Use ui_file_as_string throughout more
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
618f726f 3 Copyright (C) 1998-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c906108c
SS
20#include "defs.h"
21#include "symtab.h"
22#include "symfile.h"
23#include "gdbtypes.h"
b97aedf3 24#include "language.h"
c906108c
SS
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
fe898f56 33#include "block.h"
7b83296f 34#include "regcache.h"
029a67e4 35#include "user-regs.h"
6c228b9c 36#include "dictionary.h"
00bf0b85 37#include "breakpoint.h"
f61e138d 38#include "tracepoint.h"
b6e7192f 39#include "cp-support.h"
6710bf39 40#include "arch-utils.h"
d3ce09f5 41#include "cli/cli-utils.h"
34b536a8 42#include "linespec.h"
f00aae0f 43#include "location.h"
77e371c0 44#include "objfiles.h"
c906108c 45
3065dfb6
SS
46#include "valprint.h"
47#include "c-lang.h"
48
d3ce09f5
SS
49#include "format.h"
50
6426a772
JM
51/* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
c906108c
SS
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
c5aa993b
JM
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66\f
c906108c
SS
67
68
0e2de366 69/* Prototypes for local functions. */
c906108c
SS
70
71/* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
c5aa993b 75
a14ed312
KB
76static struct value *const_var_ref (struct symbol *var);
77static struct value *const_expr (union exp_element **pc);
78static struct value *maybe_const_expr (union exp_element **pc);
79
3e43a32a
MS
80static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
81 struct axs_value *);
a14ed312
KB
82
83static void gen_sign_extend (struct agent_expr *, struct type *);
84static void gen_extend (struct agent_expr *, struct type *);
85static void gen_fetch (struct agent_expr *, struct type *);
86static void gen_left_shift (struct agent_expr *, int);
87
88
f7c79c41
UW
89static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
90static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
a14ed312
KB
91static void gen_offset (struct agent_expr *ax, int offset);
92static void gen_sym_offset (struct agent_expr *, struct symbol *);
f7c79c41 93static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
a14ed312
KB
94 struct axs_value *value, struct symbol *var);
95
96
97static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
100
f7c79c41
UW
101static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
102 struct axs_value *value);
a14ed312
KB
103static int type_wider_than (struct type *type1, struct type *type2);
104static struct type *max_type (struct type *type1, struct type *type2);
105static void gen_conversion (struct agent_expr *ax,
106 struct type *from, struct type *to);
107static int is_nontrivial_conversion (struct type *from, struct type *to);
f7c79c41
UW
108static void gen_usual_arithmetic (struct expression *exp,
109 struct agent_expr *ax,
a14ed312
KB
110 struct axs_value *value1,
111 struct axs_value *value2);
f7c79c41
UW
112static void gen_integral_promotions (struct expression *exp,
113 struct agent_expr *ax,
a14ed312
KB
114 struct axs_value *value);
115static void gen_cast (struct agent_expr *ax,
116 struct axs_value *value, struct type *type);
117static void gen_scale (struct agent_expr *ax,
118 enum agent_op op, struct type *type);
f7c79c41
UW
119static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2);
121static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
122 struct axs_value *value1, struct axs_value *value2);
123static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
124 struct axs_value *value1, struct axs_value *value2,
125 struct type *result_type);
a14ed312
KB
126static void gen_binop (struct agent_expr *ax,
127 struct axs_value *value,
128 struct axs_value *value1,
129 struct axs_value *value2,
130 enum agent_op op,
131 enum agent_op op_unsigned, int may_carry, char *name);
f7c79c41
UW
132static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
133 struct type *result_type);
a14ed312
KB
134static void gen_complement (struct agent_expr *ax, struct axs_value *value);
135static void gen_deref (struct agent_expr *, struct axs_value *);
136static void gen_address_of (struct agent_expr *, struct axs_value *);
505e835d 137static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
138 struct axs_value *value,
139 struct type *type, int start, int end);
b6e7192f
SS
140static void gen_primitive_field (struct expression *exp,
141 struct agent_expr *ax,
142 struct axs_value *value,
143 int offset, int fieldno, struct type *type);
144static int gen_struct_ref_recursive (struct expression *exp,
145 struct agent_expr *ax,
146 struct axs_value *value,
147 char *field, int offset,
148 struct type *type);
505e835d 149static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
150 struct axs_value *value,
151 char *field,
152 char *operator_name, char *operand_name);
400c6af0 153static void gen_static_field (struct gdbarch *gdbarch,
b6e7192f
SS
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *type, int fieldno);
f7c79c41 156static void gen_repeat (struct expression *exp, union exp_element **pc,
a14ed312 157 struct agent_expr *ax, struct axs_value *value);
f7c79c41
UW
158static void gen_sizeof (struct expression *exp, union exp_element **pc,
159 struct agent_expr *ax, struct axs_value *value,
160 struct type *size_type);
f61e138d
SS
161static void gen_expr_binop_rest (struct expression *exp,
162 enum exp_opcode op, union exp_element **pc,
163 struct agent_expr *ax,
164 struct axs_value *value,
165 struct axs_value *value1,
166 struct axs_value *value2);
c5aa993b 167
a14ed312 168static void agent_command (char *exp, int from_tty);
c906108c 169\f
c5aa993b 170
c906108c
SS
171/* Detecting constant expressions. */
172
173/* If the variable reference at *PC is a constant, return its value.
174 Otherwise, return zero.
175
176 Hey, Wally! How can a variable reference be a constant?
177
178 Well, Beav, this function really handles the OP_VAR_VALUE operator,
179 not specifically variable references. GDB uses OP_VAR_VALUE to
180 refer to any kind of symbolic reference: function names, enum
181 elements, and goto labels are all handled through the OP_VAR_VALUE
182 operator, even though they're constants. It makes sense given the
183 situation.
184
185 Gee, Wally, don'cha wonder sometimes if data representations that
186 subvert commonly accepted definitions of terms in favor of heavily
187 context-specific interpretations are really just a tool of the
188 programming hegemony to preserve their power and exclude the
189 proletariat? */
190
191static struct value *
fba45db2 192const_var_ref (struct symbol *var)
c906108c
SS
193{
194 struct type *type = SYMBOL_TYPE (var);
195
196 switch (SYMBOL_CLASS (var))
197 {
198 case LOC_CONST:
199 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
200
201 case LOC_LABEL:
4478b372 202 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
203
204 default:
205 return 0;
206 }
207}
208
209
210/* If the expression starting at *PC has a constant value, return it.
211 Otherwise, return zero. If we return a value, then *PC will be
212 advanced to the end of it. If we return zero, *PC could be
213 anywhere. */
214static struct value *
fba45db2 215const_expr (union exp_element **pc)
c906108c
SS
216{
217 enum exp_opcode op = (*pc)->opcode;
218 struct value *v1;
219
220 switch (op)
221 {
222 case OP_LONG:
223 {
224 struct type *type = (*pc)[1].type;
225 LONGEST k = (*pc)[2].longconst;
5b4ee69b 226
c906108c
SS
227 (*pc) += 4;
228 return value_from_longest (type, k);
229 }
230
231 case OP_VAR_VALUE:
232 {
233 struct value *v = const_var_ref ((*pc)[2].symbol);
5b4ee69b 234
c906108c
SS
235 (*pc) += 4;
236 return v;
237 }
238
c5aa993b 239 /* We could add more operators in here. */
c906108c
SS
240
241 case UNOP_NEG:
242 (*pc)++;
243 v1 = const_expr (pc);
244 if (v1)
245 return value_neg (v1);
246 else
247 return 0;
248
249 default:
250 return 0;
251 }
252}
253
254
255/* Like const_expr, but guarantee also that *PC is undisturbed if the
256 expression is not constant. */
257static struct value *
fba45db2 258maybe_const_expr (union exp_element **pc)
c906108c
SS
259{
260 union exp_element *tentative_pc = *pc;
261 struct value *v = const_expr (&tentative_pc);
262
263 /* If we got a value, then update the real PC. */
264 if (v)
265 *pc = tentative_pc;
c5aa993b 266
c906108c
SS
267 return v;
268}
c906108c 269\f
c5aa993b 270
c906108c
SS
271/* Generating bytecode from GDB expressions: general assumptions */
272
273/* Here are a few general assumptions made throughout the code; if you
274 want to make a change that contradicts one of these, then you'd
275 better scan things pretty thoroughly.
276
277 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
278 sometimes we'll swap to get at the left argument to a binary
279 operator. If we decide that void values should occupy no stack
280 elements, or that synthetic arrays (whose size is determined at
281 run time, created by the `@' operator) should occupy two stack
282 elements (address and length), then this will cause trouble.
c906108c
SS
283
284 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
285 don't have to worry what happens if the user requests an
286 operation that is wider than the actual interpreter's stack.
287 That is, it's up to the interpreter to handle directly all the
288 integer widths the user has access to. (Woe betide the language
289 with bignums!)
c906108c
SS
290
291 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 292 GCC's generalized lvalues, function calls, etc.
c906108c
SS
293
294 - We don't support floating point. Many places where we switch on
c5aa993b
JM
295 some type don't bother to include cases for floating point; there
296 may be even more subtle ways this assumption exists. For
297 example, the arguments to % must be integers.
c906108c
SS
298
299 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
300 we tried to support convenience variables, this would be a
301 problem.
c906108c
SS
302
303 - All values on the stack should always be fully zero- or
c5aa993b
JM
304 sign-extended.
305
306 (I wasn't sure whether to choose this or its opposite --- that
307 only addresses are assumed extended --- but it turns out that
308 neither convention completely eliminates spurious extend
309 operations (if everything is always extended, then you have to
310 extend after add, because it could overflow; if nothing is
311 extended, then you end up producing extends whenever you change
312 sizes), and this is simpler.) */
c906108c 313\f
c5aa993b 314
400c6af0
SS
315/* Scan for all static fields in the given class, including any base
316 classes, and generate tracing bytecodes for each. */
317
318static void
319gen_trace_static_fields (struct gdbarch *gdbarch,
320 struct agent_expr *ax,
321 struct type *type)
322{
323 int i, nbases = TYPE_N_BASECLASSES (type);
324 struct axs_value value;
325
f168693b 326 type = check_typedef (type);
400c6af0
SS
327
328 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
329 {
330 if (field_is_static (&TYPE_FIELD (type, i)))
331 {
332 gen_static_field (gdbarch, ax, &value, type, i);
333 if (value.optimized_out)
334 continue;
335 switch (value.kind)
336 {
337 case axs_lvalue_memory:
338 {
744a8059
SP
339 /* Initialize the TYPE_LENGTH if it is a typedef. */
340 check_typedef (value.type);
341 ax_const_l (ax, TYPE_LENGTH (value.type));
400c6af0
SS
342 ax_simple (ax, aop_trace);
343 }
344 break;
345
346 case axs_lvalue_register:
35c9c7ba
SS
347 /* We don't actually need the register's value to be pushed,
348 just note that we need it to be collected. */
349 ax_reg_mask (ax, value.u.reg);
400c6af0
SS
350
351 default:
352 break;
353 }
354 }
355 }
356
357 /* Now scan through base classes recursively. */
358 for (i = 0; i < nbases; i++)
359 {
360 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
361
362 gen_trace_static_fields (gdbarch, ax, basetype);
363 }
364}
365
c906108c
SS
366/* Trace the lvalue on the stack, if it needs it. In either case, pop
367 the value. Useful on the left side of a comma, and at the end of
368 an expression being used for tracing. */
369static void
400c6af0
SS
370gen_traced_pop (struct gdbarch *gdbarch,
371 struct agent_expr *ax, struct axs_value *value)
c906108c 372{
3065dfb6 373 int string_trace = 0;
92bc6a20 374 if (ax->trace_string
3065dfb6
SS
375 && TYPE_CODE (value->type) == TYPE_CODE_PTR
376 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
377 's'))
378 string_trace = 1;
379
92bc6a20 380 if (ax->tracing)
c906108c
SS
381 switch (value->kind)
382 {
383 case axs_rvalue:
3065dfb6
SS
384 if (string_trace)
385 {
92bc6a20 386 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
387 ax_simple (ax, aop_tracenz);
388 }
389 else
390 /* We don't trace rvalues, just the lvalues necessary to
391 produce them. So just dispose of this value. */
392 ax_simple (ax, aop_pop);
c906108c
SS
393 break;
394
395 case axs_lvalue_memory:
396 {
744a8059
SP
397 /* Initialize the TYPE_LENGTH if it is a typedef. */
398 check_typedef (value->type);
399
3065dfb6
SS
400 if (string_trace)
401 {
f906b857 402 gen_fetch (ax, value->type);
92bc6a20 403 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
404 ax_simple (ax, aop_tracenz);
405 }
f906b857
MK
406 else
407 {
408 /* There's no point in trying to use a trace_quick bytecode
409 here, since "trace_quick SIZE pop" is three bytes, whereas
410 "const8 SIZE trace" is also three bytes, does the same
411 thing, and the simplest code which generates that will also
412 work correctly for objects with large sizes. */
413 ax_const_l (ax, TYPE_LENGTH (value->type));
414 ax_simple (ax, aop_trace);
415 }
c906108c 416 }
c5aa993b 417 break;
c906108c
SS
418
419 case axs_lvalue_register:
35c9c7ba
SS
420 /* We don't actually need the register's value to be on the
421 stack, and the target will get heartburn if the register is
422 larger than will fit in a stack, so just mark it for
423 collection and be done with it. */
424 ax_reg_mask (ax, value->u.reg);
3065dfb6
SS
425
426 /* But if the register points to a string, assume the value
427 will fit on the stack and push it anyway. */
428 if (string_trace)
429 {
430 ax_reg (ax, value->u.reg);
92bc6a20 431 ax_const_l (ax, ax->trace_string);
3065dfb6
SS
432 ax_simple (ax, aop_tracenz);
433 }
c906108c
SS
434 break;
435 }
436 else
437 /* If we're not tracing, just pop the value. */
438 ax_simple (ax, aop_pop);
400c6af0
SS
439
440 /* To trace C++ classes with static fields stored elsewhere. */
92bc6a20 441 if (ax->tracing
400c6af0
SS
442 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
443 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
444 gen_trace_static_fields (gdbarch, ax, value->type);
c906108c 445}
c5aa993b 446\f
c906108c
SS
447
448
c906108c
SS
449/* Generating bytecode from GDB expressions: helper functions */
450
451/* Assume that the lower bits of the top of the stack is a value of
452 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
453static void
fba45db2 454gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
455{
456 /* Do we need to sign-extend this? */
c5aa993b 457 if (!TYPE_UNSIGNED (type))
0004e5a2 458 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
459}
460
461
462/* Assume the lower bits of the top of the stack hold a value of type
463 TYPE, and the upper bits are garbage. Sign-extend or truncate as
464 needed. */
465static void
fba45db2 466gen_extend (struct agent_expr *ax, struct type *type)
c906108c 467{
0004e5a2 468 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5b4ee69b 469
c906108c
SS
470 /* I just had to. */
471 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
472}
473
474
475/* Assume that the top of the stack contains a value of type "pointer
476 to TYPE"; generate code to fetch its value. Note that TYPE is the
477 target type, not the pointer type. */
478static void
fba45db2 479gen_fetch (struct agent_expr *ax, struct type *type)
c906108c 480{
92bc6a20 481 if (ax->tracing)
c906108c
SS
482 {
483 /* Record the area of memory we're about to fetch. */
484 ax_trace_quick (ax, TYPE_LENGTH (type));
485 }
486
af381b8c
JB
487 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
488 type = TYPE_TARGET_TYPE (type);
489
0004e5a2 490 switch (TYPE_CODE (type))
c906108c
SS
491 {
492 case TYPE_CODE_PTR:
b97aedf3 493 case TYPE_CODE_REF:
c906108c
SS
494 case TYPE_CODE_ENUM:
495 case TYPE_CODE_INT:
496 case TYPE_CODE_CHAR:
3b11a015 497 case TYPE_CODE_BOOL:
c906108c
SS
498 /* It's a scalar value, so we know how to dereference it. How
499 many bytes long is it? */
0004e5a2 500 switch (TYPE_LENGTH (type))
c906108c 501 {
c5aa993b
JM
502 case 8 / TARGET_CHAR_BIT:
503 ax_simple (ax, aop_ref8);
504 break;
505 case 16 / TARGET_CHAR_BIT:
506 ax_simple (ax, aop_ref16);
507 break;
508 case 32 / TARGET_CHAR_BIT:
509 ax_simple (ax, aop_ref32);
510 break;
511 case 64 / TARGET_CHAR_BIT:
512 ax_simple (ax, aop_ref64);
513 break;
c906108c
SS
514
515 /* Either our caller shouldn't have asked us to dereference
516 that pointer (other code's fault), or we're not
517 implementing something we should be (this code's fault).
518 In any case, it's a bug the user shouldn't see. */
519 default:
8e65ff28 520 internal_error (__FILE__, __LINE__,
3d263c1d 521 _("gen_fetch: strange size"));
c906108c
SS
522 }
523
524 gen_sign_extend (ax, type);
525 break;
526
527 default:
52323be9
LM
528 /* Our caller requested us to dereference a pointer from an unsupported
529 type. Error out and give callers a chance to handle the failure
530 gracefully. */
531 error (_("gen_fetch: Unsupported type code `%s'."),
532 TYPE_NAME (type));
c906108c
SS
533 }
534}
535
536
537/* Generate code to left shift the top of the stack by DISTANCE bits, or
538 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
539 unsigned (logical) right shifts. */
540static void
fba45db2 541gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
542{
543 if (distance > 0)
544 {
545 ax_const_l (ax, distance);
546 ax_simple (ax, aop_lsh);
547 }
548 else if (distance < 0)
549 {
550 ax_const_l (ax, -distance);
551 ax_simple (ax, aop_rsh_unsigned);
552 }
553}
c5aa993b 554\f
c906108c
SS
555
556
c906108c
SS
557/* Generating bytecode from GDB expressions: symbol references */
558
559/* Generate code to push the base address of the argument portion of
560 the top stack frame. */
561static void
f7c79c41 562gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 563{
39d4ef09
AC
564 int frame_reg;
565 LONGEST frame_offset;
c906108c 566
f7c79c41 567 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 568 ax->scope, &frame_reg, &frame_offset);
c5aa993b 569 ax_reg (ax, frame_reg);
c906108c
SS
570 gen_offset (ax, frame_offset);
571}
572
573
574/* Generate code to push the base address of the locals portion of the
575 top stack frame. */
576static void
f7c79c41 577gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 578{
39d4ef09
AC
579 int frame_reg;
580 LONGEST frame_offset;
c906108c 581
f7c79c41 582 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 583 ax->scope, &frame_reg, &frame_offset);
c5aa993b 584 ax_reg (ax, frame_reg);
c906108c
SS
585 gen_offset (ax, frame_offset);
586}
587
588
589/* Generate code to add OFFSET to the top of the stack. Try to
590 generate short and readable code. We use this for getting to
591 variables on the stack, and structure members. If we were
592 programming in ML, it would be clearer why these are the same
593 thing. */
594static void
fba45db2 595gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
596{
597 /* It would suffice to simply push the offset and add it, but this
598 makes it easier to read positive and negative offsets in the
599 bytecode. */
600 if (offset > 0)
601 {
602 ax_const_l (ax, offset);
603 ax_simple (ax, aop_add);
604 }
605 else if (offset < 0)
606 {
607 ax_const_l (ax, -offset);
608 ax_simple (ax, aop_sub);
609 }
610}
611
612
613/* In many cases, a symbol's value is the offset from some other
614 address (stack frame, base register, etc.) Generate code to add
615 VAR's value to the top of the stack. */
616static void
fba45db2 617gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
618{
619 gen_offset (ax, SYMBOL_VALUE (var));
620}
621
622
623/* Generate code for a variable reference to AX. The variable is the
624 symbol VAR. Set VALUE to describe the result. */
625
626static void
f7c79c41
UW
627gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
628 struct axs_value *value, struct symbol *var)
c906108c 629{
0e2de366 630 /* Dereference any typedefs. */
c906108c 631 value->type = check_typedef (SYMBOL_TYPE (var));
400c6af0 632 value->optimized_out = 0;
c906108c 633
24d6c2a0
TT
634 if (SYMBOL_COMPUTED_OPS (var) != NULL)
635 {
636 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
637 return;
638 }
639
c906108c
SS
640 /* I'm imitating the code in read_var_value. */
641 switch (SYMBOL_CLASS (var))
642 {
643 case LOC_CONST: /* A constant, like an enum value. */
644 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
645 value->kind = axs_rvalue;
646 break;
647
648 case LOC_LABEL: /* A goto label, being used as a value. */
649 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
650 value->kind = axs_rvalue;
651 break;
652
653 case LOC_CONST_BYTES:
8e65ff28 654 internal_error (__FILE__, __LINE__,
3e43a32a
MS
655 _("gen_var_ref: LOC_CONST_BYTES "
656 "symbols are not supported"));
c906108c
SS
657
658 /* Variable at a fixed location in memory. Easy. */
659 case LOC_STATIC:
660 /* Push the address of the variable. */
661 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
662 value->kind = axs_lvalue_memory;
663 break;
664
665 case LOC_ARG: /* var lives in argument area of frame */
f7c79c41 666 gen_frame_args_address (gdbarch, ax);
c906108c
SS
667 gen_sym_offset (ax, var);
668 value->kind = axs_lvalue_memory;
669 break;
670
671 case LOC_REF_ARG: /* As above, but the frame slot really
672 holds the address of the variable. */
f7c79c41 673 gen_frame_args_address (gdbarch, ax);
c906108c
SS
674 gen_sym_offset (ax, var);
675 /* Don't assume any particular pointer size. */
f7c79c41 676 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
c906108c
SS
677 value->kind = axs_lvalue_memory;
678 break;
679
680 case LOC_LOCAL: /* var lives in locals area of frame */
f7c79c41 681 gen_frame_locals_address (gdbarch, ax);
c906108c
SS
682 gen_sym_offset (ax, var);
683 value->kind = axs_lvalue_memory;
684 break;
685
c906108c 686 case LOC_TYPEDEF:
3d263c1d 687 error (_("Cannot compute value of typedef `%s'."),
de5ad195 688 SYMBOL_PRINT_NAME (var));
c906108c
SS
689 break;
690
691 case LOC_BLOCK:
692 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
693 value->kind = axs_rvalue;
694 break;
695
696 case LOC_REGISTER:
c906108c
SS
697 /* Don't generate any code at all; in the process of treating
698 this as an lvalue or rvalue, the caller will generate the
699 right code. */
700 value->kind = axs_lvalue_register;
768a979c 701 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
c906108c
SS
702 break;
703
704 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
2a2d4dc3
AS
705 register, not on the stack. Simpler than LOC_REGISTER
706 because it's just like any other case where the thing
707 has a real address. */
c906108c 708 case LOC_REGPARM_ADDR:
768a979c 709 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
c906108c
SS
710 value->kind = axs_lvalue_memory;
711 break;
712
713 case LOC_UNRESOLVED:
714 {
3b7344d5 715 struct bound_minimal_symbol msym
3567439c 716 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
5b4ee69b 717
3b7344d5 718 if (!msym.minsym)
3d263c1d 719 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
c5aa993b 720
c906108c 721 /* Push the address of the variable. */
77e371c0 722 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
723 value->kind = axs_lvalue_memory;
724 }
c5aa993b 725 break;
c906108c 726
a55cc764 727 case LOC_COMPUTED:
24d6c2a0 728 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
a55cc764 729
c906108c 730 case LOC_OPTIMIZED_OUT:
400c6af0
SS
731 /* Flag this, but don't say anything; leave it up to callers to
732 warn the user. */
733 value->optimized_out = 1;
c906108c
SS
734 break;
735
736 default:
3d263c1d 737 error (_("Cannot find value of botched symbol `%s'."),
de5ad195 738 SYMBOL_PRINT_NAME (var));
c906108c
SS
739 break;
740 }
741}
c5aa993b 742\f
c906108c
SS
743
744
c906108c
SS
745/* Generating bytecode from GDB expressions: literals */
746
747static void
fba45db2
KB
748gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
749 struct type *type)
c906108c
SS
750{
751 ax_const_l (ax, k);
752 value->kind = axs_rvalue;
648027cc 753 value->type = check_typedef (type);
c906108c 754}
c5aa993b 755\f
c906108c
SS
756
757
c906108c
SS
758/* Generating bytecode from GDB expressions: unary conversions, casts */
759
760/* Take what's on the top of the stack (as described by VALUE), and
761 try to make an rvalue out of it. Signal an error if we can't do
762 that. */
55aa24fb 763void
fba45db2 764require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c 765{
3a96536b
SS
766 /* Only deal with scalars, structs and such may be too large
767 to fit in a stack entry. */
768 value->type = check_typedef (value->type);
769 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
770 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
771 || TYPE_CODE (value->type) == TYPE_CODE_UNION
772 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1c40aa62 773 error (_("Value not scalar: cannot be an rvalue."));
3a96536b 774
c906108c
SS
775 switch (value->kind)
776 {
777 case axs_rvalue:
778 /* It's already an rvalue. */
779 break;
780
781 case axs_lvalue_memory:
782 /* The top of stack is the address of the object. Dereference. */
783 gen_fetch (ax, value->type);
784 break;
785
786 case axs_lvalue_register:
787 /* There's nothing on the stack, but value->u.reg is the
788 register number containing the value.
789
c5aa993b
JM
790 When we add floating-point support, this is going to have to
791 change. What about SPARC register pairs, for example? */
c906108c
SS
792 ax_reg (ax, value->u.reg);
793 gen_extend (ax, value->type);
794 break;
795 }
796
797 value->kind = axs_rvalue;
798}
799
800
801/* Assume the top of the stack is described by VALUE, and perform the
802 usual unary conversions. This is motivated by ANSI 6.2.2, but of
803 course GDB expressions are not ANSI; they're the mishmash union of
804 a bunch of languages. Rah.
805
806 NOTE! This function promises to produce an rvalue only when the
807 incoming value is of an appropriate type. In other words, the
808 consumer of the value this function produces may assume the value
809 is an rvalue only after checking its type.
810
811 The immediate issue is that if the user tries to use a structure or
812 union as an operand of, say, the `+' operator, we don't want to try
813 to convert that structure to an rvalue; require_rvalue will bomb on
814 structs and unions. Rather, we want to simply pass the struct
815 lvalue through unchanged, and let `+' raise an error. */
816
817static void
f7c79c41
UW
818gen_usual_unary (struct expression *exp, struct agent_expr *ax,
819 struct axs_value *value)
c906108c
SS
820{
821 /* We don't have to generate any code for the usual integral
822 conversions, since values are always represented as full-width on
823 the stack. Should we tweak the type? */
824
825 /* Some types require special handling. */
0004e5a2 826 switch (TYPE_CODE (value->type))
c906108c
SS
827 {
828 /* Functions get converted to a pointer to the function. */
829 case TYPE_CODE_FUNC:
830 value->type = lookup_pointer_type (value->type);
831 value->kind = axs_rvalue; /* Should always be true, but just in case. */
832 break;
833
834 /* Arrays get converted to a pointer to their first element, and
c5aa993b 835 are no longer an lvalue. */
c906108c
SS
836 case TYPE_CODE_ARRAY:
837 {
838 struct type *elements = TYPE_TARGET_TYPE (value->type);
5b4ee69b 839
c906108c
SS
840 value->type = lookup_pointer_type (elements);
841 value->kind = axs_rvalue;
842 /* We don't need to generate any code; the address of the array
843 is also the address of its first element. */
844 }
c5aa993b 845 break;
c906108c 846
c5aa993b
JM
847 /* Don't try to convert structures and unions to rvalues. Let the
848 consumer signal an error. */
c906108c
SS
849 case TYPE_CODE_STRUCT:
850 case TYPE_CODE_UNION:
851 return;
c906108c
SS
852 }
853
854 /* If the value is an lvalue, dereference it. */
855 require_rvalue (ax, value);
856}
857
858
859/* Return non-zero iff the type TYPE1 is considered "wider" than the
860 type TYPE2, according to the rules described in gen_usual_arithmetic. */
861static int
fba45db2 862type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
863{
864 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
865 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
866 && TYPE_UNSIGNED (type1)
c5aa993b 867 && !TYPE_UNSIGNED (type2)));
c906108c
SS
868}
869
870
871/* Return the "wider" of the two types TYPE1 and TYPE2. */
872static struct type *
fba45db2 873max_type (struct type *type1, struct type *type2)
c906108c
SS
874{
875 return type_wider_than (type1, type2) ? type1 : type2;
876}
877
878
879/* Generate code to convert a scalar value of type FROM to type TO. */
880static void
fba45db2 881gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
882{
883 /* Perhaps there is a more graceful way to state these rules. */
884
885 /* If we're converting to a narrower type, then we need to clear out
886 the upper bits. */
887 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
bcf5c1d9 888 gen_extend (ax, to);
c906108c
SS
889
890 /* If the two values have equal width, but different signednesses,
891 then we need to extend. */
892 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
893 {
894 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
895 gen_extend (ax, to);
896 }
897
898 /* If we're converting to a wider type, and becoming unsigned, then
899 we need to zero out any possible sign bits. */
900 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
901 {
902 if (TYPE_UNSIGNED (to))
903 gen_extend (ax, to);
904 }
905}
906
907
908/* Return non-zero iff the type FROM will require any bytecodes to be
909 emitted to be converted to the type TO. */
910static int
fba45db2 911is_nontrivial_conversion (struct type *from, struct type *to)
c906108c 912{
35c9c7ba 913 struct agent_expr *ax = new_agent_expr (NULL, 0);
c906108c
SS
914 int nontrivial;
915
916 /* Actually generate the code, and see if anything came out. At the
917 moment, it would be trivial to replicate the code in
918 gen_conversion here, but in the future, when we're supporting
919 floating point and the like, it may not be. Doing things this
920 way allows this function to be independent of the logic in
921 gen_conversion. */
922 gen_conversion (ax, from, to);
923 nontrivial = ax->len > 0;
924 free_agent_expr (ax);
925 return nontrivial;
926}
927
928
929/* Generate code to perform the "usual arithmetic conversions" (ANSI C
930 6.2.1.5) for the two operands of an arithmetic operator. This
931 effectively finds a "least upper bound" type for the two arguments,
932 and promotes each argument to that type. *VALUE1 and *VALUE2
933 describe the values as they are passed in, and as they are left. */
934static void
f7c79c41
UW
935gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
936 struct axs_value *value1, struct axs_value *value2)
c906108c
SS
937{
938 /* Do the usual binary conversions. */
939 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
940 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
941 {
942 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
943 integer types by size, and then by signedness: an n-bit
944 unsigned type is considered "wider" than an n-bit signed
945 type. Promote to the "wider" of the two types, and always
946 promote at least to int. */
f7c79c41 947 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
c906108c
SS
948 max_type (value1->type, value2->type));
949
950 /* Deal with value2, on the top of the stack. */
951 gen_conversion (ax, value2->type, target);
952
953 /* Deal with value1, not on the top of the stack. Don't
954 generate the `swap' instructions if we're not actually going
955 to do anything. */
956 if (is_nontrivial_conversion (value1->type, target))
957 {
958 ax_simple (ax, aop_swap);
959 gen_conversion (ax, value1->type, target);
960 ax_simple (ax, aop_swap);
961 }
962
648027cc 963 value1->type = value2->type = check_typedef (target);
c906108c
SS
964 }
965}
966
967
968/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
969 the value on the top of the stack, as described by VALUE. Assume
970 the value has integral type. */
971static void
f7c79c41
UW
972gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
973 struct axs_value *value)
c906108c 974{
f7c79c41
UW
975 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
976
977 if (!type_wider_than (value->type, builtin->builtin_int))
c906108c 978 {
f7c79c41
UW
979 gen_conversion (ax, value->type, builtin->builtin_int);
980 value->type = builtin->builtin_int;
c906108c 981 }
f7c79c41 982 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
c906108c 983 {
f7c79c41
UW
984 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
985 value->type = builtin->builtin_unsigned_int;
c906108c
SS
986 }
987}
988
989
990/* Generate code for a cast to TYPE. */
991static void
fba45db2 992gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
993{
994 /* GCC does allow casts to yield lvalues, so this should be fixed
995 before merging these changes into the trunk. */
996 require_rvalue (ax, value);
0e2de366 997 /* Dereference typedefs. */
c906108c
SS
998 type = check_typedef (type);
999
0004e5a2 1000 switch (TYPE_CODE (type))
c906108c
SS
1001 {
1002 case TYPE_CODE_PTR:
b97aedf3 1003 case TYPE_CODE_REF:
c906108c
SS
1004 /* It's implementation-defined, and I'll bet this is what GCC
1005 does. */
1006 break;
1007
1008 case TYPE_CODE_ARRAY:
1009 case TYPE_CODE_STRUCT:
1010 case TYPE_CODE_UNION:
1011 case TYPE_CODE_FUNC:
3d263c1d 1012 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
1013
1014 case TYPE_CODE_ENUM:
3b11a015 1015 case TYPE_CODE_BOOL:
c906108c
SS
1016 /* We don't have to worry about the size of the value, because
1017 all our integral values are fully sign-extended, and when
1018 casting pointers we can do anything we like. Is there any
74b35824
JB
1019 way for us to know what GCC actually does with a cast like
1020 this? */
c906108c 1021 break;
c5aa993b 1022
c906108c
SS
1023 case TYPE_CODE_INT:
1024 gen_conversion (ax, value->type, type);
1025 break;
1026
1027 case TYPE_CODE_VOID:
1028 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
1029 the type and notice that this value doesn't occupy a stack
1030 slot. But for now, leave the value on the stack, and
1031 preserve the "value == stack element" assumption. */
c906108c
SS
1032 break;
1033
1034 default:
3d263c1d 1035 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
1036 }
1037
1038 value->type = type;
1039}
c5aa993b 1040\f
c906108c
SS
1041
1042
c906108c
SS
1043/* Generating bytecode from GDB expressions: arithmetic */
1044
1045/* Scale the integer on the top of the stack by the size of the target
1046 of the pointer type TYPE. */
1047static void
fba45db2 1048gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
1049{
1050 struct type *element = TYPE_TARGET_TYPE (type);
1051
0004e5a2 1052 if (TYPE_LENGTH (element) != 1)
c906108c 1053 {
0004e5a2 1054 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
1055 ax_simple (ax, op);
1056 }
1057}
1058
1059
f7c79c41 1060/* Generate code for pointer arithmetic PTR + INT. */
c906108c 1061static void
f7c79c41
UW
1062gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1063 struct axs_value *value1, struct axs_value *value2)
c906108c 1064{
b97aedf3 1065 gdb_assert (pointer_type (value1->type));
f7c79c41 1066 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1067
f7c79c41
UW
1068 gen_scale (ax, aop_mul, value1->type);
1069 ax_simple (ax, aop_add);
1070 gen_extend (ax, value1->type); /* Catch overflow. */
1071 value->type = value1->type;
1072 value->kind = axs_rvalue;
1073}
c906108c 1074
c906108c 1075
f7c79c41
UW
1076/* Generate code for pointer arithmetic PTR - INT. */
1077static void
1078gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1079 struct axs_value *value1, struct axs_value *value2)
1080{
b97aedf3 1081 gdb_assert (pointer_type (value1->type));
f7c79c41 1082 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1083
f7c79c41
UW
1084 gen_scale (ax, aop_mul, value1->type);
1085 ax_simple (ax, aop_sub);
1086 gen_extend (ax, value1->type); /* Catch overflow. */
1087 value->type = value1->type;
c906108c
SS
1088 value->kind = axs_rvalue;
1089}
1090
1091
f7c79c41 1092/* Generate code for pointer arithmetic PTR - PTR. */
c906108c 1093static void
f7c79c41
UW
1094gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1095 struct axs_value *value1, struct axs_value *value2,
1096 struct type *result_type)
c906108c 1097{
b97aedf3
SS
1098 gdb_assert (pointer_type (value1->type));
1099 gdb_assert (pointer_type (value2->type));
c906108c 1100
f7c79c41
UW
1101 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1102 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
ac74f770
MS
1103 error (_("\
1104First argument of `-' is a pointer, but second argument is neither\n\
1105an integer nor a pointer of the same type."));
c906108c 1106
f7c79c41
UW
1107 ax_simple (ax, aop_sub);
1108 gen_scale (ax, aop_div_unsigned, value1->type);
1109 value->type = result_type;
c906108c
SS
1110 value->kind = axs_rvalue;
1111}
1112
3b11a015
SS
1113static void
1114gen_equal (struct agent_expr *ax, struct axs_value *value,
1115 struct axs_value *value1, struct axs_value *value2,
1116 struct type *result_type)
1117{
1118 if (pointer_type (value1->type) || pointer_type (value2->type))
1119 ax_simple (ax, aop_equal);
1120 else
1121 gen_binop (ax, value, value1, value2,
1122 aop_equal, aop_equal, 0, "equal");
1123 value->type = result_type;
1124 value->kind = axs_rvalue;
1125}
1126
1127static void
1128gen_less (struct agent_expr *ax, struct axs_value *value,
1129 struct axs_value *value1, struct axs_value *value2,
1130 struct type *result_type)
1131{
1132 if (pointer_type (value1->type) || pointer_type (value2->type))
1133 ax_simple (ax, aop_less_unsigned);
1134 else
1135 gen_binop (ax, value, value1, value2,
1136 aop_less_signed, aop_less_unsigned, 0, "less than");
1137 value->type = result_type;
1138 value->kind = axs_rvalue;
1139}
f7c79c41 1140
c906108c
SS
1141/* Generate code for a binary operator that doesn't do pointer magic.
1142 We set VALUE to describe the result value; we assume VALUE1 and
1143 VALUE2 describe the two operands, and that they've undergone the
1144 usual binary conversions. MAY_CARRY should be non-zero iff the
1145 result needs to be extended. NAME is the English name of the
1146 operator, used in error messages */
1147static void
fba45db2 1148gen_binop (struct agent_expr *ax, struct axs_value *value,
3e43a32a
MS
1149 struct axs_value *value1, struct axs_value *value2,
1150 enum agent_op op, enum agent_op op_unsigned,
1151 int may_carry, char *name)
c906108c
SS
1152{
1153 /* We only handle INT op INT. */
0004e5a2
DJ
1154 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1155 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1156 error (_("Invalid combination of types in %s."), name);
c5aa993b 1157
c906108c
SS
1158 ax_simple (ax,
1159 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1160 if (may_carry)
c5aa993b 1161 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1162 value->type = value1->type;
1163 value->kind = axs_rvalue;
1164}
1165
1166
1167static void
f7c79c41
UW
1168gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1169 struct type *result_type)
c906108c
SS
1170{
1171 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1172 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1173 error (_("Invalid type of operand to `!'."));
c906108c 1174
c906108c 1175 ax_simple (ax, aop_log_not);
f7c79c41 1176 value->type = result_type;
c906108c
SS
1177}
1178
1179
1180static void
fba45db2 1181gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1182{
1183 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1184 error (_("Invalid type of operand to `~'."));
c906108c 1185
c906108c
SS
1186 ax_simple (ax, aop_bit_not);
1187 gen_extend (ax, value->type);
1188}
c5aa993b 1189\f
c906108c
SS
1190
1191
c906108c
SS
1192/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1193
1194/* Dereference the value on the top of the stack. */
1195static void
fba45db2 1196gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1197{
1198 /* The caller should check the type, because several operators use
1199 this, and we don't know what error message to generate. */
b97aedf3 1200 if (!pointer_type (value->type))
8e65ff28 1201 internal_error (__FILE__, __LINE__,
3d263c1d 1202 _("gen_deref: expected a pointer"));
c906108c
SS
1203
1204 /* We've got an rvalue now, which is a pointer. We want to yield an
1205 lvalue, whose address is exactly that pointer. So we don't
1206 actually emit any code; we just change the type from "Pointer to
1207 T" to "T", and mark the value as an lvalue in memory. Leave it
1208 to the consumer to actually dereference it. */
1209 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
b1028c8e
PA
1210 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1211 error (_("Attempt to dereference a generic pointer."));
0004e5a2 1212 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1213 ? axs_rvalue : axs_lvalue_memory);
1214}
1215
1216
1217/* Produce the address of the lvalue on the top of the stack. */
1218static void
fba45db2 1219gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1220{
1221 /* Special case for taking the address of a function. The ANSI
1222 standard describes this as a special case, too, so this
1223 arrangement is not without motivation. */
0004e5a2 1224 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1225 /* The value's already an rvalue on the stack, so we just need to
1226 change the type. */
1227 value->type = lookup_pointer_type (value->type);
1228 else
1229 switch (value->kind)
1230 {
1231 case axs_rvalue:
3d263c1d 1232 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1233
1234 case axs_lvalue_register:
3d263c1d 1235 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1236
1237 case axs_lvalue_memory:
1238 value->kind = axs_rvalue;
1239 value->type = lookup_pointer_type (value->type);
1240 break;
1241 }
1242}
1243
c906108c
SS
1244/* Generate code to push the value of a bitfield of a structure whose
1245 address is on the top of the stack. START and END give the
1246 starting and one-past-ending *bit* numbers of the field within the
1247 structure. */
1248static void
505e835d
UW
1249gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1250 struct axs_value *value, struct type *type,
1251 int start, int end)
c906108c
SS
1252{
1253 /* Note that ops[i] fetches 8 << i bits. */
1254 static enum agent_op ops[]
5b4ee69b 1255 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1256 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1257
1258 /* We don't want to touch any byte that the bitfield doesn't
1259 actually occupy; we shouldn't make any accesses we're not
1260 explicitly permitted to. We rely here on the fact that the
1261 bytecode `ref' operators work on unaligned addresses.
1262
1263 It takes some fancy footwork to get the stack to work the way
1264 we'd like. Say we're retrieving a bitfield that requires three
1265 fetches. Initially, the stack just contains the address:
c5aa993b 1266 addr
c906108c 1267 For the first fetch, we duplicate the address
c5aa993b 1268 addr addr
c906108c
SS
1269 then add the byte offset, do the fetch, and shift and mask as
1270 needed, yielding a fragment of the value, properly aligned for
1271 the final bitwise or:
c5aa993b 1272 addr frag1
c906108c 1273 then we swap, and repeat the process:
c5aa993b
JM
1274 frag1 addr --- address on top
1275 frag1 addr addr --- duplicate it
1276 frag1 addr frag2 --- get second fragment
1277 frag1 frag2 addr --- swap again
1278 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1279 Notice that, since the third fragment is the last one, we don't
1280 bother duplicating the address this time. Now we have all the
1281 fragments on the stack, and we can simply `or' them together,
1282 yielding the final value of the bitfield. */
1283
1284 /* The first and one-after-last bits in the field, but rounded down
1285 and up to byte boundaries. */
1286 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1287 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1288 / TARGET_CHAR_BIT)
1289 * TARGET_CHAR_BIT);
c906108c
SS
1290
1291 /* current bit offset within the structure */
1292 int offset;
1293
1294 /* The index in ops of the opcode we're considering. */
1295 int op;
1296
1297 /* The number of fragments we generated in the process. Probably
1298 equal to the number of `one' bits in bytesize, but who cares? */
1299 int fragment_count;
1300
0e2de366 1301 /* Dereference any typedefs. */
c906108c
SS
1302 type = check_typedef (type);
1303
1304 /* Can we fetch the number of bits requested at all? */
1305 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1306 internal_error (__FILE__, __LINE__,
3d263c1d 1307 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1308
1309 /* Note that we know here that we only need to try each opcode once.
1310 That may not be true on machines with weird byte sizes. */
1311 offset = bound_start;
1312 fragment_count = 0;
1313 for (op = num_ops - 1; op >= 0; op--)
1314 {
1315 /* number of bits that ops[op] would fetch */
1316 int op_size = 8 << op;
1317
1318 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1319 more fragments, then the address. */
1320
c906108c
SS
1321 /* Does this fetch fit within the bitfield? */
1322 if (offset + op_size <= bound_end)
1323 {
1324 /* Is this the last fragment? */
1325 int last_frag = (offset + op_size == bound_end);
1326
c5aa993b
JM
1327 if (!last_frag)
1328 ax_simple (ax, aop_dup); /* keep a copy of the address */
1329
c906108c
SS
1330 /* Add the offset. */
1331 gen_offset (ax, offset / TARGET_CHAR_BIT);
1332
92bc6a20 1333 if (ax->tracing)
c906108c
SS
1334 {
1335 /* Record the area of memory we're about to fetch. */
1336 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1337 }
1338
1339 /* Perform the fetch. */
1340 ax_simple (ax, ops[op]);
c5aa993b
JM
1341
1342 /* Shift the bits we have to their proper position.
c906108c
SS
1343 gen_left_shift will generate right shifts when the operand
1344 is negative.
1345
c5aa993b
JM
1346 A big-endian field diagram to ponder:
1347 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1348 +------++------++------++------++------++------++------++------+
1349 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1350 ^ ^ ^ ^
1351 bit number 16 32 48 53
c906108c
SS
1352 These are bit numbers as supplied by GDB. Note that the
1353 bit numbers run from right to left once you've fetched the
1354 value!
1355
c5aa993b
JM
1356 A little-endian field diagram to ponder:
1357 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1358 +------++------++------++------++------++------++------++------+
1359 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1360 ^ ^ ^ ^ ^
1361 bit number 48 32 16 4 0
1362
1363 In both cases, the most significant end is on the left
1364 (i.e. normal numeric writing order), which means that you
1365 don't go crazy thinking about `left' and `right' shifts.
1366
1367 We don't have to worry about masking yet:
1368 - If they contain garbage off the least significant end, then we
1369 must be looking at the low end of the field, and the right
1370 shift will wipe them out.
1371 - If they contain garbage off the most significant end, then we
1372 must be looking at the most significant end of the word, and
1373 the sign/zero extension will wipe them out.
1374 - If we're in the interior of the word, then there is no garbage
1375 on either end, because the ref operators zero-extend. */
505e835d 1376 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
c906108c 1377 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1378 else
c906108c
SS
1379 gen_left_shift (ax, offset - start);
1380
c5aa993b 1381 if (!last_frag)
c906108c
SS
1382 /* Bring the copy of the address up to the top. */
1383 ax_simple (ax, aop_swap);
1384
1385 offset += op_size;
1386 fragment_count++;
1387 }
1388 }
1389
1390 /* Generate enough bitwise `or' operations to combine all the
1391 fragments we left on the stack. */
1392 while (fragment_count-- > 1)
1393 ax_simple (ax, aop_bit_or);
1394
1395 /* Sign- or zero-extend the value as appropriate. */
1396 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1397
1398 /* This is *not* an lvalue. Ugh. */
1399 value->kind = axs_rvalue;
1400 value->type = type;
1401}
1402
b6e7192f
SS
1403/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1404 is an accumulated offset (in bytes), will be nonzero for objects
1405 embedded in other objects, like C++ base classes. Behavior should
1406 generally follow value_primitive_field. */
1407
1408static void
1409gen_primitive_field (struct expression *exp,
1410 struct agent_expr *ax, struct axs_value *value,
1411 int offset, int fieldno, struct type *type)
1412{
1413 /* Is this a bitfield? */
1414 if (TYPE_FIELD_PACKED (type, fieldno))
1415 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1416 (offset * TARGET_CHAR_BIT
1417 + TYPE_FIELD_BITPOS (type, fieldno)),
1418 (offset * TARGET_CHAR_BIT
1419 + TYPE_FIELD_BITPOS (type, fieldno)
1420 + TYPE_FIELD_BITSIZE (type, fieldno)));
1421 else
1422 {
1423 gen_offset (ax, offset
1424 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1425 value->kind = axs_lvalue_memory;
1426 value->type = TYPE_FIELD_TYPE (type, fieldno);
1427 }
1428}
1429
1430/* Search for the given field in either the given type or one of its
1431 base classes. Return 1 if found, 0 if not. */
1432
1433static int
1434gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1435 struct axs_value *value,
1436 char *field, int offset, struct type *type)
1437{
1438 int i, rslt;
1439 int nbases = TYPE_N_BASECLASSES (type);
1440
f168693b 1441 type = check_typedef (type);
b6e7192f
SS
1442
1443 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1444 {
0d5cff50 1445 const char *this_name = TYPE_FIELD_NAME (type, i);
b6e7192f
SS
1446
1447 if (this_name)
1448 {
1449 if (strcmp (field, this_name) == 0)
1450 {
1451 /* Note that bytecodes for the struct's base (aka
1452 "this") will have been generated already, which will
1453 be unnecessary but not harmful if the static field is
1454 being handled as a global. */
1455 if (field_is_static (&TYPE_FIELD (type, i)))
1456 {
400c6af0
SS
1457 gen_static_field (exp->gdbarch, ax, value, type, i);
1458 if (value->optimized_out)
3e43a32a
MS
1459 error (_("static field `%s' has been "
1460 "optimized out, cannot use"),
400c6af0 1461 field);
b6e7192f
SS
1462 return 1;
1463 }
1464
1465 gen_primitive_field (exp, ax, value, offset, i, type);
1466 return 1;
1467 }
1468#if 0 /* is this right? */
1469 if (this_name[0] == '\0')
1470 internal_error (__FILE__, __LINE__,
1471 _("find_field: anonymous unions not supported"));
1472#endif
1473 }
1474 }
1475
1476 /* Now scan through base classes recursively. */
1477 for (i = 0; i < nbases; i++)
1478 {
1479 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1480
1481 rslt = gen_struct_ref_recursive (exp, ax, value, field,
3e43a32a
MS
1482 offset + TYPE_BASECLASS_BITPOS (type, i)
1483 / TARGET_CHAR_BIT,
b6e7192f
SS
1484 basetype);
1485 if (rslt)
1486 return 1;
1487 }
1488
1489 /* Not found anywhere, flag so caller can complain. */
1490 return 0;
1491}
c906108c
SS
1492
1493/* Generate code to reference the member named FIELD of a structure or
1494 union. The top of the stack, as described by VALUE, should have
1495 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1496 the operator being compiled, and OPERAND_NAME is the kind of thing
1497 it operates on; we use them in error messages. */
1498static void
505e835d
UW
1499gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1500 struct axs_value *value, char *field,
fba45db2 1501 char *operator_name, char *operand_name)
c906108c
SS
1502{
1503 struct type *type;
b6e7192f 1504 int found;
c906108c
SS
1505
1506 /* Follow pointers until we reach a non-pointer. These aren't the C
1507 semantics, but they're what the normal GDB evaluator does, so we
1508 should at least be consistent. */
b97aedf3 1509 while (pointer_type (value->type))
c906108c 1510 {
f7c79c41 1511 require_rvalue (ax, value);
c906108c
SS
1512 gen_deref (ax, value);
1513 }
e8860ec2 1514 type = check_typedef (value->type);
c906108c
SS
1515
1516 /* This must yield a structure or a union. */
1517 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1518 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1519 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1520 operator_name, operand_name);
1521
1522 /* And it must be in memory; we don't deal with structure rvalues,
1523 or structures living in registers. */
1524 if (value->kind != axs_lvalue_memory)
3d263c1d 1525 error (_("Structure does not live in memory."));
c906108c 1526
b6e7192f
SS
1527 /* Search through fields and base classes recursively. */
1528 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1529
1530 if (!found)
1531 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1532 field, TYPE_TAG_NAME (type));
1533}
c5aa993b 1534
b6e7192f
SS
1535static int
1536gen_namespace_elt (struct expression *exp,
1537 struct agent_expr *ax, struct axs_value *value,
1538 const struct type *curtype, char *name);
1539static int
1540gen_maybe_namespace_elt (struct expression *exp,
1541 struct agent_expr *ax, struct axs_value *value,
1542 const struct type *curtype, char *name);
1543
1544static void
400c6af0 1545gen_static_field (struct gdbarch *gdbarch,
b6e7192f
SS
1546 struct agent_expr *ax, struct axs_value *value,
1547 struct type *type, int fieldno)
1548{
1549 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1550 {
b6e7192f 1551 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c 1552 value->kind = axs_lvalue_memory;
b6e7192f 1553 value->type = TYPE_FIELD_TYPE (type, fieldno);
400c6af0 1554 value->optimized_out = 0;
b6e7192f
SS
1555 }
1556 else
1557 {
ff355380 1558 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
d12307c1 1559 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
b6e7192f 1560
400c6af0
SS
1561 if (sym)
1562 {
1563 gen_var_ref (gdbarch, ax, value, sym);
1564
1565 /* Don't error if the value was optimized out, we may be
1566 scanning all static fields and just want to pass over this
1567 and continue with the rest. */
1568 }
1569 else
1570 {
1571 /* Silently assume this was optimized out; class printing
1572 will let the user know why the data is missing. */
1573 value->optimized_out = 1;
1574 }
b6e7192f
SS
1575 }
1576}
1577
1578static int
1579gen_struct_elt_for_reference (struct expression *exp,
1580 struct agent_expr *ax, struct axs_value *value,
1581 struct type *type, char *fieldname)
1582{
1583 struct type *t = type;
1584 int i;
b6e7192f
SS
1585
1586 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (t) != TYPE_CODE_UNION)
1588 internal_error (__FILE__, __LINE__,
1589 _("non-aggregate type to gen_struct_elt_for_reference"));
1590
1591 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1592 {
0d5cff50 1593 const char *t_field_name = TYPE_FIELD_NAME (t, i);
b6e7192f
SS
1594
1595 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1596 {
1597 if (field_is_static (&TYPE_FIELD (t, i)))
1598 {
400c6af0
SS
1599 gen_static_field (exp->gdbarch, ax, value, t, i);
1600 if (value->optimized_out)
3e43a32a
MS
1601 error (_("static field `%s' has been "
1602 "optimized out, cannot use"),
400c6af0 1603 fieldname);
b6e7192f
SS
1604 return 1;
1605 }
1606 if (TYPE_FIELD_PACKED (t, i))
1607 error (_("pointers to bitfield members not allowed"));
1608
1609 /* FIXME we need a way to do "want_address" equivalent */
1610
1611 error (_("Cannot reference non-static field \"%s\""), fieldname);
1612 }
c906108c 1613 }
b6e7192f
SS
1614
1615 /* FIXME add other scoped-reference cases here */
1616
1617 /* Do a last-ditch lookup. */
1618 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
c906108c
SS
1619}
1620
b6e7192f
SS
1621/* C++: Return the member NAME of the namespace given by the type
1622 CURTYPE. */
1623
1624static int
1625gen_namespace_elt (struct expression *exp,
1626 struct agent_expr *ax, struct axs_value *value,
1627 const struct type *curtype, char *name)
1628{
1629 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1630
1631 if (!found)
1632 error (_("No symbol \"%s\" in namespace \"%s\"."),
1633 name, TYPE_TAG_NAME (curtype));
1634
1635 return found;
1636}
1637
1638/* A helper function used by value_namespace_elt and
1639 value_struct_elt_for_reference. It looks up NAME inside the
1640 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1641 is a class and NAME refers to a type in CURTYPE itself (as opposed
1642 to, say, some base class of CURTYPE). */
1643
1644static int
1645gen_maybe_namespace_elt (struct expression *exp,
1646 struct agent_expr *ax, struct axs_value *value,
1647 const struct type *curtype, char *name)
1648{
1649 const char *namespace_name = TYPE_TAG_NAME (curtype);
d12307c1 1650 struct block_symbol sym;
b6e7192f
SS
1651
1652 sym = cp_lookup_symbol_namespace (namespace_name, name,
1653 block_for_pc (ax->scope),
ac0cd78b 1654 VAR_DOMAIN);
b6e7192f 1655
d12307c1 1656 if (sym.symbol == NULL)
b6e7192f
SS
1657 return 0;
1658
d12307c1 1659 gen_var_ref (exp->gdbarch, ax, value, sym.symbol);
b6e7192f 1660
400c6af0
SS
1661 if (value->optimized_out)
1662 error (_("`%s' has been optimized out, cannot use"),
d12307c1 1663 SYMBOL_PRINT_NAME (sym.symbol));
400c6af0 1664
b6e7192f
SS
1665 return 1;
1666}
1667
1668
1669static int
1670gen_aggregate_elt_ref (struct expression *exp,
1671 struct agent_expr *ax, struct axs_value *value,
1672 struct type *type, char *field,
1673 char *operator_name, char *operand_name)
1674{
1675 switch (TYPE_CODE (type))
1676 {
1677 case TYPE_CODE_STRUCT:
1678 case TYPE_CODE_UNION:
1679 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1680 break;
1681 case TYPE_CODE_NAMESPACE:
1682 return gen_namespace_elt (exp, ax, value, type, field);
1683 break;
1684 default:
1685 internal_error (__FILE__, __LINE__,
1686 _("non-aggregate type in gen_aggregate_elt_ref"));
1687 }
1688
1689 return 0;
1690}
c906108c 1691
0e2de366 1692/* Generate code for GDB's magical `repeat' operator.
c906108c
SS
1693 LVALUE @ INT creates an array INT elements long, and whose elements
1694 have the same type as LVALUE, located in memory so that LVALUE is
1695 its first element. For example, argv[0]@argc gives you the array
1696 of command-line arguments.
1697
1698 Unfortunately, because we have to know the types before we actually
1699 have a value for the expression, we can't implement this perfectly
1700 without changing the type system, having values that occupy two
1701 stack slots, doing weird things with sizeof, etc. So we require
1702 the right operand to be a constant expression. */
1703static void
f7c79c41
UW
1704gen_repeat (struct expression *exp, union exp_element **pc,
1705 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1706{
1707 struct axs_value value1;
5b4ee69b 1708
c906108c
SS
1709 /* We don't want to turn this into an rvalue, so no conversions
1710 here. */
f7c79c41 1711 gen_expr (exp, pc, ax, &value1);
c906108c 1712 if (value1.kind != axs_lvalue_memory)
3d263c1d 1713 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1714
1715 /* Evaluate the length; it had better be a constant. */
1716 {
1717 struct value *v = const_expr (pc);
1718 int length;
1719
c5aa993b 1720 if (!v)
3e43a32a
MS
1721 error (_("Right operand of `@' must be a "
1722 "constant, in agent expressions."));
04624583 1723 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1724 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1725 length = value_as_long (v);
1726 if (length <= 0)
3d263c1d 1727 error (_("Right operand of `@' must be positive."));
c906108c
SS
1728
1729 /* The top of the stack is already the address of the object, so
1730 all we need to do is frob the type of the lvalue. */
1731 {
1732 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1733 done with it. */
e3506a9f
UW
1734 struct type *array
1735 = lookup_array_range_type (value1.type, 0, length - 1);
c906108c
SS
1736
1737 value->kind = axs_lvalue_memory;
1738 value->type = array;
1739 }
1740 }
1741}
1742
1743
1744/* Emit code for the `sizeof' operator.
1745 *PC should point at the start of the operand expression; we advance it
1746 to the first instruction after the operand. */
1747static void
f7c79c41
UW
1748gen_sizeof (struct expression *exp, union exp_element **pc,
1749 struct agent_expr *ax, struct axs_value *value,
1750 struct type *size_type)
c906108c
SS
1751{
1752 /* We don't care about the value of the operand expression; we only
1753 care about its type. However, in the current arrangement, the
1754 only way to find an expression's type is to generate code for it.
1755 So we generate code for the operand, and then throw it away,
1756 replacing it with code that simply pushes its size. */
1757 int start = ax->len;
5b4ee69b 1758
f7c79c41 1759 gen_expr (exp, pc, ax, value);
c906108c
SS
1760
1761 /* Throw away the code we just generated. */
1762 ax->len = start;
c5aa993b 1763
c906108c
SS
1764 ax_const_l (ax, TYPE_LENGTH (value->type));
1765 value->kind = axs_rvalue;
f7c79c41 1766 value->type = size_type;
c906108c 1767}
c906108c 1768\f
c5aa993b 1769
c906108c
SS
1770/* Generating bytecode from GDB expressions: general recursive thingy */
1771
3d263c1d 1772/* XXX: i18n */
c906108c
SS
1773/* A gen_expr function written by a Gen-X'er guy.
1774 Append code for the subexpression of EXPR starting at *POS_P to AX. */
55aa24fb 1775void
f7c79c41
UW
1776gen_expr (struct expression *exp, union exp_element **pc,
1777 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1778{
1779 /* Used to hold the descriptions of operand expressions. */
09d559e4 1780 struct axs_value value1, value2, value3;
f61e138d 1781 enum exp_opcode op = (*pc)[0].opcode, op2;
09d559e4 1782 int if1, go1, if2, go2, end;
3b11a015 1783 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
c906108c
SS
1784
1785 /* If we're looking at a constant expression, just push its value. */
1786 {
1787 struct value *v = maybe_const_expr (pc);
c5aa993b 1788
c906108c
SS
1789 if (v)
1790 {
1791 ax_const_l (ax, value_as_long (v));
1792 value->kind = axs_rvalue;
df407dfe 1793 value->type = check_typedef (value_type (v));
c906108c
SS
1794 return;
1795 }
1796 }
1797
1798 /* Otherwise, go ahead and generate code for it. */
1799 switch (op)
1800 {
1801 /* Binary arithmetic operators. */
1802 case BINOP_ADD:
1803 case BINOP_SUB:
1804 case BINOP_MUL:
1805 case BINOP_DIV:
1806 case BINOP_REM:
948103cf
SS
1807 case BINOP_LSH:
1808 case BINOP_RSH:
c906108c
SS
1809 case BINOP_SUBSCRIPT:
1810 case BINOP_BITWISE_AND:
1811 case BINOP_BITWISE_IOR:
1812 case BINOP_BITWISE_XOR:
782b2b07
SS
1813 case BINOP_EQUAL:
1814 case BINOP_NOTEQUAL:
1815 case BINOP_LESS:
1816 case BINOP_GTR:
1817 case BINOP_LEQ:
1818 case BINOP_GEQ:
c906108c 1819 (*pc)++;
f7c79c41
UW
1820 gen_expr (exp, pc, ax, &value1);
1821 gen_usual_unary (exp, ax, &value1);
f61e138d
SS
1822 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1823 break;
1824
09d559e4
SS
1825 case BINOP_LOGICAL_AND:
1826 (*pc)++;
1827 /* Generate the obvious sequence of tests and jumps. */
1828 gen_expr (exp, pc, ax, &value1);
1829 gen_usual_unary (exp, ax, &value1);
1830 if1 = ax_goto (ax, aop_if_goto);
1831 go1 = ax_goto (ax, aop_goto);
1832 ax_label (ax, if1, ax->len);
1833 gen_expr (exp, pc, ax, &value2);
1834 gen_usual_unary (exp, ax, &value2);
1835 if2 = ax_goto (ax, aop_if_goto);
1836 go2 = ax_goto (ax, aop_goto);
1837 ax_label (ax, if2, ax->len);
1838 ax_const_l (ax, 1);
1839 end = ax_goto (ax, aop_goto);
1840 ax_label (ax, go1, ax->len);
1841 ax_label (ax, go2, ax->len);
1842 ax_const_l (ax, 0);
1843 ax_label (ax, end, ax->len);
1844 value->kind = axs_rvalue;
3b11a015 1845 value->type = int_type;
09d559e4
SS
1846 break;
1847
1848 case BINOP_LOGICAL_OR:
1849 (*pc)++;
1850 /* Generate the obvious sequence of tests and jumps. */
1851 gen_expr (exp, pc, ax, &value1);
1852 gen_usual_unary (exp, ax, &value1);
1853 if1 = ax_goto (ax, aop_if_goto);
1854 gen_expr (exp, pc, ax, &value2);
1855 gen_usual_unary (exp, ax, &value2);
1856 if2 = ax_goto (ax, aop_if_goto);
1857 ax_const_l (ax, 0);
1858 end = ax_goto (ax, aop_goto);
1859 ax_label (ax, if1, ax->len);
1860 ax_label (ax, if2, ax->len);
1861 ax_const_l (ax, 1);
1862 ax_label (ax, end, ax->len);
1863 value->kind = axs_rvalue;
3b11a015 1864 value->type = int_type;
09d559e4
SS
1865 break;
1866
1867 case TERNOP_COND:
1868 (*pc)++;
1869 gen_expr (exp, pc, ax, &value1);
1870 gen_usual_unary (exp, ax, &value1);
1871 /* For (A ? B : C), it's easiest to generate subexpression
1872 bytecodes in order, but if_goto jumps on true, so we invert
1873 the sense of A. Then we can do B by dropping through, and
1874 jump to do C. */
3b11a015 1875 gen_logical_not (ax, &value1, int_type);
09d559e4
SS
1876 if1 = ax_goto (ax, aop_if_goto);
1877 gen_expr (exp, pc, ax, &value2);
1878 gen_usual_unary (exp, ax, &value2);
1879 end = ax_goto (ax, aop_goto);
1880 ax_label (ax, if1, ax->len);
1881 gen_expr (exp, pc, ax, &value3);
1882 gen_usual_unary (exp, ax, &value3);
1883 ax_label (ax, end, ax->len);
1884 /* This is arbitary - what if B and C are incompatible types? */
1885 value->type = value2.type;
1886 value->kind = value2.kind;
1887 break;
1888
f61e138d
SS
1889 case BINOP_ASSIGN:
1890 (*pc)++;
1891 if ((*pc)[0].opcode == OP_INTERNALVAR)
c906108c 1892 {
f61e138d
SS
1893 char *name = internalvar_name ((*pc)[1].internalvar);
1894 struct trace_state_variable *tsv;
5b4ee69b 1895
f61e138d
SS
1896 (*pc) += 3;
1897 gen_expr (exp, pc, ax, value);
1898 tsv = find_trace_state_variable (name);
1899 if (tsv)
f7c79c41 1900 {
f61e138d 1901 ax_tsv (ax, aop_setv, tsv->number);
92bc6a20 1902 if (ax->tracing)
f61e138d 1903 ax_tsv (ax, aop_tracev, tsv->number);
f7c79c41 1904 }
f7c79c41 1905 else
3e43a32a
MS
1906 error (_("$%s is not a trace state variable, "
1907 "may not assign to it"), name);
f61e138d
SS
1908 }
1909 else
1910 error (_("May only assign to trace state variables"));
1911 break;
782b2b07 1912
f61e138d
SS
1913 case BINOP_ASSIGN_MODIFY:
1914 (*pc)++;
1915 op2 = (*pc)[0].opcode;
1916 (*pc)++;
1917 (*pc)++;
1918 if ((*pc)[0].opcode == OP_INTERNALVAR)
1919 {
1920 char *name = internalvar_name ((*pc)[1].internalvar);
1921 struct trace_state_variable *tsv;
5b4ee69b 1922
f61e138d
SS
1923 (*pc) += 3;
1924 tsv = find_trace_state_variable (name);
1925 if (tsv)
1926 {
1927 /* The tsv will be the left half of the binary operation. */
1928 ax_tsv (ax, aop_getv, tsv->number);
92bc6a20 1929 if (ax->tracing)
f61e138d
SS
1930 ax_tsv (ax, aop_tracev, tsv->number);
1931 /* Trace state variables are always 64-bit integers. */
1932 value1.kind = axs_rvalue;
1933 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1934 /* Now do right half of expression. */
1935 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1936 /* We have a result of the binary op, set the tsv. */
1937 ax_tsv (ax, aop_setv, tsv->number);
92bc6a20 1938 if (ax->tracing)
f61e138d
SS
1939 ax_tsv (ax, aop_tracev, tsv->number);
1940 }
1941 else
3e43a32a
MS
1942 error (_("$%s is not a trace state variable, "
1943 "may not assign to it"), name);
c906108c 1944 }
f61e138d
SS
1945 else
1946 error (_("May only assign to trace state variables"));
c906108c
SS
1947 break;
1948
1949 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1950 for comma. In C, we can do some optimizations here because
1951 we know the left operand is only being evaluated for effect.
1952 However, if the tracing kludge is in effect, then we always
1953 need to evaluate the left hand side fully, so that all the
1954 variables it mentions get traced. */
c906108c
SS
1955 case BINOP_COMMA:
1956 (*pc)++;
f7c79c41 1957 gen_expr (exp, pc, ax, &value1);
c906108c 1958 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1959 in which case we want to emit code to trace it if it's an
1960 lvalue. */
400c6af0 1961 gen_traced_pop (exp->gdbarch, ax, &value1);
f7c79c41 1962 gen_expr (exp, pc, ax, value);
c906108c
SS
1963 /* It's the consumer's responsibility to trace the right operand. */
1964 break;
c5aa993b 1965
c906108c
SS
1966 case OP_LONG: /* some integer constant */
1967 {
1968 struct type *type = (*pc)[1].type;
1969 LONGEST k = (*pc)[2].longconst;
5b4ee69b 1970
c906108c
SS
1971 (*pc) += 4;
1972 gen_int_literal (ax, value, k, type);
1973 }
c5aa993b 1974 break;
c906108c
SS
1975
1976 case OP_VAR_VALUE:
f7c79c41 1977 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
400c6af0
SS
1978
1979 if (value->optimized_out)
1980 error (_("`%s' has been optimized out, cannot use"),
1981 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1982
c906108c
SS
1983 (*pc) += 4;
1984 break;
1985
1986 case OP_REGISTER:
1987 {
67f3407f
DJ
1988 const char *name = &(*pc)[2].string;
1989 int reg;
5b4ee69b 1990
67f3407f 1991 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
f7c79c41 1992 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
67f3407f
DJ
1993 if (reg == -1)
1994 internal_error (__FILE__, __LINE__,
1995 _("Register $%s not available"), name);
6ab12e0f
PA
1996 /* No support for tracing user registers yet. */
1997 if (reg >= gdbarch_num_regs (exp->gdbarch)
1998 + gdbarch_num_pseudo_regs (exp->gdbarch))
abc1f4cd
HZ
1999 error (_("'%s' is a user-register; "
2000 "GDB cannot yet trace user-register contents."),
6ab12e0f 2001 name);
c906108c
SS
2002 value->kind = axs_lvalue_register;
2003 value->u.reg = reg;
f7c79c41 2004 value->type = register_type (exp->gdbarch, reg);
c906108c 2005 }
c5aa993b 2006 break;
c906108c
SS
2007
2008 case OP_INTERNALVAR:
f61e138d 2009 {
22d2b532
SDJ
2010 struct internalvar *var = (*pc)[1].internalvar;
2011 const char *name = internalvar_name (var);
f61e138d 2012 struct trace_state_variable *tsv;
5b4ee69b 2013
f61e138d
SS
2014 (*pc) += 3;
2015 tsv = find_trace_state_variable (name);
2016 if (tsv)
2017 {
2018 ax_tsv (ax, aop_getv, tsv->number);
92bc6a20 2019 if (ax->tracing)
f61e138d
SS
2020 ax_tsv (ax, aop_tracev, tsv->number);
2021 /* Trace state variables are always 64-bit integers. */
2022 value->kind = axs_rvalue;
2023 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2024 }
22d2b532 2025 else if (! compile_internalvar_to_ax (var, ax, value))
3e43a32a
MS
2026 error (_("$%s is not a trace state variable; GDB agent "
2027 "expressions cannot use convenience variables."), name);
f61e138d
SS
2028 }
2029 break;
c906108c 2030
c5aa993b 2031 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
2032 case BINOP_REPEAT:
2033 /* Note that gen_repeat handles its own argument evaluation. */
2034 (*pc)++;
f7c79c41 2035 gen_repeat (exp, pc, ax, value);
c906108c
SS
2036 break;
2037
2038 case UNOP_CAST:
2039 {
2040 struct type *type = (*pc)[1].type;
5b4ee69b 2041
c906108c 2042 (*pc) += 3;
f7c79c41 2043 gen_expr (exp, pc, ax, value);
c906108c
SS
2044 gen_cast (ax, value, type);
2045 }
c5aa993b 2046 break;
c906108c 2047
9eaf6705
TT
2048 case UNOP_CAST_TYPE:
2049 {
2050 int offset;
2051 struct value *val;
2052 struct type *type;
2053
2054 ++*pc;
2055 offset = *pc - exp->elts;
2056 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2057 type = value_type (val);
2058 *pc = &exp->elts[offset];
2059
2060 gen_expr (exp, pc, ax, value);
2061 gen_cast (ax, value, type);
2062 }
2063 break;
2064
c906108c
SS
2065 case UNOP_MEMVAL:
2066 {
2067 struct type *type = check_typedef ((*pc)[1].type);
5b4ee69b 2068
c906108c 2069 (*pc) += 3;
f7c79c41 2070 gen_expr (exp, pc, ax, value);
a0c78a73
PA
2071
2072 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2073 already have the right value on the stack. For
2074 axs_lvalue_register, we must convert. */
2075 if (value->kind == axs_lvalue_register)
2076 require_rvalue (ax, value);
2077
c906108c
SS
2078 value->type = type;
2079 value->kind = axs_lvalue_memory;
2080 }
c5aa993b 2081 break;
c906108c 2082
9eaf6705
TT
2083 case UNOP_MEMVAL_TYPE:
2084 {
2085 int offset;
2086 struct value *val;
2087 struct type *type;
2088
2089 ++*pc;
2090 offset = *pc - exp->elts;
2091 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2092 type = value_type (val);
2093 *pc = &exp->elts[offset];
2094
2095 gen_expr (exp, pc, ax, value);
2096
2097 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2098 already have the right value on the stack. For
2099 axs_lvalue_register, we must convert. */
2100 if (value->kind == axs_lvalue_register)
2101 require_rvalue (ax, value);
2102
2103 value->type = type;
2104 value->kind = axs_lvalue_memory;
2105 }
2106 break;
2107
36e9969c
NS
2108 case UNOP_PLUS:
2109 (*pc)++;
0e2de366 2110 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
f7c79c41
UW
2111 gen_expr (exp, pc, ax, value);
2112 gen_usual_unary (exp, ax, value);
36e9969c
NS
2113 break;
2114
c906108c
SS
2115 case UNOP_NEG:
2116 (*pc)++;
2117 /* -FOO is equivalent to 0 - FOO. */
22601c15
UW
2118 gen_int_literal (ax, &value1, 0,
2119 builtin_type (exp->gdbarch)->builtin_int);
f7c79c41
UW
2120 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2121 gen_expr (exp, pc, ax, &value2);
2122 gen_usual_unary (exp, ax, &value2);
2123 gen_usual_arithmetic (exp, ax, &value1, &value2);
2124 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
c906108c
SS
2125 break;
2126
2127 case UNOP_LOGICAL_NOT:
2128 (*pc)++;
f7c79c41
UW
2129 gen_expr (exp, pc, ax, value);
2130 gen_usual_unary (exp, ax, value);
3b11a015 2131 gen_logical_not (ax, value, int_type);
c906108c
SS
2132 break;
2133
2134 case UNOP_COMPLEMENT:
2135 (*pc)++;
f7c79c41
UW
2136 gen_expr (exp, pc, ax, value);
2137 gen_usual_unary (exp, ax, value);
2138 gen_integral_promotions (exp, ax, value);
c906108c
SS
2139 gen_complement (ax, value);
2140 break;
2141
2142 case UNOP_IND:
2143 (*pc)++;
f7c79c41
UW
2144 gen_expr (exp, pc, ax, value);
2145 gen_usual_unary (exp, ax, value);
b97aedf3 2146 if (!pointer_type (value->type))
3d263c1d 2147 error (_("Argument of unary `*' is not a pointer."));
c906108c
SS
2148 gen_deref (ax, value);
2149 break;
2150
2151 case UNOP_ADDR:
2152 (*pc)++;
f7c79c41 2153 gen_expr (exp, pc, ax, value);
c906108c
SS
2154 gen_address_of (ax, value);
2155 break;
2156
2157 case UNOP_SIZEOF:
2158 (*pc)++;
2159 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
2160 of the other unary operator functions. This is because we
2161 have to throw away the code we generate. */
f7c79c41
UW
2162 gen_sizeof (exp, pc, ax, value,
2163 builtin_type (exp->gdbarch)->builtin_int);
c906108c
SS
2164 break;
2165
2166 case STRUCTOP_STRUCT:
2167 case STRUCTOP_PTR:
2168 {
2169 int length = (*pc)[1].longconst;
2170 char *name = &(*pc)[2].string;
2171
2172 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
f7c79c41 2173 gen_expr (exp, pc, ax, value);
c906108c 2174 if (op == STRUCTOP_STRUCT)
505e835d 2175 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
c906108c 2176 else if (op == STRUCTOP_PTR)
505e835d 2177 gen_struct_ref (exp, ax, value, name, "->",
c906108c
SS
2178 "pointer to a structure or union");
2179 else
2180 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 2181 shouldn't mention it, and we shouldn't be here. */
8e65ff28 2182 internal_error (__FILE__, __LINE__,
3d263c1d 2183 _("gen_expr: unhandled struct case"));
c906108c 2184 }
c5aa993b 2185 break;
c906108c 2186
6c228b9c
SS
2187 case OP_THIS:
2188 {
66a17cb6 2189 struct symbol *sym, *func;
3977b71f 2190 const struct block *b;
66a17cb6 2191 const struct language_defn *lang;
6c228b9c 2192
66a17cb6
TT
2193 b = block_for_pc (ax->scope);
2194 func = block_linkage_function (b);
2195 lang = language_def (SYMBOL_LANGUAGE (func));
6c228b9c 2196
d12307c1 2197 sym = lookup_language_this (lang, b).symbol;
6c228b9c 2198 if (!sym)
66a17cb6 2199 error (_("no `%s' found"), lang->la_name_of_this);
6c228b9c
SS
2200
2201 gen_var_ref (exp->gdbarch, ax, value, sym);
400c6af0
SS
2202
2203 if (value->optimized_out)
2204 error (_("`%s' has been optimized out, cannot use"),
2205 SYMBOL_PRINT_NAME (sym));
2206
6c228b9c
SS
2207 (*pc) += 2;
2208 }
2209 break;
2210
b6e7192f
SS
2211 case OP_SCOPE:
2212 {
2213 struct type *type = (*pc)[1].type;
2214 int length = longest_to_int ((*pc)[2].longconst);
2215 char *name = &(*pc)[3].string;
2216 int found;
2217
2218 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2219 "?", "??");
2220 if (!found)
2221 error (_("There is no field named %s"), name);
2222 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2223 }
2224 break;
2225
c906108c 2226 case OP_TYPE:
608b4967
TT
2227 case OP_TYPEOF:
2228 case OP_DECLTYPE:
3d263c1d 2229 error (_("Attempt to use a type name as an expression."));
c906108c
SS
2230
2231 default:
b6e7192f 2232 error (_("Unsupported operator %s (%d) in expression."),
bd0b9f9e 2233 op_name (exp, op), op);
c906108c
SS
2234 }
2235}
f61e138d
SS
2236
2237/* This handles the middle-to-right-side of code generation for binary
2238 expressions, which is shared between regular binary operations and
2239 assign-modify (+= and friends) expressions. */
2240
2241static void
2242gen_expr_binop_rest (struct expression *exp,
2243 enum exp_opcode op, union exp_element **pc,
2244 struct agent_expr *ax, struct axs_value *value,
2245 struct axs_value *value1, struct axs_value *value2)
2246{
3b11a015
SS
2247 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2248
f61e138d
SS
2249 gen_expr (exp, pc, ax, value2);
2250 gen_usual_unary (exp, ax, value2);
2251 gen_usual_arithmetic (exp, ax, value1, value2);
2252 switch (op)
2253 {
2254 case BINOP_ADD:
2255 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
b97aedf3 2256 && pointer_type (value2->type))
f61e138d
SS
2257 {
2258 /* Swap the values and proceed normally. */
2259 ax_simple (ax, aop_swap);
2260 gen_ptradd (ax, value, value2, value1);
2261 }
b97aedf3 2262 else if (pointer_type (value1->type)
f61e138d
SS
2263 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2264 gen_ptradd (ax, value, value1, value2);
2265 else
2266 gen_binop (ax, value, value1, value2,
2267 aop_add, aop_add, 1, "addition");
2268 break;
2269 case BINOP_SUB:
b97aedf3 2270 if (pointer_type (value1->type)
f61e138d
SS
2271 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2272 gen_ptrsub (ax,value, value1, value2);
b97aedf3
SS
2273 else if (pointer_type (value1->type)
2274 && pointer_type (value2->type))
f61e138d
SS
2275 /* FIXME --- result type should be ptrdiff_t */
2276 gen_ptrdiff (ax, value, value1, value2,
2277 builtin_type (exp->gdbarch)->builtin_long);
2278 else
2279 gen_binop (ax, value, value1, value2,
2280 aop_sub, aop_sub, 1, "subtraction");
2281 break;
2282 case BINOP_MUL:
2283 gen_binop (ax, value, value1, value2,
2284 aop_mul, aop_mul, 1, "multiplication");
2285 break;
2286 case BINOP_DIV:
2287 gen_binop (ax, value, value1, value2,
2288 aop_div_signed, aop_div_unsigned, 1, "division");
2289 break;
2290 case BINOP_REM:
2291 gen_binop (ax, value, value1, value2,
2292 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2293 break;
948103cf
SS
2294 case BINOP_LSH:
2295 gen_binop (ax, value, value1, value2,
2296 aop_lsh, aop_lsh, 1, "left shift");
2297 break;
2298 case BINOP_RSH:
2299 gen_binop (ax, value, value1, value2,
2300 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2301 break;
f61e138d 2302 case BINOP_SUBSCRIPT:
be636754
PA
2303 {
2304 struct type *type;
2305
2306 if (binop_types_user_defined_p (op, value1->type, value2->type))
2307 {
3e43a32a
MS
2308 error (_("cannot subscript requested type: "
2309 "cannot call user defined functions"));
be636754
PA
2310 }
2311 else
2312 {
2313 /* If the user attempts to subscript something that is not
2314 an array or pointer type (like a plain int variable for
2315 example), then report this as an error. */
2316 type = check_typedef (value1->type);
2317 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2318 && TYPE_CODE (type) != TYPE_CODE_PTR)
2319 {
2320 if (TYPE_NAME (type))
2321 error (_("cannot subscript something of type `%s'"),
2322 TYPE_NAME (type));
2323 else
2324 error (_("cannot subscript requested type"));
2325 }
2326 }
2327
5d5b640e 2328 if (!is_integral_type (value2->type))
3e43a32a
MS
2329 error (_("Argument to arithmetic operation "
2330 "not a number or boolean."));
5d5b640e 2331
be636754
PA
2332 gen_ptradd (ax, value, value1, value2);
2333 gen_deref (ax, value);
2334 break;
2335 }
f61e138d
SS
2336 case BINOP_BITWISE_AND:
2337 gen_binop (ax, value, value1, value2,
2338 aop_bit_and, aop_bit_and, 0, "bitwise and");
2339 break;
2340
2341 case BINOP_BITWISE_IOR:
2342 gen_binop (ax, value, value1, value2,
2343 aop_bit_or, aop_bit_or, 0, "bitwise or");
2344 break;
2345
2346 case BINOP_BITWISE_XOR:
2347 gen_binop (ax, value, value1, value2,
2348 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2349 break;
2350
2351 case BINOP_EQUAL:
3b11a015 2352 gen_equal (ax, value, value1, value2, int_type);
f61e138d
SS
2353 break;
2354
2355 case BINOP_NOTEQUAL:
3b11a015
SS
2356 gen_equal (ax, value, value1, value2, int_type);
2357 gen_logical_not (ax, value, int_type);
f61e138d
SS
2358 break;
2359
2360 case BINOP_LESS:
3b11a015 2361 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2362 break;
2363
2364 case BINOP_GTR:
2365 ax_simple (ax, aop_swap);
3b11a015 2366 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2367 break;
2368
2369 case BINOP_LEQ:
2370 ax_simple (ax, aop_swap);
3b11a015
SS
2371 gen_less (ax, value, value1, value2, int_type);
2372 gen_logical_not (ax, value, int_type);
f61e138d
SS
2373 break;
2374
2375 case BINOP_GEQ:
3b11a015
SS
2376 gen_less (ax, value, value1, value2, int_type);
2377 gen_logical_not (ax, value, int_type);
f61e138d
SS
2378 break;
2379
2380 default:
2381 /* We should only list operators in the outer case statement
2382 that we actually handle in the inner case statement. */
2383 internal_error (__FILE__, __LINE__,
2384 _("gen_expr: op case sets don't match"));
2385 }
2386}
c906108c 2387\f
c5aa993b 2388
0936ad1d
SS
2389/* Given a single variable and a scope, generate bytecodes to trace
2390 its value. This is for use in situations where we have only a
2391 variable's name, and no parsed expression; for instance, when the
2392 name comes from a list of local variables of a function. */
2393
2394struct agent_expr *
400c6af0 2395gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
92bc6a20 2396 struct symbol *var, int trace_string)
0936ad1d
SS
2397{
2398 struct cleanup *old_chain = 0;
35c9c7ba 2399 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
0936ad1d
SS
2400 struct axs_value value;
2401
2402 old_chain = make_cleanup_free_agent_expr (ax);
2403
92bc6a20
TT
2404 ax->tracing = 1;
2405 ax->trace_string = trace_string;
400c6af0
SS
2406 gen_var_ref (gdbarch, ax, &value, var);
2407
2408 /* If there is no actual variable to trace, flag it by returning
2409 an empty agent expression. */
2410 if (value.optimized_out)
2411 {
2412 do_cleanups (old_chain);
2413 return NULL;
2414 }
0936ad1d
SS
2415
2416 /* Make sure we record the final object, and get rid of it. */
400c6af0 2417 gen_traced_pop (gdbarch, ax, &value);
0936ad1d
SS
2418
2419 /* Oh, and terminate. */
2420 ax_simple (ax, aop_end);
2421
2422 /* We have successfully built the agent expr, so cancel the cleanup
2423 request. If we add more cleanups that we always want done, this
2424 will have to get more complicated. */
2425 discard_cleanups (old_chain);
2426 return ax;
2427}
c5aa993b 2428
c906108c
SS
2429/* Generating bytecode from GDB expressions: driver */
2430
c906108c
SS
2431/* Given a GDB expression EXPR, return bytecode to trace its value.
2432 The result will use the `trace' and `trace_quick' bytecodes to
2433 record the value of all memory touched by the expression. The
2434 caller can then use the ax_reqs function to discover which
2435 registers it relies upon. */
2436struct agent_expr *
92bc6a20
TT
2437gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2438 int trace_string)
c906108c
SS
2439{
2440 struct cleanup *old_chain = 0;
35c9c7ba 2441 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
c906108c
SS
2442 union exp_element *pc;
2443 struct axs_value value;
2444
f23d52e0 2445 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
2446
2447 pc = expr->elts;
92bc6a20
TT
2448 ax->tracing = 1;
2449 ax->trace_string = trace_string;
35c9c7ba 2450 value.optimized_out = 0;
f7c79c41 2451 gen_expr (expr, &pc, ax, &value);
c906108c
SS
2452
2453 /* Make sure we record the final object, and get rid of it. */
400c6af0 2454 gen_traced_pop (expr->gdbarch, ax, &value);
c906108c
SS
2455
2456 /* Oh, and terminate. */
2457 ax_simple (ax, aop_end);
2458
2459 /* We have successfully built the agent expr, so cancel the cleanup
2460 request. If we add more cleanups that we always want done, this
2461 will have to get more complicated. */
2462 discard_cleanups (old_chain);
2463 return ax;
2464}
c906108c 2465
782b2b07
SS
2466/* Given a GDB expression EXPR, return a bytecode sequence that will
2467 evaluate and return a result. The bytecodes will do a direct
2468 evaluation, using the current data on the target, rather than
2469 recording blocks of memory and registers for later use, as
2470 gen_trace_for_expr does. The generated bytecode sequence leaves
2471 the result of expression evaluation on the top of the stack. */
2472
2473struct agent_expr *
2474gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2475{
2476 struct cleanup *old_chain = 0;
35c9c7ba 2477 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
782b2b07
SS
2478 union exp_element *pc;
2479 struct axs_value value;
2480
2481 old_chain = make_cleanup_free_agent_expr (ax);
2482
2483 pc = expr->elts;
92bc6a20 2484 ax->tracing = 0;
35c9c7ba 2485 value.optimized_out = 0;
782b2b07
SS
2486 gen_expr (expr, &pc, ax, &value);
2487
35c9c7ba
SS
2488 require_rvalue (ax, &value);
2489
782b2b07
SS
2490 /* Oh, and terminate. */
2491 ax_simple (ax, aop_end);
2492
2493 /* We have successfully built the agent expr, so cancel the cleanup
2494 request. If we add more cleanups that we always want done, this
2495 will have to get more complicated. */
2496 discard_cleanups (old_chain);
2497 return ax;
2498}
2499
6710bf39 2500struct agent_expr *
92bc6a20
TT
2501gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2502 int trace_string)
6710bf39
SS
2503{
2504 struct cleanup *old_chain = 0;
2505 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2506 struct axs_value value;
2507
2508 old_chain = make_cleanup_free_agent_expr (ax);
2509
92bc6a20
TT
2510 ax->tracing = 1;
2511 ax->trace_string = trace_string;
6710bf39
SS
2512
2513 gdbarch_gen_return_address (gdbarch, ax, &value, scope);
2514
2515 /* Make sure we record the final object, and get rid of it. */
2516 gen_traced_pop (gdbarch, ax, &value);
2517
2518 /* Oh, and terminate. */
2519 ax_simple (ax, aop_end);
2520
2521 /* We have successfully built the agent expr, so cancel the cleanup
2522 request. If we add more cleanups that we always want done, this
2523 will have to get more complicated. */
2524 discard_cleanups (old_chain);
2525 return ax;
2526}
2527
d3ce09f5
SS
2528/* Given a collection of printf-style arguments, generate code to
2529 evaluate the arguments and pass everything to a special
2530 bytecode. */
2531
2532struct agent_expr *
2533gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2534 CORE_ADDR function, LONGEST channel,
741d92cf 2535 const char *format, int fmtlen,
d3ce09f5
SS
2536 struct format_piece *frags,
2537 int nargs, struct expression **exprs)
2538{
d3ce09f5
SS
2539 struct cleanup *old_chain = 0;
2540 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2541 union exp_element *pc;
2542 struct axs_value value;
0e43993a 2543 int tem;
d3ce09f5
SS
2544
2545 old_chain = make_cleanup_free_agent_expr (ax);
2546
92bc6a20
TT
2547 /* We're computing values, not doing side effects. */
2548 ax->tracing = 0;
2549
d3ce09f5
SS
2550 /* Evaluate and push the args on the stack in reverse order,
2551 for simplicity of collecting them on the target side. */
2552 for (tem = nargs - 1; tem >= 0; --tem)
2553 {
2554 pc = exprs[tem]->elts;
d3ce09f5
SS
2555 value.optimized_out = 0;
2556 gen_expr (exprs[tem], &pc, ax, &value);
2557 require_rvalue (ax, &value);
2558 }
2559
2560 /* Push function and channel. */
2561 ax_const_l (ax, channel);
2562 ax_const_l (ax, function);
2563
2564 /* Issue the printf bytecode proper. */
2565 ax_simple (ax, aop_printf);
70b8286a 2566 ax_raw_byte (ax, nargs);
d3ce09f5
SS
2567 ax_string (ax, format, fmtlen);
2568
2569 /* And terminate. */
2570 ax_simple (ax, aop_end);
2571
2572 /* We have successfully built the agent expr, so cancel the cleanup
2573 request. If we add more cleanups that we always want done, this
2574 will have to get more complicated. */
2575 discard_cleanups (old_chain);
2576
2577 return ax;
2578}
2579
c906108c 2580static void
6f937416 2581agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
c906108c
SS
2582{
2583 struct cleanup *old_chain = 0;
c906108c 2584 struct agent_expr *agent;
bbc13ae3 2585 const char *arg;
92bc6a20 2586 int trace_string = 0;
c906108c 2587
34b536a8
HZ
2588 if (!eval)
2589 {
34b536a8 2590 if (*exp == '/')
92bc6a20 2591 exp = decode_agent_options (exp, &trace_string);
34b536a8 2592 }
3065dfb6 2593
bbc13ae3
KS
2594 arg = exp;
2595 if (!eval && strcmp (arg, "$_ret") == 0)
6710bf39 2596 {
92bc6a20
TT
2597 agent = gen_trace_for_return_address (pc, get_current_arch (),
2598 trace_string);
6710bf39
SS
2599 old_chain = make_cleanup_free_agent_expr (agent);
2600 }
2601 else
2602 {
4d01a485 2603 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
34b536a8 2604 if (eval)
92bc6a20
TT
2605 {
2606 gdb_assert (trace_string == 0);
4d01a485 2607 agent = gen_eval_for_expr (pc, expr.get ());
92bc6a20 2608 }
34b536a8 2609 else
4d01a485
PA
2610 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
2611 old_chain = make_cleanup_free_agent_expr (agent);
6710bf39
SS
2612 }
2613
35c9c7ba 2614 ax_reqs (agent);
c906108c 2615 ax_print (gdb_stdout, agent);
085dd6e6
JM
2616
2617 /* It would be nice to call ax_reqs here to gather some general info
2618 about the expression, and then print out the result. */
c906108c
SS
2619
2620 do_cleanups (old_chain);
2621 dont_repeat ();
2622}
782b2b07 2623
782b2b07 2624static void
34b536a8 2625agent_command_1 (char *exp, int eval)
782b2b07 2626{
782b2b07
SS
2627 /* We don't deal with overlay debugging at the moment. We need to
2628 think more carefully about this. If you copy this code into
2629 another command, change the error message; the user shouldn't
2630 have to know anything about agent expressions. */
2631 if (overlay_debugging)
2632 error (_("GDB can't do agent expression translation with overlays."));
2633
2634 if (exp == 0)
2635 error_no_arg (_("expression to translate"));
2636
34b536a8
HZ
2637 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2638 {
2639 struct linespec_result canonical;
2640 int ix;
2641 struct linespec_sals *iter;
2642 struct cleanup *old_chain;
f00aae0f 2643 struct event_location *location;
34b536a8
HZ
2644
2645 exp = skip_spaces (exp);
2646 init_linespec_result (&canonical);
f00aae0f
KS
2647 location = new_linespec_location (&exp);
2648 old_chain = make_cleanup_delete_event_location (location);
c2f4122d 2649 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
34b536a8
HZ
2650 (struct symtab *) NULL, 0, &canonical,
2651 NULL, NULL);
f00aae0f 2652 make_cleanup_destroy_linespec_result (&canonical);
34b536a8
HZ
2653 exp = skip_spaces (exp);
2654 if (exp[0] == ',')
2655 {
2656 exp++;
2657 exp = skip_spaces (exp);
2658 }
2659 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
2660 {
2661 int i;
782b2b07 2662
34b536a8
HZ
2663 for (i = 0; i < iter->sals.nelts; i++)
2664 agent_eval_command_one (exp, eval, iter->sals.sals[i].pc);
2665 }
2666 do_cleanups (old_chain);
2667 }
2668 else
2669 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
782b2b07 2670
782b2b07
SS
2671 dont_repeat ();
2672}
34b536a8
HZ
2673
2674static void
2675agent_command (char *exp, int from_tty)
2676{
2677 agent_command_1 (exp, 0);
2678}
2679
2680/* Parse the given expression, compile it into an agent expression
2681 that does direct evaluation, and display the resulting
2682 expression. */
2683
2684static void
2685agent_eval_command (char *exp, int from_tty)
2686{
2687 agent_command_1 (exp, 1);
2688}
2689
d3ce09f5
SS
2690/* Parse the given expression, compile it into an agent expression
2691 that does a printf, and display the resulting expression. */
2692
2693static void
2694maint_agent_printf_command (char *exp, int from_tty)
2695{
2696 struct cleanup *old_chain = 0;
d3ce09f5
SS
2697 struct expression *argvec[100];
2698 struct agent_expr *agent;
2699 struct frame_info *fi = get_current_frame (); /* need current scope */
bbc13ae3
KS
2700 const char *cmdrest;
2701 const char *format_start, *format_end;
d3ce09f5
SS
2702 struct format_piece *fpieces;
2703 int nargs;
2704
2705 /* We don't deal with overlay debugging at the moment. We need to
2706 think more carefully about this. If you copy this code into
2707 another command, change the error message; the user shouldn't
2708 have to know anything about agent expressions. */
2709 if (overlay_debugging)
2710 error (_("GDB can't do agent expression translation with overlays."));
2711
2712 if (exp == 0)
2713 error_no_arg (_("expression to translate"));
2714
2715 cmdrest = exp;
2716
bbc13ae3 2717 cmdrest = skip_spaces_const (cmdrest);
d3ce09f5
SS
2718
2719 if (*cmdrest++ != '"')
2720 error (_("Must start with a format string."));
2721
2722 format_start = cmdrest;
2723
2724 fpieces = parse_format_string (&cmdrest);
2725
2726 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
2727
2728 format_end = cmdrest;
2729
2730 if (*cmdrest++ != '"')
2731 error (_("Bad format string, non-terminated '\"'."));
2732
bbc13ae3 2733 cmdrest = skip_spaces_const (cmdrest);
d3ce09f5
SS
2734
2735 if (*cmdrest != ',' && *cmdrest != 0)
2736 error (_("Invalid argument syntax"));
2737
2738 if (*cmdrest == ',')
2739 cmdrest++;
bbc13ae3 2740 cmdrest = skip_spaces_const (cmdrest);
d3ce09f5
SS
2741
2742 nargs = 0;
2743 while (*cmdrest != '\0')
2744 {
bbc13ae3 2745 const char *cmd1;
d3ce09f5
SS
2746
2747 cmd1 = cmdrest;
4d01a485
PA
2748 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2749 argvec[nargs] = expr.release ();
d3ce09f5
SS
2750 ++nargs;
2751 cmdrest = cmd1;
2752 if (*cmdrest == ',')
2753 ++cmdrest;
2754 /* else complain? */
2755 }
2756
2757
2758 agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0,
2759 format_start, format_end - format_start,
2760 fpieces, nargs, argvec);
2761 make_cleanup_free_agent_expr (agent);
2762 ax_reqs (agent);
2763 ax_print (gdb_stdout, agent);
2764
2765 /* It would be nice to call ax_reqs here to gather some general info
2766 about the expression, and then print out the result. */
2767
2768 do_cleanups (old_chain);
2769 dont_repeat ();
2770}
c906108c 2771\f
c5aa993b 2772
c906108c
SS
2773/* Initialization code. */
2774
a14ed312 2775void _initialize_ax_gdb (void);
c906108c 2776void
fba45db2 2777_initialize_ax_gdb (void)
c906108c 2778{
c906108c 2779 add_cmd ("agent", class_maintenance, agent_command,
34b536a8
HZ
2780 _("\
2781Translate an expression into remote agent bytecode for tracing.\n\
2782Usage: maint agent [-at location,] EXPRESSION\n\
2783If -at is given, generate remote agent bytecode for this location.\n\
2784If not, generate remote agent bytecode for current frame pc address."),
782b2b07
SS
2785 &maintenancelist);
2786
2787 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
34b536a8
HZ
2788 _("\
2789Translate an expression into remote agent bytecode for evaluation.\n\
2790Usage: maint agent-eval [-at location,] EXPRESSION\n\
2791If -at is given, generate remote agent bytecode for this location.\n\
2792If not, generate remote agent bytecode for current frame pc address."),
c906108c 2793 &maintenancelist);
d3ce09f5
SS
2794
2795 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2796 _("Translate an expression into remote "
2797 "agent bytecode for evaluation and display the bytecodes."),
2798 &maintenancelist);
c906108c 2799}
This page took 1.170552 seconds and 4 git commands to generate.