2002-08-05 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391
TR
1/* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* Contributed by Theodore A. Roth, troth@verinet.com */
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
33#include "regcache.h"
5f8a3188 34#include "gdb_string.h"
8818c391
TR
35
36/* AVR Background:
37
38 (AVR micros are pure Harvard Architecture processors.)
39
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
45
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
51
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
56
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
60 Program Counter.
61
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
66
67#undef XMALLOC
68#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70#undef EXTRACT_INSN
71#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73/* Constants: prefixed with AVR_ to avoid name space clashes */
74
75enum
2e5ff58c
TR
76{
77 AVR_REG_W = 24,
78 AVR_REG_X = 26,
79 AVR_REG_Y = 28,
80 AVR_FP_REGNUM = 28,
81 AVR_REG_Z = 30,
82
83 AVR_SREG_REGNUM = 32,
84 AVR_SP_REGNUM = 33,
85 AVR_PC_REGNUM = 34,
86
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
91
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
93
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95 AVR_MAX_PUSHES = 18,
96
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
99
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
103
104 Note: I chose these values so as to be consistent with bfd vma
105 addresses.
106
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
110 AVR_MEM_MASK.
111
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
115
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
121
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 124#if 1
2e5ff58c
TR
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 127#else
2e5ff58c
TR
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 130#endif
2e5ff58c 131};
8818c391
TR
132
133/* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
136 LOCALS0
137 SAVED FP
138 SAVED R3
139 SAVED R2
140 RET PC
141 FIRST ARG
142 SECOND ARG */
143
144struct frame_extra_info
2e5ff58c
TR
145{
146 CORE_ADDR return_pc;
147 CORE_ADDR args_pointer;
148 int locals_size;
149 int framereg;
150 int framesize;
151 int is_main;
152};
8818c391
TR
153
154struct gdbarch_tdep
2e5ff58c
TR
155{
156 /* FIXME: TRoth: is there anything to put here? */
157 int foo;
158};
8818c391
TR
159
160/* Lookup the name of a register given it's number. */
161
fa88f677 162static const char *
8818c391
TR
163avr_register_name (int regnum)
164{
2e5ff58c
TR
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177}
178
179/* Index within `registers' of the first byte of the space for
180 register REGNUM. */
181
182static int
183avr_register_byte (int regnum)
184{
185 if (regnum < AVR_PC_REGNUM)
186 return regnum;
187 else
188 return AVR_PC_REG_INDEX;
189}
190
191/* Number of bytes of storage in the actual machine representation for
192 register REGNUM. */
193
194static int
195avr_register_raw_size (int regnum)
196{
197 switch (regnum)
198 {
199 case AVR_PC_REGNUM:
200 return 4;
201 case AVR_SP_REGNUM:
202 case AVR_FP_REGNUM:
203 return 2;
204 default:
205 return 1;
206 }
207}
208
209/* Number of bytes of storage in the program's representation
210 for register N. */
211
212static int
213avr_register_virtual_size (int regnum)
214{
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216}
217
218/* Return the GDB type object for the "standard" data type
219 of data in register N. */
220
221static struct type *
222avr_register_virtual_type (int regnum)
223{
224 switch (regnum)
225 {
226 case AVR_PC_REGNUM:
227 return builtin_type_unsigned_long;
228 case AVR_SP_REGNUM:
229 return builtin_type_unsigned_short;
230 default:
231 return builtin_type_unsigned_char;
232 }
233}
234
235/* Instruction address checks and convertions. */
236
237static CORE_ADDR
238avr_make_iaddr (CORE_ADDR x)
239{
240 return ((x) | AVR_IMEM_START);
241}
242
243static int
244avr_iaddr_p (CORE_ADDR x)
245{
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247}
248
249/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
251
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254static CORE_ADDR
255avr_convert_iaddr_to_raw (CORE_ADDR x)
256{
257 return ((x) & 0xffffffff);
258}
259
260/* SRAM address checks and convertions. */
261
262static CORE_ADDR
263avr_make_saddr (CORE_ADDR x)
264{
265 return ((x) | AVR_SMEM_START);
266}
267
268static int
269avr_saddr_p (CORE_ADDR x)
270{
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272}
273
274static CORE_ADDR
275avr_convert_saddr_to_raw (CORE_ADDR x)
276{
277 return ((x) & 0xffffffff);
278}
279
280/* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
282
283/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
285
286/* static CORE_ADDR */
287/* avr_make_eaddr (CORE_ADDR x) */
288/* { */
289/* return ((x) | AVR_EMEM_START); */
290/* } */
291
292/* static int */
293/* avr_eaddr_p (CORE_ADDR x) */
294/* { */
295/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296/* } */
297
298/* static CORE_ADDR */
299/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300/* { */
301/* return ((x) & 0xffffffff); */
302/* } */
303
304/* Convert from address to pointer and vice-versa. */
305
306static void
307avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308{
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312 {
2e5ff58c
TR
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
8818c391
TR
315 }
316 else
317 {
318 /* Strip off any upper segment bits. */
2e5ff58c
TR
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
8818c391
TR
321 }
322}
323
324static CORE_ADDR
325avr_pointer_to_address (struct type *type, void *buf)
326{
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
2e5ff58c 329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391 330 {
2e5ff58c
TR
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
332 addr);
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@verinet.com>\n");
8818c391
TR
335 }
336
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391
TR
341 return avr_make_iaddr (addr);
342 else
343 return avr_make_saddr (addr);
344}
345
346static CORE_ADDR
347avr_read_pc (ptid_t ptid)
348{
349 ptid_t save_ptid;
350 CORE_ADDR pc;
351 CORE_ADDR retval;
352
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
358 return retval;
359}
360
361static void
362avr_write_pc (CORE_ADDR val, ptid_t ptid)
363{
364 ptid_t save_ptid;
365
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
370}
371
372static CORE_ADDR
373avr_read_sp (void)
374{
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
376}
377
378static void
379avr_write_sp (CORE_ADDR val)
380{
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
382}
383
384static CORE_ADDR
385avr_read_fp (void)
386{
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
388}
389
390/* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
394
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
396 pointer? */
397
398static void
399avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
2e5ff58c 400 CORE_ADDR *targ_addr, int *targ_len)
8818c391
TR
401{
402 long out_addr;
403 long out_len;
404
405 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406 point and see if the high bit are set with the masks that we want. */
407
408 *targ_addr = memaddr;
409 *targ_len = nr_bytes;
410}
411
412/* Function pointers obtained from the target are half of what gdb expects so
413 multiply by 2. */
414
415static CORE_ADDR
416avr_convert_from_func_ptr_addr (CORE_ADDR addr)
417{
418 return addr * 2;
419}
420
421/* avr_scan_prologue is also used as the frame_init_saved_regs().
422
423 Put here the code to store, into fi->saved_regs, the addresses of
424 the saved registers of frame described by FRAME_INFO. This
425 includes special registers such as pc and fp saved in special ways
426 in the stack frame. sp is even more special: the address we return
427 for it IS the sp for the next frame. */
428
429/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
430 This function decodes a AVR function prologue to determine:
431 1) the size of the stack frame
432 2) which registers are saved on it
433 3) the offsets of saved regs
434 This information is stored in the "extra_info" field of the frame_info.
435
436 A typical AVR function prologue might look like this:
437 push rXX
438 push r28
439 push r29
440 in r28,__SP_L__
441 in r29,__SP_H__
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
444 cli
445 out __SP_L__,r28
446 out __SREG__,__tmp_reg__
447 out __SP_H__,r29
448
449 A `-mcall-prologues' prologue look like this:
450 ldi r26,<LOCALS_SIZE>
451 ldi r27,<LOCALS_SIZE>/265
452 ldi r30,pm_lo8(.L_foo_body)
453 ldi r31,pm_hi8(.L_foo_body)
454 rjmp __prologue_saves__+RRR
455 .L_foo_body: */
456
457static void
458avr_scan_prologue (struct frame_info *fi)
459{
460 CORE_ADDR prologue_start;
461 CORE_ADDR prologue_end;
2e5ff58c
TR
462 int i;
463 unsigned short insn;
464 int regno;
465 int scan_stage = 0;
466 char *name;
8818c391 467 struct minimal_symbol *msymbol;
2e5ff58c 468 int prologue_len;
8818c391
TR
469 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
470 int vpc = 0;
471
472 fi->extra_info->framereg = AVR_SP_REGNUM;
2e5ff58c
TR
473
474 if (find_pc_partial_function
475 (fi->pc, &name, &prologue_start, &prologue_end))
8818c391
TR
476 {
477 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
478
2e5ff58c
TR
479 if (sal.line == 0) /* no line info, use current PC */
480 prologue_end = fi->pc;
481 else if (sal.end < prologue_end) /* next line begins after fn end */
482 prologue_end = sal.end; /* (probably means no prologue) */
8818c391
TR
483 }
484 else
485 /* We're in the boondocks: allow for */
486 /* 19 pushes, an add, and "mv fp,sp" */
2e5ff58c 487 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
8818c391
TR
488
489 prologue_end = min (prologue_end, fi->pc);
490
491 /* Search the prologue looking for instructions that set up the
492 frame pointer, adjust the stack pointer, and save registers. */
493
494 fi->extra_info->framesize = 0;
495 prologue_len = prologue_end - prologue_start;
496 read_memory (prologue_start, prologue, prologue_len);
497
498 /* Scanning main()'s prologue
499 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
500 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
501 out __SP_H__,r29
502 out __SP_L__,r28 */
503
504 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
505 {
506 CORE_ADDR locals;
2e5ff58c
TR
507 unsigned char img[] = {
508 0xde, 0xbf, /* out __SP_H__,r29 */
509 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
510 };
511
512 fi->extra_info->framereg = AVR_FP_REGNUM;
513 insn = EXTRACT_INSN (&prologue[vpc]);
514 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
515 if ((insn & 0xf0f0) == 0xe0c0)
516 {
517 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518 insn = EXTRACT_INSN (&prologue[vpc + 2]);
519 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
520 if ((insn & 0xf0f0) == 0xe0d0)
521 {
522 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
523 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
524 {
525 fi->frame = locals;
526
527 /* TRoth: Does -1 mean we're in main? */
528 fi->extra_info->is_main = 1;
529 return;
530 }
531 }
532 }
8818c391 533 }
2e5ff58c 534
8818c391
TR
535 /* Scanning `-mcall-prologues' prologue
536 FIXME: mega prologue have a 12 bytes long */
537
2e5ff58c 538 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
8818c391
TR
539 {
540 int loc_size;
541 int body_addr;
542 unsigned num_pushes;
2e5ff58c 543
8818c391
TR
544 insn = EXTRACT_INSN (&prologue[vpc]);
545 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
546 if ((insn & 0xf0f0) != 0xe0a0)
547 break;
8818c391 548 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
2e5ff58c 549
8818c391
TR
550 insn = EXTRACT_INSN (&prologue[vpc + 2]);
551 /* ldi r27,<LOCALS_SIZE> / 256 */
552 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 553 break;
8818c391 554 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
2e5ff58c 555
8818c391
TR
556 insn = EXTRACT_INSN (&prologue[vpc + 4]);
557 /* ldi r30,pm_lo8(.L_foo_body) */
558 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 559 break;
8818c391
TR
560 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
561
562 insn = EXTRACT_INSN (&prologue[vpc + 6]);
563 /* ldi r31,pm_hi8(.L_foo_body) */
564 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 565 break;
8818c391
TR
566 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
567
568 if (body_addr != (prologue_start + 10) / 2)
2e5ff58c 569 break;
8818c391
TR
570
571 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
572 if (!msymbol)
2e5ff58c 573 break;
8818c391
TR
574
575 /* FIXME: prologue for mega have a JMP instead of RJMP */
576 insn = EXTRACT_INSN (&prologue[vpc + 8]);
577 /* rjmp __prologue_saves__+RRR */
578 if ((insn & 0xf000) != 0xc000)
2e5ff58c
TR
579 break;
580
8818c391
TR
581 /* Extract PC relative offset from RJMP */
582 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
583 /* Convert offset to byte addressable mode */
584 i *= 2;
585 /* Destination address */
586 i += vpc + prologue_start + 10;
587 /* Resovle offset (in words) from __prologue_saves__ symbol.
588 Which is a pushes count in `-mcall-prologues' mode */
589 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
590
591 if (num_pushes > AVR_MAX_PUSHES)
2e5ff58c
TR
592 num_pushes = 0;
593
8818c391 594 if (num_pushes)
2e5ff58c
TR
595 {
596 int from;
597 fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
598 if (num_pushes >= 2)
599 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
600 i = 0;
601 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
602 from <= AVR_LAST_PUSHED_REGNUM; ++from)
603 fi->saved_regs[from] = ++i;
604 }
8818c391
TR
605 fi->extra_info->locals_size = loc_size;
606 fi->extra_info->framesize = loc_size + num_pushes;
607 fi->extra_info->framereg = AVR_FP_REGNUM;
608 return;
609 }
610
611 /* Scan interrupt or signal function */
612
613 if (prologue_len >= 12)
614 {
2e5ff58c
TR
615 unsigned char img[] = {
616 0x78, 0x94, /* sei */
617 0x1f, 0x92, /* push r1 */
618 0x0f, 0x92, /* push r0 */
619 0x0f, 0xb6, /* in r0,0x3f SREG */
620 0x0f, 0x92, /* push r0 */
621 0x11, 0x24 /* clr r1 */
8818c391
TR
622 };
623 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c
TR
624 {
625 vpc += sizeof (img);
626 fi->saved_regs[0] = 2;
627 fi->saved_regs[1] = 1;
628 fi->extra_info->framesize += 3;
629 }
8818c391 630 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
2e5ff58c
TR
631 {
632 vpc += sizeof (img) - 1;
633 fi->saved_regs[0] = 2;
634 fi->saved_regs[1] = 1;
635 fi->extra_info->framesize += 3;
636 }
8818c391
TR
637 }
638
639 /* First stage of the prologue scanning.
640 Scan pushes */
641
642 for (; vpc <= prologue_len; vpc += 2)
643 {
644 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
645 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
646 {
647 /* Bits 4-9 contain a mask for registers R0-R32. */
648 regno = (insn & 0x1f0) >> 4;
649 ++fi->extra_info->framesize;
650 fi->saved_regs[regno] = fi->extra_info->framesize;
651 scan_stage = 1;
652 }
8818c391 653 else
2e5ff58c 654 break;
8818c391
TR
655 }
656
657 /* Second stage of the prologue scanning.
658 Scan:
659 in r28,__SP_L__
660 in r29,__SP_H__ */
661
662 if (scan_stage == 1 && vpc + 4 <= prologue_len)
663 {
2e5ff58c
TR
664 unsigned char img[] = {
665 0xcd, 0xb7, /* in r28,__SP_L__ */
666 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
667 };
668 unsigned short insn1;
2e5ff58c 669
8818c391 670 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
671 {
672 vpc += 4;
673 fi->extra_info->framereg = AVR_FP_REGNUM;
674 scan_stage = 2;
675 }
8818c391
TR
676 }
677
678 /* Third stage of the prologue scanning. (Really two stages)
679 Scan for:
680 sbiw r28,XX or subi r28,lo8(XX)
681 sbci r29,hi8(XX)
682 in __tmp_reg__,__SREG__
683 cli
684 out __SP_L__,r28
685 out __SREG__,__tmp_reg__
686 out __SP_H__,r29 */
687
688 if (scan_stage == 2 && vpc + 12 <= prologue_len)
689 {
690 int locals_size = 0;
2e5ff58c
TR
691 unsigned char img[] = {
692 0x0f, 0xb6, /* in r0,0x3f */
693 0xf8, 0x94, /* cli */
694 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
695 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
696 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 697 };
2e5ff58c
TR
698 unsigned char img_sig[] = {
699 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
700 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 701 };
2e5ff58c
TR
702 unsigned char img_int[] = {
703 0xf8, 0x94, /* cli */
704 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
705 0x78, 0x94, /* sei */
706 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 707 };
2e5ff58c 708
8818c391
TR
709 insn = EXTRACT_INSN (&prologue[vpc]);
710 vpc += 2;
2e5ff58c
TR
711 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
712 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
713 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
714 {
715 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
716 insn = EXTRACT_INSN (&prologue[vpc]);
717 vpc += 2;
718 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
719 }
8818c391 720 else
2e5ff58c 721 return;
8818c391
TR
722 fi->extra_info->locals_size = locals_size;
723 fi->extra_info->framesize += locals_size;
724 }
725}
726
727/* This function actually figures out the frame address for a given pc and
728 sp. This is tricky because we sometimes don't use an explicit
729 frame pointer, and the previous stack pointer isn't necessarily recorded
730 on the stack. The only reliable way to get this info is to
731 examine the prologue. */
732
733static void
734avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
735{
736 int reg;
737
738 if (fi->next)
739 fi->pc = FRAME_SAVED_PC (fi->next);
740
741 fi->extra_info = (struct frame_extra_info *)
742 frame_obstack_alloc (sizeof (struct frame_extra_info));
743 frame_saved_regs_zalloc (fi);
744
745 fi->extra_info->return_pc = 0;
746 fi->extra_info->args_pointer = 0;
747 fi->extra_info->locals_size = 0;
748 fi->extra_info->framereg = 0;
749 fi->extra_info->framesize = 0;
750 fi->extra_info->is_main = 0;
2e5ff58c 751
8818c391
TR
752 avr_scan_prologue (fi);
753
754 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
755 {
756 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
757 by assuming it's always FP. */
2e5ff58c 758 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, fi->frame);
8818c391 759 }
2e5ff58c 760 else if (!fi->next) /* this is the innermost frame? */
8818c391 761 fi->frame = read_register (fi->extra_info->framereg);
2e5ff58c 762 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
8818c391
TR
763 /* If we have an next frame, the callee saved it. */
764 {
2e5ff58c 765 struct frame_info *next_fi = fi->next;
8818c391 766 if (fi->extra_info->framereg == AVR_SP_REGNUM)
2e5ff58c
TR
767 fi->frame =
768 next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
8818c391
TR
769 /* FIXME: I don't analyse va_args functions */
770 else
2e5ff58c
TR
771 {
772 CORE_ADDR fp = 0;
773 CORE_ADDR fp1 = 0;
774 unsigned int fp_low, fp_high;
775
776 /* Scan all frames */
777 for (; next_fi; next_fi = next_fi->next)
778 {
779 /* look for saved AVR_FP_REGNUM */
780 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
781 fp = next_fi->saved_regs[AVR_FP_REGNUM];
782 /* look for saved AVR_FP_REGNUM + 1 */
783 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
784 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
785 }
786 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
787 : read_register (AVR_FP_REGNUM)) & 0xff;
788 fp_high =
789 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
790 read_register (AVR_FP_REGNUM + 1)) & 0xff;
791 fi->frame = fp_low | (fp_high << 8);
792 }
8818c391
TR
793 }
794
795 /* TRoth: Do we want to do this if we are in main? I don't think we should
796 since return_pc makes no sense when we are in main. */
797
2e5ff58c 798 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
8818c391
TR
799 {
800 CORE_ADDR addr;
801 int i;
2e5ff58c 802
8818c391 803 addr = fi->frame + fi->extra_info->framesize + 1;
2e5ff58c 804
8818c391
TR
805 /* Return address in stack in different endianness */
806
807 fi->extra_info->return_pc =
2e5ff58c 808 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
8818c391 809 fi->extra_info->return_pc |=
2e5ff58c
TR
810 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
811
8818c391
TR
812 /* This return address in words,
813 must be converted to the bytes address */
814 fi->extra_info->return_pc *= 2;
815
816 /* Resolve a pushed registers addresses */
817 for (i = 0; i < NUM_REGS; i++)
2e5ff58c
TR
818 {
819 if (fi->saved_regs[i])
820 fi->saved_regs[i] = addr - fi->saved_regs[i];
821 }
8818c391
TR
822 }
823}
824
825/* Restore the machine to the state it had before the current frame was
826 created. Usually used either by the "RETURN" command, or by
827 call_function_by_hand after the dummy_frame is finished. */
828
829static void
830avr_pop_frame (void)
831{
832 unsigned regnum;
833 CORE_ADDR saddr;
834 struct frame_info *frame = get_current_frame ();
835
2e5ff58c 836 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
8818c391 837 {
2e5ff58c 838 generic_pop_dummy_frame ();
8818c391
TR
839 }
840 else
841 {
842 /* TRoth: Why only loop over 8 registers? */
843
844 for (regnum = 0; regnum < 8; regnum++)
2e5ff58c
TR
845 {
846 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
847 actual value we want, not the address of the value we want. */
848 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
849 {
850 saddr = avr_make_saddr (frame->saved_regs[regnum]);
851 write_register (regnum,
852 read_memory_unsigned_integer (saddr, 1));
853 }
854 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
855 write_register (regnum, frame->frame + 2);
856 }
8818c391
TR
857
858 /* Don't forget the update the PC too! */
859 write_pc (frame->extra_info->return_pc);
860 }
861 flush_cached_frames ();
862}
863
864/* Return the saved PC from this frame. */
865
866static CORE_ADDR
867avr_frame_saved_pc (struct frame_info *frame)
868{
2e5ff58c
TR
869 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
870 return generic_read_register_dummy (frame->pc, frame->frame,
871 AVR_PC_REGNUM);
8818c391
TR
872 else
873 return frame->extra_info->return_pc;
874}
875
876static CORE_ADDR
877avr_saved_pc_after_call (struct frame_info *frame)
878{
879 unsigned char m1, m2;
880 unsigned int sp = read_register (AVR_SP_REGNUM);
881 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
882 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
883 return (m2 | (m1 << 8)) * 2;
884}
885
886/* Figure out where in REGBUF the called function has left its return value.
887 Copy that into VALBUF. */
888
889static void
890avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
891{
892 int wordsize, len;
893
894 wordsize = 2;
895
2e5ff58c
TR
896 len = TYPE_LENGTH (type);
897
898 switch (len)
899 {
900 case 1: /* (char) */
901 case 2: /* (short), (int) */
902 memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
903 break;
904 case 4: /* (long), (float) */
905 memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
906 break;
907 case 8: /* (double) (doesn't seem to happen, which is good,
908 because this almost certainly isn't right. */
909 error ("I don't know how a double is returned.");
910 break;
911 }
8818c391
TR
912}
913
914/* Returns the return address for a dummy. */
915
916static CORE_ADDR
917avr_call_dummy_address (void)
918{
919 return entry_point_address ();
920}
921
922/* Place the appropriate value in the appropriate registers.
923 Primarily used by the RETURN command. */
924
925static void
926avr_store_return_value (struct type *type, char *valbuf)
927{
928 int wordsize, len, regval;
2e5ff58c 929
8818c391
TR
930 wordsize = 2;
931
2e5ff58c
TR
932 len = TYPE_LENGTH (type);
933 switch (len)
934 {
935 case 1: /* char */
936 case 2: /* short, int */
937 regval = extract_address (valbuf, len);
938 write_register (0, regval);
939 break;
940 case 4: /* long, float */
941 regval = extract_address (valbuf, len);
942 write_register (0, regval >> 16);
943 write_register (1, regval & 0xffff);
944 break;
945 case 8: /* presumeably double, but doesn't seem to happen */
946 error ("I don't know how to return a double.");
947 break;
948 }
8818c391
TR
949}
950
951/* Setup the return address for a dummy frame, as called by
952 call_function_by_hand. Only necessary when you are using an empty
953 CALL_DUMMY. */
954
955static CORE_ADDR
956avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
957{
958 unsigned char buf[2];
959 int wordsize = 2;
960 struct minimal_symbol *msymbol;
961 CORE_ADDR mon_brk;
962
963 fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
964
965 buf[0] = 0;
966 buf[1] = 0;
967 sp -= wordsize;
968 write_memory (sp + 1, buf, 2);
969
970#if 0
971 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
972 left-over from Denis' original patch which used avr-mon for the target
973 instead of the generic remote target. */
974 if ((strcmp (target_shortname, "avr-mon") == 0)
975 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
976 {
977 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
978 store_unsigned_integer (buf, wordsize, mon_brk / 2);
979 sp -= wordsize;
980 write_memory (sp + 1, buf + 1, 1);
981 write_memory (sp + 2, buf, 1);
982 }
983#endif
984 return sp;
985}
986
987static CORE_ADDR
988avr_skip_prologue (CORE_ADDR pc)
989{
990 CORE_ADDR func_addr, func_end;
991 struct symtab_and_line sal;
992
993 /* See what the symbol table says */
994
995 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
996 {
997 sal = find_pc_line (func_addr, 0);
998
2e5ff58c
TR
999 if (sal.line != 0 && sal.end < func_end)
1000 return sal.end;
8818c391
TR
1001 }
1002
1003/* Either we didn't find the start of this function (nothing we can do),
1004 or there's no line info, or the line after the prologue is after
1005 the end of the function (there probably isn't a prologue). */
1006
1007 return pc;
1008}
1009
1010static CORE_ADDR
1011avr_frame_address (struct frame_info *fi)
1012{
1013 return avr_make_saddr (fi->frame);
1014}
1015
1016/* Given a GDB frame, determine the address of the calling function's frame.
1017 This will be used to create a new GDB frame struct, and then
1018 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1019
1020 For us, the frame address is its stack pointer value, so we look up
1021 the function prologue to determine the caller's sp value, and return it. */
1022
1023static CORE_ADDR
1024avr_frame_chain (struct frame_info *frame)
1025{
1026 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1027 {
1028 /* initialize the return_pc now */
1029 frame->extra_info->return_pc = generic_read_register_dummy (frame->pc,
2e5ff58c
TR
1030 frame->
1031 frame,
1032 AVR_PC_REGNUM);
8818c391
TR
1033 return frame->frame;
1034 }
1035 return (frame->extra_info->is_main ? 0
2e5ff58c 1036 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
8818c391
TR
1037}
1038
1039/* Store the address of the place in which to copy the structure the
1040 subroutine will return. This is called from call_function.
1041
1042 We store structs through a pointer passed in the first Argument
1043 register. */
1044
1045static void
1046avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1047{
1048 write_register (0, addr);
1049}
1050
1051/* Extract from an array REGBUF containing the (raw) register state
1052 the address in which a function should return its structure value,
1053 as a CORE_ADDR (or an expression that can be used as one). */
1054
1055static CORE_ADDR
1056avr_extract_struct_value_address (char *regbuf)
1057{
1058 return (extract_address ((regbuf) + REGISTER_BYTE (0),
2e5ff58c 1059 REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
8818c391
TR
1060}
1061
1062/* Setup the function arguments for calling a function in the inferior.
1063
1064 On the AVR architecture, there are 18 registers (R25 to R8) which are
1065 dedicated for passing function arguments. Up to the first 18 arguments
1066 (depending on size) may go into these registers. The rest go on the stack.
1067
1068 Arguments that are larger than WORDSIZE bytes will be split between two or
1069 more registers as available, but will NOT be split between a register and
1070 the stack.
1071
1072 An exceptional case exists for struct arguments (and possibly other
1073 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1074 not a multiple of WORDSIZE bytes. In this case the argument is never split
1075 between the registers and the stack, but instead is copied in its entirety
1076 onto the stack, AND also copied into as many registers as there is room
1077 for. In other words, space in registers permitting, two copies of the same
1078 argument are passed in. As far as I can tell, only the one on the stack is
1079 used, although that may be a function of the level of compiler
1080 optimization. I suspect this is a compiler bug. Arguments of these odd
1081 sizes are left-justified within the word (as opposed to arguments smaller
1082 than WORDSIZE bytes, which are right-justified).
1083
1084 If the function is to return an aggregate type such as a struct, the caller
1085 must allocate space into which the callee will copy the return value. In
1086 this case, a pointer to the return value location is passed into the callee
1087 in register R0, which displaces one of the other arguments passed in via
1088 registers R0 to R2. */
1089
1090static CORE_ADDR
1091avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2e5ff58c 1092 int struct_return, CORE_ADDR struct_addr)
8818c391
TR
1093{
1094 int stack_alloc, stack_offset;
1095 int wordsize;
1096 int argreg;
1097 int argnum;
1098 struct type *type;
1099 CORE_ADDR regval;
1100 char *val;
1101 char valbuf[4];
1102 int len;
1103
2e5ff58c 1104 wordsize = 1;
8818c391
TR
1105#if 0
1106 /* Now make sure there's space on the stack */
2e5ff58c
TR
1107 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1108 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1109 sp -= stack_alloc; /* make room on stack for args */
8818c391
TR
1110 /* we may over-allocate a little here, but that won't hurt anything */
1111#endif
1112 argreg = 25;
2e5ff58c 1113 if (struct_return) /* "struct return" pointer takes up one argreg */
8818c391
TR
1114 {
1115 write_register (--argreg, struct_addr);
1116 }
1117
1118 /* Now load as many as possible of the first arguments into registers, and
1119 push the rest onto the stack. There are 3N bytes in three registers
1120 available. Loop thru args from first to last. */
1121
1122 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1123 {
1124 type = VALUE_TYPE (args[argnum]);
1125 len = TYPE_LENGTH (type);
1126 val = (char *) VALUE_CONTENTS (args[argnum]);
1127
1128 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1129 some *&^%$ things get passed on the stack AND in the registers! */
1130 while (len > 0)
2e5ff58c
TR
1131 { /* there's room in registers */
1132 len -= wordsize;
1133 regval = extract_address (val + len, wordsize);
1134 write_register (argreg--, regval);
1135 }
8818c391
TR
1136 }
1137 return sp;
1138}
1139
1140/* Initialize the gdbarch structure for the AVR's. */
1141
1142static struct gdbarch *
2e5ff58c
TR
1143avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1144{
8818c391
TR
1145 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1146 be bigger or not. Initial testing seems to show that `call my_func()`
1147 works and backtrace from a breakpoint within the call looks correct.
1148 Admittedly, I haven't tested with more than a very simple program. */
2e5ff58c 1149 static LONGEST avr_call_dummy_words[] = { 0 };
8818c391 1150
2e5ff58c
TR
1151 struct gdbarch *gdbarch;
1152 struct gdbarch_tdep *tdep;
8818c391
TR
1153
1154 /* Find a candidate among the list of pre-declared architectures. */
1155 arches = gdbarch_list_lookup_by_info (arches, &info);
1156 if (arches != NULL)
1157 return arches->gdbarch;
1158
1159 /* None found, create a new architecture from the information provided. */
1160 tdep = XMALLOC (struct gdbarch_tdep);
1161 gdbarch = gdbarch_alloc (&info, tdep);
1162
1163 /* If we ever need to differentiate the device types, do it here. */
1164 switch (info.bfd_arch_info->mach)
1165 {
1166 case bfd_mach_avr1:
1167 case bfd_mach_avr2:
1168 case bfd_mach_avr3:
1169 case bfd_mach_avr4:
1170 case bfd_mach_avr5:
1171 break;
1172 }
1173
1174 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1175 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1176 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1177 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1178 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1179 set_gdbarch_addr_bit (gdbarch, 32);
2e5ff58c 1180 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
8818c391
TR
1181
1182 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1183 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1184 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1185
1186 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1187 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1188 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1189
1190 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1191 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1192 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1193 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1194 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1195
1196 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1197
1198 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1199 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1200 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1201
1202 set_gdbarch_register_name (gdbarch, avr_register_name);
1203 set_gdbarch_register_size (gdbarch, 1);
1204 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1205 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1206 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1207 set_gdbarch_max_register_raw_size (gdbarch, 4);
1208 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1209 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1210 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1211
1212 /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */
1213 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1214
1215 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1216
1217 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1218 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1219 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1220 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1221 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1222 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1223 set_gdbarch_call_dummy_length (gdbarch, 0);
1224 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1225 set_gdbarch_call_dummy_p (gdbarch, 1);
1226 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1227 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1228 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1229
1230/* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1231
1232 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1233 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
26e9b323 1234 set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1235 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1236 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1237/* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
1238 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1239
1240 set_gdbarch_store_return_value (gdbarch, avr_store_return_value);
1241
1242 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1243 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
26e9b323
AC
1244 set_gdbarch_deprecated_extract_struct_value_address
1245 (gdbarch, avr_extract_struct_value_address);
8818c391
TR
1246
1247 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1248 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1249 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1250/* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1251 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1252
1253 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1254
1255 set_gdbarch_function_start_offset (gdbarch, 0);
2e5ff58c
TR
1256 set_gdbarch_remote_translate_xfer_address (gdbarch,
1257 avr_remote_translate_xfer_address);
8818c391 1258 set_gdbarch_frame_args_skip (gdbarch, 0);
2e5ff58c 1259 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
8818c391
TR
1260 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1261 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1262 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1263 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1264 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1265 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1266 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1267
2e5ff58c
TR
1268 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1269 avr_convert_from_func_ptr_addr);
8818c391
TR
1270
1271 return gdbarch;
1272}
1273
1274/* Send a query request to the avr remote target asking for values of the io
1275 registers. If args parameter is not NULL, then the user has requested info
1276 on a specific io register [This still needs implemented and is ignored for
1277 now]. The query string should be one of these forms:
1278
1279 "Ravr.io_reg" -> reply is "NN" number of io registers
1280
1281 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1282 registers to be read. The reply should be "<NAME>,VV;" for each io register
1283 where, <NAME> is a string, and VV is the hex value of the register.
1284
1285 All io registers are 8-bit. */
1286
1287static void
1288avr_io_reg_read_command (char *args, int from_tty)
1289{
2e5ff58c
TR
1290 int bufsiz = 0;
1291 char buf[400];
1292 char query[400];
1293 char *p;
1294 unsigned int nreg = 0;
1295 unsigned int val;
1296 int i, j, k, step;
8818c391
TR
1297
1298/* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1299/* args, from_tty); */
1300
2e5ff58c 1301 if (!current_target.to_query)
8818c391 1302 {
2e5ff58c
TR
1303 fprintf_unfiltered (gdb_stderr,
1304 "ERR: info io_registers NOT supported by current target\n");
8818c391
TR
1305 return;
1306 }
1307
1308 /* Just get the maximum buffer size. */
1309 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1310 if (bufsiz > sizeof (buf))
1311 bufsiz = sizeof (buf);
8818c391
TR
1312
1313 /* Find out how many io registers the target has. */
1314 strcpy (query, "avr.io_reg");
2e5ff58c 1315 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1316
1317 if (strncmp (buf, "", bufsiz) == 0)
1318 {
2e5ff58c
TR
1319 fprintf_unfiltered (gdb_stderr,
1320 "info io_registers NOT supported by target\n");
8818c391
TR
1321 return;
1322 }
1323
2e5ff58c 1324 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1325 {
2e5ff58c
TR
1326 fprintf_unfiltered (gdb_stderr,
1327 "Error fetching number of io registers\n");
8818c391
TR
1328 return;
1329 }
1330
2e5ff58c 1331 reinitialize_more_filter ();
8818c391
TR
1332
1333 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1334
1335 /* only fetch up to 8 registers at a time to keep the buffer small */
1336 step = 8;
1337
2e5ff58c 1338 for (i = 0; i < nreg; i += step)
8818c391 1339 {
2e5ff58c 1340 j = step - (nreg % step); /* how many registers this round? */
8818c391 1341
2e5ff58c 1342 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1343 target_query ((int) 'R', query, buf, &bufsiz);
1344
1345 p = buf;
2e5ff58c
TR
1346 for (k = i; k < (i + j); k++)
1347 {
1348 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1349 {
1350 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1351 while ((*p != ';') && (*p != '\0'))
1352 p++;
1353 p++; /* skip over ';' */
1354 if (*p == '\0')
1355 break;
1356 }
1357 }
8818c391
TR
1358 }
1359}
1360
1361void
1362_initialize_avr_tdep (void)
1363{
1364 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1365
1366 /* Add a new command to allow the user to query the avr remote target for
1367 the values of the io space registers in a saner way than just using
1368 `x/NNNb ADDR`. */
1369
1370 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1371 io_registers' to signify it is not available on other platforms. */
1372
1373 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1374 "query remote avr target for io space register values", &infolist);
8818c391 1375}
This page took 0.115682 seconds and 4 git commands to generate.