gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
6aba47ca 3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
7b6bb8da 4 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
8818c391
TR
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 20
de18ac1f 21/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
22
23/* Portions of this file were taken from the original gdb-4.18 patch developed
24 by Denis Chertykov, denisc@overta.ru */
25
26#include "defs.h"
4add8633
TR
27#include "frame.h"
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
8818c391
TR
31#include "gdbcmd.h"
32#include "gdbcore.h"
e6bb342a 33#include "gdbtypes.h"
8818c391
TR
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
a89aa300 39#include "dis-asm.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391
TR
71
72#undef XMALLOC
73#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
8818c391
TR
75/* Constants: prefixed with AVR_ to avoid name space clashes */
76
77enum
2e5ff58c
TR
78{
79 AVR_REG_W = 24,
80 AVR_REG_X = 26,
81 AVR_REG_Y = 28,
82 AVR_FP_REGNUM = 28,
83 AVR_REG_Z = 30,
84
85 AVR_SREG_REGNUM = 32,
86 AVR_SP_REGNUM = 33,
87 AVR_PC_REGNUM = 34,
88
89 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
90 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
91
7d2552b4
TG
92 /* Pseudo registers. */
93 AVR_PSEUDO_PC_REGNUM = 35,
94 AVR_NUM_PSEUDO_REGS = 1,
95
2e5ff58c
TR
96 AVR_PC_REG_INDEX = 35, /* index into array of registers */
97
4add8633 98 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 99
0963b4bd 100 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
101 AVR_MAX_PUSHES = 18,
102
0963b4bd 103 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
104 AVR_LAST_PUSHED_REGNUM = 17,
105
4add8633
TR
106 AVR_ARG1_REGNUM = 24, /* Single byte argument */
107 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
108
109 AVR_RET1_REGNUM = 24, /* Single byte return value */
110 AVR_RETN_REGNUM = 25, /* Multi byte return value */
111
2e5ff58c 112 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 113 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
114 things easier in the future if they didn't need to match.
115
116 Note: I chose these values so as to be consistent with bfd vma
117 addresses.
118
119 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 120 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
121 thus the Most Significant Bit is 0x10000 which gets masked off my
122 AVR_MEM_MASK.
123
124 The problem manifests itself when trying to set a breakpoint in a
125 function which resides in the upper half of the instruction space and
126 thus requires a 17-bit address.
127
128 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 129 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
130 but could be for some remote targets by just adding the correct offset
131 to the address and letting the remote target handle the low-level
0963b4bd 132 details of actually accessing the eeprom. */
2e5ff58c
TR
133
134 AVR_IMEM_START = 0x00000000, /* INSN memory */
135 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 136#if 1
2e5ff58c
TR
137 /* No eeprom mask defined */
138 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 139#else
2e5ff58c
TR
140 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
141 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 142#endif
2e5ff58c 143};
8818c391 144
4add8633
TR
145/* Prologue types:
146
147 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
148 causes the generation of the CALL type prologues). */
149
150enum {
151 AVR_PROLOGUE_NONE, /* No prologue */
152 AVR_PROLOGUE_NORMAL,
153 AVR_PROLOGUE_CALL, /* -mcall-prologues */
154 AVR_PROLOGUE_MAIN,
155 AVR_PROLOGUE_INTR, /* interrupt handler */
156 AVR_PROLOGUE_SIG, /* signal handler */
157};
158
8818c391
TR
159/* Any function with a frame looks like this
160 ....... <-SP POINTS HERE
161 LOCALS1 <-FP POINTS HERE
162 LOCALS0
163 SAVED FP
164 SAVED R3
165 SAVED R2
166 RET PC
167 FIRST ARG
168 SECOND ARG */
169
4add8633 170struct avr_unwind_cache
2e5ff58c 171{
4add8633
TR
172 /* The previous frame's inner most stack address. Used as this
173 frame ID's stack_addr. */
174 CORE_ADDR prev_sp;
175 /* The frame's base, optionally used by the high-level debug info. */
176 CORE_ADDR base;
177 int size;
178 int prologue_type;
179 /* Table indicating the location of each and every register. */
180 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 181};
8818c391
TR
182
183struct gdbarch_tdep
2e5ff58c 184{
4e99ad69
TG
185 /* Number of bytes stored to the stack by call instructions.
186 2 bytes for avr1-5, 3 bytes for avr6. */
187 int call_length;
7d2552b4
TG
188
189 /* Type for void. */
190 struct type *void_type;
191 /* Type for a function returning void. */
192 struct type *func_void_type;
193 /* Type for a pointer to a function. Used for the type of PC. */
194 struct type *pc_type;
2e5ff58c 195};
8818c391 196
0963b4bd 197/* Lookup the name of a register given it's number. */
8818c391 198
fa88f677 199static const char *
d93859e2 200avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 201{
4e99ad69 202 static const char * const register_names[] = {
2e5ff58c
TR
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
205 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
206 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
207 "SREG", "SP", "PC2",
208 "pc"
8818c391
TR
209 };
210 if (regnum < 0)
211 return NULL;
212 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
213 return NULL;
214 return register_names[regnum];
215}
216
8818c391
TR
217/* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220static struct type *
866b76ea 221avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 222{
866b76ea 223 if (reg_nr == AVR_PC_REGNUM)
df4df182 224 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
225 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
226 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 227 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 228 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 229 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
230}
231
0963b4bd 232/* Instruction address checks and convertions. */
8818c391
TR
233
234static CORE_ADDR
235avr_make_iaddr (CORE_ADDR x)
236{
237 return ((x) | AVR_IMEM_START);
238}
239
0963b4bd 240/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
241 devices are already up to 128KBytes of flash space.
242
0963b4bd 243 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
244
245static CORE_ADDR
246avr_convert_iaddr_to_raw (CORE_ADDR x)
247{
248 return ((x) & 0xffffffff);
249}
250
0963b4bd 251/* SRAM address checks and convertions. */
8818c391
TR
252
253static CORE_ADDR
254avr_make_saddr (CORE_ADDR x)
255{
ee143e81
TG
256 /* Return 0 for NULL. */
257 if (x == 0)
258 return 0;
259
8818c391
TR
260 return ((x) | AVR_SMEM_START);
261}
262
8818c391
TR
263static CORE_ADDR
264avr_convert_saddr_to_raw (CORE_ADDR x)
265{
266 return ((x) & 0xffffffff);
267}
268
0963b4bd
MS
269/* EEPROM address checks and convertions. I don't know if these will ever
270 actually be used, but I've added them just the same. TRoth */
8818c391
TR
271
272/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 273 programs in the mega128. */
8818c391
TR
274
275/* static CORE_ADDR */
276/* avr_make_eaddr (CORE_ADDR x) */
277/* { */
278/* return ((x) | AVR_EMEM_START); */
279/* } */
280
281/* static int */
282/* avr_eaddr_p (CORE_ADDR x) */
283/* { */
284/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
285/* } */
286
287/* static CORE_ADDR */
288/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
289/* { */
290/* return ((x) & 0xffffffff); */
291/* } */
292
0963b4bd 293/* Convert from address to pointer and vice-versa. */
8818c391
TR
294
295static void
9898f801
UW
296avr_address_to_pointer (struct gdbarch *gdbarch,
297 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 298{
e17a4113
UW
299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
300
8818c391
TR
301 /* Is it a code address? */
302 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
303 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
304 {
e17a4113 305 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 306 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
307 }
308 else
309 {
310 /* Strip off any upper segment bits. */
e17a4113 311 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 312 avr_convert_saddr_to_raw (addr));
8818c391
TR
313 }
314}
315
316static CORE_ADDR
9898f801
UW
317avr_pointer_to_address (struct gdbarch *gdbarch,
318 struct type *type, const gdb_byte *buf)
8818c391 319{
e17a4113
UW
320 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
321 CORE_ADDR addr
322 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 323
8818c391
TR
324 /* Is it a code address? */
325 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
326 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 327 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 328 return avr_make_iaddr (addr << 1);
8818c391
TR
329 else
330 return avr_make_saddr (addr);
331}
332
8a1d23b2
TG
333static CORE_ADDR
334avr_integer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336{
337 ULONGEST addr = unpack_long (type, buf);
338
339 return avr_make_saddr (addr);
340}
341
8818c391 342static CORE_ADDR
61a1198a 343avr_read_pc (struct regcache *regcache)
8818c391 344{
8619218d 345 ULONGEST pc;
61a1198a
UW
346 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
347 return avr_make_iaddr (pc);
8818c391
TR
348}
349
350static void
61a1198a 351avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 352{
61a1198a 353 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
354 avr_convert_iaddr_to_raw (val));
355}
356
05d1431c 357static enum register_status
7d2552b4
TG
358avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
359 int regnum, gdb_byte *buf)
360{
361 ULONGEST val;
05d1431c 362 enum register_status status;
7d2552b4
TG
363
364 switch (regnum)
365 {
366 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
367 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
368 if (status != REG_VALID)
369 return status;
7d2552b4
TG
370 val >>= 1;
371 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 372 return status;
7d2552b4
TG
373 default:
374 internal_error (__FILE__, __LINE__, _("invalid regnum"));
375 }
376}
377
378static void
379avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
380 int regnum, const gdb_byte *buf)
381{
382 ULONGEST val;
383
384 switch (regnum)
385 {
386 case AVR_PSEUDO_PC_REGNUM:
387 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
388 val <<= 1;
389 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
390 break;
391 default:
392 internal_error (__FILE__, __LINE__, _("invalid regnum"));
393 }
8818c391
TR
394}
395
4add8633 396/* Function: avr_scan_prologue
8818c391 397
4add8633 398 This function decodes an AVR function prologue to determine:
8818c391
TR
399 1) the size of the stack frame
400 2) which registers are saved on it
401 3) the offsets of saved regs
4add8633 402 This information is stored in the avr_unwind_cache structure.
8818c391 403
e3d8b004
TR
404 Some devices lack the sbiw instruction, so on those replace this:
405 sbiw r28, XX
406 with this:
407 subi r28,lo8(XX)
408 sbci r29,hi8(XX)
409
410 A typical AVR function prologue with a frame pointer might look like this:
411 push rXX ; saved regs
412 ...
413 push r28
414 push r29
415 in r28,__SP_L__
416 in r29,__SP_H__
417 sbiw r28,<LOCALS_SIZE>
418 in __tmp_reg__,__SREG__
8818c391 419 cli
e3d8b004 420 out __SP_H__,r29
72fab697
TR
421 out __SREG__,__tmp_reg__
422 out __SP_L__,r28
e3d8b004
TR
423
424 A typical AVR function prologue without a frame pointer might look like
425 this:
426 push rXX ; saved regs
427 ...
428
429 A main function prologue looks like this:
430 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
431 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
432 out __SP_H__,r29
433 out __SP_L__,r28
434
435 A signal handler prologue looks like this:
436 push __zero_reg__
437 push __tmp_reg__
438 in __tmp_reg__, __SREG__
439 push __tmp_reg__
440 clr __zero_reg__
441 push rXX ; save registers r18:r27, r30:r31
442 ...
443 push r28 ; save frame pointer
444 push r29
445 in r28, __SP_L__
446 in r29, __SP_H__
447 sbiw r28, <LOCALS_SIZE>
448 out __SP_H__, r29
449 out __SP_L__, r28
450
451 A interrupt handler prologue looks like this:
452 sei
453 push __zero_reg__
454 push __tmp_reg__
455 in __tmp_reg__, __SREG__
456 push __tmp_reg__
457 clr __zero_reg__
458 push rXX ; save registers r18:r27, r30:r31
459 ...
460 push r28 ; save frame pointer
461 push r29
462 in r28, __SP_L__
463 in r29, __SP_H__
464 sbiw r28, <LOCALS_SIZE>
465 cli
466 out __SP_H__, r29
467 sei
468 out __SP_L__, r28
469
470 A `-mcall-prologues' prologue looks like this (Note that the megas use a
471 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
472 32 bit insn and rjmp is a 16 bit insn):
473 ldi r26,lo8(<LOCALS_SIZE>)
474 ldi r27,hi8(<LOCALS_SIZE>)
475 ldi r30,pm_lo8(.L_foo_body)
476 ldi r31,pm_hi8(.L_foo_body)
477 rjmp __prologue_saves__+RRR
478 .L_foo_body: */
8818c391 479
4add8633
TR
480/* Not really part of a prologue, but still need to scan for it, is when a
481 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
482 registers. In this case, all local variables live in registers, so there
483 may be some register saves. This is what it looks like:
4add8633
TR
484 movw rMM, rNN
485 ...
486
0963b4bd
MS
487 There could be multiple movw's. If the target doesn't have a movw insn, it
488 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
489 types. */
490
491static CORE_ADDR
e17a4113 492avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 493 struct avr_unwind_cache *info)
8818c391 494{
e17a4113 495 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
496 int i;
497 unsigned short insn;
2e5ff58c 498 int scan_stage = 0;
8818c391 499 struct minimal_symbol *msymbol;
8818c391
TR
500 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
501 int vpc = 0;
4e99ad69
TG
502 int len;
503
504 len = pc_end - pc_beg;
505 if (len > AVR_MAX_PROLOGUE_SIZE)
506 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 507
4add8633 508 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
509 reading in the bytes of the prologue. The problem is that the figuring
510 out where the end of the prologue is is a bit difficult. The old code
4add8633 511 tried to do that, but failed quite often. */
4e99ad69 512 read_memory (pc_beg, prologue, len);
8818c391
TR
513
514 /* Scanning main()'s prologue
515 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
516 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
517 out __SP_H__,r29
518 out __SP_L__,r28 */
519
4e99ad69 520 if (len >= 4)
8818c391
TR
521 {
522 CORE_ADDR locals;
4e99ad69 523 static const unsigned char img[] = {
2e5ff58c
TR
524 0xde, 0xbf, /* out __SP_H__,r29 */
525 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
526 };
527
e17a4113 528 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 529 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
530 if ((insn & 0xf0f0) == 0xe0c0)
531 {
532 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 533 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
534 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
535 if ((insn & 0xf0f0) == 0xe0d0)
536 {
537 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
538 if (vpc + 4 + sizeof (img) < len
539 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 540 {
4add8633
TR
541 info->prologue_type = AVR_PROLOGUE_MAIN;
542 info->base = locals;
4e99ad69 543 return pc_beg + 4;
2e5ff58c
TR
544 }
545 }
546 }
8818c391 547 }
2e5ff58c 548
4add8633
TR
549 /* Scanning `-mcall-prologues' prologue
550 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 551
e3d8b004 552 while (1) /* Using a while to avoid many goto's */
8818c391
TR
553 {
554 int loc_size;
555 int body_addr;
556 unsigned num_pushes;
4add8633 557 int pc_offset = 0;
2e5ff58c 558
4e99ad69
TG
559 /* At least the fifth instruction must have been executed to
560 modify frame shape. */
561 if (len < 10)
562 break;
563
e17a4113 564 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 565 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
566 if ((insn & 0xf0f0) != 0xe0a0)
567 break;
8818c391 568 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 569 pc_offset += 2;
2e5ff58c 570
e17a4113 571 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
572 /* ldi r27,<LOCALS_SIZE> / 256 */
573 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 574 break;
8818c391 575 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 576 pc_offset += 2;
2e5ff58c 577
e17a4113 578 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
579 /* ldi r30,pm_lo8(.L_foo_body) */
580 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 581 break;
8818c391 582 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 583 pc_offset += 2;
8818c391 584
e17a4113 585 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
586 /* ldi r31,pm_hi8(.L_foo_body) */
587 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 588 break;
8818c391 589 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 590 pc_offset += 2;
8818c391 591
8818c391
TR
592 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
593 if (!msymbol)
2e5ff58c 594 break;
8818c391 595
e17a4113 596 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 597 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
598 if ((insn & 0xf000) == 0xc000)
599 {
600 /* Extract PC relative offset from RJMP */
601 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
602 /* Convert offset to byte addressable mode */
603 i *= 2;
604 /* Destination address */
4e99ad69 605 i += pc_beg + 10;
e3d8b004 606
4e99ad69 607 if (body_addr != (pc_beg + 10)/2)
e3d8b004 608 break;
4add8633
TR
609
610 pc_offset += 2;
e3d8b004 611 }
e3d8b004
TR
612 else if ((insn & 0xfe0e) == 0x940c)
613 {
614 /* Extract absolute PC address from JMP */
615 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
616 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
617 & 0xffff));
e3d8b004
TR
618 /* Convert address to byte addressable mode */
619 i *= 2;
620
4e99ad69 621 if (body_addr != (pc_beg + 12)/2)
e3d8b004 622 break;
4add8633
TR
623
624 pc_offset += 4;
e3d8b004
TR
625 }
626 else
627 break;
2e5ff58c 628
4add8633 629 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
630 Which is a pushes count in `-mcall-prologues' mode */
631 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
632
633 if (num_pushes > AVR_MAX_PUSHES)
4add8633 634 {
edefbb7c 635 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
636 num_pushes);
637 num_pushes = 0;
638 }
2e5ff58c 639
8818c391 640 if (num_pushes)
2e5ff58c
TR
641 {
642 int from;
4add8633
TR
643
644 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 645 if (num_pushes >= 2)
4add8633
TR
646 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
647
2e5ff58c
TR
648 i = 0;
649 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
650 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 651 info->saved_regs [from].addr = ++i;
2e5ff58c 652 }
4add8633
TR
653 info->size = loc_size + num_pushes;
654 info->prologue_type = AVR_PROLOGUE_CALL;
655
4e99ad69 656 return pc_beg + pc_offset;
8818c391
TR
657 }
658
4add8633
TR
659 /* Scan for the beginning of the prologue for an interrupt or signal
660 function. Note that we have to set the prologue type here since the
661 third stage of the prologue may not be present (e.g. no saved registered
662 or changing of the SP register). */
8818c391 663
4add8633 664 if (1)
8818c391 665 {
4e99ad69 666 static const unsigned char img[] = {
2e5ff58c
TR
667 0x78, 0x94, /* sei */
668 0x1f, 0x92, /* push r1 */
669 0x0f, 0x92, /* push r0 */
670 0x0f, 0xb6, /* in r0,0x3f SREG */
671 0x0f, 0x92, /* push r0 */
672 0x11, 0x24 /* clr r1 */
8818c391 673 };
4e99ad69
TG
674 if (len >= sizeof (img)
675 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 676 {
4add8633 677 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 678 vpc += sizeof (img);
4add8633
TR
679 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
680 info->saved_regs[0].addr = 2;
681 info->saved_regs[1].addr = 1;
682 info->size += 3;
2e5ff58c 683 }
4e99ad69
TG
684 else if (len >= sizeof (img) - 2
685 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 686 {
4add8633
TR
687 info->prologue_type = AVR_PROLOGUE_SIG;
688 vpc += sizeof (img) - 2;
689 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
690 info->saved_regs[0].addr = 2;
691 info->saved_regs[1].addr = 1;
243e2c5d 692 info->size += 2;
2e5ff58c 693 }
8818c391
TR
694 }
695
696 /* First stage of the prologue scanning.
4add8633 697 Scan pushes (saved registers) */
8818c391 698
4e99ad69 699 for (; vpc < len; vpc += 2)
8818c391 700 {
e17a4113 701 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
702 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
703 {
0963b4bd 704 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
705 int regno = (insn & 0x1f0) >> 4;
706 info->size++;
707 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
708 scan_stage = 1;
709 }
8818c391 710 else
2e5ff58c 711 break;
8818c391
TR
712 }
713
243e2c5d 714 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 715
1bd0bb72
TG
716 /* Handle static small stack allocation using rcall or push. */
717
718 while (scan_stage == 1 && vpc < len)
719 {
720 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
721 if (insn == 0xd000) /* rcall .+0 */
722 {
723 info->size += gdbarch_tdep (gdbarch)->call_length;
724 vpc += 2;
725 }
726 else if (insn == 0x920f) /* push r0 */
727 {
728 info->size += 1;
729 vpc += 2;
730 }
731 else
732 break;
733 }
734
8818c391
TR
735 /* Second stage of the prologue scanning.
736 Scan:
737 in r28,__SP_L__
738 in r29,__SP_H__ */
739
4e99ad69 740 if (scan_stage == 1 && vpc < len)
8818c391 741 {
4e99ad69 742 static const unsigned char img[] = {
2e5ff58c
TR
743 0xcd, 0xb7, /* in r28,__SP_L__ */
744 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
745 };
746 unsigned short insn1;
2e5ff58c 747
4e99ad69
TG
748 if (vpc + sizeof (img) < len
749 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
750 {
751 vpc += 4;
2e5ff58c
TR
752 scan_stage = 2;
753 }
8818c391
TR
754 }
755
0963b4bd 756 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
757 Scan for:
758 sbiw r28,XX or subi r28,lo8(XX)
72fab697 759 sbci r29,hi8(XX)
8818c391
TR
760 in __tmp_reg__,__SREG__
761 cli
e3d8b004 762 out __SP_H__,r29
8818c391 763 out __SREG__,__tmp_reg__
e3d8b004 764 out __SP_L__,r28 */
8818c391 765
4e99ad69 766 if (scan_stage == 2 && vpc < len)
8818c391
TR
767 {
768 int locals_size = 0;
4e99ad69 769 static const unsigned char img[] = {
2e5ff58c
TR
770 0x0f, 0xb6, /* in r0,0x3f */
771 0xf8, 0x94, /* cli */
e3d8b004 772 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 773 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 774 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 775 };
4e99ad69 776 static const unsigned char img_sig[] = {
e3d8b004
TR
777 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
778 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 779 };
4e99ad69 780 static const unsigned char img_int[] = {
2e5ff58c 781 0xf8, 0x94, /* cli */
e3d8b004 782 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 783 0x78, 0x94, /* sei */
e3d8b004 784 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 785 };
2e5ff58c 786
e17a4113 787 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 788 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
789 {
790 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
791 vpc += 2;
792 }
2e5ff58c
TR
793 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
794 {
795 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 796 vpc += 2;
e17a4113 797 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 798 vpc += 2;
1bd0bb72 799 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 800 }
8818c391 801 else
1bd0bb72 802 return pc_beg + vpc;
4add8633 803
0963b4bd 804 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
805 or signal handler functions, which is why we set the prologue type
806 when we saw the beginning of the prologue previously. */
807
4e99ad69
TG
808 if (vpc + sizeof (img_sig) < len
809 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
810 {
811 vpc += sizeof (img_sig);
812 }
4e99ad69
TG
813 else if (vpc + sizeof (img_int) < len
814 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
815 {
816 vpc += sizeof (img_int);
817 }
4e99ad69
TG
818 if (vpc + sizeof (img) < len
819 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
820 {
821 info->prologue_type = AVR_PROLOGUE_NORMAL;
822 vpc += sizeof (img);
823 }
824
825 info->size += locals_size;
826
4e99ad69 827 /* Fall through. */
8818c391 828 }
4add8633
TR
829
830 /* If we got this far, we could not scan the prologue, so just return the pc
831 of the frame plus an adjustment for argument move insns. */
832
4e99ad69
TG
833 for (; vpc < len; vpc += 2)
834 {
e17a4113 835 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
836 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
837 continue;
838 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
839 continue;
840 else
841 break;
842 }
843
844 return pc_beg + vpc;
8818c391
TR
845}
846
4add8633 847static CORE_ADDR
6093d2eb 848avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
849{
850 CORE_ADDR func_addr, func_end;
8c201e54 851 CORE_ADDR post_prologue_pc;
8818c391 852
4add8633 853 /* See what the symbol table says */
8818c391 854
8c201e54
TG
855 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
856 return pc;
2e5ff58c 857
8c201e54
TG
858 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
859 if (post_prologue_pc != 0)
860 return max (pc, post_prologue_pc);
8818c391 861
8c201e54
TG
862 {
863 CORE_ADDR prologue_end = pc;
864 struct avr_unwind_cache info = {0};
865 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 866
8c201e54
TG
867 info.saved_regs = saved_regs;
868
869 /* Need to run the prologue scanner to figure out if the function has a
870 prologue and possibly skip over moving arguments passed via registers
871 to other registers. */
872
873 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
874
875 if (info.prologue_type != AVR_PROLOGUE_NONE)
876 return prologue_end;
877 }
2e5ff58c 878
4e99ad69
TG
879 /* Either we didn't find the start of this function (nothing we can do),
880 or there's no line info, or the line after the prologue is after
0963b4bd 881 the end of the function (there probably isn't a prologue). */
2e5ff58c 882
8c201e54 883 return pc;
4add8633 884}
8818c391 885
0963b4bd
MS
886/* Not all avr devices support the BREAK insn. Those that don't should treat
887 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
888 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 889
4add8633 890static const unsigned char *
0963b4bd
MS
891avr_breakpoint_from_pc (struct gdbarch *gdbarch,
892 CORE_ADDR *pcptr, int *lenptr)
4add8633 893{
4e99ad69 894 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
895 *lenptr = sizeof (avr_break_insn);
896 return avr_break_insn;
8818c391
TR
897}
898
4c8b6ae0
UW
899/* Determine, for architecture GDBARCH, how a return value of TYPE
900 should be returned. If it is supposed to be returned in registers,
901 and READBUF is non-zero, read the appropriate value from REGCACHE,
902 and copy it into READBUF. If WRITEBUF is non-zero, write the value
903 from WRITEBUF into REGCACHE. */
904
63807e1d 905static enum return_value_convention
c055b101
CV
906avr_return_value (struct gdbarch *gdbarch, struct type *func_type,
907 struct type *valtype, struct regcache *regcache,
908 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 909{
1bd0bb72
TG
910 int i;
911 /* Single byte are returned in r24.
912 Otherwise, the MSB of the return value is always in r25, calculate which
913 register holds the LSB. */
914 int lsb_reg;
915
916 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
917 || TYPE_CODE (valtype) == TYPE_CODE_UNION
918 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
919 && TYPE_LENGTH (valtype) > 8)
920 return RETURN_VALUE_STRUCT_CONVENTION;
921
922 if (TYPE_LENGTH (valtype) <= 2)
923 lsb_reg = 24;
924 else if (TYPE_LENGTH (valtype) <= 4)
925 lsb_reg = 22;
926 else if (TYPE_LENGTH (valtype) <= 8)
927 lsb_reg = 18;
928 else
f3574227 929 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
930
931 if (writebuf != NULL)
932 {
1bd0bb72
TG
933 for (i = 0; i < TYPE_LENGTH (valtype); i++)
934 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
935 }
936
937 if (readbuf != NULL)
938 {
1bd0bb72
TG
939 for (i = 0; i < TYPE_LENGTH (valtype); i++)
940 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
941 }
942
1bd0bb72 943 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
944}
945
946
4add8633
TR
947/* Put here the code to store, into fi->saved_regs, the addresses of
948 the saved registers of frame described by FRAME_INFO. This
949 includes special registers such as pc and fp saved in special ways
950 in the stack frame. sp is even more special: the address we return
0963b4bd 951 for it IS the sp for the next frame. */
8818c391 952
63807e1d 953static struct avr_unwind_cache *
94afd7a6 954avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 955 void **this_prologue_cache)
8818c391 956{
4e99ad69 957 CORE_ADDR start_pc, current_pc;
4add8633
TR
958 ULONGEST prev_sp;
959 ULONGEST this_base;
960 struct avr_unwind_cache *info;
4e99ad69
TG
961 struct gdbarch *gdbarch;
962 struct gdbarch_tdep *tdep;
4add8633
TR
963 int i;
964
4e99ad69
TG
965 if (*this_prologue_cache)
966 return *this_prologue_cache;
4add8633
TR
967
968 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 969 *this_prologue_cache = info;
94afd7a6 970 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
971
972 info->size = 0;
973 info->prologue_type = AVR_PROLOGUE_NONE;
974
4e99ad69
TG
975 start_pc = get_frame_func (this_frame);
976 current_pc = get_frame_pc (this_frame);
977 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
978 avr_scan_prologue (get_frame_arch (this_frame),
979 start_pc, current_pc, info);
4add8633 980
3b85b0f1
TR
981 if ((info->prologue_type != AVR_PROLOGUE_NONE)
982 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
983 {
984 ULONGEST high_base; /* High byte of FP */
985
986 /* The SP was moved to the FP. This indicates that a new frame
987 was created. Get THIS frame's FP value by unwinding it from
988 the next frame. */
94afd7a6 989 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 990 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
991 this_base += (high_base << 8);
992
993 /* The FP points at the last saved register. Adjust the FP back
994 to before the first saved register giving the SP. */
995 prev_sp = this_base + info->size;
996 }
8818c391 997 else
4add8633
TR
998 {
999 /* Assume that the FP is this frame's SP but with that pushed
1000 stack space added back. */
94afd7a6 1001 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1002 prev_sp = this_base + info->size;
1003 }
1004
1005 /* Add 1 here to adjust for the post-decrement nature of the push
1006 instruction.*/
4e99ad69 1007 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1008 info->base = avr_make_saddr (this_base);
1009
4e99ad69
TG
1010 gdbarch = get_frame_arch (this_frame);
1011
4add8633 1012 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1013 offsets. */
4e99ad69
TG
1014 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1015 if (info->saved_regs[i].addr > 0)
1016 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1017
1018 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1019 the stack and is at the base of the frame. */
4add8633
TR
1020
1021 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1022 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1023
3b85b0f1
TR
1024 /* The previous frame's SP needed to be computed. Save the computed
1025 value. */
4e99ad69
TG
1026 tdep = gdbarch_tdep (gdbarch);
1027 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1028 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1029
4add8633 1030 return info;
8818c391
TR
1031}
1032
1033static CORE_ADDR
4add8633 1034avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1035{
4add8633
TR
1036 ULONGEST pc;
1037
11411de3 1038 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1039
1040 return avr_make_iaddr (pc);
8818c391
TR
1041}
1042
30244cd8
UW
1043static CORE_ADDR
1044avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1045{
1046 ULONGEST sp;
1047
11411de3 1048 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1049
1050 return avr_make_saddr (sp);
1051}
1052
4add8633
TR
1053/* Given a GDB frame, determine the address of the calling function's
1054 frame. This will be used to create a new GDB frame struct. */
8818c391 1055
4add8633 1056static void
94afd7a6 1057avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1058 void **this_prologue_cache,
1059 struct frame_id *this_id)
8818c391 1060{
4add8633 1061 struct avr_unwind_cache *info
94afd7a6 1062 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1063 CORE_ADDR base;
1064 CORE_ADDR func;
1065 struct frame_id id;
1066
1067 /* The FUNC is easy. */
94afd7a6 1068 func = get_frame_func (this_frame);
4add8633 1069
4add8633
TR
1070 /* Hopefully the prologue analysis either correctly determined the
1071 frame's base (which is the SP from the previous frame), or set
1072 that base to "NULL". */
1073 base = info->prev_sp;
1074 if (base == 0)
1075 return;
1076
1077 id = frame_id_build (base, func);
4add8633 1078 (*this_id) = id;
8818c391
TR
1079}
1080
94afd7a6
UW
1081static struct value *
1082avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1083 void **this_prologue_cache, int regnum)
8818c391 1084{
e17a4113
UW
1085 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1086 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1087 struct avr_unwind_cache *info
94afd7a6 1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1089
7d2552b4 1090 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1091 {
7d2552b4 1092 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1093 {
94afd7a6
UW
1094 /* Reading the return PC from the PC register is slightly
1095 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1096 but in reality, only two bytes (3 in upcoming mega256) are
1097 stored on the stack.
1098
1099 Also, note that the value on the stack is an addr to a word
1100 not a byte, so we will need to multiply it by two at some
1101 point.
1102
1103 And to confuse matters even more, the return address stored
1104 on the stack is in big endian byte order, even though most
0963b4bd 1105 everything else about the avr is little endian. Ick! */
94afd7a6 1106 ULONGEST pc;
4e99ad69
TG
1107 int i;
1108 unsigned char buf[3];
1109 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1110 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1111
7d2552b4
TG
1112 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1113 buf, tdep->call_length);
94afd7a6 1114
4e99ad69
TG
1115 /* Extract the PC read from memory as a big-endian. */
1116 pc = 0;
1117 for (i = 0; i < tdep->call_length; i++)
1118 pc = (pc << 8) | buf[i];
94afd7a6 1119
7d2552b4
TG
1120 if (regnum == AVR_PC_REGNUM)
1121 pc <<= 1;
1122
1123 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1124 }
94afd7a6
UW
1125
1126 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1127 }
94afd7a6
UW
1128
1129 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1130}
8818c391 1131
4add8633
TR
1132static const struct frame_unwind avr_frame_unwind = {
1133 NORMAL_FRAME,
1134 avr_frame_this_id,
94afd7a6
UW
1135 avr_frame_prev_register,
1136 NULL,
1137 default_frame_sniffer
4add8633
TR
1138};
1139
8818c391 1140static CORE_ADDR
94afd7a6 1141avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1142{
4add8633 1143 struct avr_unwind_cache *info
94afd7a6 1144 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1145
4add8633
TR
1146 return info->base;
1147}
8818c391 1148
4add8633
TR
1149static const struct frame_base avr_frame_base = {
1150 &avr_frame_unwind,
1151 avr_frame_base_address,
1152 avr_frame_base_address,
1153 avr_frame_base_address
1154};
ced15480 1155
94afd7a6
UW
1156/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1157 frame. The frame ID's base needs to match the TOS value saved by
1158 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1159
4add8633 1160static struct frame_id
94afd7a6 1161avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1162{
1163 ULONGEST base;
8818c391 1164
94afd7a6
UW
1165 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1166 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1167}
1168
4add8633 1169/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1170 order. The below implements a FILO (stack) to do this. */
8818c391 1171
4add8633
TR
1172struct stack_item
1173{
1174 int len;
1175 struct stack_item *prev;
1176 void *data;
1177};
8818c391 1178
4add8633 1179static struct stack_item *
0fd88904 1180push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1181{
4add8633
TR
1182 struct stack_item *si;
1183 si = xmalloc (sizeof (struct stack_item));
1184 si->data = xmalloc (len);
1185 si->len = len;
1186 si->prev = prev;
1187 memcpy (si->data, contents, len);
1188 return si;
8818c391
TR
1189}
1190
4add8633
TR
1191static struct stack_item *pop_stack_item (struct stack_item *si);
1192static struct stack_item *
1193pop_stack_item (struct stack_item *si)
8818c391 1194{
4add8633
TR
1195 struct stack_item *dead = si;
1196 si = si->prev;
1197 xfree (dead->data);
1198 xfree (dead);
1199 return si;
8818c391
TR
1200}
1201
8818c391
TR
1202/* Setup the function arguments for calling a function in the inferior.
1203
1204 On the AVR architecture, there are 18 registers (R25 to R8) which are
1205 dedicated for passing function arguments. Up to the first 18 arguments
1206 (depending on size) may go into these registers. The rest go on the stack.
1207
4add8633 1208 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1209 arguments, including char, have one free register above them). For example,
4add8633
TR
1210 an int in arg1 and a char in arg2 would be passed as such:
1211
1212 arg1 -> r25:r24
1213 arg2 -> r22
1214
1215 Arguments that are larger than 2 bytes will be split between two or more
1216 registers as available, but will NOT be split between a register and the
0963b4bd 1217 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1218 similar to the d10v). */
1219
1220/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1221 inaccurate.
8818c391
TR
1222
1223 An exceptional case exists for struct arguments (and possibly other
1224 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1225 not a multiple of WORDSIZE bytes. In this case the argument is never split
1226 between the registers and the stack, but instead is copied in its entirety
1227 onto the stack, AND also copied into as many registers as there is room
1228 for. In other words, space in registers permitting, two copies of the same
1229 argument are passed in. As far as I can tell, only the one on the stack is
1230 used, although that may be a function of the level of compiler
1231 optimization. I suspect this is a compiler bug. Arguments of these odd
1232 sizes are left-justified within the word (as opposed to arguments smaller
1233 than WORDSIZE bytes, which are right-justified).
1234
1235 If the function is to return an aggregate type such as a struct, the caller
1236 must allocate space into which the callee will copy the return value. In
1237 this case, a pointer to the return value location is passed into the callee
1238 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1239 registers R0 to R2. */
8818c391
TR
1240
1241static CORE_ADDR
7d9b040b 1242avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1243 struct regcache *regcache, CORE_ADDR bp_addr,
1244 int nargs, struct value **args, CORE_ADDR sp,
1245 int struct_return, CORE_ADDR struct_addr)
8818c391 1246{
e17a4113 1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1248 int i;
6d1915d4
TG
1249 unsigned char buf[3];
1250 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1251 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1252 int regnum = AVR_ARGN_REGNUM;
1253 struct stack_item *si = NULL;
8818c391 1254
4add8633 1255 if (struct_return)
8818c391 1256 {
fd6d6815
TG
1257 regcache_cooked_write_unsigned
1258 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1259 regcache_cooked_write_unsigned
1260 (regcache, regnum--, struct_addr & 0xff);
1261 /* SP being post decremented, we need to reserve one byte so that the
1262 return address won't overwrite the result (or vice-versa). */
1263 if (sp == struct_addr)
1264 sp--;
8818c391
TR
1265 }
1266
4add8633 1267 for (i = 0; i < nargs; i++)
8818c391 1268 {
4add8633
TR
1269 int last_regnum;
1270 int j;
1271 struct value *arg = args[i];
4991999e 1272 struct type *type = check_typedef (value_type (arg));
0fd88904 1273 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1274 int len = TYPE_LENGTH (type);
1275
0963b4bd 1276 /* Calculate the potential last register needed. */
4add8633
TR
1277 last_regnum = regnum - (len + (len & 1));
1278
0963b4bd
MS
1279 /* If there are registers available, use them. Once we start putting
1280 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1281 if ((si == NULL) && (last_regnum >= 8))
1282 {
1283 ULONGEST val;
1284
0963b4bd 1285 /* Skip a register for odd length args. */
4add8633
TR
1286 if (len & 1)
1287 regnum--;
1288
e17a4113 1289 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1290 for (j = 0; j < len; j++)
1291 regcache_cooked_write_unsigned
1292 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1293 }
0963b4bd 1294 /* No registers available, push the args onto the stack. */
4add8633
TR
1295 else
1296 {
0963b4bd 1297 /* From here on, we don't care about regnum. */
4add8633
TR
1298 si = push_stack_item (si, contents, len);
1299 }
8818c391 1300 }
909cd28e 1301
0963b4bd 1302 /* Push args onto the stack. */
4add8633
TR
1303 while (si)
1304 {
1305 sp -= si->len;
0963b4bd 1306 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1307 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1308 si = pop_stack_item (si);
1309 }
3605c34a 1310
4add8633
TR
1311 /* Set the return address. For the avr, the return address is the BP_ADDR.
1312 Need to push the return address onto the stack noting that it needs to be
1313 in big-endian order on the stack. */
6d1915d4
TG
1314 for (i = 1; i <= call_length; i++)
1315 {
1316 buf[call_length - i] = return_pc & 0xff;
1317 return_pc >>= 8;
1318 }
3605c34a 1319
6d1915d4 1320 sp -= call_length;
0963b4bd 1321 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1322 write_memory (sp + 1, buf, call_length);
3605c34a 1323
0963b4bd 1324 /* Finally, update the SP register. */
4add8633
TR
1325 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1326 avr_convert_saddr_to_raw (sp));
3605c34a 1327
6d1915d4
TG
1328 /* Return SP value for the dummy frame, where the return address hasn't been
1329 pushed. */
1330 return sp + call_length;
3605c34a
TR
1331}
1332
53f6a2c9
TG
1333/* Unfortunately dwarf2 register for SP is 32. */
1334
1335static int
1336avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1337{
1338 if (reg >= 0 && reg < 32)
1339 return reg;
1340 if (reg == 32)
1341 return AVR_SP_REGNUM;
1342
1343 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1344
1345 return -1;
1346}
1347
0963b4bd 1348/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1349
1350static struct gdbarch *
2e5ff58c
TR
1351avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1352{
2e5ff58c
TR
1353 struct gdbarch *gdbarch;
1354 struct gdbarch_tdep *tdep;
4e99ad69
TG
1355 struct gdbarch_list *best_arch;
1356 int call_length;
8818c391 1357
4e99ad69 1358 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1359 switch (info.bfd_arch_info->mach)
1360 {
1361 case bfd_mach_avr1:
1362 case bfd_mach_avr2:
1363 case bfd_mach_avr3:
1364 case bfd_mach_avr4:
1365 case bfd_mach_avr5:
4e99ad69
TG
1366 default:
1367 call_length = 2;
1368 break;
1369 case bfd_mach_avr6:
1370 call_length = 3;
8818c391
TR
1371 break;
1372 }
1373
4e99ad69
TG
1374 /* If there is already a candidate, use it. */
1375 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1376 best_arch != NULL;
1377 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1378 {
1379 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1380 return best_arch->gdbarch;
1381 }
1382
0963b4bd 1383 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1384 tdep = XMALLOC (struct gdbarch_tdep);
1385 gdbarch = gdbarch_alloc (&info, tdep);
1386
1387 tdep->call_length = call_length;
1388
7d2552b4
TG
1389 /* Create a type for PC. We can't use builtin types here, as they may not
1390 be defined. */
1391 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1392 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1393 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1394 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1395 TYPE_UNSIGNED (tdep->pc_type) = 1;
1396
8818c391
TR
1397 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1399 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1400 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1401 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1402 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1403
1404 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1405 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1406 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1407
8da61cc4
DJ
1408 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1409 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1410 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1411
1412 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1413 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1414
1415 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1416
1417 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1418 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1419
1420 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1421 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1422
7d2552b4
TG
1423 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1424 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1425 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1426
4c8b6ae0 1427 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1428 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1429
4add8633 1430 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1431
53f6a2c9
TG
1432 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1433
8818c391
TR
1434 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1435 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1436 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1437
8818c391 1438 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1439 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1440
909cd28e 1441 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1442
94afd7a6 1443 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1444 frame_base_set_default (gdbarch, &avr_frame_base);
1445
94afd7a6 1446 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1447
1448 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1449 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1450
8818c391
TR
1451 return gdbarch;
1452}
1453
1454/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1455 registers. If args parameter is not NULL, then the user has requested info
8818c391 1456 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1457 now]. The query string should be one of these forms:
8818c391
TR
1458
1459 "Ravr.io_reg" -> reply is "NN" number of io registers
1460
1461 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1462 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1463 where, <NAME> is a string, and VV is the hex value of the register.
1464
0963b4bd 1465 All io registers are 8-bit. */
8818c391
TR
1466
1467static void
1468avr_io_reg_read_command (char *args, int from_tty)
1469{
1e3ff5ad 1470 LONGEST bufsiz = 0;
13547ab6 1471 gdb_byte *buf;
2e5ff58c
TR
1472 char query[400];
1473 char *p;
1474 unsigned int nreg = 0;
1475 unsigned int val;
1476 int i, j, k, step;
8818c391 1477
0963b4bd 1478 /* Find out how many io registers the target has. */
13547ab6
DJ
1479 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1480 "avr.io_reg", &buf);
8818c391 1481
13547ab6 1482 if (bufsiz <= 0)
8818c391 1483 {
2e5ff58c 1484 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1485 _("ERR: info io_registers NOT supported "
1486 "by current target\n"));
8818c391
TR
1487 return;
1488 }
1489
2e5ff58c 1490 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1491 {
2e5ff58c 1492 fprintf_unfiltered (gdb_stderr,
edefbb7c 1493 _("Error fetching number of io registers\n"));
13547ab6 1494 xfree (buf);
8818c391
TR
1495 return;
1496 }
1497
13547ab6
DJ
1498 xfree (buf);
1499
2e5ff58c 1500 reinitialize_more_filter ();
8818c391 1501
edefbb7c 1502 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1503
1504 /* only fetch up to 8 registers at a time to keep the buffer small */
1505 step = 8;
1506
2e5ff58c 1507 for (i = 0; i < nreg; i += step)
8818c391 1508 {
91ccbfc1
TR
1509 /* how many registers this round? */
1510 j = step;
1511 if ((i+j) >= nreg)
1512 j = nreg - i; /* last block is less than 8 registers */
8818c391 1513
2e5ff58c 1514 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1515 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1516 query, &buf);
8818c391
TR
1517
1518 p = buf;
2e5ff58c
TR
1519 for (k = i; k < (i + j); k++)
1520 {
1521 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1522 {
1523 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1524 while ((*p != ';') && (*p != '\0'))
1525 p++;
1526 p++; /* skip over ';' */
1527 if (*p == '\0')
1528 break;
1529 }
1530 }
13547ab6
DJ
1531
1532 xfree (buf);
8818c391
TR
1533 }
1534}
1535
a78f21af
AC
1536extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1537
8818c391
TR
1538void
1539_initialize_avr_tdep (void)
1540{
1541 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1542
1543 /* Add a new command to allow the user to query the avr remote target for
1544 the values of the io space registers in a saner way than just using
0963b4bd 1545 `x/NNNb ADDR`. */
8818c391
TR
1546
1547 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1548 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1549
1550 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1551 _("query remote avr target for io space register values"),
1552 &infolist);
8818c391 1553}
This page took 0.647008 seconds and 4 git commands to generate.