*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
c906108c 22
34e8f22d
RE
23#include <ctype.h> /* XXX for isupper () */
24
c906108c
SS
25#include "defs.h"
26#include "frame.h"
27#include "inferior.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
c906108c 30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
34e8f22d
RE
44
45#include "arm-tdep.h"
26216b98 46#include "gdb/sim-arm.h"
34e8f22d 47
082fc60d
RE
48#include "elf-bfd.h"
49#include "coff/internal.h"
97e03143 50#include "elf/arm.h"
c906108c 51
26216b98
AC
52#include "gdb_assert.h"
53
6529d2dd
AC
54static int arm_debug;
55
082fc60d
RE
56/* Macros for setting and testing a bit in a minimal symbol that marks
57 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 58 is used for this purpose.
082fc60d
RE
59
60 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 61 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
62
63#define MSYMBOL_SET_SPECIAL(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_IS_SPECIAL(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
afd7eef0
RE
70/* The list of available "set arm ..." and "show arm ..." commands. */
71static struct cmd_list_element *setarmcmdlist = NULL;
72static struct cmd_list_element *showarmcmdlist = NULL;
73
fd50bc42
RE
74/* The type of floating-point to use. Keep this in sync with enum
75 arm_float_model, and the help string in _initialize_arm_tdep. */
76static const char *fp_model_strings[] =
77{
78 "auto",
79 "softfpa",
80 "fpa",
81 "softvfp",
28e97307
DJ
82 "vfp",
83 NULL
fd50bc42
RE
84};
85
86/* A variable that can be configured by the user. */
87static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
88static const char *current_fp_model = "auto";
89
28e97307
DJ
90/* The ABI to use. Keep this in sync with arm_abi_kind. */
91static const char *arm_abi_strings[] =
92{
93 "auto",
94 "APCS",
95 "AAPCS",
96 NULL
97};
98
99/* A variable that can be configured by the user. */
100static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
101static const char *arm_abi_string = "auto";
102
94c30b78 103/* Number of different reg name sets (options). */
afd7eef0 104static int num_disassembly_options;
bc90b915
FN
105
106/* We have more registers than the disassembler as gdb can print the value
107 of special registers as well.
108 The general register names are overwritten by whatever is being used by
94c30b78 109 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 110
94c30b78 111/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 112static char * arm_register_name_strings[] =
da59e081
JM
113{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
114 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
115 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
116 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
117 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
118 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 119 "fps", "cpsr" }; /* 24 25 */
966fbf70 120static char **arm_register_names = arm_register_name_strings;
ed9a39eb 121
afd7eef0
RE
122/* Valid register name styles. */
123static const char **valid_disassembly_styles;
ed9a39eb 124
afd7eef0
RE
125/* Disassembly style to use. Default to "std" register names. */
126static const char *disassembly_style;
94c30b78 127/* Index to that option in the opcodes table. */
da3c6d4a 128static int current_option;
96baa820 129
ed9a39eb 130/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
131 style. */
132static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 133 struct cmd_list_element *);
afd7eef0 134static void set_disassembly_style (void);
ed9a39eb 135
b508a996
RE
136static void convert_from_extended (const struct floatformat *, const void *,
137 void *);
138static void convert_to_extended (const struct floatformat *, void *,
139 const void *);
ed9a39eb 140
9b8d791a 141struct arm_prologue_cache
c3b4394c 142{
eb5492fa
DJ
143 /* The stack pointer at the time this frame was created; i.e. the
144 caller's stack pointer when this function was called. It is used
145 to identify this frame. */
146 CORE_ADDR prev_sp;
147
148 /* The frame base for this frame is just prev_sp + frame offset -
149 frame size. FRAMESIZE is the size of this stack frame, and
150 FRAMEOFFSET if the initial offset from the stack pointer (this
151 frame's stack pointer, not PREV_SP) to the frame base. */
152
c3b4394c
RE
153 int framesize;
154 int frameoffset;
eb5492fa
DJ
155
156 /* The register used to hold the frame pointer for this frame. */
c3b4394c 157 int framereg;
eb5492fa
DJ
158
159 /* Saved register offsets. */
160 struct trad_frame_saved_reg *saved_regs;
c3b4394c 161};
ed9a39eb 162
bc90b915
FN
163/* Addresses for calling Thumb functions have the bit 0 set.
164 Here are some macros to test, set, or clear bit 0 of addresses. */
165#define IS_THUMB_ADDR(addr) ((addr) & 1)
166#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
167#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
168
94c30b78 169/* Set to true if the 32-bit mode is in use. */
c906108c
SS
170
171int arm_apcs_32 = 1;
172
ed9a39eb
JM
173/* Determine if the program counter specified in MEMADDR is in a Thumb
174 function. */
c906108c 175
34e8f22d 176int
2a451106 177arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 178{
c5aa993b 179 struct minimal_symbol *sym;
c906108c 180
ed9a39eb 181 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
182 if (IS_THUMB_ADDR (memaddr))
183 return 1;
184
ed9a39eb 185 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
186 sym = lookup_minimal_symbol_by_pc (memaddr);
187 if (sym)
188 {
c5aa993b 189 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
190 }
191 else
ed9a39eb
JM
192 {
193 return 0;
194 }
c906108c
SS
195}
196
181c1381 197/* Remove useless bits from addresses in a running program. */
34e8f22d 198static CORE_ADDR
ed9a39eb 199arm_addr_bits_remove (CORE_ADDR val)
c906108c 200{
a3a2ee65
JT
201 if (arm_apcs_32)
202 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 203 else
a3a2ee65 204 return (val & 0x03fffffc);
c906108c
SS
205}
206
181c1381
RE
207/* When reading symbols, we need to zap the low bit of the address,
208 which may be set to 1 for Thumb functions. */
34e8f22d 209static CORE_ADDR
181c1381
RE
210arm_smash_text_address (CORE_ADDR val)
211{
212 return val & ~1;
213}
214
29d73ae4
DJ
215/* Analyze a Thumb prologue, looking for a recognizable stack frame
216 and frame pointer. Scan until we encounter a store that could
217 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
218
219static CORE_ADDR
29d73ae4
DJ
220thumb_analyze_prologue (struct gdbarch *gdbarch,
221 CORE_ADDR start, CORE_ADDR limit,
222 struct arm_prologue_cache *cache)
c906108c 223{
29d73ae4
DJ
224 int i;
225 pv_t regs[16];
226 struct pv_area *stack;
227 struct cleanup *back_to;
228 CORE_ADDR offset;
da3c6d4a 229
29d73ae4
DJ
230 for (i = 0; i < 16; i++)
231 regs[i] = pv_register (i, 0);
232 stack = make_pv_area (ARM_SP_REGNUM);
233 back_to = make_cleanup_free_pv_area (stack);
234
235 /* The call instruction saved PC in LR, and the current PC is not
236 interesting. Due to this file's conventions, we want the value
237 of LR at this function's entry, not at the call site, so we do
238 not record the save of the PC - when the ARM prologue analyzer
239 has also been converted to the pv mechanism, we could record the
240 save here and remove the hack in prev_register. */
241 regs[ARM_PC_REGNUM] = pv_unknown ();
242
243 while (start < limit)
c906108c 244 {
29d73ae4
DJ
245 unsigned short insn;
246
247 insn = read_memory_unsigned_integer (start, 2);
c906108c 248
94c30b78 249 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 250 {
29d73ae4
DJ
251 int regno;
252 int mask;
253 int stop = 0;
254
255 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
256 whether to save LR (R14). */
257 mask = (insn & 0xff) | ((insn & 0x100) << 6);
258
259 /* Calculate offsets of saved R0-R7 and LR. */
260 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
261 if (mask & (1 << regno))
262 {
263 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
264 {
265 stop = 1;
266 break;
267 }
268
269 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
270 -4);
271 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
272 }
273
274 if (stop)
275 break;
da59e081 276 }
da3c6d4a
MS
277 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
278 sub sp, #simm */
da59e081 279 {
29d73ae4
DJ
280 offset = (insn & 0x7f) << 2; /* get scaled offset */
281 if (insn & 0x80) /* Check for SUB. */
282 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
283 -offset);
da59e081 284 else
29d73ae4
DJ
285 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
286 offset);
da59e081
JM
287 }
288 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
289 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
290 (insn & 0xff) << 2);
291 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 292 {
29d73ae4
DJ
293 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
294 int src_reg = (insn & 0x78) >> 3;
295 regs[dst_reg] = regs[src_reg];
da59e081 296 }
29d73ae4 297 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 298 {
29d73ae4
DJ
299 /* Handle stores to the stack. Normally pushes are used,
300 but with GCC -mtpcs-frame, there may be other stores
301 in the prologue to create the frame. */
302 int regno = (insn >> 8) & 0x7;
303 pv_t addr;
304
305 offset = (insn & 0xff) << 2;
306 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
307
308 if (pv_area_store_would_trash (stack, addr))
309 break;
310
311 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 312 }
29d73ae4 313 else
3d74b771 314 {
29d73ae4
DJ
315 /* We don't know what this instruction is. We're finished
316 scanning. NOTE: Recognizing more safe-to-ignore
317 instructions here will improve support for optimized
318 code. */
da3c6d4a 319 break;
3d74b771 320 }
29d73ae4
DJ
321
322 start += 2;
c906108c
SS
323 }
324
29d73ae4
DJ
325 if (cache == NULL)
326 {
327 do_cleanups (back_to);
328 return start;
329 }
330
331 /* frameoffset is unused for this unwinder. */
332 cache->frameoffset = 0;
333
334 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
335 {
336 /* Frame pointer is fp. Frame size is constant. */
337 cache->framereg = ARM_FP_REGNUM;
338 cache->framesize = -regs[ARM_FP_REGNUM].k;
339 }
340 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
341 {
342 /* Frame pointer is r7. Frame size is constant. */
343 cache->framereg = THUMB_FP_REGNUM;
344 cache->framesize = -regs[THUMB_FP_REGNUM].k;
345 }
346 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
347 {
348 /* Try the stack pointer... this is a bit desperate. */
349 cache->framereg = ARM_SP_REGNUM;
350 cache->framesize = -regs[ARM_SP_REGNUM].k;
351 }
352 else
353 {
354 /* We're just out of luck. We don't know where the frame is. */
355 cache->framereg = -1;
356 cache->framesize = 0;
357 }
358
359 for (i = 0; i < 16; i++)
360 if (pv_area_find_reg (stack, gdbarch, i, &offset))
361 cache->saved_regs[i].addr = offset;
362
363 do_cleanups (back_to);
364 return start;
c906108c
SS
365}
366
da3c6d4a
MS
367/* Advance the PC across any function entry prologue instructions to
368 reach some "real" code.
34e8f22d
RE
369
370 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 371 prologue:
c906108c 372
c5aa993b
JM
373 mov ip, sp
374 [stmfd sp!, {a1,a2,a3,a4}]
375 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
376 [stfe f7, [sp, #-12]!]
377 [stfe f6, [sp, #-12]!]
378 [stfe f5, [sp, #-12]!]
379 [stfe f4, [sp, #-12]!]
380 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 381
34e8f22d 382static CORE_ADDR
ed9a39eb 383arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
384{
385 unsigned long inst;
386 CORE_ADDR skip_pc;
b8d5e71d 387 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 388 char *func_name;
c906108c
SS
389 struct symtab_and_line sal;
390
848cfffb 391 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 392 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
393 return pc;
394
96baa820 395 /* See what the symbol table says. */
ed9a39eb 396
50f6fb4b 397 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 398 {
50f6fb4b
CV
399 struct symbol *sym;
400
401 /* Found a function. */
176620f1 402 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
403 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
404 {
94c30b78 405 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
406 sal = find_pc_line (func_addr, 0);
407 if ((sal.line != 0) && (sal.end < func_end))
408 return sal.end;
409 }
c906108c
SS
410 }
411
c906108c 412 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 413 by disassembling the instructions. */
c906108c 414
b8d5e71d
MS
415 /* Like arm_scan_prologue, stop no later than pc + 64. */
416 if (func_end == 0 || func_end > pc + 64)
417 func_end = pc + 64;
c906108c 418
29d73ae4
DJ
419 /* Check if this is Thumb code. */
420 if (arm_pc_is_thumb (pc))
421 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
422
b8d5e71d 423 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 424 {
1c5bada0 425 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 426
b8d5e71d
MS
427 /* "mov ip, sp" is no longer a required part of the prologue. */
428 if (inst == 0xe1a0c00d) /* mov ip, sp */
429 continue;
c906108c 430
28cd8767
JG
431 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
432 continue;
433
434 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
435 continue;
436
b8d5e71d
MS
437 /* Some prologues begin with "str lr, [sp, #-4]!". */
438 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
439 continue;
c906108c 440
b8d5e71d
MS
441 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
442 continue;
c906108c 443
b8d5e71d
MS
444 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
445 continue;
11d3b27d 446
b8d5e71d
MS
447 /* Any insns after this point may float into the code, if it makes
448 for better instruction scheduling, so we skip them only if we
449 find them, but still consider the function to be frame-ful. */
f43845b3 450
b8d5e71d
MS
451 /* We may have either one sfmfd instruction here, or several stfe
452 insns, depending on the version of floating point code we
453 support. */
454 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
455 continue;
456
457 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
458 continue;
459
460 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
461 continue;
462
463 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
464 continue;
465
466 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
467 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
468 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
469 continue;
470
471 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
472 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
473 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
474 continue;
475
476 /* Un-recognized instruction; stop scanning. */
477 break;
f43845b3 478 }
c906108c 479
b8d5e71d 480 return skip_pc; /* End of prologue */
c906108c 481}
94c30b78 482
c5aa993b 483/* *INDENT-OFF* */
c906108c
SS
484/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
485 This function decodes a Thumb function prologue to determine:
486 1) the size of the stack frame
487 2) which registers are saved on it
488 3) the offsets of saved regs
489 4) the offset from the stack pointer to the frame pointer
c906108c 490
da59e081
JM
491 A typical Thumb function prologue would create this stack frame
492 (offsets relative to FP)
c906108c
SS
493 old SP -> 24 stack parameters
494 20 LR
495 16 R7
496 R7 -> 0 local variables (16 bytes)
497 SP -> -12 additional stack space (12 bytes)
498 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
499 12 bytes. The frame register is R7.
500
da3c6d4a
MS
501 The comments for thumb_skip_prolog() describe the algorithm we use
502 to detect the end of the prolog. */
c5aa993b
JM
503/* *INDENT-ON* */
504
c906108c 505static void
eb5492fa 506thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
507{
508 CORE_ADDR prologue_start;
509 CORE_ADDR prologue_end;
510 CORE_ADDR current_pc;
94c30b78 511 /* Which register has been copied to register n? */
da3c6d4a
MS
512 int saved_reg[16];
513 /* findmask:
514 bit 0 - push { rlist }
515 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
516 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
517 */
518 int findmask = 0;
c5aa993b 519 int i;
c906108c 520
eb5492fa 521 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
522 {
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
524
94c30b78 525 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 526 prologue_end = prev_pc;
c906108c 527 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 528 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
529 }
530 else
f7060f85
DJ
531 /* We're in the boondocks: we have no idea where the start of the
532 function is. */
533 return;
c906108c 534
eb5492fa 535 prologue_end = min (prologue_end, prev_pc);
c906108c 536
29d73ae4
DJ
537 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
538 cache);
c906108c
SS
539}
540
ed9a39eb 541/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
542 1) the size of the stack frame
543 2) which registers are saved on it
544 3) the offsets of saved regs
545 4) the offset from the stack pointer to the frame pointer
c906108c
SS
546 This information is stored in the "extra" fields of the frame_info.
547
96baa820
JM
548 There are two basic forms for the ARM prologue. The fixed argument
549 function call will look like:
ed9a39eb
JM
550
551 mov ip, sp
552 stmfd sp!, {fp, ip, lr, pc}
553 sub fp, ip, #4
554 [sub sp, sp, #4]
96baa820 555
c906108c 556 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
557 IP -> 4 (caller's stack)
558 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
559 -4 LR (return address in caller)
560 -8 IP (copy of caller's SP)
561 -12 FP (caller's FP)
562 SP -> -28 Local variables
563
c906108c 564 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
565 28 bytes. The stmfd call can also save any of the vN registers it
566 plans to use, which increases the frame size accordingly.
567
568 Note: The stored PC is 8 off of the STMFD instruction that stored it
569 because the ARM Store instructions always store PC + 8 when you read
570 the PC register.
ed9a39eb 571
96baa820
JM
572 A variable argument function call will look like:
573
ed9a39eb
JM
574 mov ip, sp
575 stmfd sp!, {a1, a2, a3, a4}
576 stmfd sp!, {fp, ip, lr, pc}
577 sub fp, ip, #20
578
96baa820 579 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
580 IP -> 20 (caller's stack)
581 16 A4
582 12 A3
583 8 A2
584 4 A1
585 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
586 -4 LR (return address in caller)
587 -8 IP (copy of caller's SP)
588 -12 FP (caller's FP)
589 SP -> -28 Local variables
96baa820
JM
590
591 The frame size would thus be 48 bytes, and the frame offset would be
592 28 bytes.
593
594 There is another potential complication, which is that the optimizer
595 will try to separate the store of fp in the "stmfd" instruction from
596 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
597 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
598
599 Also, note, the original version of the ARM toolchain claimed that there
600 should be an
601
602 instruction at the end of the prologue. I have never seen GCC produce
603 this, and the ARM docs don't mention it. We still test for it below in
604 case it happens...
ed9a39eb
JM
605
606 */
c906108c
SS
607
608static void
eb5492fa 609arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
c906108c 610{
28cd8767 611 int regno, sp_offset, fp_offset, ip_offset;
c906108c 612 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 613 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 614
c906108c 615 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
616 cache->framereg = ARM_SP_REGNUM;
617 cache->framesize = 0;
618 cache->frameoffset = 0;
c906108c
SS
619
620 /* Check for Thumb prologue. */
eb5492fa 621 if (arm_pc_is_thumb (prev_pc))
c906108c 622 {
eb5492fa 623 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
624 return;
625 }
626
627 /* Find the function prologue. If we can't find the function in
628 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 629 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 630 {
2a451106
KB
631 /* One way to find the end of the prologue (which works well
632 for unoptimized code) is to do the following:
633
634 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
635
636 if (sal.line == 0)
eb5492fa 637 prologue_end = prev_pc;
2a451106
KB
638 else if (sal.end < prologue_end)
639 prologue_end = sal.end;
640
641 This mechanism is very accurate so long as the optimizer
642 doesn't move any instructions from the function body into the
643 prologue. If this happens, sal.end will be the last
644 instruction in the first hunk of prologue code just before
645 the first instruction that the scheduler has moved from
646 the body to the prologue.
647
648 In order to make sure that we scan all of the prologue
649 instructions, we use a slightly less accurate mechanism which
650 may scan more than necessary. To help compensate for this
651 lack of accuracy, the prologue scanning loop below contains
652 several clauses which'll cause the loop to terminate early if
653 an implausible prologue instruction is encountered.
654
655 The expression
656
657 prologue_start + 64
658
659 is a suitable endpoint since it accounts for the largest
660 possible prologue plus up to five instructions inserted by
94c30b78 661 the scheduler. */
2a451106
KB
662
663 if (prologue_end > prologue_start + 64)
664 {
94c30b78 665 prologue_end = prologue_start + 64; /* See above. */
2a451106 666 }
c906108c
SS
667 }
668 else
669 {
eb5492fa
DJ
670 /* We have no symbol information. Our only option is to assume this
671 function has a standard stack frame and the normal frame register.
672 Then, we can find the value of our frame pointer on entrance to
673 the callee (or at the present moment if this is the innermost frame).
674 The value stored there should be the address of the stmfd + 8. */
675 CORE_ADDR frame_loc;
676 LONGEST return_value;
677
678 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
679 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
680 return;
681 else
682 {
683 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 684 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 685 }
c906108c
SS
686 }
687
eb5492fa
DJ
688 if (prev_pc < prologue_end)
689 prologue_end = prev_pc;
690
c906108c 691 /* Now search the prologue looking for instructions that set up the
96baa820 692 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 693
96baa820
JM
694 Be careful, however, and if it doesn't look like a prologue,
695 don't try to scan it. If, for instance, a frameless function
696 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 697 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
698 and other operations that rely on a knowledge of the stack
699 traceback.
700
701 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 702 if we don't see this as the first insn, we will stop.
c906108c 703
f43845b3
MS
704 [Note: This doesn't seem to be true any longer, so it's now an
705 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 706
f43845b3
MS
707 [Note further: The "mov ip,sp" only seems to be missing in
708 frameless functions at optimization level "-O2" or above,
709 in which case it is often (but not always) replaced by
b8d5e71d 710 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 711
28cd8767 712 sp_offset = fp_offset = ip_offset = 0;
f43845b3 713
94c30b78
MS
714 for (current_pc = prologue_start;
715 current_pc < prologue_end;
f43845b3 716 current_pc += 4)
96baa820 717 {
d4473757
KB
718 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
719
94c30b78 720 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 721 {
28cd8767
JG
722 ip_offset = 0;
723 continue;
724 }
725 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
726 {
727 unsigned imm = insn & 0xff; /* immediate value */
728 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
729 imm = (imm >> rot) | (imm << (32 - rot));
730 ip_offset = imm;
731 continue;
732 }
733 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
734 {
735 unsigned imm = insn & 0xff; /* immediate value */
736 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
737 imm = (imm >> rot) | (imm << (32 - rot));
738 ip_offset = -imm;
f43845b3
MS
739 continue;
740 }
94c30b78 741 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 742 {
e28a332c
JG
743 sp_offset -= 4;
744 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
745 continue;
746 }
747 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
748 /* stmfd sp!, {..., fp, ip, lr, pc}
749 or
750 stmfd sp!, {a1, a2, a3, a4} */
c906108c 751 {
d4473757 752 int mask = insn & 0xffff;
ed9a39eb 753
94c30b78 754 /* Calculate offsets of saved registers. */
34e8f22d 755 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
756 if (mask & (1 << regno))
757 {
758 sp_offset -= 4;
eb5492fa 759 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
760 }
761 }
b8d5e71d
MS
762 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
763 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
764 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
765 {
766 /* No need to add this to saved_regs -- it's just an arg reg. */
767 continue;
768 }
769 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
770 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
771 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
772 {
773 /* No need to add this to saved_regs -- it's just an arg reg. */
774 continue;
775 }
d4473757
KB
776 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
777 {
94c30b78
MS
778 unsigned imm = insn & 0xff; /* immediate value */
779 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 780 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 781 fp_offset = -imm + ip_offset;
9b8d791a 782 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
783 }
784 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
785 {
94c30b78
MS
786 unsigned imm = insn & 0xff; /* immediate value */
787 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
788 imm = (imm >> rot) | (imm << (32 - rot));
789 sp_offset -= imm;
790 }
791 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
792 {
793 sp_offset -= 12;
34e8f22d 794 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 795 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
796 }
797 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
798 {
799 int n_saved_fp_regs;
800 unsigned int fp_start_reg, fp_bound_reg;
801
94c30b78 802 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 803 {
d4473757
KB
804 if ((insn & 0x40000) == 0x40000) /* N1 is set */
805 n_saved_fp_regs = 3;
806 else
807 n_saved_fp_regs = 1;
96baa820 808 }
d4473757 809 else
96baa820 810 {
d4473757
KB
811 if ((insn & 0x40000) == 0x40000) /* N1 is set */
812 n_saved_fp_regs = 2;
813 else
814 n_saved_fp_regs = 4;
96baa820 815 }
d4473757 816
34e8f22d 817 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
818 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
819 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
820 {
821 sp_offset -= 12;
eb5492fa 822 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 823 }
c906108c 824 }
d4473757 825 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 826 break; /* Condition not true, exit early */
b8d5e71d 827 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 828 break; /* Don't scan past a block load */
d4473757
KB
829 else
830 /* The optimizer might shove anything into the prologue,
94c30b78 831 so we just skip what we don't recognize. */
d4473757 832 continue;
c906108c
SS
833 }
834
94c30b78
MS
835 /* The frame size is just the negative of the offset (from the
836 original SP) of the last thing thing we pushed on the stack.
837 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
838 cache->framesize = -sp_offset;
839 if (cache->framereg == ARM_FP_REGNUM)
840 cache->frameoffset = fp_offset - sp_offset;
d4473757 841 else
9b8d791a 842 cache->frameoffset = 0;
c906108c
SS
843}
844
eb5492fa
DJ
845static struct arm_prologue_cache *
846arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 847{
eb5492fa
DJ
848 int reg;
849 struct arm_prologue_cache *cache;
850 CORE_ADDR unwound_fp;
c5aa993b 851
35d5d4ee 852 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 853 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 854
eb5492fa 855 arm_scan_prologue (next_frame, cache);
848cfffb 856
eb5492fa
DJ
857 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
858 if (unwound_fp == 0)
859 return cache;
c906108c 860
eb5492fa 861 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 862
eb5492fa
DJ
863 /* Calculate actual addresses of saved registers using offsets
864 determined by arm_scan_prologue. */
865 for (reg = 0; reg < NUM_REGS; reg++)
e28a332c 866 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
867 cache->saved_regs[reg].addr += cache->prev_sp;
868
869 return cache;
c906108c
SS
870}
871
eb5492fa
DJ
872/* Our frame ID for a normal frame is the current function's starting PC
873 and the caller's SP when we were called. */
c906108c 874
148754e5 875static void
eb5492fa
DJ
876arm_prologue_this_id (struct frame_info *next_frame,
877 void **this_cache,
878 struct frame_id *this_id)
c906108c 879{
eb5492fa
DJ
880 struct arm_prologue_cache *cache;
881 struct frame_id id;
882 CORE_ADDR func;
f079148d 883
eb5492fa
DJ
884 if (*this_cache == NULL)
885 *this_cache = arm_make_prologue_cache (next_frame);
886 cache = *this_cache;
2a451106 887
eb5492fa 888 func = frame_func_unwind (next_frame);
2a451106 889
eb5492fa
DJ
890 /* This is meant to halt the backtrace at "_start". Make sure we
891 don't halt it at a generic dummy frame. */
9e815ec2 892 if (func <= LOWEST_PC)
eb5492fa 893 return;
5a203e44 894
eb5492fa
DJ
895 /* If we've hit a wall, stop. */
896 if (cache->prev_sp == 0)
897 return;
24de872b 898
eb5492fa 899 id = frame_id_build (cache->prev_sp, func);
eb5492fa 900 *this_id = id;
c906108c
SS
901}
902
eb5492fa
DJ
903static void
904arm_prologue_prev_register (struct frame_info *next_frame,
905 void **this_cache,
906 int prev_regnum,
907 int *optimized,
908 enum lval_type *lvalp,
909 CORE_ADDR *addrp,
910 int *realnump,
9af75ef6 911 gdb_byte *valuep)
24de872b
DJ
912{
913 struct arm_prologue_cache *cache;
914
eb5492fa
DJ
915 if (*this_cache == NULL)
916 *this_cache = arm_make_prologue_cache (next_frame);
917 cache = *this_cache;
24de872b 918
eb5492fa
DJ
919 /* If we are asked to unwind the PC, then we need to return the LR
920 instead. The saved value of PC points into this frame's
921 prologue, not the next frame's resume location. */
922 if (prev_regnum == ARM_PC_REGNUM)
923 prev_regnum = ARM_LR_REGNUM;
24de872b 924
eb5492fa
DJ
925 /* SP is generally not saved to the stack, but this frame is
926 identified by NEXT_FRAME's stack pointer at the time of the call.
927 The value was already reconstructed into PREV_SP. */
928 if (prev_regnum == ARM_SP_REGNUM)
929 {
930 *lvalp = not_lval;
931 if (valuep)
932 store_unsigned_integer (valuep, 4, cache->prev_sp);
933 return;
934 }
935
1f67027d
AC
936 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
937 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
938}
939
940struct frame_unwind arm_prologue_unwind = {
941 NORMAL_FRAME,
942 arm_prologue_this_id,
943 arm_prologue_prev_register
944};
945
946static const struct frame_unwind *
947arm_prologue_unwind_sniffer (struct frame_info *next_frame)
948{
949 return &arm_prologue_unwind;
24de872b
DJ
950}
951
909cf6ea
DJ
952static struct arm_prologue_cache *
953arm_make_stub_cache (struct frame_info *next_frame)
954{
955 int reg;
956 struct arm_prologue_cache *cache;
957 CORE_ADDR unwound_fp;
958
35d5d4ee 959 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
960 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
961
962 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
963
964 return cache;
965}
966
967/* Our frame ID for a stub frame is the current SP and LR. */
968
969static void
970arm_stub_this_id (struct frame_info *next_frame,
971 void **this_cache,
972 struct frame_id *this_id)
973{
974 struct arm_prologue_cache *cache;
975
976 if (*this_cache == NULL)
977 *this_cache = arm_make_stub_cache (next_frame);
978 cache = *this_cache;
979
980 *this_id = frame_id_build (cache->prev_sp,
981 frame_pc_unwind (next_frame));
982}
983
984struct frame_unwind arm_stub_unwind = {
985 NORMAL_FRAME,
986 arm_stub_this_id,
987 arm_prologue_prev_register
988};
989
990static const struct frame_unwind *
991arm_stub_unwind_sniffer (struct frame_info *next_frame)
992{
993 char dummy[4];
994
995 if (in_plt_section (frame_unwind_address_in_block (next_frame), NULL)
996 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
997 return &arm_stub_unwind;
998
999 return NULL;
1000}
1001
24de872b 1002static CORE_ADDR
eb5492fa 1003arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1004{
1005 struct arm_prologue_cache *cache;
1006
eb5492fa
DJ
1007 if (*this_cache == NULL)
1008 *this_cache = arm_make_prologue_cache (next_frame);
1009 cache = *this_cache;
1010
1011 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1012}
1013
eb5492fa
DJ
1014struct frame_base arm_normal_base = {
1015 &arm_prologue_unwind,
1016 arm_normal_frame_base,
1017 arm_normal_frame_base,
1018 arm_normal_frame_base
1019};
1020
eb5492fa
DJ
1021/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1022 dummy frame. The frame ID's base needs to match the TOS value
1023 saved by save_dummy_frame_tos() and returned from
1024 arm_push_dummy_call, and the PC needs to match the dummy frame's
1025 breakpoint. */
c906108c 1026
eb5492fa
DJ
1027static struct frame_id
1028arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1029{
eb5492fa
DJ
1030 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1031 frame_pc_unwind (next_frame));
1032}
c3b4394c 1033
eb5492fa
DJ
1034/* Given THIS_FRAME, find the previous frame's resume PC (which will
1035 be used to construct the previous frame's ID, after looking up the
1036 containing function). */
c3b4394c 1037
eb5492fa
DJ
1038static CORE_ADDR
1039arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1040{
1041 CORE_ADDR pc;
1042 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1043 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1044}
1045
1046static CORE_ADDR
1047arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1048{
1049 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1050}
1051
2dd604e7
RE
1052/* When arguments must be pushed onto the stack, they go on in reverse
1053 order. The code below implements a FILO (stack) to do this. */
1054
1055struct stack_item
1056{
1057 int len;
1058 struct stack_item *prev;
1059 void *data;
1060};
1061
1062static struct stack_item *
1063push_stack_item (struct stack_item *prev, void *contents, int len)
1064{
1065 struct stack_item *si;
1066 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1067 si->data = xmalloc (len);
2dd604e7
RE
1068 si->len = len;
1069 si->prev = prev;
1070 memcpy (si->data, contents, len);
1071 return si;
1072}
1073
1074static struct stack_item *
1075pop_stack_item (struct stack_item *si)
1076{
1077 struct stack_item *dead = si;
1078 si = si->prev;
1079 xfree (dead->data);
1080 xfree (dead);
1081 return si;
1082}
1083
2af48f68
PB
1084
1085/* Return the alignment (in bytes) of the given type. */
1086
1087static int
1088arm_type_align (struct type *t)
1089{
1090 int n;
1091 int align;
1092 int falign;
1093
1094 t = check_typedef (t);
1095 switch (TYPE_CODE (t))
1096 {
1097 default:
1098 /* Should never happen. */
1099 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1100 return 4;
1101
1102 case TYPE_CODE_PTR:
1103 case TYPE_CODE_ENUM:
1104 case TYPE_CODE_INT:
1105 case TYPE_CODE_FLT:
1106 case TYPE_CODE_SET:
1107 case TYPE_CODE_RANGE:
1108 case TYPE_CODE_BITSTRING:
1109 case TYPE_CODE_REF:
1110 case TYPE_CODE_CHAR:
1111 case TYPE_CODE_BOOL:
1112 return TYPE_LENGTH (t);
1113
1114 case TYPE_CODE_ARRAY:
1115 case TYPE_CODE_COMPLEX:
1116 /* TODO: What about vector types? */
1117 return arm_type_align (TYPE_TARGET_TYPE (t));
1118
1119 case TYPE_CODE_STRUCT:
1120 case TYPE_CODE_UNION:
1121 align = 1;
1122 for (n = 0; n < TYPE_NFIELDS (t); n++)
1123 {
1124 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1125 if (falign > align)
1126 align = falign;
1127 }
1128 return align;
1129 }
1130}
1131
2dd604e7
RE
1132/* We currently only support passing parameters in integer registers. This
1133 conforms with GCC's default model. Several other variants exist and
1134 we should probably support some of them based on the selected ABI. */
1135
1136static CORE_ADDR
7d9b040b 1137arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1138 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1139 struct value **args, CORE_ADDR sp, int struct_return,
1140 CORE_ADDR struct_addr)
2dd604e7
RE
1141{
1142 int argnum;
1143 int argreg;
1144 int nstack;
1145 struct stack_item *si = NULL;
1146
6a65450a
AC
1147 /* Set the return address. For the ARM, the return breakpoint is
1148 always at BP_ADDR. */
2dd604e7 1149 /* XXX Fix for Thumb. */
6a65450a 1150 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1151
1152 /* Walk through the list of args and determine how large a temporary
1153 stack is required. Need to take care here as structs may be
1154 passed on the stack, and we have to to push them. */
1155 nstack = 0;
1156
1157 argreg = ARM_A1_REGNUM;
1158 nstack = 0;
1159
2dd604e7
RE
1160 /* The struct_return pointer occupies the first parameter
1161 passing register. */
1162 if (struct_return)
1163 {
1164 if (arm_debug)
1165 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1166 REGISTER_NAME (argreg), paddr (struct_addr));
1167 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1168 argreg++;
1169 }
1170
1171 for (argnum = 0; argnum < nargs; argnum++)
1172 {
1173 int len;
1174 struct type *arg_type;
1175 struct type *target_type;
1176 enum type_code typecode;
0fd88904 1177 bfd_byte *val;
2af48f68 1178 int align;
2dd604e7 1179
df407dfe 1180 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1181 len = TYPE_LENGTH (arg_type);
1182 target_type = TYPE_TARGET_TYPE (arg_type);
1183 typecode = TYPE_CODE (arg_type);
0fd88904 1184 val = value_contents_writeable (args[argnum]);
2dd604e7 1185
2af48f68
PB
1186 align = arm_type_align (arg_type);
1187 /* Round alignment up to a whole number of words. */
1188 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1189 /* Different ABIs have different maximum alignments. */
1190 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1191 {
1192 /* The APCS ABI only requires word alignment. */
1193 align = INT_REGISTER_SIZE;
1194 }
1195 else
1196 {
1197 /* The AAPCS requires at most doubleword alignment. */
1198 if (align > INT_REGISTER_SIZE * 2)
1199 align = INT_REGISTER_SIZE * 2;
1200 }
1201
1202 /* Push stack padding for dowubleword alignment. */
1203 if (nstack & (align - 1))
1204 {
1205 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1206 nstack += INT_REGISTER_SIZE;
1207 }
1208
1209 /* Doubleword aligned quantities must go in even register pairs. */
1210 if (argreg <= ARM_LAST_ARG_REGNUM
1211 && align > INT_REGISTER_SIZE
1212 && argreg & 1)
1213 argreg++;
1214
2dd604e7
RE
1215 /* If the argument is a pointer to a function, and it is a
1216 Thumb function, create a LOCAL copy of the value and set
1217 the THUMB bit in it. */
1218 if (TYPE_CODE_PTR == typecode
1219 && target_type != NULL
1220 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1221 {
7c0b4a20 1222 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1223 if (arm_pc_is_thumb (regval))
1224 {
1225 val = alloca (len);
fbd9dcd3 1226 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1227 }
1228 }
1229
1230 /* Copy the argument to general registers or the stack in
1231 register-sized pieces. Large arguments are split between
1232 registers and stack. */
1233 while (len > 0)
1234 {
b1e29e33 1235 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1236
1237 if (argreg <= ARM_LAST_ARG_REGNUM)
1238 {
1239 /* The argument is being passed in a general purpose
1240 register. */
7c0b4a20 1241 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2dd604e7
RE
1242 if (arm_debug)
1243 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1244 argnum, REGISTER_NAME (argreg),
b1e29e33 1245 phex (regval, DEPRECATED_REGISTER_SIZE));
2dd604e7
RE
1246 regcache_cooked_write_unsigned (regcache, argreg, regval);
1247 argreg++;
1248 }
1249 else
1250 {
1251 /* Push the arguments onto the stack. */
1252 if (arm_debug)
1253 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1254 argnum, nstack);
b1e29e33
AC
1255 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1256 nstack += DEPRECATED_REGISTER_SIZE;
2dd604e7
RE
1257 }
1258
1259 len -= partial_len;
1260 val += partial_len;
1261 }
1262 }
1263 /* If we have an odd number of words to push, then decrement the stack
1264 by one word now, so first stack argument will be dword aligned. */
1265 if (nstack & 4)
1266 sp -= 4;
1267
1268 while (si)
1269 {
1270 sp -= si->len;
1271 write_memory (sp, si->data, si->len);
1272 si = pop_stack_item (si);
1273 }
1274
1275 /* Finally, update teh SP register. */
1276 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1277
1278 return sp;
1279}
1280
f53f0d0b
PB
1281
1282/* Always align the frame to an 8-byte boundary. This is required on
1283 some platforms and harmless on the rest. */
1284
1285static CORE_ADDR
1286arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1287{
1288 /* Align the stack to eight bytes. */
1289 return sp & ~ (CORE_ADDR) 7;
1290}
1291
c906108c 1292static void
ed9a39eb 1293print_fpu_flags (int flags)
c906108c 1294{
c5aa993b
JM
1295 if (flags & (1 << 0))
1296 fputs ("IVO ", stdout);
1297 if (flags & (1 << 1))
1298 fputs ("DVZ ", stdout);
1299 if (flags & (1 << 2))
1300 fputs ("OFL ", stdout);
1301 if (flags & (1 << 3))
1302 fputs ("UFL ", stdout);
1303 if (flags & (1 << 4))
1304 fputs ("INX ", stdout);
1305 putchar ('\n');
c906108c
SS
1306}
1307
5e74b15c
RE
1308/* Print interesting information about the floating point processor
1309 (if present) or emulator. */
34e8f22d 1310static void
d855c300 1311arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1312 struct frame_info *frame, const char *args)
c906108c 1313{
52f0bd74 1314 unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1315 int type;
1316
1317 type = (status >> 24) & 127;
edefbb7c
AC
1318 if (status & (1 << 31))
1319 printf (_("Hardware FPU type %d\n"), type);
1320 else
1321 printf (_("Software FPU type %d\n"), type);
1322 /* i18n: [floating point unit] mask */
1323 fputs (_("mask: "), stdout);
c5aa993b 1324 print_fpu_flags (status >> 16);
edefbb7c
AC
1325 /* i18n: [floating point unit] flags */
1326 fputs (_("flags: "), stdout);
c5aa993b 1327 print_fpu_flags (status);
c906108c
SS
1328}
1329
34e8f22d
RE
1330/* Return the GDB type object for the "standard" data type of data in
1331 register N. */
1332
1333static struct type *
7a5ea0d4 1334arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1335{
34e8f22d 1336 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1337 return builtin_type_arm_ext;
e4c16157
DJ
1338 else if (regnum == ARM_SP_REGNUM)
1339 return builtin_type_void_data_ptr;
1340 else if (regnum == ARM_PC_REGNUM)
1341 return builtin_type_void_func_ptr;
032758dc 1342 else
e4c16157 1343 return builtin_type_uint32;
032758dc
AC
1344}
1345
34e8f22d
RE
1346/* Index within `registers' of the first byte of the space for
1347 register N. */
1348
1349static int
1350arm_register_byte (int regnum)
1351{
1352 if (regnum < ARM_F0_REGNUM)
7a5ea0d4 1353 return regnum * INT_REGISTER_SIZE;
34e8f22d 1354 else if (regnum < ARM_PS_REGNUM)
7a5ea0d4
DJ
1355 return (NUM_GREGS * INT_REGISTER_SIZE
1356 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
34e8f22d 1357 else
7a5ea0d4
DJ
1358 return (NUM_GREGS * INT_REGISTER_SIZE
1359 + NUM_FREGS * FP_REGISTER_SIZE
34e8f22d
RE
1360 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1361}
1362
26216b98
AC
1363/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1364static int
1365arm_register_sim_regno (int regnum)
1366{
1367 int reg = regnum;
1368 gdb_assert (reg >= 0 && reg < NUM_REGS);
1369
1370 if (reg < NUM_GREGS)
1371 return SIM_ARM_R0_REGNUM + reg;
1372 reg -= NUM_GREGS;
1373
1374 if (reg < NUM_FREGS)
1375 return SIM_ARM_FP0_REGNUM + reg;
1376 reg -= NUM_FREGS;
1377
1378 if (reg < NUM_SREGS)
1379 return SIM_ARM_FPS_REGNUM + reg;
1380 reg -= NUM_SREGS;
1381
edefbb7c 1382 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1383}
34e8f22d 1384
a37b3cc0
AC
1385/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1386 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1387 It is thought that this is is the floating-point register format on
1388 little-endian systems. */
c906108c 1389
ed9a39eb 1390static void
b508a996
RE
1391convert_from_extended (const struct floatformat *fmt, const void *ptr,
1392 void *dbl)
c906108c 1393{
a37b3cc0 1394 DOUBLEST d;
d7449b42 1395 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1396 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1397 else
1398 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1399 ptr, &d);
b508a996 1400 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1401}
1402
34e8f22d 1403static void
b508a996 1404convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1405{
a37b3cc0 1406 DOUBLEST d;
b508a996 1407 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1408 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1409 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1410 else
1411 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1412 &d, dbl);
c906108c 1413}
ed9a39eb 1414
c906108c 1415static int
ed9a39eb 1416condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1417{
1418 if (cond == INST_AL || cond == INST_NV)
1419 return 1;
1420
1421 switch (cond)
1422 {
1423 case INST_EQ:
1424 return ((status_reg & FLAG_Z) != 0);
1425 case INST_NE:
1426 return ((status_reg & FLAG_Z) == 0);
1427 case INST_CS:
1428 return ((status_reg & FLAG_C) != 0);
1429 case INST_CC:
1430 return ((status_reg & FLAG_C) == 0);
1431 case INST_MI:
1432 return ((status_reg & FLAG_N) != 0);
1433 case INST_PL:
1434 return ((status_reg & FLAG_N) == 0);
1435 case INST_VS:
1436 return ((status_reg & FLAG_V) != 0);
1437 case INST_VC:
1438 return ((status_reg & FLAG_V) == 0);
1439 case INST_HI:
1440 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1441 case INST_LS:
1442 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1443 case INST_GE:
1444 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1445 case INST_LT:
1446 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1447 case INST_GT:
1448 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1449 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1450 case INST_LE:
1451 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1452 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1453 }
1454 return 1;
1455}
1456
9512d7fd 1457/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1458#define submask(x) ((1L << ((x) + 1)) - 1)
1459#define bit(obj,st) (((obj) >> (st)) & 1)
1460#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1461#define sbits(obj,st,fn) \
1462 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1463#define BranchDest(addr,instr) \
1464 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1465#define ARM_PC_32 1
1466
1467static unsigned long
ed9a39eb
JM
1468shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1469 unsigned long status_reg)
c906108c
SS
1470{
1471 unsigned long res, shift;
1472 int rm = bits (inst, 0, 3);
1473 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1474
1475 if (bit (inst, 4))
c906108c
SS
1476 {
1477 int rs = bits (inst, 8, 11);
1478 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1479 }
1480 else
1481 shift = bits (inst, 7, 11);
c5aa993b
JM
1482
1483 res = (rm == 15
c906108c 1484 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1485 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1486 : read_register (rm));
1487
1488 switch (shifttype)
1489 {
c5aa993b 1490 case 0: /* LSL */
c906108c
SS
1491 res = shift >= 32 ? 0 : res << shift;
1492 break;
c5aa993b
JM
1493
1494 case 1: /* LSR */
c906108c
SS
1495 res = shift >= 32 ? 0 : res >> shift;
1496 break;
1497
c5aa993b
JM
1498 case 2: /* ASR */
1499 if (shift >= 32)
1500 shift = 31;
c906108c
SS
1501 res = ((res & 0x80000000L)
1502 ? ~((~res) >> shift) : res >> shift);
1503 break;
1504
c5aa993b 1505 case 3: /* ROR/RRX */
c906108c
SS
1506 shift &= 31;
1507 if (shift == 0)
1508 res = (res >> 1) | (carry ? 0x80000000L : 0);
1509 else
c5aa993b 1510 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1511 break;
1512 }
1513
1514 return res & 0xffffffff;
1515}
1516
c906108c
SS
1517/* Return number of 1-bits in VAL. */
1518
1519static int
ed9a39eb 1520bitcount (unsigned long val)
c906108c
SS
1521{
1522 int nbits;
1523 for (nbits = 0; val != 0; nbits++)
c5aa993b 1524 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1525 return nbits;
1526}
1527
34e8f22d 1528CORE_ADDR
ed9a39eb 1529thumb_get_next_pc (CORE_ADDR pc)
c906108c 1530{
c5aa993b 1531 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1532 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1533 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1534 unsigned long offset;
1535
1536 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1537 {
1538 CORE_ADDR sp;
1539
1540 /* Fetch the saved PC from the stack. It's stored above
1541 all of the other registers. */
b1e29e33 1542 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
34e8f22d 1543 sp = read_register (ARM_SP_REGNUM);
1c5bada0 1544 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
c906108c
SS
1545 nextpc = ADDR_BITS_REMOVE (nextpc);
1546 if (nextpc == pc)
edefbb7c 1547 error (_("Infinite loop detected"));
c906108c
SS
1548 }
1549 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1550 {
34e8f22d 1551 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1552 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1553 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1554 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1555 }
1556 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1557 {
1558 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1559 }
aa17d93e 1560 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1561 {
1c5bada0 1562 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1563 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1564 nextpc = pc_val + offset;
aa17d93e
DJ
1565 /* For BLX make sure to clear the low bits. */
1566 if (bits (inst2, 11, 12) == 1)
1567 nextpc = nextpc & 0xfffffffc;
c906108c 1568 }
aa17d93e 1569 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1570 {
1571 if (bits (inst1, 3, 6) == 0x0f)
1572 nextpc = pc_val;
1573 else
1574 nextpc = read_register (bits (inst1, 3, 6));
1575
1576 nextpc = ADDR_BITS_REMOVE (nextpc);
1577 if (nextpc == pc)
edefbb7c 1578 error (_("Infinite loop detected"));
9498281f 1579 }
c906108c
SS
1580
1581 return nextpc;
1582}
1583
34e8f22d 1584CORE_ADDR
ed9a39eb 1585arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1586{
1587 unsigned long pc_val;
1588 unsigned long this_instr;
1589 unsigned long status;
1590 CORE_ADDR nextpc;
1591
1592 if (arm_pc_is_thumb (pc))
1593 return thumb_get_next_pc (pc);
1594
1595 pc_val = (unsigned long) pc;
1c5bada0 1596 this_instr = read_memory_unsigned_integer (pc, 4);
34e8f22d 1597 status = read_register (ARM_PS_REGNUM);
c5aa993b 1598 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1599
1600 if (condition_true (bits (this_instr, 28, 31), status))
1601 {
1602 switch (bits (this_instr, 24, 27))
1603 {
c5aa993b 1604 case 0x0:
94c30b78 1605 case 0x1: /* data processing */
c5aa993b
JM
1606 case 0x2:
1607 case 0x3:
c906108c
SS
1608 {
1609 unsigned long operand1, operand2, result = 0;
1610 unsigned long rn;
1611 int c;
c5aa993b 1612
c906108c
SS
1613 if (bits (this_instr, 12, 15) != 15)
1614 break;
1615
1616 if (bits (this_instr, 22, 25) == 0
c5aa993b 1617 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1618 error (_("Invalid update to pc in instruction"));
c906108c 1619
9498281f 1620 /* BX <reg>, BLX <reg> */
e150acc7
PB
1621 if (bits (this_instr, 4, 27) == 0x12fff1
1622 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1623 {
1624 rn = bits (this_instr, 0, 3);
1625 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1626 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1627
1628 if (nextpc == pc)
edefbb7c 1629 error (_("Infinite loop detected"));
9498281f
DJ
1630
1631 return nextpc;
1632 }
1633
c906108c
SS
1634 /* Multiply into PC */
1635 c = (status & FLAG_C) ? 1 : 0;
1636 rn = bits (this_instr, 16, 19);
1637 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1638
c906108c
SS
1639 if (bit (this_instr, 25))
1640 {
1641 unsigned long immval = bits (this_instr, 0, 7);
1642 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1643 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1644 & 0xffffffff;
c906108c 1645 }
c5aa993b 1646 else /* operand 2 is a shifted register */
c906108c 1647 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1648
c906108c
SS
1649 switch (bits (this_instr, 21, 24))
1650 {
c5aa993b 1651 case 0x0: /*and */
c906108c
SS
1652 result = operand1 & operand2;
1653 break;
1654
c5aa993b 1655 case 0x1: /*eor */
c906108c
SS
1656 result = operand1 ^ operand2;
1657 break;
1658
c5aa993b 1659 case 0x2: /*sub */
c906108c
SS
1660 result = operand1 - operand2;
1661 break;
1662
c5aa993b 1663 case 0x3: /*rsb */
c906108c
SS
1664 result = operand2 - operand1;
1665 break;
1666
c5aa993b 1667 case 0x4: /*add */
c906108c
SS
1668 result = operand1 + operand2;
1669 break;
1670
c5aa993b 1671 case 0x5: /*adc */
c906108c
SS
1672 result = operand1 + operand2 + c;
1673 break;
1674
c5aa993b 1675 case 0x6: /*sbc */
c906108c
SS
1676 result = operand1 - operand2 + c;
1677 break;
1678
c5aa993b 1679 case 0x7: /*rsc */
c906108c
SS
1680 result = operand2 - operand1 + c;
1681 break;
1682
c5aa993b
JM
1683 case 0x8:
1684 case 0x9:
1685 case 0xa:
1686 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1687 result = (unsigned long) nextpc;
1688 break;
1689
c5aa993b 1690 case 0xc: /*orr */
c906108c
SS
1691 result = operand1 | operand2;
1692 break;
1693
c5aa993b 1694 case 0xd: /*mov */
c906108c
SS
1695 /* Always step into a function. */
1696 result = operand2;
c5aa993b 1697 break;
c906108c 1698
c5aa993b 1699 case 0xe: /*bic */
c906108c
SS
1700 result = operand1 & ~operand2;
1701 break;
1702
c5aa993b 1703 case 0xf: /*mvn */
c906108c
SS
1704 result = ~operand2;
1705 break;
1706 }
1707 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1708
1709 if (nextpc == pc)
edefbb7c 1710 error (_("Infinite loop detected"));
c906108c
SS
1711 break;
1712 }
c5aa993b
JM
1713
1714 case 0x4:
1715 case 0x5: /* data transfer */
1716 case 0x6:
1717 case 0x7:
c906108c
SS
1718 if (bit (this_instr, 20))
1719 {
1720 /* load */
1721 if (bits (this_instr, 12, 15) == 15)
1722 {
1723 /* rd == pc */
c5aa993b 1724 unsigned long rn;
c906108c 1725 unsigned long base;
c5aa993b 1726
c906108c 1727 if (bit (this_instr, 22))
edefbb7c 1728 error (_("Invalid update to pc in instruction"));
c906108c
SS
1729
1730 /* byte write to PC */
1731 rn = bits (this_instr, 16, 19);
1732 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1733 if (bit (this_instr, 24))
1734 {
1735 /* pre-indexed */
1736 int c = (status & FLAG_C) ? 1 : 0;
1737 unsigned long offset =
c5aa993b 1738 (bit (this_instr, 25)
ed9a39eb 1739 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1740 : bits (this_instr, 0, 11));
c906108c
SS
1741
1742 if (bit (this_instr, 23))
1743 base += offset;
1744 else
1745 base -= offset;
1746 }
c5aa993b 1747 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1748 4);
c5aa993b 1749
c906108c
SS
1750 nextpc = ADDR_BITS_REMOVE (nextpc);
1751
1752 if (nextpc == pc)
edefbb7c 1753 error (_("Infinite loop detected"));
c906108c
SS
1754 }
1755 }
1756 break;
c5aa993b
JM
1757
1758 case 0x8:
1759 case 0x9: /* block transfer */
c906108c
SS
1760 if (bit (this_instr, 20))
1761 {
1762 /* LDM */
1763 if (bit (this_instr, 15))
1764 {
1765 /* loading pc */
1766 int offset = 0;
1767
1768 if (bit (this_instr, 23))
1769 {
1770 /* up */
1771 unsigned long reglist = bits (this_instr, 0, 14);
1772 offset = bitcount (reglist) * 4;
c5aa993b 1773 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1774 offset += 4;
1775 }
1776 else if (bit (this_instr, 24))
1777 offset = -4;
c5aa993b 1778
c906108c 1779 {
c5aa993b
JM
1780 unsigned long rn_val =
1781 read_register (bits (this_instr, 16, 19));
c906108c
SS
1782 nextpc =
1783 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1784 + offset),
c906108c
SS
1785 4);
1786 }
1787 nextpc = ADDR_BITS_REMOVE (nextpc);
1788 if (nextpc == pc)
edefbb7c 1789 error (_("Infinite loop detected"));
c906108c
SS
1790 }
1791 }
1792 break;
c5aa993b
JM
1793
1794 case 0xb: /* branch & link */
1795 case 0xa: /* branch */
c906108c
SS
1796 {
1797 nextpc = BranchDest (pc, this_instr);
1798
9498281f
DJ
1799 /* BLX */
1800 if (bits (this_instr, 28, 31) == INST_NV)
1801 nextpc |= bit (this_instr, 24) << 1;
1802
c906108c
SS
1803 nextpc = ADDR_BITS_REMOVE (nextpc);
1804 if (nextpc == pc)
edefbb7c 1805 error (_("Infinite loop detected"));
c906108c
SS
1806 break;
1807 }
c5aa993b
JM
1808
1809 case 0xc:
1810 case 0xd:
1811 case 0xe: /* coproc ops */
1812 case 0xf: /* SWI */
c906108c
SS
1813 break;
1814
1815 default:
edefbb7c 1816 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1817 return (pc);
1818 }
1819 }
1820
1821 return nextpc;
1822}
1823
9512d7fd
FN
1824/* single_step() is called just before we want to resume the inferior,
1825 if we want to single-step it but there is no hardware or kernel
1826 single-step support. We find the target of the coming instruction
1827 and breakpoint it.
1828
94c30b78
MS
1829 single_step() is also called just after the inferior stops. If we
1830 had set up a simulated single-step, we undo our damage. */
9512d7fd 1831
34e8f22d
RE
1832static void
1833arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 1834{
8181d85f
DJ
1835 /* NOTE: This may insert the wrong breakpoint instruction when
1836 single-stepping over a mode-changing instruction, if the
1837 CPSR heuristics are used. */
9512d7fd
FN
1838
1839 if (insert_bpt)
1840 {
8181d85f
DJ
1841 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1842
1843 insert_single_step_breakpoint (next_pc);
9512d7fd
FN
1844 }
1845 else
8181d85f 1846 remove_single_step_breakpoints ();
9512d7fd 1847}
9512d7fd 1848
c906108c
SS
1849#include "bfd-in2.h"
1850#include "libcoff.h"
1851
1852static int
ed9a39eb 1853gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1854{
1855 if (arm_pc_is_thumb (memaddr))
1856 {
c5aa993b
JM
1857 static asymbol *asym;
1858 static combined_entry_type ce;
1859 static struct coff_symbol_struct csym;
27cddce2 1860 static struct bfd fake_bfd;
c5aa993b 1861 static bfd_target fake_target;
c906108c
SS
1862
1863 if (csym.native == NULL)
1864 {
da3c6d4a
MS
1865 /* Create a fake symbol vector containing a Thumb symbol.
1866 This is solely so that the code in print_insn_little_arm()
1867 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1868 the presence of a Thumb symbol and switch to decoding
1869 Thumb instructions. */
c5aa993b
JM
1870
1871 fake_target.flavour = bfd_target_coff_flavour;
1872 fake_bfd.xvec = &fake_target;
c906108c 1873 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1874 csym.native = &ce;
1875 csym.symbol.the_bfd = &fake_bfd;
1876 csym.symbol.name = "fake";
1877 asym = (asymbol *) & csym;
c906108c 1878 }
c5aa993b 1879
c906108c 1880 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1881 info->symbols = &asym;
c906108c
SS
1882 }
1883 else
1884 info->symbols = NULL;
c5aa993b 1885
d7449b42 1886 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1887 return print_insn_big_arm (memaddr, info);
1888 else
1889 return print_insn_little_arm (memaddr, info);
1890}
1891
66e810cd
RE
1892/* The following define instruction sequences that will cause ARM
1893 cpu's to take an undefined instruction trap. These are used to
1894 signal a breakpoint to GDB.
1895
1896 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1897 modes. A different instruction is required for each mode. The ARM
1898 cpu's can also be big or little endian. Thus four different
1899 instructions are needed to support all cases.
1900
1901 Note: ARMv4 defines several new instructions that will take the
1902 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1903 not in fact add the new instructions. The new undefined
1904 instructions in ARMv4 are all instructions that had no defined
1905 behaviour in earlier chips. There is no guarantee that they will
1906 raise an exception, but may be treated as NOP's. In practice, it
1907 may only safe to rely on instructions matching:
1908
1909 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1910 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1911 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1912
1913 Even this may only true if the condition predicate is true. The
1914 following use a condition predicate of ALWAYS so it is always TRUE.
1915
1916 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1917 and NetBSD all use a software interrupt rather than an undefined
1918 instruction to force a trap. This can be handled by by the
1919 abi-specific code during establishment of the gdbarch vector. */
1920
1921
d7b486e7
RE
1922/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1923 override these definitions. */
66e810cd
RE
1924#ifndef ARM_LE_BREAKPOINT
1925#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1926#endif
1927#ifndef ARM_BE_BREAKPOINT
1928#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1929#endif
1930#ifndef THUMB_LE_BREAKPOINT
1931#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1932#endif
1933#ifndef THUMB_BE_BREAKPOINT
1934#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1935#endif
1936
1937static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1938static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1939static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1940static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1941
34e8f22d
RE
1942/* Determine the type and size of breakpoint to insert at PCPTR. Uses
1943 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
1944 breakpoint should be used. It returns a pointer to a string of
1945 bytes that encode a breakpoint instruction, stores the length of
1946 the string to *lenptr, and adjusts the program counter (if
1947 necessary) to point to the actual memory location where the
c906108c
SS
1948 breakpoint should be inserted. */
1949
ab89facf 1950static const unsigned char *
ed9a39eb 1951arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 1952{
66e810cd
RE
1953 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1954
4bf7064c 1955 if (arm_pc_is_thumb (*pcptr))
c906108c 1956 {
66e810cd
RE
1957 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1958 *lenptr = tdep->thumb_breakpoint_size;
1959 return tdep->thumb_breakpoint;
c906108c
SS
1960 }
1961 else
1962 {
66e810cd
RE
1963 *lenptr = tdep->arm_breakpoint_size;
1964 return tdep->arm_breakpoint;
c906108c
SS
1965 }
1966}
ed9a39eb
JM
1967
1968/* Extract from an array REGBUF containing the (raw) register state a
1969 function return value of type TYPE, and copy that, in virtual
1970 format, into VALBUF. */
1971
34e8f22d 1972static void
5238cf52
MK
1973arm_extract_return_value (struct type *type, struct regcache *regs,
1974 gdb_byte *valbuf)
ed9a39eb
JM
1975{
1976 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 1977 {
28e97307 1978 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
1979 {
1980 case ARM_FLOAT_FPA:
b508a996
RE
1981 {
1982 /* The value is in register F0 in internal format. We need to
1983 extract the raw value and then convert it to the desired
1984 internal type. */
7a5ea0d4 1985 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
1986
1987 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
1988 convert_from_extended (floatformat_from_type (type), tmpbuf,
1989 valbuf);
1990 }
08216dd7
RE
1991 break;
1992
fd50bc42 1993 case ARM_FLOAT_SOFT_FPA:
08216dd7 1994 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
1995 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
1996 if (TYPE_LENGTH (type) > 4)
1997 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 1998 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
1999 break;
2000
2001 default:
2002 internal_error
2003 (__FILE__, __LINE__,
edefbb7c 2004 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2005 break;
2006 }
2007 }
b508a996
RE
2008 else if (TYPE_CODE (type) == TYPE_CODE_INT
2009 || TYPE_CODE (type) == TYPE_CODE_CHAR
2010 || TYPE_CODE (type) == TYPE_CODE_BOOL
2011 || TYPE_CODE (type) == TYPE_CODE_PTR
2012 || TYPE_CODE (type) == TYPE_CODE_REF
2013 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2014 {
2015 /* If the the type is a plain integer, then the access is
2016 straight-forward. Otherwise we have to play around a bit more. */
2017 int len = TYPE_LENGTH (type);
2018 int regno = ARM_A1_REGNUM;
2019 ULONGEST tmp;
2020
2021 while (len > 0)
2022 {
2023 /* By using store_unsigned_integer we avoid having to do
2024 anything special for small big-endian values. */
2025 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2026 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2027 (len > INT_REGISTER_SIZE
2028 ? INT_REGISTER_SIZE : len),
b508a996 2029 tmp);
7a5ea0d4
DJ
2030 len -= INT_REGISTER_SIZE;
2031 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2032 }
2033 }
ed9a39eb 2034 else
b508a996
RE
2035 {
2036 /* For a structure or union the behaviour is as if the value had
2037 been stored to word-aligned memory and then loaded into
2038 registers with 32-bit load instruction(s). */
2039 int len = TYPE_LENGTH (type);
2040 int regno = ARM_A1_REGNUM;
7a5ea0d4 2041 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2042
2043 while (len > 0)
2044 {
2045 regcache_cooked_read (regs, regno++, tmpbuf);
2046 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2047 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2048 len -= INT_REGISTER_SIZE;
2049 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2050 }
2051 }
34e8f22d
RE
2052}
2053
67255d04
RE
2054
2055/* Will a function return an aggregate type in memory or in a
2056 register? Return 0 if an aggregate type can be returned in a
2057 register, 1 if it must be returned in memory. */
2058
2059static int
2af48f68 2060arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2061{
2062 int nRc;
52f0bd74 2063 enum type_code code;
67255d04 2064
44e1a9eb
DJ
2065 CHECK_TYPEDEF (type);
2066
67255d04
RE
2067 /* In the ARM ABI, "integer" like aggregate types are returned in
2068 registers. For an aggregate type to be integer like, its size
b1e29e33
AC
2069 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2070 offset of each addressable subfield must be zero. Note that bit
2071 fields are not addressable, and all addressable subfields of
2072 unions always start at offset zero.
67255d04
RE
2073
2074 This function is based on the behaviour of GCC 2.95.1.
2075 See: gcc/arm.c: arm_return_in_memory() for details.
2076
2077 Note: All versions of GCC before GCC 2.95.2 do not set up the
2078 parameters correctly for a function returning the following
2079 structure: struct { float f;}; This should be returned in memory,
2080 not a register. Richard Earnshaw sent me a patch, but I do not
2081 know of any way to detect if a function like the above has been
2082 compiled with the correct calling convention. */
2083
2084 /* All aggregate types that won't fit in a register must be returned
2085 in memory. */
b1e29e33 2086 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
67255d04
RE
2087 {
2088 return 1;
2089 }
2090
2af48f68
PB
2091 /* The AAPCS says all aggregates not larger than a word are returned
2092 in a register. */
2093 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2094 return 0;
2095
67255d04
RE
2096 /* The only aggregate types that can be returned in a register are
2097 structs and unions. Arrays must be returned in memory. */
2098 code = TYPE_CODE (type);
2099 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2100 {
2101 return 1;
2102 }
2103
2104 /* Assume all other aggregate types can be returned in a register.
2105 Run a check for structures, unions and arrays. */
2106 nRc = 0;
2107
2108 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2109 {
2110 int i;
2111 /* Need to check if this struct/union is "integer" like. For
2112 this to be true, its size must be less than or equal to
b1e29e33
AC
2113 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2114 subfield must be zero. Note that bit fields are not
2115 addressable, and unions always start at offset zero. If any
2116 of the subfields is a floating point type, the struct/union
2117 cannot be an integer type. */
67255d04
RE
2118
2119 /* For each field in the object, check:
2120 1) Is it FP? --> yes, nRc = 1;
2121 2) Is it addressable (bitpos != 0) and
2122 not packed (bitsize == 0)?
2123 --> yes, nRc = 1
2124 */
2125
2126 for (i = 0; i < TYPE_NFIELDS (type); i++)
2127 {
2128 enum type_code field_type_code;
44e1a9eb 2129 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2130
2131 /* Is it a floating point type field? */
2132 if (field_type_code == TYPE_CODE_FLT)
2133 {
2134 nRc = 1;
2135 break;
2136 }
2137
2138 /* If bitpos != 0, then we have to care about it. */
2139 if (TYPE_FIELD_BITPOS (type, i) != 0)
2140 {
2141 /* Bitfields are not addressable. If the field bitsize is
2142 zero, then the field is not packed. Hence it cannot be
2143 a bitfield or any other packed type. */
2144 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2145 {
2146 nRc = 1;
2147 break;
2148 }
2149 }
2150 }
2151 }
2152
2153 return nRc;
2154}
2155
34e8f22d
RE
2156/* Write into appropriate registers a function return value of type
2157 TYPE, given in virtual format. */
2158
2159static void
b508a996 2160arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2161 const gdb_byte *valbuf)
34e8f22d
RE
2162{
2163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2164 {
7a5ea0d4 2165 char buf[MAX_REGISTER_SIZE];
34e8f22d 2166
28e97307 2167 switch (gdbarch_tdep (current_gdbarch)->fp_model)
08216dd7
RE
2168 {
2169 case ARM_FLOAT_FPA:
2170
b508a996
RE
2171 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2172 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2173 break;
2174
fd50bc42 2175 case ARM_FLOAT_SOFT_FPA:
08216dd7 2176 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2177 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2178 if (TYPE_LENGTH (type) > 4)
2179 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2180 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2181 break;
2182
2183 default:
2184 internal_error
2185 (__FILE__, __LINE__,
edefbb7c 2186 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2187 break;
2188 }
34e8f22d 2189 }
b508a996
RE
2190 else if (TYPE_CODE (type) == TYPE_CODE_INT
2191 || TYPE_CODE (type) == TYPE_CODE_CHAR
2192 || TYPE_CODE (type) == TYPE_CODE_BOOL
2193 || TYPE_CODE (type) == TYPE_CODE_PTR
2194 || TYPE_CODE (type) == TYPE_CODE_REF
2195 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2196 {
2197 if (TYPE_LENGTH (type) <= 4)
2198 {
2199 /* Values of one word or less are zero/sign-extended and
2200 returned in r0. */
7a5ea0d4 2201 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2202 LONGEST val = unpack_long (type, valbuf);
2203
7a5ea0d4 2204 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2205 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2206 }
2207 else
2208 {
2209 /* Integral values greater than one word are stored in consecutive
2210 registers starting with r0. This will always be a multiple of
2211 the regiser size. */
2212 int len = TYPE_LENGTH (type);
2213 int regno = ARM_A1_REGNUM;
2214
2215 while (len > 0)
2216 {
2217 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2218 len -= INT_REGISTER_SIZE;
2219 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2220 }
2221 }
2222 }
34e8f22d 2223 else
b508a996
RE
2224 {
2225 /* For a structure or union the behaviour is as if the value had
2226 been stored to word-aligned memory and then loaded into
2227 registers with 32-bit load instruction(s). */
2228 int len = TYPE_LENGTH (type);
2229 int regno = ARM_A1_REGNUM;
7a5ea0d4 2230 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2231
2232 while (len > 0)
2233 {
2234 memcpy (tmpbuf, valbuf,
7a5ea0d4 2235 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2236 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2237 len -= INT_REGISTER_SIZE;
2238 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2239 }
2240 }
34e8f22d
RE
2241}
2242
2af48f68
PB
2243
2244/* Handle function return values. */
2245
2246static enum return_value_convention
2247arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2248 struct regcache *regcache, gdb_byte *readbuf,
2249 const gdb_byte *writebuf)
2af48f68 2250{
7c00367c
MK
2251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2252
2af48f68
PB
2253 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2254 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2255 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2256 {
7c00367c
MK
2257 if (tdep->struct_return == pcc_struct_return
2258 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2259 return RETURN_VALUE_STRUCT_CONVENTION;
2260 }
2261
2262 if (writebuf)
2263 arm_store_return_value (valtype, regcache, writebuf);
2264
2265 if (readbuf)
2266 arm_extract_return_value (valtype, regcache, readbuf);
2267
2268 return RETURN_VALUE_REGISTER_CONVENTION;
2269}
2270
2271
9df628e0
RE
2272static int
2273arm_get_longjmp_target (CORE_ADDR *pc)
2274{
2275 CORE_ADDR jb_addr;
7a5ea0d4 2276 char buf[INT_REGISTER_SIZE];
9df628e0
RE
2277 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2278
2279 jb_addr = read_register (ARM_A1_REGNUM);
2280
2281 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2282 INT_REGISTER_SIZE))
9df628e0
RE
2283 return 0;
2284
7a5ea0d4 2285 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2286 return 1;
2287}
2288
ed9a39eb 2289/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2290
2291int
ed9a39eb 2292arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2293{
2294 CORE_ADDR start_addr;
2295
ed9a39eb
JM
2296 /* Find the starting address of the function containing the PC. If
2297 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2298 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2299 &start_addr, NULL))
c906108c
SS
2300 return 0;
2301
2302 return strncmp (name, "_call_via_r", 11) == 0;
2303}
2304
ed9a39eb
JM
2305/* If PC is in a Thumb call or return stub, return the address of the
2306 target PC, which is in a register. The thunk functions are called
2307 _called_via_xx, where x is the register name. The possible names
2308 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2309
2310CORE_ADDR
ed9a39eb 2311arm_skip_stub (CORE_ADDR pc)
c906108c 2312{
c5aa993b 2313 char *name;
c906108c
SS
2314 CORE_ADDR start_addr;
2315
2316 /* Find the starting address and name of the function containing the PC. */
2317 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2318 return 0;
2319
2320 /* Call thunks always start with "_call_via_". */
2321 if (strncmp (name, "_call_via_", 10) == 0)
2322 {
ed9a39eb
JM
2323 /* Use the name suffix to determine which register contains the
2324 target PC. */
c5aa993b
JM
2325 static char *table[15] =
2326 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2327 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2328 };
c906108c
SS
2329 int regno;
2330
2331 for (regno = 0; regno <= 14; regno++)
2332 if (strcmp (&name[10], table[regno]) == 0)
2333 return read_register (regno);
2334 }
ed9a39eb 2335
c5aa993b 2336 return 0; /* not a stub */
c906108c
SS
2337}
2338
afd7eef0
RE
2339static void
2340set_arm_command (char *args, int from_tty)
2341{
edefbb7c
AC
2342 printf_unfiltered (_("\
2343\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2344 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2345}
2346
2347static void
2348show_arm_command (char *args, int from_tty)
2349{
26304000 2350 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2351}
2352
28e97307
DJ
2353static void
2354arm_update_current_architecture (void)
fd50bc42 2355{
28e97307 2356 struct gdbarch_info info;
fd50bc42 2357
28e97307
DJ
2358 /* If the current architecture is not ARM, we have nothing to do. */
2359 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2360 return;
fd50bc42 2361
28e97307
DJ
2362 /* Update the architecture. */
2363 gdbarch_info_init (&info);
fd50bc42 2364
28e97307
DJ
2365 if (!gdbarch_update_p (info))
2366 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2367}
2368
2369static void
2370set_fp_model_sfunc (char *args, int from_tty,
2371 struct cmd_list_element *c)
2372{
2373 enum arm_float_model fp_model;
2374
2375 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2376 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2377 {
2378 arm_fp_model = fp_model;
2379 break;
2380 }
2381
2382 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2383 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2384 current_fp_model);
2385
28e97307 2386 arm_update_current_architecture ();
fd50bc42
RE
2387}
2388
2389static void
08546159
AC
2390show_fp_model (struct ui_file *file, int from_tty,
2391 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2392{
2393 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2394
28e97307 2395 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2396 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2397 fprintf_filtered (file, _("\
2398The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2399 fp_model_strings[tdep->fp_model]);
2400 else
2401 fprintf_filtered (file, _("\
2402The current ARM floating point model is \"%s\".\n"),
2403 fp_model_strings[arm_fp_model]);
2404}
2405
2406static void
2407arm_set_abi (char *args, int from_tty,
2408 struct cmd_list_element *c)
2409{
2410 enum arm_abi_kind arm_abi;
2411
2412 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2413 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2414 {
2415 arm_abi_global = arm_abi;
2416 break;
2417 }
2418
2419 if (arm_abi == ARM_ABI_LAST)
2420 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2421 arm_abi_string);
2422
2423 arm_update_current_architecture ();
2424}
2425
2426static void
2427arm_show_abi (struct ui_file *file, int from_tty,
2428 struct cmd_list_element *c, const char *value)
2429{
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2431
2432 if (arm_abi_global == ARM_ABI_AUTO
2433 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2434 fprintf_filtered (file, _("\
2435The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2436 arm_abi_strings[tdep->arm_abi]);
2437 else
2438 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2439 arm_abi_string);
fd50bc42
RE
2440}
2441
afd7eef0
RE
2442/* If the user changes the register disassembly style used for info
2443 register and other commands, we have to also switch the style used
2444 in opcodes for disassembly output. This function is run in the "set
2445 arm disassembly" command, and does that. */
bc90b915
FN
2446
2447static void
afd7eef0 2448set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2449 struct cmd_list_element *c)
2450{
afd7eef0 2451 set_disassembly_style ();
bc90b915
FN
2452}
2453\f
966fbf70 2454/* Return the ARM register name corresponding to register I. */
a208b0cb 2455static const char *
34e8f22d 2456arm_register_name (int i)
966fbf70
RE
2457{
2458 return arm_register_names[i];
2459}
2460
bc90b915 2461static void
afd7eef0 2462set_disassembly_style (void)
bc90b915 2463{
4bd7b427 2464 const char *setname, *setdesc, *const *regnames;
bc90b915
FN
2465 int numregs, j;
2466
afd7eef0 2467 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2468 int current = 0;
2469 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2470 while ((disassembly_style != setname)
2471 && (current < num_disassembly_options))
bc90b915
FN
2472 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2473 current_option = current;
2474
94c30b78 2475 /* Fill our copy. */
bc90b915
FN
2476 for (j = 0; j < numregs; j++)
2477 arm_register_names[j] = (char *) regnames[j];
2478
94c30b78 2479 /* Adjust case. */
34e8f22d 2480 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2481 {
34e8f22d
RE
2482 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2483 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2484 }
2485 else
2486 {
34e8f22d
RE
2487 arm_register_names[ARM_FPS_REGNUM] = "fps";
2488 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2489 }
2490
94c30b78 2491 /* Synchronize the disassembler. */
bc90b915
FN
2492 set_arm_regname_option (current);
2493}
2494
082fc60d
RE
2495/* Test whether the coff symbol specific value corresponds to a Thumb
2496 function. */
2497
2498static int
2499coff_sym_is_thumb (int val)
2500{
2501 return (val == C_THUMBEXT ||
2502 val == C_THUMBSTAT ||
2503 val == C_THUMBEXTFUNC ||
2504 val == C_THUMBSTATFUNC ||
2505 val == C_THUMBLABEL);
2506}
2507
2508/* arm_coff_make_msymbol_special()
2509 arm_elf_make_msymbol_special()
2510
2511 These functions test whether the COFF or ELF symbol corresponds to
2512 an address in thumb code, and set a "special" bit in a minimal
2513 symbol to indicate that it does. */
2514
34e8f22d 2515static void
082fc60d
RE
2516arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2517{
2518 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2519 STT_ARM_TFUNC). */
2520 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2521 == STT_LOPROC)
2522 MSYMBOL_SET_SPECIAL (msym);
2523}
2524
34e8f22d 2525static void
082fc60d
RE
2526arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2527{
2528 if (coff_sym_is_thumb (val))
2529 MSYMBOL_SET_SPECIAL (msym);
2530}
2531
756fe439
DJ
2532static void
2533arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2534{
2535 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2536
2537 /* If necessary, set the T bit. */
2538 if (arm_apcs_32)
2539 {
2540 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2541 if (arm_pc_is_thumb (pc))
2542 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2543 else
2544 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2545 }
2546}
97e03143 2547\f
70f80edf
JT
2548static enum gdb_osabi
2549arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2550{
2af48f68 2551 unsigned int elfosabi;
70f80edf 2552 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2553
70f80edf 2554 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2555
28e97307
DJ
2556 if (elfosabi == ELFOSABI_ARM)
2557 /* GNU tools use this value. Check note sections in this case,
2558 as well. */
2559 bfd_map_over_sections (abfd,
2560 generic_elf_osabi_sniff_abi_tag_sections,
2561 &osabi);
97e03143 2562
28e97307 2563 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2564 return osabi;
97e03143
RE
2565}
2566
70f80edf 2567\f
da3c6d4a
MS
2568/* Initialize the current architecture based on INFO. If possible,
2569 re-use an architecture from ARCHES, which is a list of
2570 architectures already created during this debugging session.
97e03143 2571
da3c6d4a
MS
2572 Called e.g. at program startup, when reading a core file, and when
2573 reading a binary file. */
97e03143 2574
39bbf761
RE
2575static struct gdbarch *
2576arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2577{
97e03143 2578 struct gdbarch_tdep *tdep;
39bbf761 2579 struct gdbarch *gdbarch;
28e97307
DJ
2580 struct gdbarch_list *best_arch;
2581 enum arm_abi_kind arm_abi = arm_abi_global;
2582 enum arm_float_model fp_model = arm_fp_model;
39bbf761 2583
28e97307
DJ
2584 /* If we have an object to base this architecture on, try to determine
2585 its ABI. */
39bbf761 2586
28e97307 2587 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2588 {
6b26d61a 2589 int ei_osabi, e_flags;
28e97307 2590
4be87837 2591 switch (bfd_get_flavour (info.abfd))
97e03143 2592 {
4be87837
DJ
2593 case bfd_target_aout_flavour:
2594 /* Assume it's an old APCS-style ABI. */
28e97307 2595 arm_abi = ARM_ABI_APCS;
4be87837 2596 break;
97e03143 2597
4be87837
DJ
2598 case bfd_target_coff_flavour:
2599 /* Assume it's an old APCS-style ABI. */
2600 /* XXX WinCE? */
28e97307
DJ
2601 arm_abi = ARM_ABI_APCS;
2602 break;
2603
2604 case bfd_target_elf_flavour:
2605 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2606 e_flags = elf_elfheader (info.abfd)->e_flags;
2607
28e97307
DJ
2608 if (ei_osabi == ELFOSABI_ARM)
2609 {
2610 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2611 objects. There's nowhere to tag an EABI version
2612 anyway, so assume APCS. */
28e97307
DJ
2613 arm_abi = ARM_ABI_APCS;
2614 }
2615 else if (ei_osabi == ELFOSABI_NONE)
2616 {
6b26d61a 2617 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2618
2619 switch (eabi_ver)
2620 {
2621 case EF_ARM_EABI_UNKNOWN:
2622 /* Assume GNU tools. */
2623 arm_abi = ARM_ABI_APCS;
2624 break;
2625
2626 case EF_ARM_EABI_VER4:
625b5003 2627 case EF_ARM_EABI_VER5:
28e97307 2628 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2629 /* EABI binaries default to VFP float ordering. */
2630 if (fp_model == ARM_FLOAT_AUTO)
2631 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2632 break;
2633
2634 default:
6b26d61a 2635 /* Leave it as "auto". */
28e97307 2636 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2637 break;
2638 }
2639 }
2640
2641 if (fp_model == ARM_FLOAT_AUTO)
2642 {
2643 int e_flags = elf_elfheader (info.abfd)->e_flags;
2644
2645 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2646 {
2647 case 0:
2648 /* Leave it as "auto". Strictly speaking this case
2649 means FPA, but almost nobody uses that now, and
2650 many toolchains fail to set the appropriate bits
2651 for the floating-point model they use. */
2652 break;
2653 case EF_ARM_SOFT_FLOAT:
2654 fp_model = ARM_FLOAT_SOFT_FPA;
2655 break;
2656 case EF_ARM_VFP_FLOAT:
2657 fp_model = ARM_FLOAT_VFP;
2658 break;
2659 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2660 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2661 break;
2662 }
2663 }
4be87837 2664 break;
97e03143 2665
4be87837 2666 default:
28e97307 2667 /* Leave it as "auto". */
50ceaba5 2668 break;
97e03143
RE
2669 }
2670 }
2671
28e97307
DJ
2672 /* Now that we have inferred any architecture settings that we
2673 can, try to inherit from the last ARM ABI. */
4be87837 2674 if (arches != NULL)
28e97307
DJ
2675 {
2676 if (arm_abi == ARM_ABI_AUTO)
2677 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2678
2679 if (fp_model == ARM_FLOAT_AUTO)
2680 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2681 }
2682 else
2683 {
2684 /* There was no prior ARM architecture; fill in default values. */
2685
2686 if (arm_abi == ARM_ABI_AUTO)
2687 arm_abi = ARM_ABI_APCS;
2688
2689 /* We used to default to FPA for generic ARM, but almost nobody
2690 uses that now, and we now provide a way for the user to force
2691 the model. So default to the most useful variant. */
2692 if (fp_model == ARM_FLOAT_AUTO)
2693 fp_model = ARM_FLOAT_SOFT_FPA;
2694 }
2695
2696 /* If there is already a candidate, use it. */
2697 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2698 best_arch != NULL;
2699 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2700 {
2701 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2702 continue;
2703
2704 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2705 continue;
2706
2707 /* Found a match. */
2708 break;
2709 }
97e03143 2710
28e97307
DJ
2711 if (best_arch != NULL)
2712 return best_arch->gdbarch;
2713
2714 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2715 gdbarch = gdbarch_alloc (&info, tdep);
2716
28e97307
DJ
2717 /* Record additional information about the architecture we are defining.
2718 These are gdbarch discriminators, like the OSABI. */
2719 tdep->arm_abi = arm_abi;
2720 tdep->fp_model = fp_model;
08216dd7
RE
2721
2722 /* Breakpoints. */
67255d04
RE
2723 switch (info.byte_order)
2724 {
2725 case BFD_ENDIAN_BIG:
66e810cd
RE
2726 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2727 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2728 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2729 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2730
67255d04
RE
2731 break;
2732
2733 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2734 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2735 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2736 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2737 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2738
67255d04
RE
2739 break;
2740
2741 default:
2742 internal_error (__FILE__, __LINE__,
edefbb7c 2743 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2744 }
2745
d7b486e7
RE
2746 /* On ARM targets char defaults to unsigned. */
2747 set_gdbarch_char_signed (gdbarch, 0);
2748
9df628e0 2749 /* This should be low enough for everything. */
97e03143 2750 tdep->lowest_pc = 0x20;
94c30b78 2751 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2752
7c00367c
MK
2753 /* The default, for both APCS and AAPCS, is to return small
2754 structures in registers. */
2755 tdep->struct_return = reg_struct_return;
2756
2dd604e7 2757 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2758 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2759
756fe439
DJ
2760 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2761
148754e5 2762 /* Frame handling. */
eb5492fa
DJ
2763 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2764 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2765 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2766
eb5492fa 2767 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2768
34e8f22d
RE
2769 /* Address manipulation. */
2770 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2771 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2772
34e8f22d
RE
2773 /* Advance PC across function entry code. */
2774 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2775
34e8f22d
RE
2776 /* The stack grows downward. */
2777 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2778
2779 /* Breakpoint manipulation. */
2780 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2781
2782 /* Information about registers, etc. */
2783 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
0ba6dca9 2784 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2785 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2786 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
9c04cab7 2787 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
34e8f22d 2788 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
7a5ea0d4 2789 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2790
26216b98
AC
2791 /* Internal <-> external register number maps. */
2792 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2793
34e8f22d 2794 /* Integer registers are 4 bytes. */
b1e29e33 2795 set_gdbarch_deprecated_register_size (gdbarch, 4);
34e8f22d
RE
2796 set_gdbarch_register_name (gdbarch, arm_register_name);
2797
2798 /* Returning results. */
2af48f68 2799 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d
RE
2800
2801 /* Single stepping. */
2802 /* XXX For an RDI target we should ask the target if it can single-step. */
2803 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2804
03d48a7d
RE
2805 /* Disassembly. */
2806 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2807
34e8f22d
RE
2808 /* Minsymbol frobbing. */
2809 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2810 set_gdbarch_coff_make_msymbol_special (gdbarch,
2811 arm_coff_make_msymbol_special);
2812
0d5de010
DJ
2813 /* Virtual tables. */
2814 set_gdbarch_vbit_in_delta (gdbarch, 1);
2815
97e03143 2816 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 2817 gdbarch_init_osabi (info, gdbarch);
97e03143 2818
eb5492fa 2819 /* Add some default predicates. */
909cf6ea 2820 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 2821 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
2822 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2823
97e03143
RE
2824 /* Now we have tuned the configuration, set a few final things,
2825 based on what the OS ABI has told us. */
2826
9df628e0
RE
2827 if (tdep->jb_pc >= 0)
2828 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2829
08216dd7 2830 /* Floating point sizes and format. */
8da61cc4
DJ
2831 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2832 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
08216dd7 2833 {
8da61cc4
DJ
2834 set_gdbarch_double_format
2835 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
2836 set_gdbarch_long_double_format
2837 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
2838 }
2839 else
2840 {
2841 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2842 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
2843 }
2844
39bbf761
RE
2845 return gdbarch;
2846}
2847
97e03143
RE
2848static void
2849arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2850{
2851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2852
2853 if (tdep == NULL)
2854 return;
2855
edefbb7c 2856 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
2857 (unsigned long) tdep->lowest_pc);
2858}
2859
a78f21af
AC
2860extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2861
c906108c 2862void
ed9a39eb 2863_initialize_arm_tdep (void)
c906108c 2864{
bc90b915
FN
2865 struct ui_file *stb;
2866 long length;
26304000 2867 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
2868 const char *setname;
2869 const char *setdesc;
4bd7b427 2870 const char *const *regnames;
bc90b915
FN
2871 int numregs, i, j;
2872 static char *helptext;
edefbb7c
AC
2873 char regdesc[1024], *rdptr = regdesc;
2874 size_t rest = sizeof (regdesc);
085dd6e6 2875
42cf1509 2876 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 2877
70f80edf
JT
2878 /* Register an ELF OS ABI sniffer for ARM binaries. */
2879 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2880 bfd_target_elf_flavour,
2881 arm_elf_osabi_sniffer);
2882
94c30b78 2883 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
2884 num_disassembly_options = get_arm_regname_num_options ();
2885
2886 /* Add root prefix command for all "set arm"/"show arm" commands. */
2887 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 2888 _("Various ARM-specific commands."),
afd7eef0
RE
2889 &setarmcmdlist, "set arm ", 0, &setlist);
2890
2891 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 2892 _("Various ARM-specific commands."),
afd7eef0 2893 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 2894
94c30b78 2895 /* Sync the opcode insn printer with our register viewer. */
bc90b915 2896 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 2897
eefe576e
AC
2898 /* Initialize the array that will be passed to
2899 add_setshow_enum_cmd(). */
afd7eef0
RE
2900 valid_disassembly_styles
2901 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2902 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
2903 {
2904 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 2905 valid_disassembly_styles[i] = setname;
edefbb7c
AC
2906 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
2907 rdptr += length;
2908 rest -= length;
94c30b78 2909 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
2910 if (!strcmp (setname, "std"))
2911 {
afd7eef0 2912 disassembly_style = setname;
bc90b915
FN
2913 current_option = i;
2914 for (j = 0; j < numregs; j++)
2915 arm_register_names[j] = (char *) regnames[j];
2916 set_arm_regname_option (i);
2917 }
2918 }
94c30b78 2919 /* Mark the end of valid options. */
afd7eef0 2920 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 2921
edefbb7c
AC
2922 /* Create the help text. */
2923 stb = mem_fileopen ();
2924 fprintf_unfiltered (stb, "%s%s%s",
2925 _("The valid values are:\n"),
2926 regdesc,
2927 _("The default is \"std\"."));
bc90b915
FN
2928 helptext = ui_file_xstrdup (stb, &length);
2929 ui_file_delete (stb);
ed9a39eb 2930
edefbb7c
AC
2931 add_setshow_enum_cmd("disassembler", no_class,
2932 valid_disassembly_styles, &disassembly_style,
2933 _("Set the disassembly style."),
2934 _("Show the disassembly style."),
2935 helptext,
2c5b56ce 2936 set_disassembly_style_sfunc,
7915a72c 2937 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 2938 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
2939
2940 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2941 _("Set usage of ARM 32-bit mode."),
2942 _("Show usage of ARM 32-bit mode."),
2943 _("When off, a 26-bit PC will be used."),
2c5b56ce 2944 NULL,
7915a72c 2945 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 2946 &setarmcmdlist, &showarmcmdlist);
c906108c 2947
fd50bc42 2948 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
2949 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
2950 _("Set the floating point type."),
2951 _("Show the floating point type."),
2952 _("auto - Determine the FP typefrom the OS-ABI.\n\
2953softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
2954fpa - FPA co-processor (GCC compiled).\n\
2955softvfp - Software FP with pure-endian doubles.\n\
2956vfp - VFP co-processor."),
edefbb7c 2957 set_fp_model_sfunc, show_fp_model,
7376b4c2 2958 &setarmcmdlist, &showarmcmdlist);
fd50bc42 2959
28e97307
DJ
2960 /* Add a command to allow the user to force the ABI. */
2961 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
2962 _("Set the ABI."),
2963 _("Show the ABI."),
2964 NULL, arm_set_abi, arm_show_abi,
2965 &setarmcmdlist, &showarmcmdlist);
2966
6529d2dd 2967 /* Debugging flag. */
edefbb7c
AC
2968 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2969 _("Set ARM debugging."),
2970 _("Show ARM debugging."),
2971 _("When on, arm-specific debugging is enabled."),
2c5b56ce 2972 NULL,
7915a72c 2973 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 2974 &setdebuglist, &showdebuglist);
c906108c 2975}
This page took 0.872311 seconds and 4 git commands to generate.