. */
827
828static void
829arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
830 struct regcache *regcache, const gdb_byte *valbuf)
831{
832 unsigned int len = TYPE_LENGTH (type);
833
834 if (arc_debug)
835 debug_printf ("arc: store_return_value\n");
836
837 if (len <= ARC_REGISTER_SIZE)
838 {
839 ULONGEST val;
840
841 /* Put the return value into one register. */
842 val = extract_unsigned_integer (valbuf, (int) len,
843 gdbarch_byte_order (gdbarch));
844 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
845
846 if (arc_debug)
847 debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE));
848 }
849 else if (len <= ARC_REGISTER_SIZE * 2)
850 {
851 ULONGEST low, high;
852
853 /* Put the return value into two registers. */
854 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
855 gdbarch_byte_order (gdbarch));
856 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
857 (int) len - ARC_REGISTER_SIZE,
858 gdbarch_byte_order (gdbarch));
859
860 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
861 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
862
863 if (arc_debug)
864 debug_printf ("arc: storing 0x%s%s\n",
865 phex (high, ARC_REGISTER_SIZE),
866 phex (low, ARC_REGISTER_SIZE));
867 }
868 else
869 error (_("arc_store_return_value: type length too large."));
870}
871
aaf43c48
AK
872/* Implement the "get_longjmp_target" gdbarch method. */
873
874static int
875arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
876{
877 if (arc_debug)
878 debug_printf ("arc: get_longjmp_target\n");
879
880 struct gdbarch *gdbarch = get_frame_arch (frame);
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
883 gdb_byte buf[ARC_REGISTER_SIZE];
884 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
885
886 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
887 return 0; /* Failed to read from memory. */
888
889 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
890 gdbarch_byte_order (gdbarch));
891 return 1;
892}
893
ad0a504f
AK
894/* Implement the "return_value" gdbarch method. */
895
896static enum return_value_convention
897arc_return_value (struct gdbarch *gdbarch, struct value *function,
898 struct type *valtype, struct regcache *regcache,
899 gdb_byte *readbuf, const gdb_byte *writebuf)
900{
901 /* If the return type is a struct, or a union, or would occupy more than two
902 registers, the ABI uses the "struct return convention": the calling
903 function passes a hidden first parameter to the callee (in R0). That
904 parameter is the address at which the value being returned should be
905 stored. Otherwise, the result is returned in registers. */
906 int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
907 || TYPE_CODE (valtype) == TYPE_CODE_UNION
908 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
909
910 if (arc_debug)
fa42dd2e
AK
911 debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n",
912 host_address_to_string (readbuf),
913 host_address_to_string (writebuf));
ad0a504f
AK
914
915 if (writebuf != NULL)
916 {
917 /* Case 1. GDB should not ask us to set a struct return value: it
918 should know the struct return location and write the value there
919 itself. */
920 gdb_assert (!is_struct_return);
921 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
922 }
923 else if (readbuf != NULL)
924 {
925 /* Case 2. GDB should not ask us to get a struct return value: it
926 should know the struct return location and read the value from there
927 itself. */
928 gdb_assert (!is_struct_return);
929 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
930 }
931
932 return (is_struct_return
933 ? RETURN_VALUE_STRUCT_CONVENTION
934 : RETURN_VALUE_REGISTER_CONVENTION);
935}
936
937/* Return the base address of the frame. For ARC, the base address is the
938 frame pointer. */
939
940static CORE_ADDR
941arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
942{
943 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
944}
945
fe5f7374
AK
946/* Helper function that returns valid pv_t for an instruction operand:
947 either a register or a constant. */
948
949static pv_t
950arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
951{
952 if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
953 return regs[insn.operands[operand].value];
954 else
955 return pv_constant (arc_insn_get_operand_value (insn, operand));
956}
957
958/* Determine whether the given disassembled instruction may be part of a
959 function prologue. If it is, the information in the frame unwind cache will
960 be updated. */
961
962static bool
963arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
964 pv_t *regs, struct pv_area *stack)
965{
966 /* It might be that currently analyzed address doesn't contain an
967 instruction, hence INSN is not valid. It likely means that address points
968 to a data, non-initialized memory, or middle of a 32-bit instruction. In
969 practice this may happen if GDB connects to a remote target that has
970 non-zeroed memory. GDB would read PC value and would try to analyze
971 prologue, but there is no guarantee that memory contents at the address
972 specified in PC is address is a valid instruction. There is not much that
973 that can be done about that. */
974 if (!insn.valid)
975 return false;
976
977 /* Branch/jump or a predicated instruction. */
978 if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
979 return false;
980
981 /* Store of some register. May or may not update base address register. */
982 if (insn.insn_class == STORE || insn.insn_class == PUSH)
983 {
984 /* There is definetely at least one operand - register/value being
985 stored. */
986 gdb_assert (insn.operands_count > 0);
987
988 /* Store at some constant address. */
989 if (insn.operands_count > 1
990 && insn.operands[1].kind != ARC_OPERAND_KIND_REG)
991 return false;
992
993 /* Writeback modes:
994 Mode Address used Writeback value
995 --------------------------------------------------
996 No reg + offset no
997 A/AW reg + offset reg + offset
998 AB reg reg + offset
999 AS reg + (offset << scaling) no
1000
1001 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However
1002 16-bit PUSH_S is a distinct instruction encoding, where offset and
1003 base register are implied through opcode. */
1004
1005 /* Register with base memory address. */
1006 int base_reg = arc_insn_get_memory_base_reg (insn);
1007
1008 /* Address where to write. arc_insn_get_memory_offset returns scaled
1009 value for ARC_WRITEBACK_AS. */
1010 pv_t addr;
1011 if (insn.writeback_mode == ARC_WRITEBACK_AB)
1012 addr = regs[base_reg];
1013 else
1014 addr = pv_add_constant (regs[base_reg],
1015 arc_insn_get_memory_offset (insn));
1016
1017 if (pv_area_store_would_trash (stack, addr))
1018 return false;
1019
1020 if (insn.data_size_mode != ARC_SCALING_D)
1021 {
1022 /* Find the value being stored. */
1023 pv_t store_value = arc_pv_get_operand (regs, insn, 0);
1024
1025 /* What is the size of a the stored value? */
1026 CORE_ADDR size;
1027 if (insn.data_size_mode == ARC_SCALING_B)
1028 size = 1;
1029 else if (insn.data_size_mode == ARC_SCALING_H)
1030 size = 2;
1031 else
1032 size = ARC_REGISTER_SIZE;
1033
1034 pv_area_store (stack, addr, size, store_value);
1035 }
1036 else
1037 {
1038 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1039 {
1040 /* If this is a double store, than write N+1 register as well. */
1041 pv_t store_value1 = regs[insn.operands[0].value];
1042 pv_t store_value2 = regs[insn.operands[0].value + 1];
1043 pv_area_store (stack, addr, ARC_REGISTER_SIZE, store_value1);
1044 pv_area_store (stack,
1045 pv_add_constant (addr, ARC_REGISTER_SIZE),
1046 ARC_REGISTER_SIZE, store_value2);
1047 }
1048 else
1049 {
1050 pv_t store_value
1051 = pv_constant (arc_insn_get_operand_value (insn, 0));
1052 pv_area_store (stack, addr, ARC_REGISTER_SIZE * 2, store_value);
1053 }
1054 }
1055
1056 /* Is base register updated? */
1057 if (insn.writeback_mode == ARC_WRITEBACK_A
1058 || insn.writeback_mode == ARC_WRITEBACK_AB)
1059 regs[base_reg] = pv_add_constant (regs[base_reg],
1060 arc_insn_get_memory_offset (insn));
1061
1062 return true;
1063 }
1064 else if (insn.insn_class == MOVE)
1065 {
1066 gdb_assert (insn.operands_count == 2);
1067
1068 /* Destination argument can be "0", so nothing will happen. */
1069 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1070 {
1071 int dst_regnum = insn.operands[0].value;
1072 regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
1073 }
1074 return true;
1075 }
1076 else if (insn.insn_class == SUB)
1077 {
1078 gdb_assert (insn.operands_count == 3);
1079
1080 /* SUB 0,b,c. */
1081 if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
1082 return true;
1083
1084 int dst_regnum = insn.operands[0].value;
1085 regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
1086 arc_pv_get_operand (regs, insn, 2));
1087 return true;
1088 }
1089 else if (insn.insn_class == ENTER)
1090 {
1091 /* ENTER_S is a prologue-in-instruction - it saves all callee-saved
1092 registers according to given arguments thus greatly reducing code
1093 size. Which registers will be actually saved depends on arguments.
1094
1095 ENTER_S {R13-...,FP,BLINK} stores registers in following order:
1096
1097 new SP ->
1098 BLINK
1099 R13
1100 R14
1101 R15
1102 ...
1103 FP
1104 old SP ->
1105
1106 There are up to three arguments for this opcode, as presented by ARC
1107 disassembler:
1108 1) amount of general-purpose registers to be saved - this argument is
1109 always present even when it is 0;
1110 2) FP register number (27) if FP has to be stored, otherwise argument
1111 is not present;
1112 3) BLINK register number (31) if BLINK has to be stored, otherwise
1113 argument is not present. If both FP and BLINK are stored, then FP
1114 is present before BLINK in argument list. */
1115 gdb_assert (insn.operands_count > 0);
1116
1117 int regs_saved = arc_insn_get_operand_value (insn, 0);
1118
1119 bool is_fp_saved;
1120 if (insn.operands_count > 1)
1121 is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM);
1122 else
1123 is_fp_saved = false;
1124
1125 bool is_blink_saved;
1126 if (insn.operands_count > 1)
1127 is_blink_saved = (insn.operands[insn.operands_count - 1].value
1128 == ARC_BLINK_REGNUM);
1129 else
1130 is_blink_saved = false;
1131
1132 /* Amount of bytes to be allocated to store specified registers. */
1133 CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
1134 * ARC_REGISTER_SIZE);
1135 pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);
1136
1137 /* Assume that if the last register (closest to new SP) can be written,
1138 then it is possible to write all of them. */
1139 if (pv_area_store_would_trash (stack, new_sp))
1140 return false;
1141
1142 /* Current store address. */
1143 pv_t addr = regs[ARC_SP_REGNUM];
1144
1145 if (is_fp_saved)
1146 {
1147 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1148 pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
1149 }
1150
1151 /* Registers are stored in backward order: from GP (R26) to R13. */
1152 for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
1153 {
1154 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1155 pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[i]);
1156 }
1157
1158 if (is_blink_saved)
1159 {
1160 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1161 pv_area_store (stack, addr, ARC_REGISTER_SIZE,
1162 regs[ARC_BLINK_REGNUM]);
1163 }
1164
1165 gdb_assert (pv_is_identical (addr, new_sp));
1166
1167 regs[ARC_SP_REGNUM] = new_sp;
1168
1169 if (is_fp_saved)
1170 regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];
1171
1172 return true;
1173 }
1174
1175 /* Some other architectures, like nds32 or arm, try to continue as far as
1176 possible when building a prologue cache (as opposed to when skipping
1177 prologue), so that cache will be as full as possible. However current
1178 code for ARC doesn't recognize some instructions that may modify SP, like
1179 ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
1180 clobbered by the skipped instruction. Potential existence of extension
1181 instruction, which may do anything they want makes this even more complex,
1182 so it is just better to halt on a first unrecognized instruction. */
1183
1184 return false;
1185}
1186
eea78757
AK
1187/* Copy of gdb_buffered_insn_length_fprintf from disasm.c. */
1188
1189static int ATTRIBUTE_PRINTF (2, 3)
1190arc_fprintf_disasm (void *stream, const char *format, ...)
1191{
1192 return 0;
1193}
1194
1195struct disassemble_info
1196arc_disassemble_info (struct gdbarch *gdbarch)
1197{
1198 struct disassemble_info di;
1199 init_disassemble_info (&di, &null_stream, arc_fprintf_disasm);
1200 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1201 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1202 di.endian = gdbarch_byte_order (gdbarch);
1203 di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr,
1204 unsigned int len, struct disassemble_info *info)
1205 {
1206 return target_read_code (memaddr, myaddr, len);
1207 };
1208 return di;
1209}
1210
fe5f7374
AK
1211/* Analyze the prologue and update the corresponding frame cache for the frame
1212 unwinder for unwinding frames that doesn't have debug info. In such
1213 situation GDB attempts to parse instructions in the prologue to understand
1214 where each register is saved.
1215
1216 If CACHE is not NULL, then it will be filled with information about saved
1217 registers.
1218
1219 There are several variations of prologue which GDB may encouter. "Full"
1220 prologue looks like this:
1221
1222 sub sp,sp,<imm> ; Space for variadic arguments.
1223 push blink ; Store return address.
1224 push r13 ; Store callee saved registers (up to R26/GP).
1225 push r14
1226 push fp ; Store frame pointer.
1227 mov fp,sp ; Update frame pointer.
1228 sub sp,sp,<imm> ; Create space for local vars on the stack.
1229
1230 Depending on compiler options lots of things may change:
1231
1232 1) BLINK is not saved in leaf functions.
1233 2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
1234 3) 16-bit versions of those instructions may be used.
1235 4) Instead of a sequence of several push'es, compiler may instead prefer to
1236 do one subtract on stack pointer and then store registers using normal
1237 store, that doesn't update SP. Like this:
1238
1239
1240 sub sp,sp,8 ; Create space for calee-saved registers.
1241 st r13,[sp,4] ; Store callee saved registers (up to R26/GP).
1242 st r14,[sp,0]
1243
1244 5) ENTER_S instruction can encode most of prologue sequence in one
1245 instruction (except for those subtracts for variadic arguments and local
1246 variables).
1247 6) GCC may use "millicode" functions from libgcc to store callee-saved
1248 registers with minimal code-size requirements. This function currently
1249 doesn't support this.
1250
1251 ENTRYPOINT is a function entry point where prologue starts.
1252
1253 LIMIT_PC is a maximum possible end address of prologue (meaning address
1254 of first instruction after the prologue). It might also point to the middle
1255 of prologue if execution has been stopped by the breakpoint at this address
1256 - in this case debugger should analyze prologue only up to this address,
1257 because further instructions haven't been executed yet.
1258
1259 Returns address of the first instruction after the prologue. */
1260
1261static CORE_ADDR
1262arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
1263 const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
1264{
1265 if (arc_debug)
1266 debug_printf ("arc: analyze_prologue (entrypoint=%s, limit_pc=%s)\n",
1267 paddress (gdbarch, entrypoint),
1268 paddress (gdbarch, limit_pc));
1269
1270 /* Prologue values. Only core registers can be stored. */
1271 pv_t regs[ARC_LAST_CORE_REGNUM + 1];
1272 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1273 regs[i] = pv_register (i, 0);
1274 struct pv_area *stack = make_pv_area (ARC_SP_REGNUM,
1275 gdbarch_addr_bit (gdbarch));
1276 struct cleanup *back_to = make_cleanup_free_pv_area (stack);
1277
1278 CORE_ADDR current_prologue_end = entrypoint;
1279
1280 /* Look at each instruction in the prologue. */
1281 while (current_prologue_end < limit_pc)
1282 {
1283 struct arc_instruction insn;
1284 struct disassemble_info di = arc_disassemble_info (gdbarch);
1285 arc_insn_decode (current_prologue_end, &di, arc_delayed_print_insn,
1286 &insn);
1287
1288 if (arc_debug >= 2)
1289 arc_insn_dump (insn);
1290
1291 /* If this instruction is in the prologue, fields in the cache will be
1292 updated, and the saved registers mask may be updated. */
1293 if (!arc_is_in_prologue (gdbarch, insn, regs, stack))
1294 {
1295 /* Found an instruction that is not in the prologue. */
1296 if (arc_debug)
1297 debug_printf ("arc: End of prologue reached at address %s\n",
1298 paddress (gdbarch, insn.address));
1299 break;
1300 }
1301
1302 current_prologue_end = arc_insn_get_linear_next_pc (insn);
1303 }
1304
1305 if (cache != NULL)
1306 {
1307 /* Figure out if it is a frame pointer or just a stack pointer. */
1308 if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
1309 {
1310 cache->frame_base_reg = ARC_FP_REGNUM;
1311 cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
1312 }
1313 else
1314 {
1315 cache->frame_base_reg = ARC_SP_REGNUM;
1316 cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
1317 }
1318
1319 /* Assign offset from old SP to all saved registers. */
1320 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1321 {
1322 CORE_ADDR offset;
1323 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1324 cache->saved_regs[i].addr = offset;
1325 }
1326 }
1327
1328 do_cleanups (back_to);
1329 return current_prologue_end;
1330}
1331
1332/* Estimated maximum prologue length in bytes. This should include:
1333 1) Store instruction for each callee-saved register (R25 - R13 + 1)
1334 2) Two instructions for FP
1335 3) One for BLINK
1336 4) Three substract instructions for SP (for variadic args, for
1337 callee saved regs and for local vars) and assuming that those SUB use
1338 long-immediate (hence double length).
1339 5) Stores of arguments registers are considered part of prologue too
1340 (R7 - R1 + 1).
1341 This is quite an extreme case, because even with -O0 GCC will collapse first
1342 two SUBs into one and long immediate values are quite unlikely to appear in
1343 this case, but still better to overshoot a bit - prologue analysis will
1344 anyway stop at the first instruction that doesn't fit prologue, so this
1345 limit will be rarely reached. */
1346
1347const static int MAX_PROLOGUE_LENGTH
1348 = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
1349 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);
1350
ad0a504f
AK
1351/* Implement the "skip_prologue" gdbarch method.
1352
1353 Skip the prologue for the function at PC. This is done by checking from
1354 the line information read from the DWARF, if possible; otherwise, we scan
1355 the function prologue to find its end. */
1356
1357static CORE_ADDR
1358arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1359{
1360 if (arc_debug)
1361 debug_printf ("arc: skip_prologue\n");
1362
1363 CORE_ADDR func_addr;
1364 const char *func_name;
1365
1366 /* See what the symbol table says. */
1367 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
1368 {
1369 /* Found a function. */
1370 CORE_ADDR postprologue_pc
1371 = skip_prologue_using_sal (gdbarch, func_addr);
1372
1373 if (postprologue_pc != 0)
1374 return std::max (pc, postprologue_pc);
1375 }
1376
1377 /* No prologue info in symbol table, have to analyze prologue. */
1378
1379 /* Find an upper limit on the function prologue using the debug
fe5f7374
AK
1380 information. If there is no debug information about prologue end, then
1381 skip_prologue_using_sal will return 0. */
ad0a504f 1382 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
fe5f7374
AK
1383
1384 /* If there is no debug information at all, it is required to give some
1385 semi-arbitrary hard limit on amount of bytes to scan during prologue
1386 analysis. */
1387 if (limit_pc == 0)
1388 limit_pc = pc + MAX_PROLOGUE_LENGTH;
1389
1390 /* Find the address of the first instruction after the prologue by scanning
1391 through it - no other information is needed, so pass NULL as a cache. */
1392 return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
ad0a504f
AK
1393}
1394
1395/* Implement the "print_insn" gdbarch method.
1396
1397 arc_get_disassembler () may return different functions depending on bfd
1398 type, so it is not possible to pass print_insn directly to
1399 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
1400 may be used by other functions to get disassemble_info for address. It is
1401 important to note, that those print_insn from opcodes always print
1402 instruction to the stream specified in the INFO. If this is not desired,
1403 then either `print_insn` function in INFO should be set to some function
1404 that will not print, or `stream` should be different from standard
1405 gdb_stdlog. */
1406
eea78757 1407int
ad0a504f
AK
1408arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
1409{
a87dc45a
AK
1410 /* Standard BFD "machine number" field allows libocodes disassembler to
1411 distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
1412 and HS, which have some difference between. There are two ways to specify
1413 what is the target core:
1414 1) via the disassemble_info->disassembler_options;
1415 2) otherwise libopcodes will use private (architecture-specific) ELF
1416 header.
1417
1418 Using disassembler_options is preferable, because it comes directly from
1419 GDBserver which scanned an actual ARC core identification info. However,
1420 not all GDBservers report core architecture, so as a fallback GDB still
1421 should support analysis of ELF header. The libopcodes disassembly code
1422 uses the section to find the BFD and the BFD to find the ELF header,
1423 therefore this function should set disassemble_info->section properly.
1424
1425 disassembler_options was already set by non-target specific code with
1426 proper options obtained via gdbarch_disassembler_options ().
1427
1428 This function might be called multiple times in a sequence, reusing same
1429 disassemble_info. */
1430 if ((info->disassembler_options == NULL) && (info->section == NULL))
1431 {
1432 struct obj_section *s = find_pc_section (addr);
1433 if (s != NULL)
1434 info->section = s->the_bfd_section;
1435 }
1436
1437 return default_print_insn (addr, info);
ad0a504f
AK
1438}
1439
1440/* Baremetal breakpoint instructions.
1441
1442 ARC supports both big- and little-endian. However, instructions for
1443 little-endian processors are encoded in the middle-endian: half-words are
1444 in big-endian, while bytes inside the half-words are in little-endian; data
1445 is represented in the "normal" little-endian. Big-endian processors treat
1446 data and code identically.
1447
1448 Assuming the number 0x01020304, it will be presented this way:
1449
1450 Address : N N+1 N+2 N+3
1451 little-endian : 0x04 0x03 0x02 0x01
1452 big-endian : 0x01 0x02 0x03 0x04
1453 ARC middle-endian : 0x02 0x01 0x04 0x03
1454 */
1455
1456static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
1457static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
1458static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
1459static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
1460
d19280ad 1461/* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
ad0a504f
AK
1462 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
1463 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
1464 inserted into delay slot instruction. In this case if branch is taken
1465 BLINK value will be set to address of instruction after delay slot, however
1466 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
1467 then BLINK value will have an invalid value - it will point to the address
1468 after the BRK_S (which was there at the moment of branch execution) while
1469 it should point to the address after the 32-bit long instruction. To avoid
1470 such issues this function disassembles instruction at target location and
1471 evaluates it value.
1472
1473 ARC 600 supports only 16-bit BRK_S.
1474
1475 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
1476 is much better because it doesn't commit unlike TRAP_S, so it can be set in
1477 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
d19280ad 1478 in GDB for user-space. */
ad0a504f 1479
d19280ad 1480/* Implement the "breakpoint_kind_from_pc" gdbarch method. */
ad0a504f 1481
d19280ad
YQ
1482static int
1483arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
ad0a504f
AK
1484{
1485 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
1486
1487 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
1488 BRK. LIMM is part of instruction length, so it can be either 4 or 8
1489 bytes for 32-bit instructions. */
1490 if ((length_with_limm == 4 || length_with_limm == 8)
1491 && !arc_mach_is_arc600 (gdbarch))
d19280ad
YQ
1492 return sizeof (arc_brk_le);
1493 else
1494 return sizeof (arc_brk_s_le);
1495}
1496
1497/* Implement the "sw_breakpoint_from_kind" gdbarch method. */
1498
1499static const gdb_byte *
1500arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1501{
1502 *size = kind;
1503
1504 if (kind == sizeof (arc_brk_le))
ad0a504f 1505 {
ad0a504f
AK
1506 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1507 ? arc_brk_be
1508 : arc_brk_le);
1509 }
1510 else
1511 {
ad0a504f
AK
1512 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1513 ? arc_brk_s_be
1514 : arc_brk_s_le);
1515 }
1516}
1517
1518/* Implement the "unwind_pc" gdbarch method. */
1519
1520static CORE_ADDR
1521arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1522{
1523 int pc_regnum = gdbarch_pc_regnum (gdbarch);
1524 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum);
1525
1526 if (arc_debug)
1527 debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc));
1528
1529 return pc;
1530}
1531
1532/* Implement the "unwind_sp" gdbarch method. */
1533
1534static CORE_ADDR
1535arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1536{
1537 int sp_regnum = gdbarch_sp_regnum (gdbarch);
1538 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum);
1539
1540 if (arc_debug)
1541 debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp));
1542
1543 return sp;
1544}
1545
1546/* Implement the "frame_align" gdbarch method. */
1547
1548static CORE_ADDR
1549arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1550{
1551 return align_down (sp, 4);
1552}
1553
fe5f7374
AK
1554/* Dump the frame info. Used for internal debugging only. */
1555
1556static void
a121b7c1 1557arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
fe5f7374
AK
1558 struct arc_frame_cache *cache, int addresses_known)
1559{
1560 debug_printf ("arc: frame_info %s\n", message);
1561 debug_printf ("arc: prev_sp = %s\n", paddress (gdbarch, cache->prev_sp));
1562 debug_printf ("arc: frame_base_reg = %i\n", cache->frame_base_reg);
1563 debug_printf ("arc: frame_base_offset = %s\n",
1564 plongest (cache->frame_base_offset));
1565
1566 for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
1567 {
1568 if (trad_frame_addr_p (cache->saved_regs, i))
1569 debug_printf ("arc: saved register %s at %s %s\n",
1570 gdbarch_register_name (gdbarch, i),
1571 (addresses_known) ? "address" : "offset",
1572 paddress (gdbarch, cache->saved_regs[i].addr));
1573 }
1574}
1575
ad0a504f
AK
1576/* Frame unwinder for normal frames. */
1577
1578static struct arc_frame_cache *
1579arc_make_frame_cache (struct frame_info *this_frame)
1580{
1581 if (arc_debug)
1582 debug_printf ("arc: frame_cache\n");
1583
1584 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1585
1586 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ad0a504f
AK
1587 CORE_ADDR entrypoint, prologue_end;
1588 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
1589 {
1590 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
fe5f7374 1591 CORE_ADDR prev_pc = get_frame_pc (this_frame);
ad0a504f
AK
1592 if (sal.line == 0)
1593 /* No line info so use current PC. */
1594 prologue_end = prev_pc;
1595 else if (sal.end < prologue_end)
1596 /* The next line begins after the function end. */
1597 prologue_end = sal.end;
1598
1599 prologue_end = std::min (prologue_end, prev_pc);
1600 }
1601 else
1602 {
fe5f7374
AK
1603 /* If find_pc_partial_function returned nothing then there is no symbol
1604 information at all for this PC. Currently it is assumed in this case
1605 that current PC is entrypoint to function and try to construct the
1606 frame from that. This is, probably, suboptimal, for example ARM
1607 assumes in this case that program is inside the normal frame (with
1608 frame pointer). ARC, perhaps, should try to do the same. */
ad0a504f
AK
1609 entrypoint = get_frame_register_unsigned (this_frame,
1610 gdbarch_pc_regnum (gdbarch));
fe5f7374 1611 prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
ad0a504f
AK
1612 }
1613
1614 /* Allocate new frame cache instance and space for saved register info.
fe5f7374 1615 FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
ad0a504f
AK
1616 struct arc_frame_cache *cache
1617 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1618 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1619
fe5f7374
AK
1620 arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);
1621
1622 if (arc_debug)
1623 arc_print_frame_cache (gdbarch, "after prologue", cache, false);
1624
1625 CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
1626 cache->frame_base_reg);
1627 if (unwound_fb == 0)
1628 return cache;
1629 cache->prev_sp = unwound_fb + cache->frame_base_offset;
1630
1631 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1632 {
1633 if (trad_frame_addr_p (cache->saved_regs, i))
1634 cache->saved_regs[i].addr += cache->prev_sp;
1635 }
1636
1637 if (arc_debug)
1638 arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);
ad0a504f
AK
1639
1640 return cache;
1641}
1642
1643/* Implement the "this_id" frame_unwind method. */
1644
1645static void
1646arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
1647 struct frame_id *this_id)
1648{
1649 if (arc_debug)
1650 debug_printf ("arc: frame_this_id\n");
1651
1652 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1653
1654 if (*this_cache == NULL)
1655 *this_cache = arc_make_frame_cache (this_frame);
1656 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1657
1658 CORE_ADDR stack_addr = cache->prev_sp;
1659
1660 /* There are 4 possible situation which decide how frame_id->code_addr is
1661 evaluated:
1662
1663 1) Function is compiled with option -g. Then frame_id will be created
1664 in dwarf_* function and not in this function. NB: even if target
1665 binary is compiled with -g, some std functions like __start and _init
1666 are not, so they still will follow one of the following choices.
1667
1668 2) Function is compiled without -g and binary hasn't been stripped in
1669 any way. In this case GDB still has enough information to evaluate
1670 frame code_addr properly. This case is covered by call to
1671 get_frame_func ().
1672
1673 3) Binary has been striped with option -g (strip debug symbols). In
1674 this case there is still enough symbols for get_frame_func () to work
1675 properly, so this case is also covered by it.
1676
1677 4) Binary has been striped with option -s (strip all symbols). In this
1678 case GDB cannot get function start address properly, so we return current
1679 PC value instead.
1680 */
1681 CORE_ADDR code_addr = get_frame_func (this_frame);
1682 if (code_addr == 0)
1683 code_addr = get_frame_register_unsigned (this_frame,
1684 gdbarch_pc_regnum (gdbarch));
1685
1686 *this_id = frame_id_build (stack_addr, code_addr);
1687}
1688
1689/* Implement the "prev_register" frame_unwind method. */
1690
1691static struct value *
1692arc_frame_prev_register (struct frame_info *this_frame,
1693 void **this_cache, int regnum)
1694{
ad0a504f
AK
1695 if (*this_cache == NULL)
1696 *this_cache = arc_make_frame_cache (this_frame);
1697 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1698
1699 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1700
1701 /* If we are asked to unwind the PC, then we need to return BLINK instead:
1702 the saved value of PC points into this frame's function's prologue, not
1703 the next frame's function's resume location. */
1704 if (regnum == gdbarch_pc_regnum (gdbarch))
1705 regnum = ARC_BLINK_REGNUM;
1706
1707 /* SP is a special case - we should return prev_sp, because
1708 trad_frame_get_prev_register will return _current_ SP value.
1709 Alternatively we could have stored cache->prev_sp in the cache->saved
1710 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
1711 leave that logic in this function, instead of prologue analyzers. That I
1712 think is a bit more clear as `saved_regs` should contain saved regs, not
1713 computable.
1714
1715 Because value has been computed, "got_constant" should be used, so that
1716 returned value will be a "not_lval" - immutable. */
1717
1718 if (regnum == gdbarch_sp_regnum (gdbarch))
1719 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1720
1721 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1722}
1723
1724/* Implement the "init_reg" dwarf2_frame method. */
1725
1726static void
1727arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1728 struct dwarf2_frame_state_reg *reg,
1729 struct frame_info *info)
1730{
1731 if (regnum == gdbarch_pc_regnum (gdbarch))
1732 /* The return address column. */
1733 reg->how = DWARF2_FRAME_REG_RA;
1734 else if (regnum == gdbarch_sp_regnum (gdbarch))
1735 /* The call frame address. */
1736 reg->how = DWARF2_FRAME_REG_CFA;
1737}
1738
1739/* Structure defining the ARC ordinary frame unwind functions. Since we are
1740 the fallback unwinder, we use the default frame sniffer, which always
1741 accepts the frame. */
1742
1743static const struct frame_unwind arc_frame_unwind = {
1744 NORMAL_FRAME,
1745 default_frame_unwind_stop_reason,
1746 arc_frame_this_id,
1747 arc_frame_prev_register,
1748 NULL,
1749 default_frame_sniffer,
1750 NULL,
1751 NULL
1752};
1753
1754
1755static const struct frame_base arc_normal_base = {
1756 &arc_frame_unwind,
1757 arc_frame_base_address,
1758 arc_frame_base_address,
1759 arc_frame_base_address
1760};
1761
1762/* Initialize target description for the ARC.
1763
1764 Returns TRUE if input tdesc was valid and in this case it will assign TDESC
1765 and TDESC_DATA output parameters. */
1766
1767static int
1768arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
1769 struct tdesc_arch_data **tdesc_data)
1770{
1771 if (arc_debug)
1772 debug_printf ("arc: Target description initialization.\n");
1773
1774 const struct target_desc *tdesc_loc = info.target_desc;
1775
1776 /* Depending on whether this is ARCompact or ARCv2 we will assign
1777 different default registers sets (which will differ in exactly two core
1778 registers). GDB will also refuse to accept register feature from invalid
1779 ISA - v2 features can be used only with v2 ARChitecture. We read
1780 bfd_arch_info, which looks like to be a safe bet here, as it looks like it
1781 is always initialized even when we don't pass any elf file to GDB at all
1782 (it uses default arch in this case). Also GDB will call this function
1783 multiple times, and if XML target description file contains architecture
1784 specifications, then GDB will set this architecture to info.bfd_arch_info,
1785 overriding value from ELF file if they are different. That means that,
1786 where matters, this value is always our best guess on what CPU we are
1787 debugging. It has been noted that architecture specified in tdesc file
1788 has higher precedence over ELF and even "set architecture" - that is,
1789 using "set architecture" command will have no effect when tdesc has "arch"
1790 tag. */
1791 /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet. */
1792 const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2);
1793 int is_reduced_rf;
1794 const char *const *core_regs;
1795 const char *core_feature_name;
1796
1797 /* If target doesn't provide a description - use default one. */
1798 if (!tdesc_has_registers (tdesc_loc))
1799 {
1800 if (is_arcv2)
1801 {
1802 tdesc_loc = tdesc_arc_v2;
1803 if (arc_debug)
1804 debug_printf ("arc: Using default register set for ARC v2.\n");
1805 }
1806 else
1807 {
1808 tdesc_loc = tdesc_arc_arcompact;
1809 if (arc_debug)
1810 debug_printf ("arc: Using default register set for ARCompact.\n");
1811 }
1812 }
1813 else
1814 {
1815 if (arc_debug)
1816 debug_printf ("arc: Using provided register set.\n");
1817 }
1818 gdb_assert (tdesc_loc != NULL);
1819
1820 /* Now we can search for base registers. Core registers can be either full
1821 or reduced. Summary:
1822
1823 - core.v2 + aux-minimal
1824 - core-reduced.v2 + aux-minimal
1825 - core.arcompact + aux-minimal
1826
1827 NB: It is entirely feasible to have ARCompact with reduced core regs, but
1828 we ignore that because GCC doesn't support that and at the same time
1829 ARCompact is considered obsolete, so there is not much reason to support
1830 that. */
1831 const struct tdesc_feature *feature
1832 = tdesc_find_feature (tdesc_loc, core_v2_feature_name);
1833 if (feature != NULL)
1834 {
1835 /* Confirm that register and architecture match, to prevent accidents in
1836 some situations. This code will trigger an error if:
1837
1838 1. XML tdesc doesn't specify arch explicitly, registers are for arch
1839 X, but ELF specifies arch Y.
1840
1841 2. XML tdesc specifies arch X, but contains registers for arch Y.
1842
1843 It will not protect from case where XML or ELF specify arch X,
1844 registers are for the same arch X, but the real target is arch Y. To
1845 detect this case we need to check IDENTITY register. */
1846 if (!is_arcv2)
1847 {
1848 arc_print (_("Error: ARC v2 target description supplied for "
1849 "non-ARCv2 target.\n"));
1850 return FALSE;
1851 }
1852
1853 is_reduced_rf = FALSE;
1854 core_feature_name = core_v2_feature_name;
1855 core_regs = core_v2_register_names;
1856 }
1857 else
1858 {
1859 feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name);
1860 if (feature != NULL)
1861 {
1862 if (!is_arcv2)
1863 {
1864 arc_print (_("Error: ARC v2 target description supplied for "
1865 "non-ARCv2 target.\n"));
1866 return FALSE;
1867 }
1868
1869 is_reduced_rf = TRUE;
1870 core_feature_name = core_reduced_v2_feature_name;
1871 core_regs = core_v2_register_names;
1872 }
1873 else
1874 {
1875 feature = tdesc_find_feature (tdesc_loc,
1876 core_arcompact_feature_name);
1877 if (feature != NULL)
1878 {
1879 if (is_arcv2)
1880 {
1881 arc_print (_("Error: ARCompact target description supplied "
1882 "for non-ARCompact target.\n"));
1883 return FALSE;
1884 }
1885
1886 is_reduced_rf = FALSE;
1887 core_feature_name = core_arcompact_feature_name;
1888 core_regs = core_arcompact_register_names;
1889 }
1890 else
1891 {
1892 arc_print (_("Error: Couldn't find core register feature in "
1893 "supplied target description."));
1894 return FALSE;
1895 }
1896 }
1897 }
1898
1899 struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc ();
1900
1901 gdb_assert (feature != NULL);
1902 int valid_p = 1;
1903
1904 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1905 {
1906 /* If rf16, then skip extra registers. */
1907 if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM)
1908 || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM)))
1909 continue;
1910
1911 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i,
1912 core_regs[i]);
1913
1914 /* - Ignore errors in extension registers - they are optional.
1915 - Ignore missing ILINK because it doesn't make sense for Linux.
1916 - Ignore missing ILINK2 when architecture is ARCompact, because it
1917 doesn't make sense for Linux targets.
1918
1919 In theory those optional registers should be in separate features, but
1920 that would create numerous but tiny features, which looks like an
1921 overengineering of a rather simple task. */
1922 if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM
1923 || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM
1924 || (i == ARC_R30_REGNUM && is_arcv2)))
1925 {
1926 arc_print (_("Error: Cannot find required register `%s' in "
1927 "feature `%s'.\n"), core_regs[i], core_feature_name);
1928 tdesc_data_cleanup (tdesc_data_loc);
1929 return FALSE;
1930 }
1931 }
1932
1933 /* Mandatory AUX registeres are intentionally few and are common between
1934 ARCompact and ARC v2, so same code can be used for both. */
1935 feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name);
1936 if (feature == NULL)
1937 {
1938 arc_print (_("Error: Cannot find required feature `%s' in supplied "
1939 "target description.\n"), aux_minimal_feature_name);
1940 tdesc_data_cleanup (tdesc_data_loc);
1941 return FALSE;
1942 }
1943
1944 for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++)
1945 {
1946 const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM];
1947 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name);
1948 if (!valid_p)
1949 {
1950 arc_print (_("Error: Cannot find required register `%s' "
1951 "in feature `%s'.\n"),
1952 name, tdesc_feature_name (feature));
1953 tdesc_data_cleanup (tdesc_data_loc);
1954 return FALSE;
1955 }
1956 }
1957
1958 *tdesc = tdesc_loc;
1959 *tdesc_data = tdesc_data_loc;
1960
1961 return TRUE;
1962}
1963
1964/* Implement the "init" gdbarch method. */
1965
1966static struct gdbarch *
1967arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1968{
1969 const struct target_desc *tdesc;
1970 struct tdesc_arch_data *tdesc_data;
1971
1972 if (arc_debug)
1973 debug_printf ("arc: Architecture initialization.\n");
1974
1975 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
1976 return NULL;
1977
b845c31e
AK
1978 /* Allocate the ARC-private target-dependent information structure, and the
1979 GDB target-independent information structure. */
1980 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
aaf43c48 1981 tdep->jb_pc = -1; /* No longjmp support by default. */
b845c31e 1982 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
ad0a504f
AK
1983
1984 /* Data types. */
1985 set_gdbarch_short_bit (gdbarch, 16);
1986 set_gdbarch_int_bit (gdbarch, 32);
1987 set_gdbarch_long_bit (gdbarch, 32);
1988 set_gdbarch_long_long_bit (gdbarch, 64);
1989 set_gdbarch_long_long_align_bit (gdbarch, 32);
1990 set_gdbarch_float_bit (gdbarch, 32);
1991 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1992 set_gdbarch_double_bit (gdbarch, 64);
1993 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1994 set_gdbarch_ptr_bit (gdbarch, 32);
1995 set_gdbarch_addr_bit (gdbarch, 32);
1996 set_gdbarch_char_signed (gdbarch, 0);
1997
1998 set_gdbarch_write_pc (gdbarch, arc_write_pc);
1999
2000 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
2001
2002 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
2003 parsed by gdbarch_init, and then it will add all of the remaining
2004 registers and will increase number of registers. */
2005 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
2006 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2007 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
2008 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
2009 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
2010 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
2011
2012 set_gdbarch_dummy_id (gdbarch, arc_dummy_id);
2013 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
2014 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
2015
2016 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
2017 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
2018
2019 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2020
2021 set_gdbarch_return_value (gdbarch, arc_return_value);
2022
2023 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
2024 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2025
04180708
YQ
2026 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
2027 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
ad0a504f
AK
2028
2029 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
2030 if (!arc_mach_is_arc600 (gdbarch))
2031 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2032 else
2033 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2034
2035 set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc);
2036 set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp);
2037
2038 set_gdbarch_frame_align (gdbarch, arc_frame_align);
2039
a87dc45a
AK
2040 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
2041
ad0a504f
AK
2042 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2043
2044 /* "nonsteppable" watchpoint means that watchpoint triggers before
2045 instruction is committed, therefore it is required to remove watchpoint
2046 to step though instruction that triggers it. ARC watchpoints trigger
2047 only after instruction is committed, thus there is no need to remove
2048 them. In fact on ARC watchpoint for memory writes may trigger with more
2049 significant delay, like one or two instructions, depending on type of
2050 memory where write is performed (CCM or external) and next instruction
2051 after the memory write. */
2052 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
2053
2054 /* This doesn't include possible long-immediate value. */
2055 set_gdbarch_max_insn_length (gdbarch, 4);
2056
2057 /* Frame unwinders and sniffers. */
2058 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
2059 dwarf2_append_unwinders (gdbarch);
2060 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
2061 frame_base_set_default (gdbarch, &arc_normal_base);
2062
2063 /* Setup stuff specific to a particular environment (baremetal or Linux).
2064 It can override functions set earlier. */
2065 gdbarch_init_osabi (info, gdbarch);
2066
aaf43c48
AK
2067 if (tdep->jb_pc >= 0)
2068 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
2069
a87dc45a
AK
2070 /* Disassembler options. Enforce CPU if it was specified in XML target
2071 description, otherwise use default method of determining CPU (ELF private
2072 header). */
2073 if (info.target_desc != NULL)
2074 {
2075 const struct bfd_arch_info *tdesc_arch
2076 = tdesc_architecture (info.target_desc);
2077 if (tdesc_arch != NULL)
2078 {
2079 xfree (arc_disassembler_options);
2080 /* FIXME: It is not really good to change disassembler options
2081 behind the scene, because that might override options
2082 specified by the user. However as of now ARC doesn't support
2083 `set disassembler-options' hence this code is the only place
2084 where options are changed. It also changes options for all
2085 existing gdbarches, which also can be problematic, if
2086 arc_gdbarch_init will start reusing existing gdbarch
2087 instances. */
2088 arc_disassembler_options = xstrprintf ("cpu=%s",
2089 tdesc_arch->printable_name);
2090 set_gdbarch_disassembler_options (gdbarch,
2091 &arc_disassembler_options);
2092 }
2093 }
2094
ad0a504f
AK
2095 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2096
2097 return gdbarch;
2098}
2099
2100/* Implement the "dump_tdep" gdbarch method. */
2101
2102static void
2103arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2104{
aaf43c48
AK
2105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2106
2107 fprintf_unfiltered (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
ad0a504f
AK
2108}
2109
3be78afd
AK
2110/* Wrapper for "maintenance print arc" list of commands. */
2111
2112static void
2113maintenance_print_arc_command (char *args, int from_tty)
2114{
2115 cmd_show_list (maintenance_print_arc_list, from_tty, "");
2116}
2117
eea78757
AK
2118/* This command accepts single argument - address of instruction to
2119 disassemble. */
2120
2121static void
57f5a81b 2122dump_arc_instruction_command (const char *args, int from_tty)
eea78757
AK
2123{
2124 struct value *val;
2125 if (args != NULL && strlen (args) > 0)
2126 val = evaluate_expression (parse_expression (args).get ());
2127 else
2128 val = access_value_history (0);
2129 record_latest_value (val);
2130
2131 CORE_ADDR address = value_as_address (val);
2132 struct arc_instruction insn;
2133 struct disassemble_info di = arc_disassemble_info (target_gdbarch ());
2134 arc_insn_decode (address, &di, arc_delayed_print_insn, &insn);
2135 arc_insn_dump (insn);
2136}
2137
ad0a504f
AK
2138void
2139_initialize_arc_tdep (void)
2140{
2141 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
2142
2143 initialize_tdesc_arc_v2 ();
2144 initialize_tdesc_arc_arcompact ();
2145
2146 /* Register ARC-specific commands with gdb. */
2147
3be78afd
AK
2148 /* Add root prefix command for "maintenance print arc" commands. */
2149 add_prefix_cmd ("arc", class_maintenance, maintenance_print_arc_command,
2150 _("ARC-specific maintenance commands for printing GDB "
2151 "internal state."),
2152 &maintenance_print_arc_list, "maintenance print arc ", 0,
2153 &maintenanceprintlist);
2154
eea78757
AK
2155 add_cmd ("arc-instruction", class_maintenance,
2156 dump_arc_instruction_command,
2157 _("Dump arc_instruction structure for specified address."),
2158 &maintenance_print_arc_list);
2159
ad0a504f
AK
2160 /* Debug internals for ARC GDB. */
2161 add_setshow_zinteger_cmd ("arc", class_maintenance,
2162 &arc_debug,
2163 _("Set ARC specific debugging."),
2164 _("Show ARC specific debugging."),
2165 _("Non-zero enables ARC specific debugging."),
2166 NULL, NULL, &setdebuglist, &showdebuglist);
2167}
This page took 0.180799 seconds and 4 git commands to generate.