* configure.ac: Switch license to GPLv3.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
6aba47ca
DJ
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4 2006, 2007 Free Software Foundation, Inc.
8818c391
TR
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
8818c391 22
de18ac1f 23/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
24
25/* Portions of this file were taken from the original gdb-4.18 patch developed
26 by Denis Chertykov, denisc@overta.ru */
27
28#include "defs.h"
4add8633
TR
29#include "frame.h"
30#include "frame-unwind.h"
31#include "frame-base.h"
32#include "trad-frame.h"
8818c391
TR
33#include "gdbcmd.h"
34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
8818c391
TR
36#include "inferior.h"
37#include "symfile.h"
38#include "arch-utils.h"
39#include "regcache.h"
5f8a3188 40#include "gdb_string.h"
a89aa300 41#include "dis-asm.h"
8818c391
TR
42
43/* AVR Background:
44
45 (AVR micros are pure Harvard Architecture processors.)
46
47 The AVR family of microcontrollers have three distinctly different memory
48 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
49 the most part to store program instructions. The sram is 8 bits wide and is
50 used for the stack and the heap. Some devices lack sram and some can have
51 an additional external sram added on as a peripheral.
52
53 The eeprom is 8 bits wide and is used to store data when the device is
54 powered down. Eeprom is not directly accessible, it can only be accessed
55 via io-registers using a special algorithm. Accessing eeprom via gdb's
56 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
57 not included at this time.
58
59 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
60 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
61 work, the remote target must be able to handle eeprom accesses and perform
62 the address translation.]
63
64 All three memory spaces have physical addresses beginning at 0x0. In
65 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
66 bytes instead of the 16 bit wide words used by the real device for the
67 Program Counter.
68
69 In order for remote targets to work correctly, extra bits must be added to
70 addresses before they are send to the target or received from the target
71 via the remote serial protocol. The extra bits are the MSBs and are used to
72 decode which memory space the address is referring to. */
73
74#undef XMALLOC
75#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
76
77#undef EXTRACT_INSN
78#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
79
80/* Constants: prefixed with AVR_ to avoid name space clashes */
81
82enum
2e5ff58c
TR
83{
84 AVR_REG_W = 24,
85 AVR_REG_X = 26,
86 AVR_REG_Y = 28,
87 AVR_FP_REGNUM = 28,
88 AVR_REG_Z = 30,
89
90 AVR_SREG_REGNUM = 32,
91 AVR_SP_REGNUM = 33,
92 AVR_PC_REGNUM = 34,
93
94 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
95 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
96
97 AVR_PC_REG_INDEX = 35, /* index into array of registers */
98
4add8633 99 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c
TR
100
101 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
102 AVR_MAX_PUSHES = 18,
103
104 /* Number of the last pushed register. r17 for current avr-gcc */
105 AVR_LAST_PUSHED_REGNUM = 17,
106
4add8633
TR
107 AVR_ARG1_REGNUM = 24, /* Single byte argument */
108 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
109
110 AVR_RET1_REGNUM = 24, /* Single byte return value */
111 AVR_RETN_REGNUM = 25, /* Multi byte return value */
112
2e5ff58c
TR
113 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
114 bits? Do these have to match the bfd vma values?. It sure would make
115 things easier in the future if they didn't need to match.
116
117 Note: I chose these values so as to be consistent with bfd vma
118 addresses.
119
120 TRoth/2002-04-08: There is already a conflict with very large programs
121 in the mega128. The mega128 has 128K instruction bytes (64K words),
122 thus the Most Significant Bit is 0x10000 which gets masked off my
123 AVR_MEM_MASK.
124
125 The problem manifests itself when trying to set a breakpoint in a
126 function which resides in the upper half of the instruction space and
127 thus requires a 17-bit address.
128
129 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
130 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
131 but could be for some remote targets by just adding the correct offset
132 to the address and letting the remote target handle the low-level
133 details of actually accessing the eeprom. */
134
135 AVR_IMEM_START = 0x00000000, /* INSN memory */
136 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 137#if 1
2e5ff58c
TR
138 /* No eeprom mask defined */
139 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 140#else
2e5ff58c
TR
141 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
142 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 143#endif
2e5ff58c 144};
8818c391 145
4add8633
TR
146/* Prologue types:
147
148 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
149 causes the generation of the CALL type prologues). */
150
151enum {
152 AVR_PROLOGUE_NONE, /* No prologue */
153 AVR_PROLOGUE_NORMAL,
154 AVR_PROLOGUE_CALL, /* -mcall-prologues */
155 AVR_PROLOGUE_MAIN,
156 AVR_PROLOGUE_INTR, /* interrupt handler */
157 AVR_PROLOGUE_SIG, /* signal handler */
158};
159
8818c391
TR
160/* Any function with a frame looks like this
161 ....... <-SP POINTS HERE
162 LOCALS1 <-FP POINTS HERE
163 LOCALS0
164 SAVED FP
165 SAVED R3
166 SAVED R2
167 RET PC
168 FIRST ARG
169 SECOND ARG */
170
4add8633 171struct avr_unwind_cache
2e5ff58c 172{
4add8633
TR
173 /* The previous frame's inner most stack address. Used as this
174 frame ID's stack_addr. */
175 CORE_ADDR prev_sp;
176 /* The frame's base, optionally used by the high-level debug info. */
177 CORE_ADDR base;
178 int size;
179 int prologue_type;
180 /* Table indicating the location of each and every register. */
181 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 182};
8818c391
TR
183
184struct gdbarch_tdep
2e5ff58c
TR
185{
186 /* FIXME: TRoth: is there anything to put here? */
187 int foo;
188};
8818c391
TR
189
190/* Lookup the name of a register given it's number. */
191
fa88f677 192static const char *
8818c391
TR
193avr_register_name (int regnum)
194{
2e5ff58c
TR
195 static char *register_names[] = {
196 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
197 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
198 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
199 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
200 "SREG", "SP", "PC"
201 };
202 if (regnum < 0)
203 return NULL;
204 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
205 return NULL;
206 return register_names[regnum];
207}
208
8818c391
TR
209/* Return the GDB type object for the "standard" data type
210 of data in register N. */
211
212static struct type *
866b76ea 213avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 214{
866b76ea
TR
215 if (reg_nr == AVR_PC_REGNUM)
216 return builtin_type_uint32;
866b76ea
TR
217 if (reg_nr == AVR_SP_REGNUM)
218 return builtin_type_void_data_ptr;
219 else
220 return builtin_type_uint8;
8818c391
TR
221}
222
223/* Instruction address checks and convertions. */
224
225static CORE_ADDR
226avr_make_iaddr (CORE_ADDR x)
227{
228 return ((x) | AVR_IMEM_START);
229}
230
8818c391
TR
231/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
232 devices are already up to 128KBytes of flash space.
233
234 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
235
236static CORE_ADDR
237avr_convert_iaddr_to_raw (CORE_ADDR x)
238{
239 return ((x) & 0xffffffff);
240}
241
242/* SRAM address checks and convertions. */
243
244static CORE_ADDR
245avr_make_saddr (CORE_ADDR x)
246{
247 return ((x) | AVR_SMEM_START);
248}
249
8818c391
TR
250static CORE_ADDR
251avr_convert_saddr_to_raw (CORE_ADDR x)
252{
253 return ((x) & 0xffffffff);
254}
255
256/* EEPROM address checks and convertions. I don't know if these will ever
257 actually be used, but I've added them just the same. TRoth */
258
259/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
260 programs in the mega128. */
261
262/* static CORE_ADDR */
263/* avr_make_eaddr (CORE_ADDR x) */
264/* { */
265/* return ((x) | AVR_EMEM_START); */
266/* } */
267
268/* static int */
269/* avr_eaddr_p (CORE_ADDR x) */
270/* { */
271/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
272/* } */
273
274/* static CORE_ADDR */
275/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
276/* { */
277/* return ((x) & 0xffffffff); */
278/* } */
279
280/* Convert from address to pointer and vice-versa. */
281
282static void
1f3a99d5 283avr_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391
TR
284{
285 /* Is it a code address? */
286 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
287 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
288 {
2e5ff58c 289 store_unsigned_integer (buf, TYPE_LENGTH (type),
4ea2465e 290 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
291 }
292 else
293 {
294 /* Strip off any upper segment bits. */
2e5ff58c
TR
295 store_unsigned_integer (buf, TYPE_LENGTH (type),
296 avr_convert_saddr_to_raw (addr));
8818c391
TR
297 }
298}
299
300static CORE_ADDR
1f3a99d5 301avr_pointer_to_address (struct type *type, const gdb_byte *buf)
8818c391 302{
7c0b4a20 303 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
8818c391 304
8818c391
TR
305 /* Is it a code address? */
306 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
307 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 308 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 309 return avr_make_iaddr (addr << 1);
8818c391
TR
310 else
311 return avr_make_saddr (addr);
312}
313
314static CORE_ADDR
61a1198a 315avr_read_pc (struct regcache *regcache)
8818c391 316{
8619218d 317 ULONGEST pc;
61a1198a
UW
318 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
319 return avr_make_iaddr (pc);
8818c391
TR
320}
321
322static void
61a1198a 323avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 324{
61a1198a
UW
325 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
326 avr_convert_iaddr_to_raw (val));
8818c391
TR
327}
328
4add8633
TR
329static int
330avr_scan_arg_moves (int vpc, unsigned char *prologue)
8818c391 331{
4add8633 332 unsigned short insn;
866b76ea 333
4add8633
TR
334 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
335 {
336 insn = EXTRACT_INSN (&prologue[vpc]);
337 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
338 continue;
339 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
340 continue;
341 else
342 break;
343 }
344
345 return vpc;
8818c391
TR
346}
347
4add8633 348/* Function: avr_scan_prologue
8818c391 349
4add8633 350 This function decodes an AVR function prologue to determine:
8818c391
TR
351 1) the size of the stack frame
352 2) which registers are saved on it
353 3) the offsets of saved regs
4add8633 354 This information is stored in the avr_unwind_cache structure.
8818c391 355
e3d8b004
TR
356 Some devices lack the sbiw instruction, so on those replace this:
357 sbiw r28, XX
358 with this:
359 subi r28,lo8(XX)
360 sbci r29,hi8(XX)
361
362 A typical AVR function prologue with a frame pointer might look like this:
363 push rXX ; saved regs
364 ...
365 push r28
366 push r29
367 in r28,__SP_L__
368 in r29,__SP_H__
369 sbiw r28,<LOCALS_SIZE>
370 in __tmp_reg__,__SREG__
8818c391 371 cli
e3d8b004 372 out __SP_H__,r29
72fab697
TR
373 out __SREG__,__tmp_reg__
374 out __SP_L__,r28
e3d8b004
TR
375
376 A typical AVR function prologue without a frame pointer might look like
377 this:
378 push rXX ; saved regs
379 ...
380
381 A main function prologue looks like this:
382 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
383 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
384 out __SP_H__,r29
385 out __SP_L__,r28
386
387 A signal handler prologue looks like this:
388 push __zero_reg__
389 push __tmp_reg__
390 in __tmp_reg__, __SREG__
391 push __tmp_reg__
392 clr __zero_reg__
393 push rXX ; save registers r18:r27, r30:r31
394 ...
395 push r28 ; save frame pointer
396 push r29
397 in r28, __SP_L__
398 in r29, __SP_H__
399 sbiw r28, <LOCALS_SIZE>
400 out __SP_H__, r29
401 out __SP_L__, r28
402
403 A interrupt handler prologue looks like this:
404 sei
405 push __zero_reg__
406 push __tmp_reg__
407 in __tmp_reg__, __SREG__
408 push __tmp_reg__
409 clr __zero_reg__
410 push rXX ; save registers r18:r27, r30:r31
411 ...
412 push r28 ; save frame pointer
413 push r29
414 in r28, __SP_L__
415 in r29, __SP_H__
416 sbiw r28, <LOCALS_SIZE>
417 cli
418 out __SP_H__, r29
419 sei
420 out __SP_L__, r28
421
422 A `-mcall-prologues' prologue looks like this (Note that the megas use a
423 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
424 32 bit insn and rjmp is a 16 bit insn):
425 ldi r26,lo8(<LOCALS_SIZE>)
426 ldi r27,hi8(<LOCALS_SIZE>)
427 ldi r30,pm_lo8(.L_foo_body)
428 ldi r31,pm_hi8(.L_foo_body)
429 rjmp __prologue_saves__+RRR
430 .L_foo_body: */
8818c391 431
4add8633
TR
432/* Not really part of a prologue, but still need to scan for it, is when a
433 function prologue moves values passed via registers as arguments to new
434 registers. In this case, all local variables live in registers, so there
435 may be some register saves. This is what it looks like:
436 movw rMM, rNN
437 ...
438
439 There could be multiple movw's. If the target doesn't have a movw insn, it
440 will use two mov insns. This could be done after any of the above prologue
441 types. */
442
443static CORE_ADDR
444avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
8818c391 445{
2e5ff58c
TR
446 int i;
447 unsigned short insn;
2e5ff58c 448 int scan_stage = 0;
8818c391 449 struct minimal_symbol *msymbol;
8818c391
TR
450 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
451 int vpc = 0;
452
4add8633
TR
453 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
454 reading in the bytes of the prologue. The problem is that the figuring
455 out where the end of the prologue is is a bit difficult. The old code
456 tried to do that, but failed quite often. */
457 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
8818c391
TR
458
459 /* Scanning main()'s prologue
460 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
461 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
462 out __SP_H__,r29
463 out __SP_L__,r28 */
464
4add8633 465 if (1)
8818c391
TR
466 {
467 CORE_ADDR locals;
2e5ff58c
TR
468 unsigned char img[] = {
469 0xde, 0xbf, /* out __SP_H__,r29 */
470 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
471 };
472
8818c391
TR
473 insn = EXTRACT_INSN (&prologue[vpc]);
474 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
475 if ((insn & 0xf0f0) == 0xe0c0)
476 {
477 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
478 insn = EXTRACT_INSN (&prologue[vpc + 2]);
479 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
480 if ((insn & 0xf0f0) == 0xe0d0)
481 {
482 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
483 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
484 {
4add8633
TR
485 info->prologue_type = AVR_PROLOGUE_MAIN;
486 info->base = locals;
487 return pc + 4;
2e5ff58c
TR
488 }
489 }
490 }
8818c391 491 }
2e5ff58c 492
4add8633
TR
493 /* Scanning `-mcall-prologues' prologue
494 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 495
e3d8b004 496 while (1) /* Using a while to avoid many goto's */
8818c391
TR
497 {
498 int loc_size;
499 int body_addr;
500 unsigned num_pushes;
4add8633 501 int pc_offset = 0;
2e5ff58c 502
8818c391
TR
503 insn = EXTRACT_INSN (&prologue[vpc]);
504 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
505 if ((insn & 0xf0f0) != 0xe0a0)
506 break;
8818c391 507 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 508 pc_offset += 2;
2e5ff58c 509
8818c391
TR
510 insn = EXTRACT_INSN (&prologue[vpc + 2]);
511 /* ldi r27,<LOCALS_SIZE> / 256 */
512 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 513 break;
8818c391 514 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 515 pc_offset += 2;
2e5ff58c 516
8818c391
TR
517 insn = EXTRACT_INSN (&prologue[vpc + 4]);
518 /* ldi r30,pm_lo8(.L_foo_body) */
519 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 520 break;
8818c391 521 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 522 pc_offset += 2;
8818c391
TR
523
524 insn = EXTRACT_INSN (&prologue[vpc + 6]);
525 /* ldi r31,pm_hi8(.L_foo_body) */
526 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 527 break;
8818c391 528 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 529 pc_offset += 2;
8818c391 530
8818c391
TR
531 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
532 if (!msymbol)
2e5ff58c 533 break;
8818c391 534
8818c391
TR
535 insn = EXTRACT_INSN (&prologue[vpc + 8]);
536 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
537 if ((insn & 0xf000) == 0xc000)
538 {
539 /* Extract PC relative offset from RJMP */
540 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
541 /* Convert offset to byte addressable mode */
542 i *= 2;
543 /* Destination address */
4add8633 544 i += pc + 10;
e3d8b004 545
4add8633 546 if (body_addr != (pc + 10)/2)
e3d8b004 547 break;
4add8633
TR
548
549 pc_offset += 2;
e3d8b004 550 }
e3d8b004
TR
551 else if ((insn & 0xfe0e) == 0x940c)
552 {
553 /* Extract absolute PC address from JMP */
554 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
555 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
556 /* Convert address to byte addressable mode */
557 i *= 2;
558
4add8633 559 if (body_addr != (pc + 12)/2)
e3d8b004 560 break;
4add8633
TR
561
562 pc_offset += 4;
e3d8b004
TR
563 }
564 else
565 break;
2e5ff58c 566
4add8633 567 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
568 Which is a pushes count in `-mcall-prologues' mode */
569 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
570
571 if (num_pushes > AVR_MAX_PUSHES)
4add8633 572 {
edefbb7c 573 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
574 num_pushes);
575 num_pushes = 0;
576 }
2e5ff58c 577
8818c391 578 if (num_pushes)
2e5ff58c
TR
579 {
580 int from;
4add8633
TR
581
582 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 583 if (num_pushes >= 2)
4add8633
TR
584 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
585
2e5ff58c
TR
586 i = 0;
587 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
588 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 589 info->saved_regs [from].addr = ++i;
2e5ff58c 590 }
4add8633
TR
591 info->size = loc_size + num_pushes;
592 info->prologue_type = AVR_PROLOGUE_CALL;
593
594 return pc + pc_offset;
8818c391
TR
595 }
596
4add8633
TR
597 /* Scan for the beginning of the prologue for an interrupt or signal
598 function. Note that we have to set the prologue type here since the
599 third stage of the prologue may not be present (e.g. no saved registered
600 or changing of the SP register). */
8818c391 601
4add8633 602 if (1)
8818c391 603 {
2e5ff58c
TR
604 unsigned char img[] = {
605 0x78, 0x94, /* sei */
606 0x1f, 0x92, /* push r1 */
607 0x0f, 0x92, /* push r0 */
608 0x0f, 0xb6, /* in r0,0x3f SREG */
609 0x0f, 0x92, /* push r0 */
610 0x11, 0x24 /* clr r1 */
8818c391
TR
611 };
612 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 613 {
4add8633 614 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 615 vpc += sizeof (img);
4add8633
TR
616 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
617 info->saved_regs[0].addr = 2;
618 info->saved_regs[1].addr = 1;
619 info->size += 3;
2e5ff58c 620 }
4add8633 621 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 622 {
4add8633
TR
623 info->prologue_type = AVR_PROLOGUE_SIG;
624 vpc += sizeof (img) - 2;
625 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
626 info->saved_regs[0].addr = 2;
627 info->saved_regs[1].addr = 1;
628 info->size += 3;
2e5ff58c 629 }
8818c391
TR
630 }
631
632 /* First stage of the prologue scanning.
4add8633 633 Scan pushes (saved registers) */
8818c391 634
4add8633 635 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
8818c391
TR
636 {
637 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
638 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
639 {
640 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
641 int regno = (insn & 0x1f0) >> 4;
642 info->size++;
643 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
644 scan_stage = 1;
645 }
8818c391 646 else
2e5ff58c 647 break;
8818c391
TR
648 }
649
4add8633
TR
650 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
651 fprintf_unfiltered (gdb_stderr,
edefbb7c 652 _("Hit end of prologue while scanning pushes\n"));
4add8633 653
8818c391
TR
654 /* Second stage of the prologue scanning.
655 Scan:
656 in r28,__SP_L__
657 in r29,__SP_H__ */
658
4add8633 659 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391 660 {
2e5ff58c
TR
661 unsigned char img[] = {
662 0xcd, 0xb7, /* in r28,__SP_L__ */
663 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
664 };
665 unsigned short insn1;
2e5ff58c 666
8818c391 667 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
668 {
669 vpc += 4;
2e5ff58c
TR
670 scan_stage = 2;
671 }
8818c391
TR
672 }
673
674 /* Third stage of the prologue scanning. (Really two stages)
675 Scan for:
676 sbiw r28,XX or subi r28,lo8(XX)
72fab697 677 sbci r29,hi8(XX)
8818c391
TR
678 in __tmp_reg__,__SREG__
679 cli
e3d8b004 680 out __SP_H__,r29
8818c391 681 out __SREG__,__tmp_reg__
e3d8b004 682 out __SP_L__,r28 */
8818c391 683
4add8633 684 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391
TR
685 {
686 int locals_size = 0;
2e5ff58c
TR
687 unsigned char img[] = {
688 0x0f, 0xb6, /* in r0,0x3f */
689 0xf8, 0x94, /* cli */
e3d8b004 690 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 691 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 692 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 693 };
2e5ff58c 694 unsigned char img_sig[] = {
e3d8b004
TR
695 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
696 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 697 };
2e5ff58c
TR
698 unsigned char img_int[] = {
699 0xf8, 0x94, /* cli */
e3d8b004 700 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 701 0x78, 0x94, /* sei */
e3d8b004 702 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 703 };
2e5ff58c 704
8818c391
TR
705 insn = EXTRACT_INSN (&prologue[vpc]);
706 vpc += 2;
2e5ff58c
TR
707 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
708 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
709 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
710 {
711 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
712 insn = EXTRACT_INSN (&prologue[vpc]);
713 vpc += 2;
714 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
715 }
8818c391 716 else
4add8633
TR
717 return pc + vpc;
718
719 /* Scan the last part of the prologue. May not be present for interrupt
720 or signal handler functions, which is why we set the prologue type
721 when we saw the beginning of the prologue previously. */
722
723 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
724 {
725 vpc += sizeof (img_sig);
726 }
727 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
728 {
729 vpc += sizeof (img_int);
730 }
731 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
732 {
733 info->prologue_type = AVR_PROLOGUE_NORMAL;
734 vpc += sizeof (img);
735 }
736
737 info->size += locals_size;
738
739 return pc + avr_scan_arg_moves (vpc, prologue);
8818c391 740 }
4add8633
TR
741
742 /* If we got this far, we could not scan the prologue, so just return the pc
743 of the frame plus an adjustment for argument move insns. */
744
745 return pc + avr_scan_arg_moves (vpc, prologue);;
8818c391
TR
746}
747
4add8633
TR
748static CORE_ADDR
749avr_skip_prologue (CORE_ADDR pc)
750{
751 CORE_ADDR func_addr, func_end;
752 CORE_ADDR prologue_end = pc;
8818c391 753
4add8633 754 /* See what the symbol table says */
8818c391 755
4add8633
TR
756 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
757 {
758 struct symtab_and_line sal;
759 struct avr_unwind_cache info = {0};
760 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
2e5ff58c 761
4add8633 762 info.saved_regs = saved_regs;
8818c391 763
4add8633
TR
764 /* Need to run the prologue scanner to figure out if the function has a
765 prologue and possibly skip over moving arguments passed via registers
766 to other registers. */
2e5ff58c 767
4add8633 768 prologue_end = avr_scan_prologue (pc, &info);
8818c391 769
3b85b0f1
TR
770 if (info.prologue_type == AVR_PROLOGUE_NONE)
771 return pc;
772 else
4add8633
TR
773 {
774 sal = find_pc_line (func_addr, 0);
8818c391 775
4add8633
TR
776 if (sal.line != 0 && sal.end < func_end)
777 return sal.end;
778 }
779 }
2e5ff58c 780
4add8633
TR
781/* Either we didn't find the start of this function (nothing we can do),
782 or there's no line info, or the line after the prologue is after
783 the end of the function (there probably isn't a prologue). */
2e5ff58c 784
4add8633
TR
785 return prologue_end;
786}
8818c391 787
4add8633
TR
788/* Not all avr devices support the BREAK insn. Those that don't should treat
789 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
790 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 791
4add8633
TR
792static const unsigned char *
793avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
794{
795 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
796 *lenptr = sizeof (avr_break_insn);
797 return avr_break_insn;
8818c391
TR
798}
799
4add8633
TR
800/* Given a return value in `regbuf' with a type `valtype',
801 extract and copy its value into `valbuf'.
802
803 Return values are always passed via registers r25:r24:... */
8818c391
TR
804
805static void
4add8633 806avr_extract_return_value (struct type *type, struct regcache *regcache,
1f3a99d5 807 gdb_byte *valbuf)
8818c391 808{
4add8633
TR
809 ULONGEST r24, r25;
810 ULONGEST c;
811 int len;
812 if (TYPE_LENGTH (type) == 1)
8818c391 813 {
4add8633
TR
814 regcache_cooked_read_unsigned (regcache, 24, &c);
815 store_unsigned_integer (valbuf, 1, c);
8818c391
TR
816 }
817 else
818 {
4add8633
TR
819 int i;
820 /* The MSB of the return value is always in r25, calculate which
821 register holds the LSB. */
822 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
8818c391 823
4add8633
TR
824 for (i=0; i< TYPE_LENGTH (type); i++)
825 {
826 regcache_cooked_read (regcache, lsb_reg + i,
827 (bfd_byte *) valbuf + i);
4add8633
TR
828 }
829 }
830}
8818c391 831
4add8633
TR
832/* Put here the code to store, into fi->saved_regs, the addresses of
833 the saved registers of frame described by FRAME_INFO. This
834 includes special registers such as pc and fp saved in special ways
835 in the stack frame. sp is even more special: the address we return
836 for it IS the sp for the next frame. */
8818c391 837
4add8633
TR
838struct avr_unwind_cache *
839avr_frame_unwind_cache (struct frame_info *next_frame,
840 void **this_prologue_cache)
8818c391 841{
4add8633
TR
842 CORE_ADDR pc;
843 ULONGEST prev_sp;
844 ULONGEST this_base;
845 struct avr_unwind_cache *info;
846 int i;
847
848 if ((*this_prologue_cache))
849 return (*this_prologue_cache);
850
851 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
852 (*this_prologue_cache) = info;
853 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
854
855 info->size = 0;
856 info->prologue_type = AVR_PROLOGUE_NONE;
857
93d42b30 858 pc = frame_func_unwind (next_frame, NORMAL_FRAME);
4add8633
TR
859
860 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
861 avr_scan_prologue (pc, info);
862
3b85b0f1
TR
863 if ((info->prologue_type != AVR_PROLOGUE_NONE)
864 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
865 {
866 ULONGEST high_base; /* High byte of FP */
867
868 /* The SP was moved to the FP. This indicates that a new frame
869 was created. Get THIS frame's FP value by unwinding it from
870 the next frame. */
871 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
872 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
873 this_base += (high_base << 8);
874
875 /* The FP points at the last saved register. Adjust the FP back
876 to before the first saved register giving the SP. */
877 prev_sp = this_base + info->size;
878 }
8818c391 879 else
4add8633
TR
880 {
881 /* Assume that the FP is this frame's SP but with that pushed
882 stack space added back. */
883 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
884 prev_sp = this_base + info->size;
885 }
886
887 /* Add 1 here to adjust for the post-decrement nature of the push
888 instruction.*/
889 info->prev_sp = avr_make_saddr (prev_sp+1);
890
891 info->base = avr_make_saddr (this_base);
892
893 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 894 offsets. */
f57d151a 895 for (i = 0; i < gdbarch_num_regs (current_gdbarch) - 1; i++)
4add8633
TR
896 if (info->saved_regs[i].addr)
897 {
898 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
899 }
900
901 /* Except for the main and startup code, the return PC is always saved on
902 the stack and is at the base of the frame. */
903
904 if (info->prologue_type != AVR_PROLOGUE_MAIN)
905 {
906 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
907 }
908
3b85b0f1
TR
909 /* The previous frame's SP needed to be computed. Save the computed
910 value. */
911 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
912
4add8633 913 return info;
8818c391
TR
914}
915
916static CORE_ADDR
4add8633 917avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 918{
4add8633
TR
919 ULONGEST pc;
920
921 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
922
923 return avr_make_iaddr (pc);
8818c391
TR
924}
925
30244cd8
UW
926static CORE_ADDR
927avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
928{
929 ULONGEST sp;
930
931 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &sp);
932
933 return avr_make_saddr (sp);
934}
935
4add8633
TR
936/* Given a GDB frame, determine the address of the calling function's
937 frame. This will be used to create a new GDB frame struct. */
8818c391 938
4add8633
TR
939static void
940avr_frame_this_id (struct frame_info *next_frame,
941 void **this_prologue_cache,
942 struct frame_id *this_id)
8818c391 943{
4add8633
TR
944 struct avr_unwind_cache *info
945 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
946 CORE_ADDR base;
947 CORE_ADDR func;
948 struct frame_id id;
949
950 /* The FUNC is easy. */
93d42b30 951 func = frame_func_unwind (next_frame, NORMAL_FRAME);
4add8633 952
4add8633
TR
953 /* Hopefully the prologue analysis either correctly determined the
954 frame's base (which is the SP from the previous frame), or set
955 that base to "NULL". */
956 base = info->prev_sp;
957 if (base == 0)
958 return;
959
960 id = frame_id_build (base, func);
4add8633 961 (*this_id) = id;
8818c391
TR
962}
963
4add8633
TR
964static void
965avr_frame_prev_register (struct frame_info *next_frame,
966 void **this_prologue_cache,
967 int regnum, int *optimizedp,
968 enum lval_type *lvalp, CORE_ADDR *addrp,
1f3a99d5 969 int *realnump, gdb_byte *bufferp)
8818c391 970{
4add8633
TR
971 struct avr_unwind_cache *info
972 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
8818c391 973
3b85b0f1
TR
974 if (regnum == AVR_PC_REGNUM)
975 {
976 if (trad_frame_addr_p (info->saved_regs, regnum))
977 {
978 *optimizedp = 0;
979 *lvalp = lval_memory;
980 *addrp = info->saved_regs[regnum].addr;
981 *realnump = -1;
982 if (bufferp != NULL)
983 {
984 /* Reading the return PC from the PC register is slightly
985 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
986 but in reality, only two bytes (3 in upcoming mega256) are
987 stored on the stack.
988
989 Also, note that the value on the stack is an addr to a word
990 not a byte, so we will need to multiply it by two at some
991 point.
992
993 And to confuse matters even more, the return address stored
994 on the stack is in big endian byte order, even though most
995 everything else about the avr is little endian. Ick! */
996
997 /* FIXME: number of bytes read here will need updated for the
998 mega256 when it is available. */
999
1000 ULONGEST pc;
1001 unsigned char tmp;
1002 unsigned char buf[2];
1003
1004 read_memory (info->saved_regs[regnum].addr, buf, 2);
1005
1006 /* Convert the PC read from memory as a big-endian to
1007 little-endian order. */
1008 tmp = buf[0];
1009 buf[0] = buf[1];
1010 buf[1] = tmp;
1011
1012 pc = (extract_unsigned_integer (buf, 2) * 2);
1013 store_unsigned_integer (bufferp,
1014 register_size (current_gdbarch, regnum),
1015 pc);
1016 }
1017 }
1018 }
1019 else
1f67027d
AC
1020 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1021 optimizedp, lvalp, addrp, realnump, bufferp);
4add8633 1022}
8818c391 1023
4add8633
TR
1024static const struct frame_unwind avr_frame_unwind = {
1025 NORMAL_FRAME,
1026 avr_frame_this_id,
1027 avr_frame_prev_register
1028};
1029
1030const struct frame_unwind *
336d1bba 1031avr_frame_sniffer (struct frame_info *next_frame)
4add8633
TR
1032{
1033 return &avr_frame_unwind;
8818c391
TR
1034}
1035
1036static CORE_ADDR
4add8633 1037avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
8818c391 1038{
4add8633
TR
1039 struct avr_unwind_cache *info
1040 = avr_frame_unwind_cache (next_frame, this_cache);
8818c391 1041
4add8633
TR
1042 return info->base;
1043}
8818c391 1044
4add8633
TR
1045static const struct frame_base avr_frame_base = {
1046 &avr_frame_unwind,
1047 avr_frame_base_address,
1048 avr_frame_base_address,
1049 avr_frame_base_address
1050};
ced15480 1051
4add8633
TR
1052/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1053 dummy frame. The frame ID's base needs to match the TOS value
1054 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1055 breakpoint. */
8818c391 1056
4add8633
TR
1057static struct frame_id
1058avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1059{
1060 ULONGEST base;
8818c391 1061
4add8633
TR
1062 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1063 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
8818c391
TR
1064}
1065
4add8633
TR
1066/* When arguments must be pushed onto the stack, they go on in reverse
1067 order. The below implements a FILO (stack) to do this. */
8818c391 1068
4add8633
TR
1069struct stack_item
1070{
1071 int len;
1072 struct stack_item *prev;
1073 void *data;
1074};
8818c391 1075
4add8633 1076static struct stack_item *
0fd88904 1077push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1078{
4add8633
TR
1079 struct stack_item *si;
1080 si = xmalloc (sizeof (struct stack_item));
1081 si->data = xmalloc (len);
1082 si->len = len;
1083 si->prev = prev;
1084 memcpy (si->data, contents, len);
1085 return si;
8818c391
TR
1086}
1087
4add8633
TR
1088static struct stack_item *pop_stack_item (struct stack_item *si);
1089static struct stack_item *
1090pop_stack_item (struct stack_item *si)
8818c391 1091{
4add8633
TR
1092 struct stack_item *dead = si;
1093 si = si->prev;
1094 xfree (dead->data);
1095 xfree (dead);
1096 return si;
8818c391
TR
1097}
1098
8818c391
TR
1099/* Setup the function arguments for calling a function in the inferior.
1100
1101 On the AVR architecture, there are 18 registers (R25 to R8) which are
1102 dedicated for passing function arguments. Up to the first 18 arguments
1103 (depending on size) may go into these registers. The rest go on the stack.
1104
4add8633
TR
1105 All arguments are aligned to start in even-numbered registers (odd-sized
1106 arguments, including char, have one free register above them). For example,
1107 an int in arg1 and a char in arg2 would be passed as such:
1108
1109 arg1 -> r25:r24
1110 arg2 -> r22
1111
1112 Arguments that are larger than 2 bytes will be split between two or more
1113 registers as available, but will NOT be split between a register and the
1114 stack. Arguments that go onto the stack are pushed last arg first (this is
1115 similar to the d10v). */
1116
1117/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1118 inaccurate.
8818c391
TR
1119
1120 An exceptional case exists for struct arguments (and possibly other
1121 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1122 not a multiple of WORDSIZE bytes. In this case the argument is never split
1123 between the registers and the stack, but instead is copied in its entirety
1124 onto the stack, AND also copied into as many registers as there is room
1125 for. In other words, space in registers permitting, two copies of the same
1126 argument are passed in. As far as I can tell, only the one on the stack is
1127 used, although that may be a function of the level of compiler
1128 optimization. I suspect this is a compiler bug. Arguments of these odd
1129 sizes are left-justified within the word (as opposed to arguments smaller
1130 than WORDSIZE bytes, which are right-justified).
1131
1132 If the function is to return an aggregate type such as a struct, the caller
1133 must allocate space into which the callee will copy the return value. In
1134 this case, a pointer to the return value location is passed into the callee
1135 in register R0, which displaces one of the other arguments passed in via
1136 registers R0 to R2. */
1137
1138static CORE_ADDR
7d9b040b 1139avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1140 struct regcache *regcache, CORE_ADDR bp_addr,
1141 int nargs, struct value **args, CORE_ADDR sp,
1142 int struct_return, CORE_ADDR struct_addr)
8818c391 1143{
4add8633
TR
1144 int i;
1145 unsigned char buf[2];
1146 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1147 int regnum = AVR_ARGN_REGNUM;
1148 struct stack_item *si = NULL;
8818c391 1149
8818c391 1150#if 0
4add8633
TR
1151 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1152 if (struct_return)
8818c391 1153 {
4add8633 1154 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
9c9acae0
UW
1155 regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff);
1156 regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff);
8818c391 1157 }
4add8633 1158#endif
8818c391 1159
4add8633 1160 for (i = 0; i < nargs; i++)
8818c391 1161 {
4add8633
TR
1162 int last_regnum;
1163 int j;
1164 struct value *arg = args[i];
4991999e 1165 struct type *type = check_typedef (value_type (arg));
0fd88904 1166 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1167 int len = TYPE_LENGTH (type);
1168
1169 /* Calculate the potential last register needed. */
1170 last_regnum = regnum - (len + (len & 1));
1171
1172 /* If there are registers available, use them. Once we start putting
1173 stuff on the stack, all subsequent args go on stack. */
1174 if ((si == NULL) && (last_regnum >= 8))
1175 {
1176 ULONGEST val;
1177
1178 /* Skip a register for odd length args. */
1179 if (len & 1)
1180 regnum--;
1181
1182 val = extract_unsigned_integer (contents, len);
1183 for (j=0; j<len; j++)
1184 {
1185 regcache_cooked_write_unsigned (regcache, regnum--,
1186 val >> (8*(len-j-1)));
1187 }
1188 }
1189 /* No registers available, push the args onto the stack. */
1190 else
1191 {
1192 /* From here on, we don't care about regnum. */
1193 si = push_stack_item (si, contents, len);
1194 }
8818c391 1195 }
909cd28e 1196
4add8633
TR
1197 /* Push args onto the stack. */
1198 while (si)
1199 {
1200 sp -= si->len;
1201 /* Add 1 to sp here to account for post decr nature of pushes. */
1202 write_memory (sp+1, si->data, si->len);
1203 si = pop_stack_item (si);
1204 }
3605c34a 1205
4add8633
TR
1206 /* Set the return address. For the avr, the return address is the BP_ADDR.
1207 Need to push the return address onto the stack noting that it needs to be
1208 in big-endian order on the stack. */
1209 buf[0] = (return_pc >> 8) & 0xff;
1210 buf[1] = return_pc & 0xff;
3605c34a 1211
4add8633
TR
1212 sp -= 2;
1213 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
3605c34a 1214
4add8633
TR
1215 /* Finally, update the SP register. */
1216 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1217 avr_convert_saddr_to_raw (sp));
3605c34a 1218
4add8633 1219 return sp;
3605c34a
TR
1220}
1221
8818c391
TR
1222/* Initialize the gdbarch structure for the AVR's. */
1223
1224static struct gdbarch *
2e5ff58c
TR
1225avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1226{
2e5ff58c
TR
1227 struct gdbarch *gdbarch;
1228 struct gdbarch_tdep *tdep;
8818c391
TR
1229
1230 /* Find a candidate among the list of pre-declared architectures. */
1231 arches = gdbarch_list_lookup_by_info (arches, &info);
1232 if (arches != NULL)
1233 return arches->gdbarch;
1234
1235 /* None found, create a new architecture from the information provided. */
1236 tdep = XMALLOC (struct gdbarch_tdep);
1237 gdbarch = gdbarch_alloc (&info, tdep);
1238
1239 /* If we ever need to differentiate the device types, do it here. */
1240 switch (info.bfd_arch_info->mach)
1241 {
1242 case bfd_mach_avr1:
1243 case bfd_mach_avr2:
1244 case bfd_mach_avr3:
1245 case bfd_mach_avr4:
1246 case bfd_mach_avr5:
1247 break;
1248 }
1249
1250 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1251 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1252 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1253 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1254 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1255 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1256
1257 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1258 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1259 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1260
8da61cc4
DJ
1261 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1262 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1263 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1264
1265 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1266 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1267
1268 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1269
1270 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1271 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1272
1273 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1274 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1275
3605c34a 1276 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1277 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1278
4add8633 1279 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391
TR
1280
1281 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1282 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8818c391 1283
8818c391 1284 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1285 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1286
909cd28e 1287 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1288
336d1bba 1289 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
4add8633
TR
1290 frame_base_set_default (gdbarch, &avr_frame_base);
1291
1292 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1293
1294 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1295 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1296
8818c391
TR
1297 return gdbarch;
1298}
1299
1300/* Send a query request to the avr remote target asking for values of the io
1301 registers. If args parameter is not NULL, then the user has requested info
1302 on a specific io register [This still needs implemented and is ignored for
1303 now]. The query string should be one of these forms:
1304
1305 "Ravr.io_reg" -> reply is "NN" number of io registers
1306
1307 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1308 registers to be read. The reply should be "<NAME>,VV;" for each io register
1309 where, <NAME> is a string, and VV is the hex value of the register.
1310
1311 All io registers are 8-bit. */
1312
1313static void
1314avr_io_reg_read_command (char *args, int from_tty)
1315{
1e3ff5ad 1316 LONGEST bufsiz = 0;
13547ab6 1317 gdb_byte *buf;
2e5ff58c
TR
1318 char query[400];
1319 char *p;
1320 unsigned int nreg = 0;
1321 unsigned int val;
1322 int i, j, k, step;
8818c391 1323
8818c391 1324 /* Find out how many io registers the target has. */
13547ab6
DJ
1325 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1326 "avr.io_reg", &buf);
8818c391 1327
13547ab6 1328 if (bufsiz <= 0)
8818c391 1329 {
2e5ff58c 1330 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1331 _("ERR: info io_registers NOT supported "
1332 "by current target\n"));
8818c391
TR
1333 return;
1334 }
1335
2e5ff58c 1336 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1337 {
2e5ff58c 1338 fprintf_unfiltered (gdb_stderr,
edefbb7c 1339 _("Error fetching number of io registers\n"));
13547ab6 1340 xfree (buf);
8818c391
TR
1341 return;
1342 }
1343
13547ab6
DJ
1344 xfree (buf);
1345
2e5ff58c 1346 reinitialize_more_filter ();
8818c391 1347
edefbb7c 1348 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1349
1350 /* only fetch up to 8 registers at a time to keep the buffer small */
1351 step = 8;
1352
2e5ff58c 1353 for (i = 0; i < nreg; i += step)
8818c391 1354 {
91ccbfc1
TR
1355 /* how many registers this round? */
1356 j = step;
1357 if ((i+j) >= nreg)
1358 j = nreg - i; /* last block is less than 8 registers */
8818c391 1359
2e5ff58c 1360 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1361 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1362 query, &buf);
8818c391
TR
1363
1364 p = buf;
2e5ff58c
TR
1365 for (k = i; k < (i + j); k++)
1366 {
1367 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1368 {
1369 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1370 while ((*p != ';') && (*p != '\0'))
1371 p++;
1372 p++; /* skip over ';' */
1373 if (*p == '\0')
1374 break;
1375 }
1376 }
13547ab6
DJ
1377
1378 xfree (buf);
8818c391
TR
1379 }
1380}
1381
a78f21af
AC
1382extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1383
8818c391
TR
1384void
1385_initialize_avr_tdep (void)
1386{
1387 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1388
1389 /* Add a new command to allow the user to query the avr remote target for
1390 the values of the io space registers in a saner way than just using
1391 `x/NNNb ADDR`. */
1392
1393 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1394 io_registers' to signify it is not available on other platforms. */
1395
1396 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1397 _("query remote avr target for io space register values"),
1398 &infolist);
8818c391 1399}
This page took 0.596544 seconds and 4 git commands to generate.