* elf64-sparc.c (sparc64_elf_relocate_section): Ignore overflows
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
5b828b6b 2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
8818c391
TR
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
de18ac1f 22/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
4add8633
TR
28#include "frame.h"
29#include "frame-unwind.h"
30#include "frame-base.h"
31#include "trad-frame.h"
8818c391
TR
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
a89aa300 39#include "dis-asm.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72#undef XMALLOC
73#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
74
75#undef EXTRACT_INSN
76#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
77
78/* Constants: prefixed with AVR_ to avoid name space clashes */
79
80enum
2e5ff58c
TR
81{
82 AVR_REG_W = 24,
83 AVR_REG_X = 26,
84 AVR_REG_Y = 28,
85 AVR_FP_REGNUM = 28,
86 AVR_REG_Z = 30,
87
88 AVR_SREG_REGNUM = 32,
89 AVR_SP_REGNUM = 33,
90 AVR_PC_REGNUM = 34,
91
92 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
93 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
94
95 AVR_PC_REG_INDEX = 35, /* index into array of registers */
96
4add8633 97 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c
TR
98
99 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
100 AVR_MAX_PUSHES = 18,
101
102 /* Number of the last pushed register. r17 for current avr-gcc */
103 AVR_LAST_PUSHED_REGNUM = 17,
104
4add8633
TR
105 AVR_ARG1_REGNUM = 24, /* Single byte argument */
106 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
107
108 AVR_RET1_REGNUM = 24, /* Single byte return value */
109 AVR_RETN_REGNUM = 25, /* Multi byte return value */
110
2e5ff58c
TR
111 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
112 bits? Do these have to match the bfd vma values?. It sure would make
113 things easier in the future if they didn't need to match.
114
115 Note: I chose these values so as to be consistent with bfd vma
116 addresses.
117
118 TRoth/2002-04-08: There is already a conflict with very large programs
119 in the mega128. The mega128 has 128K instruction bytes (64K words),
120 thus the Most Significant Bit is 0x10000 which gets masked off my
121 AVR_MEM_MASK.
122
123 The problem manifests itself when trying to set a breakpoint in a
124 function which resides in the upper half of the instruction space and
125 thus requires a 17-bit address.
126
127 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
128 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
129 but could be for some remote targets by just adding the correct offset
130 to the address and letting the remote target handle the low-level
131 details of actually accessing the eeprom. */
132
133 AVR_IMEM_START = 0x00000000, /* INSN memory */
134 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 135#if 1
2e5ff58c
TR
136 /* No eeprom mask defined */
137 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 138#else
2e5ff58c
TR
139 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
140 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 141#endif
2e5ff58c 142};
8818c391 143
4add8633
TR
144/* Prologue types:
145
146 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
147 causes the generation of the CALL type prologues). */
148
149enum {
150 AVR_PROLOGUE_NONE, /* No prologue */
151 AVR_PROLOGUE_NORMAL,
152 AVR_PROLOGUE_CALL, /* -mcall-prologues */
153 AVR_PROLOGUE_MAIN,
154 AVR_PROLOGUE_INTR, /* interrupt handler */
155 AVR_PROLOGUE_SIG, /* signal handler */
156};
157
8818c391
TR
158/* Any function with a frame looks like this
159 ....... <-SP POINTS HERE
160 LOCALS1 <-FP POINTS HERE
161 LOCALS0
162 SAVED FP
163 SAVED R3
164 SAVED R2
165 RET PC
166 FIRST ARG
167 SECOND ARG */
168
4add8633 169struct avr_unwind_cache
2e5ff58c 170{
4add8633
TR
171 /* The previous frame's inner most stack address. Used as this
172 frame ID's stack_addr. */
173 CORE_ADDR prev_sp;
174 /* The frame's base, optionally used by the high-level debug info. */
175 CORE_ADDR base;
176 int size;
177 int prologue_type;
178 /* Table indicating the location of each and every register. */
179 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 180};
8818c391
TR
181
182struct gdbarch_tdep
2e5ff58c
TR
183{
184 /* FIXME: TRoth: is there anything to put here? */
185 int foo;
186};
8818c391
TR
187
188/* Lookup the name of a register given it's number. */
189
fa88f677 190static const char *
8818c391
TR
191avr_register_name (int regnum)
192{
2e5ff58c
TR
193 static char *register_names[] = {
194 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
195 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
196 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
197 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
198 "SREG", "SP", "PC"
199 };
200 if (regnum < 0)
201 return NULL;
202 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
203 return NULL;
204 return register_names[regnum];
205}
206
8818c391
TR
207/* Return the GDB type object for the "standard" data type
208 of data in register N. */
209
210static struct type *
866b76ea 211avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 212{
866b76ea
TR
213 if (reg_nr == AVR_PC_REGNUM)
214 return builtin_type_uint32;
866b76ea
TR
215 if (reg_nr == AVR_SP_REGNUM)
216 return builtin_type_void_data_ptr;
217 else
218 return builtin_type_uint8;
8818c391
TR
219}
220
221/* Instruction address checks and convertions. */
222
223static CORE_ADDR
224avr_make_iaddr (CORE_ADDR x)
225{
226 return ((x) | AVR_IMEM_START);
227}
228
8818c391
TR
229/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
230 devices are already up to 128KBytes of flash space.
231
232 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
233
234static CORE_ADDR
235avr_convert_iaddr_to_raw (CORE_ADDR x)
236{
237 return ((x) & 0xffffffff);
238}
239
240/* SRAM address checks and convertions. */
241
242static CORE_ADDR
243avr_make_saddr (CORE_ADDR x)
244{
245 return ((x) | AVR_SMEM_START);
246}
247
8818c391
TR
248static CORE_ADDR
249avr_convert_saddr_to_raw (CORE_ADDR x)
250{
251 return ((x) & 0xffffffff);
252}
253
254/* EEPROM address checks and convertions. I don't know if these will ever
255 actually be used, but I've added them just the same. TRoth */
256
257/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
258 programs in the mega128. */
259
260/* static CORE_ADDR */
261/* avr_make_eaddr (CORE_ADDR x) */
262/* { */
263/* return ((x) | AVR_EMEM_START); */
264/* } */
265
266/* static int */
267/* avr_eaddr_p (CORE_ADDR x) */
268/* { */
269/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
270/* } */
271
272/* static CORE_ADDR */
273/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
274/* { */
275/* return ((x) & 0xffffffff); */
276/* } */
277
278/* Convert from address to pointer and vice-versa. */
279
280static void
281avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
282{
283 /* Is it a code address? */
284 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
285 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
286 {
2e5ff58c 287 store_unsigned_integer (buf, TYPE_LENGTH (type),
4ea2465e 288 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
289 }
290 else
291 {
292 /* Strip off any upper segment bits. */
2e5ff58c
TR
293 store_unsigned_integer (buf, TYPE_LENGTH (type),
294 avr_convert_saddr_to_raw (addr));
8818c391
TR
295 }
296}
297
298static CORE_ADDR
66140c26 299avr_pointer_to_address (struct type *type, const void *buf)
8818c391 300{
7c0b4a20 301 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
8818c391 302
8818c391
TR
303 /* Is it a code address? */
304 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
305 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 306 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 307 return avr_make_iaddr (addr << 1);
8818c391
TR
308 else
309 return avr_make_saddr (addr);
310}
311
312static CORE_ADDR
313avr_read_pc (ptid_t ptid)
314{
315 ptid_t save_ptid;
8619218d 316 ULONGEST pc;
8818c391
TR
317 CORE_ADDR retval;
318
319 save_ptid = inferior_ptid;
320 inferior_ptid = ptid;
8619218d 321 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
8818c391
TR
322 inferior_ptid = save_ptid;
323 retval = avr_make_iaddr (pc);
324 return retval;
325}
326
327static void
328avr_write_pc (CORE_ADDR val, ptid_t ptid)
329{
330 ptid_t save_ptid;
331
332 save_ptid = inferior_ptid;
333 inferior_ptid = ptid;
334 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
335 inferior_ptid = save_ptid;
336}
337
338static CORE_ADDR
339avr_read_sp (void)
340{
8619218d
TR
341 ULONGEST sp;
342
343 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
344 return (avr_make_saddr (sp));
8818c391
TR
345}
346
4add8633
TR
347static int
348avr_scan_arg_moves (int vpc, unsigned char *prologue)
8818c391 349{
4add8633 350 unsigned short insn;
866b76ea 351
4add8633
TR
352 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
353 {
354 insn = EXTRACT_INSN (&prologue[vpc]);
355 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
356 continue;
357 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
358 continue;
359 else
360 break;
361 }
362
363 return vpc;
8818c391
TR
364}
365
4add8633 366/* Function: avr_scan_prologue
8818c391 367
4add8633 368 This function decodes an AVR function prologue to determine:
8818c391
TR
369 1) the size of the stack frame
370 2) which registers are saved on it
371 3) the offsets of saved regs
4add8633 372 This information is stored in the avr_unwind_cache structure.
8818c391 373
e3d8b004
TR
374 Some devices lack the sbiw instruction, so on those replace this:
375 sbiw r28, XX
376 with this:
377 subi r28,lo8(XX)
378 sbci r29,hi8(XX)
379
380 A typical AVR function prologue with a frame pointer might look like this:
381 push rXX ; saved regs
382 ...
383 push r28
384 push r29
385 in r28,__SP_L__
386 in r29,__SP_H__
387 sbiw r28,<LOCALS_SIZE>
388 in __tmp_reg__,__SREG__
8818c391 389 cli
e3d8b004 390 out __SP_H__,r29
72fab697
TR
391 out __SREG__,__tmp_reg__
392 out __SP_L__,r28
e3d8b004
TR
393
394 A typical AVR function prologue without a frame pointer might look like
395 this:
396 push rXX ; saved regs
397 ...
398
399 A main function prologue looks like this:
400 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
401 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
402 out __SP_H__,r29
403 out __SP_L__,r28
404
405 A signal handler prologue looks like this:
406 push __zero_reg__
407 push __tmp_reg__
408 in __tmp_reg__, __SREG__
409 push __tmp_reg__
410 clr __zero_reg__
411 push rXX ; save registers r18:r27, r30:r31
412 ...
413 push r28 ; save frame pointer
414 push r29
415 in r28, __SP_L__
416 in r29, __SP_H__
417 sbiw r28, <LOCALS_SIZE>
418 out __SP_H__, r29
419 out __SP_L__, r28
420
421 A interrupt handler prologue looks like this:
422 sei
423 push __zero_reg__
424 push __tmp_reg__
425 in __tmp_reg__, __SREG__
426 push __tmp_reg__
427 clr __zero_reg__
428 push rXX ; save registers r18:r27, r30:r31
429 ...
430 push r28 ; save frame pointer
431 push r29
432 in r28, __SP_L__
433 in r29, __SP_H__
434 sbiw r28, <LOCALS_SIZE>
435 cli
436 out __SP_H__, r29
437 sei
438 out __SP_L__, r28
439
440 A `-mcall-prologues' prologue looks like this (Note that the megas use a
441 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
442 32 bit insn and rjmp is a 16 bit insn):
443 ldi r26,lo8(<LOCALS_SIZE>)
444 ldi r27,hi8(<LOCALS_SIZE>)
445 ldi r30,pm_lo8(.L_foo_body)
446 ldi r31,pm_hi8(.L_foo_body)
447 rjmp __prologue_saves__+RRR
448 .L_foo_body: */
8818c391 449
4add8633
TR
450/* Not really part of a prologue, but still need to scan for it, is when a
451 function prologue moves values passed via registers as arguments to new
452 registers. In this case, all local variables live in registers, so there
453 may be some register saves. This is what it looks like:
454 movw rMM, rNN
455 ...
456
457 There could be multiple movw's. If the target doesn't have a movw insn, it
458 will use two mov insns. This could be done after any of the above prologue
459 types. */
460
461static CORE_ADDR
462avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
8818c391 463{
2e5ff58c
TR
464 int i;
465 unsigned short insn;
2e5ff58c 466 int scan_stage = 0;
8818c391 467 struct minimal_symbol *msymbol;
8818c391
TR
468 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
469 int vpc = 0;
470
4add8633
TR
471 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
472 reading in the bytes of the prologue. The problem is that the figuring
473 out where the end of the prologue is is a bit difficult. The old code
474 tried to do that, but failed quite often. */
475 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
8818c391
TR
476
477 /* Scanning main()'s prologue
478 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
479 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
480 out __SP_H__,r29
481 out __SP_L__,r28 */
482
4add8633 483 if (1)
8818c391
TR
484 {
485 CORE_ADDR locals;
2e5ff58c
TR
486 unsigned char img[] = {
487 0xde, 0xbf, /* out __SP_H__,r29 */
488 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
489 };
490
8818c391
TR
491 insn = EXTRACT_INSN (&prologue[vpc]);
492 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
493 if ((insn & 0xf0f0) == 0xe0c0)
494 {
495 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
496 insn = EXTRACT_INSN (&prologue[vpc + 2]);
497 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
498 if ((insn & 0xf0f0) == 0xe0d0)
499 {
500 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
501 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
502 {
4add8633
TR
503 info->prologue_type = AVR_PROLOGUE_MAIN;
504 info->base = locals;
505 return pc + 4;
2e5ff58c
TR
506 }
507 }
508 }
8818c391 509 }
2e5ff58c 510
4add8633
TR
511 /* Scanning `-mcall-prologues' prologue
512 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 513
e3d8b004 514 while (1) /* Using a while to avoid many goto's */
8818c391
TR
515 {
516 int loc_size;
517 int body_addr;
518 unsigned num_pushes;
4add8633 519 int pc_offset = 0;
2e5ff58c 520
8818c391
TR
521 insn = EXTRACT_INSN (&prologue[vpc]);
522 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
523 if ((insn & 0xf0f0) != 0xe0a0)
524 break;
8818c391 525 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 526 pc_offset += 2;
2e5ff58c 527
8818c391
TR
528 insn = EXTRACT_INSN (&prologue[vpc + 2]);
529 /* ldi r27,<LOCALS_SIZE> / 256 */
530 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 531 break;
8818c391 532 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 533 pc_offset += 2;
2e5ff58c 534
8818c391
TR
535 insn = EXTRACT_INSN (&prologue[vpc + 4]);
536 /* ldi r30,pm_lo8(.L_foo_body) */
537 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 538 break;
8818c391 539 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 540 pc_offset += 2;
8818c391
TR
541
542 insn = EXTRACT_INSN (&prologue[vpc + 6]);
543 /* ldi r31,pm_hi8(.L_foo_body) */
544 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 545 break;
8818c391 546 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 547 pc_offset += 2;
8818c391 548
8818c391
TR
549 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
550 if (!msymbol)
2e5ff58c 551 break;
8818c391 552
8818c391
TR
553 insn = EXTRACT_INSN (&prologue[vpc + 8]);
554 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
555 if ((insn & 0xf000) == 0xc000)
556 {
557 /* Extract PC relative offset from RJMP */
558 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
559 /* Convert offset to byte addressable mode */
560 i *= 2;
561 /* Destination address */
4add8633 562 i += pc + 10;
e3d8b004 563
4add8633 564 if (body_addr != (pc + 10)/2)
e3d8b004 565 break;
4add8633
TR
566
567 pc_offset += 2;
e3d8b004 568 }
e3d8b004
TR
569 else if ((insn & 0xfe0e) == 0x940c)
570 {
571 /* Extract absolute PC address from JMP */
572 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
573 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
574 /* Convert address to byte addressable mode */
575 i *= 2;
576
4add8633 577 if (body_addr != (pc + 12)/2)
e3d8b004 578 break;
4add8633
TR
579
580 pc_offset += 4;
e3d8b004
TR
581 }
582 else
583 break;
2e5ff58c 584
4add8633 585 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
586 Which is a pushes count in `-mcall-prologues' mode */
587 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
588
589 if (num_pushes > AVR_MAX_PUSHES)
4add8633
TR
590 {
591 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
592 num_pushes);
593 num_pushes = 0;
594 }
2e5ff58c 595
8818c391 596 if (num_pushes)
2e5ff58c
TR
597 {
598 int from;
4add8633
TR
599
600 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 601 if (num_pushes >= 2)
4add8633
TR
602 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
603
2e5ff58c
TR
604 i = 0;
605 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
606 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 607 info->saved_regs [from].addr = ++i;
2e5ff58c 608 }
4add8633
TR
609 info->size = loc_size + num_pushes;
610 info->prologue_type = AVR_PROLOGUE_CALL;
611
612 return pc + pc_offset;
8818c391
TR
613 }
614
4add8633
TR
615 /* Scan for the beginning of the prologue for an interrupt or signal
616 function. Note that we have to set the prologue type here since the
617 third stage of the prologue may not be present (e.g. no saved registered
618 or changing of the SP register). */
8818c391 619
4add8633 620 if (1)
8818c391 621 {
2e5ff58c
TR
622 unsigned char img[] = {
623 0x78, 0x94, /* sei */
624 0x1f, 0x92, /* push r1 */
625 0x0f, 0x92, /* push r0 */
626 0x0f, 0xb6, /* in r0,0x3f SREG */
627 0x0f, 0x92, /* push r0 */
628 0x11, 0x24 /* clr r1 */
8818c391
TR
629 };
630 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 631 {
4add8633 632 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 633 vpc += sizeof (img);
4add8633
TR
634 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
635 info->saved_regs[0].addr = 2;
636 info->saved_regs[1].addr = 1;
637 info->size += 3;
2e5ff58c 638 }
4add8633 639 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 640 {
4add8633
TR
641 info->prologue_type = AVR_PROLOGUE_SIG;
642 vpc += sizeof (img) - 2;
643 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
644 info->saved_regs[0].addr = 2;
645 info->saved_regs[1].addr = 1;
646 info->size += 3;
2e5ff58c 647 }
8818c391
TR
648 }
649
650 /* First stage of the prologue scanning.
4add8633 651 Scan pushes (saved registers) */
8818c391 652
4add8633 653 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
8818c391
TR
654 {
655 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
656 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
657 {
658 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
659 int regno = (insn & 0x1f0) >> 4;
660 info->size++;
661 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
662 scan_stage = 1;
663 }
8818c391 664 else
2e5ff58c 665 break;
8818c391
TR
666 }
667
4add8633
TR
668 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
669 fprintf_unfiltered (gdb_stderr,
670 "Hit end of prologue while scanning pushes\n");
671
8818c391
TR
672 /* Second stage of the prologue scanning.
673 Scan:
674 in r28,__SP_L__
675 in r29,__SP_H__ */
676
4add8633 677 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391 678 {
2e5ff58c
TR
679 unsigned char img[] = {
680 0xcd, 0xb7, /* in r28,__SP_L__ */
681 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
682 };
683 unsigned short insn1;
2e5ff58c 684
8818c391 685 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
686 {
687 vpc += 4;
2e5ff58c
TR
688 scan_stage = 2;
689 }
8818c391
TR
690 }
691
692 /* Third stage of the prologue scanning. (Really two stages)
693 Scan for:
694 sbiw r28,XX or subi r28,lo8(XX)
72fab697 695 sbci r29,hi8(XX)
8818c391
TR
696 in __tmp_reg__,__SREG__
697 cli
e3d8b004 698 out __SP_H__,r29
8818c391 699 out __SREG__,__tmp_reg__
e3d8b004 700 out __SP_L__,r28 */
8818c391 701
4add8633 702 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391
TR
703 {
704 int locals_size = 0;
2e5ff58c
TR
705 unsigned char img[] = {
706 0x0f, 0xb6, /* in r0,0x3f */
707 0xf8, 0x94, /* cli */
e3d8b004 708 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 709 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 710 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 711 };
2e5ff58c 712 unsigned char img_sig[] = {
e3d8b004
TR
713 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
714 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 715 };
2e5ff58c
TR
716 unsigned char img_int[] = {
717 0xf8, 0x94, /* cli */
e3d8b004 718 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 719 0x78, 0x94, /* sei */
e3d8b004 720 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 721 };
2e5ff58c 722
8818c391
TR
723 insn = EXTRACT_INSN (&prologue[vpc]);
724 vpc += 2;
2e5ff58c
TR
725 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
726 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
727 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
728 {
729 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
730 insn = EXTRACT_INSN (&prologue[vpc]);
731 vpc += 2;
732 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
733 }
8818c391 734 else
4add8633
TR
735 return pc + vpc;
736
737 /* Scan the last part of the prologue. May not be present for interrupt
738 or signal handler functions, which is why we set the prologue type
739 when we saw the beginning of the prologue previously. */
740
741 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
742 {
743 vpc += sizeof (img_sig);
744 }
745 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
746 {
747 vpc += sizeof (img_int);
748 }
749 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
750 {
751 info->prologue_type = AVR_PROLOGUE_NORMAL;
752 vpc += sizeof (img);
753 }
754
755 info->size += locals_size;
756
757 return pc + avr_scan_arg_moves (vpc, prologue);
8818c391 758 }
4add8633
TR
759
760 /* If we got this far, we could not scan the prologue, so just return the pc
761 of the frame plus an adjustment for argument move insns. */
762
763 return pc + avr_scan_arg_moves (vpc, prologue);;
8818c391
TR
764}
765
4add8633
TR
766static CORE_ADDR
767avr_skip_prologue (CORE_ADDR pc)
768{
769 CORE_ADDR func_addr, func_end;
770 CORE_ADDR prologue_end = pc;
8818c391 771
4add8633 772 /* See what the symbol table says */
8818c391 773
4add8633
TR
774 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
775 {
776 struct symtab_and_line sal;
777 struct avr_unwind_cache info = {0};
778 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
2e5ff58c 779
4add8633 780 info.saved_regs = saved_regs;
8818c391 781
4add8633
TR
782 /* Need to run the prologue scanner to figure out if the function has a
783 prologue and possibly skip over moving arguments passed via registers
784 to other registers. */
2e5ff58c 785
4add8633 786 prologue_end = avr_scan_prologue (pc, &info);
8818c391 787
3b85b0f1
TR
788 if (info.prologue_type == AVR_PROLOGUE_NONE)
789 return pc;
790 else
4add8633
TR
791 {
792 sal = find_pc_line (func_addr, 0);
8818c391 793
4add8633
TR
794 if (sal.line != 0 && sal.end < func_end)
795 return sal.end;
796 }
797 }
2e5ff58c 798
4add8633
TR
799/* Either we didn't find the start of this function (nothing we can do),
800 or there's no line info, or the line after the prologue is after
801 the end of the function (there probably isn't a prologue). */
2e5ff58c 802
4add8633
TR
803 return prologue_end;
804}
8818c391 805
4add8633
TR
806/* Not all avr devices support the BREAK insn. Those that don't should treat
807 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
808 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 809
4add8633
TR
810static const unsigned char *
811avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
812{
813 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
814 *lenptr = sizeof (avr_break_insn);
815 return avr_break_insn;
8818c391
TR
816}
817
4add8633
TR
818/* Given a return value in `regbuf' with a type `valtype',
819 extract and copy its value into `valbuf'.
820
821 Return values are always passed via registers r25:r24:... */
8818c391
TR
822
823static void
4add8633
TR
824avr_extract_return_value (struct type *type, struct regcache *regcache,
825 void *valbuf)
8818c391 826{
4add8633
TR
827 ULONGEST r24, r25;
828 ULONGEST c;
829 int len;
830 if (TYPE_LENGTH (type) == 1)
8818c391 831 {
4add8633
TR
832 regcache_cooked_read_unsigned (regcache, 24, &c);
833 store_unsigned_integer (valbuf, 1, c);
8818c391
TR
834 }
835 else
836 {
4add8633
TR
837 int i;
838 /* The MSB of the return value is always in r25, calculate which
839 register holds the LSB. */
840 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
8818c391 841
4add8633
TR
842 for (i=0; i< TYPE_LENGTH (type); i++)
843 {
844 regcache_cooked_read (regcache, lsb_reg + i,
845 (bfd_byte *) valbuf + i);
4add8633
TR
846 }
847 }
848}
8818c391 849
4add8633
TR
850/* Put here the code to store, into fi->saved_regs, the addresses of
851 the saved registers of frame described by FRAME_INFO. This
852 includes special registers such as pc and fp saved in special ways
853 in the stack frame. sp is even more special: the address we return
854 for it IS the sp for the next frame. */
8818c391 855
4add8633
TR
856struct avr_unwind_cache *
857avr_frame_unwind_cache (struct frame_info *next_frame,
858 void **this_prologue_cache)
8818c391 859{
4add8633
TR
860 CORE_ADDR pc;
861 ULONGEST prev_sp;
862 ULONGEST this_base;
863 struct avr_unwind_cache *info;
864 int i;
865
866 if ((*this_prologue_cache))
867 return (*this_prologue_cache);
868
869 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
870 (*this_prologue_cache) = info;
871 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
872
873 info->size = 0;
874 info->prologue_type = AVR_PROLOGUE_NONE;
875
876 pc = frame_func_unwind (next_frame);
877
878 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
879 avr_scan_prologue (pc, info);
880
3b85b0f1
TR
881 if ((info->prologue_type != AVR_PROLOGUE_NONE)
882 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
883 {
884 ULONGEST high_base; /* High byte of FP */
885
886 /* The SP was moved to the FP. This indicates that a new frame
887 was created. Get THIS frame's FP value by unwinding it from
888 the next frame. */
889 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
890 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
891 this_base += (high_base << 8);
892
893 /* The FP points at the last saved register. Adjust the FP back
894 to before the first saved register giving the SP. */
895 prev_sp = this_base + info->size;
896 }
8818c391 897 else
4add8633
TR
898 {
899 /* Assume that the FP is this frame's SP but with that pushed
900 stack space added back. */
901 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
902 prev_sp = this_base + info->size;
903 }
904
905 /* Add 1 here to adjust for the post-decrement nature of the push
906 instruction.*/
907 info->prev_sp = avr_make_saddr (prev_sp+1);
908
909 info->base = avr_make_saddr (this_base);
910
911 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 912 offsets. */
4add8633
TR
913 for (i = 0; i < NUM_REGS - 1; i++)
914 if (info->saved_regs[i].addr)
915 {
916 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
917 }
918
919 /* Except for the main and startup code, the return PC is always saved on
920 the stack and is at the base of the frame. */
921
922 if (info->prologue_type != AVR_PROLOGUE_MAIN)
923 {
924 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
925 }
926
3b85b0f1
TR
927 /* The previous frame's SP needed to be computed. Save the computed
928 value. */
929 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1);
930
4add8633 931 return info;
8818c391
TR
932}
933
934static CORE_ADDR
4add8633 935avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 936{
4add8633
TR
937 ULONGEST pc;
938
939 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
940
941 return avr_make_iaddr (pc);
8818c391
TR
942}
943
4add8633
TR
944/* Given a GDB frame, determine the address of the calling function's
945 frame. This will be used to create a new GDB frame struct. */
8818c391 946
4add8633
TR
947static void
948avr_frame_this_id (struct frame_info *next_frame,
949 void **this_prologue_cache,
950 struct frame_id *this_id)
8818c391 951{
4add8633
TR
952 struct avr_unwind_cache *info
953 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
954 CORE_ADDR base;
955 CORE_ADDR func;
956 struct frame_id id;
957
958 /* The FUNC is easy. */
959 func = frame_func_unwind (next_frame);
960
4add8633
TR
961 /* Hopefully the prologue analysis either correctly determined the
962 frame's base (which is the SP from the previous frame), or set
963 that base to "NULL". */
964 base = info->prev_sp;
965 if (base == 0)
966 return;
967
968 id = frame_id_build (base, func);
4add8633 969 (*this_id) = id;
8818c391
TR
970}
971
4add8633
TR
972static void
973avr_frame_prev_register (struct frame_info *next_frame,
974 void **this_prologue_cache,
975 int regnum, int *optimizedp,
976 enum lval_type *lvalp, CORE_ADDR *addrp,
977 int *realnump, void *bufferp)
8818c391 978{
4add8633
TR
979 struct avr_unwind_cache *info
980 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
8818c391 981
3b85b0f1
TR
982 if (regnum == AVR_PC_REGNUM)
983 {
984 if (trad_frame_addr_p (info->saved_regs, regnum))
985 {
986 *optimizedp = 0;
987 *lvalp = lval_memory;
988 *addrp = info->saved_regs[regnum].addr;
989 *realnump = -1;
990 if (bufferp != NULL)
991 {
992 /* Reading the return PC from the PC register is slightly
993 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
994 but in reality, only two bytes (3 in upcoming mega256) are
995 stored on the stack.
996
997 Also, note that the value on the stack is an addr to a word
998 not a byte, so we will need to multiply it by two at some
999 point.
1000
1001 And to confuse matters even more, the return address stored
1002 on the stack is in big endian byte order, even though most
1003 everything else about the avr is little endian. Ick! */
1004
1005 /* FIXME: number of bytes read here will need updated for the
1006 mega256 when it is available. */
1007
1008 ULONGEST pc;
1009 unsigned char tmp;
1010 unsigned char buf[2];
1011
1012 read_memory (info->saved_regs[regnum].addr, buf, 2);
1013
1014 /* Convert the PC read from memory as a big-endian to
1015 little-endian order. */
1016 tmp = buf[0];
1017 buf[0] = buf[1];
1018 buf[1] = tmp;
1019
1020 pc = (extract_unsigned_integer (buf, 2) * 2);
1021 store_unsigned_integer (bufferp,
1022 register_size (current_gdbarch, regnum),
1023 pc);
1024 }
1025 }
1026 }
1027 else
1f67027d
AC
1028 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1029 optimizedp, lvalp, addrp, realnump, bufferp);
4add8633 1030}
8818c391 1031
4add8633
TR
1032static const struct frame_unwind avr_frame_unwind = {
1033 NORMAL_FRAME,
1034 avr_frame_this_id,
1035 avr_frame_prev_register
1036};
1037
1038const struct frame_unwind *
336d1bba 1039avr_frame_sniffer (struct frame_info *next_frame)
4add8633
TR
1040{
1041 return &avr_frame_unwind;
8818c391
TR
1042}
1043
1044static CORE_ADDR
4add8633 1045avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
8818c391 1046{
4add8633
TR
1047 struct avr_unwind_cache *info
1048 = avr_frame_unwind_cache (next_frame, this_cache);
8818c391 1049
4add8633
TR
1050 return info->base;
1051}
8818c391 1052
4add8633
TR
1053static const struct frame_base avr_frame_base = {
1054 &avr_frame_unwind,
1055 avr_frame_base_address,
1056 avr_frame_base_address,
1057 avr_frame_base_address
1058};
ced15480 1059
4add8633
TR
1060/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1061 dummy frame. The frame ID's base needs to match the TOS value
1062 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1063 breakpoint. */
8818c391 1064
4add8633
TR
1065static struct frame_id
1066avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1067{
1068 ULONGEST base;
8818c391 1069
4add8633
TR
1070 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1071 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
8818c391
TR
1072}
1073
4add8633
TR
1074/* When arguments must be pushed onto the stack, they go on in reverse
1075 order. The below implements a FILO (stack) to do this. */
8818c391 1076
4add8633
TR
1077struct stack_item
1078{
1079 int len;
1080 struct stack_item *prev;
1081 void *data;
1082};
8818c391 1083
4add8633
TR
1084static struct stack_item *push_stack_item (struct stack_item *prev,
1085 void *contents, int len);
1086static struct stack_item *
1087push_stack_item (struct stack_item *prev, void *contents, int len)
8818c391 1088{
4add8633
TR
1089 struct stack_item *si;
1090 si = xmalloc (sizeof (struct stack_item));
1091 si->data = xmalloc (len);
1092 si->len = len;
1093 si->prev = prev;
1094 memcpy (si->data, contents, len);
1095 return si;
8818c391
TR
1096}
1097
4add8633
TR
1098static struct stack_item *pop_stack_item (struct stack_item *si);
1099static struct stack_item *
1100pop_stack_item (struct stack_item *si)
8818c391 1101{
4add8633
TR
1102 struct stack_item *dead = si;
1103 si = si->prev;
1104 xfree (dead->data);
1105 xfree (dead);
1106 return si;
8818c391
TR
1107}
1108
8818c391
TR
1109/* Setup the function arguments for calling a function in the inferior.
1110
1111 On the AVR architecture, there are 18 registers (R25 to R8) which are
1112 dedicated for passing function arguments. Up to the first 18 arguments
1113 (depending on size) may go into these registers. The rest go on the stack.
1114
4add8633
TR
1115 All arguments are aligned to start in even-numbered registers (odd-sized
1116 arguments, including char, have one free register above them). For example,
1117 an int in arg1 and a char in arg2 would be passed as such:
1118
1119 arg1 -> r25:r24
1120 arg2 -> r22
1121
1122 Arguments that are larger than 2 bytes will be split between two or more
1123 registers as available, but will NOT be split between a register and the
1124 stack. Arguments that go onto the stack are pushed last arg first (this is
1125 similar to the d10v). */
1126
1127/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1128 inaccurate.
8818c391
TR
1129
1130 An exceptional case exists for struct arguments (and possibly other
1131 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1132 not a multiple of WORDSIZE bytes. In this case the argument is never split
1133 between the registers and the stack, but instead is copied in its entirety
1134 onto the stack, AND also copied into as many registers as there is room
1135 for. In other words, space in registers permitting, two copies of the same
1136 argument are passed in. As far as I can tell, only the one on the stack is
1137 used, although that may be a function of the level of compiler
1138 optimization. I suspect this is a compiler bug. Arguments of these odd
1139 sizes are left-justified within the word (as opposed to arguments smaller
1140 than WORDSIZE bytes, which are right-justified).
1141
1142 If the function is to return an aggregate type such as a struct, the caller
1143 must allocate space into which the callee will copy the return value. In
1144 this case, a pointer to the return value location is passed into the callee
1145 in register R0, which displaces one of the other arguments passed in via
1146 registers R0 to R2. */
1147
1148static CORE_ADDR
7d9b040b 1149avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1150 struct regcache *regcache, CORE_ADDR bp_addr,
1151 int nargs, struct value **args, CORE_ADDR sp,
1152 int struct_return, CORE_ADDR struct_addr)
8818c391 1153{
4add8633
TR
1154 int i;
1155 unsigned char buf[2];
1156 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1157 int regnum = AVR_ARGN_REGNUM;
1158 struct stack_item *si = NULL;
8818c391 1159
8818c391 1160#if 0
4add8633
TR
1161 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1162 if (struct_return)
8818c391 1163 {
4add8633
TR
1164 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1165 write_register (argreg--, struct_addr & 0xff);
1166 write_register (argreg--, (struct_addr >>8) & 0xff);
8818c391 1167 }
4add8633 1168#endif
8818c391 1169
4add8633 1170 for (i = 0; i < nargs; i++)
8818c391 1171 {
4add8633
TR
1172 int last_regnum;
1173 int j;
1174 struct value *arg = args[i];
4991999e 1175 struct type *type = check_typedef (value_type (arg));
4add8633
TR
1176 char *contents = VALUE_CONTENTS (arg);
1177 int len = TYPE_LENGTH (type);
1178
1179 /* Calculate the potential last register needed. */
1180 last_regnum = regnum - (len + (len & 1));
1181
1182 /* If there are registers available, use them. Once we start putting
1183 stuff on the stack, all subsequent args go on stack. */
1184 if ((si == NULL) && (last_regnum >= 8))
1185 {
1186 ULONGEST val;
1187
1188 /* Skip a register for odd length args. */
1189 if (len & 1)
1190 regnum--;
1191
1192 val = extract_unsigned_integer (contents, len);
1193 for (j=0; j<len; j++)
1194 {
1195 regcache_cooked_write_unsigned (regcache, regnum--,
1196 val >> (8*(len-j-1)));
1197 }
1198 }
1199 /* No registers available, push the args onto the stack. */
1200 else
1201 {
1202 /* From here on, we don't care about regnum. */
1203 si = push_stack_item (si, contents, len);
1204 }
8818c391 1205 }
909cd28e 1206
4add8633
TR
1207 /* Push args onto the stack. */
1208 while (si)
1209 {
1210 sp -= si->len;
1211 /* Add 1 to sp here to account for post decr nature of pushes. */
1212 write_memory (sp+1, si->data, si->len);
1213 si = pop_stack_item (si);
1214 }
3605c34a 1215
4add8633
TR
1216 /* Set the return address. For the avr, the return address is the BP_ADDR.
1217 Need to push the return address onto the stack noting that it needs to be
1218 in big-endian order on the stack. */
1219 buf[0] = (return_pc >> 8) & 0xff;
1220 buf[1] = return_pc & 0xff;
3605c34a 1221
4add8633
TR
1222 sp -= 2;
1223 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
3605c34a 1224
4add8633
TR
1225 /* Finally, update the SP register. */
1226 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1227 avr_convert_saddr_to_raw (sp));
3605c34a 1228
4add8633 1229 return sp;
3605c34a
TR
1230}
1231
8818c391
TR
1232/* Initialize the gdbarch structure for the AVR's. */
1233
1234static struct gdbarch *
2e5ff58c
TR
1235avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1236{
2e5ff58c
TR
1237 struct gdbarch *gdbarch;
1238 struct gdbarch_tdep *tdep;
8818c391
TR
1239
1240 /* Find a candidate among the list of pre-declared architectures. */
1241 arches = gdbarch_list_lookup_by_info (arches, &info);
1242 if (arches != NULL)
1243 return arches->gdbarch;
1244
1245 /* None found, create a new architecture from the information provided. */
1246 tdep = XMALLOC (struct gdbarch_tdep);
1247 gdbarch = gdbarch_alloc (&info, tdep);
1248
1249 /* If we ever need to differentiate the device types, do it here. */
1250 switch (info.bfd_arch_info->mach)
1251 {
1252 case bfd_mach_avr1:
1253 case bfd_mach_avr2:
1254 case bfd_mach_avr3:
1255 case bfd_mach_avr4:
1256 case bfd_mach_avr5:
1257 break;
1258 }
1259
1260 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1261 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1262 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1263 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1264 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1265 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1266
1267 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1268 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1269 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1270
1271 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1272 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1273 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1274
1275 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1276 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391 1277 set_gdbarch_read_sp (gdbarch, avr_read_sp);
8818c391
TR
1278
1279 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1280
1281 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1282 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1283
1284 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1285 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1286
3605c34a 1287 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1288 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1289
4add8633 1290 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391
TR
1291
1292 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1293 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8818c391 1294
8818c391 1295 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1296 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1297
909cd28e 1298 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1299
336d1bba 1300 frame_unwind_append_sniffer (gdbarch, avr_frame_sniffer);
4add8633
TR
1301 frame_base_set_default (gdbarch, &avr_frame_base);
1302
1303 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1304
1305 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
8818c391 1306
8818c391
TR
1307 return gdbarch;
1308}
1309
1310/* Send a query request to the avr remote target asking for values of the io
1311 registers. If args parameter is not NULL, then the user has requested info
1312 on a specific io register [This still needs implemented and is ignored for
1313 now]. The query string should be one of these forms:
1314
1315 "Ravr.io_reg" -> reply is "NN" number of io registers
1316
1317 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1318 registers to be read. The reply should be "<NAME>,VV;" for each io register
1319 where, <NAME> is a string, and VV is the hex value of the register.
1320
1321 All io registers are 8-bit. */
1322
1323static void
1324avr_io_reg_read_command (char *args, int from_tty)
1325{
1e3ff5ad 1326 LONGEST bufsiz = 0;
2e5ff58c
TR
1327 char buf[400];
1328 char query[400];
1329 char *p;
1330 unsigned int nreg = 0;
1331 unsigned int val;
1332 int i, j, k, step;
8818c391 1333
1e3ff5ad
AC
1334 /* Just get the maximum buffer size. */
1335 bufsiz = target_read_partial (&current_target, TARGET_OBJECT_AVR,
1336 NULL, NULL, 0, 0);
1337 if (bufsiz < 0)
8818c391 1338 {
2e5ff58c 1339 fprintf_unfiltered (gdb_stderr,
98be1e77
TR
1340 "ERR: info io_registers NOT supported by current "
1341 "target\n");
8818c391
TR
1342 return;
1343 }
2e5ff58c
TR
1344 if (bufsiz > sizeof (buf))
1345 bufsiz = sizeof (buf);
8818c391
TR
1346
1347 /* Find out how many io registers the target has. */
1348 strcpy (query, "avr.io_reg");
1e3ff5ad
AC
1349 target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf, 0,
1350 bufsiz);
8818c391
TR
1351
1352 if (strncmp (buf, "", bufsiz) == 0)
1353 {
2e5ff58c
TR
1354 fprintf_unfiltered (gdb_stderr,
1355 "info io_registers NOT supported by target\n");
8818c391
TR
1356 return;
1357 }
1358
2e5ff58c 1359 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1360 {
2e5ff58c
TR
1361 fprintf_unfiltered (gdb_stderr,
1362 "Error fetching number of io registers\n");
8818c391
TR
1363 return;
1364 }
1365
2e5ff58c 1366 reinitialize_more_filter ();
8818c391
TR
1367
1368 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1369
1370 /* only fetch up to 8 registers at a time to keep the buffer small */
1371 step = 8;
1372
2e5ff58c 1373 for (i = 0; i < nreg; i += step)
8818c391 1374 {
91ccbfc1
TR
1375 /* how many registers this round? */
1376 j = step;
1377 if ((i+j) >= nreg)
1378 j = nreg - i; /* last block is less than 8 registers */
8818c391 1379
2e5ff58c 1380 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1e3ff5ad
AC
1381 target_read_partial (&current_target, TARGET_OBJECT_AVR, query, buf,
1382 0, bufsiz);
8818c391
TR
1383
1384 p = buf;
2e5ff58c
TR
1385 for (k = i; k < (i + j); k++)
1386 {
1387 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1388 {
1389 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1390 while ((*p != ';') && (*p != '\0'))
1391 p++;
1392 p++; /* skip over ';' */
1393 if (*p == '\0')
1394 break;
1395 }
1396 }
8818c391
TR
1397 }
1398}
1399
a78f21af
AC
1400extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1401
8818c391
TR
1402void
1403_initialize_avr_tdep (void)
1404{
1405 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1406
1407 /* Add a new command to allow the user to query the avr remote target for
1408 the values of the io space registers in a saner way than just using
1409 `x/NNNb ADDR`. */
1410
1411 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1412 io_registers' to signify it is not available on other platforms. */
1413
1414 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1415 "query remote avr target for io space register values", &infolist);
8818c391 1416}
This page took 0.332592 seconds and 4 git commands to generate.