* dwarf2read.c (read_str_index): Delete arg cu. All callers updated.
[deliverable/binutils-gdb.git] / gdb / arm-linux-tdep.c
CommitLineData
faf5f7ad 1/* GNU/Linux on ARM target support.
0fd88904 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
faf5f7ad
SB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
faf5f7ad
SB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
faf5f7ad
SB
19
20#include "defs.h"
c20f6dea
SB
21#include "target.h"
22#include "value.h"
faf5f7ad 23#include "gdbtypes.h"
134e61c4 24#include "floatformat.h"
2a451106
KB
25#include "gdbcore.h"
26#include "frame.h"
4e052eda 27#include "regcache.h"
d16aafd8 28#include "doublest.h"
7aa1783e 29#include "solib-svr4.h"
4be87837 30#include "osabi.h"
cb587d83 31#include "regset.h"
8e9d1a24
DJ
32#include "trad-frame.h"
33#include "tramp-frame.h"
daddc3c1 34#include "breakpoint.h"
ef7e8358 35#include "auxv.h"
9f948660 36#include "xml-syscall.h"
faf5f7ad 37
34e8f22d 38#include "arm-tdep.h"
cb587d83 39#include "arm-linux-tdep.h"
4aa995e1 40#include "linux-tdep.h"
0670c0aa 41#include "glibc-tdep.h"
cca44b1b
JB
42#include "arch-utils.h"
43#include "inferior.h"
44#include "gdbthread.h"
45#include "symfile.h"
a52e6aac 46
97dfe206
OJ
47#include "record-full.h"
48#include "linux-record.h"
49
55aa24fb
SDJ
50#include "cli/cli-utils.h"
51#include "stap-probe.h"
52#include "parser-defs.h"
53#include "user-regs.h"
54#include <ctype.h>
04a83fee 55#include "elf/common.h"
0e9f083f 56#include <string.h>
8e9d1a24 57
cb587d83
DJ
58extern int arm_apcs_32;
59
fdf39c9a
RE
60/* Under ARM GNU/Linux the traditional way of performing a breakpoint
61 is to execute a particular software interrupt, rather than use a
62 particular undefined instruction to provoke a trap. Upon exection
63 of the software interrupt the kernel stops the inferior with a
498b1f87 64 SIGTRAP, and wakes the debugger. */
66e810cd 65
948f8e3d 66static const gdb_byte arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
2ef47cd0 67
948f8e3d 68static const gdb_byte arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
66e810cd 69
c75a2cc8
DJ
70/* However, the EABI syscall interface (new in Nov. 2005) does not look at
71 the operand of the swi if old-ABI compatibility is disabled. Therefore,
72 use an undefined instruction instead. This is supported as of kernel
73 version 2.5.70 (May 2003), so should be a safe assumption for EABI
74 binaries. */
75
948f8e3d 76static const gdb_byte eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
c75a2cc8 77
948f8e3d 78static const gdb_byte eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
c75a2cc8
DJ
79
80/* All the kernels which support Thumb support using a specific undefined
81 instruction for the Thumb breakpoint. */
82
948f8e3d 83static const gdb_byte arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
498b1f87 84
948f8e3d 85static const gdb_byte arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
498b1f87 86
177321bd
DJ
87/* Because the 16-bit Thumb breakpoint is affected by Thumb-2 IT blocks,
88 we must use a length-appropriate breakpoint for 32-bit Thumb
89 instructions. See also thumb_get_next_pc. */
90
948f8e3d 91static const gdb_byte arm_linux_thumb2_be_breakpoint[] = { 0xf7, 0xf0, 0xa0, 0x00 };
177321bd 92
948f8e3d 93static const gdb_byte arm_linux_thumb2_le_breakpoint[] = { 0xf0, 0xf7, 0x00, 0xa0 };
177321bd 94
f8624c62
MGD
95/* Description of the longjmp buffer. The buffer is treated as an array of
96 elements of size ARM_LINUX_JB_ELEMENT_SIZE.
97
98 The location of saved registers in this buffer (in particular the PC
99 to use after longjmp is called) varies depending on the ABI (in
100 particular the FP model) and also (possibly) the C Library.
101
102 For glibc, eglibc, and uclibc the following holds: If the FP model is
103 SoftVFP or VFP (which implies EABI) then the PC is at offset 9 in the
104 buffer. This is also true for the SoftFPA model. However, for the FPA
105 model the PC is at offset 21 in the buffer. */
7a5ea0d4 106#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
f8624c62
MGD
107#define ARM_LINUX_JB_PC_FPA 21
108#define ARM_LINUX_JB_PC_EABI 9
faf5f7ad 109
f38e884d 110/*
fdf39c9a
RE
111 Dynamic Linking on ARM GNU/Linux
112 --------------------------------
f38e884d
SB
113
114 Note: PLT = procedure linkage table
115 GOT = global offset table
116
117 As much as possible, ELF dynamic linking defers the resolution of
0963b4bd 118 jump/call addresses until the last minute. The technique used is
f38e884d
SB
119 inspired by the i386 ELF design, and is based on the following
120 constraints.
121
122 1) The calling technique should not force a change in the assembly
123 code produced for apps; it MAY cause changes in the way assembly
124 code is produced for position independent code (i.e. shared
125 libraries).
126
127 2) The technique must be such that all executable areas must not be
128 modified; and any modified areas must not be executed.
129
130 To do this, there are three steps involved in a typical jump:
131
132 1) in the code
133 2) through the PLT
134 3) using a pointer from the GOT
135
136 When the executable or library is first loaded, each GOT entry is
137 initialized to point to the code which implements dynamic name
138 resolution and code finding. This is normally a function in the
fdf39c9a
RE
139 program interpreter (on ARM GNU/Linux this is usually
140 ld-linux.so.2, but it does not have to be). On the first
141 invocation, the function is located and the GOT entry is replaced
142 with the real function address. Subsequent calls go through steps
143 1, 2 and 3 and end up calling the real code.
f38e884d
SB
144
145 1) In the code:
146
147 b function_call
148 bl function_call
149
150 This is typical ARM code using the 26 bit relative branch or branch
151 and link instructions. The target of the instruction
152 (function_call is usually the address of the function to be called.
153 In position independent code, the target of the instruction is
154 actually an entry in the PLT when calling functions in a shared
155 library. Note that this call is identical to a normal function
156 call, only the target differs.
157
158 2) In the PLT:
159
0963b4bd
MS
160 The PLT is a synthetic area, created by the linker. It exists in
161 both executables and libraries. It is an array of stubs, one per
162 imported function call. It looks like this:
f38e884d
SB
163
164 PLT[0]:
165 str lr, [sp, #-4]! @push the return address (lr)
166 ldr lr, [pc, #16] @load from 6 words ahead
167 add lr, pc, lr @form an address for GOT[0]
168 ldr pc, [lr, #8]! @jump to the contents of that addr
169
170 The return address (lr) is pushed on the stack and used for
171 calculations. The load on the second line loads the lr with
172 &GOT[3] - . - 20. The addition on the third leaves:
173
174 lr = (&GOT[3] - . - 20) + (. + 8)
175 lr = (&GOT[3] - 12)
176 lr = &GOT[0]
177
178 On the fourth line, the pc and lr are both updated, so that:
179
180 pc = GOT[2]
181 lr = &GOT[0] + 8
182 = &GOT[2]
183
0963b4bd 184 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
f38e884d
SB
185 "tight", but allows us to keep all the PLT entries the same size.
186
187 PLT[n+1]:
188 ldr ip, [pc, #4] @load offset from gotoff
189 add ip, pc, ip @add the offset to the pc
190 ldr pc, [ip] @jump to that address
191 gotoff: .word GOT[n+3] - .
192
193 The load on the first line, gets an offset from the fourth word of
194 the PLT entry. The add on the second line makes ip = &GOT[n+3],
195 which contains either a pointer to PLT[0] (the fixup trampoline) or
196 a pointer to the actual code.
197
198 3) In the GOT:
199
200 The GOT contains helper pointers for both code (PLT) fixups and
0963b4bd 201 data fixups. The first 3 entries of the GOT are special. The next
f38e884d 202 M entries (where M is the number of entries in the PLT) belong to
0963b4bd
MS
203 the PLT fixups. The next D (all remaining) entries belong to
204 various data fixups. The actual size of the GOT is 3 + M + D.
f38e884d 205
0963b4bd 206 The GOT is also a synthetic area, created by the linker. It exists
f38e884d
SB
207 in both executables and libraries. When the GOT is first
208 initialized , all the GOT entries relating to PLT fixups are
209 pointing to code back at PLT[0].
210
211 The special entries in the GOT are:
212
213 GOT[0] = linked list pointer used by the dynamic loader
214 GOT[1] = pointer to the reloc table for this module
215 GOT[2] = pointer to the fixup/resolver code
216
217 The first invocation of function call comes through and uses the
218 fixup/resolver code. On the entry to the fixup/resolver code:
219
220 ip = &GOT[n+3]
221 lr = &GOT[2]
222 stack[0] = return address (lr) of the function call
223 [r0, r1, r2, r3] are still the arguments to the function call
224
225 This is enough information for the fixup/resolver code to work
226 with. Before the fixup/resolver code returns, it actually calls
227 the requested function and repairs &GOT[n+3]. */
228
2a451106
KB
229/* The constants below were determined by examining the following files
230 in the linux kernel sources:
231
232 arch/arm/kernel/signal.c
233 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
234 include/asm-arm/unistd.h
235 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
236
237#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
238#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
239
edfb1a26
DJ
240/* For ARM EABI, the syscall number is not in the SWI instruction
241 (instead it is loaded into r7). We recognize the pattern that
242 glibc uses... alternatively, we could arrange to do this by
243 function name, but they are not always exported. */
8e9d1a24
DJ
244#define ARM_SET_R7_SIGRETURN 0xe3a07077
245#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
246#define ARM_EABI_SYSCALL 0xef000000
2a451106 247
f1973203
MR
248/* OABI syscall restart trampoline, used for EABI executables too
249 whenever OABI support has been enabled in the kernel. */
250#define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
251#define ARM_LDR_PC_SP_12 0xe49df00c
478fd957 252#define ARM_LDR_PC_SP_4 0xe49df004
f1973203 253
8e9d1a24 254static void
a262aec2 255arm_linux_sigtramp_cache (struct frame_info *this_frame,
8e9d1a24
DJ
256 struct trad_frame_cache *this_cache,
257 CORE_ADDR func, int regs_offset)
2a451106 258{
a262aec2 259 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
8e9d1a24
DJ
260 CORE_ADDR base = sp + regs_offset;
261 int i;
2a451106 262
8e9d1a24
DJ
263 for (i = 0; i < 16; i++)
264 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
2a451106 265
8e9d1a24 266 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
2a451106 267
8e9d1a24
DJ
268 /* The VFP or iWMMXt registers may be saved on the stack, but there's
269 no reliable way to restore them (yet). */
2a451106 270
8e9d1a24
DJ
271 /* Save a frame ID. */
272 trad_frame_set_id (this_cache, frame_id_build (sp, func));
273}
2a451106 274
edfb1a26
DJ
275/* There are a couple of different possible stack layouts that
276 we need to support.
277
278 Before version 2.6.18, the kernel used completely independent
279 layouts for non-RT and RT signals. For non-RT signals the stack
280 began directly with a struct sigcontext. For RT signals the stack
281 began with two redundant pointers (to the siginfo and ucontext),
282 and then the siginfo and ucontext.
283
284 As of version 2.6.18, the non-RT signal frame layout starts with
285 a ucontext and the RT signal frame starts with a siginfo and then
286 a ucontext. Also, the ucontext now has a designated save area
287 for coprocessor registers.
288
289 For RT signals, it's easy to tell the difference: we look for
290 pinfo, the pointer to the siginfo. If it has the expected
291 value, we have an old layout. If it doesn't, we have the new
292 layout.
293
294 For non-RT signals, it's a bit harder. We need something in one
295 layout or the other with a recognizable offset and value. We can't
296 use the return trampoline, because ARM usually uses SA_RESTORER,
297 in which case the stack return trampoline is not filled in.
298 We can't use the saved stack pointer, because sigaltstack might
299 be in use. So for now we guess the new layout... */
300
301/* There are three words (trap_no, error_code, oldmask) in
302 struct sigcontext before r0. */
303#define ARM_SIGCONTEXT_R0 0xc
304
305/* There are five words (uc_flags, uc_link, and three for uc_stack)
306 in the ucontext_t before the sigcontext. */
307#define ARM_UCONTEXT_SIGCONTEXT 0x14
308
309/* There are three elements in an rt_sigframe before the ucontext:
310 pinfo, puc, and info. The first two are pointers and the third
311 is a struct siginfo, with size 128 bytes. We could follow puc
312 to the ucontext, but it's simpler to skip the whole thing. */
313#define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
314#define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
315
316#define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
317
318#define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
319
8e9d1a24
DJ
320static void
321arm_linux_sigreturn_init (const struct tramp_frame *self,
a262aec2 322 struct frame_info *this_frame,
8e9d1a24
DJ
323 struct trad_frame_cache *this_cache,
324 CORE_ADDR func)
2a451106 325{
e17a4113
UW
326 struct gdbarch *gdbarch = get_frame_arch (this_frame);
327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 328 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 329 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
330
331 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
a262aec2 332 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
333 ARM_UCONTEXT_SIGCONTEXT
334 + ARM_SIGCONTEXT_R0);
335 else
a262aec2 336 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26 337 ARM_SIGCONTEXT_R0);
8e9d1a24 338}
2a451106 339
8e9d1a24
DJ
340static void
341arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
a262aec2 342 struct frame_info *this_frame,
8e9d1a24
DJ
343 struct trad_frame_cache *this_cache,
344 CORE_ADDR func)
345{
e17a4113
UW
346 struct gdbarch *gdbarch = get_frame_arch (this_frame);
347 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a262aec2 348 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
e17a4113 349 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
edfb1a26
DJ
350
351 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
a262aec2 352 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
353 ARM_OLD_RT_SIGFRAME_UCONTEXT
354 + ARM_UCONTEXT_SIGCONTEXT
355 + ARM_SIGCONTEXT_R0);
356 else
a262aec2 357 arm_linux_sigtramp_cache (this_frame, this_cache, func,
edfb1a26
DJ
358 ARM_NEW_RT_SIGFRAME_UCONTEXT
359 + ARM_UCONTEXT_SIGCONTEXT
360 + ARM_SIGCONTEXT_R0);
2a451106
KB
361}
362
f1973203
MR
363static void
364arm_linux_restart_syscall_init (const struct tramp_frame *self,
365 struct frame_info *this_frame,
366 struct trad_frame_cache *this_cache,
367 CORE_ADDR func)
368{
478fd957 369 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f1973203 370 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
478fd957
UW
371 CORE_ADDR pc = get_frame_memory_unsigned (this_frame, sp, 4);
372 CORE_ADDR cpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM);
373 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
374 int sp_offset;
375
376 /* There are two variants of this trampoline; with older kernels, the
377 stub is placed on the stack, while newer kernels use the stub from
378 the vector page. They are identical except that the older version
379 increments SP by 12 (to skip stored PC and the stub itself), while
380 the newer version increments SP only by 4 (just the stored PC). */
381 if (self->insn[1].bytes == ARM_LDR_PC_SP_4)
382 sp_offset = 4;
383 else
384 sp_offset = 12;
385
386 /* Update Thumb bit in CPSR. */
387 if (pc & 1)
388 cpsr |= t_bit;
389 else
390 cpsr &= ~t_bit;
f1973203 391
478fd957
UW
392 /* Remove Thumb bit from PC. */
393 pc = gdbarch_addr_bits_remove (gdbarch, pc);
394
395 /* Save previous register values. */
396 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + sp_offset);
397 trad_frame_set_reg_value (this_cache, ARM_PC_REGNUM, pc);
398 trad_frame_set_reg_value (this_cache, ARM_PS_REGNUM, cpsr);
f1973203
MR
399
400 /* Save a frame ID. */
401 trad_frame_set_id (this_cache, frame_id_build (sp, func));
402}
403
8e9d1a24
DJ
404static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
405 SIGTRAMP_FRAME,
406 4,
407 {
408 { ARM_LINUX_SIGRETURN_INSTR, -1 },
409 { TRAMP_SENTINEL_INSN }
410 },
411 arm_linux_sigreturn_init
412};
413
414static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
415 SIGTRAMP_FRAME,
416 4,
417 {
418 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
419 { TRAMP_SENTINEL_INSN }
420 },
421 arm_linux_rt_sigreturn_init
422};
423
424static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
425 SIGTRAMP_FRAME,
426 4,
427 {
428 { ARM_SET_R7_SIGRETURN, -1 },
429 { ARM_EABI_SYSCALL, -1 },
430 { TRAMP_SENTINEL_INSN }
431 },
432 arm_linux_sigreturn_init
433};
434
435static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
436 SIGTRAMP_FRAME,
437 4,
438 {
439 { ARM_SET_R7_RT_SIGRETURN, -1 },
440 { ARM_EABI_SYSCALL, -1 },
441 { TRAMP_SENTINEL_INSN }
442 },
443 arm_linux_rt_sigreturn_init
444};
445
f1973203
MR
446static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
447 NORMAL_FRAME,
448 4,
449 {
450 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
451 { ARM_LDR_PC_SP_12, -1 },
452 { TRAMP_SENTINEL_INSN }
453 },
454 arm_linux_restart_syscall_init
455};
456
478fd957
UW
457static struct tramp_frame arm_kernel_linux_restart_syscall_tramp_frame = {
458 NORMAL_FRAME,
459 4,
460 {
461 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
462 { ARM_LDR_PC_SP_4, -1 },
463 { TRAMP_SENTINEL_INSN }
464 },
465 arm_linux_restart_syscall_init
466};
467
cb587d83
DJ
468/* Core file and register set support. */
469
470#define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
471
472void
473arm_linux_supply_gregset (const struct regset *regset,
474 struct regcache *regcache,
475 int regnum, const void *gregs_buf, size_t len)
476{
e17a4113
UW
477 struct gdbarch *gdbarch = get_regcache_arch (regcache);
478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cb587d83
DJ
479 const gdb_byte *gregs = gregs_buf;
480 int regno;
481 CORE_ADDR reg_pc;
482 gdb_byte pc_buf[INT_REGISTER_SIZE];
483
484 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
485 if (regnum == -1 || regnum == regno)
486 regcache_raw_supply (regcache, regno,
487 gregs + INT_REGISTER_SIZE * regno);
488
489 if (regnum == ARM_PS_REGNUM || regnum == -1)
490 {
491 if (arm_apcs_32)
492 regcache_raw_supply (regcache, ARM_PS_REGNUM,
17c12639 493 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
494 else
495 regcache_raw_supply (regcache, ARM_PS_REGNUM,
496 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
497 }
498
499 if (regnum == ARM_PC_REGNUM || regnum == -1)
500 {
501 reg_pc = extract_unsigned_integer (gregs
502 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
e17a4113
UW
503 INT_REGISTER_SIZE, byte_order);
504 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
505 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
cb587d83
DJ
506 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
507 }
508}
509
510void
511arm_linux_collect_gregset (const struct regset *regset,
512 const struct regcache *regcache,
513 int regnum, void *gregs_buf, size_t len)
514{
515 gdb_byte *gregs = gregs_buf;
516 int regno;
517
518 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
519 if (regnum == -1 || regnum == regno)
520 regcache_raw_collect (regcache, regno,
521 gregs + INT_REGISTER_SIZE * regno);
522
523 if (regnum == ARM_PS_REGNUM || regnum == -1)
524 {
525 if (arm_apcs_32)
526 regcache_raw_collect (regcache, ARM_PS_REGNUM,
17c12639 527 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
cb587d83
DJ
528 else
529 regcache_raw_collect (regcache, ARM_PS_REGNUM,
530 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
531 }
532
533 if (regnum == ARM_PC_REGNUM || regnum == -1)
534 regcache_raw_collect (regcache, ARM_PC_REGNUM,
535 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
536}
537
538/* Support for register format used by the NWFPE FPA emulator. */
539
540#define typeNone 0x00
541#define typeSingle 0x01
542#define typeDouble 0x02
543#define typeExtended 0x03
544
545void
546supply_nwfpe_register (struct regcache *regcache, int regno,
547 const gdb_byte *regs)
548{
549 const gdb_byte *reg_data;
550 gdb_byte reg_tag;
551 gdb_byte buf[FP_REGISTER_SIZE];
552
553 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
554 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
555 memset (buf, 0, FP_REGISTER_SIZE);
556
557 switch (reg_tag)
558 {
559 case typeSingle:
560 memcpy (buf, reg_data, 4);
561 break;
562 case typeDouble:
563 memcpy (buf, reg_data + 4, 4);
564 memcpy (buf + 4, reg_data, 4);
565 break;
566 case typeExtended:
567 /* We want sign and exponent, then least significant bits,
568 then most significant. NWFPE does sign, most, least. */
569 memcpy (buf, reg_data, 4);
570 memcpy (buf + 4, reg_data + 8, 4);
571 memcpy (buf + 8, reg_data + 4, 4);
572 break;
573 default:
574 break;
575 }
576
577 regcache_raw_supply (regcache, regno, buf);
578}
579
580void
581collect_nwfpe_register (const struct regcache *regcache, int regno,
582 gdb_byte *regs)
583{
584 gdb_byte *reg_data;
585 gdb_byte reg_tag;
586 gdb_byte buf[FP_REGISTER_SIZE];
587
588 regcache_raw_collect (regcache, regno, buf);
589
590 /* NOTE drow/2006-06-07: This code uses the tag already in the
591 register buffer. I've preserved that when moving the code
592 from the native file to the target file. But this doesn't
593 always make sense. */
594
595 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
596 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
597
598 switch (reg_tag)
599 {
600 case typeSingle:
601 memcpy (reg_data, buf, 4);
602 break;
603 case typeDouble:
604 memcpy (reg_data, buf + 4, 4);
605 memcpy (reg_data + 4, buf, 4);
606 break;
607 case typeExtended:
608 memcpy (reg_data, buf, 4);
609 memcpy (reg_data + 4, buf + 8, 4);
610 memcpy (reg_data + 8, buf + 4, 4);
611 break;
612 default:
613 break;
614 }
615}
616
617void
618arm_linux_supply_nwfpe (const struct regset *regset,
619 struct regcache *regcache,
620 int regnum, const void *regs_buf, size_t len)
621{
622 const gdb_byte *regs = regs_buf;
623 int regno;
624
625 if (regnum == ARM_FPS_REGNUM || regnum == -1)
626 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
627 regs + NWFPE_FPSR_OFFSET);
628
629 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
630 if (regnum == -1 || regnum == regno)
631 supply_nwfpe_register (regcache, regno, regs);
632}
633
634void
635arm_linux_collect_nwfpe (const struct regset *regset,
636 const struct regcache *regcache,
637 int regnum, void *regs_buf, size_t len)
638{
639 gdb_byte *regs = regs_buf;
640 int regno;
641
642 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
643 if (regnum == -1 || regnum == regno)
644 collect_nwfpe_register (regcache, regno, regs);
645
646 if (regnum == ARM_FPS_REGNUM || regnum == -1)
647 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
648 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
649}
650
ef7e8358
UW
651/* Support VFP register format. */
652
653#define ARM_LINUX_SIZEOF_VFP (32 * 8 + 4)
654
655static void
656arm_linux_supply_vfp (const struct regset *regset,
657 struct regcache *regcache,
658 int regnum, const void *regs_buf, size_t len)
659{
660 const gdb_byte *regs = regs_buf;
661 int regno;
662
663 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
664 regcache_raw_supply (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
665
666 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
667 if (regnum == -1 || regnum == regno)
668 regcache_raw_supply (regcache, regno,
669 regs + (regno - ARM_D0_REGNUM) * 8);
670}
671
672static void
673arm_linux_collect_vfp (const struct regset *regset,
674 const struct regcache *regcache,
675 int regnum, void *regs_buf, size_t len)
676{
677 gdb_byte *regs = regs_buf;
678 int regno;
679
680 if (regnum == ARM_FPSCR_REGNUM || regnum == -1)
681 regcache_raw_collect (regcache, ARM_FPSCR_REGNUM, regs + 32 * 8);
682
683 for (regno = ARM_D0_REGNUM; regno <= ARM_D31_REGNUM; regno++)
684 if (regnum == -1 || regnum == regno)
685 regcache_raw_collect (regcache, regno,
686 regs + (regno - ARM_D0_REGNUM) * 8);
687}
688
cb587d83
DJ
689/* Return the appropriate register set for the core section identified
690 by SECT_NAME and SECT_SIZE. */
691
692static const struct regset *
693arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
694 const char *sect_name, size_t sect_size)
695{
696 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
697
698 if (strcmp (sect_name, ".reg") == 0
699 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
700 {
701 if (tdep->gregset == NULL)
702 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
703 arm_linux_collect_gregset);
704 return tdep->gregset;
705 }
706
707 if (strcmp (sect_name, ".reg2") == 0
708 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
709 {
710 if (tdep->fpregset == NULL)
711 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
712 arm_linux_collect_nwfpe);
713 return tdep->fpregset;
714 }
715
ef7e8358
UW
716 if (strcmp (sect_name, ".reg-arm-vfp") == 0
717 && sect_size == ARM_LINUX_SIZEOF_VFP)
718 {
719 if (tdep->vfpregset == NULL)
720 tdep->vfpregset = regset_alloc (gdbarch, arm_linux_supply_vfp,
721 arm_linux_collect_vfp);
722 return tdep->vfpregset;
723 }
724
725 return NULL;
726}
727
728/* Core file register set sections. */
729
730static struct core_regset_section arm_linux_fpa_regset_sections[] =
731{
732 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
733 { ".reg2", ARM_LINUX_SIZEOF_NWFPE, "FPA floating-point" },
734 { NULL, 0}
735};
736
737static struct core_regset_section arm_linux_vfp_regset_sections[] =
738{
739 { ".reg", ARM_LINUX_SIZEOF_GREGSET, "general-purpose" },
740 { ".reg-arm-vfp", ARM_LINUX_SIZEOF_VFP, "VFP floating-point" },
741 { NULL, 0}
742};
743
744/* Determine target description from core file. */
745
746static const struct target_desc *
747arm_linux_core_read_description (struct gdbarch *gdbarch,
748 struct target_ops *target,
749 bfd *abfd)
750{
751 CORE_ADDR arm_hwcap = 0;
752
753 if (target_auxv_search (target, AT_HWCAP, &arm_hwcap) != 1)
754 return NULL;
755
756 if (arm_hwcap & HWCAP_VFP)
757 {
758 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support
759 Neon with VFPv3-D32. */
760 if (arm_hwcap & HWCAP_NEON)
761 return tdesc_arm_with_neon;
762 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
763 return tdesc_arm_with_vfpv3;
764 else
765 return tdesc_arm_with_vfpv2;
766 }
767
cb587d83
DJ
768 return NULL;
769}
770
ef7e8358 771
25b41d01 772/* Copy the value of next pc of sigreturn and rt_sigrturn into PC,
18819fa6
UW
773 return 1. In addition, set IS_THUMB depending on whether we
774 will return to ARM or Thumb code. Return 0 if it is not a
775 rt_sigreturn/sigreturn syscall. */
25b41d01
YQ
776static int
777arm_linux_sigreturn_return_addr (struct frame_info *frame,
778 unsigned long svc_number,
18819fa6 779 CORE_ADDR *pc, int *is_thumb)
25b41d01
YQ
780{
781 /* Is this a sigreturn or rt_sigreturn syscall? */
782 if (svc_number == 119 || svc_number == 173)
783 {
784 if (get_frame_type (frame) == SIGTRAMP_FRAME)
785 {
18819fa6
UW
786 ULONGEST t_bit = arm_psr_thumb_bit (frame_unwind_arch (frame));
787 CORE_ADDR cpsr
788 = frame_unwind_register_unsigned (frame, ARM_PS_REGNUM);
789
790 *is_thumb = (cpsr & t_bit) != 0;
25b41d01
YQ
791 *pc = frame_unwind_caller_pc (frame);
792 return 1;
793 }
794 }
795 return 0;
796}
797
9f948660
SDJ
798/* At a ptrace syscall-stop, return the syscall number. This either
799 comes from the SWI instruction (OABI) or from r7 (EABI).
800
801 When the function fails, it should return -1. */
802
803static LONGEST
804arm_linux_get_syscall_number (struct gdbarch *gdbarch,
805 ptid_t ptid)
806{
807 struct regcache *regs = get_thread_regcache (ptid);
808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
809
810 ULONGEST pc;
811 ULONGEST cpsr;
812 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
813 int is_thumb;
814 ULONGEST svc_number = -1;
815
816 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &pc);
817 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &cpsr);
818 is_thumb = (cpsr & t_bit) != 0;
819
820 if (is_thumb)
821 {
822 regcache_cooked_read_unsigned (regs, 7, &svc_number);
823 }
824 else
825 {
826 enum bfd_endian byte_order_for_code =
827 gdbarch_byte_order_for_code (gdbarch);
828
829 /* PC gets incremented before the syscall-stop, so read the
830 previous instruction. */
831 unsigned long this_instr =
832 read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
833
834 unsigned long svc_operand = (0x00ffffff & this_instr);
835
836 if (svc_operand)
837 {
838 /* OABI */
839 svc_number = svc_operand - 0x900000;
840 }
841 else
842 {
843 /* EABI */
844 regcache_cooked_read_unsigned (regs, 7, &svc_number);
845 }
846 }
847
848 return svc_number;
849}
850
25b41d01
YQ
851/* When FRAME is at a syscall instruction, return the PC of the next
852 instruction to be executed. */
853
854static CORE_ADDR
855arm_linux_syscall_next_pc (struct frame_info *frame)
856{
857 CORE_ADDR pc = get_frame_pc (frame);
858 CORE_ADDR return_addr = 0;
859 int is_thumb = arm_frame_is_thumb (frame);
860 ULONGEST svc_number = 0;
25b41d01
YQ
861
862 if (is_thumb)
863 {
864 svc_number = get_frame_register_unsigned (frame, 7);
18819fa6 865 return_addr = pc + 2;
25b41d01
YQ
866 }
867 else
868 {
869 struct gdbarch *gdbarch = get_frame_arch (frame);
870 enum bfd_endian byte_order_for_code =
871 gdbarch_byte_order_for_code (gdbarch);
872 unsigned long this_instr =
873 read_memory_unsigned_integer (pc, 4, byte_order_for_code);
874
875 unsigned long svc_operand = (0x00ffffff & this_instr);
876 if (svc_operand) /* OABI. */
877 {
878 svc_number = svc_operand - 0x900000;
879 }
880 else /* EABI. */
881 {
882 svc_number = get_frame_register_unsigned (frame, 7);
883 }
18819fa6
UW
884
885 return_addr = pc + 4;
25b41d01
YQ
886 }
887
18819fa6 888 arm_linux_sigreturn_return_addr (frame, svc_number, &return_addr, &is_thumb);
25b41d01 889
18819fa6 890 /* Addresses for calling Thumb functions have the bit 0 set. */
25b41d01 891 if (is_thumb)
18819fa6 892 return_addr |= 1;
25b41d01
YQ
893
894 return return_addr;
895}
896
897
daddc3c1
DJ
898/* Insert a single step breakpoint at the next executed instruction. */
899
63807e1d 900static int
daddc3c1
DJ
901arm_linux_software_single_step (struct frame_info *frame)
902{
a6d9a66e 903 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 904 struct address_space *aspace = get_frame_address_space (frame);
35f73cfc
UW
905 CORE_ADDR next_pc;
906
907 if (arm_deal_with_atomic_sequence (frame))
908 return 1;
909
910 next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
daddc3c1
DJ
911
912 /* The Linux kernel offers some user-mode helpers in a high page. We can
913 not read this page (as of 2.6.23), and even if we could then we couldn't
914 set breakpoints in it, and even if we could then the atomic operations
915 would fail when interrupted. They are all called as functions and return
916 to the address in LR, so step to there instead. */
917 if (next_pc > 0xffff0000)
918 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
919
18819fa6 920 arm_insert_single_step_breakpoint (gdbarch, aspace, next_pc);
daddc3c1
DJ
921
922 return 1;
923}
924
cca44b1b
JB
925/* Support for displaced stepping of Linux SVC instructions. */
926
927static void
6e39997a 928arm_linux_cleanup_svc (struct gdbarch *gdbarch,
cca44b1b
JB
929 struct regcache *regs,
930 struct displaced_step_closure *dsc)
931{
932 CORE_ADDR from = dsc->insn_addr;
933 ULONGEST apparent_pc;
934 int within_scratch;
935
936 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
937
938 within_scratch = (apparent_pc >= dsc->scratch_base
939 && apparent_pc < (dsc->scratch_base
940 + DISPLACED_MODIFIED_INSNS * 4 + 4));
941
942 if (debug_displaced)
943 {
944 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
945 "SVC step ", (unsigned long) apparent_pc);
946 if (within_scratch)
947 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
948 else
949 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
950 }
951
952 if (within_scratch)
953 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
954}
955
956static int
bd18283a
YQ
957arm_linux_copy_svc (struct gdbarch *gdbarch, struct regcache *regs,
958 struct displaced_step_closure *dsc)
cca44b1b 959{
25b41d01
YQ
960 CORE_ADDR return_to = 0;
961
cca44b1b 962 struct frame_info *frame;
36073a92 963 unsigned int svc_number = displaced_read_reg (regs, dsc, 7);
25b41d01 964 int is_sigreturn = 0;
18819fa6 965 int is_thumb;
cca44b1b 966
cca44b1b
JB
967 frame = get_current_frame ();
968
25b41d01 969 is_sigreturn = arm_linux_sigreturn_return_addr(frame, svc_number,
18819fa6 970 &return_to, &is_thumb);
25b41d01 971 if (is_sigreturn)
cca44b1b 972 {
cca44b1b
JB
973 struct symtab_and_line sal;
974
975 if (debug_displaced)
976 fprintf_unfiltered (gdb_stdlog, "displaced: found "
0963b4bd 977 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
cca44b1b
JB
978 (unsigned long) get_frame_pc (frame));
979
cca44b1b 980 if (debug_displaced)
0963b4bd 981 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
cca44b1b
JB
982 "Setting momentary breakpoint.\n", (unsigned long) return_to);
983
8358c15c
JK
984 gdb_assert (inferior_thread ()->control.step_resume_breakpoint
985 == NULL);
cca44b1b
JB
986
987 sal = find_pc_line (return_to, 0);
988 sal.pc = return_to;
989 sal.section = find_pc_overlay (return_to);
990 sal.explicit_pc = 1;
991
992 frame = get_prev_frame (frame);
993
994 if (frame)
995 {
8358c15c 996 inferior_thread ()->control.step_resume_breakpoint
cca44b1b
JB
997 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
998 bp_step_resume);
999
c70a6932
JK
1000 /* set_momentary_breakpoint invalidates FRAME. */
1001 frame = NULL;
1002
cca44b1b
JB
1003 /* We need to make sure we actually insert the momentary
1004 breakpoint set above. */
1005 insert_breakpoints ();
1006 }
1007 else if (debug_displaced)
1008 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
1009 "frame to set momentary breakpoint for "
1010 "sigreturn/rt_sigreturn\n");
1011 }
1012 else if (debug_displaced)
1013 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
1014 "SVC call not in signal trampoline frame\n");
25b41d01 1015
cca44b1b
JB
1016
1017 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
1018 location, else nothing.
1019 Insn: unmodified svc.
1020 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
1021 else leave pc alone. */
1022
cca44b1b
JB
1023
1024 dsc->cleanup = &arm_linux_cleanup_svc;
1025 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
1026 instruction. */
1027 dsc->wrote_to_pc = 1;
1028
1029 return 0;
1030}
1031
1032
1033/* The following two functions implement single-stepping over calls to Linux
1034 kernel helper routines, which perform e.g. atomic operations on architecture
1035 variants which don't support them natively.
1036
1037 When this function is called, the PC will be pointing at the kernel helper
1038 (at an address inaccessible to GDB), and r14 will point to the return
1039 address. Displaced stepping always executes code in the copy area:
1040 so, make the copy-area instruction branch back to the kernel helper (the
1041 "from" address), and make r14 point to the breakpoint in the copy area. In
1042 that way, we regain control once the kernel helper returns, and can clean
1043 up appropriately (as if we had just returned from the kernel helper as it
1044 would have been called from the non-displaced location). */
1045
1046static void
6e39997a 1047cleanup_kernel_helper_return (struct gdbarch *gdbarch,
cca44b1b
JB
1048 struct regcache *regs,
1049 struct displaced_step_closure *dsc)
1050{
1051 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
1052 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
1053}
1054
1055static void
1056arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
1057 CORE_ADDR to, struct regcache *regs,
1058 struct displaced_step_closure *dsc)
1059{
1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1061
1062 dsc->numinsns = 1;
1063 dsc->insn_addr = from;
1064 dsc->cleanup = &cleanup_kernel_helper_return;
1065 /* Say we wrote to the PC, else cleanup will set PC to the next
1066 instruction in the helper, which isn't helpful. */
1067 dsc->wrote_to_pc = 1;
1068
1069 /* Preparation: tmp[0] <- r14
1070 r14 <- <scratch space>+4
1071 *(<scratch space>+8) <- from
1072 Insn: ldr pc, [r14, #4]
1073 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
1074
36073a92 1075 dsc->tmp[0] = displaced_read_reg (regs, dsc, ARM_LR_REGNUM);
cca44b1b
JB
1076 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
1077 CANNOT_WRITE_PC);
1078 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
1079
1080 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
1081}
1082
1083/* Linux-specific displaced step instruction copying function. Detects when
1084 the program has stepped into a Linux kernel helper routine (which must be
1085 handled as a special case), falling back to arm_displaced_step_copy_insn()
1086 if it hasn't. */
1087
1088static struct displaced_step_closure *
1089arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
1090 CORE_ADDR from, CORE_ADDR to,
1091 struct regcache *regs)
1092{
1093 struct displaced_step_closure *dsc
1094 = xmalloc (sizeof (struct displaced_step_closure));
1095
1096 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
1097 stop at the return location. */
1098 if (from > 0xffff0000)
1099 {
1100 if (debug_displaced)
1101 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
1102 "at %.8lx\n", (unsigned long) from);
1103
1104 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
1105 }
1106 else
1107 {
cca44b1b
JB
1108 /* Override the default handling of SVC instructions. */
1109 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
1110
b434a28f 1111 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
1112 }
1113
1114 arm_displaced_init_closure (gdbarch, from, to, dsc);
1115
1116 return dsc;
1117}
1118
c248fc1d
SDJ
1119/* Implementation of `gdbarch_stap_is_single_operand', as defined in
1120 gdbarch.h. */
1121
55aa24fb
SDJ
1122static int
1123arm_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
1124{
8d85bacb 1125 return (*s == '#' || *s == '$' || isdigit (*s) /* Literal number. */
55aa24fb
SDJ
1126 || *s == '[' /* Register indirection or
1127 displacement. */
1128 || isalpha (*s)); /* Register value. */
1129}
1130
1131/* This routine is used to parse a special token in ARM's assembly.
1132
1133 The special tokens parsed by it are:
1134
1135 - Register displacement (e.g, [fp, #-8])
1136
1137 It returns one if the special token has been parsed successfully,
1138 or zero if the current token is not considered special. */
1139
1140static int
1141arm_stap_parse_special_token (struct gdbarch *gdbarch,
1142 struct stap_parse_info *p)
1143{
1144 if (*p->arg == '[')
1145 {
1146 /* Temporary holder for lookahead. */
1147 const char *tmp = p->arg;
a0bcdaa7 1148 char *endp;
55aa24fb
SDJ
1149 /* Used to save the register name. */
1150 const char *start;
1151 char *regname;
1152 int len, offset;
1153 int got_minus = 0;
1154 long displacement;
1155 struct stoken str;
1156
1157 ++tmp;
1158 start = tmp;
1159
1160 /* Register name. */
1161 while (isalnum (*tmp))
1162 ++tmp;
1163
1164 if (*tmp != ',')
1165 return 0;
1166
1167 len = tmp - start;
1168 regname = alloca (len + 2);
1169
1170 offset = 0;
1171 if (isdigit (*start))
1172 {
1173 /* If we are dealing with a register whose name begins with a
1174 digit, it means we should prefix the name with the letter
1175 `r', because GDB expects this name pattern. Otherwise (e.g.,
1176 we are dealing with the register `fp'), we don't need to
1177 add such a prefix. */
1178 regname[0] = 'r';
1179 offset = 1;
1180 }
1181
1182 strncpy (regname + offset, start, len);
1183 len += offset;
1184 regname[len] = '\0';
1185
1186 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
1187 error (_("Invalid register name `%s' on expression `%s'."),
1188 regname, p->saved_arg);
1189
1190 ++tmp;
1191 tmp = skip_spaces_const (tmp);
8d85bacb
SDJ
1192 if (*tmp == '#' || *tmp == '$')
1193 ++tmp;
55aa24fb
SDJ
1194
1195 if (*tmp == '-')
1196 {
1197 ++tmp;
1198 got_minus = 1;
1199 }
1200
a0bcdaa7
PA
1201 displacement = strtol (tmp, &endp, 10);
1202 tmp = endp;
55aa24fb
SDJ
1203
1204 /* Skipping last `]'. */
1205 if (*tmp++ != ']')
1206 return 0;
1207
1208 /* The displacement. */
1209 write_exp_elt_opcode (OP_LONG);
1210 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
1211 write_exp_elt_longcst (displacement);
1212 write_exp_elt_opcode (OP_LONG);
1213 if (got_minus)
1214 write_exp_elt_opcode (UNOP_NEG);
1215
1216 /* The register name. */
1217 write_exp_elt_opcode (OP_REGISTER);
1218 str.ptr = regname;
1219 str.length = len;
1220 write_exp_string (str);
1221 write_exp_elt_opcode (OP_REGISTER);
1222
1223 write_exp_elt_opcode (BINOP_ADD);
1224
1225 /* Casting to the expected type. */
1226 write_exp_elt_opcode (UNOP_CAST);
1227 write_exp_elt_type (lookup_pointer_type (p->arg_type));
1228 write_exp_elt_opcode (UNOP_CAST);
1229
1230 write_exp_elt_opcode (UNOP_IND);
1231
1232 p->arg = tmp;
1233 }
1234 else
1235 return 0;
1236
1237 return 1;
1238}
1239
97dfe206
OJ
1240/* ARM process record-replay constructs: syscall, signal etc. */
1241
1242struct linux_record_tdep arm_linux_record_tdep;
1243
1244/* arm_canonicalize_syscall maps from the native arm Linux set
1245 of syscall ids into a canonical set of syscall ids used by
1246 process record. */
1247
1248static enum gdb_syscall
1249arm_canonicalize_syscall (int syscall)
1250{
1251 enum { sys_process_vm_writev = 377 };
1252
1253 if (syscall <= gdb_sys_sched_getaffinity)
1254 return syscall;
1255 else if (syscall >= 243 && syscall <= 247)
1256 return syscall + 2;
1257 else if (syscall >= 248 && syscall <= 253)
1258 return syscall + 4;
1259
1260 return -1;
1261}
1262
1263/* Record all registers but PC register for process-record. */
1264
1265static int
1266arm_all_but_pc_registers_record (struct regcache *regcache)
1267{
1268 int i;
1269
1270 for (i = 0; i < ARM_PC_REGNUM; i++)
1271 {
1272 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM + i))
1273 return -1;
1274 }
1275
1276 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1277 return -1;
1278
1279 return 0;
1280}
1281
1282/* Handler for arm system call instruction recording. */
1283
1284static int
1285arm_linux_syscall_record (struct regcache *regcache, unsigned long svc_number)
1286{
1287 int ret = 0;
1288 enum gdb_syscall syscall_gdb;
1289
1290 syscall_gdb = arm_canonicalize_syscall (svc_number);
1291
1292 if (syscall_gdb < 0)
1293 {
1294 printf_unfiltered (_("Process record and replay target doesn't "
1295 "support syscall number %s\n"),
1296 plongest (svc_number));
1297 return -1;
1298 }
1299
1300 if (syscall_gdb == gdb_sys_sigreturn
1301 || syscall_gdb == gdb_sys_rt_sigreturn)
1302 {
1303 if (arm_all_but_pc_registers_record (regcache))
1304 return -1;
1305 return 0;
1306 }
1307
1308 ret = record_linux_system_call (syscall_gdb, regcache,
1309 &arm_linux_record_tdep);
1310 if (ret != 0)
1311 return ret;
1312
1313 /* Record the return value of the system call. */
1314 if (record_full_arch_list_add_reg (regcache, ARM_A1_REGNUM))
1315 return -1;
1316 /* Record LR. */
1317 if (record_full_arch_list_add_reg (regcache, ARM_LR_REGNUM))
1318 return -1;
1319 /* Record CPSR. */
1320 if (record_full_arch_list_add_reg (regcache, ARM_PS_REGNUM))
1321 return -1;
1322
1323 return 0;
1324}
1325
97e03143
RE
1326static void
1327arm_linux_init_abi (struct gdbarch_info info,
1328 struct gdbarch *gdbarch)
1329{
8d85bacb 1330 static const char *const stap_integer_prefixes[] = { "#", "$", "", NULL };
05c0465e
SDJ
1331 static const char *const stap_register_prefixes[] = { "r", NULL };
1332 static const char *const stap_register_indirection_prefixes[] = { "[",
1333 NULL };
1334 static const char *const stap_register_indirection_suffixes[] = { "]",
1335 NULL };
97e03143
RE
1336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1337
a5ee0f0c
PA
1338 linux_init_abi (info, gdbarch);
1339
97e03143 1340 tdep->lowest_pc = 0x8000;
2ef47cd0 1341 if (info.byte_order == BFD_ENDIAN_BIG)
498b1f87 1342 {
c75a2cc8
DJ
1343 if (tdep->arm_abi == ARM_ABI_AAPCS)
1344 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
1345 else
1346 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
498b1f87 1347 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
177321bd 1348 tdep->thumb2_breakpoint = arm_linux_thumb2_be_breakpoint;
498b1f87 1349 }
2ef47cd0 1350 else
498b1f87 1351 {
c75a2cc8
DJ
1352 if (tdep->arm_abi == ARM_ABI_AAPCS)
1353 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
1354 else
1355 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
498b1f87 1356 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
177321bd 1357 tdep->thumb2_breakpoint = arm_linux_thumb2_le_breakpoint;
498b1f87 1358 }
66e810cd 1359 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
498b1f87 1360 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
177321bd 1361 tdep->thumb2_breakpoint_size = sizeof (arm_linux_thumb2_le_breakpoint);
9df628e0 1362
28e97307
DJ
1363 if (tdep->fp_model == ARM_FLOAT_AUTO)
1364 tdep->fp_model = ARM_FLOAT_FPA;
fd50bc42 1365
f8624c62
MGD
1366 switch (tdep->fp_model)
1367 {
1368 case ARM_FLOAT_FPA:
1369 tdep->jb_pc = ARM_LINUX_JB_PC_FPA;
1370 break;
1371 case ARM_FLOAT_SOFT_FPA:
1372 case ARM_FLOAT_SOFT_VFP:
1373 case ARM_FLOAT_VFP:
1374 tdep->jb_pc = ARM_LINUX_JB_PC_EABI;
1375 break;
1376 default:
1377 internal_error
1378 (__FILE__, __LINE__,
1379 _("arm_linux_init_abi: Floating point model not supported"));
1380 break;
1381 }
a6cdd8c5 1382 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
19d3fc80 1383
7aa1783e 1384 set_solib_svr4_fetch_link_map_offsets
76a9d10f 1385 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
7aa1783e 1386
190dce09 1387 /* Single stepping. */
daddc3c1 1388 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
190dce09 1389
0e18d038 1390 /* Shared library handling. */
0e18d038 1391 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
bb41a796 1392 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
b2756930
KB
1393
1394 /* Enable TLS support. */
1395 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1396 svr4_fetch_objfile_link_map);
8e9d1a24
DJ
1397
1398 tramp_frame_prepend_unwinder (gdbarch,
1399 &arm_linux_sigreturn_tramp_frame);
1400 tramp_frame_prepend_unwinder (gdbarch,
1401 &arm_linux_rt_sigreturn_tramp_frame);
1402 tramp_frame_prepend_unwinder (gdbarch,
1403 &arm_eabi_linux_sigreturn_tramp_frame);
1404 tramp_frame_prepend_unwinder (gdbarch,
1405 &arm_eabi_linux_rt_sigreturn_tramp_frame);
f1973203
MR
1406 tramp_frame_prepend_unwinder (gdbarch,
1407 &arm_linux_restart_syscall_tramp_frame);
478fd957
UW
1408 tramp_frame_prepend_unwinder (gdbarch,
1409 &arm_kernel_linux_restart_syscall_tramp_frame);
cb587d83
DJ
1410
1411 /* Core file support. */
1412 set_gdbarch_regset_from_core_section (gdbarch,
1413 arm_linux_regset_from_core_section);
ef7e8358
UW
1414 set_gdbarch_core_read_description (gdbarch, arm_linux_core_read_description);
1415
1416 if (tdep->have_vfp_registers)
1417 set_gdbarch_core_regset_sections (gdbarch, arm_linux_vfp_regset_sections);
1418 else if (tdep->have_fpa_registers)
1419 set_gdbarch_core_regset_sections (gdbarch, arm_linux_fpa_regset_sections);
4aa995e1
PA
1420
1421 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
cca44b1b
JB
1422
1423 /* Displaced stepping. */
1424 set_gdbarch_displaced_step_copy_insn (gdbarch,
1425 arm_linux_displaced_step_copy_insn);
1426 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
1427 set_gdbarch_displaced_step_free_closure (gdbarch,
1428 simple_displaced_step_free_closure);
1429 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
25b41d01 1430
72508ac0
PO
1431 /* Reversible debugging, process record. */
1432 set_gdbarch_process_record (gdbarch, arm_process_record);
25b41d01 1433
55aa24fb 1434 /* SystemTap functions. */
05c0465e
SDJ
1435 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
1436 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
1437 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
1438 stap_register_indirection_prefixes);
1439 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
1440 stap_register_indirection_suffixes);
55aa24fb
SDJ
1441 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r");
1442 set_gdbarch_stap_is_single_operand (gdbarch, arm_stap_is_single_operand);
1443 set_gdbarch_stap_parse_special_token (gdbarch,
1444 arm_stap_parse_special_token);
1445
25b41d01 1446 tdep->syscall_next_pc = arm_linux_syscall_next_pc;
72508ac0 1447
9f948660
SDJ
1448 /* `catch syscall' */
1449 set_xml_syscall_file_name ("syscalls/arm-linux.xml");
1450 set_gdbarch_get_syscall_number (gdbarch, arm_linux_get_syscall_number);
1451
72508ac0 1452 /* Syscall record. */
97dfe206
OJ
1453 tdep->arm_syscall_record = arm_linux_syscall_record;
1454
1455 /* Initialize the arm_linux_record_tdep. */
1456 /* These values are the size of the type that will be used in a system
1457 call. They are obtained from Linux Kernel source. */
1458 arm_linux_record_tdep.size_pointer
1459 = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1460 arm_linux_record_tdep.size__old_kernel_stat = 32;
1461 arm_linux_record_tdep.size_tms = 16;
1462 arm_linux_record_tdep.size_loff_t = 8;
1463 arm_linux_record_tdep.size_flock = 16;
1464 arm_linux_record_tdep.size_oldold_utsname = 45;
1465 arm_linux_record_tdep.size_ustat = 20;
1466 arm_linux_record_tdep.size_old_sigaction = 140;
1467 arm_linux_record_tdep.size_old_sigset_t = 128;
1468 arm_linux_record_tdep.size_rlimit = 8;
1469 arm_linux_record_tdep.size_rusage = 72;
1470 arm_linux_record_tdep.size_timeval = 8;
1471 arm_linux_record_tdep.size_timezone = 8;
1472 arm_linux_record_tdep.size_old_gid_t = 2;
1473 arm_linux_record_tdep.size_old_uid_t = 2;
1474 arm_linux_record_tdep.size_fd_set = 128;
1475 arm_linux_record_tdep.size_dirent = 268;
1476 arm_linux_record_tdep.size_dirent64 = 276;
1477 arm_linux_record_tdep.size_statfs = 64;
1478 arm_linux_record_tdep.size_statfs64 = 84;
1479 arm_linux_record_tdep.size_sockaddr = 16;
1480 arm_linux_record_tdep.size_int
1481 = gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT;
1482 arm_linux_record_tdep.size_long
1483 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1484 arm_linux_record_tdep.size_ulong
1485 = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
1486 arm_linux_record_tdep.size_msghdr = 28;
1487 arm_linux_record_tdep.size_itimerval = 16;
1488 arm_linux_record_tdep.size_stat = 88;
1489 arm_linux_record_tdep.size_old_utsname = 325;
1490 arm_linux_record_tdep.size_sysinfo = 64;
1491 arm_linux_record_tdep.size_msqid_ds = 88;
1492 arm_linux_record_tdep.size_shmid_ds = 84;
1493 arm_linux_record_tdep.size_new_utsname = 390;
1494 arm_linux_record_tdep.size_timex = 128;
1495 arm_linux_record_tdep.size_mem_dqinfo = 24;
1496 arm_linux_record_tdep.size_if_dqblk = 68;
1497 arm_linux_record_tdep.size_fs_quota_stat = 68;
1498 arm_linux_record_tdep.size_timespec = 8;
1499 arm_linux_record_tdep.size_pollfd = 8;
1500 arm_linux_record_tdep.size_NFS_FHSIZE = 32;
1501 arm_linux_record_tdep.size_knfsd_fh = 132;
1502 arm_linux_record_tdep.size_TASK_COMM_LEN = 16;
1503 arm_linux_record_tdep.size_sigaction = 140;
1504 arm_linux_record_tdep.size_sigset_t = 8;
1505 arm_linux_record_tdep.size_siginfo_t = 128;
1506 arm_linux_record_tdep.size_cap_user_data_t = 12;
1507 arm_linux_record_tdep.size_stack_t = 12;
1508 arm_linux_record_tdep.size_off_t = arm_linux_record_tdep.size_long;
1509 arm_linux_record_tdep.size_stat64 = 96;
1510 arm_linux_record_tdep.size_gid_t = 2;
1511 arm_linux_record_tdep.size_uid_t = 2;
1512 arm_linux_record_tdep.size_PAGE_SIZE = 4096;
1513 arm_linux_record_tdep.size_flock64 = 24;
1514 arm_linux_record_tdep.size_user_desc = 16;
1515 arm_linux_record_tdep.size_io_event = 32;
1516 arm_linux_record_tdep.size_iocb = 64;
1517 arm_linux_record_tdep.size_epoll_event = 12;
1518 arm_linux_record_tdep.size_itimerspec
1519 = arm_linux_record_tdep.size_timespec * 2;
1520 arm_linux_record_tdep.size_mq_attr = 32;
1521 arm_linux_record_tdep.size_siginfo = 128;
1522 arm_linux_record_tdep.size_termios = 36;
1523 arm_linux_record_tdep.size_termios2 = 44;
1524 arm_linux_record_tdep.size_pid_t = 4;
1525 arm_linux_record_tdep.size_winsize = 8;
1526 arm_linux_record_tdep.size_serial_struct = 60;
1527 arm_linux_record_tdep.size_serial_icounter_struct = 80;
1528 arm_linux_record_tdep.size_hayes_esp_config = 12;
1529 arm_linux_record_tdep.size_size_t = 4;
1530 arm_linux_record_tdep.size_iovec = 8;
1531
1532 /* These values are the second argument of system call "sys_ioctl".
1533 They are obtained from Linux Kernel source. */
1534 arm_linux_record_tdep.ioctl_TCGETS = 0x5401;
1535 arm_linux_record_tdep.ioctl_TCSETS = 0x5402;
1536 arm_linux_record_tdep.ioctl_TCSETSW = 0x5403;
1537 arm_linux_record_tdep.ioctl_TCSETSF = 0x5404;
1538 arm_linux_record_tdep.ioctl_TCGETA = 0x5405;
1539 arm_linux_record_tdep.ioctl_TCSETA = 0x5406;
1540 arm_linux_record_tdep.ioctl_TCSETAW = 0x5407;
1541 arm_linux_record_tdep.ioctl_TCSETAF = 0x5408;
1542 arm_linux_record_tdep.ioctl_TCSBRK = 0x5409;
1543 arm_linux_record_tdep.ioctl_TCXONC = 0x540a;
1544 arm_linux_record_tdep.ioctl_TCFLSH = 0x540b;
1545 arm_linux_record_tdep.ioctl_TIOCEXCL = 0x540c;
1546 arm_linux_record_tdep.ioctl_TIOCNXCL = 0x540d;
1547 arm_linux_record_tdep.ioctl_TIOCSCTTY = 0x540e;
1548 arm_linux_record_tdep.ioctl_TIOCGPGRP = 0x540f;
1549 arm_linux_record_tdep.ioctl_TIOCSPGRP = 0x5410;
1550 arm_linux_record_tdep.ioctl_TIOCOUTQ = 0x5411;
1551 arm_linux_record_tdep.ioctl_TIOCSTI = 0x5412;
1552 arm_linux_record_tdep.ioctl_TIOCGWINSZ = 0x5413;
1553 arm_linux_record_tdep.ioctl_TIOCSWINSZ = 0x5414;
1554 arm_linux_record_tdep.ioctl_TIOCMGET = 0x5415;
1555 arm_linux_record_tdep.ioctl_TIOCMBIS = 0x5416;
1556 arm_linux_record_tdep.ioctl_TIOCMBIC = 0x5417;
1557 arm_linux_record_tdep.ioctl_TIOCMSET = 0x5418;
1558 arm_linux_record_tdep.ioctl_TIOCGSOFTCAR = 0x5419;
1559 arm_linux_record_tdep.ioctl_TIOCSSOFTCAR = 0x541a;
1560 arm_linux_record_tdep.ioctl_FIONREAD = 0x541b;
1561 arm_linux_record_tdep.ioctl_TIOCINQ = arm_linux_record_tdep.ioctl_FIONREAD;
1562 arm_linux_record_tdep.ioctl_TIOCLINUX = 0x541c;
1563 arm_linux_record_tdep.ioctl_TIOCCONS = 0x541d;
1564 arm_linux_record_tdep.ioctl_TIOCGSERIAL = 0x541e;
1565 arm_linux_record_tdep.ioctl_TIOCSSERIAL = 0x541f;
1566 arm_linux_record_tdep.ioctl_TIOCPKT = 0x5420;
1567 arm_linux_record_tdep.ioctl_FIONBIO = 0x5421;
1568 arm_linux_record_tdep.ioctl_TIOCNOTTY = 0x5422;
1569 arm_linux_record_tdep.ioctl_TIOCSETD = 0x5423;
1570 arm_linux_record_tdep.ioctl_TIOCGETD = 0x5424;
1571 arm_linux_record_tdep.ioctl_TCSBRKP = 0x5425;
1572 arm_linux_record_tdep.ioctl_TIOCTTYGSTRUCT = 0x5426;
1573 arm_linux_record_tdep.ioctl_TIOCSBRK = 0x5427;
1574 arm_linux_record_tdep.ioctl_TIOCCBRK = 0x5428;
1575 arm_linux_record_tdep.ioctl_TIOCGSID = 0x5429;
1576 arm_linux_record_tdep.ioctl_TCGETS2 = 0x802c542a;
1577 arm_linux_record_tdep.ioctl_TCSETS2 = 0x402c542b;
1578 arm_linux_record_tdep.ioctl_TCSETSW2 = 0x402c542c;
1579 arm_linux_record_tdep.ioctl_TCSETSF2 = 0x402c542d;
1580 arm_linux_record_tdep.ioctl_TIOCGPTN = 0x80045430;
1581 arm_linux_record_tdep.ioctl_TIOCSPTLCK = 0x40045431;
1582 arm_linux_record_tdep.ioctl_FIONCLEX = 0x5450;
1583 arm_linux_record_tdep.ioctl_FIOCLEX = 0x5451;
1584 arm_linux_record_tdep.ioctl_FIOASYNC = 0x5452;
1585 arm_linux_record_tdep.ioctl_TIOCSERCONFIG = 0x5453;
1586 arm_linux_record_tdep.ioctl_TIOCSERGWILD = 0x5454;
1587 arm_linux_record_tdep.ioctl_TIOCSERSWILD = 0x5455;
1588 arm_linux_record_tdep.ioctl_TIOCGLCKTRMIOS = 0x5456;
1589 arm_linux_record_tdep.ioctl_TIOCSLCKTRMIOS = 0x5457;
1590 arm_linux_record_tdep.ioctl_TIOCSERGSTRUCT = 0x5458;
1591 arm_linux_record_tdep.ioctl_TIOCSERGETLSR = 0x5459;
1592 arm_linux_record_tdep.ioctl_TIOCSERGETMULTI = 0x545a;
1593 arm_linux_record_tdep.ioctl_TIOCSERSETMULTI = 0x545b;
1594 arm_linux_record_tdep.ioctl_TIOCMIWAIT = 0x545c;
1595 arm_linux_record_tdep.ioctl_TIOCGICOUNT = 0x545d;
1596 arm_linux_record_tdep.ioctl_TIOCGHAYESESP = 0x545e;
1597 arm_linux_record_tdep.ioctl_TIOCSHAYESESP = 0x545f;
1598 arm_linux_record_tdep.ioctl_FIOQSIZE = 0x5460;
1599
1600 /* These values are the second argument of system call "sys_fcntl"
1601 and "sys_fcntl64". They are obtained from Linux Kernel source. */
1602 arm_linux_record_tdep.fcntl_F_GETLK = 5;
1603 arm_linux_record_tdep.fcntl_F_GETLK64 = 12;
1604 arm_linux_record_tdep.fcntl_F_SETLK64 = 13;
1605 arm_linux_record_tdep.fcntl_F_SETLKW64 = 14;
1606
1607 arm_linux_record_tdep.arg1 = ARM_A1_REGNUM + 1;
1608 arm_linux_record_tdep.arg2 = ARM_A1_REGNUM + 2;
1609 arm_linux_record_tdep.arg3 = ARM_A1_REGNUM + 3;
1610 arm_linux_record_tdep.arg4 = ARM_A1_REGNUM + 3;
97e03143
RE
1611}
1612
63807e1d
PA
1613/* Provide a prototype to silence -Wmissing-prototypes. */
1614extern initialize_file_ftype _initialize_arm_linux_tdep;
1615
faf5f7ad
SB
1616void
1617_initialize_arm_linux_tdep (void)
1618{
05816f70
MK
1619 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
1620 arm_linux_init_abi);
faf5f7ad 1621}
This page took 0.869423 seconds and 4 git commands to generate.