2011-02-28 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca 3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
7b6bb8da 4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
9b254dd1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
c906108c 29#include "gdb_string.h"
0963b4bd 30#include "dis-asm.h" /* For register styles. */
4e052eda 31#include "regcache.h"
54483882 32#include "reggroups.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
4be87837 36#include "osabi.h"
eb5492fa
DJ
37#include "frame-unwind.h"
38#include "frame-base.h"
39#include "trad-frame.h"
842e1f1e
DJ
40#include "objfiles.h"
41#include "dwarf2-frame.h"
e4c16157 42#include "gdbtypes.h"
29d73ae4 43#include "prologue-value.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d
RE
47
48#include "arm-tdep.h"
26216b98 49#include "gdb/sim-arm.h"
34e8f22d 50
082fc60d
RE
51#include "elf-bfd.h"
52#include "coff/internal.h"
97e03143 53#include "elf/arm.h"
c906108c 54
26216b98 55#include "gdb_assert.h"
60c5725c 56#include "vec.h"
26216b98 57
9779414d
DJ
58#include "features/arm-with-m.c"
59
6529d2dd
AC
60static int arm_debug;
61
082fc60d
RE
62/* Macros for setting and testing a bit in a minimal symbol that marks
63 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 64 is used for this purpose.
082fc60d
RE
65
66 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 67 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 68
0963b4bd 69#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 70 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
71
72#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 73 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 74
60c5725c
DJ
75/* Per-objfile data used for mapping symbols. */
76static const struct objfile_data *arm_objfile_data_key;
77
78struct arm_mapping_symbol
79{
80 bfd_vma value;
81 char type;
82};
83typedef struct arm_mapping_symbol arm_mapping_symbol_s;
84DEF_VEC_O(arm_mapping_symbol_s);
85
86struct arm_per_objfile
87{
88 VEC(arm_mapping_symbol_s) **section_maps;
89};
90
afd7eef0
RE
91/* The list of available "set arm ..." and "show arm ..." commands. */
92static struct cmd_list_element *setarmcmdlist = NULL;
93static struct cmd_list_element *showarmcmdlist = NULL;
94
fd50bc42
RE
95/* The type of floating-point to use. Keep this in sync with enum
96 arm_float_model, and the help string in _initialize_arm_tdep. */
97static const char *fp_model_strings[] =
98{
99 "auto",
100 "softfpa",
101 "fpa",
102 "softvfp",
28e97307
DJ
103 "vfp",
104 NULL
fd50bc42
RE
105};
106
107/* A variable that can be configured by the user. */
108static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
109static const char *current_fp_model = "auto";
110
28e97307
DJ
111/* The ABI to use. Keep this in sync with arm_abi_kind. */
112static const char *arm_abi_strings[] =
113{
114 "auto",
115 "APCS",
116 "AAPCS",
117 NULL
118};
119
120/* A variable that can be configured by the user. */
121static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
122static const char *arm_abi_string = "auto";
123
0428b8f5
DJ
124/* The execution mode to assume. */
125static const char *arm_mode_strings[] =
126 {
127 "auto",
128 "arm",
68770265
MGD
129 "thumb",
130 NULL
0428b8f5
DJ
131 };
132
133static const char *arm_fallback_mode_string = "auto";
134static const char *arm_force_mode_string = "auto";
135
94c30b78 136/* Number of different reg name sets (options). */
afd7eef0 137static int num_disassembly_options;
bc90b915 138
f32bf4a4
YQ
139/* The standard register names, and all the valid aliases for them. Note
140 that `fp', `sp' and `pc' are not added in this alias list, because they
141 have been added as builtin user registers in
142 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
143static const struct
144{
145 const char *name;
146 int regnum;
147} arm_register_aliases[] = {
148 /* Basic register numbers. */
149 { "r0", 0 },
150 { "r1", 1 },
151 { "r2", 2 },
152 { "r3", 3 },
153 { "r4", 4 },
154 { "r5", 5 },
155 { "r6", 6 },
156 { "r7", 7 },
157 { "r8", 8 },
158 { "r9", 9 },
159 { "r10", 10 },
160 { "r11", 11 },
161 { "r12", 12 },
162 { "r13", 13 },
163 { "r14", 14 },
164 { "r15", 15 },
165 /* Synonyms (argument and variable registers). */
166 { "a1", 0 },
167 { "a2", 1 },
168 { "a3", 2 },
169 { "a4", 3 },
170 { "v1", 4 },
171 { "v2", 5 },
172 { "v3", 6 },
173 { "v4", 7 },
174 { "v5", 8 },
175 { "v6", 9 },
176 { "v7", 10 },
177 { "v8", 11 },
178 /* Other platform-specific names for r9. */
179 { "sb", 9 },
180 { "tr", 9 },
181 /* Special names. */
182 { "ip", 12 },
123dc839 183 { "lr", 14 },
123dc839
DJ
184 /* Names used by GCC (not listed in the ARM EABI). */
185 { "sl", 10 },
123dc839
DJ
186 /* A special name from the older ATPCS. */
187 { "wr", 7 },
188};
bc90b915 189
123dc839 190static const char *const arm_register_names[] =
da59e081
JM
191{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
192 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
193 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
194 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
195 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
196 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 197 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 198
afd7eef0
RE
199/* Valid register name styles. */
200static const char **valid_disassembly_styles;
ed9a39eb 201
afd7eef0
RE
202/* Disassembly style to use. Default to "std" register names. */
203static const char *disassembly_style;
96baa820 204
ed9a39eb 205/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
206 style. */
207static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 208 struct cmd_list_element *);
afd7eef0 209static void set_disassembly_style (void);
ed9a39eb 210
b508a996 211static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 212 void *, int);
b508a996 213static void convert_to_extended (const struct floatformat *, void *,
be8626e0 214 const void *, int);
ed9a39eb 215
58d6951d
DJ
216static void arm_neon_quad_read (struct gdbarch *gdbarch,
217 struct regcache *regcache,
218 int regnum, gdb_byte *buf);
219static void arm_neon_quad_write (struct gdbarch *gdbarch,
220 struct regcache *regcache,
221 int regnum, const gdb_byte *buf);
222
9b8d791a 223struct arm_prologue_cache
c3b4394c 224{
eb5492fa
DJ
225 /* The stack pointer at the time this frame was created; i.e. the
226 caller's stack pointer when this function was called. It is used
227 to identify this frame. */
228 CORE_ADDR prev_sp;
229
4be43953
DJ
230 /* The frame base for this frame is just prev_sp - frame size.
231 FRAMESIZE is the distance from the frame pointer to the
232 initial stack pointer. */
eb5492fa 233
c3b4394c 234 int framesize;
eb5492fa
DJ
235
236 /* The register used to hold the frame pointer for this frame. */
c3b4394c 237 int framereg;
eb5492fa
DJ
238
239 /* Saved register offsets. */
240 struct trad_frame_saved_reg *saved_regs;
c3b4394c 241};
ed9a39eb 242
0d39a070
DJ
243static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
244 CORE_ADDR prologue_start,
245 CORE_ADDR prologue_end,
246 struct arm_prologue_cache *cache);
247
cca44b1b
JB
248/* Architecture version for displaced stepping. This effects the behaviour of
249 certain instructions, and really should not be hard-wired. */
250
251#define DISPLACED_STEPPING_ARCH_VERSION 5
252
bc90b915
FN
253/* Addresses for calling Thumb functions have the bit 0 set.
254 Here are some macros to test, set, or clear bit 0 of addresses. */
255#define IS_THUMB_ADDR(addr) ((addr) & 1)
256#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
257#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
258
94c30b78 259/* Set to true if the 32-bit mode is in use. */
c906108c
SS
260
261int arm_apcs_32 = 1;
262
9779414d
DJ
263/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
264
265static int
266arm_psr_thumb_bit (struct gdbarch *gdbarch)
267{
268 if (gdbarch_tdep (gdbarch)->is_m)
269 return XPSR_T;
270 else
271 return CPSR_T;
272}
273
b39cc962
DJ
274/* Determine if FRAME is executing in Thumb mode. */
275
25b41d01 276int
b39cc962
DJ
277arm_frame_is_thumb (struct frame_info *frame)
278{
279 CORE_ADDR cpsr;
9779414d 280 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
281
282 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
283 directly (from a signal frame or dummy frame) or by interpreting
284 the saved LR (from a prologue or DWARF frame). So consult it and
285 trust the unwinders. */
286 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
287
9779414d 288 return (cpsr & t_bit) != 0;
b39cc962
DJ
289}
290
60c5725c
DJ
291/* Callback for VEC_lower_bound. */
292
293static inline int
294arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
295 const struct arm_mapping_symbol *rhs)
296{
297 return lhs->value < rhs->value;
298}
299
f9d67f43
DJ
300/* Search for the mapping symbol covering MEMADDR. If one is found,
301 return its type. Otherwise, return 0. If START is non-NULL,
302 set *START to the location of the mapping symbol. */
c906108c 303
f9d67f43
DJ
304static char
305arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 306{
60c5725c 307 struct obj_section *sec;
0428b8f5 308
60c5725c
DJ
309 /* If there are mapping symbols, consult them. */
310 sec = find_pc_section (memaddr);
311 if (sec != NULL)
312 {
313 struct arm_per_objfile *data;
314 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
315 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
316 0 };
60c5725c
DJ
317 unsigned int idx;
318
319 data = objfile_data (sec->objfile, arm_objfile_data_key);
320 if (data != NULL)
321 {
322 map = data->section_maps[sec->the_bfd_section->index];
323 if (!VEC_empty (arm_mapping_symbol_s, map))
324 {
325 struct arm_mapping_symbol *map_sym;
326
327 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
328 arm_compare_mapping_symbols);
329
330 /* VEC_lower_bound finds the earliest ordered insertion
331 point. If the following symbol starts at this exact
332 address, we use that; otherwise, the preceding
333 mapping symbol covers this address. */
334 if (idx < VEC_length (arm_mapping_symbol_s, map))
335 {
336 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
337 if (map_sym->value == map_key.value)
f9d67f43
DJ
338 {
339 if (start)
340 *start = map_sym->value + obj_section_addr (sec);
341 return map_sym->type;
342 }
60c5725c
DJ
343 }
344
345 if (idx > 0)
346 {
347 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
348 if (start)
349 *start = map_sym->value + obj_section_addr (sec);
350 return map_sym->type;
60c5725c
DJ
351 }
352 }
353 }
354 }
355
f9d67f43
DJ
356 return 0;
357}
358
50e98be4
DJ
359static CORE_ADDR arm_get_next_pc_raw (struct frame_info *frame,
360 CORE_ADDR pc, int insert_bkpt);
361
f9d67f43
DJ
362/* Determine if the program counter specified in MEMADDR is in a Thumb
363 function. This function should be called for addresses unrelated to
364 any executing frame; otherwise, prefer arm_frame_is_thumb. */
365
e3039479 366int
9779414d 367arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43
DJ
368{
369 struct obj_section *sec;
370 struct minimal_symbol *sym;
371 char type;
a42244db
YQ
372 struct displaced_step_closure* dsc
373 = get_displaced_step_closure_by_addr(memaddr);
374
375 /* If checking the mode of displaced instruction in copy area, the mode
376 should be determined by instruction on the original address. */
377 if (dsc)
378 {
379 if (debug_displaced)
380 fprintf_unfiltered (gdb_stdlog,
381 "displaced: check mode of %.8lx instead of %.8lx\n",
382 (unsigned long) dsc->insn_addr,
383 (unsigned long) memaddr);
384 memaddr = dsc->insn_addr;
385 }
f9d67f43
DJ
386
387 /* If bit 0 of the address is set, assume this is a Thumb address. */
388 if (IS_THUMB_ADDR (memaddr))
389 return 1;
390
391 /* If the user wants to override the symbol table, let him. */
392 if (strcmp (arm_force_mode_string, "arm") == 0)
393 return 0;
394 if (strcmp (arm_force_mode_string, "thumb") == 0)
395 return 1;
396
9779414d
DJ
397 /* ARM v6-M and v7-M are always in Thumb mode. */
398 if (gdbarch_tdep (gdbarch)->is_m)
399 return 1;
400
f9d67f43
DJ
401 /* If there are mapping symbols, consult them. */
402 type = arm_find_mapping_symbol (memaddr, NULL);
403 if (type)
404 return type == 't';
405
ed9a39eb 406 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
407 sym = lookup_minimal_symbol_by_pc (memaddr);
408 if (sym)
0428b8f5
DJ
409 return (MSYMBOL_IS_SPECIAL (sym));
410
411 /* If the user wants to override the fallback mode, let them. */
412 if (strcmp (arm_fallback_mode_string, "arm") == 0)
413 return 0;
414 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
415 return 1;
416
417 /* If we couldn't find any symbol, but we're talking to a running
418 target, then trust the current value of $cpsr. This lets
419 "display/i $pc" always show the correct mode (though if there is
420 a symbol table we will not reach here, so it still may not be
50e98be4
DJ
421 displayed in the mode it will be executed).
422
423 As a further heuristic if we detect that we are doing a single-step we
424 see what state executing the current instruction ends up with us being
425 in. */
0428b8f5 426 if (target_has_registers)
50e98be4
DJ
427 {
428 struct frame_info *current_frame = get_current_frame ();
429 CORE_ADDR current_pc = get_frame_pc (current_frame);
430 int is_thumb = arm_frame_is_thumb (current_frame);
431 CORE_ADDR next_pc;
432 if (memaddr == current_pc)
433 return is_thumb;
434 else
435 {
436 struct gdbarch *gdbarch = get_frame_arch (current_frame);
437 next_pc = arm_get_next_pc_raw (current_frame, current_pc, FALSE);
438 if (memaddr == gdbarch_addr_bits_remove (gdbarch, next_pc))
439 return IS_THUMB_ADDR (next_pc);
440 else
441 return is_thumb;
442 }
443 }
0428b8f5
DJ
444
445 /* Otherwise we're out of luck; we assume ARM. */
446 return 0;
c906108c
SS
447}
448
181c1381 449/* Remove useless bits from addresses in a running program. */
34e8f22d 450static CORE_ADDR
24568a2c 451arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 452{
a3a2ee65 453 if (arm_apcs_32)
dd6be234 454 return UNMAKE_THUMB_ADDR (val);
c906108c 455 else
a3a2ee65 456 return (val & 0x03fffffc);
c906108c
SS
457}
458
181c1381
RE
459/* When reading symbols, we need to zap the low bit of the address,
460 which may be set to 1 for Thumb functions. */
34e8f22d 461static CORE_ADDR
24568a2c 462arm_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR val)
181c1381
RE
463{
464 return val & ~1;
465}
466
0d39a070 467/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
468 can be safely ignored during prologue skipping. IS_THUMB is true
469 if the function is known to be a Thumb function due to the way it
470 is being called. */
0d39a070 471static int
e0634ccf 472skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 473{
e0634ccf 474 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
0d39a070 475 struct minimal_symbol *msym;
0d39a070
DJ
476
477 msym = lookup_minimal_symbol_by_pc (pc);
e0634ccf
UW
478 if (msym != NULL
479 && SYMBOL_VALUE_ADDRESS (msym) == pc
480 && SYMBOL_LINKAGE_NAME (msym) != NULL)
481 {
482 const char *name = SYMBOL_LINKAGE_NAME (msym);
0d39a070 483
e0634ccf
UW
484 /* The GNU linker's Thumb call stub to foo is named
485 __foo_from_thumb. */
486 if (strstr (name, "_from_thumb") != NULL)
487 name += 2;
0d39a070 488
e0634ccf
UW
489 /* On soft-float targets, __truncdfsf2 is called to convert promoted
490 arguments to their argument types in non-prototyped
491 functions. */
492 if (strncmp (name, "__truncdfsf2", strlen ("__truncdfsf2")) == 0)
493 return 1;
494 if (strncmp (name, "__aeabi_d2f", strlen ("__aeabi_d2f")) == 0)
495 return 1;
0d39a070 496
e0634ccf
UW
497 /* Internal functions related to thread-local storage. */
498 if (strncmp (name, "__tls_get_addr", strlen ("__tls_get_addr")) == 0)
499 return 1;
500 if (strncmp (name, "__aeabi_read_tp", strlen ("__aeabi_read_tp")) == 0)
501 return 1;
502 }
503 else
504 {
505 /* If we run against a stripped glibc, we may be unable to identify
506 special functions by name. Check for one important case,
507 __aeabi_read_tp, by comparing the *code* against the default
508 implementation (this is hand-written ARM assembler in glibc). */
509
510 if (!is_thumb
511 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
512 == 0xe3e00a0f /* mov r0, #0xffff0fff */
513 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
514 == 0xe240f01f) /* sub pc, r0, #31 */
515 return 1;
516 }
ec3d575a 517
0d39a070
DJ
518 return 0;
519}
520
521/* Support routines for instruction parsing. */
522#define submask(x) ((1L << ((x) + 1)) - 1)
523#define bit(obj,st) (((obj) >> (st)) & 1)
524#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
525#define sbits(obj,st,fn) \
526 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
527#define BranchDest(addr,instr) \
528 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
529
621c6d5b
YQ
530/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
531 the first 16-bit of instruction, and INSN2 is the second 16-bit of
532 instruction. */
533#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
534 ((bits ((insn1), 0, 3) << 12) \
535 | (bits ((insn1), 10, 10) << 11) \
536 | (bits ((insn2), 12, 14) << 8) \
537 | bits ((insn2), 0, 7))
538
539/* Extract the immediate from instruction movw/movt of encoding A. INSN is
540 the 32-bit instruction. */
541#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
542 ((bits ((insn), 16, 19) << 12) \
543 | bits ((insn), 0, 11))
544
ec3d575a
UW
545/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
546
547static unsigned int
548thumb_expand_immediate (unsigned int imm)
549{
550 unsigned int count = imm >> 7;
551
552 if (count < 8)
553 switch (count / 2)
554 {
555 case 0:
556 return imm & 0xff;
557 case 1:
558 return (imm & 0xff) | ((imm & 0xff) << 16);
559 case 2:
560 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
561 case 3:
562 return (imm & 0xff) | ((imm & 0xff) << 8)
563 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
564 }
565
566 return (0x80 | (imm & 0x7f)) << (32 - count);
567}
568
569/* Return 1 if the 16-bit Thumb instruction INST might change
570 control flow, 0 otherwise. */
571
572static int
573thumb_instruction_changes_pc (unsigned short inst)
574{
575 if ((inst & 0xff00) == 0xbd00) /* pop {rlist, pc} */
576 return 1;
577
578 if ((inst & 0xf000) == 0xd000) /* conditional branch */
579 return 1;
580
581 if ((inst & 0xf800) == 0xe000) /* unconditional branch */
582 return 1;
583
584 if ((inst & 0xff00) == 0x4700) /* bx REG, blx REG */
585 return 1;
586
ad8b5167
UW
587 if ((inst & 0xff87) == 0x4687) /* mov pc, REG */
588 return 1;
589
ec3d575a
UW
590 if ((inst & 0xf500) == 0xb100) /* CBNZ or CBZ. */
591 return 1;
592
593 return 0;
594}
595
596/* Return 1 if the 32-bit Thumb instruction in INST1 and INST2
597 might change control flow, 0 otherwise. */
598
599static int
600thumb2_instruction_changes_pc (unsigned short inst1, unsigned short inst2)
601{
602 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
603 {
604 /* Branches and miscellaneous control instructions. */
605
606 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
607 {
608 /* B, BL, BLX. */
609 return 1;
610 }
611 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
612 {
613 /* SUBS PC, LR, #imm8. */
614 return 1;
615 }
616 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
617 {
618 /* Conditional branch. */
619 return 1;
620 }
621
622 return 0;
623 }
624
625 if ((inst1 & 0xfe50) == 0xe810)
626 {
627 /* Load multiple or RFE. */
628
629 if (bit (inst1, 7) && !bit (inst1, 8))
630 {
631 /* LDMIA or POP */
632 if (bit (inst2, 15))
633 return 1;
634 }
635 else if (!bit (inst1, 7) && bit (inst1, 8))
636 {
637 /* LDMDB */
638 if (bit (inst2, 15))
639 return 1;
640 }
641 else if (bit (inst1, 7) && bit (inst1, 8))
642 {
643 /* RFEIA */
644 return 1;
645 }
646 else if (!bit (inst1, 7) && !bit (inst1, 8))
647 {
648 /* RFEDB */
649 return 1;
650 }
651
652 return 0;
653 }
654
655 if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
656 {
657 /* MOV PC or MOVS PC. */
658 return 1;
659 }
660
661 if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
662 {
663 /* LDR PC. */
664 if (bits (inst1, 0, 3) == 15)
665 return 1;
666 if (bit (inst1, 7))
667 return 1;
668 if (bit (inst2, 11))
669 return 1;
670 if ((inst2 & 0x0fc0) == 0x0000)
671 return 1;
672
673 return 0;
674 }
675
676 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
677 {
678 /* TBB. */
679 return 1;
680 }
681
682 if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
683 {
684 /* TBH. */
685 return 1;
686 }
687
688 return 0;
689}
690
29d73ae4
DJ
691/* Analyze a Thumb prologue, looking for a recognizable stack frame
692 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
693 clobber the stack frame unexpectedly, or an unknown instruction.
694 Return the last address which is definitely safe to skip for an
695 initial breakpoint. */
c906108c
SS
696
697static CORE_ADDR
29d73ae4
DJ
698thumb_analyze_prologue (struct gdbarch *gdbarch,
699 CORE_ADDR start, CORE_ADDR limit,
700 struct arm_prologue_cache *cache)
c906108c 701{
0d39a070 702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 703 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
704 int i;
705 pv_t regs[16];
706 struct pv_area *stack;
707 struct cleanup *back_to;
708 CORE_ADDR offset;
ec3d575a 709 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 710
29d73ae4
DJ
711 for (i = 0; i < 16; i++)
712 regs[i] = pv_register (i, 0);
55f960e1 713 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
714 back_to = make_cleanup_free_pv_area (stack);
715
29d73ae4 716 while (start < limit)
c906108c 717 {
29d73ae4
DJ
718 unsigned short insn;
719
e17a4113 720 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 721
94c30b78 722 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 723 {
29d73ae4
DJ
724 int regno;
725 int mask;
4be43953
DJ
726
727 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
728 break;
29d73ae4
DJ
729
730 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
731 whether to save LR (R14). */
732 mask = (insn & 0xff) | ((insn & 0x100) << 6);
733
734 /* Calculate offsets of saved R0-R7 and LR. */
735 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
736 if (mask & (1 << regno))
737 {
29d73ae4
DJ
738 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
739 -4);
740 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
741 }
da59e081 742 }
da3c6d4a
MS
743 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
744 sub sp, #simm */
da59e081 745 {
29d73ae4
DJ
746 offset = (insn & 0x7f) << 2; /* get scaled offset */
747 if (insn & 0x80) /* Check for SUB. */
748 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
749 -offset);
da59e081 750 else
29d73ae4
DJ
751 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
752 offset);
da59e081 753 }
0d39a070
DJ
754 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
755 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
756 (insn & 0xff) << 2);
757 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
758 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
759 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
760 bits (insn, 6, 8));
761 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
762 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
763 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
764 bits (insn, 0, 7));
765 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
766 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
767 && pv_is_constant (regs[bits (insn, 3, 5)]))
768 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
769 regs[bits (insn, 6, 8)]);
770 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
771 && pv_is_constant (regs[bits (insn, 3, 6)]))
772 {
773 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
774 int rm = bits (insn, 3, 6);
775 regs[rd] = pv_add (regs[rd], regs[rm]);
776 }
29d73ae4 777 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 778 {
29d73ae4
DJ
779 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
780 int src_reg = (insn & 0x78) >> 3;
781 regs[dst_reg] = regs[src_reg];
da59e081 782 }
29d73ae4 783 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 784 {
29d73ae4
DJ
785 /* Handle stores to the stack. Normally pushes are used,
786 but with GCC -mtpcs-frame, there may be other stores
787 in the prologue to create the frame. */
788 int regno = (insn >> 8) & 0x7;
789 pv_t addr;
790
791 offset = (insn & 0xff) << 2;
792 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
793
794 if (pv_area_store_would_trash (stack, addr))
795 break;
796
797 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 798 }
0d39a070
DJ
799 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
800 {
801 int rd = bits (insn, 0, 2);
802 int rn = bits (insn, 3, 5);
803 pv_t addr;
804
805 offset = bits (insn, 6, 10) << 2;
806 addr = pv_add_constant (regs[rn], offset);
807
808 if (pv_area_store_would_trash (stack, addr))
809 break;
810
811 pv_area_store (stack, addr, 4, regs[rd]);
812 }
813 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
814 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
815 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
816 /* Ignore stores of argument registers to the stack. */
817 ;
818 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
819 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
820 /* Ignore block loads from the stack, potentially copying
821 parameters from memory. */
822 ;
823 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
824 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
825 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
826 /* Similarly ignore single loads from the stack. */
827 ;
828 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
829 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
830 /* Skip register copies, i.e. saves to another register
831 instead of the stack. */
832 ;
833 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
834 /* Recognize constant loads; even with small stacks these are necessary
835 on Thumb. */
836 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
837 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
838 {
839 /* Constant pool loads, for the same reason. */
840 unsigned int constant;
841 CORE_ADDR loc;
842
843 loc = start + 4 + bits (insn, 0, 7) * 4;
844 constant = read_memory_unsigned_integer (loc, 4, byte_order);
845 regs[bits (insn, 8, 10)] = pv_constant (constant);
846 }
ec3d575a 847 else if ((insn & 0xe000) == 0xe000)
0d39a070 848 {
0d39a070
DJ
849 unsigned short inst2;
850
851 inst2 = read_memory_unsigned_integer (start + 2, 2,
852 byte_order_for_code);
853
854 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
855 {
856 /* BL, BLX. Allow some special function calls when
857 skipping the prologue; GCC generates these before
858 storing arguments to the stack. */
859 CORE_ADDR nextpc;
860 int j1, j2, imm1, imm2;
861
862 imm1 = sbits (insn, 0, 10);
863 imm2 = bits (inst2, 0, 10);
864 j1 = bit (inst2, 13);
865 j2 = bit (inst2, 11);
866
867 offset = ((imm1 << 12) + (imm2 << 1));
868 offset ^= ((!j2) << 22) | ((!j1) << 23);
869
870 nextpc = start + 4 + offset;
871 /* For BLX make sure to clear the low bits. */
872 if (bit (inst2, 12) == 0)
873 nextpc = nextpc & 0xfffffffc;
874
e0634ccf
UW
875 if (!skip_prologue_function (gdbarch, nextpc,
876 bit (inst2, 12) != 0))
0d39a070
DJ
877 break;
878 }
ec3d575a 879
0963b4bd
MS
880 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
881 { registers } */
ec3d575a
UW
882 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
883 {
884 pv_t addr = regs[bits (insn, 0, 3)];
885 int regno;
886
887 if (pv_area_store_would_trash (stack, addr))
888 break;
889
890 /* Calculate offsets of saved registers. */
891 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
892 if (inst2 & (1 << regno))
893 {
894 addr = pv_add_constant (addr, -4);
895 pv_area_store (stack, addr, 4, regs[regno]);
896 }
897
898 if (insn & 0x0020)
899 regs[bits (insn, 0, 3)] = addr;
900 }
901
0963b4bd
MS
902 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
903 [Rn, #+/-imm]{!} */
ec3d575a
UW
904 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
905 {
906 int regno1 = bits (inst2, 12, 15);
907 int regno2 = bits (inst2, 8, 11);
908 pv_t addr = regs[bits (insn, 0, 3)];
909
910 offset = inst2 & 0xff;
911 if (insn & 0x0080)
912 addr = pv_add_constant (addr, offset);
913 else
914 addr = pv_add_constant (addr, -offset);
915
916 if (pv_area_store_would_trash (stack, addr))
917 break;
918
919 pv_area_store (stack, addr, 4, regs[regno1]);
920 pv_area_store (stack, pv_add_constant (addr, 4),
921 4, regs[regno2]);
922
923 if (insn & 0x0020)
924 regs[bits (insn, 0, 3)] = addr;
925 }
926
927 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
928 && (inst2 & 0x0c00) == 0x0c00
929 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
930 {
931 int regno = bits (inst2, 12, 15);
932 pv_t addr = regs[bits (insn, 0, 3)];
933
934 offset = inst2 & 0xff;
935 if (inst2 & 0x0200)
936 addr = pv_add_constant (addr, offset);
937 else
938 addr = pv_add_constant (addr, -offset);
939
940 if (pv_area_store_would_trash (stack, addr))
941 break;
942
943 pv_area_store (stack, addr, 4, regs[regno]);
944
945 if (inst2 & 0x0100)
946 regs[bits (insn, 0, 3)] = addr;
947 }
948
949 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
950 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
951 {
952 int regno = bits (inst2, 12, 15);
953 pv_t addr;
954
955 offset = inst2 & 0xfff;
956 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
957
958 if (pv_area_store_would_trash (stack, addr))
959 break;
960
961 pv_area_store (stack, addr, 4, regs[regno]);
962 }
963
964 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 965 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 966 /* Ignore stores of argument registers to the stack. */
0d39a070 967 ;
ec3d575a
UW
968
969 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
970 && (inst2 & 0x0d00) == 0x0c00
0d39a070 971 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 972 /* Ignore stores of argument registers to the stack. */
0d39a070 973 ;
ec3d575a 974
0963b4bd
MS
975 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
976 { registers } */
ec3d575a
UW
977 && (inst2 & 0x8000) == 0x0000
978 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
979 /* Ignore block loads from the stack, potentially copying
980 parameters from memory. */
0d39a070 981 ;
ec3d575a 982
0963b4bd
MS
983 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
984 [Rn, #+/-imm] */
0d39a070 985 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 986 /* Similarly ignore dual loads from the stack. */
0d39a070 987 ;
ec3d575a
UW
988
989 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
990 && (inst2 & 0x0d00) == 0x0c00
0d39a070 991 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 992 /* Similarly ignore single loads from the stack. */
0d39a070 993 ;
ec3d575a
UW
994
995 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 996 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 997 /* Similarly ignore single loads from the stack. */
0d39a070 998 ;
ec3d575a
UW
999
1000 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
1001 && (inst2 & 0x8000) == 0x0000)
1002 {
1003 unsigned int imm = ((bits (insn, 10, 10) << 11)
1004 | (bits (inst2, 12, 14) << 8)
1005 | bits (inst2, 0, 7));
1006
1007 regs[bits (inst2, 8, 11)]
1008 = pv_add_constant (regs[bits (insn, 0, 3)],
1009 thumb_expand_immediate (imm));
1010 }
1011
1012 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
1013 && (inst2 & 0x8000) == 0x0000)
0d39a070 1014 {
ec3d575a
UW
1015 unsigned int imm = ((bits (insn, 10, 10) << 11)
1016 | (bits (inst2, 12, 14) << 8)
1017 | bits (inst2, 0, 7));
1018
1019 regs[bits (inst2, 8, 11)]
1020 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
1021 }
1022
1023 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
1024 && (inst2 & 0x8000) == 0x0000)
1025 {
1026 unsigned int imm = ((bits (insn, 10, 10) << 11)
1027 | (bits (inst2, 12, 14) << 8)
1028 | bits (inst2, 0, 7));
1029
1030 regs[bits (inst2, 8, 11)]
1031 = pv_add_constant (regs[bits (insn, 0, 3)],
1032 - (CORE_ADDR) thumb_expand_immediate (imm));
1033 }
1034
1035 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
1036 && (inst2 & 0x8000) == 0x0000)
1037 {
1038 unsigned int imm = ((bits (insn, 10, 10) << 11)
1039 | (bits (inst2, 12, 14) << 8)
1040 | bits (inst2, 0, 7));
1041
1042 regs[bits (inst2, 8, 11)]
1043 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
1044 }
1045
1046 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1047 {
1048 unsigned int imm = ((bits (insn, 10, 10) << 11)
1049 | (bits (inst2, 12, 14) << 8)
1050 | bits (inst2, 0, 7));
1051
1052 regs[bits (inst2, 8, 11)]
1053 = pv_constant (thumb_expand_immediate (imm));
1054 }
1055
1056 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1057 {
621c6d5b
YQ
1058 unsigned int imm
1059 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1060
1061 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1062 }
1063
1064 else if (insn == 0xea5f /* mov.w Rd,Rm */
1065 && (inst2 & 0xf0f0) == 0)
1066 {
1067 int dst_reg = (inst2 & 0x0f00) >> 8;
1068 int src_reg = inst2 & 0xf;
1069 regs[dst_reg] = regs[src_reg];
1070 }
1071
1072 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1073 {
1074 /* Constant pool loads. */
1075 unsigned int constant;
1076 CORE_ADDR loc;
1077
1078 offset = bits (insn, 0, 11);
1079 if (insn & 0x0080)
1080 loc = start + 4 + offset;
1081 else
1082 loc = start + 4 - offset;
1083
1084 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1085 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1086 }
1087
1088 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1089 {
1090 /* Constant pool loads. */
1091 unsigned int constant;
1092 CORE_ADDR loc;
1093
1094 offset = bits (insn, 0, 7) << 2;
1095 if (insn & 0x0080)
1096 loc = start + 4 + offset;
1097 else
1098 loc = start + 4 - offset;
1099
1100 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1101 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1102
1103 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1104 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1105 }
1106
1107 else if (thumb2_instruction_changes_pc (insn, inst2))
1108 {
1109 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1110 break;
1111 }
ec3d575a
UW
1112 else
1113 {
1114 /* The optimizer might shove anything into the prologue,
1115 so we just skip what we don't recognize. */
1116 unrecognized_pc = start;
1117 }
0d39a070
DJ
1118
1119 start += 2;
1120 }
ec3d575a 1121 else if (thumb_instruction_changes_pc (insn))
3d74b771 1122 {
ec3d575a 1123 /* Don't scan past anything that might change control flow. */
da3c6d4a 1124 break;
3d74b771 1125 }
ec3d575a
UW
1126 else
1127 {
1128 /* The optimizer might shove anything into the prologue,
1129 so we just skip what we don't recognize. */
1130 unrecognized_pc = start;
1131 }
29d73ae4
DJ
1132
1133 start += 2;
c906108c
SS
1134 }
1135
0d39a070
DJ
1136 if (arm_debug)
1137 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1138 paddress (gdbarch, start));
1139
ec3d575a
UW
1140 if (unrecognized_pc == 0)
1141 unrecognized_pc = start;
1142
29d73ae4
DJ
1143 if (cache == NULL)
1144 {
1145 do_cleanups (back_to);
ec3d575a 1146 return unrecognized_pc;
29d73ae4
DJ
1147 }
1148
29d73ae4
DJ
1149 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1150 {
1151 /* Frame pointer is fp. Frame size is constant. */
1152 cache->framereg = ARM_FP_REGNUM;
1153 cache->framesize = -regs[ARM_FP_REGNUM].k;
1154 }
1155 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1156 {
1157 /* Frame pointer is r7. Frame size is constant. */
1158 cache->framereg = THUMB_FP_REGNUM;
1159 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1160 }
1161 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1162 {
1163 /* Try the stack pointer... this is a bit desperate. */
1164 cache->framereg = ARM_SP_REGNUM;
1165 cache->framesize = -regs[ARM_SP_REGNUM].k;
1166 }
1167 else
1168 {
1169 /* We're just out of luck. We don't know where the frame is. */
1170 cache->framereg = -1;
1171 cache->framesize = 0;
1172 }
1173
1174 for (i = 0; i < 16; i++)
1175 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1176 cache->saved_regs[i].addr = offset;
1177
1178 do_cleanups (back_to);
ec3d575a 1179 return unrecognized_pc;
c906108c
SS
1180}
1181
621c6d5b
YQ
1182
1183/* Try to analyze the instructions starting from PC, which load symbol
1184 __stack_chk_guard. Return the address of instruction after loading this
1185 symbol, set the dest register number to *BASEREG, and set the size of
1186 instructions for loading symbol in OFFSET. Return 0 if instructions are
1187 not recognized. */
1188
1189static CORE_ADDR
1190arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1191 unsigned int *destreg, int *offset)
1192{
1193 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1194 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1195 unsigned int low, high, address;
1196
1197 address = 0;
1198 if (is_thumb)
1199 {
1200 unsigned short insn1
1201 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1202
1203 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1204 {
1205 *destreg = bits (insn1, 8, 10);
1206 *offset = 2;
1207 address = bits (insn1, 0, 7);
1208 }
1209 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1210 {
1211 unsigned short insn2
1212 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1213
1214 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1215
1216 insn1
1217 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1218 insn2
1219 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1220
1221 /* movt Rd, #const */
1222 if ((insn1 & 0xfbc0) == 0xf2c0)
1223 {
1224 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1225 *destreg = bits (insn2, 8, 11);
1226 *offset = 8;
1227 address = (high << 16 | low);
1228 }
1229 }
1230 }
1231 else
1232 {
2e9e421f
UW
1233 unsigned int insn
1234 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1235
1236 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, #immed */
1237 {
1238 address = bits (insn, 0, 11);
1239 *destreg = bits (insn, 12, 15);
1240 *offset = 4;
1241 }
1242 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1243 {
1244 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1245
1246 insn
1247 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1248
1249 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1250 {
1251 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1252 *destreg = bits (insn, 12, 15);
1253 *offset = 8;
1254 address = (high << 16 | low);
1255 }
1256 }
621c6d5b
YQ
1257 }
1258
1259 return address;
1260}
1261
1262/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1263 points to the first instruction of this sequence, return the address of
1264 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1265
1266 On arm, this sequence of instructions is composed of mainly three steps,
1267 Step 1: load symbol __stack_chk_guard,
1268 Step 2: load from address of __stack_chk_guard,
1269 Step 3: store it to somewhere else.
1270
1271 Usually, instructions on step 2 and step 3 are the same on various ARM
1272 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1273 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1274 instructions in step 1 vary from different ARM architectures. On ARMv7,
1275 they are,
1276
1277 movw Rn, #:lower16:__stack_chk_guard
1278 movt Rn, #:upper16:__stack_chk_guard
1279
1280 On ARMv5t, it is,
1281
1282 ldr Rn, .Label
1283 ....
1284 .Lable:
1285 .word __stack_chk_guard
1286
1287 Since ldr/str is a very popular instruction, we can't use them as
1288 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1289 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1290 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1291
1292static CORE_ADDR
1293arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1294{
1295 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1296 unsigned int address, basereg;
1297 struct minimal_symbol *stack_chk_guard;
1298 int offset;
1299 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1300 CORE_ADDR addr;
1301
1302 /* Try to parse the instructions in Step 1. */
1303 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1304 &basereg, &offset);
1305 if (!addr)
1306 return pc;
1307
1308 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
1309 /* If name of symbol doesn't start with '__stack_chk_guard', this
1310 instruction sequence is not for stack protector. If symbol is
1311 removed, we conservatively think this sequence is for stack protector. */
1312 if (stack_chk_guard
c1c2ab58
UW
1313 && strncmp (SYMBOL_LINKAGE_NAME (stack_chk_guard), "__stack_chk_guard",
1314 strlen ("__stack_chk_guard")) != 0)
621c6d5b
YQ
1315 return pc;
1316
1317 if (is_thumb)
1318 {
1319 unsigned int destreg;
1320 unsigned short insn
1321 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1322
1323 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1324 if ((insn & 0xf800) != 0x6800)
1325 return pc;
1326 if (bits (insn, 3, 5) != basereg)
1327 return pc;
1328 destreg = bits (insn, 0, 2);
1329
1330 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1331 byte_order_for_code);
1332 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1333 if ((insn & 0xf800) != 0x6000)
1334 return pc;
1335 if (destreg != bits (insn, 0, 2))
1336 return pc;
1337 }
1338 else
1339 {
1340 unsigned int destreg;
1341 unsigned int insn
1342 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1343
1344 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1345 if ((insn & 0x0e500000) != 0x04100000)
1346 return pc;
1347 if (bits (insn, 16, 19) != basereg)
1348 return pc;
1349 destreg = bits (insn, 12, 15);
1350 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1351 insn = read_memory_unsigned_integer (pc + offset + 4,
1352 4, byte_order_for_code);
1353 if ((insn & 0x0e500000) != 0x04000000)
1354 return pc;
1355 if (bits (insn, 12, 15) != destreg)
1356 return pc;
1357 }
1358 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1359 on arm. */
1360 if (is_thumb)
1361 return pc + offset + 4;
1362 else
1363 return pc + offset + 8;
1364}
1365
da3c6d4a
MS
1366/* Advance the PC across any function entry prologue instructions to
1367 reach some "real" code.
34e8f22d
RE
1368
1369 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1370 prologue:
c906108c 1371
c5aa993b
JM
1372 mov ip, sp
1373 [stmfd sp!, {a1,a2,a3,a4}]
1374 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1375 [stfe f7, [sp, #-12]!]
1376 [stfe f6, [sp, #-12]!]
1377 [stfe f5, [sp, #-12]!]
1378 [stfe f4, [sp, #-12]!]
0963b4bd 1379 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1380
34e8f22d 1381static CORE_ADDR
6093d2eb 1382arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1383{
e17a4113 1384 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
1385 unsigned long inst;
1386 CORE_ADDR skip_pc;
a89fea3c 1387 CORE_ADDR func_addr, limit_pc;
c906108c
SS
1388 struct symtab_and_line sal;
1389
a89fea3c
JL
1390 /* See if we can determine the end of the prologue via the symbol table.
1391 If so, then return either PC, or the PC after the prologue, whichever
1392 is greater. */
1393 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1394 {
d80b854b
UW
1395 CORE_ADDR post_prologue_pc
1396 = skip_prologue_using_sal (gdbarch, func_addr);
0d39a070
DJ
1397 struct symtab *s = find_pc_symtab (func_addr);
1398
621c6d5b
YQ
1399 if (post_prologue_pc)
1400 post_prologue_pc
1401 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1402
1403
0d39a070
DJ
1404 /* GCC always emits a line note before the prologue and another
1405 one after, even if the two are at the same address or on the
1406 same line. Take advantage of this so that we do not need to
1407 know every instruction that might appear in the prologue. We
1408 will have producer information for most binaries; if it is
1409 missing (e.g. for -gstabs), assuming the GNU tools. */
1410 if (post_prologue_pc
1411 && (s == NULL
1412 || s->producer == NULL
1413 || strncmp (s->producer, "GNU ", sizeof ("GNU ") - 1) == 0))
1414 return post_prologue_pc;
1415
a89fea3c 1416 if (post_prologue_pc != 0)
0d39a070
DJ
1417 {
1418 CORE_ADDR analyzed_limit;
1419
1420 /* For non-GCC compilers, make sure the entire line is an
1421 acceptable prologue; GDB will round this function's
1422 return value up to the end of the following line so we
1423 can not skip just part of a line (and we do not want to).
1424
1425 RealView does not treat the prologue specially, but does
1426 associate prologue code with the opening brace; so this
1427 lets us skip the first line if we think it is the opening
1428 brace. */
9779414d 1429 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1430 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1431 post_prologue_pc, NULL);
1432 else
1433 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1434 post_prologue_pc, NULL);
1435
1436 if (analyzed_limit != post_prologue_pc)
1437 return func_addr;
1438
1439 return post_prologue_pc;
1440 }
c906108c
SS
1441 }
1442
a89fea3c
JL
1443 /* Can't determine prologue from the symbol table, need to examine
1444 instructions. */
c906108c 1445
a89fea3c
JL
1446 /* Find an upper limit on the function prologue using the debug
1447 information. If the debug information could not be used to provide
1448 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1449 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1450 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1451 if (limit_pc == 0)
1452 limit_pc = pc + 64; /* Magic. */
1453
c906108c 1454
29d73ae4 1455 /* Check if this is Thumb code. */
9779414d 1456 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1457 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
29d73ae4 1458
a89fea3c 1459 for (skip_pc = pc; skip_pc < limit_pc; skip_pc += 4)
f43845b3 1460 {
e17a4113 1461 inst = read_memory_unsigned_integer (skip_pc, 4, byte_order_for_code);
9d4fde75 1462
b8d5e71d
MS
1463 /* "mov ip, sp" is no longer a required part of the prologue. */
1464 if (inst == 0xe1a0c00d) /* mov ip, sp */
1465 continue;
c906108c 1466
28cd8767
JG
1467 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
1468 continue;
1469
1470 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
1471 continue;
1472
b8d5e71d
MS
1473 /* Some prologues begin with "str lr, [sp, #-4]!". */
1474 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
1475 continue;
c906108c 1476
b8d5e71d
MS
1477 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
1478 continue;
c906108c 1479
b8d5e71d
MS
1480 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
1481 continue;
11d3b27d 1482
b8d5e71d
MS
1483 /* Any insns after this point may float into the code, if it makes
1484 for better instruction scheduling, so we skip them only if we
1485 find them, but still consider the function to be frame-ful. */
f43845b3 1486
b8d5e71d
MS
1487 /* We may have either one sfmfd instruction here, or several stfe
1488 insns, depending on the version of floating point code we
1489 support. */
1490 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
1491 continue;
1492
1493 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
1494 continue;
1495
1496 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
1497 continue;
1498
1499 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
1500 continue;
1501
f8bf5763
PM
1502 if ((inst & 0xffffc000) == 0xe54b0000 /* strb r(0123),[r11,#-nn] */
1503 || (inst & 0xffffc0f0) == 0xe14b00b0 /* strh r(0123),[r11,#-nn] */
1504 || (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
b8d5e71d
MS
1505 continue;
1506
f8bf5763
PM
1507 if ((inst & 0xffffc000) == 0xe5cd0000 /* strb r(0123),[sp,#nn] */
1508 || (inst & 0xffffc0f0) == 0xe1cd00b0 /* strh r(0123),[sp,#nn] */
1509 || (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
b8d5e71d
MS
1510 continue;
1511
1512 /* Un-recognized instruction; stop scanning. */
1513 break;
f43845b3 1514 }
c906108c 1515
0963b4bd 1516 return skip_pc; /* End of prologue. */
c906108c 1517}
94c30b78 1518
c5aa993b 1519/* *INDENT-OFF* */
c906108c
SS
1520/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1521 This function decodes a Thumb function prologue to determine:
1522 1) the size of the stack frame
1523 2) which registers are saved on it
1524 3) the offsets of saved regs
1525 4) the offset from the stack pointer to the frame pointer
c906108c 1526
da59e081
JM
1527 A typical Thumb function prologue would create this stack frame
1528 (offsets relative to FP)
c906108c
SS
1529 old SP -> 24 stack parameters
1530 20 LR
1531 16 R7
1532 R7 -> 0 local variables (16 bytes)
1533 SP -> -12 additional stack space (12 bytes)
1534 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1535 12 bytes. The frame register is R7.
da59e081 1536
da3c6d4a
MS
1537 The comments for thumb_skip_prolog() describe the algorithm we use
1538 to detect the end of the prolog. */
c5aa993b
JM
1539/* *INDENT-ON* */
1540
c906108c 1541static void
be8626e0 1542thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1543 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1544{
1545 CORE_ADDR prologue_start;
1546 CORE_ADDR prologue_end;
1547 CORE_ADDR current_pc;
c906108c 1548
b39cc962
DJ
1549 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1550 &prologue_end))
c906108c 1551 {
ec3d575a
UW
1552 /* See comment in arm_scan_prologue for an explanation of
1553 this heuristics. */
1554 if (prologue_end > prologue_start + 64)
1555 {
1556 prologue_end = prologue_start + 64;
1557 }
c906108c
SS
1558 }
1559 else
f7060f85
DJ
1560 /* We're in the boondocks: we have no idea where the start of the
1561 function is. */
1562 return;
c906108c 1563
eb5492fa 1564 prologue_end = min (prologue_end, prev_pc);
c906108c 1565
be8626e0 1566 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1567}
1568
0d39a070 1569/* Return 1 if THIS_INSTR might change control flow, 0 otherwise. */
c906108c 1570
0d39a070
DJ
1571static int
1572arm_instruction_changes_pc (uint32_t this_instr)
c906108c 1573{
0d39a070
DJ
1574 if (bits (this_instr, 28, 31) == INST_NV)
1575 /* Unconditional instructions. */
1576 switch (bits (this_instr, 24, 27))
1577 {
1578 case 0xa:
1579 case 0xb:
1580 /* Branch with Link and change to Thumb. */
1581 return 1;
1582 case 0xc:
1583 case 0xd:
1584 case 0xe:
1585 /* Coprocessor register transfer. */
1586 if (bits (this_instr, 12, 15) == 15)
1587 error (_("Invalid update to pc in instruction"));
1588 return 0;
1589 default:
1590 return 0;
1591 }
1592 else
1593 switch (bits (this_instr, 25, 27))
1594 {
1595 case 0x0:
1596 if (bits (this_instr, 23, 24) == 2 && bit (this_instr, 20) == 0)
1597 {
1598 /* Multiplies and extra load/stores. */
1599 if (bit (this_instr, 4) == 1 && bit (this_instr, 7) == 1)
1600 /* Neither multiplies nor extension load/stores are allowed
1601 to modify PC. */
1602 return 0;
1603
1604 /* Otherwise, miscellaneous instructions. */
1605
1606 /* BX <reg>, BXJ <reg>, BLX <reg> */
1607 if (bits (this_instr, 4, 27) == 0x12fff1
1608 || bits (this_instr, 4, 27) == 0x12fff2
1609 || bits (this_instr, 4, 27) == 0x12fff3)
1610 return 1;
1611
1612 /* Other miscellaneous instructions are unpredictable if they
1613 modify PC. */
1614 return 0;
1615 }
1616 /* Data processing instruction. Fall through. */
c906108c 1617
0d39a070
DJ
1618 case 0x1:
1619 if (bits (this_instr, 12, 15) == 15)
1620 return 1;
1621 else
1622 return 0;
c906108c 1623
0d39a070
DJ
1624 case 0x2:
1625 case 0x3:
1626 /* Media instructions and architecturally undefined instructions. */
1627 if (bits (this_instr, 25, 27) == 3 && bit (this_instr, 4) == 1)
1628 return 0;
c906108c 1629
0d39a070
DJ
1630 /* Stores. */
1631 if (bit (this_instr, 20) == 0)
1632 return 0;
2a451106 1633
0d39a070
DJ
1634 /* Loads. */
1635 if (bits (this_instr, 12, 15) == ARM_PC_REGNUM)
1636 return 1;
1637 else
1638 return 0;
2a451106 1639
0d39a070
DJ
1640 case 0x4:
1641 /* Load/store multiple. */
1642 if (bit (this_instr, 20) == 1 && bit (this_instr, 15) == 1)
1643 return 1;
1644 else
1645 return 0;
2a451106 1646
0d39a070
DJ
1647 case 0x5:
1648 /* Branch and branch with link. */
1649 return 1;
2a451106 1650
0d39a070
DJ
1651 case 0x6:
1652 case 0x7:
1653 /* Coprocessor transfers or SWIs can not affect PC. */
1654 return 0;
eb5492fa 1655
0d39a070 1656 default:
9b20d036 1657 internal_error (__FILE__, __LINE__, _("bad value in switch"));
0d39a070
DJ
1658 }
1659}
c906108c 1660
0d39a070
DJ
1661/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1662 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1663 fill it in. Return the first address not recognized as a prologue
1664 instruction.
eb5492fa 1665
0d39a070
DJ
1666 We recognize all the instructions typically found in ARM prologues,
1667 plus harmless instructions which can be skipped (either for analysis
1668 purposes, or a more restrictive set that can be skipped when finding
1669 the end of the prologue). */
1670
1671static CORE_ADDR
1672arm_analyze_prologue (struct gdbarch *gdbarch,
1673 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1674 struct arm_prologue_cache *cache)
1675{
1676 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1677 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1678 int regno;
1679 CORE_ADDR offset, current_pc;
1680 pv_t regs[ARM_FPS_REGNUM];
1681 struct pv_area *stack;
1682 struct cleanup *back_to;
1683 int framereg, framesize;
1684 CORE_ADDR unrecognized_pc = 0;
1685
1686 /* Search the prologue looking for instructions that set up the
96baa820 1687 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1688
96baa820
JM
1689 Be careful, however, and if it doesn't look like a prologue,
1690 don't try to scan it. If, for instance, a frameless function
1691 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1692 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1693 and other operations that rely on a knowledge of the stack
0d39a070 1694 traceback. */
d4473757 1695
4be43953
DJ
1696 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1697 regs[regno] = pv_register (regno, 0);
55f960e1 1698 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1699 back_to = make_cleanup_free_pv_area (stack);
1700
94c30b78
MS
1701 for (current_pc = prologue_start;
1702 current_pc < prologue_end;
f43845b3 1703 current_pc += 4)
96baa820 1704 {
e17a4113
UW
1705 unsigned int insn
1706 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1707
94c30b78 1708 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1709 {
4be43953 1710 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1711 continue;
1712 }
0d39a070
DJ
1713 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1714 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1715 {
1716 unsigned imm = insn & 0xff; /* immediate value */
1717 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1718 int rd = bits (insn, 12, 15);
28cd8767 1719 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1720 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1721 continue;
1722 }
0d39a070
DJ
1723 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1724 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1725 {
1726 unsigned imm = insn & 0xff; /* immediate value */
1727 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1728 int rd = bits (insn, 12, 15);
28cd8767 1729 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1730 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1731 continue;
1732 }
0963b4bd
MS
1733 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1734 [sp, #-4]! */
f43845b3 1735 {
4be43953
DJ
1736 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1737 break;
1738 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1739 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1740 regs[bits (insn, 12, 15)]);
f43845b3
MS
1741 continue;
1742 }
1743 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1744 /* stmfd sp!, {..., fp, ip, lr, pc}
1745 or
1746 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1747 {
d4473757 1748 int mask = insn & 0xffff;
ed9a39eb 1749
4be43953
DJ
1750 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1751 break;
1752
94c30b78 1753 /* Calculate offsets of saved registers. */
34e8f22d 1754 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1755 if (mask & (1 << regno))
1756 {
0963b4bd
MS
1757 regs[ARM_SP_REGNUM]
1758 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1759 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1760 }
1761 }
0d39a070
DJ
1762 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1763 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1764 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1765 {
1766 /* No need to add this to saved_regs -- it's just an arg reg. */
1767 continue;
1768 }
0d39a070
DJ
1769 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1770 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1771 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1772 {
1773 /* No need to add this to saved_regs -- it's just an arg reg. */
1774 continue;
1775 }
0963b4bd
MS
1776 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1777 { registers } */
0d39a070
DJ
1778 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1779 {
1780 /* No need to add this to saved_regs -- it's just arg regs. */
1781 continue;
1782 }
d4473757
KB
1783 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1784 {
94c30b78
MS
1785 unsigned imm = insn & 0xff; /* immediate value */
1786 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1787 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1788 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1789 }
1790 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1791 {
94c30b78
MS
1792 unsigned imm = insn & 0xff; /* immediate value */
1793 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1794 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1795 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1796 }
0963b4bd
MS
1797 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1798 [sp, -#c]! */
2af46ca0 1799 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1800 {
4be43953
DJ
1801 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1802 break;
1803
1804 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1805 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1806 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1807 }
0963b4bd
MS
1808 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1809 [sp!] */
2af46ca0 1810 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1811 {
1812 int n_saved_fp_regs;
1813 unsigned int fp_start_reg, fp_bound_reg;
1814
4be43953
DJ
1815 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1816 break;
1817
94c30b78 1818 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1819 {
d4473757
KB
1820 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1821 n_saved_fp_regs = 3;
1822 else
1823 n_saved_fp_regs = 1;
96baa820 1824 }
d4473757 1825 else
96baa820 1826 {
d4473757
KB
1827 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1828 n_saved_fp_regs = 2;
1829 else
1830 n_saved_fp_regs = 4;
96baa820 1831 }
d4473757 1832
34e8f22d 1833 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1834 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1835 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1836 {
4be43953
DJ
1837 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1838 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1839 regs[fp_start_reg++]);
96baa820 1840 }
c906108c 1841 }
0d39a070
DJ
1842 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1843 {
1844 /* Allow some special function calls when skipping the
1845 prologue; GCC generates these before storing arguments to
1846 the stack. */
1847 CORE_ADDR dest = BranchDest (current_pc, insn);
1848
e0634ccf 1849 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1850 continue;
1851 else
1852 break;
1853 }
d4473757 1854 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1855 break; /* Condition not true, exit early. */
0d39a070
DJ
1856 else if (arm_instruction_changes_pc (insn))
1857 /* Don't scan past anything that might change control flow. */
1858 break;
1859 else if ((insn & 0xfe500000) == 0xe8100000) /* ldm */
1860 {
1861 /* Ignore block loads from the stack, potentially copying
1862 parameters from memory. */
1863 if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1864 continue;
1865 else
1866 break;
1867 }
1868 else if ((insn & 0xfc500000) == 0xe4100000)
1869 {
1870 /* Similarly ignore single loads from the stack. */
1871 if (pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1872 continue;
1873 else
1874 break;
1875 }
1876 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1877 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1878 register instead of the stack. */
d4473757 1879 continue;
0d39a070
DJ
1880 else
1881 {
1882 /* The optimizer might shove anything into the prologue,
1883 so we just skip what we don't recognize. */
1884 unrecognized_pc = current_pc;
1885 continue;
1886 }
c906108c
SS
1887 }
1888
0d39a070
DJ
1889 if (unrecognized_pc == 0)
1890 unrecognized_pc = current_pc;
1891
4be43953
DJ
1892 /* The frame size is just the distance from the frame register
1893 to the original stack pointer. */
1894 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1895 {
1896 /* Frame pointer is fp. */
0d39a070
DJ
1897 framereg = ARM_FP_REGNUM;
1898 framesize = -regs[ARM_FP_REGNUM].k;
4be43953
DJ
1899 }
1900 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
1901 {
1902 /* Try the stack pointer... this is a bit desperate. */
0d39a070
DJ
1903 framereg = ARM_SP_REGNUM;
1904 framesize = -regs[ARM_SP_REGNUM].k;
4be43953 1905 }
d4473757 1906 else
4be43953
DJ
1907 {
1908 /* We're just out of luck. We don't know where the frame is. */
0d39a070
DJ
1909 framereg = -1;
1910 framesize = 0;
4be43953
DJ
1911 }
1912
0d39a070
DJ
1913 if (cache)
1914 {
1915 cache->framereg = framereg;
1916 cache->framesize = framesize;
1917
1918 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1919 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1920 cache->saved_regs[regno].addr = offset;
1921 }
1922
1923 if (arm_debug)
1924 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1925 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1926
1927 do_cleanups (back_to);
0d39a070
DJ
1928 return unrecognized_pc;
1929}
1930
1931static void
1932arm_scan_prologue (struct frame_info *this_frame,
1933 struct arm_prologue_cache *cache)
1934{
1935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 int regno;
1938 CORE_ADDR prologue_start, prologue_end, current_pc;
1939 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1940 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1941 pv_t regs[ARM_FPS_REGNUM];
1942 struct pv_area *stack;
1943 struct cleanup *back_to;
1944 CORE_ADDR offset;
1945
1946 /* Assume there is no frame until proven otherwise. */
1947 cache->framereg = ARM_SP_REGNUM;
1948 cache->framesize = 0;
1949
1950 /* Check for Thumb prologue. */
1951 if (arm_frame_is_thumb (this_frame))
1952 {
1953 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1954 return;
1955 }
1956
1957 /* Find the function prologue. If we can't find the function in
1958 the symbol table, peek in the stack frame to find the PC. */
1959 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1960 &prologue_end))
1961 {
1962 /* One way to find the end of the prologue (which works well
1963 for unoptimized code) is to do the following:
1964
1965 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1966
1967 if (sal.line == 0)
1968 prologue_end = prev_pc;
1969 else if (sal.end < prologue_end)
1970 prologue_end = sal.end;
1971
1972 This mechanism is very accurate so long as the optimizer
1973 doesn't move any instructions from the function body into the
1974 prologue. If this happens, sal.end will be the last
1975 instruction in the first hunk of prologue code just before
1976 the first instruction that the scheduler has moved from
1977 the body to the prologue.
1978
1979 In order to make sure that we scan all of the prologue
1980 instructions, we use a slightly less accurate mechanism which
1981 may scan more than necessary. To help compensate for this
1982 lack of accuracy, the prologue scanning loop below contains
1983 several clauses which'll cause the loop to terminate early if
1984 an implausible prologue instruction is encountered.
1985
1986 The expression
1987
1988 prologue_start + 64
1989
1990 is a suitable endpoint since it accounts for the largest
1991 possible prologue plus up to five instructions inserted by
1992 the scheduler. */
1993
1994 if (prologue_end > prologue_start + 64)
1995 {
1996 prologue_end = prologue_start + 64; /* See above. */
1997 }
1998 }
1999 else
2000 {
2001 /* We have no symbol information. Our only option is to assume this
2002 function has a standard stack frame and the normal frame register.
2003 Then, we can find the value of our frame pointer on entrance to
2004 the callee (or at the present moment if this is the innermost frame).
2005 The value stored there should be the address of the stmfd + 8. */
2006 CORE_ADDR frame_loc;
2007 LONGEST return_value;
2008
2009 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
2010 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
2011 return;
2012 else
2013 {
2014 prologue_start = gdbarch_addr_bits_remove
2015 (gdbarch, return_value) - 8;
2016 prologue_end = prologue_start + 64; /* See above. */
2017 }
2018 }
2019
2020 if (prev_pc < prologue_end)
2021 prologue_end = prev_pc;
2022
2023 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
2024}
2025
eb5492fa 2026static struct arm_prologue_cache *
a262aec2 2027arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 2028{
eb5492fa
DJ
2029 int reg;
2030 struct arm_prologue_cache *cache;
2031 CORE_ADDR unwound_fp;
c5aa993b 2032
35d5d4ee 2033 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2034 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 2035
a262aec2 2036 arm_scan_prologue (this_frame, cache);
848cfffb 2037
a262aec2 2038 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
2039 if (unwound_fp == 0)
2040 return cache;
c906108c 2041
4be43953 2042 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 2043
eb5492fa
DJ
2044 /* Calculate actual addresses of saved registers using offsets
2045 determined by arm_scan_prologue. */
a262aec2 2046 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 2047 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
2048 cache->saved_regs[reg].addr += cache->prev_sp;
2049
2050 return cache;
c906108c
SS
2051}
2052
eb5492fa
DJ
2053/* Our frame ID for a normal frame is the current function's starting PC
2054 and the caller's SP when we were called. */
c906108c 2055
148754e5 2056static void
a262aec2 2057arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
2058 void **this_cache,
2059 struct frame_id *this_id)
c906108c 2060{
eb5492fa
DJ
2061 struct arm_prologue_cache *cache;
2062 struct frame_id id;
2c404490 2063 CORE_ADDR pc, func;
f079148d 2064
eb5492fa 2065 if (*this_cache == NULL)
a262aec2 2066 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2067 cache = *this_cache;
2a451106 2068
2c404490
DJ
2069 /* This is meant to halt the backtrace at "_start". */
2070 pc = get_frame_pc (this_frame);
2071 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
eb5492fa 2072 return;
5a203e44 2073
eb5492fa
DJ
2074 /* If we've hit a wall, stop. */
2075 if (cache->prev_sp == 0)
2076 return;
24de872b 2077
0e9e9abd
UW
2078 /* Use function start address as part of the frame ID. If we cannot
2079 identify the start address (due to missing symbol information),
2080 fall back to just using the current PC. */
2c404490 2081 func = get_frame_func (this_frame);
0e9e9abd
UW
2082 if (!func)
2083 func = pc;
2084
eb5492fa 2085 id = frame_id_build (cache->prev_sp, func);
eb5492fa 2086 *this_id = id;
c906108c
SS
2087}
2088
a262aec2
DJ
2089static struct value *
2090arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 2091 void **this_cache,
a262aec2 2092 int prev_regnum)
24de872b 2093{
24568a2c 2094 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
2095 struct arm_prologue_cache *cache;
2096
eb5492fa 2097 if (*this_cache == NULL)
a262aec2 2098 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa 2099 cache = *this_cache;
24de872b 2100
eb5492fa 2101 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
2102 instead. The prologue may save PC, but it will point into this
2103 frame's prologue, not the next frame's resume location. Also
2104 strip the saved T bit. A valid LR may have the low bit set, but
2105 a valid PC never does. */
eb5492fa 2106 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
2107 {
2108 CORE_ADDR lr;
2109
2110 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2111 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 2112 arm_addr_bits_remove (gdbarch, lr));
b39cc962 2113 }
24de872b 2114
eb5492fa 2115 /* SP is generally not saved to the stack, but this frame is
a262aec2 2116 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
2117 The value was already reconstructed into PREV_SP. */
2118 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 2119 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 2120
b39cc962
DJ
2121 /* The CPSR may have been changed by the call instruction and by the
2122 called function. The only bit we can reconstruct is the T bit,
2123 by checking the low bit of LR as of the call. This is a reliable
2124 indicator of Thumb-ness except for some ARM v4T pre-interworking
2125 Thumb code, which could get away with a clear low bit as long as
2126 the called function did not use bx. Guess that all other
2127 bits are unchanged; the condition flags are presumably lost,
2128 but the processor status is likely valid. */
2129 if (prev_regnum == ARM_PS_REGNUM)
2130 {
2131 CORE_ADDR lr, cpsr;
9779414d 2132 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
2133
2134 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
2135 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
2136 if (IS_THUMB_ADDR (lr))
9779414d 2137 cpsr |= t_bit;
b39cc962 2138 else
9779414d 2139 cpsr &= ~t_bit;
b39cc962
DJ
2140 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
2141 }
2142
a262aec2
DJ
2143 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
2144 prev_regnum);
eb5492fa
DJ
2145}
2146
2147struct frame_unwind arm_prologue_unwind = {
2148 NORMAL_FRAME,
2149 arm_prologue_this_id,
a262aec2
DJ
2150 arm_prologue_prev_register,
2151 NULL,
2152 default_frame_sniffer
eb5492fa
DJ
2153};
2154
0e9e9abd
UW
2155/* Maintain a list of ARM exception table entries per objfile, similar to the
2156 list of mapping symbols. We only cache entries for standard ARM-defined
2157 personality routines; the cache will contain only the frame unwinding
2158 instructions associated with the entry (not the descriptors). */
2159
2160static const struct objfile_data *arm_exidx_data_key;
2161
2162struct arm_exidx_entry
2163{
2164 bfd_vma addr;
2165 gdb_byte *entry;
2166};
2167typedef struct arm_exidx_entry arm_exidx_entry_s;
2168DEF_VEC_O(arm_exidx_entry_s);
2169
2170struct arm_exidx_data
2171{
2172 VEC(arm_exidx_entry_s) **section_maps;
2173};
2174
2175static void
2176arm_exidx_data_free (struct objfile *objfile, void *arg)
2177{
2178 struct arm_exidx_data *data = arg;
2179 unsigned int i;
2180
2181 for (i = 0; i < objfile->obfd->section_count; i++)
2182 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2183}
2184
2185static inline int
2186arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2187 const struct arm_exidx_entry *rhs)
2188{
2189 return lhs->addr < rhs->addr;
2190}
2191
2192static struct obj_section *
2193arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2194{
2195 struct obj_section *osect;
2196
2197 ALL_OBJFILE_OSECTIONS (objfile, osect)
2198 if (bfd_get_section_flags (objfile->obfd,
2199 osect->the_bfd_section) & SEC_ALLOC)
2200 {
2201 bfd_vma start, size;
2202 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2203 size = bfd_get_section_size (osect->the_bfd_section);
2204
2205 if (start <= vma && vma < start + size)
2206 return osect;
2207 }
2208
2209 return NULL;
2210}
2211
2212/* Parse contents of exception table and exception index sections
2213 of OBJFILE, and fill in the exception table entry cache.
2214
2215 For each entry that refers to a standard ARM-defined personality
2216 routine, extract the frame unwinding instructions (from either
2217 the index or the table section). The unwinding instructions
2218 are normalized by:
2219 - extracting them from the rest of the table data
2220 - converting to host endianness
2221 - appending the implicit 0xb0 ("Finish") code
2222
2223 The extracted and normalized instructions are stored for later
2224 retrieval by the arm_find_exidx_entry routine. */
2225
2226static void
2227arm_exidx_new_objfile (struct objfile *objfile)
2228{
2229 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
2230 struct arm_exidx_data *data;
2231 asection *exidx, *extab;
2232 bfd_vma exidx_vma = 0, extab_vma = 0;
2233 bfd_size_type exidx_size = 0, extab_size = 0;
2234 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2235 LONGEST i;
2236
2237 /* If we've already touched this file, do nothing. */
2238 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2239 return;
2240
2241 /* Read contents of exception table and index. */
2242 exidx = bfd_get_section_by_name (objfile->obfd, ".ARM.exidx");
2243 if (exidx)
2244 {
2245 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2246 exidx_size = bfd_get_section_size (exidx);
2247 exidx_data = xmalloc (exidx_size);
2248 make_cleanup (xfree, exidx_data);
2249
2250 if (!bfd_get_section_contents (objfile->obfd, exidx,
2251 exidx_data, 0, exidx_size))
2252 {
2253 do_cleanups (cleanups);
2254 return;
2255 }
2256 }
2257
2258 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2259 if (extab)
2260 {
2261 extab_vma = bfd_section_vma (objfile->obfd, extab);
2262 extab_size = bfd_get_section_size (extab);
2263 extab_data = xmalloc (extab_size);
2264 make_cleanup (xfree, extab_data);
2265
2266 if (!bfd_get_section_contents (objfile->obfd, extab,
2267 extab_data, 0, extab_size))
2268 {
2269 do_cleanups (cleanups);
2270 return;
2271 }
2272 }
2273
2274 /* Allocate exception table data structure. */
2275 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2276 set_objfile_data (objfile, arm_exidx_data_key, data);
2277 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2278 objfile->obfd->section_count,
2279 VEC(arm_exidx_entry_s) *);
2280
2281 /* Fill in exception table. */
2282 for (i = 0; i < exidx_size / 8; i++)
2283 {
2284 struct arm_exidx_entry new_exidx_entry;
2285 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2286 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2287 bfd_vma addr = 0, word = 0;
2288 int n_bytes = 0, n_words = 0;
2289 struct obj_section *sec;
2290 gdb_byte *entry = NULL;
2291
2292 /* Extract address of start of function. */
2293 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2294 idx += exidx_vma + i * 8;
2295
2296 /* Find section containing function and compute section offset. */
2297 sec = arm_obj_section_from_vma (objfile, idx);
2298 if (sec == NULL)
2299 continue;
2300 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2301
2302 /* Determine address of exception table entry. */
2303 if (val == 1)
2304 {
2305 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2306 }
2307 else if ((val & 0xff000000) == 0x80000000)
2308 {
2309 /* Exception table entry embedded in .ARM.exidx
2310 -- must be short form. */
2311 word = val;
2312 n_bytes = 3;
2313 }
2314 else if (!(val & 0x80000000))
2315 {
2316 /* Exception table entry in .ARM.extab. */
2317 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2318 addr += exidx_vma + i * 8 + 4;
2319
2320 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2321 {
2322 word = bfd_h_get_32 (objfile->obfd,
2323 extab_data + addr - extab_vma);
2324 addr += 4;
2325
2326 if ((word & 0xff000000) == 0x80000000)
2327 {
2328 /* Short form. */
2329 n_bytes = 3;
2330 }
2331 else if ((word & 0xff000000) == 0x81000000
2332 || (word & 0xff000000) == 0x82000000)
2333 {
2334 /* Long form. */
2335 n_bytes = 2;
2336 n_words = ((word >> 16) & 0xff);
2337 }
2338 else if (!(word & 0x80000000))
2339 {
2340 bfd_vma pers;
2341 struct obj_section *pers_sec;
2342 int gnu_personality = 0;
2343
2344 /* Custom personality routine. */
2345 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2346 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2347
2348 /* Check whether we've got one of the variants of the
2349 GNU personality routines. */
2350 pers_sec = arm_obj_section_from_vma (objfile, pers);
2351 if (pers_sec)
2352 {
2353 static const char *personality[] =
2354 {
2355 "__gcc_personality_v0",
2356 "__gxx_personality_v0",
2357 "__gcj_personality_v0",
2358 "__gnu_objc_personality_v0",
2359 NULL
2360 };
2361
2362 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2363 int k;
2364
2365 for (k = 0; personality[k]; k++)
2366 if (lookup_minimal_symbol_by_pc_name
2367 (pc, personality[k], objfile))
2368 {
2369 gnu_personality = 1;
2370 break;
2371 }
2372 }
2373
2374 /* If so, the next word contains a word count in the high
2375 byte, followed by the same unwind instructions as the
2376 pre-defined forms. */
2377 if (gnu_personality
2378 && addr + 4 <= extab_vma + extab_size)
2379 {
2380 word = bfd_h_get_32 (objfile->obfd,
2381 extab_data + addr - extab_vma);
2382 addr += 4;
2383 n_bytes = 3;
2384 n_words = ((word >> 24) & 0xff);
2385 }
2386 }
2387 }
2388 }
2389
2390 /* Sanity check address. */
2391 if (n_words)
2392 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2393 n_words = n_bytes = 0;
2394
2395 /* The unwind instructions reside in WORD (only the N_BYTES least
2396 significant bytes are valid), followed by N_WORDS words in the
2397 extab section starting at ADDR. */
2398 if (n_bytes || n_words)
2399 {
2400 gdb_byte *p = entry = obstack_alloc (&objfile->objfile_obstack,
2401 n_bytes + n_words * 4 + 1);
2402
2403 while (n_bytes--)
2404 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2405
2406 while (n_words--)
2407 {
2408 word = bfd_h_get_32 (objfile->obfd,
2409 extab_data + addr - extab_vma);
2410 addr += 4;
2411
2412 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2413 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2414 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2415 *p++ = (gdb_byte) (word & 0xff);
2416 }
2417
2418 /* Implied "Finish" to terminate the list. */
2419 *p++ = 0xb0;
2420 }
2421
2422 /* Push entry onto vector. They are guaranteed to always
2423 appear in order of increasing addresses. */
2424 new_exidx_entry.addr = idx;
2425 new_exidx_entry.entry = entry;
2426 VEC_safe_push (arm_exidx_entry_s,
2427 data->section_maps[sec->the_bfd_section->index],
2428 &new_exidx_entry);
2429 }
2430
2431 do_cleanups (cleanups);
2432}
2433
2434/* Search for the exception table entry covering MEMADDR. If one is found,
2435 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2436 set *START to the start of the region covered by this entry. */
2437
2438static gdb_byte *
2439arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2440{
2441 struct obj_section *sec;
2442
2443 sec = find_pc_section (memaddr);
2444 if (sec != NULL)
2445 {
2446 struct arm_exidx_data *data;
2447 VEC(arm_exidx_entry_s) *map;
2448 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2449 unsigned int idx;
2450
2451 data = objfile_data (sec->objfile, arm_exidx_data_key);
2452 if (data != NULL)
2453 {
2454 map = data->section_maps[sec->the_bfd_section->index];
2455 if (!VEC_empty (arm_exidx_entry_s, map))
2456 {
2457 struct arm_exidx_entry *map_sym;
2458
2459 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2460 arm_compare_exidx_entries);
2461
2462 /* VEC_lower_bound finds the earliest ordered insertion
2463 point. If the following symbol starts at this exact
2464 address, we use that; otherwise, the preceding
2465 exception table entry covers this address. */
2466 if (idx < VEC_length (arm_exidx_entry_s, map))
2467 {
2468 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2469 if (map_sym->addr == map_key.addr)
2470 {
2471 if (start)
2472 *start = map_sym->addr + obj_section_addr (sec);
2473 return map_sym->entry;
2474 }
2475 }
2476
2477 if (idx > 0)
2478 {
2479 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2480 if (start)
2481 *start = map_sym->addr + obj_section_addr (sec);
2482 return map_sym->entry;
2483 }
2484 }
2485 }
2486 }
2487
2488 return NULL;
2489}
2490
2491/* Given the current frame THIS_FRAME, and its associated frame unwinding
2492 instruction list from the ARM exception table entry ENTRY, allocate and
2493 return a prologue cache structure describing how to unwind this frame.
2494
2495 Return NULL if the unwinding instruction list contains a "spare",
2496 "reserved" or "refuse to unwind" instruction as defined in section
2497 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2498 for the ARM Architecture" document. */
2499
2500static struct arm_prologue_cache *
2501arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2502{
2503 CORE_ADDR vsp = 0;
2504 int vsp_valid = 0;
2505
2506 struct arm_prologue_cache *cache;
2507 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2508 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2509
2510 for (;;)
2511 {
2512 gdb_byte insn;
2513
2514 /* Whenever we reload SP, we actually have to retrieve its
2515 actual value in the current frame. */
2516 if (!vsp_valid)
2517 {
2518 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2519 {
2520 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2521 vsp = get_frame_register_unsigned (this_frame, reg);
2522 }
2523 else
2524 {
2525 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2526 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2527 }
2528
2529 vsp_valid = 1;
2530 }
2531
2532 /* Decode next unwind instruction. */
2533 insn = *entry++;
2534
2535 if ((insn & 0xc0) == 0)
2536 {
2537 int offset = insn & 0x3f;
2538 vsp += (offset << 2) + 4;
2539 }
2540 else if ((insn & 0xc0) == 0x40)
2541 {
2542 int offset = insn & 0x3f;
2543 vsp -= (offset << 2) + 4;
2544 }
2545 else if ((insn & 0xf0) == 0x80)
2546 {
2547 int mask = ((insn & 0xf) << 8) | *entry++;
2548 int i;
2549
2550 /* The special case of an all-zero mask identifies
2551 "Refuse to unwind". We return NULL to fall back
2552 to the prologue analyzer. */
2553 if (mask == 0)
2554 return NULL;
2555
2556 /* Pop registers r4..r15 under mask. */
2557 for (i = 0; i < 12; i++)
2558 if (mask & (1 << i))
2559 {
2560 cache->saved_regs[4 + i].addr = vsp;
2561 vsp += 4;
2562 }
2563
2564 /* Special-case popping SP -- we need to reload vsp. */
2565 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2566 vsp_valid = 0;
2567 }
2568 else if ((insn & 0xf0) == 0x90)
2569 {
2570 int reg = insn & 0xf;
2571
2572 /* Reserved cases. */
2573 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2574 return NULL;
2575
2576 /* Set SP from another register and mark VSP for reload. */
2577 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2578 vsp_valid = 0;
2579 }
2580 else if ((insn & 0xf0) == 0xa0)
2581 {
2582 int count = insn & 0x7;
2583 int pop_lr = (insn & 0x8) != 0;
2584 int i;
2585
2586 /* Pop r4..r[4+count]. */
2587 for (i = 0; i <= count; i++)
2588 {
2589 cache->saved_regs[4 + i].addr = vsp;
2590 vsp += 4;
2591 }
2592
2593 /* If indicated by flag, pop LR as well. */
2594 if (pop_lr)
2595 {
2596 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2597 vsp += 4;
2598 }
2599 }
2600 else if (insn == 0xb0)
2601 {
2602 /* We could only have updated PC by popping into it; if so, it
2603 will show up as address. Otherwise, copy LR into PC. */
2604 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2605 cache->saved_regs[ARM_PC_REGNUM]
2606 = cache->saved_regs[ARM_LR_REGNUM];
2607
2608 /* We're done. */
2609 break;
2610 }
2611 else if (insn == 0xb1)
2612 {
2613 int mask = *entry++;
2614 int i;
2615
2616 /* All-zero mask and mask >= 16 is "spare". */
2617 if (mask == 0 || mask >= 16)
2618 return NULL;
2619
2620 /* Pop r0..r3 under mask. */
2621 for (i = 0; i < 4; i++)
2622 if (mask & (1 << i))
2623 {
2624 cache->saved_regs[i].addr = vsp;
2625 vsp += 4;
2626 }
2627 }
2628 else if (insn == 0xb2)
2629 {
2630 ULONGEST offset = 0;
2631 unsigned shift = 0;
2632
2633 do
2634 {
2635 offset |= (*entry & 0x7f) << shift;
2636 shift += 7;
2637 }
2638 while (*entry++ & 0x80);
2639
2640 vsp += 0x204 + (offset << 2);
2641 }
2642 else if (insn == 0xb3)
2643 {
2644 int start = *entry >> 4;
2645 int count = (*entry++) & 0xf;
2646 int i;
2647
2648 /* Only registers D0..D15 are valid here. */
2649 if (start + count >= 16)
2650 return NULL;
2651
2652 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2653 for (i = 0; i <= count; i++)
2654 {
2655 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2656 vsp += 8;
2657 }
2658
2659 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2660 vsp += 4;
2661 }
2662 else if ((insn & 0xf8) == 0xb8)
2663 {
2664 int count = insn & 0x7;
2665 int i;
2666
2667 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2668 for (i = 0; i <= count; i++)
2669 {
2670 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2671 vsp += 8;
2672 }
2673
2674 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2675 vsp += 4;
2676 }
2677 else if (insn == 0xc6)
2678 {
2679 int start = *entry >> 4;
2680 int count = (*entry++) & 0xf;
2681 int i;
2682
2683 /* Only registers WR0..WR15 are valid. */
2684 if (start + count >= 16)
2685 return NULL;
2686
2687 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2688 for (i = 0; i <= count; i++)
2689 {
2690 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2691 vsp += 8;
2692 }
2693 }
2694 else if (insn == 0xc7)
2695 {
2696 int mask = *entry++;
2697 int i;
2698
2699 /* All-zero mask and mask >= 16 is "spare". */
2700 if (mask == 0 || mask >= 16)
2701 return NULL;
2702
2703 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2704 for (i = 0; i < 4; i++)
2705 if (mask & (1 << i))
2706 {
2707 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2708 vsp += 4;
2709 }
2710 }
2711 else if ((insn & 0xf8) == 0xc0)
2712 {
2713 int count = insn & 0x7;
2714 int i;
2715
2716 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2717 for (i = 0; i <= count; i++)
2718 {
2719 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2720 vsp += 8;
2721 }
2722 }
2723 else if (insn == 0xc8)
2724 {
2725 int start = *entry >> 4;
2726 int count = (*entry++) & 0xf;
2727 int i;
2728
2729 /* Only registers D0..D31 are valid. */
2730 if (start + count >= 16)
2731 return NULL;
2732
2733 /* Pop VFP double-precision registers
2734 D[16+start]..D[16+start+count]. */
2735 for (i = 0; i <= count; i++)
2736 {
2737 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2738 vsp += 8;
2739 }
2740 }
2741 else if (insn == 0xc9)
2742 {
2743 int start = *entry >> 4;
2744 int count = (*entry++) & 0xf;
2745 int i;
2746
2747 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2748 for (i = 0; i <= count; i++)
2749 {
2750 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2751 vsp += 8;
2752 }
2753 }
2754 else if ((insn & 0xf8) == 0xd0)
2755 {
2756 int count = insn & 0x7;
2757 int i;
2758
2759 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2760 for (i = 0; i <= count; i++)
2761 {
2762 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2763 vsp += 8;
2764 }
2765 }
2766 else
2767 {
2768 /* Everything else is "spare". */
2769 return NULL;
2770 }
2771 }
2772
2773 /* If we restore SP from a register, assume this was the frame register.
2774 Otherwise just fall back to SP as frame register. */
2775 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2776 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2777 else
2778 cache->framereg = ARM_SP_REGNUM;
2779
2780 /* Determine offset to previous frame. */
2781 cache->framesize
2782 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2783
2784 /* We already got the previous SP. */
2785 cache->prev_sp = vsp;
2786
2787 return cache;
2788}
2789
2790/* Unwinding via ARM exception table entries. Note that the sniffer
2791 already computes a filled-in prologue cache, which is then used
2792 with the same arm_prologue_this_id and arm_prologue_prev_register
2793 routines also used for prologue-parsing based unwinding. */
2794
2795static int
2796arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2797 struct frame_info *this_frame,
2798 void **this_prologue_cache)
2799{
2800 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2801 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2802 CORE_ADDR addr_in_block, exidx_region, func_start;
2803 struct arm_prologue_cache *cache;
2804 gdb_byte *entry;
2805
2806 /* See if we have an ARM exception table entry covering this address. */
2807 addr_in_block = get_frame_address_in_block (this_frame);
2808 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2809 if (!entry)
2810 return 0;
2811
2812 /* The ARM exception table does not describe unwind information
2813 for arbitrary PC values, but is guaranteed to be correct only
2814 at call sites. We have to decide here whether we want to use
2815 ARM exception table information for this frame, or fall back
2816 to using prologue parsing. (Note that if we have DWARF CFI,
2817 this sniffer isn't even called -- CFI is always preferred.)
2818
2819 Before we make this decision, however, we check whether we
2820 actually have *symbol* information for the current frame.
2821 If not, prologue parsing would not work anyway, so we might
2822 as well use the exception table and hope for the best. */
2823 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2824 {
2825 int exc_valid = 0;
2826
2827 /* If the next frame is "normal", we are at a call site in this
2828 frame, so exception information is guaranteed to be valid. */
2829 if (get_next_frame (this_frame)
2830 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2831 exc_valid = 1;
2832
2833 /* We also assume exception information is valid if we're currently
2834 blocked in a system call. The system library is supposed to
2835 ensure this, so that e.g. pthread cancellation works. */
2836 if (arm_frame_is_thumb (this_frame))
2837 {
2838 LONGEST insn;
2839
2840 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2841 byte_order_for_code, &insn)
2842 && (insn & 0xff00) == 0xdf00 /* svc */)
2843 exc_valid = 1;
2844 }
2845 else
2846 {
2847 LONGEST insn;
2848
2849 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2850 byte_order_for_code, &insn)
2851 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2852 exc_valid = 1;
2853 }
2854
2855 /* Bail out if we don't know that exception information is valid. */
2856 if (!exc_valid)
2857 return 0;
2858
2859 /* The ARM exception index does not mark the *end* of the region
2860 covered by the entry, and some functions will not have any entry.
2861 To correctly recognize the end of the covered region, the linker
2862 should have inserted dummy records with a CANTUNWIND marker.
2863
2864 Unfortunately, current versions of GNU ld do not reliably do
2865 this, and thus we may have found an incorrect entry above.
2866 As a (temporary) sanity check, we only use the entry if it
2867 lies *within* the bounds of the function. Note that this check
2868 might reject perfectly valid entries that just happen to cover
2869 multiple functions; therefore this check ought to be removed
2870 once the linker is fixed. */
2871 if (func_start > exidx_region)
2872 return 0;
2873 }
2874
2875 /* Decode the list of unwinding instructions into a prologue cache.
2876 Note that this may fail due to e.g. a "refuse to unwind" code. */
2877 cache = arm_exidx_fill_cache (this_frame, entry);
2878 if (!cache)
2879 return 0;
2880
2881 *this_prologue_cache = cache;
2882 return 1;
2883}
2884
2885struct frame_unwind arm_exidx_unwind = {
2886 NORMAL_FRAME,
2887 arm_prologue_this_id,
2888 arm_prologue_prev_register,
2889 NULL,
2890 arm_exidx_unwind_sniffer
2891};
2892
909cf6ea 2893static struct arm_prologue_cache *
a262aec2 2894arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2895{
909cf6ea 2896 struct arm_prologue_cache *cache;
909cf6ea 2897
35d5d4ee 2898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2899 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2900
a262aec2 2901 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2902
2903 return cache;
2904}
2905
2906/* Our frame ID for a stub frame is the current SP and LR. */
2907
2908static void
a262aec2 2909arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2910 void **this_cache,
2911 struct frame_id *this_id)
2912{
2913 struct arm_prologue_cache *cache;
2914
2915 if (*this_cache == NULL)
a262aec2 2916 *this_cache = arm_make_stub_cache (this_frame);
909cf6ea
DJ
2917 cache = *this_cache;
2918
a262aec2 2919 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2920}
2921
a262aec2
DJ
2922static int
2923arm_stub_unwind_sniffer (const struct frame_unwind *self,
2924 struct frame_info *this_frame,
2925 void **this_prologue_cache)
909cf6ea 2926{
93d42b30 2927 CORE_ADDR addr_in_block;
909cf6ea
DJ
2928 char dummy[4];
2929
a262aec2 2930 addr_in_block = get_frame_address_in_block (this_frame);
93d42b30 2931 if (in_plt_section (addr_in_block, NULL)
fc36e839
DE
2932 /* We also use the stub winder if the target memory is unreadable
2933 to avoid having the prologue unwinder trying to read it. */
a262aec2
DJ
2934 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2935 return 1;
909cf6ea 2936
a262aec2 2937 return 0;
909cf6ea
DJ
2938}
2939
a262aec2
DJ
2940struct frame_unwind arm_stub_unwind = {
2941 NORMAL_FRAME,
2942 arm_stub_this_id,
2943 arm_prologue_prev_register,
2944 NULL,
2945 arm_stub_unwind_sniffer
2946};
2947
24de872b 2948static CORE_ADDR
a262aec2 2949arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
2950{
2951 struct arm_prologue_cache *cache;
2952
eb5492fa 2953 if (*this_cache == NULL)
a262aec2 2954 *this_cache = arm_make_prologue_cache (this_frame);
eb5492fa
DJ
2955 cache = *this_cache;
2956
4be43953 2957 return cache->prev_sp - cache->framesize;
24de872b
DJ
2958}
2959
eb5492fa
DJ
2960struct frame_base arm_normal_base = {
2961 &arm_prologue_unwind,
2962 arm_normal_frame_base,
2963 arm_normal_frame_base,
2964 arm_normal_frame_base
2965};
2966
a262aec2 2967/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
2968 dummy frame. The frame ID's base needs to match the TOS value
2969 saved by save_dummy_frame_tos() and returned from
2970 arm_push_dummy_call, and the PC needs to match the dummy frame's
2971 breakpoint. */
c906108c 2972
eb5492fa 2973static struct frame_id
a262aec2 2974arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 2975{
0963b4bd
MS
2976 return frame_id_build (get_frame_register_unsigned (this_frame,
2977 ARM_SP_REGNUM),
a262aec2 2978 get_frame_pc (this_frame));
eb5492fa 2979}
c3b4394c 2980
eb5492fa
DJ
2981/* Given THIS_FRAME, find the previous frame's resume PC (which will
2982 be used to construct the previous frame's ID, after looking up the
2983 containing function). */
c3b4394c 2984
eb5492fa
DJ
2985static CORE_ADDR
2986arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
2987{
2988 CORE_ADDR pc;
2989 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 2990 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
2991}
2992
2993static CORE_ADDR
2994arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
2995{
2996 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
2997}
2998
b39cc962
DJ
2999static struct value *
3000arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3001 int regnum)
3002{
24568a2c 3003 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3004 CORE_ADDR lr, cpsr;
9779414d 3005 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3006
3007 switch (regnum)
3008 {
3009 case ARM_PC_REGNUM:
3010 /* The PC is normally copied from the return column, which
3011 describes saves of LR. However, that version may have an
3012 extra bit set to indicate Thumb state. The bit is not
3013 part of the PC. */
3014 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3015 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3016 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3017
3018 case ARM_PS_REGNUM:
3019 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3020 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3021 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3022 if (IS_THUMB_ADDR (lr))
9779414d 3023 cpsr |= t_bit;
b39cc962 3024 else
9779414d 3025 cpsr &= ~t_bit;
ca38c58e 3026 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3027
3028 default:
3029 internal_error (__FILE__, __LINE__,
3030 _("Unexpected register %d"), regnum);
3031 }
3032}
3033
3034static void
3035arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3036 struct dwarf2_frame_state_reg *reg,
3037 struct frame_info *this_frame)
3038{
3039 switch (regnum)
3040 {
3041 case ARM_PC_REGNUM:
3042 case ARM_PS_REGNUM:
3043 reg->how = DWARF2_FRAME_REG_FN;
3044 reg->loc.fn = arm_dwarf2_prev_register;
3045 break;
3046 case ARM_SP_REGNUM:
3047 reg->how = DWARF2_FRAME_REG_CFA;
3048 break;
3049 }
3050}
3051
4024ca99
UW
3052/* Return true if we are in the function's epilogue, i.e. after the
3053 instruction that destroyed the function's stack frame. */
3054
3055static int
3056thumb_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3057{
3058 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3059 unsigned int insn, insn2;
3060 int found_return = 0, found_stack_adjust = 0;
3061 CORE_ADDR func_start, func_end;
3062 CORE_ADDR scan_pc;
3063 gdb_byte buf[4];
3064
3065 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3066 return 0;
3067
3068 /* The epilogue is a sequence of instructions along the following lines:
3069
3070 - add stack frame size to SP or FP
3071 - [if frame pointer used] restore SP from FP
3072 - restore registers from SP [may include PC]
3073 - a return-type instruction [if PC wasn't already restored]
3074
3075 In a first pass, we scan forward from the current PC and verify the
3076 instructions we find as compatible with this sequence, ending in a
3077 return instruction.
3078
3079 However, this is not sufficient to distinguish indirect function calls
3080 within a function from indirect tail calls in the epilogue in some cases.
3081 Therefore, if we didn't already find any SP-changing instruction during
3082 forward scan, we add a backward scanning heuristic to ensure we actually
3083 are in the epilogue. */
3084
3085 scan_pc = pc;
3086 while (scan_pc < func_end && !found_return)
3087 {
3088 if (target_read_memory (scan_pc, buf, 2))
3089 break;
3090
3091 scan_pc += 2;
3092 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3093
3094 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3095 found_return = 1;
3096 else if (insn == 0x46f7) /* mov pc, lr */
3097 found_return = 1;
3098 else if (insn == 0x46bd) /* mov sp, r7 */
3099 found_stack_adjust = 1;
3100 else if ((insn & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3101 found_stack_adjust = 1;
3102 else if ((insn & 0xfe00) == 0xbc00) /* pop <registers> */
3103 {
3104 found_stack_adjust = 1;
3105 if (insn & 0x0100) /* <registers> include PC. */
3106 found_return = 1;
3107 }
3108 else if ((insn & 0xe000) == 0xe000) /* 32-bit Thumb-2 instruction */
3109 {
3110 if (target_read_memory (scan_pc, buf, 2))
3111 break;
3112
3113 scan_pc += 2;
3114 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3115
3116 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3117 {
3118 found_stack_adjust = 1;
3119 if (insn2 & 0x8000) /* <registers> include PC. */
3120 found_return = 1;
3121 }
3122 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3123 && (insn2 & 0x0fff) == 0x0b04)
3124 {
3125 found_stack_adjust = 1;
3126 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3127 found_return = 1;
3128 }
3129 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3130 && (insn2 & 0x0e00) == 0x0a00)
3131 found_stack_adjust = 1;
3132 else
3133 break;
3134 }
3135 else
3136 break;
3137 }
3138
3139 if (!found_return)
3140 return 0;
3141
3142 /* Since any instruction in the epilogue sequence, with the possible
3143 exception of return itself, updates the stack pointer, we need to
3144 scan backwards for at most one instruction. Try either a 16-bit or
3145 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3146 too much about false positives. */
4024ca99
UW
3147
3148 if (!found_stack_adjust)
3149 {
3150 if (pc - 4 < func_start)
3151 return 0;
3152 if (target_read_memory (pc - 4, buf, 4))
3153 return 0;
3154
3155 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3156 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3157
3158 if (insn2 == 0x46bd) /* mov sp, r7 */
3159 found_stack_adjust = 1;
3160 else if ((insn2 & 0xff00) == 0xb000) /* add sp, imm or sub sp, imm */
3161 found_stack_adjust = 1;
3162 else if ((insn2 & 0xff00) == 0xbc00) /* pop <registers> without PC */
3163 found_stack_adjust = 1;
3164 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3165 found_stack_adjust = 1;
3166 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3167 && (insn2 & 0x0fff) == 0x0b04)
3168 found_stack_adjust = 1;
3169 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3170 && (insn2 & 0x0e00) == 0x0a00)
3171 found_stack_adjust = 1;
3172 }
3173
3174 return found_stack_adjust;
3175}
3176
3177/* Return true if we are in the function's epilogue, i.e. after the
3178 instruction that destroyed the function's stack frame. */
3179
3180static int
3181arm_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3182{
3183 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3184 unsigned int insn;
3185 int found_return, found_stack_adjust;
3186 CORE_ADDR func_start, func_end;
3187
3188 if (arm_pc_is_thumb (gdbarch, pc))
3189 return thumb_in_function_epilogue_p (gdbarch, pc);
3190
3191 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3192 return 0;
3193
3194 /* We are in the epilogue if the previous instruction was a stack
3195 adjustment and the next instruction is a possible return (bx, mov
3196 pc, or pop). We could have to scan backwards to find the stack
3197 adjustment, or forwards to find the return, but this is a decent
3198 approximation. First scan forwards. */
3199
3200 found_return = 0;
3201 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3202 if (bits (insn, 28, 31) != INST_NV)
3203 {
3204 if ((insn & 0x0ffffff0) == 0x012fff10)
3205 /* BX. */
3206 found_return = 1;
3207 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3208 /* MOV PC. */
3209 found_return = 1;
3210 else if ((insn & 0x0fff0000) == 0x08bd0000
3211 && (insn & 0x0000c000) != 0)
3212 /* POP (LDMIA), including PC or LR. */
3213 found_return = 1;
3214 }
3215
3216 if (!found_return)
3217 return 0;
3218
3219 /* Scan backwards. This is just a heuristic, so do not worry about
3220 false positives from mode changes. */
3221
3222 if (pc < func_start + 4)
3223 return 0;
3224
73c964d6 3225 found_stack_adjust = 0;
4024ca99
UW
3226 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
3227 if (bits (insn, 28, 31) != INST_NV)
3228 {
3229 if ((insn & 0x0df0f000) == 0x0080d000)
3230 /* ADD SP (register or immediate). */
3231 found_stack_adjust = 1;
3232 else if ((insn & 0x0df0f000) == 0x0040d000)
3233 /* SUB SP (register or immediate). */
3234 found_stack_adjust = 1;
3235 else if ((insn & 0x0ffffff0) == 0x01a0d000)
3236 /* MOV SP. */
77bc0675 3237 found_stack_adjust = 1;
4024ca99
UW
3238 else if ((insn & 0x0fff0000) == 0x08bd0000)
3239 /* POP (LDMIA). */
3240 found_stack_adjust = 1;
3241 }
3242
3243 if (found_stack_adjust)
3244 return 1;
3245
3246 return 0;
3247}
3248
3249
2dd604e7
RE
3250/* When arguments must be pushed onto the stack, they go on in reverse
3251 order. The code below implements a FILO (stack) to do this. */
3252
3253struct stack_item
3254{
3255 int len;
3256 struct stack_item *prev;
3257 void *data;
3258};
3259
3260static struct stack_item *
8c6363cf 3261push_stack_item (struct stack_item *prev, const void *contents, int len)
2dd604e7
RE
3262{
3263 struct stack_item *si;
3264 si = xmalloc (sizeof (struct stack_item));
226c7fbc 3265 si->data = xmalloc (len);
2dd604e7
RE
3266 si->len = len;
3267 si->prev = prev;
3268 memcpy (si->data, contents, len);
3269 return si;
3270}
3271
3272static struct stack_item *
3273pop_stack_item (struct stack_item *si)
3274{
3275 struct stack_item *dead = si;
3276 si = si->prev;
3277 xfree (dead->data);
3278 xfree (dead);
3279 return si;
3280}
3281
2af48f68
PB
3282
3283/* Return the alignment (in bytes) of the given type. */
3284
3285static int
3286arm_type_align (struct type *t)
3287{
3288 int n;
3289 int align;
3290 int falign;
3291
3292 t = check_typedef (t);
3293 switch (TYPE_CODE (t))
3294 {
3295 default:
3296 /* Should never happen. */
3297 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3298 return 4;
3299
3300 case TYPE_CODE_PTR:
3301 case TYPE_CODE_ENUM:
3302 case TYPE_CODE_INT:
3303 case TYPE_CODE_FLT:
3304 case TYPE_CODE_SET:
3305 case TYPE_CODE_RANGE:
3306 case TYPE_CODE_BITSTRING:
3307 case TYPE_CODE_REF:
3308 case TYPE_CODE_CHAR:
3309 case TYPE_CODE_BOOL:
3310 return TYPE_LENGTH (t);
3311
3312 case TYPE_CODE_ARRAY:
3313 case TYPE_CODE_COMPLEX:
3314 /* TODO: What about vector types? */
3315 return arm_type_align (TYPE_TARGET_TYPE (t));
3316
3317 case TYPE_CODE_STRUCT:
3318 case TYPE_CODE_UNION:
3319 align = 1;
3320 for (n = 0; n < TYPE_NFIELDS (t); n++)
3321 {
3322 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3323 if (falign > align)
3324 align = falign;
3325 }
3326 return align;
3327 }
3328}
3329
90445bd3
DJ
3330/* Possible base types for a candidate for passing and returning in
3331 VFP registers. */
3332
3333enum arm_vfp_cprc_base_type
3334{
3335 VFP_CPRC_UNKNOWN,
3336 VFP_CPRC_SINGLE,
3337 VFP_CPRC_DOUBLE,
3338 VFP_CPRC_VEC64,
3339 VFP_CPRC_VEC128
3340};
3341
3342/* The length of one element of base type B. */
3343
3344static unsigned
3345arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3346{
3347 switch (b)
3348 {
3349 case VFP_CPRC_SINGLE:
3350 return 4;
3351 case VFP_CPRC_DOUBLE:
3352 return 8;
3353 case VFP_CPRC_VEC64:
3354 return 8;
3355 case VFP_CPRC_VEC128:
3356 return 16;
3357 default:
3358 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3359 (int) b);
3360 }
3361}
3362
3363/* The character ('s', 'd' or 'q') for the type of VFP register used
3364 for passing base type B. */
3365
3366static int
3367arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3368{
3369 switch (b)
3370 {
3371 case VFP_CPRC_SINGLE:
3372 return 's';
3373 case VFP_CPRC_DOUBLE:
3374 return 'd';
3375 case VFP_CPRC_VEC64:
3376 return 'd';
3377 case VFP_CPRC_VEC128:
3378 return 'q';
3379 default:
3380 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3381 (int) b);
3382 }
3383}
3384
3385/* Determine whether T may be part of a candidate for passing and
3386 returning in VFP registers, ignoring the limit on the total number
3387 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3388 classification of the first valid component found; if it is not
3389 VFP_CPRC_UNKNOWN, all components must have the same classification
3390 as *BASE_TYPE. If it is found that T contains a type not permitted
3391 for passing and returning in VFP registers, a type differently
3392 classified from *BASE_TYPE, or two types differently classified
3393 from each other, return -1, otherwise return the total number of
3394 base-type elements found (possibly 0 in an empty structure or
3395 array). Vectors and complex types are not currently supported,
3396 matching the generic AAPCS support. */
3397
3398static int
3399arm_vfp_cprc_sub_candidate (struct type *t,
3400 enum arm_vfp_cprc_base_type *base_type)
3401{
3402 t = check_typedef (t);
3403 switch (TYPE_CODE (t))
3404 {
3405 case TYPE_CODE_FLT:
3406 switch (TYPE_LENGTH (t))
3407 {
3408 case 4:
3409 if (*base_type == VFP_CPRC_UNKNOWN)
3410 *base_type = VFP_CPRC_SINGLE;
3411 else if (*base_type != VFP_CPRC_SINGLE)
3412 return -1;
3413 return 1;
3414
3415 case 8:
3416 if (*base_type == VFP_CPRC_UNKNOWN)
3417 *base_type = VFP_CPRC_DOUBLE;
3418 else if (*base_type != VFP_CPRC_DOUBLE)
3419 return -1;
3420 return 1;
3421
3422 default:
3423 return -1;
3424 }
3425 break;
3426
3427 case TYPE_CODE_ARRAY:
3428 {
3429 int count;
3430 unsigned unitlen;
3431 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t), base_type);
3432 if (count == -1)
3433 return -1;
3434 if (TYPE_LENGTH (t) == 0)
3435 {
3436 gdb_assert (count == 0);
3437 return 0;
3438 }
3439 else if (count == 0)
3440 return -1;
3441 unitlen = arm_vfp_cprc_unit_length (*base_type);
3442 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3443 return TYPE_LENGTH (t) / unitlen;
3444 }
3445 break;
3446
3447 case TYPE_CODE_STRUCT:
3448 {
3449 int count = 0;
3450 unsigned unitlen;
3451 int i;
3452 for (i = 0; i < TYPE_NFIELDS (t); i++)
3453 {
3454 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3455 base_type);
3456 if (sub_count == -1)
3457 return -1;
3458 count += sub_count;
3459 }
3460 if (TYPE_LENGTH (t) == 0)
3461 {
3462 gdb_assert (count == 0);
3463 return 0;
3464 }
3465 else if (count == 0)
3466 return -1;
3467 unitlen = arm_vfp_cprc_unit_length (*base_type);
3468 if (TYPE_LENGTH (t) != unitlen * count)
3469 return -1;
3470 return count;
3471 }
3472
3473 case TYPE_CODE_UNION:
3474 {
3475 int count = 0;
3476 unsigned unitlen;
3477 int i;
3478 for (i = 0; i < TYPE_NFIELDS (t); i++)
3479 {
3480 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3481 base_type);
3482 if (sub_count == -1)
3483 return -1;
3484 count = (count > sub_count ? count : sub_count);
3485 }
3486 if (TYPE_LENGTH (t) == 0)
3487 {
3488 gdb_assert (count == 0);
3489 return 0;
3490 }
3491 else if (count == 0)
3492 return -1;
3493 unitlen = arm_vfp_cprc_unit_length (*base_type);
3494 if (TYPE_LENGTH (t) != unitlen * count)
3495 return -1;
3496 return count;
3497 }
3498
3499 default:
3500 break;
3501 }
3502
3503 return -1;
3504}
3505
3506/* Determine whether T is a VFP co-processor register candidate (CPRC)
3507 if passed to or returned from a non-variadic function with the VFP
3508 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3509 *BASE_TYPE to the base type for T and *COUNT to the number of
3510 elements of that base type before returning. */
3511
3512static int
3513arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3514 int *count)
3515{
3516 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3517 int c = arm_vfp_cprc_sub_candidate (t, &b);
3518 if (c <= 0 || c > 4)
3519 return 0;
3520 *base_type = b;
3521 *count = c;
3522 return 1;
3523}
3524
3525/* Return 1 if the VFP ABI should be used for passing arguments to and
3526 returning values from a function of type FUNC_TYPE, 0
3527 otherwise. */
3528
3529static int
3530arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3531{
3532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3533 /* Variadic functions always use the base ABI. Assume that functions
3534 without debug info are not variadic. */
3535 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3536 return 0;
3537 /* The VFP ABI is only supported as a variant of AAPCS. */
3538 if (tdep->arm_abi != ARM_ABI_AAPCS)
3539 return 0;
3540 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3541}
3542
3543/* We currently only support passing parameters in integer registers, which
3544 conforms with GCC's default model, and VFP argument passing following
3545 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3546 we should probably support some of them based on the selected ABI. */
3547
3548static CORE_ADDR
7d9b040b 3549arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3550 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3551 struct value **args, CORE_ADDR sp, int struct_return,
3552 CORE_ADDR struct_addr)
2dd604e7 3553{
e17a4113 3554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3555 int argnum;
3556 int argreg;
3557 int nstack;
3558 struct stack_item *si = NULL;
90445bd3
DJ
3559 int use_vfp_abi;
3560 struct type *ftype;
3561 unsigned vfp_regs_free = (1 << 16) - 1;
3562
3563 /* Determine the type of this function and whether the VFP ABI
3564 applies. */
3565 ftype = check_typedef (value_type (function));
3566 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3567 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3568 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3569
6a65450a
AC
3570 /* Set the return address. For the ARM, the return breakpoint is
3571 always at BP_ADDR. */
9779414d 3572 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3573 bp_addr |= 1;
6a65450a 3574 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3575
3576 /* Walk through the list of args and determine how large a temporary
3577 stack is required. Need to take care here as structs may be
3578 passed on the stack, and we have to to push them. */
3579 nstack = 0;
3580
3581 argreg = ARM_A1_REGNUM;
3582 nstack = 0;
3583
2dd604e7
RE
3584 /* The struct_return pointer occupies the first parameter
3585 passing register. */
3586 if (struct_return)
3587 {
3588 if (arm_debug)
5af949e3 3589 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3590 gdbarch_register_name (gdbarch, argreg),
5af949e3 3591 paddress (gdbarch, struct_addr));
2dd604e7
RE
3592 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3593 argreg++;
3594 }
3595
3596 for (argnum = 0; argnum < nargs; argnum++)
3597 {
3598 int len;
3599 struct type *arg_type;
3600 struct type *target_type;
3601 enum type_code typecode;
8c6363cf 3602 const bfd_byte *val;
2af48f68 3603 int align;
90445bd3
DJ
3604 enum arm_vfp_cprc_base_type vfp_base_type;
3605 int vfp_base_count;
3606 int may_use_core_reg = 1;
2dd604e7 3607
df407dfe 3608 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3609 len = TYPE_LENGTH (arg_type);
3610 target_type = TYPE_TARGET_TYPE (arg_type);
3611 typecode = TYPE_CODE (arg_type);
8c6363cf 3612 val = value_contents (args[argnum]);
2dd604e7 3613
2af48f68
PB
3614 align = arm_type_align (arg_type);
3615 /* Round alignment up to a whole number of words. */
3616 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3617 /* Different ABIs have different maximum alignments. */
3618 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3619 {
3620 /* The APCS ABI only requires word alignment. */
3621 align = INT_REGISTER_SIZE;
3622 }
3623 else
3624 {
3625 /* The AAPCS requires at most doubleword alignment. */
3626 if (align > INT_REGISTER_SIZE * 2)
3627 align = INT_REGISTER_SIZE * 2;
3628 }
3629
90445bd3
DJ
3630 if (use_vfp_abi
3631 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3632 &vfp_base_count))
3633 {
3634 int regno;
3635 int unit_length;
3636 int shift;
3637 unsigned mask;
3638
3639 /* Because this is a CPRC it cannot go in a core register or
3640 cause a core register to be skipped for alignment.
3641 Either it goes in VFP registers and the rest of this loop
3642 iteration is skipped for this argument, or it goes on the
3643 stack (and the stack alignment code is correct for this
3644 case). */
3645 may_use_core_reg = 0;
3646
3647 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3648 shift = unit_length / 4;
3649 mask = (1 << (shift * vfp_base_count)) - 1;
3650 for (regno = 0; regno < 16; regno += shift)
3651 if (((vfp_regs_free >> regno) & mask) == mask)
3652 break;
3653
3654 if (regno < 16)
3655 {
3656 int reg_char;
3657 int reg_scaled;
3658 int i;
3659
3660 vfp_regs_free &= ~(mask << regno);
3661 reg_scaled = regno / shift;
3662 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3663 for (i = 0; i < vfp_base_count; i++)
3664 {
3665 char name_buf[4];
3666 int regnum;
58d6951d
DJ
3667 if (reg_char == 'q')
3668 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3669 val + i * unit_length);
58d6951d
DJ
3670 else
3671 {
3672 sprintf (name_buf, "%c%d", reg_char, reg_scaled + i);
3673 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3674 strlen (name_buf));
3675 regcache_cooked_write (regcache, regnum,
3676 val + i * unit_length);
3677 }
90445bd3
DJ
3678 }
3679 continue;
3680 }
3681 else
3682 {
3683 /* This CPRC could not go in VFP registers, so all VFP
3684 registers are now marked as used. */
3685 vfp_regs_free = 0;
3686 }
3687 }
3688
2af48f68
PB
3689 /* Push stack padding for dowubleword alignment. */
3690 if (nstack & (align - 1))
3691 {
3692 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3693 nstack += INT_REGISTER_SIZE;
3694 }
3695
3696 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3697 if (may_use_core_reg
3698 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3699 && align > INT_REGISTER_SIZE
3700 && argreg & 1)
3701 argreg++;
3702
2dd604e7
RE
3703 /* If the argument is a pointer to a function, and it is a
3704 Thumb function, create a LOCAL copy of the value and set
3705 the THUMB bit in it. */
3706 if (TYPE_CODE_PTR == typecode
3707 && target_type != NULL
f96b8fa0 3708 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3709 {
e17a4113 3710 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3711 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3712 {
8c6363cf
TT
3713 bfd_byte *copy = alloca (len);
3714 store_unsigned_integer (copy, len, byte_order,
e17a4113 3715 MAKE_THUMB_ADDR (regval));
8c6363cf 3716 val = copy;
2dd604e7
RE
3717 }
3718 }
3719
3720 /* Copy the argument to general registers or the stack in
3721 register-sized pieces. Large arguments are split between
3722 registers and stack. */
3723 while (len > 0)
3724 {
f0c9063c 3725 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7 3726
90445bd3 3727 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3728 {
3729 /* The argument is being passed in a general purpose
3730 register. */
e17a4113
UW
3731 CORE_ADDR regval
3732 = extract_unsigned_integer (val, partial_len, byte_order);
3733 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3734 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3735 if (arm_debug)
3736 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3737 argnum,
3738 gdbarch_register_name
2af46ca0 3739 (gdbarch, argreg),
f0c9063c 3740 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3741 regcache_cooked_write_unsigned (regcache, argreg, regval);
3742 argreg++;
3743 }
3744 else
3745 {
3746 /* Push the arguments onto the stack. */
3747 if (arm_debug)
3748 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3749 argnum, nstack);
f0c9063c
UW
3750 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3751 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3752 }
3753
3754 len -= partial_len;
3755 val += partial_len;
3756 }
3757 }
3758 /* If we have an odd number of words to push, then decrement the stack
3759 by one word now, so first stack argument will be dword aligned. */
3760 if (nstack & 4)
3761 sp -= 4;
3762
3763 while (si)
3764 {
3765 sp -= si->len;
3766 write_memory (sp, si->data, si->len);
3767 si = pop_stack_item (si);
3768 }
3769
3770 /* Finally, update teh SP register. */
3771 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3772
3773 return sp;
3774}
3775
f53f0d0b
PB
3776
3777/* Always align the frame to an 8-byte boundary. This is required on
3778 some platforms and harmless on the rest. */
3779
3780static CORE_ADDR
3781arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3782{
3783 /* Align the stack to eight bytes. */
3784 return sp & ~ (CORE_ADDR) 7;
3785}
3786
c906108c 3787static void
ed9a39eb 3788print_fpu_flags (int flags)
c906108c 3789{
c5aa993b
JM
3790 if (flags & (1 << 0))
3791 fputs ("IVO ", stdout);
3792 if (flags & (1 << 1))
3793 fputs ("DVZ ", stdout);
3794 if (flags & (1 << 2))
3795 fputs ("OFL ", stdout);
3796 if (flags & (1 << 3))
3797 fputs ("UFL ", stdout);
3798 if (flags & (1 << 4))
3799 fputs ("INX ", stdout);
3800 putchar ('\n');
c906108c
SS
3801}
3802
5e74b15c
RE
3803/* Print interesting information about the floating point processor
3804 (if present) or emulator. */
34e8f22d 3805static void
d855c300 3806arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3807 struct frame_info *frame, const char *args)
c906108c 3808{
9c9acae0 3809 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3810 int type;
3811
3812 type = (status >> 24) & 127;
edefbb7c
AC
3813 if (status & (1 << 31))
3814 printf (_("Hardware FPU type %d\n"), type);
3815 else
3816 printf (_("Software FPU type %d\n"), type);
3817 /* i18n: [floating point unit] mask */
3818 fputs (_("mask: "), stdout);
c5aa993b 3819 print_fpu_flags (status >> 16);
edefbb7c
AC
3820 /* i18n: [floating point unit] flags */
3821 fputs (_("flags: "), stdout);
c5aa993b 3822 print_fpu_flags (status);
c906108c
SS
3823}
3824
27067745
UW
3825/* Construct the ARM extended floating point type. */
3826static struct type *
3827arm_ext_type (struct gdbarch *gdbarch)
3828{
3829 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3830
3831 if (!tdep->arm_ext_type)
3832 tdep->arm_ext_type
e9bb382b 3833 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3834 floatformats_arm_ext);
3835
3836 return tdep->arm_ext_type;
3837}
3838
58d6951d
DJ
3839static struct type *
3840arm_neon_double_type (struct gdbarch *gdbarch)
3841{
3842 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3843
3844 if (tdep->neon_double_type == NULL)
3845 {
3846 struct type *t, *elem;
3847
3848 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
3849 TYPE_CODE_UNION);
3850 elem = builtin_type (gdbarch)->builtin_uint8;
3851 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
3852 elem = builtin_type (gdbarch)->builtin_uint16;
3853 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
3854 elem = builtin_type (gdbarch)->builtin_uint32;
3855 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
3856 elem = builtin_type (gdbarch)->builtin_uint64;
3857 append_composite_type_field (t, "u64", elem);
3858 elem = builtin_type (gdbarch)->builtin_float;
3859 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
3860 elem = builtin_type (gdbarch)->builtin_double;
3861 append_composite_type_field (t, "f64", elem);
3862
3863 TYPE_VECTOR (t) = 1;
3864 TYPE_NAME (t) = "neon_d";
3865 tdep->neon_double_type = t;
3866 }
3867
3868 return tdep->neon_double_type;
3869}
3870
3871/* FIXME: The vector types are not correctly ordered on big-endian
3872 targets. Just as s0 is the low bits of d0, d0[0] is also the low
3873 bits of d0 - regardless of what unit size is being held in d0. So
3874 the offset of the first uint8 in d0 is 7, but the offset of the
3875 first float is 4. This code works as-is for little-endian
3876 targets. */
3877
3878static struct type *
3879arm_neon_quad_type (struct gdbarch *gdbarch)
3880{
3881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3882
3883 if (tdep->neon_quad_type == NULL)
3884 {
3885 struct type *t, *elem;
3886
3887 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
3888 TYPE_CODE_UNION);
3889 elem = builtin_type (gdbarch)->builtin_uint8;
3890 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
3891 elem = builtin_type (gdbarch)->builtin_uint16;
3892 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
3893 elem = builtin_type (gdbarch)->builtin_uint32;
3894 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
3895 elem = builtin_type (gdbarch)->builtin_uint64;
3896 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
3897 elem = builtin_type (gdbarch)->builtin_float;
3898 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
3899 elem = builtin_type (gdbarch)->builtin_double;
3900 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
3901
3902 TYPE_VECTOR (t) = 1;
3903 TYPE_NAME (t) = "neon_q";
3904 tdep->neon_quad_type = t;
3905 }
3906
3907 return tdep->neon_quad_type;
3908}
3909
34e8f22d
RE
3910/* Return the GDB type object for the "standard" data type of data in
3911 register N. */
3912
3913static struct type *
7a5ea0d4 3914arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 3915{
58d6951d
DJ
3916 int num_regs = gdbarch_num_regs (gdbarch);
3917
3918 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
3919 && regnum >= num_regs && regnum < num_regs + 32)
3920 return builtin_type (gdbarch)->builtin_float;
3921
3922 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
3923 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
3924 return arm_neon_quad_type (gdbarch);
3925
3926 /* If the target description has register information, we are only
3927 in this function so that we can override the types of
3928 double-precision registers for NEON. */
3929 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
3930 {
3931 struct type *t = tdesc_register_type (gdbarch, regnum);
3932
3933 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
3934 && TYPE_CODE (t) == TYPE_CODE_FLT
3935 && gdbarch_tdep (gdbarch)->have_neon)
3936 return arm_neon_double_type (gdbarch);
3937 else
3938 return t;
3939 }
3940
34e8f22d 3941 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
3942 {
3943 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
3944 return builtin_type (gdbarch)->builtin_void;
3945
3946 return arm_ext_type (gdbarch);
3947 }
e4c16157 3948 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 3949 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 3950 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 3951 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
3952 else if (regnum >= ARRAY_SIZE (arm_register_names))
3953 /* These registers are only supported on targets which supply
3954 an XML description. */
df4df182 3955 return builtin_type (gdbarch)->builtin_int0;
032758dc 3956 else
df4df182 3957 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
3958}
3959
ff6f572f
DJ
3960/* Map a DWARF register REGNUM onto the appropriate GDB register
3961 number. */
3962
3963static int
d3f73121 3964arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
3965{
3966 /* Core integer regs. */
3967 if (reg >= 0 && reg <= 15)
3968 return reg;
3969
3970 /* Legacy FPA encoding. These were once used in a way which
3971 overlapped with VFP register numbering, so their use is
3972 discouraged, but GDB doesn't support the ARM toolchain
3973 which used them for VFP. */
3974 if (reg >= 16 && reg <= 23)
3975 return ARM_F0_REGNUM + reg - 16;
3976
3977 /* New assignments for the FPA registers. */
3978 if (reg >= 96 && reg <= 103)
3979 return ARM_F0_REGNUM + reg - 96;
3980
3981 /* WMMX register assignments. */
3982 if (reg >= 104 && reg <= 111)
3983 return ARM_WCGR0_REGNUM + reg - 104;
3984
3985 if (reg >= 112 && reg <= 127)
3986 return ARM_WR0_REGNUM + reg - 112;
3987
3988 if (reg >= 192 && reg <= 199)
3989 return ARM_WC0_REGNUM + reg - 192;
3990
58d6951d
DJ
3991 /* VFP v2 registers. A double precision value is actually
3992 in d1 rather than s2, but the ABI only defines numbering
3993 for the single precision registers. This will "just work"
3994 in GDB for little endian targets (we'll read eight bytes,
3995 starting in s0 and then progressing to s1), but will be
3996 reversed on big endian targets with VFP. This won't
3997 be a problem for the new Neon quad registers; you're supposed
3998 to use DW_OP_piece for those. */
3999 if (reg >= 64 && reg <= 95)
4000 {
4001 char name_buf[4];
4002
4003 sprintf (name_buf, "s%d", reg - 64);
4004 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4005 strlen (name_buf));
4006 }
4007
4008 /* VFP v3 / Neon registers. This range is also used for VFP v2
4009 registers, except that it now describes d0 instead of s0. */
4010 if (reg >= 256 && reg <= 287)
4011 {
4012 char name_buf[4];
4013
4014 sprintf (name_buf, "d%d", reg - 256);
4015 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4016 strlen (name_buf));
4017 }
4018
ff6f572f
DJ
4019 return -1;
4020}
4021
26216b98
AC
4022/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4023static int
e7faf938 4024arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4025{
4026 int reg = regnum;
e7faf938 4027 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4028
ff6f572f
DJ
4029 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4030 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4031
4032 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4033 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4034
4035 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4036 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4037
26216b98
AC
4038 if (reg < NUM_GREGS)
4039 return SIM_ARM_R0_REGNUM + reg;
4040 reg -= NUM_GREGS;
4041
4042 if (reg < NUM_FREGS)
4043 return SIM_ARM_FP0_REGNUM + reg;
4044 reg -= NUM_FREGS;
4045
4046 if (reg < NUM_SREGS)
4047 return SIM_ARM_FPS_REGNUM + reg;
4048 reg -= NUM_SREGS;
4049
edefbb7c 4050 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4051}
34e8f22d 4052
a37b3cc0
AC
4053/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4054 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4055 It is thought that this is is the floating-point register format on
4056 little-endian systems. */
c906108c 4057
ed9a39eb 4058static void
b508a996 4059convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4060 void *dbl, int endianess)
c906108c 4061{
a37b3cc0 4062 DOUBLEST d;
be8626e0
MD
4063
4064 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4065 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4066 else
4067 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4068 ptr, &d);
b508a996 4069 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4070}
4071
34e8f22d 4072static void
be8626e0
MD
4073convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4074 int endianess)
c906108c 4075{
a37b3cc0 4076 DOUBLEST d;
be8626e0 4077
b508a996 4078 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4079 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4080 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4081 else
4082 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4083 &d, dbl);
c906108c 4084}
ed9a39eb 4085
c906108c 4086static int
ed9a39eb 4087condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
4088{
4089 if (cond == INST_AL || cond == INST_NV)
4090 return 1;
4091
4092 switch (cond)
4093 {
4094 case INST_EQ:
4095 return ((status_reg & FLAG_Z) != 0);
4096 case INST_NE:
4097 return ((status_reg & FLAG_Z) == 0);
4098 case INST_CS:
4099 return ((status_reg & FLAG_C) != 0);
4100 case INST_CC:
4101 return ((status_reg & FLAG_C) == 0);
4102 case INST_MI:
4103 return ((status_reg & FLAG_N) != 0);
4104 case INST_PL:
4105 return ((status_reg & FLAG_N) == 0);
4106 case INST_VS:
4107 return ((status_reg & FLAG_V) != 0);
4108 case INST_VC:
4109 return ((status_reg & FLAG_V) == 0);
4110 case INST_HI:
4111 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
4112 case INST_LS:
4113 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
4114 case INST_GE:
4115 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
4116 case INST_LT:
4117 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
4118 case INST_GT:
f8bf5763
PM
4119 return (((status_reg & FLAG_Z) == 0)
4120 && (((status_reg & FLAG_N) == 0)
4121 == ((status_reg & FLAG_V) == 0)));
c906108c 4122 case INST_LE:
f8bf5763
PM
4123 return (((status_reg & FLAG_Z) != 0)
4124 || (((status_reg & FLAG_N) == 0)
4125 != ((status_reg & FLAG_V) == 0)));
c906108c
SS
4126 }
4127 return 1;
4128}
4129
c906108c 4130static unsigned long
0b1b3e42
UW
4131shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
4132 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
4133{
4134 unsigned long res, shift;
4135 int rm = bits (inst, 0, 3);
4136 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
4137
4138 if (bit (inst, 4))
c906108c
SS
4139 {
4140 int rs = bits (inst, 8, 11);
0b1b3e42
UW
4141 shift = (rs == 15 ? pc_val + 8
4142 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
4143 }
4144 else
4145 shift = bits (inst, 7, 11);
c5aa993b
JM
4146
4147 res = (rm == 15
0d39a070 4148 ? (pc_val + (bit (inst, 4) ? 12 : 8))
0b1b3e42 4149 : get_frame_register_unsigned (frame, rm));
c906108c
SS
4150
4151 switch (shifttype)
4152 {
c5aa993b 4153 case 0: /* LSL */
c906108c
SS
4154 res = shift >= 32 ? 0 : res << shift;
4155 break;
c5aa993b
JM
4156
4157 case 1: /* LSR */
c906108c
SS
4158 res = shift >= 32 ? 0 : res >> shift;
4159 break;
4160
c5aa993b
JM
4161 case 2: /* ASR */
4162 if (shift >= 32)
4163 shift = 31;
c906108c
SS
4164 res = ((res & 0x80000000L)
4165 ? ~((~res) >> shift) : res >> shift);
4166 break;
4167
c5aa993b 4168 case 3: /* ROR/RRX */
c906108c
SS
4169 shift &= 31;
4170 if (shift == 0)
4171 res = (res >> 1) | (carry ? 0x80000000L : 0);
4172 else
c5aa993b 4173 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
4174 break;
4175 }
4176
4177 return res & 0xffffffff;
4178}
4179
c906108c
SS
4180/* Return number of 1-bits in VAL. */
4181
4182static int
ed9a39eb 4183bitcount (unsigned long val)
c906108c
SS
4184{
4185 int nbits;
4186 for (nbits = 0; val != 0; nbits++)
0963b4bd 4187 val &= val - 1; /* Delete rightmost 1-bit in val. */
c906108c
SS
4188 return nbits;
4189}
4190
177321bd
DJ
4191/* Return the size in bytes of the complete Thumb instruction whose
4192 first halfword is INST1. */
4193
4194static int
4195thumb_insn_size (unsigned short inst1)
4196{
4197 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
4198 return 4;
4199 else
4200 return 2;
4201}
4202
4203static int
4204thumb_advance_itstate (unsigned int itstate)
4205{
4206 /* Preserve IT[7:5], the first three bits of the condition. Shift
4207 the upcoming condition flags left by one bit. */
4208 itstate = (itstate & 0xe0) | ((itstate << 1) & 0x1f);
4209
4210 /* If we have finished the IT block, clear the state. */
4211 if ((itstate & 0x0f) == 0)
4212 itstate = 0;
4213
4214 return itstate;
4215}
4216
4217/* Find the next PC after the current instruction executes. In some
4218 cases we can not statically determine the answer (see the IT state
4219 handling in this function); in that case, a breakpoint may be
4220 inserted in addition to the returned PC, which will be used to set
4221 another breakpoint by our caller. */
4222
ad527d2e 4223static CORE_ADDR
50e98be4 4224thumb_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt)
c906108c 4225{
2af46ca0 4226 struct gdbarch *gdbarch = get_frame_arch (frame);
177321bd 4227 struct address_space *aspace = get_frame_address_space (frame);
e17a4113
UW
4228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4229 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c5aa993b 4230 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
e17a4113 4231 unsigned short inst1;
0963b4bd 4232 CORE_ADDR nextpc = pc + 2; /* Default is next instruction. */
c906108c 4233 unsigned long offset;
177321bd 4234 ULONGEST status, itstate;
c906108c 4235
50e98be4
DJ
4236 nextpc = MAKE_THUMB_ADDR (nextpc);
4237 pc_val = MAKE_THUMB_ADDR (pc_val);
4238
e17a4113 4239 inst1 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
9d4fde75 4240
9dca5578
DJ
4241 /* Thumb-2 conditional execution support. There are eight bits in
4242 the CPSR which describe conditional execution state. Once
4243 reconstructed (they're in a funny order), the low five bits
4244 describe the low bit of the condition for each instruction and
4245 how many instructions remain. The high three bits describe the
4246 base condition. One of the low four bits will be set if an IT
4247 block is active. These bits read as zero on earlier
4248 processors. */
4249 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
177321bd 4250 itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
9dca5578 4251
177321bd
DJ
4252 /* If-Then handling. On GNU/Linux, where this routine is used, we
4253 use an undefined instruction as a breakpoint. Unlike BKPT, IT
4254 can disable execution of the undefined instruction. So we might
4255 miss the breakpoint if we set it on a skipped conditional
4256 instruction. Because conditional instructions can change the
4257 flags, affecting the execution of further instructions, we may
4258 need to set two breakpoints. */
9dca5578 4259
177321bd
DJ
4260 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint != NULL)
4261 {
4262 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4263 {
4264 /* An IT instruction. Because this instruction does not
4265 modify the flags, we can accurately predict the next
4266 executed instruction. */
4267 itstate = inst1 & 0x00ff;
4268 pc += thumb_insn_size (inst1);
4269
4270 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4271 {
0963b4bd
MS
4272 inst1 = read_memory_unsigned_integer (pc, 2,
4273 byte_order_for_code);
177321bd
DJ
4274 pc += thumb_insn_size (inst1);
4275 itstate = thumb_advance_itstate (itstate);
4276 }
4277
50e98be4 4278 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4279 }
4280 else if (itstate != 0)
4281 {
4282 /* We are in a conditional block. Check the condition. */
4283 if (! condition_true (itstate >> 4, status))
4284 {
4285 /* Advance to the next executed instruction. */
4286 pc += thumb_insn_size (inst1);
4287 itstate = thumb_advance_itstate (itstate);
4288
4289 while (itstate != 0 && ! condition_true (itstate >> 4, status))
4290 {
0963b4bd
MS
4291 inst1 = read_memory_unsigned_integer (pc, 2,
4292 byte_order_for_code);
177321bd
DJ
4293 pc += thumb_insn_size (inst1);
4294 itstate = thumb_advance_itstate (itstate);
4295 }
4296
50e98be4 4297 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4298 }
4299 else if ((itstate & 0x0f) == 0x08)
4300 {
4301 /* This is the last instruction of the conditional
4302 block, and it is executed. We can handle it normally
4303 because the following instruction is not conditional,
4304 and we must handle it normally because it is
4305 permitted to branch. Fall through. */
4306 }
4307 else
4308 {
4309 int cond_negated;
4310
4311 /* There are conditional instructions after this one.
4312 If this instruction modifies the flags, then we can
4313 not predict what the next executed instruction will
4314 be. Fortunately, this instruction is architecturally
4315 forbidden to branch; we know it will fall through.
4316 Start by skipping past it. */
4317 pc += thumb_insn_size (inst1);
4318 itstate = thumb_advance_itstate (itstate);
4319
4320 /* Set a breakpoint on the following instruction. */
4321 gdb_assert ((itstate & 0x0f) != 0);
50e98be4
DJ
4322 if (insert_bkpt)
4323 insert_single_step_breakpoint (gdbarch, aspace, pc);
177321bd
DJ
4324 cond_negated = (itstate >> 4) & 1;
4325
4326 /* Skip all following instructions with the same
4327 condition. If there is a later instruction in the IT
4328 block with the opposite condition, set the other
4329 breakpoint there. If not, then set a breakpoint on
4330 the instruction after the IT block. */
4331 do
4332 {
0963b4bd
MS
4333 inst1 = read_memory_unsigned_integer (pc, 2,
4334 byte_order_for_code);
177321bd
DJ
4335 pc += thumb_insn_size (inst1);
4336 itstate = thumb_advance_itstate (itstate);
4337 }
4338 while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);
4339
50e98be4 4340 return MAKE_THUMB_ADDR (pc);
177321bd
DJ
4341 }
4342 }
4343 }
4344 else if (itstate & 0x0f)
9dca5578
DJ
4345 {
4346 /* We are in a conditional block. Check the condition. */
177321bd 4347 int cond = itstate >> 4;
9dca5578
DJ
4348
4349 if (! condition_true (cond, status))
4350 {
4351 /* Advance to the next instruction. All the 32-bit
4352 instructions share a common prefix. */
4353 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
50e98be4 4354 return MAKE_THUMB_ADDR (pc + 4);
9dca5578 4355 else
50e98be4 4356 return MAKE_THUMB_ADDR (pc + 2);
9dca5578 4357 }
177321bd
DJ
4358
4359 /* Otherwise, handle the instruction normally. */
9dca5578
DJ
4360 }
4361
c906108c
SS
4362 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
4363 {
4364 CORE_ADDR sp;
4365
4366 /* Fetch the saved PC from the stack. It's stored above
4367 all of the other registers. */
f0c9063c 4368 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 4369 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
e17a4113 4370 nextpc = read_memory_unsigned_integer (sp + offset, 4, byte_order);
c906108c
SS
4371 }
4372 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
4373 {
c5aa993b 4374 unsigned long cond = bits (inst1, 8, 11);
25b41d01
YQ
4375 if (cond == 0x0f) /* 0x0f = SWI */
4376 {
4377 struct gdbarch_tdep *tdep;
4378 tdep = gdbarch_tdep (gdbarch);
4379
4380 if (tdep->syscall_next_pc != NULL)
4381 nextpc = tdep->syscall_next_pc (frame);
4382
4383 }
4384 else if (cond != 0x0f && condition_true (cond, status))
c906108c
SS
4385 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
4386 }
4387 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
4388 {
4389 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
4390 }
9dca5578 4391 else if ((inst1 & 0xe000) == 0xe000) /* 32-bit instruction */
c906108c 4392 {
e17a4113
UW
4393 unsigned short inst2;
4394 inst2 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
9dca5578
DJ
4395
4396 /* Default to the next instruction. */
4397 nextpc = pc + 4;
50e98be4 4398 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4399
4400 if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
4401 {
4402 /* Branches and miscellaneous control instructions. */
4403
4404 if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
4405 {
4406 /* B, BL, BLX. */
4407 int j1, j2, imm1, imm2;
4408
4409 imm1 = sbits (inst1, 0, 10);
4410 imm2 = bits (inst2, 0, 10);
4411 j1 = bit (inst2, 13);
4412 j2 = bit (inst2, 11);
4413
4414 offset = ((imm1 << 12) + (imm2 << 1));
4415 offset ^= ((!j2) << 22) | ((!j1) << 23);
4416
4417 nextpc = pc_val + offset;
4418 /* For BLX make sure to clear the low bits. */
4419 if (bit (inst2, 12) == 0)
4420 nextpc = nextpc & 0xfffffffc;
4421 }
4422 else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
4423 {
4424 /* SUBS PC, LR, #imm8. */
4425 nextpc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
4426 nextpc -= inst2 & 0x00ff;
4427 }
4069ebbe 4428 else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
9dca5578
DJ
4429 {
4430 /* Conditional branch. */
4431 if (condition_true (bits (inst1, 6, 9), status))
4432 {
4433 int sign, j1, j2, imm1, imm2;
4434
4435 sign = sbits (inst1, 10, 10);
4436 imm1 = bits (inst1, 0, 5);
4437 imm2 = bits (inst2, 0, 10);
4438 j1 = bit (inst2, 13);
4439 j2 = bit (inst2, 11);
4440
4441 offset = (sign << 20) + (j2 << 19) + (j1 << 18);
4442 offset += (imm1 << 12) + (imm2 << 1);
4443
4444 nextpc = pc_val + offset;
4445 }
4446 }
4447 }
4448 else if ((inst1 & 0xfe50) == 0xe810)
4449 {
4450 /* Load multiple or RFE. */
4451 int rn, offset, load_pc = 1;
4452
4453 rn = bits (inst1, 0, 3);
4454 if (bit (inst1, 7) && !bit (inst1, 8))
4455 {
4456 /* LDMIA or POP */
4457 if (!bit (inst2, 15))
4458 load_pc = 0;
4459 offset = bitcount (inst2) * 4 - 4;
4460 }
4461 else if (!bit (inst1, 7) && bit (inst1, 8))
4462 {
4463 /* LDMDB */
4464 if (!bit (inst2, 15))
4465 load_pc = 0;
4466 offset = -4;
4467 }
4468 else if (bit (inst1, 7) && bit (inst1, 8))
4469 {
4470 /* RFEIA */
4471 offset = 0;
4472 }
4473 else if (!bit (inst1, 7) && !bit (inst1, 8))
4474 {
4475 /* RFEDB */
4476 offset = -8;
4477 }
4478 else
4479 load_pc = 0;
4480
4481 if (load_pc)
4482 {
4483 CORE_ADDR addr = get_frame_register_unsigned (frame, rn);
4484 nextpc = get_frame_memory_unsigned (frame, addr + offset, 4);
4485 }
4486 }
4487 else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
4488 {
4489 /* MOV PC or MOVS PC. */
4490 nextpc = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
50e98be4 4491 nextpc = MAKE_THUMB_ADDR (nextpc);
9dca5578
DJ
4492 }
4493 else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
4494 {
4495 /* LDR PC. */
4496 CORE_ADDR base;
4497 int rn, load_pc = 1;
4498
4499 rn = bits (inst1, 0, 3);
4500 base = get_frame_register_unsigned (frame, rn);
4501 if (rn == 15)
4502 {
4503 base = (base + 4) & ~(CORE_ADDR) 0x3;
4504 if (bit (inst1, 7))
4505 base += bits (inst2, 0, 11);
4506 else
4507 base -= bits (inst2, 0, 11);
4508 }
4509 else if (bit (inst1, 7))
4510 base += bits (inst2, 0, 11);
4511 else if (bit (inst2, 11))
4512 {
4513 if (bit (inst2, 10))
4514 {
4515 if (bit (inst2, 9))
4516 base += bits (inst2, 0, 7);
4517 else
4518 base -= bits (inst2, 0, 7);
4519 }
4520 }
4521 else if ((inst2 & 0x0fc0) == 0x0000)
4522 {
4523 int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
4524 base += get_frame_register_unsigned (frame, rm) << shift;
4525 }
4526 else
4527 /* Reserved. */
4528 load_pc = 0;
4529
4530 if (load_pc)
4531 nextpc = get_frame_memory_unsigned (frame, base, 4);
4532 }
4533 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
4534 {
4535 /* TBB. */
d476da0e
RE
4536 CORE_ADDR tbl_reg, table, offset, length;
4537
4538 tbl_reg = bits (inst1, 0, 3);
4539 if (tbl_reg == 0x0f)
4540 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4541 else
4542 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4543
9dca5578
DJ
4544 offset = get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4545 length = 2 * get_frame_memory_unsigned (frame, table + offset, 1);
4546 nextpc = pc_val + length;
4547 }
d476da0e 4548 else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
9dca5578
DJ
4549 {
4550 /* TBH. */
d476da0e
RE
4551 CORE_ADDR tbl_reg, table, offset, length;
4552
4553 tbl_reg = bits (inst1, 0, 3);
4554 if (tbl_reg == 0x0f)
4555 table = pc + 4; /* Regcache copy of PC isn't right yet. */
4556 else
4557 table = get_frame_register_unsigned (frame, tbl_reg);
9dca5578 4558
9dca5578
DJ
4559 offset = 2 * get_frame_register_unsigned (frame, bits (inst2, 0, 3));
4560 length = 2 * get_frame_memory_unsigned (frame, table + offset, 2);
4561 nextpc = pc_val + length;
4562 }
c906108c 4563 }
aa17d93e 4564 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
4565 {
4566 if (bits (inst1, 3, 6) == 0x0f)
4567 nextpc = pc_val;
4568 else
0b1b3e42 4569 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 4570 }
ad8b5167
UW
4571 else if ((inst1 & 0xff87) == 0x4687) /* mov pc, REG */
4572 {
4573 if (bits (inst1, 3, 6) == 0x0f)
4574 nextpc = pc_val;
4575 else
4576 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
4577
4578 nextpc = MAKE_THUMB_ADDR (nextpc);
4579 }
9dca5578
DJ
4580 else if ((inst1 & 0xf500) == 0xb100)
4581 {
4582 /* CBNZ or CBZ. */
4583 int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
4584 ULONGEST reg = get_frame_register_unsigned (frame, bits (inst1, 0, 2));
4585
4586 if (bit (inst1, 11) && reg != 0)
4587 nextpc = pc_val + imm;
4588 else if (!bit (inst1, 11) && reg == 0)
4589 nextpc = pc_val + imm;
4590 }
c906108c
SS
4591 return nextpc;
4592}
4593
50e98be4
DJ
4594/* Get the raw next address. PC is the current program counter, in
4595 FRAME. INSERT_BKPT should be TRUE if we want a breakpoint set on
4596 the alternative next instruction if there are two options.
4597
4598 The value returned has the execution state of the next instruction
4599 encoded in it. Use IS_THUMB_ADDR () to see whether the instruction is
4600 in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
0963b4bd
MS
4601 address. */
4602
50e98be4
DJ
4603static CORE_ADDR
4604arm_get_next_pc_raw (struct frame_info *frame, CORE_ADDR pc, int insert_bkpt)
c906108c 4605{
2af46ca0 4606 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113
UW
4607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4608 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
c906108c
SS
4609 unsigned long pc_val;
4610 unsigned long this_instr;
4611 unsigned long status;
4612 CORE_ADDR nextpc;
4613
b39cc962 4614 if (arm_frame_is_thumb (frame))
50e98be4 4615 return thumb_get_next_pc_raw (frame, pc, insert_bkpt);
c906108c
SS
4616
4617 pc_val = (unsigned long) pc;
e17a4113 4618 this_instr = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
9d4fde75 4619
0b1b3e42 4620 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 4621 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 4622
daddc3c1
DJ
4623 if (bits (this_instr, 28, 31) == INST_NV)
4624 switch (bits (this_instr, 24, 27))
4625 {
4626 case 0xa:
4627 case 0xb:
4628 {
4629 /* Branch with Link and change to Thumb. */
4630 nextpc = BranchDest (pc, this_instr);
4631 nextpc |= bit (this_instr, 24) << 1;
50e98be4 4632 nextpc = MAKE_THUMB_ADDR (nextpc);
daddc3c1
DJ
4633 break;
4634 }
4635 case 0xc:
4636 case 0xd:
4637 case 0xe:
4638 /* Coprocessor register transfer. */
4639 if (bits (this_instr, 12, 15) == 15)
4640 error (_("Invalid update to pc in instruction"));
4641 break;
4642 }
4643 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
4644 {
4645 switch (bits (this_instr, 24, 27))
4646 {
c5aa993b 4647 case 0x0:
94c30b78 4648 case 0x1: /* data processing */
c5aa993b
JM
4649 case 0x2:
4650 case 0x3:
c906108c
SS
4651 {
4652 unsigned long operand1, operand2, result = 0;
4653 unsigned long rn;
4654 int c;
c5aa993b 4655
c906108c
SS
4656 if (bits (this_instr, 12, 15) != 15)
4657 break;
4658
4659 if (bits (this_instr, 22, 25) == 0
c5aa993b 4660 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 4661 error (_("Invalid update to pc in instruction"));
c906108c 4662
9498281f 4663 /* BX <reg>, BLX <reg> */
e150acc7
PB
4664 if (bits (this_instr, 4, 27) == 0x12fff1
4665 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
4666 {
4667 rn = bits (this_instr, 0, 3);
50e98be4 4668 nextpc = (rn == 15) ? pc_val + 8
0b1b3e42 4669 : get_frame_register_unsigned (frame, rn);
9498281f
DJ
4670 return nextpc;
4671 }
4672
0963b4bd 4673 /* Multiply into PC. */
c906108c
SS
4674 c = (status & FLAG_C) ? 1 : 0;
4675 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
4676 operand1 = (rn == 15) ? pc_val + 8
4677 : get_frame_register_unsigned (frame, rn);
c5aa993b 4678
c906108c
SS
4679 if (bit (this_instr, 25))
4680 {
4681 unsigned long immval = bits (this_instr, 0, 7);
4682 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
4683 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
4684 & 0xffffffff;
c906108c 4685 }
0963b4bd
MS
4686 else /* operand 2 is a shifted register. */
4687 operand2 = shifted_reg_val (frame, this_instr, c,
4688 pc_val, status);
c5aa993b 4689
c906108c
SS
4690 switch (bits (this_instr, 21, 24))
4691 {
c5aa993b 4692 case 0x0: /*and */
c906108c
SS
4693 result = operand1 & operand2;
4694 break;
4695
c5aa993b 4696 case 0x1: /*eor */
c906108c
SS
4697 result = operand1 ^ operand2;
4698 break;
4699
c5aa993b 4700 case 0x2: /*sub */
c906108c
SS
4701 result = operand1 - operand2;
4702 break;
4703
c5aa993b 4704 case 0x3: /*rsb */
c906108c
SS
4705 result = operand2 - operand1;
4706 break;
4707
c5aa993b 4708 case 0x4: /*add */
c906108c
SS
4709 result = operand1 + operand2;
4710 break;
4711
c5aa993b 4712 case 0x5: /*adc */
c906108c
SS
4713 result = operand1 + operand2 + c;
4714 break;
4715
c5aa993b 4716 case 0x6: /*sbc */
c906108c
SS
4717 result = operand1 - operand2 + c;
4718 break;
4719
c5aa993b 4720 case 0x7: /*rsc */
c906108c
SS
4721 result = operand2 - operand1 + c;
4722 break;
4723
c5aa993b
JM
4724 case 0x8:
4725 case 0x9:
4726 case 0xa:
4727 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
4728 result = (unsigned long) nextpc;
4729 break;
4730
c5aa993b 4731 case 0xc: /*orr */
c906108c
SS
4732 result = operand1 | operand2;
4733 break;
4734
c5aa993b 4735 case 0xd: /*mov */
c906108c
SS
4736 /* Always step into a function. */
4737 result = operand2;
c5aa993b 4738 break;
c906108c 4739
c5aa993b 4740 case 0xe: /*bic */
c906108c
SS
4741 result = operand1 & ~operand2;
4742 break;
4743
c5aa993b 4744 case 0xf: /*mvn */
c906108c
SS
4745 result = ~operand2;
4746 break;
4747 }
c906108c 4748
50e98be4
DJ
4749 /* In 26-bit APCS the bottom two bits of the result are
4750 ignored, and we always end up in ARM state. */
4751 if (!arm_apcs_32)
4752 nextpc = arm_addr_bits_remove (gdbarch, result);
4753 else
4754 nextpc = result;
4755
c906108c
SS
4756 break;
4757 }
c5aa993b
JM
4758
4759 case 0x4:
4760 case 0x5: /* data transfer */
4761 case 0x6:
4762 case 0x7:
c906108c
SS
4763 if (bit (this_instr, 20))
4764 {
4765 /* load */
4766 if (bits (this_instr, 12, 15) == 15)
4767 {
4768 /* rd == pc */
c5aa993b 4769 unsigned long rn;
c906108c 4770 unsigned long base;
c5aa993b 4771
c906108c 4772 if (bit (this_instr, 22))
edefbb7c 4773 error (_("Invalid update to pc in instruction"));
c906108c
SS
4774
4775 /* byte write to PC */
4776 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
4777 base = (rn == 15) ? pc_val + 8
4778 : get_frame_register_unsigned (frame, rn);
c906108c
SS
4779 if (bit (this_instr, 24))
4780 {
4781 /* pre-indexed */
4782 int c = (status & FLAG_C) ? 1 : 0;
4783 unsigned long offset =
c5aa993b 4784 (bit (this_instr, 25)
0b1b3e42 4785 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 4786 : bits (this_instr, 0, 11));
c906108c
SS
4787
4788 if (bit (this_instr, 23))
4789 base += offset;
4790 else
4791 base -= offset;
4792 }
c5aa993b 4793 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
e17a4113 4794 4, byte_order);
c906108c
SS
4795 }
4796 }
4797 break;
c5aa993b
JM
4798
4799 case 0x8:
4800 case 0x9: /* block transfer */
c906108c
SS
4801 if (bit (this_instr, 20))
4802 {
4803 /* LDM */
4804 if (bit (this_instr, 15))
4805 {
4806 /* loading pc */
4807 int offset = 0;
4808
4809 if (bit (this_instr, 23))
4810 {
4811 /* up */
4812 unsigned long reglist = bits (this_instr, 0, 14);
4813 offset = bitcount (reglist) * 4;
c5aa993b 4814 if (bit (this_instr, 24)) /* pre */
c906108c
SS
4815 offset += 4;
4816 }
4817 else if (bit (this_instr, 24))
4818 offset = -4;
c5aa993b 4819
c906108c 4820 {
c5aa993b 4821 unsigned long rn_val =
0b1b3e42
UW
4822 get_frame_register_unsigned (frame,
4823 bits (this_instr, 16, 19));
c906108c
SS
4824 nextpc =
4825 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 4826 + offset),
e17a4113 4827 4, byte_order);
c906108c 4828 }
c906108c
SS
4829 }
4830 }
4831 break;
c5aa993b
JM
4832
4833 case 0xb: /* branch & link */
4834 case 0xa: /* branch */
c906108c
SS
4835 {
4836 nextpc = BranchDest (pc, this_instr);
c906108c
SS
4837 break;
4838 }
c5aa993b
JM
4839
4840 case 0xc:
4841 case 0xd:
4842 case 0xe: /* coproc ops */
25b41d01 4843 break;
c5aa993b 4844 case 0xf: /* SWI */
25b41d01
YQ
4845 {
4846 struct gdbarch_tdep *tdep;
4847 tdep = gdbarch_tdep (gdbarch);
4848
4849 if (tdep->syscall_next_pc != NULL)
4850 nextpc = tdep->syscall_next_pc (frame);
4851
4852 }
c906108c
SS
4853 break;
4854
4855 default:
edefbb7c 4856 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
4857 return (pc);
4858 }
4859 }
4860
4861 return nextpc;
4862}
4863
50e98be4
DJ
4864CORE_ADDR
4865arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
4866{
4867 struct gdbarch *gdbarch = get_frame_arch (frame);
4868 CORE_ADDR nextpc =
4869 gdbarch_addr_bits_remove (gdbarch,
4870 arm_get_next_pc_raw (frame, pc, TRUE));
4871 if (nextpc == pc)
4872 error (_("Infinite loop detected"));
4873 return nextpc;
4874}
4875
9512d7fd
FN
4876/* single_step() is called just before we want to resume the inferior,
4877 if we want to single-step it but there is no hardware or kernel
4878 single-step support. We find the target of the coming instruction
e0cd558a 4879 and breakpoint it. */
9512d7fd 4880
190dce09 4881int
0b1b3e42 4882arm_software_single_step (struct frame_info *frame)
9512d7fd 4883{
a6d9a66e 4884 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 4885 struct address_space *aspace = get_frame_address_space (frame);
a6d9a66e 4886
8181d85f
DJ
4887 /* NOTE: This may insert the wrong breakpoint instruction when
4888 single-stepping over a mode-changing instruction, if the
4889 CPSR heuristics are used. */
9512d7fd 4890
0b1b3e42 4891 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
6c95b8df 4892 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e6590a1b
UW
4893
4894 return 1;
9512d7fd 4895}
9512d7fd 4896
f9d67f43
DJ
4897/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4898 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4899 NULL if an error occurs. BUF is freed. */
4900
4901static gdb_byte *
4902extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4903 int old_len, int new_len)
4904{
4905 gdb_byte *new_buf, *middle;
4906 int bytes_to_read = new_len - old_len;
4907
4908 new_buf = xmalloc (new_len);
4909 memcpy (new_buf + bytes_to_read, buf, old_len);
4910 xfree (buf);
4911 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4912 {
4913 xfree (new_buf);
4914 return NULL;
4915 }
4916 return new_buf;
4917}
4918
4919/* An IT block is at most the 2-byte IT instruction followed by
4920 four 4-byte instructions. The furthest back we must search to
4921 find an IT block that affects the current instruction is thus
4922 2 + 3 * 4 == 14 bytes. */
4923#define MAX_IT_BLOCK_PREFIX 14
4924
4925/* Use a quick scan if there are more than this many bytes of
4926 code. */
4927#define IT_SCAN_THRESHOLD 32
4928
4929/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4930 A breakpoint in an IT block may not be hit, depending on the
4931 condition flags. */
4932static CORE_ADDR
4933arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
4934{
4935 gdb_byte *buf;
4936 char map_type;
4937 CORE_ADDR boundary, func_start;
4938 int buf_len, buf2_len;
4939 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4940 int i, any, last_it, last_it_count;
4941
4942 /* If we are using BKPT breakpoints, none of this is necessary. */
4943 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4944 return bpaddr;
4945
4946 /* ARM mode does not have this problem. */
9779414d 4947 if (!arm_pc_is_thumb (gdbarch, bpaddr))
f9d67f43
DJ
4948 return bpaddr;
4949
4950 /* We are setting a breakpoint in Thumb code that could potentially
4951 contain an IT block. The first step is to find how much Thumb
4952 code there is; we do not need to read outside of known Thumb
4953 sequences. */
4954 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4955 if (map_type == 0)
4956 /* Thumb-2 code must have mapping symbols to have a chance. */
4957 return bpaddr;
4958
4959 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
4960
4961 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4962 && func_start > boundary)
4963 boundary = func_start;
4964
4965 /* Search for a candidate IT instruction. We have to do some fancy
4966 footwork to distinguish a real IT instruction from the second
4967 half of a 32-bit instruction, but there is no need for that if
4968 there's no candidate. */
4969 buf_len = min (bpaddr - boundary, MAX_IT_BLOCK_PREFIX);
4970 if (buf_len == 0)
4971 /* No room for an IT instruction. */
4972 return bpaddr;
4973
4974 buf = xmalloc (buf_len);
4975 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4976 return bpaddr;
4977 any = 0;
4978 for (i = 0; i < buf_len; i += 2)
4979 {
4980 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4981 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4982 {
4983 any = 1;
4984 break;
4985 }
4986 }
4987 if (any == 0)
4988 {
4989 xfree (buf);
4990 return bpaddr;
4991 }
4992
4993 /* OK, the code bytes before this instruction contain at least one
4994 halfword which resembles an IT instruction. We know that it's
4995 Thumb code, but there are still two possibilities. Either the
4996 halfword really is an IT instruction, or it is the second half of
4997 a 32-bit Thumb instruction. The only way we can tell is to
4998 scan forwards from a known instruction boundary. */
4999 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
5000 {
5001 int definite;
5002
5003 /* There's a lot of code before this instruction. Start with an
5004 optimistic search; it's easy to recognize halfwords that can
5005 not be the start of a 32-bit instruction, and use that to
5006 lock on to the instruction boundaries. */
5007 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
5008 if (buf == NULL)
5009 return bpaddr;
5010 buf_len = IT_SCAN_THRESHOLD;
5011
5012 definite = 0;
5013 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
5014 {
5015 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5016 if (thumb_insn_size (inst1) == 2)
5017 {
5018 definite = 1;
5019 break;
5020 }
5021 }
5022
5023 /* At this point, if DEFINITE, BUF[I] is the first place we
5024 are sure that we know the instruction boundaries, and it is far
5025 enough from BPADDR that we could not miss an IT instruction
5026 affecting BPADDR. If ! DEFINITE, give up - start from a
5027 known boundary. */
5028 if (! definite)
5029 {
0963b4bd
MS
5030 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
5031 bpaddr - boundary);
f9d67f43
DJ
5032 if (buf == NULL)
5033 return bpaddr;
5034 buf_len = bpaddr - boundary;
5035 i = 0;
5036 }
5037 }
5038 else
5039 {
5040 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
5041 if (buf == NULL)
5042 return bpaddr;
5043 buf_len = bpaddr - boundary;
5044 i = 0;
5045 }
5046
5047 /* Scan forwards. Find the last IT instruction before BPADDR. */
5048 last_it = -1;
5049 last_it_count = 0;
5050 while (i < buf_len)
5051 {
5052 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
5053 last_it_count--;
5054 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
5055 {
5056 last_it = i;
5057 if (inst1 & 0x0001)
5058 last_it_count = 4;
5059 else if (inst1 & 0x0002)
5060 last_it_count = 3;
5061 else if (inst1 & 0x0004)
5062 last_it_count = 2;
5063 else
5064 last_it_count = 1;
5065 }
5066 i += thumb_insn_size (inst1);
5067 }
5068
5069 xfree (buf);
5070
5071 if (last_it == -1)
5072 /* There wasn't really an IT instruction after all. */
5073 return bpaddr;
5074
5075 if (last_it_count < 1)
5076 /* It was too far away. */
5077 return bpaddr;
5078
5079 /* This really is a trouble spot. Move the breakpoint to the IT
5080 instruction. */
5081 return bpaddr - buf_len + last_it;
5082}
5083
cca44b1b 5084/* ARM displaced stepping support.
c906108c 5085
cca44b1b 5086 Generally ARM displaced stepping works as follows:
c906108c 5087
cca44b1b
JB
5088 1. When an instruction is to be single-stepped, it is first decoded by
5089 arm_process_displaced_insn (called from arm_displaced_step_copy_insn).
5090 Depending on the type of instruction, it is then copied to a scratch
5091 location, possibly in a modified form. The copy_* set of functions
0963b4bd 5092 performs such modification, as necessary. A breakpoint is placed after
cca44b1b
JB
5093 the modified instruction in the scratch space to return control to GDB.
5094 Note in particular that instructions which modify the PC will no longer
5095 do so after modification.
c5aa993b 5096
cca44b1b
JB
5097 2. The instruction is single-stepped, by setting the PC to the scratch
5098 location address, and resuming. Control returns to GDB when the
5099 breakpoint is hit.
c5aa993b 5100
cca44b1b
JB
5101 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
5102 function used for the current instruction. This function's job is to
5103 put the CPU/memory state back to what it would have been if the
5104 instruction had been executed unmodified in its original location. */
c5aa993b 5105
cca44b1b
JB
5106/* NOP instruction (mov r0, r0). */
5107#define ARM_NOP 0xe1a00000
5108
5109/* Helper for register reads for displaced stepping. In particular, this
5110 returns the PC as it would be seen by the instruction at its original
5111 location. */
5112
5113ULONGEST
5114displaced_read_reg (struct regcache *regs, CORE_ADDR from, int regno)
5115{
5116 ULONGEST ret;
5117
5118 if (regno == 15)
5119 {
5120 if (debug_displaced)
5121 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
5122 (unsigned long) from + 8);
5123 return (ULONGEST) from + 8; /* Pipeline offset. */
5124 }
c906108c 5125 else
cca44b1b
JB
5126 {
5127 regcache_cooked_read_unsigned (regs, regno, &ret);
5128 if (debug_displaced)
5129 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
5130 regno, (unsigned long) ret);
5131 return ret;
5132 }
c906108c
SS
5133}
5134
cca44b1b
JB
5135static int
5136displaced_in_arm_mode (struct regcache *regs)
5137{
5138 ULONGEST ps;
9779414d 5139 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 5140
cca44b1b 5141 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 5142
9779414d 5143 return (ps & t_bit) == 0;
cca44b1b 5144}
66e810cd 5145
cca44b1b 5146/* Write to the PC as from a branch instruction. */
c906108c 5147
cca44b1b
JB
5148static void
5149branch_write_pc (struct regcache *regs, ULONGEST val)
c906108c 5150{
cca44b1b
JB
5151 if (displaced_in_arm_mode (regs))
5152 /* Note: If bits 0/1 are set, this branch would be unpredictable for
5153 architecture versions < 6. */
0963b4bd
MS
5154 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5155 val & ~(ULONGEST) 0x3);
cca44b1b 5156 else
0963b4bd
MS
5157 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
5158 val & ~(ULONGEST) 0x1);
cca44b1b 5159}
66e810cd 5160
cca44b1b
JB
5161/* Write to the PC as from a branch-exchange instruction. */
5162
5163static void
5164bx_write_pc (struct regcache *regs, ULONGEST val)
5165{
5166 ULONGEST ps;
9779414d 5167 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
5168
5169 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
5170
5171 if ((val & 1) == 1)
c906108c 5172 {
9779414d 5173 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
5174 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
5175 }
5176 else if ((val & 2) == 0)
5177 {
9779414d 5178 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5179 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
5180 }
5181 else
5182 {
cca44b1b
JB
5183 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
5184 mode, align dest to 4 bytes). */
5185 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 5186 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 5187 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
5188 }
5189}
ed9a39eb 5190
cca44b1b 5191/* Write to the PC as if from a load instruction. */
ed9a39eb 5192
34e8f22d 5193static void
cca44b1b 5194load_write_pc (struct regcache *regs, ULONGEST val)
ed9a39eb 5195{
cca44b1b
JB
5196 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
5197 bx_write_pc (regs, val);
5198 else
5199 branch_write_pc (regs, val);
5200}
be8626e0 5201
cca44b1b
JB
5202/* Write to the PC as if from an ALU instruction. */
5203
5204static void
5205alu_write_pc (struct regcache *regs, ULONGEST val)
5206{
5207 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && displaced_in_arm_mode (regs))
5208 bx_write_pc (regs, val);
5209 else
5210 branch_write_pc (regs, val);
5211}
5212
5213/* Helper for writing to registers for displaced stepping. Writing to the PC
5214 has a varying effects depending on the instruction which does the write:
5215 this is controlled by the WRITE_PC argument. */
5216
5217void
5218displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
5219 int regno, ULONGEST val, enum pc_write_style write_pc)
5220{
5221 if (regno == 15)
08216dd7 5222 {
cca44b1b
JB
5223 if (debug_displaced)
5224 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
5225 (unsigned long) val);
5226 switch (write_pc)
08216dd7 5227 {
cca44b1b
JB
5228 case BRANCH_WRITE_PC:
5229 branch_write_pc (regs, val);
08216dd7
RE
5230 break;
5231
cca44b1b
JB
5232 case BX_WRITE_PC:
5233 bx_write_pc (regs, val);
5234 break;
5235
5236 case LOAD_WRITE_PC:
5237 load_write_pc (regs, val);
5238 break;
5239
5240 case ALU_WRITE_PC:
5241 alu_write_pc (regs, val);
5242 break;
5243
5244 case CANNOT_WRITE_PC:
5245 warning (_("Instruction wrote to PC in an unexpected way when "
5246 "single-stepping"));
08216dd7
RE
5247 break;
5248
5249 default:
97b9747c
JB
5250 internal_error (__FILE__, __LINE__,
5251 _("Invalid argument to displaced_write_reg"));
08216dd7 5252 }
b508a996 5253
cca44b1b 5254 dsc->wrote_to_pc = 1;
b508a996 5255 }
ed9a39eb 5256 else
b508a996 5257 {
cca44b1b
JB
5258 if (debug_displaced)
5259 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
5260 regno, (unsigned long) val);
5261 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 5262 }
34e8f22d
RE
5263}
5264
cca44b1b
JB
5265/* This function is used to concisely determine if an instruction INSN
5266 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
5267 corresponding fields of BITMASK set to 0b1111. The function
5268 returns return 1 if any of these fields in INSN reference the PC
5269 (also 0b1111, r15), else it returns 0. */
67255d04
RE
5270
5271static int
cca44b1b 5272insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 5273{
cca44b1b 5274 uint32_t lowbit = 1;
67255d04 5275
cca44b1b
JB
5276 while (bitmask != 0)
5277 {
5278 uint32_t mask;
44e1a9eb 5279
cca44b1b
JB
5280 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
5281 ;
67255d04 5282
cca44b1b
JB
5283 if (!lowbit)
5284 break;
67255d04 5285
cca44b1b 5286 mask = lowbit * 0xf;
67255d04 5287
cca44b1b
JB
5288 if ((insn & mask) == mask)
5289 return 1;
5290
5291 bitmask &= ~mask;
67255d04
RE
5292 }
5293
cca44b1b
JB
5294 return 0;
5295}
2af48f68 5296
cca44b1b
JB
5297/* The simplest copy function. Many instructions have the same effect no
5298 matter what address they are executed at: in those cases, use this. */
67255d04 5299
cca44b1b 5300static int
6e39997a 5301copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5302 const char *iname, struct displaced_step_closure *dsc)
5303{
5304 if (debug_displaced)
5305 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
5306 "opcode/class '%s' unmodified\n", (unsigned long) insn,
5307 iname);
67255d04 5308
cca44b1b 5309 dsc->modinsn[0] = insn;
67255d04 5310
cca44b1b
JB
5311 return 0;
5312}
5313
5314/* Preload instructions with immediate offset. */
5315
5316static void
6e39997a 5317cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
5318 struct regcache *regs, struct displaced_step_closure *dsc)
5319{
5320 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5321 if (!dsc->u.preload.immed)
5322 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5323}
5324
5325static int
5326copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5327 struct displaced_step_closure *dsc)
5328{
5329 unsigned int rn = bits (insn, 16, 19);
5330 ULONGEST rn_val;
5331 CORE_ADDR from = dsc->insn_addr;
5332
5333 if (!insn_references_pc (insn, 0x000f0000ul))
5334 return copy_unmodified (gdbarch, insn, "preload", dsc);
5335
5336 if (debug_displaced)
5337 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5338 (unsigned long) insn);
5339
5340 /* Preload instructions:
5341
5342 {pli/pld} [rn, #+/-imm]
5343 ->
5344 {pli/pld} [r0, #+/-imm]. */
5345
5346 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5347 rn_val = displaced_read_reg (regs, from, rn);
5348 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5349
5350 dsc->u.preload.immed = 1;
5351
5352 dsc->modinsn[0] = insn & 0xfff0ffff;
5353
5354 dsc->cleanup = &cleanup_preload;
5355
5356 return 0;
5357}
5358
5359/* Preload instructions with register offset. */
5360
5361static int
0963b4bd
MS
5362copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
5363 struct regcache *regs,
cca44b1b
JB
5364 struct displaced_step_closure *dsc)
5365{
5366 unsigned int rn = bits (insn, 16, 19);
5367 unsigned int rm = bits (insn, 0, 3);
5368 ULONGEST rn_val, rm_val;
5369 CORE_ADDR from = dsc->insn_addr;
5370
5371 if (!insn_references_pc (insn, 0x000f000ful))
5372 return copy_unmodified (gdbarch, insn, "preload reg", dsc);
5373
5374 if (debug_displaced)
5375 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
5376 (unsigned long) insn);
5377
5378 /* Preload register-offset instructions:
5379
5380 {pli/pld} [rn, rm {, shift}]
5381 ->
5382 {pli/pld} [r0, r1 {, shift}]. */
5383
5384 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5385 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5386 rn_val = displaced_read_reg (regs, from, rn);
5387 rm_val = displaced_read_reg (regs, from, rm);
5388 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5389 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
5390
5391 dsc->u.preload.immed = 0;
5392
5393 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
5394
5395 dsc->cleanup = &cleanup_preload;
5396
5397 return 0;
5398}
5399
5400/* Copy/cleanup coprocessor load and store instructions. */
5401
5402static void
6e39997a 5403cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
5404 struct regcache *regs,
5405 struct displaced_step_closure *dsc)
5406{
5407 ULONGEST rn_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5408
5409 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5410
5411 if (dsc->u.ldst.writeback)
5412 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
5413}
5414
5415static int
5416copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
5417 struct regcache *regs,
5418 struct displaced_step_closure *dsc)
5419{
5420 unsigned int rn = bits (insn, 16, 19);
5421 ULONGEST rn_val;
5422 CORE_ADDR from = dsc->insn_addr;
5423
5424 if (!insn_references_pc (insn, 0x000f0000ul))
5425 return copy_unmodified (gdbarch, insn, "copro load/store", dsc);
5426
5427 if (debug_displaced)
5428 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
5429 "load/store insn %.8lx\n", (unsigned long) insn);
5430
5431 /* Coprocessor load/store instructions:
5432
5433 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
5434 ->
5435 {stc/stc2} [r0, #+/-imm].
5436
5437 ldc/ldc2 are handled identically. */
5438
5439 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5440 rn_val = displaced_read_reg (regs, from, rn);
5441 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
5442
5443 dsc->u.ldst.writeback = bit (insn, 25);
5444 dsc->u.ldst.rn = rn;
5445
5446 dsc->modinsn[0] = insn & 0xfff0ffff;
5447
5448 dsc->cleanup = &cleanup_copro_load_store;
5449
5450 return 0;
5451}
5452
5453/* Clean up branch instructions (actually perform the branch, by setting
5454 PC). */
5455
5456static void
6e39997a 5457cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5458 struct displaced_step_closure *dsc)
5459{
5460 ULONGEST from = dsc->insn_addr;
5461 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
5462 int branch_taken = condition_true (dsc->u.branch.cond, status);
5463 enum pc_write_style write_pc = dsc->u.branch.exchange
5464 ? BX_WRITE_PC : BRANCH_WRITE_PC;
5465
5466 if (!branch_taken)
5467 return;
5468
5469 if (dsc->u.branch.link)
5470 {
5471 ULONGEST pc = displaced_read_reg (regs, from, 15);
5472 displaced_write_reg (regs, dsc, 14, pc - 4, CANNOT_WRITE_PC);
5473 }
5474
5475 displaced_write_reg (regs, dsc, 15, dsc->u.branch.dest, write_pc);
5476}
5477
5478/* Copy B/BL/BLX instructions with immediate destinations. */
5479
5480static int
6e39997a 5481copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5482 struct regcache *regs, struct displaced_step_closure *dsc)
5483{
5484 unsigned int cond = bits (insn, 28, 31);
5485 int exchange = (cond == 0xf);
5486 int link = exchange || bit (insn, 24);
5487 CORE_ADDR from = dsc->insn_addr;
5488 long offset;
5489
5490 if (debug_displaced)
5491 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5492 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5493 (unsigned long) insn);
5494
5495 /* Implement "BL<cond> <label>" as:
5496
5497 Preparation: cond <- instruction condition
5498 Insn: mov r0, r0 (nop)
5499 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5500
5501 B<cond> similar, but don't set r14 in cleanup. */
5502
5503 if (exchange)
5504 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5505 then arrange the switch into Thumb mode. */
5506 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5507 else
5508 offset = bits (insn, 0, 23) << 2;
5509
5510 if (bit (offset, 25))
5511 offset = offset | ~0x3ffffff;
5512
5513 dsc->u.branch.cond = cond;
5514 dsc->u.branch.link = link;
5515 dsc->u.branch.exchange = exchange;
5516 dsc->u.branch.dest = from + 8 + offset;
5517
5518 dsc->modinsn[0] = ARM_NOP;
5519
5520 dsc->cleanup = &cleanup_branch;
5521
5522 return 0;
5523}
5524
5525/* Copy BX/BLX with register-specified destinations. */
5526
5527static int
6e39997a 5528copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
5529 struct regcache *regs, struct displaced_step_closure *dsc)
5530{
5531 unsigned int cond = bits (insn, 28, 31);
5532 /* BX: x12xxx1x
5533 BLX: x12xxx3x. */
5534 int link = bit (insn, 5);
5535 unsigned int rm = bits (insn, 0, 3);
5536 CORE_ADDR from = dsc->insn_addr;
5537
5538 if (debug_displaced)
5539 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s register insn "
0963b4bd
MS
5540 "%.8lx\n", (link) ? "blx" : "bx",
5541 (unsigned long) insn);
cca44b1b
JB
5542
5543 /* Implement {BX,BLX}<cond> <reg>" as:
5544
5545 Preparation: cond <- instruction condition
5546 Insn: mov r0, r0 (nop)
5547 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5548
5549 Don't set r14 in cleanup for BX. */
5550
5551 dsc->u.branch.dest = displaced_read_reg (regs, from, rm);
5552
5553 dsc->u.branch.cond = cond;
5554 dsc->u.branch.link = link;
5555 dsc->u.branch.exchange = 1;
5556
5557 dsc->modinsn[0] = ARM_NOP;
5558
5559 dsc->cleanup = &cleanup_branch;
5560
5561 return 0;
5562}
5563
0963b4bd 5564/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5565
5566static void
6e39997a 5567cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5568 struct regcache *regs, struct displaced_step_closure *dsc)
5569{
5570 ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5571 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5572 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5573 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5574}
5575
5576static int
5577copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5578 struct displaced_step_closure *dsc)
5579{
5580 unsigned int rn = bits (insn, 16, 19);
5581 unsigned int rd = bits (insn, 12, 15);
5582 unsigned int op = bits (insn, 21, 24);
5583 int is_mov = (op == 0xd);
5584 ULONGEST rd_val, rn_val;
5585 CORE_ADDR from = dsc->insn_addr;
5586
5587 if (!insn_references_pc (insn, 0x000ff000ul))
5588 return copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
5589
5590 if (debug_displaced)
5591 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5592 "%.8lx\n", is_mov ? "move" : "ALU",
5593 (unsigned long) insn);
5594
5595 /* Instruction is of form:
5596
5597 <op><cond> rd, [rn,] #imm
5598
5599 Rewrite as:
5600
5601 Preparation: tmp1, tmp2 <- r0, r1;
5602 r0, r1 <- rd, rn
5603 Insn: <op><cond> r0, r1, #imm
5604 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5605 */
5606
5607 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5608 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5609 rn_val = displaced_read_reg (regs, from, rn);
5610 rd_val = displaced_read_reg (regs, from, rd);
5611 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5612 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5613 dsc->rd = rd;
5614
5615 if (is_mov)
5616 dsc->modinsn[0] = insn & 0xfff00fff;
5617 else
5618 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5619
5620 dsc->cleanup = &cleanup_alu_imm;
5621
5622 return 0;
5623}
5624
5625/* Copy/cleanup arithmetic/logic insns with register RHS. */
5626
5627static void
6e39997a 5628cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5629 struct regcache *regs, struct displaced_step_closure *dsc)
5630{
5631 ULONGEST rd_val;
5632 int i;
5633
5634 rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5635
5636 for (i = 0; i < 3; i++)
5637 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5638
5639 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5640}
5641
5642static int
5643copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5644 struct displaced_step_closure *dsc)
5645{
5646 unsigned int rn = bits (insn, 16, 19);
5647 unsigned int rm = bits (insn, 0, 3);
5648 unsigned int rd = bits (insn, 12, 15);
5649 unsigned int op = bits (insn, 21, 24);
5650 int is_mov = (op == 0xd);
5651 ULONGEST rd_val, rn_val, rm_val;
5652 CORE_ADDR from = dsc->insn_addr;
5653
5654 if (!insn_references_pc (insn, 0x000ff00ful))
5655 return copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5656
5657 if (debug_displaced)
5658 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5659 is_mov ? "move" : "ALU", (unsigned long) insn);
5660
5661 /* Instruction is of form:
5662
5663 <op><cond> rd, [rn,] rm [, <shift>]
5664
5665 Rewrite as:
5666
5667 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5668 r0, r1, r2 <- rd, rn, rm
5669 Insn: <op><cond> r0, r1, r2 [, <shift>]
5670 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5671 */
5672
5673 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5674 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5675 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5676 rd_val = displaced_read_reg (regs, from, rd);
5677 rn_val = displaced_read_reg (regs, from, rn);
5678 rm_val = displaced_read_reg (regs, from, rm);
5679 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5680 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5681 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5682 dsc->rd = rd;
5683
5684 if (is_mov)
5685 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5686 else
5687 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5688
5689 dsc->cleanup = &cleanup_alu_reg;
5690
5691 return 0;
5692}
5693
5694/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5695
5696static void
6e39997a 5697cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5698 struct regcache *regs,
5699 struct displaced_step_closure *dsc)
5700{
5701 ULONGEST rd_val = displaced_read_reg (regs, dsc->insn_addr, 0);
5702 int i;
5703
5704 for (i = 0; i < 4; i++)
5705 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5706
5707 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5708}
5709
5710static int
5711copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
5712 struct regcache *regs,
5713 struct displaced_step_closure *dsc)
cca44b1b
JB
5714{
5715 unsigned int rn = bits (insn, 16, 19);
5716 unsigned int rm = bits (insn, 0, 3);
5717 unsigned int rd = bits (insn, 12, 15);
5718 unsigned int rs = bits (insn, 8, 11);
5719 unsigned int op = bits (insn, 21, 24);
5720 int is_mov = (op == 0xd), i;
5721 ULONGEST rd_val, rn_val, rm_val, rs_val;
5722 CORE_ADDR from = dsc->insn_addr;
5723
5724 if (!insn_references_pc (insn, 0x000fff0ful))
5725 return copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5726
5727 if (debug_displaced)
5728 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5729 "%.8lx\n", is_mov ? "move" : "ALU",
5730 (unsigned long) insn);
5731
5732 /* Instruction is of form:
5733
5734 <op><cond> rd, [rn,] rm, <shift> rs
5735
5736 Rewrite as:
5737
5738 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5739 r0, r1, r2, r3 <- rd, rn, rm, rs
5740 Insn: <op><cond> r0, r1, r2, <shift> r3
5741 Cleanup: tmp5 <- r0
5742 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5743 rd <- tmp5
5744 */
5745
5746 for (i = 0; i < 4; i++)
5747 dsc->tmp[i] = displaced_read_reg (regs, from, i);
5748
5749 rd_val = displaced_read_reg (regs, from, rd);
5750 rn_val = displaced_read_reg (regs, from, rn);
5751 rm_val = displaced_read_reg (regs, from, rm);
5752 rs_val = displaced_read_reg (regs, from, rs);
5753 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5754 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5755 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5756 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5757 dsc->rd = rd;
5758
5759 if (is_mov)
5760 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5761 else
5762 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5763
5764 dsc->cleanup = &cleanup_alu_shifted_reg;
5765
5766 return 0;
5767}
5768
5769/* Clean up load instructions. */
5770
5771static void
6e39997a 5772cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5773 struct displaced_step_closure *dsc)
5774{
5775 ULONGEST rt_val, rt_val2 = 0, rn_val;
5776 CORE_ADDR from = dsc->insn_addr;
5777
5778 rt_val = displaced_read_reg (regs, from, 0);
5779 if (dsc->u.ldst.xfersize == 8)
5780 rt_val2 = displaced_read_reg (regs, from, 1);
5781 rn_val = displaced_read_reg (regs, from, 2);
5782
5783 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5784 if (dsc->u.ldst.xfersize > 4)
5785 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5786 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5787 if (!dsc->u.ldst.immed)
5788 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5789
5790 /* Handle register writeback. */
5791 if (dsc->u.ldst.writeback)
5792 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5793 /* Put result in right place. */
5794 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5795 if (dsc->u.ldst.xfersize == 8)
5796 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5797}
5798
5799/* Clean up store instructions. */
5800
5801static void
6e39997a 5802cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5803 struct displaced_step_closure *dsc)
5804{
5805 CORE_ADDR from = dsc->insn_addr;
5806 ULONGEST rn_val = displaced_read_reg (regs, from, 2);
5807
5808 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5809 if (dsc->u.ldst.xfersize > 4)
5810 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5811 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5812 if (!dsc->u.ldst.immed)
5813 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5814 if (!dsc->u.ldst.restore_r4)
5815 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5816
5817 /* Writeback. */
5818 if (dsc->u.ldst.writeback)
5819 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5820}
5821
5822/* Copy "extra" load/store instructions. These are halfword/doubleword
5823 transfers, which have a different encoding to byte/word transfers. */
5824
5825static int
5826copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unpriveleged,
5827 struct regcache *regs, struct displaced_step_closure *dsc)
5828{
5829 unsigned int op1 = bits (insn, 20, 24);
5830 unsigned int op2 = bits (insn, 5, 6);
5831 unsigned int rt = bits (insn, 12, 15);
5832 unsigned int rn = bits (insn, 16, 19);
5833 unsigned int rm = bits (insn, 0, 3);
5834 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5835 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5836 int immed = (op1 & 0x4) != 0;
5837 int opcode;
5838 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
5839 CORE_ADDR from = dsc->insn_addr;
5840
5841 if (!insn_references_pc (insn, 0x000ff00ful))
5842 return copy_unmodified (gdbarch, insn, "extra load/store", dsc);
5843
5844 if (debug_displaced)
5845 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
5846 "insn %.8lx\n", unpriveleged ? "unpriveleged " : "",
5847 (unsigned long) insn);
5848
5849 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5850
5851 if (opcode < 0)
5852 internal_error (__FILE__, __LINE__,
5853 _("copy_extra_ld_st: instruction decode error"));
5854
5855 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5856 dsc->tmp[1] = displaced_read_reg (regs, from, 1);
5857 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5858 if (!immed)
5859 dsc->tmp[3] = displaced_read_reg (regs, from, 3);
5860
5861 rt_val = displaced_read_reg (regs, from, rt);
5862 if (bytesize[opcode] == 8)
5863 rt_val2 = displaced_read_reg (regs, from, rt + 1);
5864 rn_val = displaced_read_reg (regs, from, rn);
5865 if (!immed)
5866 rm_val = displaced_read_reg (regs, from, rm);
5867
5868 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5869 if (bytesize[opcode] == 8)
5870 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5871 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5872 if (!immed)
5873 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5874
5875 dsc->rd = rt;
5876 dsc->u.ldst.xfersize = bytesize[opcode];
5877 dsc->u.ldst.rn = rn;
5878 dsc->u.ldst.immed = immed;
5879 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5880 dsc->u.ldst.restore_r4 = 0;
5881
5882 if (immed)
5883 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5884 ->
5885 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5886 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5887 else
5888 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5889 ->
5890 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5891 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5892
5893 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5894
5895 return 0;
5896}
5897
5898/* Copy byte/word loads and stores. */
5899
5900static int
5901copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5902 struct regcache *regs,
5903 struct displaced_step_closure *dsc, int load, int byte,
5904 int usermode)
5905{
5906 int immed = !bit (insn, 25);
5907 unsigned int rt = bits (insn, 12, 15);
5908 unsigned int rn = bits (insn, 16, 19);
5909 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5910 ULONGEST rt_val, rn_val, rm_val = 0;
5911 CORE_ADDR from = dsc->insn_addr;
5912
5913 if (!insn_references_pc (insn, 0x000ff00ful))
5914 return copy_unmodified (gdbarch, insn, "load/store", dsc);
5915
5916 if (debug_displaced)
5917 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s%s insn %.8lx\n",
5918 load ? (byte ? "ldrb" : "ldr")
5919 : (byte ? "strb" : "str"), usermode ? "t" : "",
5920 (unsigned long) insn);
5921
5922 dsc->tmp[0] = displaced_read_reg (regs, from, 0);
5923 dsc->tmp[2] = displaced_read_reg (regs, from, 2);
5924 if (!immed)
5925 dsc->tmp[3] = displaced_read_reg (regs, from, 3);
5926 if (!load)
5927 dsc->tmp[4] = displaced_read_reg (regs, from, 4);
5928
5929 rt_val = displaced_read_reg (regs, from, rt);
5930 rn_val = displaced_read_reg (regs, from, rn);
5931 if (!immed)
5932 rm_val = displaced_read_reg (regs, from, rm);
5933
5934 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5935 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5936 if (!immed)
5937 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5938
5939 dsc->rd = rt;
5940 dsc->u.ldst.xfersize = byte ? 1 : 4;
5941 dsc->u.ldst.rn = rn;
5942 dsc->u.ldst.immed = immed;
5943 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5944
5945 /* To write PC we can do:
5946
494e194e
YQ
5947 Before this sequence of instructions:
5948 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5949 r2 is the Rn value got from dispalced_read_reg.
5950
5951 Insn1: push {pc} Write address of STR instruction + offset on stack
5952 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5953 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5954 = addr(Insn1) + offset - addr(Insn3) - 8
5955 = offset - 16
5956 Insn4: add r4, r4, #8 r4 = offset - 8
5957 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5958 = from + offset
5959 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
5960
5961 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
5962 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5963 of this can be found in Section "Saving from r15" in
5964 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b
JB
5965
5966 if (load || rt != 15)
5967 {
5968 dsc->u.ldst.restore_r4 = 0;
5969
5970 if (immed)
5971 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5972 ->
5973 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5974 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5975 else
5976 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5977 ->
5978 {ldr,str}[b]<cond> r0, [r2, r3]. */
5979 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5980 }
5981 else
5982 {
5983 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5984 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
5985 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5986 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
5987 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5988 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5989 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5990
5991 /* As above. */
5992 if (immed)
5993 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5994 else
5995 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5996
5997 dsc->modinsn[6] = 0x0; /* breakpoint location. */
5998 dsc->modinsn[7] = 0x0; /* scratch space. */
5999
6000 dsc->numinsns = 6;
6001 }
6002
6003 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
6004
6005 return 0;
6006}
6007
6008/* Cleanup LDM instructions with fully-populated register list. This is an
6009 unfortunate corner case: it's impossible to implement correctly by modifying
6010 the instruction. The issue is as follows: we have an instruction,
6011
6012 ldm rN, {r0-r15}
6013
6014 which we must rewrite to avoid loading PC. A possible solution would be to
6015 do the load in two halves, something like (with suitable cleanup
6016 afterwards):
6017
6018 mov r8, rN
6019 ldm[id][ab] r8!, {r0-r7}
6020 str r7, <temp>
6021 ldm[id][ab] r8, {r7-r14}
6022 <bkpt>
6023
6024 but at present there's no suitable place for <temp>, since the scratch space
6025 is overwritten before the cleanup routine is called. For now, we simply
6026 emulate the instruction. */
6027
6028static void
6029cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
6030 struct displaced_step_closure *dsc)
6031{
6032 ULONGEST from = dsc->insn_addr;
6033 int inc = dsc->u.block.increment;
6034 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
6035 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
6036 uint32_t regmask = dsc->u.block.regmask;
6037 int regno = inc ? 0 : 15;
6038 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
6039 int exception_return = dsc->u.block.load && dsc->u.block.user
6040 && (regmask & 0x8000) != 0;
6041 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6042 int do_transfer = condition_true (dsc->u.block.cond, status);
6043 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6044
6045 if (!do_transfer)
6046 return;
6047
6048 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
6049 sensible we can do here. Complain loudly. */
6050 if (exception_return)
6051 error (_("Cannot single-step exception return"));
6052
6053 /* We don't handle any stores here for now. */
6054 gdb_assert (dsc->u.block.load != 0);
6055
6056 if (debug_displaced)
6057 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
6058 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
6059 dsc->u.block.increment ? "inc" : "dec",
6060 dsc->u.block.before ? "before" : "after");
6061
6062 while (regmask)
6063 {
6064 uint32_t memword;
6065
6066 if (inc)
6067 while (regno <= 15 && (regmask & (1 << regno)) == 0)
6068 regno++;
6069 else
6070 while (regno >= 0 && (regmask & (1 << regno)) == 0)
6071 regno--;
6072
6073 xfer_addr += bump_before;
6074
6075 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
6076 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
6077
6078 xfer_addr += bump_after;
6079
6080 regmask &= ~(1 << regno);
6081 }
6082
6083 if (dsc->u.block.writeback)
6084 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
6085 CANNOT_WRITE_PC);
6086}
6087
6088/* Clean up an STM which included the PC in the register list. */
6089
6090static void
6091cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
6092 struct displaced_step_closure *dsc)
6093{
6094 ULONGEST from = dsc->insn_addr;
6095 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6096 int store_executed = condition_true (dsc->u.block.cond, status);
6097 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
6098 CORE_ADDR stm_insn_addr;
6099 uint32_t pc_val;
6100 long offset;
6101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6102
6103 /* If condition code fails, there's nothing else to do. */
6104 if (!store_executed)
6105 return;
6106
6107 if (dsc->u.block.increment)
6108 {
6109 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
6110
6111 if (dsc->u.block.before)
6112 pc_stored_at += 4;
6113 }
6114 else
6115 {
6116 pc_stored_at = dsc->u.block.xfer_addr;
6117
6118 if (dsc->u.block.before)
6119 pc_stored_at -= 4;
6120 }
6121
6122 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
6123 stm_insn_addr = dsc->scratch_base;
6124 offset = pc_val - stm_insn_addr;
6125
6126 if (debug_displaced)
6127 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
6128 "STM instruction\n", offset);
6129
6130 /* Rewrite the stored PC to the proper value for the non-displaced original
6131 instruction. */
6132 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
6133 dsc->insn_addr + offset);
6134}
6135
6136/* Clean up an LDM which includes the PC in the register list. We clumped all
6137 the registers in the transferred list into a contiguous range r0...rX (to
6138 avoid loading PC directly and losing control of the debugged program), so we
6139 must undo that here. */
6140
6141static void
6e39997a 6142cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
6143 struct regcache *regs,
6144 struct displaced_step_closure *dsc)
6145{
6146 ULONGEST from = dsc->insn_addr;
6147 uint32_t status = displaced_read_reg (regs, from, ARM_PS_REGNUM);
6148 int load_executed = condition_true (dsc->u.block.cond, status), i;
6149 unsigned int mask = dsc->u.block.regmask, write_reg = 15;
6150 unsigned int regs_loaded = bitcount (mask);
6151 unsigned int num_to_shuffle = regs_loaded, clobbered;
6152
6153 /* The method employed here will fail if the register list is fully populated
6154 (we need to avoid loading PC directly). */
6155 gdb_assert (num_to_shuffle < 16);
6156
6157 if (!load_executed)
6158 return;
6159
6160 clobbered = (1 << num_to_shuffle) - 1;
6161
6162 while (num_to_shuffle > 0)
6163 {
6164 if ((mask & (1 << write_reg)) != 0)
6165 {
6166 unsigned int read_reg = num_to_shuffle - 1;
6167
6168 if (read_reg != write_reg)
6169 {
6170 ULONGEST rval = displaced_read_reg (regs, from, read_reg);
6171 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6172 if (debug_displaced)
6173 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6174 "loaded register r%d to r%d\n"), read_reg,
6175 write_reg);
6176 }
6177 else if (debug_displaced)
6178 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6179 "r%d already in the right place\n"),
6180 write_reg);
6181
6182 clobbered &= ~(1 << write_reg);
6183
6184 num_to_shuffle--;
6185 }
6186
6187 write_reg--;
6188 }
6189
6190 /* Restore any registers we scribbled over. */
6191 for (write_reg = 0; clobbered != 0; write_reg++)
6192 {
6193 if ((clobbered & (1 << write_reg)) != 0)
6194 {
6195 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6196 CANNOT_WRITE_PC);
6197 if (debug_displaced)
6198 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6199 "clobbered register r%d\n"), write_reg);
6200 clobbered &= ~(1 << write_reg);
6201 }
6202 }
6203
6204 /* Perform register writeback manually. */
6205 if (dsc->u.block.writeback)
6206 {
6207 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6208
6209 if (dsc->u.block.increment)
6210 new_rn_val += regs_loaded * 4;
6211 else
6212 new_rn_val -= regs_loaded * 4;
6213
6214 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6215 CANNOT_WRITE_PC);
6216 }
6217}
6218
6219/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6220 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6221
6222static int
6223copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6224 struct displaced_step_closure *dsc)
6225{
6226 int load = bit (insn, 20);
6227 int user = bit (insn, 22);
6228 int increment = bit (insn, 23);
6229 int before = bit (insn, 24);
6230 int writeback = bit (insn, 21);
6231 int rn = bits (insn, 16, 19);
6232 CORE_ADDR from = dsc->insn_addr;
6233
0963b4bd
MS
6234 /* Block transfers which don't mention PC can be run directly
6235 out-of-line. */
cca44b1b
JB
6236 if (rn != 15 && (insn & 0x8000) == 0)
6237 return copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
6238
6239 if (rn == 15)
6240 {
0963b4bd
MS
6241 warning (_("displaced: Unpredictable LDM or STM with "
6242 "base register r15"));
cca44b1b
JB
6243 return copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
6244 }
6245
6246 if (debug_displaced)
6247 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6248 "%.8lx\n", (unsigned long) insn);
6249
6250 dsc->u.block.xfer_addr = displaced_read_reg (regs, from, rn);
6251 dsc->u.block.rn = rn;
6252
6253 dsc->u.block.load = load;
6254 dsc->u.block.user = user;
6255 dsc->u.block.increment = increment;
6256 dsc->u.block.before = before;
6257 dsc->u.block.writeback = writeback;
6258 dsc->u.block.cond = bits (insn, 28, 31);
6259
6260 dsc->u.block.regmask = insn & 0xffff;
6261
6262 if (load)
6263 {
6264 if ((insn & 0xffff) == 0xffff)
6265 {
6266 /* LDM with a fully-populated register list. This case is
6267 particularly tricky. Implement for now by fully emulating the
6268 instruction (which might not behave perfectly in all cases, but
6269 these instructions should be rare enough for that not to matter
6270 too much). */
6271 dsc->modinsn[0] = ARM_NOP;
6272
6273 dsc->cleanup = &cleanup_block_load_all;
6274 }
6275 else
6276 {
6277 /* LDM of a list of registers which includes PC. Implement by
6278 rewriting the list of registers to be transferred into a
6279 contiguous chunk r0...rX before doing the transfer, then shuffling
6280 registers into the correct places in the cleanup routine. */
6281 unsigned int regmask = insn & 0xffff;
6282 unsigned int num_in_list = bitcount (regmask), new_regmask, bit = 1;
6283 unsigned int to = 0, from = 0, i, new_rn;
6284
6285 for (i = 0; i < num_in_list; i++)
6286 dsc->tmp[i] = displaced_read_reg (regs, from, i);
6287
6288 /* Writeback makes things complicated. We need to avoid clobbering
6289 the base register with one of the registers in our modified
6290 register list, but just using a different register can't work in
6291 all cases, e.g.:
6292
6293 ldm r14!, {r0-r13,pc}
6294
6295 which would need to be rewritten as:
6296
6297 ldm rN!, {r0-r14}
6298
6299 but that can't work, because there's no free register for N.
6300
6301 Solve this by turning off the writeback bit, and emulating
6302 writeback manually in the cleanup routine. */
6303
6304 if (writeback)
6305 insn &= ~(1 << 21);
6306
6307 new_regmask = (1 << num_in_list) - 1;
6308
6309 if (debug_displaced)
6310 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6311 "{..., pc}: original reg list %.4x, modified "
6312 "list %.4x\n"), rn, writeback ? "!" : "",
6313 (int) insn & 0xffff, new_regmask);
6314
6315 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6316
6317 dsc->cleanup = &cleanup_block_load_pc;
6318 }
6319 }
6320 else
6321 {
6322 /* STM of a list of registers which includes PC. Run the instruction
6323 as-is, but out of line: this will store the wrong value for the PC,
6324 so we must manually fix up the memory in the cleanup routine.
6325 Doing things this way has the advantage that we can auto-detect
6326 the offset of the PC write (which is architecture-dependent) in
6327 the cleanup routine. */
6328 dsc->modinsn[0] = insn;
6329
6330 dsc->cleanup = &cleanup_block_store_pc;
6331 }
6332
6333 return 0;
6334}
6335
6336/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6337 for Linux, where some SVC instructions must be treated specially. */
6338
6339static void
6e39997a 6340cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
6341 struct displaced_step_closure *dsc)
6342{
6343 CORE_ADDR from = dsc->insn_addr;
6344 CORE_ADDR resume_addr = from + 4;
6345
6346 if (debug_displaced)
6347 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6348 "%.8lx\n", (unsigned long) resume_addr);
6349
6350 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6351}
6352
6353static int
6354copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
6355 struct regcache *regs, struct displaced_step_closure *dsc)
6356{
6357 CORE_ADDR from = dsc->insn_addr;
6358
6359 /* Allow OS-specific code to override SVC handling. */
6360 if (dsc->u.svc.copy_svc_os)
6361 return dsc->u.svc.copy_svc_os (gdbarch, insn, to, regs, dsc);
6362
6363 if (debug_displaced)
6364 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6365 (unsigned long) insn);
6366
6367 /* Preparation: none.
6368 Insn: unmodified svc.
6369 Cleanup: pc <- insn_addr + 4. */
6370
6371 dsc->modinsn[0] = insn;
6372
6373 dsc->cleanup = &cleanup_svc;
6374 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6375 instruction. */
6376 dsc->wrote_to_pc = 1;
6377
6378 return 0;
6379}
6380
6381/* Copy undefined instructions. */
6382
6383static int
6e39997a 6384copy_undef (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
6385 struct displaced_step_closure *dsc)
6386{
6387 if (debug_displaced)
0963b4bd
MS
6388 fprintf_unfiltered (gdb_stdlog,
6389 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6390 (unsigned long) insn);
6391
6392 dsc->modinsn[0] = insn;
6393
6394 return 0;
6395}
6396
6397/* Copy unpredictable instructions. */
6398
6399static int
6e39997a 6400copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
cca44b1b
JB
6401 struct displaced_step_closure *dsc)
6402{
6403 if (debug_displaced)
6404 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6405 "%.8lx\n", (unsigned long) insn);
6406
6407 dsc->modinsn[0] = insn;
6408
6409 return 0;
6410}
6411
6412/* The decode_* functions are instruction decoding helpers. They mostly follow
6413 the presentation in the ARM ARM. */
6414
6415static int
6416decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6417 struct regcache *regs,
6418 struct displaced_step_closure *dsc)
6419{
6420 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6421 unsigned int rn = bits (insn, 16, 19);
6422
6423 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
6424 return copy_unmodified (gdbarch, insn, "cps", dsc);
6425 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
6426 return copy_unmodified (gdbarch, insn, "setend", dsc);
6427 else if ((op1 & 0x60) == 0x20)
6428 return copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
6429 else if ((op1 & 0x71) == 0x40)
6430 return copy_unmodified (gdbarch, insn, "neon elt/struct load/store", dsc);
6431 else if ((op1 & 0x77) == 0x41)
6432 return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6433 else if ((op1 & 0x77) == 0x45)
6434 return copy_preload (gdbarch, insn, regs, dsc); /* pli. */
6435 else if ((op1 & 0x77) == 0x51)
6436 {
6437 if (rn != 0xf)
6438 return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6439 else
6440 return copy_unpred (gdbarch, insn, dsc);
6441 }
6442 else if ((op1 & 0x77) == 0x55)
6443 return copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
6444 else if (op1 == 0x57)
6445 switch (op2)
6446 {
6447 case 0x1: return copy_unmodified (gdbarch, insn, "clrex", dsc);
6448 case 0x4: return copy_unmodified (gdbarch, insn, "dsb", dsc);
6449 case 0x5: return copy_unmodified (gdbarch, insn, "dmb", dsc);
6450 case 0x6: return copy_unmodified (gdbarch, insn, "isb", dsc);
6451 default: return copy_unpred (gdbarch, insn, dsc);
6452 }
6453 else if ((op1 & 0x63) == 0x43)
6454 return copy_unpred (gdbarch, insn, dsc);
6455 else if ((op2 & 0x1) == 0x0)
6456 switch (op1 & ~0x80)
6457 {
6458 case 0x61:
6459 return copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
6460 case 0x65:
6461 return copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
6462 case 0x71: case 0x75:
6463 /* pld/pldw reg. */
6464 return copy_preload_reg (gdbarch, insn, regs, dsc);
6465 case 0x63: case 0x67: case 0x73: case 0x77:
6466 return copy_unpred (gdbarch, insn, dsc);
6467 default:
6468 return copy_undef (gdbarch, insn, dsc);
6469 }
6470 else
6471 return copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
6472}
6473
6474static int
6475decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6476 struct regcache *regs,
6477 struct displaced_step_closure *dsc)
cca44b1b
JB
6478{
6479 if (bit (insn, 27) == 0)
6480 return decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
6481 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6482 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6483 {
6484 case 0x0: case 0x2:
6485 return copy_unmodified (gdbarch, insn, "srs", dsc);
6486
6487 case 0x1: case 0x3:
6488 return copy_unmodified (gdbarch, insn, "rfe", dsc);
6489
6490 case 0x4: case 0x5: case 0x6: case 0x7:
6491 return copy_b_bl_blx (gdbarch, insn, regs, dsc);
6492
6493 case 0x8:
6494 switch ((insn & 0xe00000) >> 21)
6495 {
6496 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6497 /* stc/stc2. */
6498 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6499
6500 case 0x2:
6501 return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6502
6503 default:
6504 return copy_undef (gdbarch, insn, dsc);
6505 }
6506
6507 case 0x9:
6508 {
6509 int rn_f = (bits (insn, 16, 19) == 0xf);
6510 switch ((insn & 0xe00000) >> 21)
6511 {
6512 case 0x1: case 0x3:
6513 /* ldc/ldc2 imm (undefined for rn == pc). */
6514 return rn_f ? copy_undef (gdbarch, insn, dsc)
6515 : copy_copro_load_store (gdbarch, insn, regs, dsc);
6516
6517 case 0x2:
6518 return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6519
6520 case 0x4: case 0x5: case 0x6: case 0x7:
6521 /* ldc/ldc2 lit (undefined for rn != pc). */
6522 return rn_f ? copy_copro_load_store (gdbarch, insn, regs, dsc)
6523 : copy_undef (gdbarch, insn, dsc);
6524
6525 default:
6526 return copy_undef (gdbarch, insn, dsc);
6527 }
6528 }
6529
6530 case 0xa:
6531 return copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
6532
6533 case 0xb:
6534 if (bits (insn, 16, 19) == 0xf)
6535 /* ldc/ldc2 lit. */
6536 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6537 else
6538 return copy_undef (gdbarch, insn, dsc);
6539
6540 case 0xc:
6541 if (bit (insn, 4))
6542 return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6543 else
6544 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6545
6546 case 0xd:
6547 if (bit (insn, 4))
6548 return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6549 else
6550 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6551
6552 default:
6553 return copy_undef (gdbarch, insn, dsc);
6554 }
6555}
6556
6557/* Decode miscellaneous instructions in dp/misc encoding space. */
6558
6559static int
6560decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6561 struct regcache *regs,
6562 struct displaced_step_closure *dsc)
cca44b1b
JB
6563{
6564 unsigned int op2 = bits (insn, 4, 6);
6565 unsigned int op = bits (insn, 21, 22);
6566 unsigned int op1 = bits (insn, 16, 19);
6567
6568 switch (op2)
6569 {
6570 case 0x0:
6571 return copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
6572
6573 case 0x1:
6574 if (op == 0x1) /* bx. */
6575 return copy_bx_blx_reg (gdbarch, insn, regs, dsc);
6576 else if (op == 0x3)
6577 return copy_unmodified (gdbarch, insn, "clz", dsc);
6578 else
6579 return copy_undef (gdbarch, insn, dsc);
6580
6581 case 0x2:
6582 if (op == 0x1)
6583 /* Not really supported. */
6584 return copy_unmodified (gdbarch, insn, "bxj", dsc);
6585 else
6586 return copy_undef (gdbarch, insn, dsc);
6587
6588 case 0x3:
6589 if (op == 0x1)
0963b4bd
MS
6590 return copy_bx_blx_reg (gdbarch, insn,
6591 regs, dsc); /* blx register. */
cca44b1b
JB
6592 else
6593 return copy_undef (gdbarch, insn, dsc);
6594
6595 case 0x5:
6596 return copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
6597
6598 case 0x7:
6599 if (op == 0x1)
6600 return copy_unmodified (gdbarch, insn, "bkpt", dsc);
6601 else if (op == 0x3)
6602 /* Not really supported. */
6603 return copy_unmodified (gdbarch, insn, "smc", dsc);
6604
6605 default:
6606 return copy_undef (gdbarch, insn, dsc);
6607 }
6608}
6609
6610static int
6611decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
6612 struct displaced_step_closure *dsc)
6613{
6614 if (bit (insn, 25))
6615 switch (bits (insn, 20, 24))
6616 {
6617 case 0x10:
6618 return copy_unmodified (gdbarch, insn, "movw", dsc);
6619
6620 case 0x14:
6621 return copy_unmodified (gdbarch, insn, "movt", dsc);
6622
6623 case 0x12: case 0x16:
6624 return copy_unmodified (gdbarch, insn, "msr imm", dsc);
6625
6626 default:
6627 return copy_alu_imm (gdbarch, insn, regs, dsc);
6628 }
6629 else
6630 {
6631 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6632
6633 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
6634 return copy_alu_reg (gdbarch, insn, regs, dsc);
6635 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
6636 return copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
6637 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
6638 return decode_miscellaneous (gdbarch, insn, regs, dsc);
6639 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
6640 return copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
6641 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
6642 return copy_unmodified (gdbarch, insn, "mul/mla", dsc);
6643 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
6644 return copy_unmodified (gdbarch, insn, "synch", dsc);
6645 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
6646 /* 2nd arg means "unpriveleged". */
6647 return copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6648 dsc);
6649 }
6650
6651 /* Should be unreachable. */
6652 return 1;
6653}
6654
6655static int
6656decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6657 struct regcache *regs,
6658 struct displaced_step_closure *dsc)
6659{
6660 int a = bit (insn, 25), b = bit (insn, 4);
6661 uint32_t op1 = bits (insn, 20, 24);
6662 int rn_f = bits (insn, 16, 19) == 0xf;
6663
6664 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6665 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
6666 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 0);
6667 else if ((!a && (op1 & 0x17) == 0x02)
6668 || (a && (op1 & 0x17) == 0x02 && !b))
6669 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 0, 1);
6670 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6671 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
6672 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 0);
6673 else if ((!a && (op1 & 0x17) == 0x03)
6674 || (a && (op1 & 0x17) == 0x03 && !b))
6675 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 0, 1);
6676 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6677 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
6678 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
6679 else if ((!a && (op1 & 0x17) == 0x06)
6680 || (a && (op1 & 0x17) == 0x06 && !b))
6681 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
6682 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6683 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
6684 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
6685 else if ((!a && (op1 & 0x17) == 0x07)
6686 || (a && (op1 & 0x17) == 0x07 && !b))
6687 return copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
6688
6689 /* Should be unreachable. */
6690 return 1;
6691}
6692
6693static int
6694decode_media (struct gdbarch *gdbarch, uint32_t insn,
6695 struct displaced_step_closure *dsc)
6696{
6697 switch (bits (insn, 20, 24))
6698 {
6699 case 0x00: case 0x01: case 0x02: case 0x03:
6700 return copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
6701
6702 case 0x04: case 0x05: case 0x06: case 0x07:
6703 return copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
6704
6705 case 0x08: case 0x09: case 0x0a: case 0x0b:
6706 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
6707 return copy_unmodified (gdbarch, insn,
6708 "decode/pack/unpack/saturate/reverse", dsc);
6709
6710 case 0x18:
6711 if (bits (insn, 5, 7) == 0) /* op2. */
6712 {
6713 if (bits (insn, 12, 15) == 0xf)
6714 return copy_unmodified (gdbarch, insn, "usad8", dsc);
6715 else
6716 return copy_unmodified (gdbarch, insn, "usada8", dsc);
6717 }
6718 else
6719 return copy_undef (gdbarch, insn, dsc);
6720
6721 case 0x1a: case 0x1b:
6722 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6723 return copy_unmodified (gdbarch, insn, "sbfx", dsc);
6724 else
6725 return copy_undef (gdbarch, insn, dsc);
6726
6727 case 0x1c: case 0x1d:
6728 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6729 {
6730 if (bits (insn, 0, 3) == 0xf)
6731 return copy_unmodified (gdbarch, insn, "bfc", dsc);
6732 else
6733 return copy_unmodified (gdbarch, insn, "bfi", dsc);
6734 }
6735 else
6736 return copy_undef (gdbarch, insn, dsc);
6737
6738 case 0x1e: case 0x1f:
6739 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
6740 return copy_unmodified (gdbarch, insn, "ubfx", dsc);
6741 else
6742 return copy_undef (gdbarch, insn, dsc);
6743 }
6744
6745 /* Should be unreachable. */
6746 return 1;
6747}
6748
6749static int
6750decode_b_bl_ldmstm (struct gdbarch *gdbarch, int32_t insn,
6751 struct regcache *regs, struct displaced_step_closure *dsc)
6752{
6753 if (bit (insn, 25))
6754 return copy_b_bl_blx (gdbarch, insn, regs, dsc);
6755 else
6756 return copy_block_xfer (gdbarch, insn, regs, dsc);
6757}
6758
6759static int
6760decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
0963b4bd
MS
6761 struct regcache *regs,
6762 struct displaced_step_closure *dsc)
cca44b1b
JB
6763{
6764 unsigned int opcode = bits (insn, 20, 24);
6765
6766 switch (opcode)
6767 {
6768 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
6769 return copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
6770
6771 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6772 case 0x12: case 0x16:
6773 return copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
6774
6775 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6776 case 0x13: case 0x17:
6777 return copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
6778
6779 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6780 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6781 /* Note: no writeback for these instructions. Bit 25 will always be
6782 zero though (via caller), so the following works OK. */
6783 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6784 }
6785
6786 /* Should be unreachable. */
6787 return 1;
6788}
6789
6790static int
6791decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
6792 struct regcache *regs, struct displaced_step_closure *dsc)
6793{
6794 unsigned int op1 = bits (insn, 20, 25);
6795 int op = bit (insn, 4);
6796 unsigned int coproc = bits (insn, 8, 11);
6797 unsigned int rn = bits (insn, 16, 19);
6798
6799 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
6800 return decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
6801 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6802 && (coproc & 0xe) != 0xa)
6803 /* stc/stc2. */
6804 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6805 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6806 && (coproc & 0xe) != 0xa)
6807 /* ldc/ldc2 imm/lit. */
6808 return copy_copro_load_store (gdbarch, insn, regs, dsc);
6809 else if ((op1 & 0x3e) == 0x00)
6810 return copy_undef (gdbarch, insn, dsc);
6811 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
6812 return copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
6813 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
6814 return copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
6815 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
6816 return copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
6817 else if ((op1 & 0x30) == 0x20 && !op)
6818 {
6819 if ((coproc & 0xe) == 0xa)
6820 return copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
6821 else
6822 return copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
6823 }
6824 else if ((op1 & 0x30) == 0x20 && op)
6825 return copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
6826 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
6827 return copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
6828 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
6829 return copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
6830 else if ((op1 & 0x30) == 0x30)
6831 return copy_svc (gdbarch, insn, to, regs, dsc);
6832 else
6833 return copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
6834}
6835
b434a28f
YQ
6836static void
6837thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6838 CORE_ADDR to, struct regcache *regs,
6839 struct displaced_step_closure *dsc)
6840{
6841 error (_("Displaced stepping is only supported in ARM mode"));
6842}
6843
cca44b1b 6844void
b434a28f
YQ
6845arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
6846 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
6847 struct displaced_step_closure *dsc)
6848{
6849 int err = 0;
b434a28f
YQ
6850 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
6851 uint32_t insn;
cca44b1b
JB
6852
6853 /* Most displaced instructions use a 1-instruction scratch space, so set this
6854 here and override below if/when necessary. */
6855 dsc->numinsns = 1;
6856 dsc->insn_addr = from;
6857 dsc->scratch_base = to;
6858 dsc->cleanup = NULL;
6859 dsc->wrote_to_pc = 0;
6860
b434a28f
YQ
6861 if (!displaced_in_arm_mode (regs))
6862 return thumb_process_displaced_insn (gdbarch, from, to, regs, dsc);
6863
6864 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
6865 if (debug_displaced)
6866 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
6867 "at %.8lx\n", (unsigned long) insn,
6868 (unsigned long) from);
6869
cca44b1b
JB
6870 if ((insn & 0xf0000000) == 0xf0000000)
6871 err = decode_unconditional (gdbarch, insn, regs, dsc);
6872 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
6873 {
6874 case 0x0: case 0x1: case 0x2: case 0x3:
6875 err = decode_dp_misc (gdbarch, insn, regs, dsc);
6876 break;
6877
6878 case 0x4: case 0x5: case 0x6:
6879 err = decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
6880 break;
6881
6882 case 0x7:
6883 err = decode_media (gdbarch, insn, dsc);
6884 break;
6885
6886 case 0x8: case 0x9: case 0xa: case 0xb:
6887 err = decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
6888 break;
6889
6890 case 0xc: case 0xd: case 0xe: case 0xf:
6891 err = decode_svc_copro (gdbarch, insn, to, regs, dsc);
6892 break;
6893 }
6894
6895 if (err)
6896 internal_error (__FILE__, __LINE__,
6897 _("arm_process_displaced_insn: Instruction decode error"));
6898}
6899
6900/* Actually set up the scratch space for a displaced instruction. */
6901
6902void
6903arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
6904 CORE_ADDR to, struct displaced_step_closure *dsc)
6905{
6906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6907 unsigned int i;
6908 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
6909
6910 /* Poke modified instruction(s). */
6911 for (i = 0; i < dsc->numinsns; i++)
6912 {
6913 if (debug_displaced)
6914 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn %.8lx at "
6915 "%.8lx\n", (unsigned long) dsc->modinsn[i],
6916 (unsigned long) to + i * 4);
6917 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
6918 dsc->modinsn[i]);
6919 }
6920
6921 /* Put breakpoint afterwards. */
6922 write_memory (to + dsc->numinsns * 4, tdep->arm_breakpoint,
6923 tdep->arm_breakpoint_size);
6924
6925 if (debug_displaced)
6926 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
6927 paddress (gdbarch, from), paddress (gdbarch, to));
6928}
6929
6930/* Entry point for copying an instruction into scratch space for displaced
6931 stepping. */
6932
6933struct displaced_step_closure *
6934arm_displaced_step_copy_insn (struct gdbarch *gdbarch,
6935 CORE_ADDR from, CORE_ADDR to,
6936 struct regcache *regs)
6937{
6938 struct displaced_step_closure *dsc
6939 = xmalloc (sizeof (struct displaced_step_closure));
b434a28f 6940 arm_process_displaced_insn (gdbarch, from, to, regs, dsc);
cca44b1b
JB
6941 arm_displaced_init_closure (gdbarch, from, to, dsc);
6942
6943 return dsc;
6944}
6945
6946/* Entry point for cleaning things up after a displaced instruction has been
6947 single-stepped. */
6948
6949void
6950arm_displaced_step_fixup (struct gdbarch *gdbarch,
6951 struct displaced_step_closure *dsc,
6952 CORE_ADDR from, CORE_ADDR to,
6953 struct regcache *regs)
6954{
6955 if (dsc->cleanup)
6956 dsc->cleanup (gdbarch, regs, dsc);
6957
6958 if (!dsc->wrote_to_pc)
6959 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, dsc->insn_addr + 4);
6960}
6961
6962#include "bfd-in2.h"
6963#include "libcoff.h"
6964
6965static int
6966gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
6967{
9779414d
DJ
6968 struct gdbarch *gdbarch = info->application_data;
6969
6970 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
6971 {
6972 static asymbol *asym;
6973 static combined_entry_type ce;
6974 static struct coff_symbol_struct csym;
6975 static struct bfd fake_bfd;
6976 static bfd_target fake_target;
6977
6978 if (csym.native == NULL)
6979 {
6980 /* Create a fake symbol vector containing a Thumb symbol.
6981 This is solely so that the code in print_insn_little_arm()
6982 and print_insn_big_arm() in opcodes/arm-dis.c will detect
6983 the presence of a Thumb symbol and switch to decoding
6984 Thumb instructions. */
6985
6986 fake_target.flavour = bfd_target_coff_flavour;
6987 fake_bfd.xvec = &fake_target;
6988 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
6989 csym.native = &ce;
6990 csym.symbol.the_bfd = &fake_bfd;
6991 csym.symbol.name = "fake";
6992 asym = (asymbol *) & csym;
6993 }
6994
6995 memaddr = UNMAKE_THUMB_ADDR (memaddr);
6996 info->symbols = &asym;
6997 }
6998 else
6999 info->symbols = NULL;
7000
7001 if (info->endian == BFD_ENDIAN_BIG)
7002 return print_insn_big_arm (memaddr, info);
7003 else
7004 return print_insn_little_arm (memaddr, info);
7005}
7006
7007/* The following define instruction sequences that will cause ARM
7008 cpu's to take an undefined instruction trap. These are used to
7009 signal a breakpoint to GDB.
7010
7011 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7012 modes. A different instruction is required for each mode. The ARM
7013 cpu's can also be big or little endian. Thus four different
7014 instructions are needed to support all cases.
7015
7016 Note: ARMv4 defines several new instructions that will take the
7017 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7018 not in fact add the new instructions. The new undefined
7019 instructions in ARMv4 are all instructions that had no defined
7020 behaviour in earlier chips. There is no guarantee that they will
7021 raise an exception, but may be treated as NOP's. In practice, it
7022 may only safe to rely on instructions matching:
7023
7024 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7025 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7026 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7027
0963b4bd 7028 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7029 following use a condition predicate of ALWAYS so it is always TRUE.
7030
7031 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7032 and NetBSD all use a software interrupt rather than an undefined
7033 instruction to force a trap. This can be handled by by the
7034 abi-specific code during establishment of the gdbarch vector. */
7035
7036#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7037#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7038#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7039#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7040
7041static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7042static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7043static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7044static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
7045
7046/* Determine the type and size of breakpoint to insert at PCPTR. Uses
7047 the program counter value to determine whether a 16-bit or 32-bit
7048 breakpoint should be used. It returns a pointer to a string of
7049 bytes that encode a breakpoint instruction, stores the length of
7050 the string to *lenptr, and adjusts the program counter (if
7051 necessary) to point to the actual memory location where the
7052 breakpoint should be inserted. */
7053
7054static const unsigned char *
7055arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
7056{
7057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7058 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7059
9779414d 7060 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7061 {
7062 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7063
7064 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7065 check whether we are replacing a 32-bit instruction. */
7066 if (tdep->thumb2_breakpoint != NULL)
7067 {
7068 gdb_byte buf[2];
7069 if (target_read_memory (*pcptr, buf, 2) == 0)
7070 {
7071 unsigned short inst1;
7072 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
7073 if ((inst1 & 0xe000) == 0xe000 && (inst1 & 0x1800) != 0)
7074 {
7075 *lenptr = tdep->thumb2_breakpoint_size;
7076 return tdep->thumb2_breakpoint;
7077 }
7078 }
7079 }
7080
cca44b1b
JB
7081 *lenptr = tdep->thumb_breakpoint_size;
7082 return tdep->thumb_breakpoint;
7083 }
7084 else
7085 {
7086 *lenptr = tdep->arm_breakpoint_size;
7087 return tdep->arm_breakpoint;
7088 }
7089}
7090
177321bd
DJ
7091static void
7092arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7093 int *kindptr)
7094{
7095 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7096
7097 arm_breakpoint_from_pc (gdbarch, pcptr, kindptr);
7098
9779414d 7099 if (arm_pc_is_thumb (gdbarch, *pcptr) && *kindptr == 4)
177321bd
DJ
7100 /* The documented magic value for a 32-bit Thumb-2 breakpoint, so
7101 that this is not confused with a 32-bit ARM breakpoint. */
7102 *kindptr = 3;
7103}
7104
cca44b1b
JB
7105/* Extract from an array REGBUF containing the (raw) register state a
7106 function return value of type TYPE, and copy that, in virtual
7107 format, into VALBUF. */
7108
7109static void
7110arm_extract_return_value (struct type *type, struct regcache *regs,
7111 gdb_byte *valbuf)
7112{
7113 struct gdbarch *gdbarch = get_regcache_arch (regs);
7114 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7115
7116 if (TYPE_CODE_FLT == TYPE_CODE (type))
7117 {
7118 switch (gdbarch_tdep (gdbarch)->fp_model)
7119 {
7120 case ARM_FLOAT_FPA:
7121 {
7122 /* The value is in register F0 in internal format. We need to
7123 extract the raw value and then convert it to the desired
7124 internal type. */
7125 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7126
7127 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7128 convert_from_extended (floatformat_from_type (type), tmpbuf,
7129 valbuf, gdbarch_byte_order (gdbarch));
7130 }
7131 break;
7132
7133 case ARM_FLOAT_SOFT_FPA:
7134 case ARM_FLOAT_SOFT_VFP:
7135 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7136 not using the VFP ABI code. */
7137 case ARM_FLOAT_VFP:
7138 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7139 if (TYPE_LENGTH (type) > 4)
7140 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7141 valbuf + INT_REGISTER_SIZE);
7142 break;
7143
7144 default:
0963b4bd
MS
7145 internal_error (__FILE__, __LINE__,
7146 _("arm_extract_return_value: "
7147 "Floating point model not supported"));
cca44b1b
JB
7148 break;
7149 }
7150 }
7151 else if (TYPE_CODE (type) == TYPE_CODE_INT
7152 || TYPE_CODE (type) == TYPE_CODE_CHAR
7153 || TYPE_CODE (type) == TYPE_CODE_BOOL
7154 || TYPE_CODE (type) == TYPE_CODE_PTR
7155 || TYPE_CODE (type) == TYPE_CODE_REF
7156 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7157 {
b021a221
MS
7158 /* If the type is a plain integer, then the access is
7159 straight-forward. Otherwise we have to play around a bit
7160 more. */
cca44b1b
JB
7161 int len = TYPE_LENGTH (type);
7162 int regno = ARM_A1_REGNUM;
7163 ULONGEST tmp;
7164
7165 while (len > 0)
7166 {
7167 /* By using store_unsigned_integer we avoid having to do
7168 anything special for small big-endian values. */
7169 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7170 store_unsigned_integer (valbuf,
7171 (len > INT_REGISTER_SIZE
7172 ? INT_REGISTER_SIZE : len),
7173 byte_order, tmp);
7174 len -= INT_REGISTER_SIZE;
7175 valbuf += INT_REGISTER_SIZE;
7176 }
7177 }
7178 else
7179 {
7180 /* For a structure or union the behaviour is as if the value had
7181 been stored to word-aligned memory and then loaded into
7182 registers with 32-bit load instruction(s). */
7183 int len = TYPE_LENGTH (type);
7184 int regno = ARM_A1_REGNUM;
7185 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7186
7187 while (len > 0)
7188 {
7189 regcache_cooked_read (regs, regno++, tmpbuf);
7190 memcpy (valbuf, tmpbuf,
7191 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
7192 len -= INT_REGISTER_SIZE;
7193 valbuf += INT_REGISTER_SIZE;
7194 }
7195 }
7196}
7197
7198
7199/* Will a function return an aggregate type in memory or in a
7200 register? Return 0 if an aggregate type can be returned in a
7201 register, 1 if it must be returned in memory. */
7202
7203static int
7204arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
7205{
7206 int nRc;
7207 enum type_code code;
7208
7209 CHECK_TYPEDEF (type);
7210
7211 /* In the ARM ABI, "integer" like aggregate types are returned in
7212 registers. For an aggregate type to be integer like, its size
7213 must be less than or equal to INT_REGISTER_SIZE and the
7214 offset of each addressable subfield must be zero. Note that bit
7215 fields are not addressable, and all addressable subfields of
7216 unions always start at offset zero.
7217
7218 This function is based on the behaviour of GCC 2.95.1.
7219 See: gcc/arm.c: arm_return_in_memory() for details.
7220
7221 Note: All versions of GCC before GCC 2.95.2 do not set up the
7222 parameters correctly for a function returning the following
7223 structure: struct { float f;}; This should be returned in memory,
7224 not a register. Richard Earnshaw sent me a patch, but I do not
7225 know of any way to detect if a function like the above has been
7226 compiled with the correct calling convention. */
7227
7228 /* All aggregate types that won't fit in a register must be returned
7229 in memory. */
7230 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
7231 {
7232 return 1;
7233 }
7234
7235 /* The AAPCS says all aggregates not larger than a word are returned
7236 in a register. */
7237 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
7238 return 0;
7239
7240 /* The only aggregate types that can be returned in a register are
7241 structs and unions. Arrays must be returned in memory. */
7242 code = TYPE_CODE (type);
7243 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
7244 {
7245 return 1;
7246 }
7247
7248 /* Assume all other aggregate types can be returned in a register.
7249 Run a check for structures, unions and arrays. */
7250 nRc = 0;
7251
7252 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
7253 {
7254 int i;
7255 /* Need to check if this struct/union is "integer" like. For
7256 this to be true, its size must be less than or equal to
7257 INT_REGISTER_SIZE and the offset of each addressable
7258 subfield must be zero. Note that bit fields are not
7259 addressable, and unions always start at offset zero. If any
7260 of the subfields is a floating point type, the struct/union
7261 cannot be an integer type. */
7262
7263 /* For each field in the object, check:
7264 1) Is it FP? --> yes, nRc = 1;
67255d04
RE
7265 2) Is it addressable (bitpos != 0) and
7266 not packed (bitsize == 0)?
7267 --> yes, nRc = 1
7268 */
7269
7270 for (i = 0; i < TYPE_NFIELDS (type); i++)
7271 {
7272 enum type_code field_type_code;
0963b4bd
MS
7273 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
7274 i)));
67255d04
RE
7275
7276 /* Is it a floating point type field? */
7277 if (field_type_code == TYPE_CODE_FLT)
7278 {
7279 nRc = 1;
7280 break;
7281 }
7282
7283 /* If bitpos != 0, then we have to care about it. */
7284 if (TYPE_FIELD_BITPOS (type, i) != 0)
7285 {
7286 /* Bitfields are not addressable. If the field bitsize is
7287 zero, then the field is not packed. Hence it cannot be
7288 a bitfield or any other packed type. */
7289 if (TYPE_FIELD_BITSIZE (type, i) == 0)
7290 {
7291 nRc = 1;
7292 break;
7293 }
7294 }
7295 }
7296 }
7297
7298 return nRc;
7299}
7300
34e8f22d
RE
7301/* Write into appropriate registers a function return value of type
7302 TYPE, given in virtual format. */
7303
7304static void
b508a996 7305arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 7306 const gdb_byte *valbuf)
34e8f22d 7307{
be8626e0 7308 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 7309 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 7310
34e8f22d
RE
7311 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7312 {
7a5ea0d4 7313 char buf[MAX_REGISTER_SIZE];
34e8f22d 7314
be8626e0 7315 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
7316 {
7317 case ARM_FLOAT_FPA:
7318
be8626e0
MD
7319 convert_to_extended (floatformat_from_type (type), buf, valbuf,
7320 gdbarch_byte_order (gdbarch));
b508a996 7321 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
7322 break;
7323
fd50bc42 7324 case ARM_FLOAT_SOFT_FPA:
08216dd7 7325 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
7326 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7327 not using the VFP ABI code. */
7328 case ARM_FLOAT_VFP:
b508a996
RE
7329 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
7330 if (TYPE_LENGTH (type) > 4)
7331 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 7332 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
7333 break;
7334
7335 default:
9b20d036
MS
7336 internal_error (__FILE__, __LINE__,
7337 _("arm_store_return_value: Floating "
7338 "point model not supported"));
08216dd7
RE
7339 break;
7340 }
34e8f22d 7341 }
b508a996
RE
7342 else if (TYPE_CODE (type) == TYPE_CODE_INT
7343 || TYPE_CODE (type) == TYPE_CODE_CHAR
7344 || TYPE_CODE (type) == TYPE_CODE_BOOL
7345 || TYPE_CODE (type) == TYPE_CODE_PTR
7346 || TYPE_CODE (type) == TYPE_CODE_REF
7347 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7348 {
7349 if (TYPE_LENGTH (type) <= 4)
7350 {
7351 /* Values of one word or less are zero/sign-extended and
7352 returned in r0. */
7a5ea0d4 7353 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7354 LONGEST val = unpack_long (type, valbuf);
7355
e17a4113 7356 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
7357 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
7358 }
7359 else
7360 {
7361 /* Integral values greater than one word are stored in consecutive
7362 registers starting with r0. This will always be a multiple of
7363 the regiser size. */
7364 int len = TYPE_LENGTH (type);
7365 int regno = ARM_A1_REGNUM;
7366
7367 while (len > 0)
7368 {
7369 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
7370 len -= INT_REGISTER_SIZE;
7371 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7372 }
7373 }
7374 }
34e8f22d 7375 else
b508a996
RE
7376 {
7377 /* For a structure or union the behaviour is as if the value had
7378 been stored to word-aligned memory and then loaded into
7379 registers with 32-bit load instruction(s). */
7380 int len = TYPE_LENGTH (type);
7381 int regno = ARM_A1_REGNUM;
7a5ea0d4 7382 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
7383
7384 while (len > 0)
7385 {
7386 memcpy (tmpbuf, valbuf,
7a5ea0d4 7387 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 7388 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
7389 len -= INT_REGISTER_SIZE;
7390 valbuf += INT_REGISTER_SIZE;
b508a996
RE
7391 }
7392 }
34e8f22d
RE
7393}
7394
2af48f68
PB
7395
7396/* Handle function return values. */
7397
7398static enum return_value_convention
c055b101
CV
7399arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
7400 struct type *valtype, struct regcache *regcache,
7401 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 7402{
7c00367c 7403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
90445bd3
DJ
7404 enum arm_vfp_cprc_base_type vfp_base_type;
7405 int vfp_base_count;
7406
7407 if (arm_vfp_abi_for_function (gdbarch, func_type)
7408 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
7409 {
7410 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
7411 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
7412 int i;
7413 for (i = 0; i < vfp_base_count; i++)
7414 {
58d6951d
DJ
7415 if (reg_char == 'q')
7416 {
7417 if (writebuf)
7418 arm_neon_quad_write (gdbarch, regcache, i,
7419 writebuf + i * unit_length);
7420
7421 if (readbuf)
7422 arm_neon_quad_read (gdbarch, regcache, i,
7423 readbuf + i * unit_length);
7424 }
7425 else
7426 {
7427 char name_buf[4];
7428 int regnum;
7429
7430 sprintf (name_buf, "%c%d", reg_char, i);
7431 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7432 strlen (name_buf));
7433 if (writebuf)
7434 regcache_cooked_write (regcache, regnum,
7435 writebuf + i * unit_length);
7436 if (readbuf)
7437 regcache_cooked_read (regcache, regnum,
7438 readbuf + i * unit_length);
7439 }
90445bd3
DJ
7440 }
7441 return RETURN_VALUE_REGISTER_CONVENTION;
7442 }
7c00367c 7443
2af48f68
PB
7444 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
7445 || TYPE_CODE (valtype) == TYPE_CODE_UNION
7446 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
7447 {
7c00367c
MK
7448 if (tdep->struct_return == pcc_struct_return
7449 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
7450 return RETURN_VALUE_STRUCT_CONVENTION;
7451 }
7452
7453 if (writebuf)
7454 arm_store_return_value (valtype, regcache, writebuf);
7455
7456 if (readbuf)
7457 arm_extract_return_value (valtype, regcache, readbuf);
7458
7459 return RETURN_VALUE_REGISTER_CONVENTION;
7460}
7461
7462
9df628e0 7463static int
60ade65d 7464arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 7465{
e17a4113
UW
7466 struct gdbarch *gdbarch = get_frame_arch (frame);
7467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7468 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 7469 CORE_ADDR jb_addr;
7a5ea0d4 7470 char buf[INT_REGISTER_SIZE];
9df628e0 7471
60ade65d 7472 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
7473
7474 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 7475 INT_REGISTER_SIZE))
9df628e0
RE
7476 return 0;
7477
e17a4113 7478 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
7479 return 1;
7480}
7481
faa95490
DJ
7482/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
7483 return the target PC. Otherwise return 0. */
c906108c
SS
7484
7485CORE_ADDR
52f729a7 7486arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 7487{
c5aa993b 7488 char *name;
faa95490 7489 int namelen;
c906108c
SS
7490 CORE_ADDR start_addr;
7491
7492 /* Find the starting address and name of the function containing the PC. */
7493 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7494 return 0;
7495
faa95490
DJ
7496 /* If PC is in a Thumb call or return stub, return the address of the
7497 target PC, which is in a register. The thunk functions are called
7498 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
7499 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
7500 functions, named __ARM_call_via_r[0-7]. */
7501 if (strncmp (name, "_call_via_", 10) == 0
7502 || strncmp (name, "__ARM_call_via_", strlen ("__ARM_call_via_")) == 0)
c906108c 7503 {
ed9a39eb
JM
7504 /* Use the name suffix to determine which register contains the
7505 target PC. */
c5aa993b
JM
7506 static char *table[15] =
7507 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
7508 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
7509 };
c906108c 7510 int regno;
faa95490 7511 int offset = strlen (name) - 2;
c906108c
SS
7512
7513 for (regno = 0; regno <= 14; regno++)
faa95490 7514 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 7515 return get_frame_register_unsigned (frame, regno);
c906108c 7516 }
ed9a39eb 7517
faa95490
DJ
7518 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
7519 non-interworking calls to foo. We could decode the stubs
7520 to find the target but it's easier to use the symbol table. */
7521 namelen = strlen (name);
7522 if (name[0] == '_' && name[1] == '_'
7523 && ((namelen > 2 + strlen ("_from_thumb")
7524 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
7525 strlen ("_from_thumb")) == 0)
7526 || (namelen > 2 + strlen ("_from_arm")
7527 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
7528 strlen ("_from_arm")) == 0)))
7529 {
7530 char *target_name;
7531 int target_len = namelen - 2;
7532 struct minimal_symbol *minsym;
7533 struct objfile *objfile;
7534 struct obj_section *sec;
7535
7536 if (name[namelen - 1] == 'b')
7537 target_len -= strlen ("_from_thumb");
7538 else
7539 target_len -= strlen ("_from_arm");
7540
7541 target_name = alloca (target_len + 1);
7542 memcpy (target_name, name + 2, target_len);
7543 target_name[target_len] = '\0';
7544
7545 sec = find_pc_section (pc);
7546 objfile = (sec == NULL) ? NULL : sec->objfile;
7547 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
7548 if (minsym != NULL)
7549 return SYMBOL_VALUE_ADDRESS (minsym);
7550 else
7551 return 0;
7552 }
7553
c5aa993b 7554 return 0; /* not a stub */
c906108c
SS
7555}
7556
afd7eef0
RE
7557static void
7558set_arm_command (char *args, int from_tty)
7559{
edefbb7c
AC
7560 printf_unfiltered (_("\
7561\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
7562 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
7563}
7564
7565static void
7566show_arm_command (char *args, int from_tty)
7567{
26304000 7568 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
7569}
7570
28e97307
DJ
7571static void
7572arm_update_current_architecture (void)
fd50bc42 7573{
28e97307 7574 struct gdbarch_info info;
fd50bc42 7575
28e97307 7576 /* If the current architecture is not ARM, we have nothing to do. */
1cf3db46 7577 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_arm)
28e97307 7578 return;
fd50bc42 7579
28e97307
DJ
7580 /* Update the architecture. */
7581 gdbarch_info_init (&info);
fd50bc42 7582
28e97307 7583 if (!gdbarch_update_p (info))
9b20d036 7584 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
7585}
7586
7587static void
7588set_fp_model_sfunc (char *args, int from_tty,
7589 struct cmd_list_element *c)
7590{
7591 enum arm_float_model fp_model;
7592
7593 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
7594 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
7595 {
7596 arm_fp_model = fp_model;
7597 break;
7598 }
7599
7600 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 7601 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
7602 current_fp_model);
7603
28e97307 7604 arm_update_current_architecture ();
fd50bc42
RE
7605}
7606
7607static void
08546159
AC
7608show_fp_model (struct ui_file *file, int from_tty,
7609 struct cmd_list_element *c, const char *value)
fd50bc42 7610{
1cf3db46 7611 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
fd50bc42 7612
28e97307 7613 if (arm_fp_model == ARM_FLOAT_AUTO
1cf3db46 7614 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7615 fprintf_filtered (file, _("\
7616The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
7617 fp_model_strings[tdep->fp_model]);
7618 else
7619 fprintf_filtered (file, _("\
7620The current ARM floating point model is \"%s\".\n"),
7621 fp_model_strings[arm_fp_model]);
7622}
7623
7624static void
7625arm_set_abi (char *args, int from_tty,
7626 struct cmd_list_element *c)
7627{
7628 enum arm_abi_kind arm_abi;
7629
7630 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
7631 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
7632 {
7633 arm_abi_global = arm_abi;
7634 break;
7635 }
7636
7637 if (arm_abi == ARM_ABI_LAST)
7638 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
7639 arm_abi_string);
7640
7641 arm_update_current_architecture ();
7642}
7643
7644static void
7645arm_show_abi (struct ui_file *file, int from_tty,
7646 struct cmd_list_element *c, const char *value)
7647{
1cf3db46 7648 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
28e97307
DJ
7649
7650 if (arm_abi_global == ARM_ABI_AUTO
1cf3db46 7651 && gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
7652 fprintf_filtered (file, _("\
7653The current ARM ABI is \"auto\" (currently \"%s\").\n"),
7654 arm_abi_strings[tdep->arm_abi]);
7655 else
7656 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
7657 arm_abi_string);
fd50bc42
RE
7658}
7659
0428b8f5
DJ
7660static void
7661arm_show_fallback_mode (struct ui_file *file, int from_tty,
7662 struct cmd_list_element *c, const char *value)
7663{
1cf3db46 7664 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7665
0963b4bd
MS
7666 fprintf_filtered (file,
7667 _("The current execution mode assumed "
7668 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
7669 arm_fallback_mode_string);
7670}
7671
7672static void
7673arm_show_force_mode (struct ui_file *file, int from_tty,
7674 struct cmd_list_element *c, const char *value)
7675{
1cf3db46 7676 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
0428b8f5 7677
0963b4bd
MS
7678 fprintf_filtered (file,
7679 _("The current execution mode assumed "
7680 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
7681 arm_force_mode_string);
7682}
7683
afd7eef0
RE
7684/* If the user changes the register disassembly style used for info
7685 register and other commands, we have to also switch the style used
7686 in opcodes for disassembly output. This function is run in the "set
7687 arm disassembly" command, and does that. */
bc90b915
FN
7688
7689static void
afd7eef0 7690set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
7691 struct cmd_list_element *c)
7692{
afd7eef0 7693 set_disassembly_style ();
bc90b915
FN
7694}
7695\f
966fbf70 7696/* Return the ARM register name corresponding to register I. */
a208b0cb 7697static const char *
d93859e2 7698arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 7699{
58d6951d
DJ
7700 const int num_regs = gdbarch_num_regs (gdbarch);
7701
7702 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
7703 && i >= num_regs && i < num_regs + 32)
7704 {
7705 static const char *const vfp_pseudo_names[] = {
7706 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
7707 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
7708 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
7709 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
7710 };
7711
7712 return vfp_pseudo_names[i - num_regs];
7713 }
7714
7715 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
7716 && i >= num_regs + 32 && i < num_regs + 32 + 16)
7717 {
7718 static const char *const neon_pseudo_names[] = {
7719 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
7720 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
7721 };
7722
7723 return neon_pseudo_names[i - num_regs - 32];
7724 }
7725
ff6f572f
DJ
7726 if (i >= ARRAY_SIZE (arm_register_names))
7727 /* These registers are only supported on targets which supply
7728 an XML description. */
7729 return "";
7730
966fbf70
RE
7731 return arm_register_names[i];
7732}
7733
bc90b915 7734static void
afd7eef0 7735set_disassembly_style (void)
bc90b915 7736{
123dc839 7737 int current;
bc90b915 7738
123dc839
DJ
7739 /* Find the style that the user wants. */
7740 for (current = 0; current < num_disassembly_options; current++)
7741 if (disassembly_style == valid_disassembly_styles[current])
7742 break;
7743 gdb_assert (current < num_disassembly_options);
bc90b915 7744
94c30b78 7745 /* Synchronize the disassembler. */
bc90b915
FN
7746 set_arm_regname_option (current);
7747}
7748
082fc60d
RE
7749/* Test whether the coff symbol specific value corresponds to a Thumb
7750 function. */
7751
7752static int
7753coff_sym_is_thumb (int val)
7754{
f8bf5763
PM
7755 return (val == C_THUMBEXT
7756 || val == C_THUMBSTAT
7757 || val == C_THUMBEXTFUNC
7758 || val == C_THUMBSTATFUNC
7759 || val == C_THUMBLABEL);
082fc60d
RE
7760}
7761
7762/* arm_coff_make_msymbol_special()
7763 arm_elf_make_msymbol_special()
7764
7765 These functions test whether the COFF or ELF symbol corresponds to
7766 an address in thumb code, and set a "special" bit in a minimal
7767 symbol to indicate that it does. */
7768
34e8f22d 7769static void
082fc60d
RE
7770arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
7771{
7772 /* Thumb symbols are of type STT_LOPROC, (synonymous with
7773 STT_ARM_TFUNC). */
7774 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
7775 == STT_LOPROC)
7776 MSYMBOL_SET_SPECIAL (msym);
7777}
7778
34e8f22d 7779static void
082fc60d
RE
7780arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
7781{
7782 if (coff_sym_is_thumb (val))
7783 MSYMBOL_SET_SPECIAL (msym);
7784}
7785
60c5725c 7786static void
c1bd65d0 7787arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c
DJ
7788{
7789 struct arm_per_objfile *data = arg;
7790 unsigned int i;
7791
7792 for (i = 0; i < objfile->obfd->section_count; i++)
7793 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
7794}
7795
7796static void
7797arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
7798 asymbol *sym)
7799{
7800 const char *name = bfd_asymbol_name (sym);
7801 struct arm_per_objfile *data;
7802 VEC(arm_mapping_symbol_s) **map_p;
7803 struct arm_mapping_symbol new_map_sym;
7804
7805 gdb_assert (name[0] == '$');
7806 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
7807 return;
7808
7809 data = objfile_data (objfile, arm_objfile_data_key);
7810 if (data == NULL)
7811 {
7812 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7813 struct arm_per_objfile);
7814 set_objfile_data (objfile, arm_objfile_data_key, data);
7815 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
7816 objfile->obfd->section_count,
7817 VEC(arm_mapping_symbol_s) *);
7818 }
7819 map_p = &data->section_maps[bfd_get_section (sym)->index];
7820
7821 new_map_sym.value = sym->value;
7822 new_map_sym.type = name[1];
7823
7824 /* Assume that most mapping symbols appear in order of increasing
7825 value. If they were randomly distributed, it would be faster to
7826 always push here and then sort at first use. */
7827 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
7828 {
7829 struct arm_mapping_symbol *prev_map_sym;
7830
7831 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
7832 if (prev_map_sym->value >= sym->value)
7833 {
7834 unsigned int idx;
7835 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
7836 arm_compare_mapping_symbols);
7837 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
7838 return;
7839 }
7840 }
7841
7842 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
7843}
7844
756fe439 7845static void
61a1198a 7846arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 7847{
9779414d 7848 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 7849 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
7850
7851 /* If necessary, set the T bit. */
7852 if (arm_apcs_32)
7853 {
9779414d 7854 ULONGEST val, t_bit;
61a1198a 7855 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
7856 t_bit = arm_psr_thumb_bit (gdbarch);
7857 if (arm_pc_is_thumb (gdbarch, pc))
7858 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
7859 val | t_bit);
756fe439 7860 else
61a1198a 7861 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 7862 val & ~t_bit);
756fe439
DJ
7863 }
7864}
123dc839 7865
58d6951d
DJ
7866/* Read the contents of a NEON quad register, by reading from two
7867 double registers. This is used to implement the quad pseudo
7868 registers, and for argument passing in case the quad registers are
7869 missing; vectors are passed in quad registers when using the VFP
7870 ABI, even if a NEON unit is not present. REGNUM is the index of
7871 the quad register, in [0, 15]. */
7872
7873static void
7874arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
7875 int regnum, gdb_byte *buf)
7876{
7877 char name_buf[4];
7878 gdb_byte reg_buf[8];
7879 int offset, double_regnum;
7880
7881 sprintf (name_buf, "d%d", regnum << 1);
7882 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7883 strlen (name_buf));
7884
7885 /* d0 is always the least significant half of q0. */
7886 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7887 offset = 8;
7888 else
7889 offset = 0;
7890
7891 regcache_raw_read (regcache, double_regnum, reg_buf);
7892 memcpy (buf + offset, reg_buf, 8);
7893
7894 offset = 8 - offset;
7895 regcache_raw_read (regcache, double_regnum + 1, reg_buf);
7896 memcpy (buf + offset, reg_buf, 8);
7897}
7898
7899static void
7900arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
7901 int regnum, gdb_byte *buf)
7902{
7903 const int num_regs = gdbarch_num_regs (gdbarch);
7904 char name_buf[4];
7905 gdb_byte reg_buf[8];
7906 int offset, double_regnum;
7907
7908 gdb_assert (regnum >= num_regs);
7909 regnum -= num_regs;
7910
7911 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
7912 /* Quad-precision register. */
7913 arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
7914 else
7915 {
7916 /* Single-precision register. */
7917 gdb_assert (regnum < 32);
7918
7919 /* s0 is always the least significant half of d0. */
7920 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7921 offset = (regnum & 1) ? 0 : 4;
7922 else
7923 offset = (regnum & 1) ? 4 : 0;
7924
7925 sprintf (name_buf, "d%d", regnum >> 1);
7926 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7927 strlen (name_buf));
7928
7929 regcache_raw_read (regcache, double_regnum, reg_buf);
7930 memcpy (buf, reg_buf + offset, 4);
7931 }
7932}
7933
7934/* Store the contents of BUF to a NEON quad register, by writing to
7935 two double registers. This is used to implement the quad pseudo
7936 registers, and for argument passing in case the quad registers are
7937 missing; vectors are passed in quad registers when using the VFP
7938 ABI, even if a NEON unit is not present. REGNUM is the index
7939 of the quad register, in [0, 15]. */
7940
7941static void
7942arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
7943 int regnum, const gdb_byte *buf)
7944{
7945 char name_buf[4];
7946 gdb_byte reg_buf[8];
7947 int offset, double_regnum;
7948
7949 sprintf (name_buf, "d%d", regnum << 1);
7950 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7951 strlen (name_buf));
7952
7953 /* d0 is always the least significant half of q0. */
7954 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7955 offset = 8;
7956 else
7957 offset = 0;
7958
7959 regcache_raw_write (regcache, double_regnum, buf + offset);
7960 offset = 8 - offset;
7961 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
7962}
7963
7964static void
7965arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
7966 int regnum, const gdb_byte *buf)
7967{
7968 const int num_regs = gdbarch_num_regs (gdbarch);
7969 char name_buf[4];
7970 gdb_byte reg_buf[8];
7971 int offset, double_regnum;
7972
7973 gdb_assert (regnum >= num_regs);
7974 regnum -= num_regs;
7975
7976 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
7977 /* Quad-precision register. */
7978 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
7979 else
7980 {
7981 /* Single-precision register. */
7982 gdb_assert (regnum < 32);
7983
7984 /* s0 is always the least significant half of d0. */
7985 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7986 offset = (regnum & 1) ? 0 : 4;
7987 else
7988 offset = (regnum & 1) ? 4 : 0;
7989
7990 sprintf (name_buf, "d%d", regnum >> 1);
7991 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
7992 strlen (name_buf));
7993
7994 regcache_raw_read (regcache, double_regnum, reg_buf);
7995 memcpy (reg_buf + offset, buf, 4);
7996 regcache_raw_write (regcache, double_regnum, reg_buf);
7997 }
7998}
7999
123dc839
DJ
8000static struct value *
8001value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8002{
8003 const int *reg_p = baton;
8004 return value_of_register (*reg_p, frame);
8005}
97e03143 8006\f
70f80edf
JT
8007static enum gdb_osabi
8008arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8009{
2af48f68 8010 unsigned int elfosabi;
70f80edf 8011 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8012
70f80edf 8013 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8014
28e97307
DJ
8015 if (elfosabi == ELFOSABI_ARM)
8016 /* GNU tools use this value. Check note sections in this case,
8017 as well. */
8018 bfd_map_over_sections (abfd,
8019 generic_elf_osabi_sniff_abi_tag_sections,
8020 &osabi);
97e03143 8021
28e97307 8022 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8023 return osabi;
97e03143
RE
8024}
8025
54483882
YQ
8026static int
8027arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8028 struct reggroup *group)
8029{
2c291032
YQ
8030 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8031 this, FPS register belongs to save_regroup, restore_reggroup, and
8032 all_reggroup, of course. */
54483882 8033 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8034 return (group == float_reggroup
8035 || group == save_reggroup
8036 || group == restore_reggroup
8037 || group == all_reggroup);
54483882
YQ
8038 else
8039 return default_register_reggroup_p (gdbarch, regnum, group);
8040}
8041
70f80edf 8042\f
da3c6d4a
MS
8043/* Initialize the current architecture based on INFO. If possible,
8044 re-use an architecture from ARCHES, which is a list of
8045 architectures already created during this debugging session.
97e03143 8046
da3c6d4a
MS
8047 Called e.g. at program startup, when reading a core file, and when
8048 reading a binary file. */
97e03143 8049
39bbf761
RE
8050static struct gdbarch *
8051arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8052{
97e03143 8053 struct gdbarch_tdep *tdep;
39bbf761 8054 struct gdbarch *gdbarch;
28e97307
DJ
8055 struct gdbarch_list *best_arch;
8056 enum arm_abi_kind arm_abi = arm_abi_global;
8057 enum arm_float_model fp_model = arm_fp_model;
123dc839 8058 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8059 int i, is_m = 0;
58d6951d
DJ
8060 int have_vfp_registers = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
8061 int have_neon = 0;
ff6f572f 8062 int have_fpa_registers = 1;
9779414d
DJ
8063 const struct target_desc *tdesc = info.target_desc;
8064
8065 /* If we have an object to base this architecture on, try to determine
8066 its ABI. */
8067
8068 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8069 {
8070 int ei_osabi, e_flags;
8071
8072 switch (bfd_get_flavour (info.abfd))
8073 {
8074 case bfd_target_aout_flavour:
8075 /* Assume it's an old APCS-style ABI. */
8076 arm_abi = ARM_ABI_APCS;
8077 break;
8078
8079 case bfd_target_coff_flavour:
8080 /* Assume it's an old APCS-style ABI. */
8081 /* XXX WinCE? */
8082 arm_abi = ARM_ABI_APCS;
8083 break;
8084
8085 case bfd_target_elf_flavour:
8086 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8087 e_flags = elf_elfheader (info.abfd)->e_flags;
8088
8089 if (ei_osabi == ELFOSABI_ARM)
8090 {
8091 /* GNU tools used to use this value, but do not for EABI
8092 objects. There's nowhere to tag an EABI version
8093 anyway, so assume APCS. */
8094 arm_abi = ARM_ABI_APCS;
8095 }
8096 else if (ei_osabi == ELFOSABI_NONE)
8097 {
8098 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
8099 int attr_arch, attr_profile;
8100
8101 switch (eabi_ver)
8102 {
8103 case EF_ARM_EABI_UNKNOWN:
8104 /* Assume GNU tools. */
8105 arm_abi = ARM_ABI_APCS;
8106 break;
8107
8108 case EF_ARM_EABI_VER4:
8109 case EF_ARM_EABI_VER5:
8110 arm_abi = ARM_ABI_AAPCS;
8111 /* EABI binaries default to VFP float ordering.
8112 They may also contain build attributes that can
8113 be used to identify if the VFP argument-passing
8114 ABI is in use. */
8115 if (fp_model == ARM_FLOAT_AUTO)
8116 {
8117#ifdef HAVE_ELF
8118 switch (bfd_elf_get_obj_attr_int (info.abfd,
8119 OBJ_ATTR_PROC,
8120 Tag_ABI_VFP_args))
8121 {
8122 case 0:
8123 /* "The user intended FP parameter/result
8124 passing to conform to AAPCS, base
8125 variant". */
8126 fp_model = ARM_FLOAT_SOFT_VFP;
8127 break;
8128 case 1:
8129 /* "The user intended FP parameter/result
8130 passing to conform to AAPCS, VFP
8131 variant". */
8132 fp_model = ARM_FLOAT_VFP;
8133 break;
8134 case 2:
8135 /* "The user intended FP parameter/result
8136 passing to conform to tool chain-specific
8137 conventions" - we don't know any such
8138 conventions, so leave it as "auto". */
8139 break;
8140 default:
8141 /* Attribute value not mentioned in the
8142 October 2008 ABI, so leave it as
8143 "auto". */
8144 break;
8145 }
8146#else
8147 fp_model = ARM_FLOAT_SOFT_VFP;
8148#endif
8149 }
8150 break;
8151
8152 default:
8153 /* Leave it as "auto". */
8154 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
8155 break;
8156 }
8157
8158#ifdef HAVE_ELF
8159 /* Detect M-profile programs. This only works if the
8160 executable file includes build attributes; GCC does
8161 copy them to the executable, but e.g. RealView does
8162 not. */
8163 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
8164 Tag_CPU_arch);
0963b4bd
MS
8165 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
8166 OBJ_ATTR_PROC,
9779414d
DJ
8167 Tag_CPU_arch_profile);
8168 /* GCC specifies the profile for v6-M; RealView only
8169 specifies the profile for architectures starting with
8170 V7 (as opposed to architectures with a tag
8171 numerically greater than TAG_CPU_ARCH_V7). */
8172 if (!tdesc_has_registers (tdesc)
8173 && (attr_arch == TAG_CPU_ARCH_V6_M
8174 || attr_arch == TAG_CPU_ARCH_V6S_M
8175 || attr_profile == 'M'))
8176 tdesc = tdesc_arm_with_m;
8177#endif
8178 }
8179
8180 if (fp_model == ARM_FLOAT_AUTO)
8181 {
8182 int e_flags = elf_elfheader (info.abfd)->e_flags;
8183
8184 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
8185 {
8186 case 0:
8187 /* Leave it as "auto". Strictly speaking this case
8188 means FPA, but almost nobody uses that now, and
8189 many toolchains fail to set the appropriate bits
8190 for the floating-point model they use. */
8191 break;
8192 case EF_ARM_SOFT_FLOAT:
8193 fp_model = ARM_FLOAT_SOFT_FPA;
8194 break;
8195 case EF_ARM_VFP_FLOAT:
8196 fp_model = ARM_FLOAT_VFP;
8197 break;
8198 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
8199 fp_model = ARM_FLOAT_SOFT_VFP;
8200 break;
8201 }
8202 }
8203
8204 if (e_flags & EF_ARM_BE8)
8205 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
8206
8207 break;
8208
8209 default:
8210 /* Leave it as "auto". */
8211 break;
8212 }
8213 }
123dc839
DJ
8214
8215 /* Check any target description for validity. */
9779414d 8216 if (tdesc_has_registers (tdesc))
123dc839
DJ
8217 {
8218 /* For most registers we require GDB's default names; but also allow
8219 the numeric names for sp / lr / pc, as a convenience. */
8220 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
8221 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
8222 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
8223
8224 const struct tdesc_feature *feature;
58d6951d 8225 int valid_p;
123dc839 8226
9779414d 8227 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8228 "org.gnu.gdb.arm.core");
8229 if (feature == NULL)
9779414d
DJ
8230 {
8231 feature = tdesc_find_feature (tdesc,
8232 "org.gnu.gdb.arm.m-profile");
8233 if (feature == NULL)
8234 return NULL;
8235 else
8236 is_m = 1;
8237 }
123dc839
DJ
8238
8239 tdesc_data = tdesc_data_alloc ();
8240
8241 valid_p = 1;
8242 for (i = 0; i < ARM_SP_REGNUM; i++)
8243 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8244 arm_register_names[i]);
8245 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8246 ARM_SP_REGNUM,
8247 arm_sp_names);
8248 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8249 ARM_LR_REGNUM,
8250 arm_lr_names);
8251 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
8252 ARM_PC_REGNUM,
8253 arm_pc_names);
9779414d
DJ
8254 if (is_m)
8255 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8256 ARM_PS_REGNUM, "xpsr");
8257 else
8258 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8259 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
8260
8261 if (!valid_p)
8262 {
8263 tdesc_data_cleanup (tdesc_data);
8264 return NULL;
8265 }
8266
9779414d 8267 feature = tdesc_find_feature (tdesc,
123dc839
DJ
8268 "org.gnu.gdb.arm.fpa");
8269 if (feature != NULL)
8270 {
8271 valid_p = 1;
8272 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
8273 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8274 arm_register_names[i]);
8275 if (!valid_p)
8276 {
8277 tdesc_data_cleanup (tdesc_data);
8278 return NULL;
8279 }
8280 }
ff6f572f
DJ
8281 else
8282 have_fpa_registers = 0;
8283
9779414d 8284 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
8285 "org.gnu.gdb.xscale.iwmmxt");
8286 if (feature != NULL)
8287 {
8288 static const char *const iwmmxt_names[] = {
8289 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
8290 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
8291 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
8292 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
8293 };
8294
8295 valid_p = 1;
8296 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
8297 valid_p
8298 &= tdesc_numbered_register (feature, tdesc_data, i,
8299 iwmmxt_names[i - ARM_WR0_REGNUM]);
8300
8301 /* Check for the control registers, but do not fail if they
8302 are missing. */
8303 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
8304 tdesc_numbered_register (feature, tdesc_data, i,
8305 iwmmxt_names[i - ARM_WR0_REGNUM]);
8306
8307 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
8308 valid_p
8309 &= tdesc_numbered_register (feature, tdesc_data, i,
8310 iwmmxt_names[i - ARM_WR0_REGNUM]);
8311
8312 if (!valid_p)
8313 {
8314 tdesc_data_cleanup (tdesc_data);
8315 return NULL;
8316 }
8317 }
58d6951d
DJ
8318
8319 /* If we have a VFP unit, check whether the single precision registers
8320 are present. If not, then we will synthesize them as pseudo
8321 registers. */
9779414d 8322 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8323 "org.gnu.gdb.arm.vfp");
8324 if (feature != NULL)
8325 {
8326 static const char *const vfp_double_names[] = {
8327 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
8328 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
8329 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
8330 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
8331 };
8332
8333 /* Require the double precision registers. There must be either
8334 16 or 32. */
8335 valid_p = 1;
8336 for (i = 0; i < 32; i++)
8337 {
8338 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8339 ARM_D0_REGNUM + i,
8340 vfp_double_names[i]);
8341 if (!valid_p)
8342 break;
8343 }
8344
8345 if (!valid_p && i != 16)
8346 {
8347 tdesc_data_cleanup (tdesc_data);
8348 return NULL;
8349 }
8350
8351 if (tdesc_unnumbered_register (feature, "s0") == 0)
8352 have_vfp_pseudos = 1;
8353
8354 have_vfp_registers = 1;
8355
8356 /* If we have VFP, also check for NEON. The architecture allows
8357 NEON without VFP (integer vector operations only), but GDB
8358 does not support that. */
9779414d 8359 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
8360 "org.gnu.gdb.arm.neon");
8361 if (feature != NULL)
8362 {
8363 /* NEON requires 32 double-precision registers. */
8364 if (i != 32)
8365 {
8366 tdesc_data_cleanup (tdesc_data);
8367 return NULL;
8368 }
8369
8370 /* If there are quad registers defined by the stub, use
8371 their type; otherwise (normally) provide them with
8372 the default type. */
8373 if (tdesc_unnumbered_register (feature, "q0") == 0)
8374 have_neon_pseudos = 1;
8375
8376 have_neon = 1;
8377 }
8378 }
123dc839 8379 }
39bbf761 8380
28e97307
DJ
8381 /* If there is already a candidate, use it. */
8382 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
8383 best_arch != NULL;
8384 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
8385 {
b8926edc
DJ
8386 if (arm_abi != ARM_ABI_AUTO
8387 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
8388 continue;
8389
b8926edc
DJ
8390 if (fp_model != ARM_FLOAT_AUTO
8391 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
8392 continue;
8393
58d6951d
DJ
8394 /* There are various other properties in tdep that we do not
8395 need to check here: those derived from a target description,
8396 since gdbarches with a different target description are
8397 automatically disqualified. */
8398
9779414d
DJ
8399 /* Do check is_m, though, since it might come from the binary. */
8400 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
8401 continue;
8402
28e97307
DJ
8403 /* Found a match. */
8404 break;
8405 }
97e03143 8406
28e97307 8407 if (best_arch != NULL)
123dc839
DJ
8408 {
8409 if (tdesc_data != NULL)
8410 tdesc_data_cleanup (tdesc_data);
8411 return best_arch->gdbarch;
8412 }
28e97307
DJ
8413
8414 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
8415 gdbarch = gdbarch_alloc (&info, tdep);
8416
28e97307
DJ
8417 /* Record additional information about the architecture we are defining.
8418 These are gdbarch discriminators, like the OSABI. */
8419 tdep->arm_abi = arm_abi;
8420 tdep->fp_model = fp_model;
9779414d 8421 tdep->is_m = is_m;
ff6f572f 8422 tdep->have_fpa_registers = have_fpa_registers;
58d6951d
DJ
8423 tdep->have_vfp_registers = have_vfp_registers;
8424 tdep->have_vfp_pseudos = have_vfp_pseudos;
8425 tdep->have_neon_pseudos = have_neon_pseudos;
8426 tdep->have_neon = have_neon;
08216dd7
RE
8427
8428 /* Breakpoints. */
9d4fde75 8429 switch (info.byte_order_for_code)
67255d04
RE
8430 {
8431 case BFD_ENDIAN_BIG:
66e810cd
RE
8432 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
8433 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
8434 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
8435 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
8436
67255d04
RE
8437 break;
8438
8439 case BFD_ENDIAN_LITTLE:
66e810cd
RE
8440 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
8441 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
8442 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
8443 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
8444
67255d04
RE
8445 break;
8446
8447 default:
8448 internal_error (__FILE__, __LINE__,
edefbb7c 8449 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
8450 }
8451
d7b486e7
RE
8452 /* On ARM targets char defaults to unsigned. */
8453 set_gdbarch_char_signed (gdbarch, 0);
8454
cca44b1b
JB
8455 /* Note: for displaced stepping, this includes the breakpoint, and one word
8456 of additional scratch space. This setting isn't used for anything beside
8457 displaced stepping at present. */
8458 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
8459
9df628e0 8460 /* This should be low enough for everything. */
97e03143 8461 tdep->lowest_pc = 0x20;
94c30b78 8462 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 8463
7c00367c
MK
8464 /* The default, for both APCS and AAPCS, is to return small
8465 structures in registers. */
8466 tdep->struct_return = reg_struct_return;
8467
2dd604e7 8468 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 8469 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 8470
756fe439
DJ
8471 set_gdbarch_write_pc (gdbarch, arm_write_pc);
8472
148754e5 8473 /* Frame handling. */
a262aec2 8474 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
8475 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
8476 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
8477
eb5492fa 8478 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 8479
34e8f22d
RE
8480 /* Address manipulation. */
8481 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
8482 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
8483
34e8f22d
RE
8484 /* Advance PC across function entry code. */
8485 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
8486
4024ca99
UW
8487 /* Detect whether PC is in function epilogue. */
8488 set_gdbarch_in_function_epilogue_p (gdbarch, arm_in_function_epilogue_p);
8489
190dce09
UW
8490 /* Skip trampolines. */
8491 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
8492
34e8f22d
RE
8493 /* The stack grows downward. */
8494 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8495
8496 /* Breakpoint manipulation. */
8497 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
177321bd
DJ
8498 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8499 arm_remote_breakpoint_from_pc);
34e8f22d
RE
8500
8501 /* Information about registers, etc. */
34e8f22d
RE
8502 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
8503 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 8504 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 8505 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 8506 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 8507
ff6f572f
DJ
8508 /* This "info float" is FPA-specific. Use the generic version if we
8509 do not have FPA. */
8510 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
8511 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
8512
26216b98 8513 /* Internal <-> external register number maps. */
ff6f572f 8514 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
8515 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
8516
34e8f22d
RE
8517 set_gdbarch_register_name (gdbarch, arm_register_name);
8518
8519 /* Returning results. */
2af48f68 8520 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 8521
03d48a7d
RE
8522 /* Disassembly. */
8523 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
8524
34e8f22d
RE
8525 /* Minsymbol frobbing. */
8526 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
8527 set_gdbarch_coff_make_msymbol_special (gdbarch,
8528 arm_coff_make_msymbol_special);
60c5725c 8529 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 8530
f9d67f43
DJ
8531 /* Thumb-2 IT block support. */
8532 set_gdbarch_adjust_breakpoint_address (gdbarch,
8533 arm_adjust_breakpoint_address);
8534
0d5de010
DJ
8535 /* Virtual tables. */
8536 set_gdbarch_vbit_in_delta (gdbarch, 1);
8537
97e03143 8538 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 8539 gdbarch_init_osabi (info, gdbarch);
97e03143 8540
b39cc962
DJ
8541 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
8542
eb5492fa 8543 /* Add some default predicates. */
a262aec2
DJ
8544 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
8545 dwarf2_append_unwinders (gdbarch);
0e9e9abd 8546 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
a262aec2 8547 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 8548
97e03143
RE
8549 /* Now we have tuned the configuration, set a few final things,
8550 based on what the OS ABI has told us. */
8551
b8926edc
DJ
8552 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
8553 binaries are always marked. */
8554 if (tdep->arm_abi == ARM_ABI_AUTO)
8555 tdep->arm_abi = ARM_ABI_APCS;
8556
e3039479
UW
8557 /* Watchpoints are not steppable. */
8558 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8559
b8926edc
DJ
8560 /* We used to default to FPA for generic ARM, but almost nobody
8561 uses that now, and we now provide a way for the user to force
8562 the model. So default to the most useful variant. */
8563 if (tdep->fp_model == ARM_FLOAT_AUTO)
8564 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
8565
9df628e0
RE
8566 if (tdep->jb_pc >= 0)
8567 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
8568
08216dd7 8569 /* Floating point sizes and format. */
8da61cc4 8570 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 8571 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 8572 {
8da61cc4
DJ
8573 set_gdbarch_double_format
8574 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8575 set_gdbarch_long_double_format
8576 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
8577 }
8578 else
8579 {
8580 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
8581 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
8582 }
8583
58d6951d
DJ
8584 if (have_vfp_pseudos)
8585 {
8586 /* NOTE: These are the only pseudo registers used by
8587 the ARM target at the moment. If more are added, a
8588 little more care in numbering will be needed. */
8589
8590 int num_pseudos = 32;
8591 if (have_neon_pseudos)
8592 num_pseudos += 16;
8593 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
8594 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
8595 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
8596 }
8597
123dc839 8598 if (tdesc_data)
58d6951d
DJ
8599 {
8600 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
8601
9779414d 8602 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
8603
8604 /* Override tdesc_register_type to adjust the types of VFP
8605 registers for NEON. */
8606 set_gdbarch_register_type (gdbarch, arm_register_type);
8607 }
123dc839
DJ
8608
8609 /* Add standard register aliases. We add aliases even for those
8610 nanes which are used by the current architecture - it's simpler,
8611 and does no harm, since nothing ever lists user registers. */
8612 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
8613 user_reg_add (gdbarch, arm_register_aliases[i].name,
8614 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
8615
39bbf761
RE
8616 return gdbarch;
8617}
8618
97e03143 8619static void
2af46ca0 8620arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 8621{
2af46ca0 8622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
8623
8624 if (tdep == NULL)
8625 return;
8626
edefbb7c 8627 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
8628 (unsigned long) tdep->lowest_pc);
8629}
8630
a78f21af
AC
8631extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
8632
c906108c 8633void
ed9a39eb 8634_initialize_arm_tdep (void)
c906108c 8635{
bc90b915
FN
8636 struct ui_file *stb;
8637 long length;
26304000 8638 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
8639 const char *setname;
8640 const char *setdesc;
4bd7b427 8641 const char *const *regnames;
bc90b915
FN
8642 int numregs, i, j;
8643 static char *helptext;
edefbb7c
AC
8644 char regdesc[1024], *rdptr = regdesc;
8645 size_t rest = sizeof (regdesc);
085dd6e6 8646
42cf1509 8647 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 8648
60c5725c 8649 arm_objfile_data_key
c1bd65d0 8650 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 8651
0e9e9abd
UW
8652 /* Add ourselves to objfile event chain. */
8653 observer_attach_new_objfile (arm_exidx_new_objfile);
8654 arm_exidx_data_key
8655 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
8656
70f80edf
JT
8657 /* Register an ELF OS ABI sniffer for ARM binaries. */
8658 gdbarch_register_osabi_sniffer (bfd_arch_arm,
8659 bfd_target_elf_flavour,
8660 arm_elf_osabi_sniffer);
8661
9779414d
DJ
8662 /* Initialize the standard target descriptions. */
8663 initialize_tdesc_arm_with_m ();
8664
94c30b78 8665 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
8666 num_disassembly_options = get_arm_regname_num_options ();
8667
8668 /* Add root prefix command for all "set arm"/"show arm" commands. */
8669 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 8670 _("Various ARM-specific commands."),
afd7eef0
RE
8671 &setarmcmdlist, "set arm ", 0, &setlist);
8672
8673 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 8674 _("Various ARM-specific commands."),
afd7eef0 8675 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 8676
94c30b78 8677 /* Sync the opcode insn printer with our register viewer. */
bc90b915 8678 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 8679
eefe576e
AC
8680 /* Initialize the array that will be passed to
8681 add_setshow_enum_cmd(). */
afd7eef0
RE
8682 valid_disassembly_styles
8683 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
8684 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
8685 {
8686 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 8687 valid_disassembly_styles[i] = setname;
edefbb7c
AC
8688 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
8689 rdptr += length;
8690 rest -= length;
123dc839
DJ
8691 /* When we find the default names, tell the disassembler to use
8692 them. */
bc90b915
FN
8693 if (!strcmp (setname, "std"))
8694 {
afd7eef0 8695 disassembly_style = setname;
bc90b915
FN
8696 set_arm_regname_option (i);
8697 }
8698 }
94c30b78 8699 /* Mark the end of valid options. */
afd7eef0 8700 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 8701
edefbb7c
AC
8702 /* Create the help text. */
8703 stb = mem_fileopen ();
8704 fprintf_unfiltered (stb, "%s%s%s",
8705 _("The valid values are:\n"),
8706 regdesc,
8707 _("The default is \"std\"."));
759ef836 8708 helptext = ui_file_xstrdup (stb, NULL);
bc90b915 8709 ui_file_delete (stb);
ed9a39eb 8710
edefbb7c
AC
8711 add_setshow_enum_cmd("disassembler", no_class,
8712 valid_disassembly_styles, &disassembly_style,
8713 _("Set the disassembly style."),
8714 _("Show the disassembly style."),
8715 helptext,
2c5b56ce 8716 set_disassembly_style_sfunc,
0963b4bd
MS
8717 NULL, /* FIXME: i18n: The disassembly style is
8718 \"%s\". */
7376b4c2 8719 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
8720
8721 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
8722 _("Set usage of ARM 32-bit mode."),
8723 _("Show usage of ARM 32-bit mode."),
8724 _("When off, a 26-bit PC will be used."),
2c5b56ce 8725 NULL,
0963b4bd
MS
8726 NULL, /* FIXME: i18n: Usage of ARM 32-bit
8727 mode is %s. */
26304000 8728 &setarmcmdlist, &showarmcmdlist);
c906108c 8729
fd50bc42 8730 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
8731 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
8732 _("Set the floating point type."),
8733 _("Show the floating point type."),
8734 _("auto - Determine the FP typefrom the OS-ABI.\n\
8735softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
8736fpa - FPA co-processor (GCC compiled).\n\
8737softvfp - Software FP with pure-endian doubles.\n\
8738vfp - VFP co-processor."),
edefbb7c 8739 set_fp_model_sfunc, show_fp_model,
7376b4c2 8740 &setarmcmdlist, &showarmcmdlist);
fd50bc42 8741
28e97307
DJ
8742 /* Add a command to allow the user to force the ABI. */
8743 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
8744 _("Set the ABI."),
8745 _("Show the ABI."),
8746 NULL, arm_set_abi, arm_show_abi,
8747 &setarmcmdlist, &showarmcmdlist);
8748
0428b8f5
DJ
8749 /* Add two commands to allow the user to force the assumed
8750 execution mode. */
8751 add_setshow_enum_cmd ("fallback-mode", class_support,
8752 arm_mode_strings, &arm_fallback_mode_string,
8753 _("Set the mode assumed when symbols are unavailable."),
8754 _("Show the mode assumed when symbols are unavailable."),
8755 NULL, NULL, arm_show_fallback_mode,
8756 &setarmcmdlist, &showarmcmdlist);
8757 add_setshow_enum_cmd ("force-mode", class_support,
8758 arm_mode_strings, &arm_force_mode_string,
8759 _("Set the mode assumed even when symbols are available."),
8760 _("Show the mode assumed even when symbols are available."),
8761 NULL, NULL, arm_show_force_mode,
8762 &setarmcmdlist, &showarmcmdlist);
8763
6529d2dd 8764 /* Debugging flag. */
edefbb7c
AC
8765 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
8766 _("Set ARM debugging."),
8767 _("Show ARM debugging."),
8768 _("When on, arm-specific debugging is enabled."),
2c5b56ce 8769 NULL,
7915a72c 8770 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 8771 &setdebuglist, &showdebuglist);
c906108c 8772}
This page took 1.35402 seconds and 4 git commands to generate.