2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
6aba47ca 3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
7b6bb8da 4 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
8818c391
TR
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 20
de18ac1f 21/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
22
23/* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26#include "defs.h"
4add8633
TR
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
8818c391
TR
31#include "gdbcmd.h"
32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
8818c391
TR
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
a89aa300 39#include "dis-asm.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391
TR
71
72#undef XMALLOC
73#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
8818c391
TR
75/* Constants: prefixed with AVR_ to avoid name space clashes */
76
77enum
2e5ff58c
TR
78{
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
7d2552b4
TG
92 /* Pseudo registers. */
93 AVR_PSEUDO_PC_REGNUM = 35,
94 AVR_NUM_PSEUDO_REGS = 1,
95
2e5ff58c
TR
96 AVR_PC_REG_INDEX = 35, /* index into array of registers */
97
4add8633 98 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 99
0963b4bd 100 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
101 AVR_MAX_PUSHES = 18,
102
0963b4bd 103 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
104 AVR_LAST_PUSHED_REGNUM = 17,
105
4add8633
TR
106 AVR_ARG1_REGNUM = 24, /* Single byte argument */
107 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
108
109 AVR_RET1_REGNUM = 24, /* Single byte return value */
110 AVR_RETN_REGNUM = 25, /* Multi byte return value */
111
2e5ff58c 112 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 113 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
114 things easier in the future if they didn't need to match.
115
116 Note: I chose these values so as to be consistent with bfd vma
117 addresses.
118
119 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 120 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
121 thus the Most Significant Bit is 0x10000 which gets masked off my
122 AVR_MEM_MASK.
123
124 The problem manifests itself when trying to set a breakpoint in a
125 function which resides in the upper half of the instruction space and
126 thus requires a 17-bit address.
127
128 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 129 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
130 but could be for some remote targets by just adding the correct offset
131 to the address and letting the remote target handle the low-level
0963b4bd 132 details of actually accessing the eeprom. */
2e5ff58c
TR
133
134 AVR_IMEM_START = 0x00000000, /* INSN memory */
135 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 136#if 1
2e5ff58c
TR
137 /* No eeprom mask defined */
138 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 139#else
2e5ff58c
TR
140 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
141 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 142#endif
2e5ff58c 143};
8818c391 144
4add8633
TR
145/* Prologue types:
146
147 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
148 causes the generation of the CALL type prologues). */
149
150enum {
151 AVR_PROLOGUE_NONE, /* No prologue */
152 AVR_PROLOGUE_NORMAL,
153 AVR_PROLOGUE_CALL, /* -mcall-prologues */
154 AVR_PROLOGUE_MAIN,
155 AVR_PROLOGUE_INTR, /* interrupt handler */
156 AVR_PROLOGUE_SIG, /* signal handler */
157};
158
8818c391
TR
159/* Any function with a frame looks like this
160 ....... <-SP POINTS HERE
161 LOCALS1 <-FP POINTS HERE
162 LOCALS0
163 SAVED FP
164 SAVED R3
165 SAVED R2
166 RET PC
167 FIRST ARG
168 SECOND ARG */
169
4add8633 170struct avr_unwind_cache
2e5ff58c 171{
4add8633
TR
172 /* The previous frame's inner most stack address. Used as this
173 frame ID's stack_addr. */
174 CORE_ADDR prev_sp;
175 /* The frame's base, optionally used by the high-level debug info. */
176 CORE_ADDR base;
177 int size;
178 int prologue_type;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 181};
8818c391
TR
182
183struct gdbarch_tdep
2e5ff58c 184{
4e99ad69
TG
185 /* Number of bytes stored to the stack by call instructions.
186 2 bytes for avr1-5, 3 bytes for avr6. */
187 int call_length;
7d2552b4
TG
188
189 /* Type for void. */
190 struct type *void_type;
191 /* Type for a function returning void. */
192 struct type *func_void_type;
193 /* Type for a pointer to a function. Used for the type of PC. */
194 struct type *pc_type;
2e5ff58c 195};
8818c391 196
0963b4bd 197/* Lookup the name of a register given it's number. */
8818c391 198
fa88f677 199static const char *
d93859e2 200avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 201{
4e99ad69 202 static const char * const register_names[] = {
2e5ff58c
TR
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
207 "SREG", "SP", "PC2",
208 "pc"
8818c391
TR
209 };
210 if (regnum < 0)
211 return NULL;
212 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[regnum];
215}
216
8818c391
TR
217/* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220static struct type *
866b76ea 221avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 222{
866b76ea 223 if (reg_nr == AVR_PC_REGNUM)
df4df182 224 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
225 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
226 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 227 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 228 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 229 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
230}
231
0963b4bd 232/* Instruction address checks and convertions. */
8818c391
TR
233
234static CORE_ADDR
235avr_make_iaddr (CORE_ADDR x)
236{
237 return ((x) | AVR_IMEM_START);
238}
239
0963b4bd 240/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
241 devices are already up to 128KBytes of flash space.
242
0963b4bd 243 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
244
245static CORE_ADDR
246avr_convert_iaddr_to_raw (CORE_ADDR x)
247{
248 return ((x) & 0xffffffff);
249}
250
0963b4bd 251/* SRAM address checks and convertions. */
8818c391
TR
252
253static CORE_ADDR
254avr_make_saddr (CORE_ADDR x)
255{
ee143e81
TG
256 /* Return 0 for NULL. */
257 if (x == 0)
258 return 0;
259
8818c391
TR
260 return ((x) | AVR_SMEM_START);
261}
262
8818c391
TR
263static CORE_ADDR
264avr_convert_saddr_to_raw (CORE_ADDR x)
265{
266 return ((x) & 0xffffffff);
267}
268
0963b4bd
MS
269/* EEPROM address checks and convertions. I don't know if these will ever
270 actually be used, but I've added them just the same. TRoth */
8818c391
TR
271
272/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 273 programs in the mega128. */
8818c391
TR
274
275/* static CORE_ADDR */
276/* avr_make_eaddr (CORE_ADDR x) */
277/* { */
278/* return ((x) | AVR_EMEM_START); */
279/* } */
280
281/* static int */
282/* avr_eaddr_p (CORE_ADDR x) */
283/* { */
284/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
285/* } */
286
287/* static CORE_ADDR */
288/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
289/* { */
290/* return ((x) & 0xffffffff); */
291/* } */
292
0963b4bd 293/* Convert from address to pointer and vice-versa. */
8818c391
TR
294
295static void
9898f801
UW
296avr_address_to_pointer (struct gdbarch *gdbarch,
297 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 298{
e17a4113
UW
299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
300
8818c391
TR
301 /* Is it a code address? */
302 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
303 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
304 {
e17a4113 305 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 306 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
307 }
308 else
309 {
310 /* Strip off any upper segment bits. */
e17a4113 311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 312 avr_convert_saddr_to_raw (addr));
8818c391
TR
313 }
314}
315
316static CORE_ADDR
9898f801
UW
317avr_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
8818c391 319{
e17a4113
UW
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR addr
322 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 323
8818c391
TR
324 /* Is it a code address? */
325 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
326 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 327 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 328 return avr_make_iaddr (addr << 1);
8818c391
TR
329 else
330 return avr_make_saddr (addr);
331}
332
8a1d23b2
TG
333static CORE_ADDR
334avr_integer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336{
337 ULONGEST addr = unpack_long (type, buf);
338
339 return avr_make_saddr (addr);
340}
341
8818c391 342static CORE_ADDR
61a1198a 343avr_read_pc (struct regcache *regcache)
8818c391 344{
8619218d 345 ULONGEST pc;
61a1198a
UW
346 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
347 return avr_make_iaddr (pc);
8818c391
TR
348}
349
350static void
61a1198a 351avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 352{
61a1198a 353 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
354 avr_convert_iaddr_to_raw (val));
355}
356
357static void
358avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360{
361 ULONGEST val;
362
363 switch (regnum)
364 {
365 case AVR_PSEUDO_PC_REGNUM:
366 regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
367 val >>= 1;
368 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
369 break;
370 default:
371 internal_error (__FILE__, __LINE__, _("invalid regnum"));
372 }
373}
374
375static void
376avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
377 int regnum, const gdb_byte *buf)
378{
379 ULONGEST val;
380
381 switch (regnum)
382 {
383 case AVR_PSEUDO_PC_REGNUM:
384 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 val <<= 1;
386 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
387 break;
388 default:
389 internal_error (__FILE__, __LINE__, _("invalid regnum"));
390 }
8818c391
TR
391}
392
4add8633 393/* Function: avr_scan_prologue
8818c391 394
4add8633 395 This function decodes an AVR function prologue to determine:
8818c391
TR
396 1) the size of the stack frame
397 2) which registers are saved on it
398 3) the offsets of saved regs
4add8633 399 This information is stored in the avr_unwind_cache structure.
8818c391 400
e3d8b004
TR
401 Some devices lack the sbiw instruction, so on those replace this:
402 sbiw r28, XX
403 with this:
404 subi r28,lo8(XX)
405 sbci r29,hi8(XX)
406
407 A typical AVR function prologue with a frame pointer might look like this:
408 push rXX ; saved regs
409 ...
410 push r28
411 push r29
412 in r28,__SP_L__
413 in r29,__SP_H__
414 sbiw r28,<LOCALS_SIZE>
415 in __tmp_reg__,__SREG__
8818c391 416 cli
e3d8b004 417 out __SP_H__,r29
72fab697
TR
418 out __SREG__,__tmp_reg__
419 out __SP_L__,r28
e3d8b004
TR
420
421 A typical AVR function prologue without a frame pointer might look like
422 this:
423 push rXX ; saved regs
424 ...
425
426 A main function prologue looks like this:
427 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
428 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
429 out __SP_H__,r29
430 out __SP_L__,r28
431
432 A signal handler prologue looks like this:
433 push __zero_reg__
434 push __tmp_reg__
435 in __tmp_reg__, __SREG__
436 push __tmp_reg__
437 clr __zero_reg__
438 push rXX ; save registers r18:r27, r30:r31
439 ...
440 push r28 ; save frame pointer
441 push r29
442 in r28, __SP_L__
443 in r29, __SP_H__
444 sbiw r28, <LOCALS_SIZE>
445 out __SP_H__, r29
446 out __SP_L__, r28
447
448 A interrupt handler prologue looks like this:
449 sei
450 push __zero_reg__
451 push __tmp_reg__
452 in __tmp_reg__, __SREG__
453 push __tmp_reg__
454 clr __zero_reg__
455 push rXX ; save registers r18:r27, r30:r31
456 ...
457 push r28 ; save frame pointer
458 push r29
459 in r28, __SP_L__
460 in r29, __SP_H__
461 sbiw r28, <LOCALS_SIZE>
462 cli
463 out __SP_H__, r29
464 sei
465 out __SP_L__, r28
466
467 A `-mcall-prologues' prologue looks like this (Note that the megas use a
468 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
469 32 bit insn and rjmp is a 16 bit insn):
470 ldi r26,lo8(<LOCALS_SIZE>)
471 ldi r27,hi8(<LOCALS_SIZE>)
472 ldi r30,pm_lo8(.L_foo_body)
473 ldi r31,pm_hi8(.L_foo_body)
474 rjmp __prologue_saves__+RRR
475 .L_foo_body: */
8818c391 476
4add8633
TR
477/* Not really part of a prologue, but still need to scan for it, is when a
478 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
479 registers. In this case, all local variables live in registers, so there
480 may be some register saves. This is what it looks like:
4add8633
TR
481 movw rMM, rNN
482 ...
483
0963b4bd
MS
484 There could be multiple movw's. If the target doesn't have a movw insn, it
485 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
486 types. */
487
488static CORE_ADDR
e17a4113 489avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 490 struct avr_unwind_cache *info)
8818c391 491{
e17a4113 492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
493 int i;
494 unsigned short insn;
2e5ff58c 495 int scan_stage = 0;
8818c391 496 struct minimal_symbol *msymbol;
8818c391
TR
497 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
498 int vpc = 0;
4e99ad69
TG
499 int len;
500
501 len = pc_end - pc_beg;
502 if (len > AVR_MAX_PROLOGUE_SIZE)
503 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 504
4add8633 505 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
506 reading in the bytes of the prologue. The problem is that the figuring
507 out where the end of the prologue is is a bit difficult. The old code
4add8633 508 tried to do that, but failed quite often. */
4e99ad69 509 read_memory (pc_beg, prologue, len);
8818c391
TR
510
511 /* Scanning main()'s prologue
512 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
513 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
514 out __SP_H__,r29
515 out __SP_L__,r28 */
516
4e99ad69 517 if (len >= 4)
8818c391
TR
518 {
519 CORE_ADDR locals;
4e99ad69 520 static const unsigned char img[] = {
2e5ff58c
TR
521 0xde, 0xbf, /* out __SP_H__,r29 */
522 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
523 };
524
e17a4113 525 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 526 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
527 if ((insn & 0xf0f0) == 0xe0c0)
528 {
529 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 530 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
531 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
532 if ((insn & 0xf0f0) == 0xe0d0)
533 {
534 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
535 if (vpc + 4 + sizeof (img) < len
536 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 537 {
4add8633
TR
538 info->prologue_type = AVR_PROLOGUE_MAIN;
539 info->base = locals;
4e99ad69 540 return pc_beg + 4;
2e5ff58c
TR
541 }
542 }
543 }
8818c391 544 }
2e5ff58c 545
4add8633
TR
546 /* Scanning `-mcall-prologues' prologue
547 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 548
e3d8b004 549 while (1) /* Using a while to avoid many goto's */
8818c391
TR
550 {
551 int loc_size;
552 int body_addr;
553 unsigned num_pushes;
4add8633 554 int pc_offset = 0;
2e5ff58c 555
4e99ad69
TG
556 /* At least the fifth instruction must have been executed to
557 modify frame shape. */
558 if (len < 10)
559 break;
560
e17a4113 561 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 562 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
563 if ((insn & 0xf0f0) != 0xe0a0)
564 break;
8818c391 565 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 566 pc_offset += 2;
2e5ff58c 567
e17a4113 568 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
569 /* ldi r27,<LOCALS_SIZE> / 256 */
570 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 571 break;
8818c391 572 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 573 pc_offset += 2;
2e5ff58c 574
e17a4113 575 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
576 /* ldi r30,pm_lo8(.L_foo_body) */
577 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 578 break;
8818c391 579 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 580 pc_offset += 2;
8818c391 581
e17a4113 582 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
583 /* ldi r31,pm_hi8(.L_foo_body) */
584 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 585 break;
8818c391 586 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 587 pc_offset += 2;
8818c391 588
8818c391
TR
589 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
590 if (!msymbol)
2e5ff58c 591 break;
8818c391 592
e17a4113 593 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 594 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
595 if ((insn & 0xf000) == 0xc000)
596 {
597 /* Extract PC relative offset from RJMP */
598 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
599 /* Convert offset to byte addressable mode */
600 i *= 2;
601 /* Destination address */
4e99ad69 602 i += pc_beg + 10;
e3d8b004 603
4e99ad69 604 if (body_addr != (pc_beg + 10)/2)
e3d8b004 605 break;
4add8633
TR
606
607 pc_offset += 2;
e3d8b004 608 }
e3d8b004
TR
609 else if ((insn & 0xfe0e) == 0x940c)
610 {
611 /* Extract absolute PC address from JMP */
612 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
613 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 & 0xffff));
e3d8b004
TR
615 /* Convert address to byte addressable mode */
616 i *= 2;
617
4e99ad69 618 if (body_addr != (pc_beg + 12)/2)
e3d8b004 619 break;
4add8633
TR
620
621 pc_offset += 4;
e3d8b004
TR
622 }
623 else
624 break;
2e5ff58c 625
4add8633 626 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
627 Which is a pushes count in `-mcall-prologues' mode */
628 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
629
630 if (num_pushes > AVR_MAX_PUSHES)
4add8633 631 {
edefbb7c 632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
633 num_pushes);
634 num_pushes = 0;
635 }
2e5ff58c 636
8818c391 637 if (num_pushes)
2e5ff58c
TR
638 {
639 int from;
4add8633
TR
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 642 if (num_pushes >= 2)
4add8633
TR
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
2e5ff58c
TR
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 648 info->saved_regs [from].addr = ++i;
2e5ff58c 649 }
4add8633
TR
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
4e99ad69 653 return pc_beg + pc_offset;
8818c391
TR
654 }
655
4add8633
TR
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
8818c391 660
4add8633 661 if (1)
8818c391 662 {
4e99ad69 663 static const unsigned char img[] = {
2e5ff58c
TR
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
8818c391 670 };
4e99ad69
TG
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 673 {
4add8633 674 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 675 vpc += sizeof (img);
4add8633
TR
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
2e5ff58c 680 }
4e99ad69
TG
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 683 {
4add8633
TR
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
243e2c5d 689 info->size += 2;
2e5ff58c 690 }
8818c391
TR
691 }
692
693 /* First stage of the prologue scanning.
4add8633 694 Scan pushes (saved registers) */
8818c391 695
4e99ad69 696 for (; vpc < len; vpc += 2)
8818c391 697 {
e17a4113 698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
0963b4bd 701 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
705 scan_stage = 1;
706 }
8818c391 707 else
2e5ff58c 708 break;
8818c391
TR
709 }
710
243e2c5d 711 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 712
1bd0bb72
TG
713 /* Handle static small stack allocation using rcall or push. */
714
715 while (scan_stage == 1 && vpc < len)
716 {
717 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
718 if (insn == 0xd000) /* rcall .+0 */
719 {
720 info->size += gdbarch_tdep (gdbarch)->call_length;
721 vpc += 2;
722 }
723 else if (insn == 0x920f) /* push r0 */
724 {
725 info->size += 1;
726 vpc += 2;
727 }
728 else
729 break;
730 }
731
8818c391
TR
732 /* Second stage of the prologue scanning.
733 Scan:
734 in r28,__SP_L__
735 in r29,__SP_H__ */
736
4e99ad69 737 if (scan_stage == 1 && vpc < len)
8818c391 738 {
4e99ad69 739 static const unsigned char img[] = {
2e5ff58c
TR
740 0xcd, 0xb7, /* in r28,__SP_L__ */
741 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
742 };
743 unsigned short insn1;
2e5ff58c 744
4e99ad69
TG
745 if (vpc + sizeof (img) < len
746 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
747 {
748 vpc += 4;
2e5ff58c
TR
749 scan_stage = 2;
750 }
8818c391
TR
751 }
752
0963b4bd 753 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
754 Scan for:
755 sbiw r28,XX or subi r28,lo8(XX)
72fab697 756 sbci r29,hi8(XX)
8818c391
TR
757 in __tmp_reg__,__SREG__
758 cli
e3d8b004 759 out __SP_H__,r29
8818c391 760 out __SREG__,__tmp_reg__
e3d8b004 761 out __SP_L__,r28 */
8818c391 762
4e99ad69 763 if (scan_stage == 2 && vpc < len)
8818c391
TR
764 {
765 int locals_size = 0;
4e99ad69 766 static const unsigned char img[] = {
2e5ff58c
TR
767 0x0f, 0xb6, /* in r0,0x3f */
768 0xf8, 0x94, /* cli */
e3d8b004 769 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 770 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 771 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 772 };
4e99ad69 773 static const unsigned char img_sig[] = {
e3d8b004
TR
774 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
775 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 776 };
4e99ad69 777 static const unsigned char img_int[] = {
2e5ff58c 778 0xf8, 0x94, /* cli */
e3d8b004 779 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 780 0x78, 0x94, /* sei */
e3d8b004 781 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 782 };
2e5ff58c 783
e17a4113 784 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 785 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
786 {
787 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
788 vpc += 2;
789 }
2e5ff58c
TR
790 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
791 {
792 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 793 vpc += 2;
e17a4113 794 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 795 vpc += 2;
1bd0bb72 796 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 797 }
8818c391 798 else
1bd0bb72 799 return pc_beg + vpc;
4add8633 800
0963b4bd 801 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
802 or signal handler functions, which is why we set the prologue type
803 when we saw the beginning of the prologue previously. */
804
4e99ad69
TG
805 if (vpc + sizeof (img_sig) < len
806 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
807 {
808 vpc += sizeof (img_sig);
809 }
4e99ad69
TG
810 else if (vpc + sizeof (img_int) < len
811 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
812 {
813 vpc += sizeof (img_int);
814 }
4e99ad69
TG
815 if (vpc + sizeof (img) < len
816 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
817 {
818 info->prologue_type = AVR_PROLOGUE_NORMAL;
819 vpc += sizeof (img);
820 }
821
822 info->size += locals_size;
823
4e99ad69 824 /* Fall through. */
8818c391 825 }
4add8633
TR
826
827 /* If we got this far, we could not scan the prologue, so just return the pc
828 of the frame plus an adjustment for argument move insns. */
829
4e99ad69
TG
830 for (; vpc < len; vpc += 2)
831 {
e17a4113 832 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
833 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
834 continue;
835 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
836 continue;
837 else
838 break;
839 }
840
841 return pc_beg + vpc;
8818c391
TR
842}
843
4add8633 844static CORE_ADDR
6093d2eb 845avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
846{
847 CORE_ADDR func_addr, func_end;
8c201e54 848 CORE_ADDR post_prologue_pc;
8818c391 849
4add8633 850 /* See what the symbol table says */
8818c391 851
8c201e54
TG
852 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
853 return pc;
2e5ff58c 854
8c201e54
TG
855 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
856 if (post_prologue_pc != 0)
857 return max (pc, post_prologue_pc);
8818c391 858
8c201e54
TG
859 {
860 CORE_ADDR prologue_end = pc;
861 struct avr_unwind_cache info = {0};
862 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 863
8c201e54
TG
864 info.saved_regs = saved_regs;
865
866 /* Need to run the prologue scanner to figure out if the function has a
867 prologue and possibly skip over moving arguments passed via registers
868 to other registers. */
869
870 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
871
872 if (info.prologue_type != AVR_PROLOGUE_NONE)
873 return prologue_end;
874 }
2e5ff58c 875
4e99ad69
TG
876 /* Either we didn't find the start of this function (nothing we can do),
877 or there's no line info, or the line after the prologue is after
0963b4bd 878 the end of the function (there probably isn't a prologue). */
2e5ff58c 879
8c201e54 880 return pc;
4add8633 881}
8818c391 882
0963b4bd
MS
883/* Not all avr devices support the BREAK insn. Those that don't should treat
884 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
885 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 886
4add8633 887static const unsigned char *
0963b4bd
MS
888avr_breakpoint_from_pc (struct gdbarch *gdbarch,
889 CORE_ADDR *pcptr, int *lenptr)
4add8633 890{
4e99ad69 891 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
892 *lenptr = sizeof (avr_break_insn);
893 return avr_break_insn;
8818c391
TR
894}
895
4c8b6ae0
UW
896/* Determine, for architecture GDBARCH, how a return value of TYPE
897 should be returned. If it is supposed to be returned in registers,
898 and READBUF is non-zero, read the appropriate value from REGCACHE,
899 and copy it into READBUF. If WRITEBUF is non-zero, write the value
900 from WRITEBUF into REGCACHE. */
901
63807e1d 902static enum return_value_convention
c055b101
CV
903avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
904 struct type *valtype, struct regcache *regcache,
905 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 906{
1bd0bb72
TG
907 int i;
908 /* Single byte are returned in r24.
909 Otherwise, the MSB of the return value is always in r25, calculate which
910 register holds the LSB. */
911 int lsb_reg;
912
913 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
914 || TYPE_CODE (valtype) == TYPE_CODE_UNION
915 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
916 && TYPE_LENGTH (valtype) > 8)
917 return RETURN_VALUE_STRUCT_CONVENTION;
918
919 if (TYPE_LENGTH (valtype) <= 2)
920 lsb_reg = 24;
921 else if (TYPE_LENGTH (valtype) <= 4)
922 lsb_reg = 22;
923 else if (TYPE_LENGTH (valtype) <= 8)
924 lsb_reg = 18;
925 else
f3574227 926 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
927
928 if (writebuf != NULL)
929 {
1bd0bb72
TG
930 for (i = 0; i < TYPE_LENGTH (valtype); i++)
931 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
932 }
933
934 if (readbuf != NULL)
935 {
1bd0bb72
TG
936 for (i = 0; i < TYPE_LENGTH (valtype); i++)
937 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
938 }
939
1bd0bb72 940 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
941}
942
943
4add8633
TR
944/* Put here the code to store, into fi->saved_regs, the addresses of
945 the saved registers of frame described by FRAME_INFO. This
946 includes special registers such as pc and fp saved in special ways
947 in the stack frame. sp is even more special: the address we return
0963b4bd 948 for it IS the sp for the next frame. */
8818c391 949
63807e1d 950static struct avr_unwind_cache *
94afd7a6 951avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 952 void **this_prologue_cache)
8818c391 953{
4e99ad69 954 CORE_ADDR start_pc, current_pc;
4add8633
TR
955 ULONGEST prev_sp;
956 ULONGEST this_base;
957 struct avr_unwind_cache *info;
4e99ad69
TG
958 struct gdbarch *gdbarch;
959 struct gdbarch_tdep *tdep;
4add8633
TR
960 int i;
961
4e99ad69
TG
962 if (*this_prologue_cache)
963 return *this_prologue_cache;
4add8633
TR
964
965 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 966 *this_prologue_cache = info;
94afd7a6 967 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
968
969 info->size = 0;
970 info->prologue_type = AVR_PROLOGUE_NONE;
971
4e99ad69
TG
972 start_pc = get_frame_func (this_frame);
973 current_pc = get_frame_pc (this_frame);
974 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
975 avr_scan_prologue (get_frame_arch (this_frame),
976 start_pc, current_pc, info);
4add8633 977
3b85b0f1
TR
978 if ((info->prologue_type != AVR_PROLOGUE_NONE)
979 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
980 {
981 ULONGEST high_base; /* High byte of FP */
982
983 /* The SP was moved to the FP. This indicates that a new frame
984 was created. Get THIS frame's FP value by unwinding it from
985 the next frame. */
94afd7a6 986 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 987 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
988 this_base += (high_base << 8);
989
990 /* The FP points at the last saved register. Adjust the FP back
991 to before the first saved register giving the SP. */
992 prev_sp = this_base + info->size;
993 }
8818c391 994 else
4add8633
TR
995 {
996 /* Assume that the FP is this frame's SP but with that pushed
997 stack space added back. */
94afd7a6 998 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
999 prev_sp = this_base + info->size;
1000 }
1001
1002 /* Add 1 here to adjust for the post-decrement nature of the push
1003 instruction.*/
4e99ad69 1004 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1005 info->base = avr_make_saddr (this_base);
1006
4e99ad69
TG
1007 gdbarch = get_frame_arch (this_frame);
1008
4add8633 1009 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1010 offsets. */
4e99ad69
TG
1011 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1012 if (info->saved_regs[i].addr > 0)
1013 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1014
1015 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1016 the stack and is at the base of the frame. */
4add8633
TR
1017
1018 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1019 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1020
3b85b0f1
TR
1021 /* The previous frame's SP needed to be computed. Save the computed
1022 value. */
4e99ad69
TG
1023 tdep = gdbarch_tdep (gdbarch);
1024 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1025 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1026
4add8633 1027 return info;
8818c391
TR
1028}
1029
1030static CORE_ADDR
4add8633 1031avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1032{
4add8633
TR
1033 ULONGEST pc;
1034
11411de3 1035 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1036
1037 return avr_make_iaddr (pc);
8818c391
TR
1038}
1039
30244cd8
UW
1040static CORE_ADDR
1041avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1042{
1043 ULONGEST sp;
1044
11411de3 1045 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1046
1047 return avr_make_saddr (sp);
1048}
1049
4add8633
TR
1050/* Given a GDB frame, determine the address of the calling function's
1051 frame. This will be used to create a new GDB frame struct. */
8818c391 1052
4add8633 1053static void
94afd7a6 1054avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1055 void **this_prologue_cache,
1056 struct frame_id *this_id)
8818c391 1057{
4add8633 1058 struct avr_unwind_cache *info
94afd7a6 1059 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1060 CORE_ADDR base;
1061 CORE_ADDR func;
1062 struct frame_id id;
1063
1064 /* The FUNC is easy. */
94afd7a6 1065 func = get_frame_func (this_frame);
4add8633 1066
4add8633
TR
1067 /* Hopefully the prologue analysis either correctly determined the
1068 frame's base (which is the SP from the previous frame), or set
1069 that base to "NULL". */
1070 base = info->prev_sp;
1071 if (base == 0)
1072 return;
1073
1074 id = frame_id_build (base, func);
4add8633 1075 (*this_id) = id;
8818c391
TR
1076}
1077
94afd7a6
UW
1078static struct value *
1079avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1080 void **this_prologue_cache, int regnum)
8818c391 1081{
e17a4113
UW
1082 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1083 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1084 struct avr_unwind_cache *info
94afd7a6 1085 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1086
7d2552b4 1087 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1088 {
7d2552b4 1089 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1090 {
94afd7a6
UW
1091 /* Reading the return PC from the PC register is slightly
1092 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1093 but in reality, only two bytes (3 in upcoming mega256) are
1094 stored on the stack.
1095
1096 Also, note that the value on the stack is an addr to a word
1097 not a byte, so we will need to multiply it by two at some
1098 point.
1099
1100 And to confuse matters even more, the return address stored
1101 on the stack is in big endian byte order, even though most
0963b4bd 1102 everything else about the avr is little endian. Ick! */
94afd7a6 1103 ULONGEST pc;
4e99ad69
TG
1104 int i;
1105 unsigned char buf[3];
1106 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1107 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1108
7d2552b4
TG
1109 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1110 buf, tdep->call_length);
94afd7a6 1111
4e99ad69
TG
1112 /* Extract the PC read from memory as a big-endian. */
1113 pc = 0;
1114 for (i = 0; i < tdep->call_length; i++)
1115 pc = (pc << 8) | buf[i];
94afd7a6 1116
7d2552b4
TG
1117 if (regnum == AVR_PC_REGNUM)
1118 pc <<= 1;
1119
1120 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1121 }
94afd7a6
UW
1122
1123 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1124 }
94afd7a6
UW
1125
1126 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1127}
8818c391 1128
4add8633
TR
1129static const struct frame_unwind avr_frame_unwind = {
1130 NORMAL_FRAME,
1131 avr_frame_this_id,
94afd7a6
UW
1132 avr_frame_prev_register,
1133 NULL,
1134 default_frame_sniffer
4add8633
TR
1135};
1136
8818c391 1137static CORE_ADDR
94afd7a6 1138avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1139{
4add8633 1140 struct avr_unwind_cache *info
94afd7a6 1141 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1142
4add8633
TR
1143 return info->base;
1144}
8818c391 1145
4add8633
TR
1146static const struct frame_base avr_frame_base = {
1147 &avr_frame_unwind,
1148 avr_frame_base_address,
1149 avr_frame_base_address,
1150 avr_frame_base_address
1151};
ced15480 1152
94afd7a6
UW
1153/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1154 frame. The frame ID's base needs to match the TOS value saved by
1155 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1156
4add8633 1157static struct frame_id
94afd7a6 1158avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1159{
1160 ULONGEST base;
8818c391 1161
94afd7a6
UW
1162 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1163 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1164}
1165
4add8633 1166/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1167 order. The below implements a FILO (stack) to do this. */
8818c391 1168
4add8633
TR
1169struct stack_item
1170{
1171 int len;
1172 struct stack_item *prev;
1173 void *data;
1174};
8818c391 1175
4add8633 1176static struct stack_item *
0fd88904 1177push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1178{
4add8633
TR
1179 struct stack_item *si;
1180 si = xmalloc (sizeof (struct stack_item));
1181 si->data = xmalloc (len);
1182 si->len = len;
1183 si->prev = prev;
1184 memcpy (si->data, contents, len);
1185 return si;
8818c391
TR
1186}
1187
4add8633
TR
1188static struct stack_item *pop_stack_item (struct stack_item *si);
1189static struct stack_item *
1190pop_stack_item (struct stack_item *si)
8818c391 1191{
4add8633
TR
1192 struct stack_item *dead = si;
1193 si = si->prev;
1194 xfree (dead->data);
1195 xfree (dead);
1196 return si;
8818c391
TR
1197}
1198
8818c391
TR
1199/* Setup the function arguments for calling a function in the inferior.
1200
1201 On the AVR architecture, there are 18 registers (R25 to R8) which are
1202 dedicated for passing function arguments. Up to the first 18 arguments
1203 (depending on size) may go into these registers. The rest go on the stack.
1204
4add8633 1205 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1206 arguments, including char, have one free register above them). For example,
4add8633
TR
1207 an int in arg1 and a char in arg2 would be passed as such:
1208
1209 arg1 -> r25:r24
1210 arg2 -> r22
1211
1212 Arguments that are larger than 2 bytes will be split between two or more
1213 registers as available, but will NOT be split between a register and the
0963b4bd 1214 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1215 similar to the d10v). */
1216
1217/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1218 inaccurate.
8818c391
TR
1219
1220 An exceptional case exists for struct arguments (and possibly other
1221 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1222 not a multiple of WORDSIZE bytes. In this case the argument is never split
1223 between the registers and the stack, but instead is copied in its entirety
1224 onto the stack, AND also copied into as many registers as there is room
1225 for. In other words, space in registers permitting, two copies of the same
1226 argument are passed in. As far as I can tell, only the one on the stack is
1227 used, although that may be a function of the level of compiler
1228 optimization. I suspect this is a compiler bug. Arguments of these odd
1229 sizes are left-justified within the word (as opposed to arguments smaller
1230 than WORDSIZE bytes, which are right-justified).
1231
1232 If the function is to return an aggregate type such as a struct, the caller
1233 must allocate space into which the callee will copy the return value. In
1234 this case, a pointer to the return value location is passed into the callee
1235 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1236 registers R0 to R2. */
8818c391
TR
1237
1238static CORE_ADDR
7d9b040b 1239avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1240 struct regcache *regcache, CORE_ADDR bp_addr,
1241 int nargs, struct value **args, CORE_ADDR sp,
1242 int struct_return, CORE_ADDR struct_addr)
8818c391 1243{
e17a4113 1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1245 int i;
6d1915d4
TG
1246 unsigned char buf[3];
1247 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1248 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1249 int regnum = AVR_ARGN_REGNUM;
1250 struct stack_item *si = NULL;
8818c391 1251
4add8633 1252 if (struct_return)
8818c391 1253 {
fd6d6815
TG
1254 regcache_cooked_write_unsigned
1255 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1256 regcache_cooked_write_unsigned
1257 (regcache, regnum--, struct_addr & 0xff);
1258 /* SP being post decremented, we need to reserve one byte so that the
1259 return address won't overwrite the result (or vice-versa). */
1260 if (sp == struct_addr)
1261 sp--;
8818c391
TR
1262 }
1263
4add8633 1264 for (i = 0; i < nargs; i++)
8818c391 1265 {
4add8633
TR
1266 int last_regnum;
1267 int j;
1268 struct value *arg = args[i];
4991999e 1269 struct type *type = check_typedef (value_type (arg));
0fd88904 1270 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1271 int len = TYPE_LENGTH (type);
1272
0963b4bd 1273 /* Calculate the potential last register needed. */
4add8633
TR
1274 last_regnum = regnum - (len + (len & 1));
1275
0963b4bd
MS
1276 /* If there are registers available, use them. Once we start putting
1277 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1278 if ((si == NULL) && (last_regnum >= 8))
1279 {
1280 ULONGEST val;
1281
0963b4bd 1282 /* Skip a register for odd length args. */
4add8633
TR
1283 if (len & 1)
1284 regnum--;
1285
e17a4113 1286 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1287 for (j = 0; j < len; j++)
1288 regcache_cooked_write_unsigned
1289 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1290 }
0963b4bd 1291 /* No registers available, push the args onto the stack. */
4add8633
TR
1292 else
1293 {
0963b4bd 1294 /* From here on, we don't care about regnum. */
4add8633
TR
1295 si = push_stack_item (si, contents, len);
1296 }
8818c391 1297 }
909cd28e 1298
0963b4bd 1299 /* Push args onto the stack. */
4add8633
TR
1300 while (si)
1301 {
1302 sp -= si->len;
0963b4bd 1303 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1304 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1305 si = pop_stack_item (si);
1306 }
3605c34a 1307
4add8633
TR
1308 /* Set the return address. For the avr, the return address is the BP_ADDR.
1309 Need to push the return address onto the stack noting that it needs to be
1310 in big-endian order on the stack. */
6d1915d4
TG
1311 for (i = 1; i <= call_length; i++)
1312 {
1313 buf[call_length - i] = return_pc & 0xff;
1314 return_pc >>= 8;
1315 }
3605c34a 1316
6d1915d4 1317 sp -= call_length;
0963b4bd 1318 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1319 write_memory (sp + 1, buf, call_length);
3605c34a 1320
0963b4bd 1321 /* Finally, update the SP register. */
4add8633
TR
1322 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1323 avr_convert_saddr_to_raw (sp));
3605c34a 1324
6d1915d4
TG
1325 /* Return SP value for the dummy frame, where the return address hasn't been
1326 pushed. */
1327 return sp + call_length;
3605c34a
TR
1328}
1329
53f6a2c9
TG
1330/* Unfortunately dwarf2 register for SP is 32. */
1331
1332static int
1333avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1334{
1335 if (reg >= 0 && reg < 32)
1336 return reg;
1337 if (reg == 32)
1338 return AVR_SP_REGNUM;
1339
1340 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1341
1342 return -1;
1343}
1344
0963b4bd 1345/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1346
1347static struct gdbarch *
2e5ff58c
TR
1348avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1349{
2e5ff58c
TR
1350 struct gdbarch *gdbarch;
1351 struct gdbarch_tdep *tdep;
4e99ad69
TG
1352 struct gdbarch_list *best_arch;
1353 int call_length;
8818c391 1354
4e99ad69 1355 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1356 switch (info.bfd_arch_info->mach)
1357 {
1358 case bfd_mach_avr1:
1359 case bfd_mach_avr2:
1360 case bfd_mach_avr3:
1361 case bfd_mach_avr4:
1362 case bfd_mach_avr5:
4e99ad69
TG
1363 default:
1364 call_length = 2;
1365 break;
1366 case bfd_mach_avr6:
1367 call_length = 3;
8818c391
TR
1368 break;
1369 }
1370
4e99ad69
TG
1371 /* If there is already a candidate, use it. */
1372 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1373 best_arch != NULL;
1374 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1375 {
1376 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1377 return best_arch->gdbarch;
1378 }
1379
0963b4bd 1380 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1381 tdep = XMALLOC (struct gdbarch_tdep);
1382 gdbarch = gdbarch_alloc (&info, tdep);
1383
1384 tdep->call_length = call_length;
1385
7d2552b4
TG
1386 /* Create a type for PC. We can't use builtin types here, as they may not
1387 be defined. */
1388 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1389 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1390 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1391 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1392 TYPE_UNSIGNED (tdep->pc_type) = 1;
1393
8818c391
TR
1394 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1397 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1398 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1400
1401 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404
8da61cc4
DJ
1405 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1407 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1408
1409 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1410 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1411
1412 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1413
1414 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1415 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1416
1417 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1418 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1419
7d2552b4
TG
1420 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1421 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1422 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1423
4c8b6ae0 1424 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1425 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1426
4add8633 1427 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1428
53f6a2c9
TG
1429 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1430
8818c391
TR
1431 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1432 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1433 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1434
8818c391 1435 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1436 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1437
909cd28e 1438 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1439
94afd7a6 1440 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1441 frame_base_set_default (gdbarch, &avr_frame_base);
1442
94afd7a6 1443 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1444
1445 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1446 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1447
8818c391
TR
1448 return gdbarch;
1449}
1450
1451/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1452 registers. If args parameter is not NULL, then the user has requested info
8818c391 1453 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1454 now]. The query string should be one of these forms:
8818c391
TR
1455
1456 "Ravr.io_reg" -> reply is "NN" number of io registers
1457
1458 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1459 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1460 where, <NAME> is a string, and VV is the hex value of the register.
1461
0963b4bd 1462 All io registers are 8-bit. */
8818c391
TR
1463
1464static void
1465avr_io_reg_read_command (char *args, int from_tty)
1466{
1e3ff5ad 1467 LONGEST bufsiz = 0;
13547ab6 1468 gdb_byte *buf;
2e5ff58c
TR
1469 char query[400];
1470 char *p;
1471 unsigned int nreg = 0;
1472 unsigned int val;
1473 int i, j, k, step;
8818c391 1474
0963b4bd 1475 /* Find out how many io registers the target has. */
13547ab6
DJ
1476 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1477 "avr.io_reg", &buf);
8818c391 1478
13547ab6 1479 if (bufsiz <= 0)
8818c391 1480 {
2e5ff58c 1481 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1482 _("ERR: info io_registers NOT supported "
1483 "by current target\n"));
8818c391
TR
1484 return;
1485 }
1486
2e5ff58c 1487 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1488 {
2e5ff58c 1489 fprintf_unfiltered (gdb_stderr,
edefbb7c 1490 _("Error fetching number of io registers\n"));
13547ab6 1491 xfree (buf);
8818c391
TR
1492 return;
1493 }
1494
13547ab6
DJ
1495 xfree (buf);
1496
2e5ff58c 1497 reinitialize_more_filter ();
8818c391 1498
edefbb7c 1499 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1500
1501 /* only fetch up to 8 registers at a time to keep the buffer small */
1502 step = 8;
1503
2e5ff58c 1504 for (i = 0; i < nreg; i += step)
8818c391 1505 {
91ccbfc1
TR
1506 /* how many registers this round? */
1507 j = step;
1508 if ((i+j) >= nreg)
1509 j = nreg - i; /* last block is less than 8 registers */
8818c391 1510
2e5ff58c 1511 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1512 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1513 query, &buf);
8818c391
TR
1514
1515 p = buf;
2e5ff58c
TR
1516 for (k = i; k < (i + j); k++)
1517 {
1518 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1519 {
1520 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1521 while ((*p != ';') && (*p != '\0'))
1522 p++;
1523 p++; /* skip over ';' */
1524 if (*p == '\0')
1525 break;
1526 }
1527 }
13547ab6
DJ
1528
1529 xfree (buf);
8818c391
TR
1530 }
1531}
1532
a78f21af
AC
1533extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1534
8818c391
TR
1535void
1536_initialize_avr_tdep (void)
1537{
1538 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1539
1540 /* Add a new command to allow the user to query the avr remote target for
1541 the values of the io space registers in a saner way than just using
0963b4bd 1542 `x/NNNb ADDR`. */
8818c391
TR
1543
1544 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1545 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1546
1547 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1548 _("query remote avr target for io space register values"),
1549 &infolist);
8818c391 1550}
This page took 0.696401 seconds and 4 git commands to generate.