Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
0fd88904 2
618f726f 3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
0baeab03
PA
20#include "defs.h"
21
0963b4bd 22#include <ctype.h> /* XXX for isupper (). */
34e8f22d 23
c906108c
SS
24#include "frame.h"
25#include "inferior.h"
45741a9c 26#include "infrun.h"
c906108c
SS
27#include "gdbcmd.h"
28#include "gdbcore.h"
0963b4bd 29#include "dis-asm.h" /* For register styles. */
4e052eda 30#include "regcache.h"
54483882 31#include "reggroups.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
34e8f22d 34#include "arch-utils.h"
4be87837 35#include "osabi.h"
eb5492fa
DJ
36#include "frame-unwind.h"
37#include "frame-base.h"
38#include "trad-frame.h"
842e1f1e
DJ
39#include "objfiles.h"
40#include "dwarf2-frame.h"
e4c16157 41#include "gdbtypes.h"
29d73ae4 42#include "prologue-value.h"
25f8c692 43#include "remote.h"
123dc839
DJ
44#include "target-descriptions.h"
45#include "user-regs.h"
0e9e9abd 46#include "observer.h"
34e8f22d 47
8689682c 48#include "arch/arm.h"
d9311bfa 49#include "arch/arm-get-next-pcs.h"
34e8f22d 50#include "arm-tdep.h"
26216b98 51#include "gdb/sim-arm.h"
34e8f22d 52
082fc60d
RE
53#include "elf-bfd.h"
54#include "coff/internal.h"
97e03143 55#include "elf/arm.h"
c906108c 56
60c5725c 57#include "vec.h"
26216b98 58
72508ac0 59#include "record.h"
d02ed0bb 60#include "record-full.h"
325fac50 61#include <algorithm>
72508ac0 62
0a69eedb
YQ
63#include "features/arm/arm-with-m.c"
64#include "features/arm/arm-with-m-fpa-layout.c"
65#include "features/arm/arm-with-m-vfp-d16.c"
66#include "features/arm/arm-with-iwmmxt.c"
67#include "features/arm/arm-with-vfpv2.c"
68#include "features/arm/arm-with-vfpv3.c"
69#include "features/arm/arm-with-neon.c"
9779414d 70
6529d2dd
AC
71static int arm_debug;
72
082fc60d
RE
73/* Macros for setting and testing a bit in a minimal symbol that marks
74 it as Thumb function. The MSB of the minimal symbol's "info" field
f594e5e9 75 is used for this purpose.
082fc60d
RE
76
77 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
f594e5e9 78 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
082fc60d 79
0963b4bd 80#define MSYMBOL_SET_SPECIAL(msym) \
b887350f 81 MSYMBOL_TARGET_FLAG_1 (msym) = 1
082fc60d
RE
82
83#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 84 MSYMBOL_TARGET_FLAG_1 (msym)
082fc60d 85
60c5725c
DJ
86/* Per-objfile data used for mapping symbols. */
87static const struct objfile_data *arm_objfile_data_key;
88
89struct arm_mapping_symbol
90{
91 bfd_vma value;
92 char type;
93};
94typedef struct arm_mapping_symbol arm_mapping_symbol_s;
95DEF_VEC_O(arm_mapping_symbol_s);
96
97struct arm_per_objfile
98{
99 VEC(arm_mapping_symbol_s) **section_maps;
100};
101
afd7eef0
RE
102/* The list of available "set arm ..." and "show arm ..." commands. */
103static struct cmd_list_element *setarmcmdlist = NULL;
104static struct cmd_list_element *showarmcmdlist = NULL;
105
fd50bc42
RE
106/* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
40478521 108static const char *const fp_model_strings[] =
fd50bc42
RE
109{
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
28e97307
DJ
114 "vfp",
115 NULL
fd50bc42
RE
116};
117
118/* A variable that can be configured by the user. */
119static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
120static const char *current_fp_model = "auto";
121
28e97307 122/* The ABI to use. Keep this in sync with arm_abi_kind. */
40478521 123static const char *const arm_abi_strings[] =
28e97307
DJ
124{
125 "auto",
126 "APCS",
127 "AAPCS",
128 NULL
129};
130
131/* A variable that can be configured by the user. */
132static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
133static const char *arm_abi_string = "auto";
134
0428b8f5 135/* The execution mode to assume. */
40478521 136static const char *const arm_mode_strings[] =
0428b8f5
DJ
137 {
138 "auto",
139 "arm",
68770265
MGD
140 "thumb",
141 NULL
0428b8f5
DJ
142 };
143
144static const char *arm_fallback_mode_string = "auto";
145static const char *arm_force_mode_string = "auto";
146
18819fa6
UW
147/* Internal override of the execution mode. -1 means no override,
148 0 means override to ARM mode, 1 means override to Thumb mode.
149 The effect is the same as if arm_force_mode has been set by the
150 user (except the internal override has precedence over a user's
151 arm_force_mode override). */
152static int arm_override_mode = -1;
153
94c30b78 154/* Number of different reg name sets (options). */
afd7eef0 155static int num_disassembly_options;
bc90b915 156
f32bf4a4
YQ
157/* The standard register names, and all the valid aliases for them. Note
158 that `fp', `sp' and `pc' are not added in this alias list, because they
159 have been added as builtin user registers in
160 std-regs.c:_initialize_frame_reg. */
123dc839
DJ
161static const struct
162{
163 const char *name;
164 int regnum;
165} arm_register_aliases[] = {
166 /* Basic register numbers. */
167 { "r0", 0 },
168 { "r1", 1 },
169 { "r2", 2 },
170 { "r3", 3 },
171 { "r4", 4 },
172 { "r5", 5 },
173 { "r6", 6 },
174 { "r7", 7 },
175 { "r8", 8 },
176 { "r9", 9 },
177 { "r10", 10 },
178 { "r11", 11 },
179 { "r12", 12 },
180 { "r13", 13 },
181 { "r14", 14 },
182 { "r15", 15 },
183 /* Synonyms (argument and variable registers). */
184 { "a1", 0 },
185 { "a2", 1 },
186 { "a3", 2 },
187 { "a4", 3 },
188 { "v1", 4 },
189 { "v2", 5 },
190 { "v3", 6 },
191 { "v4", 7 },
192 { "v5", 8 },
193 { "v6", 9 },
194 { "v7", 10 },
195 { "v8", 11 },
196 /* Other platform-specific names for r9. */
197 { "sb", 9 },
198 { "tr", 9 },
199 /* Special names. */
200 { "ip", 12 },
123dc839 201 { "lr", 14 },
123dc839
DJ
202 /* Names used by GCC (not listed in the ARM EABI). */
203 { "sl", 10 },
123dc839
DJ
204 /* A special name from the older ATPCS. */
205 { "wr", 7 },
206};
bc90b915 207
123dc839 208static const char *const arm_register_names[] =
da59e081
JM
209{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
210 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
211 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
212 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
213 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
214 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 215 "fps", "cpsr" }; /* 24 25 */
ed9a39eb 216
afd7eef0
RE
217/* Valid register name styles. */
218static const char **valid_disassembly_styles;
ed9a39eb 219
afd7eef0
RE
220/* Disassembly style to use. Default to "std" register names. */
221static const char *disassembly_style;
96baa820 222
ed9a39eb 223/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
224 style. */
225static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 226 struct cmd_list_element *);
afd7eef0 227static void set_disassembly_style (void);
ed9a39eb 228
b508a996 229static void convert_from_extended (const struct floatformat *, const void *,
be8626e0 230 void *, int);
b508a996 231static void convert_to_extended (const struct floatformat *, void *,
be8626e0 232 const void *, int);
ed9a39eb 233
05d1431c
PA
234static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch,
235 struct regcache *regcache,
236 int regnum, gdb_byte *buf);
58d6951d
DJ
237static void arm_neon_quad_write (struct gdbarch *gdbarch,
238 struct regcache *regcache,
239 int regnum, const gdb_byte *buf);
240
e7cf25a8 241static CORE_ADDR
553cb527 242 arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
e7cf25a8
YQ
243
244
d9311bfa
AT
245/* get_next_pcs operations. */
246static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = {
247 arm_get_next_pcs_read_memory_unsigned_integer,
248 arm_get_next_pcs_syscall_next_pc,
249 arm_get_next_pcs_addr_bits_remove,
ed443b61
YQ
250 arm_get_next_pcs_is_thumb,
251 NULL,
d9311bfa
AT
252};
253
9b8d791a 254struct arm_prologue_cache
c3b4394c 255{
eb5492fa
DJ
256 /* The stack pointer at the time this frame was created; i.e. the
257 caller's stack pointer when this function was called. It is used
258 to identify this frame. */
259 CORE_ADDR prev_sp;
260
4be43953
DJ
261 /* The frame base for this frame is just prev_sp - frame size.
262 FRAMESIZE is the distance from the frame pointer to the
263 initial stack pointer. */
eb5492fa 264
c3b4394c 265 int framesize;
eb5492fa
DJ
266
267 /* The register used to hold the frame pointer for this frame. */
c3b4394c 268 int framereg;
eb5492fa
DJ
269
270 /* Saved register offsets. */
271 struct trad_frame_saved_reg *saved_regs;
c3b4394c 272};
ed9a39eb 273
0d39a070
DJ
274static CORE_ADDR arm_analyze_prologue (struct gdbarch *gdbarch,
275 CORE_ADDR prologue_start,
276 CORE_ADDR prologue_end,
277 struct arm_prologue_cache *cache);
278
cca44b1b
JB
279/* Architecture version for displaced stepping. This effects the behaviour of
280 certain instructions, and really should not be hard-wired. */
281
282#define DISPLACED_STEPPING_ARCH_VERSION 5
283
94c30b78 284/* Set to true if the 32-bit mode is in use. */
c906108c
SS
285
286int arm_apcs_32 = 1;
287
9779414d
DJ
288/* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode. */
289
478fd957 290int
9779414d
DJ
291arm_psr_thumb_bit (struct gdbarch *gdbarch)
292{
293 if (gdbarch_tdep (gdbarch)->is_m)
294 return XPSR_T;
295 else
296 return CPSR_T;
297}
298
d0e59a68
AT
299/* Determine if the processor is currently executing in Thumb mode. */
300
301int
302arm_is_thumb (struct regcache *regcache)
303{
304 ULONGEST cpsr;
305 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regcache));
306
307 cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
308
309 return (cpsr & t_bit) != 0;
310}
311
b39cc962
DJ
312/* Determine if FRAME is executing in Thumb mode. */
313
25b41d01 314int
b39cc962
DJ
315arm_frame_is_thumb (struct frame_info *frame)
316{
317 CORE_ADDR cpsr;
9779414d 318 ULONGEST t_bit = arm_psr_thumb_bit (get_frame_arch (frame));
b39cc962
DJ
319
320 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
321 directly (from a signal frame or dummy frame) or by interpreting
322 the saved LR (from a prologue or DWARF frame). So consult it and
323 trust the unwinders. */
324 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
325
9779414d 326 return (cpsr & t_bit) != 0;
b39cc962
DJ
327}
328
60c5725c
DJ
329/* Callback for VEC_lower_bound. */
330
331static inline int
332arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
333 const struct arm_mapping_symbol *rhs)
334{
335 return lhs->value < rhs->value;
336}
337
f9d67f43
DJ
338/* Search for the mapping symbol covering MEMADDR. If one is found,
339 return its type. Otherwise, return 0. If START is non-NULL,
340 set *START to the location of the mapping symbol. */
c906108c 341
f9d67f43
DJ
342static char
343arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start)
c906108c 344{
60c5725c 345 struct obj_section *sec;
0428b8f5 346
60c5725c
DJ
347 /* If there are mapping symbols, consult them. */
348 sec = find_pc_section (memaddr);
349 if (sec != NULL)
350 {
351 struct arm_per_objfile *data;
352 VEC(arm_mapping_symbol_s) *map;
aded6f54
PA
353 struct arm_mapping_symbol map_key = { memaddr - obj_section_addr (sec),
354 0 };
60c5725c
DJ
355 unsigned int idx;
356
9a3c8263
SM
357 data = (struct arm_per_objfile *) objfile_data (sec->objfile,
358 arm_objfile_data_key);
60c5725c
DJ
359 if (data != NULL)
360 {
361 map = data->section_maps[sec->the_bfd_section->index];
362 if (!VEC_empty (arm_mapping_symbol_s, map))
363 {
364 struct arm_mapping_symbol *map_sym;
365
366 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
367 arm_compare_mapping_symbols);
368
369 /* VEC_lower_bound finds the earliest ordered insertion
370 point. If the following symbol starts at this exact
371 address, we use that; otherwise, the preceding
372 mapping symbol covers this address. */
373 if (idx < VEC_length (arm_mapping_symbol_s, map))
374 {
375 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
376 if (map_sym->value == map_key.value)
f9d67f43
DJ
377 {
378 if (start)
379 *start = map_sym->value + obj_section_addr (sec);
380 return map_sym->type;
381 }
60c5725c
DJ
382 }
383
384 if (idx > 0)
385 {
386 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
f9d67f43
DJ
387 if (start)
388 *start = map_sym->value + obj_section_addr (sec);
389 return map_sym->type;
60c5725c
DJ
390 }
391 }
392 }
393 }
394
f9d67f43
DJ
395 return 0;
396}
397
398/* Determine if the program counter specified in MEMADDR is in a Thumb
399 function. This function should be called for addresses unrelated to
400 any executing frame; otherwise, prefer arm_frame_is_thumb. */
401
e3039479 402int
9779414d 403arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr)
f9d67f43 404{
7cbd4a93 405 struct bound_minimal_symbol sym;
f9d67f43 406 char type;
a42244db
YQ
407 struct displaced_step_closure* dsc
408 = get_displaced_step_closure_by_addr(memaddr);
409
410 /* If checking the mode of displaced instruction in copy area, the mode
411 should be determined by instruction on the original address. */
412 if (dsc)
413 {
414 if (debug_displaced)
415 fprintf_unfiltered (gdb_stdlog,
416 "displaced: check mode of %.8lx instead of %.8lx\n",
417 (unsigned long) dsc->insn_addr,
418 (unsigned long) memaddr);
419 memaddr = dsc->insn_addr;
420 }
f9d67f43
DJ
421
422 /* If bit 0 of the address is set, assume this is a Thumb address. */
423 if (IS_THUMB_ADDR (memaddr))
424 return 1;
425
18819fa6
UW
426 /* Respect internal mode override if active. */
427 if (arm_override_mode != -1)
428 return arm_override_mode;
429
f9d67f43
DJ
430 /* If the user wants to override the symbol table, let him. */
431 if (strcmp (arm_force_mode_string, "arm") == 0)
432 return 0;
433 if (strcmp (arm_force_mode_string, "thumb") == 0)
434 return 1;
435
9779414d
DJ
436 /* ARM v6-M and v7-M are always in Thumb mode. */
437 if (gdbarch_tdep (gdbarch)->is_m)
438 return 1;
439
f9d67f43
DJ
440 /* If there are mapping symbols, consult them. */
441 type = arm_find_mapping_symbol (memaddr, NULL);
442 if (type)
443 return type == 't';
444
ed9a39eb 445 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c 446 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
447 if (sym.minsym)
448 return (MSYMBOL_IS_SPECIAL (sym.minsym));
0428b8f5
DJ
449
450 /* If the user wants to override the fallback mode, let them. */
451 if (strcmp (arm_fallback_mode_string, "arm") == 0)
452 return 0;
453 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
454 return 1;
455
456 /* If we couldn't find any symbol, but we're talking to a running
457 target, then trust the current value of $cpsr. This lets
458 "display/i $pc" always show the correct mode (though if there is
459 a symbol table we will not reach here, so it still may not be
18819fa6 460 displayed in the mode it will be executed). */
0428b8f5 461 if (target_has_registers)
18819fa6 462 return arm_frame_is_thumb (get_current_frame ());
0428b8f5
DJ
463
464 /* Otherwise we're out of luck; we assume ARM. */
465 return 0;
c906108c
SS
466}
467
ca90e760
FH
468/* Determine if the address specified equals any of these magic return
469 values, called EXC_RETURN, defined by the ARM v6-M and v7-M
470 architectures.
471
472 From ARMv6-M Reference Manual B1.5.8
473 Table B1-5 Exception return behavior
474
475 EXC_RETURN Return To Return Stack
476 0xFFFFFFF1 Handler mode Main
477 0xFFFFFFF9 Thread mode Main
478 0xFFFFFFFD Thread mode Process
479
480 From ARMv7-M Reference Manual B1.5.8
481 Table B1-8 EXC_RETURN definition of exception return behavior, no FP
482
483 EXC_RETURN Return To Return Stack
484 0xFFFFFFF1 Handler mode Main
485 0xFFFFFFF9 Thread mode Main
486 0xFFFFFFFD Thread mode Process
487
488 Table B1-9 EXC_RETURN definition of exception return behavior, with
489 FP
490
491 EXC_RETURN Return To Return Stack Frame Type
492 0xFFFFFFE1 Handler mode Main Extended
493 0xFFFFFFE9 Thread mode Main Extended
494 0xFFFFFFED Thread mode Process Extended
495 0xFFFFFFF1 Handler mode Main Basic
496 0xFFFFFFF9 Thread mode Main Basic
497 0xFFFFFFFD Thread mode Process Basic
498
499 For more details see "B1.5.8 Exception return behavior"
500 in both ARMv6-M and ARMv7-M Architecture Reference Manuals. */
501
502static int
503arm_m_addr_is_magic (CORE_ADDR addr)
504{
505 switch (addr)
506 {
507 /* Values from Tables in B1.5.8 the EXC_RETURN definitions of
508 the exception return behavior. */
509 case 0xffffffe1:
510 case 0xffffffe9:
511 case 0xffffffed:
512 case 0xfffffff1:
513 case 0xfffffff9:
514 case 0xfffffffd:
515 /* Address is magic. */
516 return 1;
517
518 default:
519 /* Address is not magic. */
520 return 0;
521 }
522}
523
181c1381 524/* Remove useless bits from addresses in a running program. */
34e8f22d 525static CORE_ADDR
24568a2c 526arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val)
c906108c 527{
2ae28aa9
YQ
528 /* On M-profile devices, do not strip the low bit from EXC_RETURN
529 (the magic exception return address). */
530 if (gdbarch_tdep (gdbarch)->is_m
ca90e760 531 && arm_m_addr_is_magic (val))
2ae28aa9
YQ
532 return val;
533
a3a2ee65 534 if (arm_apcs_32)
dd6be234 535 return UNMAKE_THUMB_ADDR (val);
c906108c 536 else
a3a2ee65 537 return (val & 0x03fffffc);
c906108c
SS
538}
539
0d39a070 540/* Return 1 if PC is the start of a compiler helper function which
e0634ccf
UW
541 can be safely ignored during prologue skipping. IS_THUMB is true
542 if the function is known to be a Thumb function due to the way it
543 is being called. */
0d39a070 544static int
e0634ccf 545skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb)
0d39a070 546{
e0634ccf 547 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7cbd4a93 548 struct bound_minimal_symbol msym;
0d39a070
DJ
549
550 msym = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 551 if (msym.minsym != NULL
77e371c0 552 && BMSYMBOL_VALUE_ADDRESS (msym) == pc
efd66ac6 553 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL)
e0634ccf 554 {
efd66ac6 555 const char *name = MSYMBOL_LINKAGE_NAME (msym.minsym);
0d39a070 556
e0634ccf
UW
557 /* The GNU linker's Thumb call stub to foo is named
558 __foo_from_thumb. */
559 if (strstr (name, "_from_thumb") != NULL)
560 name += 2;
0d39a070 561
e0634ccf
UW
562 /* On soft-float targets, __truncdfsf2 is called to convert promoted
563 arguments to their argument types in non-prototyped
564 functions. */
61012eef 565 if (startswith (name, "__truncdfsf2"))
e0634ccf 566 return 1;
61012eef 567 if (startswith (name, "__aeabi_d2f"))
e0634ccf 568 return 1;
0d39a070 569
e0634ccf 570 /* Internal functions related to thread-local storage. */
61012eef 571 if (startswith (name, "__tls_get_addr"))
e0634ccf 572 return 1;
61012eef 573 if (startswith (name, "__aeabi_read_tp"))
e0634ccf
UW
574 return 1;
575 }
576 else
577 {
578 /* If we run against a stripped glibc, we may be unable to identify
579 special functions by name. Check for one important case,
580 __aeabi_read_tp, by comparing the *code* against the default
581 implementation (this is hand-written ARM assembler in glibc). */
582
583 if (!is_thumb
584 && read_memory_unsigned_integer (pc, 4, byte_order_for_code)
585 == 0xe3e00a0f /* mov r0, #0xffff0fff */
586 && read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code)
587 == 0xe240f01f) /* sub pc, r0, #31 */
588 return 1;
589 }
ec3d575a 590
0d39a070
DJ
591 return 0;
592}
593
621c6d5b
YQ
594/* Extract the immediate from instruction movw/movt of encoding T. INSN1 is
595 the first 16-bit of instruction, and INSN2 is the second 16-bit of
596 instruction. */
597#define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \
598 ((bits ((insn1), 0, 3) << 12) \
599 | (bits ((insn1), 10, 10) << 11) \
600 | (bits ((insn2), 12, 14) << 8) \
601 | bits ((insn2), 0, 7))
602
603/* Extract the immediate from instruction movw/movt of encoding A. INSN is
604 the 32-bit instruction. */
605#define EXTRACT_MOVW_MOVT_IMM_A(insn) \
606 ((bits ((insn), 16, 19) << 12) \
607 | bits ((insn), 0, 11))
608
ec3d575a
UW
609/* Decode immediate value; implements ThumbExpandImmediate pseudo-op. */
610
611static unsigned int
612thumb_expand_immediate (unsigned int imm)
613{
614 unsigned int count = imm >> 7;
615
616 if (count < 8)
617 switch (count / 2)
618 {
619 case 0:
620 return imm & 0xff;
621 case 1:
622 return (imm & 0xff) | ((imm & 0xff) << 16);
623 case 2:
624 return ((imm & 0xff) << 8) | ((imm & 0xff) << 24);
625 case 3:
626 return (imm & 0xff) | ((imm & 0xff) << 8)
627 | ((imm & 0xff) << 16) | ((imm & 0xff) << 24);
628 }
629
630 return (0x80 | (imm & 0x7f)) << (32 - count);
631}
632
540314bd
YQ
633/* Return 1 if the 16-bit Thumb instruction INSN restores SP in
634 epilogue, 0 otherwise. */
635
636static int
637thumb_instruction_restores_sp (unsigned short insn)
638{
639 return (insn == 0x46bd /* mov sp, r7 */
640 || (insn & 0xff80) == 0xb000 /* add sp, imm */
641 || (insn & 0xfe00) == 0xbc00); /* pop <registers> */
642}
643
29d73ae4
DJ
644/* Analyze a Thumb prologue, looking for a recognizable stack frame
645 and frame pointer. Scan until we encounter a store that could
0d39a070
DJ
646 clobber the stack frame unexpectedly, or an unknown instruction.
647 Return the last address which is definitely safe to skip for an
648 initial breakpoint. */
c906108c
SS
649
650static CORE_ADDR
29d73ae4
DJ
651thumb_analyze_prologue (struct gdbarch *gdbarch,
652 CORE_ADDR start, CORE_ADDR limit,
653 struct arm_prologue_cache *cache)
c906108c 654{
0d39a070 655 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e17a4113 656 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
29d73ae4
DJ
657 int i;
658 pv_t regs[16];
659 struct pv_area *stack;
660 struct cleanup *back_to;
661 CORE_ADDR offset;
ec3d575a 662 CORE_ADDR unrecognized_pc = 0;
da3c6d4a 663
29d73ae4
DJ
664 for (i = 0; i < 16; i++)
665 regs[i] = pv_register (i, 0);
55f960e1 666 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
29d73ae4
DJ
667 back_to = make_cleanup_free_pv_area (stack);
668
29d73ae4 669 while (start < limit)
c906108c 670 {
29d73ae4
DJ
671 unsigned short insn;
672
e17a4113 673 insn = read_memory_unsigned_integer (start, 2, byte_order_for_code);
9d4fde75 674
94c30b78 675 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 676 {
29d73ae4
DJ
677 int regno;
678 int mask;
4be43953
DJ
679
680 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
681 break;
29d73ae4
DJ
682
683 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
684 whether to save LR (R14). */
685 mask = (insn & 0xff) | ((insn & 0x100) << 6);
686
687 /* Calculate offsets of saved R0-R7 and LR. */
688 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
689 if (mask & (1 << regno))
690 {
29d73ae4
DJ
691 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
692 -4);
693 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
694 }
da59e081 695 }
1db01f22 696 else if ((insn & 0xff80) == 0xb080) /* sub sp, #imm */
da59e081 697 {
29d73ae4 698 offset = (insn & 0x7f) << 2; /* get scaled offset */
1db01f22
YQ
699 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
700 -offset);
da59e081 701 }
808f7ab1
YQ
702 else if (thumb_instruction_restores_sp (insn))
703 {
704 /* Don't scan past the epilogue. */
705 break;
706 }
0d39a070
DJ
707 else if ((insn & 0xf800) == 0xa800) /* add Rd, sp, #imm */
708 regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM],
709 (insn & 0xff) << 2);
710 else if ((insn & 0xfe00) == 0x1c00 /* add Rd, Rn, #imm */
711 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
712 regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)],
713 bits (insn, 6, 8));
714 else if ((insn & 0xf800) == 0x3000 /* add Rd, #imm */
715 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
716 regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)],
717 bits (insn, 0, 7));
718 else if ((insn & 0xfe00) == 0x1800 /* add Rd, Rn, Rm */
719 && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM)
720 && pv_is_constant (regs[bits (insn, 3, 5)]))
721 regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)],
722 regs[bits (insn, 6, 8)]);
723 else if ((insn & 0xff00) == 0x4400 /* add Rd, Rm */
724 && pv_is_constant (regs[bits (insn, 3, 6)]))
725 {
726 int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2);
727 int rm = bits (insn, 3, 6);
728 regs[rd] = pv_add (regs[rd], regs[rm]);
729 }
29d73ae4 730 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
da59e081 731 {
29d73ae4
DJ
732 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
733 int src_reg = (insn & 0x78) >> 3;
734 regs[dst_reg] = regs[src_reg];
da59e081 735 }
29d73ae4 736 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
da59e081 737 {
29d73ae4
DJ
738 /* Handle stores to the stack. Normally pushes are used,
739 but with GCC -mtpcs-frame, there may be other stores
740 in the prologue to create the frame. */
741 int regno = (insn >> 8) & 0x7;
742 pv_t addr;
743
744 offset = (insn & 0xff) << 2;
745 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
746
747 if (pv_area_store_would_trash (stack, addr))
748 break;
749
750 pv_area_store (stack, addr, 4, regs[regno]);
da59e081 751 }
0d39a070
DJ
752 else if ((insn & 0xf800) == 0x6000) /* str rd, [rn, #off] */
753 {
754 int rd = bits (insn, 0, 2);
755 int rn = bits (insn, 3, 5);
756 pv_t addr;
757
758 offset = bits (insn, 6, 10) << 2;
759 addr = pv_add_constant (regs[rn], offset);
760
761 if (pv_area_store_would_trash (stack, addr))
762 break;
763
764 pv_area_store (stack, addr, 4, regs[rd]);
765 }
766 else if (((insn & 0xf800) == 0x7000 /* strb Rd, [Rn, #off] */
767 || (insn & 0xf800) == 0x8000) /* strh Rd, [Rn, #off] */
768 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))
769 /* Ignore stores of argument registers to the stack. */
770 ;
771 else if ((insn & 0xf800) == 0xc800 /* ldmia Rn!, { registers } */
772 && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM))
773 /* Ignore block loads from the stack, potentially copying
774 parameters from memory. */
775 ;
776 else if ((insn & 0xf800) == 0x9800 /* ldr Rd, [Rn, #immed] */
777 || ((insn & 0xf800) == 0x6800 /* ldr Rd, [sp, #immed] */
778 && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)))
779 /* Similarly ignore single loads from the stack. */
780 ;
781 else if ((insn & 0xffc0) == 0x0000 /* lsls Rd, Rm, #0 */
782 || (insn & 0xffc0) == 0x1c00) /* add Rd, Rn, #0 */
783 /* Skip register copies, i.e. saves to another register
784 instead of the stack. */
785 ;
786 else if ((insn & 0xf800) == 0x2000) /* movs Rd, #imm */
787 /* Recognize constant loads; even with small stacks these are necessary
788 on Thumb. */
789 regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7));
790 else if ((insn & 0xf800) == 0x4800) /* ldr Rd, [pc, #imm] */
791 {
792 /* Constant pool loads, for the same reason. */
793 unsigned int constant;
794 CORE_ADDR loc;
795
796 loc = start + 4 + bits (insn, 0, 7) * 4;
797 constant = read_memory_unsigned_integer (loc, 4, byte_order);
798 regs[bits (insn, 8, 10)] = pv_constant (constant);
799 }
db24da6d 800 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions. */
0d39a070 801 {
0d39a070
DJ
802 unsigned short inst2;
803
804 inst2 = read_memory_unsigned_integer (start + 2, 2,
805 byte_order_for_code);
806
807 if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800)
808 {
809 /* BL, BLX. Allow some special function calls when
810 skipping the prologue; GCC generates these before
811 storing arguments to the stack. */
812 CORE_ADDR nextpc;
813 int j1, j2, imm1, imm2;
814
815 imm1 = sbits (insn, 0, 10);
816 imm2 = bits (inst2, 0, 10);
817 j1 = bit (inst2, 13);
818 j2 = bit (inst2, 11);
819
820 offset = ((imm1 << 12) + (imm2 << 1));
821 offset ^= ((!j2) << 22) | ((!j1) << 23);
822
823 nextpc = start + 4 + offset;
824 /* For BLX make sure to clear the low bits. */
825 if (bit (inst2, 12) == 0)
826 nextpc = nextpc & 0xfffffffc;
827
e0634ccf
UW
828 if (!skip_prologue_function (gdbarch, nextpc,
829 bit (inst2, 12) != 0))
0d39a070
DJ
830 break;
831 }
ec3d575a 832
0963b4bd
MS
833 else if ((insn & 0xffd0) == 0xe900 /* stmdb Rn{!},
834 { registers } */
ec3d575a
UW
835 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
836 {
837 pv_t addr = regs[bits (insn, 0, 3)];
838 int regno;
839
840 if (pv_area_store_would_trash (stack, addr))
841 break;
842
843 /* Calculate offsets of saved registers. */
844 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
845 if (inst2 & (1 << regno))
846 {
847 addr = pv_add_constant (addr, -4);
848 pv_area_store (stack, addr, 4, regs[regno]);
849 }
850
851 if (insn & 0x0020)
852 regs[bits (insn, 0, 3)] = addr;
853 }
854
0963b4bd
MS
855 else if ((insn & 0xff50) == 0xe940 /* strd Rt, Rt2,
856 [Rn, #+/-imm]{!} */
ec3d575a
UW
857 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
858 {
859 int regno1 = bits (inst2, 12, 15);
860 int regno2 = bits (inst2, 8, 11);
861 pv_t addr = regs[bits (insn, 0, 3)];
862
863 offset = inst2 & 0xff;
864 if (insn & 0x0080)
865 addr = pv_add_constant (addr, offset);
866 else
867 addr = pv_add_constant (addr, -offset);
868
869 if (pv_area_store_would_trash (stack, addr))
870 break;
871
872 pv_area_store (stack, addr, 4, regs[regno1]);
873 pv_area_store (stack, pv_add_constant (addr, 4),
874 4, regs[regno2]);
875
876 if (insn & 0x0020)
877 regs[bits (insn, 0, 3)] = addr;
878 }
879
880 else if ((insn & 0xfff0) == 0xf8c0 /* str Rt,[Rn,+/-#imm]{!} */
881 && (inst2 & 0x0c00) == 0x0c00
882 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
883 {
884 int regno = bits (inst2, 12, 15);
885 pv_t addr = regs[bits (insn, 0, 3)];
886
887 offset = inst2 & 0xff;
888 if (inst2 & 0x0200)
889 addr = pv_add_constant (addr, offset);
890 else
891 addr = pv_add_constant (addr, -offset);
892
893 if (pv_area_store_would_trash (stack, addr))
894 break;
895
896 pv_area_store (stack, addr, 4, regs[regno]);
897
898 if (inst2 & 0x0100)
899 regs[bits (insn, 0, 3)] = addr;
900 }
901
902 else if ((insn & 0xfff0) == 0xf8c0 /* str.w Rt,[Rn,#imm] */
903 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
904 {
905 int regno = bits (inst2, 12, 15);
906 pv_t addr;
907
908 offset = inst2 & 0xfff;
909 addr = pv_add_constant (regs[bits (insn, 0, 3)], offset);
910
911 if (pv_area_store_would_trash (stack, addr))
912 break;
913
914 pv_area_store (stack, addr, 4, regs[regno]);
915 }
916
917 else if ((insn & 0xffd0) == 0xf880 /* str{bh}.w Rt,[Rn,#imm] */
0d39a070 918 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 919 /* Ignore stores of argument registers to the stack. */
0d39a070 920 ;
ec3d575a
UW
921
922 else if ((insn & 0xffd0) == 0xf800 /* str{bh} Rt,[Rn,#+/-imm] */
923 && (inst2 & 0x0d00) == 0x0c00
0d39a070 924 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 925 /* Ignore stores of argument registers to the stack. */
0d39a070 926 ;
ec3d575a 927
0963b4bd
MS
928 else if ((insn & 0xffd0) == 0xe890 /* ldmia Rn[!],
929 { registers } */
ec3d575a
UW
930 && (inst2 & 0x8000) == 0x0000
931 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
932 /* Ignore block loads from the stack, potentially copying
933 parameters from memory. */
0d39a070 934 ;
ec3d575a 935
0963b4bd
MS
936 else if ((insn & 0xffb0) == 0xe950 /* ldrd Rt, Rt2,
937 [Rn, #+/-imm] */
0d39a070 938 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 939 /* Similarly ignore dual loads from the stack. */
0d39a070 940 ;
ec3d575a
UW
941
942 else if ((insn & 0xfff0) == 0xf850 /* ldr Rt,[Rn,#+/-imm] */
943 && (inst2 & 0x0d00) == 0x0c00
0d39a070 944 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 945 /* Similarly ignore single loads from the stack. */
0d39a070 946 ;
ec3d575a
UW
947
948 else if ((insn & 0xfff0) == 0xf8d0 /* ldr.w Rt,[Rn,#imm] */
0d39a070 949 && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM))
ec3d575a 950 /* Similarly ignore single loads from the stack. */
0d39a070 951 ;
ec3d575a
UW
952
953 else if ((insn & 0xfbf0) == 0xf100 /* add.w Rd, Rn, #imm */
954 && (inst2 & 0x8000) == 0x0000)
955 {
956 unsigned int imm = ((bits (insn, 10, 10) << 11)
957 | (bits (inst2, 12, 14) << 8)
958 | bits (inst2, 0, 7));
959
960 regs[bits (inst2, 8, 11)]
961 = pv_add_constant (regs[bits (insn, 0, 3)],
962 thumb_expand_immediate (imm));
963 }
964
965 else if ((insn & 0xfbf0) == 0xf200 /* addw Rd, Rn, #imm */
966 && (inst2 & 0x8000) == 0x0000)
0d39a070 967 {
ec3d575a
UW
968 unsigned int imm = ((bits (insn, 10, 10) << 11)
969 | (bits (inst2, 12, 14) << 8)
970 | bits (inst2, 0, 7));
971
972 regs[bits (inst2, 8, 11)]
973 = pv_add_constant (regs[bits (insn, 0, 3)], imm);
974 }
975
976 else if ((insn & 0xfbf0) == 0xf1a0 /* sub.w Rd, Rn, #imm */
977 && (inst2 & 0x8000) == 0x0000)
978 {
979 unsigned int imm = ((bits (insn, 10, 10) << 11)
980 | (bits (inst2, 12, 14) << 8)
981 | bits (inst2, 0, 7));
982
983 regs[bits (inst2, 8, 11)]
984 = pv_add_constant (regs[bits (insn, 0, 3)],
985 - (CORE_ADDR) thumb_expand_immediate (imm));
986 }
987
988 else if ((insn & 0xfbf0) == 0xf2a0 /* subw Rd, Rn, #imm */
989 && (inst2 & 0x8000) == 0x0000)
990 {
991 unsigned int imm = ((bits (insn, 10, 10) << 11)
992 | (bits (inst2, 12, 14) << 8)
993 | bits (inst2, 0, 7));
994
995 regs[bits (inst2, 8, 11)]
996 = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm);
997 }
998
999 else if ((insn & 0xfbff) == 0xf04f) /* mov.w Rd, #const */
1000 {
1001 unsigned int imm = ((bits (insn, 10, 10) << 11)
1002 | (bits (inst2, 12, 14) << 8)
1003 | bits (inst2, 0, 7));
1004
1005 regs[bits (inst2, 8, 11)]
1006 = pv_constant (thumb_expand_immediate (imm));
1007 }
1008
1009 else if ((insn & 0xfbf0) == 0xf240) /* movw Rd, #const */
1010 {
621c6d5b
YQ
1011 unsigned int imm
1012 = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2);
ec3d575a
UW
1013
1014 regs[bits (inst2, 8, 11)] = pv_constant (imm);
1015 }
1016
1017 else if (insn == 0xea5f /* mov.w Rd,Rm */
1018 && (inst2 & 0xf0f0) == 0)
1019 {
1020 int dst_reg = (inst2 & 0x0f00) >> 8;
1021 int src_reg = inst2 & 0xf;
1022 regs[dst_reg] = regs[src_reg];
1023 }
1024
1025 else if ((insn & 0xff7f) == 0xf85f) /* ldr.w Rt,<label> */
1026 {
1027 /* Constant pool loads. */
1028 unsigned int constant;
1029 CORE_ADDR loc;
1030
cac395ea 1031 offset = bits (inst2, 0, 11);
ec3d575a
UW
1032 if (insn & 0x0080)
1033 loc = start + 4 + offset;
1034 else
1035 loc = start + 4 - offset;
1036
1037 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1038 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1039 }
1040
1041 else if ((insn & 0xff7f) == 0xe95f) /* ldrd Rt,Rt2,<label> */
1042 {
1043 /* Constant pool loads. */
1044 unsigned int constant;
1045 CORE_ADDR loc;
1046
cac395ea 1047 offset = bits (inst2, 0, 7) << 2;
ec3d575a
UW
1048 if (insn & 0x0080)
1049 loc = start + 4 + offset;
1050 else
1051 loc = start + 4 - offset;
1052
1053 constant = read_memory_unsigned_integer (loc, 4, byte_order);
1054 regs[bits (inst2, 12, 15)] = pv_constant (constant);
1055
1056 constant = read_memory_unsigned_integer (loc + 4, 4, byte_order);
1057 regs[bits (inst2, 8, 11)] = pv_constant (constant);
1058 }
1059
1060 else if (thumb2_instruction_changes_pc (insn, inst2))
1061 {
1062 /* Don't scan past anything that might change control flow. */
0d39a070
DJ
1063 break;
1064 }
ec3d575a
UW
1065 else
1066 {
1067 /* The optimizer might shove anything into the prologue,
1068 so we just skip what we don't recognize. */
1069 unrecognized_pc = start;
1070 }
0d39a070
DJ
1071
1072 start += 2;
1073 }
ec3d575a 1074 else if (thumb_instruction_changes_pc (insn))
3d74b771 1075 {
ec3d575a 1076 /* Don't scan past anything that might change control flow. */
da3c6d4a 1077 break;
3d74b771 1078 }
ec3d575a
UW
1079 else
1080 {
1081 /* The optimizer might shove anything into the prologue,
1082 so we just skip what we don't recognize. */
1083 unrecognized_pc = start;
1084 }
29d73ae4
DJ
1085
1086 start += 2;
c906108c
SS
1087 }
1088
0d39a070
DJ
1089 if (arm_debug)
1090 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1091 paddress (gdbarch, start));
1092
ec3d575a
UW
1093 if (unrecognized_pc == 0)
1094 unrecognized_pc = start;
1095
29d73ae4
DJ
1096 if (cache == NULL)
1097 {
1098 do_cleanups (back_to);
ec3d575a 1099 return unrecognized_pc;
29d73ae4
DJ
1100 }
1101
29d73ae4
DJ
1102 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1103 {
1104 /* Frame pointer is fp. Frame size is constant. */
1105 cache->framereg = ARM_FP_REGNUM;
1106 cache->framesize = -regs[ARM_FP_REGNUM].k;
1107 }
1108 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
1109 {
1110 /* Frame pointer is r7. Frame size is constant. */
1111 cache->framereg = THUMB_FP_REGNUM;
1112 cache->framesize = -regs[THUMB_FP_REGNUM].k;
1113 }
72a2e3dc 1114 else
29d73ae4
DJ
1115 {
1116 /* Try the stack pointer... this is a bit desperate. */
1117 cache->framereg = ARM_SP_REGNUM;
1118 cache->framesize = -regs[ARM_SP_REGNUM].k;
1119 }
29d73ae4
DJ
1120
1121 for (i = 0; i < 16; i++)
1122 if (pv_area_find_reg (stack, gdbarch, i, &offset))
1123 cache->saved_regs[i].addr = offset;
1124
1125 do_cleanups (back_to);
ec3d575a 1126 return unrecognized_pc;
c906108c
SS
1127}
1128
621c6d5b
YQ
1129
1130/* Try to analyze the instructions starting from PC, which load symbol
1131 __stack_chk_guard. Return the address of instruction after loading this
1132 symbol, set the dest register number to *BASEREG, and set the size of
1133 instructions for loading symbol in OFFSET. Return 0 if instructions are
1134 not recognized. */
1135
1136static CORE_ADDR
1137arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch,
1138 unsigned int *destreg, int *offset)
1139{
1140 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1141 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1142 unsigned int low, high, address;
1143
1144 address = 0;
1145 if (is_thumb)
1146 {
1147 unsigned short insn1
1148 = read_memory_unsigned_integer (pc, 2, byte_order_for_code);
1149
1150 if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */
1151 {
1152 *destreg = bits (insn1, 8, 10);
1153 *offset = 2;
6ae274b7
YQ
1154 address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2);
1155 address = read_memory_unsigned_integer (address, 4,
1156 byte_order_for_code);
621c6d5b
YQ
1157 }
1158 else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */
1159 {
1160 unsigned short insn2
1161 = read_memory_unsigned_integer (pc + 2, 2, byte_order_for_code);
1162
1163 low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1164
1165 insn1
1166 = read_memory_unsigned_integer (pc + 4, 2, byte_order_for_code);
1167 insn2
1168 = read_memory_unsigned_integer (pc + 6, 2, byte_order_for_code);
1169
1170 /* movt Rd, #const */
1171 if ((insn1 & 0xfbc0) == 0xf2c0)
1172 {
1173 high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2);
1174 *destreg = bits (insn2, 8, 11);
1175 *offset = 8;
1176 address = (high << 16 | low);
1177 }
1178 }
1179 }
1180 else
1181 {
2e9e421f
UW
1182 unsigned int insn
1183 = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
1184
6ae274b7 1185 if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */
2e9e421f 1186 {
6ae274b7
YQ
1187 address = bits (insn, 0, 11) + pc + 8;
1188 address = read_memory_unsigned_integer (address, 4,
1189 byte_order_for_code);
1190
2e9e421f
UW
1191 *destreg = bits (insn, 12, 15);
1192 *offset = 4;
1193 }
1194 else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */
1195 {
1196 low = EXTRACT_MOVW_MOVT_IMM_A (insn);
1197
1198 insn
1199 = read_memory_unsigned_integer (pc + 4, 4, byte_order_for_code);
1200
1201 if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */
1202 {
1203 high = EXTRACT_MOVW_MOVT_IMM_A (insn);
1204 *destreg = bits (insn, 12, 15);
1205 *offset = 8;
1206 address = (high << 16 | low);
1207 }
1208 }
621c6d5b
YQ
1209 }
1210
1211 return address;
1212}
1213
1214/* Try to skip a sequence of instructions used for stack protector. If PC
0963b4bd
MS
1215 points to the first instruction of this sequence, return the address of
1216 first instruction after this sequence, otherwise, return original PC.
621c6d5b
YQ
1217
1218 On arm, this sequence of instructions is composed of mainly three steps,
1219 Step 1: load symbol __stack_chk_guard,
1220 Step 2: load from address of __stack_chk_guard,
1221 Step 3: store it to somewhere else.
1222
1223 Usually, instructions on step 2 and step 3 are the same on various ARM
1224 architectures. On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and
1225 on step 3, it is also one instruction 'str Rx, [r7, #immd]'. However,
1226 instructions in step 1 vary from different ARM architectures. On ARMv7,
1227 they are,
1228
1229 movw Rn, #:lower16:__stack_chk_guard
1230 movt Rn, #:upper16:__stack_chk_guard
1231
1232 On ARMv5t, it is,
1233
1234 ldr Rn, .Label
1235 ....
1236 .Lable:
1237 .word __stack_chk_guard
1238
1239 Since ldr/str is a very popular instruction, we can't use them as
1240 'fingerprint' or 'signature' of stack protector sequence. Here we choose
1241 sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not
1242 stripped, as the 'fingerprint' of a stack protector cdoe sequence. */
1243
1244static CORE_ADDR
1245arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch)
1246{
1247 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
22e048c9 1248 unsigned int basereg;
7cbd4a93 1249 struct bound_minimal_symbol stack_chk_guard;
621c6d5b
YQ
1250 int offset;
1251 int is_thumb = arm_pc_is_thumb (gdbarch, pc);
1252 CORE_ADDR addr;
1253
1254 /* Try to parse the instructions in Step 1. */
1255 addr = arm_analyze_load_stack_chk_guard (pc, gdbarch,
1256 &basereg, &offset);
1257 if (!addr)
1258 return pc;
1259
1260 stack_chk_guard = lookup_minimal_symbol_by_pc (addr);
6041179a
JB
1261 /* ADDR must correspond to a symbol whose name is __stack_chk_guard.
1262 Otherwise, this sequence cannot be for stack protector. */
1263 if (stack_chk_guard.minsym == NULL
61012eef 1264 || !startswith (MSYMBOL_LINKAGE_NAME (stack_chk_guard.minsym), "__stack_chk_guard"))
621c6d5b
YQ
1265 return pc;
1266
1267 if (is_thumb)
1268 {
1269 unsigned int destreg;
1270 unsigned short insn
1271 = read_memory_unsigned_integer (pc + offset, 2, byte_order_for_code);
1272
1273 /* Step 2: ldr Rd, [Rn, #immed], encoding T1. */
1274 if ((insn & 0xf800) != 0x6800)
1275 return pc;
1276 if (bits (insn, 3, 5) != basereg)
1277 return pc;
1278 destreg = bits (insn, 0, 2);
1279
1280 insn = read_memory_unsigned_integer (pc + offset + 2, 2,
1281 byte_order_for_code);
1282 /* Step 3: str Rd, [Rn, #immed], encoding T1. */
1283 if ((insn & 0xf800) != 0x6000)
1284 return pc;
1285 if (destreg != bits (insn, 0, 2))
1286 return pc;
1287 }
1288 else
1289 {
1290 unsigned int destreg;
1291 unsigned int insn
1292 = read_memory_unsigned_integer (pc + offset, 4, byte_order_for_code);
1293
1294 /* Step 2: ldr Rd, [Rn, #immed], encoding A1. */
1295 if ((insn & 0x0e500000) != 0x04100000)
1296 return pc;
1297 if (bits (insn, 16, 19) != basereg)
1298 return pc;
1299 destreg = bits (insn, 12, 15);
1300 /* Step 3: str Rd, [Rn, #immed], encoding A1. */
1301 insn = read_memory_unsigned_integer (pc + offset + 4,
1302 4, byte_order_for_code);
1303 if ((insn & 0x0e500000) != 0x04000000)
1304 return pc;
1305 if (bits (insn, 12, 15) != destreg)
1306 return pc;
1307 }
1308 /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8
1309 on arm. */
1310 if (is_thumb)
1311 return pc + offset + 4;
1312 else
1313 return pc + offset + 8;
1314}
1315
da3c6d4a
MS
1316/* Advance the PC across any function entry prologue instructions to
1317 reach some "real" code.
34e8f22d
RE
1318
1319 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 1320 prologue:
c906108c 1321
c5aa993b
JM
1322 mov ip, sp
1323 [stmfd sp!, {a1,a2,a3,a4}]
1324 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
1325 [stfe f7, [sp, #-12]!]
1326 [stfe f6, [sp, #-12]!]
1327 [stfe f5, [sp, #-12]!]
1328 [stfe f4, [sp, #-12]!]
0963b4bd 1329 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn. */
c906108c 1330
34e8f22d 1331static CORE_ADDR
6093d2eb 1332arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1333{
a89fea3c 1334 CORE_ADDR func_addr, limit_pc;
c906108c 1335
a89fea3c
JL
1336 /* See if we can determine the end of the prologue via the symbol table.
1337 If so, then return either PC, or the PC after the prologue, whichever
1338 is greater. */
1339 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c906108c 1340 {
d80b854b
UW
1341 CORE_ADDR post_prologue_pc
1342 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1343 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
0d39a070 1344
621c6d5b
YQ
1345 if (post_prologue_pc)
1346 post_prologue_pc
1347 = arm_skip_stack_protector (post_prologue_pc, gdbarch);
1348
1349
0d39a070
DJ
1350 /* GCC always emits a line note before the prologue and another
1351 one after, even if the two are at the same address or on the
1352 same line. Take advantage of this so that we do not need to
1353 know every instruction that might appear in the prologue. We
1354 will have producer information for most binaries; if it is
1355 missing (e.g. for -gstabs), assuming the GNU tools. */
1356 if (post_prologue_pc
43f3e411
DE
1357 && (cust == NULL
1358 || COMPUNIT_PRODUCER (cust) == NULL
61012eef
GB
1359 || startswith (COMPUNIT_PRODUCER (cust), "GNU ")
1360 || startswith (COMPUNIT_PRODUCER (cust), "clang ")))
0d39a070
DJ
1361 return post_prologue_pc;
1362
a89fea3c 1363 if (post_prologue_pc != 0)
0d39a070
DJ
1364 {
1365 CORE_ADDR analyzed_limit;
1366
1367 /* For non-GCC compilers, make sure the entire line is an
1368 acceptable prologue; GDB will round this function's
1369 return value up to the end of the following line so we
1370 can not skip just part of a line (and we do not want to).
1371
1372 RealView does not treat the prologue specially, but does
1373 associate prologue code with the opening brace; so this
1374 lets us skip the first line if we think it is the opening
1375 brace. */
9779414d 1376 if (arm_pc_is_thumb (gdbarch, func_addr))
0d39a070
DJ
1377 analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr,
1378 post_prologue_pc, NULL);
1379 else
1380 analyzed_limit = arm_analyze_prologue (gdbarch, func_addr,
1381 post_prologue_pc, NULL);
1382
1383 if (analyzed_limit != post_prologue_pc)
1384 return func_addr;
1385
1386 return post_prologue_pc;
1387 }
c906108c
SS
1388 }
1389
a89fea3c
JL
1390 /* Can't determine prologue from the symbol table, need to examine
1391 instructions. */
c906108c 1392
a89fea3c
JL
1393 /* Find an upper limit on the function prologue using the debug
1394 information. If the debug information could not be used to provide
1395 that bound, then use an arbitrary large number as the upper bound. */
0963b4bd 1396 /* Like arm_scan_prologue, stop no later than pc + 64. */
d80b854b 1397 limit_pc = skip_prologue_using_sal (gdbarch, pc);
a89fea3c
JL
1398 if (limit_pc == 0)
1399 limit_pc = pc + 64; /* Magic. */
1400
c906108c 1401
29d73ae4 1402 /* Check if this is Thumb code. */
9779414d 1403 if (arm_pc_is_thumb (gdbarch, pc))
a89fea3c 1404 return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL);
21daaaaf
YQ
1405 else
1406 return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL);
c906108c 1407}
94c30b78 1408
c5aa993b 1409/* *INDENT-OFF* */
c906108c
SS
1410/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
1411 This function decodes a Thumb function prologue to determine:
1412 1) the size of the stack frame
1413 2) which registers are saved on it
1414 3) the offsets of saved regs
1415 4) the offset from the stack pointer to the frame pointer
c906108c 1416
da59e081
JM
1417 A typical Thumb function prologue would create this stack frame
1418 (offsets relative to FP)
c906108c
SS
1419 old SP -> 24 stack parameters
1420 20 LR
1421 16 R7
1422 R7 -> 0 local variables (16 bytes)
1423 SP -> -12 additional stack space (12 bytes)
1424 The frame size would thus be 36 bytes, and the frame offset would be
0963b4bd 1425 12 bytes. The frame register is R7.
da59e081 1426
da3c6d4a
MS
1427 The comments for thumb_skip_prolog() describe the algorithm we use
1428 to detect the end of the prolog. */
c5aa993b
JM
1429/* *INDENT-ON* */
1430
c906108c 1431static void
be8626e0 1432thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
b39cc962 1433 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
c906108c
SS
1434{
1435 CORE_ADDR prologue_start;
1436 CORE_ADDR prologue_end;
c906108c 1437
b39cc962
DJ
1438 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1439 &prologue_end))
c906108c 1440 {
ec3d575a
UW
1441 /* See comment in arm_scan_prologue for an explanation of
1442 this heuristics. */
1443 if (prologue_end > prologue_start + 64)
1444 {
1445 prologue_end = prologue_start + 64;
1446 }
c906108c
SS
1447 }
1448 else
f7060f85
DJ
1449 /* We're in the boondocks: we have no idea where the start of the
1450 function is. */
1451 return;
c906108c 1452
325fac50 1453 prologue_end = std::min (prologue_end, prev_pc);
c906108c 1454
be8626e0 1455 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1456}
1457
f303bc3e
YQ
1458/* Return 1 if the ARM instruction INSN restores SP in epilogue, 0
1459 otherwise. */
1460
1461static int
1462arm_instruction_restores_sp (unsigned int insn)
1463{
1464 if (bits (insn, 28, 31) != INST_NV)
1465 {
1466 if ((insn & 0x0df0f000) == 0x0080d000
1467 /* ADD SP (register or immediate). */
1468 || (insn & 0x0df0f000) == 0x0040d000
1469 /* SUB SP (register or immediate). */
1470 || (insn & 0x0ffffff0) == 0x01a0d000
1471 /* MOV SP. */
1472 || (insn & 0x0fff0000) == 0x08bd0000
1473 /* POP (LDMIA). */
1474 || (insn & 0x0fff0000) == 0x049d0000)
1475 /* POP of a single register. */
1476 return 1;
1477 }
1478
1479 return 0;
1480}
1481
0d39a070
DJ
1482/* Analyze an ARM mode prologue starting at PROLOGUE_START and
1483 continuing no further than PROLOGUE_END. If CACHE is non-NULL,
1484 fill it in. Return the first address not recognized as a prologue
1485 instruction.
eb5492fa 1486
0d39a070
DJ
1487 We recognize all the instructions typically found in ARM prologues,
1488 plus harmless instructions which can be skipped (either for analysis
1489 purposes, or a more restrictive set that can be skipped when finding
1490 the end of the prologue). */
1491
1492static CORE_ADDR
1493arm_analyze_prologue (struct gdbarch *gdbarch,
1494 CORE_ADDR prologue_start, CORE_ADDR prologue_end,
1495 struct arm_prologue_cache *cache)
1496{
0d39a070
DJ
1497 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
1498 int regno;
1499 CORE_ADDR offset, current_pc;
1500 pv_t regs[ARM_FPS_REGNUM];
1501 struct pv_area *stack;
1502 struct cleanup *back_to;
0d39a070
DJ
1503 CORE_ADDR unrecognized_pc = 0;
1504
1505 /* Search the prologue looking for instructions that set up the
96baa820 1506 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 1507
96baa820
JM
1508 Be careful, however, and if it doesn't look like a prologue,
1509 don't try to scan it. If, for instance, a frameless function
1510 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 1511 a frame, which will confuse stack traceback, as well as "finish"
96baa820 1512 and other operations that rely on a knowledge of the stack
0d39a070 1513 traceback. */
d4473757 1514
4be43953
DJ
1515 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1516 regs[regno] = pv_register (regno, 0);
55f960e1 1517 stack = make_pv_area (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch));
4be43953
DJ
1518 back_to = make_cleanup_free_pv_area (stack);
1519
94c30b78
MS
1520 for (current_pc = prologue_start;
1521 current_pc < prologue_end;
f43845b3 1522 current_pc += 4)
96baa820 1523 {
e17a4113
UW
1524 unsigned int insn
1525 = read_memory_unsigned_integer (current_pc, 4, byte_order_for_code);
9d4fde75 1526
94c30b78 1527 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3 1528 {
4be43953 1529 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
28cd8767
JG
1530 continue;
1531 }
0d39a070
DJ
1532 else if ((insn & 0xfff00000) == 0xe2800000 /* add Rd, Rn, #n */
1533 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1534 {
1535 unsigned imm = insn & 0xff; /* immediate value */
1536 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1537 int rd = bits (insn, 12, 15);
28cd8767 1538 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1539 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm);
28cd8767
JG
1540 continue;
1541 }
0d39a070
DJ
1542 else if ((insn & 0xfff00000) == 0xe2400000 /* sub Rd, Rn, #n */
1543 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
28cd8767
JG
1544 {
1545 unsigned imm = insn & 0xff; /* immediate value */
1546 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
0d39a070 1547 int rd = bits (insn, 12, 15);
28cd8767 1548 imm = (imm >> rot) | (imm << (32 - rot));
0d39a070 1549 regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm);
f43845b3
MS
1550 continue;
1551 }
0963b4bd
MS
1552 else if ((insn & 0xffff0fff) == 0xe52d0004) /* str Rd,
1553 [sp, #-4]! */
f43845b3 1554 {
4be43953
DJ
1555 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1556 break;
1557 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
0d39a070
DJ
1558 pv_area_store (stack, regs[ARM_SP_REGNUM], 4,
1559 regs[bits (insn, 12, 15)]);
f43845b3
MS
1560 continue;
1561 }
1562 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
1563 /* stmfd sp!, {..., fp, ip, lr, pc}
1564 or
1565 stmfd sp!, {a1, a2, a3, a4} */
c906108c 1566 {
d4473757 1567 int mask = insn & 0xffff;
ed9a39eb 1568
4be43953
DJ
1569 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1570 break;
1571
94c30b78 1572 /* Calculate offsets of saved registers. */
34e8f22d 1573 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
1574 if (mask & (1 << regno))
1575 {
0963b4bd
MS
1576 regs[ARM_SP_REGNUM]
1577 = pv_add_constant (regs[ARM_SP_REGNUM], -4);
4be43953 1578 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
d4473757
KB
1579 }
1580 }
0d39a070
DJ
1581 else if ((insn & 0xffff0000) == 0xe54b0000 /* strb rx,[r11,#-n] */
1582 || (insn & 0xffff00f0) == 0xe14b00b0 /* strh rx,[r11,#-n] */
f8bf5763 1583 || (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
b8d5e71d
MS
1584 {
1585 /* No need to add this to saved_regs -- it's just an arg reg. */
1586 continue;
1587 }
0d39a070
DJ
1588 else if ((insn & 0xffff0000) == 0xe5cd0000 /* strb rx,[sp,#n] */
1589 || (insn & 0xffff00f0) == 0xe1cd00b0 /* strh rx,[sp,#n] */
f8bf5763 1590 || (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
1591 {
1592 /* No need to add this to saved_regs -- it's just an arg reg. */
1593 continue;
1594 }
0963b4bd
MS
1595 else if ((insn & 0xfff00000) == 0xe8800000 /* stm Rn,
1596 { registers } */
0d39a070
DJ
1597 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1598 {
1599 /* No need to add this to saved_regs -- it's just arg regs. */
1600 continue;
1601 }
d4473757
KB
1602 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
1603 {
94c30b78
MS
1604 unsigned imm = insn & 0xff; /* immediate value */
1605 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1606 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1607 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
d4473757
KB
1608 }
1609 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
1610 {
94c30b78
MS
1611 unsigned imm = insn & 0xff; /* immediate value */
1612 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757 1613 imm = (imm >> rot) | (imm << (32 - rot));
4be43953 1614 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
d4473757 1615 }
0963b4bd
MS
1616 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?,
1617 [sp, -#c]! */
2af46ca0 1618 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757 1619 {
4be43953
DJ
1620 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1621 break;
1622
1623 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
34e8f22d 1624 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
4be43953 1625 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
d4473757 1626 }
0963b4bd
MS
1627 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4,
1628 [sp!] */
2af46ca0 1629 && gdbarch_tdep (gdbarch)->have_fpa_registers)
d4473757
KB
1630 {
1631 int n_saved_fp_regs;
1632 unsigned int fp_start_reg, fp_bound_reg;
1633
4be43953
DJ
1634 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
1635 break;
1636
94c30b78 1637 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 1638 {
d4473757
KB
1639 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1640 n_saved_fp_regs = 3;
1641 else
1642 n_saved_fp_regs = 1;
96baa820 1643 }
d4473757 1644 else
96baa820 1645 {
d4473757
KB
1646 if ((insn & 0x40000) == 0x40000) /* N1 is set */
1647 n_saved_fp_regs = 2;
1648 else
1649 n_saved_fp_regs = 4;
96baa820 1650 }
d4473757 1651
34e8f22d 1652 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
1653 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
1654 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820 1655 {
4be43953
DJ
1656 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
1657 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
1658 regs[fp_start_reg++]);
96baa820 1659 }
c906108c 1660 }
0d39a070
DJ
1661 else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */
1662 {
1663 /* Allow some special function calls when skipping the
1664 prologue; GCC generates these before storing arguments to
1665 the stack. */
1666 CORE_ADDR dest = BranchDest (current_pc, insn);
1667
e0634ccf 1668 if (skip_prologue_function (gdbarch, dest, 0))
0d39a070
DJ
1669 continue;
1670 else
1671 break;
1672 }
d4473757 1673 else if ((insn & 0xf0000000) != 0xe0000000)
0963b4bd 1674 break; /* Condition not true, exit early. */
0d39a070
DJ
1675 else if (arm_instruction_changes_pc (insn))
1676 /* Don't scan past anything that might change control flow. */
1677 break;
f303bc3e
YQ
1678 else if (arm_instruction_restores_sp (insn))
1679 {
1680 /* Don't scan past the epilogue. */
1681 break;
1682 }
d19f7eee
UW
1683 else if ((insn & 0xfe500000) == 0xe8100000 /* ldm */
1684 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1685 /* Ignore block loads from the stack, potentially copying
1686 parameters from memory. */
1687 continue;
1688 else if ((insn & 0xfc500000) == 0xe4100000
1689 && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM))
1690 /* Similarly ignore single loads from the stack. */
1691 continue;
0d39a070
DJ
1692 else if ((insn & 0xffff0ff0) == 0xe1a00000)
1693 /* MOV Rd, Rm. Skip register copies, i.e. saves to another
1694 register instead of the stack. */
d4473757 1695 continue;
0d39a070
DJ
1696 else
1697 {
21daaaaf
YQ
1698 /* The optimizer might shove anything into the prologue, if
1699 we build up cache (cache != NULL) from scanning prologue,
1700 we just skip what we don't recognize and scan further to
1701 make cache as complete as possible. However, if we skip
1702 prologue, we'll stop immediately on unrecognized
1703 instruction. */
0d39a070 1704 unrecognized_pc = current_pc;
21daaaaf
YQ
1705 if (cache != NULL)
1706 continue;
1707 else
1708 break;
0d39a070 1709 }
c906108c
SS
1710 }
1711
0d39a070
DJ
1712 if (unrecognized_pc == 0)
1713 unrecognized_pc = current_pc;
1714
0d39a070
DJ
1715 if (cache)
1716 {
4072f920
YQ
1717 int framereg, framesize;
1718
1719 /* The frame size is just the distance from the frame register
1720 to the original stack pointer. */
1721 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
1722 {
1723 /* Frame pointer is fp. */
1724 framereg = ARM_FP_REGNUM;
1725 framesize = -regs[ARM_FP_REGNUM].k;
1726 }
1727 else
1728 {
1729 /* Try the stack pointer... this is a bit desperate. */
1730 framereg = ARM_SP_REGNUM;
1731 framesize = -regs[ARM_SP_REGNUM].k;
1732 }
1733
0d39a070
DJ
1734 cache->framereg = framereg;
1735 cache->framesize = framesize;
1736
1737 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1738 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1739 cache->saved_regs[regno].addr = offset;
1740 }
1741
1742 if (arm_debug)
1743 fprintf_unfiltered (gdb_stdlog, "Prologue scan stopped at %s\n",
1744 paddress (gdbarch, unrecognized_pc));
4be43953
DJ
1745
1746 do_cleanups (back_to);
0d39a070
DJ
1747 return unrecognized_pc;
1748}
1749
1750static void
1751arm_scan_prologue (struct frame_info *this_frame,
1752 struct arm_prologue_cache *cache)
1753{
1754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bec2ab5a 1756 CORE_ADDR prologue_start, prologue_end;
0d39a070
DJ
1757 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1758 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
0d39a070
DJ
1759
1760 /* Assume there is no frame until proven otherwise. */
1761 cache->framereg = ARM_SP_REGNUM;
1762 cache->framesize = 0;
1763
1764 /* Check for Thumb prologue. */
1765 if (arm_frame_is_thumb (this_frame))
1766 {
1767 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
1768 return;
1769 }
1770
1771 /* Find the function prologue. If we can't find the function in
1772 the symbol table, peek in the stack frame to find the PC. */
1773 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
1774 &prologue_end))
1775 {
1776 /* One way to find the end of the prologue (which works well
1777 for unoptimized code) is to do the following:
1778
1779 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
1780
1781 if (sal.line == 0)
1782 prologue_end = prev_pc;
1783 else if (sal.end < prologue_end)
1784 prologue_end = sal.end;
1785
1786 This mechanism is very accurate so long as the optimizer
1787 doesn't move any instructions from the function body into the
1788 prologue. If this happens, sal.end will be the last
1789 instruction in the first hunk of prologue code just before
1790 the first instruction that the scheduler has moved from
1791 the body to the prologue.
1792
1793 In order to make sure that we scan all of the prologue
1794 instructions, we use a slightly less accurate mechanism which
1795 may scan more than necessary. To help compensate for this
1796 lack of accuracy, the prologue scanning loop below contains
1797 several clauses which'll cause the loop to terminate early if
1798 an implausible prologue instruction is encountered.
1799
1800 The expression
1801
1802 prologue_start + 64
1803
1804 is a suitable endpoint since it accounts for the largest
1805 possible prologue plus up to five instructions inserted by
1806 the scheduler. */
1807
1808 if (prologue_end > prologue_start + 64)
1809 {
1810 prologue_end = prologue_start + 64; /* See above. */
1811 }
1812 }
1813 else
1814 {
1815 /* We have no symbol information. Our only option is to assume this
1816 function has a standard stack frame and the normal frame register.
1817 Then, we can find the value of our frame pointer on entrance to
1818 the callee (or at the present moment if this is the innermost frame).
1819 The value stored there should be the address of the stmfd + 8. */
1820 CORE_ADDR frame_loc;
1821 LONGEST return_value;
1822
1823 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
1824 if (!safe_read_memory_integer (frame_loc, 4, byte_order, &return_value))
1825 return;
1826 else
1827 {
1828 prologue_start = gdbarch_addr_bits_remove
1829 (gdbarch, return_value) - 8;
1830 prologue_end = prologue_start + 64; /* See above. */
1831 }
1832 }
1833
1834 if (prev_pc < prologue_end)
1835 prologue_end = prev_pc;
1836
1837 arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
c906108c
SS
1838}
1839
eb5492fa 1840static struct arm_prologue_cache *
a262aec2 1841arm_make_prologue_cache (struct frame_info *this_frame)
c906108c 1842{
eb5492fa
DJ
1843 int reg;
1844 struct arm_prologue_cache *cache;
1845 CORE_ADDR unwound_fp;
c5aa993b 1846
35d5d4ee 1847 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 1848 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
c906108c 1849
a262aec2 1850 arm_scan_prologue (this_frame, cache);
848cfffb 1851
a262aec2 1852 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
eb5492fa
DJ
1853 if (unwound_fp == 0)
1854 return cache;
c906108c 1855
4be43953 1856 cache->prev_sp = unwound_fp + cache->framesize;
c906108c 1857
eb5492fa
DJ
1858 /* Calculate actual addresses of saved registers using offsets
1859 determined by arm_scan_prologue. */
a262aec2 1860 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
e28a332c 1861 if (trad_frame_addr_p (cache->saved_regs, reg))
eb5492fa
DJ
1862 cache->saved_regs[reg].addr += cache->prev_sp;
1863
1864 return cache;
c906108c
SS
1865}
1866
c1ee9414
LM
1867/* Implementation of the stop_reason hook for arm_prologue frames. */
1868
1869static enum unwind_stop_reason
1870arm_prologue_unwind_stop_reason (struct frame_info *this_frame,
1871 void **this_cache)
1872{
1873 struct arm_prologue_cache *cache;
1874 CORE_ADDR pc;
1875
1876 if (*this_cache == NULL)
1877 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1878 cache = (struct arm_prologue_cache *) *this_cache;
c1ee9414
LM
1879
1880 /* This is meant to halt the backtrace at "_start". */
1881 pc = get_frame_pc (this_frame);
1882 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1883 return UNWIND_OUTERMOST;
1884
1885 /* If we've hit a wall, stop. */
1886 if (cache->prev_sp == 0)
1887 return UNWIND_OUTERMOST;
1888
1889 return UNWIND_NO_REASON;
1890}
1891
eb5492fa
DJ
1892/* Our frame ID for a normal frame is the current function's starting PC
1893 and the caller's SP when we were called. */
c906108c 1894
148754e5 1895static void
a262aec2 1896arm_prologue_this_id (struct frame_info *this_frame,
eb5492fa
DJ
1897 void **this_cache,
1898 struct frame_id *this_id)
c906108c 1899{
eb5492fa
DJ
1900 struct arm_prologue_cache *cache;
1901 struct frame_id id;
2c404490 1902 CORE_ADDR pc, func;
f079148d 1903
eb5492fa 1904 if (*this_cache == NULL)
a262aec2 1905 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1906 cache = (struct arm_prologue_cache *) *this_cache;
2a451106 1907
0e9e9abd
UW
1908 /* Use function start address as part of the frame ID. If we cannot
1909 identify the start address (due to missing symbol information),
1910 fall back to just using the current PC. */
c1ee9414 1911 pc = get_frame_pc (this_frame);
2c404490 1912 func = get_frame_func (this_frame);
0e9e9abd
UW
1913 if (!func)
1914 func = pc;
1915
eb5492fa 1916 id = frame_id_build (cache->prev_sp, func);
eb5492fa 1917 *this_id = id;
c906108c
SS
1918}
1919
a262aec2
DJ
1920static struct value *
1921arm_prologue_prev_register (struct frame_info *this_frame,
eb5492fa 1922 void **this_cache,
a262aec2 1923 int prev_regnum)
24de872b 1924{
24568a2c 1925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
24de872b
DJ
1926 struct arm_prologue_cache *cache;
1927
eb5492fa 1928 if (*this_cache == NULL)
a262aec2 1929 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 1930 cache = (struct arm_prologue_cache *) *this_cache;
24de872b 1931
eb5492fa 1932 /* If we are asked to unwind the PC, then we need to return the LR
b39cc962
DJ
1933 instead. The prologue may save PC, but it will point into this
1934 frame's prologue, not the next frame's resume location. Also
1935 strip the saved T bit. A valid LR may have the low bit set, but
1936 a valid PC never does. */
eb5492fa 1937 if (prev_regnum == ARM_PC_REGNUM)
b39cc962
DJ
1938 {
1939 CORE_ADDR lr;
1940
1941 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1942 return frame_unwind_got_constant (this_frame, prev_regnum,
24568a2c 1943 arm_addr_bits_remove (gdbarch, lr));
b39cc962 1944 }
24de872b 1945
eb5492fa 1946 /* SP is generally not saved to the stack, but this frame is
a262aec2 1947 identified by the next frame's stack pointer at the time of the call.
eb5492fa
DJ
1948 The value was already reconstructed into PREV_SP. */
1949 if (prev_regnum == ARM_SP_REGNUM)
a262aec2 1950 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
eb5492fa 1951
b39cc962
DJ
1952 /* The CPSR may have been changed by the call instruction and by the
1953 called function. The only bit we can reconstruct is the T bit,
1954 by checking the low bit of LR as of the call. This is a reliable
1955 indicator of Thumb-ness except for some ARM v4T pre-interworking
1956 Thumb code, which could get away with a clear low bit as long as
1957 the called function did not use bx. Guess that all other
1958 bits are unchanged; the condition flags are presumably lost,
1959 but the processor status is likely valid. */
1960 if (prev_regnum == ARM_PS_REGNUM)
1961 {
1962 CORE_ADDR lr, cpsr;
9779414d 1963 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
1964
1965 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1966 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1967 if (IS_THUMB_ADDR (lr))
9779414d 1968 cpsr |= t_bit;
b39cc962 1969 else
9779414d 1970 cpsr &= ~t_bit;
b39cc962
DJ
1971 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1972 }
1973
a262aec2
DJ
1974 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1975 prev_regnum);
eb5492fa
DJ
1976}
1977
1978struct frame_unwind arm_prologue_unwind = {
1979 NORMAL_FRAME,
c1ee9414 1980 arm_prologue_unwind_stop_reason,
eb5492fa 1981 arm_prologue_this_id,
a262aec2
DJ
1982 arm_prologue_prev_register,
1983 NULL,
1984 default_frame_sniffer
eb5492fa
DJ
1985};
1986
0e9e9abd
UW
1987/* Maintain a list of ARM exception table entries per objfile, similar to the
1988 list of mapping symbols. We only cache entries for standard ARM-defined
1989 personality routines; the cache will contain only the frame unwinding
1990 instructions associated with the entry (not the descriptors). */
1991
1992static const struct objfile_data *arm_exidx_data_key;
1993
1994struct arm_exidx_entry
1995{
1996 bfd_vma addr;
1997 gdb_byte *entry;
1998};
1999typedef struct arm_exidx_entry arm_exidx_entry_s;
2000DEF_VEC_O(arm_exidx_entry_s);
2001
2002struct arm_exidx_data
2003{
2004 VEC(arm_exidx_entry_s) **section_maps;
2005};
2006
2007static void
2008arm_exidx_data_free (struct objfile *objfile, void *arg)
2009{
9a3c8263 2010 struct arm_exidx_data *data = (struct arm_exidx_data *) arg;
0e9e9abd
UW
2011 unsigned int i;
2012
2013 for (i = 0; i < objfile->obfd->section_count; i++)
2014 VEC_free (arm_exidx_entry_s, data->section_maps[i]);
2015}
2016
2017static inline int
2018arm_compare_exidx_entries (const struct arm_exidx_entry *lhs,
2019 const struct arm_exidx_entry *rhs)
2020{
2021 return lhs->addr < rhs->addr;
2022}
2023
2024static struct obj_section *
2025arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma)
2026{
2027 struct obj_section *osect;
2028
2029 ALL_OBJFILE_OSECTIONS (objfile, osect)
2030 if (bfd_get_section_flags (objfile->obfd,
2031 osect->the_bfd_section) & SEC_ALLOC)
2032 {
2033 bfd_vma start, size;
2034 start = bfd_get_section_vma (objfile->obfd, osect->the_bfd_section);
2035 size = bfd_get_section_size (osect->the_bfd_section);
2036
2037 if (start <= vma && vma < start + size)
2038 return osect;
2039 }
2040
2041 return NULL;
2042}
2043
2044/* Parse contents of exception table and exception index sections
2045 of OBJFILE, and fill in the exception table entry cache.
2046
2047 For each entry that refers to a standard ARM-defined personality
2048 routine, extract the frame unwinding instructions (from either
2049 the index or the table section). The unwinding instructions
2050 are normalized by:
2051 - extracting them from the rest of the table data
2052 - converting to host endianness
2053 - appending the implicit 0xb0 ("Finish") code
2054
2055 The extracted and normalized instructions are stored for later
2056 retrieval by the arm_find_exidx_entry routine. */
2057
2058static void
2059arm_exidx_new_objfile (struct objfile *objfile)
2060{
3bb47e8b 2061 struct cleanup *cleanups;
0e9e9abd
UW
2062 struct arm_exidx_data *data;
2063 asection *exidx, *extab;
2064 bfd_vma exidx_vma = 0, extab_vma = 0;
2065 bfd_size_type exidx_size = 0, extab_size = 0;
2066 gdb_byte *exidx_data = NULL, *extab_data = NULL;
2067 LONGEST i;
2068
2069 /* If we've already touched this file, do nothing. */
2070 if (!objfile || objfile_data (objfile, arm_exidx_data_key) != NULL)
2071 return;
3bb47e8b 2072 cleanups = make_cleanup (null_cleanup, NULL);
0e9e9abd
UW
2073
2074 /* Read contents of exception table and index. */
a5eda10c 2075 exidx = bfd_get_section_by_name (objfile->obfd, ELF_STRING_ARM_unwind);
0e9e9abd
UW
2076 if (exidx)
2077 {
2078 exidx_vma = bfd_section_vma (objfile->obfd, exidx);
2079 exidx_size = bfd_get_section_size (exidx);
224c3ddb 2080 exidx_data = (gdb_byte *) xmalloc (exidx_size);
0e9e9abd
UW
2081 make_cleanup (xfree, exidx_data);
2082
2083 if (!bfd_get_section_contents (objfile->obfd, exidx,
2084 exidx_data, 0, exidx_size))
2085 {
2086 do_cleanups (cleanups);
2087 return;
2088 }
2089 }
2090
2091 extab = bfd_get_section_by_name (objfile->obfd, ".ARM.extab");
2092 if (extab)
2093 {
2094 extab_vma = bfd_section_vma (objfile->obfd, extab);
2095 extab_size = bfd_get_section_size (extab);
224c3ddb 2096 extab_data = (gdb_byte *) xmalloc (extab_size);
0e9e9abd
UW
2097 make_cleanup (xfree, extab_data);
2098
2099 if (!bfd_get_section_contents (objfile->obfd, extab,
2100 extab_data, 0, extab_size))
2101 {
2102 do_cleanups (cleanups);
2103 return;
2104 }
2105 }
2106
2107 /* Allocate exception table data structure. */
2108 data = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct arm_exidx_data);
2109 set_objfile_data (objfile, arm_exidx_data_key, data);
2110 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2111 objfile->obfd->section_count,
2112 VEC(arm_exidx_entry_s) *);
2113
2114 /* Fill in exception table. */
2115 for (i = 0; i < exidx_size / 8; i++)
2116 {
2117 struct arm_exidx_entry new_exidx_entry;
2118 bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8);
2119 bfd_vma val = bfd_h_get_32 (objfile->obfd, exidx_data + i * 8 + 4);
2120 bfd_vma addr = 0, word = 0;
2121 int n_bytes = 0, n_words = 0;
2122 struct obj_section *sec;
2123 gdb_byte *entry = NULL;
2124
2125 /* Extract address of start of function. */
2126 idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2127 idx += exidx_vma + i * 8;
2128
2129 /* Find section containing function and compute section offset. */
2130 sec = arm_obj_section_from_vma (objfile, idx);
2131 if (sec == NULL)
2132 continue;
2133 idx -= bfd_get_section_vma (objfile->obfd, sec->the_bfd_section);
2134
2135 /* Determine address of exception table entry. */
2136 if (val == 1)
2137 {
2138 /* EXIDX_CANTUNWIND -- no exception table entry present. */
2139 }
2140 else if ((val & 0xff000000) == 0x80000000)
2141 {
2142 /* Exception table entry embedded in .ARM.exidx
2143 -- must be short form. */
2144 word = val;
2145 n_bytes = 3;
2146 }
2147 else if (!(val & 0x80000000))
2148 {
2149 /* Exception table entry in .ARM.extab. */
2150 addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2151 addr += exidx_vma + i * 8 + 4;
2152
2153 if (addr >= extab_vma && addr + 4 <= extab_vma + extab_size)
2154 {
2155 word = bfd_h_get_32 (objfile->obfd,
2156 extab_data + addr - extab_vma);
2157 addr += 4;
2158
2159 if ((word & 0xff000000) == 0x80000000)
2160 {
2161 /* Short form. */
2162 n_bytes = 3;
2163 }
2164 else if ((word & 0xff000000) == 0x81000000
2165 || (word & 0xff000000) == 0x82000000)
2166 {
2167 /* Long form. */
2168 n_bytes = 2;
2169 n_words = ((word >> 16) & 0xff);
2170 }
2171 else if (!(word & 0x80000000))
2172 {
2173 bfd_vma pers;
2174 struct obj_section *pers_sec;
2175 int gnu_personality = 0;
2176
2177 /* Custom personality routine. */
2178 pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000;
2179 pers = UNMAKE_THUMB_ADDR (pers + addr - 4);
2180
2181 /* Check whether we've got one of the variants of the
2182 GNU personality routines. */
2183 pers_sec = arm_obj_section_from_vma (objfile, pers);
2184 if (pers_sec)
2185 {
2186 static const char *personality[] =
2187 {
2188 "__gcc_personality_v0",
2189 "__gxx_personality_v0",
2190 "__gcj_personality_v0",
2191 "__gnu_objc_personality_v0",
2192 NULL
2193 };
2194
2195 CORE_ADDR pc = pers + obj_section_offset (pers_sec);
2196 int k;
2197
2198 for (k = 0; personality[k]; k++)
2199 if (lookup_minimal_symbol_by_pc_name
2200 (pc, personality[k], objfile))
2201 {
2202 gnu_personality = 1;
2203 break;
2204 }
2205 }
2206
2207 /* If so, the next word contains a word count in the high
2208 byte, followed by the same unwind instructions as the
2209 pre-defined forms. */
2210 if (gnu_personality
2211 && addr + 4 <= extab_vma + extab_size)
2212 {
2213 word = bfd_h_get_32 (objfile->obfd,
2214 extab_data + addr - extab_vma);
2215 addr += 4;
2216 n_bytes = 3;
2217 n_words = ((word >> 24) & 0xff);
2218 }
2219 }
2220 }
2221 }
2222
2223 /* Sanity check address. */
2224 if (n_words)
2225 if (addr < extab_vma || addr + 4 * n_words > extab_vma + extab_size)
2226 n_words = n_bytes = 0;
2227
2228 /* The unwind instructions reside in WORD (only the N_BYTES least
2229 significant bytes are valid), followed by N_WORDS words in the
2230 extab section starting at ADDR. */
2231 if (n_bytes || n_words)
2232 {
224c3ddb
SM
2233 gdb_byte *p = entry
2234 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
2235 n_bytes + n_words * 4 + 1);
0e9e9abd
UW
2236
2237 while (n_bytes--)
2238 *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff);
2239
2240 while (n_words--)
2241 {
2242 word = bfd_h_get_32 (objfile->obfd,
2243 extab_data + addr - extab_vma);
2244 addr += 4;
2245
2246 *p++ = (gdb_byte) ((word >> 24) & 0xff);
2247 *p++ = (gdb_byte) ((word >> 16) & 0xff);
2248 *p++ = (gdb_byte) ((word >> 8) & 0xff);
2249 *p++ = (gdb_byte) (word & 0xff);
2250 }
2251
2252 /* Implied "Finish" to terminate the list. */
2253 *p++ = 0xb0;
2254 }
2255
2256 /* Push entry onto vector. They are guaranteed to always
2257 appear in order of increasing addresses. */
2258 new_exidx_entry.addr = idx;
2259 new_exidx_entry.entry = entry;
2260 VEC_safe_push (arm_exidx_entry_s,
2261 data->section_maps[sec->the_bfd_section->index],
2262 &new_exidx_entry);
2263 }
2264
2265 do_cleanups (cleanups);
2266}
2267
2268/* Search for the exception table entry covering MEMADDR. If one is found,
2269 return a pointer to its data. Otherwise, return 0. If START is non-NULL,
2270 set *START to the start of the region covered by this entry. */
2271
2272static gdb_byte *
2273arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start)
2274{
2275 struct obj_section *sec;
2276
2277 sec = find_pc_section (memaddr);
2278 if (sec != NULL)
2279 {
2280 struct arm_exidx_data *data;
2281 VEC(arm_exidx_entry_s) *map;
2282 struct arm_exidx_entry map_key = { memaddr - obj_section_addr (sec), 0 };
2283 unsigned int idx;
2284
9a3c8263
SM
2285 data = ((struct arm_exidx_data *)
2286 objfile_data (sec->objfile, arm_exidx_data_key));
0e9e9abd
UW
2287 if (data != NULL)
2288 {
2289 map = data->section_maps[sec->the_bfd_section->index];
2290 if (!VEC_empty (arm_exidx_entry_s, map))
2291 {
2292 struct arm_exidx_entry *map_sym;
2293
2294 idx = VEC_lower_bound (arm_exidx_entry_s, map, &map_key,
2295 arm_compare_exidx_entries);
2296
2297 /* VEC_lower_bound finds the earliest ordered insertion
2298 point. If the following symbol starts at this exact
2299 address, we use that; otherwise, the preceding
2300 exception table entry covers this address. */
2301 if (idx < VEC_length (arm_exidx_entry_s, map))
2302 {
2303 map_sym = VEC_index (arm_exidx_entry_s, map, idx);
2304 if (map_sym->addr == map_key.addr)
2305 {
2306 if (start)
2307 *start = map_sym->addr + obj_section_addr (sec);
2308 return map_sym->entry;
2309 }
2310 }
2311
2312 if (idx > 0)
2313 {
2314 map_sym = VEC_index (arm_exidx_entry_s, map, idx - 1);
2315 if (start)
2316 *start = map_sym->addr + obj_section_addr (sec);
2317 return map_sym->entry;
2318 }
2319 }
2320 }
2321 }
2322
2323 return NULL;
2324}
2325
2326/* Given the current frame THIS_FRAME, and its associated frame unwinding
2327 instruction list from the ARM exception table entry ENTRY, allocate and
2328 return a prologue cache structure describing how to unwind this frame.
2329
2330 Return NULL if the unwinding instruction list contains a "spare",
2331 "reserved" or "refuse to unwind" instruction as defined in section
2332 "9.3 Frame unwinding instructions" of the "Exception Handling ABI
2333 for the ARM Architecture" document. */
2334
2335static struct arm_prologue_cache *
2336arm_exidx_fill_cache (struct frame_info *this_frame, gdb_byte *entry)
2337{
2338 CORE_ADDR vsp = 0;
2339 int vsp_valid = 0;
2340
2341 struct arm_prologue_cache *cache;
2342 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2343 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2344
2345 for (;;)
2346 {
2347 gdb_byte insn;
2348
2349 /* Whenever we reload SP, we actually have to retrieve its
2350 actual value in the current frame. */
2351 if (!vsp_valid)
2352 {
2353 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2354 {
2355 int reg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2356 vsp = get_frame_register_unsigned (this_frame, reg);
2357 }
2358 else
2359 {
2360 CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr;
2361 vsp = get_frame_memory_unsigned (this_frame, addr, 4);
2362 }
2363
2364 vsp_valid = 1;
2365 }
2366
2367 /* Decode next unwind instruction. */
2368 insn = *entry++;
2369
2370 if ((insn & 0xc0) == 0)
2371 {
2372 int offset = insn & 0x3f;
2373 vsp += (offset << 2) + 4;
2374 }
2375 else if ((insn & 0xc0) == 0x40)
2376 {
2377 int offset = insn & 0x3f;
2378 vsp -= (offset << 2) + 4;
2379 }
2380 else if ((insn & 0xf0) == 0x80)
2381 {
2382 int mask = ((insn & 0xf) << 8) | *entry++;
2383 int i;
2384
2385 /* The special case of an all-zero mask identifies
2386 "Refuse to unwind". We return NULL to fall back
2387 to the prologue analyzer. */
2388 if (mask == 0)
2389 return NULL;
2390
2391 /* Pop registers r4..r15 under mask. */
2392 for (i = 0; i < 12; i++)
2393 if (mask & (1 << i))
2394 {
2395 cache->saved_regs[4 + i].addr = vsp;
2396 vsp += 4;
2397 }
2398
2399 /* Special-case popping SP -- we need to reload vsp. */
2400 if (mask & (1 << (ARM_SP_REGNUM - 4)))
2401 vsp_valid = 0;
2402 }
2403 else if ((insn & 0xf0) == 0x90)
2404 {
2405 int reg = insn & 0xf;
2406
2407 /* Reserved cases. */
2408 if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM)
2409 return NULL;
2410
2411 /* Set SP from another register and mark VSP for reload. */
2412 cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg];
2413 vsp_valid = 0;
2414 }
2415 else if ((insn & 0xf0) == 0xa0)
2416 {
2417 int count = insn & 0x7;
2418 int pop_lr = (insn & 0x8) != 0;
2419 int i;
2420
2421 /* Pop r4..r[4+count]. */
2422 for (i = 0; i <= count; i++)
2423 {
2424 cache->saved_regs[4 + i].addr = vsp;
2425 vsp += 4;
2426 }
2427
2428 /* If indicated by flag, pop LR as well. */
2429 if (pop_lr)
2430 {
2431 cache->saved_regs[ARM_LR_REGNUM].addr = vsp;
2432 vsp += 4;
2433 }
2434 }
2435 else if (insn == 0xb0)
2436 {
2437 /* We could only have updated PC by popping into it; if so, it
2438 will show up as address. Otherwise, copy LR into PC. */
2439 if (!trad_frame_addr_p (cache->saved_regs, ARM_PC_REGNUM))
2440 cache->saved_regs[ARM_PC_REGNUM]
2441 = cache->saved_regs[ARM_LR_REGNUM];
2442
2443 /* We're done. */
2444 break;
2445 }
2446 else if (insn == 0xb1)
2447 {
2448 int mask = *entry++;
2449 int i;
2450
2451 /* All-zero mask and mask >= 16 is "spare". */
2452 if (mask == 0 || mask >= 16)
2453 return NULL;
2454
2455 /* Pop r0..r3 under mask. */
2456 for (i = 0; i < 4; i++)
2457 if (mask & (1 << i))
2458 {
2459 cache->saved_regs[i].addr = vsp;
2460 vsp += 4;
2461 }
2462 }
2463 else if (insn == 0xb2)
2464 {
2465 ULONGEST offset = 0;
2466 unsigned shift = 0;
2467
2468 do
2469 {
2470 offset |= (*entry & 0x7f) << shift;
2471 shift += 7;
2472 }
2473 while (*entry++ & 0x80);
2474
2475 vsp += 0x204 + (offset << 2);
2476 }
2477 else if (insn == 0xb3)
2478 {
2479 int start = *entry >> 4;
2480 int count = (*entry++) & 0xf;
2481 int i;
2482
2483 /* Only registers D0..D15 are valid here. */
2484 if (start + count >= 16)
2485 return NULL;
2486
2487 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2488 for (i = 0; i <= count; i++)
2489 {
2490 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2491 vsp += 8;
2492 }
2493
2494 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2495 vsp += 4;
2496 }
2497 else if ((insn & 0xf8) == 0xb8)
2498 {
2499 int count = insn & 0x7;
2500 int i;
2501
2502 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2503 for (i = 0; i <= count; i++)
2504 {
2505 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2506 vsp += 8;
2507 }
2508
2509 /* Add an extra 4 bytes for FSTMFDX-style stack. */
2510 vsp += 4;
2511 }
2512 else if (insn == 0xc6)
2513 {
2514 int start = *entry >> 4;
2515 int count = (*entry++) & 0xf;
2516 int i;
2517
2518 /* Only registers WR0..WR15 are valid. */
2519 if (start + count >= 16)
2520 return NULL;
2521
2522 /* Pop iwmmx registers WR[start]..WR[start+count]. */
2523 for (i = 0; i <= count; i++)
2524 {
2525 cache->saved_regs[ARM_WR0_REGNUM + start + i].addr = vsp;
2526 vsp += 8;
2527 }
2528 }
2529 else if (insn == 0xc7)
2530 {
2531 int mask = *entry++;
2532 int i;
2533
2534 /* All-zero mask and mask >= 16 is "spare". */
2535 if (mask == 0 || mask >= 16)
2536 return NULL;
2537
2538 /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask. */
2539 for (i = 0; i < 4; i++)
2540 if (mask & (1 << i))
2541 {
2542 cache->saved_regs[ARM_WCGR0_REGNUM + i].addr = vsp;
2543 vsp += 4;
2544 }
2545 }
2546 else if ((insn & 0xf8) == 0xc0)
2547 {
2548 int count = insn & 0x7;
2549 int i;
2550
2551 /* Pop iwmmx registers WR[10]..WR[10+count]. */
2552 for (i = 0; i <= count; i++)
2553 {
2554 cache->saved_regs[ARM_WR0_REGNUM + 10 + i].addr = vsp;
2555 vsp += 8;
2556 }
2557 }
2558 else if (insn == 0xc8)
2559 {
2560 int start = *entry >> 4;
2561 int count = (*entry++) & 0xf;
2562 int i;
2563
2564 /* Only registers D0..D31 are valid. */
2565 if (start + count >= 16)
2566 return NULL;
2567
2568 /* Pop VFP double-precision registers
2569 D[16+start]..D[16+start+count]. */
2570 for (i = 0; i <= count; i++)
2571 {
2572 cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].addr = vsp;
2573 vsp += 8;
2574 }
2575 }
2576 else if (insn == 0xc9)
2577 {
2578 int start = *entry >> 4;
2579 int count = (*entry++) & 0xf;
2580 int i;
2581
2582 /* Pop VFP double-precision registers D[start]..D[start+count]. */
2583 for (i = 0; i <= count; i++)
2584 {
2585 cache->saved_regs[ARM_D0_REGNUM + start + i].addr = vsp;
2586 vsp += 8;
2587 }
2588 }
2589 else if ((insn & 0xf8) == 0xd0)
2590 {
2591 int count = insn & 0x7;
2592 int i;
2593
2594 /* Pop VFP double-precision registers D[8]..D[8+count]. */
2595 for (i = 0; i <= count; i++)
2596 {
2597 cache->saved_regs[ARM_D0_REGNUM + 8 + i].addr = vsp;
2598 vsp += 8;
2599 }
2600 }
2601 else
2602 {
2603 /* Everything else is "spare". */
2604 return NULL;
2605 }
2606 }
2607
2608 /* If we restore SP from a register, assume this was the frame register.
2609 Otherwise just fall back to SP as frame register. */
2610 if (trad_frame_realreg_p (cache->saved_regs, ARM_SP_REGNUM))
2611 cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg;
2612 else
2613 cache->framereg = ARM_SP_REGNUM;
2614
2615 /* Determine offset to previous frame. */
2616 cache->framesize
2617 = vsp - get_frame_register_unsigned (this_frame, cache->framereg);
2618
2619 /* We already got the previous SP. */
2620 cache->prev_sp = vsp;
2621
2622 return cache;
2623}
2624
2625/* Unwinding via ARM exception table entries. Note that the sniffer
2626 already computes a filled-in prologue cache, which is then used
2627 with the same arm_prologue_this_id and arm_prologue_prev_register
2628 routines also used for prologue-parsing based unwinding. */
2629
2630static int
2631arm_exidx_unwind_sniffer (const struct frame_unwind *self,
2632 struct frame_info *this_frame,
2633 void **this_prologue_cache)
2634{
2635 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2637 CORE_ADDR addr_in_block, exidx_region, func_start;
2638 struct arm_prologue_cache *cache;
2639 gdb_byte *entry;
2640
2641 /* See if we have an ARM exception table entry covering this address. */
2642 addr_in_block = get_frame_address_in_block (this_frame);
2643 entry = arm_find_exidx_entry (addr_in_block, &exidx_region);
2644 if (!entry)
2645 return 0;
2646
2647 /* The ARM exception table does not describe unwind information
2648 for arbitrary PC values, but is guaranteed to be correct only
2649 at call sites. We have to decide here whether we want to use
2650 ARM exception table information for this frame, or fall back
2651 to using prologue parsing. (Note that if we have DWARF CFI,
2652 this sniffer isn't even called -- CFI is always preferred.)
2653
2654 Before we make this decision, however, we check whether we
2655 actually have *symbol* information for the current frame.
2656 If not, prologue parsing would not work anyway, so we might
2657 as well use the exception table and hope for the best. */
2658 if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL))
2659 {
2660 int exc_valid = 0;
2661
2662 /* If the next frame is "normal", we are at a call site in this
2663 frame, so exception information is guaranteed to be valid. */
2664 if (get_next_frame (this_frame)
2665 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
2666 exc_valid = 1;
2667
2668 /* We also assume exception information is valid if we're currently
2669 blocked in a system call. The system library is supposed to
d9311bfa
AT
2670 ensure this, so that e.g. pthread cancellation works. */
2671 if (arm_frame_is_thumb (this_frame))
0e9e9abd 2672 {
d9311bfa 2673 LONGEST insn;
416dc9c6 2674
d9311bfa
AT
2675 if (safe_read_memory_integer (get_frame_pc (this_frame) - 2, 2,
2676 byte_order_for_code, &insn)
2677 && (insn & 0xff00) == 0xdf00 /* svc */)
2678 exc_valid = 1;
0e9e9abd 2679 }
d9311bfa
AT
2680 else
2681 {
2682 LONGEST insn;
416dc9c6 2683
d9311bfa
AT
2684 if (safe_read_memory_integer (get_frame_pc (this_frame) - 4, 4,
2685 byte_order_for_code, &insn)
2686 && (insn & 0x0f000000) == 0x0f000000 /* svc */)
2687 exc_valid = 1;
2688 }
2689
0e9e9abd
UW
2690 /* Bail out if we don't know that exception information is valid. */
2691 if (!exc_valid)
2692 return 0;
2693
2694 /* The ARM exception index does not mark the *end* of the region
2695 covered by the entry, and some functions will not have any entry.
2696 To correctly recognize the end of the covered region, the linker
2697 should have inserted dummy records with a CANTUNWIND marker.
2698
2699 Unfortunately, current versions of GNU ld do not reliably do
2700 this, and thus we may have found an incorrect entry above.
2701 As a (temporary) sanity check, we only use the entry if it
2702 lies *within* the bounds of the function. Note that this check
2703 might reject perfectly valid entries that just happen to cover
2704 multiple functions; therefore this check ought to be removed
2705 once the linker is fixed. */
2706 if (func_start > exidx_region)
2707 return 0;
2708 }
2709
2710 /* Decode the list of unwinding instructions into a prologue cache.
2711 Note that this may fail due to e.g. a "refuse to unwind" code. */
2712 cache = arm_exidx_fill_cache (this_frame, entry);
2713 if (!cache)
2714 return 0;
2715
2716 *this_prologue_cache = cache;
2717 return 1;
2718}
2719
2720struct frame_unwind arm_exidx_unwind = {
2721 NORMAL_FRAME,
8fbca658 2722 default_frame_unwind_stop_reason,
0e9e9abd
UW
2723 arm_prologue_this_id,
2724 arm_prologue_prev_register,
2725 NULL,
2726 arm_exidx_unwind_sniffer
2727};
2728
779aa56f
YQ
2729static struct arm_prologue_cache *
2730arm_make_epilogue_frame_cache (struct frame_info *this_frame)
2731{
2732 struct arm_prologue_cache *cache;
779aa56f
YQ
2733 int reg;
2734
2735 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2736 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2737
2738 /* Still rely on the offset calculated from prologue. */
2739 arm_scan_prologue (this_frame, cache);
2740
2741 /* Since we are in epilogue, the SP has been restored. */
2742 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
2743
2744 /* Calculate actual addresses of saved registers using offsets
2745 determined by arm_scan_prologue. */
2746 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
2747 if (trad_frame_addr_p (cache->saved_regs, reg))
2748 cache->saved_regs[reg].addr += cache->prev_sp;
2749
2750 return cache;
2751}
2752
2753/* Implementation of function hook 'this_id' in
2754 'struct frame_uwnind' for epilogue unwinder. */
2755
2756static void
2757arm_epilogue_frame_this_id (struct frame_info *this_frame,
2758 void **this_cache,
2759 struct frame_id *this_id)
2760{
2761 struct arm_prologue_cache *cache;
2762 CORE_ADDR pc, func;
2763
2764 if (*this_cache == NULL)
2765 *this_cache = arm_make_epilogue_frame_cache (this_frame);
2766 cache = (struct arm_prologue_cache *) *this_cache;
2767
2768 /* Use function start address as part of the frame ID. If we cannot
2769 identify the start address (due to missing symbol information),
2770 fall back to just using the current PC. */
2771 pc = get_frame_pc (this_frame);
2772 func = get_frame_func (this_frame);
fb3f3d25 2773 if (func == 0)
779aa56f
YQ
2774 func = pc;
2775
2776 (*this_id) = frame_id_build (cache->prev_sp, pc);
2777}
2778
2779/* Implementation of function hook 'prev_register' in
2780 'struct frame_uwnind' for epilogue unwinder. */
2781
2782static struct value *
2783arm_epilogue_frame_prev_register (struct frame_info *this_frame,
2784 void **this_cache, int regnum)
2785{
779aa56f
YQ
2786 if (*this_cache == NULL)
2787 *this_cache = arm_make_epilogue_frame_cache (this_frame);
779aa56f
YQ
2788
2789 return arm_prologue_prev_register (this_frame, this_cache, regnum);
2790}
2791
2792static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch,
2793 CORE_ADDR pc);
2794static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch,
2795 CORE_ADDR pc);
2796
2797/* Implementation of function hook 'sniffer' in
2798 'struct frame_uwnind' for epilogue unwinder. */
2799
2800static int
2801arm_epilogue_frame_sniffer (const struct frame_unwind *self,
2802 struct frame_info *this_frame,
2803 void **this_prologue_cache)
2804{
2805 if (frame_relative_level (this_frame) == 0)
2806 {
2807 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2808 CORE_ADDR pc = get_frame_pc (this_frame);
2809
2810 if (arm_frame_is_thumb (this_frame))
2811 return thumb_stack_frame_destroyed_p (gdbarch, pc);
2812 else
2813 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
2814 }
2815 else
2816 return 0;
2817}
2818
2819/* Frame unwinder from epilogue. */
2820
2821static const struct frame_unwind arm_epilogue_frame_unwind =
2822{
2823 NORMAL_FRAME,
2824 default_frame_unwind_stop_reason,
2825 arm_epilogue_frame_this_id,
2826 arm_epilogue_frame_prev_register,
2827 NULL,
2828 arm_epilogue_frame_sniffer,
2829};
2830
80d8d390
YQ
2831/* Recognize GCC's trampoline for thumb call-indirect. If we are in a
2832 trampoline, return the target PC. Otherwise return 0.
2833
2834 void call0a (char c, short s, int i, long l) {}
2835
2836 int main (void)
2837 {
2838 (*pointer_to_call0a) (c, s, i, l);
2839 }
2840
2841 Instead of calling a stub library function _call_via_xx (xx is
2842 the register name), GCC may inline the trampoline in the object
2843 file as below (register r2 has the address of call0a).
2844
2845 .global main
2846 .type main, %function
2847 ...
2848 bl .L1
2849 ...
2850 .size main, .-main
2851
2852 .L1:
2853 bx r2
2854
2855 The trampoline 'bx r2' doesn't belong to main. */
2856
2857static CORE_ADDR
2858arm_skip_bx_reg (struct frame_info *frame, CORE_ADDR pc)
2859{
2860 /* The heuristics of recognizing such trampoline is that FRAME is
2861 executing in Thumb mode and the instruction on PC is 'bx Rm'. */
2862 if (arm_frame_is_thumb (frame))
2863 {
2864 gdb_byte buf[2];
2865
2866 if (target_read_memory (pc, buf, 2) == 0)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (frame);
2869 enum bfd_endian byte_order_for_code
2870 = gdbarch_byte_order_for_code (gdbarch);
2871 uint16_t insn
2872 = extract_unsigned_integer (buf, 2, byte_order_for_code);
2873
2874 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
2875 {
2876 CORE_ADDR dest
2877 = get_frame_register_unsigned (frame, bits (insn, 3, 6));
2878
2879 /* Clear the LSB so that gdb core sets step-resume
2880 breakpoint at the right address. */
2881 return UNMAKE_THUMB_ADDR (dest);
2882 }
2883 }
2884 }
2885
2886 return 0;
2887}
2888
909cf6ea 2889static struct arm_prologue_cache *
a262aec2 2890arm_make_stub_cache (struct frame_info *this_frame)
909cf6ea 2891{
909cf6ea 2892 struct arm_prologue_cache *cache;
909cf6ea 2893
35d5d4ee 2894 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
a262aec2 2895 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
909cf6ea 2896
a262aec2 2897 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
909cf6ea
DJ
2898
2899 return cache;
2900}
2901
2902/* Our frame ID for a stub frame is the current SP and LR. */
2903
2904static void
a262aec2 2905arm_stub_this_id (struct frame_info *this_frame,
909cf6ea
DJ
2906 void **this_cache,
2907 struct frame_id *this_id)
2908{
2909 struct arm_prologue_cache *cache;
2910
2911 if (*this_cache == NULL)
a262aec2 2912 *this_cache = arm_make_stub_cache (this_frame);
9a3c8263 2913 cache = (struct arm_prologue_cache *) *this_cache;
909cf6ea 2914
a262aec2 2915 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
909cf6ea
DJ
2916}
2917
a262aec2
DJ
2918static int
2919arm_stub_unwind_sniffer (const struct frame_unwind *self,
2920 struct frame_info *this_frame,
2921 void **this_prologue_cache)
909cf6ea 2922{
93d42b30 2923 CORE_ADDR addr_in_block;
948f8e3d 2924 gdb_byte dummy[4];
18d18ac8
YQ
2925 CORE_ADDR pc, start_addr;
2926 const char *name;
909cf6ea 2927
a262aec2 2928 addr_in_block = get_frame_address_in_block (this_frame);
18d18ac8 2929 pc = get_frame_pc (this_frame);
3e5d3a5a 2930 if (in_plt_section (addr_in_block)
fc36e839
DE
2931 /* We also use the stub winder if the target memory is unreadable
2932 to avoid having the prologue unwinder trying to read it. */
18d18ac8
YQ
2933 || target_read_memory (pc, dummy, 4) != 0)
2934 return 1;
2935
2936 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0
2937 && arm_skip_bx_reg (this_frame, pc) != 0)
a262aec2 2938 return 1;
909cf6ea 2939
a262aec2 2940 return 0;
909cf6ea
DJ
2941}
2942
a262aec2
DJ
2943struct frame_unwind arm_stub_unwind = {
2944 NORMAL_FRAME,
8fbca658 2945 default_frame_unwind_stop_reason,
a262aec2
DJ
2946 arm_stub_this_id,
2947 arm_prologue_prev_register,
2948 NULL,
2949 arm_stub_unwind_sniffer
2950};
2951
2ae28aa9
YQ
2952/* Put here the code to store, into CACHE->saved_regs, the addresses
2953 of the saved registers of frame described by THIS_FRAME. CACHE is
2954 returned. */
2955
2956static struct arm_prologue_cache *
2957arm_m_exception_cache (struct frame_info *this_frame)
2958{
2959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2961 struct arm_prologue_cache *cache;
2962 CORE_ADDR unwound_sp;
2963 LONGEST xpsr;
2964
2965 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
2966 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2967
2968 unwound_sp = get_frame_register_unsigned (this_frame,
2969 ARM_SP_REGNUM);
2970
2971 /* The hardware saves eight 32-bit words, comprising xPSR,
2972 ReturnAddress, LR (R14), R12, R3, R2, R1, R0. See details in
2973 "B1.5.6 Exception entry behavior" in
2974 "ARMv7-M Architecture Reference Manual". */
2975 cache->saved_regs[0].addr = unwound_sp;
2976 cache->saved_regs[1].addr = unwound_sp + 4;
2977 cache->saved_regs[2].addr = unwound_sp + 8;
2978 cache->saved_regs[3].addr = unwound_sp + 12;
2979 cache->saved_regs[12].addr = unwound_sp + 16;
2980 cache->saved_regs[14].addr = unwound_sp + 20;
2981 cache->saved_regs[15].addr = unwound_sp + 24;
2982 cache->saved_regs[ARM_PS_REGNUM].addr = unwound_sp + 28;
2983
2984 /* If bit 9 of the saved xPSR is set, then there is a four-byte
2985 aligner between the top of the 32-byte stack frame and the
2986 previous context's stack pointer. */
2987 cache->prev_sp = unwound_sp + 32;
2988 if (safe_read_memory_integer (unwound_sp + 28, 4, byte_order, &xpsr)
2989 && (xpsr & (1 << 9)) != 0)
2990 cache->prev_sp += 4;
2991
2992 return cache;
2993}
2994
2995/* Implementation of function hook 'this_id' in
2996 'struct frame_uwnind'. */
2997
2998static void
2999arm_m_exception_this_id (struct frame_info *this_frame,
3000 void **this_cache,
3001 struct frame_id *this_id)
3002{
3003 struct arm_prologue_cache *cache;
3004
3005 if (*this_cache == NULL)
3006 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3007 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3008
3009 /* Our frame ID for a stub frame is the current SP and LR. */
3010 *this_id = frame_id_build (cache->prev_sp,
3011 get_frame_pc (this_frame));
3012}
3013
3014/* Implementation of function hook 'prev_register' in
3015 'struct frame_uwnind'. */
3016
3017static struct value *
3018arm_m_exception_prev_register (struct frame_info *this_frame,
3019 void **this_cache,
3020 int prev_regnum)
3021{
2ae28aa9
YQ
3022 struct arm_prologue_cache *cache;
3023
3024 if (*this_cache == NULL)
3025 *this_cache = arm_m_exception_cache (this_frame);
9a3c8263 3026 cache = (struct arm_prologue_cache *) *this_cache;
2ae28aa9
YQ
3027
3028 /* The value was already reconstructed into PREV_SP. */
3029 if (prev_regnum == ARM_SP_REGNUM)
3030 return frame_unwind_got_constant (this_frame, prev_regnum,
3031 cache->prev_sp);
3032
3033 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
3034 prev_regnum);
3035}
3036
3037/* Implementation of function hook 'sniffer' in
3038 'struct frame_uwnind'. */
3039
3040static int
3041arm_m_exception_unwind_sniffer (const struct frame_unwind *self,
3042 struct frame_info *this_frame,
3043 void **this_prologue_cache)
3044{
3045 CORE_ADDR this_pc = get_frame_pc (this_frame);
3046
3047 /* No need to check is_m; this sniffer is only registered for
3048 M-profile architectures. */
3049
ca90e760
FH
3050 /* Check if exception frame returns to a magic PC value. */
3051 return arm_m_addr_is_magic (this_pc);
2ae28aa9
YQ
3052}
3053
3054/* Frame unwinder for M-profile exceptions. */
3055
3056struct frame_unwind arm_m_exception_unwind =
3057{
3058 SIGTRAMP_FRAME,
3059 default_frame_unwind_stop_reason,
3060 arm_m_exception_this_id,
3061 arm_m_exception_prev_register,
3062 NULL,
3063 arm_m_exception_unwind_sniffer
3064};
3065
24de872b 3066static CORE_ADDR
a262aec2 3067arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
24de872b
DJ
3068{
3069 struct arm_prologue_cache *cache;
3070
eb5492fa 3071 if (*this_cache == NULL)
a262aec2 3072 *this_cache = arm_make_prologue_cache (this_frame);
9a3c8263 3073 cache = (struct arm_prologue_cache *) *this_cache;
eb5492fa 3074
4be43953 3075 return cache->prev_sp - cache->framesize;
24de872b
DJ
3076}
3077
eb5492fa
DJ
3078struct frame_base arm_normal_base = {
3079 &arm_prologue_unwind,
3080 arm_normal_frame_base,
3081 arm_normal_frame_base,
3082 arm_normal_frame_base
3083};
3084
a262aec2 3085/* Assuming THIS_FRAME is a dummy, return the frame ID of that
eb5492fa
DJ
3086 dummy frame. The frame ID's base needs to match the TOS value
3087 saved by save_dummy_frame_tos() and returned from
3088 arm_push_dummy_call, and the PC needs to match the dummy frame's
3089 breakpoint. */
c906108c 3090
eb5492fa 3091static struct frame_id
a262aec2 3092arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c906108c 3093{
0963b4bd
MS
3094 return frame_id_build (get_frame_register_unsigned (this_frame,
3095 ARM_SP_REGNUM),
a262aec2 3096 get_frame_pc (this_frame));
eb5492fa 3097}
c3b4394c 3098
eb5492fa
DJ
3099/* Given THIS_FRAME, find the previous frame's resume PC (which will
3100 be used to construct the previous frame's ID, after looking up the
3101 containing function). */
c3b4394c 3102
eb5492fa
DJ
3103static CORE_ADDR
3104arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
3105{
3106 CORE_ADDR pc;
3107 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
24568a2c 3108 return arm_addr_bits_remove (gdbarch, pc);
eb5492fa
DJ
3109}
3110
3111static CORE_ADDR
3112arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
3113{
3114 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
c906108c
SS
3115}
3116
b39cc962
DJ
3117static struct value *
3118arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
3119 int regnum)
3120{
24568a2c 3121 struct gdbarch * gdbarch = get_frame_arch (this_frame);
b39cc962 3122 CORE_ADDR lr, cpsr;
9779414d 3123 ULONGEST t_bit = arm_psr_thumb_bit (gdbarch);
b39cc962
DJ
3124
3125 switch (regnum)
3126 {
3127 case ARM_PC_REGNUM:
3128 /* The PC is normally copied from the return column, which
3129 describes saves of LR. However, that version may have an
3130 extra bit set to indicate Thumb state. The bit is not
3131 part of the PC. */
3132 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3133 return frame_unwind_got_constant (this_frame, regnum,
24568a2c 3134 arm_addr_bits_remove (gdbarch, lr));
b39cc962
DJ
3135
3136 case ARM_PS_REGNUM:
3137 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
ca38c58e 3138 cpsr = get_frame_register_unsigned (this_frame, regnum);
b39cc962
DJ
3139 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
3140 if (IS_THUMB_ADDR (lr))
9779414d 3141 cpsr |= t_bit;
b39cc962 3142 else
9779414d 3143 cpsr &= ~t_bit;
ca38c58e 3144 return frame_unwind_got_constant (this_frame, regnum, cpsr);
b39cc962
DJ
3145
3146 default:
3147 internal_error (__FILE__, __LINE__,
3148 _("Unexpected register %d"), regnum);
3149 }
3150}
3151
3152static void
3153arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3154 struct dwarf2_frame_state_reg *reg,
3155 struct frame_info *this_frame)
3156{
3157 switch (regnum)
3158 {
3159 case ARM_PC_REGNUM:
3160 case ARM_PS_REGNUM:
3161 reg->how = DWARF2_FRAME_REG_FN;
3162 reg->loc.fn = arm_dwarf2_prev_register;
3163 break;
3164 case ARM_SP_REGNUM:
3165 reg->how = DWARF2_FRAME_REG_CFA;
3166 break;
3167 }
3168}
3169
c9cf6e20 3170/* Implement the stack_frame_destroyed_p gdbarch method. */
4024ca99
UW
3171
3172static int
c9cf6e20 3173thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3174{
3175 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3176 unsigned int insn, insn2;
3177 int found_return = 0, found_stack_adjust = 0;
3178 CORE_ADDR func_start, func_end;
3179 CORE_ADDR scan_pc;
3180 gdb_byte buf[4];
3181
3182 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3183 return 0;
3184
3185 /* The epilogue is a sequence of instructions along the following lines:
3186
3187 - add stack frame size to SP or FP
3188 - [if frame pointer used] restore SP from FP
3189 - restore registers from SP [may include PC]
3190 - a return-type instruction [if PC wasn't already restored]
3191
3192 In a first pass, we scan forward from the current PC and verify the
3193 instructions we find as compatible with this sequence, ending in a
3194 return instruction.
3195
3196 However, this is not sufficient to distinguish indirect function calls
3197 within a function from indirect tail calls in the epilogue in some cases.
3198 Therefore, if we didn't already find any SP-changing instruction during
3199 forward scan, we add a backward scanning heuristic to ensure we actually
3200 are in the epilogue. */
3201
3202 scan_pc = pc;
3203 while (scan_pc < func_end && !found_return)
3204 {
3205 if (target_read_memory (scan_pc, buf, 2))
3206 break;
3207
3208 scan_pc += 2;
3209 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3210
3211 if ((insn & 0xff80) == 0x4700) /* bx <Rm> */
3212 found_return = 1;
3213 else if (insn == 0x46f7) /* mov pc, lr */
3214 found_return = 1;
540314bd 3215 else if (thumb_instruction_restores_sp (insn))
4024ca99 3216 {
b7576e5c 3217 if ((insn & 0xff00) == 0xbd00) /* pop <registers, PC> */
4024ca99
UW
3218 found_return = 1;
3219 }
db24da6d 3220 else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instruction */
4024ca99
UW
3221 {
3222 if (target_read_memory (scan_pc, buf, 2))
3223 break;
3224
3225 scan_pc += 2;
3226 insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code);
3227
3228 if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3229 {
4024ca99
UW
3230 if (insn2 & 0x8000) /* <registers> include PC. */
3231 found_return = 1;
3232 }
3233 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3234 && (insn2 & 0x0fff) == 0x0b04)
3235 {
4024ca99
UW
3236 if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC. */
3237 found_return = 1;
3238 }
3239 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3240 && (insn2 & 0x0e00) == 0x0a00)
6b65d1b6 3241 ;
4024ca99
UW
3242 else
3243 break;
3244 }
3245 else
3246 break;
3247 }
3248
3249 if (!found_return)
3250 return 0;
3251
3252 /* Since any instruction in the epilogue sequence, with the possible
3253 exception of return itself, updates the stack pointer, we need to
3254 scan backwards for at most one instruction. Try either a 16-bit or
3255 a 32-bit instruction. This is just a heuristic, so we do not worry
0963b4bd 3256 too much about false positives. */
4024ca99 3257
6b65d1b6
YQ
3258 if (pc - 4 < func_start)
3259 return 0;
3260 if (target_read_memory (pc - 4, buf, 4))
3261 return 0;
4024ca99 3262
6b65d1b6
YQ
3263 insn = extract_unsigned_integer (buf, 2, byte_order_for_code);
3264 insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code);
3265
3266 if (thumb_instruction_restores_sp (insn2))
3267 found_stack_adjust = 1;
3268 else if (insn == 0xe8bd) /* ldm.w sp!, <registers> */
3269 found_stack_adjust = 1;
3270 else if (insn == 0xf85d /* ldr.w <Rt>, [sp], #4 */
3271 && (insn2 & 0x0fff) == 0x0b04)
3272 found_stack_adjust = 1;
3273 else if ((insn & 0xffbf) == 0xecbd /* vldm sp!, <list> */
3274 && (insn2 & 0x0e00) == 0x0a00)
3275 found_stack_adjust = 1;
4024ca99
UW
3276
3277 return found_stack_adjust;
3278}
3279
4024ca99 3280static int
c58b006a 3281arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc)
4024ca99
UW
3282{
3283 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3284 unsigned int insn;
f303bc3e 3285 int found_return;
4024ca99
UW
3286 CORE_ADDR func_start, func_end;
3287
4024ca99
UW
3288 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
3289 return 0;
3290
3291 /* We are in the epilogue if the previous instruction was a stack
3292 adjustment and the next instruction is a possible return (bx, mov
3293 pc, or pop). We could have to scan backwards to find the stack
3294 adjustment, or forwards to find the return, but this is a decent
3295 approximation. First scan forwards. */
3296
3297 found_return = 0;
3298 insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code);
3299 if (bits (insn, 28, 31) != INST_NV)
3300 {
3301 if ((insn & 0x0ffffff0) == 0x012fff10)
3302 /* BX. */
3303 found_return = 1;
3304 else if ((insn & 0x0ffffff0) == 0x01a0f000)
3305 /* MOV PC. */
3306 found_return = 1;
3307 else if ((insn & 0x0fff0000) == 0x08bd0000
3308 && (insn & 0x0000c000) != 0)
3309 /* POP (LDMIA), including PC or LR. */
3310 found_return = 1;
3311 }
3312
3313 if (!found_return)
3314 return 0;
3315
3316 /* Scan backwards. This is just a heuristic, so do not worry about
3317 false positives from mode changes. */
3318
3319 if (pc < func_start + 4)
3320 return 0;
3321
3322 insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code);
f303bc3e 3323 if (arm_instruction_restores_sp (insn))
4024ca99
UW
3324 return 1;
3325
3326 return 0;
3327}
3328
c58b006a
YQ
3329/* Implement the stack_frame_destroyed_p gdbarch method. */
3330
3331static int
3332arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
3333{
3334 if (arm_pc_is_thumb (gdbarch, pc))
3335 return thumb_stack_frame_destroyed_p (gdbarch, pc);
3336 else
3337 return arm_stack_frame_destroyed_p_1 (gdbarch, pc);
3338}
4024ca99 3339
2dd604e7
RE
3340/* When arguments must be pushed onto the stack, they go on in reverse
3341 order. The code below implements a FILO (stack) to do this. */
3342
3343struct stack_item
3344{
3345 int len;
3346 struct stack_item *prev;
7c543f7b 3347 gdb_byte *data;
2dd604e7
RE
3348};
3349
3350static struct stack_item *
df3b6708 3351push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
2dd604e7
RE
3352{
3353 struct stack_item *si;
8d749320 3354 si = XNEW (struct stack_item);
7c543f7b 3355 si->data = (gdb_byte *) xmalloc (len);
2dd604e7
RE
3356 si->len = len;
3357 si->prev = prev;
3358 memcpy (si->data, contents, len);
3359 return si;
3360}
3361
3362static struct stack_item *
3363pop_stack_item (struct stack_item *si)
3364{
3365 struct stack_item *dead = si;
3366 si = si->prev;
3367 xfree (dead->data);
3368 xfree (dead);
3369 return si;
3370}
3371
2af48f68
PB
3372
3373/* Return the alignment (in bytes) of the given type. */
3374
3375static int
3376arm_type_align (struct type *t)
3377{
3378 int n;
3379 int align;
3380 int falign;
3381
3382 t = check_typedef (t);
3383 switch (TYPE_CODE (t))
3384 {
3385 default:
3386 /* Should never happen. */
3387 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
3388 return 4;
3389
3390 case TYPE_CODE_PTR:
3391 case TYPE_CODE_ENUM:
3392 case TYPE_CODE_INT:
3393 case TYPE_CODE_FLT:
3394 case TYPE_CODE_SET:
3395 case TYPE_CODE_RANGE:
2af48f68
PB
3396 case TYPE_CODE_REF:
3397 case TYPE_CODE_CHAR:
3398 case TYPE_CODE_BOOL:
3399 return TYPE_LENGTH (t);
3400
3401 case TYPE_CODE_ARRAY:
c4312b19
YQ
3402 if (TYPE_VECTOR (t))
3403 {
3404 /* Use the natural alignment for vector types (the same for
3405 scalar type), but the maximum alignment is 64-bit. */
3406 if (TYPE_LENGTH (t) > 8)
3407 return 8;
3408 else
3409 return TYPE_LENGTH (t);
3410 }
3411 else
3412 return arm_type_align (TYPE_TARGET_TYPE (t));
2af48f68 3413 case TYPE_CODE_COMPLEX:
2af48f68
PB
3414 return arm_type_align (TYPE_TARGET_TYPE (t));
3415
3416 case TYPE_CODE_STRUCT:
3417 case TYPE_CODE_UNION:
3418 align = 1;
3419 for (n = 0; n < TYPE_NFIELDS (t); n++)
3420 {
3421 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
3422 if (falign > align)
3423 align = falign;
3424 }
3425 return align;
3426 }
3427}
3428
90445bd3
DJ
3429/* Possible base types for a candidate for passing and returning in
3430 VFP registers. */
3431
3432enum arm_vfp_cprc_base_type
3433{
3434 VFP_CPRC_UNKNOWN,
3435 VFP_CPRC_SINGLE,
3436 VFP_CPRC_DOUBLE,
3437 VFP_CPRC_VEC64,
3438 VFP_CPRC_VEC128
3439};
3440
3441/* The length of one element of base type B. */
3442
3443static unsigned
3444arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b)
3445{
3446 switch (b)
3447 {
3448 case VFP_CPRC_SINGLE:
3449 return 4;
3450 case VFP_CPRC_DOUBLE:
3451 return 8;
3452 case VFP_CPRC_VEC64:
3453 return 8;
3454 case VFP_CPRC_VEC128:
3455 return 16;
3456 default:
3457 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3458 (int) b);
3459 }
3460}
3461
3462/* The character ('s', 'd' or 'q') for the type of VFP register used
3463 for passing base type B. */
3464
3465static int
3466arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b)
3467{
3468 switch (b)
3469 {
3470 case VFP_CPRC_SINGLE:
3471 return 's';
3472 case VFP_CPRC_DOUBLE:
3473 return 'd';
3474 case VFP_CPRC_VEC64:
3475 return 'd';
3476 case VFP_CPRC_VEC128:
3477 return 'q';
3478 default:
3479 internal_error (__FILE__, __LINE__, _("Invalid VFP CPRC type: %d."),
3480 (int) b);
3481 }
3482}
3483
3484/* Determine whether T may be part of a candidate for passing and
3485 returning in VFP registers, ignoring the limit on the total number
3486 of components. If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the
3487 classification of the first valid component found; if it is not
3488 VFP_CPRC_UNKNOWN, all components must have the same classification
3489 as *BASE_TYPE. If it is found that T contains a type not permitted
3490 for passing and returning in VFP registers, a type differently
3491 classified from *BASE_TYPE, or two types differently classified
3492 from each other, return -1, otherwise return the total number of
3493 base-type elements found (possibly 0 in an empty structure or
817e0957
YQ
3494 array). Vector types are not currently supported, matching the
3495 generic AAPCS support. */
90445bd3
DJ
3496
3497static int
3498arm_vfp_cprc_sub_candidate (struct type *t,
3499 enum arm_vfp_cprc_base_type *base_type)
3500{
3501 t = check_typedef (t);
3502 switch (TYPE_CODE (t))
3503 {
3504 case TYPE_CODE_FLT:
3505 switch (TYPE_LENGTH (t))
3506 {
3507 case 4:
3508 if (*base_type == VFP_CPRC_UNKNOWN)
3509 *base_type = VFP_CPRC_SINGLE;
3510 else if (*base_type != VFP_CPRC_SINGLE)
3511 return -1;
3512 return 1;
3513
3514 case 8:
3515 if (*base_type == VFP_CPRC_UNKNOWN)
3516 *base_type = VFP_CPRC_DOUBLE;
3517 else if (*base_type != VFP_CPRC_DOUBLE)
3518 return -1;
3519 return 1;
3520
3521 default:
3522 return -1;
3523 }
3524 break;
3525
817e0957
YQ
3526 case TYPE_CODE_COMPLEX:
3527 /* Arguments of complex T where T is one of the types float or
3528 double get treated as if they are implemented as:
3529
3530 struct complexT
3531 {
3532 T real;
3533 T imag;
5f52445b
YQ
3534 };
3535
3536 */
817e0957
YQ
3537 switch (TYPE_LENGTH (t))
3538 {
3539 case 8:
3540 if (*base_type == VFP_CPRC_UNKNOWN)
3541 *base_type = VFP_CPRC_SINGLE;
3542 else if (*base_type != VFP_CPRC_SINGLE)
3543 return -1;
3544 return 2;
3545
3546 case 16:
3547 if (*base_type == VFP_CPRC_UNKNOWN)
3548 *base_type = VFP_CPRC_DOUBLE;
3549 else if (*base_type != VFP_CPRC_DOUBLE)
3550 return -1;
3551 return 2;
3552
3553 default:
3554 return -1;
3555 }
3556 break;
3557
90445bd3
DJ
3558 case TYPE_CODE_ARRAY:
3559 {
c4312b19 3560 if (TYPE_VECTOR (t))
90445bd3 3561 {
c4312b19
YQ
3562 /* A 64-bit or 128-bit containerized vector type are VFP
3563 CPRCs. */
3564 switch (TYPE_LENGTH (t))
3565 {
3566 case 8:
3567 if (*base_type == VFP_CPRC_UNKNOWN)
3568 *base_type = VFP_CPRC_VEC64;
3569 return 1;
3570 case 16:
3571 if (*base_type == VFP_CPRC_UNKNOWN)
3572 *base_type = VFP_CPRC_VEC128;
3573 return 1;
3574 default:
3575 return -1;
3576 }
3577 }
3578 else
3579 {
3580 int count;
3581 unsigned unitlen;
3582
3583 count = arm_vfp_cprc_sub_candidate (TYPE_TARGET_TYPE (t),
3584 base_type);
3585 if (count == -1)
3586 return -1;
3587 if (TYPE_LENGTH (t) == 0)
3588 {
3589 gdb_assert (count == 0);
3590 return 0;
3591 }
3592 else if (count == 0)
3593 return -1;
3594 unitlen = arm_vfp_cprc_unit_length (*base_type);
3595 gdb_assert ((TYPE_LENGTH (t) % unitlen) == 0);
3596 return TYPE_LENGTH (t) / unitlen;
90445bd3 3597 }
90445bd3
DJ
3598 }
3599 break;
3600
3601 case TYPE_CODE_STRUCT:
3602 {
3603 int count = 0;
3604 unsigned unitlen;
3605 int i;
3606 for (i = 0; i < TYPE_NFIELDS (t); i++)
3607 {
1040b979
YQ
3608 int sub_count = 0;
3609
3610 if (!field_is_static (&TYPE_FIELD (t, i)))
3611 sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3612 base_type);
90445bd3
DJ
3613 if (sub_count == -1)
3614 return -1;
3615 count += sub_count;
3616 }
3617 if (TYPE_LENGTH (t) == 0)
3618 {
3619 gdb_assert (count == 0);
3620 return 0;
3621 }
3622 else if (count == 0)
3623 return -1;
3624 unitlen = arm_vfp_cprc_unit_length (*base_type);
3625 if (TYPE_LENGTH (t) != unitlen * count)
3626 return -1;
3627 return count;
3628 }
3629
3630 case TYPE_CODE_UNION:
3631 {
3632 int count = 0;
3633 unsigned unitlen;
3634 int i;
3635 for (i = 0; i < TYPE_NFIELDS (t); i++)
3636 {
3637 int sub_count = arm_vfp_cprc_sub_candidate (TYPE_FIELD_TYPE (t, i),
3638 base_type);
3639 if (sub_count == -1)
3640 return -1;
3641 count = (count > sub_count ? count : sub_count);
3642 }
3643 if (TYPE_LENGTH (t) == 0)
3644 {
3645 gdb_assert (count == 0);
3646 return 0;
3647 }
3648 else if (count == 0)
3649 return -1;
3650 unitlen = arm_vfp_cprc_unit_length (*base_type);
3651 if (TYPE_LENGTH (t) != unitlen * count)
3652 return -1;
3653 return count;
3654 }
3655
3656 default:
3657 break;
3658 }
3659
3660 return -1;
3661}
3662
3663/* Determine whether T is a VFP co-processor register candidate (CPRC)
3664 if passed to or returned from a non-variadic function with the VFP
3665 ABI in effect. Return 1 if it is, 0 otherwise. If it is, set
3666 *BASE_TYPE to the base type for T and *COUNT to the number of
3667 elements of that base type before returning. */
3668
3669static int
3670arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type,
3671 int *count)
3672{
3673 enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN;
3674 int c = arm_vfp_cprc_sub_candidate (t, &b);
3675 if (c <= 0 || c > 4)
3676 return 0;
3677 *base_type = b;
3678 *count = c;
3679 return 1;
3680}
3681
3682/* Return 1 if the VFP ABI should be used for passing arguments to and
3683 returning values from a function of type FUNC_TYPE, 0
3684 otherwise. */
3685
3686static int
3687arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type)
3688{
3689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3690 /* Variadic functions always use the base ABI. Assume that functions
3691 without debug info are not variadic. */
3692 if (func_type && TYPE_VARARGS (check_typedef (func_type)))
3693 return 0;
3694 /* The VFP ABI is only supported as a variant of AAPCS. */
3695 if (tdep->arm_abi != ARM_ABI_AAPCS)
3696 return 0;
3697 return gdbarch_tdep (gdbarch)->fp_model == ARM_FLOAT_VFP;
3698}
3699
3700/* We currently only support passing parameters in integer registers, which
3701 conforms with GCC's default model, and VFP argument passing following
3702 the VFP variant of AAPCS. Several other variants exist and
2dd604e7
RE
3703 we should probably support some of them based on the selected ABI. */
3704
3705static CORE_ADDR
7d9b040b 3706arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
3707 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3708 struct value **args, CORE_ADDR sp, int struct_return,
3709 CORE_ADDR struct_addr)
2dd604e7 3710{
e17a4113 3711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2dd604e7
RE
3712 int argnum;
3713 int argreg;
3714 int nstack;
3715 struct stack_item *si = NULL;
90445bd3
DJ
3716 int use_vfp_abi;
3717 struct type *ftype;
3718 unsigned vfp_regs_free = (1 << 16) - 1;
3719
3720 /* Determine the type of this function and whether the VFP ABI
3721 applies. */
3722 ftype = check_typedef (value_type (function));
3723 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
3724 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
3725 use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype);
2dd604e7 3726
6a65450a
AC
3727 /* Set the return address. For the ARM, the return breakpoint is
3728 always at BP_ADDR. */
9779414d 3729 if (arm_pc_is_thumb (gdbarch, bp_addr))
9dca5578 3730 bp_addr |= 1;
6a65450a 3731 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
2dd604e7
RE
3732
3733 /* Walk through the list of args and determine how large a temporary
3734 stack is required. Need to take care here as structs may be
7a9dd1b2 3735 passed on the stack, and we have to push them. */
2dd604e7
RE
3736 nstack = 0;
3737
3738 argreg = ARM_A1_REGNUM;
3739 nstack = 0;
3740
2dd604e7
RE
3741 /* The struct_return pointer occupies the first parameter
3742 passing register. */
3743 if (struct_return)
3744 {
3745 if (arm_debug)
5af949e3 3746 fprintf_unfiltered (gdb_stdlog, "struct return in %s = %s\n",
2af46ca0 3747 gdbarch_register_name (gdbarch, argreg),
5af949e3 3748 paddress (gdbarch, struct_addr));
2dd604e7
RE
3749 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
3750 argreg++;
3751 }
3752
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 int len;
3756 struct type *arg_type;
3757 struct type *target_type;
3758 enum type_code typecode;
8c6363cf 3759 const bfd_byte *val;
2af48f68 3760 int align;
90445bd3
DJ
3761 enum arm_vfp_cprc_base_type vfp_base_type;
3762 int vfp_base_count;
3763 int may_use_core_reg = 1;
2dd604e7 3764
df407dfe 3765 arg_type = check_typedef (value_type (args[argnum]));
2dd604e7
RE
3766 len = TYPE_LENGTH (arg_type);
3767 target_type = TYPE_TARGET_TYPE (arg_type);
3768 typecode = TYPE_CODE (arg_type);
8c6363cf 3769 val = value_contents (args[argnum]);
2dd604e7 3770
2af48f68
PB
3771 align = arm_type_align (arg_type);
3772 /* Round alignment up to a whole number of words. */
3773 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
3774 /* Different ABIs have different maximum alignments. */
3775 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
3776 {
3777 /* The APCS ABI only requires word alignment. */
3778 align = INT_REGISTER_SIZE;
3779 }
3780 else
3781 {
3782 /* The AAPCS requires at most doubleword alignment. */
3783 if (align > INT_REGISTER_SIZE * 2)
3784 align = INT_REGISTER_SIZE * 2;
3785 }
3786
90445bd3
DJ
3787 if (use_vfp_abi
3788 && arm_vfp_call_candidate (arg_type, &vfp_base_type,
3789 &vfp_base_count))
3790 {
3791 int regno;
3792 int unit_length;
3793 int shift;
3794 unsigned mask;
3795
3796 /* Because this is a CPRC it cannot go in a core register or
3797 cause a core register to be skipped for alignment.
3798 Either it goes in VFP registers and the rest of this loop
3799 iteration is skipped for this argument, or it goes on the
3800 stack (and the stack alignment code is correct for this
3801 case). */
3802 may_use_core_reg = 0;
3803
3804 unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
3805 shift = unit_length / 4;
3806 mask = (1 << (shift * vfp_base_count)) - 1;
3807 for (regno = 0; regno < 16; regno += shift)
3808 if (((vfp_regs_free >> regno) & mask) == mask)
3809 break;
3810
3811 if (regno < 16)
3812 {
3813 int reg_char;
3814 int reg_scaled;
3815 int i;
3816
3817 vfp_regs_free &= ~(mask << regno);
3818 reg_scaled = regno / shift;
3819 reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
3820 for (i = 0; i < vfp_base_count; i++)
3821 {
3822 char name_buf[4];
3823 int regnum;
58d6951d
DJ
3824 if (reg_char == 'q')
3825 arm_neon_quad_write (gdbarch, regcache, reg_scaled + i,
90445bd3 3826 val + i * unit_length);
58d6951d
DJ
3827 else
3828 {
8c042590
PM
3829 xsnprintf (name_buf, sizeof (name_buf), "%c%d",
3830 reg_char, reg_scaled + i);
58d6951d
DJ
3831 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
3832 strlen (name_buf));
3833 regcache_cooked_write (regcache, regnum,
3834 val + i * unit_length);
3835 }
90445bd3
DJ
3836 }
3837 continue;
3838 }
3839 else
3840 {
3841 /* This CPRC could not go in VFP registers, so all VFP
3842 registers are now marked as used. */
3843 vfp_regs_free = 0;
3844 }
3845 }
3846
2af48f68
PB
3847 /* Push stack padding for dowubleword alignment. */
3848 if (nstack & (align - 1))
3849 {
3850 si = push_stack_item (si, val, INT_REGISTER_SIZE);
3851 nstack += INT_REGISTER_SIZE;
3852 }
3853
3854 /* Doubleword aligned quantities must go in even register pairs. */
90445bd3
DJ
3855 if (may_use_core_reg
3856 && argreg <= ARM_LAST_ARG_REGNUM
2af48f68
PB
3857 && align > INT_REGISTER_SIZE
3858 && argreg & 1)
3859 argreg++;
3860
2dd604e7
RE
3861 /* If the argument is a pointer to a function, and it is a
3862 Thumb function, create a LOCAL copy of the value and set
3863 the THUMB bit in it. */
3864 if (TYPE_CODE_PTR == typecode
3865 && target_type != NULL
f96b8fa0 3866 && TYPE_CODE_FUNC == TYPE_CODE (check_typedef (target_type)))
2dd604e7 3867 {
e17a4113 3868 CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order);
9779414d 3869 if (arm_pc_is_thumb (gdbarch, regval))
2dd604e7 3870 {
224c3ddb 3871 bfd_byte *copy = (bfd_byte *) alloca (len);
8c6363cf 3872 store_unsigned_integer (copy, len, byte_order,
e17a4113 3873 MAKE_THUMB_ADDR (regval));
8c6363cf 3874 val = copy;
2dd604e7
RE
3875 }
3876 }
3877
3878 /* Copy the argument to general registers or the stack in
3879 register-sized pieces. Large arguments are split between
3880 registers and stack. */
3881 while (len > 0)
3882 {
f0c9063c 3883 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
ef9bd0b8
YQ
3884 CORE_ADDR regval
3885 = extract_unsigned_integer (val, partial_len, byte_order);
2dd604e7 3886
90445bd3 3887 if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM)
2dd604e7
RE
3888 {
3889 /* The argument is being passed in a general purpose
3890 register. */
e17a4113 3891 if (byte_order == BFD_ENDIAN_BIG)
8bf8793c 3892 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
2dd604e7
RE
3893 if (arm_debug)
3894 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
c9f4d572
UW
3895 argnum,
3896 gdbarch_register_name
2af46ca0 3897 (gdbarch, argreg),
f0c9063c 3898 phex (regval, INT_REGISTER_SIZE));
2dd604e7
RE
3899 regcache_cooked_write_unsigned (regcache, argreg, regval);
3900 argreg++;
3901 }
3902 else
3903 {
ef9bd0b8
YQ
3904 gdb_byte buf[INT_REGISTER_SIZE];
3905
3906 memset (buf, 0, sizeof (buf));
3907 store_unsigned_integer (buf, partial_len, byte_order, regval);
3908
2dd604e7
RE
3909 /* Push the arguments onto the stack. */
3910 if (arm_debug)
3911 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
3912 argnum, nstack);
ef9bd0b8 3913 si = push_stack_item (si, buf, INT_REGISTER_SIZE);
f0c9063c 3914 nstack += INT_REGISTER_SIZE;
2dd604e7
RE
3915 }
3916
3917 len -= partial_len;
3918 val += partial_len;
3919 }
3920 }
3921 /* If we have an odd number of words to push, then decrement the stack
3922 by one word now, so first stack argument will be dword aligned. */
3923 if (nstack & 4)
3924 sp -= 4;
3925
3926 while (si)
3927 {
3928 sp -= si->len;
3929 write_memory (sp, si->data, si->len);
3930 si = pop_stack_item (si);
3931 }
3932
3933 /* Finally, update teh SP register. */
3934 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
3935
3936 return sp;
3937}
3938
f53f0d0b
PB
3939
3940/* Always align the frame to an 8-byte boundary. This is required on
3941 some platforms and harmless on the rest. */
3942
3943static CORE_ADDR
3944arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3945{
3946 /* Align the stack to eight bytes. */
3947 return sp & ~ (CORE_ADDR) 7;
3948}
3949
c906108c 3950static void
12b27276 3951print_fpu_flags (struct ui_file *file, int flags)
c906108c 3952{
c5aa993b 3953 if (flags & (1 << 0))
12b27276 3954 fputs_filtered ("IVO ", file);
c5aa993b 3955 if (flags & (1 << 1))
12b27276 3956 fputs_filtered ("DVZ ", file);
c5aa993b 3957 if (flags & (1 << 2))
12b27276 3958 fputs_filtered ("OFL ", file);
c5aa993b 3959 if (flags & (1 << 3))
12b27276 3960 fputs_filtered ("UFL ", file);
c5aa993b 3961 if (flags & (1 << 4))
12b27276
WN
3962 fputs_filtered ("INX ", file);
3963 fputc_filtered ('\n', file);
c906108c
SS
3964}
3965
5e74b15c
RE
3966/* Print interesting information about the floating point processor
3967 (if present) or emulator. */
34e8f22d 3968static void
d855c300 3969arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 3970 struct frame_info *frame, const char *args)
c906108c 3971{
9c9acae0 3972 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
c5aa993b
JM
3973 int type;
3974
3975 type = (status >> 24) & 127;
edefbb7c 3976 if (status & (1 << 31))
12b27276 3977 fprintf_filtered (file, _("Hardware FPU type %d\n"), type);
edefbb7c 3978 else
12b27276 3979 fprintf_filtered (file, _("Software FPU type %d\n"), type);
edefbb7c 3980 /* i18n: [floating point unit] mask */
12b27276
WN
3981 fputs_filtered (_("mask: "), file);
3982 print_fpu_flags (file, status >> 16);
edefbb7c 3983 /* i18n: [floating point unit] flags */
12b27276
WN
3984 fputs_filtered (_("flags: "), file);
3985 print_fpu_flags (file, status);
c906108c
SS
3986}
3987
27067745
UW
3988/* Construct the ARM extended floating point type. */
3989static struct type *
3990arm_ext_type (struct gdbarch *gdbarch)
3991{
3992 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3993
3994 if (!tdep->arm_ext_type)
3995 tdep->arm_ext_type
e9bb382b 3996 = arch_float_type (gdbarch, -1, "builtin_type_arm_ext",
27067745
UW
3997 floatformats_arm_ext);
3998
3999 return tdep->arm_ext_type;
4000}
4001
58d6951d
DJ
4002static struct type *
4003arm_neon_double_type (struct gdbarch *gdbarch)
4004{
4005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4006
4007 if (tdep->neon_double_type == NULL)
4008 {
4009 struct type *t, *elem;
4010
4011 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d",
4012 TYPE_CODE_UNION);
4013 elem = builtin_type (gdbarch)->builtin_uint8;
4014 append_composite_type_field (t, "u8", init_vector_type (elem, 8));
4015 elem = builtin_type (gdbarch)->builtin_uint16;
4016 append_composite_type_field (t, "u16", init_vector_type (elem, 4));
4017 elem = builtin_type (gdbarch)->builtin_uint32;
4018 append_composite_type_field (t, "u32", init_vector_type (elem, 2));
4019 elem = builtin_type (gdbarch)->builtin_uint64;
4020 append_composite_type_field (t, "u64", elem);
4021 elem = builtin_type (gdbarch)->builtin_float;
4022 append_composite_type_field (t, "f32", init_vector_type (elem, 2));
4023 elem = builtin_type (gdbarch)->builtin_double;
4024 append_composite_type_field (t, "f64", elem);
4025
4026 TYPE_VECTOR (t) = 1;
4027 TYPE_NAME (t) = "neon_d";
4028 tdep->neon_double_type = t;
4029 }
4030
4031 return tdep->neon_double_type;
4032}
4033
4034/* FIXME: The vector types are not correctly ordered on big-endian
4035 targets. Just as s0 is the low bits of d0, d0[0] is also the low
4036 bits of d0 - regardless of what unit size is being held in d0. So
4037 the offset of the first uint8 in d0 is 7, but the offset of the
4038 first float is 4. This code works as-is for little-endian
4039 targets. */
4040
4041static struct type *
4042arm_neon_quad_type (struct gdbarch *gdbarch)
4043{
4044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4045
4046 if (tdep->neon_quad_type == NULL)
4047 {
4048 struct type *t, *elem;
4049
4050 t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q",
4051 TYPE_CODE_UNION);
4052 elem = builtin_type (gdbarch)->builtin_uint8;
4053 append_composite_type_field (t, "u8", init_vector_type (elem, 16));
4054 elem = builtin_type (gdbarch)->builtin_uint16;
4055 append_composite_type_field (t, "u16", init_vector_type (elem, 8));
4056 elem = builtin_type (gdbarch)->builtin_uint32;
4057 append_composite_type_field (t, "u32", init_vector_type (elem, 4));
4058 elem = builtin_type (gdbarch)->builtin_uint64;
4059 append_composite_type_field (t, "u64", init_vector_type (elem, 2));
4060 elem = builtin_type (gdbarch)->builtin_float;
4061 append_composite_type_field (t, "f32", init_vector_type (elem, 4));
4062 elem = builtin_type (gdbarch)->builtin_double;
4063 append_composite_type_field (t, "f64", init_vector_type (elem, 2));
4064
4065 TYPE_VECTOR (t) = 1;
4066 TYPE_NAME (t) = "neon_q";
4067 tdep->neon_quad_type = t;
4068 }
4069
4070 return tdep->neon_quad_type;
4071}
4072
34e8f22d
RE
4073/* Return the GDB type object for the "standard" data type of data in
4074 register N. */
4075
4076static struct type *
7a5ea0d4 4077arm_register_type (struct gdbarch *gdbarch, int regnum)
032758dc 4078{
58d6951d
DJ
4079 int num_regs = gdbarch_num_regs (gdbarch);
4080
4081 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
4082 && regnum >= num_regs && regnum < num_regs + 32)
4083 return builtin_type (gdbarch)->builtin_float;
4084
4085 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
4086 && regnum >= num_regs + 32 && regnum < num_regs + 32 + 16)
4087 return arm_neon_quad_type (gdbarch);
4088
4089 /* If the target description has register information, we are only
4090 in this function so that we can override the types of
4091 double-precision registers for NEON. */
4092 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
4093 {
4094 struct type *t = tdesc_register_type (gdbarch, regnum);
4095
4096 if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32
4097 && TYPE_CODE (t) == TYPE_CODE_FLT
4098 && gdbarch_tdep (gdbarch)->have_neon)
4099 return arm_neon_double_type (gdbarch);
4100 else
4101 return t;
4102 }
4103
34e8f22d 4104 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
58d6951d
DJ
4105 {
4106 if (!gdbarch_tdep (gdbarch)->have_fpa_registers)
4107 return builtin_type (gdbarch)->builtin_void;
4108
4109 return arm_ext_type (gdbarch);
4110 }
e4c16157 4111 else if (regnum == ARM_SP_REGNUM)
0dfff4cb 4112 return builtin_type (gdbarch)->builtin_data_ptr;
e4c16157 4113 else if (regnum == ARM_PC_REGNUM)
0dfff4cb 4114 return builtin_type (gdbarch)->builtin_func_ptr;
ff6f572f
DJ
4115 else if (regnum >= ARRAY_SIZE (arm_register_names))
4116 /* These registers are only supported on targets which supply
4117 an XML description. */
df4df182 4118 return builtin_type (gdbarch)->builtin_int0;
032758dc 4119 else
df4df182 4120 return builtin_type (gdbarch)->builtin_uint32;
032758dc
AC
4121}
4122
ff6f572f
DJ
4123/* Map a DWARF register REGNUM onto the appropriate GDB register
4124 number. */
4125
4126static int
d3f73121 4127arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
ff6f572f
DJ
4128{
4129 /* Core integer regs. */
4130 if (reg >= 0 && reg <= 15)
4131 return reg;
4132
4133 /* Legacy FPA encoding. These were once used in a way which
4134 overlapped with VFP register numbering, so their use is
4135 discouraged, but GDB doesn't support the ARM toolchain
4136 which used them for VFP. */
4137 if (reg >= 16 && reg <= 23)
4138 return ARM_F0_REGNUM + reg - 16;
4139
4140 /* New assignments for the FPA registers. */
4141 if (reg >= 96 && reg <= 103)
4142 return ARM_F0_REGNUM + reg - 96;
4143
4144 /* WMMX register assignments. */
4145 if (reg >= 104 && reg <= 111)
4146 return ARM_WCGR0_REGNUM + reg - 104;
4147
4148 if (reg >= 112 && reg <= 127)
4149 return ARM_WR0_REGNUM + reg - 112;
4150
4151 if (reg >= 192 && reg <= 199)
4152 return ARM_WC0_REGNUM + reg - 192;
4153
58d6951d
DJ
4154 /* VFP v2 registers. A double precision value is actually
4155 in d1 rather than s2, but the ABI only defines numbering
4156 for the single precision registers. This will "just work"
4157 in GDB for little endian targets (we'll read eight bytes,
4158 starting in s0 and then progressing to s1), but will be
4159 reversed on big endian targets with VFP. This won't
4160 be a problem for the new Neon quad registers; you're supposed
4161 to use DW_OP_piece for those. */
4162 if (reg >= 64 && reg <= 95)
4163 {
4164 char name_buf[4];
4165
8c042590 4166 xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64);
58d6951d
DJ
4167 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4168 strlen (name_buf));
4169 }
4170
4171 /* VFP v3 / Neon registers. This range is also used for VFP v2
4172 registers, except that it now describes d0 instead of s0. */
4173 if (reg >= 256 && reg <= 287)
4174 {
4175 char name_buf[4];
4176
8c042590 4177 xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256);
58d6951d
DJ
4178 return user_reg_map_name_to_regnum (gdbarch, name_buf,
4179 strlen (name_buf));
4180 }
4181
ff6f572f
DJ
4182 return -1;
4183}
4184
26216b98
AC
4185/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
4186static int
e7faf938 4187arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
26216b98
AC
4188{
4189 int reg = regnum;
e7faf938 4190 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
26216b98 4191
ff6f572f
DJ
4192 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
4193 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
4194
4195 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
4196 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
4197
4198 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
4199 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
4200
26216b98
AC
4201 if (reg < NUM_GREGS)
4202 return SIM_ARM_R0_REGNUM + reg;
4203 reg -= NUM_GREGS;
4204
4205 if (reg < NUM_FREGS)
4206 return SIM_ARM_FP0_REGNUM + reg;
4207 reg -= NUM_FREGS;
4208
4209 if (reg < NUM_SREGS)
4210 return SIM_ARM_FPS_REGNUM + reg;
4211 reg -= NUM_SREGS;
4212
edefbb7c 4213 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
26216b98 4214}
34e8f22d 4215
a37b3cc0
AC
4216/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
4217 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
4218 It is thought that this is is the floating-point register format on
4219 little-endian systems. */
c906108c 4220
ed9a39eb 4221static void
b508a996 4222convert_from_extended (const struct floatformat *fmt, const void *ptr,
be8626e0 4223 void *dbl, int endianess)
c906108c 4224{
a37b3cc0 4225 DOUBLEST d;
be8626e0
MD
4226
4227 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4228 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
4229 else
4230 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
4231 ptr, &d);
b508a996 4232 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
4233}
4234
34e8f22d 4235static void
be8626e0
MD
4236convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
4237 int endianess)
c906108c 4238{
a37b3cc0 4239 DOUBLEST d;
be8626e0 4240
b508a996 4241 floatformat_to_doublest (fmt, ptr, &d);
be8626e0 4242 if (endianess == BFD_ENDIAN_BIG)
a37b3cc0
AC
4243 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
4244 else
4245 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
4246 &d, dbl);
c906108c 4247}
ed9a39eb 4248
d9311bfa
AT
4249/* Like insert_single_step_breakpoint, but make sure we use a breakpoint
4250 of the appropriate mode (as encoded in the PC value), even if this
4251 differs from what would be expected according to the symbol tables. */
4252
4253void
4254arm_insert_single_step_breakpoint (struct gdbarch *gdbarch,
4255 struct address_space *aspace,
4256 CORE_ADDR pc)
c906108c 4257{
b7b633e9
TT
4258 scoped_restore save_override_mode
4259 = make_scoped_restore (&arm_override_mode,
4260 (int) IS_THUMB_ADDR (pc));
d9311bfa 4261 pc = gdbarch_addr_bits_remove (gdbarch, pc);
c5aa993b 4262
d9311bfa 4263 insert_single_step_breakpoint (gdbarch, aspace, pc);
d9311bfa 4264}
c5aa993b 4265
d9311bfa
AT
4266/* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand
4267 the buffer to be NEW_LEN bytes ending at ENDADDR. Return
4268 NULL if an error occurs. BUF is freed. */
c906108c 4269
d9311bfa
AT
4270static gdb_byte *
4271extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr,
4272 int old_len, int new_len)
4273{
4274 gdb_byte *new_buf;
4275 int bytes_to_read = new_len - old_len;
c906108c 4276
d9311bfa
AT
4277 new_buf = (gdb_byte *) xmalloc (new_len);
4278 memcpy (new_buf + bytes_to_read, buf, old_len);
4279 xfree (buf);
4280 if (target_read_memory (endaddr - new_len, new_buf, bytes_to_read) != 0)
4281 {
4282 xfree (new_buf);
4283 return NULL;
c906108c 4284 }
d9311bfa 4285 return new_buf;
c906108c
SS
4286}
4287
d9311bfa
AT
4288/* An IT block is at most the 2-byte IT instruction followed by
4289 four 4-byte instructions. The furthest back we must search to
4290 find an IT block that affects the current instruction is thus
4291 2 + 3 * 4 == 14 bytes. */
4292#define MAX_IT_BLOCK_PREFIX 14
177321bd 4293
d9311bfa
AT
4294/* Use a quick scan if there are more than this many bytes of
4295 code. */
4296#define IT_SCAN_THRESHOLD 32
177321bd 4297
d9311bfa
AT
4298/* Adjust a breakpoint's address to move breakpoints out of IT blocks.
4299 A breakpoint in an IT block may not be hit, depending on the
4300 condition flags. */
ad527d2e 4301static CORE_ADDR
d9311bfa 4302arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
c906108c 4303{
d9311bfa
AT
4304 gdb_byte *buf;
4305 char map_type;
4306 CORE_ADDR boundary, func_start;
4307 int buf_len;
4308 enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch);
4309 int i, any, last_it, last_it_count;
177321bd 4310
d9311bfa
AT
4311 /* If we are using BKPT breakpoints, none of this is necessary. */
4312 if (gdbarch_tdep (gdbarch)->thumb2_breakpoint == NULL)
4313 return bpaddr;
177321bd 4314
d9311bfa
AT
4315 /* ARM mode does not have this problem. */
4316 if (!arm_pc_is_thumb (gdbarch, bpaddr))
4317 return bpaddr;
177321bd 4318
d9311bfa
AT
4319 /* We are setting a breakpoint in Thumb code that could potentially
4320 contain an IT block. The first step is to find how much Thumb
4321 code there is; we do not need to read outside of known Thumb
4322 sequences. */
4323 map_type = arm_find_mapping_symbol (bpaddr, &boundary);
4324 if (map_type == 0)
4325 /* Thumb-2 code must have mapping symbols to have a chance. */
4326 return bpaddr;
9dca5578 4327
d9311bfa 4328 bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr);
177321bd 4329
d9311bfa
AT
4330 if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)
4331 && func_start > boundary)
4332 boundary = func_start;
9dca5578 4333
d9311bfa
AT
4334 /* Search for a candidate IT instruction. We have to do some fancy
4335 footwork to distinguish a real IT instruction from the second
4336 half of a 32-bit instruction, but there is no need for that if
4337 there's no candidate. */
325fac50 4338 buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX);
d9311bfa
AT
4339 if (buf_len == 0)
4340 /* No room for an IT instruction. */
4341 return bpaddr;
c906108c 4342
d9311bfa
AT
4343 buf = (gdb_byte *) xmalloc (buf_len);
4344 if (target_read_memory (bpaddr - buf_len, buf, buf_len) != 0)
4345 return bpaddr;
4346 any = 0;
4347 for (i = 0; i < buf_len; i += 2)
c906108c 4348 {
d9311bfa
AT
4349 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4350 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
25b41d01 4351 {
d9311bfa
AT
4352 any = 1;
4353 break;
25b41d01 4354 }
c906108c 4355 }
d9311bfa
AT
4356
4357 if (any == 0)
c906108c 4358 {
d9311bfa
AT
4359 xfree (buf);
4360 return bpaddr;
f9d67f43
DJ
4361 }
4362
4363 /* OK, the code bytes before this instruction contain at least one
4364 halfword which resembles an IT instruction. We know that it's
4365 Thumb code, but there are still two possibilities. Either the
4366 halfword really is an IT instruction, or it is the second half of
4367 a 32-bit Thumb instruction. The only way we can tell is to
4368 scan forwards from a known instruction boundary. */
4369 if (bpaddr - boundary > IT_SCAN_THRESHOLD)
4370 {
4371 int definite;
4372
4373 /* There's a lot of code before this instruction. Start with an
4374 optimistic search; it's easy to recognize halfwords that can
4375 not be the start of a 32-bit instruction, and use that to
4376 lock on to the instruction boundaries. */
4377 buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD);
4378 if (buf == NULL)
4379 return bpaddr;
4380 buf_len = IT_SCAN_THRESHOLD;
4381
4382 definite = 0;
4383 for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2)
4384 {
4385 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4386 if (thumb_insn_size (inst1) == 2)
4387 {
4388 definite = 1;
4389 break;
4390 }
4391 }
4392
4393 /* At this point, if DEFINITE, BUF[I] is the first place we
4394 are sure that we know the instruction boundaries, and it is far
4395 enough from BPADDR that we could not miss an IT instruction
4396 affecting BPADDR. If ! DEFINITE, give up - start from a
4397 known boundary. */
4398 if (! definite)
4399 {
0963b4bd
MS
4400 buf = extend_buffer_earlier (buf, bpaddr, buf_len,
4401 bpaddr - boundary);
f9d67f43
DJ
4402 if (buf == NULL)
4403 return bpaddr;
4404 buf_len = bpaddr - boundary;
4405 i = 0;
4406 }
4407 }
4408 else
4409 {
4410 buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary);
4411 if (buf == NULL)
4412 return bpaddr;
4413 buf_len = bpaddr - boundary;
4414 i = 0;
4415 }
4416
4417 /* Scan forwards. Find the last IT instruction before BPADDR. */
4418 last_it = -1;
4419 last_it_count = 0;
4420 while (i < buf_len)
4421 {
4422 unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order);
4423 last_it_count--;
4424 if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
4425 {
4426 last_it = i;
4427 if (inst1 & 0x0001)
4428 last_it_count = 4;
4429 else if (inst1 & 0x0002)
4430 last_it_count = 3;
4431 else if (inst1 & 0x0004)
4432 last_it_count = 2;
4433 else
4434 last_it_count = 1;
4435 }
4436 i += thumb_insn_size (inst1);
4437 }
4438
4439 xfree (buf);
4440
4441 if (last_it == -1)
4442 /* There wasn't really an IT instruction after all. */
4443 return bpaddr;
4444
4445 if (last_it_count < 1)
4446 /* It was too far away. */
4447 return bpaddr;
4448
4449 /* This really is a trouble spot. Move the breakpoint to the IT
4450 instruction. */
4451 return bpaddr - buf_len + last_it;
4452}
4453
cca44b1b 4454/* ARM displaced stepping support.
c906108c 4455
cca44b1b 4456 Generally ARM displaced stepping works as follows:
c906108c 4457
cca44b1b 4458 1. When an instruction is to be single-stepped, it is first decoded by
2ba163c8
SM
4459 arm_process_displaced_insn. Depending on the type of instruction, it is
4460 then copied to a scratch location, possibly in a modified form. The
4461 copy_* set of functions performs such modification, as necessary. A
4462 breakpoint is placed after the modified instruction in the scratch space
4463 to return control to GDB. Note in particular that instructions which
4464 modify the PC will no longer do so after modification.
c5aa993b 4465
cca44b1b
JB
4466 2. The instruction is single-stepped, by setting the PC to the scratch
4467 location address, and resuming. Control returns to GDB when the
4468 breakpoint is hit.
c5aa993b 4469
cca44b1b
JB
4470 3. A cleanup function (cleanup_*) is called corresponding to the copy_*
4471 function used for the current instruction. This function's job is to
4472 put the CPU/memory state back to what it would have been if the
4473 instruction had been executed unmodified in its original location. */
c5aa993b 4474
cca44b1b
JB
4475/* NOP instruction (mov r0, r0). */
4476#define ARM_NOP 0xe1a00000
34518530 4477#define THUMB_NOP 0x4600
cca44b1b
JB
4478
4479/* Helper for register reads for displaced stepping. In particular, this
4480 returns the PC as it would be seen by the instruction at its original
4481 location. */
4482
4483ULONGEST
36073a92
YQ
4484displaced_read_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4485 int regno)
cca44b1b
JB
4486{
4487 ULONGEST ret;
36073a92 4488 CORE_ADDR from = dsc->insn_addr;
cca44b1b 4489
bf9f652a 4490 if (regno == ARM_PC_REGNUM)
cca44b1b 4491 {
4db71c0b
YQ
4492 /* Compute pipeline offset:
4493 - When executing an ARM instruction, PC reads as the address of the
4494 current instruction plus 8.
4495 - When executing a Thumb instruction, PC reads as the address of the
4496 current instruction plus 4. */
4497
36073a92 4498 if (!dsc->is_thumb)
4db71c0b
YQ
4499 from += 8;
4500 else
4501 from += 4;
4502
cca44b1b
JB
4503 if (debug_displaced)
4504 fprintf_unfiltered (gdb_stdlog, "displaced: read pc value %.8lx\n",
4db71c0b
YQ
4505 (unsigned long) from);
4506 return (ULONGEST) from;
cca44b1b 4507 }
c906108c 4508 else
cca44b1b
JB
4509 {
4510 regcache_cooked_read_unsigned (regs, regno, &ret);
4511 if (debug_displaced)
4512 fprintf_unfiltered (gdb_stdlog, "displaced: read r%d value %.8lx\n",
4513 regno, (unsigned long) ret);
4514 return ret;
4515 }
c906108c
SS
4516}
4517
cca44b1b
JB
4518static int
4519displaced_in_arm_mode (struct regcache *regs)
4520{
4521 ULONGEST ps;
9779414d 4522 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
66e810cd 4523
cca44b1b 4524 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
66e810cd 4525
9779414d 4526 return (ps & t_bit) == 0;
cca44b1b 4527}
66e810cd 4528
cca44b1b 4529/* Write to the PC as from a branch instruction. */
c906108c 4530
cca44b1b 4531static void
36073a92
YQ
4532branch_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4533 ULONGEST val)
c906108c 4534{
36073a92 4535 if (!dsc->is_thumb)
cca44b1b
JB
4536 /* Note: If bits 0/1 are set, this branch would be unpredictable for
4537 architecture versions < 6. */
0963b4bd
MS
4538 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4539 val & ~(ULONGEST) 0x3);
cca44b1b 4540 else
0963b4bd
MS
4541 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
4542 val & ~(ULONGEST) 0x1);
cca44b1b 4543}
66e810cd 4544
cca44b1b
JB
4545/* Write to the PC as from a branch-exchange instruction. */
4546
4547static void
4548bx_write_pc (struct regcache *regs, ULONGEST val)
4549{
4550 ULONGEST ps;
9779414d 4551 ULONGEST t_bit = arm_psr_thumb_bit (get_regcache_arch (regs));
cca44b1b
JB
4552
4553 regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps);
4554
4555 if ((val & 1) == 1)
c906108c 4556 {
9779414d 4557 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit);
cca44b1b
JB
4558 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe);
4559 }
4560 else if ((val & 2) == 0)
4561 {
9779414d 4562 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4563 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val);
c906108c
SS
4564 }
4565 else
4566 {
cca44b1b
JB
4567 /* Unpredictable behaviour. Try to do something sensible (switch to ARM
4568 mode, align dest to 4 bytes). */
4569 warning (_("Single-stepping BX to non-word-aligned ARM instruction."));
9779414d 4570 regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit);
cca44b1b 4571 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc);
c906108c
SS
4572 }
4573}
ed9a39eb 4574
cca44b1b 4575/* Write to the PC as if from a load instruction. */
ed9a39eb 4576
34e8f22d 4577static void
36073a92
YQ
4578load_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4579 ULONGEST val)
ed9a39eb 4580{
cca44b1b
JB
4581 if (DISPLACED_STEPPING_ARCH_VERSION >= 5)
4582 bx_write_pc (regs, val);
4583 else
36073a92 4584 branch_write_pc (regs, dsc, val);
cca44b1b 4585}
be8626e0 4586
cca44b1b
JB
4587/* Write to the PC as if from an ALU instruction. */
4588
4589static void
36073a92
YQ
4590alu_write_pc (struct regcache *regs, struct displaced_step_closure *dsc,
4591 ULONGEST val)
cca44b1b 4592{
36073a92 4593 if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb)
cca44b1b
JB
4594 bx_write_pc (regs, val);
4595 else
36073a92 4596 branch_write_pc (regs, dsc, val);
cca44b1b
JB
4597}
4598
4599/* Helper for writing to registers for displaced stepping. Writing to the PC
4600 has a varying effects depending on the instruction which does the write:
4601 this is controlled by the WRITE_PC argument. */
4602
4603void
4604displaced_write_reg (struct regcache *regs, struct displaced_step_closure *dsc,
4605 int regno, ULONGEST val, enum pc_write_style write_pc)
4606{
bf9f652a 4607 if (regno == ARM_PC_REGNUM)
08216dd7 4608 {
cca44b1b
JB
4609 if (debug_displaced)
4610 fprintf_unfiltered (gdb_stdlog, "displaced: writing pc %.8lx\n",
4611 (unsigned long) val);
4612 switch (write_pc)
08216dd7 4613 {
cca44b1b 4614 case BRANCH_WRITE_PC:
36073a92 4615 branch_write_pc (regs, dsc, val);
08216dd7
RE
4616 break;
4617
cca44b1b
JB
4618 case BX_WRITE_PC:
4619 bx_write_pc (regs, val);
4620 break;
4621
4622 case LOAD_WRITE_PC:
36073a92 4623 load_write_pc (regs, dsc, val);
cca44b1b
JB
4624 break;
4625
4626 case ALU_WRITE_PC:
36073a92 4627 alu_write_pc (regs, dsc, val);
cca44b1b
JB
4628 break;
4629
4630 case CANNOT_WRITE_PC:
4631 warning (_("Instruction wrote to PC in an unexpected way when "
4632 "single-stepping"));
08216dd7
RE
4633 break;
4634
4635 default:
97b9747c
JB
4636 internal_error (__FILE__, __LINE__,
4637 _("Invalid argument to displaced_write_reg"));
08216dd7 4638 }
b508a996 4639
cca44b1b 4640 dsc->wrote_to_pc = 1;
b508a996 4641 }
ed9a39eb 4642 else
b508a996 4643 {
cca44b1b
JB
4644 if (debug_displaced)
4645 fprintf_unfiltered (gdb_stdlog, "displaced: writing r%d value %.8lx\n",
4646 regno, (unsigned long) val);
4647 regcache_cooked_write_unsigned (regs, regno, val);
b508a996 4648 }
34e8f22d
RE
4649}
4650
cca44b1b
JB
4651/* This function is used to concisely determine if an instruction INSN
4652 references PC. Register fields of interest in INSN should have the
0963b4bd
MS
4653 corresponding fields of BITMASK set to 0b1111. The function
4654 returns return 1 if any of these fields in INSN reference the PC
4655 (also 0b1111, r15), else it returns 0. */
67255d04
RE
4656
4657static int
cca44b1b 4658insn_references_pc (uint32_t insn, uint32_t bitmask)
67255d04 4659{
cca44b1b 4660 uint32_t lowbit = 1;
67255d04 4661
cca44b1b
JB
4662 while (bitmask != 0)
4663 {
4664 uint32_t mask;
44e1a9eb 4665
cca44b1b
JB
4666 for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1)
4667 ;
67255d04 4668
cca44b1b
JB
4669 if (!lowbit)
4670 break;
67255d04 4671
cca44b1b 4672 mask = lowbit * 0xf;
67255d04 4673
cca44b1b
JB
4674 if ((insn & mask) == mask)
4675 return 1;
4676
4677 bitmask &= ~mask;
67255d04
RE
4678 }
4679
cca44b1b
JB
4680 return 0;
4681}
2af48f68 4682
cca44b1b
JB
4683/* The simplest copy function. Many instructions have the same effect no
4684 matter what address they are executed at: in those cases, use this. */
67255d04 4685
cca44b1b 4686static int
7ff120b4
YQ
4687arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn,
4688 const char *iname, struct displaced_step_closure *dsc)
cca44b1b
JB
4689{
4690 if (debug_displaced)
4691 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx, "
4692 "opcode/class '%s' unmodified\n", (unsigned long) insn,
4693 iname);
67255d04 4694
cca44b1b 4695 dsc->modinsn[0] = insn;
67255d04 4696
cca44b1b
JB
4697 return 0;
4698}
4699
34518530
YQ
4700static int
4701thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1,
4702 uint16_t insn2, const char *iname,
4703 struct displaced_step_closure *dsc)
4704{
4705 if (debug_displaced)
4706 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x %.4x, "
4707 "opcode/class '%s' unmodified\n", insn1, insn2,
4708 iname);
4709
4710 dsc->modinsn[0] = insn1;
4711 dsc->modinsn[1] = insn2;
4712 dsc->numinsns = 2;
4713
4714 return 0;
4715}
4716
4717/* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any
4718 modification. */
4719static int
615234c1 4720thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
4721 const char *iname,
4722 struct displaced_step_closure *dsc)
4723{
4724 if (debug_displaced)
4725 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x, "
4726 "opcode/class '%s' unmodified\n", insn,
4727 iname);
4728
4729 dsc->modinsn[0] = insn;
4730
4731 return 0;
4732}
4733
cca44b1b
JB
4734/* Preload instructions with immediate offset. */
4735
4736static void
6e39997a 4737cleanup_preload (struct gdbarch *gdbarch,
cca44b1b
JB
4738 struct regcache *regs, struct displaced_step_closure *dsc)
4739{
4740 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4741 if (!dsc->u.preload.immed)
4742 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
4743}
4744
7ff120b4
YQ
4745static void
4746install_preload (struct gdbarch *gdbarch, struct regcache *regs,
4747 struct displaced_step_closure *dsc, unsigned int rn)
cca44b1b 4748{
cca44b1b 4749 ULONGEST rn_val;
cca44b1b
JB
4750 /* Preload instructions:
4751
4752 {pli/pld} [rn, #+/-imm]
4753 ->
4754 {pli/pld} [r0, #+/-imm]. */
4755
36073a92
YQ
4756 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4757 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 4758 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
cca44b1b
JB
4759 dsc->u.preload.immed = 1;
4760
cca44b1b 4761 dsc->cleanup = &cleanup_preload;
cca44b1b
JB
4762}
4763
cca44b1b 4764static int
7ff120b4 4765arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
cca44b1b
JB
4766 struct displaced_step_closure *dsc)
4767{
4768 unsigned int rn = bits (insn, 16, 19);
cca44b1b 4769
7ff120b4
YQ
4770 if (!insn_references_pc (insn, 0x000f0000ul))
4771 return arm_copy_unmodified (gdbarch, insn, "preload", dsc);
cca44b1b
JB
4772
4773 if (debug_displaced)
4774 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4775 (unsigned long) insn);
4776
7ff120b4
YQ
4777 dsc->modinsn[0] = insn & 0xfff0ffff;
4778
4779 install_preload (gdbarch, regs, dsc, rn);
4780
4781 return 0;
4782}
4783
34518530
YQ
4784static int
4785thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
4786 struct regcache *regs, struct displaced_step_closure *dsc)
4787{
4788 unsigned int rn = bits (insn1, 0, 3);
4789 unsigned int u_bit = bit (insn1, 7);
4790 int imm12 = bits (insn2, 0, 11);
4791 ULONGEST pc_val;
4792
4793 if (rn != ARM_PC_REGNUM)
4794 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc);
4795
4796 /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and
4797 PLD (literal) Encoding T1. */
4798 if (debug_displaced)
4799 fprintf_unfiltered (gdb_stdlog,
4800 "displaced: copying pld/pli pc (0x%x) %c imm12 %.4x\n",
4801 (unsigned int) dsc->insn_addr, u_bit ? '+' : '-',
4802 imm12);
4803
4804 if (!u_bit)
4805 imm12 = -1 * imm12;
4806
4807 /* Rewrite instruction {pli/pld} PC imm12 into:
4808 Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12
4809
4810 {pli/pld} [r0, r1]
4811
4812 Cleanup: r0 <- tmp[0], r1 <- tmp[1]. */
4813
4814 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4815 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4816
4817 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
4818
4819 displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC);
4820 displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC);
4821 dsc->u.preload.immed = 0;
4822
4823 /* {pli/pld} [r0, r1] */
4824 dsc->modinsn[0] = insn1 & 0xfff0;
4825 dsc->modinsn[1] = 0xf001;
4826 dsc->numinsns = 2;
4827
4828 dsc->cleanup = &cleanup_preload;
4829 return 0;
4830}
4831
7ff120b4
YQ
4832/* Preload instructions with register offset. */
4833
4834static void
4835install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs,
4836 struct displaced_step_closure *dsc, unsigned int rn,
4837 unsigned int rm)
4838{
4839 ULONGEST rn_val, rm_val;
4840
cca44b1b
JB
4841 /* Preload register-offset instructions:
4842
4843 {pli/pld} [rn, rm {, shift}]
4844 ->
4845 {pli/pld} [r0, r1 {, shift}]. */
4846
36073a92
YQ
4847 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4848 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
4849 rn_val = displaced_read_reg (regs, dsc, rn);
4850 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
4851 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4852 displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC);
cca44b1b
JB
4853 dsc->u.preload.immed = 0;
4854
cca44b1b 4855 dsc->cleanup = &cleanup_preload;
7ff120b4
YQ
4856}
4857
4858static int
4859arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn,
4860 struct regcache *regs,
4861 struct displaced_step_closure *dsc)
4862{
4863 unsigned int rn = bits (insn, 16, 19);
4864 unsigned int rm = bits (insn, 0, 3);
4865
4866
4867 if (!insn_references_pc (insn, 0x000f000ful))
4868 return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc);
4869
4870 if (debug_displaced)
4871 fprintf_unfiltered (gdb_stdlog, "displaced: copying preload insn %.8lx\n",
4872 (unsigned long) insn);
4873
4874 dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1;
cca44b1b 4875
7ff120b4 4876 install_preload_reg (gdbarch, regs, dsc, rn, rm);
cca44b1b
JB
4877 return 0;
4878}
4879
4880/* Copy/cleanup coprocessor load and store instructions. */
4881
4882static void
6e39997a 4883cleanup_copro_load_store (struct gdbarch *gdbarch,
cca44b1b
JB
4884 struct regcache *regs,
4885 struct displaced_step_closure *dsc)
4886{
36073a92 4887 ULONGEST rn_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
4888
4889 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
4890
4891 if (dsc->u.ldst.writeback)
4892 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC);
4893}
4894
7ff120b4
YQ
4895static void
4896install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs,
4897 struct displaced_step_closure *dsc,
4898 int writeback, unsigned int rn)
cca44b1b 4899{
cca44b1b 4900 ULONGEST rn_val;
cca44b1b 4901
cca44b1b
JB
4902 /* Coprocessor load/store instructions:
4903
4904 {stc/stc2} [<Rn>, #+/-imm] (and other immediate addressing modes)
4905 ->
4906 {stc/stc2} [r0, #+/-imm].
4907
4908 ldc/ldc2 are handled identically. */
4909
36073a92
YQ
4910 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
4911 rn_val = displaced_read_reg (regs, dsc, rn);
2b16b2e3
YQ
4912 /* PC should be 4-byte aligned. */
4913 rn_val = rn_val & 0xfffffffc;
cca44b1b
JB
4914 displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC);
4915
7ff120b4 4916 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
4917 dsc->u.ldst.rn = rn;
4918
7ff120b4
YQ
4919 dsc->cleanup = &cleanup_copro_load_store;
4920}
4921
4922static int
4923arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn,
4924 struct regcache *regs,
4925 struct displaced_step_closure *dsc)
4926{
4927 unsigned int rn = bits (insn, 16, 19);
4928
4929 if (!insn_references_pc (insn, 0x000f0000ul))
4930 return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc);
4931
4932 if (debug_displaced)
4933 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4934 "load/store insn %.8lx\n", (unsigned long) insn);
4935
cca44b1b
JB
4936 dsc->modinsn[0] = insn & 0xfff0ffff;
4937
7ff120b4 4938 install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn);
cca44b1b
JB
4939
4940 return 0;
4941}
4942
34518530
YQ
4943static int
4944thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1,
4945 uint16_t insn2, struct regcache *regs,
4946 struct displaced_step_closure *dsc)
4947{
4948 unsigned int rn = bits (insn1, 0, 3);
4949
4950 if (rn != ARM_PC_REGNUM)
4951 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
4952 "copro load/store", dsc);
4953
4954 if (debug_displaced)
4955 fprintf_unfiltered (gdb_stdlog, "displaced: copying coprocessor "
4956 "load/store insn %.4x%.4x\n", insn1, insn2);
4957
4958 dsc->modinsn[0] = insn1 & 0xfff0;
4959 dsc->modinsn[1] = insn2;
4960 dsc->numinsns = 2;
4961
4962 /* This function is called for copying instruction LDC/LDC2/VLDR, which
4963 doesn't support writeback, so pass 0. */
4964 install_copro_load_store (gdbarch, regs, dsc, 0, rn);
4965
4966 return 0;
4967}
4968
cca44b1b
JB
4969/* Clean up branch instructions (actually perform the branch, by setting
4970 PC). */
4971
4972static void
6e39997a 4973cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
4974 struct displaced_step_closure *dsc)
4975{
36073a92 4976 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
4977 int branch_taken = condition_true (dsc->u.branch.cond, status);
4978 enum pc_write_style write_pc = dsc->u.branch.exchange
4979 ? BX_WRITE_PC : BRANCH_WRITE_PC;
4980
4981 if (!branch_taken)
4982 return;
4983
4984 if (dsc->u.branch.link)
4985 {
8c8dba6d
YQ
4986 /* The value of LR should be the next insn of current one. In order
4987 not to confuse logic hanlding later insn `bx lr', if current insn mode
4988 is Thumb, the bit 0 of LR value should be set to 1. */
4989 ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size;
4990
4991 if (dsc->is_thumb)
4992 next_insn_addr |= 0x1;
4993
4994 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr,
4995 CANNOT_WRITE_PC);
cca44b1b
JB
4996 }
4997
bf9f652a 4998 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc);
cca44b1b
JB
4999}
5000
5001/* Copy B/BL/BLX instructions with immediate destinations. */
5002
7ff120b4
YQ
5003static void
5004install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs,
5005 struct displaced_step_closure *dsc,
5006 unsigned int cond, int exchange, int link, long offset)
5007{
5008 /* Implement "BL<cond> <label>" as:
5009
5010 Preparation: cond <- instruction condition
5011 Insn: mov r0, r0 (nop)
5012 Cleanup: if (condition true) { r14 <- pc; pc <- label }.
5013
5014 B<cond> similar, but don't set r14 in cleanup. */
5015
5016 dsc->u.branch.cond = cond;
5017 dsc->u.branch.link = link;
5018 dsc->u.branch.exchange = exchange;
5019
2b16b2e3
YQ
5020 dsc->u.branch.dest = dsc->insn_addr;
5021 if (link && exchange)
5022 /* For BLX, offset is computed from the Align (PC, 4). */
5023 dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc;
5024
7ff120b4 5025 if (dsc->is_thumb)
2b16b2e3 5026 dsc->u.branch.dest += 4 + offset;
7ff120b4 5027 else
2b16b2e3 5028 dsc->u.branch.dest += 8 + offset;
7ff120b4
YQ
5029
5030 dsc->cleanup = &cleanup_branch;
5031}
cca44b1b 5032static int
7ff120b4
YQ
5033arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn,
5034 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5035{
5036 unsigned int cond = bits (insn, 28, 31);
5037 int exchange = (cond == 0xf);
5038 int link = exchange || bit (insn, 24);
cca44b1b
JB
5039 long offset;
5040
5041 if (debug_displaced)
5042 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s immediate insn "
5043 "%.8lx\n", (exchange) ? "blx" : (link) ? "bl" : "b",
5044 (unsigned long) insn);
cca44b1b
JB
5045 if (exchange)
5046 /* For BLX, set bit 0 of the destination. The cleanup_branch function will
5047 then arrange the switch into Thumb mode. */
5048 offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1;
5049 else
5050 offset = bits (insn, 0, 23) << 2;
5051
5052 if (bit (offset, 25))
5053 offset = offset | ~0x3ffffff;
5054
cca44b1b
JB
5055 dsc->modinsn[0] = ARM_NOP;
5056
7ff120b4 5057 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
cca44b1b
JB
5058 return 0;
5059}
5060
34518530
YQ
5061static int
5062thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1,
5063 uint16_t insn2, struct regcache *regs,
5064 struct displaced_step_closure *dsc)
5065{
5066 int link = bit (insn2, 14);
5067 int exchange = link && !bit (insn2, 12);
5068 int cond = INST_AL;
5069 long offset = 0;
5070 int j1 = bit (insn2, 13);
5071 int j2 = bit (insn2, 11);
5072 int s = sbits (insn1, 10, 10);
5073 int i1 = !(j1 ^ bit (insn1, 10));
5074 int i2 = !(j2 ^ bit (insn1, 10));
5075
5076 if (!link && !exchange) /* B */
5077 {
5078 offset = (bits (insn2, 0, 10) << 1);
5079 if (bit (insn2, 12)) /* Encoding T4 */
5080 {
5081 offset |= (bits (insn1, 0, 9) << 12)
5082 | (i2 << 22)
5083 | (i1 << 23)
5084 | (s << 24);
5085 cond = INST_AL;
5086 }
5087 else /* Encoding T3 */
5088 {
5089 offset |= (bits (insn1, 0, 5) << 12)
5090 | (j1 << 18)
5091 | (j2 << 19)
5092 | (s << 20);
5093 cond = bits (insn1, 6, 9);
5094 }
5095 }
5096 else
5097 {
5098 offset = (bits (insn1, 0, 9) << 12);
5099 offset |= ((i2 << 22) | (i1 << 23) | (s << 24));
5100 offset |= exchange ?
5101 (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1);
5102 }
5103
5104 if (debug_displaced)
5105 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s insn "
5106 "%.4x %.4x with offset %.8lx\n",
5107 link ? (exchange) ? "blx" : "bl" : "b",
5108 insn1, insn2, offset);
5109
5110 dsc->modinsn[0] = THUMB_NOP;
5111
5112 install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset);
5113 return 0;
5114}
5115
5116/* Copy B Thumb instructions. */
5117static int
615234c1 5118thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn,
34518530
YQ
5119 struct displaced_step_closure *dsc)
5120{
5121 unsigned int cond = 0;
5122 int offset = 0;
5123 unsigned short bit_12_15 = bits (insn, 12, 15);
5124 CORE_ADDR from = dsc->insn_addr;
5125
5126 if (bit_12_15 == 0xd)
5127 {
5128 /* offset = SignExtend (imm8:0, 32) */
5129 offset = sbits ((insn << 1), 0, 8);
5130 cond = bits (insn, 8, 11);
5131 }
5132 else if (bit_12_15 == 0xe) /* Encoding T2 */
5133 {
5134 offset = sbits ((insn << 1), 0, 11);
5135 cond = INST_AL;
5136 }
5137
5138 if (debug_displaced)
5139 fprintf_unfiltered (gdb_stdlog,
5140 "displaced: copying b immediate insn %.4x "
5141 "with offset %d\n", insn, offset);
5142
5143 dsc->u.branch.cond = cond;
5144 dsc->u.branch.link = 0;
5145 dsc->u.branch.exchange = 0;
5146 dsc->u.branch.dest = from + 4 + offset;
5147
5148 dsc->modinsn[0] = THUMB_NOP;
5149
5150 dsc->cleanup = &cleanup_branch;
5151
5152 return 0;
5153}
5154
cca44b1b
JB
5155/* Copy BX/BLX with register-specified destinations. */
5156
7ff120b4
YQ
5157static void
5158install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs,
5159 struct displaced_step_closure *dsc, int link,
5160 unsigned int cond, unsigned int rm)
cca44b1b 5161{
cca44b1b
JB
5162 /* Implement {BX,BLX}<cond> <reg>" as:
5163
5164 Preparation: cond <- instruction condition
5165 Insn: mov r0, r0 (nop)
5166 Cleanup: if (condition true) { r14 <- pc; pc <- dest; }.
5167
5168 Don't set r14 in cleanup for BX. */
5169
36073a92 5170 dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5171
5172 dsc->u.branch.cond = cond;
5173 dsc->u.branch.link = link;
cca44b1b 5174
7ff120b4 5175 dsc->u.branch.exchange = 1;
cca44b1b
JB
5176
5177 dsc->cleanup = &cleanup_branch;
7ff120b4 5178}
cca44b1b 5179
7ff120b4
YQ
5180static int
5181arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn,
5182 struct regcache *regs, struct displaced_step_closure *dsc)
5183{
5184 unsigned int cond = bits (insn, 28, 31);
5185 /* BX: x12xxx1x
5186 BLX: x12xxx3x. */
5187 int link = bit (insn, 5);
5188 unsigned int rm = bits (insn, 0, 3);
5189
5190 if (debug_displaced)
5191 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.8lx",
5192 (unsigned long) insn);
5193
5194 dsc->modinsn[0] = ARM_NOP;
5195
5196 install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm);
cca44b1b
JB
5197 return 0;
5198}
5199
34518530
YQ
5200static int
5201thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn,
5202 struct regcache *regs,
5203 struct displaced_step_closure *dsc)
5204{
5205 int link = bit (insn, 7);
5206 unsigned int rm = bits (insn, 3, 6);
5207
5208 if (debug_displaced)
5209 fprintf_unfiltered (gdb_stdlog, "displaced: copying insn %.4x",
5210 (unsigned short) insn);
5211
5212 dsc->modinsn[0] = THUMB_NOP;
5213
5214 install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm);
5215
5216 return 0;
5217}
5218
5219
0963b4bd 5220/* Copy/cleanup arithmetic/logic instruction with immediate RHS. */
cca44b1b
JB
5221
5222static void
6e39997a 5223cleanup_alu_imm (struct gdbarch *gdbarch,
cca44b1b
JB
5224 struct regcache *regs, struct displaced_step_closure *dsc)
5225{
36073a92 5226 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5227 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5228 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5229 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5230}
5231
5232static int
7ff120b4
YQ
5233arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5234 struct displaced_step_closure *dsc)
cca44b1b
JB
5235{
5236 unsigned int rn = bits (insn, 16, 19);
5237 unsigned int rd = bits (insn, 12, 15);
5238 unsigned int op = bits (insn, 21, 24);
5239 int is_mov = (op == 0xd);
5240 ULONGEST rd_val, rn_val;
cca44b1b
JB
5241
5242 if (!insn_references_pc (insn, 0x000ff000ul))
7ff120b4 5243 return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc);
cca44b1b
JB
5244
5245 if (debug_displaced)
5246 fprintf_unfiltered (gdb_stdlog, "displaced: copying immediate %s insn "
5247 "%.8lx\n", is_mov ? "move" : "ALU",
5248 (unsigned long) insn);
5249
5250 /* Instruction is of form:
5251
5252 <op><cond> rd, [rn,] #imm
5253
5254 Rewrite as:
5255
5256 Preparation: tmp1, tmp2 <- r0, r1;
5257 r0, r1 <- rd, rn
5258 Insn: <op><cond> r0, r1, #imm
5259 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5260 */
5261
36073a92
YQ
5262 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5263 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5264 rn_val = displaced_read_reg (regs, dsc, rn);
5265 rd_val = displaced_read_reg (regs, dsc, rd);
cca44b1b
JB
5266 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5267 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5268 dsc->rd = rd;
5269
5270 if (is_mov)
5271 dsc->modinsn[0] = insn & 0xfff00fff;
5272 else
5273 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000;
5274
5275 dsc->cleanup = &cleanup_alu_imm;
5276
5277 return 0;
5278}
5279
34518530
YQ
5280static int
5281thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1,
5282 uint16_t insn2, struct regcache *regs,
5283 struct displaced_step_closure *dsc)
5284{
5285 unsigned int op = bits (insn1, 5, 8);
5286 unsigned int rn, rm, rd;
5287 ULONGEST rd_val, rn_val;
5288
5289 rn = bits (insn1, 0, 3); /* Rn */
5290 rm = bits (insn2, 0, 3); /* Rm */
5291 rd = bits (insn2, 8, 11); /* Rd */
5292
5293 /* This routine is only called for instruction MOV. */
5294 gdb_assert (op == 0x2 && rn == 0xf);
5295
5296 if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM)
5297 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc);
5298
5299 if (debug_displaced)
5300 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.4x%.4x\n",
5301 "ALU", insn1, insn2);
5302
5303 /* Instruction is of form:
5304
5305 <op><cond> rd, [rn,] #imm
5306
5307 Rewrite as:
5308
5309 Preparation: tmp1, tmp2 <- r0, r1;
5310 r0, r1 <- rd, rn
5311 Insn: <op><cond> r0, r1, #imm
5312 Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2
5313 */
5314
5315 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5316 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5317 rn_val = displaced_read_reg (regs, dsc, rn);
5318 rd_val = displaced_read_reg (regs, dsc, rd);
5319 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5320 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5321 dsc->rd = rd;
5322
5323 dsc->modinsn[0] = insn1;
5324 dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1);
5325 dsc->numinsns = 2;
5326
5327 dsc->cleanup = &cleanup_alu_imm;
5328
5329 return 0;
5330}
5331
cca44b1b
JB
5332/* Copy/cleanup arithmetic/logic insns with register RHS. */
5333
5334static void
6e39997a 5335cleanup_alu_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5336 struct regcache *regs, struct displaced_step_closure *dsc)
5337{
5338 ULONGEST rd_val;
5339 int i;
5340
36073a92 5341 rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5342
5343 for (i = 0; i < 3; i++)
5344 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5345
5346 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5347}
5348
7ff120b4
YQ
5349static void
5350install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs,
5351 struct displaced_step_closure *dsc,
5352 unsigned int rd, unsigned int rn, unsigned int rm)
cca44b1b 5353{
cca44b1b 5354 ULONGEST rd_val, rn_val, rm_val;
cca44b1b 5355
cca44b1b
JB
5356 /* Instruction is of form:
5357
5358 <op><cond> rd, [rn,] rm [, <shift>]
5359
5360 Rewrite as:
5361
5362 Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2;
5363 r0, r1, r2 <- rd, rn, rm
ef713951 5364 Insn: <op><cond> r0, [r1,] r2 [, <shift>]
cca44b1b
JB
5365 Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3
5366 */
5367
36073a92
YQ
5368 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5369 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5370 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5371 rd_val = displaced_read_reg (regs, dsc, rd);
5372 rn_val = displaced_read_reg (regs, dsc, rn);
5373 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5374 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5375 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5376 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5377 dsc->rd = rd;
5378
7ff120b4
YQ
5379 dsc->cleanup = &cleanup_alu_reg;
5380}
5381
5382static int
5383arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs,
5384 struct displaced_step_closure *dsc)
5385{
5386 unsigned int op = bits (insn, 21, 24);
5387 int is_mov = (op == 0xd);
5388
5389 if (!insn_references_pc (insn, 0x000ff00ful))
5390 return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc);
5391
5392 if (debug_displaced)
5393 fprintf_unfiltered (gdb_stdlog, "displaced: copying reg %s insn %.8lx\n",
5394 is_mov ? "move" : "ALU", (unsigned long) insn);
5395
cca44b1b
JB
5396 if (is_mov)
5397 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2;
5398 else
5399 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002;
5400
7ff120b4
YQ
5401 install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19),
5402 bits (insn, 0, 3));
cca44b1b
JB
5403 return 0;
5404}
5405
34518530
YQ
5406static int
5407thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn,
5408 struct regcache *regs,
5409 struct displaced_step_closure *dsc)
5410{
ef713951 5411 unsigned rm, rd;
34518530 5412
ef713951
YQ
5413 rm = bits (insn, 3, 6);
5414 rd = (bit (insn, 7) << 3) | bits (insn, 0, 2);
34518530 5415
ef713951 5416 if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM)
34518530
YQ
5417 return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc);
5418
5419 if (debug_displaced)
ef713951
YQ
5420 fprintf_unfiltered (gdb_stdlog, "displaced: copying ALU reg insn %.4x\n",
5421 (unsigned short) insn);
34518530 5422
ef713951 5423 dsc->modinsn[0] = ((insn & 0xff00) | 0x10);
34518530 5424
ef713951 5425 install_alu_reg (gdbarch, regs, dsc, rd, rd, rm);
34518530
YQ
5426
5427 return 0;
5428}
5429
cca44b1b
JB
5430/* Cleanup/copy arithmetic/logic insns with shifted register RHS. */
5431
5432static void
6e39997a 5433cleanup_alu_shifted_reg (struct gdbarch *gdbarch,
cca44b1b
JB
5434 struct regcache *regs,
5435 struct displaced_step_closure *dsc)
5436{
36073a92 5437 ULONGEST rd_val = displaced_read_reg (regs, dsc, 0);
cca44b1b
JB
5438 int i;
5439
5440 for (i = 0; i < 4; i++)
5441 displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC);
5442
5443 displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC);
5444}
5445
7ff120b4
YQ
5446static void
5447install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs,
5448 struct displaced_step_closure *dsc,
5449 unsigned int rd, unsigned int rn, unsigned int rm,
5450 unsigned rs)
cca44b1b 5451{
7ff120b4 5452 int i;
cca44b1b 5453 ULONGEST rd_val, rn_val, rm_val, rs_val;
cca44b1b 5454
cca44b1b
JB
5455 /* Instruction is of form:
5456
5457 <op><cond> rd, [rn,] rm, <shift> rs
5458
5459 Rewrite as:
5460
5461 Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3
5462 r0, r1, r2, r3 <- rd, rn, rm, rs
5463 Insn: <op><cond> r0, r1, r2, <shift> r3
5464 Cleanup: tmp5 <- r0
5465 r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4
5466 rd <- tmp5
5467 */
5468
5469 for (i = 0; i < 4; i++)
36073a92 5470 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b 5471
36073a92
YQ
5472 rd_val = displaced_read_reg (regs, dsc, rd);
5473 rn_val = displaced_read_reg (regs, dsc, rn);
5474 rm_val = displaced_read_reg (regs, dsc, rm);
5475 rs_val = displaced_read_reg (regs, dsc, rs);
cca44b1b
JB
5476 displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC);
5477 displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC);
5478 displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC);
5479 displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC);
5480 dsc->rd = rd;
7ff120b4
YQ
5481 dsc->cleanup = &cleanup_alu_shifted_reg;
5482}
5483
5484static int
5485arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn,
5486 struct regcache *regs,
5487 struct displaced_step_closure *dsc)
5488{
5489 unsigned int op = bits (insn, 21, 24);
5490 int is_mov = (op == 0xd);
5491 unsigned int rd, rn, rm, rs;
5492
5493 if (!insn_references_pc (insn, 0x000fff0ful))
5494 return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc);
5495
5496 if (debug_displaced)
5497 fprintf_unfiltered (gdb_stdlog, "displaced: copying shifted reg %s insn "
5498 "%.8lx\n", is_mov ? "move" : "ALU",
5499 (unsigned long) insn);
5500
5501 rn = bits (insn, 16, 19);
5502 rm = bits (insn, 0, 3);
5503 rs = bits (insn, 8, 11);
5504 rd = bits (insn, 12, 15);
cca44b1b
JB
5505
5506 if (is_mov)
5507 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302;
5508 else
5509 dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302;
5510
7ff120b4 5511 install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs);
cca44b1b
JB
5512
5513 return 0;
5514}
5515
5516/* Clean up load instructions. */
5517
5518static void
6e39997a 5519cleanup_load (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5520 struct displaced_step_closure *dsc)
5521{
5522 ULONGEST rt_val, rt_val2 = 0, rn_val;
cca44b1b 5523
36073a92 5524 rt_val = displaced_read_reg (regs, dsc, 0);
cca44b1b 5525 if (dsc->u.ldst.xfersize == 8)
36073a92
YQ
5526 rt_val2 = displaced_read_reg (regs, dsc, 1);
5527 rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5528
5529 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5530 if (dsc->u.ldst.xfersize > 4)
5531 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5532 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5533 if (!dsc->u.ldst.immed)
5534 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5535
5536 /* Handle register writeback. */
5537 if (dsc->u.ldst.writeback)
5538 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5539 /* Put result in right place. */
5540 displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC);
5541 if (dsc->u.ldst.xfersize == 8)
5542 displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC);
5543}
5544
5545/* Clean up store instructions. */
5546
5547static void
6e39997a 5548cleanup_store (struct gdbarch *gdbarch, struct regcache *regs,
cca44b1b
JB
5549 struct displaced_step_closure *dsc)
5550{
36073a92 5551 ULONGEST rn_val = displaced_read_reg (regs, dsc, 2);
cca44b1b
JB
5552
5553 displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC);
5554 if (dsc->u.ldst.xfersize > 4)
5555 displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC);
5556 displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC);
5557 if (!dsc->u.ldst.immed)
5558 displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC);
5559 if (!dsc->u.ldst.restore_r4)
5560 displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC);
5561
5562 /* Writeback. */
5563 if (dsc->u.ldst.writeback)
5564 displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC);
5565}
5566
5567/* Copy "extra" load/store instructions. These are halfword/doubleword
5568 transfers, which have a different encoding to byte/word transfers. */
5569
5570static int
550dc4e2 5571arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged,
7ff120b4 5572 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
5573{
5574 unsigned int op1 = bits (insn, 20, 24);
5575 unsigned int op2 = bits (insn, 5, 6);
5576 unsigned int rt = bits (insn, 12, 15);
5577 unsigned int rn = bits (insn, 16, 19);
5578 unsigned int rm = bits (insn, 0, 3);
5579 char load[12] = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1};
5580 char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2};
5581 int immed = (op1 & 0x4) != 0;
5582 int opcode;
5583 ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0;
cca44b1b
JB
5584
5585 if (!insn_references_pc (insn, 0x000ff00ful))
7ff120b4 5586 return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc);
cca44b1b
JB
5587
5588 if (debug_displaced)
5589 fprintf_unfiltered (gdb_stdlog, "displaced: copying %sextra load/store "
550dc4e2 5590 "insn %.8lx\n", unprivileged ? "unprivileged " : "",
cca44b1b
JB
5591 (unsigned long) insn);
5592
5593 opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4;
5594
5595 if (opcode < 0)
5596 internal_error (__FILE__, __LINE__,
5597 _("copy_extra_ld_st: instruction decode error"));
5598
36073a92
YQ
5599 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5600 dsc->tmp[1] = displaced_read_reg (regs, dsc, 1);
5601 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5602 if (!immed)
36073a92 5603 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5604
36073a92 5605 rt_val = displaced_read_reg (regs, dsc, rt);
cca44b1b 5606 if (bytesize[opcode] == 8)
36073a92
YQ
5607 rt_val2 = displaced_read_reg (regs, dsc, rt + 1);
5608 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5609 if (!immed)
36073a92 5610 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5611
5612 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5613 if (bytesize[opcode] == 8)
5614 displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC);
5615 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5616 if (!immed)
5617 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
5618
5619 dsc->rd = rt;
5620 dsc->u.ldst.xfersize = bytesize[opcode];
5621 dsc->u.ldst.rn = rn;
5622 dsc->u.ldst.immed = immed;
5623 dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0;
5624 dsc->u.ldst.restore_r4 = 0;
5625
5626 if (immed)
5627 /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm]
5628 ->
5629 {ldr,str}<width><cond> r0, [r1,] [r2, #imm]. */
5630 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5631 else
5632 /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm]
5633 ->
5634 {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3]. */
5635 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5636
5637 dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store;
5638
5639 return 0;
5640}
5641
0f6f04ba 5642/* Copy byte/half word/word loads and stores. */
cca44b1b 5643
7ff120b4 5644static void
0f6f04ba
YQ
5645install_load_store (struct gdbarch *gdbarch, struct regcache *regs,
5646 struct displaced_step_closure *dsc, int load,
5647 int immed, int writeback, int size, int usermode,
5648 int rt, int rm, int rn)
cca44b1b 5649{
cca44b1b 5650 ULONGEST rt_val, rn_val, rm_val = 0;
cca44b1b 5651
36073a92
YQ
5652 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5653 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
cca44b1b 5654 if (!immed)
36073a92 5655 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
cca44b1b 5656 if (!load)
36073a92 5657 dsc->tmp[4] = displaced_read_reg (regs, dsc, 4);
cca44b1b 5658
36073a92
YQ
5659 rt_val = displaced_read_reg (regs, dsc, rt);
5660 rn_val = displaced_read_reg (regs, dsc, rn);
cca44b1b 5661 if (!immed)
36073a92 5662 rm_val = displaced_read_reg (regs, dsc, rm);
cca44b1b
JB
5663
5664 displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC);
5665 displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC);
5666 if (!immed)
5667 displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC);
cca44b1b 5668 dsc->rd = rt;
0f6f04ba 5669 dsc->u.ldst.xfersize = size;
cca44b1b
JB
5670 dsc->u.ldst.rn = rn;
5671 dsc->u.ldst.immed = immed;
7ff120b4 5672 dsc->u.ldst.writeback = writeback;
cca44b1b
JB
5673
5674 /* To write PC we can do:
5675
494e194e
YQ
5676 Before this sequence of instructions:
5677 r0 is the PC value got from displaced_read_reg, so r0 = from + 8;
5678 r2 is the Rn value got from dispalced_read_reg.
5679
5680 Insn1: push {pc} Write address of STR instruction + offset on stack
5681 Insn2: pop {r4} Read it back from stack, r4 = addr(Insn1) + offset
5682 Insn3: sub r4, r4, pc r4 = addr(Insn1) + offset - pc
5683 = addr(Insn1) + offset - addr(Insn3) - 8
5684 = offset - 16
5685 Insn4: add r4, r4, #8 r4 = offset - 8
5686 Insn5: add r0, r0, r4 r0 = from + 8 + offset - 8
5687 = from + offset
5688 Insn6: str r0, [r2, #imm] (or str r0, [r2, r3])
cca44b1b
JB
5689
5690 Otherwise we don't know what value to write for PC, since the offset is
494e194e
YQ
5691 architecture-dependent (sometimes PC+8, sometimes PC+12). More details
5692 of this can be found in Section "Saving from r15" in
5693 http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */
cca44b1b 5694
7ff120b4
YQ
5695 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5696}
5697
34518530
YQ
5698
5699static int
5700thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1,
5701 uint16_t insn2, struct regcache *regs,
5702 struct displaced_step_closure *dsc, int size)
5703{
5704 unsigned int u_bit = bit (insn1, 7);
5705 unsigned int rt = bits (insn2, 12, 15);
5706 int imm12 = bits (insn2, 0, 11);
5707 ULONGEST pc_val;
5708
5709 if (debug_displaced)
5710 fprintf_unfiltered (gdb_stdlog,
5711 "displaced: copying ldr pc (0x%x) R%d %c imm12 %.4x\n",
5712 (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-',
5713 imm12);
5714
5715 if (!u_bit)
5716 imm12 = -1 * imm12;
5717
5718 /* Rewrite instruction LDR Rt imm12 into:
5719
5720 Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12
5721
5722 LDR R0, R2, R3,
5723
5724 Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2]. */
5725
5726
5727 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
5728 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
5729 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
5730
5731 pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
5732
5733 pc_val = pc_val & 0xfffffffc;
5734
5735 displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC);
5736 displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC);
5737
5738 dsc->rd = rt;
5739
5740 dsc->u.ldst.xfersize = size;
5741 dsc->u.ldst.immed = 0;
5742 dsc->u.ldst.writeback = 0;
5743 dsc->u.ldst.restore_r4 = 0;
5744
5745 /* LDR R0, R2, R3 */
5746 dsc->modinsn[0] = 0xf852;
5747 dsc->modinsn[1] = 0x3;
5748 dsc->numinsns = 2;
5749
5750 dsc->cleanup = &cleanup_load;
5751
5752 return 0;
5753}
5754
5755static int
5756thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1,
5757 uint16_t insn2, struct regcache *regs,
5758 struct displaced_step_closure *dsc,
5759 int writeback, int immed)
5760{
5761 unsigned int rt = bits (insn2, 12, 15);
5762 unsigned int rn = bits (insn1, 0, 3);
5763 unsigned int rm = bits (insn2, 0, 3); /* Only valid if !immed. */
5764 /* In LDR (register), there is also a register Rm, which is not allowed to
5765 be PC, so we don't have to check it. */
5766
5767 if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM)
5768 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load",
5769 dsc);
5770
5771 if (debug_displaced)
5772 fprintf_unfiltered (gdb_stdlog,
5773 "displaced: copying ldr r%d [r%d] insn %.4x%.4x\n",
5774 rt, rn, insn1, insn2);
5775
5776 install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4,
5777 0, rt, rm, rn);
5778
5779 dsc->u.ldst.restore_r4 = 0;
5780
5781 if (immed)
5782 /* ldr[b]<cond> rt, [rn, #imm], etc.
5783 ->
5784 ldr[b]<cond> r0, [r2, #imm]. */
5785 {
5786 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5787 dsc->modinsn[1] = insn2 & 0x0fff;
5788 }
5789 else
5790 /* ldr[b]<cond> rt, [rn, rm], etc.
5791 ->
5792 ldr[b]<cond> r0, [r2, r3]. */
5793 {
5794 dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2;
5795 dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3;
5796 }
5797
5798 dsc->numinsns = 2;
5799
5800 return 0;
5801}
5802
5803
7ff120b4
YQ
5804static int
5805arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn,
5806 struct regcache *regs,
5807 struct displaced_step_closure *dsc,
0f6f04ba 5808 int load, int size, int usermode)
7ff120b4
YQ
5809{
5810 int immed = !bit (insn, 25);
5811 int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0);
5812 unsigned int rt = bits (insn, 12, 15);
5813 unsigned int rn = bits (insn, 16, 19);
5814 unsigned int rm = bits (insn, 0, 3); /* Only valid if !immed. */
5815
5816 if (!insn_references_pc (insn, 0x000ff00ful))
5817 return arm_copy_unmodified (gdbarch, insn, "load/store", dsc);
5818
5819 if (debug_displaced)
5820 fprintf_unfiltered (gdb_stdlog,
5821 "displaced: copying %s%s r%d [r%d] insn %.8lx\n",
0f6f04ba
YQ
5822 load ? (size == 1 ? "ldrb" : "ldr")
5823 : (size == 1 ? "strb" : "str"), usermode ? "t" : "",
7ff120b4
YQ
5824 rt, rn,
5825 (unsigned long) insn);
5826
0f6f04ba
YQ
5827 install_load_store (gdbarch, regs, dsc, load, immed, writeback, size,
5828 usermode, rt, rm, rn);
7ff120b4 5829
bf9f652a 5830 if (load || rt != ARM_PC_REGNUM)
cca44b1b
JB
5831 {
5832 dsc->u.ldst.restore_r4 = 0;
5833
5834 if (immed)
5835 /* {ldr,str}[b]<cond> rt, [rn, #imm], etc.
5836 ->
5837 {ldr,str}[b]<cond> r0, [r2, #imm]. */
5838 dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000;
5839 else
5840 /* {ldr,str}[b]<cond> rt, [rn, rm], etc.
5841 ->
5842 {ldr,str}[b]<cond> r0, [r2, r3]. */
5843 dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003;
5844 }
5845 else
5846 {
5847 /* We need to use r4 as scratch. Make sure it's restored afterwards. */
5848 dsc->u.ldst.restore_r4 = 1;
494e194e
YQ
5849 dsc->modinsn[0] = 0xe92d8000; /* push {pc} */
5850 dsc->modinsn[1] = 0xe8bd0010; /* pop {r4} */
cca44b1b
JB
5851 dsc->modinsn[2] = 0xe044400f; /* sub r4, r4, pc. */
5852 dsc->modinsn[3] = 0xe2844008; /* add r4, r4, #8. */
5853 dsc->modinsn[4] = 0xe0800004; /* add r0, r0, r4. */
5854
5855 /* As above. */
5856 if (immed)
5857 dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000;
5858 else
5859 dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003;
5860
cca44b1b
JB
5861 dsc->numinsns = 6;
5862 }
5863
5864 dsc->cleanup = load ? &cleanup_load : &cleanup_store;
5865
5866 return 0;
5867}
5868
5869/* Cleanup LDM instructions with fully-populated register list. This is an
5870 unfortunate corner case: it's impossible to implement correctly by modifying
5871 the instruction. The issue is as follows: we have an instruction,
5872
5873 ldm rN, {r0-r15}
5874
5875 which we must rewrite to avoid loading PC. A possible solution would be to
5876 do the load in two halves, something like (with suitable cleanup
5877 afterwards):
5878
5879 mov r8, rN
5880 ldm[id][ab] r8!, {r0-r7}
5881 str r7, <temp>
5882 ldm[id][ab] r8, {r7-r14}
5883 <bkpt>
5884
5885 but at present there's no suitable place for <temp>, since the scratch space
5886 is overwritten before the cleanup routine is called. For now, we simply
5887 emulate the instruction. */
5888
5889static void
5890cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs,
5891 struct displaced_step_closure *dsc)
5892{
cca44b1b
JB
5893 int inc = dsc->u.block.increment;
5894 int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0;
5895 int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4);
5896 uint32_t regmask = dsc->u.block.regmask;
5897 int regno = inc ? 0 : 15;
5898 CORE_ADDR xfer_addr = dsc->u.block.xfer_addr;
5899 int exception_return = dsc->u.block.load && dsc->u.block.user
5900 && (regmask & 0x8000) != 0;
36073a92 5901 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5902 int do_transfer = condition_true (dsc->u.block.cond, status);
5903 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5904
5905 if (!do_transfer)
5906 return;
5907
5908 /* If the instruction is ldm rN, {...pc}^, I don't think there's anything
5909 sensible we can do here. Complain loudly. */
5910 if (exception_return)
5911 error (_("Cannot single-step exception return"));
5912
5913 /* We don't handle any stores here for now. */
5914 gdb_assert (dsc->u.block.load != 0);
5915
5916 if (debug_displaced)
5917 fprintf_unfiltered (gdb_stdlog, "displaced: emulating block transfer: "
5918 "%s %s %s\n", dsc->u.block.load ? "ldm" : "stm",
5919 dsc->u.block.increment ? "inc" : "dec",
5920 dsc->u.block.before ? "before" : "after");
5921
5922 while (regmask)
5923 {
5924 uint32_t memword;
5925
5926 if (inc)
bf9f652a 5927 while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0)
cca44b1b
JB
5928 regno++;
5929 else
5930 while (regno >= 0 && (regmask & (1 << regno)) == 0)
5931 regno--;
5932
5933 xfer_addr += bump_before;
5934
5935 memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order);
5936 displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC);
5937
5938 xfer_addr += bump_after;
5939
5940 regmask &= ~(1 << regno);
5941 }
5942
5943 if (dsc->u.block.writeback)
5944 displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr,
5945 CANNOT_WRITE_PC);
5946}
5947
5948/* Clean up an STM which included the PC in the register list. */
5949
5950static void
5951cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs,
5952 struct displaced_step_closure *dsc)
5953{
36073a92 5954 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
cca44b1b
JB
5955 int store_executed = condition_true (dsc->u.block.cond, status);
5956 CORE_ADDR pc_stored_at, transferred_regs = bitcount (dsc->u.block.regmask);
5957 CORE_ADDR stm_insn_addr;
5958 uint32_t pc_val;
5959 long offset;
5960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5961
5962 /* If condition code fails, there's nothing else to do. */
5963 if (!store_executed)
5964 return;
5965
5966 if (dsc->u.block.increment)
5967 {
5968 pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs;
5969
5970 if (dsc->u.block.before)
5971 pc_stored_at += 4;
5972 }
5973 else
5974 {
5975 pc_stored_at = dsc->u.block.xfer_addr;
5976
5977 if (dsc->u.block.before)
5978 pc_stored_at -= 4;
5979 }
5980
5981 pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order);
5982 stm_insn_addr = dsc->scratch_base;
5983 offset = pc_val - stm_insn_addr;
5984
5985 if (debug_displaced)
5986 fprintf_unfiltered (gdb_stdlog, "displaced: detected PC offset %.8lx for "
5987 "STM instruction\n", offset);
5988
5989 /* Rewrite the stored PC to the proper value for the non-displaced original
5990 instruction. */
5991 write_memory_unsigned_integer (pc_stored_at, 4, byte_order,
5992 dsc->insn_addr + offset);
5993}
5994
5995/* Clean up an LDM which includes the PC in the register list. We clumped all
5996 the registers in the transferred list into a contiguous range r0...rX (to
5997 avoid loading PC directly and losing control of the debugged program), so we
5998 must undo that here. */
5999
6000static void
6e39997a 6001cleanup_block_load_pc (struct gdbarch *gdbarch,
cca44b1b
JB
6002 struct regcache *regs,
6003 struct displaced_step_closure *dsc)
6004{
36073a92 6005 uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM);
22e048c9 6006 int load_executed = condition_true (dsc->u.block.cond, status);
bf9f652a 6007 unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM;
cca44b1b
JB
6008 unsigned int regs_loaded = bitcount (mask);
6009 unsigned int num_to_shuffle = regs_loaded, clobbered;
6010
6011 /* The method employed here will fail if the register list is fully populated
6012 (we need to avoid loading PC directly). */
6013 gdb_assert (num_to_shuffle < 16);
6014
6015 if (!load_executed)
6016 return;
6017
6018 clobbered = (1 << num_to_shuffle) - 1;
6019
6020 while (num_to_shuffle > 0)
6021 {
6022 if ((mask & (1 << write_reg)) != 0)
6023 {
6024 unsigned int read_reg = num_to_shuffle - 1;
6025
6026 if (read_reg != write_reg)
6027 {
36073a92 6028 ULONGEST rval = displaced_read_reg (regs, dsc, read_reg);
cca44b1b
JB
6029 displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC);
6030 if (debug_displaced)
6031 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: move "
6032 "loaded register r%d to r%d\n"), read_reg,
6033 write_reg);
6034 }
6035 else if (debug_displaced)
6036 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: register "
6037 "r%d already in the right place\n"),
6038 write_reg);
6039
6040 clobbered &= ~(1 << write_reg);
6041
6042 num_to_shuffle--;
6043 }
6044
6045 write_reg--;
6046 }
6047
6048 /* Restore any registers we scribbled over. */
6049 for (write_reg = 0; clobbered != 0; write_reg++)
6050 {
6051 if ((clobbered & (1 << write_reg)) != 0)
6052 {
6053 displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg],
6054 CANNOT_WRITE_PC);
6055 if (debug_displaced)
6056 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM: restored "
6057 "clobbered register r%d\n"), write_reg);
6058 clobbered &= ~(1 << write_reg);
6059 }
6060 }
6061
6062 /* Perform register writeback manually. */
6063 if (dsc->u.block.writeback)
6064 {
6065 ULONGEST new_rn_val = dsc->u.block.xfer_addr;
6066
6067 if (dsc->u.block.increment)
6068 new_rn_val += regs_loaded * 4;
6069 else
6070 new_rn_val -= regs_loaded * 4;
6071
6072 displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val,
6073 CANNOT_WRITE_PC);
6074 }
6075}
6076
6077/* Handle ldm/stm, apart from some tricky cases which are unlikely to occur
6078 in user-level code (in particular exception return, ldm rn, {...pc}^). */
6079
6080static int
7ff120b4
YQ
6081arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn,
6082 struct regcache *regs,
6083 struct displaced_step_closure *dsc)
cca44b1b
JB
6084{
6085 int load = bit (insn, 20);
6086 int user = bit (insn, 22);
6087 int increment = bit (insn, 23);
6088 int before = bit (insn, 24);
6089 int writeback = bit (insn, 21);
6090 int rn = bits (insn, 16, 19);
cca44b1b 6091
0963b4bd
MS
6092 /* Block transfers which don't mention PC can be run directly
6093 out-of-line. */
bf9f652a 6094 if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0)
7ff120b4 6095 return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc);
cca44b1b 6096
bf9f652a 6097 if (rn == ARM_PC_REGNUM)
cca44b1b 6098 {
0963b4bd
MS
6099 warning (_("displaced: Unpredictable LDM or STM with "
6100 "base register r15"));
7ff120b4 6101 return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc);
cca44b1b
JB
6102 }
6103
6104 if (debug_displaced)
6105 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6106 "%.8lx\n", (unsigned long) insn);
6107
36073a92 6108 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b
JB
6109 dsc->u.block.rn = rn;
6110
6111 dsc->u.block.load = load;
6112 dsc->u.block.user = user;
6113 dsc->u.block.increment = increment;
6114 dsc->u.block.before = before;
6115 dsc->u.block.writeback = writeback;
6116 dsc->u.block.cond = bits (insn, 28, 31);
6117
6118 dsc->u.block.regmask = insn & 0xffff;
6119
6120 if (load)
6121 {
6122 if ((insn & 0xffff) == 0xffff)
6123 {
6124 /* LDM with a fully-populated register list. This case is
6125 particularly tricky. Implement for now by fully emulating the
6126 instruction (which might not behave perfectly in all cases, but
6127 these instructions should be rare enough for that not to matter
6128 too much). */
6129 dsc->modinsn[0] = ARM_NOP;
6130
6131 dsc->cleanup = &cleanup_block_load_all;
6132 }
6133 else
6134 {
6135 /* LDM of a list of registers which includes PC. Implement by
6136 rewriting the list of registers to be transferred into a
6137 contiguous chunk r0...rX before doing the transfer, then shuffling
6138 registers into the correct places in the cleanup routine. */
6139 unsigned int regmask = insn & 0xffff;
bec2ab5a
SM
6140 unsigned int num_in_list = bitcount (regmask), new_regmask;
6141 unsigned int i;
cca44b1b
JB
6142
6143 for (i = 0; i < num_in_list; i++)
36073a92 6144 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
cca44b1b
JB
6145
6146 /* Writeback makes things complicated. We need to avoid clobbering
6147 the base register with one of the registers in our modified
6148 register list, but just using a different register can't work in
6149 all cases, e.g.:
6150
6151 ldm r14!, {r0-r13,pc}
6152
6153 which would need to be rewritten as:
6154
6155 ldm rN!, {r0-r14}
6156
6157 but that can't work, because there's no free register for N.
6158
6159 Solve this by turning off the writeback bit, and emulating
6160 writeback manually in the cleanup routine. */
6161
6162 if (writeback)
6163 insn &= ~(1 << 21);
6164
6165 new_regmask = (1 << num_in_list) - 1;
6166
6167 if (debug_displaced)
6168 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6169 "{..., pc}: original reg list %.4x, modified "
6170 "list %.4x\n"), rn, writeback ? "!" : "",
6171 (int) insn & 0xffff, new_regmask);
6172
6173 dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff);
6174
6175 dsc->cleanup = &cleanup_block_load_pc;
6176 }
6177 }
6178 else
6179 {
6180 /* STM of a list of registers which includes PC. Run the instruction
6181 as-is, but out of line: this will store the wrong value for the PC,
6182 so we must manually fix up the memory in the cleanup routine.
6183 Doing things this way has the advantage that we can auto-detect
6184 the offset of the PC write (which is architecture-dependent) in
6185 the cleanup routine. */
6186 dsc->modinsn[0] = insn;
6187
6188 dsc->cleanup = &cleanup_block_store_pc;
6189 }
6190
6191 return 0;
6192}
6193
34518530
YQ
6194static int
6195thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6196 struct regcache *regs,
6197 struct displaced_step_closure *dsc)
cca44b1b 6198{
34518530
YQ
6199 int rn = bits (insn1, 0, 3);
6200 int load = bit (insn1, 4);
6201 int writeback = bit (insn1, 5);
cca44b1b 6202
34518530
YQ
6203 /* Block transfers which don't mention PC can be run directly
6204 out-of-line. */
6205 if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0)
6206 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc);
7ff120b4 6207
34518530
YQ
6208 if (rn == ARM_PC_REGNUM)
6209 {
6210 warning (_("displaced: Unpredictable LDM or STM with "
6211 "base register r15"));
6212 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6213 "unpredictable ldm/stm", dsc);
6214 }
cca44b1b
JB
6215
6216 if (debug_displaced)
34518530
YQ
6217 fprintf_unfiltered (gdb_stdlog, "displaced: copying block transfer insn "
6218 "%.4x%.4x\n", insn1, insn2);
cca44b1b 6219
34518530
YQ
6220 /* Clear bit 13, since it should be always zero. */
6221 dsc->u.block.regmask = (insn2 & 0xdfff);
6222 dsc->u.block.rn = rn;
cca44b1b 6223
34518530
YQ
6224 dsc->u.block.load = load;
6225 dsc->u.block.user = 0;
6226 dsc->u.block.increment = bit (insn1, 7);
6227 dsc->u.block.before = bit (insn1, 8);
6228 dsc->u.block.writeback = writeback;
6229 dsc->u.block.cond = INST_AL;
6230 dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn);
cca44b1b 6231
34518530
YQ
6232 if (load)
6233 {
6234 if (dsc->u.block.regmask == 0xffff)
6235 {
6236 /* This branch is impossible to happen. */
6237 gdb_assert (0);
6238 }
6239 else
6240 {
6241 unsigned int regmask = dsc->u.block.regmask;
bec2ab5a
SM
6242 unsigned int num_in_list = bitcount (regmask), new_regmask;
6243 unsigned int i;
34518530
YQ
6244
6245 for (i = 0; i < num_in_list; i++)
6246 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
6247
6248 if (writeback)
6249 insn1 &= ~(1 << 5);
6250
6251 new_regmask = (1 << num_in_list) - 1;
6252
6253 if (debug_displaced)
6254 fprintf_unfiltered (gdb_stdlog, _("displaced: LDM r%d%s, "
6255 "{..., pc}: original reg list %.4x, modified "
6256 "list %.4x\n"), rn, writeback ? "!" : "",
6257 (int) dsc->u.block.regmask, new_regmask);
6258
6259 dsc->modinsn[0] = insn1;
6260 dsc->modinsn[1] = (new_regmask & 0xffff);
6261 dsc->numinsns = 2;
6262
6263 dsc->cleanup = &cleanup_block_load_pc;
6264 }
6265 }
6266 else
6267 {
6268 dsc->modinsn[0] = insn1;
6269 dsc->modinsn[1] = insn2;
6270 dsc->numinsns = 2;
6271 dsc->cleanup = &cleanup_block_store_pc;
6272 }
6273 return 0;
6274}
6275
d9311bfa
AT
6276/* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs.
6277 This is used to avoid a dependency on BFD's bfd_endian enum. */
6278
6279ULONGEST
6280arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len,
6281 int byte_order)
6282{
5f2dfcfd
AT
6283 return read_memory_unsigned_integer (memaddr, len,
6284 (enum bfd_endian) byte_order);
d9311bfa
AT
6285}
6286
6287/* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs. */
6288
6289CORE_ADDR
6290arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
6291 CORE_ADDR val)
6292{
6293 return gdbarch_addr_bits_remove (get_regcache_arch (self->regcache), val);
6294}
6295
6296/* Wrapper over syscall_next_pc for use in get_next_pcs. */
6297
e7cf25a8 6298static CORE_ADDR
553cb527 6299arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
d9311bfa 6300{
d9311bfa
AT
6301 return 0;
6302}
6303
6304/* Wrapper over arm_is_thumb for use in arm_get_next_pcs. */
6305
6306int
6307arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
6308{
6309 return arm_is_thumb (self->regcache);
6310}
6311
6312/* single_step() is called just before we want to resume the inferior,
6313 if we want to single-step it but there is no hardware or kernel
6314 single-step support. We find the target of the coming instructions
6315 and breakpoint them. */
6316
6317int
6318arm_software_single_step (struct frame_info *frame)
6319{
6320 struct regcache *regcache = get_current_regcache ();
6321 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6322 struct address_space *aspace = get_regcache_aspace (regcache);
6323 struct arm_get_next_pcs next_pcs_ctx;
6324 CORE_ADDR pc;
6325 int i;
6326 VEC (CORE_ADDR) *next_pcs = NULL;
6327 struct cleanup *old_chain = make_cleanup (VEC_cleanup (CORE_ADDR), &next_pcs);
6328
6329 arm_get_next_pcs_ctor (&next_pcs_ctx,
6330 &arm_get_next_pcs_ops,
6331 gdbarch_byte_order (gdbarch),
6332 gdbarch_byte_order_for_code (gdbarch),
1b451dda 6333 0,
d9311bfa
AT
6334 regcache);
6335
4d18591b 6336 next_pcs = arm_get_next_pcs (&next_pcs_ctx);
d9311bfa
AT
6337
6338 for (i = 0; VEC_iterate (CORE_ADDR, next_pcs, i, pc); i++)
6339 arm_insert_single_step_breakpoint (gdbarch, aspace, pc);
6340
6341 do_cleanups (old_chain);
6342
6343 return 1;
6344}
6345
34518530
YQ
6346/* Cleanup/copy SVC (SWI) instructions. These two functions are overridden
6347 for Linux, where some SVC instructions must be treated specially. */
6348
6349static void
6350cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs,
6351 struct displaced_step_closure *dsc)
6352{
6353 CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size;
6354
6355 if (debug_displaced)
6356 fprintf_unfiltered (gdb_stdlog, "displaced: cleanup for svc, resume at "
6357 "%.8lx\n", (unsigned long) resume_addr);
6358
6359 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC);
6360}
6361
6362
6363/* Common copy routine for svc instruciton. */
6364
6365static int
6366install_svc (struct gdbarch *gdbarch, struct regcache *regs,
6367 struct displaced_step_closure *dsc)
6368{
6369 /* Preparation: none.
6370 Insn: unmodified svc.
6371 Cleanup: pc <- insn_addr + insn_size. */
6372
6373 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
6374 instruction. */
6375 dsc->wrote_to_pc = 1;
6376
6377 /* Allow OS-specific code to override SVC handling. */
bd18283a
YQ
6378 if (dsc->u.svc.copy_svc_os)
6379 return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc);
6380 else
6381 {
6382 dsc->cleanup = &cleanup_svc;
6383 return 0;
6384 }
34518530
YQ
6385}
6386
6387static int
6388arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn,
6389 struct regcache *regs, struct displaced_step_closure *dsc)
6390{
6391
6392 if (debug_displaced)
6393 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.8lx\n",
6394 (unsigned long) insn);
6395
6396 dsc->modinsn[0] = insn;
6397
6398 return install_svc (gdbarch, regs, dsc);
6399}
6400
6401static int
6402thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn,
6403 struct regcache *regs, struct displaced_step_closure *dsc)
6404{
6405
6406 if (debug_displaced)
6407 fprintf_unfiltered (gdb_stdlog, "displaced: copying svc insn %.4x\n",
6408 insn);
bd18283a 6409
34518530
YQ
6410 dsc->modinsn[0] = insn;
6411
6412 return install_svc (gdbarch, regs, dsc);
cca44b1b
JB
6413}
6414
6415/* Copy undefined instructions. */
6416
6417static int
7ff120b4
YQ
6418arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn,
6419 struct displaced_step_closure *dsc)
cca44b1b
JB
6420{
6421 if (debug_displaced)
0963b4bd
MS
6422 fprintf_unfiltered (gdb_stdlog,
6423 "displaced: copying undefined insn %.8lx\n",
cca44b1b
JB
6424 (unsigned long) insn);
6425
6426 dsc->modinsn[0] = insn;
6427
6428 return 0;
6429}
6430
34518530
YQ
6431static int
6432thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2,
6433 struct displaced_step_closure *dsc)
6434{
6435
6436 if (debug_displaced)
6437 fprintf_unfiltered (gdb_stdlog, "displaced: copying undefined insn "
6438 "%.4x %.4x\n", (unsigned short) insn1,
6439 (unsigned short) insn2);
6440
6441 dsc->modinsn[0] = insn1;
6442 dsc->modinsn[1] = insn2;
6443 dsc->numinsns = 2;
6444
6445 return 0;
6446}
6447
cca44b1b
JB
6448/* Copy unpredictable instructions. */
6449
6450static int
7ff120b4
YQ
6451arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn,
6452 struct displaced_step_closure *dsc)
cca44b1b
JB
6453{
6454 if (debug_displaced)
6455 fprintf_unfiltered (gdb_stdlog, "displaced: copying unpredictable insn "
6456 "%.8lx\n", (unsigned long) insn);
6457
6458 dsc->modinsn[0] = insn;
6459
6460 return 0;
6461}
6462
6463/* The decode_* functions are instruction decoding helpers. They mostly follow
6464 the presentation in the ARM ARM. */
6465
6466static int
7ff120b4
YQ
6467arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn,
6468 struct regcache *regs,
6469 struct displaced_step_closure *dsc)
cca44b1b
JB
6470{
6471 unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7);
6472 unsigned int rn = bits (insn, 16, 19);
6473
6474 if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0xe) == 0x0)
7ff120b4 6475 return arm_copy_unmodified (gdbarch, insn, "cps", dsc);
cca44b1b 6476 else if (op1 == 0x10 && op2 == 0x0 && (rn & 0xe) == 0x1)
7ff120b4 6477 return arm_copy_unmodified (gdbarch, insn, "setend", dsc);
cca44b1b 6478 else if ((op1 & 0x60) == 0x20)
7ff120b4 6479 return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc);
cca44b1b 6480 else if ((op1 & 0x71) == 0x40)
7ff120b4
YQ
6481 return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store",
6482 dsc);
cca44b1b 6483 else if ((op1 & 0x77) == 0x41)
7ff120b4 6484 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6485 else if ((op1 & 0x77) == 0x45)
7ff120b4 6486 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pli. */
cca44b1b
JB
6487 else if ((op1 & 0x77) == 0x51)
6488 {
6489 if (rn != 0xf)
7ff120b4 6490 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b 6491 else
7ff120b4 6492 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6493 }
6494 else if ((op1 & 0x77) == 0x55)
7ff120b4 6495 return arm_copy_preload (gdbarch, insn, regs, dsc); /* pld/pldw. */
cca44b1b
JB
6496 else if (op1 == 0x57)
6497 switch (op2)
6498 {
7ff120b4
YQ
6499 case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc);
6500 case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc);
6501 case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc);
6502 case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc);
6503 default: return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6504 }
6505 else if ((op1 & 0x63) == 0x43)
7ff120b4 6506 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b
JB
6507 else if ((op2 & 0x1) == 0x0)
6508 switch (op1 & ~0x80)
6509 {
6510 case 0x61:
7ff120b4 6511 return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc);
cca44b1b 6512 case 0x65:
7ff120b4 6513 return arm_copy_preload_reg (gdbarch, insn, regs, dsc); /* pli reg. */
cca44b1b
JB
6514 case 0x71: case 0x75:
6515 /* pld/pldw reg. */
7ff120b4 6516 return arm_copy_preload_reg (gdbarch, insn, regs, dsc);
cca44b1b 6517 case 0x63: case 0x67: case 0x73: case 0x77:
7ff120b4 6518 return arm_copy_unpred (gdbarch, insn, dsc);
cca44b1b 6519 default:
7ff120b4 6520 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6521 }
6522 else
7ff120b4 6523 return arm_copy_undef (gdbarch, insn, dsc); /* Probably unreachable. */
cca44b1b
JB
6524}
6525
6526static int
7ff120b4
YQ
6527arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn,
6528 struct regcache *regs,
6529 struct displaced_step_closure *dsc)
cca44b1b
JB
6530{
6531 if (bit (insn, 27) == 0)
7ff120b4 6532 return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc);
cca44b1b
JB
6533 /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx. */
6534 else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20))
6535 {
6536 case 0x0: case 0x2:
7ff120b4 6537 return arm_copy_unmodified (gdbarch, insn, "srs", dsc);
cca44b1b
JB
6538
6539 case 0x1: case 0x3:
7ff120b4 6540 return arm_copy_unmodified (gdbarch, insn, "rfe", dsc);
cca44b1b
JB
6541
6542 case 0x4: case 0x5: case 0x6: case 0x7:
7ff120b4 6543 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b
JB
6544
6545 case 0x8:
6546 switch ((insn & 0xe00000) >> 21)
6547 {
6548 case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7:
6549 /* stc/stc2. */
7ff120b4 6550 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6551
6552 case 0x2:
7ff120b4 6553 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b
JB
6554
6555 default:
7ff120b4 6556 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6557 }
6558
6559 case 0x9:
6560 {
6561 int rn_f = (bits (insn, 16, 19) == 0xf);
6562 switch ((insn & 0xe00000) >> 21)
6563 {
6564 case 0x1: case 0x3:
6565 /* ldc/ldc2 imm (undefined for rn == pc). */
7ff120b4
YQ
6566 return rn_f ? arm_copy_undef (gdbarch, insn, dsc)
6567 : arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6568
6569 case 0x2:
7ff120b4 6570 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6571
6572 case 0x4: case 0x5: case 0x6: case 0x7:
6573 /* ldc/ldc2 lit (undefined for rn != pc). */
7ff120b4
YQ
6574 return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc)
6575 : arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6576
6577 default:
7ff120b4 6578 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6579 }
6580 }
6581
6582 case 0xa:
7ff120b4 6583 return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc);
cca44b1b
JB
6584
6585 case 0xb:
6586 if (bits (insn, 16, 19) == 0xf)
6587 /* ldc/ldc2 lit. */
7ff120b4 6588 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6589 else
7ff120b4 6590 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6591
6592 case 0xc:
6593 if (bit (insn, 4))
7ff120b4 6594 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6595 else
7ff120b4 6596 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6597
6598 case 0xd:
6599 if (bit (insn, 4))
7ff120b4 6600 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6601 else
7ff120b4 6602 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6603
6604 default:
7ff120b4 6605 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6606 }
6607}
6608
6609/* Decode miscellaneous instructions in dp/misc encoding space. */
6610
6611static int
7ff120b4
YQ
6612arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn,
6613 struct regcache *regs,
6614 struct displaced_step_closure *dsc)
cca44b1b
JB
6615{
6616 unsigned int op2 = bits (insn, 4, 6);
6617 unsigned int op = bits (insn, 21, 22);
cca44b1b
JB
6618
6619 switch (op2)
6620 {
6621 case 0x0:
7ff120b4 6622 return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc);
cca44b1b
JB
6623
6624 case 0x1:
6625 if (op == 0x1) /* bx. */
7ff120b4 6626 return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc);
cca44b1b 6627 else if (op == 0x3)
7ff120b4 6628 return arm_copy_unmodified (gdbarch, insn, "clz", dsc);
cca44b1b 6629 else
7ff120b4 6630 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6631
6632 case 0x2:
6633 if (op == 0x1)
6634 /* Not really supported. */
7ff120b4 6635 return arm_copy_unmodified (gdbarch, insn, "bxj", dsc);
cca44b1b 6636 else
7ff120b4 6637 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6638
6639 case 0x3:
6640 if (op == 0x1)
7ff120b4 6641 return arm_copy_bx_blx_reg (gdbarch, insn,
0963b4bd 6642 regs, dsc); /* blx register. */
cca44b1b 6643 else
7ff120b4 6644 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6645
6646 case 0x5:
7ff120b4 6647 return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc);
cca44b1b
JB
6648
6649 case 0x7:
6650 if (op == 0x1)
7ff120b4 6651 return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc);
cca44b1b
JB
6652 else if (op == 0x3)
6653 /* Not really supported. */
7ff120b4 6654 return arm_copy_unmodified (gdbarch, insn, "smc", dsc);
cca44b1b
JB
6655
6656 default:
7ff120b4 6657 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6658 }
6659}
6660
6661static int
7ff120b4
YQ
6662arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn,
6663 struct regcache *regs,
6664 struct displaced_step_closure *dsc)
cca44b1b
JB
6665{
6666 if (bit (insn, 25))
6667 switch (bits (insn, 20, 24))
6668 {
6669 case 0x10:
7ff120b4 6670 return arm_copy_unmodified (gdbarch, insn, "movw", dsc);
cca44b1b
JB
6671
6672 case 0x14:
7ff120b4 6673 return arm_copy_unmodified (gdbarch, insn, "movt", dsc);
cca44b1b
JB
6674
6675 case 0x12: case 0x16:
7ff120b4 6676 return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc);
cca44b1b
JB
6677
6678 default:
7ff120b4 6679 return arm_copy_alu_imm (gdbarch, insn, regs, dsc);
cca44b1b
JB
6680 }
6681 else
6682 {
6683 uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7);
6684
6685 if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0)
7ff120b4 6686 return arm_copy_alu_reg (gdbarch, insn, regs, dsc);
cca44b1b 6687 else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1)
7ff120b4 6688 return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc);
cca44b1b 6689 else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0)
7ff120b4 6690 return arm_decode_miscellaneous (gdbarch, insn, regs, dsc);
cca44b1b 6691 else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8)
7ff120b4 6692 return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc);
cca44b1b 6693 else if ((op1 & 0x10) == 0x00 && op2 == 0x9)
7ff120b4 6694 return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc);
cca44b1b 6695 else if ((op1 & 0x10) == 0x10 && op2 == 0x9)
7ff120b4 6696 return arm_copy_unmodified (gdbarch, insn, "synch", dsc);
cca44b1b 6697 else if (op2 == 0xb || (op2 & 0xd) == 0xd)
550dc4e2 6698 /* 2nd arg means "unprivileged". */
7ff120b4
YQ
6699 return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs,
6700 dsc);
cca44b1b
JB
6701 }
6702
6703 /* Should be unreachable. */
6704 return 1;
6705}
6706
6707static int
7ff120b4
YQ
6708arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn,
6709 struct regcache *regs,
6710 struct displaced_step_closure *dsc)
cca44b1b
JB
6711{
6712 int a = bit (insn, 25), b = bit (insn, 4);
6713 uint32_t op1 = bits (insn, 20, 24);
cca44b1b
JB
6714
6715 if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02)
6716 || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b))
0f6f04ba 6717 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0);
cca44b1b
JB
6718 else if ((!a && (op1 & 0x17) == 0x02)
6719 || (a && (op1 & 0x17) == 0x02 && !b))
0f6f04ba 6720 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1);
cca44b1b
JB
6721 else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03)
6722 || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b))
0f6f04ba 6723 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0);
cca44b1b
JB
6724 else if ((!a && (op1 & 0x17) == 0x03)
6725 || (a && (op1 & 0x17) == 0x03 && !b))
0f6f04ba 6726 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1);
cca44b1b
JB
6727 else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06)
6728 || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b))
7ff120b4 6729 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0);
cca44b1b
JB
6730 else if ((!a && (op1 & 0x17) == 0x06)
6731 || (a && (op1 & 0x17) == 0x06 && !b))
7ff120b4 6732 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1);
cca44b1b
JB
6733 else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07)
6734 || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b))
7ff120b4 6735 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0);
cca44b1b
JB
6736 else if ((!a && (op1 & 0x17) == 0x07)
6737 || (a && (op1 & 0x17) == 0x07 && !b))
7ff120b4 6738 return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1);
cca44b1b
JB
6739
6740 /* Should be unreachable. */
6741 return 1;
6742}
6743
6744static int
7ff120b4
YQ
6745arm_decode_media (struct gdbarch *gdbarch, uint32_t insn,
6746 struct displaced_step_closure *dsc)
cca44b1b
JB
6747{
6748 switch (bits (insn, 20, 24))
6749 {
6750 case 0x00: case 0x01: case 0x02: case 0x03:
7ff120b4 6751 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc);
cca44b1b
JB
6752
6753 case 0x04: case 0x05: case 0x06: case 0x07:
7ff120b4 6754 return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc);
cca44b1b
JB
6755
6756 case 0x08: case 0x09: case 0x0a: case 0x0b:
6757 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
7ff120b4 6758 return arm_copy_unmodified (gdbarch, insn,
cca44b1b
JB
6759 "decode/pack/unpack/saturate/reverse", dsc);
6760
6761 case 0x18:
6762 if (bits (insn, 5, 7) == 0) /* op2. */
6763 {
6764 if (bits (insn, 12, 15) == 0xf)
7ff120b4 6765 return arm_copy_unmodified (gdbarch, insn, "usad8", dsc);
cca44b1b 6766 else
7ff120b4 6767 return arm_copy_unmodified (gdbarch, insn, "usada8", dsc);
cca44b1b
JB
6768 }
6769 else
7ff120b4 6770 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6771
6772 case 0x1a: case 0x1b:
6773 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6774 return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc);
cca44b1b 6775 else
7ff120b4 6776 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6777
6778 case 0x1c: case 0x1d:
6779 if (bits (insn, 5, 6) == 0x0) /* op2[1:0]. */
6780 {
6781 if (bits (insn, 0, 3) == 0xf)
7ff120b4 6782 return arm_copy_unmodified (gdbarch, insn, "bfc", dsc);
cca44b1b 6783 else
7ff120b4 6784 return arm_copy_unmodified (gdbarch, insn, "bfi", dsc);
cca44b1b
JB
6785 }
6786 else
7ff120b4 6787 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6788
6789 case 0x1e: case 0x1f:
6790 if (bits (insn, 5, 6) == 0x2) /* op2[1:0]. */
7ff120b4 6791 return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc);
cca44b1b 6792 else
7ff120b4 6793 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b
JB
6794 }
6795
6796 /* Should be unreachable. */
6797 return 1;
6798}
6799
6800static int
615234c1 6801arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4
YQ
6802 struct regcache *regs,
6803 struct displaced_step_closure *dsc)
cca44b1b
JB
6804{
6805 if (bit (insn, 25))
7ff120b4 6806 return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc);
cca44b1b 6807 else
7ff120b4 6808 return arm_copy_block_xfer (gdbarch, insn, regs, dsc);
cca44b1b
JB
6809}
6810
6811static int
7ff120b4
YQ
6812arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn,
6813 struct regcache *regs,
6814 struct displaced_step_closure *dsc)
cca44b1b
JB
6815{
6816 unsigned int opcode = bits (insn, 20, 24);
6817
6818 switch (opcode)
6819 {
6820 case 0x04: case 0x05: /* VFP/Neon mrrc/mcrr. */
7ff120b4 6821 return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc);
cca44b1b
JB
6822
6823 case 0x08: case 0x0a: case 0x0c: case 0x0e:
6824 case 0x12: case 0x16:
7ff120b4 6825 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc);
cca44b1b
JB
6826
6827 case 0x09: case 0x0b: case 0x0d: case 0x0f:
6828 case 0x13: case 0x17:
7ff120b4 6829 return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc);
cca44b1b
JB
6830
6831 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6832 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6833 /* Note: no writeback for these instructions. Bit 25 will always be
6834 zero though (via caller), so the following works OK. */
7ff120b4 6835 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6836 }
6837
6838 /* Should be unreachable. */
6839 return 1;
6840}
6841
34518530
YQ
6842/* Decode shifted register instructions. */
6843
6844static int
6845thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1,
6846 uint16_t insn2, struct regcache *regs,
6847 struct displaced_step_closure *dsc)
6848{
6849 /* PC is only allowed to be used in instruction MOV. */
6850
6851 unsigned int op = bits (insn1, 5, 8);
6852 unsigned int rn = bits (insn1, 0, 3);
6853
6854 if (op == 0x2 && rn == 0xf) /* MOV */
6855 return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc);
6856 else
6857 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6858 "dp (shift reg)", dsc);
6859}
6860
6861
6862/* Decode extension register load/store. Exactly the same as
6863 arm_decode_ext_reg_ld_st. */
6864
6865static int
6866thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1,
6867 uint16_t insn2, struct regcache *regs,
6868 struct displaced_step_closure *dsc)
6869{
6870 unsigned int opcode = bits (insn1, 4, 8);
6871
6872 switch (opcode)
6873 {
6874 case 0x04: case 0x05:
6875 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6876 "vfp/neon vmov", dsc);
6877
6878 case 0x08: case 0x0c: /* 01x00 */
6879 case 0x0a: case 0x0e: /* 01x10 */
6880 case 0x12: case 0x16: /* 10x10 */
6881 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6882 "vfp/neon vstm/vpush", dsc);
6883
6884 case 0x09: case 0x0d: /* 01x01 */
6885 case 0x0b: case 0x0f: /* 01x11 */
6886 case 0x13: case 0x17: /* 10x11 */
6887 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6888 "vfp/neon vldm/vpop", dsc);
6889
6890 case 0x10: case 0x14: case 0x18: case 0x1c: /* vstr. */
6891 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6892 "vstr", dsc);
6893 case 0x11: case 0x15: case 0x19: case 0x1d: /* vldr. */
6894 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc);
6895 }
6896
6897 /* Should be unreachable. */
6898 return 1;
6899}
6900
cca44b1b 6901static int
12545665 6902arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn,
7ff120b4 6903 struct regcache *regs, struct displaced_step_closure *dsc)
cca44b1b
JB
6904{
6905 unsigned int op1 = bits (insn, 20, 25);
6906 int op = bit (insn, 4);
6907 unsigned int coproc = bits (insn, 8, 11);
cca44b1b
JB
6908
6909 if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa)
7ff120b4 6910 return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc);
cca44b1b
JB
6911 else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00
6912 && (coproc & 0xe) != 0xa)
6913 /* stc/stc2. */
7ff120b4 6914 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b
JB
6915 else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00
6916 && (coproc & 0xe) != 0xa)
6917 /* ldc/ldc2 imm/lit. */
7ff120b4 6918 return arm_copy_copro_load_store (gdbarch, insn, regs, dsc);
cca44b1b 6919 else if ((op1 & 0x3e) == 0x00)
7ff120b4 6920 return arm_copy_undef (gdbarch, insn, dsc);
cca44b1b 6921 else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa)
7ff120b4 6922 return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc);
cca44b1b 6923 else if (op1 == 0x04 && (coproc & 0xe) != 0xa)
7ff120b4 6924 return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc);
cca44b1b 6925 else if (op1 == 0x05 && (coproc & 0xe) != 0xa)
7ff120b4 6926 return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc);
cca44b1b
JB
6927 else if ((op1 & 0x30) == 0x20 && !op)
6928 {
6929 if ((coproc & 0xe) == 0xa)
7ff120b4 6930 return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc);
cca44b1b 6931 else
7ff120b4 6932 return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc);
cca44b1b
JB
6933 }
6934 else if ((op1 & 0x30) == 0x20 && op)
7ff120b4 6935 return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc);
cca44b1b 6936 else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa)
7ff120b4 6937 return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc);
cca44b1b 6938 else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa)
7ff120b4 6939 return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc);
cca44b1b 6940 else if ((op1 & 0x30) == 0x30)
7ff120b4 6941 return arm_copy_svc (gdbarch, insn, regs, dsc);
cca44b1b 6942 else
7ff120b4 6943 return arm_copy_undef (gdbarch, insn, dsc); /* Possibly unreachable. */
cca44b1b
JB
6944}
6945
34518530
YQ
6946static int
6947thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1,
6948 uint16_t insn2, struct regcache *regs,
6949 struct displaced_step_closure *dsc)
6950{
6951 unsigned int coproc = bits (insn2, 8, 11);
34518530
YQ
6952 unsigned int bit_5_8 = bits (insn1, 5, 8);
6953 unsigned int bit_9 = bit (insn1, 9);
6954 unsigned int bit_4 = bit (insn1, 4);
34518530
YQ
6955
6956 if (bit_9 == 0)
6957 {
6958 if (bit_5_8 == 2)
6959 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6960 "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2",
6961 dsc);
6962 else if (bit_5_8 == 0) /* UNDEFINED. */
6963 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
6964 else
6965 {
6966 /*coproc is 101x. SIMD/VFP, ext registers load/store. */
6967 if ((coproc & 0xe) == 0xa)
6968 return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs,
6969 dsc);
6970 else /* coproc is not 101x. */
6971 {
6972 if (bit_4 == 0) /* STC/STC2. */
6973 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
6974 "stc/stc2", dsc);
6975 else /* LDC/LDC2 {literal, immeidate}. */
6976 return thumb2_copy_copro_load_store (gdbarch, insn1, insn2,
6977 regs, dsc);
6978 }
6979 }
6980 }
6981 else
6982 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc);
6983
6984 return 0;
6985}
6986
6987static void
6988install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs,
6989 struct displaced_step_closure *dsc, int rd)
6990{
6991 /* ADR Rd, #imm
6992
6993 Rewrite as:
6994
6995 Preparation: Rd <- PC
6996 Insn: ADD Rd, #imm
6997 Cleanup: Null.
6998 */
6999
7000 /* Rd <- PC */
7001 int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7002 displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC);
7003}
7004
7005static int
7006thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs,
7007 struct displaced_step_closure *dsc,
7008 int rd, unsigned int imm)
7009{
7010
7011 /* Encoding T2: ADDS Rd, #imm */
7012 dsc->modinsn[0] = (0x3000 | (rd << 8) | imm);
7013
7014 install_pc_relative (gdbarch, regs, dsc, rd);
7015
7016 return 0;
7017}
7018
7019static int
7020thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn,
7021 struct regcache *regs,
7022 struct displaced_step_closure *dsc)
7023{
7024 unsigned int rd = bits (insn, 8, 10);
7025 unsigned int imm8 = bits (insn, 0, 7);
7026
7027 if (debug_displaced)
7028 fprintf_unfiltered (gdb_stdlog,
7029 "displaced: copying thumb adr r%d, #%d insn %.4x\n",
7030 rd, imm8, insn);
7031
7032 return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8);
7033}
7034
7035static int
7036thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1,
7037 uint16_t insn2, struct regcache *regs,
7038 struct displaced_step_closure *dsc)
7039{
7040 unsigned int rd = bits (insn2, 8, 11);
7041 /* Since immediate has the same encoding in ADR ADD and SUB, so we simply
7042 extract raw immediate encoding rather than computing immediate. When
7043 generating ADD or SUB instruction, we can simply perform OR operation to
7044 set immediate into ADD. */
7045 unsigned int imm_3_8 = insn2 & 0x70ff;
7046 unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10. */
7047
7048 if (debug_displaced)
7049 fprintf_unfiltered (gdb_stdlog,
7050 "displaced: copying thumb adr r%d, #%d:%d insn %.4x%.4x\n",
7051 rd, imm_i, imm_3_8, insn1, insn2);
7052
7053 if (bit (insn1, 7)) /* Encoding T2 */
7054 {
7055 /* Encoding T3: SUB Rd, Rd, #imm */
7056 dsc->modinsn[0] = (0xf1a0 | rd | imm_i);
7057 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7058 }
7059 else /* Encoding T3 */
7060 {
7061 /* Encoding T3: ADD Rd, Rd, #imm */
7062 dsc->modinsn[0] = (0xf100 | rd | imm_i);
7063 dsc->modinsn[1] = ((rd << 8) | imm_3_8);
7064 }
7065 dsc->numinsns = 2;
7066
7067 install_pc_relative (gdbarch, regs, dsc, rd);
7068
7069 return 0;
7070}
7071
7072static int
615234c1 7073thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7074 struct regcache *regs,
7075 struct displaced_step_closure *dsc)
7076{
7077 unsigned int rt = bits (insn1, 8, 10);
7078 unsigned int pc;
7079 int imm8 = (bits (insn1, 0, 7) << 2);
34518530
YQ
7080
7081 /* LDR Rd, #imm8
7082
7083 Rwrite as:
7084
7085 Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8;
7086
7087 Insn: LDR R0, [R2, R3];
7088 Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */
7089
7090 if (debug_displaced)
7091 fprintf_unfiltered (gdb_stdlog,
7092 "displaced: copying thumb ldr r%d [pc #%d]\n"
7093 , rt, imm8);
7094
7095 dsc->tmp[0] = displaced_read_reg (regs, dsc, 0);
7096 dsc->tmp[2] = displaced_read_reg (regs, dsc, 2);
7097 dsc->tmp[3] = displaced_read_reg (regs, dsc, 3);
7098 pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM);
7099 /* The assembler calculates the required value of the offset from the
7100 Align(PC,4) value of this instruction to the label. */
7101 pc = pc & 0xfffffffc;
7102
7103 displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC);
7104 displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC);
7105
7106 dsc->rd = rt;
7107 dsc->u.ldst.xfersize = 4;
7108 dsc->u.ldst.rn = 0;
7109 dsc->u.ldst.immed = 0;
7110 dsc->u.ldst.writeback = 0;
7111 dsc->u.ldst.restore_r4 = 0;
7112
7113 dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/
7114
7115 dsc->cleanup = &cleanup_load;
7116
7117 return 0;
7118}
7119
7120/* Copy Thumb cbnz/cbz insruction. */
7121
7122static int
7123thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1,
7124 struct regcache *regs,
7125 struct displaced_step_closure *dsc)
7126{
7127 int non_zero = bit (insn1, 11);
7128 unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1);
7129 CORE_ADDR from = dsc->insn_addr;
7130 int rn = bits (insn1, 0, 2);
7131 int rn_val = displaced_read_reg (regs, dsc, rn);
7132
7133 dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero);
7134 /* CBNZ and CBZ do not affect the condition flags. If condition is true,
7135 set it INST_AL, so cleanup_branch will know branch is taken, otherwise,
7136 condition is false, let it be, cleanup_branch will do nothing. */
7137 if (dsc->u.branch.cond)
7138 {
7139 dsc->u.branch.cond = INST_AL;
7140 dsc->u.branch.dest = from + 4 + imm5;
7141 }
7142 else
7143 dsc->u.branch.dest = from + 2;
7144
7145 dsc->u.branch.link = 0;
7146 dsc->u.branch.exchange = 0;
7147
7148 if (debug_displaced)
7149 fprintf_unfiltered (gdb_stdlog, "displaced: copying %s [r%d = 0x%x]"
7150 " insn %.4x to %.8lx\n", non_zero ? "cbnz" : "cbz",
7151 rn, rn_val, insn1, dsc->u.branch.dest);
7152
7153 dsc->modinsn[0] = THUMB_NOP;
7154
7155 dsc->cleanup = &cleanup_branch;
7156 return 0;
7157}
7158
7159/* Copy Table Branch Byte/Halfword */
7160static int
7161thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1,
7162 uint16_t insn2, struct regcache *regs,
7163 struct displaced_step_closure *dsc)
7164{
7165 ULONGEST rn_val, rm_val;
7166 int is_tbh = bit (insn2, 4);
7167 CORE_ADDR halfwords = 0;
7168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7169
7170 rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3));
7171 rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3));
7172
7173 if (is_tbh)
7174 {
7175 gdb_byte buf[2];
7176
7177 target_read_memory (rn_val + 2 * rm_val, buf, 2);
7178 halfwords = extract_unsigned_integer (buf, 2, byte_order);
7179 }
7180 else
7181 {
7182 gdb_byte buf[1];
7183
7184 target_read_memory (rn_val + rm_val, buf, 1);
7185 halfwords = extract_unsigned_integer (buf, 1, byte_order);
7186 }
7187
7188 if (debug_displaced)
7189 fprintf_unfiltered (gdb_stdlog, "displaced: %s base 0x%x offset 0x%x"
7190 " offset 0x%x\n", is_tbh ? "tbh" : "tbb",
7191 (unsigned int) rn_val, (unsigned int) rm_val,
7192 (unsigned int) halfwords);
7193
7194 dsc->u.branch.cond = INST_AL;
7195 dsc->u.branch.link = 0;
7196 dsc->u.branch.exchange = 0;
7197 dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords;
7198
7199 dsc->cleanup = &cleanup_branch;
7200
7201 return 0;
7202}
7203
7204static void
7205cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs,
7206 struct displaced_step_closure *dsc)
7207{
7208 /* PC <- r7 */
7209 int val = displaced_read_reg (regs, dsc, 7);
7210 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC);
7211
7212 /* r7 <- r8 */
7213 val = displaced_read_reg (regs, dsc, 8);
7214 displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC);
7215
7216 /* r8 <- tmp[0] */
7217 displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC);
7218
7219}
7220
7221static int
615234c1 7222thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1,
34518530
YQ
7223 struct regcache *regs,
7224 struct displaced_step_closure *dsc)
7225{
7226 dsc->u.block.regmask = insn1 & 0x00ff;
7227
7228 /* Rewrite instruction: POP {rX, rY, ...,rZ, PC}
7229 to :
7230
7231 (1) register list is full, that is, r0-r7 are used.
7232 Prepare: tmp[0] <- r8
7233
7234 POP {r0, r1, ...., r6, r7}; remove PC from reglist
7235 MOV r8, r7; Move value of r7 to r8;
7236 POP {r7}; Store PC value into r7.
7237
7238 Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0]
7239
7240 (2) register list is not full, supposing there are N registers in
7241 register list (except PC, 0 <= N <= 7).
7242 Prepare: for each i, 0 - N, tmp[i] <- ri.
7243
7244 POP {r0, r1, ...., rN};
7245
7246 Cleanup: Set registers in original reglist from r0 - rN. Restore r0 - rN
7247 from tmp[] properly.
7248 */
7249 if (debug_displaced)
7250 fprintf_unfiltered (gdb_stdlog,
7251 "displaced: copying thumb pop {%.8x, pc} insn %.4x\n",
7252 dsc->u.block.regmask, insn1);
7253
7254 if (dsc->u.block.regmask == 0xff)
7255 {
7256 dsc->tmp[0] = displaced_read_reg (regs, dsc, 8);
7257
7258 dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */
7259 dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */
7260 dsc->modinsn[2] = 0xbc80; /* POP {r7} */
7261
7262 dsc->numinsns = 3;
7263 dsc->cleanup = &cleanup_pop_pc_16bit_all;
7264 }
7265 else
7266 {
7267 unsigned int num_in_list = bitcount (dsc->u.block.regmask);
bec2ab5a
SM
7268 unsigned int i;
7269 unsigned int new_regmask;
34518530
YQ
7270
7271 for (i = 0; i < num_in_list + 1; i++)
7272 dsc->tmp[i] = displaced_read_reg (regs, dsc, i);
7273
7274 new_regmask = (1 << (num_in_list + 1)) - 1;
7275
7276 if (debug_displaced)
7277 fprintf_unfiltered (gdb_stdlog, _("displaced: POP "
7278 "{..., pc}: original reg list %.4x,"
7279 " modified list %.4x\n"),
7280 (int) dsc->u.block.regmask, new_regmask);
7281
7282 dsc->u.block.regmask |= 0x8000;
7283 dsc->u.block.writeback = 0;
7284 dsc->u.block.cond = INST_AL;
7285
7286 dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff);
7287
7288 dsc->cleanup = &cleanup_block_load_pc;
7289 }
7290
7291 return 0;
7292}
7293
7294static void
7295thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7296 struct regcache *regs,
7297 struct displaced_step_closure *dsc)
7298{
7299 unsigned short op_bit_12_15 = bits (insn1, 12, 15);
7300 unsigned short op_bit_10_11 = bits (insn1, 10, 11);
7301 int err = 0;
7302
7303 /* 16-bit thumb instructions. */
7304 switch (op_bit_12_15)
7305 {
7306 /* Shift (imme), add, subtract, move and compare. */
7307 case 0: case 1: case 2: case 3:
7308 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7309 "shift/add/sub/mov/cmp",
7310 dsc);
7311 break;
7312 case 4:
7313 switch (op_bit_10_11)
7314 {
7315 case 0: /* Data-processing */
7316 err = thumb_copy_unmodified_16bit (gdbarch, insn1,
7317 "data-processing",
7318 dsc);
7319 break;
7320 case 1: /* Special data instructions and branch and exchange. */
7321 {
7322 unsigned short op = bits (insn1, 7, 9);
7323 if (op == 6 || op == 7) /* BX or BLX */
7324 err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc);
7325 else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers. */
7326 err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc);
7327 else
7328 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data",
7329 dsc);
7330 }
7331 break;
7332 default: /* LDR (literal) */
7333 err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc);
7334 }
7335 break;
7336 case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */
7337 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc);
7338 break;
7339 case 10:
7340 if (op_bit_10_11 < 2) /* Generate PC-relative address */
7341 err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc);
7342 else /* Generate SP-relative address */
7343 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc);
7344 break;
7345 case 11: /* Misc 16-bit instructions */
7346 {
7347 switch (bits (insn1, 8, 11))
7348 {
7349 case 1: case 3: case 9: case 11: /* CBNZ, CBZ */
7350 err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc);
7351 break;
7352 case 12: case 13: /* POP */
7353 if (bit (insn1, 8)) /* PC is in register list. */
7354 err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc);
7355 else
7356 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc);
7357 break;
7358 case 15: /* If-Then, and hints */
7359 if (bits (insn1, 0, 3))
7360 /* If-Then makes up to four following instructions conditional.
7361 IT instruction itself is not conditional, so handle it as a
7362 common unmodified instruction. */
7363 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then",
7364 dsc);
7365 else
7366 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc);
7367 break;
7368 default:
7369 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc);
7370 }
7371 }
7372 break;
7373 case 12:
7374 if (op_bit_10_11 < 2) /* Store multiple registers */
7375 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc);
7376 else /* Load multiple registers */
7377 err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc);
7378 break;
7379 case 13: /* Conditional branch and supervisor call */
7380 if (bits (insn1, 9, 11) != 7) /* conditional branch */
7381 err = thumb_copy_b (gdbarch, insn1, dsc);
7382 else
7383 err = thumb_copy_svc (gdbarch, insn1, regs, dsc);
7384 break;
7385 case 14: /* Unconditional branch */
7386 err = thumb_copy_b (gdbarch, insn1, dsc);
7387 break;
7388 default:
7389 err = 1;
7390 }
7391
7392 if (err)
7393 internal_error (__FILE__, __LINE__,
7394 _("thumb_process_displaced_16bit_insn: Instruction decode error"));
7395}
7396
7397static int
7398decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch,
7399 uint16_t insn1, uint16_t insn2,
7400 struct regcache *regs,
7401 struct displaced_step_closure *dsc)
7402{
7403 int rt = bits (insn2, 12, 15);
7404 int rn = bits (insn1, 0, 3);
7405 int op1 = bits (insn1, 7, 8);
34518530
YQ
7406
7407 switch (bits (insn1, 5, 6))
7408 {
7409 case 0: /* Load byte and memory hints */
7410 if (rt == 0xf) /* PLD/PLI */
7411 {
7412 if (rn == 0xf)
7413 /* PLD literal or Encoding T3 of PLI(immediate, literal). */
7414 return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc);
7415 else
7416 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7417 "pli/pld", dsc);
7418 }
7419 else
7420 {
7421 if (rn == 0xf) /* LDRB/LDRSB (literal) */
7422 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7423 1);
7424 else
7425 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7426 "ldrb{reg, immediate}/ldrbt",
7427 dsc);
7428 }
7429
7430 break;
7431 case 1: /* Load halfword and memory hints. */
7432 if (rt == 0xf) /* PLD{W} and Unalloc memory hint. */
7433 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7434 "pld/unalloc memhint", dsc);
7435 else
7436 {
7437 if (rn == 0xf)
7438 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc,
7439 2);
7440 else
7441 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7442 "ldrh/ldrht", dsc);
7443 }
7444 break;
7445 case 2: /* Load word */
7446 {
7447 int insn2_bit_8_11 = bits (insn2, 8, 11);
7448
7449 if (rn == 0xf)
7450 return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4);
7451 else if (op1 == 0x1) /* Encoding T3 */
7452 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc,
7453 0, 1);
7454 else /* op1 == 0x0 */
7455 {
7456 if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9)
7457 /* LDR (immediate) */
7458 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7459 dsc, bit (insn2, 8), 1);
7460 else if (insn2_bit_8_11 == 0xe) /* LDRT */
7461 return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7462 "ldrt", dsc);
7463 else
7464 /* LDR (register) */
7465 return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs,
7466 dsc, 0, 0);
7467 }
7468 break;
7469 }
7470 default:
7471 return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc);
7472 break;
7473 }
7474 return 0;
7475}
7476
7477static void
7478thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1,
7479 uint16_t insn2, struct regcache *regs,
7480 struct displaced_step_closure *dsc)
7481{
7482 int err = 0;
7483 unsigned short op = bit (insn2, 15);
7484 unsigned int op1 = bits (insn1, 11, 12);
7485
7486 switch (op1)
7487 {
7488 case 1:
7489 {
7490 switch (bits (insn1, 9, 10))
7491 {
7492 case 0:
7493 if (bit (insn1, 6))
7494 {
7495 /* Load/store {dual, execlusive}, table branch. */
7496 if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1
7497 && bits (insn2, 5, 7) == 0)
7498 err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs,
7499 dsc);
7500 else
7501 /* PC is not allowed to use in load/store {dual, exclusive}
7502 instructions. */
7503 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7504 "load/store dual/ex", dsc);
7505 }
7506 else /* load/store multiple */
7507 {
7508 switch (bits (insn1, 7, 8))
7509 {
7510 case 0: case 3: /* SRS, RFE */
7511 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7512 "srs/rfe", dsc);
7513 break;
7514 case 1: case 2: /* LDM/STM/PUSH/POP */
7515 err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc);
7516 break;
7517 }
7518 }
7519 break;
7520
7521 case 1:
7522 /* Data-processing (shift register). */
7523 err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs,
7524 dsc);
7525 break;
7526 default: /* Coprocessor instructions. */
7527 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7528 break;
7529 }
7530 break;
7531 }
7532 case 2: /* op1 = 2 */
7533 if (op) /* Branch and misc control. */
7534 {
7535 if (bit (insn2, 14) /* BLX/BL */
7536 || bit (insn2, 12) /* Unconditional branch */
7537 || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */
7538 err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc);
7539 else
7540 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7541 "misc ctrl", dsc);
7542 }
7543 else
7544 {
7545 if (bit (insn1, 9)) /* Data processing (plain binary imm). */
7546 {
7547 int op = bits (insn1, 4, 8);
7548 int rn = bits (insn1, 0, 3);
7549 if ((op == 0 || op == 0xa) && rn == 0xf)
7550 err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2,
7551 regs, dsc);
7552 else
7553 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7554 "dp/pb", dsc);
7555 }
7556 else /* Data processing (modified immeidate) */
7557 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7558 "dp/mi", dsc);
7559 }
7560 break;
7561 case 3: /* op1 = 3 */
7562 switch (bits (insn1, 9, 10))
7563 {
7564 case 0:
7565 if (bit (insn1, 4))
7566 err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2,
7567 regs, dsc);
7568 else /* NEON Load/Store and Store single data item */
7569 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7570 "neon elt/struct load/store",
7571 dsc);
7572 break;
7573 case 1: /* op1 = 3, bits (9, 10) == 1 */
7574 switch (bits (insn1, 7, 8))
7575 {
7576 case 0: case 1: /* Data processing (register) */
7577 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7578 "dp(reg)", dsc);
7579 break;
7580 case 2: /* Multiply and absolute difference */
7581 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7582 "mul/mua/diff", dsc);
7583 break;
7584 case 3: /* Long multiply and divide */
7585 err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2,
7586 "lmul/lmua", dsc);
7587 break;
7588 }
7589 break;
7590 default: /* Coprocessor instructions */
7591 err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc);
7592 break;
7593 }
7594 break;
7595 default:
7596 err = 1;
7597 }
7598
7599 if (err)
7600 internal_error (__FILE__, __LINE__,
7601 _("thumb_process_displaced_32bit_insn: Instruction decode error"));
7602
7603}
7604
b434a28f
YQ
7605static void
7606thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
12545665 7607 struct regcache *regs,
b434a28f
YQ
7608 struct displaced_step_closure *dsc)
7609{
34518530
YQ
7610 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7611 uint16_t insn1
7612 = read_memory_unsigned_integer (from, 2, byte_order_for_code);
7613
7614 if (debug_displaced)
7615 fprintf_unfiltered (gdb_stdlog, "displaced: process thumb insn %.4x "
7616 "at %.8lx\n", insn1, (unsigned long) from);
7617
7618 dsc->is_thumb = 1;
7619 dsc->insn_size = thumb_insn_size (insn1);
7620 if (thumb_insn_size (insn1) == 4)
7621 {
7622 uint16_t insn2
7623 = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code);
7624 thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc);
7625 }
7626 else
7627 thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc);
b434a28f
YQ
7628}
7629
cca44b1b 7630void
b434a28f
YQ
7631arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from,
7632 CORE_ADDR to, struct regcache *regs,
cca44b1b
JB
7633 struct displaced_step_closure *dsc)
7634{
7635 int err = 0;
b434a28f
YQ
7636 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7637 uint32_t insn;
cca44b1b
JB
7638
7639 /* Most displaced instructions use a 1-instruction scratch space, so set this
7640 here and override below if/when necessary. */
7641 dsc->numinsns = 1;
7642 dsc->insn_addr = from;
7643 dsc->scratch_base = to;
7644 dsc->cleanup = NULL;
7645 dsc->wrote_to_pc = 0;
7646
b434a28f 7647 if (!displaced_in_arm_mode (regs))
12545665 7648 return thumb_process_displaced_insn (gdbarch, from, regs, dsc);
b434a28f 7649
4db71c0b
YQ
7650 dsc->is_thumb = 0;
7651 dsc->insn_size = 4;
b434a28f
YQ
7652 insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
7653 if (debug_displaced)
7654 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
7655 "at %.8lx\n", (unsigned long) insn,
7656 (unsigned long) from);
7657
cca44b1b 7658 if ((insn & 0xf0000000) == 0xf0000000)
7ff120b4 7659 err = arm_decode_unconditional (gdbarch, insn, regs, dsc);
cca44b1b
JB
7660 else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24))
7661 {
7662 case 0x0: case 0x1: case 0x2: case 0x3:
7ff120b4 7663 err = arm_decode_dp_misc (gdbarch, insn, regs, dsc);
cca44b1b
JB
7664 break;
7665
7666 case 0x4: case 0x5: case 0x6:
7ff120b4 7667 err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc);
cca44b1b
JB
7668 break;
7669
7670 case 0x7:
7ff120b4 7671 err = arm_decode_media (gdbarch, insn, dsc);
cca44b1b
JB
7672 break;
7673
7674 case 0x8: case 0x9: case 0xa: case 0xb:
7ff120b4 7675 err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc);
cca44b1b
JB
7676 break;
7677
7678 case 0xc: case 0xd: case 0xe: case 0xf:
12545665 7679 err = arm_decode_svc_copro (gdbarch, insn, regs, dsc);
cca44b1b
JB
7680 break;
7681 }
7682
7683 if (err)
7684 internal_error (__FILE__, __LINE__,
7685 _("arm_process_displaced_insn: Instruction decode error"));
7686}
7687
7688/* Actually set up the scratch space for a displaced instruction. */
7689
7690void
7691arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from,
7692 CORE_ADDR to, struct displaced_step_closure *dsc)
7693{
7694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4db71c0b 7695 unsigned int i, len, offset;
cca44b1b 7696 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
4db71c0b 7697 int size = dsc->is_thumb? 2 : 4;
948f8e3d 7698 const gdb_byte *bkp_insn;
cca44b1b 7699
4db71c0b 7700 offset = 0;
cca44b1b
JB
7701 /* Poke modified instruction(s). */
7702 for (i = 0; i < dsc->numinsns; i++)
7703 {
7704 if (debug_displaced)
4db71c0b
YQ
7705 {
7706 fprintf_unfiltered (gdb_stdlog, "displaced: writing insn ");
7707 if (size == 4)
7708 fprintf_unfiltered (gdb_stdlog, "%.8lx",
7709 dsc->modinsn[i]);
7710 else if (size == 2)
7711 fprintf_unfiltered (gdb_stdlog, "%.4x",
7712 (unsigned short)dsc->modinsn[i]);
7713
7714 fprintf_unfiltered (gdb_stdlog, " at %.8lx\n",
7715 (unsigned long) to + offset);
7716
7717 }
7718 write_memory_unsigned_integer (to + offset, size,
7719 byte_order_for_code,
cca44b1b 7720 dsc->modinsn[i]);
4db71c0b
YQ
7721 offset += size;
7722 }
7723
7724 /* Choose the correct breakpoint instruction. */
7725 if (dsc->is_thumb)
7726 {
7727 bkp_insn = tdep->thumb_breakpoint;
7728 len = tdep->thumb_breakpoint_size;
7729 }
7730 else
7731 {
7732 bkp_insn = tdep->arm_breakpoint;
7733 len = tdep->arm_breakpoint_size;
cca44b1b
JB
7734 }
7735
7736 /* Put breakpoint afterwards. */
4db71c0b 7737 write_memory (to + offset, bkp_insn, len);
cca44b1b
JB
7738
7739 if (debug_displaced)
7740 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
7741 paddress (gdbarch, from), paddress (gdbarch, to));
7742}
7743
cca44b1b
JB
7744/* Entry point for cleaning things up after a displaced instruction has been
7745 single-stepped. */
7746
7747void
7748arm_displaced_step_fixup (struct gdbarch *gdbarch,
7749 struct displaced_step_closure *dsc,
7750 CORE_ADDR from, CORE_ADDR to,
7751 struct regcache *regs)
7752{
7753 if (dsc->cleanup)
7754 dsc->cleanup (gdbarch, regs, dsc);
7755
7756 if (!dsc->wrote_to_pc)
4db71c0b
YQ
7757 regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM,
7758 dsc->insn_addr + dsc->insn_size);
7759
cca44b1b
JB
7760}
7761
7762#include "bfd-in2.h"
7763#include "libcoff.h"
7764
7765static int
7766gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
7767{
9a3c8263 7768 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
9779414d
DJ
7769
7770 if (arm_pc_is_thumb (gdbarch, memaddr))
cca44b1b
JB
7771 {
7772 static asymbol *asym;
7773 static combined_entry_type ce;
7774 static struct coff_symbol_struct csym;
7775 static struct bfd fake_bfd;
7776 static bfd_target fake_target;
7777
7778 if (csym.native == NULL)
7779 {
7780 /* Create a fake symbol vector containing a Thumb symbol.
7781 This is solely so that the code in print_insn_little_arm()
7782 and print_insn_big_arm() in opcodes/arm-dis.c will detect
7783 the presence of a Thumb symbol and switch to decoding
7784 Thumb instructions. */
7785
7786 fake_target.flavour = bfd_target_coff_flavour;
7787 fake_bfd.xvec = &fake_target;
7788 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
7789 csym.native = &ce;
7790 csym.symbol.the_bfd = &fake_bfd;
7791 csym.symbol.name = "fake";
7792 asym = (asymbol *) & csym;
7793 }
7794
7795 memaddr = UNMAKE_THUMB_ADDR (memaddr);
7796 info->symbols = &asym;
7797 }
7798 else
7799 info->symbols = NULL;
7800
7801 if (info->endian == BFD_ENDIAN_BIG)
7802 return print_insn_big_arm (memaddr, info);
7803 else
7804 return print_insn_little_arm (memaddr, info);
7805}
7806
7807/* The following define instruction sequences that will cause ARM
7808 cpu's to take an undefined instruction trap. These are used to
7809 signal a breakpoint to GDB.
7810
7811 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
7812 modes. A different instruction is required for each mode. The ARM
7813 cpu's can also be big or little endian. Thus four different
7814 instructions are needed to support all cases.
7815
7816 Note: ARMv4 defines several new instructions that will take the
7817 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
7818 not in fact add the new instructions. The new undefined
7819 instructions in ARMv4 are all instructions that had no defined
7820 behaviour in earlier chips. There is no guarantee that they will
7821 raise an exception, but may be treated as NOP's. In practice, it
7822 may only safe to rely on instructions matching:
7823
7824 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
7825 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
7826 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
7827
0963b4bd 7828 Even this may only true if the condition predicate is true. The
cca44b1b
JB
7829 following use a condition predicate of ALWAYS so it is always TRUE.
7830
7831 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
7832 and NetBSD all use a software interrupt rather than an undefined
7833 instruction to force a trap. This can be handled by by the
7834 abi-specific code during establishment of the gdbarch vector. */
7835
7836#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
7837#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
7838#define THUMB_LE_BREAKPOINT {0xbe,0xbe}
7839#define THUMB_BE_BREAKPOINT {0xbe,0xbe}
7840
948f8e3d
PA
7841static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
7842static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
7843static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
7844static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
cca44b1b 7845
d19280ad
YQ
7846static int
7847arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cca44b1b
JB
7848{
7849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177321bd 7850 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
cca44b1b 7851
9779414d 7852 if (arm_pc_is_thumb (gdbarch, *pcptr))
cca44b1b
JB
7853 {
7854 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
177321bd
DJ
7855
7856 /* If we have a separate 32-bit breakpoint instruction for Thumb-2,
7857 check whether we are replacing a 32-bit instruction. */
7858 if (tdep->thumb2_breakpoint != NULL)
7859 {
7860 gdb_byte buf[2];
d19280ad 7861
177321bd
DJ
7862 if (target_read_memory (*pcptr, buf, 2) == 0)
7863 {
7864 unsigned short inst1;
d19280ad 7865
177321bd 7866 inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code);
db24da6d 7867 if (thumb_insn_size (inst1) == 4)
d19280ad 7868 return ARM_BP_KIND_THUMB2;
177321bd
DJ
7869 }
7870 }
7871
d19280ad 7872 return ARM_BP_KIND_THUMB;
cca44b1b
JB
7873 }
7874 else
d19280ad
YQ
7875 return ARM_BP_KIND_ARM;
7876
7877}
7878
7879static const gdb_byte *
7880arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7881{
7882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7883
7884 switch (kind)
cca44b1b 7885 {
d19280ad
YQ
7886 case ARM_BP_KIND_ARM:
7887 *size = tdep->arm_breakpoint_size;
cca44b1b 7888 return tdep->arm_breakpoint;
d19280ad
YQ
7889 case ARM_BP_KIND_THUMB:
7890 *size = tdep->thumb_breakpoint_size;
7891 return tdep->thumb_breakpoint;
7892 case ARM_BP_KIND_THUMB2:
7893 *size = tdep->thumb2_breakpoint_size;
7894 return tdep->thumb2_breakpoint;
7895 default:
7896 gdb_assert_not_reached ("unexpected arm breakpoint kind");
cca44b1b
JB
7897 }
7898}
7899
d19280ad
YQ
7900/* Determine the type and size of breakpoint to insert at PCPTR. Uses
7901 the program counter value to determine whether a 16-bit or 32-bit
7902 breakpoint should be used. It returns a pointer to a string of
7903 bytes that encode a breakpoint instruction, stores the length of
7904 the string to *lenptr, and adjusts the program counter (if
7905 necessary) to point to the actual memory location where the
7906 breakpoint should be inserted. */
7907
7908GDBARCH_BREAKPOINT_FROM_PC (arm)
7909
177321bd
DJ
7910static void
7911arm_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7912 int *kindptr)
7913{
177321bd 7914
d19280ad 7915 *kindptr = arm_breakpoint_kind_from_pc (gdbarch, pcptr);
177321bd
DJ
7916}
7917
cca44b1b
JB
7918/* Extract from an array REGBUF containing the (raw) register state a
7919 function return value of type TYPE, and copy that, in virtual
7920 format, into VALBUF. */
7921
7922static void
7923arm_extract_return_value (struct type *type, struct regcache *regs,
7924 gdb_byte *valbuf)
7925{
7926 struct gdbarch *gdbarch = get_regcache_arch (regs);
7927 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7928
7929 if (TYPE_CODE_FLT == TYPE_CODE (type))
7930 {
7931 switch (gdbarch_tdep (gdbarch)->fp_model)
7932 {
7933 case ARM_FLOAT_FPA:
7934 {
7935 /* The value is in register F0 in internal format. We need to
7936 extract the raw value and then convert it to the desired
7937 internal type. */
7938 bfd_byte tmpbuf[FP_REGISTER_SIZE];
7939
7940 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
7941 convert_from_extended (floatformat_from_type (type), tmpbuf,
7942 valbuf, gdbarch_byte_order (gdbarch));
7943 }
7944 break;
7945
7946 case ARM_FLOAT_SOFT_FPA:
7947 case ARM_FLOAT_SOFT_VFP:
7948 /* ARM_FLOAT_VFP can arise if this is a variadic function so
7949 not using the VFP ABI code. */
7950 case ARM_FLOAT_VFP:
7951 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
7952 if (TYPE_LENGTH (type) > 4)
7953 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
7954 valbuf + INT_REGISTER_SIZE);
7955 break;
7956
7957 default:
0963b4bd
MS
7958 internal_error (__FILE__, __LINE__,
7959 _("arm_extract_return_value: "
7960 "Floating point model not supported"));
cca44b1b
JB
7961 break;
7962 }
7963 }
7964 else if (TYPE_CODE (type) == TYPE_CODE_INT
7965 || TYPE_CODE (type) == TYPE_CODE_CHAR
7966 || TYPE_CODE (type) == TYPE_CODE_BOOL
7967 || TYPE_CODE (type) == TYPE_CODE_PTR
7968 || TYPE_CODE (type) == TYPE_CODE_REF
7969 || TYPE_CODE (type) == TYPE_CODE_ENUM)
7970 {
b021a221
MS
7971 /* If the type is a plain integer, then the access is
7972 straight-forward. Otherwise we have to play around a bit
7973 more. */
cca44b1b
JB
7974 int len = TYPE_LENGTH (type);
7975 int regno = ARM_A1_REGNUM;
7976 ULONGEST tmp;
7977
7978 while (len > 0)
7979 {
7980 /* By using store_unsigned_integer we avoid having to do
7981 anything special for small big-endian values. */
7982 regcache_cooked_read_unsigned (regs, regno++, &tmp);
7983 store_unsigned_integer (valbuf,
7984 (len > INT_REGISTER_SIZE
7985 ? INT_REGISTER_SIZE : len),
7986 byte_order, tmp);
7987 len -= INT_REGISTER_SIZE;
7988 valbuf += INT_REGISTER_SIZE;
7989 }
7990 }
7991 else
7992 {
7993 /* For a structure or union the behaviour is as if the value had
7994 been stored to word-aligned memory and then loaded into
7995 registers with 32-bit load instruction(s). */
7996 int len = TYPE_LENGTH (type);
7997 int regno = ARM_A1_REGNUM;
7998 bfd_byte tmpbuf[INT_REGISTER_SIZE];
7999
8000 while (len > 0)
8001 {
8002 regcache_cooked_read (regs, regno++, tmpbuf);
8003 memcpy (valbuf, tmpbuf,
8004 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
8005 len -= INT_REGISTER_SIZE;
8006 valbuf += INT_REGISTER_SIZE;
8007 }
8008 }
8009}
8010
8011
8012/* Will a function return an aggregate type in memory or in a
8013 register? Return 0 if an aggregate type can be returned in a
8014 register, 1 if it must be returned in memory. */
8015
8016static int
8017arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
8018{
cca44b1b
JB
8019 enum type_code code;
8020
f168693b 8021 type = check_typedef (type);
cca44b1b 8022
b13c8ab2
YQ
8023 /* Simple, non-aggregate types (ie not including vectors and
8024 complex) are always returned in a register (or registers). */
8025 code = TYPE_CODE (type);
8026 if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code
8027 && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code)
8028 return 0;
cca44b1b 8029
c4312b19
YQ
8030 if (TYPE_CODE_ARRAY == code && TYPE_VECTOR (type))
8031 {
8032 /* Vector values should be returned using ARM registers if they
8033 are not over 16 bytes. */
8034 return (TYPE_LENGTH (type) > 16);
8035 }
8036
b13c8ab2 8037 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
cca44b1b 8038 {
b13c8ab2
YQ
8039 /* The AAPCS says all aggregates not larger than a word are returned
8040 in a register. */
8041 if (TYPE_LENGTH (type) <= INT_REGISTER_SIZE)
8042 return 0;
8043
cca44b1b
JB
8044 return 1;
8045 }
b13c8ab2
YQ
8046 else
8047 {
8048 int nRc;
cca44b1b 8049
b13c8ab2
YQ
8050 /* All aggregate types that won't fit in a register must be returned
8051 in memory. */
8052 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
8053 return 1;
cca44b1b 8054
b13c8ab2
YQ
8055 /* In the ARM ABI, "integer" like aggregate types are returned in
8056 registers. For an aggregate type to be integer like, its size
8057 must be less than or equal to INT_REGISTER_SIZE and the
8058 offset of each addressable subfield must be zero. Note that bit
8059 fields are not addressable, and all addressable subfields of
8060 unions always start at offset zero.
cca44b1b 8061
b13c8ab2
YQ
8062 This function is based on the behaviour of GCC 2.95.1.
8063 See: gcc/arm.c: arm_return_in_memory() for details.
cca44b1b 8064
b13c8ab2
YQ
8065 Note: All versions of GCC before GCC 2.95.2 do not set up the
8066 parameters correctly for a function returning the following
8067 structure: struct { float f;}; This should be returned in memory,
8068 not a register. Richard Earnshaw sent me a patch, but I do not
8069 know of any way to detect if a function like the above has been
8070 compiled with the correct calling convention. */
8071
8072 /* Assume all other aggregate types can be returned in a register.
8073 Run a check for structures, unions and arrays. */
8074 nRc = 0;
67255d04 8075
b13c8ab2
YQ
8076 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
8077 {
8078 int i;
8079 /* Need to check if this struct/union is "integer" like. For
8080 this to be true, its size must be less than or equal to
8081 INT_REGISTER_SIZE and the offset of each addressable
8082 subfield must be zero. Note that bit fields are not
8083 addressable, and unions always start at offset zero. If any
8084 of the subfields is a floating point type, the struct/union
8085 cannot be an integer type. */
8086
8087 /* For each field in the object, check:
8088 1) Is it FP? --> yes, nRc = 1;
8089 2) Is it addressable (bitpos != 0) and
8090 not packed (bitsize == 0)?
8091 --> yes, nRc = 1
8092 */
8093
8094 for (i = 0; i < TYPE_NFIELDS (type); i++)
67255d04 8095 {
b13c8ab2
YQ
8096 enum type_code field_type_code;
8097
8098 field_type_code
8099 = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type,
8100 i)));
8101
8102 /* Is it a floating point type field? */
8103 if (field_type_code == TYPE_CODE_FLT)
67255d04
RE
8104 {
8105 nRc = 1;
8106 break;
8107 }
b13c8ab2
YQ
8108
8109 /* If bitpos != 0, then we have to care about it. */
8110 if (TYPE_FIELD_BITPOS (type, i) != 0)
8111 {
8112 /* Bitfields are not addressable. If the field bitsize is
8113 zero, then the field is not packed. Hence it cannot be
8114 a bitfield or any other packed type. */
8115 if (TYPE_FIELD_BITSIZE (type, i) == 0)
8116 {
8117 nRc = 1;
8118 break;
8119 }
8120 }
67255d04
RE
8121 }
8122 }
67255d04 8123
b13c8ab2
YQ
8124 return nRc;
8125 }
67255d04
RE
8126}
8127
34e8f22d
RE
8128/* Write into appropriate registers a function return value of type
8129 TYPE, given in virtual format. */
8130
8131static void
b508a996 8132arm_store_return_value (struct type *type, struct regcache *regs,
5238cf52 8133 const gdb_byte *valbuf)
34e8f22d 8134{
be8626e0 8135 struct gdbarch *gdbarch = get_regcache_arch (regs);
e17a4113 8136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
be8626e0 8137
34e8f22d
RE
8138 if (TYPE_CODE (type) == TYPE_CODE_FLT)
8139 {
e362b510 8140 gdb_byte buf[MAX_REGISTER_SIZE];
34e8f22d 8141
be8626e0 8142 switch (gdbarch_tdep (gdbarch)->fp_model)
08216dd7
RE
8143 {
8144 case ARM_FLOAT_FPA:
8145
be8626e0
MD
8146 convert_to_extended (floatformat_from_type (type), buf, valbuf,
8147 gdbarch_byte_order (gdbarch));
b508a996 8148 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
8149 break;
8150
fd50bc42 8151 case ARM_FLOAT_SOFT_FPA:
08216dd7 8152 case ARM_FLOAT_SOFT_VFP:
90445bd3
DJ
8153 /* ARM_FLOAT_VFP can arise if this is a variadic function so
8154 not using the VFP ABI code. */
8155 case ARM_FLOAT_VFP:
b508a996
RE
8156 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
8157 if (TYPE_LENGTH (type) > 4)
8158 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
7a5ea0d4 8159 valbuf + INT_REGISTER_SIZE);
08216dd7
RE
8160 break;
8161
8162 default:
9b20d036
MS
8163 internal_error (__FILE__, __LINE__,
8164 _("arm_store_return_value: Floating "
8165 "point model not supported"));
08216dd7
RE
8166 break;
8167 }
34e8f22d 8168 }
b508a996
RE
8169 else if (TYPE_CODE (type) == TYPE_CODE_INT
8170 || TYPE_CODE (type) == TYPE_CODE_CHAR
8171 || TYPE_CODE (type) == TYPE_CODE_BOOL
8172 || TYPE_CODE (type) == TYPE_CODE_PTR
8173 || TYPE_CODE (type) == TYPE_CODE_REF
8174 || TYPE_CODE (type) == TYPE_CODE_ENUM)
8175 {
8176 if (TYPE_LENGTH (type) <= 4)
8177 {
8178 /* Values of one word or less are zero/sign-extended and
8179 returned in r0. */
7a5ea0d4 8180 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8181 LONGEST val = unpack_long (type, valbuf);
8182
e17a4113 8183 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, byte_order, val);
b508a996
RE
8184 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
8185 }
8186 else
8187 {
8188 /* Integral values greater than one word are stored in consecutive
8189 registers starting with r0. This will always be a multiple of
8190 the regiser size. */
8191 int len = TYPE_LENGTH (type);
8192 int regno = ARM_A1_REGNUM;
8193
8194 while (len > 0)
8195 {
8196 regcache_cooked_write (regs, regno++, valbuf);
7a5ea0d4
DJ
8197 len -= INT_REGISTER_SIZE;
8198 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8199 }
8200 }
8201 }
34e8f22d 8202 else
b508a996
RE
8203 {
8204 /* For a structure or union the behaviour is as if the value had
8205 been stored to word-aligned memory and then loaded into
8206 registers with 32-bit load instruction(s). */
8207 int len = TYPE_LENGTH (type);
8208 int regno = ARM_A1_REGNUM;
7a5ea0d4 8209 bfd_byte tmpbuf[INT_REGISTER_SIZE];
b508a996
RE
8210
8211 while (len > 0)
8212 {
8213 memcpy (tmpbuf, valbuf,
7a5ea0d4 8214 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
b508a996 8215 regcache_cooked_write (regs, regno++, tmpbuf);
7a5ea0d4
DJ
8216 len -= INT_REGISTER_SIZE;
8217 valbuf += INT_REGISTER_SIZE;
b508a996
RE
8218 }
8219 }
34e8f22d
RE
8220}
8221
2af48f68
PB
8222
8223/* Handle function return values. */
8224
8225static enum return_value_convention
6a3a010b 8226arm_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
8227 struct type *valtype, struct regcache *regcache,
8228 gdb_byte *readbuf, const gdb_byte *writebuf)
2af48f68 8229{
7c00367c 8230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6a3a010b 8231 struct type *func_type = function ? value_type (function) : NULL;
90445bd3
DJ
8232 enum arm_vfp_cprc_base_type vfp_base_type;
8233 int vfp_base_count;
8234
8235 if (arm_vfp_abi_for_function (gdbarch, func_type)
8236 && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count))
8237 {
8238 int reg_char = arm_vfp_cprc_reg_char (vfp_base_type);
8239 int unit_length = arm_vfp_cprc_unit_length (vfp_base_type);
8240 int i;
8241 for (i = 0; i < vfp_base_count; i++)
8242 {
58d6951d
DJ
8243 if (reg_char == 'q')
8244 {
8245 if (writebuf)
8246 arm_neon_quad_write (gdbarch, regcache, i,
8247 writebuf + i * unit_length);
8248
8249 if (readbuf)
8250 arm_neon_quad_read (gdbarch, regcache, i,
8251 readbuf + i * unit_length);
8252 }
8253 else
8254 {
8255 char name_buf[4];
8256 int regnum;
8257
8c042590 8258 xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i);
58d6951d
DJ
8259 regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8260 strlen (name_buf));
8261 if (writebuf)
8262 regcache_cooked_write (regcache, regnum,
8263 writebuf + i * unit_length);
8264 if (readbuf)
8265 regcache_cooked_read (regcache, regnum,
8266 readbuf + i * unit_length);
8267 }
90445bd3
DJ
8268 }
8269 return RETURN_VALUE_REGISTER_CONVENTION;
8270 }
7c00367c 8271
2af48f68
PB
8272 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
8273 || TYPE_CODE (valtype) == TYPE_CODE_UNION
8274 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
8275 {
7c00367c
MK
8276 if (tdep->struct_return == pcc_struct_return
8277 || arm_return_in_memory (gdbarch, valtype))
2af48f68
PB
8278 return RETURN_VALUE_STRUCT_CONVENTION;
8279 }
b13c8ab2
YQ
8280 else if (TYPE_CODE (valtype) == TYPE_CODE_COMPLEX)
8281 {
8282 if (arm_return_in_memory (gdbarch, valtype))
8283 return RETURN_VALUE_STRUCT_CONVENTION;
8284 }
7052e42c 8285
2af48f68
PB
8286 if (writebuf)
8287 arm_store_return_value (valtype, regcache, writebuf);
8288
8289 if (readbuf)
8290 arm_extract_return_value (valtype, regcache, readbuf);
8291
8292 return RETURN_VALUE_REGISTER_CONVENTION;
8293}
8294
8295
9df628e0 8296static int
60ade65d 8297arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
9df628e0 8298{
e17a4113
UW
8299 struct gdbarch *gdbarch = get_frame_arch (frame);
8300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9df628e0 8302 CORE_ADDR jb_addr;
e362b510 8303 gdb_byte buf[INT_REGISTER_SIZE];
9df628e0 8304
60ade65d 8305 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
9df628e0
RE
8306
8307 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
7a5ea0d4 8308 INT_REGISTER_SIZE))
9df628e0
RE
8309 return 0;
8310
e17a4113 8311 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE, byte_order);
9df628e0
RE
8312 return 1;
8313}
8314
faa95490
DJ
8315/* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
8316 return the target PC. Otherwise return 0. */
c906108c
SS
8317
8318CORE_ADDR
52f729a7 8319arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
c906108c 8320{
2c02bd72 8321 const char *name;
faa95490 8322 int namelen;
c906108c
SS
8323 CORE_ADDR start_addr;
8324
8325 /* Find the starting address and name of the function containing the PC. */
8326 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
80d8d390
YQ
8327 {
8328 /* Trampoline 'bx reg' doesn't belong to any functions. Do the
8329 check here. */
8330 start_addr = arm_skip_bx_reg (frame, pc);
8331 if (start_addr != 0)
8332 return start_addr;
8333
8334 return 0;
8335 }
c906108c 8336
faa95490
DJ
8337 /* If PC is in a Thumb call or return stub, return the address of the
8338 target PC, which is in a register. The thunk functions are called
8339 _call_via_xx, where x is the register name. The possible names
3d8d5e79
DJ
8340 are r0-r9, sl, fp, ip, sp, and lr. ARM RealView has similar
8341 functions, named __ARM_call_via_r[0-7]. */
61012eef
GB
8342 if (startswith (name, "_call_via_")
8343 || startswith (name, "__ARM_call_via_"))
c906108c 8344 {
ed9a39eb
JM
8345 /* Use the name suffix to determine which register contains the
8346 target PC. */
c5aa993b
JM
8347 static char *table[15] =
8348 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8349 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
8350 };
c906108c 8351 int regno;
faa95490 8352 int offset = strlen (name) - 2;
c906108c
SS
8353
8354 for (regno = 0; regno <= 14; regno++)
faa95490 8355 if (strcmp (&name[offset], table[regno]) == 0)
52f729a7 8356 return get_frame_register_unsigned (frame, regno);
c906108c 8357 }
ed9a39eb 8358
faa95490
DJ
8359 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
8360 non-interworking calls to foo. We could decode the stubs
8361 to find the target but it's easier to use the symbol table. */
8362 namelen = strlen (name);
8363 if (name[0] == '_' && name[1] == '_'
8364 && ((namelen > 2 + strlen ("_from_thumb")
61012eef 8365 && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb"))
faa95490 8366 || (namelen > 2 + strlen ("_from_arm")
61012eef 8367 && startswith (name + namelen - strlen ("_from_arm"), "_from_arm"))))
faa95490
DJ
8368 {
8369 char *target_name;
8370 int target_len = namelen - 2;
3b7344d5 8371 struct bound_minimal_symbol minsym;
faa95490
DJ
8372 struct objfile *objfile;
8373 struct obj_section *sec;
8374
8375 if (name[namelen - 1] == 'b')
8376 target_len -= strlen ("_from_thumb");
8377 else
8378 target_len -= strlen ("_from_arm");
8379
224c3ddb 8380 target_name = (char *) alloca (target_len + 1);
faa95490
DJ
8381 memcpy (target_name, name + 2, target_len);
8382 target_name[target_len] = '\0';
8383
8384 sec = find_pc_section (pc);
8385 objfile = (sec == NULL) ? NULL : sec->objfile;
8386 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
3b7344d5 8387 if (minsym.minsym != NULL)
77e371c0 8388 return BMSYMBOL_VALUE_ADDRESS (minsym);
faa95490
DJ
8389 else
8390 return 0;
8391 }
8392
c5aa993b 8393 return 0; /* not a stub */
c906108c
SS
8394}
8395
afd7eef0
RE
8396static void
8397set_arm_command (char *args, int from_tty)
8398{
edefbb7c
AC
8399 printf_unfiltered (_("\
8400\"set arm\" must be followed by an apporpriate subcommand.\n"));
afd7eef0
RE
8401 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
8402}
8403
8404static void
8405show_arm_command (char *args, int from_tty)
8406{
26304000 8407 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
8408}
8409
28e97307
DJ
8410static void
8411arm_update_current_architecture (void)
fd50bc42 8412{
28e97307 8413 struct gdbarch_info info;
fd50bc42 8414
28e97307 8415 /* If the current architecture is not ARM, we have nothing to do. */
f5656ead 8416 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_arm)
28e97307 8417 return;
fd50bc42 8418
28e97307
DJ
8419 /* Update the architecture. */
8420 gdbarch_info_init (&info);
fd50bc42 8421
28e97307 8422 if (!gdbarch_update_p (info))
9b20d036 8423 internal_error (__FILE__, __LINE__, _("could not update architecture"));
fd50bc42
RE
8424}
8425
8426static void
8427set_fp_model_sfunc (char *args, int from_tty,
8428 struct cmd_list_element *c)
8429{
570dc176 8430 int fp_model;
fd50bc42
RE
8431
8432 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
8433 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
8434 {
aead7601 8435 arm_fp_model = (enum arm_float_model) fp_model;
fd50bc42
RE
8436 break;
8437 }
8438
8439 if (fp_model == ARM_FLOAT_LAST)
edefbb7c 8440 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
fd50bc42
RE
8441 current_fp_model);
8442
28e97307 8443 arm_update_current_architecture ();
fd50bc42
RE
8444}
8445
8446static void
08546159
AC
8447show_fp_model (struct ui_file *file, int from_tty,
8448 struct cmd_list_element *c, const char *value)
fd50bc42 8449{
f5656ead 8450 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
fd50bc42 8451
28e97307 8452 if (arm_fp_model == ARM_FLOAT_AUTO
f5656ead 8453 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8454 fprintf_filtered (file, _("\
8455The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
8456 fp_model_strings[tdep->fp_model]);
8457 else
8458 fprintf_filtered (file, _("\
8459The current ARM floating point model is \"%s\".\n"),
8460 fp_model_strings[arm_fp_model]);
8461}
8462
8463static void
8464arm_set_abi (char *args, int from_tty,
8465 struct cmd_list_element *c)
8466{
570dc176 8467 int arm_abi;
28e97307
DJ
8468
8469 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
8470 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
8471 {
aead7601 8472 arm_abi_global = (enum arm_abi_kind) arm_abi;
28e97307
DJ
8473 break;
8474 }
8475
8476 if (arm_abi == ARM_ABI_LAST)
8477 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
8478 arm_abi_string);
8479
8480 arm_update_current_architecture ();
8481}
8482
8483static void
8484arm_show_abi (struct ui_file *file, int from_tty,
8485 struct cmd_list_element *c, const char *value)
8486{
f5656ead 8487 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
28e97307
DJ
8488
8489 if (arm_abi_global == ARM_ABI_AUTO
f5656ead 8490 && gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_arm)
28e97307
DJ
8491 fprintf_filtered (file, _("\
8492The current ARM ABI is \"auto\" (currently \"%s\").\n"),
8493 arm_abi_strings[tdep->arm_abi]);
8494 else
8495 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
8496 arm_abi_string);
fd50bc42
RE
8497}
8498
0428b8f5
DJ
8499static void
8500arm_show_fallback_mode (struct ui_file *file, int from_tty,
8501 struct cmd_list_element *c, const char *value)
8502{
0963b4bd
MS
8503 fprintf_filtered (file,
8504 _("The current execution mode assumed "
8505 "(when symbols are unavailable) is \"%s\".\n"),
0428b8f5
DJ
8506 arm_fallback_mode_string);
8507}
8508
8509static void
8510arm_show_force_mode (struct ui_file *file, int from_tty,
8511 struct cmd_list_element *c, const char *value)
8512{
0963b4bd
MS
8513 fprintf_filtered (file,
8514 _("The current execution mode assumed "
8515 "(even when symbols are available) is \"%s\".\n"),
0428b8f5
DJ
8516 arm_force_mode_string);
8517}
8518
afd7eef0
RE
8519/* If the user changes the register disassembly style used for info
8520 register and other commands, we have to also switch the style used
8521 in opcodes for disassembly output. This function is run in the "set
8522 arm disassembly" command, and does that. */
bc90b915
FN
8523
8524static void
afd7eef0 8525set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
8526 struct cmd_list_element *c)
8527{
afd7eef0 8528 set_disassembly_style ();
bc90b915
FN
8529}
8530\f
966fbf70 8531/* Return the ARM register name corresponding to register I. */
a208b0cb 8532static const char *
d93859e2 8533arm_register_name (struct gdbarch *gdbarch, int i)
966fbf70 8534{
58d6951d
DJ
8535 const int num_regs = gdbarch_num_regs (gdbarch);
8536
8537 if (gdbarch_tdep (gdbarch)->have_vfp_pseudos
8538 && i >= num_regs && i < num_regs + 32)
8539 {
8540 static const char *const vfp_pseudo_names[] = {
8541 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
8542 "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15",
8543 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
8544 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
8545 };
8546
8547 return vfp_pseudo_names[i - num_regs];
8548 }
8549
8550 if (gdbarch_tdep (gdbarch)->have_neon_pseudos
8551 && i >= num_regs + 32 && i < num_regs + 32 + 16)
8552 {
8553 static const char *const neon_pseudo_names[] = {
8554 "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
8555 "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15",
8556 };
8557
8558 return neon_pseudo_names[i - num_regs - 32];
8559 }
8560
ff6f572f
DJ
8561 if (i >= ARRAY_SIZE (arm_register_names))
8562 /* These registers are only supported on targets which supply
8563 an XML description. */
8564 return "";
8565
966fbf70
RE
8566 return arm_register_names[i];
8567}
8568
bc90b915 8569static void
afd7eef0 8570set_disassembly_style (void)
bc90b915 8571{
123dc839 8572 int current;
bc90b915 8573
123dc839
DJ
8574 /* Find the style that the user wants. */
8575 for (current = 0; current < num_disassembly_options; current++)
8576 if (disassembly_style == valid_disassembly_styles[current])
8577 break;
8578 gdb_assert (current < num_disassembly_options);
bc90b915 8579
94c30b78 8580 /* Synchronize the disassembler. */
bc90b915
FN
8581 set_arm_regname_option (current);
8582}
8583
082fc60d
RE
8584/* Test whether the coff symbol specific value corresponds to a Thumb
8585 function. */
8586
8587static int
8588coff_sym_is_thumb (int val)
8589{
f8bf5763
PM
8590 return (val == C_THUMBEXT
8591 || val == C_THUMBSTAT
8592 || val == C_THUMBEXTFUNC
8593 || val == C_THUMBSTATFUNC
8594 || val == C_THUMBLABEL);
082fc60d
RE
8595}
8596
8597/* arm_coff_make_msymbol_special()
8598 arm_elf_make_msymbol_special()
8599
8600 These functions test whether the COFF or ELF symbol corresponds to
8601 an address in thumb code, and set a "special" bit in a minimal
8602 symbol to indicate that it does. */
8603
34e8f22d 8604static void
082fc60d
RE
8605arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
8606{
39d911fc
TP
8607 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
8608
8609 if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal)
467d42c4 8610 == ST_BRANCH_TO_THUMB)
082fc60d
RE
8611 MSYMBOL_SET_SPECIAL (msym);
8612}
8613
34e8f22d 8614static void
082fc60d
RE
8615arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
8616{
8617 if (coff_sym_is_thumb (val))
8618 MSYMBOL_SET_SPECIAL (msym);
8619}
8620
60c5725c 8621static void
c1bd65d0 8622arm_objfile_data_free (struct objfile *objfile, void *arg)
60c5725c 8623{
9a3c8263 8624 struct arm_per_objfile *data = (struct arm_per_objfile *) arg;
60c5725c
DJ
8625 unsigned int i;
8626
8627 for (i = 0; i < objfile->obfd->section_count; i++)
8628 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
8629}
8630
8631static void
8632arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
8633 asymbol *sym)
8634{
8635 const char *name = bfd_asymbol_name (sym);
8636 struct arm_per_objfile *data;
8637 VEC(arm_mapping_symbol_s) **map_p;
8638 struct arm_mapping_symbol new_map_sym;
8639
8640 gdb_assert (name[0] == '$');
8641 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
8642 return;
8643
9a3c8263
SM
8644 data = (struct arm_per_objfile *) objfile_data (objfile,
8645 arm_objfile_data_key);
60c5725c
DJ
8646 if (data == NULL)
8647 {
8648 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
8649 struct arm_per_objfile);
8650 set_objfile_data (objfile, arm_objfile_data_key, data);
8651 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
8652 objfile->obfd->section_count,
8653 VEC(arm_mapping_symbol_s) *);
8654 }
8655 map_p = &data->section_maps[bfd_get_section (sym)->index];
8656
8657 new_map_sym.value = sym->value;
8658 new_map_sym.type = name[1];
8659
8660 /* Assume that most mapping symbols appear in order of increasing
8661 value. If they were randomly distributed, it would be faster to
8662 always push here and then sort at first use. */
8663 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
8664 {
8665 struct arm_mapping_symbol *prev_map_sym;
8666
8667 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
8668 if (prev_map_sym->value >= sym->value)
8669 {
8670 unsigned int idx;
8671 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
8672 arm_compare_mapping_symbols);
8673 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
8674 return;
8675 }
8676 }
8677
8678 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
8679}
8680
756fe439 8681static void
61a1198a 8682arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
756fe439 8683{
9779414d 8684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
61a1198a 8685 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
756fe439
DJ
8686
8687 /* If necessary, set the T bit. */
8688 if (arm_apcs_32)
8689 {
9779414d 8690 ULONGEST val, t_bit;
61a1198a 8691 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
9779414d
DJ
8692 t_bit = arm_psr_thumb_bit (gdbarch);
8693 if (arm_pc_is_thumb (gdbarch, pc))
8694 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
8695 val | t_bit);
756fe439 8696 else
61a1198a 8697 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
9779414d 8698 val & ~t_bit);
756fe439
DJ
8699 }
8700}
123dc839 8701
58d6951d
DJ
8702/* Read the contents of a NEON quad register, by reading from two
8703 double registers. This is used to implement the quad pseudo
8704 registers, and for argument passing in case the quad registers are
8705 missing; vectors are passed in quad registers when using the VFP
8706 ABI, even if a NEON unit is not present. REGNUM is the index of
8707 the quad register, in [0, 15]. */
8708
05d1431c 8709static enum register_status
58d6951d
DJ
8710arm_neon_quad_read (struct gdbarch *gdbarch, struct regcache *regcache,
8711 int regnum, gdb_byte *buf)
8712{
8713 char name_buf[4];
8714 gdb_byte reg_buf[8];
8715 int offset, double_regnum;
05d1431c 8716 enum register_status status;
58d6951d 8717
8c042590 8718 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8719 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8720 strlen (name_buf));
8721
8722 /* d0 is always the least significant half of q0. */
8723 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8724 offset = 8;
8725 else
8726 offset = 0;
8727
05d1431c
PA
8728 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8729 if (status != REG_VALID)
8730 return status;
58d6951d
DJ
8731 memcpy (buf + offset, reg_buf, 8);
8732
8733 offset = 8 - offset;
05d1431c
PA
8734 status = regcache_raw_read (regcache, double_regnum + 1, reg_buf);
8735 if (status != REG_VALID)
8736 return status;
58d6951d 8737 memcpy (buf + offset, reg_buf, 8);
05d1431c
PA
8738
8739 return REG_VALID;
58d6951d
DJ
8740}
8741
05d1431c 8742static enum register_status
58d6951d
DJ
8743arm_pseudo_read (struct gdbarch *gdbarch, struct regcache *regcache,
8744 int regnum, gdb_byte *buf)
8745{
8746 const int num_regs = gdbarch_num_regs (gdbarch);
8747 char name_buf[4];
8748 gdb_byte reg_buf[8];
8749 int offset, double_regnum;
8750
8751 gdb_assert (regnum >= num_regs);
8752 regnum -= num_regs;
8753
8754 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8755 /* Quad-precision register. */
05d1431c 8756 return arm_neon_quad_read (gdbarch, regcache, regnum - 32, buf);
58d6951d
DJ
8757 else
8758 {
05d1431c
PA
8759 enum register_status status;
8760
58d6951d
DJ
8761 /* Single-precision register. */
8762 gdb_assert (regnum < 32);
8763
8764 /* s0 is always the least significant half of d0. */
8765 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8766 offset = (regnum & 1) ? 0 : 4;
8767 else
8768 offset = (regnum & 1) ? 4 : 0;
8769
8c042590 8770 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8771 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8772 strlen (name_buf));
8773
05d1431c
PA
8774 status = regcache_raw_read (regcache, double_regnum, reg_buf);
8775 if (status == REG_VALID)
8776 memcpy (buf, reg_buf + offset, 4);
8777 return status;
58d6951d
DJ
8778 }
8779}
8780
8781/* Store the contents of BUF to a NEON quad register, by writing to
8782 two double registers. This is used to implement the quad pseudo
8783 registers, and for argument passing in case the quad registers are
8784 missing; vectors are passed in quad registers when using the VFP
8785 ABI, even if a NEON unit is not present. REGNUM is the index
8786 of the quad register, in [0, 15]. */
8787
8788static void
8789arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache,
8790 int regnum, const gdb_byte *buf)
8791{
8792 char name_buf[4];
58d6951d
DJ
8793 int offset, double_regnum;
8794
8c042590 8795 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1);
58d6951d
DJ
8796 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8797 strlen (name_buf));
8798
8799 /* d0 is always the least significant half of q0. */
8800 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8801 offset = 8;
8802 else
8803 offset = 0;
8804
8805 regcache_raw_write (regcache, double_regnum, buf + offset);
8806 offset = 8 - offset;
8807 regcache_raw_write (regcache, double_regnum + 1, buf + offset);
8808}
8809
8810static void
8811arm_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
8812 int regnum, const gdb_byte *buf)
8813{
8814 const int num_regs = gdbarch_num_regs (gdbarch);
8815 char name_buf[4];
8816 gdb_byte reg_buf[8];
8817 int offset, double_regnum;
8818
8819 gdb_assert (regnum >= num_regs);
8820 regnum -= num_regs;
8821
8822 if (gdbarch_tdep (gdbarch)->have_neon_pseudos && regnum >= 32 && regnum < 48)
8823 /* Quad-precision register. */
8824 arm_neon_quad_write (gdbarch, regcache, regnum - 32, buf);
8825 else
8826 {
8827 /* Single-precision register. */
8828 gdb_assert (regnum < 32);
8829
8830 /* s0 is always the least significant half of d0. */
8831 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
8832 offset = (regnum & 1) ? 0 : 4;
8833 else
8834 offset = (regnum & 1) ? 4 : 0;
8835
8c042590 8836 xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum >> 1);
58d6951d
DJ
8837 double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf,
8838 strlen (name_buf));
8839
8840 regcache_raw_read (regcache, double_regnum, reg_buf);
8841 memcpy (reg_buf + offset, buf, 4);
8842 regcache_raw_write (regcache, double_regnum, reg_buf);
8843 }
8844}
8845
123dc839
DJ
8846static struct value *
8847value_of_arm_user_reg (struct frame_info *frame, const void *baton)
8848{
9a3c8263 8849 const int *reg_p = (const int *) baton;
123dc839
DJ
8850 return value_of_register (*reg_p, frame);
8851}
97e03143 8852\f
70f80edf
JT
8853static enum gdb_osabi
8854arm_elf_osabi_sniffer (bfd *abfd)
97e03143 8855{
2af48f68 8856 unsigned int elfosabi;
70f80edf 8857 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 8858
70f80edf 8859 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 8860
28e97307
DJ
8861 if (elfosabi == ELFOSABI_ARM)
8862 /* GNU tools use this value. Check note sections in this case,
8863 as well. */
8864 bfd_map_over_sections (abfd,
8865 generic_elf_osabi_sniff_abi_tag_sections,
8866 &osabi);
97e03143 8867
28e97307 8868 /* Anything else will be handled by the generic ELF sniffer. */
70f80edf 8869 return osabi;
97e03143
RE
8870}
8871
54483882
YQ
8872static int
8873arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
8874 struct reggroup *group)
8875{
2c291032
YQ
8876 /* FPS register's type is INT, but belongs to float_reggroup. Beside
8877 this, FPS register belongs to save_regroup, restore_reggroup, and
8878 all_reggroup, of course. */
54483882 8879 if (regnum == ARM_FPS_REGNUM)
2c291032
YQ
8880 return (group == float_reggroup
8881 || group == save_reggroup
8882 || group == restore_reggroup
8883 || group == all_reggroup);
54483882
YQ
8884 else
8885 return default_register_reggroup_p (gdbarch, regnum, group);
8886}
8887
25f8c692
JL
8888\f
8889/* For backward-compatibility we allow two 'g' packet lengths with
8890 the remote protocol depending on whether FPA registers are
8891 supplied. M-profile targets do not have FPA registers, but some
8892 stubs already exist in the wild which use a 'g' packet which
8893 supplies them albeit with dummy values. The packet format which
8894 includes FPA registers should be considered deprecated for
8895 M-profile targets. */
8896
8897static void
8898arm_register_g_packet_guesses (struct gdbarch *gdbarch)
8899{
8900 if (gdbarch_tdep (gdbarch)->is_m)
8901 {
8902 /* If we know from the executable this is an M-profile target,
8903 cater for remote targets whose register set layout is the
8904 same as the FPA layout. */
8905 register_remote_g_packet_guess (gdbarch,
03145bf4 8906 /* r0-r12,sp,lr,pc; f0-f7; fps,xpsr */
25f8c692
JL
8907 (16 * INT_REGISTER_SIZE)
8908 + (8 * FP_REGISTER_SIZE)
8909 + (2 * INT_REGISTER_SIZE),
8910 tdesc_arm_with_m_fpa_layout);
8911
8912 /* The regular M-profile layout. */
8913 register_remote_g_packet_guess (gdbarch,
8914 /* r0-r12,sp,lr,pc; xpsr */
8915 (16 * INT_REGISTER_SIZE)
8916 + INT_REGISTER_SIZE,
8917 tdesc_arm_with_m);
3184d3f9
JL
8918
8919 /* M-profile plus M4F VFP. */
8920 register_remote_g_packet_guess (gdbarch,
8921 /* r0-r12,sp,lr,pc; d0-d15; fpscr,xpsr */
8922 (16 * INT_REGISTER_SIZE)
8923 + (16 * VFP_REGISTER_SIZE)
8924 + (2 * INT_REGISTER_SIZE),
8925 tdesc_arm_with_m_vfp_d16);
25f8c692
JL
8926 }
8927
8928 /* Otherwise we don't have a useful guess. */
8929}
8930
7eb89530
YQ
8931/* Implement the code_of_frame_writable gdbarch method. */
8932
8933static int
8934arm_code_of_frame_writable (struct gdbarch *gdbarch, struct frame_info *frame)
8935{
8936 if (gdbarch_tdep (gdbarch)->is_m
8937 && get_frame_type (frame) == SIGTRAMP_FRAME)
8938 {
8939 /* M-profile exception frames return to some magic PCs, where
8940 isn't writable at all. */
8941 return 0;
8942 }
8943 else
8944 return 1;
8945}
8946
70f80edf 8947\f
da3c6d4a
MS
8948/* Initialize the current architecture based on INFO. If possible,
8949 re-use an architecture from ARCHES, which is a list of
8950 architectures already created during this debugging session.
97e03143 8951
da3c6d4a
MS
8952 Called e.g. at program startup, when reading a core file, and when
8953 reading a binary file. */
97e03143 8954
39bbf761
RE
8955static struct gdbarch *
8956arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8957{
97e03143 8958 struct gdbarch_tdep *tdep;
39bbf761 8959 struct gdbarch *gdbarch;
28e97307
DJ
8960 struct gdbarch_list *best_arch;
8961 enum arm_abi_kind arm_abi = arm_abi_global;
8962 enum arm_float_model fp_model = arm_fp_model;
123dc839 8963 struct tdesc_arch_data *tdesc_data = NULL;
9779414d 8964 int i, is_m = 0;
330c6ca9 8965 int vfp_register_count = 0, have_vfp_pseudos = 0, have_neon_pseudos = 0;
a56cc1ce 8966 int have_wmmx_registers = 0;
58d6951d 8967 int have_neon = 0;
ff6f572f 8968 int have_fpa_registers = 1;
9779414d
DJ
8969 const struct target_desc *tdesc = info.target_desc;
8970
8971 /* If we have an object to base this architecture on, try to determine
8972 its ABI. */
8973
8974 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
8975 {
8976 int ei_osabi, e_flags;
8977
8978 switch (bfd_get_flavour (info.abfd))
8979 {
8980 case bfd_target_aout_flavour:
8981 /* Assume it's an old APCS-style ABI. */
8982 arm_abi = ARM_ABI_APCS;
8983 break;
8984
8985 case bfd_target_coff_flavour:
8986 /* Assume it's an old APCS-style ABI. */
8987 /* XXX WinCE? */
8988 arm_abi = ARM_ABI_APCS;
8989 break;
8990
8991 case bfd_target_elf_flavour:
8992 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
8993 e_flags = elf_elfheader (info.abfd)->e_flags;
8994
8995 if (ei_osabi == ELFOSABI_ARM)
8996 {
8997 /* GNU tools used to use this value, but do not for EABI
8998 objects. There's nowhere to tag an EABI version
8999 anyway, so assume APCS. */
9000 arm_abi = ARM_ABI_APCS;
9001 }
d403db27 9002 else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU)
9779414d
DJ
9003 {
9004 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
9005 int attr_arch, attr_profile;
9006
9007 switch (eabi_ver)
9008 {
9009 case EF_ARM_EABI_UNKNOWN:
9010 /* Assume GNU tools. */
9011 arm_abi = ARM_ABI_APCS;
9012 break;
9013
9014 case EF_ARM_EABI_VER4:
9015 case EF_ARM_EABI_VER5:
9016 arm_abi = ARM_ABI_AAPCS;
9017 /* EABI binaries default to VFP float ordering.
9018 They may also contain build attributes that can
9019 be used to identify if the VFP argument-passing
9020 ABI is in use. */
9021 if (fp_model == ARM_FLOAT_AUTO)
9022 {
9023#ifdef HAVE_ELF
9024 switch (bfd_elf_get_obj_attr_int (info.abfd,
9025 OBJ_ATTR_PROC,
9026 Tag_ABI_VFP_args))
9027 {
b35b0298 9028 case AEABI_VFP_args_base:
9779414d
DJ
9029 /* "The user intended FP parameter/result
9030 passing to conform to AAPCS, base
9031 variant". */
9032 fp_model = ARM_FLOAT_SOFT_VFP;
9033 break;
b35b0298 9034 case AEABI_VFP_args_vfp:
9779414d
DJ
9035 /* "The user intended FP parameter/result
9036 passing to conform to AAPCS, VFP
9037 variant". */
9038 fp_model = ARM_FLOAT_VFP;
9039 break;
b35b0298 9040 case AEABI_VFP_args_toolchain:
9779414d
DJ
9041 /* "The user intended FP parameter/result
9042 passing to conform to tool chain-specific
9043 conventions" - we don't know any such
9044 conventions, so leave it as "auto". */
9045 break;
b35b0298 9046 case AEABI_VFP_args_compatible:
5c294fee
TG
9047 /* "Code is compatible with both the base
9048 and VFP variants; the user did not permit
9049 non-variadic functions to pass FP
9050 parameters/results" - leave it as
9051 "auto". */
9052 break;
9779414d
DJ
9053 default:
9054 /* Attribute value not mentioned in the
5c294fee 9055 November 2012 ABI, so leave it as
9779414d
DJ
9056 "auto". */
9057 break;
9058 }
9059#else
9060 fp_model = ARM_FLOAT_SOFT_VFP;
9061#endif
9062 }
9063 break;
9064
9065 default:
9066 /* Leave it as "auto". */
9067 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
9068 break;
9069 }
9070
9071#ifdef HAVE_ELF
9072 /* Detect M-profile programs. This only works if the
9073 executable file includes build attributes; GCC does
9074 copy them to the executable, but e.g. RealView does
9075 not. */
9076 attr_arch = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
9077 Tag_CPU_arch);
0963b4bd
MS
9078 attr_profile = bfd_elf_get_obj_attr_int (info.abfd,
9079 OBJ_ATTR_PROC,
9779414d
DJ
9080 Tag_CPU_arch_profile);
9081 /* GCC specifies the profile for v6-M; RealView only
9082 specifies the profile for architectures starting with
9083 V7 (as opposed to architectures with a tag
9084 numerically greater than TAG_CPU_ARCH_V7). */
9085 if (!tdesc_has_registers (tdesc)
9086 && (attr_arch == TAG_CPU_ARCH_V6_M
9087 || attr_arch == TAG_CPU_ARCH_V6S_M
9088 || attr_profile == 'M'))
25f8c692 9089 is_m = 1;
9779414d
DJ
9090#endif
9091 }
9092
9093 if (fp_model == ARM_FLOAT_AUTO)
9094 {
9095 int e_flags = elf_elfheader (info.abfd)->e_flags;
9096
9097 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
9098 {
9099 case 0:
9100 /* Leave it as "auto". Strictly speaking this case
9101 means FPA, but almost nobody uses that now, and
9102 many toolchains fail to set the appropriate bits
9103 for the floating-point model they use. */
9104 break;
9105 case EF_ARM_SOFT_FLOAT:
9106 fp_model = ARM_FLOAT_SOFT_FPA;
9107 break;
9108 case EF_ARM_VFP_FLOAT:
9109 fp_model = ARM_FLOAT_VFP;
9110 break;
9111 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
9112 fp_model = ARM_FLOAT_SOFT_VFP;
9113 break;
9114 }
9115 }
9116
9117 if (e_flags & EF_ARM_BE8)
9118 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
9119
9120 break;
9121
9122 default:
9123 /* Leave it as "auto". */
9124 break;
9125 }
9126 }
123dc839
DJ
9127
9128 /* Check any target description for validity. */
9779414d 9129 if (tdesc_has_registers (tdesc))
123dc839
DJ
9130 {
9131 /* For most registers we require GDB's default names; but also allow
9132 the numeric names for sp / lr / pc, as a convenience. */
9133 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
9134 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
9135 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
9136
9137 const struct tdesc_feature *feature;
58d6951d 9138 int valid_p;
123dc839 9139
9779414d 9140 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9141 "org.gnu.gdb.arm.core");
9142 if (feature == NULL)
9779414d
DJ
9143 {
9144 feature = tdesc_find_feature (tdesc,
9145 "org.gnu.gdb.arm.m-profile");
9146 if (feature == NULL)
9147 return NULL;
9148 else
9149 is_m = 1;
9150 }
123dc839
DJ
9151
9152 tdesc_data = tdesc_data_alloc ();
9153
9154 valid_p = 1;
9155 for (i = 0; i < ARM_SP_REGNUM; i++)
9156 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9157 arm_register_names[i]);
9158 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9159 ARM_SP_REGNUM,
9160 arm_sp_names);
9161 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9162 ARM_LR_REGNUM,
9163 arm_lr_names);
9164 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
9165 ARM_PC_REGNUM,
9166 arm_pc_names);
9779414d
DJ
9167 if (is_m)
9168 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9169 ARM_PS_REGNUM, "xpsr");
9170 else
9171 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9172 ARM_PS_REGNUM, "cpsr");
123dc839
DJ
9173
9174 if (!valid_p)
9175 {
9176 tdesc_data_cleanup (tdesc_data);
9177 return NULL;
9178 }
9179
9779414d 9180 feature = tdesc_find_feature (tdesc,
123dc839
DJ
9181 "org.gnu.gdb.arm.fpa");
9182 if (feature != NULL)
9183 {
9184 valid_p = 1;
9185 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
9186 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
9187 arm_register_names[i]);
9188 if (!valid_p)
9189 {
9190 tdesc_data_cleanup (tdesc_data);
9191 return NULL;
9192 }
9193 }
ff6f572f
DJ
9194 else
9195 have_fpa_registers = 0;
9196
9779414d 9197 feature = tdesc_find_feature (tdesc,
ff6f572f
DJ
9198 "org.gnu.gdb.xscale.iwmmxt");
9199 if (feature != NULL)
9200 {
9201 static const char *const iwmmxt_names[] = {
9202 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
9203 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
9204 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
9205 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
9206 };
9207
9208 valid_p = 1;
9209 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
9210 valid_p
9211 &= tdesc_numbered_register (feature, tdesc_data, i,
9212 iwmmxt_names[i - ARM_WR0_REGNUM]);
9213
9214 /* Check for the control registers, but do not fail if they
9215 are missing. */
9216 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
9217 tdesc_numbered_register (feature, tdesc_data, i,
9218 iwmmxt_names[i - ARM_WR0_REGNUM]);
9219
9220 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
9221 valid_p
9222 &= tdesc_numbered_register (feature, tdesc_data, i,
9223 iwmmxt_names[i - ARM_WR0_REGNUM]);
9224
9225 if (!valid_p)
9226 {
9227 tdesc_data_cleanup (tdesc_data);
9228 return NULL;
9229 }
a56cc1ce
YQ
9230
9231 have_wmmx_registers = 1;
ff6f572f 9232 }
58d6951d
DJ
9233
9234 /* If we have a VFP unit, check whether the single precision registers
9235 are present. If not, then we will synthesize them as pseudo
9236 registers. */
9779414d 9237 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9238 "org.gnu.gdb.arm.vfp");
9239 if (feature != NULL)
9240 {
9241 static const char *const vfp_double_names[] = {
9242 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
9243 "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15",
9244 "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
9245 "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
9246 };
9247
9248 /* Require the double precision registers. There must be either
9249 16 or 32. */
9250 valid_p = 1;
9251 for (i = 0; i < 32; i++)
9252 {
9253 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9254 ARM_D0_REGNUM + i,
9255 vfp_double_names[i]);
9256 if (!valid_p)
9257 break;
9258 }
2b9e5ea6
UW
9259 if (!valid_p && i == 16)
9260 valid_p = 1;
58d6951d 9261
2b9e5ea6
UW
9262 /* Also require FPSCR. */
9263 valid_p &= tdesc_numbered_register (feature, tdesc_data,
9264 ARM_FPSCR_REGNUM, "fpscr");
9265 if (!valid_p)
58d6951d
DJ
9266 {
9267 tdesc_data_cleanup (tdesc_data);
9268 return NULL;
9269 }
9270
9271 if (tdesc_unnumbered_register (feature, "s0") == 0)
9272 have_vfp_pseudos = 1;
9273
330c6ca9 9274 vfp_register_count = i;
58d6951d
DJ
9275
9276 /* If we have VFP, also check for NEON. The architecture allows
9277 NEON without VFP (integer vector operations only), but GDB
9278 does not support that. */
9779414d 9279 feature = tdesc_find_feature (tdesc,
58d6951d
DJ
9280 "org.gnu.gdb.arm.neon");
9281 if (feature != NULL)
9282 {
9283 /* NEON requires 32 double-precision registers. */
9284 if (i != 32)
9285 {
9286 tdesc_data_cleanup (tdesc_data);
9287 return NULL;
9288 }
9289
9290 /* If there are quad registers defined by the stub, use
9291 their type; otherwise (normally) provide them with
9292 the default type. */
9293 if (tdesc_unnumbered_register (feature, "q0") == 0)
9294 have_neon_pseudos = 1;
9295
9296 have_neon = 1;
9297 }
9298 }
123dc839 9299 }
39bbf761 9300
28e97307
DJ
9301 /* If there is already a candidate, use it. */
9302 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
9303 best_arch != NULL;
9304 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
9305 {
b8926edc
DJ
9306 if (arm_abi != ARM_ABI_AUTO
9307 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
28e97307
DJ
9308 continue;
9309
b8926edc
DJ
9310 if (fp_model != ARM_FLOAT_AUTO
9311 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
28e97307
DJ
9312 continue;
9313
58d6951d
DJ
9314 /* There are various other properties in tdep that we do not
9315 need to check here: those derived from a target description,
9316 since gdbarches with a different target description are
9317 automatically disqualified. */
9318
9779414d
DJ
9319 /* Do check is_m, though, since it might come from the binary. */
9320 if (is_m != gdbarch_tdep (best_arch->gdbarch)->is_m)
9321 continue;
9322
28e97307
DJ
9323 /* Found a match. */
9324 break;
9325 }
97e03143 9326
28e97307 9327 if (best_arch != NULL)
123dc839
DJ
9328 {
9329 if (tdesc_data != NULL)
9330 tdesc_data_cleanup (tdesc_data);
9331 return best_arch->gdbarch;
9332 }
28e97307 9333
8d749320 9334 tdep = XCNEW (struct gdbarch_tdep);
97e03143
RE
9335 gdbarch = gdbarch_alloc (&info, tdep);
9336
28e97307
DJ
9337 /* Record additional information about the architecture we are defining.
9338 These are gdbarch discriminators, like the OSABI. */
9339 tdep->arm_abi = arm_abi;
9340 tdep->fp_model = fp_model;
9779414d 9341 tdep->is_m = is_m;
ff6f572f 9342 tdep->have_fpa_registers = have_fpa_registers;
a56cc1ce 9343 tdep->have_wmmx_registers = have_wmmx_registers;
330c6ca9
YQ
9344 gdb_assert (vfp_register_count == 0
9345 || vfp_register_count == 16
9346 || vfp_register_count == 32);
9347 tdep->vfp_register_count = vfp_register_count;
58d6951d
DJ
9348 tdep->have_vfp_pseudos = have_vfp_pseudos;
9349 tdep->have_neon_pseudos = have_neon_pseudos;
9350 tdep->have_neon = have_neon;
08216dd7 9351
25f8c692
JL
9352 arm_register_g_packet_guesses (gdbarch);
9353
08216dd7 9354 /* Breakpoints. */
9d4fde75 9355 switch (info.byte_order_for_code)
67255d04
RE
9356 {
9357 case BFD_ENDIAN_BIG:
66e810cd
RE
9358 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
9359 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
9360 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
9361 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
9362
67255d04
RE
9363 break;
9364
9365 case BFD_ENDIAN_LITTLE:
66e810cd
RE
9366 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
9367 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
9368 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
9369 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
9370
67255d04
RE
9371 break;
9372
9373 default:
9374 internal_error (__FILE__, __LINE__,
edefbb7c 9375 _("arm_gdbarch_init: bad byte order for float format"));
67255d04
RE
9376 }
9377
d7b486e7
RE
9378 /* On ARM targets char defaults to unsigned. */
9379 set_gdbarch_char_signed (gdbarch, 0);
9380
cca44b1b
JB
9381 /* Note: for displaced stepping, this includes the breakpoint, and one word
9382 of additional scratch space. This setting isn't used for anything beside
9383 displaced stepping at present. */
9384 set_gdbarch_max_insn_length (gdbarch, 4 * DISPLACED_MODIFIED_INSNS);
9385
9df628e0 9386 /* This should be low enough for everything. */
97e03143 9387 tdep->lowest_pc = 0x20;
94c30b78 9388 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 9389
7c00367c
MK
9390 /* The default, for both APCS and AAPCS, is to return small
9391 structures in registers. */
9392 tdep->struct_return = reg_struct_return;
9393
2dd604e7 9394 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
f53f0d0b 9395 set_gdbarch_frame_align (gdbarch, arm_frame_align);
39bbf761 9396
7eb89530
YQ
9397 if (is_m)
9398 set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable);
9399
756fe439
DJ
9400 set_gdbarch_write_pc (gdbarch, arm_write_pc);
9401
148754e5 9402 /* Frame handling. */
a262aec2 9403 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
eb5492fa
DJ
9404 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
9405 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
9406
eb5492fa 9407 frame_base_set_default (gdbarch, &arm_normal_base);
148754e5 9408
34e8f22d 9409 /* Address manipulation. */
34e8f22d
RE
9410 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
9411
34e8f22d
RE
9412 /* Advance PC across function entry code. */
9413 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
9414
c9cf6e20
MG
9415 /* Detect whether PC is at a point where the stack has been destroyed. */
9416 set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p);
4024ca99 9417
190dce09
UW
9418 /* Skip trampolines. */
9419 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
9420
34e8f22d
RE
9421 /* The stack grows downward. */
9422 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
9423
9424 /* Breakpoint manipulation. */
d19280ad 9425 SET_GDBARCH_BREAKPOINT_MANIPULATION (arm);
177321bd
DJ
9426 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
9427 arm_remote_breakpoint_from_pc);
34e8f22d
RE
9428
9429 /* Information about registers, etc. */
34e8f22d
RE
9430 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
9431 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
ff6f572f 9432 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
7a5ea0d4 9433 set_gdbarch_register_type (gdbarch, arm_register_type);
54483882 9434 set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p);
34e8f22d 9435
ff6f572f
DJ
9436 /* This "info float" is FPA-specific. Use the generic version if we
9437 do not have FPA. */
9438 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
9439 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
9440
26216b98 9441 /* Internal <-> external register number maps. */
ff6f572f 9442 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
26216b98
AC
9443 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
9444
34e8f22d
RE
9445 set_gdbarch_register_name (gdbarch, arm_register_name);
9446
9447 /* Returning results. */
2af48f68 9448 set_gdbarch_return_value (gdbarch, arm_return_value);
34e8f22d 9449
03d48a7d
RE
9450 /* Disassembly. */
9451 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
9452
34e8f22d
RE
9453 /* Minsymbol frobbing. */
9454 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
9455 set_gdbarch_coff_make_msymbol_special (gdbarch,
9456 arm_coff_make_msymbol_special);
60c5725c 9457 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
34e8f22d 9458
f9d67f43
DJ
9459 /* Thumb-2 IT block support. */
9460 set_gdbarch_adjust_breakpoint_address (gdbarch,
9461 arm_adjust_breakpoint_address);
9462
0d5de010
DJ
9463 /* Virtual tables. */
9464 set_gdbarch_vbit_in_delta (gdbarch, 1);
9465
97e03143 9466 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 9467 gdbarch_init_osabi (info, gdbarch);
97e03143 9468
b39cc962
DJ
9469 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
9470
eb5492fa 9471 /* Add some default predicates. */
2ae28aa9
YQ
9472 if (is_m)
9473 frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind);
a262aec2
DJ
9474 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
9475 dwarf2_append_unwinders (gdbarch);
0e9e9abd 9476 frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind);
779aa56f 9477 frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind);
a262aec2 9478 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
eb5492fa 9479
97e03143
RE
9480 /* Now we have tuned the configuration, set a few final things,
9481 based on what the OS ABI has told us. */
9482
b8926edc
DJ
9483 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
9484 binaries are always marked. */
9485 if (tdep->arm_abi == ARM_ABI_AUTO)
9486 tdep->arm_abi = ARM_ABI_APCS;
9487
e3039479
UW
9488 /* Watchpoints are not steppable. */
9489 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
9490
b8926edc
DJ
9491 /* We used to default to FPA for generic ARM, but almost nobody
9492 uses that now, and we now provide a way for the user to force
9493 the model. So default to the most useful variant. */
9494 if (tdep->fp_model == ARM_FLOAT_AUTO)
9495 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
9496
9df628e0
RE
9497 if (tdep->jb_pc >= 0)
9498 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
9499
08216dd7 9500 /* Floating point sizes and format. */
8da61cc4 9501 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
b8926edc 9502 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
08216dd7 9503 {
8da61cc4
DJ
9504 set_gdbarch_double_format
9505 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9506 set_gdbarch_long_double_format
9507 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
9508 }
9509 else
9510 {
9511 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
9512 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
08216dd7
RE
9513 }
9514
58d6951d
DJ
9515 if (have_vfp_pseudos)
9516 {
9517 /* NOTE: These are the only pseudo registers used by
9518 the ARM target at the moment. If more are added, a
9519 little more care in numbering will be needed. */
9520
9521 int num_pseudos = 32;
9522 if (have_neon_pseudos)
9523 num_pseudos += 16;
9524 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos);
9525 set_gdbarch_pseudo_register_read (gdbarch, arm_pseudo_read);
9526 set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write);
9527 }
9528
123dc839 9529 if (tdesc_data)
58d6951d
DJ
9530 {
9531 set_tdesc_pseudo_register_name (gdbarch, arm_register_name);
9532
9779414d 9533 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
58d6951d
DJ
9534
9535 /* Override tdesc_register_type to adjust the types of VFP
9536 registers for NEON. */
9537 set_gdbarch_register_type (gdbarch, arm_register_type);
9538 }
123dc839
DJ
9539
9540 /* Add standard register aliases. We add aliases even for those
9541 nanes which are used by the current architecture - it's simpler,
9542 and does no harm, since nothing ever lists user registers. */
9543 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
9544 user_reg_add (gdbarch, arm_register_aliases[i].name,
9545 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
9546
39bbf761
RE
9547 return gdbarch;
9548}
9549
97e03143 9550static void
2af46ca0 9551arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
97e03143 9552{
2af46ca0 9553 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
97e03143
RE
9554
9555 if (tdep == NULL)
9556 return;
9557
edefbb7c 9558 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
97e03143
RE
9559 (unsigned long) tdep->lowest_pc);
9560}
9561
a78f21af
AC
9562extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
9563
c906108c 9564void
ed9a39eb 9565_initialize_arm_tdep (void)
c906108c 9566{
bc90b915
FN
9567 struct ui_file *stb;
9568 long length;
53904c9e
AC
9569 const char *setname;
9570 const char *setdesc;
4bd7b427 9571 const char *const *regnames;
bec2ab5a 9572 int i;
bc90b915 9573 static char *helptext;
edefbb7c
AC
9574 char regdesc[1024], *rdptr = regdesc;
9575 size_t rest = sizeof (regdesc);
085dd6e6 9576
42cf1509 9577 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
97e03143 9578
60c5725c 9579 arm_objfile_data_key
c1bd65d0 9580 = register_objfile_data_with_cleanup (NULL, arm_objfile_data_free);
60c5725c 9581
0e9e9abd
UW
9582 /* Add ourselves to objfile event chain. */
9583 observer_attach_new_objfile (arm_exidx_new_objfile);
9584 arm_exidx_data_key
9585 = register_objfile_data_with_cleanup (NULL, arm_exidx_data_free);
9586
70f80edf
JT
9587 /* Register an ELF OS ABI sniffer for ARM binaries. */
9588 gdbarch_register_osabi_sniffer (bfd_arch_arm,
9589 bfd_target_elf_flavour,
9590 arm_elf_osabi_sniffer);
9591
9779414d
DJ
9592 /* Initialize the standard target descriptions. */
9593 initialize_tdesc_arm_with_m ();
25f8c692 9594 initialize_tdesc_arm_with_m_fpa_layout ();
3184d3f9 9595 initialize_tdesc_arm_with_m_vfp_d16 ();
ef7e8358
UW
9596 initialize_tdesc_arm_with_iwmmxt ();
9597 initialize_tdesc_arm_with_vfpv2 ();
9598 initialize_tdesc_arm_with_vfpv3 ();
9599 initialize_tdesc_arm_with_neon ();
9779414d 9600
94c30b78 9601 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
9602 num_disassembly_options = get_arm_regname_num_options ();
9603
9604 /* Add root prefix command for all "set arm"/"show arm" commands. */
9605 add_prefix_cmd ("arm", no_class, set_arm_command,
edefbb7c 9606 _("Various ARM-specific commands."),
afd7eef0
RE
9607 &setarmcmdlist, "set arm ", 0, &setlist);
9608
9609 add_prefix_cmd ("arm", no_class, show_arm_command,
edefbb7c 9610 _("Various ARM-specific commands."),
afd7eef0 9611 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 9612
94c30b78 9613 /* Sync the opcode insn printer with our register viewer. */
bc90b915 9614 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 9615
eefe576e
AC
9616 /* Initialize the array that will be passed to
9617 add_setshow_enum_cmd(). */
8d749320
SM
9618 valid_disassembly_styles = XNEWVEC (const char *,
9619 num_disassembly_options + 1);
afd7eef0 9620 for (i = 0; i < num_disassembly_options; i++)
bc90b915 9621 {
bec2ab5a 9622 get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 9623 valid_disassembly_styles[i] = setname;
edefbb7c
AC
9624 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
9625 rdptr += length;
9626 rest -= length;
123dc839
DJ
9627 /* When we find the default names, tell the disassembler to use
9628 them. */
bc90b915
FN
9629 if (!strcmp (setname, "std"))
9630 {
afd7eef0 9631 disassembly_style = setname;
bc90b915
FN
9632 set_arm_regname_option (i);
9633 }
9634 }
94c30b78 9635 /* Mark the end of valid options. */
afd7eef0 9636 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 9637
edefbb7c
AC
9638 /* Create the help text. */
9639 stb = mem_fileopen ();
9640 fprintf_unfiltered (stb, "%s%s%s",
9641 _("The valid values are:\n"),
9642 regdesc,
9643 _("The default is \"std\"."));
759ef836 9644 helptext = ui_file_xstrdup (stb, NULL);
bc90b915 9645 ui_file_delete (stb);
ed9a39eb 9646
edefbb7c
AC
9647 add_setshow_enum_cmd("disassembler", no_class,
9648 valid_disassembly_styles, &disassembly_style,
9649 _("Set the disassembly style."),
9650 _("Show the disassembly style."),
9651 helptext,
2c5b56ce 9652 set_disassembly_style_sfunc,
0963b4bd
MS
9653 NULL, /* FIXME: i18n: The disassembly style is
9654 \"%s\". */
7376b4c2 9655 &setarmcmdlist, &showarmcmdlist);
edefbb7c
AC
9656
9657 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
9658 _("Set usage of ARM 32-bit mode."),
9659 _("Show usage of ARM 32-bit mode."),
9660 _("When off, a 26-bit PC will be used."),
2c5b56ce 9661 NULL,
0963b4bd
MS
9662 NULL, /* FIXME: i18n: Usage of ARM 32-bit
9663 mode is %s. */
26304000 9664 &setarmcmdlist, &showarmcmdlist);
c906108c 9665
fd50bc42 9666 /* Add a command to allow the user to force the FPU model. */
edefbb7c
AC
9667 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
9668 _("Set the floating point type."),
9669 _("Show the floating point type."),
9670 _("auto - Determine the FP typefrom the OS-ABI.\n\
9671softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
9672fpa - FPA co-processor (GCC compiled).\n\
9673softvfp - Software FP with pure-endian doubles.\n\
9674vfp - VFP co-processor."),
edefbb7c 9675 set_fp_model_sfunc, show_fp_model,
7376b4c2 9676 &setarmcmdlist, &showarmcmdlist);
fd50bc42 9677
28e97307
DJ
9678 /* Add a command to allow the user to force the ABI. */
9679 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
9680 _("Set the ABI."),
9681 _("Show the ABI."),
9682 NULL, arm_set_abi, arm_show_abi,
9683 &setarmcmdlist, &showarmcmdlist);
9684
0428b8f5
DJ
9685 /* Add two commands to allow the user to force the assumed
9686 execution mode. */
9687 add_setshow_enum_cmd ("fallback-mode", class_support,
9688 arm_mode_strings, &arm_fallback_mode_string,
9689 _("Set the mode assumed when symbols are unavailable."),
9690 _("Show the mode assumed when symbols are unavailable."),
9691 NULL, NULL, arm_show_fallback_mode,
9692 &setarmcmdlist, &showarmcmdlist);
9693 add_setshow_enum_cmd ("force-mode", class_support,
9694 arm_mode_strings, &arm_force_mode_string,
9695 _("Set the mode assumed even when symbols are available."),
9696 _("Show the mode assumed even when symbols are available."),
9697 NULL, NULL, arm_show_force_mode,
9698 &setarmcmdlist, &showarmcmdlist);
9699
6529d2dd 9700 /* Debugging flag. */
edefbb7c
AC
9701 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
9702 _("Set ARM debugging."),
9703 _("Show ARM debugging."),
9704 _("When on, arm-specific debugging is enabled."),
2c5b56ce 9705 NULL,
7915a72c 9706 NULL, /* FIXME: i18n: "ARM debugging is %s. */
26304000 9707 &setdebuglist, &showdebuglist);
c906108c 9708}
72508ac0
PO
9709
9710/* ARM-reversible process record data structures. */
9711
9712#define ARM_INSN_SIZE_BYTES 4
9713#define THUMB_INSN_SIZE_BYTES 2
9714#define THUMB2_INSN_SIZE_BYTES 4
9715
9716
71e396f9
LM
9717/* Position of the bit within a 32-bit ARM instruction
9718 that defines whether the instruction is a load or store. */
72508ac0
PO
9719#define INSN_S_L_BIT_NUM 20
9720
9721#define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
9722 do \
9723 { \
9724 unsigned int reg_len = LENGTH; \
9725 if (reg_len) \
9726 { \
9727 REGS = XNEWVEC (uint32_t, reg_len); \
9728 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
9729 } \
9730 } \
9731 while (0)
9732
9733#define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
9734 do \
9735 { \
9736 unsigned int mem_len = LENGTH; \
9737 if (mem_len) \
9738 { \
9739 MEMS = XNEWVEC (struct arm_mem_r, mem_len); \
9740 memcpy(&MEMS->len, &RECORD_BUF[0], \
9741 sizeof(struct arm_mem_r) * LENGTH); \
9742 } \
9743 } \
9744 while (0)
9745
9746/* Checks whether insn is already recorded or yet to be decoded. (boolean expression). */
9747#define INSN_RECORDED(ARM_RECORD) \
9748 (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count)
9749
9750/* ARM memory record structure. */
9751struct arm_mem_r
9752{
9753 uint32_t len; /* Record length. */
bfbbec00 9754 uint32_t addr; /* Memory address. */
72508ac0
PO
9755};
9756
9757/* ARM instruction record contains opcode of current insn
9758 and execution state (before entry to decode_insn()),
9759 contains list of to-be-modified registers and
9760 memory blocks (on return from decode_insn()). */
9761
9762typedef struct insn_decode_record_t
9763{
9764 struct gdbarch *gdbarch;
9765 struct regcache *regcache;
9766 CORE_ADDR this_addr; /* Address of the insn being decoded. */
9767 uint32_t arm_insn; /* Should accommodate thumb. */
9768 uint32_t cond; /* Condition code. */
9769 uint32_t opcode; /* Insn opcode. */
9770 uint32_t decode; /* Insn decode bits. */
9771 uint32_t mem_rec_count; /* No of mem records. */
9772 uint32_t reg_rec_count; /* No of reg records. */
9773 uint32_t *arm_regs; /* Registers to be saved for this record. */
9774 struct arm_mem_r *arm_mems; /* Memory to be saved for this record. */
9775} insn_decode_record;
9776
9777
9778/* Checks ARM SBZ and SBO mandatory fields. */
9779
9780static int
9781sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo)
9782{
9783 uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1));
9784
9785 if (!len)
9786 return 1;
9787
9788 if (!sbo)
9789 ones = ~ones;
9790
9791 while (ones)
9792 {
9793 if (!(ones & sbo))
9794 {
9795 return 0;
9796 }
9797 ones = ones >> 1;
9798 }
9799 return 1;
9800}
9801
c6ec2b30
OJ
9802enum arm_record_result
9803{
9804 ARM_RECORD_SUCCESS = 0,
9805 ARM_RECORD_FAILURE = 1
9806};
9807
72508ac0
PO
9808typedef enum
9809{
9810 ARM_RECORD_STRH=1,
9811 ARM_RECORD_STRD
9812} arm_record_strx_t;
9813
9814typedef enum
9815{
9816 ARM_RECORD=1,
9817 THUMB_RECORD,
9818 THUMB2_RECORD
9819} record_type_t;
9820
9821
9822static int
9823arm_record_strx (insn_decode_record *arm_insn_r, uint32_t *record_buf,
9824 uint32_t *record_buf_mem, arm_record_strx_t str_type)
9825{
9826
9827 struct regcache *reg_cache = arm_insn_r->regcache;
9828 ULONGEST u_regval[2]= {0};
9829
9830 uint32_t reg_src1 = 0, reg_src2 = 0;
9831 uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0;
72508ac0
PO
9832
9833 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
9834 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
72508ac0
PO
9835
9836 if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
9837 {
9838 /* 1) Handle misc store, immediate offset. */
9839 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9840 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9841 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9842 regcache_raw_read_unsigned (reg_cache, reg_src1,
9843 &u_regval[0]);
9844 if (ARM_PC_REGNUM == reg_src1)
9845 {
9846 /* If R15 was used as Rn, hence current PC+8. */
9847 u_regval[0] = u_regval[0] + 8;
9848 }
9849 offset_8 = (immed_high << 4) | immed_low;
9850 /* Calculate target store address. */
9851 if (14 == arm_insn_r->opcode)
9852 {
9853 tgt_mem_addr = u_regval[0] + offset_8;
9854 }
9855 else
9856 {
9857 tgt_mem_addr = u_regval[0] - offset_8;
9858 }
9859 if (ARM_RECORD_STRH == str_type)
9860 {
9861 record_buf_mem[0] = 2;
9862 record_buf_mem[1] = tgt_mem_addr;
9863 arm_insn_r->mem_rec_count = 1;
9864 }
9865 else if (ARM_RECORD_STRD == str_type)
9866 {
9867 record_buf_mem[0] = 4;
9868 record_buf_mem[1] = tgt_mem_addr;
9869 record_buf_mem[2] = 4;
9870 record_buf_mem[3] = tgt_mem_addr + 4;
9871 arm_insn_r->mem_rec_count = 2;
9872 }
9873 }
9874 else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode)
9875 {
9876 /* 2) Store, register offset. */
9877 /* Get Rm. */
9878 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9879 /* Get Rn. */
9880 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9881 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9882 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9883 if (15 == reg_src2)
9884 {
9885 /* If R15 was used as Rn, hence current PC+8. */
9886 u_regval[0] = u_regval[0] + 8;
9887 }
9888 /* Calculate target store address, Rn +/- Rm, register offset. */
9889 if (12 == arm_insn_r->opcode)
9890 {
9891 tgt_mem_addr = u_regval[0] + u_regval[1];
9892 }
9893 else
9894 {
9895 tgt_mem_addr = u_regval[1] - u_regval[0];
9896 }
9897 if (ARM_RECORD_STRH == str_type)
9898 {
9899 record_buf_mem[0] = 2;
9900 record_buf_mem[1] = tgt_mem_addr;
9901 arm_insn_r->mem_rec_count = 1;
9902 }
9903 else if (ARM_RECORD_STRD == str_type)
9904 {
9905 record_buf_mem[0] = 4;
9906 record_buf_mem[1] = tgt_mem_addr;
9907 record_buf_mem[2] = 4;
9908 record_buf_mem[3] = tgt_mem_addr + 4;
9909 arm_insn_r->mem_rec_count = 2;
9910 }
9911 }
9912 else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
9913 || 2 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9914 {
9915 /* 3) Store, immediate pre-indexed. */
9916 /* 5) Store, immediate post-indexed. */
9917 immed_low = bits (arm_insn_r->arm_insn, 0, 3);
9918 immed_high = bits (arm_insn_r->arm_insn, 8, 11);
9919 offset_8 = (immed_high << 4) | immed_low;
9920 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
9921 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9922 /* Calculate target store address, Rn +/- Rm, register offset. */
9923 if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode)
9924 {
9925 tgt_mem_addr = u_regval[0] + offset_8;
9926 }
9927 else
9928 {
9929 tgt_mem_addr = u_regval[0] - offset_8;
9930 }
9931 if (ARM_RECORD_STRH == str_type)
9932 {
9933 record_buf_mem[0] = 2;
9934 record_buf_mem[1] = tgt_mem_addr;
9935 arm_insn_r->mem_rec_count = 1;
9936 }
9937 else if (ARM_RECORD_STRD == str_type)
9938 {
9939 record_buf_mem[0] = 4;
9940 record_buf_mem[1] = tgt_mem_addr;
9941 record_buf_mem[2] = 4;
9942 record_buf_mem[3] = tgt_mem_addr + 4;
9943 arm_insn_r->mem_rec_count = 2;
9944 }
9945 /* Record Rn also as it changes. */
9946 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9947 arm_insn_r->reg_rec_count = 1;
9948 }
9949 else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode
9950 || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9951 {
9952 /* 4) Store, register pre-indexed. */
9953 /* 6) Store, register post -indexed. */
9954 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
9955 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
9956 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
9957 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
9958 /* Calculate target store address, Rn +/- Rm, register offset. */
9959 if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode)
9960 {
9961 tgt_mem_addr = u_regval[0] + u_regval[1];
9962 }
9963 else
9964 {
9965 tgt_mem_addr = u_regval[1] - u_regval[0];
9966 }
9967 if (ARM_RECORD_STRH == str_type)
9968 {
9969 record_buf_mem[0] = 2;
9970 record_buf_mem[1] = tgt_mem_addr;
9971 arm_insn_r->mem_rec_count = 1;
9972 }
9973 else if (ARM_RECORD_STRD == str_type)
9974 {
9975 record_buf_mem[0] = 4;
9976 record_buf_mem[1] = tgt_mem_addr;
9977 record_buf_mem[2] = 4;
9978 record_buf_mem[3] = tgt_mem_addr + 4;
9979 arm_insn_r->mem_rec_count = 2;
9980 }
9981 /* Record Rn also as it changes. */
9982 *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19);
9983 arm_insn_r->reg_rec_count = 1;
9984 }
9985 return 0;
9986}
9987
9988/* Handling ARM extension space insns. */
9989
9990static int
9991arm_record_extension_space (insn_decode_record *arm_insn_r)
9992{
9993 uint32_t ret = 0; /* Return value: -1:record failure ; 0:success */
9994 uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0;
9995 uint32_t record_buf[8], record_buf_mem[8];
9996 uint32_t reg_src1 = 0;
72508ac0
PO
9997 struct regcache *reg_cache = arm_insn_r->regcache;
9998 ULONGEST u_regval = 0;
9999
10000 gdb_assert (!INSN_RECORDED(arm_insn_r));
10001 /* Handle unconditional insn extension space. */
10002
10003 opcode1 = bits (arm_insn_r->arm_insn, 20, 27);
10004 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10005 if (arm_insn_r->cond)
10006 {
10007 /* PLD has no affect on architectural state, it just affects
10008 the caches. */
10009 if (5 == ((opcode1 & 0xE0) >> 5))
10010 {
10011 /* BLX(1) */
10012 record_buf[0] = ARM_PS_REGNUM;
10013 record_buf[1] = ARM_LR_REGNUM;
10014 arm_insn_r->reg_rec_count = 2;
10015 }
10016 /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn. */
10017 }
10018
10019
10020 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10021 if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4))
10022 {
10023 ret = -1;
10024 /* Undefined instruction on ARM V5; need to handle if later
10025 versions define it. */
10026 }
10027
10028 opcode1 = bits (arm_insn_r->arm_insn, 24, 27);
10029 opcode2 = bits (arm_insn_r->arm_insn, 4, 7);
10030 insn_op1 = bits (arm_insn_r->arm_insn, 20, 23);
10031
10032 /* Handle arithmetic insn extension space. */
10033 if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond
10034 && !INSN_RECORDED(arm_insn_r))
10035 {
10036 /* Handle MLA(S) and MUL(S). */
10037 if (0 <= insn_op1 && 3 >= insn_op1)
10038 {
10039 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10040 record_buf[1] = ARM_PS_REGNUM;
10041 arm_insn_r->reg_rec_count = 2;
10042 }
10043 else if (4 <= insn_op1 && 15 >= insn_op1)
10044 {
10045 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
10046 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10047 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10048 record_buf[2] = ARM_PS_REGNUM;
10049 arm_insn_r->reg_rec_count = 3;
10050 }
10051 }
10052
10053 opcode1 = bits (arm_insn_r->arm_insn, 26, 27);
10054 opcode2 = bits (arm_insn_r->arm_insn, 23, 24);
10055 insn_op1 = bits (arm_insn_r->arm_insn, 21, 22);
10056
10057 /* Handle control insn extension space. */
10058
10059 if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20)
10060 && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r))
10061 {
10062 if (!bit (arm_insn_r->arm_insn,25))
10063 {
10064 if (!bits (arm_insn_r->arm_insn, 4, 7))
10065 {
10066 if ((0 == insn_op1) || (2 == insn_op1))
10067 {
10068 /* MRS. */
10069 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10070 arm_insn_r->reg_rec_count = 1;
10071 }
10072 else if (1 == insn_op1)
10073 {
10074 /* CSPR is going to be changed. */
10075 record_buf[0] = ARM_PS_REGNUM;
10076 arm_insn_r->reg_rec_count = 1;
10077 }
10078 else if (3 == insn_op1)
10079 {
10080 /* SPSR is going to be changed. */
10081 /* We need to get SPSR value, which is yet to be done. */
72508ac0
PO
10082 return -1;
10083 }
10084 }
10085 else if (1 == bits (arm_insn_r->arm_insn, 4, 7))
10086 {
10087 if (1 == insn_op1)
10088 {
10089 /* BX. */
10090 record_buf[0] = ARM_PS_REGNUM;
10091 arm_insn_r->reg_rec_count = 1;
10092 }
10093 else if (3 == insn_op1)
10094 {
10095 /* CLZ. */
10096 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10097 arm_insn_r->reg_rec_count = 1;
10098 }
10099 }
10100 else if (3 == bits (arm_insn_r->arm_insn, 4, 7))
10101 {
10102 /* BLX. */
10103 record_buf[0] = ARM_PS_REGNUM;
10104 record_buf[1] = ARM_LR_REGNUM;
10105 arm_insn_r->reg_rec_count = 2;
10106 }
10107 else if (5 == bits (arm_insn_r->arm_insn, 4, 7))
10108 {
10109 /* QADD, QSUB, QDADD, QDSUB */
10110 record_buf[0] = ARM_PS_REGNUM;
10111 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10112 arm_insn_r->reg_rec_count = 2;
10113 }
10114 else if (7 == bits (arm_insn_r->arm_insn, 4, 7))
10115 {
10116 /* BKPT. */
10117 record_buf[0] = ARM_PS_REGNUM;
10118 record_buf[1] = ARM_LR_REGNUM;
10119 arm_insn_r->reg_rec_count = 2;
10120
10121 /* Save SPSR also;how? */
72508ac0
PO
10122 return -1;
10123 }
10124 else if(8 == bits (arm_insn_r->arm_insn, 4, 7)
10125 || 10 == bits (arm_insn_r->arm_insn, 4, 7)
10126 || 12 == bits (arm_insn_r->arm_insn, 4, 7)
10127 || 14 == bits (arm_insn_r->arm_insn, 4, 7)
10128 )
10129 {
10130 if (0 == insn_op1 || 1 == insn_op1)
10131 {
10132 /* SMLA<x><y>, SMLAW<y>, SMULW<y>. */
10133 /* We dont do optimization for SMULW<y> where we
10134 need only Rd. */
10135 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10136 record_buf[1] = ARM_PS_REGNUM;
10137 arm_insn_r->reg_rec_count = 2;
10138 }
10139 else if (2 == insn_op1)
10140 {
10141 /* SMLAL<x><y>. */
10142 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10143 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
10144 arm_insn_r->reg_rec_count = 2;
10145 }
10146 else if (3 == insn_op1)
10147 {
10148 /* SMUL<x><y>. */
10149 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10150 arm_insn_r->reg_rec_count = 1;
10151 }
10152 }
10153 }
10154 else
10155 {
10156 /* MSR : immediate form. */
10157 if (1 == insn_op1)
10158 {
10159 /* CSPR is going to be changed. */
10160 record_buf[0] = ARM_PS_REGNUM;
10161 arm_insn_r->reg_rec_count = 1;
10162 }
10163 else if (3 == insn_op1)
10164 {
10165 /* SPSR is going to be changed. */
10166 /* we need to get SPSR value, which is yet to be done */
72508ac0
PO
10167 return -1;
10168 }
10169 }
10170 }
10171
10172 opcode1 = bits (arm_insn_r->arm_insn, 25, 27);
10173 opcode2 = bits (arm_insn_r->arm_insn, 20, 24);
10174 insn_op1 = bits (arm_insn_r->arm_insn, 5, 6);
10175
10176 /* Handle load/store insn extension space. */
10177
10178 if (!opcode1 && bit (arm_insn_r->arm_insn, 7)
10179 && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond
10180 && !INSN_RECORDED(arm_insn_r))
10181 {
10182 /* SWP/SWPB. */
10183 if (0 == insn_op1)
10184 {
10185 /* These insn, changes register and memory as well. */
10186 /* SWP or SWPB insn. */
10187 /* Get memory address given by Rn. */
10188 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10189 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
10190 /* SWP insn ?, swaps word. */
10191 if (8 == arm_insn_r->opcode)
10192 {
10193 record_buf_mem[0] = 4;
10194 }
10195 else
10196 {
10197 /* SWPB insn, swaps only byte. */
10198 record_buf_mem[0] = 1;
10199 }
10200 record_buf_mem[1] = u_regval;
10201 arm_insn_r->mem_rec_count = 1;
10202 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10203 arm_insn_r->reg_rec_count = 1;
10204 }
10205 else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10206 {
10207 /* STRH. */
10208 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10209 ARM_RECORD_STRH);
10210 }
10211 else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10212 {
10213 /* LDRD. */
10214 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10215 record_buf[1] = record_buf[0] + 1;
10216 arm_insn_r->reg_rec_count = 2;
10217 }
10218 else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20))
10219 {
10220 /* STRD. */
10221 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10222 ARM_RECORD_STRD);
10223 }
10224 else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3)
10225 {
10226 /* LDRH, LDRSB, LDRSH. */
10227 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10228 arm_insn_r->reg_rec_count = 1;
10229 }
10230
10231 }
10232
10233 opcode1 = bits (arm_insn_r->arm_insn, 23, 27);
10234 if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21)
10235 && !INSN_RECORDED(arm_insn_r))
10236 {
10237 ret = -1;
10238 /* Handle coprocessor insn extension space. */
10239 }
10240
10241 /* To be done for ARMv5 and later; as of now we return -1. */
10242 if (-1 == ret)
ca92db2d 10243 return ret;
72508ac0
PO
10244
10245 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10246 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10247
10248 return ret;
10249}
10250
10251/* Handling opcode 000 insns. */
10252
10253static int
10254arm_record_data_proc_misc_ld_str (insn_decode_record *arm_insn_r)
10255{
10256 struct regcache *reg_cache = arm_insn_r->regcache;
10257 uint32_t record_buf[8], record_buf_mem[8];
10258 ULONGEST u_regval[2] = {0};
10259
bec2ab5a 10260 uint32_t reg_src1 = 0, reg_dest = 0;
72508ac0
PO
10261 uint32_t opcode1 = 0;
10262
10263 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10264 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10265 opcode1 = bits (arm_insn_r->arm_insn, 20, 24);
10266
10267 /* Data processing insn /multiply insn. */
10268 if (9 == arm_insn_r->decode
10269 && ((4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10270 || (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)))
10271 {
10272 /* Handle multiply instructions. */
10273 /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL. */
10274 if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode)
10275 {
10276 /* Handle MLA and MUL. */
10277 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10278 record_buf[1] = ARM_PS_REGNUM;
10279 arm_insn_r->reg_rec_count = 2;
10280 }
10281 else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode)
10282 {
10283 /* Handle SMLAL, SMULL, UMLAL, UMULL. */
10284 record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19);
10285 record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15);
10286 record_buf[2] = ARM_PS_REGNUM;
10287 arm_insn_r->reg_rec_count = 3;
10288 }
10289 }
10290 else if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10291 && (11 == arm_insn_r->decode || 13 == arm_insn_r->decode))
10292 {
10293 /* Handle misc load insns, as 20th bit (L = 1). */
10294 /* LDR insn has a capability to do branching, if
10295 MOV LR, PC is precceded by LDR insn having Rn as R15
10296 in that case, it emulates branch and link insn, and hence we
10297 need to save CSPR and PC as well. I am not sure this is right
10298 place; as opcode = 010 LDR insn make this happen, if R15 was
10299 used. */
10300 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10301 if (15 != reg_dest)
10302 {
10303 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10304 arm_insn_r->reg_rec_count = 1;
10305 }
10306 else
10307 {
10308 record_buf[0] = reg_dest;
10309 record_buf[1] = ARM_PS_REGNUM;
10310 arm_insn_r->reg_rec_count = 2;
10311 }
10312 }
10313 else if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10314 && sbo_sbz (arm_insn_r->arm_insn, 5, 12, 0)
10315 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10316 && 2 == bits (arm_insn_r->arm_insn, 20, 21))
10317 {
10318 /* Handle MSR insn. */
10319 if (9 == arm_insn_r->opcode)
10320 {
10321 /* CSPR is going to be changed. */
10322 record_buf[0] = ARM_PS_REGNUM;
10323 arm_insn_r->reg_rec_count = 1;
10324 }
10325 else
10326 {
10327 /* SPSR is going to be changed. */
10328 /* How to read SPSR value? */
72508ac0
PO
10329 return -1;
10330 }
10331 }
10332 else if (9 == arm_insn_r->decode
10333 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10334 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10335 {
10336 /* Handling SWP, SWPB. */
10337 /* These insn, changes register and memory as well. */
10338 /* SWP or SWPB insn. */
10339
10340 reg_src1 = bits (arm_insn_r->arm_insn, 16, 19);
10341 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10342 /* SWP insn ?, swaps word. */
10343 if (8 == arm_insn_r->opcode)
10344 {
10345 record_buf_mem[0] = 4;
10346 }
10347 else
10348 {
10349 /* SWPB insn, swaps only byte. */
10350 record_buf_mem[0] = 1;
10351 }
10352 record_buf_mem[1] = u_regval[0];
10353 arm_insn_r->mem_rec_count = 1;
10354 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10355 arm_insn_r->reg_rec_count = 1;
10356 }
10357 else if (3 == arm_insn_r->decode && 0x12 == opcode1
10358 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10359 {
10360 /* Handle BLX, branch and link/exchange. */
10361 if (9 == arm_insn_r->opcode)
10362 {
10363 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm,
10364 and R14 stores the return address. */
10365 record_buf[0] = ARM_PS_REGNUM;
10366 record_buf[1] = ARM_LR_REGNUM;
10367 arm_insn_r->reg_rec_count = 2;
10368 }
10369 }
10370 else if (7 == arm_insn_r->decode && 0x12 == opcode1)
10371 {
10372 /* Handle enhanced software breakpoint insn, BKPT. */
10373 /* CPSR is changed to be executed in ARM state, disabling normal
10374 interrupts, entering abort mode. */
10375 /* According to high vector configuration PC is set. */
10376 /* user hit breakpoint and type reverse, in
10377 that case, we need to go back with previous CPSR and
10378 Program Counter. */
10379 record_buf[0] = ARM_PS_REGNUM;
10380 record_buf[1] = ARM_LR_REGNUM;
10381 arm_insn_r->reg_rec_count = 2;
10382
10383 /* Save SPSR also; how? */
72508ac0
PO
10384 return -1;
10385 }
10386 else if (11 == arm_insn_r->decode
10387 && !bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10388 {
10389 /* Handle enhanced store insns and DSP insns (e.g. LDRD). */
10390
10391 /* Handle str(x) insn */
10392 arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0],
10393 ARM_RECORD_STRH);
10394 }
10395 else if (1 == arm_insn_r->decode && 0x12 == opcode1
10396 && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1))
10397 {
10398 /* Handle BX, branch and link/exchange. */
10399 /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm. */
10400 record_buf[0] = ARM_PS_REGNUM;
10401 arm_insn_r->reg_rec_count = 1;
10402 }
10403 else if (1 == arm_insn_r->decode && 0x16 == opcode1
10404 && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1)
10405 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1))
10406 {
10407 /* Count leading zeros: CLZ. */
10408 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10409 arm_insn_r->reg_rec_count = 1;
10410 }
10411 else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)
10412 && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode)
10413 && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)
10414 && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)
10415 )
10416 {
10417 /* Handle MRS insn. */
10418 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10419 arm_insn_r->reg_rec_count = 1;
10420 }
10421 else if (arm_insn_r->opcode <= 15)
10422 {
10423 /* Normal data processing insns. */
10424 /* Out of 11 shifter operands mode, all the insn modifies destination
10425 register, which is specified by 13-16 decode. */
10426 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10427 record_buf[1] = ARM_PS_REGNUM;
10428 arm_insn_r->reg_rec_count = 2;
10429 }
10430 else
10431 {
10432 return -1;
10433 }
10434
10435 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10436 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10437 return 0;
10438}
10439
10440/* Handling opcode 001 insns. */
10441
10442static int
10443arm_record_data_proc_imm (insn_decode_record *arm_insn_r)
10444{
10445 uint32_t record_buf[8], record_buf_mem[8];
10446
10447 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10448 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10449
10450 if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode)
10451 && 2 == bits (arm_insn_r->arm_insn, 20, 21)
10452 && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1)
10453 )
10454 {
10455 /* Handle MSR insn. */
10456 if (9 == arm_insn_r->opcode)
10457 {
10458 /* CSPR is going to be changed. */
10459 record_buf[0] = ARM_PS_REGNUM;
10460 arm_insn_r->reg_rec_count = 1;
10461 }
10462 else
10463 {
10464 /* SPSR is going to be changed. */
10465 }
10466 }
10467 else if (arm_insn_r->opcode <= 15)
10468 {
10469 /* Normal data processing insns. */
10470 /* Out of 11 shifter operands mode, all the insn modifies destination
10471 register, which is specified by 13-16 decode. */
10472 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10473 record_buf[1] = ARM_PS_REGNUM;
10474 arm_insn_r->reg_rec_count = 2;
10475 }
10476 else
10477 {
10478 return -1;
10479 }
10480
10481 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10482 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10483 return 0;
10484}
10485
c55978a6
YQ
10486static int
10487arm_record_media (insn_decode_record *arm_insn_r)
10488{
10489 uint32_t record_buf[8];
10490
10491 switch (bits (arm_insn_r->arm_insn, 22, 24))
10492 {
10493 case 0:
10494 /* Parallel addition and subtraction, signed */
10495 case 1:
10496 /* Parallel addition and subtraction, unsigned */
10497 case 2:
10498 case 3:
10499 /* Packing, unpacking, saturation and reversal */
10500 {
10501 int rd = bits (arm_insn_r->arm_insn, 12, 15);
10502
10503 record_buf[arm_insn_r->reg_rec_count++] = rd;
10504 }
10505 break;
10506
10507 case 4:
10508 case 5:
10509 /* Signed multiplies */
10510 {
10511 int rd = bits (arm_insn_r->arm_insn, 16, 19);
10512 unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22);
10513
10514 record_buf[arm_insn_r->reg_rec_count++] = rd;
10515 if (op1 == 0x0)
10516 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10517 else if (op1 == 0x4)
10518 record_buf[arm_insn_r->reg_rec_count++]
10519 = bits (arm_insn_r->arm_insn, 12, 15);
10520 }
10521 break;
10522
10523 case 6:
10524 {
10525 if (bit (arm_insn_r->arm_insn, 21)
10526 && bits (arm_insn_r->arm_insn, 5, 6) == 0x2)
10527 {
10528 /* SBFX */
10529 record_buf[arm_insn_r->reg_rec_count++]
10530 = bits (arm_insn_r->arm_insn, 12, 15);
10531 }
10532 else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0
10533 && bits (arm_insn_r->arm_insn, 5, 7) == 0x0)
10534 {
10535 /* USAD8 and USADA8 */
10536 record_buf[arm_insn_r->reg_rec_count++]
10537 = bits (arm_insn_r->arm_insn, 16, 19);
10538 }
10539 }
10540 break;
10541
10542 case 7:
10543 {
10544 if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3
10545 && bits (arm_insn_r->arm_insn, 5, 7) == 0x7)
10546 {
10547 /* Permanently UNDEFINED */
10548 return -1;
10549 }
10550 else
10551 {
10552 /* BFC, BFI and UBFX */
10553 record_buf[arm_insn_r->reg_rec_count++]
10554 = bits (arm_insn_r->arm_insn, 12, 15);
10555 }
10556 }
10557 break;
10558
10559 default:
10560 return -1;
10561 }
10562
10563 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10564
10565 return 0;
10566}
10567
71e396f9 10568/* Handle ARM mode instructions with opcode 010. */
72508ac0
PO
10569
10570static int
10571arm_record_ld_st_imm_offset (insn_decode_record *arm_insn_r)
10572{
10573 struct regcache *reg_cache = arm_insn_r->regcache;
10574
71e396f9
LM
10575 uint32_t reg_base , reg_dest;
10576 uint32_t offset_12, tgt_mem_addr;
72508ac0 10577 uint32_t record_buf[8], record_buf_mem[8];
71e396f9
LM
10578 unsigned char wback;
10579 ULONGEST u_regval;
72508ac0 10580
71e396f9
LM
10581 /* Calculate wback. */
10582 wback = (bit (arm_insn_r->arm_insn, 24) == 0)
10583 || (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0 10584
71e396f9
LM
10585 arm_insn_r->reg_rec_count = 0;
10586 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0
PO
10587
10588 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10589 {
71e396f9
LM
10590 /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT
10591 and LDRT. */
10592
72508ac0 10593 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
71e396f9
LM
10594 record_buf[arm_insn_r->reg_rec_count++] = reg_dest;
10595
10596 /* The LDR instruction is capable of doing branching. If MOV LR, PC
10597 preceeds a LDR instruction having R15 as reg_base, it
10598 emulates a branch and link instruction, and hence we need to save
10599 CPSR and PC as well. */
10600 if (ARM_PC_REGNUM == reg_dest)
10601 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
10602
10603 /* If wback is true, also save the base register, which is going to be
10604 written to. */
10605 if (wback)
10606 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10607 }
10608 else
10609 {
71e396f9
LM
10610 /* STR (immediate), STRB (immediate), STRBT and STRT. */
10611
72508ac0 10612 offset_12 = bits (arm_insn_r->arm_insn, 0, 11);
71e396f9
LM
10613 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10614
10615 /* Handle bit U. */
72508ac0 10616 if (bit (arm_insn_r->arm_insn, 23))
71e396f9
LM
10617 {
10618 /* U == 1: Add the offset. */
10619 tgt_mem_addr = (uint32_t) u_regval + offset_12;
10620 }
72508ac0 10621 else
71e396f9
LM
10622 {
10623 /* U == 0: subtract the offset. */
10624 tgt_mem_addr = (uint32_t) u_regval - offset_12;
10625 }
10626
10627 /* Bit 22 tells us whether the store instruction writes 1 byte or 4
10628 bytes. */
10629 if (bit (arm_insn_r->arm_insn, 22))
10630 {
10631 /* STRB and STRBT: 1 byte. */
10632 record_buf_mem[0] = 1;
10633 }
10634 else
10635 {
10636 /* STR and STRT: 4 bytes. */
10637 record_buf_mem[0] = 4;
10638 }
10639
10640 /* Handle bit P. */
10641 if (bit (arm_insn_r->arm_insn, 24))
10642 record_buf_mem[1] = tgt_mem_addr;
10643 else
10644 record_buf_mem[1] = (uint32_t) u_regval;
72508ac0 10645
72508ac0
PO
10646 arm_insn_r->mem_rec_count = 1;
10647
71e396f9
LM
10648 /* If wback is true, also save the base register, which is going to be
10649 written to. */
10650 if (wback)
10651 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
10652 }
10653
10654 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10655 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10656 return 0;
10657}
10658
10659/* Handling opcode 011 insns. */
10660
10661static int
10662arm_record_ld_st_reg_offset (insn_decode_record *arm_insn_r)
10663{
10664 struct regcache *reg_cache = arm_insn_r->regcache;
10665
10666 uint32_t shift_imm = 0;
10667 uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0;
10668 uint32_t offset_12 = 0, tgt_mem_addr = 0;
10669 uint32_t record_buf[8], record_buf_mem[8];
10670
10671 LONGEST s_word;
10672 ULONGEST u_regval[2];
10673
c55978a6
YQ
10674 if (bit (arm_insn_r->arm_insn, 4))
10675 return arm_record_media (arm_insn_r);
10676
72508ac0
PO
10677 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24);
10678 arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7);
10679
10680 /* Handle enhanced store insns and LDRD DSP insn,
10681 order begins according to addressing modes for store insns
10682 STRH insn. */
10683
10684 /* LDR or STR? */
10685 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10686 {
10687 reg_dest = bits (arm_insn_r->arm_insn, 12, 15);
10688 /* LDR insn has a capability to do branching, if
10689 MOV LR, PC is precedded by LDR insn having Rn as R15
10690 in that case, it emulates branch and link insn, and hence we
10691 need to save CSPR and PC as well. */
10692 if (15 != reg_dest)
10693 {
10694 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
10695 arm_insn_r->reg_rec_count = 1;
10696 }
10697 else
10698 {
10699 record_buf[0] = reg_dest;
10700 record_buf[1] = ARM_PS_REGNUM;
10701 arm_insn_r->reg_rec_count = 2;
10702 }
10703 }
10704 else
10705 {
10706 if (! bits (arm_insn_r->arm_insn, 4, 11))
10707 {
10708 /* Store insn, register offset and register pre-indexed,
10709 register post-indexed. */
10710 /* Get Rm. */
10711 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10712 /* Get Rn. */
10713 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10714 regcache_raw_read_unsigned (reg_cache, reg_src1
10715 , &u_regval[0]);
10716 regcache_raw_read_unsigned (reg_cache, reg_src2
10717 , &u_regval[1]);
10718 if (15 == reg_src2)
10719 {
10720 /* If R15 was used as Rn, hence current PC+8. */
10721 /* Pre-indexed mode doesnt reach here ; illegal insn. */
10722 u_regval[0] = u_regval[0] + 8;
10723 }
10724 /* Calculate target store address, Rn +/- Rm, register offset. */
10725 /* U == 1. */
10726 if (bit (arm_insn_r->arm_insn, 23))
10727 {
10728 tgt_mem_addr = u_regval[0] + u_regval[1];
10729 }
10730 else
10731 {
10732 tgt_mem_addr = u_regval[1] - u_regval[0];
10733 }
10734
10735 switch (arm_insn_r->opcode)
10736 {
10737 /* STR. */
10738 case 8:
10739 case 12:
10740 /* STR. */
10741 case 9:
10742 case 13:
10743 /* STRT. */
10744 case 1:
10745 case 5:
10746 /* STR. */
10747 case 0:
10748 case 4:
10749 record_buf_mem[0] = 4;
10750 break;
10751
10752 /* STRB. */
10753 case 10:
10754 case 14:
10755 /* STRB. */
10756 case 11:
10757 case 15:
10758 /* STRBT. */
10759 case 3:
10760 case 7:
10761 /* STRB. */
10762 case 2:
10763 case 6:
10764 record_buf_mem[0] = 1;
10765 break;
10766
10767 default:
10768 gdb_assert_not_reached ("no decoding pattern found");
10769 break;
10770 }
10771 record_buf_mem[1] = tgt_mem_addr;
10772 arm_insn_r->mem_rec_count = 1;
10773
10774 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10775 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10776 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10777 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10778 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10779 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10780 )
10781 {
10782 /* Rn is going to be changed in pre-indexed mode and
10783 post-indexed mode as well. */
10784 record_buf[0] = reg_src2;
10785 arm_insn_r->reg_rec_count = 1;
10786 }
10787 }
10788 else
10789 {
10790 /* Store insn, scaled register offset; scaled pre-indexed. */
10791 offset_12 = bits (arm_insn_r->arm_insn, 5, 6);
10792 /* Get Rm. */
10793 reg_src1 = bits (arm_insn_r->arm_insn, 0, 3);
10794 /* Get Rn. */
10795 reg_src2 = bits (arm_insn_r->arm_insn, 16, 19);
10796 /* Get shift_imm. */
10797 shift_imm = bits (arm_insn_r->arm_insn, 7, 11);
10798 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
10799 regcache_raw_read_signed (reg_cache, reg_src1, &s_word);
10800 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10801 /* Offset_12 used as shift. */
10802 switch (offset_12)
10803 {
10804 case 0:
10805 /* Offset_12 used as index. */
10806 offset_12 = u_regval[0] << shift_imm;
10807 break;
10808
10809 case 1:
10810 offset_12 = (!shift_imm)?0:u_regval[0] >> shift_imm;
10811 break;
10812
10813 case 2:
10814 if (!shift_imm)
10815 {
10816 if (bit (u_regval[0], 31))
10817 {
10818 offset_12 = 0xFFFFFFFF;
10819 }
10820 else
10821 {
10822 offset_12 = 0;
10823 }
10824 }
10825 else
10826 {
10827 /* This is arithmetic shift. */
10828 offset_12 = s_word >> shift_imm;
10829 }
10830 break;
10831
10832 case 3:
10833 if (!shift_imm)
10834 {
10835 regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM,
10836 &u_regval[1]);
10837 /* Get C flag value and shift it by 31. */
10838 offset_12 = (((bit (u_regval[1], 29)) << 31) \
10839 | (u_regval[0]) >> 1);
10840 }
10841 else
10842 {
10843 offset_12 = (u_regval[0] >> shift_imm) \
10844 | (u_regval[0] <<
10845 (sizeof(uint32_t) - shift_imm));
10846 }
10847 break;
10848
10849 default:
10850 gdb_assert_not_reached ("no decoding pattern found");
10851 break;
10852 }
10853
10854 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
10855 /* bit U set. */
10856 if (bit (arm_insn_r->arm_insn, 23))
10857 {
10858 tgt_mem_addr = u_regval[1] + offset_12;
10859 }
10860 else
10861 {
10862 tgt_mem_addr = u_regval[1] - offset_12;
10863 }
10864
10865 switch (arm_insn_r->opcode)
10866 {
10867 /* STR. */
10868 case 8:
10869 case 12:
10870 /* STR. */
10871 case 9:
10872 case 13:
10873 /* STRT. */
10874 case 1:
10875 case 5:
10876 /* STR. */
10877 case 0:
10878 case 4:
10879 record_buf_mem[0] = 4;
10880 break;
10881
10882 /* STRB. */
10883 case 10:
10884 case 14:
10885 /* STRB. */
10886 case 11:
10887 case 15:
10888 /* STRBT. */
10889 case 3:
10890 case 7:
10891 /* STRB. */
10892 case 2:
10893 case 6:
10894 record_buf_mem[0] = 1;
10895 break;
10896
10897 default:
10898 gdb_assert_not_reached ("no decoding pattern found");
10899 break;
10900 }
10901 record_buf_mem[1] = tgt_mem_addr;
10902 arm_insn_r->mem_rec_count = 1;
10903
10904 if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode
10905 || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode
10906 || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode
10907 || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode
10908 || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode
10909 || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode
10910 )
10911 {
10912 /* Rn is going to be changed in register scaled pre-indexed
10913 mode,and scaled post indexed mode. */
10914 record_buf[0] = reg_src2;
10915 arm_insn_r->reg_rec_count = 1;
10916 }
10917 }
10918 }
10919
10920 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
10921 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
10922 return 0;
10923}
10924
71e396f9 10925/* Handle ARM mode instructions with opcode 100. */
72508ac0
PO
10926
10927static int
10928arm_record_ld_st_multiple (insn_decode_record *arm_insn_r)
10929{
10930 struct regcache *reg_cache = arm_insn_r->regcache;
71e396f9
LM
10931 uint32_t register_count = 0, register_bits;
10932 uint32_t reg_base, addr_mode;
72508ac0 10933 uint32_t record_buf[24], record_buf_mem[48];
71e396f9
LM
10934 uint32_t wback;
10935 ULONGEST u_regval;
72508ac0 10936
71e396f9
LM
10937 /* Fetch the list of registers. */
10938 register_bits = bits (arm_insn_r->arm_insn, 0, 15);
10939 arm_insn_r->reg_rec_count = 0;
10940
10941 /* Fetch the base register that contains the address we are loading data
10942 to. */
10943 reg_base = bits (arm_insn_r->arm_insn, 16, 19);
72508ac0 10944
71e396f9
LM
10945 /* Calculate wback. */
10946 wback = (bit (arm_insn_r->arm_insn, 21) == 1);
72508ac0
PO
10947
10948 if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM))
10949 {
71e396f9 10950 /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB. */
72508ac0 10951
71e396f9 10952 /* Find out which registers are going to be loaded from memory. */
72508ac0 10953 while (register_bits)
71e396f9
LM
10954 {
10955 if (register_bits & 0x00000001)
10956 record_buf[arm_insn_r->reg_rec_count++] = register_count;
10957 register_bits = register_bits >> 1;
10958 register_count++;
10959 }
72508ac0 10960
71e396f9
LM
10961
10962 /* If wback is true, also save the base register, which is going to be
10963 written to. */
10964 if (wback)
10965 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
10966
10967 /* Save the CPSR register. */
10968 record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM;
72508ac0
PO
10969 }
10970 else
10971 {
71e396f9 10972 /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA). */
72508ac0 10973
71e396f9
LM
10974 addr_mode = bits (arm_insn_r->arm_insn, 23, 24);
10975
10976 regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval);
10977
10978 /* Find out how many registers are going to be stored to memory. */
72508ac0 10979 while (register_bits)
71e396f9
LM
10980 {
10981 if (register_bits & 0x00000001)
10982 register_count++;
10983 register_bits = register_bits >> 1;
10984 }
72508ac0
PO
10985
10986 switch (addr_mode)
71e396f9
LM
10987 {
10988 /* STMDA (STMED): Decrement after. */
10989 case 0:
10990 record_buf_mem[1] = (uint32_t) u_regval
10991 - register_count * INT_REGISTER_SIZE + 4;
10992 break;
10993 /* STM (STMIA, STMEA): Increment after. */
10994 case 1:
10995 record_buf_mem[1] = (uint32_t) u_regval;
10996 break;
10997 /* STMDB (STMFD): Decrement before. */
10998 case 2:
10999 record_buf_mem[1] = (uint32_t) u_regval
11000 - register_count * INT_REGISTER_SIZE;
11001 break;
11002 /* STMIB (STMFA): Increment before. */
11003 case 3:
11004 record_buf_mem[1] = (uint32_t) u_regval + INT_REGISTER_SIZE;
11005 break;
11006 default:
11007 gdb_assert_not_reached ("no decoding pattern found");
11008 break;
11009 }
72508ac0 11010
71e396f9
LM
11011 record_buf_mem[0] = register_count * INT_REGISTER_SIZE;
11012 arm_insn_r->mem_rec_count = 1;
11013
11014 /* If wback is true, also save the base register, which is going to be
11015 written to. */
11016 if (wback)
11017 record_buf[arm_insn_r->reg_rec_count++] = reg_base;
72508ac0
PO
11018 }
11019
11020 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11021 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11022 return 0;
11023}
11024
11025/* Handling opcode 101 insns. */
11026
11027static int
11028arm_record_b_bl (insn_decode_record *arm_insn_r)
11029{
11030 uint32_t record_buf[8];
11031
11032 /* Handle B, BL, BLX(1) insns. */
11033 /* B simply branches so we do nothing here. */
11034 /* Note: BLX(1) doesnt fall here but instead it falls into
11035 extension space. */
11036 if (bit (arm_insn_r->arm_insn, 24))
11037 {
11038 record_buf[0] = ARM_LR_REGNUM;
11039 arm_insn_r->reg_rec_count = 1;
11040 }
11041
11042 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11043
11044 return 0;
11045}
11046
72508ac0 11047static int
c6ec2b30 11048arm_record_unsupported_insn (insn_decode_record *arm_insn_r)
72508ac0
PO
11049{
11050 printf_unfiltered (_("Process record does not support instruction "
01e57735
YQ
11051 "0x%0x at address %s.\n"),arm_insn_r->arm_insn,
11052 paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr));
72508ac0
PO
11053
11054 return -1;
11055}
11056
5a578da5
OJ
11057/* Record handler for vector data transfer instructions. */
11058
11059static int
11060arm_record_vdata_transfer_insn (insn_decode_record *arm_insn_r)
11061{
11062 uint32_t bits_a, bit_c, bit_l, reg_t, reg_v;
11063 uint32_t record_buf[4];
11064
5a578da5
OJ
11065 reg_t = bits (arm_insn_r->arm_insn, 12, 15);
11066 reg_v = bits (arm_insn_r->arm_insn, 21, 23);
11067 bits_a = bits (arm_insn_r->arm_insn, 21, 23);
11068 bit_l = bit (arm_insn_r->arm_insn, 20);
11069 bit_c = bit (arm_insn_r->arm_insn, 8);
11070
11071 /* Handle VMOV instruction. */
11072 if (bit_l && bit_c)
11073 {
11074 record_buf[0] = reg_t;
11075 arm_insn_r->reg_rec_count = 1;
11076 }
11077 else if (bit_l && !bit_c)
11078 {
11079 /* Handle VMOV instruction. */
11080 if (bits_a == 0x00)
11081 {
f1771dce 11082 record_buf[0] = reg_t;
5a578da5
OJ
11083 arm_insn_r->reg_rec_count = 1;
11084 }
11085 /* Handle VMRS instruction. */
11086 else if (bits_a == 0x07)
11087 {
11088 if (reg_t == 15)
11089 reg_t = ARM_PS_REGNUM;
11090
11091 record_buf[0] = reg_t;
11092 arm_insn_r->reg_rec_count = 1;
11093 }
11094 }
11095 else if (!bit_l && !bit_c)
11096 {
11097 /* Handle VMOV instruction. */
11098 if (bits_a == 0x00)
11099 {
f1771dce 11100 record_buf[0] = ARM_D0_REGNUM + reg_v;
5a578da5
OJ
11101
11102 arm_insn_r->reg_rec_count = 1;
11103 }
11104 /* Handle VMSR instruction. */
11105 else if (bits_a == 0x07)
11106 {
11107 record_buf[0] = ARM_FPSCR_REGNUM;
11108 arm_insn_r->reg_rec_count = 1;
11109 }
11110 }
11111 else if (!bit_l && bit_c)
11112 {
11113 /* Handle VMOV instruction. */
11114 if (!(bits_a & 0x04))
11115 {
11116 record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4))
11117 + ARM_D0_REGNUM;
11118 arm_insn_r->reg_rec_count = 1;
11119 }
11120 /* Handle VDUP instruction. */
11121 else
11122 {
11123 if (bit (arm_insn_r->arm_insn, 21))
11124 {
11125 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11126 record_buf[0] = reg_v + ARM_D0_REGNUM;
11127 record_buf[1] = reg_v + ARM_D0_REGNUM + 1;
11128 arm_insn_r->reg_rec_count = 2;
11129 }
11130 else
11131 {
11132 reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4);
11133 record_buf[0] = reg_v + ARM_D0_REGNUM;
11134 arm_insn_r->reg_rec_count = 1;
11135 }
11136 }
11137 }
11138
11139 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11140 return 0;
11141}
11142
f20f80dd
OJ
11143/* Record handler for extension register load/store instructions. */
11144
11145static int
11146arm_record_exreg_ld_st_insn (insn_decode_record *arm_insn_r)
11147{
11148 uint32_t opcode, single_reg;
11149 uint8_t op_vldm_vstm;
11150 uint32_t record_buf[8], record_buf_mem[128];
11151 ULONGEST u_regval = 0;
11152
11153 struct regcache *reg_cache = arm_insn_r->regcache;
f20f80dd
OJ
11154
11155 opcode = bits (arm_insn_r->arm_insn, 20, 24);
9fde51ed 11156 single_reg = !bit (arm_insn_r->arm_insn, 8);
f20f80dd
OJ
11157 op_vldm_vstm = opcode & 0x1b;
11158
11159 /* Handle VMOV instructions. */
11160 if ((opcode & 0x1e) == 0x04)
11161 {
9fde51ed 11162 if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */
01e57735
YQ
11163 {
11164 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11165 record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19);
11166 arm_insn_r->reg_rec_count = 2;
11167 }
f20f80dd 11168 else
01e57735 11169 {
9fde51ed
YQ
11170 uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3);
11171 uint8_t bit_m = bit (arm_insn_r->arm_insn, 5);
f20f80dd 11172
9fde51ed 11173 if (single_reg)
01e57735 11174 {
9fde51ed
YQ
11175 /* The first S register number m is REG_M:M (M is bit 5),
11176 the corresponding D register number is REG_M:M / 2, which
11177 is REG_M. */
11178 record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m;
11179 /* The second S register number is REG_M:M + 1, the
11180 corresponding D register number is (REG_M:M + 1) / 2.
11181 IOW, if bit M is 1, the first and second S registers
11182 are mapped to different D registers, otherwise, they are
11183 in the same D register. */
11184 if (bit_m)
11185 {
11186 record_buf[arm_insn_r->reg_rec_count++]
11187 = ARM_D0_REGNUM + reg_m + 1;
11188 }
01e57735
YQ
11189 }
11190 else
11191 {
9fde51ed 11192 record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM);
01e57735
YQ
11193 arm_insn_r->reg_rec_count = 1;
11194 }
11195 }
f20f80dd
OJ
11196 }
11197 /* Handle VSTM and VPUSH instructions. */
11198 else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a
01e57735 11199 || op_vldm_vstm == 0x12)
f20f80dd
OJ
11200 {
11201 uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count;
11202 uint32_t memory_index = 0;
11203
11204 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11205 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11206 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11207 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11208 memory_count = imm_off8;
11209
11210 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11211 start_address = u_regval;
f20f80dd 11212 else
01e57735 11213 start_address = u_regval - imm_off32;
f20f80dd
OJ
11214
11215 if (bit (arm_insn_r->arm_insn, 21))
01e57735
YQ
11216 {
11217 record_buf[0] = reg_rn;
11218 arm_insn_r->reg_rec_count = 1;
11219 }
f20f80dd
OJ
11220
11221 while (memory_count > 0)
01e57735 11222 {
9fde51ed 11223 if (single_reg)
01e57735 11224 {
9fde51ed
YQ
11225 record_buf_mem[memory_index] = 4;
11226 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11227 start_address = start_address + 4;
11228 memory_index = memory_index + 2;
11229 }
11230 else
11231 {
9fde51ed
YQ
11232 record_buf_mem[memory_index] = 4;
11233 record_buf_mem[memory_index + 1] = start_address;
11234 record_buf_mem[memory_index + 2] = 4;
11235 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11236 start_address = start_address + 8;
11237 memory_index = memory_index + 4;
11238 }
11239 memory_count--;
11240 }
f20f80dd
OJ
11241 arm_insn_r->mem_rec_count = (memory_index >> 1);
11242 }
11243 /* Handle VLDM instructions. */
11244 else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b
01e57735 11245 || op_vldm_vstm == 0x13)
f20f80dd
OJ
11246 {
11247 uint32_t reg_count, reg_vd;
11248 uint32_t reg_index = 0;
9fde51ed 11249 uint32_t bit_d = bit (arm_insn_r->arm_insn, 22);
f20f80dd
OJ
11250
11251 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11252 reg_count = bits (arm_insn_r->arm_insn, 0, 7);
11253
9fde51ed
YQ
11254 /* REG_VD is the first D register number. If the instruction
11255 loads memory to S registers (SINGLE_REG is TRUE), the register
11256 number is (REG_VD << 1 | bit D), so the corresponding D
11257 register number is (REG_VD << 1 | bit D) / 2 = REG_VD. */
11258 if (!single_reg)
11259 reg_vd = reg_vd | (bit_d << 4);
f20f80dd 11260
9fde51ed 11261 if (bit (arm_insn_r->arm_insn, 21) /* write back */)
01e57735 11262 record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19);
f20f80dd 11263
9fde51ed
YQ
11264 /* If the instruction loads memory to D register, REG_COUNT should
11265 be divided by 2, according to the ARM Architecture Reference
11266 Manual. If the instruction loads memory to S register, divide by
11267 2 as well because two S registers are mapped to D register. */
11268 reg_count = reg_count / 2;
11269 if (single_reg && bit_d)
01e57735 11270 {
9fde51ed
YQ
11271 /* Increase the register count if S register list starts from
11272 an odd number (bit d is one). */
11273 reg_count++;
11274 }
f20f80dd 11275
9fde51ed
YQ
11276 while (reg_count > 0)
11277 {
11278 record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1;
01e57735
YQ
11279 reg_count--;
11280 }
f20f80dd
OJ
11281 arm_insn_r->reg_rec_count = reg_index;
11282 }
11283 /* VSTR Vector store register. */
11284 else if ((opcode & 0x13) == 0x10)
11285 {
bec2ab5a 11286 uint32_t start_address, reg_rn, imm_off32, imm_off8;
f20f80dd
OJ
11287 uint32_t memory_index = 0;
11288
11289 reg_rn = bits (arm_insn_r->arm_insn, 16, 19);
11290 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
11291 imm_off8 = bits (arm_insn_r->arm_insn, 0, 7);
9fde51ed 11292 imm_off32 = imm_off8 << 2;
f20f80dd
OJ
11293
11294 if (bit (arm_insn_r->arm_insn, 23))
01e57735 11295 start_address = u_regval + imm_off32;
f20f80dd 11296 else
01e57735 11297 start_address = u_regval - imm_off32;
f20f80dd
OJ
11298
11299 if (single_reg)
01e57735 11300 {
9fde51ed
YQ
11301 record_buf_mem[memory_index] = 4;
11302 record_buf_mem[memory_index + 1] = start_address;
01e57735
YQ
11303 arm_insn_r->mem_rec_count = 1;
11304 }
f20f80dd 11305 else
01e57735 11306 {
9fde51ed
YQ
11307 record_buf_mem[memory_index] = 4;
11308 record_buf_mem[memory_index + 1] = start_address;
11309 record_buf_mem[memory_index + 2] = 4;
11310 record_buf_mem[memory_index + 3] = start_address + 4;
01e57735
YQ
11311 arm_insn_r->mem_rec_count = 2;
11312 }
f20f80dd
OJ
11313 }
11314 /* VLDR Vector load register. */
11315 else if ((opcode & 0x13) == 0x11)
11316 {
11317 uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11318
11319 if (!single_reg)
01e57735
YQ
11320 {
11321 reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4);
11322 record_buf[0] = ARM_D0_REGNUM + reg_vd;
11323 }
f20f80dd 11324 else
01e57735
YQ
11325 {
11326 reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22);
9fde51ed
YQ
11327 /* Record register D rather than pseudo register S. */
11328 record_buf[0] = ARM_D0_REGNUM + reg_vd / 2;
01e57735 11329 }
f20f80dd
OJ
11330 arm_insn_r->reg_rec_count = 1;
11331 }
11332
11333 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11334 MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem);
11335 return 0;
11336}
11337
851f26ae
OJ
11338/* Record handler for arm/thumb mode VFP data processing instructions. */
11339
11340static int
11341arm_record_vfp_data_proc_insn (insn_decode_record *arm_insn_r)
11342{
11343 uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd;
11344 uint32_t record_buf[4];
11345 enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV};
11346 enum insn_types curr_insn_type = INSN_INV;
11347
11348 reg_vd = bits (arm_insn_r->arm_insn, 12, 15);
11349 opc1 = bits (arm_insn_r->arm_insn, 20, 23);
11350 opc2 = bits (arm_insn_r->arm_insn, 16, 19);
11351 opc3 = bits (arm_insn_r->arm_insn, 6, 7);
11352 dp_op_sz = bit (arm_insn_r->arm_insn, 8);
11353 bit_d = bit (arm_insn_r->arm_insn, 22);
11354 opc1 = opc1 & 0x04;
11355
11356 /* Handle VMLA, VMLS. */
11357 if (opc1 == 0x00)
11358 {
11359 if (bit (arm_insn_r->arm_insn, 10))
11360 {
11361 if (bit (arm_insn_r->arm_insn, 6))
11362 curr_insn_type = INSN_T0;
11363 else
11364 curr_insn_type = INSN_T1;
11365 }
11366 else
11367 {
11368 if (dp_op_sz)
11369 curr_insn_type = INSN_T1;
11370 else
11371 curr_insn_type = INSN_T2;
11372 }
11373 }
11374 /* Handle VNMLA, VNMLS, VNMUL. */
11375 else if (opc1 == 0x01)
11376 {
11377 if (dp_op_sz)
11378 curr_insn_type = INSN_T1;
11379 else
11380 curr_insn_type = INSN_T2;
11381 }
11382 /* Handle VMUL. */
11383 else if (opc1 == 0x02 && !(opc3 & 0x01))
11384 {
11385 if (bit (arm_insn_r->arm_insn, 10))
11386 {
11387 if (bit (arm_insn_r->arm_insn, 6))
11388 curr_insn_type = INSN_T0;
11389 else
11390 curr_insn_type = INSN_T1;
11391 }
11392 else
11393 {
11394 if (dp_op_sz)
11395 curr_insn_type = INSN_T1;
11396 else
11397 curr_insn_type = INSN_T2;
11398 }
11399 }
11400 /* Handle VADD, VSUB. */
11401 else if (opc1 == 0x03)
11402 {
11403 if (!bit (arm_insn_r->arm_insn, 9))
11404 {
11405 if (bit (arm_insn_r->arm_insn, 6))
11406 curr_insn_type = INSN_T0;
11407 else
11408 curr_insn_type = INSN_T1;
11409 }
11410 else
11411 {
11412 if (dp_op_sz)
11413 curr_insn_type = INSN_T1;
11414 else
11415 curr_insn_type = INSN_T2;
11416 }
11417 }
11418 /* Handle VDIV. */
11419 else if (opc1 == 0x0b)
11420 {
11421 if (dp_op_sz)
11422 curr_insn_type = INSN_T1;
11423 else
11424 curr_insn_type = INSN_T2;
11425 }
11426 /* Handle all other vfp data processing instructions. */
11427 else if (opc1 == 0x0b)
11428 {
11429 /* Handle VMOV. */
11430 if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01))
11431 {
11432 if (bit (arm_insn_r->arm_insn, 4))
11433 {
11434 if (bit (arm_insn_r->arm_insn, 6))
11435 curr_insn_type = INSN_T0;
11436 else
11437 curr_insn_type = INSN_T1;
11438 }
11439 else
11440 {
11441 if (dp_op_sz)
11442 curr_insn_type = INSN_T1;
11443 else
11444 curr_insn_type = INSN_T2;
11445 }
11446 }
11447 /* Handle VNEG and VABS. */
11448 else if ((opc2 == 0x01 && opc3 == 0x01)
11449 || (opc2 == 0x00 && opc3 == 0x03))
11450 {
11451 if (!bit (arm_insn_r->arm_insn, 11))
11452 {
11453 if (bit (arm_insn_r->arm_insn, 6))
11454 curr_insn_type = INSN_T0;
11455 else
11456 curr_insn_type = INSN_T1;
11457 }
11458 else
11459 {
11460 if (dp_op_sz)
11461 curr_insn_type = INSN_T1;
11462 else
11463 curr_insn_type = INSN_T2;
11464 }
11465 }
11466 /* Handle VSQRT. */
11467 else if (opc2 == 0x01 && opc3 == 0x03)
11468 {
11469 if (dp_op_sz)
11470 curr_insn_type = INSN_T1;
11471 else
11472 curr_insn_type = INSN_T2;
11473 }
11474 /* Handle VCVT. */
11475 else if (opc2 == 0x07 && opc3 == 0x03)
11476 {
11477 if (!dp_op_sz)
11478 curr_insn_type = INSN_T1;
11479 else
11480 curr_insn_type = INSN_T2;
11481 }
11482 else if (opc3 & 0x01)
11483 {
11484 /* Handle VCVT. */
11485 if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c)
11486 {
11487 if (!bit (arm_insn_r->arm_insn, 18))
11488 curr_insn_type = INSN_T2;
11489 else
11490 {
11491 if (dp_op_sz)
11492 curr_insn_type = INSN_T1;
11493 else
11494 curr_insn_type = INSN_T2;
11495 }
11496 }
11497 /* Handle VCVT. */
11498 else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e)
11499 {
11500 if (dp_op_sz)
11501 curr_insn_type = INSN_T1;
11502 else
11503 curr_insn_type = INSN_T2;
11504 }
11505 /* Handle VCVTB, VCVTT. */
11506 else if ((opc2 & 0x0e) == 0x02)
11507 curr_insn_type = INSN_T2;
11508 /* Handle VCMP, VCMPE. */
11509 else if ((opc2 & 0x0e) == 0x04)
11510 curr_insn_type = INSN_T3;
11511 }
11512 }
11513
11514 switch (curr_insn_type)
11515 {
11516 case INSN_T0:
11517 reg_vd = reg_vd | (bit_d << 4);
11518 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11519 record_buf[1] = reg_vd + ARM_D0_REGNUM + 1;
11520 arm_insn_r->reg_rec_count = 2;
11521 break;
11522
11523 case INSN_T1:
11524 reg_vd = reg_vd | (bit_d << 4);
11525 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11526 arm_insn_r->reg_rec_count = 1;
11527 break;
11528
11529 case INSN_T2:
11530 reg_vd = (reg_vd << 1) | bit_d;
11531 record_buf[0] = reg_vd + ARM_D0_REGNUM;
11532 arm_insn_r->reg_rec_count = 1;
11533 break;
11534
11535 case INSN_T3:
11536 record_buf[0] = ARM_FPSCR_REGNUM;
11537 arm_insn_r->reg_rec_count = 1;
11538 break;
11539
11540 default:
11541 gdb_assert_not_reached ("no decoding pattern found");
11542 break;
11543 }
11544
11545 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf);
11546 return 0;
11547}
11548
60cc5e93
OJ
11549/* Handling opcode 110 insns. */
11550
11551static int
11552arm_record_asimd_vfp_coproc (insn_decode_record *arm_insn_r)
11553{
bec2ab5a 11554 uint32_t op1, op1_ebit, coproc;
60cc5e93
OJ
11555
11556 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11557 op1 = bits (arm_insn_r->arm_insn, 20, 25);
11558 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11559
11560 if ((coproc & 0x0e) == 0x0a)
11561 {
11562 /* Handle extension register ld/st instructions. */
11563 if (!(op1 & 0x20))
f20f80dd 11564 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11565
11566 /* 64-bit transfers between arm core and extension registers. */
11567 if ((op1 & 0x3e) == 0x04)
f20f80dd 11568 return arm_record_exreg_ld_st_insn (arm_insn_r);
60cc5e93
OJ
11569 }
11570 else
11571 {
11572 /* Handle coprocessor ld/st instructions. */
11573 if (!(op1 & 0x3a))
11574 {
11575 /* Store. */
11576 if (!op1_ebit)
11577 return arm_record_unsupported_insn (arm_insn_r);
11578 else
11579 /* Load. */
11580 return arm_record_unsupported_insn (arm_insn_r);
11581 }
11582
11583 /* Move to coprocessor from two arm core registers. */
11584 if (op1 == 0x4)
11585 return arm_record_unsupported_insn (arm_insn_r);
11586
11587 /* Move to two arm core registers from coprocessor. */
11588 if (op1 == 0x5)
11589 {
11590 uint32_t reg_t[2];
11591
11592 reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15);
11593 reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19);
11594 arm_insn_r->reg_rec_count = 2;
11595
11596 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t);
11597 return 0;
11598 }
11599 }
11600 return arm_record_unsupported_insn (arm_insn_r);
11601}
11602
72508ac0
PO
11603/* Handling opcode 111 insns. */
11604
11605static int
11606arm_record_coproc_data_proc (insn_decode_record *arm_insn_r)
11607{
60cc5e93 11608 uint32_t op, op1_sbit, op1_ebit, coproc;
72508ac0
PO
11609 struct gdbarch_tdep *tdep = gdbarch_tdep (arm_insn_r->gdbarch);
11610 struct regcache *reg_cache = arm_insn_r->regcache;
72508ac0
PO
11611
11612 arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27);
60cc5e93
OJ
11613 coproc = bits (arm_insn_r->arm_insn, 8, 11);
11614 op1_sbit = bit (arm_insn_r->arm_insn, 24);
11615 op1_ebit = bit (arm_insn_r->arm_insn, 20);
11616 op = bit (arm_insn_r->arm_insn, 4);
97dfe206
OJ
11617
11618 /* Handle arm SWI/SVC system call instructions. */
60cc5e93 11619 if (op1_sbit)
97dfe206
OJ
11620 {
11621 if (tdep->arm_syscall_record != NULL)
11622 {
11623 ULONGEST svc_operand, svc_number;
11624
11625 svc_operand = (0x00ffffff & arm_insn_r->arm_insn);
11626
11627 if (svc_operand) /* OABI. */
11628 svc_number = svc_operand - 0x900000;
11629 else /* EABI. */
11630 regcache_raw_read_unsigned (reg_cache, 7, &svc_number);
11631
60cc5e93 11632 return tdep->arm_syscall_record (reg_cache, svc_number);
97dfe206
OJ
11633 }
11634 else
11635 {
11636 printf_unfiltered (_("no syscall record support\n"));
60cc5e93 11637 return -1;
97dfe206
OJ
11638 }
11639 }
60cc5e93
OJ
11640
11641 if ((coproc & 0x0e) == 0x0a)
11642 {
11643 /* VFP data-processing instructions. */
11644 if (!op1_sbit && !op)
851f26ae 11645 return arm_record_vfp_data_proc_insn (arm_insn_r);
60cc5e93
OJ
11646
11647 /* Advanced SIMD, VFP instructions. */
11648 if (!op1_sbit && op)
5a578da5 11649 return arm_record_vdata_transfer_insn (arm_insn_r);
60cc5e93 11650 }
97dfe206
OJ
11651 else
11652 {
60cc5e93
OJ
11653 /* Coprocessor data operations. */
11654 if (!op1_sbit && !op)
11655 return arm_record_unsupported_insn (arm_insn_r);
11656
11657 /* Move to Coprocessor from ARM core register. */
11658 if (!op1_sbit && !op1_ebit && op)
11659 return arm_record_unsupported_insn (arm_insn_r);
11660
11661 /* Move to arm core register from coprocessor. */
11662 if (!op1_sbit && op1_ebit && op)
11663 {
11664 uint32_t record_buf[1];
11665
11666 record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15);
11667 if (record_buf[0] == 15)
11668 record_buf[0] = ARM_PS_REGNUM;
11669
11670 arm_insn_r->reg_rec_count = 1;
11671 REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count,
11672 record_buf);
11673 return 0;
11674 }
97dfe206 11675 }
72508ac0 11676
60cc5e93 11677 return arm_record_unsupported_insn (arm_insn_r);
72508ac0
PO
11678}
11679
11680/* Handling opcode 000 insns. */
11681
11682static int
11683thumb_record_shift_add_sub (insn_decode_record *thumb_insn_r)
11684{
11685 uint32_t record_buf[8];
11686 uint32_t reg_src1 = 0;
11687
11688 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11689
11690 record_buf[0] = ARM_PS_REGNUM;
11691 record_buf[1] = reg_src1;
11692 thumb_insn_r->reg_rec_count = 2;
11693
11694 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11695
11696 return 0;
11697}
11698
11699
11700/* Handling opcode 001 insns. */
11701
11702static int
11703thumb_record_add_sub_cmp_mov (insn_decode_record *thumb_insn_r)
11704{
11705 uint32_t record_buf[8];
11706 uint32_t reg_src1 = 0;
11707
11708 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11709
11710 record_buf[0] = ARM_PS_REGNUM;
11711 record_buf[1] = reg_src1;
11712 thumb_insn_r->reg_rec_count = 2;
11713
11714 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11715
11716 return 0;
11717}
11718
11719/* Handling opcode 010 insns. */
11720
11721static int
11722thumb_record_ld_st_reg_offset (insn_decode_record *thumb_insn_r)
11723{
11724 struct regcache *reg_cache = thumb_insn_r->regcache;
11725 uint32_t record_buf[8], record_buf_mem[8];
11726
11727 uint32_t reg_src1 = 0, reg_src2 = 0;
11728 uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0;
11729
11730 ULONGEST u_regval[2] = {0};
11731
11732 opcode1 = bits (thumb_insn_r->arm_insn, 10, 12);
11733
11734 if (bit (thumb_insn_r->arm_insn, 12))
11735 {
11736 /* Handle load/store register offset. */
11737 opcode2 = bits (thumb_insn_r->arm_insn, 9, 10);
11738 if (opcode2 >= 12 && opcode2 <= 15)
11739 {
11740 /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH. */
11741 reg_src1 = bits (thumb_insn_r->arm_insn,0, 2);
11742 record_buf[0] = reg_src1;
11743 thumb_insn_r->reg_rec_count = 1;
11744 }
11745 else if (opcode2 >= 8 && opcode2 <= 10)
11746 {
11747 /* STR(2), STRB(2), STRH(2) . */
11748 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11749 reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8);
11750 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]);
11751 regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]);
11752 if (8 == opcode2)
11753 record_buf_mem[0] = 4; /* STR (2). */
11754 else if (10 == opcode2)
11755 record_buf_mem[0] = 1; /* STRB (2). */
11756 else if (9 == opcode2)
11757 record_buf_mem[0] = 2; /* STRH (2). */
11758 record_buf_mem[1] = u_regval[0] + u_regval[1];
11759 thumb_insn_r->mem_rec_count = 1;
11760 }
11761 }
11762 else if (bit (thumb_insn_r->arm_insn, 11))
11763 {
11764 /* Handle load from literal pool. */
11765 /* LDR(3). */
11766 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11767 record_buf[0] = reg_src1;
11768 thumb_insn_r->reg_rec_count = 1;
11769 }
11770 else if (opcode1)
11771 {
11772 opcode2 = bits (thumb_insn_r->arm_insn, 8, 9);
11773 opcode3 = bits (thumb_insn_r->arm_insn, 0, 2);
11774 if ((3 == opcode2) && (!opcode3))
11775 {
11776 /* Branch with exchange. */
11777 record_buf[0] = ARM_PS_REGNUM;
11778 thumb_insn_r->reg_rec_count = 1;
11779 }
11780 else
11781 {
1f33efec
YQ
11782 /* Format 8; special data processing insns. */
11783 record_buf[0] = ARM_PS_REGNUM;
11784 record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3
11785 | bits (thumb_insn_r->arm_insn, 0, 2));
72508ac0
PO
11786 thumb_insn_r->reg_rec_count = 2;
11787 }
11788 }
11789 else
11790 {
11791 /* Format 5; data processing insns. */
11792 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11793 if (bit (thumb_insn_r->arm_insn, 7))
11794 {
11795 reg_src1 = reg_src1 + 8;
11796 }
11797 record_buf[0] = ARM_PS_REGNUM;
11798 record_buf[1] = reg_src1;
11799 thumb_insn_r->reg_rec_count = 2;
11800 }
11801
11802 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11803 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11804 record_buf_mem);
11805
11806 return 0;
11807}
11808
11809/* Handling opcode 001 insns. */
11810
11811static int
11812thumb_record_ld_st_imm_offset (insn_decode_record *thumb_insn_r)
11813{
11814 struct regcache *reg_cache = thumb_insn_r->regcache;
11815 uint32_t record_buf[8], record_buf_mem[8];
11816
11817 uint32_t reg_src1 = 0;
11818 uint32_t opcode = 0, immed_5 = 0;
11819
11820 ULONGEST u_regval = 0;
11821
11822 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11823
11824 if (opcode)
11825 {
11826 /* LDR(1). */
11827 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11828 record_buf[0] = reg_src1;
11829 thumb_insn_r->reg_rec_count = 1;
11830 }
11831 else
11832 {
11833 /* STR(1). */
11834 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11835 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11836 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11837 record_buf_mem[0] = 4;
11838 record_buf_mem[1] = u_regval + (immed_5 * 4);
11839 thumb_insn_r->mem_rec_count = 1;
11840 }
11841
11842 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11843 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11844 record_buf_mem);
11845
11846 return 0;
11847}
11848
11849/* Handling opcode 100 insns. */
11850
11851static int
11852thumb_record_ld_st_stack (insn_decode_record *thumb_insn_r)
11853{
11854 struct regcache *reg_cache = thumb_insn_r->regcache;
11855 uint32_t record_buf[8], record_buf_mem[8];
11856
11857 uint32_t reg_src1 = 0;
11858 uint32_t opcode = 0, immed_8 = 0, immed_5 = 0;
11859
11860 ULONGEST u_regval = 0;
11861
11862 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11863
11864 if (3 == opcode)
11865 {
11866 /* LDR(4). */
11867 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11868 record_buf[0] = reg_src1;
11869 thumb_insn_r->reg_rec_count = 1;
11870 }
11871 else if (1 == opcode)
11872 {
11873 /* LDRH(1). */
11874 reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2);
11875 record_buf[0] = reg_src1;
11876 thumb_insn_r->reg_rec_count = 1;
11877 }
11878 else if (2 == opcode)
11879 {
11880 /* STR(3). */
11881 immed_8 = bits (thumb_insn_r->arm_insn, 0, 7);
11882 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
11883 record_buf_mem[0] = 4;
11884 record_buf_mem[1] = u_regval + (immed_8 * 4);
11885 thumb_insn_r->mem_rec_count = 1;
11886 }
11887 else if (0 == opcode)
11888 {
11889 /* STRH(1). */
11890 immed_5 = bits (thumb_insn_r->arm_insn, 6, 10);
11891 reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5);
11892 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
11893 record_buf_mem[0] = 2;
11894 record_buf_mem[1] = u_regval + (immed_5 * 2);
11895 thumb_insn_r->mem_rec_count = 1;
11896 }
11897
11898 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11899 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
11900 record_buf_mem);
11901
11902 return 0;
11903}
11904
11905/* Handling opcode 101 insns. */
11906
11907static int
11908thumb_record_misc (insn_decode_record *thumb_insn_r)
11909{
11910 struct regcache *reg_cache = thumb_insn_r->regcache;
11911
11912 uint32_t opcode = 0, opcode1 = 0, opcode2 = 0;
11913 uint32_t register_bits = 0, register_count = 0;
bec2ab5a 11914 uint32_t index = 0, start_address = 0;
72508ac0
PO
11915 uint32_t record_buf[24], record_buf_mem[48];
11916 uint32_t reg_src1;
11917
11918 ULONGEST u_regval = 0;
11919
11920 opcode = bits (thumb_insn_r->arm_insn, 11, 12);
11921 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
11922 opcode2 = bits (thumb_insn_r->arm_insn, 9, 12);
11923
11924 if (14 == opcode2)
11925 {
11926 /* POP. */
11927 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
11928 while (register_bits)
f969241e
OJ
11929 {
11930 if (register_bits & 0x00000001)
11931 record_buf[index++] = register_count;
11932 register_bits = register_bits >> 1;
11933 register_count++;
11934 }
11935 record_buf[index++] = ARM_PS_REGNUM;
11936 record_buf[index++] = ARM_SP_REGNUM;
11937 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
11938 }
11939 else if (10 == opcode2)
11940 {
11941 /* PUSH. */
11942 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
9904a494 11943 regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval);
72508ac0
PO
11944 while (register_bits)
11945 {
11946 if (register_bits & 0x00000001)
11947 register_count++;
11948 register_bits = register_bits >> 1;
11949 }
11950 start_address = u_regval - \
11951 (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count));
11952 thumb_insn_r->mem_rec_count = register_count;
11953 while (register_count)
11954 {
11955 record_buf_mem[(register_count * 2) - 1] = start_address;
11956 record_buf_mem[(register_count * 2) - 2] = 4;
11957 start_address = start_address + 4;
11958 register_count--;
11959 }
11960 record_buf[0] = ARM_SP_REGNUM;
11961 thumb_insn_r->reg_rec_count = 1;
11962 }
11963 else if (0x1E == opcode1)
11964 {
11965 /* BKPT insn. */
11966 /* Handle enhanced software breakpoint insn, BKPT. */
11967 /* CPSR is changed to be executed in ARM state, disabling normal
11968 interrupts, entering abort mode. */
11969 /* According to high vector configuration PC is set. */
11970 /* User hits breakpoint and type reverse, in that case, we need to go back with
11971 previous CPSR and Program Counter. */
11972 record_buf[0] = ARM_PS_REGNUM;
11973 record_buf[1] = ARM_LR_REGNUM;
11974 thumb_insn_r->reg_rec_count = 2;
11975 /* We need to save SPSR value, which is not yet done. */
11976 printf_unfiltered (_("Process record does not support instruction "
11977 "0x%0x at address %s.\n"),
11978 thumb_insn_r->arm_insn,
11979 paddress (thumb_insn_r->gdbarch,
11980 thumb_insn_r->this_addr));
11981 return -1;
11982 }
11983 else if ((0 == opcode) || (1 == opcode))
11984 {
11985 /* ADD(5), ADD(6). */
11986 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11987 record_buf[0] = reg_src1;
11988 thumb_insn_r->reg_rec_count = 1;
11989 }
11990 else if (2 == opcode)
11991 {
11992 /* ADD(7), SUB(4). */
11993 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
11994 record_buf[0] = ARM_SP_REGNUM;
11995 thumb_insn_r->reg_rec_count = 1;
11996 }
11997
11998 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
11999 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12000 record_buf_mem);
12001
12002 return 0;
12003}
12004
12005/* Handling opcode 110 insns. */
12006
12007static int
12008thumb_record_ldm_stm_swi (insn_decode_record *thumb_insn_r)
12009{
12010 struct gdbarch_tdep *tdep = gdbarch_tdep (thumb_insn_r->gdbarch);
12011 struct regcache *reg_cache = thumb_insn_r->regcache;
12012
12013 uint32_t ret = 0; /* function return value: -1:record failure ; 0:success */
12014 uint32_t reg_src1 = 0;
12015 uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0;
bec2ab5a 12016 uint32_t index = 0, start_address = 0;
72508ac0
PO
12017 uint32_t record_buf[24], record_buf_mem[48];
12018
12019 ULONGEST u_regval = 0;
12020
12021 opcode1 = bits (thumb_insn_r->arm_insn, 8, 12);
12022 opcode2 = bits (thumb_insn_r->arm_insn, 11, 12);
12023
12024 if (1 == opcode2)
12025 {
12026
12027 /* LDMIA. */
12028 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12029 /* Get Rn. */
12030 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12031 while (register_bits)
12032 {
12033 if (register_bits & 0x00000001)
f969241e 12034 record_buf[index++] = register_count;
72508ac0 12035 register_bits = register_bits >> 1;
f969241e 12036 register_count++;
72508ac0 12037 }
f969241e
OJ
12038 record_buf[index++] = reg_src1;
12039 thumb_insn_r->reg_rec_count = index;
72508ac0
PO
12040 }
12041 else if (0 == opcode2)
12042 {
12043 /* It handles both STMIA. */
12044 register_bits = bits (thumb_insn_r->arm_insn, 0, 7);
12045 /* Get Rn. */
12046 reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10);
12047 regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval);
12048 while (register_bits)
12049 {
12050 if (register_bits & 0x00000001)
12051 register_count++;
12052 register_bits = register_bits >> 1;
12053 }
12054 start_address = u_regval;
12055 thumb_insn_r->mem_rec_count = register_count;
12056 while (register_count)
12057 {
12058 record_buf_mem[(register_count * 2) - 1] = start_address;
12059 record_buf_mem[(register_count * 2) - 2] = 4;
12060 start_address = start_address + 4;
12061 register_count--;
12062 }
12063 }
12064 else if (0x1F == opcode1)
12065 {
12066 /* Handle arm syscall insn. */
97dfe206 12067 if (tdep->arm_syscall_record != NULL)
72508ac0 12068 {
97dfe206
OJ
12069 regcache_raw_read_unsigned (reg_cache, 7, &u_regval);
12070 ret = tdep->arm_syscall_record (reg_cache, u_regval);
72508ac0
PO
12071 }
12072 else
12073 {
12074 printf_unfiltered (_("no syscall record support\n"));
12075 return -1;
12076 }
12077 }
12078
12079 /* B (1), conditional branch is automatically taken care in process_record,
12080 as PC is saved there. */
12081
12082 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12083 MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count,
12084 record_buf_mem);
12085
12086 return ret;
12087}
12088
12089/* Handling opcode 111 insns. */
12090
12091static int
12092thumb_record_branch (insn_decode_record *thumb_insn_r)
12093{
12094 uint32_t record_buf[8];
12095 uint32_t bits_h = 0;
12096
12097 bits_h = bits (thumb_insn_r->arm_insn, 11, 12);
12098
12099 if (2 == bits_h || 3 == bits_h)
12100 {
12101 /* BL */
12102 record_buf[0] = ARM_LR_REGNUM;
12103 thumb_insn_r->reg_rec_count = 1;
12104 }
12105 else if (1 == bits_h)
12106 {
12107 /* BLX(1). */
12108 record_buf[0] = ARM_PS_REGNUM;
12109 record_buf[1] = ARM_LR_REGNUM;
12110 thumb_insn_r->reg_rec_count = 2;
12111 }
12112
12113 /* B(2) is automatically taken care in process_record, as PC is
12114 saved there. */
12115
12116 REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf);
12117
12118 return 0;
12119}
12120
c6ec2b30
OJ
12121/* Handler for thumb2 load/store multiple instructions. */
12122
12123static int
12124thumb2_record_ld_st_multiple (insn_decode_record *thumb2_insn_r)
12125{
12126 struct regcache *reg_cache = thumb2_insn_r->regcache;
12127
12128 uint32_t reg_rn, op;
12129 uint32_t register_bits = 0, register_count = 0;
12130 uint32_t index = 0, start_address = 0;
12131 uint32_t record_buf[24], record_buf_mem[48];
12132
12133 ULONGEST u_regval = 0;
12134
12135 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12136 op = bits (thumb2_insn_r->arm_insn, 23, 24);
12137
12138 if (0 == op || 3 == op)
12139 {
12140 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12141 {
12142 /* Handle RFE instruction. */
12143 record_buf[0] = ARM_PS_REGNUM;
12144 thumb2_insn_r->reg_rec_count = 1;
12145 }
12146 else
12147 {
12148 /* Handle SRS instruction after reading banked SP. */
12149 return arm_record_unsupported_insn (thumb2_insn_r);
12150 }
12151 }
12152 else if (1 == op || 2 == op)
12153 {
12154 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12155 {
12156 /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions. */
12157 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12158 while (register_bits)
12159 {
12160 if (register_bits & 0x00000001)
12161 record_buf[index++] = register_count;
12162
12163 register_count++;
12164 register_bits = register_bits >> 1;
12165 }
12166 record_buf[index++] = reg_rn;
12167 record_buf[index++] = ARM_PS_REGNUM;
12168 thumb2_insn_r->reg_rec_count = index;
12169 }
12170 else
12171 {
12172 /* Handle STM/STMIA/STMEA and STMDB/STMFD. */
12173 register_bits = bits (thumb2_insn_r->arm_insn, 0, 15);
12174 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12175 while (register_bits)
12176 {
12177 if (register_bits & 0x00000001)
12178 register_count++;
12179
12180 register_bits = register_bits >> 1;
12181 }
12182
12183 if (1 == op)
12184 {
12185 /* Start address calculation for LDMDB/LDMEA. */
12186 start_address = u_regval;
12187 }
12188 else if (2 == op)
12189 {
12190 /* Start address calculation for LDMDB/LDMEA. */
12191 start_address = u_regval - register_count * 4;
12192 }
12193
12194 thumb2_insn_r->mem_rec_count = register_count;
12195 while (register_count)
12196 {
12197 record_buf_mem[register_count * 2 - 1] = start_address;
12198 record_buf_mem[register_count * 2 - 2] = 4;
12199 start_address = start_address + 4;
12200 register_count--;
12201 }
12202 record_buf[0] = reg_rn;
12203 record_buf[1] = ARM_PS_REGNUM;
12204 thumb2_insn_r->reg_rec_count = 2;
12205 }
12206 }
12207
12208 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12209 record_buf_mem);
12210 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12211 record_buf);
12212 return ARM_RECORD_SUCCESS;
12213}
12214
12215/* Handler for thumb2 load/store (dual/exclusive) and table branch
12216 instructions. */
12217
12218static int
12219thumb2_record_ld_st_dual_ex_tbb (insn_decode_record *thumb2_insn_r)
12220{
12221 struct regcache *reg_cache = thumb2_insn_r->regcache;
12222
12223 uint32_t reg_rd, reg_rn, offset_imm;
12224 uint32_t reg_dest1, reg_dest2;
12225 uint32_t address, offset_addr;
12226 uint32_t record_buf[8], record_buf_mem[8];
12227 uint32_t op1, op2, op3;
c6ec2b30
OJ
12228
12229 ULONGEST u_regval[2];
12230
12231 op1 = bits (thumb2_insn_r->arm_insn, 23, 24);
12232 op2 = bits (thumb2_insn_r->arm_insn, 20, 21);
12233 op3 = bits (thumb2_insn_r->arm_insn, 4, 7);
12234
12235 if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM))
12236 {
12237 if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3)))
12238 {
12239 reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15);
12240 record_buf[0] = reg_dest1;
12241 record_buf[1] = ARM_PS_REGNUM;
12242 thumb2_insn_r->reg_rec_count = 2;
12243 }
12244
12245 if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3))
12246 {
12247 reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12248 record_buf[2] = reg_dest2;
12249 thumb2_insn_r->reg_rec_count = 3;
12250 }
12251 }
12252 else
12253 {
12254 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12255 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12256
12257 if (0 == op1 && 0 == op2)
12258 {
12259 /* Handle STREX. */
12260 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12261 address = u_regval[0] + (offset_imm * 4);
12262 record_buf_mem[0] = 4;
12263 record_buf_mem[1] = address;
12264 thumb2_insn_r->mem_rec_count = 1;
12265 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12266 record_buf[0] = reg_rd;
12267 thumb2_insn_r->reg_rec_count = 1;
12268 }
12269 else if (1 == op1 && 0 == op2)
12270 {
12271 reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3);
12272 record_buf[0] = reg_rd;
12273 thumb2_insn_r->reg_rec_count = 1;
12274 address = u_regval[0];
12275 record_buf_mem[1] = address;
12276
12277 if (4 == op3)
12278 {
12279 /* Handle STREXB. */
12280 record_buf_mem[0] = 1;
12281 thumb2_insn_r->mem_rec_count = 1;
12282 }
12283 else if (5 == op3)
12284 {
12285 /* Handle STREXH. */
12286 record_buf_mem[0] = 2 ;
12287 thumb2_insn_r->mem_rec_count = 1;
12288 }
12289 else if (7 == op3)
12290 {
12291 /* Handle STREXD. */
12292 address = u_regval[0];
12293 record_buf_mem[0] = 4;
12294 record_buf_mem[2] = 4;
12295 record_buf_mem[3] = address + 4;
12296 thumb2_insn_r->mem_rec_count = 2;
12297 }
12298 }
12299 else
12300 {
12301 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12302
12303 if (bit (thumb2_insn_r->arm_insn, 24))
12304 {
12305 if (bit (thumb2_insn_r->arm_insn, 23))
12306 offset_addr = u_regval[0] + (offset_imm * 4);
12307 else
12308 offset_addr = u_regval[0] - (offset_imm * 4);
12309
12310 address = offset_addr;
12311 }
12312 else
12313 address = u_regval[0];
12314
12315 record_buf_mem[0] = 4;
12316 record_buf_mem[1] = address;
12317 record_buf_mem[2] = 4;
12318 record_buf_mem[3] = address + 4;
12319 thumb2_insn_r->mem_rec_count = 2;
12320 record_buf[0] = reg_rn;
12321 thumb2_insn_r->reg_rec_count = 1;
12322 }
12323 }
12324
12325 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12326 record_buf);
12327 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12328 record_buf_mem);
12329 return ARM_RECORD_SUCCESS;
12330}
12331
12332/* Handler for thumb2 data processing (shift register and modified immediate)
12333 instructions. */
12334
12335static int
12336thumb2_record_data_proc_sreg_mimm (insn_decode_record *thumb2_insn_r)
12337{
12338 uint32_t reg_rd, op;
12339 uint32_t record_buf[8];
12340
12341 op = bits (thumb2_insn_r->arm_insn, 21, 24);
12342 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12343
12344 if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd)
12345 {
12346 record_buf[0] = ARM_PS_REGNUM;
12347 thumb2_insn_r->reg_rec_count = 1;
12348 }
12349 else
12350 {
12351 record_buf[0] = reg_rd;
12352 record_buf[1] = ARM_PS_REGNUM;
12353 thumb2_insn_r->reg_rec_count = 2;
12354 }
12355
12356 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12357 record_buf);
12358 return ARM_RECORD_SUCCESS;
12359}
12360
12361/* Generic handler for thumb2 instructions which effect destination and PS
12362 registers. */
12363
12364static int
12365thumb2_record_ps_dest_generic (insn_decode_record *thumb2_insn_r)
12366{
12367 uint32_t reg_rd;
12368 uint32_t record_buf[8];
12369
12370 reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11);
12371
12372 record_buf[0] = reg_rd;
12373 record_buf[1] = ARM_PS_REGNUM;
12374 thumb2_insn_r->reg_rec_count = 2;
12375
12376 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12377 record_buf);
12378 return ARM_RECORD_SUCCESS;
12379}
12380
12381/* Handler for thumb2 branch and miscellaneous control instructions. */
12382
12383static int
12384thumb2_record_branch_misc_cntrl (insn_decode_record *thumb2_insn_r)
12385{
12386 uint32_t op, op1, op2;
12387 uint32_t record_buf[8];
12388
12389 op = bits (thumb2_insn_r->arm_insn, 20, 26);
12390 op1 = bits (thumb2_insn_r->arm_insn, 12, 14);
12391 op2 = bits (thumb2_insn_r->arm_insn, 8, 11);
12392
12393 /* Handle MSR insn. */
12394 if (!(op1 & 0x2) && 0x38 == op)
12395 {
12396 if (!(op2 & 0x3))
12397 {
12398 /* CPSR is going to be changed. */
12399 record_buf[0] = ARM_PS_REGNUM;
12400 thumb2_insn_r->reg_rec_count = 1;
12401 }
12402 else
12403 {
12404 arm_record_unsupported_insn(thumb2_insn_r);
12405 return -1;
12406 }
12407 }
12408 else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5))
12409 {
12410 /* BLX. */
12411 record_buf[0] = ARM_PS_REGNUM;
12412 record_buf[1] = ARM_LR_REGNUM;
12413 thumb2_insn_r->reg_rec_count = 2;
12414 }
12415
12416 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12417 record_buf);
12418 return ARM_RECORD_SUCCESS;
12419}
12420
12421/* Handler for thumb2 store single data item instructions. */
12422
12423static int
12424thumb2_record_str_single_data (insn_decode_record *thumb2_insn_r)
12425{
12426 struct regcache *reg_cache = thumb2_insn_r->regcache;
12427
12428 uint32_t reg_rn, reg_rm, offset_imm, shift_imm;
12429 uint32_t address, offset_addr;
12430 uint32_t record_buf[8], record_buf_mem[8];
12431 uint32_t op1, op2;
12432
12433 ULONGEST u_regval[2];
12434
12435 op1 = bits (thumb2_insn_r->arm_insn, 21, 23);
12436 op2 = bits (thumb2_insn_r->arm_insn, 6, 11);
12437 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12438 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]);
12439
12440 if (bit (thumb2_insn_r->arm_insn, 23))
12441 {
12442 /* T2 encoding. */
12443 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11);
12444 offset_addr = u_regval[0] + offset_imm;
12445 address = offset_addr;
12446 }
12447 else
12448 {
12449 /* T3 encoding. */
12450 if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20))
12451 {
12452 /* Handle STRB (register). */
12453 reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3);
12454 regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]);
12455 shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5);
12456 offset_addr = u_regval[1] << shift_imm;
12457 address = u_regval[0] + offset_addr;
12458 }
12459 else
12460 {
12461 offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7);
12462 if (bit (thumb2_insn_r->arm_insn, 10))
12463 {
12464 if (bit (thumb2_insn_r->arm_insn, 9))
12465 offset_addr = u_regval[0] + offset_imm;
12466 else
12467 offset_addr = u_regval[0] - offset_imm;
12468
12469 address = offset_addr;
12470 }
12471 else
12472 address = u_regval[0];
12473 }
12474 }
12475
12476 switch (op1)
12477 {
12478 /* Store byte instructions. */
12479 case 4:
12480 case 0:
12481 record_buf_mem[0] = 1;
12482 break;
12483 /* Store half word instructions. */
12484 case 1:
12485 case 5:
12486 record_buf_mem[0] = 2;
12487 break;
12488 /* Store word instructions. */
12489 case 2:
12490 case 6:
12491 record_buf_mem[0] = 4;
12492 break;
12493
12494 default:
12495 gdb_assert_not_reached ("no decoding pattern found");
12496 break;
12497 }
12498
12499 record_buf_mem[1] = address;
12500 thumb2_insn_r->mem_rec_count = 1;
12501 record_buf[0] = reg_rn;
12502 thumb2_insn_r->reg_rec_count = 1;
12503
12504 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12505 record_buf);
12506 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12507 record_buf_mem);
12508 return ARM_RECORD_SUCCESS;
12509}
12510
12511/* Handler for thumb2 load memory hints instructions. */
12512
12513static int
12514thumb2_record_ld_mem_hints (insn_decode_record *thumb2_insn_r)
12515{
12516 uint32_t record_buf[8];
12517 uint32_t reg_rt, reg_rn;
12518
12519 reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15);
12520 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12521
12522 if (ARM_PC_REGNUM != reg_rt)
12523 {
12524 record_buf[0] = reg_rt;
12525 record_buf[1] = reg_rn;
12526 record_buf[2] = ARM_PS_REGNUM;
12527 thumb2_insn_r->reg_rec_count = 3;
12528
12529 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12530 record_buf);
12531 return ARM_RECORD_SUCCESS;
12532 }
12533
12534 return ARM_RECORD_FAILURE;
12535}
12536
12537/* Handler for thumb2 load word instructions. */
12538
12539static int
12540thumb2_record_ld_word (insn_decode_record *thumb2_insn_r)
12541{
c6ec2b30
OJ
12542 uint32_t record_buf[8];
12543
12544 record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15);
12545 record_buf[1] = ARM_PS_REGNUM;
12546 thumb2_insn_r->reg_rec_count = 2;
12547
12548 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12549 record_buf);
12550 return ARM_RECORD_SUCCESS;
12551}
12552
12553/* Handler for thumb2 long multiply, long multiply accumulate, and
12554 divide instructions. */
12555
12556static int
12557thumb2_record_lmul_lmla_div (insn_decode_record *thumb2_insn_r)
12558{
12559 uint32_t opcode1 = 0, opcode2 = 0;
12560 uint32_t record_buf[8];
c6ec2b30
OJ
12561
12562 opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22);
12563 opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7);
12564
12565 if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6))
12566 {
12567 /* Handle SMULL, UMULL, SMULAL. */
12568 /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S). */
12569 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12570 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12571 record_buf[2] = ARM_PS_REGNUM;
12572 thumb2_insn_r->reg_rec_count = 3;
12573 }
12574 else if (1 == opcode1 || 3 == opcode2)
12575 {
12576 /* Handle SDIV and UDIV. */
12577 record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19);
12578 record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15);
12579 record_buf[2] = ARM_PS_REGNUM;
12580 thumb2_insn_r->reg_rec_count = 3;
12581 }
12582 else
12583 return ARM_RECORD_FAILURE;
12584
12585 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12586 record_buf);
12587 return ARM_RECORD_SUCCESS;
12588}
12589
60cc5e93
OJ
12590/* Record handler for thumb32 coprocessor instructions. */
12591
12592static int
12593thumb2_record_coproc_insn (insn_decode_record *thumb2_insn_r)
12594{
12595 if (bit (thumb2_insn_r->arm_insn, 25))
12596 return arm_record_coproc_data_proc (thumb2_insn_r);
12597 else
12598 return arm_record_asimd_vfp_coproc (thumb2_insn_r);
12599}
12600
1e1b6563
OJ
12601/* Record handler for advance SIMD structure load/store instructions. */
12602
12603static int
12604thumb2_record_asimd_struct_ld_st (insn_decode_record *thumb2_insn_r)
12605{
12606 struct regcache *reg_cache = thumb2_insn_r->regcache;
12607 uint32_t l_bit, a_bit, b_bits;
12608 uint32_t record_buf[128], record_buf_mem[128];
bec2ab5a 12609 uint32_t reg_rn, reg_vd, address, f_elem;
1e1b6563
OJ
12610 uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0;
12611 uint8_t f_ebytes;
12612
12613 l_bit = bit (thumb2_insn_r->arm_insn, 21);
12614 a_bit = bit (thumb2_insn_r->arm_insn, 23);
12615 b_bits = bits (thumb2_insn_r->arm_insn, 8, 11);
12616 reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19);
12617 reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15);
12618 reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd;
12619 f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7));
1e1b6563
OJ
12620 f_elem = 8 / f_ebytes;
12621
12622 if (!l_bit)
12623 {
12624 ULONGEST u_regval = 0;
12625 regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval);
12626 address = u_regval;
12627
12628 if (!a_bit)
12629 {
12630 /* Handle VST1. */
12631 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12632 {
12633 if (b_bits == 0x07)
12634 bf_regs = 1;
12635 else if (b_bits == 0x0a)
12636 bf_regs = 2;
12637 else if (b_bits == 0x06)
12638 bf_regs = 3;
12639 else if (b_bits == 0x02)
12640 bf_regs = 4;
12641 else
12642 bf_regs = 0;
12643
12644 for (index_r = 0; index_r < bf_regs; index_r++)
12645 {
12646 for (index_e = 0; index_e < f_elem; index_e++)
12647 {
12648 record_buf_mem[index_m++] = f_ebytes;
12649 record_buf_mem[index_m++] = address;
12650 address = address + f_ebytes;
12651 thumb2_insn_r->mem_rec_count += 1;
12652 }
12653 }
12654 }
12655 /* Handle VST2. */
12656 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12657 {
12658 if (b_bits == 0x09 || b_bits == 0x08)
12659 bf_regs = 1;
12660 else if (b_bits == 0x03)
12661 bf_regs = 2;
12662 else
12663 bf_regs = 0;
12664
12665 for (index_r = 0; index_r < bf_regs; index_r++)
12666 for (index_e = 0; index_e < f_elem; index_e++)
12667 {
12668 for (loop_t = 0; loop_t < 2; loop_t++)
12669 {
12670 record_buf_mem[index_m++] = f_ebytes;
12671 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12672 thumb2_insn_r->mem_rec_count += 1;
12673 }
12674 address = address + (2 * f_ebytes);
12675 }
12676 }
12677 /* Handle VST3. */
12678 else if ((b_bits & 0x0e) == 0x04)
12679 {
12680 for (index_e = 0; index_e < f_elem; index_e++)
12681 {
12682 for (loop_t = 0; loop_t < 3; loop_t++)
12683 {
12684 record_buf_mem[index_m++] = f_ebytes;
12685 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12686 thumb2_insn_r->mem_rec_count += 1;
12687 }
12688 address = address + (3 * f_ebytes);
12689 }
12690 }
12691 /* Handle VST4. */
12692 else if (!(b_bits & 0x0e))
12693 {
12694 for (index_e = 0; index_e < f_elem; index_e++)
12695 {
12696 for (loop_t = 0; loop_t < 4; loop_t++)
12697 {
12698 record_buf_mem[index_m++] = f_ebytes;
12699 record_buf_mem[index_m++] = address + (loop_t * f_ebytes);
12700 thumb2_insn_r->mem_rec_count += 1;
12701 }
12702 address = address + (4 * f_ebytes);
12703 }
12704 }
12705 }
12706 else
12707 {
12708 uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11);
12709
12710 if (bft_size == 0x00)
12711 f_ebytes = 1;
12712 else if (bft_size == 0x01)
12713 f_ebytes = 2;
12714 else if (bft_size == 0x02)
12715 f_ebytes = 4;
12716 else
12717 f_ebytes = 0;
12718
12719 /* Handle VST1. */
12720 if (!(b_bits & 0x0b) || b_bits == 0x08)
12721 thumb2_insn_r->mem_rec_count = 1;
12722 /* Handle VST2. */
12723 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09)
12724 thumb2_insn_r->mem_rec_count = 2;
12725 /* Handle VST3. */
12726 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a)
12727 thumb2_insn_r->mem_rec_count = 3;
12728 /* Handle VST4. */
12729 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b)
12730 thumb2_insn_r->mem_rec_count = 4;
12731
12732 for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++)
12733 {
12734 record_buf_mem[index_m] = f_ebytes;
12735 record_buf_mem[index_m] = address + (index_m * f_ebytes);
12736 }
12737 }
12738 }
12739 else
12740 {
12741 if (!a_bit)
12742 {
12743 /* Handle VLD1. */
12744 if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06)
12745 thumb2_insn_r->reg_rec_count = 1;
12746 /* Handle VLD2. */
12747 else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08)
12748 thumb2_insn_r->reg_rec_count = 2;
12749 /* Handle VLD3. */
12750 else if ((b_bits & 0x0e) == 0x04)
12751 thumb2_insn_r->reg_rec_count = 3;
12752 /* Handle VLD4. */
12753 else if (!(b_bits & 0x0e))
12754 thumb2_insn_r->reg_rec_count = 4;
12755 }
12756 else
12757 {
12758 /* Handle VLD1. */
12759 if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c)
12760 thumb2_insn_r->reg_rec_count = 1;
12761 /* Handle VLD2. */
12762 else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d)
12763 thumb2_insn_r->reg_rec_count = 2;
12764 /* Handle VLD3. */
12765 else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e)
12766 thumb2_insn_r->reg_rec_count = 3;
12767 /* Handle VLD4. */
12768 else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f)
12769 thumb2_insn_r->reg_rec_count = 4;
12770
12771 for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++)
12772 record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r;
12773 }
12774 }
12775
12776 if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15)
12777 {
12778 record_buf[index_r] = reg_rn;
12779 thumb2_insn_r->reg_rec_count += 1;
12780 }
12781
12782 REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count,
12783 record_buf);
12784 MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count,
12785 record_buf_mem);
12786 return 0;
12787}
12788
c6ec2b30
OJ
12789/* Decodes thumb2 instruction type and invokes its record handler. */
12790
12791static unsigned int
12792thumb2_record_decode_insn_handler (insn_decode_record *thumb2_insn_r)
12793{
12794 uint32_t op, op1, op2;
12795
12796 op = bit (thumb2_insn_r->arm_insn, 15);
12797 op1 = bits (thumb2_insn_r->arm_insn, 27, 28);
12798 op2 = bits (thumb2_insn_r->arm_insn, 20, 26);
12799
12800 if (op1 == 0x01)
12801 {
12802 if (!(op2 & 0x64 ))
12803 {
12804 /* Load/store multiple instruction. */
12805 return thumb2_record_ld_st_multiple (thumb2_insn_r);
12806 }
12807 else if (!((op2 & 0x64) ^ 0x04))
12808 {
12809 /* Load/store (dual/exclusive) and table branch instruction. */
12810 return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r);
12811 }
12812 else if (!((op2 & 0x20) ^ 0x20))
12813 {
12814 /* Data-processing (shifted register). */
12815 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12816 }
12817 else if (op2 & 0x40)
12818 {
12819 /* Co-processor instructions. */
60cc5e93 12820 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12821 }
12822 }
12823 else if (op1 == 0x02)
12824 {
12825 if (op)
12826 {
12827 /* Branches and miscellaneous control instructions. */
12828 return thumb2_record_branch_misc_cntrl (thumb2_insn_r);
12829 }
12830 else if (op2 & 0x20)
12831 {
12832 /* Data-processing (plain binary immediate) instruction. */
12833 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12834 }
12835 else
12836 {
12837 /* Data-processing (modified immediate). */
12838 return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r);
12839 }
12840 }
12841 else if (op1 == 0x03)
12842 {
12843 if (!(op2 & 0x71 ))
12844 {
12845 /* Store single data item. */
12846 return thumb2_record_str_single_data (thumb2_insn_r);
12847 }
12848 else if (!((op2 & 0x71) ^ 0x10))
12849 {
12850 /* Advanced SIMD or structure load/store instructions. */
1e1b6563 12851 return thumb2_record_asimd_struct_ld_st (thumb2_insn_r);
c6ec2b30
OJ
12852 }
12853 else if (!((op2 & 0x67) ^ 0x01))
12854 {
12855 /* Load byte, memory hints instruction. */
12856 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12857 }
12858 else if (!((op2 & 0x67) ^ 0x03))
12859 {
12860 /* Load halfword, memory hints instruction. */
12861 return thumb2_record_ld_mem_hints (thumb2_insn_r);
12862 }
12863 else if (!((op2 & 0x67) ^ 0x05))
12864 {
12865 /* Load word instruction. */
12866 return thumb2_record_ld_word (thumb2_insn_r);
12867 }
12868 else if (!((op2 & 0x70) ^ 0x20))
12869 {
12870 /* Data-processing (register) instruction. */
12871 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12872 }
12873 else if (!((op2 & 0x78) ^ 0x30))
12874 {
12875 /* Multiply, multiply accumulate, abs diff instruction. */
12876 return thumb2_record_ps_dest_generic (thumb2_insn_r);
12877 }
12878 else if (!((op2 & 0x78) ^ 0x38))
12879 {
12880 /* Long multiply, long multiply accumulate, and divide. */
12881 return thumb2_record_lmul_lmla_div (thumb2_insn_r);
12882 }
12883 else if (op2 & 0x40)
12884 {
12885 /* Co-processor instructions. */
60cc5e93 12886 return thumb2_record_coproc_insn (thumb2_insn_r);
c6ec2b30
OJ
12887 }
12888 }
12889
12890 return -1;
12891}
72508ac0
PO
12892
12893/* Extracts arm/thumb/thumb2 insn depending on the size, and returns 0 on success
12894and positive val on fauilure. */
12895
12896static int
12897extract_arm_insn (insn_decode_record *insn_record, uint32_t insn_size)
12898{
12899 gdb_byte buf[insn_size];
12900
12901 memset (&buf[0], 0, insn_size);
12902
12903 if (target_read_memory (insn_record->this_addr, &buf[0], insn_size))
12904 return 1;
12905 insn_record->arm_insn = (uint32_t) extract_unsigned_integer (&buf[0],
12906 insn_size,
2959fed9 12907 gdbarch_byte_order_for_code (insn_record->gdbarch));
72508ac0
PO
12908 return 0;
12909}
12910
12911typedef int (*sti_arm_hdl_fp_t) (insn_decode_record*);
12912
12913/* Decode arm/thumb insn depending on condition cods and opcodes; and
12914 dispatch it. */
12915
12916static int
12917decode_insn (insn_decode_record *arm_record, record_type_t record_type,
01e57735 12918 uint32_t insn_size)
72508ac0
PO
12919{
12920
01e57735
YQ
12921 /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm
12922 instruction. */
0fa9c223 12923 static const sti_arm_hdl_fp_t arm_handle_insn[8] =
72508ac0
PO
12924 {
12925 arm_record_data_proc_misc_ld_str, /* 000. */
12926 arm_record_data_proc_imm, /* 001. */
12927 arm_record_ld_st_imm_offset, /* 010. */
12928 arm_record_ld_st_reg_offset, /* 011. */
12929 arm_record_ld_st_multiple, /* 100. */
12930 arm_record_b_bl, /* 101. */
60cc5e93 12931 arm_record_asimd_vfp_coproc, /* 110. */
72508ac0
PO
12932 arm_record_coproc_data_proc /* 111. */
12933 };
12934
01e57735
YQ
12935 /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb
12936 instruction. */
0fa9c223 12937 static const sti_arm_hdl_fp_t thumb_handle_insn[8] =
72508ac0
PO
12938 { \
12939 thumb_record_shift_add_sub, /* 000. */
12940 thumb_record_add_sub_cmp_mov, /* 001. */
12941 thumb_record_ld_st_reg_offset, /* 010. */
12942 thumb_record_ld_st_imm_offset, /* 011. */
12943 thumb_record_ld_st_stack, /* 100. */
12944 thumb_record_misc, /* 101. */
12945 thumb_record_ldm_stm_swi, /* 110. */
12946 thumb_record_branch /* 111. */
12947 };
12948
12949 uint32_t ret = 0; /* return value: negative:failure 0:success. */
12950 uint32_t insn_id = 0;
12951
12952 if (extract_arm_insn (arm_record, insn_size))
12953 {
12954 if (record_debug)
01e57735
YQ
12955 {
12956 printf_unfiltered (_("Process record: error reading memory at "
12957 "addr %s len = %d.\n"),
12958 paddress (arm_record->gdbarch,
12959 arm_record->this_addr), insn_size);
12960 }
72508ac0
PO
12961 return -1;
12962 }
12963 else if (ARM_RECORD == record_type)
12964 {
12965 arm_record->cond = bits (arm_record->arm_insn, 28, 31);
12966 insn_id = bits (arm_record->arm_insn, 25, 27);
ca92db2d
YQ
12967
12968 if (arm_record->cond == 0xf)
12969 ret = arm_record_extension_space (arm_record);
12970 else
01e57735 12971 {
ca92db2d
YQ
12972 /* If this insn has fallen into extension space
12973 then we need not decode it anymore. */
01e57735
YQ
12974 ret = arm_handle_insn[insn_id] (arm_record);
12975 }
ca92db2d
YQ
12976 if (ret != ARM_RECORD_SUCCESS)
12977 {
12978 arm_record_unsupported_insn (arm_record);
12979 ret = -1;
12980 }
72508ac0
PO
12981 }
12982 else if (THUMB_RECORD == record_type)
12983 {
12984 /* As thumb does not have condition codes, we set negative. */
12985 arm_record->cond = -1;
12986 insn_id = bits (arm_record->arm_insn, 13, 15);
12987 ret = thumb_handle_insn[insn_id] (arm_record);
ca92db2d
YQ
12988 if (ret != ARM_RECORD_SUCCESS)
12989 {
12990 arm_record_unsupported_insn (arm_record);
12991 ret = -1;
12992 }
72508ac0
PO
12993 }
12994 else if (THUMB2_RECORD == record_type)
12995 {
c6ec2b30
OJ
12996 /* As thumb does not have condition codes, we set negative. */
12997 arm_record->cond = -1;
12998
12999 /* Swap first half of 32bit thumb instruction with second half. */
13000 arm_record->arm_insn
01e57735 13001 = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16);
c6ec2b30 13002
ca92db2d 13003 ret = thumb2_record_decode_insn_handler (arm_record);
c6ec2b30 13004
ca92db2d 13005 if (ret != ARM_RECORD_SUCCESS)
01e57735
YQ
13006 {
13007 arm_record_unsupported_insn (arm_record);
13008 ret = -1;
13009 }
72508ac0
PO
13010 }
13011 else
13012 {
13013 /* Throw assertion. */
13014 gdb_assert_not_reached ("not a valid instruction, could not decode");
13015 }
13016
13017 return ret;
13018}
13019
13020
13021/* Cleans up local record registers and memory allocations. */
13022
13023static void
13024deallocate_reg_mem (insn_decode_record *record)
13025{
13026 xfree (record->arm_regs);
13027 xfree (record->arm_mems);
13028}
13029
13030
01e57735 13031/* Parse the current instruction and record the values of the registers and
72508ac0
PO
13032 memory that will be changed in current instruction to record_arch_list".
13033 Return -1 if something is wrong. */
13034
13035int
01e57735
YQ
13036arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
13037 CORE_ADDR insn_addr)
72508ac0
PO
13038{
13039
72508ac0
PO
13040 uint32_t no_of_rec = 0;
13041 uint32_t ret = 0; /* return value: -1:record failure ; 0:success */
13042 ULONGEST t_bit = 0, insn_id = 0;
13043
13044 ULONGEST u_regval = 0;
13045
13046 insn_decode_record arm_record;
13047
13048 memset (&arm_record, 0, sizeof (insn_decode_record));
13049 arm_record.regcache = regcache;
13050 arm_record.this_addr = insn_addr;
13051 arm_record.gdbarch = gdbarch;
13052
13053
13054 if (record_debug > 1)
13055 {
13056 fprintf_unfiltered (gdb_stdlog, "Process record: arm_process_record "
01e57735 13057 "addr = %s\n",
72508ac0
PO
13058 paddress (gdbarch, arm_record.this_addr));
13059 }
13060
13061 if (extract_arm_insn (&arm_record, 2))
13062 {
13063 if (record_debug)
01e57735
YQ
13064 {
13065 printf_unfiltered (_("Process record: error reading memory at "
13066 "addr %s len = %d.\n"),
13067 paddress (arm_record.gdbarch,
13068 arm_record.this_addr), 2);
13069 }
72508ac0
PO
13070 return -1;
13071 }
13072
13073 /* Check the insn, whether it is thumb or arm one. */
13074
13075 t_bit = arm_psr_thumb_bit (arm_record.gdbarch);
13076 regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval);
13077
13078
13079 if (!(u_regval & t_bit))
13080 {
13081 /* We are decoding arm insn. */
13082 ret = decode_insn (&arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES);
13083 }
13084 else
13085 {
13086 insn_id = bits (arm_record.arm_insn, 11, 15);
13087 /* is it thumb2 insn? */
13088 if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id))
01e57735
YQ
13089 {
13090 ret = decode_insn (&arm_record, THUMB2_RECORD,
13091 THUMB2_INSN_SIZE_BYTES);
13092 }
72508ac0 13093 else
01e57735
YQ
13094 {
13095 /* We are decoding thumb insn. */
13096 ret = decode_insn (&arm_record, THUMB_RECORD, THUMB_INSN_SIZE_BYTES);
13097 }
72508ac0
PO
13098 }
13099
13100 if (0 == ret)
13101 {
13102 /* Record registers. */
25ea693b 13103 record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM);
72508ac0 13104 if (arm_record.arm_regs)
01e57735
YQ
13105 {
13106 for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++)
13107 {
13108 if (record_full_arch_list_add_reg
25ea693b 13109 (arm_record.regcache , arm_record.arm_regs[no_of_rec]))
01e57735
YQ
13110 ret = -1;
13111 }
13112 }
72508ac0
PO
13113 /* Record memories. */
13114 if (arm_record.arm_mems)
01e57735
YQ
13115 {
13116 for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++)
13117 {
13118 if (record_full_arch_list_add_mem
13119 ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr,
25ea693b 13120 arm_record.arm_mems[no_of_rec].len))
01e57735
YQ
13121 ret = -1;
13122 }
13123 }
72508ac0 13124
25ea693b 13125 if (record_full_arch_list_add_end ())
01e57735 13126 ret = -1;
72508ac0
PO
13127 }
13128
13129
13130 deallocate_reg_mem (&arm_record);
13131
13132 return ret;
13133}
This page took 1.820117 seconds and 4 git commands to generate.