[GDB/Linux] Avoid stale errno
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
ecd75fc8 3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
0e9f083f 37#include <string.h>
a89aa300 38#include "dis-asm.h"
77e371c0 39#include "objfiles.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
74enum
2e5ff58c
TR
75{
76 AVR_REG_W = 24,
77 AVR_REG_X = 26,
78 AVR_REG_Y = 28,
79 AVR_FP_REGNUM = 28,
80 AVR_REG_Z = 30,
81
82 AVR_SREG_REGNUM = 32,
83 AVR_SP_REGNUM = 33,
84 AVR_PC_REGNUM = 34,
85
86 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
87 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88
7d2552b4
TG
89 /* Pseudo registers. */
90 AVR_PSEUDO_PC_REGNUM = 35,
91 AVR_NUM_PSEUDO_REGS = 1,
92
2e5ff58c
TR
93 AVR_PC_REG_INDEX = 35, /* index into array of registers */
94
4add8633 95 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 96
0963b4bd 97 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
98 AVR_MAX_PUSHES = 18,
99
0963b4bd 100 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
101 AVR_LAST_PUSHED_REGNUM = 17,
102
4add8633
TR
103 AVR_ARG1_REGNUM = 24, /* Single byte argument */
104 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
105
106 AVR_RET1_REGNUM = 24, /* Single byte return value */
107 AVR_RETN_REGNUM = 25, /* Multi byte return value */
108
2e5ff58c 109 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 110 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
111 things easier in the future if they didn't need to match.
112
113 Note: I chose these values so as to be consistent with bfd vma
114 addresses.
115
116 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 117 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
118 thus the Most Significant Bit is 0x10000 which gets masked off my
119 AVR_MEM_MASK.
120
121 The problem manifests itself when trying to set a breakpoint in a
122 function which resides in the upper half of the instruction space and
123 thus requires a 17-bit address.
124
125 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 126 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
127 but could be for some remote targets by just adding the correct offset
128 to the address and letting the remote target handle the low-level
0963b4bd 129 details of actually accessing the eeprom. */
2e5ff58c
TR
130
131 AVR_IMEM_START = 0x00000000, /* INSN memory */
132 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 133#if 1
2e5ff58c
TR
134 /* No eeprom mask defined */
135 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 136#else
2e5ff58c
TR
137 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
138 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 139#endif
2e5ff58c 140};
8818c391 141
4add8633
TR
142/* Prologue types:
143
144 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
145 causes the generation of the CALL type prologues). */
146
147enum {
148 AVR_PROLOGUE_NONE, /* No prologue */
149 AVR_PROLOGUE_NORMAL,
150 AVR_PROLOGUE_CALL, /* -mcall-prologues */
151 AVR_PROLOGUE_MAIN,
152 AVR_PROLOGUE_INTR, /* interrupt handler */
153 AVR_PROLOGUE_SIG, /* signal handler */
154};
155
8818c391
TR
156/* Any function with a frame looks like this
157 ....... <-SP POINTS HERE
158 LOCALS1 <-FP POINTS HERE
159 LOCALS0
160 SAVED FP
161 SAVED R3
162 SAVED R2
163 RET PC
164 FIRST ARG
165 SECOND ARG */
166
4add8633 167struct avr_unwind_cache
2e5ff58c 168{
4add8633
TR
169 /* The previous frame's inner most stack address. Used as this
170 frame ID's stack_addr. */
171 CORE_ADDR prev_sp;
172 /* The frame's base, optionally used by the high-level debug info. */
173 CORE_ADDR base;
174 int size;
175 int prologue_type;
176 /* Table indicating the location of each and every register. */
177 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 178};
8818c391
TR
179
180struct gdbarch_tdep
2e5ff58c 181{
4e99ad69 182 /* Number of bytes stored to the stack by call instructions.
9c97a070 183 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 184 int call_length;
7d2552b4
TG
185
186 /* Type for void. */
187 struct type *void_type;
188 /* Type for a function returning void. */
189 struct type *func_void_type;
190 /* Type for a pointer to a function. Used for the type of PC. */
191 struct type *pc_type;
2e5ff58c 192};
8818c391 193
0963b4bd 194/* Lookup the name of a register given it's number. */
8818c391 195
fa88f677 196static const char *
d93859e2 197avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 198{
4e99ad69 199 static const char * const register_names[] = {
2e5ff58c
TR
200 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
201 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
202 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
203 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
204 "SREG", "SP", "PC2",
205 "pc"
8818c391
TR
206 };
207 if (regnum < 0)
208 return NULL;
209 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
210 return NULL;
211 return register_names[regnum];
212}
213
8818c391
TR
214/* Return the GDB type object for the "standard" data type
215 of data in register N. */
216
217static struct type *
866b76ea 218avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 219{
866b76ea 220 if (reg_nr == AVR_PC_REGNUM)
df4df182 221 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
222 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
223 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 224 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 225 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 226 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
227}
228
0963b4bd 229/* Instruction address checks and convertions. */
8818c391
TR
230
231static CORE_ADDR
232avr_make_iaddr (CORE_ADDR x)
233{
234 return ((x) | AVR_IMEM_START);
235}
236
0963b4bd 237/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
238 devices are already up to 128KBytes of flash space.
239
0963b4bd 240 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
241
242static CORE_ADDR
243avr_convert_iaddr_to_raw (CORE_ADDR x)
244{
245 return ((x) & 0xffffffff);
246}
247
0963b4bd 248/* SRAM address checks and convertions. */
8818c391
TR
249
250static CORE_ADDR
251avr_make_saddr (CORE_ADDR x)
252{
ee143e81
TG
253 /* Return 0 for NULL. */
254 if (x == 0)
255 return 0;
256
8818c391
TR
257 return ((x) | AVR_SMEM_START);
258}
259
8818c391
TR
260static CORE_ADDR
261avr_convert_saddr_to_raw (CORE_ADDR x)
262{
263 return ((x) & 0xffffffff);
264}
265
0963b4bd
MS
266/* EEPROM address checks and convertions. I don't know if these will ever
267 actually be used, but I've added them just the same. TRoth */
8818c391
TR
268
269/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 270 programs in the mega128. */
8818c391
TR
271
272/* static CORE_ADDR */
273/* avr_make_eaddr (CORE_ADDR x) */
274/* { */
275/* return ((x) | AVR_EMEM_START); */
276/* } */
277
278/* static int */
279/* avr_eaddr_p (CORE_ADDR x) */
280/* { */
281/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
282/* } */
283
284/* static CORE_ADDR */
285/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
286/* { */
287/* return ((x) & 0xffffffff); */
288/* } */
289
0963b4bd 290/* Convert from address to pointer and vice-versa. */
8818c391
TR
291
292static void
9898f801
UW
293avr_address_to_pointer (struct gdbarch *gdbarch,
294 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 295{
e17a4113
UW
296 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
297
8818c391
TR
298 /* Is it a code address? */
299 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
300 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
301 {
e17a4113 302 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 303 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
304 }
305 else
306 {
307 /* Strip off any upper segment bits. */
e17a4113 308 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 309 avr_convert_saddr_to_raw (addr));
8818c391
TR
310 }
311}
312
313static CORE_ADDR
9898f801
UW
314avr_pointer_to_address (struct gdbarch *gdbarch,
315 struct type *type, const gdb_byte *buf)
8818c391 316{
e17a4113
UW
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 CORE_ADDR addr
319 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 320
8818c391
TR
321 /* Is it a code address? */
322 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
323 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 324 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 325 return avr_make_iaddr (addr << 1);
8818c391
TR
326 else
327 return avr_make_saddr (addr);
328}
329
8a1d23b2
TG
330static CORE_ADDR
331avr_integer_to_address (struct gdbarch *gdbarch,
332 struct type *type, const gdb_byte *buf)
333{
334 ULONGEST addr = unpack_long (type, buf);
335
336 return avr_make_saddr (addr);
337}
338
8818c391 339static CORE_ADDR
61a1198a 340avr_read_pc (struct regcache *regcache)
8818c391 341{
8619218d 342 ULONGEST pc;
61a1198a
UW
343 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
344 return avr_make_iaddr (pc);
8818c391
TR
345}
346
347static void
61a1198a 348avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 349{
61a1198a 350 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
351 avr_convert_iaddr_to_raw (val));
352}
353
05d1431c 354static enum register_status
7d2552b4
TG
355avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
356 int regnum, gdb_byte *buf)
357{
358 ULONGEST val;
05d1431c 359 enum register_status status;
7d2552b4
TG
360
361 switch (regnum)
362 {
363 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
364 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
365 if (status != REG_VALID)
366 return status;
7d2552b4
TG
367 val >>= 1;
368 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 369 return status;
7d2552b4
TG
370 default:
371 internal_error (__FILE__, __LINE__, _("invalid regnum"));
372 }
373}
374
375static void
376avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
377 int regnum, const gdb_byte *buf)
378{
379 ULONGEST val;
380
381 switch (regnum)
382 {
383 case AVR_PSEUDO_PC_REGNUM:
384 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
385 val <<= 1;
386 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
387 break;
388 default:
389 internal_error (__FILE__, __LINE__, _("invalid regnum"));
390 }
8818c391
TR
391}
392
4add8633 393/* Function: avr_scan_prologue
8818c391 394
4add8633 395 This function decodes an AVR function prologue to determine:
8818c391
TR
396 1) the size of the stack frame
397 2) which registers are saved on it
398 3) the offsets of saved regs
4add8633 399 This information is stored in the avr_unwind_cache structure.
8818c391 400
e3d8b004
TR
401 Some devices lack the sbiw instruction, so on those replace this:
402 sbiw r28, XX
403 with this:
404 subi r28,lo8(XX)
405 sbci r29,hi8(XX)
406
407 A typical AVR function prologue with a frame pointer might look like this:
408 push rXX ; saved regs
409 ...
410 push r28
411 push r29
412 in r28,__SP_L__
413 in r29,__SP_H__
414 sbiw r28,<LOCALS_SIZE>
415 in __tmp_reg__,__SREG__
8818c391 416 cli
e3d8b004 417 out __SP_H__,r29
72fab697
TR
418 out __SREG__,__tmp_reg__
419 out __SP_L__,r28
e3d8b004
TR
420
421 A typical AVR function prologue without a frame pointer might look like
422 this:
423 push rXX ; saved regs
424 ...
425
426 A main function prologue looks like this:
427 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
428 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
429 out __SP_H__,r29
430 out __SP_L__,r28
431
432 A signal handler prologue looks like this:
433 push __zero_reg__
434 push __tmp_reg__
435 in __tmp_reg__, __SREG__
436 push __tmp_reg__
437 clr __zero_reg__
438 push rXX ; save registers r18:r27, r30:r31
439 ...
440 push r28 ; save frame pointer
441 push r29
442 in r28, __SP_L__
443 in r29, __SP_H__
444 sbiw r28, <LOCALS_SIZE>
445 out __SP_H__, r29
446 out __SP_L__, r28
447
448 A interrupt handler prologue looks like this:
449 sei
450 push __zero_reg__
451 push __tmp_reg__
452 in __tmp_reg__, __SREG__
453 push __tmp_reg__
454 clr __zero_reg__
455 push rXX ; save registers r18:r27, r30:r31
456 ...
457 push r28 ; save frame pointer
458 push r29
459 in r28, __SP_L__
460 in r29, __SP_H__
461 sbiw r28, <LOCALS_SIZE>
462 cli
463 out __SP_H__, r29
464 sei
465 out __SP_L__, r28
466
467 A `-mcall-prologues' prologue looks like this (Note that the megas use a
468 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
469 32 bit insn and rjmp is a 16 bit insn):
470 ldi r26,lo8(<LOCALS_SIZE>)
471 ldi r27,hi8(<LOCALS_SIZE>)
472 ldi r30,pm_lo8(.L_foo_body)
473 ldi r31,pm_hi8(.L_foo_body)
474 rjmp __prologue_saves__+RRR
475 .L_foo_body: */
8818c391 476
4add8633
TR
477/* Not really part of a prologue, but still need to scan for it, is when a
478 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
479 registers. In this case, all local variables live in registers, so there
480 may be some register saves. This is what it looks like:
4add8633
TR
481 movw rMM, rNN
482 ...
483
0963b4bd
MS
484 There could be multiple movw's. If the target doesn't have a movw insn, it
485 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
486 types. */
487
488static CORE_ADDR
e17a4113 489avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 490 struct avr_unwind_cache *info)
8818c391 491{
e17a4113 492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
493 int i;
494 unsigned short insn;
2e5ff58c 495 int scan_stage = 0;
3b7344d5 496 struct bound_minimal_symbol msymbol;
8818c391
TR
497 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
498 int vpc = 0;
4e99ad69
TG
499 int len;
500
501 len = pc_end - pc_beg;
502 if (len > AVR_MAX_PROLOGUE_SIZE)
503 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 504
4add8633 505 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
506 reading in the bytes of the prologue. The problem is that the figuring
507 out where the end of the prologue is is a bit difficult. The old code
4add8633 508 tried to do that, but failed quite often. */
4e99ad69 509 read_memory (pc_beg, prologue, len);
8818c391
TR
510
511 /* Scanning main()'s prologue
512 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
513 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
514 out __SP_H__,r29
515 out __SP_L__,r28 */
516
4e99ad69 517 if (len >= 4)
8818c391
TR
518 {
519 CORE_ADDR locals;
4e99ad69 520 static const unsigned char img[] = {
2e5ff58c
TR
521 0xde, 0xbf, /* out __SP_H__,r29 */
522 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
523 };
524
e17a4113 525 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 526 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
527 if ((insn & 0xf0f0) == 0xe0c0)
528 {
529 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 530 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
531 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
532 if ((insn & 0xf0f0) == 0xe0d0)
533 {
534 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
535 if (vpc + 4 + sizeof (img) < len
536 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 537 {
4add8633
TR
538 info->prologue_type = AVR_PROLOGUE_MAIN;
539 info->base = locals;
4e99ad69 540 return pc_beg + 4;
2e5ff58c
TR
541 }
542 }
543 }
8818c391 544 }
2e5ff58c 545
4add8633
TR
546 /* Scanning `-mcall-prologues' prologue
547 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 548
e3d8b004 549 while (1) /* Using a while to avoid many goto's */
8818c391
TR
550 {
551 int loc_size;
552 int body_addr;
553 unsigned num_pushes;
4add8633 554 int pc_offset = 0;
2e5ff58c 555
4e99ad69
TG
556 /* At least the fifth instruction must have been executed to
557 modify frame shape. */
558 if (len < 10)
559 break;
560
e17a4113 561 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 562 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
563 if ((insn & 0xf0f0) != 0xe0a0)
564 break;
8818c391 565 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 566 pc_offset += 2;
2e5ff58c 567
e17a4113 568 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
569 /* ldi r27,<LOCALS_SIZE> / 256 */
570 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 571 break;
8818c391 572 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 573 pc_offset += 2;
2e5ff58c 574
e17a4113 575 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
576 /* ldi r30,pm_lo8(.L_foo_body) */
577 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 578 break;
8818c391 579 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 580 pc_offset += 2;
8818c391 581
e17a4113 582 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
583 /* ldi r31,pm_hi8(.L_foo_body) */
584 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 585 break;
8818c391 586 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 587 pc_offset += 2;
8818c391 588
8818c391 589 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 590 if (!msymbol.minsym)
2e5ff58c 591 break;
8818c391 592
e17a4113 593 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 594 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
595 if ((insn & 0xf000) == 0xc000)
596 {
597 /* Extract PC relative offset from RJMP */
598 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
599 /* Convert offset to byte addressable mode */
600 i *= 2;
601 /* Destination address */
4e99ad69 602 i += pc_beg + 10;
e3d8b004 603
4e99ad69 604 if (body_addr != (pc_beg + 10)/2)
e3d8b004 605 break;
4add8633
TR
606
607 pc_offset += 2;
e3d8b004 608 }
e3d8b004
TR
609 else if ((insn & 0xfe0e) == 0x940c)
610 {
611 /* Extract absolute PC address from JMP */
612 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
613 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
614 & 0xffff));
e3d8b004
TR
615 /* Convert address to byte addressable mode */
616 i *= 2;
617
4e99ad69 618 if (body_addr != (pc_beg + 12)/2)
e3d8b004 619 break;
4add8633
TR
620
621 pc_offset += 4;
e3d8b004
TR
622 }
623 else
624 break;
2e5ff58c 625
4add8633 626 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 627 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 628 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
629
630 if (num_pushes > AVR_MAX_PUSHES)
4add8633 631 {
edefbb7c 632 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
633 num_pushes);
634 num_pushes = 0;
635 }
2e5ff58c 636
8818c391 637 if (num_pushes)
2e5ff58c
TR
638 {
639 int from;
4add8633
TR
640
641 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 642 if (num_pushes >= 2)
4add8633
TR
643 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
644
2e5ff58c
TR
645 i = 0;
646 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
647 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 648 info->saved_regs [from].addr = ++i;
2e5ff58c 649 }
4add8633
TR
650 info->size = loc_size + num_pushes;
651 info->prologue_type = AVR_PROLOGUE_CALL;
652
4e99ad69 653 return pc_beg + pc_offset;
8818c391
TR
654 }
655
4add8633
TR
656 /* Scan for the beginning of the prologue for an interrupt or signal
657 function. Note that we have to set the prologue type here since the
658 third stage of the prologue may not be present (e.g. no saved registered
659 or changing of the SP register). */
8818c391 660
4add8633 661 if (1)
8818c391 662 {
4e99ad69 663 static const unsigned char img[] = {
2e5ff58c
TR
664 0x78, 0x94, /* sei */
665 0x1f, 0x92, /* push r1 */
666 0x0f, 0x92, /* push r0 */
667 0x0f, 0xb6, /* in r0,0x3f SREG */
668 0x0f, 0x92, /* push r0 */
669 0x11, 0x24 /* clr r1 */
8818c391 670 };
4e99ad69
TG
671 if (len >= sizeof (img)
672 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 673 {
4add8633 674 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 675 vpc += sizeof (img);
4add8633
TR
676 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
677 info->saved_regs[0].addr = 2;
678 info->saved_regs[1].addr = 1;
679 info->size += 3;
2e5ff58c 680 }
4e99ad69
TG
681 else if (len >= sizeof (img) - 2
682 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 683 {
4add8633
TR
684 info->prologue_type = AVR_PROLOGUE_SIG;
685 vpc += sizeof (img) - 2;
686 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
687 info->saved_regs[0].addr = 2;
688 info->saved_regs[1].addr = 1;
243e2c5d 689 info->size += 2;
2e5ff58c 690 }
8818c391
TR
691 }
692
693 /* First stage of the prologue scanning.
4add8633 694 Scan pushes (saved registers) */
8818c391 695
4e99ad69 696 for (; vpc < len; vpc += 2)
8818c391 697 {
e17a4113 698 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
699 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
700 {
0963b4bd 701 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
702 int regno = (insn & 0x1f0) >> 4;
703 info->size++;
704 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
705 scan_stage = 1;
706 }
8818c391 707 else
2e5ff58c 708 break;
8818c391
TR
709 }
710
243e2c5d 711 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 712
1bd0bb72
TG
713 /* Handle static small stack allocation using rcall or push. */
714
715 while (scan_stage == 1 && vpc < len)
716 {
717 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
718 if (insn == 0xd000) /* rcall .+0 */
719 {
720 info->size += gdbarch_tdep (gdbarch)->call_length;
721 vpc += 2;
722 }
7588d2ec 723 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
724 {
725 info->size += 1;
726 vpc += 2;
727 }
728 else
729 break;
730 }
731
8818c391
TR
732 /* Second stage of the prologue scanning.
733 Scan:
734 in r28,__SP_L__
735 in r29,__SP_H__ */
736
4e99ad69 737 if (scan_stage == 1 && vpc < len)
8818c391 738 {
4e99ad69 739 static const unsigned char img[] = {
2e5ff58c
TR
740 0xcd, 0xb7, /* in r28,__SP_L__ */
741 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 742 };
2e5ff58c 743
4e99ad69
TG
744 if (vpc + sizeof (img) < len
745 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
746 {
747 vpc += 4;
2e5ff58c
TR
748 scan_stage = 2;
749 }
8818c391
TR
750 }
751
0963b4bd 752 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
753 Scan for:
754 sbiw r28,XX or subi r28,lo8(XX)
72fab697 755 sbci r29,hi8(XX)
8818c391
TR
756 in __tmp_reg__,__SREG__
757 cli
e3d8b004 758 out __SP_H__,r29
8818c391 759 out __SREG__,__tmp_reg__
e3d8b004 760 out __SP_L__,r28 */
8818c391 761
4e99ad69 762 if (scan_stage == 2 && vpc < len)
8818c391
TR
763 {
764 int locals_size = 0;
4e99ad69 765 static const unsigned char img[] = {
2e5ff58c
TR
766 0x0f, 0xb6, /* in r0,0x3f */
767 0xf8, 0x94, /* cli */
e3d8b004 768 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 769 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 770 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 771 };
4e99ad69 772 static const unsigned char img_sig[] = {
e3d8b004
TR
773 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
774 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 775 };
4e99ad69 776 static const unsigned char img_int[] = {
2e5ff58c 777 0xf8, 0x94, /* cli */
e3d8b004 778 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 779 0x78, 0x94, /* sei */
e3d8b004 780 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 781 };
2e5ff58c 782
e17a4113 783 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 784 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
785 {
786 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
787 vpc += 2;
788 }
2e5ff58c
TR
789 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
790 {
791 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 792 vpc += 2;
e17a4113 793 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 794 vpc += 2;
1bd0bb72 795 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 796 }
8818c391 797 else
1bd0bb72 798 return pc_beg + vpc;
4add8633 799
0963b4bd 800 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
801 or signal handler functions, which is why we set the prologue type
802 when we saw the beginning of the prologue previously. */
803
4e99ad69
TG
804 if (vpc + sizeof (img_sig) < len
805 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
806 {
807 vpc += sizeof (img_sig);
808 }
4e99ad69
TG
809 else if (vpc + sizeof (img_int) < len
810 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
811 {
812 vpc += sizeof (img_int);
813 }
4e99ad69
TG
814 if (vpc + sizeof (img) < len
815 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
816 {
817 info->prologue_type = AVR_PROLOGUE_NORMAL;
818 vpc += sizeof (img);
819 }
820
821 info->size += locals_size;
822
4e99ad69 823 /* Fall through. */
8818c391 824 }
4add8633
TR
825
826 /* If we got this far, we could not scan the prologue, so just return the pc
827 of the frame plus an adjustment for argument move insns. */
828
4e99ad69
TG
829 for (; vpc < len; vpc += 2)
830 {
e17a4113 831 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
832 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
833 continue;
834 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
835 continue;
836 else
837 break;
838 }
839
840 return pc_beg + vpc;
8818c391
TR
841}
842
4add8633 843static CORE_ADDR
6093d2eb 844avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
845{
846 CORE_ADDR func_addr, func_end;
8c201e54 847 CORE_ADDR post_prologue_pc;
8818c391 848
4add8633 849 /* See what the symbol table says */
8818c391 850
8c201e54
TG
851 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
852 return pc;
2e5ff58c 853
8c201e54
TG
854 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
855 if (post_prologue_pc != 0)
856 return max (pc, post_prologue_pc);
8818c391 857
8c201e54
TG
858 {
859 CORE_ADDR prologue_end = pc;
860 struct avr_unwind_cache info = {0};
861 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 862
8c201e54
TG
863 info.saved_regs = saved_regs;
864
865 /* Need to run the prologue scanner to figure out if the function has a
866 prologue and possibly skip over moving arguments passed via registers
867 to other registers. */
868
869 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
870
871 if (info.prologue_type != AVR_PROLOGUE_NONE)
872 return prologue_end;
873 }
2e5ff58c 874
4e99ad69
TG
875 /* Either we didn't find the start of this function (nothing we can do),
876 or there's no line info, or the line after the prologue is after
0963b4bd 877 the end of the function (there probably isn't a prologue). */
2e5ff58c 878
8c201e54 879 return pc;
4add8633 880}
8818c391 881
0963b4bd
MS
882/* Not all avr devices support the BREAK insn. Those that don't should treat
883 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
884 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 885
4add8633 886static const unsigned char *
0963b4bd
MS
887avr_breakpoint_from_pc (struct gdbarch *gdbarch,
888 CORE_ADDR *pcptr, int *lenptr)
4add8633 889{
4e99ad69 890 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
891 *lenptr = sizeof (avr_break_insn);
892 return avr_break_insn;
8818c391
TR
893}
894
4c8b6ae0
UW
895/* Determine, for architecture GDBARCH, how a return value of TYPE
896 should be returned. If it is supposed to be returned in registers,
897 and READBUF is non-zero, read the appropriate value from REGCACHE,
898 and copy it into READBUF. If WRITEBUF is non-zero, write the value
899 from WRITEBUF into REGCACHE. */
900
63807e1d 901static enum return_value_convention
6a3a010b 902avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
903 struct type *valtype, struct regcache *regcache,
904 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 905{
1bd0bb72
TG
906 int i;
907 /* Single byte are returned in r24.
908 Otherwise, the MSB of the return value is always in r25, calculate which
909 register holds the LSB. */
910 int lsb_reg;
911
912 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
913 || TYPE_CODE (valtype) == TYPE_CODE_UNION
914 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
915 && TYPE_LENGTH (valtype) > 8)
916 return RETURN_VALUE_STRUCT_CONVENTION;
917
918 if (TYPE_LENGTH (valtype) <= 2)
919 lsb_reg = 24;
920 else if (TYPE_LENGTH (valtype) <= 4)
921 lsb_reg = 22;
922 else if (TYPE_LENGTH (valtype) <= 8)
923 lsb_reg = 18;
924 else
f3574227 925 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
926
927 if (writebuf != NULL)
928 {
1bd0bb72
TG
929 for (i = 0; i < TYPE_LENGTH (valtype); i++)
930 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
931 }
932
933 if (readbuf != NULL)
934 {
1bd0bb72
TG
935 for (i = 0; i < TYPE_LENGTH (valtype); i++)
936 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
937 }
938
1bd0bb72 939 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
940}
941
942
4add8633
TR
943/* Put here the code to store, into fi->saved_regs, the addresses of
944 the saved registers of frame described by FRAME_INFO. This
945 includes special registers such as pc and fp saved in special ways
946 in the stack frame. sp is even more special: the address we return
0963b4bd 947 for it IS the sp for the next frame. */
8818c391 948
63807e1d 949static struct avr_unwind_cache *
94afd7a6 950avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 951 void **this_prologue_cache)
8818c391 952{
4e99ad69 953 CORE_ADDR start_pc, current_pc;
4add8633
TR
954 ULONGEST prev_sp;
955 ULONGEST this_base;
956 struct avr_unwind_cache *info;
4e99ad69
TG
957 struct gdbarch *gdbarch;
958 struct gdbarch_tdep *tdep;
4add8633
TR
959 int i;
960
4e99ad69
TG
961 if (*this_prologue_cache)
962 return *this_prologue_cache;
4add8633
TR
963
964 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 965 *this_prologue_cache = info;
94afd7a6 966 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
967
968 info->size = 0;
969 info->prologue_type = AVR_PROLOGUE_NONE;
970
4e99ad69
TG
971 start_pc = get_frame_func (this_frame);
972 current_pc = get_frame_pc (this_frame);
973 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
974 avr_scan_prologue (get_frame_arch (this_frame),
975 start_pc, current_pc, info);
4add8633 976
3b85b0f1
TR
977 if ((info->prologue_type != AVR_PROLOGUE_NONE)
978 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
979 {
980 ULONGEST high_base; /* High byte of FP */
981
982 /* The SP was moved to the FP. This indicates that a new frame
983 was created. Get THIS frame's FP value by unwinding it from
984 the next frame. */
94afd7a6 985 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 986 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
987 this_base += (high_base << 8);
988
989 /* The FP points at the last saved register. Adjust the FP back
990 to before the first saved register giving the SP. */
991 prev_sp = this_base + info->size;
992 }
8818c391 993 else
4add8633
TR
994 {
995 /* Assume that the FP is this frame's SP but with that pushed
996 stack space added back. */
94afd7a6 997 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
998 prev_sp = this_base + info->size;
999 }
1000
1001 /* Add 1 here to adjust for the post-decrement nature of the push
1002 instruction.*/
4e99ad69 1003 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1004 info->base = avr_make_saddr (this_base);
1005
4e99ad69
TG
1006 gdbarch = get_frame_arch (this_frame);
1007
4add8633 1008 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1009 offsets. */
4e99ad69
TG
1010 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1011 if (info->saved_regs[i].addr > 0)
1012 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1013
1014 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1015 the stack and is at the base of the frame. */
4add8633
TR
1016
1017 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1018 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1019
3b85b0f1
TR
1020 /* The previous frame's SP needed to be computed. Save the computed
1021 value. */
4e99ad69
TG
1022 tdep = gdbarch_tdep (gdbarch);
1023 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1024 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1025
4add8633 1026 return info;
8818c391
TR
1027}
1028
1029static CORE_ADDR
4add8633 1030avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1031{
4add8633
TR
1032 ULONGEST pc;
1033
11411de3 1034 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1035
1036 return avr_make_iaddr (pc);
8818c391
TR
1037}
1038
30244cd8
UW
1039static CORE_ADDR
1040avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1041{
1042 ULONGEST sp;
1043
11411de3 1044 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1045
1046 return avr_make_saddr (sp);
1047}
1048
4add8633
TR
1049/* Given a GDB frame, determine the address of the calling function's
1050 frame. This will be used to create a new GDB frame struct. */
8818c391 1051
4add8633 1052static void
94afd7a6 1053avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1054 void **this_prologue_cache,
1055 struct frame_id *this_id)
8818c391 1056{
4add8633 1057 struct avr_unwind_cache *info
94afd7a6 1058 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1059 CORE_ADDR base;
1060 CORE_ADDR func;
1061 struct frame_id id;
1062
1063 /* The FUNC is easy. */
94afd7a6 1064 func = get_frame_func (this_frame);
4add8633 1065
4add8633
TR
1066 /* Hopefully the prologue analysis either correctly determined the
1067 frame's base (which is the SP from the previous frame), or set
1068 that base to "NULL". */
1069 base = info->prev_sp;
1070 if (base == 0)
1071 return;
1072
1073 id = frame_id_build (base, func);
4add8633 1074 (*this_id) = id;
8818c391
TR
1075}
1076
94afd7a6
UW
1077static struct value *
1078avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1079 void **this_prologue_cache, int regnum)
8818c391 1080{
e17a4113
UW
1081 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1083 struct avr_unwind_cache *info
94afd7a6 1084 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1085
7d2552b4 1086 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1087 {
7d2552b4 1088 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1089 {
94afd7a6
UW
1090 /* Reading the return PC from the PC register is slightly
1091 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1092 but in reality, only two bytes (3 in upcoming mega256) are
1093 stored on the stack.
1094
1095 Also, note that the value on the stack is an addr to a word
1096 not a byte, so we will need to multiply it by two at some
1097 point.
1098
1099 And to confuse matters even more, the return address stored
1100 on the stack is in big endian byte order, even though most
0963b4bd 1101 everything else about the avr is little endian. Ick! */
94afd7a6 1102 ULONGEST pc;
4e99ad69 1103 int i;
e362b510 1104 gdb_byte buf[3];
4e99ad69
TG
1105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1107
7d2552b4
TG
1108 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1109 buf, tdep->call_length);
94afd7a6 1110
4e99ad69
TG
1111 /* Extract the PC read from memory as a big-endian. */
1112 pc = 0;
1113 for (i = 0; i < tdep->call_length; i++)
1114 pc = (pc << 8) | buf[i];
94afd7a6 1115
7d2552b4
TG
1116 if (regnum == AVR_PC_REGNUM)
1117 pc <<= 1;
1118
1119 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1120 }
94afd7a6
UW
1121
1122 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1123 }
94afd7a6
UW
1124
1125 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1126}
8818c391 1127
4add8633
TR
1128static const struct frame_unwind avr_frame_unwind = {
1129 NORMAL_FRAME,
8fbca658 1130 default_frame_unwind_stop_reason,
4add8633 1131 avr_frame_this_id,
94afd7a6
UW
1132 avr_frame_prev_register,
1133 NULL,
1134 default_frame_sniffer
4add8633
TR
1135};
1136
8818c391 1137static CORE_ADDR
94afd7a6 1138avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1139{
4add8633 1140 struct avr_unwind_cache *info
94afd7a6 1141 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1142
4add8633
TR
1143 return info->base;
1144}
8818c391 1145
4add8633
TR
1146static const struct frame_base avr_frame_base = {
1147 &avr_frame_unwind,
1148 avr_frame_base_address,
1149 avr_frame_base_address,
1150 avr_frame_base_address
1151};
ced15480 1152
94afd7a6
UW
1153/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1154 frame. The frame ID's base needs to match the TOS value saved by
1155 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1156
4add8633 1157static struct frame_id
94afd7a6 1158avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1159{
1160 ULONGEST base;
8818c391 1161
94afd7a6
UW
1162 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1163 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1164}
1165
4add8633 1166/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1167 order. The below implements a FILO (stack) to do this. */
8818c391 1168
4add8633
TR
1169struct stack_item
1170{
1171 int len;
1172 struct stack_item *prev;
1173 void *data;
1174};
8818c391 1175
4add8633 1176static struct stack_item *
0fd88904 1177push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1178{
4add8633
TR
1179 struct stack_item *si;
1180 si = xmalloc (sizeof (struct stack_item));
1181 si->data = xmalloc (len);
1182 si->len = len;
1183 si->prev = prev;
1184 memcpy (si->data, contents, len);
1185 return si;
8818c391
TR
1186}
1187
4add8633
TR
1188static struct stack_item *pop_stack_item (struct stack_item *si);
1189static struct stack_item *
1190pop_stack_item (struct stack_item *si)
8818c391 1191{
4add8633
TR
1192 struct stack_item *dead = si;
1193 si = si->prev;
1194 xfree (dead->data);
1195 xfree (dead);
1196 return si;
8818c391
TR
1197}
1198
8818c391
TR
1199/* Setup the function arguments for calling a function in the inferior.
1200
1201 On the AVR architecture, there are 18 registers (R25 to R8) which are
1202 dedicated for passing function arguments. Up to the first 18 arguments
1203 (depending on size) may go into these registers. The rest go on the stack.
1204
4add8633 1205 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1206 arguments, including char, have one free register above them). For example,
4add8633
TR
1207 an int in arg1 and a char in arg2 would be passed as such:
1208
1209 arg1 -> r25:r24
1210 arg2 -> r22
1211
1212 Arguments that are larger than 2 bytes will be split between two or more
1213 registers as available, but will NOT be split between a register and the
0963b4bd 1214 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1215 similar to the d10v). */
1216
1217/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1218 inaccurate.
8818c391
TR
1219
1220 An exceptional case exists for struct arguments (and possibly other
1221 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1222 not a multiple of WORDSIZE bytes. In this case the argument is never split
1223 between the registers and the stack, but instead is copied in its entirety
1224 onto the stack, AND also copied into as many registers as there is room
1225 for. In other words, space in registers permitting, two copies of the same
1226 argument are passed in. As far as I can tell, only the one on the stack is
1227 used, although that may be a function of the level of compiler
1228 optimization. I suspect this is a compiler bug. Arguments of these odd
1229 sizes are left-justified within the word (as opposed to arguments smaller
1230 than WORDSIZE bytes, which are right-justified).
1231
1232 If the function is to return an aggregate type such as a struct, the caller
1233 must allocate space into which the callee will copy the return value. In
1234 this case, a pointer to the return value location is passed into the callee
1235 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1236 registers R0 to R2. */
8818c391
TR
1237
1238static CORE_ADDR
7d9b040b 1239avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1240 struct regcache *regcache, CORE_ADDR bp_addr,
1241 int nargs, struct value **args, CORE_ADDR sp,
1242 int struct_return, CORE_ADDR struct_addr)
8818c391 1243{
e17a4113 1244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1245 int i;
e362b510 1246 gdb_byte buf[3];
6d1915d4 1247 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1248 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1249 int regnum = AVR_ARGN_REGNUM;
1250 struct stack_item *si = NULL;
8818c391 1251
4add8633 1252 if (struct_return)
8818c391 1253 {
fd6d6815
TG
1254 regcache_cooked_write_unsigned
1255 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1256 regcache_cooked_write_unsigned
1257 (regcache, regnum--, struct_addr & 0xff);
1258 /* SP being post decremented, we need to reserve one byte so that the
1259 return address won't overwrite the result (or vice-versa). */
1260 if (sp == struct_addr)
1261 sp--;
8818c391
TR
1262 }
1263
4add8633 1264 for (i = 0; i < nargs; i++)
8818c391 1265 {
4add8633
TR
1266 int last_regnum;
1267 int j;
1268 struct value *arg = args[i];
4991999e 1269 struct type *type = check_typedef (value_type (arg));
0fd88904 1270 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1271 int len = TYPE_LENGTH (type);
1272
0963b4bd 1273 /* Calculate the potential last register needed. */
4add8633
TR
1274 last_regnum = regnum - (len + (len & 1));
1275
0963b4bd
MS
1276 /* If there are registers available, use them. Once we start putting
1277 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1278 if ((si == NULL) && (last_regnum >= 8))
1279 {
1280 ULONGEST val;
1281
0963b4bd 1282 /* Skip a register for odd length args. */
4add8633
TR
1283 if (len & 1)
1284 regnum--;
1285
e17a4113 1286 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1287 for (j = 0; j < len; j++)
1288 regcache_cooked_write_unsigned
1289 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1290 }
0963b4bd 1291 /* No registers available, push the args onto the stack. */
4add8633
TR
1292 else
1293 {
0963b4bd 1294 /* From here on, we don't care about regnum. */
4add8633
TR
1295 si = push_stack_item (si, contents, len);
1296 }
8818c391 1297 }
909cd28e 1298
0963b4bd 1299 /* Push args onto the stack. */
4add8633
TR
1300 while (si)
1301 {
1302 sp -= si->len;
0963b4bd 1303 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1304 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1305 si = pop_stack_item (si);
1306 }
3605c34a 1307
4add8633
TR
1308 /* Set the return address. For the avr, the return address is the BP_ADDR.
1309 Need to push the return address onto the stack noting that it needs to be
1310 in big-endian order on the stack. */
6d1915d4
TG
1311 for (i = 1; i <= call_length; i++)
1312 {
1313 buf[call_length - i] = return_pc & 0xff;
1314 return_pc >>= 8;
1315 }
3605c34a 1316
6d1915d4 1317 sp -= call_length;
0963b4bd 1318 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1319 write_memory (sp + 1, buf, call_length);
3605c34a 1320
0963b4bd 1321 /* Finally, update the SP register. */
4add8633
TR
1322 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1323 avr_convert_saddr_to_raw (sp));
3605c34a 1324
6d1915d4
TG
1325 /* Return SP value for the dummy frame, where the return address hasn't been
1326 pushed. */
1327 return sp + call_length;
3605c34a
TR
1328}
1329
53f6a2c9
TG
1330/* Unfortunately dwarf2 register for SP is 32. */
1331
1332static int
1333avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1334{
1335 if (reg >= 0 && reg < 32)
1336 return reg;
1337 if (reg == 32)
1338 return AVR_SP_REGNUM;
1339
1340 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1341
1342 return -1;
1343}
1344
0963b4bd 1345/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1346
1347static struct gdbarch *
2e5ff58c
TR
1348avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1349{
2e5ff58c
TR
1350 struct gdbarch *gdbarch;
1351 struct gdbarch_tdep *tdep;
4e99ad69
TG
1352 struct gdbarch_list *best_arch;
1353 int call_length;
8818c391 1354
4e99ad69 1355 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1356 switch (info.bfd_arch_info->mach)
1357 {
1358 case bfd_mach_avr1:
9c97a070 1359 case bfd_mach_avrxmega1:
8818c391 1360 case bfd_mach_avr2:
9c97a070 1361 case bfd_mach_avrxmega2:
8818c391 1362 case bfd_mach_avr3:
9c97a070 1363 case bfd_mach_avrxmega3:
8818c391 1364 case bfd_mach_avr4:
9c97a070 1365 case bfd_mach_avrxmega4:
8818c391 1366 case bfd_mach_avr5:
9c97a070 1367 case bfd_mach_avrxmega5:
4e99ad69
TG
1368 default:
1369 call_length = 2;
1370 break;
1371 case bfd_mach_avr6:
9c97a070
PL
1372 case bfd_mach_avrxmega6:
1373 case bfd_mach_avrxmega7:
4e99ad69 1374 call_length = 3;
8818c391
TR
1375 break;
1376 }
1377
4e99ad69
TG
1378 /* If there is already a candidate, use it. */
1379 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1380 best_arch != NULL;
1381 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1382 {
1383 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1384 return best_arch->gdbarch;
1385 }
1386
0963b4bd 1387 /* None found, create a new architecture from the information provided. */
70ba0933 1388 tdep = XNEW (struct gdbarch_tdep);
4e99ad69
TG
1389 gdbarch = gdbarch_alloc (&info, tdep);
1390
1391 tdep->call_length = call_length;
1392
7d2552b4
TG
1393 /* Create a type for PC. We can't use builtin types here, as they may not
1394 be defined. */
1395 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1396 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1397 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1398 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1399 TYPE_UNSIGNED (tdep->pc_type) = 1;
1400
8818c391
TR
1401 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1403 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1404 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1405 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1406 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1407
1408 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1409 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1410 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1411
8da61cc4
DJ
1412 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1413 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1414 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1415
1416 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1417 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1418
1419 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1420
1421 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1422 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1423
1424 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1425 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1426
7d2552b4
TG
1427 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1428 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1429 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1430
4c8b6ae0 1431 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1432 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1433
4add8633 1434 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1435
53f6a2c9
TG
1436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1437
8818c391
TR
1438 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1439 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1440 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1441
8818c391 1442 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1443 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1444
909cd28e 1445 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1446
94afd7a6 1447 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1448 frame_base_set_default (gdbarch, &avr_frame_base);
1449
94afd7a6 1450 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1451
1452 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1453 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1454
8818c391
TR
1455 return gdbarch;
1456}
1457
1458/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1459 registers. If args parameter is not NULL, then the user has requested info
8818c391 1460 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1461 now]. The query string should be one of these forms:
8818c391
TR
1462
1463 "Ravr.io_reg" -> reply is "NN" number of io registers
1464
1465 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1466 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1467 where, <NAME> is a string, and VV is the hex value of the register.
1468
0963b4bd 1469 All io registers are 8-bit. */
8818c391
TR
1470
1471static void
1472avr_io_reg_read_command (char *args, int from_tty)
1473{
1e3ff5ad 1474 LONGEST bufsiz = 0;
13547ab6 1475 gdb_byte *buf;
001f13d8 1476 const char *bufstr;
2e5ff58c 1477 char query[400];
001f13d8 1478 const char *p;
2e5ff58c
TR
1479 unsigned int nreg = 0;
1480 unsigned int val;
1481 int i, j, k, step;
8818c391 1482
0963b4bd 1483 /* Find out how many io registers the target has. */
13547ab6
DJ
1484 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1485 "avr.io_reg", &buf);
001f13d8 1486 bufstr = (const char *) buf;
8818c391 1487
13547ab6 1488 if (bufsiz <= 0)
8818c391 1489 {
2e5ff58c 1490 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1491 _("ERR: info io_registers NOT supported "
1492 "by current target\n"));
8818c391
TR
1493 return;
1494 }
1495
001f13d8 1496 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1497 {
2e5ff58c 1498 fprintf_unfiltered (gdb_stderr,
edefbb7c 1499 _("Error fetching number of io registers\n"));
13547ab6 1500 xfree (buf);
8818c391
TR
1501 return;
1502 }
1503
13547ab6
DJ
1504 xfree (buf);
1505
2e5ff58c 1506 reinitialize_more_filter ();
8818c391 1507
edefbb7c 1508 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1509
1510 /* only fetch up to 8 registers at a time to keep the buffer small */
1511 step = 8;
1512
2e5ff58c 1513 for (i = 0; i < nreg; i += step)
8818c391 1514 {
91ccbfc1
TR
1515 /* how many registers this round? */
1516 j = step;
1517 if ((i+j) >= nreg)
1518 j = nreg - i; /* last block is less than 8 registers */
8818c391 1519
2e5ff58c 1520 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1521 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1522 query, &buf);
8818c391 1523
001f13d8 1524 p = (const char *) buf;
2e5ff58c
TR
1525 for (k = i; k < (i + j); k++)
1526 {
1527 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1528 {
1529 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1530 while ((*p != ';') && (*p != '\0'))
1531 p++;
1532 p++; /* skip over ';' */
1533 if (*p == '\0')
1534 break;
1535 }
1536 }
13547ab6
DJ
1537
1538 xfree (buf);
8818c391
TR
1539 }
1540}
1541
a78f21af
AC
1542extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1543
8818c391
TR
1544void
1545_initialize_avr_tdep (void)
1546{
1547 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1548
1549 /* Add a new command to allow the user to query the avr remote target for
1550 the values of the io space registers in a saner way than just using
0963b4bd 1551 `x/NNNb ADDR`. */
8818c391
TR
1552
1553 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1554 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1555
1556 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1557 _("query remote avr target for io space register values"),
1558 &infolist);
8818c391 1559}
This page took 0.84291 seconds and 4 git commands to generate.