Fix TYPE_SPECIFIC_FIELD for types created via arch_type
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
618f726f 3 Copyright (C) 1996-2016 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
a89aa300 37#include "dis-asm.h"
77e371c0 38#include "objfiles.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
0963b4bd 61 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
0963b4bd
MS
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
8818c391 70
8818c391
TR
71/* Constants: prefixed with AVR_ to avoid name space clashes */
72
487d9753
PL
73/* Address space flags */
74
75/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
76 space. */
77
78#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
79#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
81
82
8818c391 83enum
2e5ff58c
TR
84{
85 AVR_REG_W = 24,
86 AVR_REG_X = 26,
87 AVR_REG_Y = 28,
88 AVR_FP_REGNUM = 28,
89 AVR_REG_Z = 30,
90
91 AVR_SREG_REGNUM = 32,
92 AVR_SP_REGNUM = 33,
93 AVR_PC_REGNUM = 34,
94
95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
97
7d2552b4
TG
98 /* Pseudo registers. */
99 AVR_PSEUDO_PC_REGNUM = 35,
100 AVR_NUM_PSEUDO_REGS = 1,
101
2e5ff58c
TR
102 AVR_PC_REG_INDEX = 35, /* index into array of registers */
103
4add8633 104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 105
0963b4bd 106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
107 AVR_MAX_PUSHES = 18,
108
0963b4bd 109 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
110 AVR_LAST_PUSHED_REGNUM = 17,
111
4add8633
TR
112 AVR_ARG1_REGNUM = 24, /* Single byte argument */
113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
cb86f388 114 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
4add8633
TR
115
116 AVR_RET1_REGNUM = 24, /* Single byte return value */
117 AVR_RETN_REGNUM = 25, /* Multi byte return value */
118
2e5ff58c 119 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 120 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
121 things easier in the future if they didn't need to match.
122
123 Note: I chose these values so as to be consistent with bfd vma
124 addresses.
125
126 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 127 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
128 thus the Most Significant Bit is 0x10000 which gets masked off my
129 AVR_MEM_MASK.
130
131 The problem manifests itself when trying to set a breakpoint in a
132 function which resides in the upper half of the instruction space and
133 thus requires a 17-bit address.
134
135 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 136 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
137 but could be for some remote targets by just adding the correct offset
138 to the address and letting the remote target handle the low-level
0963b4bd 139 details of actually accessing the eeprom. */
2e5ff58c
TR
140
141 AVR_IMEM_START = 0x00000000, /* INSN memory */
142 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 143#if 1
2e5ff58c
TR
144 /* No eeprom mask defined */
145 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 146#else
2e5ff58c
TR
147 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
148 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 149#endif
2e5ff58c 150};
8818c391 151
4add8633
TR
152/* Prologue types:
153
154 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
155 causes the generation of the CALL type prologues). */
156
157enum {
158 AVR_PROLOGUE_NONE, /* No prologue */
159 AVR_PROLOGUE_NORMAL,
160 AVR_PROLOGUE_CALL, /* -mcall-prologues */
161 AVR_PROLOGUE_MAIN,
162 AVR_PROLOGUE_INTR, /* interrupt handler */
163 AVR_PROLOGUE_SIG, /* signal handler */
164};
165
8818c391
TR
166/* Any function with a frame looks like this
167 ....... <-SP POINTS HERE
168 LOCALS1 <-FP POINTS HERE
169 LOCALS0
170 SAVED FP
171 SAVED R3
172 SAVED R2
173 RET PC
174 FIRST ARG
175 SECOND ARG */
176
4add8633 177struct avr_unwind_cache
2e5ff58c 178{
4add8633
TR
179 /* The previous frame's inner most stack address. Used as this
180 frame ID's stack_addr. */
181 CORE_ADDR prev_sp;
182 /* The frame's base, optionally used by the high-level debug info. */
183 CORE_ADDR base;
184 int size;
185 int prologue_type;
186 /* Table indicating the location of each and every register. */
187 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 188};
8818c391
TR
189
190struct gdbarch_tdep
2e5ff58c 191{
4e99ad69 192 /* Number of bytes stored to the stack by call instructions.
9c97a070 193 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 194 int call_length;
7d2552b4
TG
195
196 /* Type for void. */
197 struct type *void_type;
198 /* Type for a function returning void. */
199 struct type *func_void_type;
200 /* Type for a pointer to a function. Used for the type of PC. */
201 struct type *pc_type;
2e5ff58c 202};
8818c391 203
0963b4bd 204/* Lookup the name of a register given it's number. */
8818c391 205
fa88f677 206static const char *
d93859e2 207avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 208{
4e99ad69 209 static const char * const register_names[] = {
2e5ff58c
TR
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
212 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
213 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
214 "SREG", "SP", "PC2",
215 "pc"
8818c391
TR
216 };
217 if (regnum < 0)
218 return NULL;
219 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
220 return NULL;
221 return register_names[regnum];
222}
223
8818c391
TR
224/* Return the GDB type object for the "standard" data type
225 of data in register N. */
226
227static struct type *
866b76ea 228avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 229{
866b76ea 230 if (reg_nr == AVR_PC_REGNUM)
df4df182 231 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
232 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
233 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 234 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 235 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 236 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
237}
238
0963b4bd 239/* Instruction address checks and convertions. */
8818c391
TR
240
241static CORE_ADDR
242avr_make_iaddr (CORE_ADDR x)
243{
244 return ((x) | AVR_IMEM_START);
245}
246
0963b4bd 247/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
248 devices are already up to 128KBytes of flash space.
249
0963b4bd 250 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
251
252static CORE_ADDR
253avr_convert_iaddr_to_raw (CORE_ADDR x)
254{
255 return ((x) & 0xffffffff);
256}
257
0963b4bd 258/* SRAM address checks and convertions. */
8818c391
TR
259
260static CORE_ADDR
261avr_make_saddr (CORE_ADDR x)
262{
ee143e81
TG
263 /* Return 0 for NULL. */
264 if (x == 0)
265 return 0;
266
8818c391
TR
267 return ((x) | AVR_SMEM_START);
268}
269
8818c391
TR
270static CORE_ADDR
271avr_convert_saddr_to_raw (CORE_ADDR x)
272{
273 return ((x) & 0xffffffff);
274}
275
0963b4bd
MS
276/* EEPROM address checks and convertions. I don't know if these will ever
277 actually be used, but I've added them just the same. TRoth */
8818c391
TR
278
279/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 280 programs in the mega128. */
8818c391
TR
281
282/* static CORE_ADDR */
283/* avr_make_eaddr (CORE_ADDR x) */
284/* { */
285/* return ((x) | AVR_EMEM_START); */
286/* } */
287
288/* static int */
289/* avr_eaddr_p (CORE_ADDR x) */
290/* { */
291/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
292/* } */
293
294/* static CORE_ADDR */
295/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
296/* { */
297/* return ((x) & 0xffffffff); */
298/* } */
299
0963b4bd 300/* Convert from address to pointer and vice-versa. */
8818c391
TR
301
302static void
9898f801
UW
303avr_address_to_pointer (struct gdbarch *gdbarch,
304 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 305{
e17a4113
UW
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307
487d9753
PL
308 /* Is it a data address in flash? */
309 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
310 {
7d0d9d2b 311 /* A data pointer in flash is byte addressed. */
487d9753
PL
312 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
313 avr_convert_iaddr_to_raw (addr));
314 }
8818c391 315 /* Is it a code address? */
487d9753
PL
316 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
8818c391 318 {
7d0d9d2b
PL
319 /* A code pointer is word (16 bits) addressed. We shift the address down
320 by 1 bit to convert it to a pointer. */
e17a4113 321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 322 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
323 }
324 else
325 {
326 /* Strip off any upper segment bits. */
e17a4113 327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 328 avr_convert_saddr_to_raw (addr));
8818c391
TR
329 }
330}
331
332static CORE_ADDR
9898f801
UW
333avr_pointer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
8818c391 335{
e17a4113
UW
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 CORE_ADDR addr
338 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 339
487d9753
PL
340 /* Is it a data address in flash? */
341 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
7d0d9d2b
PL
342 {
343 /* A data pointer in flash is already byte addressed. */
344 return avr_make_iaddr (addr);
345 }
8818c391 346 /* Is it a code address? */
487d9753
PL
347 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
348 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
349 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
7d0d9d2b
PL
350 {
351 /* A code pointer is word (16 bits) addressed so we shift it up
352 by 1 bit to convert it to an address. */
353 return avr_make_iaddr (addr << 1);
354 }
8818c391
TR
355 else
356 return avr_make_saddr (addr);
357}
358
8a1d23b2
TG
359static CORE_ADDR
360avr_integer_to_address (struct gdbarch *gdbarch,
361 struct type *type, const gdb_byte *buf)
362{
363 ULONGEST addr = unpack_long (type, buf);
364
365 return avr_make_saddr (addr);
366}
367
8818c391 368static CORE_ADDR
61a1198a 369avr_read_pc (struct regcache *regcache)
8818c391 370{
8619218d 371 ULONGEST pc;
61a1198a
UW
372 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
373 return avr_make_iaddr (pc);
8818c391
TR
374}
375
376static void
61a1198a 377avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 378{
61a1198a 379 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
380 avr_convert_iaddr_to_raw (val));
381}
382
05d1431c 383static enum register_status
7d2552b4
TG
384avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
385 int regnum, gdb_byte *buf)
386{
387 ULONGEST val;
05d1431c 388 enum register_status status;
7d2552b4
TG
389
390 switch (regnum)
391 {
392 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
393 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
394 if (status != REG_VALID)
395 return status;
7d2552b4
TG
396 val >>= 1;
397 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 398 return status;
7d2552b4
TG
399 default:
400 internal_error (__FILE__, __LINE__, _("invalid regnum"));
401 }
402}
403
404static void
405avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
406 int regnum, const gdb_byte *buf)
407{
408 ULONGEST val;
409
410 switch (regnum)
411 {
412 case AVR_PSEUDO_PC_REGNUM:
413 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
414 val <<= 1;
415 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
416 break;
417 default:
418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
419 }
8818c391
TR
420}
421
4add8633 422/* Function: avr_scan_prologue
8818c391 423
4add8633 424 This function decodes an AVR function prologue to determine:
8818c391
TR
425 1) the size of the stack frame
426 2) which registers are saved on it
427 3) the offsets of saved regs
4add8633 428 This information is stored in the avr_unwind_cache structure.
8818c391 429
e3d8b004
TR
430 Some devices lack the sbiw instruction, so on those replace this:
431 sbiw r28, XX
432 with this:
433 subi r28,lo8(XX)
434 sbci r29,hi8(XX)
435
436 A typical AVR function prologue with a frame pointer might look like this:
437 push rXX ; saved regs
438 ...
439 push r28
440 push r29
441 in r28,__SP_L__
442 in r29,__SP_H__
443 sbiw r28,<LOCALS_SIZE>
444 in __tmp_reg__,__SREG__
8818c391 445 cli
e3d8b004 446 out __SP_H__,r29
72fab697
TR
447 out __SREG__,__tmp_reg__
448 out __SP_L__,r28
e3d8b004
TR
449
450 A typical AVR function prologue without a frame pointer might look like
451 this:
452 push rXX ; saved regs
453 ...
454
455 A main function prologue looks like this:
456 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
457 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
458 out __SP_H__,r29
459 out __SP_L__,r28
460
461 A signal handler prologue looks like this:
462 push __zero_reg__
463 push __tmp_reg__
464 in __tmp_reg__, __SREG__
465 push __tmp_reg__
466 clr __zero_reg__
467 push rXX ; save registers r18:r27, r30:r31
468 ...
469 push r28 ; save frame pointer
470 push r29
471 in r28, __SP_L__
472 in r29, __SP_H__
473 sbiw r28, <LOCALS_SIZE>
474 out __SP_H__, r29
475 out __SP_L__, r28
476
477 A interrupt handler prologue looks like this:
478 sei
479 push __zero_reg__
480 push __tmp_reg__
481 in __tmp_reg__, __SREG__
482 push __tmp_reg__
483 clr __zero_reg__
484 push rXX ; save registers r18:r27, r30:r31
485 ...
486 push r28 ; save frame pointer
487 push r29
488 in r28, __SP_L__
489 in r29, __SP_H__
490 sbiw r28, <LOCALS_SIZE>
491 cli
492 out __SP_H__, r29
493 sei
494 out __SP_L__, r28
495
496 A `-mcall-prologues' prologue looks like this (Note that the megas use a
497 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
498 32 bit insn and rjmp is a 16 bit insn):
499 ldi r26,lo8(<LOCALS_SIZE>)
500 ldi r27,hi8(<LOCALS_SIZE>)
501 ldi r30,pm_lo8(.L_foo_body)
502 ldi r31,pm_hi8(.L_foo_body)
503 rjmp __prologue_saves__+RRR
504 .L_foo_body: */
8818c391 505
4add8633
TR
506/* Not really part of a prologue, but still need to scan for it, is when a
507 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
508 registers. In this case, all local variables live in registers, so there
509 may be some register saves. This is what it looks like:
4add8633
TR
510 movw rMM, rNN
511 ...
512
0963b4bd
MS
513 There could be multiple movw's. If the target doesn't have a movw insn, it
514 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
515 types. */
516
517static CORE_ADDR
e17a4113 518avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 519 struct avr_unwind_cache *info)
8818c391 520{
e17a4113 521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
522 int i;
523 unsigned short insn;
2e5ff58c 524 int scan_stage = 0;
3b7344d5 525 struct bound_minimal_symbol msymbol;
8818c391
TR
526 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
527 int vpc = 0;
4e99ad69
TG
528 int len;
529
530 len = pc_end - pc_beg;
531 if (len > AVR_MAX_PROLOGUE_SIZE)
532 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 533
4add8633 534 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
535 reading in the bytes of the prologue. The problem is that the figuring
536 out where the end of the prologue is is a bit difficult. The old code
4add8633 537 tried to do that, but failed quite often. */
4e99ad69 538 read_memory (pc_beg, prologue, len);
8818c391
TR
539
540 /* Scanning main()'s prologue
541 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
542 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
543 out __SP_H__,r29
544 out __SP_L__,r28 */
545
4e99ad69 546 if (len >= 4)
8818c391
TR
547 {
548 CORE_ADDR locals;
4e99ad69 549 static const unsigned char img[] = {
2e5ff58c
TR
550 0xde, 0xbf, /* out __SP_H__,r29 */
551 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
552 };
553
e17a4113 554 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 555 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
556 if ((insn & 0xf0f0) == 0xe0c0)
557 {
558 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 559 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
560 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
561 if ((insn & 0xf0f0) == 0xe0d0)
562 {
563 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
564 if (vpc + 4 + sizeof (img) < len
565 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 566 {
4add8633
TR
567 info->prologue_type = AVR_PROLOGUE_MAIN;
568 info->base = locals;
4e99ad69 569 return pc_beg + 4;
2e5ff58c
TR
570 }
571 }
572 }
8818c391 573 }
2e5ff58c 574
4add8633
TR
575 /* Scanning `-mcall-prologues' prologue
576 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 577
e3d8b004 578 while (1) /* Using a while to avoid many goto's */
8818c391
TR
579 {
580 int loc_size;
581 int body_addr;
582 unsigned num_pushes;
4add8633 583 int pc_offset = 0;
2e5ff58c 584
4e99ad69
TG
585 /* At least the fifth instruction must have been executed to
586 modify frame shape. */
587 if (len < 10)
588 break;
589
e17a4113 590 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 591 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
592 if ((insn & 0xf0f0) != 0xe0a0)
593 break;
8818c391 594 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 595 pc_offset += 2;
2e5ff58c 596
e17a4113 597 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
598 /* ldi r27,<LOCALS_SIZE> / 256 */
599 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 600 break;
8818c391 601 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 602 pc_offset += 2;
2e5ff58c 603
e17a4113 604 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
605 /* ldi r30,pm_lo8(.L_foo_body) */
606 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 607 break;
8818c391 608 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 609 pc_offset += 2;
8818c391 610
e17a4113 611 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
612 /* ldi r31,pm_hi8(.L_foo_body) */
613 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 614 break;
8818c391 615 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 616 pc_offset += 2;
8818c391 617
8818c391 618 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 619 if (!msymbol.minsym)
2e5ff58c 620 break;
8818c391 621
e17a4113 622 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 623 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
624 if ((insn & 0xf000) == 0xc000)
625 {
626 /* Extract PC relative offset from RJMP */
627 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
628 /* Convert offset to byte addressable mode */
629 i *= 2;
630 /* Destination address */
4e99ad69 631 i += pc_beg + 10;
e3d8b004 632
4e99ad69 633 if (body_addr != (pc_beg + 10)/2)
e3d8b004 634 break;
4add8633
TR
635
636 pc_offset += 2;
e3d8b004 637 }
e3d8b004
TR
638 else if ((insn & 0xfe0e) == 0x940c)
639 {
640 /* Extract absolute PC address from JMP */
641 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
642 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
643 & 0xffff));
e3d8b004
TR
644 /* Convert address to byte addressable mode */
645 i *= 2;
646
4e99ad69 647 if (body_addr != (pc_beg + 12)/2)
e3d8b004 648 break;
4add8633
TR
649
650 pc_offset += 4;
e3d8b004
TR
651 }
652 else
653 break;
2e5ff58c 654
4add8633 655 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 656 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 657 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
658
659 if (num_pushes > AVR_MAX_PUSHES)
4add8633 660 {
edefbb7c 661 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
662 num_pushes);
663 num_pushes = 0;
664 }
2e5ff58c 665
8818c391 666 if (num_pushes)
2e5ff58c
TR
667 {
668 int from;
4add8633
TR
669
670 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 671 if (num_pushes >= 2)
4add8633
TR
672 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
673
2e5ff58c
TR
674 i = 0;
675 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
676 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 677 info->saved_regs [from].addr = ++i;
2e5ff58c 678 }
4add8633
TR
679 info->size = loc_size + num_pushes;
680 info->prologue_type = AVR_PROLOGUE_CALL;
681
4e99ad69 682 return pc_beg + pc_offset;
8818c391
TR
683 }
684
4add8633
TR
685 /* Scan for the beginning of the prologue for an interrupt or signal
686 function. Note that we have to set the prologue type here since the
687 third stage of the prologue may not be present (e.g. no saved registered
688 or changing of the SP register). */
8818c391 689
4add8633 690 if (1)
8818c391 691 {
4e99ad69 692 static const unsigned char img[] = {
2e5ff58c
TR
693 0x78, 0x94, /* sei */
694 0x1f, 0x92, /* push r1 */
695 0x0f, 0x92, /* push r0 */
696 0x0f, 0xb6, /* in r0,0x3f SREG */
697 0x0f, 0x92, /* push r0 */
698 0x11, 0x24 /* clr r1 */
8818c391 699 };
4e99ad69
TG
700 if (len >= sizeof (img)
701 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 702 {
4add8633 703 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 704 vpc += sizeof (img);
4add8633
TR
705 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
706 info->saved_regs[0].addr = 2;
707 info->saved_regs[1].addr = 1;
708 info->size += 3;
2e5ff58c 709 }
4e99ad69
TG
710 else if (len >= sizeof (img) - 2
711 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 712 {
4add8633
TR
713 info->prologue_type = AVR_PROLOGUE_SIG;
714 vpc += sizeof (img) - 2;
715 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
716 info->saved_regs[0].addr = 2;
717 info->saved_regs[1].addr = 1;
243e2c5d 718 info->size += 2;
2e5ff58c 719 }
8818c391
TR
720 }
721
722 /* First stage of the prologue scanning.
4add8633 723 Scan pushes (saved registers) */
8818c391 724
4e99ad69 725 for (; vpc < len; vpc += 2)
8818c391 726 {
e17a4113 727 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
728 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
729 {
0963b4bd 730 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
731 int regno = (insn & 0x1f0) >> 4;
732 info->size++;
733 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
734 scan_stage = 1;
735 }
8818c391 736 else
2e5ff58c 737 break;
8818c391
TR
738 }
739
243e2c5d 740 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 741
1bd0bb72
TG
742 /* Handle static small stack allocation using rcall or push. */
743
744 while (scan_stage == 1 && vpc < len)
745 {
746 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
747 if (insn == 0xd000) /* rcall .+0 */
748 {
749 info->size += gdbarch_tdep (gdbarch)->call_length;
750 vpc += 2;
751 }
7588d2ec 752 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
753 {
754 info->size += 1;
755 vpc += 2;
756 }
757 else
758 break;
759 }
760
8818c391
TR
761 /* Second stage of the prologue scanning.
762 Scan:
763 in r28,__SP_L__
764 in r29,__SP_H__ */
765
4e99ad69 766 if (scan_stage == 1 && vpc < len)
8818c391 767 {
4e99ad69 768 static const unsigned char img[] = {
2e5ff58c
TR
769 0xcd, 0xb7, /* in r28,__SP_L__ */
770 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 771 };
2e5ff58c 772
4e99ad69
TG
773 if (vpc + sizeof (img) < len
774 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
775 {
776 vpc += 4;
2e5ff58c
TR
777 scan_stage = 2;
778 }
8818c391
TR
779 }
780
0963b4bd 781 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
782 Scan for:
783 sbiw r28,XX or subi r28,lo8(XX)
72fab697 784 sbci r29,hi8(XX)
8818c391
TR
785 in __tmp_reg__,__SREG__
786 cli
e3d8b004 787 out __SP_H__,r29
8818c391 788 out __SREG__,__tmp_reg__
e3d8b004 789 out __SP_L__,r28 */
8818c391 790
4e99ad69 791 if (scan_stage == 2 && vpc < len)
8818c391
TR
792 {
793 int locals_size = 0;
4e99ad69 794 static const unsigned char img[] = {
2e5ff58c
TR
795 0x0f, 0xb6, /* in r0,0x3f */
796 0xf8, 0x94, /* cli */
e3d8b004 797 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 798 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 799 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 800 };
4e99ad69 801 static const unsigned char img_sig[] = {
e3d8b004
TR
802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
803 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 804 };
4e99ad69 805 static const unsigned char img_int[] = {
2e5ff58c 806 0xf8, 0x94, /* cli */
e3d8b004 807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 808 0x78, 0x94, /* sei */
e3d8b004 809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 810 };
2e5ff58c 811
e17a4113 812 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 813 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
814 {
815 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
816 vpc += 2;
817 }
2e5ff58c
TR
818 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
819 {
820 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 821 vpc += 2;
e17a4113 822 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 823 vpc += 2;
1bd0bb72 824 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 825 }
8818c391 826 else
1bd0bb72 827 return pc_beg + vpc;
4add8633 828
0963b4bd 829 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
830 or signal handler functions, which is why we set the prologue type
831 when we saw the beginning of the prologue previously. */
832
4e99ad69
TG
833 if (vpc + sizeof (img_sig) < len
834 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
835 {
836 vpc += sizeof (img_sig);
837 }
4e99ad69
TG
838 else if (vpc + sizeof (img_int) < len
839 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
840 {
841 vpc += sizeof (img_int);
842 }
4e99ad69
TG
843 if (vpc + sizeof (img) < len
844 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
845 {
846 info->prologue_type = AVR_PROLOGUE_NORMAL;
847 vpc += sizeof (img);
848 }
849
850 info->size += locals_size;
851
4e99ad69 852 /* Fall through. */
8818c391 853 }
4add8633
TR
854
855 /* If we got this far, we could not scan the prologue, so just return the pc
856 of the frame plus an adjustment for argument move insns. */
857
4e99ad69
TG
858 for (; vpc < len; vpc += 2)
859 {
e17a4113 860 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
861 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
862 continue;
863 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
864 continue;
865 else
866 break;
867 }
868
869 return pc_beg + vpc;
8818c391
TR
870}
871
4add8633 872static CORE_ADDR
6093d2eb 873avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
874{
875 CORE_ADDR func_addr, func_end;
8c201e54 876 CORE_ADDR post_prologue_pc;
8818c391 877
4add8633 878 /* See what the symbol table says */
8818c391 879
8c201e54
TG
880 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
881 return pc;
2e5ff58c 882
8c201e54
TG
883 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
884 if (post_prologue_pc != 0)
885 return max (pc, post_prologue_pc);
8818c391 886
8c201e54
TG
887 {
888 CORE_ADDR prologue_end = pc;
889 struct avr_unwind_cache info = {0};
890 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 891
8c201e54
TG
892 info.saved_regs = saved_regs;
893
894 /* Need to run the prologue scanner to figure out if the function has a
895 prologue and possibly skip over moving arguments passed via registers
896 to other registers. */
897
898 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
899
900 if (info.prologue_type != AVR_PROLOGUE_NONE)
901 return prologue_end;
902 }
2e5ff58c 903
4e99ad69
TG
904 /* Either we didn't find the start of this function (nothing we can do),
905 or there's no line info, or the line after the prologue is after
0963b4bd 906 the end of the function (there probably isn't a prologue). */
2e5ff58c 907
8c201e54 908 return pc;
4add8633 909}
8818c391 910
0963b4bd
MS
911/* Not all avr devices support the BREAK insn. Those that don't should treat
912 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
913 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 914
4add8633 915static const unsigned char *
0963b4bd
MS
916avr_breakpoint_from_pc (struct gdbarch *gdbarch,
917 CORE_ADDR *pcptr, int *lenptr)
4add8633 918{
4e99ad69 919 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
920 *lenptr = sizeof (avr_break_insn);
921 return avr_break_insn;
8818c391
TR
922}
923
4c8b6ae0
UW
924/* Determine, for architecture GDBARCH, how a return value of TYPE
925 should be returned. If it is supposed to be returned in registers,
926 and READBUF is non-zero, read the appropriate value from REGCACHE,
927 and copy it into READBUF. If WRITEBUF is non-zero, write the value
928 from WRITEBUF into REGCACHE. */
929
63807e1d 930static enum return_value_convention
6a3a010b 931avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
932 struct type *valtype, struct regcache *regcache,
933 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 934{
1bd0bb72
TG
935 int i;
936 /* Single byte are returned in r24.
937 Otherwise, the MSB of the return value is always in r25, calculate which
938 register holds the LSB. */
939 int lsb_reg;
940
941 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
942 || TYPE_CODE (valtype) == TYPE_CODE_UNION
943 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
944 && TYPE_LENGTH (valtype) > 8)
945 return RETURN_VALUE_STRUCT_CONVENTION;
946
947 if (TYPE_LENGTH (valtype) <= 2)
948 lsb_reg = 24;
949 else if (TYPE_LENGTH (valtype) <= 4)
950 lsb_reg = 22;
951 else if (TYPE_LENGTH (valtype) <= 8)
952 lsb_reg = 18;
953 else
f3574227 954 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
955
956 if (writebuf != NULL)
957 {
1bd0bb72
TG
958 for (i = 0; i < TYPE_LENGTH (valtype); i++)
959 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
960 }
961
962 if (readbuf != NULL)
963 {
1bd0bb72
TG
964 for (i = 0; i < TYPE_LENGTH (valtype); i++)
965 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
966 }
967
1bd0bb72 968 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
969}
970
971
4add8633
TR
972/* Put here the code to store, into fi->saved_regs, the addresses of
973 the saved registers of frame described by FRAME_INFO. This
974 includes special registers such as pc and fp saved in special ways
975 in the stack frame. sp is even more special: the address we return
0963b4bd 976 for it IS the sp for the next frame. */
8818c391 977
63807e1d 978static struct avr_unwind_cache *
94afd7a6 979avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 980 void **this_prologue_cache)
8818c391 981{
4e99ad69 982 CORE_ADDR start_pc, current_pc;
4add8633
TR
983 ULONGEST prev_sp;
984 ULONGEST this_base;
985 struct avr_unwind_cache *info;
4e99ad69
TG
986 struct gdbarch *gdbarch;
987 struct gdbarch_tdep *tdep;
4add8633
TR
988 int i;
989
4e99ad69 990 if (*this_prologue_cache)
9a3c8263 991 return (struct avr_unwind_cache *) *this_prologue_cache;
4add8633
TR
992
993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 994 *this_prologue_cache = info;
94afd7a6 995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
996
997 info->size = 0;
998 info->prologue_type = AVR_PROLOGUE_NONE;
999
4e99ad69
TG
1000 start_pc = get_frame_func (this_frame);
1001 current_pc = get_frame_pc (this_frame);
1002 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
1003 avr_scan_prologue (get_frame_arch (this_frame),
1004 start_pc, current_pc, info);
4add8633 1005
3b85b0f1
TR
1006 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1008 {
1009 ULONGEST high_base; /* High byte of FP */
1010
1011 /* The SP was moved to the FP. This indicates that a new frame
1012 was created. Get THIS frame's FP value by unwinding it from
1013 the next frame. */
94afd7a6 1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1016 this_base += (high_base << 8);
1017
1018 /* The FP points at the last saved register. Adjust the FP back
1019 to before the first saved register giving the SP. */
1020 prev_sp = this_base + info->size;
1021 }
8818c391 1022 else
4add8633
TR
1023 {
1024 /* Assume that the FP is this frame's SP but with that pushed
1025 stack space added back. */
94afd7a6 1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1027 prev_sp = this_base + info->size;
1028 }
1029
1030 /* Add 1 here to adjust for the post-decrement nature of the push
1031 instruction.*/
4e99ad69 1032 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1033 info->base = avr_make_saddr (this_base);
1034
4e99ad69
TG
1035 gdbarch = get_frame_arch (this_frame);
1036
4add8633 1037 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1038 offsets. */
4e99ad69
TG
1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040 if (info->saved_regs[i].addr > 0)
1041 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1042
1043 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1044 the stack and is at the base of the frame. */
4add8633
TR
1045
1046 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1047 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1048
3b85b0f1
TR
1049 /* The previous frame's SP needed to be computed. Save the computed
1050 value. */
4e99ad69
TG
1051 tdep = gdbarch_tdep (gdbarch);
1052 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1053 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1054
4add8633 1055 return info;
8818c391
TR
1056}
1057
1058static CORE_ADDR
4add8633 1059avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1060{
4add8633
TR
1061 ULONGEST pc;
1062
11411de3 1063 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1064
1065 return avr_make_iaddr (pc);
8818c391
TR
1066}
1067
30244cd8
UW
1068static CORE_ADDR
1069avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1070{
1071 ULONGEST sp;
1072
11411de3 1073 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1074
1075 return avr_make_saddr (sp);
1076}
1077
4add8633
TR
1078/* Given a GDB frame, determine the address of the calling function's
1079 frame. This will be used to create a new GDB frame struct. */
8818c391 1080
4add8633 1081static void
94afd7a6 1082avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1083 void **this_prologue_cache,
1084 struct frame_id *this_id)
8818c391 1085{
4add8633 1086 struct avr_unwind_cache *info
94afd7a6 1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1088 CORE_ADDR base;
1089 CORE_ADDR func;
1090 struct frame_id id;
1091
1092 /* The FUNC is easy. */
94afd7a6 1093 func = get_frame_func (this_frame);
4add8633 1094
4add8633
TR
1095 /* Hopefully the prologue analysis either correctly determined the
1096 frame's base (which is the SP from the previous frame), or set
1097 that base to "NULL". */
1098 base = info->prev_sp;
1099 if (base == 0)
1100 return;
1101
1102 id = frame_id_build (base, func);
4add8633 1103 (*this_id) = id;
8818c391
TR
1104}
1105
94afd7a6
UW
1106static struct value *
1107avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1108 void **this_prologue_cache, int regnum)
8818c391 1109{
4add8633 1110 struct avr_unwind_cache *info
94afd7a6 1111 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1112
7d2552b4 1113 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1114 {
7d2552b4 1115 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1116 {
94afd7a6
UW
1117 /* Reading the return PC from the PC register is slightly
1118 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1119 but in reality, only two bytes (3 in upcoming mega256) are
1120 stored on the stack.
1121
1122 Also, note that the value on the stack is an addr to a word
1123 not a byte, so we will need to multiply it by two at some
1124 point.
1125
1126 And to confuse matters even more, the return address stored
1127 on the stack is in big endian byte order, even though most
0963b4bd 1128 everything else about the avr is little endian. Ick! */
94afd7a6 1129 ULONGEST pc;
4e99ad69 1130 int i;
e362b510 1131 gdb_byte buf[3];
4e99ad69
TG
1132 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1134
7d2552b4
TG
1135 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1136 buf, tdep->call_length);
94afd7a6 1137
4e99ad69
TG
1138 /* Extract the PC read from memory as a big-endian. */
1139 pc = 0;
1140 for (i = 0; i < tdep->call_length; i++)
1141 pc = (pc << 8) | buf[i];
94afd7a6 1142
7d2552b4
TG
1143 if (regnum == AVR_PC_REGNUM)
1144 pc <<= 1;
1145
1146 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1147 }
94afd7a6
UW
1148
1149 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1150 }
94afd7a6
UW
1151
1152 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1153}
8818c391 1154
4add8633
TR
1155static const struct frame_unwind avr_frame_unwind = {
1156 NORMAL_FRAME,
8fbca658 1157 default_frame_unwind_stop_reason,
4add8633 1158 avr_frame_this_id,
94afd7a6
UW
1159 avr_frame_prev_register,
1160 NULL,
1161 default_frame_sniffer
4add8633
TR
1162};
1163
8818c391 1164static CORE_ADDR
94afd7a6 1165avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1166{
4add8633 1167 struct avr_unwind_cache *info
94afd7a6 1168 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1169
4add8633
TR
1170 return info->base;
1171}
8818c391 1172
4add8633
TR
1173static const struct frame_base avr_frame_base = {
1174 &avr_frame_unwind,
1175 avr_frame_base_address,
1176 avr_frame_base_address,
1177 avr_frame_base_address
1178};
ced15480 1179
94afd7a6
UW
1180/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1181 frame. The frame ID's base needs to match the TOS value saved by
1182 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1183
4add8633 1184static struct frame_id
94afd7a6 1185avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1186{
1187 ULONGEST base;
8818c391 1188
94afd7a6
UW
1189 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1190 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1191}
1192
4add8633 1193/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1194 order. The below implements a FILO (stack) to do this. */
8818c391 1195
4add8633
TR
1196struct stack_item
1197{
1198 int len;
1199 struct stack_item *prev;
7c543f7b 1200 gdb_byte *data;
4add8633 1201};
8818c391 1202
4add8633 1203static struct stack_item *
0fd88904 1204push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1205{
4add8633 1206 struct stack_item *si;
8d749320 1207 si = XNEW (struct stack_item);
7c543f7b 1208 si->data = (gdb_byte *) xmalloc (len);
4add8633
TR
1209 si->len = len;
1210 si->prev = prev;
1211 memcpy (si->data, contents, len);
1212 return si;
8818c391
TR
1213}
1214
4add8633
TR
1215static struct stack_item *pop_stack_item (struct stack_item *si);
1216static struct stack_item *
1217pop_stack_item (struct stack_item *si)
8818c391 1218{
4add8633
TR
1219 struct stack_item *dead = si;
1220 si = si->prev;
1221 xfree (dead->data);
1222 xfree (dead);
1223 return si;
8818c391
TR
1224}
1225
8818c391
TR
1226/* Setup the function arguments for calling a function in the inferior.
1227
1228 On the AVR architecture, there are 18 registers (R25 to R8) which are
1229 dedicated for passing function arguments. Up to the first 18 arguments
1230 (depending on size) may go into these registers. The rest go on the stack.
1231
4add8633 1232 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1233 arguments, including char, have one free register above them). For example,
4add8633
TR
1234 an int in arg1 and a char in arg2 would be passed as such:
1235
1236 arg1 -> r25:r24
1237 arg2 -> r22
1238
1239 Arguments that are larger than 2 bytes will be split between two or more
1240 registers as available, but will NOT be split between a register and the
0963b4bd 1241 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1242 similar to the d10v). */
1243
1244/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1245 inaccurate.
8818c391
TR
1246
1247 An exceptional case exists for struct arguments (and possibly other
1248 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1249 not a multiple of WORDSIZE bytes. In this case the argument is never split
1250 between the registers and the stack, but instead is copied in its entirety
1251 onto the stack, AND also copied into as many registers as there is room
1252 for. In other words, space in registers permitting, two copies of the same
1253 argument are passed in. As far as I can tell, only the one on the stack is
1254 used, although that may be a function of the level of compiler
1255 optimization. I suspect this is a compiler bug. Arguments of these odd
1256 sizes are left-justified within the word (as opposed to arguments smaller
1257 than WORDSIZE bytes, which are right-justified).
1258
1259 If the function is to return an aggregate type such as a struct, the caller
1260 must allocate space into which the callee will copy the return value. In
1261 this case, a pointer to the return value location is passed into the callee
1262 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1263 registers R0 to R2. */
8818c391
TR
1264
1265static CORE_ADDR
7d9b040b 1266avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1267 struct regcache *regcache, CORE_ADDR bp_addr,
1268 int nargs, struct value **args, CORE_ADDR sp,
1269 int struct_return, CORE_ADDR struct_addr)
8818c391 1270{
4add8633 1271 int i;
e362b510 1272 gdb_byte buf[3];
6d1915d4 1273 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1274 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1275 int regnum = AVR_ARGN_REGNUM;
1276 struct stack_item *si = NULL;
8818c391 1277
4add8633 1278 if (struct_return)
8818c391 1279 {
fd6d6815
TG
1280 regcache_cooked_write_unsigned
1281 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1282 regcache_cooked_write_unsigned
1283 (regcache, regnum--, struct_addr & 0xff);
1284 /* SP being post decremented, we need to reserve one byte so that the
1285 return address won't overwrite the result (or vice-versa). */
1286 if (sp == struct_addr)
1287 sp--;
8818c391
TR
1288 }
1289
4add8633 1290 for (i = 0; i < nargs; i++)
8818c391 1291 {
4add8633
TR
1292 int last_regnum;
1293 int j;
1294 struct value *arg = args[i];
4991999e 1295 struct type *type = check_typedef (value_type (arg));
0fd88904 1296 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1297 int len = TYPE_LENGTH (type);
1298
cb86f388
DC
1299 /* Calculate the potential last register needed.
1300 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1301 shall be used. So, last needed register will be regnum-1(24). */
1302 last_regnum = regnum - (len + (len & 1)) + 1;
4add8633 1303
0963b4bd
MS
1304 /* If there are registers available, use them. Once we start putting
1305 stuff on the stack, all subsequent args go on stack. */
cb86f388 1306 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
4add8633 1307 {
0963b4bd 1308 /* Skip a register for odd length args. */
4add8633
TR
1309 if (len & 1)
1310 regnum--;
1311
cb86f388
DC
1312 /* Write MSB of argument into register and subsequent bytes in
1313 decreasing register numbers. */
6d1915d4
TG
1314 for (j = 0; j < len; j++)
1315 regcache_cooked_write_unsigned
cb86f388 1316 (regcache, regnum--, contents[len - j - 1]);
4add8633 1317 }
0963b4bd 1318 /* No registers available, push the args onto the stack. */
4add8633
TR
1319 else
1320 {
0963b4bd 1321 /* From here on, we don't care about regnum. */
4add8633
TR
1322 si = push_stack_item (si, contents, len);
1323 }
8818c391 1324 }
909cd28e 1325
0963b4bd 1326 /* Push args onto the stack. */
4add8633
TR
1327 while (si)
1328 {
1329 sp -= si->len;
0963b4bd 1330 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1331 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1332 si = pop_stack_item (si);
1333 }
3605c34a 1334
4add8633
TR
1335 /* Set the return address. For the avr, the return address is the BP_ADDR.
1336 Need to push the return address onto the stack noting that it needs to be
1337 in big-endian order on the stack. */
6d1915d4
TG
1338 for (i = 1; i <= call_length; i++)
1339 {
1340 buf[call_length - i] = return_pc & 0xff;
1341 return_pc >>= 8;
1342 }
3605c34a 1343
6d1915d4 1344 sp -= call_length;
0963b4bd 1345 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1346 write_memory (sp + 1, buf, call_length);
3605c34a 1347
0963b4bd 1348 /* Finally, update the SP register. */
4add8633
TR
1349 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1350 avr_convert_saddr_to_raw (sp));
3605c34a 1351
6d1915d4
TG
1352 /* Return SP value for the dummy frame, where the return address hasn't been
1353 pushed. */
1354 return sp + call_length;
3605c34a
TR
1355}
1356
53f6a2c9
TG
1357/* Unfortunately dwarf2 register for SP is 32. */
1358
1359static int
1360avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1361{
1362 if (reg >= 0 && reg < 32)
1363 return reg;
1364 if (reg == 32)
1365 return AVR_SP_REGNUM;
53f6a2c9
TG
1366 return -1;
1367}
1368
487d9753
PL
1369/* Implementation of `address_class_type_flags' gdbarch method.
1370
1371 This method maps DW_AT_address_class attributes to a
1372 type_instance_flag_value. */
1373
1374static int
1375avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1376{
1377 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1378 __flash qualifier. Note that this attribute is only valid with
1379 pointer types and therefore the flag is set to the pointer type and
1380 not its target type. */
1381 if (dwarf2_addr_class == 1 && byte_size == 2)
1382 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1383 return 0;
1384}
1385
1386/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1387
1388 Convert a type_instance_flag_value to an address space qualifier. */
1389
1390static const char*
1391avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1392{
1393 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1394 return "flash";
1395 else
1396 return NULL;
1397}
1398
1399/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1400
1401 Convert an address space qualifier to a type_instance_flag_value. */
1402
1403static int
1404avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1405 const char* name,
1406 int *type_flags_ptr)
1407{
1408 if (strcmp (name, "flash") == 0)
1409 {
1410 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1411 return 1;
1412 }
1413 else
1414 return 0;
1415}
1416
0963b4bd 1417/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1418
1419static struct gdbarch *
2e5ff58c
TR
1420avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1421{
2e5ff58c
TR
1422 struct gdbarch *gdbarch;
1423 struct gdbarch_tdep *tdep;
4e99ad69
TG
1424 struct gdbarch_list *best_arch;
1425 int call_length;
8818c391 1426
4e99ad69 1427 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1428 switch (info.bfd_arch_info->mach)
1429 {
1430 case bfd_mach_avr1:
9c97a070 1431 case bfd_mach_avrxmega1:
8818c391 1432 case bfd_mach_avr2:
9c97a070 1433 case bfd_mach_avrxmega2:
8818c391 1434 case bfd_mach_avr3:
9c97a070 1435 case bfd_mach_avrxmega3:
8818c391 1436 case bfd_mach_avr4:
9c97a070 1437 case bfd_mach_avrxmega4:
8818c391 1438 case bfd_mach_avr5:
9c97a070 1439 case bfd_mach_avrxmega5:
4e99ad69
TG
1440 default:
1441 call_length = 2;
1442 break;
1443 case bfd_mach_avr6:
9c97a070
PL
1444 case bfd_mach_avrxmega6:
1445 case bfd_mach_avrxmega7:
4e99ad69 1446 call_length = 3;
8818c391
TR
1447 break;
1448 }
1449
4e99ad69
TG
1450 /* If there is already a candidate, use it. */
1451 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1452 best_arch != NULL;
1453 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1454 {
1455 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1456 return best_arch->gdbarch;
1457 }
1458
0963b4bd 1459 /* None found, create a new architecture from the information provided. */
70ba0933 1460 tdep = XNEW (struct gdbarch_tdep);
4e99ad69
TG
1461 gdbarch = gdbarch_alloc (&info, tdep);
1462
1463 tdep->call_length = call_length;
1464
7d2552b4
TG
1465 /* Create a type for PC. We can't use builtin types here, as they may not
1466 be defined. */
1467 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1468 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1469 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1470 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1471 TYPE_UNSIGNED (tdep->pc_type) = 1;
1472
8818c391
TR
1473 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1474 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1475 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1476 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1477 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1479
1480 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1481 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1482 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1483
8da61cc4
DJ
1484 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1486 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1487
1488 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1489 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1490
1491 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1492
1493 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1494 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1495
1496 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1497 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1498
7d2552b4
TG
1499 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1500 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1501 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1502
4c8b6ae0 1503 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1504 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1505
4add8633 1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1507
53f6a2c9
TG
1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1509
8818c391
TR
1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1513
8818c391 1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1516
909cd28e 1517 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1518
94afd7a6 1519 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1520 frame_base_set_default (gdbarch, &avr_frame_base);
1521
94afd7a6 1522 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1523
1524 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1525 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1526
487d9753
PL
1527 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1528 set_gdbarch_address_class_name_to_type_flags
1529 (gdbarch, avr_address_class_name_to_type_flags);
1530 set_gdbarch_address_class_type_flags_to_name
1531 (gdbarch, avr_address_class_type_flags_to_name);
1532
8818c391
TR
1533 return gdbarch;
1534}
1535
1536/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1537 registers. If args parameter is not NULL, then the user has requested info
8818c391 1538 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1539 now]. The query string should be one of these forms:
8818c391
TR
1540
1541 "Ravr.io_reg" -> reply is "NN" number of io registers
1542
1543 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1544 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1545 where, <NAME> is a string, and VV is the hex value of the register.
1546
0963b4bd 1547 All io registers are 8-bit. */
8818c391
TR
1548
1549static void
1550avr_io_reg_read_command (char *args, int from_tty)
1551{
1e3ff5ad 1552 LONGEST bufsiz = 0;
13547ab6 1553 gdb_byte *buf;
001f13d8 1554 const char *bufstr;
2e5ff58c 1555 char query[400];
001f13d8 1556 const char *p;
2e5ff58c
TR
1557 unsigned int nreg = 0;
1558 unsigned int val;
1559 int i, j, k, step;
8818c391 1560
0963b4bd 1561 /* Find out how many io registers the target has. */
13547ab6
DJ
1562 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1563 "avr.io_reg", &buf);
001f13d8 1564 bufstr = (const char *) buf;
8818c391 1565
13547ab6 1566 if (bufsiz <= 0)
8818c391 1567 {
2e5ff58c 1568 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1569 _("ERR: info io_registers NOT supported "
1570 "by current target\n"));
8818c391
TR
1571 return;
1572 }
1573
001f13d8 1574 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1575 {
2e5ff58c 1576 fprintf_unfiltered (gdb_stderr,
edefbb7c 1577 _("Error fetching number of io registers\n"));
13547ab6 1578 xfree (buf);
8818c391
TR
1579 return;
1580 }
1581
13547ab6
DJ
1582 xfree (buf);
1583
2e5ff58c 1584 reinitialize_more_filter ();
8818c391 1585
edefbb7c 1586 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1587
1588 /* only fetch up to 8 registers at a time to keep the buffer small */
1589 step = 8;
1590
2e5ff58c 1591 for (i = 0; i < nreg; i += step)
8818c391 1592 {
91ccbfc1
TR
1593 /* how many registers this round? */
1594 j = step;
1595 if ((i+j) >= nreg)
1596 j = nreg - i; /* last block is less than 8 registers */
8818c391 1597
2e5ff58c 1598 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1599 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1600 query, &buf);
8818c391 1601
001f13d8 1602 p = (const char *) buf;
2e5ff58c
TR
1603 for (k = i; k < (i + j); k++)
1604 {
1605 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1606 {
1607 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1608 while ((*p != ';') && (*p != '\0'))
1609 p++;
1610 p++; /* skip over ';' */
1611 if (*p == '\0')
1612 break;
1613 }
1614 }
13547ab6
DJ
1615
1616 xfree (buf);
8818c391
TR
1617 }
1618}
1619
a78f21af
AC
1620extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1621
8818c391
TR
1622void
1623_initialize_avr_tdep (void)
1624{
1625 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1626
1627 /* Add a new command to allow the user to query the avr remote target for
1628 the values of the io space registers in a saner way than just using
0963b4bd 1629 `x/NNNb ADDR`. */
8818c391
TR
1630
1631 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1632 io_registers' to signify it is not available on other platforms. */
8818c391 1633
5f515954
AB
1634 add_info ("io_registers", avr_io_reg_read_command,
1635 _("query remote avr target for io space register values"));
8818c391 1636}
This page took 1.029275 seconds and 4 git commands to generate.