Add two callback data casts
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
32d0add0 3 Copyright (C) 1996-2015 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
a89aa300 37#include "dis-asm.h"
77e371c0 38#include "objfiles.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
0963b4bd 61 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
0963b4bd
MS
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
8818c391 70
8818c391
TR
71/* Constants: prefixed with AVR_ to avoid name space clashes */
72
487d9753
PL
73/* Address space flags */
74
75/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
76 space. */
77
78#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
79#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
81
82
8818c391 83enum
2e5ff58c
TR
84{
85 AVR_REG_W = 24,
86 AVR_REG_X = 26,
87 AVR_REG_Y = 28,
88 AVR_FP_REGNUM = 28,
89 AVR_REG_Z = 30,
90
91 AVR_SREG_REGNUM = 32,
92 AVR_SP_REGNUM = 33,
93 AVR_PC_REGNUM = 34,
94
95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
97
7d2552b4
TG
98 /* Pseudo registers. */
99 AVR_PSEUDO_PC_REGNUM = 35,
100 AVR_NUM_PSEUDO_REGS = 1,
101
2e5ff58c
TR
102 AVR_PC_REG_INDEX = 35, /* index into array of registers */
103
4add8633 104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 105
0963b4bd 106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
107 AVR_MAX_PUSHES = 18,
108
0963b4bd 109 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
110 AVR_LAST_PUSHED_REGNUM = 17,
111
4add8633
TR
112 AVR_ARG1_REGNUM = 24, /* Single byte argument */
113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
114
115 AVR_RET1_REGNUM = 24, /* Single byte return value */
116 AVR_RETN_REGNUM = 25, /* Multi byte return value */
117
2e5ff58c 118 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 119 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
120 things easier in the future if they didn't need to match.
121
122 Note: I chose these values so as to be consistent with bfd vma
123 addresses.
124
125 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 126 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
127 thus the Most Significant Bit is 0x10000 which gets masked off my
128 AVR_MEM_MASK.
129
130 The problem manifests itself when trying to set a breakpoint in a
131 function which resides in the upper half of the instruction space and
132 thus requires a 17-bit address.
133
134 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 135 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
136 but could be for some remote targets by just adding the correct offset
137 to the address and letting the remote target handle the low-level
0963b4bd 138 details of actually accessing the eeprom. */
2e5ff58c
TR
139
140 AVR_IMEM_START = 0x00000000, /* INSN memory */
141 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 142#if 1
2e5ff58c
TR
143 /* No eeprom mask defined */
144 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 145#else
2e5ff58c
TR
146 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
147 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 148#endif
2e5ff58c 149};
8818c391 150
4add8633
TR
151/* Prologue types:
152
153 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
154 causes the generation of the CALL type prologues). */
155
156enum {
157 AVR_PROLOGUE_NONE, /* No prologue */
158 AVR_PROLOGUE_NORMAL,
159 AVR_PROLOGUE_CALL, /* -mcall-prologues */
160 AVR_PROLOGUE_MAIN,
161 AVR_PROLOGUE_INTR, /* interrupt handler */
162 AVR_PROLOGUE_SIG, /* signal handler */
163};
164
8818c391
TR
165/* Any function with a frame looks like this
166 ....... <-SP POINTS HERE
167 LOCALS1 <-FP POINTS HERE
168 LOCALS0
169 SAVED FP
170 SAVED R3
171 SAVED R2
172 RET PC
173 FIRST ARG
174 SECOND ARG */
175
4add8633 176struct avr_unwind_cache
2e5ff58c 177{
4add8633
TR
178 /* The previous frame's inner most stack address. Used as this
179 frame ID's stack_addr. */
180 CORE_ADDR prev_sp;
181 /* The frame's base, optionally used by the high-level debug info. */
182 CORE_ADDR base;
183 int size;
184 int prologue_type;
185 /* Table indicating the location of each and every register. */
186 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 187};
8818c391
TR
188
189struct gdbarch_tdep
2e5ff58c 190{
4e99ad69 191 /* Number of bytes stored to the stack by call instructions.
9c97a070 192 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 193 int call_length;
7d2552b4
TG
194
195 /* Type for void. */
196 struct type *void_type;
197 /* Type for a function returning void. */
198 struct type *func_void_type;
199 /* Type for a pointer to a function. Used for the type of PC. */
200 struct type *pc_type;
2e5ff58c 201};
8818c391 202
0963b4bd 203/* Lookup the name of a register given it's number. */
8818c391 204
fa88f677 205static const char *
d93859e2 206avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 207{
4e99ad69 208 static const char * const register_names[] = {
2e5ff58c
TR
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
211 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
212 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
213 "SREG", "SP", "PC2",
214 "pc"
8818c391
TR
215 };
216 if (regnum < 0)
217 return NULL;
218 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
219 return NULL;
220 return register_names[regnum];
221}
222
8818c391
TR
223/* Return the GDB type object for the "standard" data type
224 of data in register N. */
225
226static struct type *
866b76ea 227avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 228{
866b76ea 229 if (reg_nr == AVR_PC_REGNUM)
df4df182 230 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
231 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
232 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 233 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 234 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 235 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
236}
237
0963b4bd 238/* Instruction address checks and convertions. */
8818c391
TR
239
240static CORE_ADDR
241avr_make_iaddr (CORE_ADDR x)
242{
243 return ((x) | AVR_IMEM_START);
244}
245
0963b4bd 246/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
247 devices are already up to 128KBytes of flash space.
248
0963b4bd 249 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
250
251static CORE_ADDR
252avr_convert_iaddr_to_raw (CORE_ADDR x)
253{
254 return ((x) & 0xffffffff);
255}
256
0963b4bd 257/* SRAM address checks and convertions. */
8818c391
TR
258
259static CORE_ADDR
260avr_make_saddr (CORE_ADDR x)
261{
ee143e81
TG
262 /* Return 0 for NULL. */
263 if (x == 0)
264 return 0;
265
8818c391
TR
266 return ((x) | AVR_SMEM_START);
267}
268
8818c391
TR
269static CORE_ADDR
270avr_convert_saddr_to_raw (CORE_ADDR x)
271{
272 return ((x) & 0xffffffff);
273}
274
0963b4bd
MS
275/* EEPROM address checks and convertions. I don't know if these will ever
276 actually be used, but I've added them just the same. TRoth */
8818c391
TR
277
278/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 279 programs in the mega128. */
8818c391
TR
280
281/* static CORE_ADDR */
282/* avr_make_eaddr (CORE_ADDR x) */
283/* { */
284/* return ((x) | AVR_EMEM_START); */
285/* } */
286
287/* static int */
288/* avr_eaddr_p (CORE_ADDR x) */
289/* { */
290/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
291/* } */
292
293/* static CORE_ADDR */
294/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
295/* { */
296/* return ((x) & 0xffffffff); */
297/* } */
298
0963b4bd 299/* Convert from address to pointer and vice-versa. */
8818c391
TR
300
301static void
9898f801
UW
302avr_address_to_pointer (struct gdbarch *gdbarch,
303 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 304{
e17a4113
UW
305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
306
487d9753
PL
307 /* Is it a data address in flash? */
308 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
309 {
7d0d9d2b 310 /* A data pointer in flash is byte addressed. */
487d9753
PL
311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
312 avr_convert_iaddr_to_raw (addr));
313 }
8818c391 314 /* Is it a code address? */
487d9753
PL
315 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
8818c391 317 {
7d0d9d2b
PL
318 /* A code pointer is word (16 bits) addressed. We shift the address down
319 by 1 bit to convert it to a pointer. */
e17a4113 320 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 321 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
322 }
323 else
324 {
325 /* Strip off any upper segment bits. */
e17a4113 326 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 327 avr_convert_saddr_to_raw (addr));
8818c391
TR
328 }
329}
330
331static CORE_ADDR
9898f801
UW
332avr_pointer_to_address (struct gdbarch *gdbarch,
333 struct type *type, const gdb_byte *buf)
8818c391 334{
e17a4113
UW
335 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336 CORE_ADDR addr
337 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 338
487d9753
PL
339 /* Is it a data address in flash? */
340 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
341 {
342 /* A data pointer in flash is already byte addressed. */
343 return avr_make_iaddr (addr);
344 }
8818c391 345 /* Is it a code address? */
487d9753
PL
346 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
347 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
348 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
7d0d9d2b
PL
349 {
350 /* A code pointer is word (16 bits) addressed so we shift it up
351 by 1 bit to convert it to an address. */
352 return avr_make_iaddr (addr << 1);
353 }
8818c391
TR
354 else
355 return avr_make_saddr (addr);
356}
357
8a1d23b2
TG
358static CORE_ADDR
359avr_integer_to_address (struct gdbarch *gdbarch,
360 struct type *type, const gdb_byte *buf)
361{
362 ULONGEST addr = unpack_long (type, buf);
363
364 return avr_make_saddr (addr);
365}
366
8818c391 367static CORE_ADDR
61a1198a 368avr_read_pc (struct regcache *regcache)
8818c391 369{
8619218d 370 ULONGEST pc;
61a1198a
UW
371 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
372 return avr_make_iaddr (pc);
8818c391
TR
373}
374
375static void
61a1198a 376avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 377{
61a1198a 378 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
379 avr_convert_iaddr_to_raw (val));
380}
381
05d1431c 382static enum register_status
7d2552b4
TG
383avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
384 int regnum, gdb_byte *buf)
385{
386 ULONGEST val;
05d1431c 387 enum register_status status;
7d2552b4
TG
388
389 switch (regnum)
390 {
391 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
392 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
393 if (status != REG_VALID)
394 return status;
7d2552b4
TG
395 val >>= 1;
396 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 397 return status;
7d2552b4
TG
398 default:
399 internal_error (__FILE__, __LINE__, _("invalid regnum"));
400 }
401}
402
403static void
404avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
405 int regnum, const gdb_byte *buf)
406{
407 ULONGEST val;
408
409 switch (regnum)
410 {
411 case AVR_PSEUDO_PC_REGNUM:
412 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
413 val <<= 1;
414 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
415 break;
416 default:
417 internal_error (__FILE__, __LINE__, _("invalid regnum"));
418 }
8818c391
TR
419}
420
4add8633 421/* Function: avr_scan_prologue
8818c391 422
4add8633 423 This function decodes an AVR function prologue to determine:
8818c391
TR
424 1) the size of the stack frame
425 2) which registers are saved on it
426 3) the offsets of saved regs
4add8633 427 This information is stored in the avr_unwind_cache structure.
8818c391 428
e3d8b004
TR
429 Some devices lack the sbiw instruction, so on those replace this:
430 sbiw r28, XX
431 with this:
432 subi r28,lo8(XX)
433 sbci r29,hi8(XX)
434
435 A typical AVR function prologue with a frame pointer might look like this:
436 push rXX ; saved regs
437 ...
438 push r28
439 push r29
440 in r28,__SP_L__
441 in r29,__SP_H__
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
8818c391 444 cli
e3d8b004 445 out __SP_H__,r29
72fab697
TR
446 out __SREG__,__tmp_reg__
447 out __SP_L__,r28
e3d8b004
TR
448
449 A typical AVR function prologue without a frame pointer might look like
450 this:
451 push rXX ; saved regs
452 ...
453
454 A main function prologue looks like this:
455 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
456 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
457 out __SP_H__,r29
458 out __SP_L__,r28
459
460 A signal handler prologue looks like this:
461 push __zero_reg__
462 push __tmp_reg__
463 in __tmp_reg__, __SREG__
464 push __tmp_reg__
465 clr __zero_reg__
466 push rXX ; save registers r18:r27, r30:r31
467 ...
468 push r28 ; save frame pointer
469 push r29
470 in r28, __SP_L__
471 in r29, __SP_H__
472 sbiw r28, <LOCALS_SIZE>
473 out __SP_H__, r29
474 out __SP_L__, r28
475
476 A interrupt handler prologue looks like this:
477 sei
478 push __zero_reg__
479 push __tmp_reg__
480 in __tmp_reg__, __SREG__
481 push __tmp_reg__
482 clr __zero_reg__
483 push rXX ; save registers r18:r27, r30:r31
484 ...
485 push r28 ; save frame pointer
486 push r29
487 in r28, __SP_L__
488 in r29, __SP_H__
489 sbiw r28, <LOCALS_SIZE>
490 cli
491 out __SP_H__, r29
492 sei
493 out __SP_L__, r28
494
495 A `-mcall-prologues' prologue looks like this (Note that the megas use a
496 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
497 32 bit insn and rjmp is a 16 bit insn):
498 ldi r26,lo8(<LOCALS_SIZE>)
499 ldi r27,hi8(<LOCALS_SIZE>)
500 ldi r30,pm_lo8(.L_foo_body)
501 ldi r31,pm_hi8(.L_foo_body)
502 rjmp __prologue_saves__+RRR
503 .L_foo_body: */
8818c391 504
4add8633
TR
505/* Not really part of a prologue, but still need to scan for it, is when a
506 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
507 registers. In this case, all local variables live in registers, so there
508 may be some register saves. This is what it looks like:
4add8633
TR
509 movw rMM, rNN
510 ...
511
0963b4bd
MS
512 There could be multiple movw's. If the target doesn't have a movw insn, it
513 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
514 types. */
515
516static CORE_ADDR
e17a4113 517avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 518 struct avr_unwind_cache *info)
8818c391 519{
e17a4113 520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
521 int i;
522 unsigned short insn;
2e5ff58c 523 int scan_stage = 0;
3b7344d5 524 struct bound_minimal_symbol msymbol;
8818c391
TR
525 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
526 int vpc = 0;
4e99ad69
TG
527 int len;
528
529 len = pc_end - pc_beg;
530 if (len > AVR_MAX_PROLOGUE_SIZE)
531 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 532
4add8633 533 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
534 reading in the bytes of the prologue. The problem is that the figuring
535 out where the end of the prologue is is a bit difficult. The old code
4add8633 536 tried to do that, but failed quite often. */
4e99ad69 537 read_memory (pc_beg, prologue, len);
8818c391
TR
538
539 /* Scanning main()'s prologue
540 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
541 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
542 out __SP_H__,r29
543 out __SP_L__,r28 */
544
4e99ad69 545 if (len >= 4)
8818c391
TR
546 {
547 CORE_ADDR locals;
4e99ad69 548 static const unsigned char img[] = {
2e5ff58c
TR
549 0xde, 0xbf, /* out __SP_H__,r29 */
550 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
551 };
552
e17a4113 553 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 554 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
555 if ((insn & 0xf0f0) == 0xe0c0)
556 {
557 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 558 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
559 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
560 if ((insn & 0xf0f0) == 0xe0d0)
561 {
562 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
563 if (vpc + 4 + sizeof (img) < len
564 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 565 {
4add8633
TR
566 info->prologue_type = AVR_PROLOGUE_MAIN;
567 info->base = locals;
4e99ad69 568 return pc_beg + 4;
2e5ff58c
TR
569 }
570 }
571 }
8818c391 572 }
2e5ff58c 573
4add8633
TR
574 /* Scanning `-mcall-prologues' prologue
575 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 576
e3d8b004 577 while (1) /* Using a while to avoid many goto's */
8818c391
TR
578 {
579 int loc_size;
580 int body_addr;
581 unsigned num_pushes;
4add8633 582 int pc_offset = 0;
2e5ff58c 583
4e99ad69
TG
584 /* At least the fifth instruction must have been executed to
585 modify frame shape. */
586 if (len < 10)
587 break;
588
e17a4113 589 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 590 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
591 if ((insn & 0xf0f0) != 0xe0a0)
592 break;
8818c391 593 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 594 pc_offset += 2;
2e5ff58c 595
e17a4113 596 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
597 /* ldi r27,<LOCALS_SIZE> / 256 */
598 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 599 break;
8818c391 600 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 601 pc_offset += 2;
2e5ff58c 602
e17a4113 603 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
604 /* ldi r30,pm_lo8(.L_foo_body) */
605 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 606 break;
8818c391 607 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 608 pc_offset += 2;
8818c391 609
e17a4113 610 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
611 /* ldi r31,pm_hi8(.L_foo_body) */
612 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 613 break;
8818c391 614 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 615 pc_offset += 2;
8818c391 616
8818c391 617 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 618 if (!msymbol.minsym)
2e5ff58c 619 break;
8818c391 620
e17a4113 621 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 622 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
623 if ((insn & 0xf000) == 0xc000)
624 {
625 /* Extract PC relative offset from RJMP */
626 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
627 /* Convert offset to byte addressable mode */
628 i *= 2;
629 /* Destination address */
4e99ad69 630 i += pc_beg + 10;
e3d8b004 631
4e99ad69 632 if (body_addr != (pc_beg + 10)/2)
e3d8b004 633 break;
4add8633
TR
634
635 pc_offset += 2;
e3d8b004 636 }
e3d8b004
TR
637 else if ((insn & 0xfe0e) == 0x940c)
638 {
639 /* Extract absolute PC address from JMP */
640 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
641 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
642 & 0xffff));
e3d8b004
TR
643 /* Convert address to byte addressable mode */
644 i *= 2;
645
4e99ad69 646 if (body_addr != (pc_beg + 12)/2)
e3d8b004 647 break;
4add8633
TR
648
649 pc_offset += 4;
e3d8b004
TR
650 }
651 else
652 break;
2e5ff58c 653
4add8633 654 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 655 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 656 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
657
658 if (num_pushes > AVR_MAX_PUSHES)
4add8633 659 {
edefbb7c 660 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
661 num_pushes);
662 num_pushes = 0;
663 }
2e5ff58c 664
8818c391 665 if (num_pushes)
2e5ff58c
TR
666 {
667 int from;
4add8633
TR
668
669 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 670 if (num_pushes >= 2)
4add8633
TR
671 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
672
2e5ff58c
TR
673 i = 0;
674 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
675 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 676 info->saved_regs [from].addr = ++i;
2e5ff58c 677 }
4add8633
TR
678 info->size = loc_size + num_pushes;
679 info->prologue_type = AVR_PROLOGUE_CALL;
680
4e99ad69 681 return pc_beg + pc_offset;
8818c391
TR
682 }
683
4add8633
TR
684 /* Scan for the beginning of the prologue for an interrupt or signal
685 function. Note that we have to set the prologue type here since the
686 third stage of the prologue may not be present (e.g. no saved registered
687 or changing of the SP register). */
8818c391 688
4add8633 689 if (1)
8818c391 690 {
4e99ad69 691 static const unsigned char img[] = {
2e5ff58c
TR
692 0x78, 0x94, /* sei */
693 0x1f, 0x92, /* push r1 */
694 0x0f, 0x92, /* push r0 */
695 0x0f, 0xb6, /* in r0,0x3f SREG */
696 0x0f, 0x92, /* push r0 */
697 0x11, 0x24 /* clr r1 */
8818c391 698 };
4e99ad69
TG
699 if (len >= sizeof (img)
700 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 701 {
4add8633 702 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 703 vpc += sizeof (img);
4add8633
TR
704 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
705 info->saved_regs[0].addr = 2;
706 info->saved_regs[1].addr = 1;
707 info->size += 3;
2e5ff58c 708 }
4e99ad69
TG
709 else if (len >= sizeof (img) - 2
710 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 711 {
4add8633
TR
712 info->prologue_type = AVR_PROLOGUE_SIG;
713 vpc += sizeof (img) - 2;
714 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
715 info->saved_regs[0].addr = 2;
716 info->saved_regs[1].addr = 1;
243e2c5d 717 info->size += 2;
2e5ff58c 718 }
8818c391
TR
719 }
720
721 /* First stage of the prologue scanning.
4add8633 722 Scan pushes (saved registers) */
8818c391 723
4e99ad69 724 for (; vpc < len; vpc += 2)
8818c391 725 {
e17a4113 726 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
727 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
728 {
0963b4bd 729 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
730 int regno = (insn & 0x1f0) >> 4;
731 info->size++;
732 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
733 scan_stage = 1;
734 }
8818c391 735 else
2e5ff58c 736 break;
8818c391
TR
737 }
738
243e2c5d 739 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 740
1bd0bb72
TG
741 /* Handle static small stack allocation using rcall or push. */
742
743 while (scan_stage == 1 && vpc < len)
744 {
745 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
746 if (insn == 0xd000) /* rcall .+0 */
747 {
748 info->size += gdbarch_tdep (gdbarch)->call_length;
749 vpc += 2;
750 }
7588d2ec 751 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
752 {
753 info->size += 1;
754 vpc += 2;
755 }
756 else
757 break;
758 }
759
8818c391
TR
760 /* Second stage of the prologue scanning.
761 Scan:
762 in r28,__SP_L__
763 in r29,__SP_H__ */
764
4e99ad69 765 if (scan_stage == 1 && vpc < len)
8818c391 766 {
4e99ad69 767 static const unsigned char img[] = {
2e5ff58c
TR
768 0xcd, 0xb7, /* in r28,__SP_L__ */
769 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 770 };
2e5ff58c 771
4e99ad69
TG
772 if (vpc + sizeof (img) < len
773 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
774 {
775 vpc += 4;
2e5ff58c
TR
776 scan_stage = 2;
777 }
8818c391
TR
778 }
779
0963b4bd 780 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
781 Scan for:
782 sbiw r28,XX or subi r28,lo8(XX)
72fab697 783 sbci r29,hi8(XX)
8818c391
TR
784 in __tmp_reg__,__SREG__
785 cli
e3d8b004 786 out __SP_H__,r29
8818c391 787 out __SREG__,__tmp_reg__
e3d8b004 788 out __SP_L__,r28 */
8818c391 789
4e99ad69 790 if (scan_stage == 2 && vpc < len)
8818c391
TR
791 {
792 int locals_size = 0;
4e99ad69 793 static const unsigned char img[] = {
2e5ff58c
TR
794 0x0f, 0xb6, /* in r0,0x3f */
795 0xf8, 0x94, /* cli */
e3d8b004 796 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 797 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 798 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 799 };
4e99ad69 800 static const unsigned char img_sig[] = {
e3d8b004
TR
801 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
802 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 803 };
4e99ad69 804 static const unsigned char img_int[] = {
2e5ff58c 805 0xf8, 0x94, /* cli */
e3d8b004 806 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 807 0x78, 0x94, /* sei */
e3d8b004 808 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 809 };
2e5ff58c 810
e17a4113 811 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 812 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
813 {
814 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
815 vpc += 2;
816 }
2e5ff58c
TR
817 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
818 {
819 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 820 vpc += 2;
e17a4113 821 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 822 vpc += 2;
1bd0bb72 823 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 824 }
8818c391 825 else
1bd0bb72 826 return pc_beg + vpc;
4add8633 827
0963b4bd 828 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
829 or signal handler functions, which is why we set the prologue type
830 when we saw the beginning of the prologue previously. */
831
4e99ad69
TG
832 if (vpc + sizeof (img_sig) < len
833 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
834 {
835 vpc += sizeof (img_sig);
836 }
4e99ad69
TG
837 else if (vpc + sizeof (img_int) < len
838 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
839 {
840 vpc += sizeof (img_int);
841 }
4e99ad69
TG
842 if (vpc + sizeof (img) < len
843 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
844 {
845 info->prologue_type = AVR_PROLOGUE_NORMAL;
846 vpc += sizeof (img);
847 }
848
849 info->size += locals_size;
850
4e99ad69 851 /* Fall through. */
8818c391 852 }
4add8633
TR
853
854 /* If we got this far, we could not scan the prologue, so just return the pc
855 of the frame plus an adjustment for argument move insns. */
856
4e99ad69
TG
857 for (; vpc < len; vpc += 2)
858 {
e17a4113 859 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
860 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
861 continue;
862 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
863 continue;
864 else
865 break;
866 }
867
868 return pc_beg + vpc;
8818c391
TR
869}
870
4add8633 871static CORE_ADDR
6093d2eb 872avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
873{
874 CORE_ADDR func_addr, func_end;
8c201e54 875 CORE_ADDR post_prologue_pc;
8818c391 876
4add8633 877 /* See what the symbol table says */
8818c391 878
8c201e54
TG
879 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
880 return pc;
2e5ff58c 881
8c201e54
TG
882 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
883 if (post_prologue_pc != 0)
884 return max (pc, post_prologue_pc);
8818c391 885
8c201e54
TG
886 {
887 CORE_ADDR prologue_end = pc;
888 struct avr_unwind_cache info = {0};
889 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 890
8c201e54
TG
891 info.saved_regs = saved_regs;
892
893 /* Need to run the prologue scanner to figure out if the function has a
894 prologue and possibly skip over moving arguments passed via registers
895 to other registers. */
896
897 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
898
899 if (info.prologue_type != AVR_PROLOGUE_NONE)
900 return prologue_end;
901 }
2e5ff58c 902
4e99ad69
TG
903 /* Either we didn't find the start of this function (nothing we can do),
904 or there's no line info, or the line after the prologue is after
0963b4bd 905 the end of the function (there probably isn't a prologue). */
2e5ff58c 906
8c201e54 907 return pc;
4add8633 908}
8818c391 909
0963b4bd
MS
910/* Not all avr devices support the BREAK insn. Those that don't should treat
911 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
912 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 913
4add8633 914static const unsigned char *
0963b4bd
MS
915avr_breakpoint_from_pc (struct gdbarch *gdbarch,
916 CORE_ADDR *pcptr, int *lenptr)
4add8633 917{
4e99ad69 918 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
919 *lenptr = sizeof (avr_break_insn);
920 return avr_break_insn;
8818c391
TR
921}
922
4c8b6ae0
UW
923/* Determine, for architecture GDBARCH, how a return value of TYPE
924 should be returned. If it is supposed to be returned in registers,
925 and READBUF is non-zero, read the appropriate value from REGCACHE,
926 and copy it into READBUF. If WRITEBUF is non-zero, write the value
927 from WRITEBUF into REGCACHE. */
928
63807e1d 929static enum return_value_convention
6a3a010b 930avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
931 struct type *valtype, struct regcache *regcache,
932 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 933{
1bd0bb72
TG
934 int i;
935 /* Single byte are returned in r24.
936 Otherwise, the MSB of the return value is always in r25, calculate which
937 register holds the LSB. */
938 int lsb_reg;
939
940 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
941 || TYPE_CODE (valtype) == TYPE_CODE_UNION
942 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
943 && TYPE_LENGTH (valtype) > 8)
944 return RETURN_VALUE_STRUCT_CONVENTION;
945
946 if (TYPE_LENGTH (valtype) <= 2)
947 lsb_reg = 24;
948 else if (TYPE_LENGTH (valtype) <= 4)
949 lsb_reg = 22;
950 else if (TYPE_LENGTH (valtype) <= 8)
951 lsb_reg = 18;
952 else
f3574227 953 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
954
955 if (writebuf != NULL)
956 {
1bd0bb72
TG
957 for (i = 0; i < TYPE_LENGTH (valtype); i++)
958 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
959 }
960
961 if (readbuf != NULL)
962 {
1bd0bb72
TG
963 for (i = 0; i < TYPE_LENGTH (valtype); i++)
964 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
965 }
966
1bd0bb72 967 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
968}
969
970
4add8633
TR
971/* Put here the code to store, into fi->saved_regs, the addresses of
972 the saved registers of frame described by FRAME_INFO. This
973 includes special registers such as pc and fp saved in special ways
974 in the stack frame. sp is even more special: the address we return
0963b4bd 975 for it IS the sp for the next frame. */
8818c391 976
63807e1d 977static struct avr_unwind_cache *
94afd7a6 978avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 979 void **this_prologue_cache)
8818c391 980{
4e99ad69 981 CORE_ADDR start_pc, current_pc;
4add8633
TR
982 ULONGEST prev_sp;
983 ULONGEST this_base;
984 struct avr_unwind_cache *info;
4e99ad69
TG
985 struct gdbarch *gdbarch;
986 struct gdbarch_tdep *tdep;
4add8633
TR
987 int i;
988
4e99ad69 989 if (*this_prologue_cache)
9a3c8263 990 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
991
992 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 993 *this_prologue_cache = info;
94afd7a6 994 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
995
996 info->size = 0;
997 info->prologue_type = AVR_PROLOGUE_NONE;
998
4e99ad69
TG
999 start_pc = get_frame_func (this_frame);
1000 current_pc = get_frame_pc (this_frame);
1001 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1002 avr_scan_prologue (get_frame_arch (this_frame),
1003 start_pc, current_pc, info);
4add8633 1004
3b85b0f1
TR
1005 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1006 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1007 {
1008 ULONGEST high_base; /* High byte of FP */
1009
1010 /* The SP was moved to the FP. This indicates that a new frame
1011 was created. Get THIS frame's FP value by unwinding it from
1012 the next frame. */
94afd7a6 1013 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1014 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1015 this_base += (high_base << 8);
1016
1017 /* The FP points at the last saved register. Adjust the FP back
1018 to before the first saved register giving the SP. */
1019 prev_sp = this_base + info->size;
1020 }
8818c391 1021 else
4add8633
TR
1022 {
1023 /* Assume that the FP is this frame's SP but with that pushed
1024 stack space added back. */
94afd7a6 1025 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1026 prev_sp = this_base + info->size;
1027 }
1028
1029 /* Add 1 here to adjust for the post-decrement nature of the push
1030 instruction.*/
4e99ad69 1031 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1032 info->base = avr_make_saddr (this_base);
1033
4e99ad69
TG
1034 gdbarch = get_frame_arch (this_frame);
1035
4add8633 1036 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1037 offsets. */
4e99ad69
TG
1038 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1039 if (info->saved_regs[i].addr > 0)
1040 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1041
1042 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1043 the stack and is at the base of the frame. */
4add8633
TR
1044
1045 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1046 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1047
3b85b0f1
TR
1048 /* The previous frame's SP needed to be computed. Save the computed
1049 value. */
4e99ad69
TG
1050 tdep = gdbarch_tdep (gdbarch);
1051 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1052 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1053
4add8633 1054 return info;
8818c391
TR
1055}
1056
1057static CORE_ADDR
4add8633 1058avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1059{
4add8633
TR
1060 ULONGEST pc;
1061
11411de3 1062 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1063
1064 return avr_make_iaddr (pc);
8818c391
TR
1065}
1066
30244cd8
UW
1067static CORE_ADDR
1068avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1069{
1070 ULONGEST sp;
1071
11411de3 1072 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1073
1074 return avr_make_saddr (sp);
1075}
1076
4add8633
TR
1077/* Given a GDB frame, determine the address of the calling function's
1078 frame. This will be used to create a new GDB frame struct. */
8818c391 1079
4add8633 1080static void
94afd7a6 1081avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1082 void **this_prologue_cache,
1083 struct frame_id *this_id)
8818c391 1084{
4add8633 1085 struct avr_unwind_cache *info
94afd7a6 1086 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1087 CORE_ADDR base;
1088 CORE_ADDR func;
1089 struct frame_id id;
1090
1091 /* The FUNC is easy. */
94afd7a6 1092 func = get_frame_func (this_frame);
4add8633 1093
4add8633
TR
1094 /* Hopefully the prologue analysis either correctly determined the
1095 frame's base (which is the SP from the previous frame), or set
1096 that base to "NULL". */
1097 base = info->prev_sp;
1098 if (base == 0)
1099 return;
1100
1101 id = frame_id_build (base, func);
4add8633 1102 (*this_id) = id;
8818c391
TR
1103}
1104
94afd7a6
UW
1105static struct value *
1106avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1107 void **this_prologue_cache, int regnum)
8818c391 1108{
e17a4113
UW
1109 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1110 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1111 struct avr_unwind_cache *info
94afd7a6 1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1113
7d2552b4 1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1115 {
7d2552b4 1116 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1117 {
94afd7a6
UW
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
0963b4bd 1129 everything else about the avr is little endian. Ick! */
94afd7a6 1130 ULONGEST pc;
4e99ad69 1131 int i;
e362b510 1132 gdb_byte buf[3];
4e99ad69
TG
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1135
7d2552b4
TG
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1137 buf, tdep->call_length);
94afd7a6 1138
4e99ad69
TG
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
94afd7a6 1143
7d2552b4
TG
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1148 }
94afd7a6
UW
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1151 }
94afd7a6
UW
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1154}
8818c391 1155
4add8633
TR
1156static const struct frame_unwind avr_frame_unwind = {
1157 NORMAL_FRAME,
8fbca658 1158 default_frame_unwind_stop_reason,
4add8633 1159 avr_frame_this_id,
94afd7a6
UW
1160 avr_frame_prev_register,
1161 NULL,
1162 default_frame_sniffer
4add8633
TR
1163};
1164
8818c391 1165static CORE_ADDR
94afd7a6 1166avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1167{
4add8633 1168 struct avr_unwind_cache *info
94afd7a6 1169 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1170
4add8633
TR
1171 return info->base;
1172}
8818c391 1173
4add8633
TR
1174static const struct frame_base avr_frame_base = {
1175 &avr_frame_unwind,
1176 avr_frame_base_address,
1177 avr_frame_base_address,
1178 avr_frame_base_address
1179};
ced15480 1180
94afd7a6
UW
1181/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1182 frame. The frame ID's base needs to match the TOS value saved by
1183 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1184
4add8633 1185static struct frame_id
94afd7a6 1186avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1187{
1188 ULONGEST base;
8818c391 1189
94afd7a6
UW
1190 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1191 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1192}
1193
4add8633 1194/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1195 order. The below implements a FILO (stack) to do this. */
8818c391 1196
4add8633
TR
1197struct stack_item
1198{
1199 int len;
1200 struct stack_item *prev;
1201 void *data;
1202};
8818c391 1203
4add8633 1204static struct stack_item *
0fd88904 1205push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1206{
4add8633 1207 struct stack_item *si;
8d749320 1208 si = XNEW (struct stack_item);
4add8633
TR
1209 si->data = xmalloc (len);
1210 si->len = len;
1211 si->prev = prev;
1212 memcpy (si->data, contents, len);
1213 return si;
8818c391
TR
1214}
1215
4add8633
TR
1216static struct stack_item *pop_stack_item (struct stack_item *si);
1217static struct stack_item *
1218pop_stack_item (struct stack_item *si)
8818c391 1219{
4add8633
TR
1220 struct stack_item *dead = si;
1221 si = si->prev;
1222 xfree (dead->data);
1223 xfree (dead);
1224 return si;
8818c391
TR
1225}
1226
8818c391
TR
1227/* Setup the function arguments for calling a function in the inferior.
1228
1229 On the AVR architecture, there are 18 registers (R25 to R8) which are
1230 dedicated for passing function arguments. Up to the first 18 arguments
1231 (depending on size) may go into these registers. The rest go on the stack.
1232
4add8633 1233 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1234 arguments, including char, have one free register above them). For example,
4add8633
TR
1235 an int in arg1 and a char in arg2 would be passed as such:
1236
1237 arg1 -> r25:r24
1238 arg2 -> r22
1239
1240 Arguments that are larger than 2 bytes will be split between two or more
1241 registers as available, but will NOT be split between a register and the
0963b4bd 1242 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1243 similar to the d10v). */
1244
1245/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1246 inaccurate.
8818c391
TR
1247
1248 An exceptional case exists for struct arguments (and possibly other
1249 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1250 not a multiple of WORDSIZE bytes. In this case the argument is never split
1251 between the registers and the stack, but instead is copied in its entirety
1252 onto the stack, AND also copied into as many registers as there is room
1253 for. In other words, space in registers permitting, two copies of the same
1254 argument are passed in. As far as I can tell, only the one on the stack is
1255 used, although that may be a function of the level of compiler
1256 optimization. I suspect this is a compiler bug. Arguments of these odd
1257 sizes are left-justified within the word (as opposed to arguments smaller
1258 than WORDSIZE bytes, which are right-justified).
1259
1260 If the function is to return an aggregate type such as a struct, the caller
1261 must allocate space into which the callee will copy the return value. In
1262 this case, a pointer to the return value location is passed into the callee
1263 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1264 registers R0 to R2. */
8818c391
TR
1265
1266static CORE_ADDR
7d9b040b 1267avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1268 struct regcache *regcache, CORE_ADDR bp_addr,
1269 int nargs, struct value **args, CORE_ADDR sp,
1270 int struct_return, CORE_ADDR struct_addr)
8818c391 1271{
e17a4113 1272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1273 int i;
e362b510 1274 gdb_byte buf[3];
6d1915d4 1275 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1276 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1277 int regnum = AVR_ARGN_REGNUM;
1278 struct stack_item *si = NULL;
8818c391 1279
4add8633 1280 if (struct_return)
8818c391 1281 {
fd6d6815
TG
1282 regcache_cooked_write_unsigned
1283 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1284 regcache_cooked_write_unsigned
1285 (regcache, regnum--, struct_addr & 0xff);
1286 /* SP being post decremented, we need to reserve one byte so that the
1287 return address won't overwrite the result (or vice-versa). */
1288 if (sp == struct_addr)
1289 sp--;
8818c391
TR
1290 }
1291
4add8633 1292 for (i = 0; i < nargs; i++)
8818c391 1293 {
4add8633
TR
1294 int last_regnum;
1295 int j;
1296 struct value *arg = args[i];
4991999e 1297 struct type *type = check_typedef (value_type (arg));
0fd88904 1298 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1299 int len = TYPE_LENGTH (type);
1300
0963b4bd 1301 /* Calculate the potential last register needed. */
4add8633
TR
1302 last_regnum = regnum - (len + (len & 1));
1303
0963b4bd
MS
1304 /* If there are registers available, use them. Once we start putting
1305 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1306 if ((si == NULL) && (last_regnum >= 8))
1307 {
1308 ULONGEST val;
1309
0963b4bd 1310 /* Skip a register for odd length args. */
4add8633
TR
1311 if (len & 1)
1312 regnum--;
1313
e17a4113 1314 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1315 for (j = 0; j < len; j++)
1316 regcache_cooked_write_unsigned
1317 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1318 }
0963b4bd 1319 /* No registers available, push the args onto the stack. */
4add8633
TR
1320 else
1321 {
0963b4bd 1322 /* From here on, we don't care about regnum. */
4add8633
TR
1323 si = push_stack_item (si, contents, len);
1324 }
8818c391 1325 }
909cd28e 1326
0963b4bd 1327 /* Push args onto the stack. */
4add8633
TR
1328 while (si)
1329 {
1330 sp -= si->len;
0963b4bd 1331 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1332 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1333 si = pop_stack_item (si);
1334 }
3605c34a 1335
4add8633
TR
1336 /* Set the return address. For the avr, the return address is the BP_ADDR.
1337 Need to push the return address onto the stack noting that it needs to be
1338 in big-endian order on the stack. */
6d1915d4
TG
1339 for (i = 1; i <= call_length; i++)
1340 {
1341 buf[call_length - i] = return_pc & 0xff;
1342 return_pc >>= 8;
1343 }
3605c34a 1344
6d1915d4 1345 sp -= call_length;
0963b4bd 1346 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1347 write_memory (sp + 1, buf, call_length);
3605c34a 1348
0963b4bd 1349 /* Finally, update the SP register. */
4add8633
TR
1350 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1351 avr_convert_saddr_to_raw (sp));
3605c34a 1352
6d1915d4
TG
1353 /* Return SP value for the dummy frame, where the return address hasn't been
1354 pushed. */
1355 return sp + call_length;
3605c34a
TR
1356}
1357
53f6a2c9
TG
1358/* Unfortunately dwarf2 register for SP is 32. */
1359
1360static int
1361avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1362{
1363 if (reg >= 0 && reg < 32)
1364 return reg;
1365 if (reg == 32)
1366 return AVR_SP_REGNUM;
1367
1368 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1369
1370 return -1;
1371}
1372
487d9753
PL
1373/* Implementation of `address_class_type_flags' gdbarch method.
1374
1375 This method maps DW_AT_address_class attributes to a
1376 type_instance_flag_value. */
1377
1378static int
1379avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1380{
1381 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1382 __flash qualifier. Note that this attribute is only valid with
1383 pointer types and therefore the flag is set to the pointer type and
1384 not its target type. */
1385 if (dwarf2_addr_class == 1 && byte_size == 2)
1386 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1387 return 0;
1388}
1389
1390/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1391
1392 Convert a type_instance_flag_value to an address space qualifier. */
1393
1394static const char*
1395avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1396{
1397 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1398 return "flash";
1399 else
1400 return NULL;
1401}
1402
1403/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1404
1405 Convert an address space qualifier to a type_instance_flag_value. */
1406
1407static int
1408avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1409 const char* name,
1410 int *type_flags_ptr)
1411{
1412 if (strcmp (name, "flash") == 0)
1413 {
1414 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1415 return 1;
1416 }
1417 else
1418 return 0;
1419}
1420
0963b4bd 1421/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1422
1423static struct gdbarch *
2e5ff58c
TR
1424avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425{
2e5ff58c
TR
1426 struct gdbarch *gdbarch;
1427 struct gdbarch_tdep *tdep;
4e99ad69
TG
1428 struct gdbarch_list *best_arch;
1429 int call_length;
8818c391 1430
4e99ad69 1431 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1432 switch (info.bfd_arch_info->mach)
1433 {
1434 case bfd_mach_avr1:
9c97a070 1435 case bfd_mach_avrxmega1:
8818c391 1436 case bfd_mach_avr2:
9c97a070 1437 case bfd_mach_avrxmega2:
8818c391 1438 case bfd_mach_avr3:
9c97a070 1439 case bfd_mach_avrxmega3:
8818c391 1440 case bfd_mach_avr4:
9c97a070 1441 case bfd_mach_avrxmega4:
8818c391 1442 case bfd_mach_avr5:
9c97a070 1443 case bfd_mach_avrxmega5:
4e99ad69
TG
1444 default:
1445 call_length = 2;
1446 break;
1447 case bfd_mach_avr6:
9c97a070
PL
1448 case bfd_mach_avrxmega6:
1449 case bfd_mach_avrxmega7:
4e99ad69 1450 call_length = 3;
8818c391
TR
1451 break;
1452 }
1453
4e99ad69
TG
1454 /* If there is already a candidate, use it. */
1455 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1456 best_arch != NULL;
1457 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1458 {
1459 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1460 return best_arch->gdbarch;
1461 }
1462
0963b4bd 1463 /* None found, create a new architecture from the information provided. */
70ba0933 1464 tdep = XNEW (struct gdbarch_tdep);
4e99ad69
TG
1465 gdbarch = gdbarch_alloc (&info, tdep);
1466
1467 tdep->call_length = call_length;
1468
7d2552b4
TG
1469 /* Create a type for PC. We can't use builtin types here, as they may not
1470 be defined. */
1471 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1472 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1473 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1474 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1475 TYPE_UNSIGNED (tdep->pc_type) = 1;
1476
8818c391
TR
1477 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1480 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1481 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1482 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1483
1484 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1485 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1486 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487
8da61cc4
DJ
1488 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1489 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1490 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1491
1492 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1493 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1494
1495 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1496
1497 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1498 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1499
1500 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1501 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1502
7d2552b4
TG
1503 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1504 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1505 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1506
4c8b6ae0 1507 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1508 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1509
4add8633 1510 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1511
53f6a2c9
TG
1512 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1513
8818c391
TR
1514 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1515 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1516 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1517
8818c391 1518 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1519 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1520
909cd28e 1521 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1522
94afd7a6 1523 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1524 frame_base_set_default (gdbarch, &avr_frame_base);
1525
94afd7a6 1526 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1527
1528 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1529 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1530
487d9753
PL
1531 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1532 set_gdbarch_address_class_name_to_type_flags
1533 (gdbarch, avr_address_class_name_to_type_flags);
1534 set_gdbarch_address_class_type_flags_to_name
1535 (gdbarch, avr_address_class_type_flags_to_name);
1536
8818c391
TR
1537 return gdbarch;
1538}
1539
1540/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1541 registers. If args parameter is not NULL, then the user has requested info
8818c391 1542 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1543 now]. The query string should be one of these forms:
8818c391
TR
1544
1545 "Ravr.io_reg" -> reply is "NN" number of io registers
1546
1547 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1548 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1549 where, <NAME> is a string, and VV is the hex value of the register.
1550
0963b4bd 1551 All io registers are 8-bit. */
8818c391
TR
1552
1553static void
1554avr_io_reg_read_command (char *args, int from_tty)
1555{
1e3ff5ad 1556 LONGEST bufsiz = 0;
13547ab6 1557 gdb_byte *buf;
001f13d8 1558 const char *bufstr;
2e5ff58c 1559 char query[400];
001f13d8 1560 const char *p;
2e5ff58c
TR
1561 unsigned int nreg = 0;
1562 unsigned int val;
1563 int i, j, k, step;
8818c391 1564
0963b4bd 1565 /* Find out how many io registers the target has. */
13547ab6
DJ
1566 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1567 "avr.io_reg", &buf);
001f13d8 1568 bufstr = (const char *) buf;
8818c391 1569
13547ab6 1570 if (bufsiz <= 0)
8818c391 1571 {
2e5ff58c 1572 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1573 _("ERR: info io_registers NOT supported "
1574 "by current target\n"));
8818c391
TR
1575 return;
1576 }
1577
001f13d8 1578 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1579 {
2e5ff58c 1580 fprintf_unfiltered (gdb_stderr,
edefbb7c 1581 _("Error fetching number of io registers\n"));
13547ab6 1582 xfree (buf);
8818c391
TR
1583 return;
1584 }
1585
13547ab6
DJ
1586 xfree (buf);
1587
2e5ff58c 1588 reinitialize_more_filter ();
8818c391 1589
edefbb7c 1590 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1591
1592 /* only fetch up to 8 registers at a time to keep the buffer small */
1593 step = 8;
1594
2e5ff58c 1595 for (i = 0; i < nreg; i += step)
8818c391 1596 {
91ccbfc1
TR
1597 /* how many registers this round? */
1598 j = step;
1599 if ((i+j) >= nreg)
1600 j = nreg - i; /* last block is less than 8 registers */
8818c391 1601
2e5ff58c 1602 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1603 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1604 query, &buf);
8818c391 1605
001f13d8 1606 p = (const char *) buf;
2e5ff58c
TR
1607 for (k = i; k < (i + j); k++)
1608 {
1609 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1610 {
1611 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1612 while ((*p != ';') && (*p != '\0'))
1613 p++;
1614 p++; /* skip over ';' */
1615 if (*p == '\0')
1616 break;
1617 }
1618 }
13547ab6
DJ
1619
1620 xfree (buf);
8818c391
TR
1621 }
1622}
1623
a78f21af
AC
1624extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1625
8818c391
TR
1626void
1627_initialize_avr_tdep (void)
1628{
1629 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1630
1631 /* Add a new command to allow the user to query the avr remote target for
1632 the values of the io space registers in a saner way than just using
0963b4bd 1633 `x/NNNb ADDR`. */
8818c391
TR
1634
1635 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1636 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1637
1638 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1639 _("query remote avr target for io space register values"),
1640 &infolist);
8818c391 1641}
This page took 1.089928 seconds and 4 git commands to generate.