2003-03-28 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arm-tdep.c
CommitLineData
ed9a39eb 1/* Common target dependent code for GDB on ARM systems.
b6ba6518 2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
1e698235 3 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
34e8f22d
RE
22#include <ctype.h> /* XXX for isupper () */
23
c906108c
SS
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcmd.h"
28#include "gdbcore.h"
29#include "symfile.h"
30#include "gdb_string.h"
afd7eef0 31#include "dis-asm.h" /* For register styles. */
4e052eda 32#include "regcache.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
34e8f22d 35#include "arch-utils.h"
a42dd537 36#include "solib-svr4.h"
4be87837 37#include "osabi.h"
34e8f22d
RE
38
39#include "arm-tdep.h"
26216b98 40#include "gdb/sim-arm.h"
34e8f22d 41
082fc60d
RE
42#include "elf-bfd.h"
43#include "coff/internal.h"
97e03143 44#include "elf/arm.h"
c906108c 45
26216b98
AC
46#include "gdb_assert.h"
47
6529d2dd
AC
48static int arm_debug;
49
2a451106
KB
50/* Each OS has a different mechanism for accessing the various
51 registers stored in the sigcontext structure.
52
53 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
54 function pointer) which may be used to determine the addresses
55 of the various saved registers in the sigcontext structure.
56
57 For the ARM target, there are three parameters to this function.
58 The first is the pc value of the frame under consideration, the
59 second the stack pointer of this frame, and the last is the
60 register number to fetch.
61
62 If the tm.h file does not define this macro, then it's assumed that
63 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
64 be 0.
65
66 When it comes time to multi-arching this code, see the identically
67 named machinery in ia64-tdep.c for an example of how it could be
68 done. It should not be necessary to modify the code below where
69 this macro is used. */
70
3bb04bdd
AC
71#ifdef SIGCONTEXT_REGISTER_ADDRESS
72#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
73#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
74#endif
75#else
76#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
77#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
2a451106
KB
78#endif
79
082fc60d
RE
80/* Macros for setting and testing a bit in a minimal symbol that marks
81 it as Thumb function. The MSB of the minimal symbol's "info" field
82 is used for this purpose. This field is already being used to store
83 the symbol size, so the assumption is that the symbol size cannot
84 exceed 2^31.
85
86 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
87 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
88 MSYMBOL_SIZE Returns the size of the minimal symbol,
89 i.e. the "info" field with the "special" bit
90 masked out. */
91
92#define MSYMBOL_SET_SPECIAL(msym) \
93 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
94 | 0x80000000)
95
96#define MSYMBOL_IS_SPECIAL(msym) \
97 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
98
99#define MSYMBOL_SIZE(msym) \
100 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
ed9a39eb 101
afd7eef0
RE
102/* The list of available "set arm ..." and "show arm ..." commands. */
103static struct cmd_list_element *setarmcmdlist = NULL;
104static struct cmd_list_element *showarmcmdlist = NULL;
105
fd50bc42
RE
106/* The type of floating-point to use. Keep this in sync with enum
107 arm_float_model, and the help string in _initialize_arm_tdep. */
108static const char *fp_model_strings[] =
109{
110 "auto",
111 "softfpa",
112 "fpa",
113 "softvfp",
114 "vfp"
115};
116
117/* A variable that can be configured by the user. */
118static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
119static const char *current_fp_model = "auto";
120
94c30b78 121/* Number of different reg name sets (options). */
afd7eef0 122static int num_disassembly_options;
bc90b915
FN
123
124/* We have more registers than the disassembler as gdb can print the value
125 of special registers as well.
126 The general register names are overwritten by whatever is being used by
94c30b78 127 the disassembler at the moment. We also adjust the case of cpsr and fps. */
bc90b915 128
94c30b78 129/* Initial value: Register names used in ARM's ISA documentation. */
bc90b915 130static char * arm_register_name_strings[] =
da59e081
JM
131{"r0", "r1", "r2", "r3", /* 0 1 2 3 */
132 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
133 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
134 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
135 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
136 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
94c30b78 137 "fps", "cpsr" }; /* 24 25 */
966fbf70 138static char **arm_register_names = arm_register_name_strings;
ed9a39eb 139
afd7eef0
RE
140/* Valid register name styles. */
141static const char **valid_disassembly_styles;
ed9a39eb 142
afd7eef0
RE
143/* Disassembly style to use. Default to "std" register names. */
144static const char *disassembly_style;
94c30b78 145/* Index to that option in the opcodes table. */
da3c6d4a 146static int current_option;
96baa820 147
ed9a39eb 148/* This is used to keep the bfd arch_info in sync with the disassembly
afd7eef0
RE
149 style. */
150static void set_disassembly_style_sfunc(char *, int,
ed9a39eb 151 struct cmd_list_element *);
afd7eef0 152static void set_disassembly_style (void);
ed9a39eb 153
b508a996
RE
154static void convert_from_extended (const struct floatformat *, const void *,
155 void *);
156static void convert_to_extended (const struct floatformat *, void *,
157 const void *);
ed9a39eb
JM
158
159/* Define other aspects of the stack frame. We keep the offsets of
160 all saved registers, 'cause we need 'em a lot! We also keep the
161 current size of the stack frame, and the offset of the frame
162 pointer from the stack pointer (for frameless functions, and when
94c30b78 163 we're still in the prologue of a function with a frame). */
ed9a39eb
JM
164
165struct frame_extra_info
c3b4394c
RE
166{
167 int framesize;
168 int frameoffset;
169 int framereg;
170};
ed9a39eb 171
bc90b915
FN
172/* Addresses for calling Thumb functions have the bit 0 set.
173 Here are some macros to test, set, or clear bit 0 of addresses. */
174#define IS_THUMB_ADDR(addr) ((addr) & 1)
175#define MAKE_THUMB_ADDR(addr) ((addr) | 1)
176#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
177
39bbf761 178static int
ed9a39eb 179arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c 180{
8bedc050 181 return (DEPRECATED_FRAME_SAVED_PC (thisframe) >= LOWEST_PC);
c906108c
SS
182}
183
94c30b78 184/* Set to true if the 32-bit mode is in use. */
c906108c
SS
185
186int arm_apcs_32 = 1;
187
ed9a39eb
JM
188/* Flag set by arm_fix_call_dummy that tells whether the target
189 function is a Thumb function. This flag is checked by
190 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
191 its use in valops.c) to pass the function address as an additional
192 parameter. */
c906108c
SS
193
194static int target_is_thumb;
195
ed9a39eb
JM
196/* Flag set by arm_fix_call_dummy that tells whether the calling
197 function is a Thumb function. This flag is checked by
198 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
c906108c
SS
199
200static int caller_is_thumb;
201
ed9a39eb
JM
202/* Determine if the program counter specified in MEMADDR is in a Thumb
203 function. */
c906108c 204
34e8f22d 205int
2a451106 206arm_pc_is_thumb (CORE_ADDR memaddr)
c906108c 207{
c5aa993b 208 struct minimal_symbol *sym;
c906108c 209
ed9a39eb 210 /* If bit 0 of the address is set, assume this is a Thumb address. */
c906108c
SS
211 if (IS_THUMB_ADDR (memaddr))
212 return 1;
213
ed9a39eb 214 /* Thumb functions have a "special" bit set in minimal symbols. */
c906108c
SS
215 sym = lookup_minimal_symbol_by_pc (memaddr);
216 if (sym)
217 {
c5aa993b 218 return (MSYMBOL_IS_SPECIAL (sym));
c906108c
SS
219 }
220 else
ed9a39eb
JM
221 {
222 return 0;
223 }
c906108c
SS
224}
225
ed9a39eb
JM
226/* Determine if the program counter specified in MEMADDR is in a call
227 dummy being called from a Thumb function. */
c906108c 228
34e8f22d 229int
2a451106 230arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
c906108c 231{
c5aa993b 232 CORE_ADDR sp = read_sp ();
c906108c 233
dfcd3bfb
JM
234 /* FIXME: Until we switch for the new call dummy macros, this heuristic
235 is the best we can do. We are trying to determine if the pc is on
236 the stack, which (hopefully) will only happen in a call dummy.
237 We hope the current stack pointer is not so far alway from the dummy
238 frame location (true if we have not pushed large data structures or
239 gone too many levels deep) and that our 1024 is not enough to consider
94c30b78 240 code regions as part of the stack (true for most practical purposes). */
ae45cd16 241 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
c906108c
SS
242 return caller_is_thumb;
243 else
244 return 0;
245}
246
181c1381 247/* Remove useless bits from addresses in a running program. */
34e8f22d 248static CORE_ADDR
ed9a39eb 249arm_addr_bits_remove (CORE_ADDR val)
c906108c 250{
a3a2ee65
JT
251 if (arm_apcs_32)
252 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
c906108c 253 else
a3a2ee65 254 return (val & 0x03fffffc);
c906108c
SS
255}
256
181c1381
RE
257/* When reading symbols, we need to zap the low bit of the address,
258 which may be set to 1 for Thumb functions. */
34e8f22d 259static CORE_ADDR
181c1381
RE
260arm_smash_text_address (CORE_ADDR val)
261{
262 return val & ~1;
263}
264
34e8f22d
RE
265/* Immediately after a function call, return the saved pc. Can't
266 always go through the frames for this because on some machines the
267 new frame is not set up until the new function executes some
268 instructions. */
269
270static CORE_ADDR
ed9a39eb 271arm_saved_pc_after_call (struct frame_info *frame)
c906108c 272{
34e8f22d 273 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
c906108c
SS
274}
275
0defa245
RE
276/* Determine whether the function invocation represented by FI has a
277 frame on the stack associated with it. If it does return zero,
278 otherwise return 1. */
279
148754e5 280static int
ed9a39eb 281arm_frameless_function_invocation (struct frame_info *fi)
392a587b 282{
392a587b 283 CORE_ADDR func_start, after_prologue;
96baa820 284 int frameless;
ed9a39eb 285
0defa245
RE
286 /* Sometimes we have functions that do a little setup (like saving the
287 vN registers with the stmdb instruction, but DO NOT set up a frame.
288 The symbol table will report this as a prologue. However, it is
289 important not to try to parse these partial frames as frames, or we
290 will get really confused.
291
292 So I will demand 3 instructions between the start & end of the
293 prologue before I call it a real prologue, i.e. at least
294 mov ip, sp,
295 stmdb sp!, {}
296 sub sp, ip, #4. */
297
50abf9e5 298 func_start = (get_pc_function_start (get_frame_pc (fi)) + FUNCTION_START_OFFSET);
7be570e7 299 after_prologue = SKIP_PROLOGUE (func_start);
ed9a39eb 300
96baa820 301 /* There are some frameless functions whose first two instructions
ed9a39eb 302 follow the standard APCS form, in which case after_prologue will
94c30b78 303 be func_start + 8. */
ed9a39eb 304
96baa820 305 frameless = (after_prologue < func_start + 12);
392a587b
JM
306 return frameless;
307}
308
0defa245 309/* The address of the arguments in the frame. */
148754e5 310static CORE_ADDR
0defa245
RE
311arm_frame_args_address (struct frame_info *fi)
312{
1e2330ba 313 return get_frame_base (fi);
0defa245
RE
314}
315
316/* The address of the local variables in the frame. */
148754e5 317static CORE_ADDR
0defa245
RE
318arm_frame_locals_address (struct frame_info *fi)
319{
1e2330ba 320 return get_frame_base (fi);
0defa245
RE
321}
322
323/* The number of arguments being passed in the frame. */
148754e5 324static int
0defa245
RE
325arm_frame_num_args (struct frame_info *fi)
326{
327 /* We have no way of knowing. */
328 return -1;
329}
330
c906108c 331/* A typical Thumb prologue looks like this:
c5aa993b
JM
332 push {r7, lr}
333 add sp, sp, #-28
334 add r7, sp, #12
c906108c 335 Sometimes the latter instruction may be replaced by:
da59e081
JM
336 mov r7, sp
337
338 or like this:
339 push {r7, lr}
340 mov r7, sp
341 sub sp, #12
342
343 or, on tpcs, like this:
344 sub sp,#16
345 push {r7, lr}
346 (many instructions)
347 mov r7, sp
348 sub sp, #12
349
350 There is always one instruction of three classes:
351 1 - push
352 2 - setting of r7
353 3 - adjusting of sp
354
355 When we have found at least one of each class we are done with the prolog.
356 Note that the "sub sp, #NN" before the push does not count.
ed9a39eb 357 */
c906108c
SS
358
359static CORE_ADDR
c7885828 360thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
c906108c
SS
361{
362 CORE_ADDR current_pc;
da3c6d4a
MS
363 /* findmask:
364 bit 0 - push { rlist }
365 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
366 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
367 */
368 int findmask = 0;
369
94c30b78
MS
370 for (current_pc = pc;
371 current_pc + 2 < func_end && current_pc < pc + 40;
da3c6d4a 372 current_pc += 2)
c906108c
SS
373 {
374 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
375
94c30b78 376 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
da59e081 377 {
94c30b78 378 findmask |= 1; /* push found */
da59e081 379 }
da3c6d4a
MS
380 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
381 sub sp, #simm */
da59e081 382 {
94c30b78 383 if ((findmask & 1) == 0) /* before push ? */
da59e081
JM
384 continue;
385 else
94c30b78 386 findmask |= 4; /* add/sub sp found */
da59e081
JM
387 }
388 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
389 {
94c30b78 390 findmask |= 2; /* setting of r7 found */
da59e081
JM
391 }
392 else if (insn == 0x466f) /* mov r7, sp */
393 {
94c30b78 394 findmask |= 2; /* setting of r7 found */
da59e081 395 }
3d74b771
FF
396 else if (findmask == (4+2+1))
397 {
da3c6d4a
MS
398 /* We have found one of each type of prologue instruction */
399 break;
3d74b771 400 }
da59e081 401 else
94c30b78 402 /* Something in the prolog that we don't care about or some
da3c6d4a 403 instruction from outside the prolog scheduled here for
94c30b78 404 optimization. */
da3c6d4a 405 continue;
c906108c
SS
406 }
407
408 return current_pc;
409}
410
da3c6d4a
MS
411/* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
34e8f22d
RE
413
414 The APCS (ARM Procedure Call Standard) defines the following
ed9a39eb 415 prologue:
c906108c 416
c5aa993b
JM
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
ed9a39eb
JM
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
c906108c 425
34e8f22d 426static CORE_ADDR
ed9a39eb 427arm_skip_prologue (CORE_ADDR pc)
c906108c
SS
428{
429 unsigned long inst;
430 CORE_ADDR skip_pc;
b8d5e71d 431 CORE_ADDR func_addr, func_end = 0;
50f6fb4b 432 char *func_name;
c906108c
SS
433 struct symtab_and_line sal;
434
848cfffb 435 /* If we're in a dummy frame, don't even try to skip the prologue. */
ae45cd16 436 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
848cfffb
AC
437 return pc;
438
96baa820 439 /* See what the symbol table says. */
ed9a39eb 440
50f6fb4b 441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
c906108c 442 {
50f6fb4b
CV
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
94c30b78 449 /* Don't use this trick for assembly source files. */
50f6fb4b
CV
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
c906108c
SS
454 }
455
456 /* Check if this is Thumb code. */
457 if (arm_pc_is_thumb (pc))
c7885828 458 return thumb_skip_prologue (pc, func_end);
c906108c
SS
459
460 /* Can't find the prologue end in the symbol table, try it the hard way
94c30b78 461 by disassembling the instructions. */
c906108c 462
b8d5e71d
MS
463 /* Like arm_scan_prologue, stop no later than pc + 64. */
464 if (func_end == 0 || func_end > pc + 64)
465 func_end = pc + 64;
c906108c 466
b8d5e71d 467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
f43845b3 468 {
f43845b3 469 inst = read_memory_integer (skip_pc, 4);
f43845b3 470
b8d5e71d
MS
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
c906108c 474
b8d5e71d
MS
475 /* Some prologues begin with "str lr, [sp, #-4]!". */
476 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
477 continue;
c906108c 478
b8d5e71d
MS
479 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
480 continue;
c906108c 481
b8d5e71d
MS
482 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
483 continue;
11d3b27d 484
b8d5e71d
MS
485 /* Any insns after this point may float into the code, if it makes
486 for better instruction scheduling, so we skip them only if we
487 find them, but still consider the function to be frame-ful. */
f43845b3 488
b8d5e71d
MS
489 /* We may have either one sfmfd instruction here, or several stfe
490 insns, depending on the version of floating point code we
491 support. */
492 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
493 continue;
494
495 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
496 continue;
497
498 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
499 continue;
500
501 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
502 continue;
503
504 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
505 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
506 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
507 continue;
508
509 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
510 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
511 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
512 continue;
513
514 /* Un-recognized instruction; stop scanning. */
515 break;
f43845b3 516 }
c906108c 517
b8d5e71d 518 return skip_pc; /* End of prologue */
c906108c 519}
94c30b78 520
c5aa993b 521/* *INDENT-OFF* */
c906108c
SS
522/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
523 This function decodes a Thumb function prologue to determine:
524 1) the size of the stack frame
525 2) which registers are saved on it
526 3) the offsets of saved regs
527 4) the offset from the stack pointer to the frame pointer
528 This information is stored in the "extra" fields of the frame_info.
529
da59e081
JM
530 A typical Thumb function prologue would create this stack frame
531 (offsets relative to FP)
c906108c
SS
532 old SP -> 24 stack parameters
533 20 LR
534 16 R7
535 R7 -> 0 local variables (16 bytes)
536 SP -> -12 additional stack space (12 bytes)
537 The frame size would thus be 36 bytes, and the frame offset would be
da59e081
JM
538 12 bytes. The frame register is R7.
539
da3c6d4a
MS
540 The comments for thumb_skip_prolog() describe the algorithm we use
541 to detect the end of the prolog. */
c5aa993b
JM
542/* *INDENT-ON* */
543
c906108c 544static void
ed9a39eb 545thumb_scan_prologue (struct frame_info *fi)
c906108c
SS
546{
547 CORE_ADDR prologue_start;
548 CORE_ADDR prologue_end;
549 CORE_ADDR current_pc;
94c30b78 550 /* Which register has been copied to register n? */
da3c6d4a
MS
551 int saved_reg[16];
552 /* findmask:
553 bit 0 - push { rlist }
554 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
555 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
556 */
557 int findmask = 0;
c5aa993b 558 int i;
c906108c 559
848cfffb 560 /* Don't try to scan dummy frames. */
07555a72 561 if (fi != NULL
50abf9e5 562 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb
AC
563 return;
564
50abf9e5 565 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c
SS
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
94c30b78 569 if (sal.line == 0) /* no line info, use current PC */
50abf9e5 570 prologue_end = get_frame_pc (fi);
c906108c 571 else if (sal.end < prologue_end) /* next line begins after fn end */
94c30b78 572 prologue_end = sal.end; /* (probably means no prologue) */
c906108c
SS
573 }
574 else
da3c6d4a
MS
575 /* We're in the boondocks: allow for
576 16 pushes, an add, and "mv fp,sp". */
577 prologue_end = prologue_start + 40;
c906108c 578
50abf9e5 579 prologue_end = min (prologue_end, get_frame_pc (fi));
c906108c
SS
580
581 /* Initialize the saved register map. When register H is copied to
582 register L, we will put H in saved_reg[L]. */
583 for (i = 0; i < 16; i++)
584 saved_reg[i] = i;
585
586 /* Search the prologue looking for instructions that set up the
da59e081
JM
587 frame pointer, adjust the stack pointer, and save registers.
588 Do this until all basic prolog instructions are found. */
c906108c 589
da50a4b7 590 get_frame_extra_info (fi)->framesize = 0;
da59e081
JM
591 for (current_pc = prologue_start;
592 (current_pc < prologue_end) && ((findmask & 7) != 7);
593 current_pc += 2)
c906108c
SS
594 {
595 unsigned short insn;
596 int regno;
597 int offset;
598
599 insn = read_memory_unsigned_integer (current_pc, 2);
600
c5aa993b 601 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
c906108c 602 {
da59e081 603 int mask;
94c30b78 604 findmask |= 1; /* push found */
c906108c
SS
605 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
606 whether to save LR (R14). */
da59e081 607 mask = (insn & 0xff) | ((insn & 0x100) << 6);
c906108c 608
b8d5e71d 609 /* Calculate offsets of saved R0-R7 and LR. */
34e8f22d 610 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
c906108c 611 if (mask & (1 << regno))
c5aa993b 612 {
da50a4b7 613 get_frame_extra_info (fi)->framesize += 4;
b2fb4676 614 get_frame_saved_regs (fi)[saved_reg[regno]] =
da50a4b7 615 -(get_frame_extra_info (fi)->framesize);
da3c6d4a
MS
616 /* Reset saved register map. */
617 saved_reg[regno] = regno;
c906108c
SS
618 }
619 }
da3c6d4a
MS
620 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
621 sub sp, #simm */
c906108c 622 {
b8d5e71d 623 if ((findmask & 1) == 0) /* before push? */
da59e081
JM
624 continue;
625 else
94c30b78 626 findmask |= 4; /* add/sub sp found */
da59e081 627
94c30b78
MS
628 offset = (insn & 0x7f) << 2; /* get scaled offset */
629 if (insn & 0x80) /* is it signed? (==subtracting) */
da59e081 630 {
da50a4b7 631 get_frame_extra_info (fi)->frameoffset += offset;
da59e081
JM
632 offset = -offset;
633 }
da50a4b7 634 get_frame_extra_info (fi)->framesize -= offset;
c906108c
SS
635 }
636 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
637 {
94c30b78 638 findmask |= 2; /* setting of r7 found */
da50a4b7 639 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
c3b4394c 640 /* get scaled offset */
da50a4b7 641 get_frame_extra_info (fi)->frameoffset = (insn & 0xff) << 2;
c906108c 642 }
da59e081 643 else if (insn == 0x466f) /* mov r7, sp */
c906108c 644 {
94c30b78 645 findmask |= 2; /* setting of r7 found */
da50a4b7
AC
646 get_frame_extra_info (fi)->framereg = THUMB_FP_REGNUM;
647 get_frame_extra_info (fi)->frameoffset = 0;
34e8f22d 648 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
c906108c
SS
649 }
650 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
651 {
da3c6d4a 652 int lo_reg = insn & 7; /* dest. register (r0-r7) */
c906108c 653 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
94c30b78 654 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
c906108c
SS
655 }
656 else
da3c6d4a
MS
657 /* Something in the prolog that we don't care about or some
658 instruction from outside the prolog scheduled here for
659 optimization. */
660 continue;
c906108c
SS
661 }
662}
663
ed9a39eb 664/* This function decodes an ARM function prologue to determine:
c5aa993b
JM
665 1) the size of the stack frame
666 2) which registers are saved on it
667 3) the offsets of saved regs
668 4) the offset from the stack pointer to the frame pointer
c906108c
SS
669 This information is stored in the "extra" fields of the frame_info.
670
96baa820
JM
671 There are two basic forms for the ARM prologue. The fixed argument
672 function call will look like:
ed9a39eb
JM
673
674 mov ip, sp
675 stmfd sp!, {fp, ip, lr, pc}
676 sub fp, ip, #4
677 [sub sp, sp, #4]
96baa820 678
c906108c 679 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
680 IP -> 4 (caller's stack)
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
c906108c 687 The frame size would thus be 32 bytes, and the frame offset would be
96baa820
JM
688 28 bytes. The stmfd call can also save any of the vN registers it
689 plans to use, which increases the frame size accordingly.
690
691 Note: The stored PC is 8 off of the STMFD instruction that stored it
692 because the ARM Store instructions always store PC + 8 when you read
693 the PC register.
ed9a39eb 694
96baa820
JM
695 A variable argument function call will look like:
696
ed9a39eb
JM
697 mov ip, sp
698 stmfd sp!, {a1, a2, a3, a4}
699 stmfd sp!, {fp, ip, lr, pc}
700 sub fp, ip, #20
701
96baa820 702 Which would create this stack frame (offsets relative to FP):
ed9a39eb
JM
703 IP -> 20 (caller's stack)
704 16 A4
705 12 A3
706 8 A2
707 4 A1
708 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
709 -4 LR (return address in caller)
710 -8 IP (copy of caller's SP)
711 -12 FP (caller's FP)
712 SP -> -28 Local variables
96baa820
JM
713
714 The frame size would thus be 48 bytes, and the frame offset would be
715 28 bytes.
716
717 There is another potential complication, which is that the optimizer
718 will try to separate the store of fp in the "stmfd" instruction from
719 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
720 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
721
722 Also, note, the original version of the ARM toolchain claimed that there
723 should be an
724
725 instruction at the end of the prologue. I have never seen GCC produce
726 this, and the ARM docs don't mention it. We still test for it below in
727 case it happens...
ed9a39eb
JM
728
729 */
c906108c
SS
730
731static void
ed9a39eb 732arm_scan_prologue (struct frame_info *fi)
c906108c
SS
733{
734 int regno, sp_offset, fp_offset;
16a0f3e7 735 LONGEST return_value;
c906108c
SS
736 CORE_ADDR prologue_start, prologue_end, current_pc;
737
c906108c 738 /* Assume there is no frame until proven otherwise. */
da50a4b7
AC
739 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
740 get_frame_extra_info (fi)->framesize = 0;
741 get_frame_extra_info (fi)->frameoffset = 0;
c906108c
SS
742
743 /* Check for Thumb prologue. */
50abf9e5 744 if (arm_pc_is_thumb (get_frame_pc (fi)))
c906108c
SS
745 {
746 thumb_scan_prologue (fi);
c906108c
SS
747 return;
748 }
749
750 /* Find the function prologue. If we can't find the function in
751 the symbol table, peek in the stack frame to find the PC. */
50abf9e5 752 if (find_pc_partial_function (get_frame_pc (fi), NULL, &prologue_start, &prologue_end))
c906108c 753 {
2a451106
KB
754 /* One way to find the end of the prologue (which works well
755 for unoptimized code) is to do the following:
756
757 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
758
759 if (sal.line == 0)
50abf9e5 760 prologue_end = get_frame_pc (fi);
2a451106
KB
761 else if (sal.end < prologue_end)
762 prologue_end = sal.end;
763
764 This mechanism is very accurate so long as the optimizer
765 doesn't move any instructions from the function body into the
766 prologue. If this happens, sal.end will be the last
767 instruction in the first hunk of prologue code just before
768 the first instruction that the scheduler has moved from
769 the body to the prologue.
770
771 In order to make sure that we scan all of the prologue
772 instructions, we use a slightly less accurate mechanism which
773 may scan more than necessary. To help compensate for this
774 lack of accuracy, the prologue scanning loop below contains
775 several clauses which'll cause the loop to terminate early if
776 an implausible prologue instruction is encountered.
777
778 The expression
779
780 prologue_start + 64
781
782 is a suitable endpoint since it accounts for the largest
783 possible prologue plus up to five instructions inserted by
94c30b78 784 the scheduler. */
2a451106
KB
785
786 if (prologue_end > prologue_start + 64)
787 {
94c30b78 788 prologue_end = prologue_start + 64; /* See above. */
2a451106 789 }
c906108c
SS
790 }
791 else
792 {
94c30b78
MS
793 /* Get address of the stmfd in the prologue of the callee;
794 the saved PC is the address of the stmfd + 8. */
1e2330ba 795 if (!safe_read_memory_integer (get_frame_base (fi), 4, &return_value))
16a0f3e7
EZ
796 return;
797 else
798 {
799 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
94c30b78 800 prologue_end = prologue_start + 64; /* See above. */
16a0f3e7 801 }
c906108c
SS
802 }
803
804 /* Now search the prologue looking for instructions that set up the
96baa820 805 frame pointer, adjust the stack pointer, and save registers.
ed9a39eb 806
96baa820
JM
807 Be careful, however, and if it doesn't look like a prologue,
808 don't try to scan it. If, for instance, a frameless function
809 begins with stmfd sp!, then we will tell ourselves there is
b8d5e71d 810 a frame, which will confuse stack traceback, as well as "finish"
96baa820
JM
811 and other operations that rely on a knowledge of the stack
812 traceback.
813
814 In the APCS, the prologue should start with "mov ip, sp" so
f43845b3 815 if we don't see this as the first insn, we will stop.
c906108c 816
f43845b3
MS
817 [Note: This doesn't seem to be true any longer, so it's now an
818 optional part of the prologue. - Kevin Buettner, 2001-11-20]
c906108c 819
f43845b3
MS
820 [Note further: The "mov ip,sp" only seems to be missing in
821 frameless functions at optimization level "-O2" or above,
822 in which case it is often (but not always) replaced by
b8d5e71d 823 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
d4473757 824
f43845b3
MS
825 sp_offset = fp_offset = 0;
826
94c30b78
MS
827 for (current_pc = prologue_start;
828 current_pc < prologue_end;
f43845b3 829 current_pc += 4)
96baa820 830 {
d4473757
KB
831 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
832
94c30b78 833 if (insn == 0xe1a0c00d) /* mov ip, sp */
f43845b3
MS
834 {
835 continue;
836 }
94c30b78 837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
f43845b3
MS
838 {
839 /* Function is frameless: extra_info defaults OK? */
840 continue;
841 }
842 else if ((insn & 0xffff0000) == 0xe92d0000)
d4473757
KB
843 /* stmfd sp!, {..., fp, ip, lr, pc}
844 or
845 stmfd sp!, {a1, a2, a3, a4} */
c906108c 846 {
d4473757 847 int mask = insn & 0xffff;
ed9a39eb 848
94c30b78 849 /* Calculate offsets of saved registers. */
34e8f22d 850 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
d4473757
KB
851 if (mask & (1 << regno))
852 {
853 sp_offset -= 4;
b2fb4676 854 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
855 }
856 }
b8d5e71d
MS
857 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
858 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
859 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
860 {
861 /* No need to add this to saved_regs -- it's just an arg reg. */
862 continue;
863 }
864 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
865 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
866 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
f43845b3
MS
867 {
868 /* No need to add this to saved_regs -- it's just an arg reg. */
869 continue;
870 }
d4473757
KB
871 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
872 {
94c30b78
MS
873 unsigned imm = insn & 0xff; /* immediate value */
874 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
875 imm = (imm >> rot) | (imm << (32 - rot));
876 fp_offset = -imm;
da50a4b7 877 get_frame_extra_info (fi)->framereg = ARM_FP_REGNUM;
d4473757
KB
878 }
879 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
880 {
94c30b78
MS
881 unsigned imm = insn & 0xff; /* immediate value */
882 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
d4473757
KB
883 imm = (imm >> rot) | (imm << (32 - rot));
884 sp_offset -= imm;
885 }
886 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
887 {
888 sp_offset -= 12;
34e8f22d 889 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
b2fb4676 890 get_frame_saved_regs (fi)[regno] = sp_offset;
d4473757
KB
891 }
892 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
893 {
894 int n_saved_fp_regs;
895 unsigned int fp_start_reg, fp_bound_reg;
896
94c30b78 897 if ((insn & 0x800) == 0x800) /* N0 is set */
96baa820 898 {
d4473757
KB
899 if ((insn & 0x40000) == 0x40000) /* N1 is set */
900 n_saved_fp_regs = 3;
901 else
902 n_saved_fp_regs = 1;
96baa820 903 }
d4473757 904 else
96baa820 905 {
d4473757
KB
906 if ((insn & 0x40000) == 0x40000) /* N1 is set */
907 n_saved_fp_regs = 2;
908 else
909 n_saved_fp_regs = 4;
96baa820 910 }
d4473757 911
34e8f22d 912 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
d4473757
KB
913 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
914 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
96baa820
JM
915 {
916 sp_offset -= 12;
b2fb4676 917 get_frame_saved_regs (fi)[fp_start_reg++] = sp_offset;
96baa820 918 }
c906108c 919 }
d4473757 920 else if ((insn & 0xf0000000) != 0xe0000000)
94c30b78 921 break; /* Condition not true, exit early */
b8d5e71d 922 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
94c30b78 923 break; /* Don't scan past a block load */
d4473757
KB
924 else
925 /* The optimizer might shove anything into the prologue,
94c30b78 926 so we just skip what we don't recognize. */
d4473757 927 continue;
c906108c
SS
928 }
929
94c30b78
MS
930 /* The frame size is just the negative of the offset (from the
931 original SP) of the last thing thing we pushed on the stack.
932 The frame offset is [new FP] - [new SP]. */
da50a4b7
AC
933 get_frame_extra_info (fi)->framesize = -sp_offset;
934 if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM)
935 get_frame_extra_info (fi)->frameoffset = fp_offset - sp_offset;
d4473757 936 else
da50a4b7 937 get_frame_extra_info (fi)->frameoffset = 0;
c906108c
SS
938}
939
ed9a39eb
JM
940/* Find REGNUM on the stack. Otherwise, it's in an active register.
941 One thing we might want to do here is to check REGNUM against the
942 clobber mask, and somehow flag it as invalid if it isn't saved on
943 the stack somewhere. This would provide a graceful failure mode
944 when trying to get the value of caller-saves registers for an inner
945 frame. */
c906108c
SS
946
947static CORE_ADDR
ed9a39eb 948arm_find_callers_reg (struct frame_info *fi, int regnum)
c906108c 949{
848cfffb
AC
950 /* NOTE: cagney/2002-05-03: This function really shouldn't be
951 needed. Instead the (still being written) register unwind
952 function could be called directly. */
11c02a10 953 for (; fi; fi = get_next_frame (fi))
848cfffb 954 {
50abf9e5 955 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 956 {
1e2330ba
AC
957 return deprecated_read_register_dummy (get_frame_pc (fi),
958 get_frame_base (fi), regnum);
848cfffb 959 }
b2fb4676 960 else if (get_frame_saved_regs (fi)[regnum] != 0)
848cfffb
AC
961 {
962 /* NOTE: cagney/2002-05-03: This would normally need to
963 handle ARM_SP_REGNUM as a special case as, according to
964 the frame.h comments, saved_regs[SP_REGNUM] contains the
965 SP value not its address. It appears that the ARM isn't
966 doing this though. */
b2fb4676 967 return read_memory_integer (get_frame_saved_regs (fi)[regnum],
848cfffb
AC
968 REGISTER_RAW_SIZE (regnum));
969 }
970 }
c906108c
SS
971 return read_register (regnum);
972}
148754e5
RE
973/* Function: frame_chain Given a GDB frame, determine the address of
974 the calling function's frame. This will be used to create a new
e9582e71 975 GDB frame struct, and then DEPRECATED_INIT_EXTRA_FRAME_INFO and
a5afb99f
AC
976 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
977 ARM, we save the frame size when we initialize the frame_info. */
c5aa993b 978
148754e5 979static CORE_ADDR
ed9a39eb 980arm_frame_chain (struct frame_info *fi)
c906108c 981{
848cfffb 982 CORE_ADDR caller_pc;
da50a4b7 983 int framereg = get_frame_extra_info (fi)->framereg;
c906108c 984
50abf9e5 985 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
848cfffb 986 /* A generic call dummy's frame is the same as caller's. */
1e2330ba 987 return get_frame_base (fi);
848cfffb 988
50abf9e5 989 if (get_frame_pc (fi) < LOWEST_PC)
c906108c
SS
990 return 0;
991
992 /* If the caller is the startup code, we're at the end of the chain. */
8bedc050 993 caller_pc = DEPRECATED_FRAME_SAVED_PC (fi);
c906108c
SS
994
995 /* If the caller is Thumb and the caller is ARM, or vice versa,
996 the frame register of the caller is different from ours.
997 So we must scan the prologue of the caller to determine its
94c30b78 998 frame register number. */
c3b4394c
RE
999 /* XXX Fixme, we should try to do this without creating a temporary
1000 caller_fi. */
50abf9e5 1001 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (get_frame_pc (fi)))
c906108c 1002 {
f6c609c4
AC
1003 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1004 struct frame_info *caller_fi =
1005 deprecated_frame_xmalloc_with_cleanup (SIZEOF_FRAME_SAVED_REGS,
1006 sizeof (struct frame_extra_info));
c3b4394c
RE
1007
1008 /* Now, scan the prologue and obtain the frame register. */
f6c609c4
AC
1009 deprecated_update_frame_pc_hack (caller_fi, caller_pc);
1010 arm_scan_prologue (caller_fi);
da50a4b7 1011 framereg = get_frame_extra_info (caller_fi)->framereg;
c3b4394c
RE
1012
1013 /* Deallocate the storage associated with the temporary frame
1014 created above. */
1015 do_cleanups (old_chain);
c906108c
SS
1016 }
1017
1018 /* If the caller used a frame register, return its value.
1019 Otherwise, return the caller's stack pointer. */
34e8f22d 1020 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
c906108c
SS
1021 return arm_find_callers_reg (fi, framereg);
1022 else
da50a4b7 1023 return get_frame_base (fi) + get_frame_extra_info (fi)->framesize;
c906108c
SS
1024}
1025
ed9a39eb
JM
1026/* This function actually figures out the frame address for a given pc
1027 and sp. This is tricky because we sometimes don't use an explicit
1028 frame pointer, and the previous stack pointer isn't necessarily
1029 recorded on the stack. The only reliable way to get this info is
1030 to examine the prologue. FROMLEAF is a little confusing, it means
1031 this is the next frame up the chain AFTER a frameless function. If
1032 this is true, then the frame value for this frame is still in the
1033 fp register. */
c906108c 1034
148754e5 1035static void
ed9a39eb 1036arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c
SS
1037{
1038 int reg;
f079148d 1039 CORE_ADDR sp;
c906108c 1040
b2fb4676 1041 if (get_frame_saved_regs (fi) == NULL)
c3b4394c
RE
1042 frame_saved_regs_zalloc (fi);
1043
a00a19e9 1044 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
c3b4394c 1045
da50a4b7
AC
1046 get_frame_extra_info (fi)->framesize = 0;
1047 get_frame_extra_info (fi)->frameoffset = 0;
1048 get_frame_extra_info (fi)->framereg = 0;
c3b4394c 1049
11c02a10 1050 if (get_next_frame (fi))
8bedc050 1051 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
c906108c 1052
b2fb4676 1053 memset (get_frame_saved_regs (fi), '\000', sizeof get_frame_saved_regs (fi));
c906108c 1054
da3c6d4a
MS
1055 /* Compute stack pointer for this frame. We use this value for both
1056 the sigtramp and call dummy cases. */
11c02a10 1057 if (!get_next_frame (fi))
f079148d 1058 sp = read_sp();
11c02a10 1059 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1060 /* For generic dummy frames, pull the value direct from the frame.
1061 Having an unwind function to do this would be nice. */
11c02a10
AC
1062 sp = deprecated_read_register_dummy (get_frame_pc (get_next_frame (fi)),
1063 get_frame_base (get_next_frame (fi)),
135c175f 1064 ARM_SP_REGNUM);
f079148d 1065 else
da50a4b7
AC
1066 sp = (get_frame_base (get_next_frame (fi))
1067 - get_frame_extra_info (get_next_frame (fi))->frameoffset
1068 + get_frame_extra_info (get_next_frame (fi))->framesize);
f079148d 1069
d7bd68ca 1070 /* Determine whether or not we're in a sigtramp frame.
5a203e44
AC
1071 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1072 == SIGTRAMP_FRAME) because this value is sometimes set after
e9582e71 1073 invoking DEPRECATED_INIT_EXTRA_FRAME_INFO. So we test *both*
5a203e44
AC
1074 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1075 determine if we need to use the sigcontext addresses for the
1076 saved registers.
2a451106 1077
d7bd68ca
AC
1078 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1079 against the name of the function, the code below will have to be
1080 changed to first fetch the name of the function and then pass
1081 this name to PC_IN_SIGTRAMP. */
2a451106 1082
5a203e44
AC
1083 /* FIXME: cagney/2002-11-18: This problem will go away once
1084 frame.c:get_prev_frame() is modified to set the frame's type
1085 before calling functions like this. */
1086
3bb04bdd 1087 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
50abf9e5 1088 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (get_frame_pc (fi), (char *)0)))
2a451106 1089 {
2a451106 1090 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1091 get_frame_saved_regs (fi)[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, get_frame_pc (fi), reg);
2a451106 1092
94c30b78 1093 /* FIXME: What about thumb mode? */
da50a4b7
AC
1094 get_frame_extra_info (fi)->framereg = ARM_SP_REGNUM;
1095 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (fi)[get_frame_extra_info (fi)->framereg], REGISTER_RAW_SIZE (get_frame_extra_info (fi)->framereg)));
1096 get_frame_extra_info (fi)->framesize = 0;
1097 get_frame_extra_info (fi)->frameoffset = 0;
2a451106
KB
1098
1099 }
1100 else
c906108c
SS
1101 {
1102 arm_scan_prologue (fi);
1103
11c02a10 1104 if (!get_next_frame (fi))
94c30b78 1105 /* This is the innermost frame? */
da50a4b7 1106 deprecated_update_frame_base_hack (fi, read_register (get_frame_extra_info (fi)->framereg));
11c02a10 1107 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
848cfffb
AC
1108 /* Next inner most frame is a dummy, just grab its frame.
1109 Dummy frames always have the same FP as their caller. */
11c02a10 1110 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
da50a4b7
AC
1111 else if (get_frame_extra_info (fi)->framereg == ARM_FP_REGNUM
1112 || get_frame_extra_info (fi)->framereg == THUMB_FP_REGNUM)
ed9a39eb
JM
1113 {
1114 /* not the innermost frame */
94c30b78 1115 /* If we have an FP, the callee saved it. */
da50a4b7
AC
1116 if (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg] != 0)
1117 deprecated_update_frame_base_hack (fi, read_memory_integer (get_frame_saved_regs (get_next_frame (fi))[get_frame_extra_info (fi)->framereg], 4));
ed9a39eb
JM
1118 else if (fromleaf)
1119 /* If we were called by a frameless fn. then our frame is
94c30b78 1120 still in the frame pointer register on the board... */
b0c6b05c 1121 deprecated_update_frame_base_hack (fi, read_fp ());
ed9a39eb 1122 }
c906108c 1123
ed9a39eb
JM
1124 /* Calculate actual addresses of saved registers using offsets
1125 determined by arm_scan_prologue. */
c906108c 1126 for (reg = 0; reg < NUM_REGS; reg++)
b2fb4676 1127 if (get_frame_saved_regs (fi)[reg] != 0)
da50a4b7
AC
1128 get_frame_saved_regs (fi)[reg]
1129 += (get_frame_base (fi)
1130 + get_frame_extra_info (fi)->framesize
1131 - get_frame_extra_info (fi)->frameoffset);
c906108c
SS
1132 }
1133}
1134
1135
34e8f22d 1136/* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
ed9a39eb
JM
1137 is saved in the stack anywhere, otherwise we get it from the
1138 registers.
c906108c
SS
1139
1140 The old definition of this function was a macro:
c5aa993b 1141 #define FRAME_SAVED_PC(FRAME) \
ed9a39eb 1142 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
c906108c 1143
148754e5 1144static CORE_ADDR
ed9a39eb 1145arm_frame_saved_pc (struct frame_info *fi)
c906108c 1146{
848cfffb 1147 /* If a dummy frame, pull the PC out of the frame's register buffer. */
50abf9e5 1148 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
1e2330ba
AC
1149 return deprecated_read_register_dummy (get_frame_pc (fi),
1150 get_frame_base (fi), ARM_PC_REGNUM);
848cfffb 1151
1e2330ba
AC
1152 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1153 (get_frame_base (fi)
da50a4b7 1154 - get_frame_extra_info (fi)->frameoffset),
1e2330ba 1155 get_frame_base (fi)))
f079148d 1156 {
b2fb4676 1157 return read_memory_integer (get_frame_saved_regs (fi)[ARM_PC_REGNUM],
34e8f22d 1158 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
f079148d
KB
1159 }
1160 else
c906108c 1161 {
34e8f22d 1162 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
c906108c
SS
1163 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1164 }
1165}
1166
c906108c
SS
1167/* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1168 Examine the Program Status Register to decide which state we're in. */
1169
148754e5
RE
1170static CORE_ADDR
1171arm_read_fp (void)
c906108c 1172{
34e8f22d 1173 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
c906108c
SS
1174 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1175 else
34e8f22d 1176 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
c906108c
SS
1177}
1178
148754e5
RE
1179/* Store into a struct frame_saved_regs the addresses of the saved
1180 registers of frame described by FRAME_INFO. This includes special
1181 registers such as PC and FP saved in special ways in the stack
1182 frame. SP is even more special: the address we return for it IS
1183 the sp for the next frame. */
c906108c 1184
148754e5 1185static void
c3b4394c 1186arm_frame_init_saved_regs (struct frame_info *fip)
c906108c 1187{
c3b4394c 1188
b2fb4676 1189 if (get_frame_saved_regs (fip))
c3b4394c
RE
1190 return;
1191
1192 arm_init_extra_frame_info (0, fip);
c906108c
SS
1193}
1194
848cfffb
AC
1195/* Set the return address for a generic dummy frame. ARM uses the
1196 entry point. */
1197
1198static CORE_ADDR
1199arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1200{
1201 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1202 return sp;
1203}
1204
148754e5
RE
1205/* Push an empty stack frame, to record the current PC, etc. */
1206
1207static void
ed9a39eb 1208arm_push_dummy_frame (void)
c906108c 1209{
34e8f22d 1210 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1211 CORE_ADDR sp = old_sp;
1212 CORE_ADDR fp, prologue_start;
1213 int regnum;
1214
1215 /* Push the two dummy prologue instructions in reverse order,
1216 so that they'll be in the correct low-to-high order in memory. */
1217 /* sub fp, ip, #4 */
1218 sp = push_word (sp, 0xe24cb004);
1219 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1220 prologue_start = sp = push_word (sp, 0xe92ddfff);
1221
ed9a39eb
JM
1222 /* Push a pointer to the dummy prologue + 12, because when stm
1223 instruction stores the PC, it stores the address of the stm
c906108c
SS
1224 instruction itself plus 12. */
1225 fp = sp = push_word (sp, prologue_start + 12);
c5aa993b 1226
f079148d 1227 /* Push the processor status. */
34e8f22d 1228 sp = push_word (sp, read_register (ARM_PS_REGNUM));
f079148d
KB
1229
1230 /* Push all 16 registers starting with r15. */
34e8f22d 1231 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
c906108c 1232 sp = push_word (sp, read_register (regnum));
c5aa993b 1233
f079148d 1234 /* Update fp (for both Thumb and ARM) and sp. */
34e8f22d 1235 write_register (ARM_FP_REGNUM, fp);
c906108c 1236 write_register (THUMB_FP_REGNUM, fp);
34e8f22d 1237 write_register (ARM_SP_REGNUM, sp);
c906108c
SS
1238}
1239
6eb69eab
RE
1240/* CALL_DUMMY_WORDS:
1241 This sequence of words is the instructions
1242
1243 mov lr,pc
1244 mov pc,r4
1245 illegal
1246
1247 Note this is 12 bytes. */
1248
34e8f22d 1249static LONGEST arm_call_dummy_words[] =
6eb69eab
RE
1250{
1251 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1252};
1253
3fb4b924
RE
1254/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1255 breakpoint to the proper address in the call dummy, so that
1256 `finish' after a stop in a call dummy works.
1257
d7b486e7
RE
1258 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1259 optimal solution, but the call to arm_fix_call_dummy is immediately
1260 followed by a call to run_stack_dummy, which is the only function
1261 where call_dummy_breakpoint_offset is actually used. */
3fb4b924
RE
1262
1263
1264static void
1265arm_set_call_dummy_breakpoint_offset (void)
1266{
1267 if (caller_is_thumb)
1268 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1269 else
1270 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1271}
1272
c906108c 1273/* Fix up the call dummy, based on whether the processor is currently
ed9a39eb
JM
1274 in Thumb or ARM mode, and whether the target function is Thumb or
1275 ARM. There are three different situations requiring three
c906108c
SS
1276 different dummies:
1277
1278 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
c5aa993b 1279 been copied into the dummy parameter to this function.
c906108c 1280 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
c5aa993b 1281 "mov pc,r4" instruction patched to be a "bx r4" instead.
c906108c 1282 * Thumb calling anything: uses the Thumb dummy defined below, which
c5aa993b 1283 works for calling both ARM and Thumb functions.
c906108c 1284
ed9a39eb
JM
1285 All three call dummies expect to receive the target function
1286 address in R4, with the low bit set if it's a Thumb function. */
c906108c 1287
34e8f22d 1288static void
ed9a39eb 1289arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 1290 struct value **args, struct type *type, int gcc_p)
c906108c
SS
1291{
1292 static short thumb_dummy[4] =
1293 {
c5aa993b
JM
1294 0xf000, 0xf801, /* bl label */
1295 0xdf18, /* swi 24 */
1296 0x4720, /* label: bx r4 */
c906108c
SS
1297 };
1298 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1299
94c30b78 1300 /* Set flag indicating whether the current PC is in a Thumb function. */
c5aa993b 1301 caller_is_thumb = arm_pc_is_thumb (read_pc ());
3fb4b924 1302 arm_set_call_dummy_breakpoint_offset ();
c906108c 1303
ed9a39eb
JM
1304 /* If the target function is Thumb, set the low bit of the function
1305 address. And if the CPU is currently in ARM mode, patch the
1306 second instruction of call dummy to use a BX instruction to
1307 switch to Thumb mode. */
c906108c
SS
1308 target_is_thumb = arm_pc_is_thumb (fun);
1309 if (target_is_thumb)
1310 {
1311 fun |= 1;
1312 if (!caller_is_thumb)
1313 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1314 }
1315
1316 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1317 instead of the ARM one that's already been copied. This will
1318 work for both Thumb and ARM target functions. */
1319 if (caller_is_thumb)
1320 {
1321 int i;
1322 char *p = dummy;
1323 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1324
1325 for (i = 0; i < len; i++)
1326 {
1327 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1328 p += sizeof (thumb_dummy[0]);
1329 }
1330 }
1331
ed9a39eb 1332 /* Put the target address in r4; the call dummy will copy this to
94c30b78 1333 the PC. */
c906108c
SS
1334 write_register (4, fun);
1335}
1336
ed9a39eb
JM
1337/* Note: ScottB
1338
1339 This function does not support passing parameters using the FPA
1340 variant of the APCS. It passes any floating point arguments in the
1341 general registers and/or on the stack. */
c906108c 1342
39bbf761 1343static CORE_ADDR
ea7c478f 1344arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
ed9a39eb 1345 int struct_return, CORE_ADDR struct_addr)
c906108c 1346{
6529d2dd
AC
1347 CORE_ADDR fp;
1348 int argnum;
1349 int argreg;
1350 int nstack;
1351 int simd_argreg;
1352 int second_pass;
1353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
ed9a39eb
JM
1354
1355 /* Walk through the list of args and determine how large a temporary
1356 stack is required. Need to take care here as structs may be
6529d2dd
AC
1357 passed on the stack, and we have to to push them. On the second
1358 pass, do the store. */
1359 nstack = 0;
1360 fp = sp;
1361 for (second_pass = 0; second_pass < 2; second_pass++)
c906108c 1362 {
6529d2dd
AC
1363 /* Compute the FP using the information computed during the
1364 first pass. */
1365 if (second_pass)
1366 fp = sp - nstack;
1367
1368 simd_argreg = 0;
1369 argreg = ARM_A1_REGNUM;
1370 nstack = 0;
1371
1372 /* The struct_return pointer occupies the first parameter
1373 passing register. */
1374 if (struct_return)
c906108c 1375 {
6529d2dd
AC
1376 if (second_pass)
1377 {
1378 if (arm_debug)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "struct return in %s = 0x%s\n",
1381 REGISTER_NAME (argreg),
1382 paddr (struct_addr));
1383 write_register (argreg, struct_addr);
1384 }
1385 argreg++;
c906108c 1386 }
ed9a39eb 1387
6529d2dd
AC
1388 for (argnum = 0; argnum < nargs; argnum++)
1389 {
1390 int len;
1391 struct type *arg_type;
1392 struct type *target_type;
1393 enum type_code typecode;
1394 char *val;
1395
1396 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1397 len = TYPE_LENGTH (arg_type);
1398 target_type = TYPE_TARGET_TYPE (arg_type);
1399 typecode = TYPE_CODE (arg_type);
1400 val = VALUE_CONTENTS (args[argnum]);
1401
1402 /* If the argument is a pointer to a function, and it is a
1403 Thumb function, create a LOCAL copy of the value and set
1404 the THUMB bit in it. */
1405 if (second_pass
1406 && TYPE_CODE_PTR == typecode
1407 && target_type != NULL
1408 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
c906108c 1409 {
6529d2dd
AC
1410 CORE_ADDR regval = extract_address (val, len);
1411 if (arm_pc_is_thumb (regval))
1412 {
1413 val = alloca (len);
1414 store_address (val, len, MAKE_THUMB_ADDR (regval));
1415 }
c906108c 1416 }
6529d2dd
AC
1417
1418 /* Copy the argument to general registers or the stack in
1419 register-sized pieces. Large arguments are split between
1420 registers and stack. */
1421 while (len > 0)
ed9a39eb 1422 {
6529d2dd
AC
1423 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1424
1425 if (argreg <= ARM_LAST_ARG_REGNUM)
1426 {
1427 /* The argument is being passed in a general purpose
1428 register. */
1429 if (second_pass)
1430 {
1431 CORE_ADDR regval = extract_address (val,
1432 partial_len);
1433 if (arm_debug)
1434 fprintf_unfiltered (gdb_stdlog,
1435 "arg %d in %s = 0x%s\n",
1436 argnum,
1437 REGISTER_NAME (argreg),
1438 phex (regval, REGISTER_SIZE));
1439 write_register (argreg, regval);
1440 }
1441 argreg++;
1442 }
1443 else
1444 {
1445 if (second_pass)
1446 {
1447 /* Push the arguments onto the stack. */
1448 if (arm_debug)
1449 fprintf_unfiltered (gdb_stdlog,
1450 "arg %d @ 0x%s + %d\n",
1451 argnum, paddr (fp), nstack);
1452 write_memory (fp + nstack, val, REGISTER_SIZE);
1453 }
1454 nstack += REGISTER_SIZE;
1455 }
1456
1457 len -= partial_len;
1458 val += partial_len;
ed9a39eb
JM
1459 }
1460
c906108c
SS
1461 }
1462 }
c906108c 1463
f211c6d4 1464 /* Return the bottom of the argument list (pointed to by fp). */
6529d2dd 1465 return fp;
c906108c
SS
1466}
1467
da3c6d4a
MS
1468/* Pop the current frame. So long as the frame info has been
1469 initialized properly (see arm_init_extra_frame_info), this code
1470 works for dummy frames as well as regular frames. I.e, there's no
1471 need to have a special case for dummy frames. */
148754e5 1472static void
ed9a39eb 1473arm_pop_frame (void)
c906108c 1474{
c906108c 1475 int regnum;
8b93c638 1476 struct frame_info *frame = get_current_frame ();
da50a4b7
AC
1477 CORE_ADDR old_SP = (get_frame_base (frame)
1478 - get_frame_extra_info (frame)->frameoffset
1479 + get_frame_extra_info (frame)->framesize);
c906108c 1480
1e2330ba
AC
1481 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
1482 get_frame_base (frame),
1483 get_frame_base (frame)))
848cfffb
AC
1484 {
1485 generic_pop_dummy_frame ();
1486 flush_cached_frames ();
1487 return;
1488 }
1489
f079148d 1490 for (regnum = 0; regnum < NUM_REGS; regnum++)
b2fb4676 1491 if (get_frame_saved_regs (frame)[regnum] != 0)
f079148d 1492 write_register (regnum,
b2fb4676 1493 read_memory_integer (get_frame_saved_regs (frame)[regnum],
f079148d 1494 REGISTER_RAW_SIZE (regnum)));
8b93c638 1495
8bedc050 1496 write_register (ARM_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
34e8f22d 1497 write_register (ARM_SP_REGNUM, old_SP);
c906108c
SS
1498
1499 flush_cached_frames ();
1500}
1501
1502static void
ed9a39eb 1503print_fpu_flags (int flags)
c906108c 1504{
c5aa993b
JM
1505 if (flags & (1 << 0))
1506 fputs ("IVO ", stdout);
1507 if (flags & (1 << 1))
1508 fputs ("DVZ ", stdout);
1509 if (flags & (1 << 2))
1510 fputs ("OFL ", stdout);
1511 if (flags & (1 << 3))
1512 fputs ("UFL ", stdout);
1513 if (flags & (1 << 4))
1514 fputs ("INX ", stdout);
1515 putchar ('\n');
c906108c
SS
1516}
1517
5e74b15c
RE
1518/* Print interesting information about the floating point processor
1519 (if present) or emulator. */
34e8f22d 1520static void
d855c300 1521arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
23e3a7ac 1522 struct frame_info *frame, const char *args)
c906108c 1523{
34e8f22d 1524 register unsigned long status = read_register (ARM_FPS_REGNUM);
c5aa993b
JM
1525 int type;
1526
1527 type = (status >> 24) & 127;
1528 printf ("%s FPU type %d\n",
ed9a39eb 1529 (status & (1 << 31)) ? "Hardware" : "Software",
c5aa993b
JM
1530 type);
1531 fputs ("mask: ", stdout);
1532 print_fpu_flags (status >> 16);
1533 fputs ("flags: ", stdout);
1534 print_fpu_flags (status);
c906108c
SS
1535}
1536
34e8f22d
RE
1537/* Return the GDB type object for the "standard" data type of data in
1538 register N. */
1539
1540static struct type *
032758dc
AC
1541arm_register_type (int regnum)
1542{
34e8f22d 1543 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
032758dc 1544 {
d7449b42 1545 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
032758dc
AC
1546 return builtin_type_arm_ext_big;
1547 else
1548 return builtin_type_arm_ext_littlebyte_bigword;
1549 }
1550 else
1551 return builtin_type_int32;
1552}
1553
34e8f22d
RE
1554/* Index within `registers' of the first byte of the space for
1555 register N. */
1556
1557static int
1558arm_register_byte (int regnum)
1559{
1560 if (regnum < ARM_F0_REGNUM)
1561 return regnum * INT_REGISTER_RAW_SIZE;
1562 else if (regnum < ARM_PS_REGNUM)
1563 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1564 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1565 else
1566 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1567 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1568 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1569}
1570
1571/* Number of bytes of storage in the actual machine representation for
1572 register N. All registers are 4 bytes, except fp0 - fp7, which are
1573 12 bytes in length. */
1574
1575static int
1576arm_register_raw_size (int regnum)
1577{
1578 if (regnum < ARM_F0_REGNUM)
1579 return INT_REGISTER_RAW_SIZE;
1580 else if (regnum < ARM_FPS_REGNUM)
1581 return FP_REGISTER_RAW_SIZE;
1582 else
1583 return STATUS_REGISTER_SIZE;
1584}
1585
1586/* Number of bytes of storage in a program's representation
1587 for register N. */
1588static int
1589arm_register_virtual_size (int regnum)
1590{
1591 if (regnum < ARM_F0_REGNUM)
1592 return INT_REGISTER_VIRTUAL_SIZE;
1593 else if (regnum < ARM_FPS_REGNUM)
1594 return FP_REGISTER_VIRTUAL_SIZE;
1595 else
1596 return STATUS_REGISTER_SIZE;
1597}
1598
26216b98
AC
1599/* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1600static int
1601arm_register_sim_regno (int regnum)
1602{
1603 int reg = regnum;
1604 gdb_assert (reg >= 0 && reg < NUM_REGS);
1605
1606 if (reg < NUM_GREGS)
1607 return SIM_ARM_R0_REGNUM + reg;
1608 reg -= NUM_GREGS;
1609
1610 if (reg < NUM_FREGS)
1611 return SIM_ARM_FP0_REGNUM + reg;
1612 reg -= NUM_FREGS;
1613
1614 if (reg < NUM_SREGS)
1615 return SIM_ARM_FPS_REGNUM + reg;
1616 reg -= NUM_SREGS;
1617
1618 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1619}
34e8f22d 1620
a37b3cc0
AC
1621/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1622 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1623 It is thought that this is is the floating-point register format on
1624 little-endian systems. */
c906108c 1625
ed9a39eb 1626static void
b508a996
RE
1627convert_from_extended (const struct floatformat *fmt, const void *ptr,
1628 void *dbl)
c906108c 1629{
a37b3cc0 1630 DOUBLEST d;
d7449b42 1631 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1632 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1633 else
1634 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1635 ptr, &d);
b508a996 1636 floatformat_from_doublest (fmt, &d, dbl);
c906108c
SS
1637}
1638
34e8f22d 1639static void
b508a996 1640convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
c906108c 1641{
a37b3cc0 1642 DOUBLEST d;
b508a996 1643 floatformat_to_doublest (fmt, ptr, &d);
d7449b42 1644 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
a37b3cc0
AC
1645 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1646 else
1647 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1648 &d, dbl);
c906108c 1649}
ed9a39eb 1650
c906108c 1651static int
ed9a39eb 1652condition_true (unsigned long cond, unsigned long status_reg)
c906108c
SS
1653{
1654 if (cond == INST_AL || cond == INST_NV)
1655 return 1;
1656
1657 switch (cond)
1658 {
1659 case INST_EQ:
1660 return ((status_reg & FLAG_Z) != 0);
1661 case INST_NE:
1662 return ((status_reg & FLAG_Z) == 0);
1663 case INST_CS:
1664 return ((status_reg & FLAG_C) != 0);
1665 case INST_CC:
1666 return ((status_reg & FLAG_C) == 0);
1667 case INST_MI:
1668 return ((status_reg & FLAG_N) != 0);
1669 case INST_PL:
1670 return ((status_reg & FLAG_N) == 0);
1671 case INST_VS:
1672 return ((status_reg & FLAG_V) != 0);
1673 case INST_VC:
1674 return ((status_reg & FLAG_V) == 0);
1675 case INST_HI:
1676 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1677 case INST_LS:
1678 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1679 case INST_GE:
1680 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1681 case INST_LT:
1682 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1683 case INST_GT:
1684 return (((status_reg & FLAG_Z) == 0) &&
ed9a39eb 1685 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
c906108c
SS
1686 case INST_LE:
1687 return (((status_reg & FLAG_Z) != 0) ||
ed9a39eb 1688 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
c906108c
SS
1689 }
1690 return 1;
1691}
1692
9512d7fd 1693/* Support routines for single stepping. Calculate the next PC value. */
c906108c
SS
1694#define submask(x) ((1L << ((x) + 1)) - 1)
1695#define bit(obj,st) (((obj) >> (st)) & 1)
1696#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1697#define sbits(obj,st,fn) \
1698 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1699#define BranchDest(addr,instr) \
1700 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1701#define ARM_PC_32 1
1702
1703static unsigned long
ed9a39eb
JM
1704shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1705 unsigned long status_reg)
c906108c
SS
1706{
1707 unsigned long res, shift;
1708 int rm = bits (inst, 0, 3);
1709 unsigned long shifttype = bits (inst, 5, 6);
c5aa993b
JM
1710
1711 if (bit (inst, 4))
c906108c
SS
1712 {
1713 int rs = bits (inst, 8, 11);
1714 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1715 }
1716 else
1717 shift = bits (inst, 7, 11);
c5aa993b
JM
1718
1719 res = (rm == 15
c906108c 1720 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
c5aa993b 1721 + (bit (inst, 4) ? 12 : 8))
c906108c
SS
1722 : read_register (rm));
1723
1724 switch (shifttype)
1725 {
c5aa993b 1726 case 0: /* LSL */
c906108c
SS
1727 res = shift >= 32 ? 0 : res << shift;
1728 break;
c5aa993b
JM
1729
1730 case 1: /* LSR */
c906108c
SS
1731 res = shift >= 32 ? 0 : res >> shift;
1732 break;
1733
c5aa993b
JM
1734 case 2: /* ASR */
1735 if (shift >= 32)
1736 shift = 31;
c906108c
SS
1737 res = ((res & 0x80000000L)
1738 ? ~((~res) >> shift) : res >> shift);
1739 break;
1740
c5aa993b 1741 case 3: /* ROR/RRX */
c906108c
SS
1742 shift &= 31;
1743 if (shift == 0)
1744 res = (res >> 1) | (carry ? 0x80000000L : 0);
1745 else
c5aa993b 1746 res = (res >> shift) | (res << (32 - shift));
c906108c
SS
1747 break;
1748 }
1749
1750 return res & 0xffffffff;
1751}
1752
c906108c
SS
1753/* Return number of 1-bits in VAL. */
1754
1755static int
ed9a39eb 1756bitcount (unsigned long val)
c906108c
SS
1757{
1758 int nbits;
1759 for (nbits = 0; val != 0; nbits++)
c5aa993b 1760 val &= val - 1; /* delete rightmost 1-bit in val */
c906108c
SS
1761 return nbits;
1762}
1763
34e8f22d 1764CORE_ADDR
ed9a39eb 1765thumb_get_next_pc (CORE_ADDR pc)
c906108c 1766{
c5aa993b 1767 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
c906108c 1768 unsigned short inst1 = read_memory_integer (pc, 2);
94c30b78 1769 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
c906108c
SS
1770 unsigned long offset;
1771
1772 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1773 {
1774 CORE_ADDR sp;
1775
1776 /* Fetch the saved PC from the stack. It's stored above
1777 all of the other registers. */
1778 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
34e8f22d 1779 sp = read_register (ARM_SP_REGNUM);
c906108c
SS
1780 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1781 nextpc = ADDR_BITS_REMOVE (nextpc);
1782 if (nextpc == pc)
1783 error ("Infinite loop detected");
1784 }
1785 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1786 {
34e8f22d 1787 unsigned long status = read_register (ARM_PS_REGNUM);
c5aa993b 1788 unsigned long cond = bits (inst1, 8, 11);
94c30b78 1789 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
c906108c
SS
1790 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1791 }
1792 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1793 {
1794 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1795 }
1796 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1797 {
1798 unsigned short inst2 = read_memory_integer (pc + 2, 2);
c5aa993b 1799 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
c906108c
SS
1800 nextpc = pc_val + offset;
1801 }
1802
1803 return nextpc;
1804}
1805
34e8f22d 1806CORE_ADDR
ed9a39eb 1807arm_get_next_pc (CORE_ADDR pc)
c906108c
SS
1808{
1809 unsigned long pc_val;
1810 unsigned long this_instr;
1811 unsigned long status;
1812 CORE_ADDR nextpc;
1813
1814 if (arm_pc_is_thumb (pc))
1815 return thumb_get_next_pc (pc);
1816
1817 pc_val = (unsigned long) pc;
1818 this_instr = read_memory_integer (pc, 4);
34e8f22d 1819 status = read_register (ARM_PS_REGNUM);
c5aa993b 1820 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
c906108c
SS
1821
1822 if (condition_true (bits (this_instr, 28, 31), status))
1823 {
1824 switch (bits (this_instr, 24, 27))
1825 {
c5aa993b 1826 case 0x0:
94c30b78 1827 case 0x1: /* data processing */
c5aa993b
JM
1828 case 0x2:
1829 case 0x3:
c906108c
SS
1830 {
1831 unsigned long operand1, operand2, result = 0;
1832 unsigned long rn;
1833 int c;
c5aa993b 1834
c906108c
SS
1835 if (bits (this_instr, 12, 15) != 15)
1836 break;
1837
1838 if (bits (this_instr, 22, 25) == 0
c5aa993b 1839 && bits (this_instr, 4, 7) == 9) /* multiply */
c906108c
SS
1840 error ("Illegal update to pc in instruction");
1841
1842 /* Multiply into PC */
1843 c = (status & FLAG_C) ? 1 : 0;
1844 rn = bits (this_instr, 16, 19);
1845 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
c5aa993b 1846
c906108c
SS
1847 if (bit (this_instr, 25))
1848 {
1849 unsigned long immval = bits (this_instr, 0, 7);
1850 unsigned long rotate = 2 * bits (this_instr, 8, 11);
c5aa993b
JM
1851 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1852 & 0xffffffff;
c906108c 1853 }
c5aa993b 1854 else /* operand 2 is a shifted register */
c906108c 1855 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
c5aa993b 1856
c906108c
SS
1857 switch (bits (this_instr, 21, 24))
1858 {
c5aa993b 1859 case 0x0: /*and */
c906108c
SS
1860 result = operand1 & operand2;
1861 break;
1862
c5aa993b 1863 case 0x1: /*eor */
c906108c
SS
1864 result = operand1 ^ operand2;
1865 break;
1866
c5aa993b 1867 case 0x2: /*sub */
c906108c
SS
1868 result = operand1 - operand2;
1869 break;
1870
c5aa993b 1871 case 0x3: /*rsb */
c906108c
SS
1872 result = operand2 - operand1;
1873 break;
1874
c5aa993b 1875 case 0x4: /*add */
c906108c
SS
1876 result = operand1 + operand2;
1877 break;
1878
c5aa993b 1879 case 0x5: /*adc */
c906108c
SS
1880 result = operand1 + operand2 + c;
1881 break;
1882
c5aa993b 1883 case 0x6: /*sbc */
c906108c
SS
1884 result = operand1 - operand2 + c;
1885 break;
1886
c5aa993b 1887 case 0x7: /*rsc */
c906108c
SS
1888 result = operand2 - operand1 + c;
1889 break;
1890
c5aa993b
JM
1891 case 0x8:
1892 case 0x9:
1893 case 0xa:
1894 case 0xb: /* tst, teq, cmp, cmn */
c906108c
SS
1895 result = (unsigned long) nextpc;
1896 break;
1897
c5aa993b 1898 case 0xc: /*orr */
c906108c
SS
1899 result = operand1 | operand2;
1900 break;
1901
c5aa993b 1902 case 0xd: /*mov */
c906108c
SS
1903 /* Always step into a function. */
1904 result = operand2;
c5aa993b 1905 break;
c906108c 1906
c5aa993b 1907 case 0xe: /*bic */
c906108c
SS
1908 result = operand1 & ~operand2;
1909 break;
1910
c5aa993b 1911 case 0xf: /*mvn */
c906108c
SS
1912 result = ~operand2;
1913 break;
1914 }
1915 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1916
1917 if (nextpc == pc)
1918 error ("Infinite loop detected");
1919 break;
1920 }
c5aa993b
JM
1921
1922 case 0x4:
1923 case 0x5: /* data transfer */
1924 case 0x6:
1925 case 0x7:
c906108c
SS
1926 if (bit (this_instr, 20))
1927 {
1928 /* load */
1929 if (bits (this_instr, 12, 15) == 15)
1930 {
1931 /* rd == pc */
c5aa993b 1932 unsigned long rn;
c906108c 1933 unsigned long base;
c5aa993b 1934
c906108c
SS
1935 if (bit (this_instr, 22))
1936 error ("Illegal update to pc in instruction");
1937
1938 /* byte write to PC */
1939 rn = bits (this_instr, 16, 19);
1940 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1941 if (bit (this_instr, 24))
1942 {
1943 /* pre-indexed */
1944 int c = (status & FLAG_C) ? 1 : 0;
1945 unsigned long offset =
c5aa993b 1946 (bit (this_instr, 25)
ed9a39eb 1947 ? shifted_reg_val (this_instr, c, pc_val, status)
c5aa993b 1948 : bits (this_instr, 0, 11));
c906108c
SS
1949
1950 if (bit (this_instr, 23))
1951 base += offset;
1952 else
1953 base -= offset;
1954 }
c5aa993b 1955 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
c906108c 1956 4);
c5aa993b 1957
c906108c
SS
1958 nextpc = ADDR_BITS_REMOVE (nextpc);
1959
1960 if (nextpc == pc)
1961 error ("Infinite loop detected");
1962 }
1963 }
1964 break;
c5aa993b
JM
1965
1966 case 0x8:
1967 case 0x9: /* block transfer */
c906108c
SS
1968 if (bit (this_instr, 20))
1969 {
1970 /* LDM */
1971 if (bit (this_instr, 15))
1972 {
1973 /* loading pc */
1974 int offset = 0;
1975
1976 if (bit (this_instr, 23))
1977 {
1978 /* up */
1979 unsigned long reglist = bits (this_instr, 0, 14);
1980 offset = bitcount (reglist) * 4;
c5aa993b 1981 if (bit (this_instr, 24)) /* pre */
c906108c
SS
1982 offset += 4;
1983 }
1984 else if (bit (this_instr, 24))
1985 offset = -4;
c5aa993b 1986
c906108c 1987 {
c5aa993b
JM
1988 unsigned long rn_val =
1989 read_register (bits (this_instr, 16, 19));
c906108c
SS
1990 nextpc =
1991 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
c5aa993b 1992 + offset),
c906108c
SS
1993 4);
1994 }
1995 nextpc = ADDR_BITS_REMOVE (nextpc);
1996 if (nextpc == pc)
1997 error ("Infinite loop detected");
1998 }
1999 }
2000 break;
c5aa993b
JM
2001
2002 case 0xb: /* branch & link */
2003 case 0xa: /* branch */
c906108c
SS
2004 {
2005 nextpc = BranchDest (pc, this_instr);
2006
2007 nextpc = ADDR_BITS_REMOVE (nextpc);
2008 if (nextpc == pc)
2009 error ("Infinite loop detected");
2010 break;
2011 }
c5aa993b
JM
2012
2013 case 0xc:
2014 case 0xd:
2015 case 0xe: /* coproc ops */
2016 case 0xf: /* SWI */
c906108c
SS
2017 break;
2018
2019 default:
97e03143 2020 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
c906108c
SS
2021 return (pc);
2022 }
2023 }
2024
2025 return nextpc;
2026}
2027
9512d7fd
FN
2028/* single_step() is called just before we want to resume the inferior,
2029 if we want to single-step it but there is no hardware or kernel
2030 single-step support. We find the target of the coming instruction
2031 and breakpoint it.
2032
94c30b78
MS
2033 single_step() is also called just after the inferior stops. If we
2034 had set up a simulated single-step, we undo our damage. */
9512d7fd 2035
34e8f22d
RE
2036static void
2037arm_software_single_step (enum target_signal sig, int insert_bpt)
9512d7fd 2038{
b8d5e71d 2039 static int next_pc; /* State between setting and unsetting. */
9512d7fd
FN
2040 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2041
2042 if (insert_bpt)
2043 {
34e8f22d 2044 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
80fcf3f0 2045 target_insert_breakpoint (next_pc, break_mem);
9512d7fd
FN
2046 }
2047 else
80fcf3f0 2048 target_remove_breakpoint (next_pc, break_mem);
9512d7fd 2049}
9512d7fd 2050
c906108c
SS
2051#include "bfd-in2.h"
2052#include "libcoff.h"
2053
2054static int
ed9a39eb 2055gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
2056{
2057 if (arm_pc_is_thumb (memaddr))
2058 {
c5aa993b
JM
2059 static asymbol *asym;
2060 static combined_entry_type ce;
2061 static struct coff_symbol_struct csym;
27cddce2 2062 static struct bfd fake_bfd;
c5aa993b 2063 static bfd_target fake_target;
c906108c
SS
2064
2065 if (csym.native == NULL)
2066 {
da3c6d4a
MS
2067 /* Create a fake symbol vector containing a Thumb symbol.
2068 This is solely so that the code in print_insn_little_arm()
2069 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2070 the presence of a Thumb symbol and switch to decoding
2071 Thumb instructions. */
c5aa993b
JM
2072
2073 fake_target.flavour = bfd_target_coff_flavour;
2074 fake_bfd.xvec = &fake_target;
c906108c 2075 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
c5aa993b
JM
2076 csym.native = &ce;
2077 csym.symbol.the_bfd = &fake_bfd;
2078 csym.symbol.name = "fake";
2079 asym = (asymbol *) & csym;
c906108c 2080 }
c5aa993b 2081
c906108c 2082 memaddr = UNMAKE_THUMB_ADDR (memaddr);
c5aa993b 2083 info->symbols = &asym;
c906108c
SS
2084 }
2085 else
2086 info->symbols = NULL;
c5aa993b 2087
d7449b42 2088 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
2089 return print_insn_big_arm (memaddr, info);
2090 else
2091 return print_insn_little_arm (memaddr, info);
2092}
2093
66e810cd
RE
2094/* The following define instruction sequences that will cause ARM
2095 cpu's to take an undefined instruction trap. These are used to
2096 signal a breakpoint to GDB.
2097
2098 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2099 modes. A different instruction is required for each mode. The ARM
2100 cpu's can also be big or little endian. Thus four different
2101 instructions are needed to support all cases.
2102
2103 Note: ARMv4 defines several new instructions that will take the
2104 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2105 not in fact add the new instructions. The new undefined
2106 instructions in ARMv4 are all instructions that had no defined
2107 behaviour in earlier chips. There is no guarantee that they will
2108 raise an exception, but may be treated as NOP's. In practice, it
2109 may only safe to rely on instructions matching:
2110
2111 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2112 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2113 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2114
2115 Even this may only true if the condition predicate is true. The
2116 following use a condition predicate of ALWAYS so it is always TRUE.
2117
2118 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2119 and NetBSD all use a software interrupt rather than an undefined
2120 instruction to force a trap. This can be handled by by the
2121 abi-specific code during establishment of the gdbarch vector. */
2122
2123
d7b486e7
RE
2124/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2125 override these definitions. */
66e810cd
RE
2126#ifndef ARM_LE_BREAKPOINT
2127#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2128#endif
2129#ifndef ARM_BE_BREAKPOINT
2130#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2131#endif
2132#ifndef THUMB_LE_BREAKPOINT
2133#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2134#endif
2135#ifndef THUMB_BE_BREAKPOINT
2136#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2137#endif
2138
2139static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2140static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2141static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2142static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2143
34e8f22d
RE
2144/* Determine the type and size of breakpoint to insert at PCPTR. Uses
2145 the program counter value to determine whether a 16-bit or 32-bit
ed9a39eb
JM
2146 breakpoint should be used. It returns a pointer to a string of
2147 bytes that encode a breakpoint instruction, stores the length of
2148 the string to *lenptr, and adjusts the program counter (if
2149 necessary) to point to the actual memory location where the
c906108c
SS
2150 breakpoint should be inserted. */
2151
34e8f22d
RE
2152/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2153 breakpoints and storing their handles instread of what was in
2154 memory. It is nice that this is the same size as a handle -
94c30b78 2155 otherwise remote-rdp will have to change. */
34e8f22d 2156
ab89facf 2157static const unsigned char *
ed9a39eb 2158arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
c906108c 2159{
66e810cd
RE
2160 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2161
c906108c
SS
2162 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2163 {
66e810cd
RE
2164 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2165 *lenptr = tdep->thumb_breakpoint_size;
2166 return tdep->thumb_breakpoint;
c906108c
SS
2167 }
2168 else
2169 {
66e810cd
RE
2170 *lenptr = tdep->arm_breakpoint_size;
2171 return tdep->arm_breakpoint;
c906108c
SS
2172 }
2173}
ed9a39eb
JM
2174
2175/* Extract from an array REGBUF containing the (raw) register state a
2176 function return value of type TYPE, and copy that, in virtual
2177 format, into VALBUF. */
2178
34e8f22d 2179static void
ed9a39eb 2180arm_extract_return_value (struct type *type,
b508a996
RE
2181 struct regcache *regs,
2182 void *dst)
ed9a39eb 2183{
b508a996
RE
2184 bfd_byte *valbuf = dst;
2185
ed9a39eb 2186 if (TYPE_CODE_FLT == TYPE_CODE (type))
08216dd7 2187 {
fd50bc42 2188 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2189 {
2190 case ARM_FLOAT_FPA:
b508a996
RE
2191 {
2192 /* The value is in register F0 in internal format. We need to
2193 extract the raw value and then convert it to the desired
2194 internal type. */
2195 bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];
2196
2197 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2198 convert_from_extended (floatformat_from_type (type), tmpbuf,
2199 valbuf);
2200 }
08216dd7
RE
2201 break;
2202
fd50bc42 2203 case ARM_FLOAT_SOFT_FPA:
08216dd7 2204 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2205 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2206 if (TYPE_LENGTH (type) > 4)
2207 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2208 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2209 break;
2210
2211 default:
2212 internal_error
2213 (__FILE__, __LINE__,
2214 "arm_extract_return_value: Floating point model not supported");
2215 break;
2216 }
2217 }
b508a996
RE
2218 else if (TYPE_CODE (type) == TYPE_CODE_INT
2219 || TYPE_CODE (type) == TYPE_CODE_CHAR
2220 || TYPE_CODE (type) == TYPE_CODE_BOOL
2221 || TYPE_CODE (type) == TYPE_CODE_PTR
2222 || TYPE_CODE (type) == TYPE_CODE_REF
2223 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2224 {
2225 /* If the the type is a plain integer, then the access is
2226 straight-forward. Otherwise we have to play around a bit more. */
2227 int len = TYPE_LENGTH (type);
2228 int regno = ARM_A1_REGNUM;
2229 ULONGEST tmp;
2230
2231 while (len > 0)
2232 {
2233 /* By using store_unsigned_integer we avoid having to do
2234 anything special for small big-endian values. */
2235 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2236 store_unsigned_integer (valbuf,
2237 (len > INT_REGISTER_RAW_SIZE
2238 ? INT_REGISTER_RAW_SIZE : len),
2239 tmp);
2240 len -= INT_REGISTER_RAW_SIZE;
2241 valbuf += INT_REGISTER_RAW_SIZE;
2242 }
2243 }
ed9a39eb 2244 else
b508a996
RE
2245 {
2246 /* For a structure or union the behaviour is as if the value had
2247 been stored to word-aligned memory and then loaded into
2248 registers with 32-bit load instruction(s). */
2249 int len = TYPE_LENGTH (type);
2250 int regno = ARM_A1_REGNUM;
2251 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2252
2253 while (len > 0)
2254 {
2255 regcache_cooked_read (regs, regno++, tmpbuf);
2256 memcpy (valbuf, tmpbuf,
2257 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2258 len -= INT_REGISTER_RAW_SIZE;
2259 valbuf += INT_REGISTER_RAW_SIZE;
2260 }
2261 }
34e8f22d
RE
2262}
2263
67255d04
RE
2264/* Extract from an array REGBUF containing the (raw) register state
2265 the address in which a function should return its structure value. */
2266
2267static CORE_ADDR
95f95911 2268arm_extract_struct_value_address (struct regcache *regcache)
67255d04 2269{
95f95911
MS
2270 ULONGEST ret;
2271
2272 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2273 return ret;
67255d04
RE
2274}
2275
2276/* Will a function return an aggregate type in memory or in a
2277 register? Return 0 if an aggregate type can be returned in a
2278 register, 1 if it must be returned in memory. */
2279
2280static int
2281arm_use_struct_convention (int gcc_p, struct type *type)
2282{
2283 int nRc;
2284 register enum type_code code;
2285
2286 /* In the ARM ABI, "integer" like aggregate types are returned in
2287 registers. For an aggregate type to be integer like, its size
2288 must be less than or equal to REGISTER_SIZE and the offset of
2289 each addressable subfield must be zero. Note that bit fields are
2290 not addressable, and all addressable subfields of unions always
2291 start at offset zero.
2292
2293 This function is based on the behaviour of GCC 2.95.1.
2294 See: gcc/arm.c: arm_return_in_memory() for details.
2295
2296 Note: All versions of GCC before GCC 2.95.2 do not set up the
2297 parameters correctly for a function returning the following
2298 structure: struct { float f;}; This should be returned in memory,
2299 not a register. Richard Earnshaw sent me a patch, but I do not
2300 know of any way to detect if a function like the above has been
2301 compiled with the correct calling convention. */
2302
2303 /* All aggregate types that won't fit in a register must be returned
2304 in memory. */
2305 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2306 {
2307 return 1;
2308 }
2309
2310 /* The only aggregate types that can be returned in a register are
2311 structs and unions. Arrays must be returned in memory. */
2312 code = TYPE_CODE (type);
2313 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2314 {
2315 return 1;
2316 }
2317
2318 /* Assume all other aggregate types can be returned in a register.
2319 Run a check for structures, unions and arrays. */
2320 nRc = 0;
2321
2322 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2323 {
2324 int i;
2325 /* Need to check if this struct/union is "integer" like. For
2326 this to be true, its size must be less than or equal to
2327 REGISTER_SIZE and the offset of each addressable subfield
2328 must be zero. Note that bit fields are not addressable, and
2329 unions always start at offset zero. If any of the subfields
2330 is a floating point type, the struct/union cannot be an
2331 integer type. */
2332
2333 /* For each field in the object, check:
2334 1) Is it FP? --> yes, nRc = 1;
2335 2) Is it addressable (bitpos != 0) and
2336 not packed (bitsize == 0)?
2337 --> yes, nRc = 1
2338 */
2339
2340 for (i = 0; i < TYPE_NFIELDS (type); i++)
2341 {
2342 enum type_code field_type_code;
2343 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2344
2345 /* Is it a floating point type field? */
2346 if (field_type_code == TYPE_CODE_FLT)
2347 {
2348 nRc = 1;
2349 break;
2350 }
2351
2352 /* If bitpos != 0, then we have to care about it. */
2353 if (TYPE_FIELD_BITPOS (type, i) != 0)
2354 {
2355 /* Bitfields are not addressable. If the field bitsize is
2356 zero, then the field is not packed. Hence it cannot be
2357 a bitfield or any other packed type. */
2358 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2359 {
2360 nRc = 1;
2361 break;
2362 }
2363 }
2364 }
2365 }
2366
2367 return nRc;
2368}
2369
34e8f22d
RE
2370/* Write into appropriate registers a function return value of type
2371 TYPE, given in virtual format. */
2372
2373static void
b508a996
RE
2374arm_store_return_value (struct type *type, struct regcache *regs,
2375 const void *src)
34e8f22d 2376{
b508a996
RE
2377 const bfd_byte *valbuf = src;
2378
34e8f22d
RE
2379 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2380 {
7bbcf283 2381 char buf[ARM_MAX_REGISTER_RAW_SIZE];
34e8f22d 2382
fd50bc42 2383 switch (arm_get_fp_model (current_gdbarch))
08216dd7
RE
2384 {
2385 case ARM_FLOAT_FPA:
2386
b508a996
RE
2387 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2388 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
08216dd7
RE
2389 break;
2390
fd50bc42 2391 case ARM_FLOAT_SOFT_FPA:
08216dd7 2392 case ARM_FLOAT_SOFT_VFP:
b508a996
RE
2393 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2394 if (TYPE_LENGTH (type) > 4)
2395 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2396 valbuf + INT_REGISTER_RAW_SIZE);
08216dd7
RE
2397 break;
2398
2399 default:
2400 internal_error
2401 (__FILE__, __LINE__,
2402 "arm_store_return_value: Floating point model not supported");
2403 break;
2404 }
34e8f22d 2405 }
b508a996
RE
2406 else if (TYPE_CODE (type) == TYPE_CODE_INT
2407 || TYPE_CODE (type) == TYPE_CODE_CHAR
2408 || TYPE_CODE (type) == TYPE_CODE_BOOL
2409 || TYPE_CODE (type) == TYPE_CODE_PTR
2410 || TYPE_CODE (type) == TYPE_CODE_REF
2411 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2412 {
2413 if (TYPE_LENGTH (type) <= 4)
2414 {
2415 /* Values of one word or less are zero/sign-extended and
2416 returned in r0. */
2417 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2418 LONGEST val = unpack_long (type, valbuf);
2419
2420 store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
2421 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2422 }
2423 else
2424 {
2425 /* Integral values greater than one word are stored in consecutive
2426 registers starting with r0. This will always be a multiple of
2427 the regiser size. */
2428 int len = TYPE_LENGTH (type);
2429 int regno = ARM_A1_REGNUM;
2430
2431 while (len > 0)
2432 {
2433 regcache_cooked_write (regs, regno++, valbuf);
2434 len -= INT_REGISTER_RAW_SIZE;
2435 valbuf += INT_REGISTER_RAW_SIZE;
2436 }
2437 }
2438 }
34e8f22d 2439 else
b508a996
RE
2440 {
2441 /* For a structure or union the behaviour is as if the value had
2442 been stored to word-aligned memory and then loaded into
2443 registers with 32-bit load instruction(s). */
2444 int len = TYPE_LENGTH (type);
2445 int regno = ARM_A1_REGNUM;
2446 bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
2447
2448 while (len > 0)
2449 {
2450 memcpy (tmpbuf, valbuf,
2451 len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
2452 regcache_cooked_write (regs, regno++, tmpbuf);
2453 len -= INT_REGISTER_RAW_SIZE;
2454 valbuf += INT_REGISTER_RAW_SIZE;
2455 }
2456 }
34e8f22d
RE
2457}
2458
2459/* Store the address of the place in which to copy the structure the
94c30b78 2460 subroutine will return. This is called from call_function. */
34e8f22d
RE
2461
2462static void
2463arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2464{
2465 write_register (ARM_A1_REGNUM, addr);
ed9a39eb
JM
2466}
2467
9df628e0
RE
2468static int
2469arm_get_longjmp_target (CORE_ADDR *pc)
2470{
2471 CORE_ADDR jb_addr;
2472 char buf[INT_REGISTER_RAW_SIZE];
2473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2474
2475 jb_addr = read_register (ARM_A1_REGNUM);
2476
2477 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2478 INT_REGISTER_RAW_SIZE))
2479 return 0;
2480
2481 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2482 return 1;
2483}
2484
ed9a39eb 2485/* Return non-zero if the PC is inside a thumb call thunk. */
c906108c
SS
2486
2487int
ed9a39eb 2488arm_in_call_stub (CORE_ADDR pc, char *name)
c906108c
SS
2489{
2490 CORE_ADDR start_addr;
2491
ed9a39eb
JM
2492 /* Find the starting address of the function containing the PC. If
2493 the caller didn't give us a name, look it up at the same time. */
94c30b78
MS
2494 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2495 &start_addr, NULL))
c906108c
SS
2496 return 0;
2497
2498 return strncmp (name, "_call_via_r", 11) == 0;
2499}
2500
ed9a39eb
JM
2501/* If PC is in a Thumb call or return stub, return the address of the
2502 target PC, which is in a register. The thunk functions are called
2503 _called_via_xx, where x is the register name. The possible names
2504 are r0-r9, sl, fp, ip, sp, and lr. */
c906108c
SS
2505
2506CORE_ADDR
ed9a39eb 2507arm_skip_stub (CORE_ADDR pc)
c906108c 2508{
c5aa993b 2509 char *name;
c906108c
SS
2510 CORE_ADDR start_addr;
2511
2512 /* Find the starting address and name of the function containing the PC. */
2513 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2514 return 0;
2515
2516 /* Call thunks always start with "_call_via_". */
2517 if (strncmp (name, "_call_via_", 10) == 0)
2518 {
ed9a39eb
JM
2519 /* Use the name suffix to determine which register contains the
2520 target PC. */
c5aa993b
JM
2521 static char *table[15] =
2522 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2523 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2524 };
c906108c
SS
2525 int regno;
2526
2527 for (regno = 0; regno <= 14; regno++)
2528 if (strcmp (&name[10], table[regno]) == 0)
2529 return read_register (regno);
2530 }
ed9a39eb 2531
c5aa993b 2532 return 0; /* not a stub */
c906108c
SS
2533}
2534
afd7eef0
RE
2535static void
2536set_arm_command (char *args, int from_tty)
2537{
2538 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2539 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2540}
2541
2542static void
2543show_arm_command (char *args, int from_tty)
2544{
26304000 2545 cmd_show_list (showarmcmdlist, from_tty, "");
afd7eef0
RE
2546}
2547
fd50bc42
RE
2548enum arm_float_model
2549arm_get_fp_model (struct gdbarch *gdbarch)
2550{
2551 if (arm_fp_model == ARM_FLOAT_AUTO)
2552 return gdbarch_tdep (gdbarch)->fp_model;
2553
2554 return arm_fp_model;
2555}
2556
2557static void
2558arm_set_fp (struct gdbarch *gdbarch)
2559{
2560 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2561
2562 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2563 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2564 {
2565 set_gdbarch_double_format (gdbarch,
2566 &floatformat_ieee_double_littlebyte_bigword);
2567 set_gdbarch_long_double_format
2568 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2569 }
2570 else
2571 {
2572 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2573 set_gdbarch_long_double_format (gdbarch,
2574 &floatformat_ieee_double_little);
2575 }
2576}
2577
2578static void
2579set_fp_model_sfunc (char *args, int from_tty,
2580 struct cmd_list_element *c)
2581{
2582 enum arm_float_model fp_model;
2583
2584 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2585 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2586 {
2587 arm_fp_model = fp_model;
2588 break;
2589 }
2590
2591 if (fp_model == ARM_FLOAT_LAST)
2592 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2593 current_fp_model);
2594
2595 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2596 arm_set_fp (current_gdbarch);
2597}
2598
2599static void
2600show_fp_model (char *args, int from_tty,
2601 struct cmd_list_element *c)
2602{
2603 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2604
2605 if (arm_fp_model == ARM_FLOAT_AUTO
2606 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2607 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2608 fp_model_strings[tdep->fp_model]);
2609}
2610
afd7eef0
RE
2611/* If the user changes the register disassembly style used for info
2612 register and other commands, we have to also switch the style used
2613 in opcodes for disassembly output. This function is run in the "set
2614 arm disassembly" command, and does that. */
bc90b915
FN
2615
2616static void
afd7eef0 2617set_disassembly_style_sfunc (char *args, int from_tty,
bc90b915
FN
2618 struct cmd_list_element *c)
2619{
afd7eef0 2620 set_disassembly_style ();
bc90b915
FN
2621}
2622\f
966fbf70 2623/* Return the ARM register name corresponding to register I. */
a208b0cb 2624static const char *
34e8f22d 2625arm_register_name (int i)
966fbf70
RE
2626{
2627 return arm_register_names[i];
2628}
2629
bc90b915 2630static void
afd7eef0 2631set_disassembly_style (void)
bc90b915
FN
2632{
2633 const char *setname, *setdesc, **regnames;
2634 int numregs, j;
2635
afd7eef0 2636 /* Find the style that the user wants in the opcodes table. */
bc90b915
FN
2637 int current = 0;
2638 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
afd7eef0
RE
2639 while ((disassembly_style != setname)
2640 && (current < num_disassembly_options))
bc90b915
FN
2641 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2642 current_option = current;
2643
94c30b78 2644 /* Fill our copy. */
bc90b915
FN
2645 for (j = 0; j < numregs; j++)
2646 arm_register_names[j] = (char *) regnames[j];
2647
94c30b78 2648 /* Adjust case. */
34e8f22d 2649 if (isupper (*regnames[ARM_PC_REGNUM]))
bc90b915 2650 {
34e8f22d
RE
2651 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2652 arm_register_names[ARM_PS_REGNUM] = "CPSR";
bc90b915
FN
2653 }
2654 else
2655 {
34e8f22d
RE
2656 arm_register_names[ARM_FPS_REGNUM] = "fps";
2657 arm_register_names[ARM_PS_REGNUM] = "cpsr";
bc90b915
FN
2658 }
2659
94c30b78 2660 /* Synchronize the disassembler. */
bc90b915
FN
2661 set_arm_regname_option (current);
2662}
2663
afd7eef0
RE
2664/* arm_othernames implements the "othernames" command. This is deprecated
2665 by the "set arm disassembly" command. */
bc90b915
FN
2666
2667static void
2668arm_othernames (char *names, int n)
2669{
94c30b78 2670 /* Circle through the various flavors. */
afd7eef0 2671 current_option = (current_option + 1) % num_disassembly_options;
bc90b915 2672
afd7eef0
RE
2673 disassembly_style = valid_disassembly_styles[current_option];
2674 set_disassembly_style ();
bc90b915
FN
2675}
2676
a42dd537
KB
2677/* Fetch, and possibly build, an appropriate link_map_offsets structure
2678 for ARM linux targets using the struct offsets defined in <link.h>.
2679 Note, however, that link.h is not actually referred to in this file.
2680 Instead, the relevant structs offsets were obtained from examining
2681 link.h. (We can't refer to link.h from this file because the host
2682 system won't necessarily have it, or if it does, the structs which
94c30b78 2683 it defines will refer to the host system, not the target). */
a42dd537
KB
2684
2685struct link_map_offsets *
2686arm_linux_svr4_fetch_link_map_offsets (void)
2687{
2688 static struct link_map_offsets lmo;
2689 static struct link_map_offsets *lmp = 0;
2690
2691 if (lmp == 0)
2692 {
2693 lmp = &lmo;
2694
2695 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
94c30b78 2696 need. */
a42dd537
KB
2697
2698 lmo.r_map_offset = 4;
2699 lmo.r_map_size = 4;
2700
2701 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
94c30b78 2702 need. */
a42dd537
KB
2703
2704 lmo.l_addr_offset = 0;
2705 lmo.l_addr_size = 4;
2706
2707 lmo.l_name_offset = 4;
2708 lmo.l_name_size = 4;
2709
2710 lmo.l_next_offset = 12;
2711 lmo.l_next_size = 4;
2712
2713 lmo.l_prev_offset = 16;
2714 lmo.l_prev_size = 4;
2715 }
2716
2717 return lmp;
2718}
2719
082fc60d
RE
2720/* Test whether the coff symbol specific value corresponds to a Thumb
2721 function. */
2722
2723static int
2724coff_sym_is_thumb (int val)
2725{
2726 return (val == C_THUMBEXT ||
2727 val == C_THUMBSTAT ||
2728 val == C_THUMBEXTFUNC ||
2729 val == C_THUMBSTATFUNC ||
2730 val == C_THUMBLABEL);
2731}
2732
2733/* arm_coff_make_msymbol_special()
2734 arm_elf_make_msymbol_special()
2735
2736 These functions test whether the COFF or ELF symbol corresponds to
2737 an address in thumb code, and set a "special" bit in a minimal
2738 symbol to indicate that it does. */
2739
34e8f22d 2740static void
082fc60d
RE
2741arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2742{
2743 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2744 STT_ARM_TFUNC). */
2745 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2746 == STT_LOPROC)
2747 MSYMBOL_SET_SPECIAL (msym);
2748}
2749
34e8f22d 2750static void
082fc60d
RE
2751arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2752{
2753 if (coff_sym_is_thumb (val))
2754 MSYMBOL_SET_SPECIAL (msym);
2755}
2756
97e03143 2757\f
70f80edf
JT
2758static enum gdb_osabi
2759arm_elf_osabi_sniffer (bfd *abfd)
97e03143 2760{
70f80edf
JT
2761 unsigned int elfosabi, eflags;
2762 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
97e03143 2763
70f80edf 2764 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
97e03143 2765
70f80edf 2766 switch (elfosabi)
97e03143 2767 {
70f80edf
JT
2768 case ELFOSABI_NONE:
2769 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2770 file are conforming to the base specification for that machine
2771 (there are no OS-specific extensions). In order to determine the
2772 real OS in use we must look for OS notes that have been added. */
2773 bfd_map_over_sections (abfd,
2774 generic_elf_osabi_sniff_abi_tag_sections,
2775 &osabi);
2776 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2777 {
70f80edf
JT
2778 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2779 field for more information. */
2780 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2781 switch (eflags)
97e03143 2782 {
70f80edf
JT
2783 case EF_ARM_EABI_VER1:
2784 osabi = GDB_OSABI_ARM_EABI_V1;
97e03143
RE
2785 break;
2786
70f80edf
JT
2787 case EF_ARM_EABI_VER2:
2788 osabi = GDB_OSABI_ARM_EABI_V2;
97e03143
RE
2789 break;
2790
70f80edf
JT
2791 case EF_ARM_EABI_UNKNOWN:
2792 /* Assume GNU tools. */
2793 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2794 break;
2795
70f80edf
JT
2796 default:
2797 internal_error (__FILE__, __LINE__,
2798 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2799 "version 0x%x", eflags);
97e03143
RE
2800 }
2801 }
70f80edf 2802 break;
97e03143 2803
70f80edf
JT
2804 case ELFOSABI_ARM:
2805 /* GNU tools use this value. Check note sections in this case,
2806 as well. */
97e03143 2807 bfd_map_over_sections (abfd,
70f80edf
JT
2808 generic_elf_osabi_sniff_abi_tag_sections,
2809 &osabi);
2810 if (osabi == GDB_OSABI_UNKNOWN)
97e03143 2811 {
70f80edf
JT
2812 /* Assume APCS ABI. */
2813 osabi = GDB_OSABI_ARM_APCS;
97e03143
RE
2814 }
2815 break;
2816
97e03143 2817 case ELFOSABI_FREEBSD:
70f80edf
JT
2818 osabi = GDB_OSABI_FREEBSD_ELF;
2819 break;
97e03143 2820
70f80edf
JT
2821 case ELFOSABI_NETBSD:
2822 osabi = GDB_OSABI_NETBSD_ELF;
2823 break;
97e03143 2824
70f80edf
JT
2825 case ELFOSABI_LINUX:
2826 osabi = GDB_OSABI_LINUX;
2827 break;
97e03143
RE
2828 }
2829
70f80edf 2830 return osabi;
97e03143
RE
2831}
2832
70f80edf 2833\f
da3c6d4a
MS
2834/* Initialize the current architecture based on INFO. If possible,
2835 re-use an architecture from ARCHES, which is a list of
2836 architectures already created during this debugging session.
97e03143 2837
da3c6d4a
MS
2838 Called e.g. at program startup, when reading a core file, and when
2839 reading a binary file. */
97e03143 2840
39bbf761
RE
2841static struct gdbarch *
2842arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2843{
97e03143 2844 struct gdbarch_tdep *tdep;
39bbf761
RE
2845 struct gdbarch *gdbarch;
2846
97e03143 2847 /* Try to deterimine the ABI of the object we are loading. */
39bbf761 2848
4be87837 2849 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
97e03143 2850 {
4be87837 2851 switch (bfd_get_flavour (info.abfd))
97e03143 2852 {
4be87837
DJ
2853 case bfd_target_aout_flavour:
2854 /* Assume it's an old APCS-style ABI. */
2855 info.osabi = GDB_OSABI_ARM_APCS;
2856 break;
97e03143 2857
4be87837
DJ
2858 case bfd_target_coff_flavour:
2859 /* Assume it's an old APCS-style ABI. */
2860 /* XXX WinCE? */
2861 info.osabi = GDB_OSABI_ARM_APCS;
2862 break;
97e03143 2863
4be87837
DJ
2864 default:
2865 /* Leave it as "unknown". */
50ceaba5 2866 break;
97e03143
RE
2867 }
2868 }
2869
4be87837
DJ
2870 /* If there is already a candidate, use it. */
2871 arches = gdbarch_list_lookup_by_info (arches, &info);
2872 if (arches != NULL)
2873 return arches->gdbarch;
97e03143
RE
2874
2875 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2876 gdbarch = gdbarch_alloc (&info, tdep);
2877
a5afb99f
AC
2878 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2879 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2880 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2881
fd50bc42
RE
2882 /* We used to default to FPA for generic ARM, but almost nobody uses that
2883 now, and we now provide a way for the user to force the model. So
2884 default to the most useful variant. */
2885 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
08216dd7
RE
2886
2887 /* Breakpoints. */
67255d04
RE
2888 switch (info.byte_order)
2889 {
2890 case BFD_ENDIAN_BIG:
66e810cd
RE
2891 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2892 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2893 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2894 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2895
67255d04
RE
2896 break;
2897
2898 case BFD_ENDIAN_LITTLE:
66e810cd
RE
2899 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2900 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2901 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2902 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2903
67255d04
RE
2904 break;
2905
2906 default:
2907 internal_error (__FILE__, __LINE__,
2908 "arm_gdbarch_init: bad byte order for float format");
2909 }
2910
d7b486e7
RE
2911 /* On ARM targets char defaults to unsigned. */
2912 set_gdbarch_char_signed (gdbarch, 0);
2913
9df628e0 2914 /* This should be low enough for everything. */
97e03143 2915 tdep->lowest_pc = 0x20;
94c30b78 2916 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
97e03143 2917
848cfffb
AC
2918 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2919 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2920
2921 set_gdbarch_call_dummy_p (gdbarch, 1);
848cfffb
AC
2922
2923 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2924 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2925 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2926 set_gdbarch_call_dummy_length (gdbarch, 0);
2927
2928 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
848cfffb
AC
2929
2930 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2931 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
39bbf761 2932
b81774d8 2933 set_gdbarch_deprecated_push_arguments (gdbarch, arm_push_arguments);
39bbf761 2934
148754e5 2935 /* Frame handling. */
618ce49f 2936 set_gdbarch_deprecated_frame_chain_valid (gdbarch, arm_frame_chain_valid);
e9582e71 2937 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
148754e5 2938 set_gdbarch_read_fp (gdbarch, arm_read_fp);
618ce49f 2939 set_gdbarch_deprecated_frame_chain (gdbarch, arm_frame_chain);
148754e5
RE
2940 set_gdbarch_frameless_function_invocation
2941 (gdbarch, arm_frameless_function_invocation);
8bedc050 2942 set_gdbarch_deprecated_frame_saved_pc (gdbarch, arm_frame_saved_pc);
148754e5
RE
2943 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2944 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2945 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2946 set_gdbarch_frame_args_skip (gdbarch, 0);
f30ee0bc 2947 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
749b82f6 2948 set_gdbarch_deprecated_pop_frame (gdbarch, arm_pop_frame);
148754e5 2949
34e8f22d
RE
2950 /* Address manipulation. */
2951 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2952 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2953
2954 /* Offset from address of function to start of its code. */
2955 set_gdbarch_function_start_offset (gdbarch, 0);
2956
2957 /* Advance PC across function entry code. */
2958 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2959
2960 /* Get the PC when a frame might not be available. */
2961 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2962
2963 /* The stack grows downward. */
2964 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2965
2966 /* Breakpoint manipulation. */
2967 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2968 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2969
2970 /* Information about registers, etc. */
2971 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
94c30b78 2972 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
34e8f22d
RE
2973 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2974 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2975 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2976 set_gdbarch_register_bytes (gdbarch,
2977 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2978 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2979 + NUM_SREGS * STATUS_REGISTER_SIZE));
2980 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2981 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2982 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
a0ed5532
AC
2983 set_gdbarch_deprecated_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2984 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
34e8f22d
RE
2985 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2986
26216b98
AC
2987 /* Internal <-> external register number maps. */
2988 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2989
34e8f22d
RE
2990 /* Integer registers are 4 bytes. */
2991 set_gdbarch_register_size (gdbarch, 4);
2992 set_gdbarch_register_name (gdbarch, arm_register_name);
2993
2994 /* Returning results. */
b508a996
RE
2995 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2996 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
4183d812 2997 set_gdbarch_deprecated_store_struct_return (gdbarch, arm_store_struct_return);
67255d04 2998 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
95f95911 2999 set_gdbarch_extract_struct_value_address (gdbarch,
67255d04 3000 arm_extract_struct_value_address);
34e8f22d
RE
3001
3002 /* Single stepping. */
3003 /* XXX For an RDI target we should ask the target if it can single-step. */
3004 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
3005
03d48a7d
RE
3006 /* Disassembly. */
3007 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3008
34e8f22d
RE
3009 /* Minsymbol frobbing. */
3010 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3011 set_gdbarch_coff_make_msymbol_special (gdbarch,
3012 arm_coff_make_msymbol_special);
3013
97e03143 3014 /* Hook in the ABI-specific overrides, if they have been registered. */
4be87837 3015 gdbarch_init_osabi (info, gdbarch);
97e03143
RE
3016
3017 /* Now we have tuned the configuration, set a few final things,
3018 based on what the OS ABI has told us. */
3019
9df628e0
RE
3020 if (tdep->jb_pc >= 0)
3021 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3022
08216dd7
RE
3023 /* Floating point sizes and format. */
3024 switch (info.byte_order)
3025 {
3026 case BFD_ENDIAN_BIG:
3027 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
3028 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
3029 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
3030
3031 break;
3032
3033 case BFD_ENDIAN_LITTLE:
3034 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
fd50bc42 3035 arm_set_fp (gdbarch);
08216dd7
RE
3036 break;
3037
3038 default:
3039 internal_error (__FILE__, __LINE__,
3040 "arm_gdbarch_init: bad byte order for float format");
3041 }
3042
39bbf761
RE
3043 return gdbarch;
3044}
3045
97e03143
RE
3046static void
3047arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3048{
3049 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3050
3051 if (tdep == NULL)
3052 return;
3053
97e03143
RE
3054 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
3055 (unsigned long) tdep->lowest_pc);
3056}
3057
3058static void
3059arm_init_abi_eabi_v1 (struct gdbarch_info info,
3060 struct gdbarch *gdbarch)
3061{
3062 /* Place-holder. */
3063}
3064
3065static void
3066arm_init_abi_eabi_v2 (struct gdbarch_info info,
3067 struct gdbarch *gdbarch)
3068{
3069 /* Place-holder. */
3070}
3071
3072static void
3073arm_init_abi_apcs (struct gdbarch_info info,
3074 struct gdbarch *gdbarch)
3075{
3076 /* Place-holder. */
3077}
3078
c906108c 3079void
ed9a39eb 3080_initialize_arm_tdep (void)
c906108c 3081{
bc90b915
FN
3082 struct ui_file *stb;
3083 long length;
26304000 3084 struct cmd_list_element *new_set, *new_show;
53904c9e
AC
3085 const char *setname;
3086 const char *setdesc;
3087 const char **regnames;
bc90b915
FN
3088 int numregs, i, j;
3089 static char *helptext;
085dd6e6 3090
39bbf761 3091 if (GDB_MULTI_ARCH)
97e03143
RE
3092 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3093
70f80edf
JT
3094 /* Register an ELF OS ABI sniffer for ARM binaries. */
3095 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3096 bfd_target_elf_flavour,
3097 arm_elf_osabi_sniffer);
3098
97e03143 3099 /* Register some ABI variants for embedded systems. */
05816f70 3100 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
70f80edf 3101 arm_init_abi_eabi_v1);
05816f70 3102 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
70f80edf 3103 arm_init_abi_eabi_v2);
05816f70 3104 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
70f80edf 3105 arm_init_abi_apcs);
39bbf761 3106
94c30b78 3107 /* Get the number of possible sets of register names defined in opcodes. */
afd7eef0
RE
3108 num_disassembly_options = get_arm_regname_num_options ();
3109
3110 /* Add root prefix command for all "set arm"/"show arm" commands. */
3111 add_prefix_cmd ("arm", no_class, set_arm_command,
3112 "Various ARM-specific commands.",
3113 &setarmcmdlist, "set arm ", 0, &setlist);
3114
3115 add_prefix_cmd ("arm", no_class, show_arm_command,
3116 "Various ARM-specific commands.",
3117 &showarmcmdlist, "show arm ", 0, &showlist);
bc90b915 3118
94c30b78 3119 /* Sync the opcode insn printer with our register viewer. */
bc90b915 3120 parse_arm_disassembler_option ("reg-names-std");
c5aa993b 3121
94c30b78 3122 /* Begin creating the help text. */
bc90b915 3123 stb = mem_fileopen ();
afd7eef0
RE
3124 fprintf_unfiltered (stb, "Set the disassembly style.\n"
3125 "The valid values are:\n");
ed9a39eb 3126
94c30b78 3127 /* Initialize the array that will be passed to add_set_enum_cmd(). */
afd7eef0
RE
3128 valid_disassembly_styles
3129 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3130 for (i = 0; i < num_disassembly_options; i++)
bc90b915
FN
3131 {
3132 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
afd7eef0 3133 valid_disassembly_styles[i] = setname;
bc90b915
FN
3134 fprintf_unfiltered (stb, "%s - %s\n", setname,
3135 setdesc);
94c30b78 3136 /* Copy the default names (if found) and synchronize disassembler. */
bc90b915
FN
3137 if (!strcmp (setname, "std"))
3138 {
afd7eef0 3139 disassembly_style = setname;
bc90b915
FN
3140 current_option = i;
3141 for (j = 0; j < numregs; j++)
3142 arm_register_names[j] = (char *) regnames[j];
3143 set_arm_regname_option (i);
3144 }
3145 }
94c30b78 3146 /* Mark the end of valid options. */
afd7eef0 3147 valid_disassembly_styles[num_disassembly_options] = NULL;
c906108c 3148
94c30b78 3149 /* Finish the creation of the help text. */
bc90b915
FN
3150 fprintf_unfiltered (stb, "The default is \"std\".");
3151 helptext = ui_file_xstrdup (stb, &length);
3152 ui_file_delete (stb);
ed9a39eb 3153
afd7eef0 3154 /* Add the deprecated disassembly-flavor command. */
26304000 3155 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
afd7eef0
RE
3156 valid_disassembly_styles,
3157 &disassembly_style,
bc90b915 3158 helptext,
ed9a39eb 3159 &setlist);
26304000
RE
3160 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
3161 deprecate_cmd (new_set, "set arm disassembly");
3162 deprecate_cmd (add_show_from_set (new_set, &showlist),
afd7eef0
RE
3163 "show arm disassembly");
3164
3165 /* And now add the new interface. */
30757f90 3166 new_set = add_set_enum_cmd ("disassembler", no_class,
26304000
RE
3167 valid_disassembly_styles, &disassembly_style,
3168 helptext, &setarmcmdlist);
3169
fd50bc42 3170 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
26304000
RE
3171 add_show_from_set (new_set, &showarmcmdlist);
3172
3173 add_setshow_cmd_full ("apcs32", no_class,
3174 var_boolean, (char *) &arm_apcs_32,
3175 "Set usage of ARM 32-bit mode.",
3176 "Show usage of ARM 32-bit mode.",
3177 NULL, NULL,
3178 &setlist, &showlist, &new_set, &new_show);
3179 deprecate_cmd (new_set, "set arm apcs32");
3180 deprecate_cmd (new_show, "show arm apcs32");
3181
3182 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3183 "Set usage of ARM 32-bit mode. "
3184 "When off, a 26-bit PC will be used.",
3185 "Show usage of ARM 32-bit mode. "
3186 "When off, a 26-bit PC will be used.",
3187 NULL, NULL,
3188 &setarmcmdlist, &showarmcmdlist);
c906108c 3189
fd50bc42
RE
3190 /* Add a command to allow the user to force the FPU model. */
3191 new_set = add_set_enum_cmd
3192 ("fpu", no_class, fp_model_strings, &current_fp_model,
3193 "Set the floating point type.\n"
3194 "auto - Determine the FP typefrom the OS-ABI.\n"
3195 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
3196 "fpa - FPA co-processor (GCC compiled).\n"
3197 "softvfp - Software FP with pure-endian doubles.\n"
3198 "vfp - VFP co-processor.",
3199 &setarmcmdlist);
3200 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3201 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3202
94c30b78 3203 /* Add the deprecated "othernames" command. */
afd7eef0
RE
3204 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3205 "Switch to the next set of register names."),
3206 "set arm disassembly");
c3b4394c 3207
6529d2dd 3208 /* Debugging flag. */
26304000
RE
3209 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3210 "Set ARM debugging. "
3211 "When on, arm-specific debugging is enabled.",
3212 "Show ARM debugging. "
3213 "When on, arm-specific debugging is enabled.",
3214 NULL, NULL,
3215 &setdebuglist, &showdebuglist);
c906108c 3216}
This page took 0.490658 seconds and 4 git commands to generate.