* target.c (update_current_target): Call setup_target_debug.
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
34e8f22d
RE
21#include <ctype.h> /* XXX for isupper () */
22
c906108c
SS
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "gdbcmd.h"
27#include "gdbcore.h"
c906108c 28#include "gdb_string.h"
afd7eef0 29#include "dis-asm.h" /* For register styles. */
4e052eda 30#include "regcache.h"
d16aafd8 31#include "doublest.h"
fd0407d6 32#include "value.h"
34e8f22d 33#include "arch-utils.h"
4be87837 34#include "osabi.h"
eb5492fa
DJ
35#include "frame-unwind.h"
36#include "frame-base.h"
37#include "trad-frame.h"
842e1f1e
DJ
38#include "objfiles.h"
39#include "dwarf2-frame.h"
e4c16157 40#include "gdbtypes.h"
29d73ae4 41#include "prologue-value.h"
123dc839
DJ
42#include "target-descriptions.h"
43#include "user-regs.h"
34e8f22d
RE
44
45#include "arm-tdep.h"
26216b98 46#include "gdb/sim-arm.h"
34e8f22d 47
082fc60d
RE
48#include "elf-bfd.h"
49#include "coff/internal.h"
97e03143 50#include "elf/arm.h"
c906108c 51
26216b98
AC
52#include "gdb_assert.h"
53
6529d2dd
AC
54static int arm_debug;
55
082fc60d
RE
56/* Macros for setting and testing a bit in a minimal symbol that marks
57 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 58 is used for this purpose.
082fc60d
RE
59
60 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 61 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d
RE
62
63#define MSYMBOL_SET_SPECIAL(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67#define MSYMBOL_IS_SPECIAL(msym) \
68 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
69
afd7eef0
RE
70/* The list of available "set arm ..." and "show arm ..." commands. */
71static struct cmd_list_element *setarmcmdlist = NULL;
72static struct cmd_list_element *showarmcmdlist = NULL;
73
fd50bc42
RE
74/* The type of floating-point to use. Keep this in sync with enum
75 arm_float_model, and the help string in _initialize_arm_tdep. */
76static const char *fp_model_strings[] =
77{
78 "auto",
79 "softfpa",
80 "fpa",
81 "softvfp",
28e97307
DJ
82 "vfp",
83 NULL
fd50bc42
RE
84};
85
86/* A variable that can be configured by the user. */
87static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
88static const char *current_fp_model = "auto";
89
28e97307
DJ
90/* The ABI to use. Keep this in sync with arm_abi_kind. */
91static const char *arm_abi_strings[] =
92{
93 "auto",
94 "APCS",
95 "AAPCS",
96 NULL
97};
98
99/* A variable that can be configured by the user. */
100static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
101static const char *arm_abi_string = "auto";
102
94c30b78 103/* Number of different reg name sets (options). */
afd7eef0 104static int num_disassembly_options;
bc90b915 105
123dc839
DJ
106/* The standard register names, and all the valid aliases for them. */
107static const struct
108{
109 const char *name;
110 int regnum;
111} arm_register_aliases[] = {
112 /* Basic register numbers. */
113 { "r0", 0 },
114 { "r1", 1 },
115 { "r2", 2 },
116 { "r3", 3 },
117 { "r4", 4 },
118 { "r5", 5 },
119 { "r6", 6 },
120 { "r7", 7 },
121 { "r8", 8 },
122 { "r9", 9 },
123 { "r10", 10 },
124 { "r11", 11 },
125 { "r12", 12 },
126 { "r13", 13 },
127 { "r14", 14 },
128 { "r15", 15 },
129 /* Synonyms (argument and variable registers). */
130 { "a1", 0 },
131 { "a2", 1 },
132 { "a3", 2 },
133 { "a4", 3 },
134 { "v1", 4 },
135 { "v2", 5 },
136 { "v3", 6 },
137 { "v4", 7 },
138 { "v5", 8 },
139 { "v6", 9 },
140 { "v7", 10 },
141 { "v8", 11 },
142 /* Other platform-specific names for r9. */
143 { "sb", 9 },
144 { "tr", 9 },
145 /* Special names. */
146 { "ip", 12 },
147 { "sp", 13 },
148 { "lr", 14 },
149 { "pc", 15 },
150 /* Names used by GCC (not listed in the ARM EABI). */
151 { "sl", 10 },
152 { "fp", 11 },
153 /* A special name from the older ATPCS. */
154 { "wr", 7 },
155};
bc90b915 156
123dc839 157static const char *const arm_register_names[] =
da59e081
JM
158{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
159 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
160 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
161 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
162 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
163 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 164 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 165
afd7eef0
RE
166/* Valid register name styles. */
167static const char **valid_disassembly_styles;
ed9a39eb 168
afd7eef0
RE
169/* Disassembly style to use. Default to "std" register names. */
170static const char *disassembly_style;
96baa820 171
ed9a39eb 172/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
173 style. */
174static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 175 struct cmd_list_element *);
afd7eef0 176static void set_disassembly_style (void);
ed9a39eb 177
b508a996
RE
178static void convert_from_extended (const struct floatformat *, const void *,
179 void *);
180static void convert_to_extended (const struct floatformat *, void *,
181 const void *);
ed9a39eb 182
9b8d791a 183struct arm_prologue_cache
c3b4394c 184{
eb5492fa
DJ
185 /* The stack pointer at the time this frame was created; i.e. the
186 caller's stack pointer when this function was called. It is used
187 to identify this frame. */
188 CORE_ADDR prev_sp;
189
190 /* The frame base for this frame is just prev_sp + frame offset -
191 frame size. FRAMESIZE is the size of this stack frame, and
192 FRAMEOFFSET if the initial offset from the stack pointer (this
193 frame's stack pointer, not PREV_SP) to the frame base. */
194
c3b4394c
RE
195 int framesize;
196 int frameoffset;
eb5492fa
DJ
197
198 /* The register used to hold the frame pointer for this frame. */
c3b4394c 199 int framereg;
eb5492fa
DJ
200
201 /* Saved register offsets. */
202 struct trad_frame_saved_reg *saved_regs;
c3b4394c 203};
ed9a39eb 204
bc90b915
FN
205/* Addresses for calling Thumb functions have the bit 0 set.
206 Here are some macros to test, set, or clear bit 0 of addresses. */
207#define IS_THUMB_ADDR(addr) ((addr) & 1)
208#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
209#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
210
94c30b78 211/* Set to true if the 32-bit mode is in use. */
c906108c
SS
212
213int arm_apcs_32 = 1;
214
ed9a39eb
JM
215/* Determine if the program counter specified in MEMADDR is in a Thumb
216 function. */
c906108c 217
ad527d2e 218static int
2a451106 219arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 220{
c5aa993b 221 struct minimal_symbol *sym;
c906108c 222
ed9a39eb 223 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
224 if (IS_THUMB_ADDR (memaddr))
225 return 1;
226
ed9a39eb 227 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
228 sym = lookup_minimal_symbol_by_pc (memaddr);
229 if (sym)
230 {
c5aa993b 231 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
232 }
233 else
ed9a39eb
JM
234 {
235 return 0;
236 }
c906108c
SS
237}
238
181c1381 239/* Remove useless bits from addresses in a running program. */
34e8f22d 240static CORE_ADDR
ed9a39eb 241arm_addr_bits_remove (CORE_ADDR val)
c906108c 242{
a3a2ee65
JT
243 if (arm_apcs_32)
244 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 245 else
a3a2ee65 246 return (val & 0x03fffffc);
c906108c
SS
247}
248
181c1381
RE
249/* When reading symbols, we need to zap the low bit of the address,
250 which may be set to 1 for Thumb functions. */
34e8f22d 251static CORE_ADDR
181c1381
RE
252arm_smash_text_address (CORE_ADDR val)
253{
254 return val & ~1;
255}
256
29d73ae4
DJ
257/* Analyze a Thumb prologue, looking for a recognizable stack frame
258 and frame pointer. Scan until we encounter a store that could
259 clobber the stack frame unexpectedly, or an unknown instruction. */
c906108c
SS
260
261static CORE_ADDR
29d73ae4
DJ
262thumb_analyze_prologue (struct gdbarch *gdbarch,
263 CORE_ADDR start, CORE_ADDR limit,
264 struct arm_prologue_cache *cache)
c906108c 265{
29d73ae4
DJ
266 int i;
267 pv_t regs[16];
268 struct pv_area *stack;
269 struct cleanup *back_to;
270 CORE_ADDR offset;
da3c6d4a 271
29d73ae4
DJ
272 for (i = 0; i < 16; i++)
273 regs[i] = pv_register (i, 0);
274 stack = make_pv_area (ARM_SP_REGNUM);
275 back_to = make_cleanup_free_pv_area (stack);
276
277 /* The call instruction saved PC in LR, and the current PC is not
278 interesting. Due to this file's conventions, we want the value
279 of LR at this function's entry, not at the call site, so we do
280 not record the save of the PC - when the ARM prologue analyzer
281 has also been converted to the pv mechanism, we could record the
282 save here and remove the hack in prev_register. */
283 regs[ARM_PC_REGNUM] = pv_unknown ();
284
285 while (start < limit)
c906108c 286 {
29d73ae4
DJ
287 unsigned short insn;
288
289 insn = read_memory_unsigned_integer (start, 2);
c906108c 290
94c30b78 291 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 292 {
29d73ae4
DJ
293 int regno;
294 int mask;
295 int stop = 0;
296
297 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
298 whether to save LR (R14). */
299 mask = (insn & 0xff) | ((insn & 0x100) << 6);
300
301 /* Calculate offsets of saved R0-R7 and LR. */
302 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
303 if (mask & (1 << regno))
304 {
305 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
306 {
307 stop = 1;
308 break;
309 }
310
311 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
312 -4);
313 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
314 }
315
316 if (stop)
317 break;
da59e081 318 }
da3c6d4a
MS
319 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
320 sub sp, #simm */
da59e081 321 {
29d73ae4
DJ
322 offset = (insn & 0x7f) << 2; /* get scaled offset */
323 if (insn & 0x80) /* Check for SUB. */
324 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
325 -offset);
da59e081 326 else
29d73ae4
DJ
327 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
328 offset);
da59e081
JM
329 }
330 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
29d73ae4
DJ
331 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
332 (insn & 0xff) << 2);
333 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 334 {
29d73ae4
DJ
335 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
336 int src_reg = (insn & 0x78) >> 3;
337 regs[dst_reg] = regs[src_reg];
da59e081 338 }
29d73ae4 339 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 340 {
29d73ae4
DJ
341 /* Handle stores to the stack. Normally pushes are used,
342 but with GCC -mtpcs-frame, there may be other stores
343 in the prologue to create the frame. */
344 int regno = (insn >> 8) & 0x7;
345 pv_t addr;
346
347 offset = (insn & 0xff) << 2;
348 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
349
350 if (pv_area_store_would_trash (stack, addr))
351 break;
352
353 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 354 }
29d73ae4 355 else
3d74b771 356 {
29d73ae4
DJ
357 /* We don't know what this instruction is. We're finished
358 scanning. NOTE: Recognizing more safe-to-ignore
359 instructions here will improve support for optimized
360 code. */
da3c6d4a 361 break;
3d74b771 362 }
29d73ae4
DJ
363
364 start += 2;
c906108c
SS
365 }
366
29d73ae4
DJ
367 if (cache == NULL)
368 {
369 do_cleanups (back_to);
370 return start;
371 }
372
373 /* frameoffset is unused for this unwinder. */
374 cache->frameoffset = 0;
375
376 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
377 {
378 /* Frame pointer is fp. Frame size is constant. */
379 cache->framereg = ARM_FP_REGNUM;
380 cache->framesize = -regs[ARM_FP_REGNUM].k;
381 }
382 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
383 {
384 /* Frame pointer is r7. Frame size is constant. */
385 cache->framereg = THUMB_FP_REGNUM;
386 cache->framesize = -regs[THUMB_FP_REGNUM].k;
387 }
388 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
389 {
390 /* Try the stack pointer... this is a bit desperate. */
391 cache->framereg = ARM_SP_REGNUM;
392 cache->framesize = -regs[ARM_SP_REGNUM].k;
393 }
394 else
395 {
396 /* We're just out of luck. We don't know where the frame is. */
397 cache->framereg = -1;
398 cache->framesize = 0;
399 }
400
401 for (i = 0; i < 16; i++)
402 if (pv_area_find_reg (stack, gdbarch, i, &offset))
403 cache->saved_regs[i].addr = offset;
404
405 do_cleanups (back_to);
406 return start;
c906108c
SS
407}
408
da3c6d4a
MS
409/* Advance the PC across any function entry prologue instructions to
410 reach some "real" code.
34e8f22d
RE
411
412 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 413 prologue:
c906108c 414
c5aa993b
JM
415 mov ip, sp
416 [stmfd sp!, {a1,a2,a3,a4}]
417 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
418 [stfe f7, [sp, #-12]!]
419 [stfe f6, [sp, #-12]!]
420 [stfe f5, [sp, #-12]!]
421 [stfe f4, [sp, #-12]!]
422 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 423
34e8f22d 424static CORE_ADDR
ed9a39eb 425arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
426{
427 unsigned long inst;
428 CORE_ADDR skip_pc;
b8d5e71d 429 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 430 char *func_name;
c906108c
SS
431 struct symtab_and_line sal;
432
848cfffb 433 /* If we're in a dummy frame, don't even try to skip the prologue. */
30a4a8e0 434 if (deprecated_pc_in_call_dummy (pc))
848cfffb
AC
435 return pc;
436
96baa820 437 /* See what the symbol table says. */
ed9a39eb 438
50f6fb4b 439 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 440 {
50f6fb4b
CV
441 struct symbol *sym;
442
443 /* Found a function. */
176620f1 444 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
50f6fb4b
CV
445 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
446 {
94c30b78 447 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
448 sal = find_pc_line (func_addr, 0);
449 if ((sal.line != 0) && (sal.end < func_end))
450 return sal.end;
451 }
c906108c
SS
452 }
453
c906108c 454 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 455 by disassembling the instructions. */
c906108c 456
b8d5e71d
MS
457 /* Like arm_scan_prologue, stop no later than pc + 64. */
458 if (func_end == 0 || func_end > pc + 64)
459 func_end = pc + 64;
c906108c 460
29d73ae4
DJ
461 /* Check if this is Thumb code. */
462 if (arm_pc_is_thumb (pc))
463 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
464
b8d5e71d 465 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 466 {
1c5bada0 467 inst = read_memory_unsigned_integer (skip_pc, 4);
f43845b3 468
b8d5e71d
MS
469 /* "mov ip, sp" is no longer a required part of the prologue. */
470 if (inst == 0xe1a0c00d) /* mov ip, sp */
471 continue;
c906108c 472
28cd8767
JG
473 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
474 continue;
475
476 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
477 continue;
478
b8d5e71d
MS
479 /* Some prologues begin with "str lr, [sp, #-4]!". */
480 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
481 continue;
c906108c 482
b8d5e71d
MS
483 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
484 continue;
c906108c 485
b8d5e71d
MS
486 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
487 continue;
11d3b27d 488
b8d5e71d
MS
489 /* Any insns after this point may float into the code, if it makes
490 for better instruction scheduling, so we skip them only if we
491 find them, but still consider the function to be frame-ful. */
f43845b3 492
b8d5e71d
MS
493 /* We may have either one sfmfd instruction here, or several stfe
494 insns, depending on the version of floating point code we
495 support. */
496 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
497 continue;
498
499 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
500 continue;
501
502 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
503 continue;
504
505 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
506 continue;
507
508 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
509 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
510 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
511 continue;
512
513 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
514 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
515 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
516 continue;
517
518 /* Un-recognized instruction; stop scanning. */
519 break;
f43845b3 520 }
c906108c 521
b8d5e71d 522 return skip_pc; /* End of prologue */
c906108c 523}
94c30b78 524
c5aa993b 525/* *INDENT-OFF* */
c906108c
SS
526/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
527 This function decodes a Thumb function prologue to determine:
528 1) the size of the stack frame
529 2) which registers are saved on it
530 3) the offsets of saved regs
531 4) the offset from the stack pointer to the frame pointer
c906108c 532
da59e081
JM
533 A typical Thumb function prologue would create this stack frame
534 (offsets relative to FP)
c906108c
SS
535 old SP -> 24 stack parameters
536 20 LR
537 16 R7
538 R7 -> 0 local variables (16 bytes)
539 SP -> -12 additional stack space (12 bytes)
540 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
541 12 bytes. The frame register is R7.
542
da3c6d4a
MS
543 The comments for thumb_skip_prolog() describe the algorithm we use
544 to detect the end of the prolog. */
c5aa993b
JM
545/* *INDENT-ON* */
546
c906108c 547static void
eb5492fa 548thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
c906108c
SS
549{
550 CORE_ADDR prologue_start;
551 CORE_ADDR prologue_end;
552 CORE_ADDR current_pc;
94c30b78 553 /* Which register has been copied to register n? */
da3c6d4a
MS
554 int saved_reg[16];
555 /* findmask:
556 bit 0 - push { rlist }
557 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
558 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
559 */
560 int findmask = 0;
c5aa993b 561 int i;
c906108c 562
eb5492fa 563 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c
SS
564 {
565 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
566
94c30b78 567 if (sal.line == 0) /* no line info, use current PC */
eb5492fa 568 prologue_end = prev_pc;
c906108c 569 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 570 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
571 }
572 else
f7060f85
DJ
573 /* We're in the boondocks: we have no idea where the start of the
574 function is. */
575 return;
c906108c 576
eb5492fa 577 prologue_end = min (prologue_end, prev_pc);
c906108c 578
29d73ae4
DJ
579 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
580 cache);
c906108c
SS
581}
582
ed9a39eb 583/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
584 1) the size of the stack frame
585 2) which registers are saved on it
586 3) the offsets of saved regs
587 4) the offset from the stack pointer to the frame pointer
c906108c
SS
588 This information is stored in the "extra" fields of the frame_info.
589
96baa820
JM
590 There are two basic forms for the ARM prologue. The fixed argument
591 function call will look like:
ed9a39eb
JM
592
593 mov ip, sp
594 stmfd sp!, {fp, ip, lr, pc}
595 sub fp, ip, #4
596 [sub sp, sp, #4]
96baa820 597
c906108c 598 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
599 IP -> 4 (caller's stack)
600 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
601 -4 LR (return address in caller)
602 -8 IP (copy of caller's SP)
603 -12 FP (caller's FP)
604 SP -> -28 Local variables
605
c906108c 606 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
607 28 bytes. The stmfd call can also save any of the vN registers it
608 plans to use, which increases the frame size accordingly.
609
610 Note: The stored PC is 8 off of the STMFD instruction that stored it
611 because the ARM Store instructions always store PC + 8 when you read
612 the PC register.
ed9a39eb 613
96baa820
JM
614 A variable argument function call will look like:
615
ed9a39eb
JM
616 mov ip, sp
617 stmfd sp!, {a1, a2, a3, a4}
618 stmfd sp!, {fp, ip, lr, pc}
619 sub fp, ip, #20
620
96baa820 621 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
622 IP -> 20 (caller's stack)
623 16 A4
624 12 A3
625 8 A2
626 4 A1
627 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
628 -4 LR (return address in caller)
629 -8 IP (copy of caller's SP)
630 -12 FP (caller's FP)
631 SP -> -28 Local variables
96baa820
JM
632
633 The frame size would thus be 48 bytes, and the frame offset would be
634 28 bytes.
635
636 There is another potential complication, which is that the optimizer
637 will try to separate the store of fp in the "stmfd" instruction from
638 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
639 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
640
641 Also, note, the original version of the ARM toolchain claimed that there
642 should be an
643
644 instruction at the end of the prologue. I have never seen GCC produce
645 this, and the ARM docs don't mention it. We still test for it below in
646 case it happens...
ed9a39eb
JM
647
648 */
c906108c
SS
649
650static void
2af46ca0
UW
651arm_scan_prologue (struct frame_info *next_frame,
652 struct arm_prologue_cache *cache)
c906108c 653{
2af46ca0 654 struct gdbarch *gdbarch = get_frame_arch (next_frame);
28cd8767 655 int regno, sp_offset, fp_offset, ip_offset;
c906108c 656 CORE_ADDR prologue_start, prologue_end, current_pc;
eb5492fa 657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
c906108c 658
c906108c 659 /* Assume there is no frame until proven otherwise. */
9b8d791a
DJ
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
c906108c
SS
663
664 /* Check for Thumb prologue. */
eb5492fa 665 if (arm_pc_is_thumb (prev_pc))
c906108c 666 {
eb5492fa 667 thumb_scan_prologue (prev_pc, cache);
c906108c
SS
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
eb5492fa 673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
c906108c 674 {
2a451106
KB
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
eb5492fa 681 prologue_end = prev_pc;
2a451106
KB
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
94c30b78 705 the scheduler. */
2a451106
KB
706
707 if (prologue_end > prologue_start + 64)
708 {
94c30b78 709 prologue_end = prologue_start + 64; /* See above. */
2a451106 710 }
c906108c
SS
711 }
712 else
713 {
eb5492fa
DJ
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
16a0f3e7
EZ
724 return;
725 else
726 {
bf6ae464 727 prologue_start = gdbarch_addr_bits_remove
2af46ca0 728 (gdbarch, return_value) - 8;
94c30b78 729 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 730 }
c906108c
SS
731 }
732
eb5492fa
DJ
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
c906108c 736 /* Now search the prologue looking for instructions that set up the
96baa820 737 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 738
96baa820
JM
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 742 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 747 if we don't see this as the first insn, we will stop.
c906108c 748
f43845b3
MS
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 751
f43845b3
MS
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
b8d5e71d 755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 756
28cd8767 757 sp_offset = fp_offset = ip_offset = 0;
f43845b3 758
94c30b78
MS
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
f43845b3 761 current_pc += 4)
96baa820 762 {
d4473757
KB
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
94c30b78 765 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 766 {
28cd8767
JG
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
f43845b3
MS
784 continue;
785 }
94c30b78 786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3 787 {
e28a332c
JG
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
f43845b3
MS
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
c906108c 796 {
d4473757 797 int mask = insn & 0xffff;
ed9a39eb 798
94c30b78 799 /* Calculate offsets of saved registers. */
34e8f22d 800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
eb5492fa 804 cache->saved_regs[regno].addr = sp_offset;
d4473757
KB
805 }
806 }
b8d5e71d
MS
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
d4473757
KB
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
94c30b78
MS
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 825 imm = (imm >> rot) | (imm << (32 - rot));
28cd8767 826 fp_offset = -imm + ip_offset;
9b8d791a 827 cache->framereg = ARM_FP_REGNUM;
d4473757
KB
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
94c30b78
MS
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
ff6f572f 836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
2af46ca0 837 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
838 {
839 sp_offset -= 12;
34e8f22d 840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
eb5492fa 841 cache->saved_regs[regno].addr = sp_offset;
d4473757 842 }
ff6f572f 843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
2af46ca0 844 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
94c30b78 849 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 850 {
d4473757
KB
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
96baa820 855 }
d4473757 856 else
96baa820 857 {
d4473757
KB
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
96baa820 862 }
d4473757 863
34e8f22d 864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
867 {
868 sp_offset -= 12;
eb5492fa 869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
96baa820 870 }
c906108c 871 }
d4473757 872 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 873 break; /* Condition not true, exit early */
b8d5e71d 874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 875 break; /* Don't scan past a block load */
d4473757
KB
876 else
877 /* The optimizer might shove anything into the prologue,
94c30b78 878 so we just skip what we don't recognize. */
d4473757 879 continue;
c906108c
SS
880 }
881
94c30b78
MS
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
9b8d791a
DJ
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
d4473757 888 else
9b8d791a 889 cache->frameoffset = 0;
c906108c
SS
890}
891
eb5492fa
DJ
892static struct arm_prologue_cache *
893arm_make_prologue_cache (struct frame_info *next_frame)
c906108c 894{
eb5492fa
DJ
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
c5aa993b 898
35d5d4ee 899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
eb5492fa 900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
c906108c 901
eb5492fa 902 arm_scan_prologue (next_frame, cache);
848cfffb 903
eb5492fa
DJ
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
c906108c 907
eb5492fa 908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
c906108c 909
eb5492fa
DJ
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
2af46ca0 912 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (next_frame)); reg++)
e28a332c 913 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
c906108c
SS
917}
918
eb5492fa
DJ
919/* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
c906108c 921
148754e5 922static void
eb5492fa
DJ
923arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
c906108c 926{
eb5492fa
DJ
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
f079148d 930
eb5492fa
DJ
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
2a451106 934
93d42b30 935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2a451106 936
eb5492fa
DJ
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
9e815ec2 939 if (func <= LOWEST_PC)
eb5492fa 940 return;
5a203e44 941
eb5492fa
DJ
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
24de872b 945
eb5492fa 946 id = frame_id_build (cache->prev_sp, func);
eb5492fa 947 *this_id = id;
c906108c
SS
948}
949
eb5492fa
DJ
950static void
951arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
9af75ef6 958 gdb_byte *valuep)
24de872b
DJ
959{
960 struct arm_prologue_cache *cache;
961
eb5492fa
DJ
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
24de872b 965
eb5492fa
DJ
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
24de872b 971
eb5492fa
DJ
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
1f67027d
AC
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
eb5492fa
DJ
985}
986
987struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991};
992
993static const struct frame_unwind *
994arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995{
996 return &arm_prologue_unwind;
24de872b
DJ
997}
998
909cf6ea
DJ
999static struct arm_prologue_cache *
1000arm_make_stub_cache (struct frame_info *next_frame)
1001{
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
35d5d4ee 1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
909cf6ea
DJ
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012}
1013
1014/* Our frame ID for a stub frame is the current SP and LR. */
1015
1016static void
1017arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020{
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029}
1030
1031struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035};
1036
1037static const struct frame_unwind *
1038arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039{
93d42b30 1040 CORE_ADDR addr_in_block;
909cf6ea
DJ
1041 char dummy[4];
1042
93d42b30
DJ
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
909cf6ea
DJ
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049}
1050
24de872b 1051static CORE_ADDR
eb5492fa 1052arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
24de872b
DJ
1053{
1054 struct arm_prologue_cache *cache;
1055
eb5492fa
DJ
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
24de872b
DJ
1061}
1062
eb5492fa
DJ
1063struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068};
1069
eb5492fa
DJ
1070/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
c906108c 1075
eb5492fa
DJ
1076static struct frame_id
1077arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
c906108c 1078{
eb5492fa
DJ
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081}
c3b4394c 1082
eb5492fa
DJ
1083/* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
c3b4394c 1086
eb5492fa
DJ
1087static CORE_ADDR
1088arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089{
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
59ea4f70 1092 return arm_addr_bits_remove (pc);
eb5492fa
DJ
1093}
1094
1095static CORE_ADDR
1096arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097{
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
1099}
1100
2dd604e7
RE
1101/* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104struct stack_item
1105{
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109};
1110
1111static struct stack_item *
1112push_stack_item (struct stack_item *prev, void *contents, int len)
1113{
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
226c7fbc 1116 si->data = xmalloc (len);
2dd604e7
RE
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121}
1122
1123static struct stack_item *
1124pop_stack_item (struct stack_item *si)
1125{
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131}
1132
2af48f68
PB
1133
1134/* Return the alignment (in bytes) of the given type. */
1135
1136static int
1137arm_type_align (struct type *t)
1138{
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179}
1180
2dd604e7
RE
1181/* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185static CORE_ADDR
7d9b040b 1186arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
2dd604e7
RE
1190{
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
6a65450a
AC
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
2dd604e7 1198 /* XXX Fix for Thumb. */
6a65450a 1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
2dd604e7
RE
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
2af46ca0 1215 gdbarch_register_name (gdbarch, argreg),
c9f4d572 1216 paddr (struct_addr));
2dd604e7
RE
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
0fd88904 1227 bfd_byte *val;
2af48f68 1228 int align;
2dd604e7 1229
df407dfe 1230 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
0fd88904 1234 val = value_contents_writeable (args[argnum]);
2dd604e7 1235
2af48f68
PB
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
2dd604e7
RE
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
7c0b4a20 1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
2dd604e7
RE
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
fbd9dcd3 1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
2dd604e7
RE
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
f0c9063c 1285 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
2dd604e7
RE
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
7c0b4a20 1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
2af46ca0 1292 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8bf8793c 1293 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
1294 if (arm_debug)
1295 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
1296 argnum,
1297 gdbarch_register_name
2af46ca0 1298 (gdbarch, argreg),
f0c9063c 1299 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
1300 regcache_cooked_write_unsigned (regcache, argreg, regval);
1301 argreg++;
1302 }
1303 else
1304 {
1305 /* Push the arguments onto the stack. */
1306 if (arm_debug)
1307 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1308 argnum, nstack);
f0c9063c
UW
1309 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1310 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
1311 }
1312
1313 len -= partial_len;
1314 val += partial_len;
1315 }
1316 }
1317 /* If we have an odd number of words to push, then decrement the stack
1318 by one word now, so first stack argument will be dword aligned. */
1319 if (nstack & 4)
1320 sp -= 4;
1321
1322 while (si)
1323 {
1324 sp -= si->len;
1325 write_memory (sp, si->data, si->len);
1326 si = pop_stack_item (si);
1327 }
1328
1329 /* Finally, update teh SP register. */
1330 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1331
1332 return sp;
1333}
1334
f53f0d0b
PB
1335
1336/* Always align the frame to an 8-byte boundary. This is required on
1337 some platforms and harmless on the rest. */
1338
1339static CORE_ADDR
1340arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1341{
1342 /* Align the stack to eight bytes. */
1343 return sp & ~ (CORE_ADDR) 7;
1344}
1345
c906108c 1346static void
ed9a39eb 1347print_fpu_flags (int flags)
c906108c 1348{
c5aa993b
JM
1349 if (flags & (1 << 0))
1350 fputs ("IVO ", stdout);
1351 if (flags & (1 << 1))
1352 fputs ("DVZ ", stdout);
1353 if (flags & (1 << 2))
1354 fputs ("OFL ", stdout);
1355 if (flags & (1 << 3))
1356 fputs ("UFL ", stdout);
1357 if (flags & (1 << 4))
1358 fputs ("INX ", stdout);
1359 putchar ('\n');
c906108c
SS
1360}
1361
5e74b15c
RE
1362/* Print interesting information about the floating point processor
1363 (if present) or emulator. */
34e8f22d 1364static void
d855c300 1365arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1366 struct frame_info *frame, const char *args)
c906108c 1367{
9c9acae0 1368 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
1369 int type;
1370
1371 type = (status >> 24) & 127;
edefbb7c
AC
1372 if (status & (1 << 31))
1373 printf (_("Hardware FPU type %d\n"), type);
1374 else
1375 printf (_("Software FPU type %d\n"), type);
1376 /* i18n: [floating point unit] mask */
1377 fputs (_("mask: "), stdout);
c5aa993b 1378 print_fpu_flags (status >> 16);
edefbb7c
AC
1379 /* i18n: [floating point unit] flags */
1380 fputs (_("flags: "), stdout);
c5aa993b 1381 print_fpu_flags (status);
c906108c
SS
1382}
1383
34e8f22d
RE
1384/* Return the GDB type object for the "standard" data type of data in
1385 register N. */
1386
1387static struct type *
7a5ea0d4 1388arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 1389{
34e8f22d 1390 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
8da61cc4 1391 return builtin_type_arm_ext;
e4c16157
DJ
1392 else if (regnum == ARM_SP_REGNUM)
1393 return builtin_type_void_data_ptr;
1394 else if (regnum == ARM_PC_REGNUM)
1395 return builtin_type_void_func_ptr;
ff6f572f
DJ
1396 else if (regnum >= ARRAY_SIZE (arm_register_names))
1397 /* These registers are only supported on targets which supply
1398 an XML description. */
1399 return builtin_type_int0;
032758dc 1400 else
e4c16157 1401 return builtin_type_uint32;
032758dc
AC
1402}
1403
ff6f572f
DJ
1404/* Map a DWARF register REGNUM onto the appropriate GDB register
1405 number. */
1406
1407static int
1408arm_dwarf_reg_to_regnum (int reg)
1409{
1410 /* Core integer regs. */
1411 if (reg >= 0 && reg <= 15)
1412 return reg;
1413
1414 /* Legacy FPA encoding. These were once used in a way which
1415 overlapped with VFP register numbering, so their use is
1416 discouraged, but GDB doesn't support the ARM toolchain
1417 which used them for VFP. */
1418 if (reg >= 16 && reg <= 23)
1419 return ARM_F0_REGNUM + reg - 16;
1420
1421 /* New assignments for the FPA registers. */
1422 if (reg >= 96 && reg <= 103)
1423 return ARM_F0_REGNUM + reg - 96;
1424
1425 /* WMMX register assignments. */
1426 if (reg >= 104 && reg <= 111)
1427 return ARM_WCGR0_REGNUM + reg - 104;
1428
1429 if (reg >= 112 && reg <= 127)
1430 return ARM_WR0_REGNUM + reg - 112;
1431
1432 if (reg >= 192 && reg <= 199)
1433 return ARM_WC0_REGNUM + reg - 192;
1434
1435 return -1;
1436}
1437
26216b98
AC
1438/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1439static int
1440arm_register_sim_regno (int regnum)
1441{
1442 int reg = regnum;
f57d151a 1443 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
26216b98 1444
ff6f572f
DJ
1445 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1446 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1447
1448 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1449 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1450
1451 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1452 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1453
26216b98
AC
1454 if (reg < NUM_GREGS)
1455 return SIM_ARM_R0_REGNUM + reg;
1456 reg -= NUM_GREGS;
1457
1458 if (reg < NUM_FREGS)
1459 return SIM_ARM_FP0_REGNUM + reg;
1460 reg -= NUM_FREGS;
1461
1462 if (reg < NUM_SREGS)
1463 return SIM_ARM_FPS_REGNUM + reg;
1464 reg -= NUM_SREGS;
1465
edefbb7c 1466 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 1467}
34e8f22d 1468
a37b3cc0
AC
1469/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1470 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1471 It is thought that this is is the floating-point register format on
1472 little-endian systems. */
c906108c 1473
ed9a39eb 1474static void
b508a996
RE
1475convert_from_extended (const struct floatformat *fmt, const void *ptr,
1476 void *dbl)
c906108c 1477{
a37b3cc0 1478 DOUBLEST d;
4c6b5505 1479 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1480 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1481 else
1482 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1483 ptr, &d);
b508a996 1484 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1485}
1486
34e8f22d 1487static void
b508a996 1488convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1489{
a37b3cc0 1490 DOUBLEST d;
b508a996 1491 floatformat_to_doublest (fmt, ptr, &d);
4c6b5505 1492 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
a37b3cc0
AC
1493 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1494 else
1495 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1496 &d, dbl);
c906108c 1497}
ed9a39eb 1498
c906108c 1499static int
ed9a39eb 1500condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1501{
1502 if (cond == INST_AL || cond == INST_NV)
1503 return 1;
1504
1505 switch (cond)
1506 {
1507 case INST_EQ:
1508 return ((status_reg & FLAG_Z) != 0);
1509 case INST_NE:
1510 return ((status_reg & FLAG_Z) == 0);
1511 case INST_CS:
1512 return ((status_reg & FLAG_C) != 0);
1513 case INST_CC:
1514 return ((status_reg & FLAG_C) == 0);
1515 case INST_MI:
1516 return ((status_reg & FLAG_N) != 0);
1517 case INST_PL:
1518 return ((status_reg & FLAG_N) == 0);
1519 case INST_VS:
1520 return ((status_reg & FLAG_V) != 0);
1521 case INST_VC:
1522 return ((status_reg & FLAG_V) == 0);
1523 case INST_HI:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1525 case INST_LS:
1526 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1527 case INST_GE:
1528 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1529 case INST_LT:
1530 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1531 case INST_GT:
1532 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1533 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1534 case INST_LE:
1535 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1536 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1537 }
1538 return 1;
1539}
1540
9512d7fd 1541/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1542#define submask(x) ((1L << ((x) + 1)) - 1)
1543#define bit(obj,st) (((obj) >> (st)) & 1)
1544#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1545#define sbits(obj,st,fn) \
1546 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1547#define BranchDest(addr,instr) \
1548 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1549#define ARM_PC_32 1
1550
1551static unsigned long
0b1b3e42
UW
1552shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1553 unsigned long pc_val, unsigned long status_reg)
c906108c
SS
1554{
1555 unsigned long res, shift;
1556 int rm = bits (inst, 0, 3);
1557 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1558
1559 if (bit (inst, 4))
c906108c
SS
1560 {
1561 int rs = bits (inst, 8, 11);
0b1b3e42
UW
1562 shift = (rs == 15 ? pc_val + 8
1563 : get_frame_register_unsigned (frame, rs)) & 0xFF;
c906108c
SS
1564 }
1565 else
1566 shift = bits (inst, 7, 11);
c5aa993b
JM
1567
1568 res = (rm == 15
c906108c 1569 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1570 + (bit (inst, 4) ? 12 : 8))
0b1b3e42 1571 : get_frame_register_unsigned (frame, rm));
c906108c
SS
1572
1573 switch (shifttype)
1574 {
c5aa993b 1575 case 0: /* LSL */
c906108c
SS
1576 res = shift >= 32 ? 0 : res << shift;
1577 break;
c5aa993b
JM
1578
1579 case 1: /* LSR */
c906108c
SS
1580 res = shift >= 32 ? 0 : res >> shift;
1581 break;
1582
c5aa993b
JM
1583 case 2: /* ASR */
1584 if (shift >= 32)
1585 shift = 31;
c906108c
SS
1586 res = ((res & 0x80000000L)
1587 ? ~((~res) >> shift) : res >> shift);
1588 break;
1589
c5aa993b 1590 case 3: /* ROR/RRX */
c906108c
SS
1591 shift &= 31;
1592 if (shift == 0)
1593 res = (res >> 1) | (carry ? 0x80000000L : 0);
1594 else
c5aa993b 1595 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1596 break;
1597 }
1598
1599 return res & 0xffffffff;
1600}
1601
c906108c
SS
1602/* Return number of 1-bits in VAL. */
1603
1604static int
ed9a39eb 1605bitcount (unsigned long val)
c906108c
SS
1606{
1607 int nbits;
1608 for (nbits = 0; val != 0; nbits++)
c5aa993b 1609 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1610 return nbits;
1611}
1612
ad527d2e 1613static CORE_ADDR
0b1b3e42 1614thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1615{
2af46ca0 1616 struct gdbarch *gdbarch = get_frame_arch (frame);
c5aa993b 1617 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1c5bada0 1618 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
94c30b78 1619 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1620 unsigned long offset;
1621
1622 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1623 {
1624 CORE_ADDR sp;
1625
1626 /* Fetch the saved PC from the stack. It's stored above
1627 all of the other registers. */
f0c9063c 1628 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
0b1b3e42 1629 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1c5bada0 1630 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
2af46ca0 1631 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1632 if (nextpc == pc)
edefbb7c 1633 error (_("Infinite loop detected"));
c906108c
SS
1634 }
1635 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1636 {
0b1b3e42 1637 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1638 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1639 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1640 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1641 }
1642 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1643 {
1644 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1645 }
aa17d93e 1646 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
c906108c 1647 {
1c5bada0 1648 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
c5aa993b 1649 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c 1650 nextpc = pc_val + offset;
aa17d93e
DJ
1651 /* For BLX make sure to clear the low bits. */
1652 if (bits (inst2, 11, 12) == 1)
1653 nextpc = nextpc & 0xfffffffc;
c906108c 1654 }
aa17d93e 1655 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
9498281f
DJ
1656 {
1657 if (bits (inst1, 3, 6) == 0x0f)
1658 nextpc = pc_val;
1659 else
0b1b3e42 1660 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
9498281f 1661
2af46ca0 1662 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
9498281f 1663 if (nextpc == pc)
edefbb7c 1664 error (_("Infinite loop detected"));
9498281f 1665 }
c906108c
SS
1666
1667 return nextpc;
1668}
1669
daddc3c1 1670CORE_ADDR
0b1b3e42 1671arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
c906108c 1672{
2af46ca0 1673 struct gdbarch *gdbarch = get_frame_arch (frame);
c906108c
SS
1674 unsigned long pc_val;
1675 unsigned long this_instr;
1676 unsigned long status;
1677 CORE_ADDR nextpc;
1678
1679 if (arm_pc_is_thumb (pc))
0b1b3e42 1680 return thumb_get_next_pc (frame, pc);
c906108c
SS
1681
1682 pc_val = (unsigned long) pc;
1c5bada0 1683 this_instr = read_memory_unsigned_integer (pc, 4);
0b1b3e42 1684 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
c5aa993b 1685 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c 1686
daddc3c1
DJ
1687 if (bits (this_instr, 28, 31) == INST_NV)
1688 switch (bits (this_instr, 24, 27))
1689 {
1690 case 0xa:
1691 case 0xb:
1692 {
1693 /* Branch with Link and change to Thumb. */
1694 nextpc = BranchDest (pc, this_instr);
1695 nextpc |= bit (this_instr, 24) << 1;
1696
1697 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1698 if (nextpc == pc)
1699 error (_("Infinite loop detected"));
1700 break;
1701 }
1702 case 0xc:
1703 case 0xd:
1704 case 0xe:
1705 /* Coprocessor register transfer. */
1706 if (bits (this_instr, 12, 15) == 15)
1707 error (_("Invalid update to pc in instruction"));
1708 break;
1709 }
1710 else if (condition_true (bits (this_instr, 28, 31), status))
c906108c
SS
1711 {
1712 switch (bits (this_instr, 24, 27))
1713 {
c5aa993b 1714 case 0x0:
94c30b78 1715 case 0x1: /* data processing */
c5aa993b
JM
1716 case 0x2:
1717 case 0x3:
c906108c
SS
1718 {
1719 unsigned long operand1, operand2, result = 0;
1720 unsigned long rn;
1721 int c;
c5aa993b 1722
c906108c
SS
1723 if (bits (this_instr, 12, 15) != 15)
1724 break;
1725
1726 if (bits (this_instr, 22, 25) == 0
c5aa993b 1727 && bits (this_instr, 4, 7) == 9) /* multiply */
edefbb7c 1728 error (_("Invalid update to pc in instruction"));
c906108c 1729
9498281f 1730 /* BX <reg>, BLX <reg> */
e150acc7
PB
1731 if (bits (this_instr, 4, 27) == 0x12fff1
1732 || bits (this_instr, 4, 27) == 0x12fff3)
9498281f
DJ
1733 {
1734 rn = bits (this_instr, 0, 3);
0b1b3e42
UW
1735 result = (rn == 15) ? pc_val + 8
1736 : get_frame_register_unsigned (frame, rn);
bf6ae464 1737 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1738 (gdbarch, result);
9498281f
DJ
1739
1740 if (nextpc == pc)
edefbb7c 1741 error (_("Infinite loop detected"));
9498281f
DJ
1742
1743 return nextpc;
1744 }
1745
c906108c
SS
1746 /* Multiply into PC */
1747 c = (status & FLAG_C) ? 1 : 0;
1748 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1749 operand1 = (rn == 15) ? pc_val + 8
1750 : get_frame_register_unsigned (frame, rn);
c5aa993b 1751
c906108c
SS
1752 if (bit (this_instr, 25))
1753 {
1754 unsigned long immval = bits (this_instr, 0, 7);
1755 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1756 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1757 & 0xffffffff;
c906108c 1758 }
c5aa993b 1759 else /* operand 2 is a shifted register */
0b1b3e42 1760 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
c5aa993b 1761
c906108c
SS
1762 switch (bits (this_instr, 21, 24))
1763 {
c5aa993b 1764 case 0x0: /*and */
c906108c
SS
1765 result = operand1 & operand2;
1766 break;
1767
c5aa993b 1768 case 0x1: /*eor */
c906108c
SS
1769 result = operand1 ^ operand2;
1770 break;
1771
c5aa993b 1772 case 0x2: /*sub */
c906108c
SS
1773 result = operand1 - operand2;
1774 break;
1775
c5aa993b 1776 case 0x3: /*rsb */
c906108c
SS
1777 result = operand2 - operand1;
1778 break;
1779
c5aa993b 1780 case 0x4: /*add */
c906108c
SS
1781 result = operand1 + operand2;
1782 break;
1783
c5aa993b 1784 case 0x5: /*adc */
c906108c
SS
1785 result = operand1 + operand2 + c;
1786 break;
1787
c5aa993b 1788 case 0x6: /*sbc */
c906108c
SS
1789 result = operand1 - operand2 + c;
1790 break;
1791
c5aa993b 1792 case 0x7: /*rsc */
c906108c
SS
1793 result = operand2 - operand1 + c;
1794 break;
1795
c5aa993b
JM
1796 case 0x8:
1797 case 0x9:
1798 case 0xa:
1799 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1800 result = (unsigned long) nextpc;
1801 break;
1802
c5aa993b 1803 case 0xc: /*orr */
c906108c
SS
1804 result = operand1 | operand2;
1805 break;
1806
c5aa993b 1807 case 0xd: /*mov */
c906108c
SS
1808 /* Always step into a function. */
1809 result = operand2;
c5aa993b 1810 break;
c906108c 1811
c5aa993b 1812 case 0xe: /*bic */
c906108c
SS
1813 result = operand1 & ~operand2;
1814 break;
1815
c5aa993b 1816 case 0xf: /*mvn */
c906108c
SS
1817 result = ~operand2;
1818 break;
1819 }
bf6ae464 1820 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2af46ca0 1821 (gdbarch, result);
c906108c
SS
1822
1823 if (nextpc == pc)
edefbb7c 1824 error (_("Infinite loop detected"));
c906108c
SS
1825 break;
1826 }
c5aa993b
JM
1827
1828 case 0x4:
1829 case 0x5: /* data transfer */
1830 case 0x6:
1831 case 0x7:
c906108c
SS
1832 if (bit (this_instr, 20))
1833 {
1834 /* load */
1835 if (bits (this_instr, 12, 15) == 15)
1836 {
1837 /* rd == pc */
c5aa993b 1838 unsigned long rn;
c906108c 1839 unsigned long base;
c5aa993b 1840
c906108c 1841 if (bit (this_instr, 22))
edefbb7c 1842 error (_("Invalid update to pc in instruction"));
c906108c
SS
1843
1844 /* byte write to PC */
1845 rn = bits (this_instr, 16, 19);
0b1b3e42
UW
1846 base = (rn == 15) ? pc_val + 8
1847 : get_frame_register_unsigned (frame, rn);
c906108c
SS
1848 if (bit (this_instr, 24))
1849 {
1850 /* pre-indexed */
1851 int c = (status & FLAG_C) ? 1 : 0;
1852 unsigned long offset =
c5aa993b 1853 (bit (this_instr, 25)
0b1b3e42 1854 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
c5aa993b 1855 : bits (this_instr, 0, 11));
c906108c
SS
1856
1857 if (bit (this_instr, 23))
1858 base += offset;
1859 else
1860 base -= offset;
1861 }
c5aa993b 1862 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1863 4);
c5aa993b 1864
2af46ca0 1865 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c
SS
1866
1867 if (nextpc == pc)
edefbb7c 1868 error (_("Infinite loop detected"));
c906108c
SS
1869 }
1870 }
1871 break;
c5aa993b
JM
1872
1873 case 0x8:
1874 case 0x9: /* block transfer */
c906108c
SS
1875 if (bit (this_instr, 20))
1876 {
1877 /* LDM */
1878 if (bit (this_instr, 15))
1879 {
1880 /* loading pc */
1881 int offset = 0;
1882
1883 if (bit (this_instr, 23))
1884 {
1885 /* up */
1886 unsigned long reglist = bits (this_instr, 0, 14);
1887 offset = bitcount (reglist) * 4;
c5aa993b 1888 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1889 offset += 4;
1890 }
1891 else if (bit (this_instr, 24))
1892 offset = -4;
c5aa993b 1893
c906108c 1894 {
c5aa993b 1895 unsigned long rn_val =
0b1b3e42
UW
1896 get_frame_register_unsigned (frame,
1897 bits (this_instr, 16, 19));
c906108c
SS
1898 nextpc =
1899 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1900 + offset),
c906108c
SS
1901 4);
1902 }
bf6ae464 1903 nextpc = gdbarch_addr_bits_remove
2af46ca0 1904 (gdbarch, nextpc);
c906108c 1905 if (nextpc == pc)
edefbb7c 1906 error (_("Infinite loop detected"));
c906108c
SS
1907 }
1908 }
1909 break;
c5aa993b
JM
1910
1911 case 0xb: /* branch & link */
1912 case 0xa: /* branch */
c906108c
SS
1913 {
1914 nextpc = BranchDest (pc, this_instr);
1915
2af46ca0 1916 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
c906108c 1917 if (nextpc == pc)
edefbb7c 1918 error (_("Infinite loop detected"));
c906108c
SS
1919 break;
1920 }
c5aa993b
JM
1921
1922 case 0xc:
1923 case 0xd:
1924 case 0xe: /* coproc ops */
1925 case 0xf: /* SWI */
c906108c
SS
1926 break;
1927
1928 default:
edefbb7c 1929 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
c906108c
SS
1930 return (pc);
1931 }
1932 }
1933
1934 return nextpc;
1935}
1936
9512d7fd
FN
1937/* single_step() is called just before we want to resume the inferior,
1938 if we want to single-step it but there is no hardware or kernel
1939 single-step support. We find the target of the coming instruction
e0cd558a 1940 and breakpoint it. */
9512d7fd 1941
190dce09 1942int
0b1b3e42 1943arm_software_single_step (struct frame_info *frame)
9512d7fd 1944{
8181d85f
DJ
1945 /* NOTE: This may insert the wrong breakpoint instruction when
1946 single-stepping over a mode-changing instruction, if the
1947 CPSR heuristics are used. */
9512d7fd 1948
0b1b3e42 1949 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
e0cd558a 1950 insert_single_step_breakpoint (next_pc);
e6590a1b
UW
1951
1952 return 1;
9512d7fd 1953}
9512d7fd 1954
c906108c
SS
1955#include "bfd-in2.h"
1956#include "libcoff.h"
1957
1958static int
ed9a39eb 1959gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1960{
1961 if (arm_pc_is_thumb (memaddr))
1962 {
c5aa993b
JM
1963 static asymbol *asym;
1964 static combined_entry_type ce;
1965 static struct coff_symbol_struct csym;
27cddce2 1966 static struct bfd fake_bfd;
c5aa993b 1967 static bfd_target fake_target;
c906108c
SS
1968
1969 if (csym.native == NULL)
1970 {
da3c6d4a
MS
1971 /* Create a fake symbol vector containing a Thumb symbol.
1972 This is solely so that the code in print_insn_little_arm()
1973 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1974 the presence of a Thumb symbol and switch to decoding
1975 Thumb instructions. */
c5aa993b
JM
1976
1977 fake_target.flavour = bfd_target_coff_flavour;
1978 fake_bfd.xvec = &fake_target;
c906108c 1979 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
1980 csym.native = &ce;
1981 csym.symbol.the_bfd = &fake_bfd;
1982 csym.symbol.name = "fake";
1983 asym = (asymbol *) & csym;
c906108c 1984 }
c5aa993b 1985
c906108c 1986 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 1987 info->symbols = &asym;
c906108c
SS
1988 }
1989 else
1990 info->symbols = NULL;
c5aa993b 1991
4c6b5505 1992 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
1993 return print_insn_big_arm (memaddr, info);
1994 else
1995 return print_insn_little_arm (memaddr, info);
1996}
1997
66e810cd
RE
1998/* The following define instruction sequences that will cause ARM
1999 cpu's to take an undefined instruction trap. These are used to
2000 signal a breakpoint to GDB.
2001
2002 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2003 modes. A different instruction is required for each mode. The ARM
2004 cpu's can also be big or little endian. Thus four different
2005 instructions are needed to support all cases.
2006
2007 Note: ARMv4 defines several new instructions that will take the
2008 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2009 not in fact add the new instructions. The new undefined
2010 instructions in ARMv4 are all instructions that had no defined
2011 behaviour in earlier chips. There is no guarantee that they will
2012 raise an exception, but may be treated as NOP's. In practice, it
2013 may only safe to rely on instructions matching:
2014
2015 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2016 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2017 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2018
2019 Even this may only true if the condition predicate is true. The
2020 following use a condition predicate of ALWAYS so it is always TRUE.
2021
2022 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2023 and NetBSD all use a software interrupt rather than an undefined
2024 instruction to force a trap. This can be handled by by the
2025 abi-specific code during establishment of the gdbarch vector. */
2026
66e810cd 2027#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
66e810cd 2028#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
190dce09
UW
2029#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2030#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
66e810cd
RE
2031
2032static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2033static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2034static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2035static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2036
34e8f22d
RE
2037/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2038 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2039 breakpoint should be used. It returns a pointer to a string of
2040 bytes that encode a breakpoint instruction, stores the length of
2041 the string to *lenptr, and adjusts the program counter (if
2042 necessary) to point to the actual memory location where the
c906108c
SS
2043 breakpoint should be inserted. */
2044
ab89facf 2045static const unsigned char *
ed9a39eb 2046arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2047{
66e810cd
RE
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2049
4bf7064c 2050 if (arm_pc_is_thumb (*pcptr))
c906108c 2051 {
66e810cd
RE
2052 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2053 *lenptr = tdep->thumb_breakpoint_size;
2054 return tdep->thumb_breakpoint;
c906108c
SS
2055 }
2056 else
2057 {
66e810cd
RE
2058 *lenptr = tdep->arm_breakpoint_size;
2059 return tdep->arm_breakpoint;
c906108c
SS
2060 }
2061}
ed9a39eb
JM
2062
2063/* Extract from an array REGBUF containing the (raw) register state a
2064 function return value of type TYPE, and copy that, in virtual
2065 format, into VALBUF. */
2066
34e8f22d 2067static void
5238cf52
MK
2068arm_extract_return_value (struct type *type, struct regcache *regs,
2069 gdb_byte *valbuf)
ed9a39eb
JM
2070{
2071 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2072 {
2af46ca0 2073 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
08216dd7
RE
2074 {
2075 case ARM_FLOAT_FPA:
b508a996
RE
2076 {
2077 /* The value is in register F0 in internal format. We need to
2078 extract the raw value and then convert it to the desired
2079 internal type. */
7a5ea0d4 2080 bfd_byte tmpbuf[FP_REGISTER_SIZE];
b508a996
RE
2081
2082 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2083 convert_from_extended (floatformat_from_type (type), tmpbuf,
2084 valbuf);
2085 }
08216dd7
RE
2086 break;
2087
fd50bc42 2088 case ARM_FLOAT_SOFT_FPA:
08216dd7 2089 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2090 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2091 if (TYPE_LENGTH (type) > 4)
2092 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2093 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2094 break;
2095
2096 default:
2097 internal_error
2098 (__FILE__, __LINE__,
edefbb7c 2099 _("arm_extract_return_value: Floating point model not supported"));
08216dd7
RE
2100 break;
2101 }
2102 }
b508a996
RE
2103 else if (TYPE_CODE (type) == TYPE_CODE_INT
2104 || TYPE_CODE (type) == TYPE_CODE_CHAR
2105 || TYPE_CODE (type) == TYPE_CODE_BOOL
2106 || TYPE_CODE (type) == TYPE_CODE_PTR
2107 || TYPE_CODE (type) == TYPE_CODE_REF
2108 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2109 {
2110 /* If the the type is a plain integer, then the access is
2111 straight-forward. Otherwise we have to play around a bit more. */
2112 int len = TYPE_LENGTH (type);
2113 int regno = ARM_A1_REGNUM;
2114 ULONGEST tmp;
2115
2116 while (len > 0)
2117 {
2118 /* By using store_unsigned_integer we avoid having to do
2119 anything special for small big-endian values. */
2120 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2121 store_unsigned_integer (valbuf,
7a5ea0d4
DJ
2122 (len > INT_REGISTER_SIZE
2123 ? INT_REGISTER_SIZE : len),
b508a996 2124 tmp);
7a5ea0d4
DJ
2125 len -= INT_REGISTER_SIZE;
2126 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2127 }
2128 }
ed9a39eb 2129 else
b508a996
RE
2130 {
2131 /* For a structure or union the behaviour is as if the value had
2132 been stored to word-aligned memory and then loaded into
2133 registers with 32-bit load instruction(s). */
2134 int len = TYPE_LENGTH (type);
2135 int regno = ARM_A1_REGNUM;
7a5ea0d4 2136 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2137
2138 while (len > 0)
2139 {
2140 regcache_cooked_read (regs, regno++, tmpbuf);
2141 memcpy (valbuf, tmpbuf,
7a5ea0d4
DJ
2142 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2143 len -= INT_REGISTER_SIZE;
2144 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2145 }
2146 }
34e8f22d
RE
2147}
2148
67255d04
RE
2149
2150/* Will a function return an aggregate type in memory or in a
2151 register? Return 0 if an aggregate type can be returned in a
2152 register, 1 if it must be returned in memory. */
2153
2154static int
2af48f68 2155arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
67255d04
RE
2156{
2157 int nRc;
52f0bd74 2158 enum type_code code;
67255d04 2159
44e1a9eb
DJ
2160 CHECK_TYPEDEF (type);
2161
67255d04
RE
2162 /* In the ARM ABI, "integer" like aggregate types are returned in
2163 registers. For an aggregate type to be integer like, its size
f0c9063c 2164 must be less than or equal to INT_REGISTER_SIZE and the
b1e29e33
AC
2165 offset of each addressable subfield must be zero. Note that bit
2166 fields are not addressable, and all addressable subfields of
2167 unions always start at offset zero.
67255d04
RE
2168
2169 This function is based on the behaviour of GCC 2.95.1.
2170 See: gcc/arm.c: arm_return_in_memory() for details.
2171
2172 Note: All versions of GCC before GCC 2.95.2 do not set up the
2173 parameters correctly for a function returning the following
2174 structure: struct { float f;}; This should be returned in memory,
2175 not a register. Richard Earnshaw sent me a patch, but I do not
2176 know of any way to detect if a function like the above has been
2177 compiled with the correct calling convention. */
2178
2179 /* All aggregate types that won't fit in a register must be returned
2180 in memory. */
f0c9063c 2181 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
67255d04
RE
2182 {
2183 return 1;
2184 }
2185
2af48f68
PB
2186 /* The AAPCS says all aggregates not larger than a word are returned
2187 in a register. */
2188 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2189 return 0;
2190
67255d04
RE
2191 /* The only aggregate types that can be returned in a register are
2192 structs and unions. Arrays must be returned in memory. */
2193 code = TYPE_CODE (type);
2194 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2195 {
2196 return 1;
2197 }
2198
2199 /* Assume all other aggregate types can be returned in a register.
2200 Run a check for structures, unions and arrays. */
2201 nRc = 0;
2202
2203 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2204 {
2205 int i;
2206 /* Need to check if this struct/union is "integer" like. For
2207 this to be true, its size must be less than or equal to
f0c9063c 2208 INT_REGISTER_SIZE and the offset of each addressable
b1e29e33
AC
2209 subfield must be zero. Note that bit fields are not
2210 addressable, and unions always start at offset zero. If any
2211 of the subfields is a floating point type, the struct/union
2212 cannot be an integer type. */
67255d04
RE
2213
2214 /* For each field in the object, check:
2215 1) Is it FP? --> yes, nRc = 1;
2216 2) Is it addressable (bitpos != 0) and
2217 not packed (bitsize == 0)?
2218 --> yes, nRc = 1
2219 */
2220
2221 for (i = 0; i < TYPE_NFIELDS (type); i++)
2222 {
2223 enum type_code field_type_code;
44e1a9eb 2224 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
67255d04
RE
2225
2226 /* Is it a floating point type field? */
2227 if (field_type_code == TYPE_CODE_FLT)
2228 {
2229 nRc = 1;
2230 break;
2231 }
2232
2233 /* If bitpos != 0, then we have to care about it. */
2234 if (TYPE_FIELD_BITPOS (type, i) != 0)
2235 {
2236 /* Bitfields are not addressable. If the field bitsize is
2237 zero, then the field is not packed. Hence it cannot be
2238 a bitfield or any other packed type. */
2239 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2240 {
2241 nRc = 1;
2242 break;
2243 }
2244 }
2245 }
2246 }
2247
2248 return nRc;
2249}
2250
34e8f22d
RE
2251/* Write into appropriate registers a function return value of type
2252 TYPE, given in virtual format. */
2253
2254static void
b508a996 2255arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 2256 const gdb_byte *valbuf)
34e8f22d
RE
2257{
2258 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2259 {
7a5ea0d4 2260 char buf[MAX_REGISTER_SIZE];
34e8f22d 2261
2af46ca0 2262 switch (gdbarch_tdep (get_regcache_arch (regs))->fp_model)
08216dd7
RE
2263 {
2264 case ARM_FLOAT_FPA:
2265
b508a996
RE
2266 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2267 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2268 break;
2269
fd50bc42 2270 case ARM_FLOAT_SOFT_FPA:
08216dd7 2271 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2272 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2273 if (TYPE_LENGTH (type) > 4)
2274 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 2275 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
2276 break;
2277
2278 default:
2279 internal_error
2280 (__FILE__, __LINE__,
edefbb7c 2281 _("arm_store_return_value: Floating point model not supported"));
08216dd7
RE
2282 break;
2283 }
34e8f22d 2284 }
b508a996
RE
2285 else if (TYPE_CODE (type) == TYPE_CODE_INT
2286 || TYPE_CODE (type) == TYPE_CODE_CHAR
2287 || TYPE_CODE (type) == TYPE_CODE_BOOL
2288 || TYPE_CODE (type) == TYPE_CODE_PTR
2289 || TYPE_CODE (type) == TYPE_CODE_REF
2290 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2291 {
2292 if (TYPE_LENGTH (type) <= 4)
2293 {
2294 /* Values of one word or less are zero/sign-extended and
2295 returned in r0. */
7a5ea0d4 2296 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2297 LONGEST val = unpack_long (type, valbuf);
2298
7a5ea0d4 2299 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
b508a996
RE
2300 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2301 }
2302 else
2303 {
2304 /* Integral values greater than one word are stored in consecutive
2305 registers starting with r0. This will always be a multiple of
2306 the regiser size. */
2307 int len = TYPE_LENGTH (type);
2308 int regno = ARM_A1_REGNUM;
2309
2310 while (len > 0)
2311 {
2312 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
2313 len -= INT_REGISTER_SIZE;
2314 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2315 }
2316 }
2317 }
34e8f22d 2318 else
b508a996
RE
2319 {
2320 /* For a structure or union the behaviour is as if the value had
2321 been stored to word-aligned memory and then loaded into
2322 registers with 32-bit load instruction(s). */
2323 int len = TYPE_LENGTH (type);
2324 int regno = ARM_A1_REGNUM;
7a5ea0d4 2325 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
2326
2327 while (len > 0)
2328 {
2329 memcpy (tmpbuf, valbuf,
7a5ea0d4 2330 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 2331 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
2332 len -= INT_REGISTER_SIZE;
2333 valbuf += INT_REGISTER_SIZE;
b508a996
RE
2334 }
2335 }
34e8f22d
RE
2336}
2337
2af48f68
PB
2338
2339/* Handle function return values. */
2340
2341static enum return_value_convention
2342arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
25224166
MK
2343 struct regcache *regcache, gdb_byte *readbuf,
2344 const gdb_byte *writebuf)
2af48f68 2345{
7c00367c
MK
2346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2347
2af48f68
PB
2348 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2349 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2350 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2351 {
7c00367c
MK
2352 if (tdep->struct_return == pcc_struct_return
2353 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
2354 return RETURN_VALUE_STRUCT_CONVENTION;
2355 }
2356
2357 if (writebuf)
2358 arm_store_return_value (valtype, regcache, writebuf);
2359
2360 if (readbuf)
2361 arm_extract_return_value (valtype, regcache, readbuf);
2362
2363 return RETURN_VALUE_REGISTER_CONVENTION;
2364}
2365
2366
9df628e0 2367static int
60ade65d 2368arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0
RE
2369{
2370 CORE_ADDR jb_addr;
7a5ea0d4 2371 char buf[INT_REGISTER_SIZE];
60ade65d 2372 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
9df628e0 2373
60ade65d 2374 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
2375
2376 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 2377 INT_REGISTER_SIZE))
9df628e0
RE
2378 return 0;
2379
7a5ea0d4 2380 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
9df628e0
RE
2381 return 1;
2382}
2383
faa95490
DJ
2384/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2385 return the target PC. Otherwise return 0. */
c906108c
SS
2386
2387CORE_ADDR
52f729a7 2388arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 2389{
c5aa993b 2390 char *name;
faa95490 2391 int namelen;
c906108c
SS
2392 CORE_ADDR start_addr;
2393
2394 /* Find the starting address and name of the function containing the PC. */
2395 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2396 return 0;
2397
faa95490
DJ
2398 /* If PC is in a Thumb call or return stub, return the address of the
2399 target PC, which is in a register. The thunk functions are called
2400 _call_via_xx, where x is the register name. The possible names
2401 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2402 if (strncmp (name, "_call_via_", 10) == 0)
2403 {
ed9a39eb
JM
2404 /* Use the name suffix to determine which register contains the
2405 target PC. */
c5aa993b
JM
2406 static char *table[15] =
2407 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2408 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2409 };
c906108c 2410 int regno;
faa95490 2411 int offset = strlen (name) - 2;
c906108c
SS
2412
2413 for (regno = 0; regno <= 14; regno++)
faa95490 2414 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 2415 return get_frame_register_unsigned (frame, regno);
c906108c 2416 }
ed9a39eb 2417
faa95490
DJ
2418 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2419 non-interworking calls to foo. We could decode the stubs
2420 to find the target but it's easier to use the symbol table. */
2421 namelen = strlen (name);
2422 if (name[0] == '_' && name[1] == '_'
2423 && ((namelen > 2 + strlen ("_from_thumb")
2424 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2425 strlen ("_from_thumb")) == 0)
2426 || (namelen > 2 + strlen ("_from_arm")
2427 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2428 strlen ("_from_arm")) == 0)))
2429 {
2430 char *target_name;
2431 int target_len = namelen - 2;
2432 struct minimal_symbol *minsym;
2433 struct objfile *objfile;
2434 struct obj_section *sec;
2435
2436 if (name[namelen - 1] == 'b')
2437 target_len -= strlen ("_from_thumb");
2438 else
2439 target_len -= strlen ("_from_arm");
2440
2441 target_name = alloca (target_len + 1);
2442 memcpy (target_name, name + 2, target_len);
2443 target_name[target_len] = '\0';
2444
2445 sec = find_pc_section (pc);
2446 objfile = (sec == NULL) ? NULL : sec->objfile;
2447 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2448 if (minsym != NULL)
2449 return SYMBOL_VALUE_ADDRESS (minsym);
2450 else
2451 return 0;
2452 }
2453
c5aa993b 2454 return 0; /* not a stub */
c906108c
SS
2455}
2456
afd7eef0
RE
2457static void
2458set_arm_command (char *args, int from_tty)
2459{
edefbb7c
AC
2460 printf_unfiltered (_("\
2461\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
2462 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2463}
2464
2465static void
2466show_arm_command (char *args, int from_tty)
2467{
26304000 2468 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2469}
2470
28e97307
DJ
2471static void
2472arm_update_current_architecture (void)
fd50bc42 2473{
28e97307 2474 struct gdbarch_info info;
fd50bc42 2475
28e97307
DJ
2476 /* If the current architecture is not ARM, we have nothing to do. */
2477 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2478 return;
fd50bc42 2479
28e97307
DJ
2480 /* Update the architecture. */
2481 gdbarch_info_init (&info);
fd50bc42 2482
28e97307
DJ
2483 if (!gdbarch_update_p (info))
2484 internal_error (__FILE__, __LINE__, "could not update architecture");
fd50bc42
RE
2485}
2486
2487static void
2488set_fp_model_sfunc (char *args, int from_tty,
2489 struct cmd_list_element *c)
2490{
2491 enum arm_float_model fp_model;
2492
2493 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2494 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2495 {
2496 arm_fp_model = fp_model;
2497 break;
2498 }
2499
2500 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 2501 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
2502 current_fp_model);
2503
28e97307 2504 arm_update_current_architecture ();
fd50bc42
RE
2505}
2506
2507static void
08546159
AC
2508show_fp_model (struct ui_file *file, int from_tty,
2509 struct cmd_list_element *c, const char *value)
fd50bc42
RE
2510{
2511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2512
28e97307 2513 if (arm_fp_model == ARM_FLOAT_AUTO
fd50bc42 2514 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
28e97307
DJ
2515 fprintf_filtered (file, _("\
2516The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2517 fp_model_strings[tdep->fp_model]);
2518 else
2519 fprintf_filtered (file, _("\
2520The current ARM floating point model is \"%s\".\n"),
2521 fp_model_strings[arm_fp_model]);
2522}
2523
2524static void
2525arm_set_abi (char *args, int from_tty,
2526 struct cmd_list_element *c)
2527{
2528 enum arm_abi_kind arm_abi;
2529
2530 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2531 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2532 {
2533 arm_abi_global = arm_abi;
2534 break;
2535 }
2536
2537 if (arm_abi == ARM_ABI_LAST)
2538 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2539 arm_abi_string);
2540
2541 arm_update_current_architecture ();
2542}
2543
2544static void
2545arm_show_abi (struct ui_file *file, int from_tty,
2546 struct cmd_list_element *c, const char *value)
2547{
2548 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2549
2550 if (arm_abi_global == ARM_ABI_AUTO
2551 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2552 fprintf_filtered (file, _("\
2553The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2554 arm_abi_strings[tdep->arm_abi]);
2555 else
2556 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2557 arm_abi_string);
fd50bc42
RE
2558}
2559
afd7eef0
RE
2560/* If the user changes the register disassembly style used for info
2561 register and other commands, we have to also switch the style used
2562 in opcodes for disassembly output. This function is run in the "set
2563 arm disassembly" command, and does that. */
bc90b915
FN
2564
2565static void
afd7eef0 2566set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2567 struct cmd_list_element *c)
2568{
afd7eef0 2569 set_disassembly_style ();
bc90b915
FN
2570}
2571\f
966fbf70 2572/* Return the ARM register name corresponding to register I. */
a208b0cb 2573static const char *
34e8f22d 2574arm_register_name (int i)
966fbf70 2575{
ff6f572f
DJ
2576 if (i >= ARRAY_SIZE (arm_register_names))
2577 /* These registers are only supported on targets which supply
2578 an XML description. */
2579 return "";
2580
966fbf70
RE
2581 return arm_register_names[i];
2582}
2583
bc90b915 2584static void
afd7eef0 2585set_disassembly_style (void)
bc90b915 2586{
123dc839 2587 int current;
bc90b915 2588
123dc839
DJ
2589 /* Find the style that the user wants. */
2590 for (current = 0; current < num_disassembly_options; current++)
2591 if (disassembly_style == valid_disassembly_styles[current])
2592 break;
2593 gdb_assert (current < num_disassembly_options);
bc90b915 2594
94c30b78 2595 /* Synchronize the disassembler. */
bc90b915
FN
2596 set_arm_regname_option (current);
2597}
2598
082fc60d
RE
2599/* Test whether the coff symbol specific value corresponds to a Thumb
2600 function. */
2601
2602static int
2603coff_sym_is_thumb (int val)
2604{
2605 return (val == C_THUMBEXT ||
2606 val == C_THUMBSTAT ||
2607 val == C_THUMBEXTFUNC ||
2608 val == C_THUMBSTATFUNC ||
2609 val == C_THUMBLABEL);
2610}
2611
2612/* arm_coff_make_msymbol_special()
2613 arm_elf_make_msymbol_special()
2614
2615 These functions test whether the COFF or ELF symbol corresponds to
2616 an address in thumb code, and set a "special" bit in a minimal
2617 symbol to indicate that it does. */
2618
34e8f22d 2619static void
082fc60d
RE
2620arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2621{
2622 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2623 STT_ARM_TFUNC). */
2624 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2625 == STT_LOPROC)
2626 MSYMBOL_SET_SPECIAL (msym);
2627}
2628
34e8f22d 2629static void
082fc60d
RE
2630arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2631{
2632 if (coff_sym_is_thumb (val))
2633 MSYMBOL_SET_SPECIAL (msym);
2634}
2635
756fe439 2636static void
61a1198a 2637arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 2638{
61a1198a 2639 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
2640
2641 /* If necessary, set the T bit. */
2642 if (arm_apcs_32)
2643 {
61a1198a
UW
2644 ULONGEST val;
2645 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
756fe439 2646 if (arm_pc_is_thumb (pc))
61a1198a 2647 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
756fe439 2648 else
61a1198a
UW
2649 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2650 val & ~(ULONGEST) 0x20);
756fe439
DJ
2651 }
2652}
123dc839
DJ
2653
2654static struct value *
2655value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2656{
2657 const int *reg_p = baton;
2658 return value_of_register (*reg_p, frame);
2659}
97e03143 2660\f
70f80edf
JT
2661static enum gdb_osabi
2662arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2663{
2af48f68 2664 unsigned int elfosabi;
70f80edf 2665 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2666
70f80edf 2667 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2668
28e97307
DJ
2669 if (elfosabi == ELFOSABI_ARM)
2670 /* GNU tools use this value. Check note sections in this case,
2671 as well. */
2672 bfd_map_over_sections (abfd,
2673 generic_elf_osabi_sniff_abi_tag_sections,
2674 &osabi);
97e03143 2675
28e97307 2676 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 2677 return osabi;
97e03143
RE
2678}
2679
70f80edf 2680\f
da3c6d4a
MS
2681/* Initialize the current architecture based on INFO. If possible,
2682 re-use an architecture from ARCHES, which is a list of
2683 architectures already created during this debugging session.
97e03143 2684
da3c6d4a
MS
2685 Called e.g. at program startup, when reading a core file, and when
2686 reading a binary file. */
97e03143 2687
39bbf761
RE
2688static struct gdbarch *
2689arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2690{
97e03143 2691 struct gdbarch_tdep *tdep;
39bbf761 2692 struct gdbarch *gdbarch;
28e97307
DJ
2693 struct gdbarch_list *best_arch;
2694 enum arm_abi_kind arm_abi = arm_abi_global;
2695 enum arm_float_model fp_model = arm_fp_model;
123dc839
DJ
2696 struct tdesc_arch_data *tdesc_data = NULL;
2697 int i;
ff6f572f 2698 int have_fpa_registers = 1;
123dc839
DJ
2699
2700 /* Check any target description for validity. */
2701 if (tdesc_has_registers (info.target_desc))
2702 {
2703 /* For most registers we require GDB's default names; but also allow
2704 the numeric names for sp / lr / pc, as a convenience. */
2705 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2706 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2707 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2708
2709 const struct tdesc_feature *feature;
2710 int i, valid_p;
2711
2712 feature = tdesc_find_feature (info.target_desc,
2713 "org.gnu.gdb.arm.core");
2714 if (feature == NULL)
2715 return NULL;
2716
2717 tdesc_data = tdesc_data_alloc ();
2718
2719 valid_p = 1;
2720 for (i = 0; i < ARM_SP_REGNUM; i++)
2721 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2722 arm_register_names[i]);
2723 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2724 ARM_SP_REGNUM,
2725 arm_sp_names);
2726 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2727 ARM_LR_REGNUM,
2728 arm_lr_names);
2729 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2730 ARM_PC_REGNUM,
2731 arm_pc_names);
2732 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2733 ARM_PS_REGNUM, "cpsr");
2734
2735 if (!valid_p)
2736 {
2737 tdesc_data_cleanup (tdesc_data);
2738 return NULL;
2739 }
2740
2741 feature = tdesc_find_feature (info.target_desc,
2742 "org.gnu.gdb.arm.fpa");
2743 if (feature != NULL)
2744 {
2745 valid_p = 1;
2746 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2747 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2748 arm_register_names[i]);
2749 if (!valid_p)
2750 {
2751 tdesc_data_cleanup (tdesc_data);
2752 return NULL;
2753 }
2754 }
ff6f572f
DJ
2755 else
2756 have_fpa_registers = 0;
2757
2758 feature = tdesc_find_feature (info.target_desc,
2759 "org.gnu.gdb.xscale.iwmmxt");
2760 if (feature != NULL)
2761 {
2762 static const char *const iwmmxt_names[] = {
2763 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2764 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2765 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2766 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2767 };
2768
2769 valid_p = 1;
2770 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2771 valid_p
2772 &= tdesc_numbered_register (feature, tdesc_data, i,
2773 iwmmxt_names[i - ARM_WR0_REGNUM]);
2774
2775 /* Check for the control registers, but do not fail if they
2776 are missing. */
2777 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2778 tdesc_numbered_register (feature, tdesc_data, i,
2779 iwmmxt_names[i - ARM_WR0_REGNUM]);
2780
2781 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2782 valid_p
2783 &= tdesc_numbered_register (feature, tdesc_data, i,
2784 iwmmxt_names[i - ARM_WR0_REGNUM]);
2785
2786 if (!valid_p)
2787 {
2788 tdesc_data_cleanup (tdesc_data);
2789 return NULL;
2790 }
2791 }
123dc839 2792 }
39bbf761 2793
28e97307
DJ
2794 /* If we have an object to base this architecture on, try to determine
2795 its ABI. */
39bbf761 2796
28e97307 2797 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
97e03143 2798 {
6b26d61a 2799 int ei_osabi, e_flags;
28e97307 2800
4be87837 2801 switch (bfd_get_flavour (info.abfd))
97e03143 2802 {
4be87837
DJ
2803 case bfd_target_aout_flavour:
2804 /* Assume it's an old APCS-style ABI. */
28e97307 2805 arm_abi = ARM_ABI_APCS;
4be87837 2806 break;
97e03143 2807
4be87837
DJ
2808 case bfd_target_coff_flavour:
2809 /* Assume it's an old APCS-style ABI. */
2810 /* XXX WinCE? */
28e97307
DJ
2811 arm_abi = ARM_ABI_APCS;
2812 break;
2813
2814 case bfd_target_elf_flavour:
2815 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
6b26d61a
MK
2816 e_flags = elf_elfheader (info.abfd)->e_flags;
2817
28e97307
DJ
2818 if (ei_osabi == ELFOSABI_ARM)
2819 {
2820 /* GNU tools used to use this value, but do not for EABI
6b26d61a
MK
2821 objects. There's nowhere to tag an EABI version
2822 anyway, so assume APCS. */
28e97307
DJ
2823 arm_abi = ARM_ABI_APCS;
2824 }
2825 else if (ei_osabi == ELFOSABI_NONE)
2826 {
6b26d61a 2827 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
28e97307
DJ
2828
2829 switch (eabi_ver)
2830 {
2831 case EF_ARM_EABI_UNKNOWN:
2832 /* Assume GNU tools. */
2833 arm_abi = ARM_ABI_APCS;
2834 break;
2835
2836 case EF_ARM_EABI_VER4:
625b5003 2837 case EF_ARM_EABI_VER5:
28e97307 2838 arm_abi = ARM_ABI_AAPCS;
2af48f68
PB
2839 /* EABI binaries default to VFP float ordering. */
2840 if (fp_model == ARM_FLOAT_AUTO)
2841 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2842 break;
2843
2844 default:
6b26d61a 2845 /* Leave it as "auto". */
28e97307 2846 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
6b26d61a
MK
2847 break;
2848 }
2849 }
2850
2851 if (fp_model == ARM_FLOAT_AUTO)
2852 {
2853 int e_flags = elf_elfheader (info.abfd)->e_flags;
2854
2855 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2856 {
2857 case 0:
2858 /* Leave it as "auto". Strictly speaking this case
2859 means FPA, but almost nobody uses that now, and
2860 many toolchains fail to set the appropriate bits
2861 for the floating-point model they use. */
2862 break;
2863 case EF_ARM_SOFT_FLOAT:
2864 fp_model = ARM_FLOAT_SOFT_FPA;
2865 break;
2866 case EF_ARM_VFP_FLOAT:
2867 fp_model = ARM_FLOAT_VFP;
2868 break;
2869 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2870 fp_model = ARM_FLOAT_SOFT_VFP;
28e97307
DJ
2871 break;
2872 }
2873 }
4be87837 2874 break;
97e03143 2875
4be87837 2876 default:
28e97307 2877 /* Leave it as "auto". */
50ceaba5 2878 break;
97e03143
RE
2879 }
2880 }
2881
28e97307
DJ
2882 /* If there is already a candidate, use it. */
2883 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2884 best_arch != NULL;
2885 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2886 {
b8926edc
DJ
2887 if (arm_abi != ARM_ABI_AUTO
2888 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
2889 continue;
2890
b8926edc
DJ
2891 if (fp_model != ARM_FLOAT_AUTO
2892 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
2893 continue;
2894
2895 /* Found a match. */
2896 break;
2897 }
97e03143 2898
28e97307 2899 if (best_arch != NULL)
123dc839
DJ
2900 {
2901 if (tdesc_data != NULL)
2902 tdesc_data_cleanup (tdesc_data);
2903 return best_arch->gdbarch;
2904 }
28e97307
DJ
2905
2906 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
97e03143
RE
2907 gdbarch = gdbarch_alloc (&info, tdep);
2908
28e97307
DJ
2909 /* Record additional information about the architecture we are defining.
2910 These are gdbarch discriminators, like the OSABI. */
2911 tdep->arm_abi = arm_abi;
2912 tdep->fp_model = fp_model;
ff6f572f 2913 tdep->have_fpa_registers = have_fpa_registers;
08216dd7
RE
2914
2915 /* Breakpoints. */
67255d04
RE
2916 switch (info.byte_order)
2917 {
2918 case BFD_ENDIAN_BIG:
66e810cd
RE
2919 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2920 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2921 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2922 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2923
67255d04
RE
2924 break;
2925
2926 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2927 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2928 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2929 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2930 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2931
67255d04
RE
2932 break;
2933
2934 default:
2935 internal_error (__FILE__, __LINE__,
edefbb7c 2936 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
2937 }
2938
d7b486e7
RE
2939 /* On ARM targets char defaults to unsigned. */
2940 set_gdbarch_char_signed (gdbarch, 0);
2941
9df628e0 2942 /* This should be low enough for everything. */
97e03143 2943 tdep->lowest_pc = 0x20;
94c30b78 2944 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2945
7c00367c
MK
2946 /* The default, for both APCS and AAPCS, is to return small
2947 structures in registers. */
2948 tdep->struct_return = reg_struct_return;
2949
2dd604e7 2950 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 2951 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 2952
756fe439
DJ
2953 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2954
148754e5 2955 /* Frame handling. */
eb5492fa
DJ
2956 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2957 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2958 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2959
eb5492fa 2960 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 2961
34e8f22d
RE
2962 /* Address manipulation. */
2963 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2964 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2965
34e8f22d
RE
2966 /* Advance PC across function entry code. */
2967 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2968
190dce09
UW
2969 /* Skip trampolines. */
2970 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2971
34e8f22d
RE
2972 /* The stack grows downward. */
2973 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2974
2975 /* Breakpoint manipulation. */
2976 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
34e8f22d
RE
2977
2978 /* Information about registers, etc. */
0ba6dca9 2979 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2980 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2981 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 2982 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 2983 set_gdbarch_register_type (gdbarch, arm_register_type);
34e8f22d 2984
ff6f572f
DJ
2985 /* This "info float" is FPA-specific. Use the generic version if we
2986 do not have FPA. */
2987 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2988 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2989
26216b98 2990 /* Internal <-> external register number maps. */
ff6f572f
DJ
2991 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2992 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
2993 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2994
34e8f22d
RE
2995 set_gdbarch_register_name (gdbarch, arm_register_name);
2996
2997 /* Returning results. */
2af48f68 2998 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 2999
03d48a7d
RE
3000 /* Disassembly. */
3001 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3002
34e8f22d
RE
3003 /* Minsymbol frobbing. */
3004 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3005 set_gdbarch_coff_make_msymbol_special (gdbarch,
3006 arm_coff_make_msymbol_special);
3007
0d5de010
DJ
3008 /* Virtual tables. */
3009 set_gdbarch_vbit_in_delta (gdbarch, 1);
3010
97e03143 3011 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3012 gdbarch_init_osabi (info, gdbarch);
97e03143 3013
eb5492fa 3014 /* Add some default predicates. */
909cf6ea 3015 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
842e1f1e 3016 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
eb5492fa
DJ
3017 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3018
97e03143
RE
3019 /* Now we have tuned the configuration, set a few final things,
3020 based on what the OS ABI has told us. */
3021
b8926edc
DJ
3022 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3023 binaries are always marked. */
3024 if (tdep->arm_abi == ARM_ABI_AUTO)
3025 tdep->arm_abi = ARM_ABI_APCS;
3026
3027 /* We used to default to FPA for generic ARM, but almost nobody
3028 uses that now, and we now provide a way for the user to force
3029 the model. So default to the most useful variant. */
3030 if (tdep->fp_model == ARM_FLOAT_AUTO)
3031 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3032
9df628e0
RE
3033 if (tdep->jb_pc >= 0)
3034 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3035
08216dd7 3036 /* Floating point sizes and format. */
8da61cc4 3037 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 3038 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 3039 {
8da61cc4
DJ
3040 set_gdbarch_double_format
3041 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3042 set_gdbarch_long_double_format
3043 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3044 }
3045 else
3046 {
3047 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3048 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
3049 }
3050
123dc839
DJ
3051 if (tdesc_data)
3052 tdesc_use_registers (gdbarch, tdesc_data);
3053
3054 /* Add standard register aliases. We add aliases even for those
3055 nanes which are used by the current architecture - it's simpler,
3056 and does no harm, since nothing ever lists user registers. */
3057 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3058 user_reg_add (gdbarch, arm_register_aliases[i].name,
3059 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3060
39bbf761
RE
3061 return gdbarch;
3062}
3063
97e03143 3064static void
2af46ca0 3065arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 3066{
2af46ca0 3067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
3068
3069 if (tdep == NULL)
3070 return;
3071
edefbb7c 3072 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
3073 (unsigned long) tdep->lowest_pc);
3074}
3075
a78f21af
AC
3076extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3077
c906108c 3078void
ed9a39eb 3079_initialize_arm_tdep (void)
c906108c 3080{
bc90b915
FN
3081 struct ui_file *stb;
3082 long length;
26304000 3083 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3084 const char *setname;
3085 const char *setdesc;
4bd7b427 3086 const char *const *regnames;
bc90b915
FN
3087 int numregs, i, j;
3088 static char *helptext;
edefbb7c
AC
3089 char regdesc[1024], *rdptr = regdesc;
3090 size_t rest = sizeof (regdesc);
085dd6e6 3091
42cf1509 3092 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 3093
70f80edf
JT
3094 /* Register an ELF OS ABI sniffer for ARM binaries. */
3095 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3096 bfd_target_elf_flavour,
3097 arm_elf_osabi_sniffer);
3098
94c30b78 3099 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3100 num_disassembly_options = get_arm_regname_num_options ();
3101
3102 /* Add root prefix command for all "set arm"/"show arm" commands. */
3103 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 3104 _("Various ARM-specific commands."),
afd7eef0
RE
3105 &setarmcmdlist, "set arm ", 0, &setlist);
3106
3107 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 3108 _("Various ARM-specific commands."),
afd7eef0 3109 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3110
94c30b78 3111 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3112 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3113
eefe576e
AC
3114 /* Initialize the array that will be passed to
3115 add_setshow_enum_cmd(). */
afd7eef0
RE
3116 valid_disassembly_styles
3117 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3118 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3119 {
3120 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3121 valid_disassembly_styles[i] = setname;
edefbb7c
AC
3122 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3123 rdptr += length;
3124 rest -= length;
123dc839
DJ
3125 /* When we find the default names, tell the disassembler to use
3126 them. */
bc90b915
FN
3127 if (!strcmp (setname, "std"))
3128 {
afd7eef0 3129 disassembly_style = setname;
bc90b915
FN
3130 set_arm_regname_option (i);
3131 }
3132 }
94c30b78 3133 /* Mark the end of valid options. */
afd7eef0 3134 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3135
edefbb7c
AC
3136 /* Create the help text. */
3137 stb = mem_fileopen ();
3138 fprintf_unfiltered (stb, "%s%s%s",
3139 _("The valid values are:\n"),
3140 regdesc,
3141 _("The default is \"std\"."));
bc90b915
FN
3142 helptext = ui_file_xstrdup (stb, &length);
3143 ui_file_delete (stb);
ed9a39eb 3144
edefbb7c
AC
3145 add_setshow_enum_cmd("disassembler", no_class,
3146 valid_disassembly_styles, &disassembly_style,
3147 _("Set the disassembly style."),
3148 _("Show the disassembly style."),
3149 helptext,
2c5b56ce 3150 set_disassembly_style_sfunc,
7915a72c 3151 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
7376b4c2 3152 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
3153
3154 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3155 _("Set usage of ARM 32-bit mode."),
3156 _("Show usage of ARM 32-bit mode."),
3157 _("When off, a 26-bit PC will be used."),
2c5b56ce 3158 NULL,
7915a72c 3159 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
26304000 3160 &setarmcmdlist, &showarmcmdlist);
c906108c 3161
fd50bc42 3162 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
3163 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3164 _("Set the floating point type."),
3165 _("Show the floating point type."),
3166 _("auto - Determine the FP typefrom the OS-ABI.\n\
3167softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3168fpa - FPA co-processor (GCC compiled).\n\
3169softvfp - Software FP with pure-endian doubles.\n\
3170vfp - VFP co-processor."),
edefbb7c 3171 set_fp_model_sfunc, show_fp_model,
7376b4c2 3172 &setarmcmdlist, &showarmcmdlist);
fd50bc42 3173
28e97307
DJ
3174 /* Add a command to allow the user to force the ABI. */
3175 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3176 _("Set the ABI."),
3177 _("Show the ABI."),
3178 NULL, arm_set_abi, arm_show_abi,
3179 &setarmcmdlist, &showarmcmdlist);
3180
6529d2dd 3181 /* Debugging flag. */
edefbb7c
AC
3182 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3183 _("Set ARM debugging."),
3184 _("Show ARM debugging."),
3185 _("When on, arm-specific debugging is enabled."),
2c5b56ce 3186 NULL,
7915a72c 3187 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 3188 &setdebuglist, &showdebuglist);
c906108c 3189}
This page took 0.726478 seconds and 4 git commands to generate.