* vax-tdep.c: Include regcache.h.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
c3b4394c 3 2001, 2002 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
e8b09175 31#include "dis-asm.h" /* For register flavors. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
34e8f22d
RE
37
38#include "arm-tdep.h"
39
082fc60d
RE
40#include "elf-bfd.h"
41#include "coff/internal.h"
97e03143 42#include "elf/arm.h"
c906108c 43
2a451106
KB
44/* Each OS has a different mechanism for accessing the various
45 registers stored in the sigcontext structure.
46
47 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
48 function pointer) which may be used to determine the addresses
49 of the various saved registers in the sigcontext structure.
50
51 For the ARM target, there are three parameters to this function.
52 The first is the pc value of the frame under consideration, the
53 second the stack pointer of this frame, and the last is the
54 register number to fetch.
55
56 If the tm.h file does not define this macro, then it's assumed that
57 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
58 be 0.
59
60 When it comes time to multi-arching this code, see the identically
61 named machinery in ia64-tdep.c for an example of how it could be
62 done. It should not be necessary to modify the code below where
63 this macro is used. */
64
3bb04bdd
AC
65#ifdef SIGCONTEXT_REGISTER_ADDRESS
66#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
67#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
68#endif
69#else
70#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
71#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
72#endif
73
082fc60d
RE
74/* Macros for setting and testing a bit in a minimal symbol that marks
75 it as Thumb function. The MSB of the minimal symbol's "info" field
76 is used for this purpose. This field is already being used to store
77 the symbol size, so the assumption is that the symbol size cannot
78 exceed 2^31.
79
80 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
81 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
82 MSYMBOL_SIZE Returns the size of the minimal symbol,
83 i.e. the "info" field with the "special" bit
84 masked out. */
85
86#define MSYMBOL_SET_SPECIAL(msym) \
87 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
88 | 0x80000000)
89
90#define MSYMBOL_IS_SPECIAL(msym) \
91 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
92
93#define MSYMBOL_SIZE(msym) \
94 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 95
97e03143
RE
96/* This table matches the indicees assigned to enum arm_abi. Keep
97 them in sync. */
98
99static const char * const arm_abi_names[] =
100{
101 "<unknown>",
102 "ARM EABI (version 1)",
103 "ARM EABI (version 2)",
104 "GNU/Linux",
105 "NetBSD (a.out)",
106 "NetBSD (ELF)",
107 "APCS",
108 "FreeBSD",
109 "Windows CE",
110 NULL
111};
112
bc90b915
FN
113/* Number of different reg name sets (options). */
114static int num_flavor_options;
115
116/* We have more registers than the disassembler as gdb can print the value
117 of special registers as well.
118 The general register names are overwritten by whatever is being used by
119 the disassembler at the moment. We also adjust the case of cpsr and fps. */
120
121/* Initial value: Register names used in ARM's ISA documentation. */
122static char * arm_register_name_strings[] =
da59e081
JM
123{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
124 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
125 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
126 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
127 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
128 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
bc90b915 129 "fps", "cpsr" }; /* 24 25 */
966fbf70 130static char **arm_register_names = arm_register_name_strings;
ed9a39eb 131
bc90b915 132/* Valid register name flavors. */
53904c9e 133static const char **valid_flavors;
ed9a39eb 134
bc90b915 135/* Disassembly flavor to use. Default to "std" register names. */
53904c9e 136static const char *disassembly_flavor;
bc90b915 137static int current_option; /* Index to that option in the opcodes table. */
96baa820 138
ed9a39eb
JM
139/* This is used to keep the bfd arch_info in sync with the disassembly
140 flavor. */
141static void set_disassembly_flavor_sfunc(char *, int,
142 struct cmd_list_element *);
143static void set_disassembly_flavor (void);
144
145static void convert_from_extended (void *ptr, void *dbl);
146
147/* Define other aspects of the stack frame. We keep the offsets of
148 all saved registers, 'cause we need 'em a lot! We also keep the
149 current size of the stack frame, and the offset of the frame
150 pointer from the stack pointer (for frameless functions, and when
151 we're still in the prologue of a function with a frame) */
152
153struct frame_extra_info
c3b4394c
RE
154{
155 int framesize;
156 int frameoffset;
157 int framereg;
158};
ed9a39eb 159
bc90b915
FN
160/* Addresses for calling Thumb functions have the bit 0 set.
161 Here are some macros to test, set, or clear bit 0 of addresses. */
162#define IS_THUMB_ADDR(addr) ((addr) & 1)
163#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
164#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
165
39bbf761 166static int
ed9a39eb 167arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 168{
c906108c
SS
169 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
170}
171
172/* Set to true if the 32-bit mode is in use. */
173
174int arm_apcs_32 = 1;
175
ed9a39eb
JM
176/* Flag set by arm_fix_call_dummy that tells whether the target
177 function is a Thumb function. This flag is checked by
178 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
179 its use in valops.c) to pass the function address as an additional
180 parameter. */
c906108c
SS
181
182static int target_is_thumb;
183
ed9a39eb
JM
184/* Flag set by arm_fix_call_dummy that tells whether the calling
185 function is a Thumb function. This flag is checked by
186 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
187
188static int caller_is_thumb;
189
ed9a39eb
JM
190/* Determine if the program counter specified in MEMADDR is in a Thumb
191 function. */
c906108c 192
34e8f22d 193int
2a451106 194arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 195{
c5aa993b 196 struct minimal_symbol *sym;
c906108c 197
ed9a39eb 198 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
199 if (IS_THUMB_ADDR (memaddr))
200 return 1;
201
ed9a39eb 202 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
203 sym = lookup_minimal_symbol_by_pc (memaddr);
204 if (sym)
205 {
c5aa993b 206 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
207 }
208 else
ed9a39eb
JM
209 {
210 return 0;
211 }
c906108c
SS
212}
213
ed9a39eb
JM
214/* Determine if the program counter specified in MEMADDR is in a call
215 dummy being called from a Thumb function. */
c906108c 216
34e8f22d 217int
2a451106 218arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 219{
c5aa993b 220 CORE_ADDR sp = read_sp ();
c906108c 221
dfcd3bfb
JM
222 /* FIXME: Until we switch for the new call dummy macros, this heuristic
223 is the best we can do. We are trying to determine if the pc is on
224 the stack, which (hopefully) will only happen in a call dummy.
225 We hope the current stack pointer is not so far alway from the dummy
226 frame location (true if we have not pushed large data structures or
227 gone too many levels deep) and that our 1024 is not enough to consider
228 code regions as part of the stack (true for most practical purposes) */
229 if (PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
230 return caller_is_thumb;
231 else
232 return 0;
233}
234
181c1381 235/* Remove useless bits from addresses in a running program. */
34e8f22d 236static CORE_ADDR
ed9a39eb 237arm_addr_bits_remove (CORE_ADDR val)
c906108c
SS
238{
239 if (arm_pc_is_thumb (val))
240 return (val & (arm_apcs_32 ? 0xfffffffe : 0x03fffffe));
241 else
242 return (val & (arm_apcs_32 ? 0xfffffffc : 0x03fffffc));
243}
244
181c1381
RE
245/* When reading symbols, we need to zap the low bit of the address,
246 which may be set to 1 for Thumb functions. */
34e8f22d 247static CORE_ADDR
181c1381
RE
248arm_smash_text_address (CORE_ADDR val)
249{
250 return val & ~1;
251}
252
34e8f22d
RE
253/* Immediately after a function call, return the saved pc. Can't
254 always go through the frames for this because on some machines the
255 new frame is not set up until the new function executes some
256 instructions. */
257
258static CORE_ADDR
ed9a39eb 259arm_saved_pc_after_call (struct frame_info *frame)
c906108c 260{
34e8f22d 261 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
262}
263
0defa245
RE
264/* Determine whether the function invocation represented by FI has a
265 frame on the stack associated with it. If it does return zero,
266 otherwise return 1. */
267
148754e5 268static int
ed9a39eb 269arm_frameless_function_invocation (struct frame_info *fi)
392a587b 270{
392a587b 271 CORE_ADDR func_start, after_prologue;
96baa820 272 int frameless;
ed9a39eb 273
0defa245
RE
274 /* Sometimes we have functions that do a little setup (like saving the
275 vN registers with the stmdb instruction, but DO NOT set up a frame.
276 The symbol table will report this as a prologue. However, it is
277 important not to try to parse these partial frames as frames, or we
278 will get really confused.
279
280 So I will demand 3 instructions between the start & end of the
281 prologue before I call it a real prologue, i.e. at least
282 mov ip, sp,
283 stmdb sp!, {}
284 sub sp, ip, #4. */
285
392a587b 286 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
7be570e7 287 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 288
96baa820 289 /* There are some frameless functions whose first two instructions
ed9a39eb
JM
290 follow the standard APCS form, in which case after_prologue will
291 be func_start + 8. */
292
96baa820 293 frameless = (after_prologue < func_start + 12);
392a587b
JM
294 return frameless;
295}
296
0defa245 297/* The address of the arguments in the frame. */
148754e5 298static CORE_ADDR
0defa245
RE
299arm_frame_args_address (struct frame_info *fi)
300{
301 return fi->frame;
302}
303
304/* The address of the local variables in the frame. */
148754e5 305static CORE_ADDR
0defa245
RE
306arm_frame_locals_address (struct frame_info *fi)
307{
308 return fi->frame;
309}
310
311/* The number of arguments being passed in the frame. */
148754e5 312static int
0defa245
RE
313arm_frame_num_args (struct frame_info *fi)
314{
315 /* We have no way of knowing. */
316 return -1;
317}
318
c906108c 319/* A typical Thumb prologue looks like this:
c5aa993b
JM
320 push {r7, lr}
321 add sp, sp, #-28
322 add r7, sp, #12
c906108c 323 Sometimes the latter instruction may be replaced by:
da59e081
JM
324 mov r7, sp
325
326 or like this:
327 push {r7, lr}
328 mov r7, sp
329 sub sp, #12
330
331 or, on tpcs, like this:
332 sub sp,#16
333 push {r7, lr}
334 (many instructions)
335 mov r7, sp
336 sub sp, #12
337
338 There is always one instruction of three classes:
339 1 - push
340 2 - setting of r7
341 3 - adjusting of sp
342
343 When we have found at least one of each class we are done with the prolog.
344 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 345 */
c906108c
SS
346
347static CORE_ADDR
c7885828 348thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
349{
350 CORE_ADDR current_pc;
da59e081
JM
351 int findmask = 0; /* findmask:
352 bit 0 - push { rlist }
353 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
354 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
355 */
c906108c 356
c7885828 357 for (current_pc = pc; current_pc + 2 < func_end && current_pc < pc + 40; current_pc += 2)
c906108c
SS
358 {
359 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
360
da59e081
JM
361 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
362 {
363 findmask |= 1; /* push found */
364 }
365 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
366 {
367 if ((findmask & 1) == 0) /* before push ? */
368 continue;
369 else
370 findmask |= 4; /* add/sub sp found */
371 }
372 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
373 {
374 findmask |= 2; /* setting of r7 found */
375 }
376 else if (insn == 0x466f) /* mov r7, sp */
377 {
378 findmask |= 2; /* setting of r7 found */
379 }
3d74b771
FF
380 else if (findmask == (4+2+1))
381 {
382 break; /* We have found one of each type of prologue instruction */
383 }
da59e081
JM
384 else
385 continue; /* something in the prolog that we don't care about or some
386 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
387 }
388
389 return current_pc;
390}
391
34e8f22d
RE
392/* Advance the PC across any function entry prologue instructions to reach
393 some "real" code.
394
395 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 396 prologue:
c906108c 397
c5aa993b
JM
398 mov ip, sp
399 [stmfd sp!, {a1,a2,a3,a4}]
400 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
401 [stfe f7, [sp, #-12]!]
402 [stfe f6, [sp, #-12]!]
403 [stfe f5, [sp, #-12]!]
404 [stfe f4, [sp, #-12]!]
405 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 406
34e8f22d 407static CORE_ADDR
ed9a39eb 408arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
409{
410 unsigned long inst;
411 CORE_ADDR skip_pc;
412 CORE_ADDR func_addr, func_end;
50f6fb4b 413 char *func_name;
c906108c
SS
414 struct symtab_and_line sal;
415
96baa820 416 /* See what the symbol table says. */
ed9a39eb 417
50f6fb4b 418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 419 {
50f6fb4b
CV
420 struct symbol *sym;
421
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
425 {
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
429 return sal.end;
430 }
c906108c
SS
431 }
432
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
c7885828 435 return thumb_skip_prologue (pc, func_end);
c906108c
SS
436
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
439 skip_pc = pc;
440 inst = read_memory_integer (skip_pc, 4);
c5aa993b 441 if (inst != 0xe1a0c00d) /* mov ip, sp */
c906108c
SS
442 return pc;
443
444 skip_pc += 4;
445 inst = read_memory_integer (skip_pc, 4);
c5aa993b 446 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
c906108c
SS
447 {
448 skip_pc += 4;
449 inst = read_memory_integer (skip_pc, 4);
450 }
451
c5aa993b 452 if ((inst & 0xfffff800) != 0xe92dd800) /* stmfd sp!,{...,fp,ip,lr,pc} */
c906108c
SS
453 return pc;
454
455 skip_pc += 4;
456 inst = read_memory_integer (skip_pc, 4);
457
458 /* Any insns after this point may float into the code, if it makes
ed9a39eb
JM
459 for better instruction scheduling, so we skip them only if we
460 find them, but still consdier the function to be frame-ful. */
c906108c 461
ed9a39eb
JM
462 /* We may have either one sfmfd instruction here, or several stfe
463 insns, depending on the version of floating point code we
464 support. */
c5aa993b 465 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
c906108c
SS
466 {
467 skip_pc += 4;
468 inst = read_memory_integer (skip_pc, 4);
469 }
470 else
471 {
c5aa993b
JM
472 while ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
473 {
474 skip_pc += 4;
475 inst = read_memory_integer (skip_pc, 4);
476 }
c906108c
SS
477 }
478
c5aa993b 479 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
c906108c
SS
480 skip_pc += 4;
481
482 return skip_pc;
483}
c5aa993b 484/* *INDENT-OFF* */
c906108c
SS
485/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
486 This function decodes a Thumb function prologue to determine:
487 1) the size of the stack frame
488 2) which registers are saved on it
489 3) the offsets of saved regs
490 4) the offset from the stack pointer to the frame pointer
491 This information is stored in the "extra" fields of the frame_info.
492
da59e081
JM
493 A typical Thumb function prologue would create this stack frame
494 (offsets relative to FP)
c906108c
SS
495 old SP -> 24 stack parameters
496 20 LR
497 16 R7
498 R7 -> 0 local variables (16 bytes)
499 SP -> -12 additional stack space (12 bytes)
500 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
501 12 bytes. The frame register is R7.
502
503 The comments for thumb_skip_prolog() describe the algorithm we use to detect
504 the end of the prolog */
c5aa993b
JM
505/* *INDENT-ON* */
506
c906108c 507static void
ed9a39eb 508thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
509{
510 CORE_ADDR prologue_start;
511 CORE_ADDR prologue_end;
512 CORE_ADDR current_pc;
c5aa993b 513 int saved_reg[16]; /* which register has been copied to register n? */
da59e081
JM
514 int findmask = 0; /* findmask:
515 bit 0 - push { rlist }
516 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
517 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
518 */
c5aa993b 519 int i;
c906108c 520
c5aa993b 521 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
522 {
523 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
524
c5aa993b 525 if (sal.line == 0) /* no line info, use current PC */
c906108c
SS
526 prologue_end = fi->pc;
527 else if (sal.end < prologue_end) /* next line begins after fn end */
c5aa993b 528 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
529 }
530 else
c5aa993b
JM
531 prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
532 /* 16 pushes, an add, and "mv fp,sp" */
c906108c
SS
533
534 prologue_end = min (prologue_end, fi->pc);
535
536 /* Initialize the saved register map. When register H is copied to
537 register L, we will put H in saved_reg[L]. */
538 for (i = 0; i < 16; i++)
539 saved_reg[i] = i;
540
541 /* Search the prologue looking for instructions that set up the
da59e081
JM
542 frame pointer, adjust the stack pointer, and save registers.
543 Do this until all basic prolog instructions are found. */
c906108c 544
c3b4394c 545 fi->extra_info->framesize = 0;
da59e081
JM
546 for (current_pc = prologue_start;
547 (current_pc < prologue_end) && ((findmask & 7) != 7);
548 current_pc += 2)
c906108c
SS
549 {
550 unsigned short insn;
551 int regno;
552 int offset;
553
554 insn = read_memory_unsigned_integer (current_pc, 2);
555
c5aa993b 556 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 557 {
da59e081
JM
558 int mask;
559 findmask |= 1; /* push found */
c906108c
SS
560 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
561 whether to save LR (R14). */
da59e081 562 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c
SS
563
564 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 565 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 566 if (mask & (1 << regno))
c5aa993b 567 {
c3b4394c
RE
568 fi->extra_info->framesize += 4;
569 fi->saved_regs[saved_reg[regno]] =
570 -(fi->extra_info->framesize);
c906108c
SS
571 saved_reg[regno] = regno; /* reset saved register map */
572 }
573 }
da59e081 574 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR sub sp, #simm */
c906108c 575 {
da59e081
JM
576 if ((findmask & 1) == 0) /* before push ? */
577 continue;
578 else
579 findmask |= 4; /* add/sub sp found */
580
c5aa993b 581 offset = (insn & 0x7f) << 2; /* get scaled offset */
da59e081
JM
582 if (insn & 0x80) /* is it signed? (==subtracting) */
583 {
c3b4394c 584 fi->extra_info->frameoffset += offset;
da59e081
JM
585 offset = -offset;
586 }
c3b4394c 587 fi->extra_info->framesize -= offset;
c906108c
SS
588 }
589 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
590 {
da59e081 591 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
592 fi->extra_info->framereg = THUMB_FP_REGNUM;
593 /* get scaled offset */
594 fi->extra_info->frameoffset = (insn & 0xff) << 2;
c906108c 595 }
da59e081 596 else if (insn == 0x466f) /* mov r7, sp */
c906108c 597 {
da59e081 598 findmask |= 2; /* setting of r7 found */
c3b4394c
RE
599 fi->extra_info->framereg = THUMB_FP_REGNUM;
600 fi->extra_info->frameoffset = 0;
34e8f22d 601 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
602 }
603 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
604 {
c5aa993b 605 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 606 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
c5aa993b 607 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
608 }
609 else
da59e081
JM
610 continue; /* something in the prolog that we don't care about or some
611 instruction from outside the prolog scheduled here for optimization */
c906108c
SS
612 }
613}
614
ed9a39eb
JM
615/* Check if prologue for this frame's PC has already been scanned. If
616 it has, copy the relevant information about that prologue and
c906108c
SS
617 return non-zero. Otherwise do not copy anything and return zero.
618
619 The information saved in the cache includes:
c5aa993b
JM
620 * the frame register number;
621 * the size of the stack frame;
622 * the offsets of saved regs (relative to the old SP); and
623 * the offset from the stack pointer to the frame pointer
c906108c 624
ed9a39eb
JM
625 The cache contains only one entry, since this is adequate for the
626 typical sequence of prologue scan requests we get. When performing
627 a backtrace, GDB will usually ask to scan the same function twice
628 in a row (once to get the frame chain, and once to fill in the
629 extra frame information). */
c906108c
SS
630
631static struct frame_info prologue_cache;
632
633static int
ed9a39eb 634check_prologue_cache (struct frame_info *fi)
c906108c
SS
635{
636 int i;
637
638 if (fi->pc == prologue_cache.pc)
639 {
c3b4394c
RE
640 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
641 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
642 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
643 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
644 fi->saved_regs[i] = prologue_cache.saved_regs[i];
c906108c
SS
645 return 1;
646 }
647 else
648 return 0;
649}
650
651
ed9a39eb 652/* Copy the prologue information from fi to the prologue cache. */
c906108c
SS
653
654static void
ed9a39eb 655save_prologue_cache (struct frame_info *fi)
c906108c
SS
656{
657 int i;
658
c5aa993b 659 prologue_cache.pc = fi->pc;
c3b4394c
RE
660 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
661 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
662 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
c5aa993b 663
c3b4394c
RE
664 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
665 prologue_cache.saved_regs[i] = fi->saved_regs[i];
c906108c
SS
666}
667
668
ed9a39eb 669/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
670 1) the size of the stack frame
671 2) which registers are saved on it
672 3) the offsets of saved regs
673 4) the offset from the stack pointer to the frame pointer
c906108c
SS
674 This information is stored in the "extra" fields of the frame_info.
675
96baa820
JM
676 There are two basic forms for the ARM prologue. The fixed argument
677 function call will look like:
ed9a39eb
JM
678
679 mov ip, sp
680 stmfd sp!, {fp, ip, lr, pc}
681 sub fp, ip, #4
682 [sub sp, sp, #4]
96baa820 683
c906108c 684 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
685 IP -> 4 (caller's stack)
686 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
687 -4 LR (return address in caller)
688 -8 IP (copy of caller's SP)
689 -12 FP (caller's FP)
690 SP -> -28 Local variables
691
c906108c 692 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
693 28 bytes. The stmfd call can also save any of the vN registers it
694 plans to use, which increases the frame size accordingly.
695
696 Note: The stored PC is 8 off of the STMFD instruction that stored it
697 because the ARM Store instructions always store PC + 8 when you read
698 the PC register.
ed9a39eb 699
96baa820
JM
700 A variable argument function call will look like:
701
ed9a39eb
JM
702 mov ip, sp
703 stmfd sp!, {a1, a2, a3, a4}
704 stmfd sp!, {fp, ip, lr, pc}
705 sub fp, ip, #20
706
96baa820 707 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
708 IP -> 20 (caller's stack)
709 16 A4
710 12 A3
711 8 A2
712 4 A1
713 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
714 -4 LR (return address in caller)
715 -8 IP (copy of caller's SP)
716 -12 FP (caller's FP)
717 SP -> -28 Local variables
96baa820
JM
718
719 The frame size would thus be 48 bytes, and the frame offset would be
720 28 bytes.
721
722 There is another potential complication, which is that the optimizer
723 will try to separate the store of fp in the "stmfd" instruction from
724 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
725 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
726
727 Also, note, the original version of the ARM toolchain claimed that there
728 should be an
729
730 instruction at the end of the prologue. I have never seen GCC produce
731 this, and the ARM docs don't mention it. We still test for it below in
732 case it happens...
ed9a39eb
JM
733
734 */
c906108c
SS
735
736static void
ed9a39eb 737arm_scan_prologue (struct frame_info *fi)
c906108c
SS
738{
739 int regno, sp_offset, fp_offset;
16a0f3e7 740 LONGEST return_value;
c906108c
SS
741 CORE_ADDR prologue_start, prologue_end, current_pc;
742
743 /* Check if this function is already in the cache of frame information. */
744 if (check_prologue_cache (fi))
745 return;
746
747 /* Assume there is no frame until proven otherwise. */
34e8f22d 748 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
749 fi->extra_info->framesize = 0;
750 fi->extra_info->frameoffset = 0;
c906108c
SS
751
752 /* Check for Thumb prologue. */
753 if (arm_pc_is_thumb (fi->pc))
754 {
755 thumb_scan_prologue (fi);
756 save_prologue_cache (fi);
757 return;
758 }
759
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
763 {
2a451106
KB
764 /* One way to find the end of the prologue (which works well
765 for unoptimized code) is to do the following:
766
767 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
768
769 if (sal.line == 0)
770 prologue_end = fi->pc;
771 else if (sal.end < prologue_end)
772 prologue_end = sal.end;
773
774 This mechanism is very accurate so long as the optimizer
775 doesn't move any instructions from the function body into the
776 prologue. If this happens, sal.end will be the last
777 instruction in the first hunk of prologue code just before
778 the first instruction that the scheduler has moved from
779 the body to the prologue.
780
781 In order to make sure that we scan all of the prologue
782 instructions, we use a slightly less accurate mechanism which
783 may scan more than necessary. To help compensate for this
784 lack of accuracy, the prologue scanning loop below contains
785 several clauses which'll cause the loop to terminate early if
786 an implausible prologue instruction is encountered.
787
788 The expression
789
790 prologue_start + 64
791
792 is a suitable endpoint since it accounts for the largest
793 possible prologue plus up to five instructions inserted by
794 the scheduler. */
795
796 if (prologue_end > prologue_start + 64)
797 {
798 prologue_end = prologue_start + 64; /* See above. */
799 }
c906108c
SS
800 }
801 else
802 {
803 /* Get address of the stmfd in the prologue of the callee; the saved
96baa820 804 PC is the address of the stmfd + 8. */
16a0f3e7
EZ
805 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
806 return;
807 else
808 {
809 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
810 prologue_end = prologue_start + 64; /* See above. */
811 }
c906108c
SS
812 }
813
814 /* Now search the prologue looking for instructions that set up the
96baa820 815 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 816
96baa820
JM
817 Be careful, however, and if it doesn't look like a prologue,
818 don't try to scan it. If, for instance, a frameless function
819 begins with stmfd sp!, then we will tell ourselves there is
820 a frame, which will confuse stack traceback, as well ad"finish"
821 and other operations that rely on a knowledge of the stack
822 traceback.
823
824 In the APCS, the prologue should start with "mov ip, sp" so
d4473757
KB
825 if we don't see this as the first insn, we will stop. [Note:
826 This doesn't seem to be true any longer, so it's now an optional
827 part of the prologue. - Kevin Buettner, 2001-11-20] */
c906108c
SS
828
829 sp_offset = fp_offset = 0;
c906108c 830
ed9a39eb
JM
831 if (read_memory_unsigned_integer (prologue_start, 4)
832 == 0xe1a0c00d) /* mov ip, sp */
d4473757
KB
833 current_pc = prologue_start + 4;
834 else
835 current_pc = prologue_start;
836
837 for (; current_pc < prologue_end; current_pc += 4)
96baa820 838 {
d4473757
KB
839 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
840
841 if ((insn & 0xffff0000) == 0xe92d0000)
842 /* stmfd sp!, {..., fp, ip, lr, pc}
843 or
844 stmfd sp!, {a1, a2, a3, a4} */
c906108c 845 {
d4473757 846 int mask = insn & 0xffff;
ed9a39eb 847
d4473757 848 /* Calculate offsets of saved registers. */
34e8f22d 849 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
850 if (mask & (1 << regno))
851 {
852 sp_offset -= 4;
c3b4394c 853 fi->saved_regs[regno] = sp_offset;
d4473757
KB
854 }
855 }
856 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
857 {
858 unsigned imm = insn & 0xff; /* immediate value */
859 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
860 imm = (imm >> rot) | (imm << (32 - rot));
861 fp_offset = -imm;
34e8f22d 862 fi->extra_info->framereg = ARM_FP_REGNUM;
d4473757
KB
863 }
864 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
865 {
866 unsigned imm = insn & 0xff; /* immediate value */
867 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
868 imm = (imm >> rot) | (imm << (32 - rot));
869 sp_offset -= imm;
870 }
871 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
872 {
873 sp_offset -= 12;
34e8f22d 874 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
c3b4394c 875 fi->saved_regs[regno] = sp_offset;
d4473757
KB
876 }
877 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
878 {
879 int n_saved_fp_regs;
880 unsigned int fp_start_reg, fp_bound_reg;
881
882 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 883 {
d4473757
KB
884 if ((insn & 0x40000) == 0x40000) /* N1 is set */
885 n_saved_fp_regs = 3;
886 else
887 n_saved_fp_regs = 1;
96baa820 888 }
d4473757 889 else
96baa820 890 {
d4473757
KB
891 if ((insn & 0x40000) == 0x40000) /* N1 is set */
892 n_saved_fp_regs = 2;
893 else
894 n_saved_fp_regs = 4;
96baa820 895 }
d4473757 896
34e8f22d 897 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
898 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
899 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
900 {
901 sp_offset -= 12;
c3b4394c 902 fi->saved_regs[fp_start_reg++] = sp_offset;
96baa820 903 }
c906108c 904 }
d4473757
KB
905 else if ((insn & 0xf0000000) != 0xe0000000)
906 break; /* Condition not true, exit early */
907 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
908 break; /* Don't scan past a block load */
909 else
910 /* The optimizer might shove anything into the prologue,
911 so we just skip what we don't recognize. */
912 continue;
c906108c
SS
913 }
914
915 /* The frame size is just the negative of the offset (from the original SP)
916 of the last thing thing we pushed on the stack. The frame offset is
917 [new FP] - [new SP]. */
c3b4394c 918 fi->extra_info->framesize = -sp_offset;
34e8f22d 919 if (fi->extra_info->framereg == ARM_FP_REGNUM)
c3b4394c 920 fi->extra_info->frameoffset = fp_offset - sp_offset;
d4473757 921 else
c3b4394c 922 fi->extra_info->frameoffset = 0;
ed9a39eb 923
c906108c
SS
924 save_prologue_cache (fi);
925}
926
ed9a39eb
JM
927/* Find REGNUM on the stack. Otherwise, it's in an active register.
928 One thing we might want to do here is to check REGNUM against the
929 clobber mask, and somehow flag it as invalid if it isn't saved on
930 the stack somewhere. This would provide a graceful failure mode
931 when trying to get the value of caller-saves registers for an inner
932 frame. */
c906108c
SS
933
934static CORE_ADDR
ed9a39eb 935arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c
SS
936{
937 for (; fi; fi = fi->next)
c5aa993b
JM
938
939#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
940 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
941 return generic_read_register_dummy (fi->pc, fi->frame, regnum);
942 else
943#endif
c3b4394c
RE
944 if (fi->saved_regs[regnum] != 0)
945 return read_memory_integer (fi->saved_regs[regnum],
c5aa993b 946 REGISTER_RAW_SIZE (regnum));
c906108c
SS
947 return read_register (regnum);
948}
148754e5
RE
949/* Function: frame_chain Given a GDB frame, determine the address of
950 the calling function's frame. This will be used to create a new
951 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC
952 will be called for the new frame. For ARM, we save the frame size
953 when we initialize the frame_info. */
c5aa993b 954
148754e5 955static CORE_ADDR
ed9a39eb 956arm_frame_chain (struct frame_info *fi)
c906108c 957{
c5aa993b 958#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
959 CORE_ADDR fn_start, callers_pc, fp;
960
961 /* is this a dummy frame? */
962 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
c5aa993b 963 return fi->frame; /* dummy frame same as caller's frame */
c906108c
SS
964
965 /* is caller-of-this a dummy frame? */
c5aa993b 966 callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
34e8f22d 967 fp = arm_find_callers_reg (fi, ARM_FP_REGNUM);
c5aa993b
JM
968 if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
969 return fp; /* dummy frame's frame may bear no relation to ours */
c906108c
SS
970
971 if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
972 if (fn_start == entry_point_address ())
c5aa993b 973 return 0; /* in _start fn, don't chain further */
c906108c
SS
974#endif
975 CORE_ADDR caller_pc, fn_start;
c3b4394c 976 int framereg = fi->extra_info->framereg;
c906108c
SS
977
978 if (fi->pc < LOWEST_PC)
979 return 0;
980
981 /* If the caller is the startup code, we're at the end of the chain. */
982 caller_pc = FRAME_SAVED_PC (fi);
983 if (find_pc_partial_function (caller_pc, 0, &fn_start, 0))
984 if (fn_start == entry_point_address ())
985 return 0;
986
987 /* If the caller is Thumb and the caller is ARM, or vice versa,
988 the frame register of the caller is different from ours.
989 So we must scan the prologue of the caller to determine its
990 frame register number. */
c3b4394c
RE
991 /* XXX Fixme, we should try to do this without creating a temporary
992 caller_fi. */
c906108c
SS
993 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
994 {
c3b4394c
RE
995 struct frame_info caller_fi;
996 struct cleanup *old_chain;
997
998 /* Create a temporary frame suitable for scanning the caller's
999 prologue. (Ugh.) */
c5aa993b 1000 memset (&caller_fi, 0, sizeof (caller_fi));
c3b4394c
RE
1001 caller_fi.extra_info = (struct frame_extra_info *)
1002 xcalloc (1, sizeof (struct frame_extra_info));
1003 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1004 caller_fi.saved_regs = (CORE_ADDR *)
1005 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1006 make_cleanup (xfree, caller_fi.saved_regs);
1007
1008 /* Now, scan the prologue and obtain the frame register. */
c906108c 1009 caller_fi.pc = caller_pc;
c5aa993b 1010 arm_scan_prologue (&caller_fi);
c3b4394c
RE
1011 framereg = caller_fi.extra_info->framereg;
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
c906108c
SS
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
34e8f22d 1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1021 return arm_find_callers_reg (fi, framereg);
1022 else
c3b4394c 1023 return fi->frame + fi->extra_info->framesize;
c906108c
SS
1024}
1025
ed9a39eb
JM
1026/* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
c906108c 1034
148754e5 1035static void
ed9a39eb 1036arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1037{
1038 int reg;
f079148d 1039 CORE_ADDR sp;
c906108c 1040
c3b4394c
RE
1041 if (fi->saved_regs == NULL)
1042 frame_saved_regs_zalloc (fi);
1043
1044 fi->extra_info = (struct frame_extra_info *)
1045 frame_obstack_alloc (sizeof (struct frame_extra_info));
1046
1047 fi->extra_info->framesize = 0;
1048 fi->extra_info->frameoffset = 0;
1049 fi->extra_info->framereg = 0;
1050
c906108c
SS
1051 if (fi->next)
1052 fi->pc = FRAME_SAVED_PC (fi->next);
1053
c3b4394c 1054 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
c906108c 1055
c5aa993b 1056#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c
SS
1057 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1058 {
1059 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
c5aa993b 1060 by assuming it's always FP. */
34e8f22d
RE
1061 fi->frame = generic_read_register_dummy (fi->pc, fi->frame,
1062 ARM_SP_REGNUM);
c3b4394c
RE
1063 fi->extra_info->framesize = 0;
1064 fi->extra_info->frameoffset = 0;
c906108c
SS
1065 return;
1066 }
c5aa993b 1067 else
c906108c 1068#endif
2a451106 1069
f079148d
KB
1070 /* Compute stack pointer for this frame. We use this value for both the
1071 sigtramp and call dummy cases. */
1072 if (!fi->next)
1073 sp = read_sp();
1074 else
c3b4394c
RE
1075 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1076 + fi->next->extra_info->framesize);
f079148d 1077
2a451106
KB
1078 /* Determine whether or not we're in a sigtramp frame.
1079 Unfortunately, it isn't sufficient to test
1080 fi->signal_handler_caller because this value is sometimes set
1081 after invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1082 fi->signal_handler_caller and IN_SIGTRAMP to determine if we need
1083 to use the sigcontext addresses for the saved registers.
1084
1085 Note: If an ARM IN_SIGTRAMP method ever needs to compare against
1086 the name of the function, the code below will have to be changed
1087 to first fetch the name of the function and then pass this name
f079148d 1088 to IN_SIGTRAMP. */
2a451106 1089
3bb04bdd 1090 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
dd96c05b 1091 && (fi->signal_handler_caller || IN_SIGTRAMP (fi->pc, (char *)0)))
2a451106 1092 {
2a451106 1093 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c 1094 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
2a451106
KB
1095
1096 /* FIXME: What about thumb mode? */
34e8f22d 1097 fi->extra_info->framereg = ARM_SP_REGNUM;
c3b4394c
RE
1098 fi->frame =
1099 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1100 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1101 fi->extra_info->framesize = 0;
1102 fi->extra_info->frameoffset = 0;
2a451106
KB
1103
1104 }
f079148d
KB
1105 else if (PC_IN_CALL_DUMMY (fi->pc, sp, fi->frame))
1106 {
1107 CORE_ADDR rp;
1108 CORE_ADDR callers_sp;
1109
1110 /* Set rp point at the high end of the saved registers. */
1111 rp = fi->frame - REGISTER_SIZE;
1112
1113 /* Fill in addresses of saved registers. */
34e8f22d
RE
1114 fi->saved_regs[ARM_PS_REGNUM] = rp;
1115 rp -= REGISTER_RAW_SIZE (ARM_PS_REGNUM);
1116 for (reg = ARM_PC_REGNUM; reg >= 0; reg--)
f079148d 1117 {
c3b4394c 1118 fi->saved_regs[reg] = rp;
f079148d
KB
1119 rp -= REGISTER_RAW_SIZE (reg);
1120 }
1121
34e8f22d
RE
1122 callers_sp = read_memory_integer (fi->saved_regs[ARM_SP_REGNUM],
1123 REGISTER_RAW_SIZE (ARM_SP_REGNUM));
1124 fi->extra_info->framereg = ARM_FP_REGNUM;
c3b4394c
RE
1125 fi->extra_info->framesize = callers_sp - sp;
1126 fi->extra_info->frameoffset = fi->frame - sp;
f079148d 1127 }
2a451106 1128 else
c906108c
SS
1129 {
1130 arm_scan_prologue (fi);
1131
104c1213
JM
1132 if (!fi->next)
1133 /* this is the innermost frame? */
c3b4394c 1134 fi->frame = read_register (fi->extra_info->framereg);
34e8f22d 1135 else if (fi->extra_info->framereg == ARM_FP_REGNUM
c3b4394c 1136 || fi->extra_info->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1137 {
1138 /* not the innermost frame */
1139 /* If we have an FP, the callee saved it. */
c3b4394c 1140 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
ed9a39eb 1141 fi->frame =
c3b4394c
RE
1142 read_memory_integer (fi->next
1143 ->saved_regs[fi->extra_info->framereg], 4);
ed9a39eb
JM
1144 else if (fromleaf)
1145 /* If we were called by a frameless fn. then our frame is
1146 still in the frame pointer register on the board... */
1147 fi->frame = read_fp ();
1148 }
c906108c 1149
ed9a39eb
JM
1150 /* Calculate actual addresses of saved registers using offsets
1151 determined by arm_scan_prologue. */
c906108c 1152 for (reg = 0; reg < NUM_REGS; reg++)
c3b4394c
RE
1153 if (fi->saved_regs[reg] != 0)
1154 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1155 - fi->extra_info->frameoffset);
c906108c
SS
1156 }
1157}
1158
1159
34e8f22d 1160/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1161 is saved in the stack anywhere, otherwise we get it from the
1162 registers.
c906108c
SS
1163
1164 The old definition of this function was a macro:
c5aa993b 1165 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1166 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1167
148754e5 1168static CORE_ADDR
ed9a39eb 1169arm_frame_saved_pc (struct frame_info *fi)
c906108c 1170{
c5aa993b 1171#if 0 /* FIXME: enable this code if we convert to new call dummy scheme. */
c906108c 1172 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
34e8f22d 1173 return generic_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
c906108c
SS
1174 else
1175#endif
c3b4394c
RE
1176 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1177 fi->frame))
f079148d 1178 {
34e8f22d
RE
1179 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1180 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1181 }
1182 else
c906108c 1183 {
34e8f22d 1184 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1185 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1186 }
1187}
1188
c906108c
SS
1189/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1190 Examine the Program Status Register to decide which state we're in. */
1191
148754e5
RE
1192static CORE_ADDR
1193arm_read_fp (void)
c906108c 1194{
34e8f22d 1195 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1196 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1197 else
34e8f22d 1198 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1199}
1200
148754e5
RE
1201/* Store into a struct frame_saved_regs the addresses of the saved
1202 registers of frame described by FRAME_INFO. This includes special
1203 registers such as PC and FP saved in special ways in the stack
1204 frame. SP is even more special: the address we return for it IS
1205 the sp for the next frame. */
c906108c 1206
148754e5 1207static void
c3b4394c 1208arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1209{
c3b4394c
RE
1210
1211 if (fip->saved_regs)
1212 return;
1213
1214 arm_init_extra_frame_info (0, fip);
c906108c
SS
1215}
1216
148754e5
RE
1217/* Push an empty stack frame, to record the current PC, etc. */
1218
1219static void
ed9a39eb 1220arm_push_dummy_frame (void)
c906108c 1221{
34e8f22d 1222 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1223 CORE_ADDR sp = old_sp;
1224 CORE_ADDR fp, prologue_start;
1225 int regnum;
1226
1227 /* Push the two dummy prologue instructions in reverse order,
1228 so that they'll be in the correct low-to-high order in memory. */
1229 /* sub fp, ip, #4 */
1230 sp = push_word (sp, 0xe24cb004);
1231 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1232 prologue_start = sp = push_word (sp, 0xe92ddfff);
1233
ed9a39eb
JM
1234 /* Push a pointer to the dummy prologue + 12, because when stm
1235 instruction stores the PC, it stores the address of the stm
c906108c
SS
1236 instruction itself plus 12. */
1237 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1238
f079148d 1239 /* Push the processor status. */
34e8f22d 1240 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1241
1242 /* Push all 16 registers starting with r15. */
34e8f22d 1243 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1244 sp = push_word (sp, read_register (regnum));
c5aa993b 1245
f079148d 1246 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1247 write_register (ARM_FP_REGNUM, fp);
c906108c 1248 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1249 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1250}
1251
6eb69eab
RE
1252/* CALL_DUMMY_WORDS:
1253 This sequence of words is the instructions
1254
1255 mov lr,pc
1256 mov pc,r4
1257 illegal
1258
1259 Note this is 12 bytes. */
1260
34e8f22d 1261static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1262{
1263 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1264};
1265
3fb4b924
RE
1266/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1267 breakpoint to the proper address in the call dummy, so that
1268 `finish' after a stop in a call dummy works.
1269
d7b486e7
RE
1270 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1271 optimal solution, but the call to arm_fix_call_dummy is immediately
1272 followed by a call to run_stack_dummy, which is the only function
1273 where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1274
1275
1276static void
1277arm_set_call_dummy_breakpoint_offset (void)
1278{
1279 if (caller_is_thumb)
1280 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1281 else
1282 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1283}
1284
c906108c 1285/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1286 in Thumb or ARM mode, and whether the target function is Thumb or
1287 ARM. There are three different situations requiring three
c906108c
SS
1288 different dummies:
1289
1290 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1291 been copied into the dummy parameter to this function.
c906108c 1292 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1293 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1294 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1295 works for calling both ARM and Thumb functions.
c906108c 1296
ed9a39eb
JM
1297 All three call dummies expect to receive the target function
1298 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1299
34e8f22d 1300static void
ed9a39eb 1301arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1302 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1303{
1304 static short thumb_dummy[4] =
1305 {
c5aa993b
JM
1306 0xf000, 0xf801, /* bl label */
1307 0xdf18, /* swi 24 */
1308 0x4720, /* label: bx r4 */
c906108c
SS
1309 };
1310 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1311
1312 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1313 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1314 arm_set_call_dummy_breakpoint_offset ();
c906108c 1315
ed9a39eb
JM
1316 /* If the target function is Thumb, set the low bit of the function
1317 address. And if the CPU is currently in ARM mode, patch the
1318 second instruction of call dummy to use a BX instruction to
1319 switch to Thumb mode. */
c906108c
SS
1320 target_is_thumb = arm_pc_is_thumb (fun);
1321 if (target_is_thumb)
1322 {
1323 fun |= 1;
1324 if (!caller_is_thumb)
1325 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1326 }
1327
1328 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1329 instead of the ARM one that's already been copied. This will
1330 work for both Thumb and ARM target functions. */
1331 if (caller_is_thumb)
1332 {
1333 int i;
1334 char *p = dummy;
1335 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1336
1337 for (i = 0; i < len; i++)
1338 {
1339 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1340 p += sizeof (thumb_dummy[0]);
1341 }
1342 }
1343
ed9a39eb
JM
1344 /* Put the target address in r4; the call dummy will copy this to
1345 the PC. */
c906108c
SS
1346 write_register (4, fun);
1347}
1348
ed9a39eb
JM
1349/* Note: ScottB
1350
1351 This function does not support passing parameters using the FPA
1352 variant of the APCS. It passes any floating point arguments in the
1353 general registers and/or on the stack. */
c906108c 1354
39bbf761 1355static CORE_ADDR
ea7c478f 1356arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1357 int struct_return, CORE_ADDR struct_addr)
c906108c 1358{
ed9a39eb
JM
1359 char *fp;
1360 int argnum, argreg, nstack_size;
1361
1362 /* Walk through the list of args and determine how large a temporary
1363 stack is required. Need to take care here as structs may be
1364 passed on the stack, and we have to to push them. */
1365 nstack_size = -4 * REGISTER_SIZE; /* Some arguments go into A1-A4. */
1366 if (struct_return) /* The struct address goes in A1. */
1367 nstack_size += REGISTER_SIZE;
1368
1369 /* Walk through the arguments and add their size to nstack_size. */
1370 for (argnum = 0; argnum < nargs; argnum++)
c5aa993b 1371 {
c906108c 1372 int len;
ed9a39eb
JM
1373 struct type *arg_type;
1374
1375 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1376 len = TYPE_LENGTH (arg_type);
c906108c 1377
6b230f1b 1378 nstack_size += len;
ed9a39eb 1379 }
c906108c 1380
ed9a39eb
JM
1381 /* Allocate room on the stack, and initialize our stack frame
1382 pointer. */
1383 fp = NULL;
1384 if (nstack_size > 0)
1385 {
1386 sp -= nstack_size;
1387 fp = (char *) sp;
1388 }
1389
1390 /* Initialize the integer argument register pointer. */
34e8f22d 1391 argreg = ARM_A1_REGNUM;
c906108c 1392
ed9a39eb
JM
1393 /* The struct_return pointer occupies the first parameter passing
1394 register. */
c906108c 1395 if (struct_return)
c5aa993b 1396 write_register (argreg++, struct_addr);
c906108c 1397
ed9a39eb
JM
1398 /* Process arguments from left to right. Store as many as allowed
1399 in the parameter passing registers (A1-A4), and save the rest on
1400 the temporary stack. */
c5aa993b 1401 for (argnum = 0; argnum < nargs; argnum++)
c906108c 1402 {
ed9a39eb 1403 int len;
c5aa993b 1404 char *val;
c5aa993b 1405 CORE_ADDR regval;
ed9a39eb
JM
1406 enum type_code typecode;
1407 struct type *arg_type, *target_type;
1408
1409 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1410 target_type = TYPE_TARGET_TYPE (arg_type);
1411 len = TYPE_LENGTH (arg_type);
1412 typecode = TYPE_CODE (arg_type);
1413 val = (char *) VALUE_CONTENTS (args[argnum]);
1414
da59e081
JM
1415#if 1
1416 /* I don't know why this code was disable. The only logical use
1417 for a function pointer is to call that function, so setting
1418 the mode bit is perfectly fine. FN */
ed9a39eb 1419 /* If the argument is a pointer to a function, and it is a Thumb
c906108c 1420 function, set the low bit of the pointer. */
ed9a39eb
JM
1421 if (TYPE_CODE_PTR == typecode
1422 && NULL != target_type
1423 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1424 {
ed9a39eb 1425 CORE_ADDR regval = extract_address (val, len);
c906108c
SS
1426 if (arm_pc_is_thumb (regval))
1427 store_address (val, len, MAKE_THUMB_ADDR (regval));
1428 }
c906108c 1429#endif
ed9a39eb
JM
1430 /* Copy the argument to general registers or the stack in
1431 register-sized pieces. Large arguments are split between
1432 registers and stack. */
1433 while (len > 0)
c906108c 1434 {
ed9a39eb
JM
1435 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1436
1437 if (argreg <= ARM_LAST_ARG_REGNUM)
c906108c 1438 {
ed9a39eb
JM
1439 /* It's an argument being passed in a general register. */
1440 regval = extract_address (val, partial_len);
1441 write_register (argreg++, regval);
c906108c 1442 }
ed9a39eb
JM
1443 else
1444 {
1445 /* Push the arguments onto the stack. */
1446 write_memory ((CORE_ADDR) fp, val, REGISTER_SIZE);
1447 fp += REGISTER_SIZE;
1448 }
1449
1450 len -= partial_len;
1451 val += partial_len;
c906108c
SS
1452 }
1453 }
c906108c
SS
1454
1455 /* Return adjusted stack pointer. */
1456 return sp;
1457}
1458
f079148d
KB
1459/* Pop the current frame. So long as the frame info has been initialized
1460 properly (see arm_init_extra_frame_info), this code works for dummy frames
1461 as well as regular frames. I.e, there's no need to have a special case
1462 for dummy frames. */
148754e5 1463static void
ed9a39eb 1464arm_pop_frame (void)
c906108c 1465{
c906108c 1466 int regnum;
8b93c638 1467 struct frame_info *frame = get_current_frame ();
c3b4394c
RE
1468 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1469 + frame->extra_info->framesize);
c906108c 1470
f079148d 1471 for (regnum = 0; regnum < NUM_REGS; regnum++)
c3b4394c 1472 if (frame->saved_regs[regnum] != 0)
f079148d 1473 write_register (regnum,
c3b4394c 1474 read_memory_integer (frame->saved_regs[regnum],
f079148d 1475 REGISTER_RAW_SIZE (regnum)));
8b93c638 1476
34e8f22d
RE
1477 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1478 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1479
1480 flush_cached_frames ();
1481}
1482
1483static void
ed9a39eb 1484print_fpu_flags (int flags)
c906108c 1485{
c5aa993b
JM
1486 if (flags & (1 << 0))
1487 fputs ("IVO ", stdout);
1488 if (flags & (1 << 1))
1489 fputs ("DVZ ", stdout);
1490 if (flags & (1 << 2))
1491 fputs ("OFL ", stdout);
1492 if (flags & (1 << 3))
1493 fputs ("UFL ", stdout);
1494 if (flags & (1 << 4))
1495 fputs ("INX ", stdout);
1496 putchar ('\n');
c906108c
SS
1497}
1498
5e74b15c
RE
1499/* Print interesting information about the floating point processor
1500 (if present) or emulator. */
34e8f22d 1501static void
5e74b15c 1502arm_print_float_info (void)
c906108c 1503{
34e8f22d 1504 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1505 int type;
1506
1507 type = (status >> 24) & 127;
1508 printf ("%s FPU type %d\n",
ed9a39eb 1509 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1510 type);
1511 fputs ("mask: ", stdout);
1512 print_fpu_flags (status >> 16);
1513 fputs ("flags: ", stdout);
1514 print_fpu_flags (status);
c906108c
SS
1515}
1516
34e8f22d
RE
1517/* Return the GDB type object for the "standard" data type of data in
1518 register N. */
1519
1520static struct type *
032758dc
AC
1521arm_register_type (int regnum)
1522{
34e8f22d 1523 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1524 {
d7449b42 1525 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1526 return builtin_type_arm_ext_big;
1527 else
1528 return builtin_type_arm_ext_littlebyte_bigword;
1529 }
1530 else
1531 return builtin_type_int32;
1532}
1533
34e8f22d
RE
1534/* Index within `registers' of the first byte of the space for
1535 register N. */
1536
1537static int
1538arm_register_byte (int regnum)
1539{
1540 if (regnum < ARM_F0_REGNUM)
1541 return regnum * INT_REGISTER_RAW_SIZE;
1542 else if (regnum < ARM_PS_REGNUM)
1543 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1544 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1545 else
1546 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1547 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1548 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1549}
1550
1551/* Number of bytes of storage in the actual machine representation for
1552 register N. All registers are 4 bytes, except fp0 - fp7, which are
1553 12 bytes in length. */
1554
1555static int
1556arm_register_raw_size (int regnum)
1557{
1558 if (regnum < ARM_F0_REGNUM)
1559 return INT_REGISTER_RAW_SIZE;
1560 else if (regnum < ARM_FPS_REGNUM)
1561 return FP_REGISTER_RAW_SIZE;
1562 else
1563 return STATUS_REGISTER_SIZE;
1564}
1565
1566/* Number of bytes of storage in a program's representation
1567 for register N. */
1568static int
1569arm_register_virtual_size (int regnum)
1570{
1571 if (regnum < ARM_F0_REGNUM)
1572 return INT_REGISTER_VIRTUAL_SIZE;
1573 else if (regnum < ARM_FPS_REGNUM)
1574 return FP_REGISTER_VIRTUAL_SIZE;
1575 else
1576 return STATUS_REGISTER_SIZE;
1577}
1578
1579
a37b3cc0
AC
1580/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1581 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1582 It is thought that this is is the floating-point register format on
1583 little-endian systems. */
c906108c 1584
ed9a39eb
JM
1585static void
1586convert_from_extended (void *ptr, void *dbl)
c906108c 1587{
a37b3cc0 1588 DOUBLEST d;
d7449b42 1589 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1590 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1591 else
1592 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1593 ptr, &d);
1594 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
c906108c
SS
1595}
1596
34e8f22d 1597static void
ed9a39eb 1598convert_to_extended (void *dbl, void *ptr)
c906108c 1599{
a37b3cc0
AC
1600 DOUBLEST d;
1601 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
d7449b42 1602 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1603 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1604 else
1605 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1606 &d, dbl);
c906108c 1607}
ed9a39eb 1608
c906108c 1609static int
ed9a39eb 1610condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1611{
1612 if (cond == INST_AL || cond == INST_NV)
1613 return 1;
1614
1615 switch (cond)
1616 {
1617 case INST_EQ:
1618 return ((status_reg & FLAG_Z) != 0);
1619 case INST_NE:
1620 return ((status_reg & FLAG_Z) == 0);
1621 case INST_CS:
1622 return ((status_reg & FLAG_C) != 0);
1623 case INST_CC:
1624 return ((status_reg & FLAG_C) == 0);
1625 case INST_MI:
1626 return ((status_reg & FLAG_N) != 0);
1627 case INST_PL:
1628 return ((status_reg & FLAG_N) == 0);
1629 case INST_VS:
1630 return ((status_reg & FLAG_V) != 0);
1631 case INST_VC:
1632 return ((status_reg & FLAG_V) == 0);
1633 case INST_HI:
1634 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1635 case INST_LS:
1636 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1637 case INST_GE:
1638 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1639 case INST_LT:
1640 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1641 case INST_GT:
1642 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1643 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1644 case INST_LE:
1645 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1646 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1647 }
1648 return 1;
1649}
1650
9512d7fd 1651/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1652#define submask(x) ((1L << ((x) + 1)) - 1)
1653#define bit(obj,st) (((obj) >> (st)) & 1)
1654#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1655#define sbits(obj,st,fn) \
1656 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1657#define BranchDest(addr,instr) \
1658 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1659#define ARM_PC_32 1
1660
1661static unsigned long
ed9a39eb
JM
1662shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1663 unsigned long status_reg)
c906108c
SS
1664{
1665 unsigned long res, shift;
1666 int rm = bits (inst, 0, 3);
1667 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1668
1669 if (bit (inst, 4))
c906108c
SS
1670 {
1671 int rs = bits (inst, 8, 11);
1672 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1673 }
1674 else
1675 shift = bits (inst, 7, 11);
c5aa993b
JM
1676
1677 res = (rm == 15
c906108c 1678 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1679 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1680 : read_register (rm));
1681
1682 switch (shifttype)
1683 {
c5aa993b 1684 case 0: /* LSL */
c906108c
SS
1685 res = shift >= 32 ? 0 : res << shift;
1686 break;
c5aa993b
JM
1687
1688 case 1: /* LSR */
c906108c
SS
1689 res = shift >= 32 ? 0 : res >> shift;
1690 break;
1691
c5aa993b
JM
1692 case 2: /* ASR */
1693 if (shift >= 32)
1694 shift = 31;
c906108c
SS
1695 res = ((res & 0x80000000L)
1696 ? ~((~res) >> shift) : res >> shift);
1697 break;
1698
c5aa993b 1699 case 3: /* ROR/RRX */
c906108c
SS
1700 shift &= 31;
1701 if (shift == 0)
1702 res = (res >> 1) | (carry ? 0x80000000L : 0);
1703 else
c5aa993b 1704 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1705 break;
1706 }
1707
1708 return res & 0xffffffff;
1709}
1710
c906108c
SS
1711/* Return number of 1-bits in VAL. */
1712
1713static int
ed9a39eb 1714bitcount (unsigned long val)
c906108c
SS
1715{
1716 int nbits;
1717 for (nbits = 0; val != 0; nbits++)
c5aa993b 1718 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1719 return nbits;
1720}
1721
34e8f22d 1722CORE_ADDR
ed9a39eb 1723thumb_get_next_pc (CORE_ADDR pc)
c906108c 1724{
c5aa993b 1725 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1726 unsigned short inst1 = read_memory_integer (pc, 2);
c5aa993b 1727 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1728 unsigned long offset;
1729
1730 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1731 {
1732 CORE_ADDR sp;
1733
1734 /* Fetch the saved PC from the stack. It's stored above
1735 all of the other registers. */
1736 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1737 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1738 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1739 nextpc = ADDR_BITS_REMOVE (nextpc);
1740 if (nextpc == pc)
1741 error ("Infinite loop detected");
1742 }
1743 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1744 {
34e8f22d 1745 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1746 unsigned long cond = bits (inst1, 8, 11);
c906108c
SS
1747 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1748 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1749 }
1750 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1751 {
1752 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1753 }
1754 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1755 {
1756 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1757 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1758 nextpc = pc_val + offset;
1759 }
1760
1761 return nextpc;
1762}
1763
34e8f22d 1764CORE_ADDR
ed9a39eb 1765arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1766{
1767 unsigned long pc_val;
1768 unsigned long this_instr;
1769 unsigned long status;
1770 CORE_ADDR nextpc;
1771
1772 if (arm_pc_is_thumb (pc))
1773 return thumb_get_next_pc (pc);
1774
1775 pc_val = (unsigned long) pc;
1776 this_instr = read_memory_integer (pc, 4);
34e8f22d 1777 status = read_register (ARM_PS_REGNUM);
c5aa993b 1778 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1779
1780 if (condition_true (bits (this_instr, 28, 31), status))
1781 {
1782 switch (bits (this_instr, 24, 27))
1783 {
c5aa993b
JM
1784 case 0x0:
1785 case 0x1: /* data processing */
1786 case 0x2:
1787 case 0x3:
c906108c
SS
1788 {
1789 unsigned long operand1, operand2, result = 0;
1790 unsigned long rn;
1791 int c;
c5aa993b 1792
c906108c
SS
1793 if (bits (this_instr, 12, 15) != 15)
1794 break;
1795
1796 if (bits (this_instr, 22, 25) == 0
c5aa993b 1797 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1798 error ("Illegal update to pc in instruction");
1799
1800 /* Multiply into PC */
1801 c = (status & FLAG_C) ? 1 : 0;
1802 rn = bits (this_instr, 16, 19);
1803 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1804
c906108c
SS
1805 if (bit (this_instr, 25))
1806 {
1807 unsigned long immval = bits (this_instr, 0, 7);
1808 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1809 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1810 & 0xffffffff;
c906108c 1811 }
c5aa993b 1812 else /* operand 2 is a shifted register */
c906108c 1813 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1814
c906108c
SS
1815 switch (bits (this_instr, 21, 24))
1816 {
c5aa993b 1817 case 0x0: /*and */
c906108c
SS
1818 result = operand1 & operand2;
1819 break;
1820
c5aa993b 1821 case 0x1: /*eor */
c906108c
SS
1822 result = operand1 ^ operand2;
1823 break;
1824
c5aa993b 1825 case 0x2: /*sub */
c906108c
SS
1826 result = operand1 - operand2;
1827 break;
1828
c5aa993b 1829 case 0x3: /*rsb */
c906108c
SS
1830 result = operand2 - operand1;
1831 break;
1832
c5aa993b 1833 case 0x4: /*add */
c906108c
SS
1834 result = operand1 + operand2;
1835 break;
1836
c5aa993b 1837 case 0x5: /*adc */
c906108c
SS
1838 result = operand1 + operand2 + c;
1839 break;
1840
c5aa993b 1841 case 0x6: /*sbc */
c906108c
SS
1842 result = operand1 - operand2 + c;
1843 break;
1844
c5aa993b 1845 case 0x7: /*rsc */
c906108c
SS
1846 result = operand2 - operand1 + c;
1847 break;
1848
c5aa993b
JM
1849 case 0x8:
1850 case 0x9:
1851 case 0xa:
1852 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1853 result = (unsigned long) nextpc;
1854 break;
1855
c5aa993b 1856 case 0xc: /*orr */
c906108c
SS
1857 result = operand1 | operand2;
1858 break;
1859
c5aa993b 1860 case 0xd: /*mov */
c906108c
SS
1861 /* Always step into a function. */
1862 result = operand2;
c5aa993b 1863 break;
c906108c 1864
c5aa993b 1865 case 0xe: /*bic */
c906108c
SS
1866 result = operand1 & ~operand2;
1867 break;
1868
c5aa993b 1869 case 0xf: /*mvn */
c906108c
SS
1870 result = ~operand2;
1871 break;
1872 }
1873 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1874
1875 if (nextpc == pc)
1876 error ("Infinite loop detected");
1877 break;
1878 }
c5aa993b
JM
1879
1880 case 0x4:
1881 case 0x5: /* data transfer */
1882 case 0x6:
1883 case 0x7:
c906108c
SS
1884 if (bit (this_instr, 20))
1885 {
1886 /* load */
1887 if (bits (this_instr, 12, 15) == 15)
1888 {
1889 /* rd == pc */
c5aa993b 1890 unsigned long rn;
c906108c 1891 unsigned long base;
c5aa993b 1892
c906108c
SS
1893 if (bit (this_instr, 22))
1894 error ("Illegal update to pc in instruction");
1895
1896 /* byte write to PC */
1897 rn = bits (this_instr, 16, 19);
1898 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1899 if (bit (this_instr, 24))
1900 {
1901 /* pre-indexed */
1902 int c = (status & FLAG_C) ? 1 : 0;
1903 unsigned long offset =
c5aa993b 1904 (bit (this_instr, 25)
ed9a39eb 1905 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1906 : bits (this_instr, 0, 11));
c906108c
SS
1907
1908 if (bit (this_instr, 23))
1909 base += offset;
1910 else
1911 base -= offset;
1912 }
c5aa993b 1913 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1914 4);
c5aa993b 1915
c906108c
SS
1916 nextpc = ADDR_BITS_REMOVE (nextpc);
1917
1918 if (nextpc == pc)
1919 error ("Infinite loop detected");
1920 }
1921 }
1922 break;
c5aa993b
JM
1923
1924 case 0x8:
1925 case 0x9: /* block transfer */
c906108c
SS
1926 if (bit (this_instr, 20))
1927 {
1928 /* LDM */
1929 if (bit (this_instr, 15))
1930 {
1931 /* loading pc */
1932 int offset = 0;
1933
1934 if (bit (this_instr, 23))
1935 {
1936 /* up */
1937 unsigned long reglist = bits (this_instr, 0, 14);
1938 offset = bitcount (reglist) * 4;
c5aa993b 1939 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1940 offset += 4;
1941 }
1942 else if (bit (this_instr, 24))
1943 offset = -4;
c5aa993b 1944
c906108c 1945 {
c5aa993b
JM
1946 unsigned long rn_val =
1947 read_register (bits (this_instr, 16, 19));
c906108c
SS
1948 nextpc =
1949 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1950 + offset),
c906108c
SS
1951 4);
1952 }
1953 nextpc = ADDR_BITS_REMOVE (nextpc);
1954 if (nextpc == pc)
1955 error ("Infinite loop detected");
1956 }
1957 }
1958 break;
c5aa993b
JM
1959
1960 case 0xb: /* branch & link */
1961 case 0xa: /* branch */
c906108c
SS
1962 {
1963 nextpc = BranchDest (pc, this_instr);
1964
1965 nextpc = ADDR_BITS_REMOVE (nextpc);
1966 if (nextpc == pc)
1967 error ("Infinite loop detected");
1968 break;
1969 }
c5aa993b
JM
1970
1971 case 0xc:
1972 case 0xd:
1973 case 0xe: /* coproc ops */
1974 case 0xf: /* SWI */
c906108c
SS
1975 break;
1976
1977 default:
97e03143 1978 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
1979 return (pc);
1980 }
1981 }
1982
1983 return nextpc;
1984}
1985
9512d7fd
FN
1986/* single_step() is called just before we want to resume the inferior,
1987 if we want to single-step it but there is no hardware or kernel
1988 single-step support. We find the target of the coming instruction
1989 and breakpoint it.
1990
1991 single_step is also called just after the inferior stops. If we had
1992 set up a simulated single-step, we undo our damage. */
1993
34e8f22d
RE
1994static void
1995arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd
FN
1996{
1997 static int next_pc; /* State between setting and unsetting. */
1998 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1999
2000 if (insert_bpt)
2001 {
34e8f22d 2002 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2003 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2004 }
2005 else
80fcf3f0 2006 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2007}
9512d7fd 2008
c906108c
SS
2009#include "bfd-in2.h"
2010#include "libcoff.h"
2011
2012static int
ed9a39eb 2013gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2014{
2015 if (arm_pc_is_thumb (memaddr))
2016 {
c5aa993b
JM
2017 static asymbol *asym;
2018 static combined_entry_type ce;
2019 static struct coff_symbol_struct csym;
2020 static struct _bfd fake_bfd;
2021 static bfd_target fake_target;
c906108c
SS
2022
2023 if (csym.native == NULL)
2024 {
2025 /* Create a fake symbol vector containing a Thumb symbol. This is
2026 solely so that the code in print_insn_little_arm() and
2027 print_insn_big_arm() in opcodes/arm-dis.c will detect the presence
2028 of a Thumb symbol and switch to decoding Thumb instructions. */
c5aa993b
JM
2029
2030 fake_target.flavour = bfd_target_coff_flavour;
2031 fake_bfd.xvec = &fake_target;
c906108c 2032 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2033 csym.native = &ce;
2034 csym.symbol.the_bfd = &fake_bfd;
2035 csym.symbol.name = "fake";
2036 asym = (asymbol *) & csym;
c906108c 2037 }
c5aa993b 2038
c906108c 2039 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2040 info->symbols = &asym;
c906108c
SS
2041 }
2042 else
2043 info->symbols = NULL;
c5aa993b 2044
d7449b42 2045 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2046 return print_insn_big_arm (memaddr, info);
2047 else
2048 return print_insn_little_arm (memaddr, info);
2049}
2050
66e810cd
RE
2051/* The following define instruction sequences that will cause ARM
2052 cpu's to take an undefined instruction trap. These are used to
2053 signal a breakpoint to GDB.
2054
2055 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2056 modes. A different instruction is required for each mode. The ARM
2057 cpu's can also be big or little endian. Thus four different
2058 instructions are needed to support all cases.
2059
2060 Note: ARMv4 defines several new instructions that will take the
2061 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2062 not in fact add the new instructions. The new undefined
2063 instructions in ARMv4 are all instructions that had no defined
2064 behaviour in earlier chips. There is no guarantee that they will
2065 raise an exception, but may be treated as NOP's. In practice, it
2066 may only safe to rely on instructions matching:
2067
2068 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2069 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2070 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2071
2072 Even this may only true if the condition predicate is true. The
2073 following use a condition predicate of ALWAYS so it is always TRUE.
2074
2075 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2076 and NetBSD all use a software interrupt rather than an undefined
2077 instruction to force a trap. This can be handled by by the
2078 abi-specific code during establishment of the gdbarch vector. */
2079
2080
d7b486e7
RE
2081/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2082 override these definitions. */
66e810cd
RE
2083#ifndef ARM_LE_BREAKPOINT
2084#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2085#endif
2086#ifndef ARM_BE_BREAKPOINT
2087#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2088#endif
2089#ifndef THUMB_LE_BREAKPOINT
2090#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2091#endif
2092#ifndef THUMB_BE_BREAKPOINT
2093#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2094#endif
2095
2096static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2097static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2098static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2099static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2100
34e8f22d
RE
2101/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2102 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2103 breakpoint should be used. It returns a pointer to a string of
2104 bytes that encode a breakpoint instruction, stores the length of
2105 the string to *lenptr, and adjusts the program counter (if
2106 necessary) to point to the actual memory location where the
c906108c
SS
2107 breakpoint should be inserted. */
2108
34e8f22d
RE
2109/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2110 breakpoints and storing their handles instread of what was in
2111 memory. It is nice that this is the same size as a handle -
2112 otherwise remote-rdp will have to change. */
2113
ab89facf 2114static const unsigned char *
ed9a39eb 2115arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2116{
66e810cd
RE
2117 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2118
c906108c
SS
2119 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2120 {
66e810cd
RE
2121 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2122 *lenptr = tdep->thumb_breakpoint_size;
2123 return tdep->thumb_breakpoint;
c906108c
SS
2124 }
2125 else
2126 {
66e810cd
RE
2127 *lenptr = tdep->arm_breakpoint_size;
2128 return tdep->arm_breakpoint;
c906108c
SS
2129 }
2130}
ed9a39eb
JM
2131
2132/* Extract from an array REGBUF containing the (raw) register state a
2133 function return value of type TYPE, and copy that, in virtual
2134 format, into VALBUF. */
2135
34e8f22d 2136static void
ed9a39eb
JM
2137arm_extract_return_value (struct type *type,
2138 char regbuf[REGISTER_BYTES],
2139 char *valbuf)
2140{
2141 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7
RE
2142 {
2143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2144
2145 switch (tdep->fp_model)
2146 {
2147 case ARM_FLOAT_FPA:
2148 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)],
2149 valbuf);
2150 break;
2151
2152 case ARM_FLOAT_SOFT:
2153 case ARM_FLOAT_SOFT_VFP:
2154 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2155 TYPE_LENGTH (type));
2156 break;
2157
2158 default:
2159 internal_error
2160 (__FILE__, __LINE__,
2161 "arm_extract_return_value: Floating point model not supported");
2162 break;
2163 }
2164 }
ed9a39eb 2165 else
34e8f22d
RE
2166 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2167 TYPE_LENGTH (type));
2168}
2169
67255d04
RE
2170/* Extract from an array REGBUF containing the (raw) register state
2171 the address in which a function should return its structure value. */
2172
2173static CORE_ADDR
2174arm_extract_struct_value_address (char *regbuf)
2175{
2176 return extract_address (regbuf, REGISTER_RAW_SIZE(ARM_A1_REGNUM));
2177}
2178
2179/* Will a function return an aggregate type in memory or in a
2180 register? Return 0 if an aggregate type can be returned in a
2181 register, 1 if it must be returned in memory. */
2182
2183static int
2184arm_use_struct_convention (int gcc_p, struct type *type)
2185{
2186 int nRc;
2187 register enum type_code code;
2188
2189 /* In the ARM ABI, "integer" like aggregate types are returned in
2190 registers. For an aggregate type to be integer like, its size
2191 must be less than or equal to REGISTER_SIZE and the offset of
2192 each addressable subfield must be zero. Note that bit fields are
2193 not addressable, and all addressable subfields of unions always
2194 start at offset zero.
2195
2196 This function is based on the behaviour of GCC 2.95.1.
2197 See: gcc/arm.c: arm_return_in_memory() for details.
2198
2199 Note: All versions of GCC before GCC 2.95.2 do not set up the
2200 parameters correctly for a function returning the following
2201 structure: struct { float f;}; This should be returned in memory,
2202 not a register. Richard Earnshaw sent me a patch, but I do not
2203 know of any way to detect if a function like the above has been
2204 compiled with the correct calling convention. */
2205
2206 /* All aggregate types that won't fit in a register must be returned
2207 in memory. */
2208 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2209 {
2210 return 1;
2211 }
2212
2213 /* The only aggregate types that can be returned in a register are
2214 structs and unions. Arrays must be returned in memory. */
2215 code = TYPE_CODE (type);
2216 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2217 {
2218 return 1;
2219 }
2220
2221 /* Assume all other aggregate types can be returned in a register.
2222 Run a check for structures, unions and arrays. */
2223 nRc = 0;
2224
2225 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2226 {
2227 int i;
2228 /* Need to check if this struct/union is "integer" like. For
2229 this to be true, its size must be less than or equal to
2230 REGISTER_SIZE and the offset of each addressable subfield
2231 must be zero. Note that bit fields are not addressable, and
2232 unions always start at offset zero. If any of the subfields
2233 is a floating point type, the struct/union cannot be an
2234 integer type. */
2235
2236 /* For each field in the object, check:
2237 1) Is it FP? --> yes, nRc = 1;
2238 2) Is it addressable (bitpos != 0) and
2239 not packed (bitsize == 0)?
2240 --> yes, nRc = 1
2241 */
2242
2243 for (i = 0; i < TYPE_NFIELDS (type); i++)
2244 {
2245 enum type_code field_type_code;
2246 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2247
2248 /* Is it a floating point type field? */
2249 if (field_type_code == TYPE_CODE_FLT)
2250 {
2251 nRc = 1;
2252 break;
2253 }
2254
2255 /* If bitpos != 0, then we have to care about it. */
2256 if (TYPE_FIELD_BITPOS (type, i) != 0)
2257 {
2258 /* Bitfields are not addressable. If the field bitsize is
2259 zero, then the field is not packed. Hence it cannot be
2260 a bitfield or any other packed type. */
2261 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2262 {
2263 nRc = 1;
2264 break;
2265 }
2266 }
2267 }
2268 }
2269
2270 return nRc;
2271}
2272
34e8f22d
RE
2273/* Write into appropriate registers a function return value of type
2274 TYPE, given in virtual format. */
2275
2276static void
2277arm_store_return_value (struct type *type, char *valbuf)
2278{
2279 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2280 {
08216dd7 2281 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
34e8f22d
RE
2282 char buf[MAX_REGISTER_RAW_SIZE];
2283
08216dd7
RE
2284 switch (tdep->fp_model)
2285 {
2286 case ARM_FLOAT_FPA:
2287
2288 convert_to_extended (valbuf, buf);
2289 write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2290 MAX_REGISTER_RAW_SIZE);
2291 break;
2292
2293 case ARM_FLOAT_SOFT:
2294 case ARM_FLOAT_SOFT_VFP:
2295 write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type));
2296 break;
2297
2298 default:
2299 internal_error
2300 (__FILE__, __LINE__,
2301 "arm_store_return_value: Floating point model not supported");
2302 break;
2303 }
34e8f22d
RE
2304 }
2305 else
08216dd7 2306 write_register_bytes (ARM_A1_REGNUM, valbuf, TYPE_LENGTH (type));
34e8f22d
RE
2307}
2308
2309/* Store the address of the place in which to copy the structure the
2310 subroutine will return. This is called from call_function. */
2311
2312static void
2313arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2314{
2315 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2316}
2317
9df628e0
RE
2318static int
2319arm_get_longjmp_target (CORE_ADDR *pc)
2320{
2321 CORE_ADDR jb_addr;
2322 char buf[INT_REGISTER_RAW_SIZE];
2323 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2324
2325 jb_addr = read_register (ARM_A1_REGNUM);
2326
2327 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2328 INT_REGISTER_RAW_SIZE))
2329 return 0;
2330
2331 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2332 return 1;
2333}
2334
ed9a39eb 2335/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2336
2337int
ed9a39eb 2338arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2339{
2340 CORE_ADDR start_addr;
2341
ed9a39eb
JM
2342 /* Find the starting address of the function containing the PC. If
2343 the caller didn't give us a name, look it up at the same time. */
c906108c
SS
2344 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2345 return 0;
2346
2347 return strncmp (name, "_call_via_r", 11) == 0;
2348}
2349
ed9a39eb
JM
2350/* If PC is in a Thumb call or return stub, return the address of the
2351 target PC, which is in a register. The thunk functions are called
2352 _called_via_xx, where x is the register name. The possible names
2353 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2354
2355CORE_ADDR
ed9a39eb 2356arm_skip_stub (CORE_ADDR pc)
c906108c 2357{
c5aa993b 2358 char *name;
c906108c
SS
2359 CORE_ADDR start_addr;
2360
2361 /* Find the starting address and name of the function containing the PC. */
2362 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2363 return 0;
2364
2365 /* Call thunks always start with "_call_via_". */
2366 if (strncmp (name, "_call_via_", 10) == 0)
2367 {
ed9a39eb
JM
2368 /* Use the name suffix to determine which register contains the
2369 target PC. */
c5aa993b
JM
2370 static char *table[15] =
2371 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2372 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2373 };
c906108c
SS
2374 int regno;
2375
2376 for (regno = 0; regno <= 14; regno++)
2377 if (strcmp (&name[10], table[regno]) == 0)
2378 return read_register (regno);
2379 }
ed9a39eb 2380
c5aa993b 2381 return 0; /* not a stub */
c906108c
SS
2382}
2383
bc90b915
FN
2384/* If the user changes the register disassembly flavor used for info register
2385 and other commands, we have to also switch the flavor used in opcodes
2386 for disassembly output.
2387 This function is run in the set disassembly_flavor command, and does that. */
2388
2389static void
2390set_disassembly_flavor_sfunc (char *args, int from_tty,
2391 struct cmd_list_element *c)
2392{
2393 set_disassembly_flavor ();
2394}
2395\f
966fbf70 2396/* Return the ARM register name corresponding to register I. */
34e8f22d
RE
2397static char *
2398arm_register_name (int i)
966fbf70
RE
2399{
2400 return arm_register_names[i];
2401}
2402
bc90b915
FN
2403static void
2404set_disassembly_flavor (void)
2405{
2406 const char *setname, *setdesc, **regnames;
2407 int numregs, j;
2408
2409 /* Find the flavor that the user wants in the opcodes table. */
2410 int current = 0;
2411 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2412 while ((disassembly_flavor != setname)
2413 && (current < num_flavor_options))
2414 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2415 current_option = current;
2416
2417 /* Fill our copy. */
2418 for (j = 0; j < numregs; j++)
2419 arm_register_names[j] = (char *) regnames[j];
2420
2421 /* Adjust case. */
34e8f22d 2422 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2423 {
34e8f22d
RE
2424 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2425 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2426 }
2427 else
2428 {
34e8f22d
RE
2429 arm_register_names[ARM_FPS_REGNUM] = "fps";
2430 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2431 }
2432
2433 /* Synchronize the disassembler. */
2434 set_arm_regname_option (current);
2435}
2436
2437/* arm_othernames implements the "othernames" command. This is kind
2438 of hacky, and I prefer the set-show disassembly-flavor which is
2439 also used for the x86 gdb. I will keep this around, however, in
2440 case anyone is actually using it. */
2441
2442static void
2443arm_othernames (char *names, int n)
2444{
2445 /* Circle through the various flavors. */
2446 current_option = (current_option + 1) % num_flavor_options;
2447
2448 disassembly_flavor = valid_flavors[current_option];
2449 set_disassembly_flavor ();
2450}
2451
a42dd537
KB
2452/* Fetch, and possibly build, an appropriate link_map_offsets structure
2453 for ARM linux targets using the struct offsets defined in <link.h>.
2454 Note, however, that link.h is not actually referred to in this file.
2455 Instead, the relevant structs offsets were obtained from examining
2456 link.h. (We can't refer to link.h from this file because the host
2457 system won't necessarily have it, or if it does, the structs which
2458 it defines will refer to the host system, not the target.) */
2459
2460struct link_map_offsets *
2461arm_linux_svr4_fetch_link_map_offsets (void)
2462{
2463 static struct link_map_offsets lmo;
2464 static struct link_map_offsets *lmp = 0;
2465
2466 if (lmp == 0)
2467 {
2468 lmp = &lmo;
2469
2470 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2471 need. */
2472
2473 lmo.r_map_offset = 4;
2474 lmo.r_map_size = 4;
2475
2476 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2477 need. */
2478
2479 lmo.l_addr_offset = 0;
2480 lmo.l_addr_size = 4;
2481
2482 lmo.l_name_offset = 4;
2483 lmo.l_name_size = 4;
2484
2485 lmo.l_next_offset = 12;
2486 lmo.l_next_size = 4;
2487
2488 lmo.l_prev_offset = 16;
2489 lmo.l_prev_size = 4;
2490 }
2491
2492 return lmp;
2493}
2494
082fc60d
RE
2495/* Test whether the coff symbol specific value corresponds to a Thumb
2496 function. */
2497
2498static int
2499coff_sym_is_thumb (int val)
2500{
2501 return (val == C_THUMBEXT ||
2502 val == C_THUMBSTAT ||
2503 val == C_THUMBEXTFUNC ||
2504 val == C_THUMBSTATFUNC ||
2505 val == C_THUMBLABEL);
2506}
2507
2508/* arm_coff_make_msymbol_special()
2509 arm_elf_make_msymbol_special()
2510
2511 These functions test whether the COFF or ELF symbol corresponds to
2512 an address in thumb code, and set a "special" bit in a minimal
2513 symbol to indicate that it does. */
2514
34e8f22d 2515static void
082fc60d
RE
2516arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2517{
2518 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2519 STT_ARM_TFUNC). */
2520 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2521 == STT_LOPROC)
2522 MSYMBOL_SET_SPECIAL (msym);
2523}
2524
34e8f22d 2525static void
082fc60d
RE
2526arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2527{
2528 if (coff_sym_is_thumb (val))
2529 MSYMBOL_SET_SPECIAL (msym);
2530}
2531
97e03143
RE
2532\f
2533static void
2534process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2535{
2536 enum arm_abi *os_ident_ptr = obj;
2537 const char *name;
2538 unsigned int sectsize;
2539
2540 name = bfd_get_section_name (abfd, sect);
2541 sectsize = bfd_section_size (abfd, sect);
2542
2543 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2544 {
2545 unsigned int name_length, data_length, note_type;
2546 char *note;
2547
2548 /* If the section is larger than this, it's probably not what we are
2549 looking for. */
2550 if (sectsize > 128)
2551 sectsize = 128;
2552
2553 note = alloca (sectsize);
2554
2555 bfd_get_section_contents (abfd, sect, note,
2556 (file_ptr) 0, (bfd_size_type) sectsize);
2557
2558 name_length = bfd_h_get_32 (abfd, note);
2559 data_length = bfd_h_get_32 (abfd, note + 4);
2560 note_type = bfd_h_get_32 (abfd, note + 8);
2561
2562 if (name_length == 4 && data_length == 16 && note_type == 1
2563 && strcmp (note + 12, "GNU") == 0)
2564 {
2565 int os_number = bfd_h_get_32 (abfd, note + 16);
2566
d7afb4c9 2567 /* The case numbers are from abi-tags in glibc. */
97e03143
RE
2568 switch (os_number)
2569 {
2570 case 0 :
2571 *os_ident_ptr = ARM_ABI_LINUX;
2572 break;
2573
2574 case 1 :
2575 internal_error
2576 (__FILE__, __LINE__,
2577 "process_note_abi_sections: Hurd objects not supported");
2578 break;
2579
2580 case 2 :
2581 internal_error
2582 (__FILE__, __LINE__,
2583 "process_note_abi_sections: Solaris objects not supported");
2584 break;
2585
2586 default :
2587 internal_error
2588 (__FILE__, __LINE__,
2589 "process_note_abi_sections: unknown OS number %d",
2590 os_number);
2591 break;
2592 }
2593 }
2594 }
2595 /* NetBSD uses a similar trick. */
2596 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
2597 {
2598 unsigned int name_length, desc_length, note_type;
2599 char *note;
2600
2601 /* If the section is larger than this, it's probably not what we are
2602 looking for. */
2603 if (sectsize > 128)
2604 sectsize = 128;
2605
2606 note = alloca (sectsize);
2607
2608 bfd_get_section_contents (abfd, sect, note,
2609 (file_ptr) 0, (bfd_size_type) sectsize);
2610
2611 name_length = bfd_h_get_32 (abfd, note);
2612 desc_length = bfd_h_get_32 (abfd, note + 4);
2613 note_type = bfd_h_get_32 (abfd, note + 8);
2614
2615 if (name_length == 7 && desc_length == 4 && note_type == 1
2616 && strcmp (note + 12, "NetBSD") == 0)
2617 /* XXX Should we check the version here?
2618 Probably not necessary yet. */
2619 *os_ident_ptr = ARM_ABI_NETBSD_ELF;
2620 }
2621}
2622
2623/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2624 executables. If it's not an ELF executable or if the OS/ABI couldn't
d7afb4c9 2625 be determined, simply return -1. */
97e03143
RE
2626
2627static int
2628get_elfosabi (bfd *abfd)
2629{
2630 int elfosabi;
2631 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2632
2633 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2634
2635 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2636 that we're on a SYSV system. However, GNU/Linux uses a note section
2637 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2638 have to check the note sections too.
2639
2640 GNU/ARM tools set the EI_OSABI field to ELFOSABI_ARM, so handle that
d7afb4c9 2641 as well. */
97e03143
RE
2642 if (elfosabi == 0 || elfosabi == ELFOSABI_ARM)
2643 {
2644 bfd_map_over_sections (abfd,
2645 process_note_abi_tag_sections,
2646 &arm_abi);
2647 }
2648
2649 if (arm_abi != ARM_ABI_UNKNOWN)
2650 return arm_abi;
2651
2652 switch (elfosabi)
2653 {
2654 case ELFOSABI_NONE:
2655 /* Existing ARM Tools don't set this field, so look at the EI_FLAGS
2656 field for more information. */
2657
2658 switch (EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags))
2659 {
2660 case EF_ARM_EABI_VER1:
2661 return ARM_ABI_EABI_V1;
2662
2663 case EF_ARM_EABI_VER2:
2664 return ARM_ABI_EABI_V2;
2665
2666 case EF_ARM_EABI_UNKNOWN:
2667 /* Assume GNU tools. */
2668 return ARM_ABI_APCS;
2669
2670 default:
2671 internal_error (__FILE__, __LINE__,
2672 "get_elfosabi: Unknown ARM EABI version 0x%lx",
2673 EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags));
2674
2675 }
2676 break;
2677
2678 case ELFOSABI_NETBSD:
2679 return ARM_ABI_NETBSD_ELF;
2680
2681 case ELFOSABI_FREEBSD:
2682 return ARM_ABI_FREEBSD;
2683
2684 case ELFOSABI_LINUX:
2685 return ARM_ABI_LINUX;
2686
2687 case ELFOSABI_ARM:
2688 /* Assume GNU tools with the old APCS abi. */
2689 return ARM_ABI_APCS;
2690
2691 default:
2692 }
2693
2694 return ARM_ABI_UNKNOWN;
2695}
2696
2697struct arm_abi_handler
2698{
2699 struct arm_abi_handler *next;
2700 enum arm_abi abi;
2701 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
2702};
2703
2704struct arm_abi_handler *arm_abi_handler_list = NULL;
2705
2706void
2707arm_gdbarch_register_os_abi (enum arm_abi abi,
2708 void (*init_abi)(struct gdbarch_info,
2709 struct gdbarch *))
2710{
2711 struct arm_abi_handler **handler_p;
2712
2713 for (handler_p = &arm_abi_handler_list; *handler_p != NULL;
2714 handler_p = &(*handler_p)->next)
2715 {
2716 if ((*handler_p)->abi == abi)
2717 {
2718 internal_error
2719 (__FILE__, __LINE__,
2720 "arm_gdbarch_register_os_abi: A handler for this ABI variant (%d)"
2721 " has already been registered", (int)abi);
2722 /* If user wants to continue, override previous definition. */
2723 (*handler_p)->init_abi = init_abi;
2724 return;
2725 }
2726 }
2727
2728 (*handler_p)
2729 = (struct arm_abi_handler *) xmalloc (sizeof (struct arm_abi_handler));
2730 (*handler_p)->next = NULL;
2731 (*handler_p)->abi = abi;
2732 (*handler_p)->init_abi = init_abi;
2733}
2734
2735/* Initialize the current architecture based on INFO. If possible, re-use an
2736 architecture from ARCHES, which is a list of architectures already created
2737 during this debugging session.
2738
2739 Called e.g. at program startup, when reading a core file, and when reading
d7afb4c9 2740 a binary file. */
97e03143 2741
39bbf761
RE
2742static struct gdbarch *
2743arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2744{
97e03143 2745 struct gdbarch_tdep *tdep;
39bbf761 2746 struct gdbarch *gdbarch;
97e03143
RE
2747 enum arm_abi arm_abi = ARM_ABI_UNKNOWN;
2748 struct arm_abi_handler *abi_handler;
39bbf761 2749
97e03143 2750 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2751
97e03143
RE
2752 if (info.abfd != NULL)
2753 {
2754 switch (bfd_get_flavour (info.abfd))
2755 {
2756 case bfd_target_elf_flavour:
2757 arm_abi = get_elfosabi (info.abfd);
2758 break;
2759
2760 case bfd_target_aout_flavour:
2761 if (strcmp (bfd_get_target(info.abfd), "a.out-arm-netbsd") == 0)
2762 arm_abi = ARM_ABI_NETBSD_AOUT;
2763 else
2764 /* Assume it's an old APCS-style ABI. */
2765 arm_abi = ARM_ABI_APCS;
2766 break;
2767
2768 case bfd_target_coff_flavour:
2769 /* Assume it's an old APCS-style ABI. */
2770 /* XXX WinCE? */
2771 arm_abi = ARM_ABI_APCS;
2772 break;
2773
2774 default:
2775 /* Not sure what to do here, leave the ABI as unknown. */
2776 break;
2777 }
2778 }
2779
d7afb4c9 2780 /* Find a candidate among extant architectures. */
97e03143
RE
2781 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2782 arches != NULL;
2783 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2784 {
2785 /* Make sure the ABI selection matches. */
2786 tdep = gdbarch_tdep (arches->gdbarch);
2787 if (tdep && tdep->arm_abi == arm_abi)
2788 return arches->gdbarch;
2789 }
2790
2791 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2792 gdbarch = gdbarch_alloc (&info, tdep);
2793
2794 tdep->arm_abi = arm_abi;
2795 if (arm_abi < ARM_ABI_INVALID)
2796 tdep->abi_name = arm_abi_names[arm_abi];
2797 else
2798 {
2799 internal_error (__FILE__, __LINE__, "Invalid setting of arm_abi %d",
2800 (int) arm_abi);
2801 tdep->abi_name = "<invalid>";
2802 }
39bbf761 2803
08216dd7
RE
2804 /* This is the way it has always defaulted. */
2805 tdep->fp_model = ARM_FLOAT_FPA;
2806
2807 /* Breakpoints. */
67255d04
RE
2808 switch (info.byte_order)
2809 {
2810 case BFD_ENDIAN_BIG:
66e810cd
RE
2811 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2812 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2813 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2814 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2815
67255d04
RE
2816 break;
2817
2818 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2819 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2820 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2821 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2822 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2823
67255d04
RE
2824 break;
2825
2826 default:
2827 internal_error (__FILE__, __LINE__,
2828 "arm_gdbarch_init: bad byte order for float format");
2829 }
2830
d7b486e7
RE
2831 /* On ARM targets char defaults to unsigned. */
2832 set_gdbarch_char_signed (gdbarch, 0);
2833
9df628e0 2834 /* This should be low enough for everything. */
97e03143 2835 tdep->lowest_pc = 0x20;
9df628e0 2836 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2837
39bbf761
RE
2838 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2839
2840 /* Call dummy code. */
2841 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2842 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
3fb4b924
RE
2843 /* We have to give this a value now, even though we will re-set it
2844 during each call to arm_fix_call_dummy. */
2845 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8);
39bbf761
RE
2846 set_gdbarch_call_dummy_p (gdbarch, 1);
2847 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2848
34e8f22d
RE
2849 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2850 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (arm_call_dummy_words));
2851 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
d7b486e7 2852 set_gdbarch_call_dummy_length (gdbarch, 0);
34e8f22d
RE
2853
2854 set_gdbarch_fix_call_dummy (gdbarch, arm_fix_call_dummy);
2855
39bbf761
RE
2856 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
2857
2858 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2859 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
d7afb4c9
RE
2860 set_gdbarch_coerce_float_to_double (gdbarch,
2861 standard_coerce_float_to_double);
39bbf761 2862
148754e5 2863 /* Frame handling. */
39bbf761 2864 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
148754e5
RE
2865 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2866 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2867 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2868 set_gdbarch_frameless_function_invocation
2869 (gdbarch, arm_frameless_function_invocation);
2870 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2871 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2872 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2873 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2874 set_gdbarch_frame_args_skip (gdbarch, 0);
2875 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2876 set_gdbarch_push_dummy_frame (gdbarch, arm_push_dummy_frame);
2877 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2878
34e8f22d
RE
2879 /* Address manipulation. */
2880 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2881 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2882
2883 /* Offset from address of function to start of its code. */
2884 set_gdbarch_function_start_offset (gdbarch, 0);
2885
2886 /* Advance PC across function entry code. */
2887 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2888
2889 /* Get the PC when a frame might not be available. */
2890 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2891
2892 /* The stack grows downward. */
2893 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2894
2895 /* Breakpoint manipulation. */
2896 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2897 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2898
2899 /* Information about registers, etc. */
2900 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2901 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2902 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2903 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2904 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2905 set_gdbarch_register_bytes (gdbarch,
2906 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2907 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2908 + NUM_SREGS * STATUS_REGISTER_SIZE));
2909 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2910 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2911 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2912 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2913 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2914 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2915
2916 /* Integer registers are 4 bytes. */
2917 set_gdbarch_register_size (gdbarch, 4);
2918 set_gdbarch_register_name (gdbarch, arm_register_name);
2919
2920 /* Returning results. */
2921 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2922 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2923 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
67255d04
RE
2924 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2925 set_gdbarch_extract_struct_value_address (gdbarch,
2926 arm_extract_struct_value_address);
34e8f22d
RE
2927
2928 /* Single stepping. */
2929 /* XXX For an RDI target we should ask the target if it can single-step. */
2930 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2931
2932 /* Minsymbol frobbing. */
2933 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2934 set_gdbarch_coff_make_msymbol_special (gdbarch,
2935 arm_coff_make_msymbol_special);
2936
97e03143
RE
2937 /* Hook in the ABI-specific overrides, if they have been registered. */
2938 if (arm_abi == ARM_ABI_UNKNOWN)
2939 {
08216dd7
RE
2940 /* Don't complain about not knowing the ABI variant if we don't
2941 have an inferior. */
2942 if (info.abfd)
2943 fprintf_filtered
2944 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2945 "Attempting to continue with the default ARM settings");
97e03143
RE
2946 }
2947 else
2948 {
2949 for (abi_handler = arm_abi_handler_list; abi_handler != NULL;
2950 abi_handler = abi_handler->next)
2951 if (abi_handler->abi == arm_abi)
2952 break;
2953
2954 if (abi_handler)
2955 abi_handler->init_abi (info, gdbarch);
2956 else
2957 {
2958 /* We assume that if GDB_MULTI_ARCH is less than
2959 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2960 overriding definitions in this file. */
2961 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2962 fprintf_filtered
2963 (gdb_stderr,
2964 "A handler for the ABI variant \"%s\" is not built into this "
2965 "configuration of GDB. "
2966 "Attempting to continue with the default ARM settings",
2967 arm_abi_names[arm_abi]);
2968 }
2969 }
2970
2971 /* Now we have tuned the configuration, set a few final things,
2972 based on what the OS ABI has told us. */
2973
9df628e0
RE
2974 if (tdep->jb_pc >= 0)
2975 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2976
08216dd7
RE
2977 /* Floating point sizes and format. */
2978 switch (info.byte_order)
2979 {
2980 case BFD_ENDIAN_BIG:
2981 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2982 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2983 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2984
2985 break;
2986
2987 case BFD_ENDIAN_LITTLE:
2988 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2989 if (tdep->fp_model == ARM_FLOAT_VFP
2990 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
2991 {
2992 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2993 set_gdbarch_long_double_format (gdbarch,
2994 &floatformat_ieee_double_little);
2995 }
2996 else
2997 {
2998 set_gdbarch_double_format
2999 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3000 set_gdbarch_long_double_format
3001 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
3002 }
3003 break;
3004
3005 default:
3006 internal_error (__FILE__, __LINE__,
3007 "arm_gdbarch_init: bad byte order for float format");
3008 }
3009
97e03143 3010 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
34e8f22d
RE
3011 references the old architecture vector, not the one we are
3012 building here. */
3013 if (prologue_cache.saved_regs != NULL)
3014 xfree (prologue_cache.saved_regs);
3015
3016 prologue_cache.saved_regs = (CORE_ADDR *)
3017 xcalloc (1, (sizeof (CORE_ADDR)
29673b29
AC
3018 * (gdbarch_num_regs (gdbarch)
3019 + gdbarch_num_pseudo_regs (gdbarch))));
39bbf761
RE
3020
3021 return gdbarch;
3022}
3023
97e03143
RE
3024static void
3025arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3026{
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3028
3029 if (tdep == NULL)
3030 return;
3031
3032 if (tdep->abi_name != NULL)
3033 fprintf_unfiltered (file, "arm_dump_tdep: ABI = %s\n", tdep->abi_name);
3034 else
3035 internal_error (__FILE__, __LINE__,
3036 "arm_dump_tdep: illegal setting of tdep->arm_abi (%d)",
3037 (int) tdep->arm_abi);
3038
3039 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3040 (unsigned long) tdep->lowest_pc);
3041}
3042
3043static void
3044arm_init_abi_eabi_v1 (struct gdbarch_info info,
3045 struct gdbarch *gdbarch)
3046{
3047 /* Place-holder. */
3048}
3049
3050static void
3051arm_init_abi_eabi_v2 (struct gdbarch_info info,
3052 struct gdbarch *gdbarch)
3053{
3054 /* Place-holder. */
3055}
3056
3057static void
3058arm_init_abi_apcs (struct gdbarch_info info,
3059 struct gdbarch *gdbarch)
3060{
3061 /* Place-holder. */
3062}
3063
c906108c 3064void
ed9a39eb 3065_initialize_arm_tdep (void)
c906108c 3066{
bc90b915
FN
3067 struct ui_file *stb;
3068 long length;
96baa820 3069 struct cmd_list_element *new_cmd;
53904c9e
AC
3070 const char *setname;
3071 const char *setdesc;
3072 const char **regnames;
bc90b915
FN
3073 int numregs, i, j;
3074 static char *helptext;
085dd6e6 3075
39bbf761 3076 if (GDB_MULTI_ARCH)
97e03143
RE
3077 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3078
3079 /* Register some ABI variants for embedded systems. */
3080 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V1, arm_init_abi_eabi_v1);
3081 arm_gdbarch_register_os_abi (ARM_ABI_EABI_V2, arm_init_abi_eabi_v2);
3082 arm_gdbarch_register_os_abi (ARM_ABI_APCS, arm_init_abi_apcs);
39bbf761 3083
c906108c 3084 tm_print_insn = gdb_print_insn_arm;
ed9a39eb 3085
bc90b915
FN
3086 /* Get the number of possible sets of register names defined in opcodes. */
3087 num_flavor_options = get_arm_regname_num_options ();
3088
085dd6e6 3089 /* Sync the opcode insn printer with our register viewer: */
bc90b915 3090 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3091
bc90b915
FN
3092 /* Begin creating the help text. */
3093 stb = mem_fileopen ();
3094 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3095The valid values are:\n");
ed9a39eb 3096
bc90b915
FN
3097 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3098 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3099 for (i = 0; i < num_flavor_options; i++)
3100 {
3101 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
53904c9e 3102 valid_flavors[i] = setname;
bc90b915
FN
3103 fprintf_unfiltered (stb, "%s - %s\n", setname,
3104 setdesc);
3105 /* Copy the default names (if found) and synchronize disassembler. */
3106 if (!strcmp (setname, "std"))
3107 {
53904c9e 3108 disassembly_flavor = setname;
bc90b915
FN
3109 current_option = i;
3110 for (j = 0; j < numregs; j++)
3111 arm_register_names[j] = (char *) regnames[j];
3112 set_arm_regname_option (i);
3113 }
3114 }
3115 /* Mark the end of valid options. */
3116 valid_flavors[num_flavor_options] = NULL;
c906108c 3117
bc90b915
FN
3118 /* Finish the creation of the help text. */
3119 fprintf_unfiltered (stb, "The default is \"std\".");
3120 helptext = ui_file_xstrdup (stb, &length);
3121 ui_file_delete (stb);
ed9a39eb 3122
bc90b915 3123 /* Add the disassembly-flavor command */
96baa820 3124 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
ed9a39eb 3125 valid_flavors,
1ed2a135 3126 &disassembly_flavor,
bc90b915 3127 helptext,
ed9a39eb 3128 &setlist);
9f60d481 3129 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
ed9a39eb
JM
3130 add_show_from_set (new_cmd, &showlist);
3131
c906108c
SS
3132 /* ??? Maybe this should be a boolean. */
3133 add_show_from_set (add_set_cmd ("apcs32", no_class,
ed9a39eb 3134 var_zinteger, (char *) &arm_apcs_32,
96baa820 3135 "Set usage of ARM 32-bit mode.\n", &setlist),
ed9a39eb 3136 &showlist);
c906108c 3137
bc90b915
FN
3138 /* Add the deprecated "othernames" command */
3139
3140 add_com ("othernames", class_obscure, arm_othernames,
3141 "Switch to the next set of register names.");
c3b4394c
RE
3142
3143 /* Fill in the prologue_cache fields. */
34e8f22d 3144 prologue_cache.saved_regs = NULL;
c3b4394c
RE
3145 prologue_cache.extra_info = (struct frame_extra_info *)
3146 xcalloc (1, sizeof (struct frame_extra_info));
c906108c 3147}
This page took 0.365913 seconds and 4 git commands to generate.