* config/tc-mn10300.c (md_assemble): Copy size to real_size before
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
c906108c 1/* GDB-specific functions for operating on agent expressions
d9fcf2fb 2 Copyright 1998, 2000 Free Software Foundation, Inc.
c906108c 3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
33
6426a772
JM
34/* To make sense of this file, you should read doc/agentexpr.texi.
35 Then look at the types and enums in ax-gdb.h. For the code itself,
36 look at gen_expr, towards the bottom; that's the main function that
37 looks at the GDB expressions and calls everything else to generate
38 code.
c906108c
SS
39
40 I'm beginning to wonder whether it wouldn't be nicer to internally
41 generate trees, with types, and then spit out the bytecode in
42 linear form afterwards; we could generate fewer `swap', `ext', and
43 `zero_ext' bytecodes that way; it would make good constant folding
44 easier, too. But at the moment, I think we should be willing to
45 pay for the simplicity of this code with less-than-optimal bytecode
46 strings.
47
c5aa993b
JM
48 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
49\f
c906108c
SS
50
51
c906108c
SS
52/* Prototypes for local functions. */
53
54/* There's a standard order to the arguments of these functions:
55 union exp_element ** --- pointer into expression
56 struct agent_expr * --- agent expression buffer to generate code into
57 struct axs_value * --- describes value left on top of stack */
c5aa993b
JM
58
59static struct value *const_var_ref PARAMS ((struct symbol * var));
60static struct value *const_expr PARAMS ((union exp_element ** pc));
61static struct value *maybe_const_expr PARAMS ((union exp_element ** pc));
c906108c
SS
62
63static void gen_traced_pop PARAMS ((struct agent_expr *, struct axs_value *));
64
65static void gen_sign_extend PARAMS ((struct agent_expr *, struct type *));
66static void gen_extend PARAMS ((struct agent_expr *, struct type *));
67static void gen_fetch PARAMS ((struct agent_expr *, struct type *));
68static void gen_left_shift PARAMS ((struct agent_expr *, int));
69
70
c5aa993b 71static void gen_frame_args_address PARAMS ((struct agent_expr *));
c906108c 72static void gen_frame_locals_address PARAMS ((struct agent_expr *));
c5aa993b 73static void gen_offset PARAMS ((struct agent_expr * ax, int offset));
c906108c 74static void gen_sym_offset PARAMS ((struct agent_expr *, struct symbol *));
c5aa993b
JM
75static void gen_var_ref PARAMS ((struct agent_expr * ax,
76 struct axs_value * value,
77 struct symbol * var));
78
79
80static void gen_int_literal PARAMS ((struct agent_expr * ax,
81 struct axs_value * value,
82 LONGEST k, struct type * type));
83
84
85static void require_rvalue PARAMS ((struct agent_expr * ax,
86 struct axs_value * value));
87static void gen_usual_unary PARAMS ((struct agent_expr * ax,
88 struct axs_value * value));
89static int type_wider_than PARAMS ((struct type * type1,
90 struct type * type2));
91static struct type *max_type PARAMS ((struct type * type1,
92 struct type * type2));
93static void gen_conversion PARAMS ((struct agent_expr * ax,
94 struct type * from,
95 struct type * to));
96static int is_nontrivial_conversion PARAMS ((struct type * from,
97 struct type * to));
98static void gen_usual_arithmetic PARAMS ((struct agent_expr * ax,
99 struct axs_value * value1,
100 struct axs_value * value2));
101static void gen_integral_promotions PARAMS ((struct agent_expr * ax,
102 struct axs_value * value));
103static void gen_cast PARAMS ((struct agent_expr * ax,
104 struct axs_value * value,
105 struct type * type));
106static void gen_scale PARAMS ((struct agent_expr * ax,
c906108c 107 enum agent_op op,
c5aa993b
JM
108 struct type * type));
109static void gen_add PARAMS ((struct agent_expr * ax,
110 struct axs_value * value,
111 struct axs_value * value1,
112 struct axs_value * value2,
c906108c 113 char *name));
c5aa993b
JM
114static void gen_sub PARAMS ((struct agent_expr * ax,
115 struct axs_value * value,
116 struct axs_value * value1,
117 struct axs_value * value2));
118static void gen_binop PARAMS ((struct agent_expr * ax,
119 struct axs_value * value,
120 struct axs_value * value1,
121 struct axs_value * value2,
c906108c
SS
122 enum agent_op op,
123 enum agent_op op_unsigned,
124 int may_carry,
125 char *name));
c5aa993b
JM
126static void gen_logical_not PARAMS ((struct agent_expr * ax,
127 struct axs_value * value));
128static void gen_complement PARAMS ((struct agent_expr * ax,
129 struct axs_value * value));
c906108c
SS
130static void gen_deref PARAMS ((struct agent_expr *, struct axs_value *));
131static void gen_address_of PARAMS ((struct agent_expr *, struct axs_value *));
c5aa993b
JM
132static int find_field PARAMS ((struct type * type, char *name));
133static void gen_bitfield_ref PARAMS ((struct agent_expr * ax,
134 struct axs_value * value,
135 struct type * type,
c906108c 136 int start, int end));
c5aa993b
JM
137static void gen_struct_ref PARAMS ((struct agent_expr * ax,
138 struct axs_value * value,
c906108c
SS
139 char *field,
140 char *operator_name,
141 char *operand_name));
c5aa993b
JM
142static void gen_repeat PARAMS ((union exp_element ** pc,
143 struct agent_expr * ax,
144 struct axs_value * value));
145static void gen_sizeof PARAMS ((union exp_element ** pc,
146 struct agent_expr * ax,
147 struct axs_value * value));
148static void gen_expr PARAMS ((union exp_element ** pc,
149 struct agent_expr * ax,
150 struct axs_value * value));
151
d9fcf2fb 152static void print_axs_value (struct ui_file *f, struct axs_value * value);
c906108c 153static void agent_command PARAMS ((char *exp, int from_tty));
c906108c 154\f
c5aa993b 155
c906108c
SS
156/* Detecting constant expressions. */
157
158/* If the variable reference at *PC is a constant, return its value.
159 Otherwise, return zero.
160
161 Hey, Wally! How can a variable reference be a constant?
162
163 Well, Beav, this function really handles the OP_VAR_VALUE operator,
164 not specifically variable references. GDB uses OP_VAR_VALUE to
165 refer to any kind of symbolic reference: function names, enum
166 elements, and goto labels are all handled through the OP_VAR_VALUE
167 operator, even though they're constants. It makes sense given the
168 situation.
169
170 Gee, Wally, don'cha wonder sometimes if data representations that
171 subvert commonly accepted definitions of terms in favor of heavily
172 context-specific interpretations are really just a tool of the
173 programming hegemony to preserve their power and exclude the
174 proletariat? */
175
176static struct value *
177const_var_ref (var)
178 struct symbol *var;
179{
180 struct type *type = SYMBOL_TYPE (var);
181
182 switch (SYMBOL_CLASS (var))
183 {
184 case LOC_CONST:
185 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
186
187 case LOC_LABEL:
4478b372 188 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
189
190 default:
191 return 0;
192 }
193}
194
195
196/* If the expression starting at *PC has a constant value, return it.
197 Otherwise, return zero. If we return a value, then *PC will be
198 advanced to the end of it. If we return zero, *PC could be
199 anywhere. */
200static struct value *
201const_expr (pc)
202 union exp_element **pc;
203{
204 enum exp_opcode op = (*pc)->opcode;
205 struct value *v1;
206
207 switch (op)
208 {
209 case OP_LONG:
210 {
211 struct type *type = (*pc)[1].type;
212 LONGEST k = (*pc)[2].longconst;
213 (*pc) += 4;
214 return value_from_longest (type, k);
215 }
216
217 case OP_VAR_VALUE:
218 {
219 struct value *v = const_var_ref ((*pc)[2].symbol);
220 (*pc) += 4;
221 return v;
222 }
223
c5aa993b 224 /* We could add more operators in here. */
c906108c
SS
225
226 case UNOP_NEG:
227 (*pc)++;
228 v1 = const_expr (pc);
229 if (v1)
230 return value_neg (v1);
231 else
232 return 0;
233
234 default:
235 return 0;
236 }
237}
238
239
240/* Like const_expr, but guarantee also that *PC is undisturbed if the
241 expression is not constant. */
242static struct value *
243maybe_const_expr (pc)
244 union exp_element **pc;
245{
246 union exp_element *tentative_pc = *pc;
247 struct value *v = const_expr (&tentative_pc);
248
249 /* If we got a value, then update the real PC. */
250 if (v)
251 *pc = tentative_pc;
c5aa993b 252
c906108c
SS
253 return v;
254}
c906108c 255\f
c5aa993b 256
c906108c
SS
257/* Generating bytecode from GDB expressions: general assumptions */
258
259/* Here are a few general assumptions made throughout the code; if you
260 want to make a change that contradicts one of these, then you'd
261 better scan things pretty thoroughly.
262
263 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
264 sometimes we'll swap to get at the left argument to a binary
265 operator. If we decide that void values should occupy no stack
266 elements, or that synthetic arrays (whose size is determined at
267 run time, created by the `@' operator) should occupy two stack
268 elements (address and length), then this will cause trouble.
c906108c
SS
269
270 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
271 don't have to worry what happens if the user requests an
272 operation that is wider than the actual interpreter's stack.
273 That is, it's up to the interpreter to handle directly all the
274 integer widths the user has access to. (Woe betide the language
275 with bignums!)
c906108c
SS
276
277 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 278 GCC's generalized lvalues, function calls, etc.
c906108c
SS
279
280 - We don't support floating point. Many places where we switch on
c5aa993b
JM
281 some type don't bother to include cases for floating point; there
282 may be even more subtle ways this assumption exists. For
283 example, the arguments to % must be integers.
c906108c
SS
284
285 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
286 we tried to support convenience variables, this would be a
287 problem.
c906108c
SS
288
289 - All values on the stack should always be fully zero- or
c5aa993b
JM
290 sign-extended.
291
292 (I wasn't sure whether to choose this or its opposite --- that
293 only addresses are assumed extended --- but it turns out that
294 neither convention completely eliminates spurious extend
295 operations (if everything is always extended, then you have to
296 extend after add, because it could overflow; if nothing is
297 extended, then you end up producing extends whenever you change
298 sizes), and this is simpler.) */
c906108c 299\f
c5aa993b 300
c906108c
SS
301/* Generating bytecode from GDB expressions: the `trace' kludge */
302
303/* The compiler in this file is a general-purpose mechanism for
304 translating GDB expressions into bytecode. One ought to be able to
305 find a million and one uses for it.
306
307 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
308 of expediency. Let he who is without sin cast the first stone.
309
310 For the data tracing facility, we need to insert `trace' bytecodes
311 before each data fetch; this records all the memory that the
312 expression touches in the course of evaluation, so that memory will
313 be available when the user later tries to evaluate the expression
314 in GDB.
315
316 This should be done (I think) in a post-processing pass, that walks
317 an arbitrary agent expression and inserts `trace' operations at the
318 appropriate points. But it's much faster to just hack them
319 directly into the code. And since we're in a crunch, that's what
320 I've done.
321
322 Setting the flag trace_kludge to non-zero enables the code that
323 emits the trace bytecodes at the appropriate points. */
324static int trace_kludge;
325
326/* Trace the lvalue on the stack, if it needs it. In either case, pop
327 the value. Useful on the left side of a comma, and at the end of
328 an expression being used for tracing. */
329static void
330gen_traced_pop (ax, value)
331 struct agent_expr *ax;
332 struct axs_value *value;
333{
334 if (trace_kludge)
335 switch (value->kind)
336 {
337 case axs_rvalue:
338 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 339 produce them. So just dispose of this value. */
c906108c
SS
340 ax_simple (ax, aop_pop);
341 break;
342
343 case axs_lvalue_memory:
344 {
345 int length = TYPE_LENGTH (value->type);
346
347 /* There's no point in trying to use a trace_quick bytecode
348 here, since "trace_quick SIZE pop" is three bytes, whereas
349 "const8 SIZE trace" is also three bytes, does the same
350 thing, and the simplest code which generates that will also
351 work correctly for objects with large sizes. */
352 ax_const_l (ax, length);
353 ax_simple (ax, aop_trace);
354 }
c5aa993b 355 break;
c906108c
SS
356
357 case axs_lvalue_register:
358 /* We need to mention the register somewhere in the bytecode,
359 so ax_reqs will pick it up and add it to the mask of
360 registers used. */
361 ax_reg (ax, value->u.reg);
362 ax_simple (ax, aop_pop);
363 break;
364 }
365 else
366 /* If we're not tracing, just pop the value. */
367 ax_simple (ax, aop_pop);
368}
c5aa993b 369\f
c906108c
SS
370
371
c906108c
SS
372/* Generating bytecode from GDB expressions: helper functions */
373
374/* Assume that the lower bits of the top of the stack is a value of
375 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
376static void
377gen_sign_extend (ax, type)
378 struct agent_expr *ax;
379 struct type *type;
380{
381 /* Do we need to sign-extend this? */
c5aa993b 382 if (!TYPE_UNSIGNED (type))
c906108c
SS
383 ax_ext (ax, type->length * TARGET_CHAR_BIT);
384}
385
386
387/* Assume the lower bits of the top of the stack hold a value of type
388 TYPE, and the upper bits are garbage. Sign-extend or truncate as
389 needed. */
390static void
391gen_extend (ax, type)
392 struct agent_expr *ax;
393 struct type *type;
394{
395 int bits = type->length * TARGET_CHAR_BIT;
396 /* I just had to. */
397 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
398}
399
400
401/* Assume that the top of the stack contains a value of type "pointer
402 to TYPE"; generate code to fetch its value. Note that TYPE is the
403 target type, not the pointer type. */
404static void
405gen_fetch (ax, type)
406 struct agent_expr *ax;
407 struct type *type;
408{
409 if (trace_kludge)
410 {
411 /* Record the area of memory we're about to fetch. */
412 ax_trace_quick (ax, TYPE_LENGTH (type));
413 }
414
415 switch (type->code)
416 {
417 case TYPE_CODE_PTR:
418 case TYPE_CODE_ENUM:
419 case TYPE_CODE_INT:
420 case TYPE_CODE_CHAR:
421 /* It's a scalar value, so we know how to dereference it. How
422 many bytes long is it? */
423 switch (type->length)
424 {
c5aa993b
JM
425 case 8 / TARGET_CHAR_BIT:
426 ax_simple (ax, aop_ref8);
427 break;
428 case 16 / TARGET_CHAR_BIT:
429 ax_simple (ax, aop_ref16);
430 break;
431 case 32 / TARGET_CHAR_BIT:
432 ax_simple (ax, aop_ref32);
433 break;
434 case 64 / TARGET_CHAR_BIT:
435 ax_simple (ax, aop_ref64);
436 break;
c906108c
SS
437
438 /* Either our caller shouldn't have asked us to dereference
439 that pointer (other code's fault), or we're not
440 implementing something we should be (this code's fault).
441 In any case, it's a bug the user shouldn't see. */
442 default:
6426a772 443 internal_error ("ax-gdb.c (gen_fetch): strange size");
c906108c
SS
444 }
445
446 gen_sign_extend (ax, type);
447 break;
448
449 default:
450 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
451 pointer (other code's fault), or we're not implementing
452 something we should be (this code's fault). In any case,
453 it's a bug the user shouldn't see. */
6426a772 454 internal_error ("ax-gdb.c (gen_fetch): bad type code");
c906108c
SS
455 }
456}
457
458
459/* Generate code to left shift the top of the stack by DISTANCE bits, or
460 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
461 unsigned (logical) right shifts. */
462static void
463gen_left_shift (ax, distance)
464 struct agent_expr *ax;
465 int distance;
466{
467 if (distance > 0)
468 {
469 ax_const_l (ax, distance);
470 ax_simple (ax, aop_lsh);
471 }
472 else if (distance < 0)
473 {
474 ax_const_l (ax, -distance);
475 ax_simple (ax, aop_rsh_unsigned);
476 }
477}
c5aa993b 478\f
c906108c
SS
479
480
c906108c
SS
481/* Generating bytecode from GDB expressions: symbol references */
482
483/* Generate code to push the base address of the argument portion of
484 the top stack frame. */
485static void
486gen_frame_args_address (ax)
487 struct agent_expr *ax;
488{
489 long frame_reg, frame_offset;
490
491 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 492 ax_reg (ax, frame_reg);
c906108c
SS
493 gen_offset (ax, frame_offset);
494}
495
496
497/* Generate code to push the base address of the locals portion of the
498 top stack frame. */
499static void
500gen_frame_locals_address (ax)
501 struct agent_expr *ax;
502{
503 long frame_reg, frame_offset;
504
505 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 506 ax_reg (ax, frame_reg);
c906108c
SS
507 gen_offset (ax, frame_offset);
508}
509
510
511/* Generate code to add OFFSET to the top of the stack. Try to
512 generate short and readable code. We use this for getting to
513 variables on the stack, and structure members. If we were
514 programming in ML, it would be clearer why these are the same
515 thing. */
516static void
517gen_offset (ax, offset)
518 struct agent_expr *ax;
519 int offset;
520{
521 /* It would suffice to simply push the offset and add it, but this
522 makes it easier to read positive and negative offsets in the
523 bytecode. */
524 if (offset > 0)
525 {
526 ax_const_l (ax, offset);
527 ax_simple (ax, aop_add);
528 }
529 else if (offset < 0)
530 {
531 ax_const_l (ax, -offset);
532 ax_simple (ax, aop_sub);
533 }
534}
535
536
537/* In many cases, a symbol's value is the offset from some other
538 address (stack frame, base register, etc.) Generate code to add
539 VAR's value to the top of the stack. */
540static void
541gen_sym_offset (ax, var)
542 struct agent_expr *ax;
543 struct symbol *var;
544{
545 gen_offset (ax, SYMBOL_VALUE (var));
546}
547
548
549/* Generate code for a variable reference to AX. The variable is the
550 symbol VAR. Set VALUE to describe the result. */
551
552static void
553gen_var_ref (ax, value, var)
554 struct agent_expr *ax;
555 struct axs_value *value;
556 struct symbol *var;
557{
558 /* Dereference any typedefs. */
559 value->type = check_typedef (SYMBOL_TYPE (var));
560
561 /* I'm imitating the code in read_var_value. */
562 switch (SYMBOL_CLASS (var))
563 {
564 case LOC_CONST: /* A constant, like an enum value. */
565 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
566 value->kind = axs_rvalue;
567 break;
568
569 case LOC_LABEL: /* A goto label, being used as a value. */
570 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
571 value->kind = axs_rvalue;
572 break;
573
574 case LOC_CONST_BYTES:
6426a772 575 internal_error ("ax-gdb.c (gen_var_ref): LOC_CONST_BYTES symbols are not supported");
c906108c
SS
576
577 /* Variable at a fixed location in memory. Easy. */
578 case LOC_STATIC:
579 /* Push the address of the variable. */
580 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
581 value->kind = axs_lvalue_memory;
582 break;
583
584 case LOC_ARG: /* var lives in argument area of frame */
585 gen_frame_args_address (ax);
586 gen_sym_offset (ax, var);
587 value->kind = axs_lvalue_memory;
588 break;
589
590 case LOC_REF_ARG: /* As above, but the frame slot really
591 holds the address of the variable. */
592 gen_frame_args_address (ax);
593 gen_sym_offset (ax, var);
594 /* Don't assume any particular pointer size. */
595 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
596 value->kind = axs_lvalue_memory;
597 break;
598
599 case LOC_LOCAL: /* var lives in locals area of frame */
600 case LOC_LOCAL_ARG:
601 gen_frame_locals_address (ax);
602 gen_sym_offset (ax, var);
603 value->kind = axs_lvalue_memory;
604 break;
605
606 case LOC_BASEREG: /* relative to some base register */
607 case LOC_BASEREG_ARG:
608 ax_reg (ax, SYMBOL_BASEREG (var));
609 gen_sym_offset (ax, var);
610 value->kind = axs_lvalue_memory;
611 break;
612
613 case LOC_TYPEDEF:
614 error ("Cannot compute value of typedef `%s'.",
615 SYMBOL_SOURCE_NAME (var));
616 break;
617
618 case LOC_BLOCK:
619 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
620 value->kind = axs_rvalue;
621 break;
622
623 case LOC_REGISTER:
624 case LOC_REGPARM:
625 /* Don't generate any code at all; in the process of treating
626 this as an lvalue or rvalue, the caller will generate the
627 right code. */
628 value->kind = axs_lvalue_register;
629 value->u.reg = SYMBOL_VALUE (var);
630 break;
631
632 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
c5aa993b
JM
633 register, not on the stack. Simpler than LOC_REGISTER and
634 LOC_REGPARM, because it's just like any other case where the
635 thing has a real address. */
c906108c
SS
636 case LOC_REGPARM_ADDR:
637 ax_reg (ax, SYMBOL_VALUE (var));
638 value->kind = axs_lvalue_memory;
639 break;
640
641 case LOC_UNRESOLVED:
642 {
c5aa993b
JM
643 struct minimal_symbol *msym
644 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
645 if (!msym)
c906108c 646 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
c5aa993b 647
c906108c
SS
648 /* Push the address of the variable. */
649 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
650 value->kind = axs_lvalue_memory;
651 }
c5aa993b 652 break;
c906108c
SS
653
654 case LOC_OPTIMIZED_OUT:
655 error ("The variable `%s' has been optimized out.",
656 SYMBOL_SOURCE_NAME (var));
657 break;
658
659 default:
660 error ("Cannot find value of botched symbol `%s'.",
661 SYMBOL_SOURCE_NAME (var));
662 break;
663 }
664}
c5aa993b 665\f
c906108c
SS
666
667
c906108c
SS
668/* Generating bytecode from GDB expressions: literals */
669
670static void
671gen_int_literal (ax, value, k, type)
672 struct agent_expr *ax;
673 struct axs_value *value;
674 LONGEST k;
675 struct type *type;
676{
677 ax_const_l (ax, k);
678 value->kind = axs_rvalue;
679 value->type = type;
680}
c5aa993b 681\f
c906108c
SS
682
683
c906108c
SS
684/* Generating bytecode from GDB expressions: unary conversions, casts */
685
686/* Take what's on the top of the stack (as described by VALUE), and
687 try to make an rvalue out of it. Signal an error if we can't do
688 that. */
689static void
690require_rvalue (ax, value)
691 struct agent_expr *ax;
692 struct axs_value *value;
693{
694 switch (value->kind)
695 {
696 case axs_rvalue:
697 /* It's already an rvalue. */
698 break;
699
700 case axs_lvalue_memory:
701 /* The top of stack is the address of the object. Dereference. */
702 gen_fetch (ax, value->type);
703 break;
704
705 case axs_lvalue_register:
706 /* There's nothing on the stack, but value->u.reg is the
707 register number containing the value.
708
c5aa993b
JM
709 When we add floating-point support, this is going to have to
710 change. What about SPARC register pairs, for example? */
c906108c
SS
711 ax_reg (ax, value->u.reg);
712 gen_extend (ax, value->type);
713 break;
714 }
715
716 value->kind = axs_rvalue;
717}
718
719
720/* Assume the top of the stack is described by VALUE, and perform the
721 usual unary conversions. This is motivated by ANSI 6.2.2, but of
722 course GDB expressions are not ANSI; they're the mishmash union of
723 a bunch of languages. Rah.
724
725 NOTE! This function promises to produce an rvalue only when the
726 incoming value is of an appropriate type. In other words, the
727 consumer of the value this function produces may assume the value
728 is an rvalue only after checking its type.
729
730 The immediate issue is that if the user tries to use a structure or
731 union as an operand of, say, the `+' operator, we don't want to try
732 to convert that structure to an rvalue; require_rvalue will bomb on
733 structs and unions. Rather, we want to simply pass the struct
734 lvalue through unchanged, and let `+' raise an error. */
735
736static void
737gen_usual_unary (ax, value)
738 struct agent_expr *ax;
739 struct axs_value *value;
740{
741 /* We don't have to generate any code for the usual integral
742 conversions, since values are always represented as full-width on
743 the stack. Should we tweak the type? */
744
745 /* Some types require special handling. */
746 switch (value->type->code)
747 {
748 /* Functions get converted to a pointer to the function. */
749 case TYPE_CODE_FUNC:
750 value->type = lookup_pointer_type (value->type);
751 value->kind = axs_rvalue; /* Should always be true, but just in case. */
752 break;
753
754 /* Arrays get converted to a pointer to their first element, and
c5aa993b 755 are no longer an lvalue. */
c906108c
SS
756 case TYPE_CODE_ARRAY:
757 {
758 struct type *elements = TYPE_TARGET_TYPE (value->type);
759 value->type = lookup_pointer_type (elements);
760 value->kind = axs_rvalue;
761 /* We don't need to generate any code; the address of the array
762 is also the address of its first element. */
763 }
c5aa993b 764 break;
c906108c 765
c5aa993b
JM
766 /* Don't try to convert structures and unions to rvalues. Let the
767 consumer signal an error. */
c906108c
SS
768 case TYPE_CODE_STRUCT:
769 case TYPE_CODE_UNION:
770 return;
771
772 /* If the value is an enum, call it an integer. */
773 case TYPE_CODE_ENUM:
774 value->type = builtin_type_int;
775 break;
776 }
777
778 /* If the value is an lvalue, dereference it. */
779 require_rvalue (ax, value);
780}
781
782
783/* Return non-zero iff the type TYPE1 is considered "wider" than the
784 type TYPE2, according to the rules described in gen_usual_arithmetic. */
785static int
786type_wider_than (type1, type2)
787 struct type *type1, *type2;
788{
789 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
790 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
791 && TYPE_UNSIGNED (type1)
c5aa993b 792 && !TYPE_UNSIGNED (type2)));
c906108c
SS
793}
794
795
796/* Return the "wider" of the two types TYPE1 and TYPE2. */
797static struct type *
798max_type (type1, type2)
799 struct type *type1, *type2;
800{
801 return type_wider_than (type1, type2) ? type1 : type2;
802}
803
804
805/* Generate code to convert a scalar value of type FROM to type TO. */
806static void
807gen_conversion (ax, from, to)
808 struct agent_expr *ax;
809 struct type *from, *to;
810{
811 /* Perhaps there is a more graceful way to state these rules. */
812
813 /* If we're converting to a narrower type, then we need to clear out
814 the upper bits. */
815 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
816 gen_extend (ax, from);
817
818 /* If the two values have equal width, but different signednesses,
819 then we need to extend. */
820 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
821 {
822 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
823 gen_extend (ax, to);
824 }
825
826 /* If we're converting to a wider type, and becoming unsigned, then
827 we need to zero out any possible sign bits. */
828 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
829 {
830 if (TYPE_UNSIGNED (to))
831 gen_extend (ax, to);
832 }
833}
834
835
836/* Return non-zero iff the type FROM will require any bytecodes to be
837 emitted to be converted to the type TO. */
838static int
839is_nontrivial_conversion (from, to)
840 struct type *from, *to;
841{
842 struct agent_expr *ax = new_agent_expr (0);
843 int nontrivial;
844
845 /* Actually generate the code, and see if anything came out. At the
846 moment, it would be trivial to replicate the code in
847 gen_conversion here, but in the future, when we're supporting
848 floating point and the like, it may not be. Doing things this
849 way allows this function to be independent of the logic in
850 gen_conversion. */
851 gen_conversion (ax, from, to);
852 nontrivial = ax->len > 0;
853 free_agent_expr (ax);
854 return nontrivial;
855}
856
857
858/* Generate code to perform the "usual arithmetic conversions" (ANSI C
859 6.2.1.5) for the two operands of an arithmetic operator. This
860 effectively finds a "least upper bound" type for the two arguments,
861 and promotes each argument to that type. *VALUE1 and *VALUE2
862 describe the values as they are passed in, and as they are left. */
863static void
864gen_usual_arithmetic (ax, value1, value2)
865 struct agent_expr *ax;
866 struct axs_value *value1, *value2;
867{
868 /* Do the usual binary conversions. */
869 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
870 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
871 {
872 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
873 integer types by size, and then by signedness: an n-bit
874 unsigned type is considered "wider" than an n-bit signed
875 type. Promote to the "wider" of the two types, and always
876 promote at least to int. */
c906108c
SS
877 struct type *target = max_type (builtin_type_int,
878 max_type (value1->type, value2->type));
879
880 /* Deal with value2, on the top of the stack. */
881 gen_conversion (ax, value2->type, target);
882
883 /* Deal with value1, not on the top of the stack. Don't
884 generate the `swap' instructions if we're not actually going
885 to do anything. */
886 if (is_nontrivial_conversion (value1->type, target))
887 {
888 ax_simple (ax, aop_swap);
889 gen_conversion (ax, value1->type, target);
890 ax_simple (ax, aop_swap);
891 }
892
893 value1->type = value2->type = target;
894 }
895}
896
897
898/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
899 the value on the top of the stack, as described by VALUE. Assume
900 the value has integral type. */
901static void
902gen_integral_promotions (ax, value)
903 struct agent_expr *ax;
904 struct axs_value *value;
905{
c5aa993b 906 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
907 {
908 gen_conversion (ax, value->type, builtin_type_int);
909 value->type = builtin_type_int;
910 }
c5aa993b 911 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
912 {
913 gen_conversion (ax, value->type, builtin_type_unsigned_int);
914 value->type = builtin_type_unsigned_int;
915 }
916}
917
918
919/* Generate code for a cast to TYPE. */
920static void
921gen_cast (ax, value, type)
922 struct agent_expr *ax;
923 struct axs_value *value;
924 struct type *type;
925{
926 /* GCC does allow casts to yield lvalues, so this should be fixed
927 before merging these changes into the trunk. */
928 require_rvalue (ax, value);
929 /* Dereference typedefs. */
930 type = check_typedef (type);
931
932 switch (type->code)
933 {
934 case TYPE_CODE_PTR:
935 /* It's implementation-defined, and I'll bet this is what GCC
936 does. */
937 break;
938
939 case TYPE_CODE_ARRAY:
940 case TYPE_CODE_STRUCT:
941 case TYPE_CODE_UNION:
942 case TYPE_CODE_FUNC:
943 error ("Illegal type cast: intended type must be scalar.");
944
945 case TYPE_CODE_ENUM:
946 /* We don't have to worry about the size of the value, because
947 all our integral values are fully sign-extended, and when
948 casting pointers we can do anything we like. Is there any
949 way for us to actually know what GCC actually does with a
950 cast like this? */
951 value->type = type;
952 break;
c5aa993b 953
c906108c
SS
954 case TYPE_CODE_INT:
955 gen_conversion (ax, value->type, type);
956 break;
957
958 case TYPE_CODE_VOID:
959 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
960 the type and notice that this value doesn't occupy a stack
961 slot. But for now, leave the value on the stack, and
962 preserve the "value == stack element" assumption. */
c906108c
SS
963 break;
964
965 default:
966 error ("Casts to requested type are not yet implemented.");
967 }
968
969 value->type = type;
970}
c5aa993b 971\f
c906108c
SS
972
973
c906108c
SS
974/* Generating bytecode from GDB expressions: arithmetic */
975
976/* Scale the integer on the top of the stack by the size of the target
977 of the pointer type TYPE. */
978static void
979gen_scale (ax, op, type)
980 struct agent_expr *ax;
981 enum agent_op op;
982 struct type *type;
983{
984 struct type *element = TYPE_TARGET_TYPE (type);
985
986 if (element->length != 1)
987 {
988 ax_const_l (ax, element->length);
989 ax_simple (ax, op);
990 }
991}
992
993
994/* Generate code for an addition; non-trivial because we deal with
995 pointer arithmetic. We set VALUE to describe the result value; we
996 assume VALUE1 and VALUE2 describe the two operands, and that
997 they've undergone the usual binary conversions. Used by both
998 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
999static void
1000gen_add (ax, value, value1, value2, name)
1001 struct agent_expr *ax;
1002 struct axs_value *value, *value1, *value2;
1003 char *name;
1004{
1005 /* Is it INT+PTR? */
1006 if (value1->type->code == TYPE_CODE_INT
1007 && value2->type->code == TYPE_CODE_PTR)
1008 {
1009 /* Swap the values and proceed normally. */
1010 ax_simple (ax, aop_swap);
1011 gen_scale (ax, aop_mul, value2->type);
1012 ax_simple (ax, aop_add);
c5aa993b 1013 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
1014 value->type = value2->type;
1015 }
1016
1017 /* Is it PTR+INT? */
1018 else if (value1->type->code == TYPE_CODE_PTR
1019 && value2->type->code == TYPE_CODE_INT)
1020 {
1021 gen_scale (ax, aop_mul, value1->type);
1022 ax_simple (ax, aop_add);
c5aa993b 1023 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1024 value->type = value1->type;
1025 }
1026
1027 /* Must be number + number; the usual binary conversions will have
1028 brought them both to the same width. */
1029 else if (value1->type->code == TYPE_CODE_INT
1030 && value2->type->code == TYPE_CODE_INT)
1031 {
1032 ax_simple (ax, aop_add);
c5aa993b 1033 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1034 value->type = value1->type;
1035 }
1036
1037 else
1038 error ("Illegal combination of types in %s.", name);
1039
1040 value->kind = axs_rvalue;
1041}
1042
1043
1044/* Generate code for an addition; non-trivial because we have to deal
1045 with pointer arithmetic. We set VALUE to describe the result
1046 value; we assume VALUE1 and VALUE2 describe the two operands, and
1047 that they've undergone the usual binary conversions. */
1048static void
1049gen_sub (ax, value, value1, value2)
1050 struct agent_expr *ax;
1051 struct axs_value *value, *value1, *value2;
1052{
c906108c
SS
1053 if (value1->type->code == TYPE_CODE_PTR)
1054 {
1055 /* Is it PTR - INT? */
1056 if (value2->type->code == TYPE_CODE_INT)
1057 {
1058 gen_scale (ax, aop_mul, value1->type);
1059 ax_simple (ax, aop_sub);
c5aa993b 1060 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1061 value->type = value1->type;
1062 }
1063
1064 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1065 match, but this is what the normal GDB expression evaluator
1066 tests for. */
c906108c
SS
1067 else if (value2->type->code == TYPE_CODE_PTR
1068 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1069 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1070 {
1071 ax_simple (ax, aop_sub);
1072 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1073 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1074 }
1075 else
1076 error ("\
1077First argument of `-' is a pointer, but second argument is neither\n\
1078an integer nor a pointer of the same type.");
1079 }
1080
1081 /* Must be number + number. */
1082 else if (value1->type->code == TYPE_CODE_INT
1083 && value2->type->code == TYPE_CODE_INT)
1084 {
1085 ax_simple (ax, aop_sub);
c5aa993b 1086 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1087 value->type = value1->type;
1088 }
c5aa993b 1089
c906108c
SS
1090 else
1091 error ("Illegal combination of types in subtraction.");
1092
1093 value->kind = axs_rvalue;
1094}
1095
1096/* Generate code for a binary operator that doesn't do pointer magic.
1097 We set VALUE to describe the result value; we assume VALUE1 and
1098 VALUE2 describe the two operands, and that they've undergone the
1099 usual binary conversions. MAY_CARRY should be non-zero iff the
1100 result needs to be extended. NAME is the English name of the
1101 operator, used in error messages */
1102static void
1103gen_binop (ax, value, value1, value2, op, op_unsigned, may_carry, name)
1104 struct agent_expr *ax;
1105 struct axs_value *value, *value1, *value2;
1106 enum agent_op op, op_unsigned;
1107 int may_carry;
1108 char *name;
1109{
1110 /* We only handle INT op INT. */
1111 if ((value1->type->code != TYPE_CODE_INT)
1112 || (value2->type->code != TYPE_CODE_INT))
1113 error ("Illegal combination of types in %s.", name);
c5aa993b 1114
c906108c
SS
1115 ax_simple (ax,
1116 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1117 if (may_carry)
c5aa993b 1118 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1119 value->type = value1->type;
1120 value->kind = axs_rvalue;
1121}
1122
1123
1124static void
1125gen_logical_not (ax, value)
1126 struct agent_expr *ax;
1127 struct axs_value *value;
1128{
1129 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1130 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1131 error ("Illegal type of operand to `!'.");
1132
1133 gen_usual_unary (ax, value);
1134 ax_simple (ax, aop_log_not);
1135 value->type = builtin_type_int;
1136}
1137
1138
1139static void
1140gen_complement (ax, value)
1141 struct agent_expr *ax;
1142 struct axs_value *value;
1143{
1144 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1145 error ("Illegal type of operand to `~'.");
1146
1147 gen_usual_unary (ax, value);
1148 gen_integral_promotions (ax, value);
1149 ax_simple (ax, aop_bit_not);
1150 gen_extend (ax, value->type);
1151}
c5aa993b 1152\f
c906108c
SS
1153
1154
c906108c
SS
1155/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1156
1157/* Dereference the value on the top of the stack. */
1158static void
1159gen_deref (ax, value)
1160 struct agent_expr *ax;
1161 struct axs_value *value;
1162{
1163 /* The caller should check the type, because several operators use
1164 this, and we don't know what error message to generate. */
1165 if (value->type->code != TYPE_CODE_PTR)
6426a772 1166 internal_error ("ax-gdb.c (gen_deref): expected a pointer");
c906108c
SS
1167
1168 /* We've got an rvalue now, which is a pointer. We want to yield an
1169 lvalue, whose address is exactly that pointer. So we don't
1170 actually emit any code; we just change the type from "Pointer to
1171 T" to "T", and mark the value as an lvalue in memory. Leave it
1172 to the consumer to actually dereference it. */
1173 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1174 value->kind = ((value->type->code == TYPE_CODE_FUNC)
1175 ? axs_rvalue : axs_lvalue_memory);
1176}
1177
1178
1179/* Produce the address of the lvalue on the top of the stack. */
1180static void
1181gen_address_of (ax, value)
1182 struct agent_expr *ax;
1183 struct axs_value *value;
1184{
1185 /* Special case for taking the address of a function. The ANSI
1186 standard describes this as a special case, too, so this
1187 arrangement is not without motivation. */
1188 if (value->type->code == TYPE_CODE_FUNC)
1189 /* The value's already an rvalue on the stack, so we just need to
1190 change the type. */
1191 value->type = lookup_pointer_type (value->type);
1192 else
1193 switch (value->kind)
1194 {
1195 case axs_rvalue:
1196 error ("Operand of `&' is an rvalue, which has no address.");
1197
1198 case axs_lvalue_register:
1199 error ("Operand of `&' is in a register, and has no address.");
1200
1201 case axs_lvalue_memory:
1202 value->kind = axs_rvalue;
1203 value->type = lookup_pointer_type (value->type);
1204 break;
1205 }
1206}
1207
1208
1209/* A lot of this stuff will have to change to support C++. But we're
1210 not going to deal with that at the moment. */
1211
1212/* Find the field in the structure type TYPE named NAME, and return
1213 its index in TYPE's field array. */
1214static int
1215find_field (type, name)
1216 struct type *type;
1217 char *name;
1218{
1219 int i;
1220
1221 CHECK_TYPEDEF (type);
1222
1223 /* Make sure this isn't C++. */
1224 if (TYPE_N_BASECLASSES (type) != 0)
6426a772 1225 internal_error ("ax-gdb.c (find_field): derived classes supported");
c906108c
SS
1226
1227 for (i = 0; i < TYPE_NFIELDS (type); i++)
1228 {
1229 char *this_name = TYPE_FIELD_NAME (type, i);
1230
1231 if (this_name && STREQ (name, this_name))
1232 return i;
1233
1234 if (this_name[0] == '\0')
6426a772 1235 internal_error ("ax-gdb.c (find_field): anonymous unions not supported");
c906108c
SS
1236 }
1237
1238 error ("Couldn't find member named `%s' in struct/union `%s'",
1239 name, type->tag_name);
1240
1241 return 0;
1242}
1243
1244
1245/* Generate code to push the value of a bitfield of a structure whose
1246 address is on the top of the stack. START and END give the
1247 starting and one-past-ending *bit* numbers of the field within the
1248 structure. */
1249static void
1250gen_bitfield_ref (ax, value, type, start, end)
1251 struct agent_expr *ax;
1252 struct axs_value *value;
1253 struct type *type;
1254 int start, end;
1255{
1256 /* Note that ops[i] fetches 8 << i bits. */
1257 static enum agent_op ops[]
c5aa993b
JM
1258 =
1259 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1260 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1261
1262 /* We don't want to touch any byte that the bitfield doesn't
1263 actually occupy; we shouldn't make any accesses we're not
1264 explicitly permitted to. We rely here on the fact that the
1265 bytecode `ref' operators work on unaligned addresses.
1266
1267 It takes some fancy footwork to get the stack to work the way
1268 we'd like. Say we're retrieving a bitfield that requires three
1269 fetches. Initially, the stack just contains the address:
c5aa993b 1270 addr
c906108c 1271 For the first fetch, we duplicate the address
c5aa993b 1272 addr addr
c906108c
SS
1273 then add the byte offset, do the fetch, and shift and mask as
1274 needed, yielding a fragment of the value, properly aligned for
1275 the final bitwise or:
c5aa993b 1276 addr frag1
c906108c 1277 then we swap, and repeat the process:
c5aa993b
JM
1278 frag1 addr --- address on top
1279 frag1 addr addr --- duplicate it
1280 frag1 addr frag2 --- get second fragment
1281 frag1 frag2 addr --- swap again
1282 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1283 Notice that, since the third fragment is the last one, we don't
1284 bother duplicating the address this time. Now we have all the
1285 fragments on the stack, and we can simply `or' them together,
1286 yielding the final value of the bitfield. */
1287
1288 /* The first and one-after-last bits in the field, but rounded down
1289 and up to byte boundaries. */
1290 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1291 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1292 / TARGET_CHAR_BIT)
1293 * TARGET_CHAR_BIT);
c906108c
SS
1294
1295 /* current bit offset within the structure */
1296 int offset;
1297
1298 /* The index in ops of the opcode we're considering. */
1299 int op;
1300
1301 /* The number of fragments we generated in the process. Probably
1302 equal to the number of `one' bits in bytesize, but who cares? */
1303 int fragment_count;
1304
1305 /* Dereference any typedefs. */
1306 type = check_typedef (type);
1307
1308 /* Can we fetch the number of bits requested at all? */
1309 if ((end - start) > ((1 << num_ops) * 8))
6426a772 1310 internal_error ("ax-gdb.c (gen_bitfield_ref): bitfield too wide");
c906108c
SS
1311
1312 /* Note that we know here that we only need to try each opcode once.
1313 That may not be true on machines with weird byte sizes. */
1314 offset = bound_start;
1315 fragment_count = 0;
1316 for (op = num_ops - 1; op >= 0; op--)
1317 {
1318 /* number of bits that ops[op] would fetch */
1319 int op_size = 8 << op;
1320
1321 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1322 more fragments, then the address. */
1323
c906108c
SS
1324 /* Does this fetch fit within the bitfield? */
1325 if (offset + op_size <= bound_end)
1326 {
1327 /* Is this the last fragment? */
1328 int last_frag = (offset + op_size == bound_end);
1329
c5aa993b
JM
1330 if (!last_frag)
1331 ax_simple (ax, aop_dup); /* keep a copy of the address */
1332
c906108c
SS
1333 /* Add the offset. */
1334 gen_offset (ax, offset / TARGET_CHAR_BIT);
1335
1336 if (trace_kludge)
1337 {
1338 /* Record the area of memory we're about to fetch. */
1339 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1340 }
1341
1342 /* Perform the fetch. */
1343 ax_simple (ax, ops[op]);
c5aa993b
JM
1344
1345 /* Shift the bits we have to their proper position.
c906108c
SS
1346 gen_left_shift will generate right shifts when the operand
1347 is negative.
1348
c5aa993b
JM
1349 A big-endian field diagram to ponder:
1350 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1351 +------++------++------++------++------++------++------++------+
1352 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1353 ^ ^ ^ ^
1354 bit number 16 32 48 53
c906108c
SS
1355 These are bit numbers as supplied by GDB. Note that the
1356 bit numbers run from right to left once you've fetched the
1357 value!
1358
c5aa993b
JM
1359 A little-endian field diagram to ponder:
1360 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1361 +------++------++------++------++------++------++------++------+
1362 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1363 ^ ^ ^ ^ ^
1364 bit number 48 32 16 4 0
1365
1366 In both cases, the most significant end is on the left
1367 (i.e. normal numeric writing order), which means that you
1368 don't go crazy thinking about `left' and `right' shifts.
1369
1370 We don't have to worry about masking yet:
1371 - If they contain garbage off the least significant end, then we
1372 must be looking at the low end of the field, and the right
1373 shift will wipe them out.
1374 - If they contain garbage off the most significant end, then we
1375 must be looking at the most significant end of the word, and
1376 the sign/zero extension will wipe them out.
1377 - If we're in the interior of the word, then there is no garbage
1378 on either end, because the ref operators zero-extend. */
c906108c
SS
1379 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1380 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1381 else
c906108c
SS
1382 gen_left_shift (ax, offset - start);
1383
c5aa993b 1384 if (!last_frag)
c906108c
SS
1385 /* Bring the copy of the address up to the top. */
1386 ax_simple (ax, aop_swap);
1387
1388 offset += op_size;
1389 fragment_count++;
1390 }
1391 }
1392
1393 /* Generate enough bitwise `or' operations to combine all the
1394 fragments we left on the stack. */
1395 while (fragment_count-- > 1)
1396 ax_simple (ax, aop_bit_or);
1397
1398 /* Sign- or zero-extend the value as appropriate. */
1399 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1400
1401 /* This is *not* an lvalue. Ugh. */
1402 value->kind = axs_rvalue;
1403 value->type = type;
1404}
1405
1406
1407/* Generate code to reference the member named FIELD of a structure or
1408 union. The top of the stack, as described by VALUE, should have
1409 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1410 the operator being compiled, and OPERAND_NAME is the kind of thing
1411 it operates on; we use them in error messages. */
1412static void
1413gen_struct_ref (ax, value, field, operator_name, operand_name)
1414 struct agent_expr *ax;
1415 struct axs_value *value;
1416 char *field;
1417 char *operator_name;
1418 char *operand_name;
1419{
1420 struct type *type;
1421 int i;
1422
1423 /* Follow pointers until we reach a non-pointer. These aren't the C
1424 semantics, but they're what the normal GDB evaluator does, so we
1425 should at least be consistent. */
1426 while (value->type->code == TYPE_CODE_PTR)
1427 {
1428 gen_usual_unary (ax, value);
1429 gen_deref (ax, value);
1430 }
1431 type = value->type;
1432
1433 /* This must yield a structure or a union. */
1434 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1435 && TYPE_CODE (type) != TYPE_CODE_UNION)
1436 error ("The left operand of `%s' is not a %s.",
1437 operator_name, operand_name);
1438
1439 /* And it must be in memory; we don't deal with structure rvalues,
1440 or structures living in registers. */
1441 if (value->kind != axs_lvalue_memory)
1442 error ("Structure does not live in memory.");
1443
1444 i = find_field (type, field);
c5aa993b 1445
c906108c
SS
1446 /* Is this a bitfield? */
1447 if (TYPE_FIELD_PACKED (type, i))
1448 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1449 TYPE_FIELD_BITPOS (type, i),
1450 (TYPE_FIELD_BITPOS (type, i)
1451 + TYPE_FIELD_BITSIZE (type, i)));
1452 else
1453 {
1454 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1455 value->kind = axs_lvalue_memory;
1456 value->type = TYPE_FIELD_TYPE (type, i);
1457 }
1458}
1459
1460
1461/* Generate code for GDB's magical `repeat' operator.
1462 LVALUE @ INT creates an array INT elements long, and whose elements
1463 have the same type as LVALUE, located in memory so that LVALUE is
1464 its first element. For example, argv[0]@argc gives you the array
1465 of command-line arguments.
1466
1467 Unfortunately, because we have to know the types before we actually
1468 have a value for the expression, we can't implement this perfectly
1469 without changing the type system, having values that occupy two
1470 stack slots, doing weird things with sizeof, etc. So we require
1471 the right operand to be a constant expression. */
1472static void
1473gen_repeat (pc, ax, value)
1474 union exp_element **pc;
1475 struct agent_expr *ax;
1476 struct axs_value *value;
1477{
1478 struct axs_value value1;
1479 /* We don't want to turn this into an rvalue, so no conversions
1480 here. */
1481 gen_expr (pc, ax, &value1);
1482 if (value1.kind != axs_lvalue_memory)
1483 error ("Left operand of `@' must be an object in memory.");
1484
1485 /* Evaluate the length; it had better be a constant. */
1486 {
1487 struct value *v = const_expr (pc);
1488 int length;
1489
c5aa993b 1490 if (!v)
c906108c
SS
1491 error ("Right operand of `@' must be a constant, in agent expressions.");
1492 if (v->type->code != TYPE_CODE_INT)
1493 error ("Right operand of `@' must be an integer.");
1494 length = value_as_long (v);
1495 if (length <= 0)
1496 error ("Right operand of `@' must be positive.");
1497
1498 /* The top of the stack is already the address of the object, so
1499 all we need to do is frob the type of the lvalue. */
1500 {
1501 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1502 done with it. */
c906108c 1503 struct type *range
c5aa993b 1504 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1505 struct type *array = create_array_type (0, value1.type, range);
1506
1507 value->kind = axs_lvalue_memory;
1508 value->type = array;
1509 }
1510 }
1511}
1512
1513
1514/* Emit code for the `sizeof' operator.
1515 *PC should point at the start of the operand expression; we advance it
1516 to the first instruction after the operand. */
1517static void
1518gen_sizeof (pc, ax, value)
1519 union exp_element **pc;
1520 struct agent_expr *ax;
1521 struct axs_value *value;
1522{
1523 /* We don't care about the value of the operand expression; we only
1524 care about its type. However, in the current arrangement, the
1525 only way to find an expression's type is to generate code for it.
1526 So we generate code for the operand, and then throw it away,
1527 replacing it with code that simply pushes its size. */
1528 int start = ax->len;
1529 gen_expr (pc, ax, value);
1530
1531 /* Throw away the code we just generated. */
1532 ax->len = start;
c5aa993b 1533
c906108c
SS
1534 ax_const_l (ax, TYPE_LENGTH (value->type));
1535 value->kind = axs_rvalue;
1536 value->type = builtin_type_int;
1537}
c906108c 1538\f
c5aa993b 1539
c906108c
SS
1540/* Generating bytecode from GDB expressions: general recursive thingy */
1541
1542/* A gen_expr function written by a Gen-X'er guy.
1543 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1544static void
1545gen_expr (pc, ax, value)
1546 union exp_element **pc;
1547 struct agent_expr *ax;
1548 struct axs_value *value;
1549{
1550 /* Used to hold the descriptions of operand expressions. */
1551 struct axs_value value1, value2;
1552 enum exp_opcode op = (*pc)[0].opcode;
1553
1554 /* If we're looking at a constant expression, just push its value. */
1555 {
1556 struct value *v = maybe_const_expr (pc);
c5aa993b 1557
c906108c
SS
1558 if (v)
1559 {
1560 ax_const_l (ax, value_as_long (v));
1561 value->kind = axs_rvalue;
1562 value->type = check_typedef (VALUE_TYPE (v));
1563 return;
1564 }
1565 }
1566
1567 /* Otherwise, go ahead and generate code for it. */
1568 switch (op)
1569 {
1570 /* Binary arithmetic operators. */
1571 case BINOP_ADD:
1572 case BINOP_SUB:
1573 case BINOP_MUL:
1574 case BINOP_DIV:
1575 case BINOP_REM:
1576 case BINOP_SUBSCRIPT:
1577 case BINOP_BITWISE_AND:
1578 case BINOP_BITWISE_IOR:
1579 case BINOP_BITWISE_XOR:
1580 (*pc)++;
1581 gen_expr (pc, ax, &value1);
1582 gen_usual_unary (ax, &value1);
1583 gen_expr (pc, ax, &value2);
1584 gen_usual_unary (ax, &value2);
1585 gen_usual_arithmetic (ax, &value1, &value2);
1586 switch (op)
1587 {
1588 case BINOP_ADD:
1589 gen_add (ax, value, &value1, &value2, "addition");
1590 break;
1591 case BINOP_SUB:
1592 gen_sub (ax, value, &value1, &value2);
1593 break;
1594 case BINOP_MUL:
1595 gen_binop (ax, value, &value1, &value2,
1596 aop_mul, aop_mul, 1, "multiplication");
1597 break;
1598 case BINOP_DIV:
1599 gen_binop (ax, value, &value1, &value2,
1600 aop_div_signed, aop_div_unsigned, 1, "division");
1601 break;
1602 case BINOP_REM:
1603 gen_binop (ax, value, &value1, &value2,
1604 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1605 break;
1606 case BINOP_SUBSCRIPT:
1607 gen_add (ax, value, &value1, &value2, "array subscripting");
1608 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1609 error ("Illegal combination of types in array subscripting.");
1610 gen_deref (ax, value);
1611 break;
1612 case BINOP_BITWISE_AND:
1613 gen_binop (ax, value, &value1, &value2,
1614 aop_bit_and, aop_bit_and, 0, "bitwise and");
1615 break;
1616
1617 case BINOP_BITWISE_IOR:
1618 gen_binop (ax, value, &value1, &value2,
1619 aop_bit_or, aop_bit_or, 0, "bitwise or");
1620 break;
1621
1622 case BINOP_BITWISE_XOR:
1623 gen_binop (ax, value, &value1, &value2,
1624 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1625 break;
1626
1627 default:
1628 /* We should only list operators in the outer case statement
c5aa993b 1629 that we actually handle in the inner case statement. */
6426a772 1630 internal_error ("ax-gdb.c (gen_expr): op case sets don't match");
c906108c
SS
1631 }
1632 break;
1633
1634 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1635 for comma. In C, we can do some optimizations here because
1636 we know the left operand is only being evaluated for effect.
1637 However, if the tracing kludge is in effect, then we always
1638 need to evaluate the left hand side fully, so that all the
1639 variables it mentions get traced. */
c906108c
SS
1640 case BINOP_COMMA:
1641 (*pc)++;
1642 gen_expr (pc, ax, &value1);
1643 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1644 in which case we want to emit code to trace it if it's an
1645 lvalue. */
c906108c
SS
1646 gen_traced_pop (ax, &value1);
1647 gen_expr (pc, ax, value);
1648 /* It's the consumer's responsibility to trace the right operand. */
1649 break;
c5aa993b 1650
c906108c
SS
1651 case OP_LONG: /* some integer constant */
1652 {
1653 struct type *type = (*pc)[1].type;
1654 LONGEST k = (*pc)[2].longconst;
1655 (*pc) += 4;
1656 gen_int_literal (ax, value, k, type);
1657 }
c5aa993b 1658 break;
c906108c
SS
1659
1660 case OP_VAR_VALUE:
1661 gen_var_ref (ax, value, (*pc)[2].symbol);
1662 (*pc) += 4;
1663 break;
1664
1665 case OP_REGISTER:
1666 {
1667 int reg = (int) (*pc)[1].longconst;
1668 (*pc) += 3;
1669 value->kind = axs_lvalue_register;
1670 value->u.reg = reg;
1671 value->type = REGISTER_VIRTUAL_TYPE (reg);
1672 }
c5aa993b 1673 break;
c906108c
SS
1674
1675 case OP_INTERNALVAR:
1676 error ("GDB agent expressions cannot use convenience variables.");
1677
c5aa993b 1678 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1679 case BINOP_REPEAT:
1680 /* Note that gen_repeat handles its own argument evaluation. */
1681 (*pc)++;
1682 gen_repeat (pc, ax, value);
1683 break;
1684
1685 case UNOP_CAST:
1686 {
1687 struct type *type = (*pc)[1].type;
1688 (*pc) += 3;
1689 gen_expr (pc, ax, value);
1690 gen_cast (ax, value, type);
1691 }
c5aa993b 1692 break;
c906108c
SS
1693
1694 case UNOP_MEMVAL:
1695 {
1696 struct type *type = check_typedef ((*pc)[1].type);
1697 (*pc) += 3;
1698 gen_expr (pc, ax, value);
1699 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1700 it's just a hack for dealing with minsyms; you take some
1701 integer constant, pretend it's the address of an lvalue of
1702 the given type, and dereference it. */
1703 if (value->kind != axs_rvalue)
1704 /* This would be weird. */
6426a772 1705 internal_error ("ax-gdb.c (gen_expr): OP_MEMVAL operand isn't an rvalue???");
c906108c
SS
1706 value->type = type;
1707 value->kind = axs_lvalue_memory;
1708 }
c5aa993b 1709 break;
c906108c
SS
1710
1711 case UNOP_NEG:
1712 (*pc)++;
1713 /* -FOO is equivalent to 0 - FOO. */
1714 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1715 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1716 gen_expr (pc, ax, &value2);
1717 gen_usual_unary (ax, &value2);
1718 gen_usual_arithmetic (ax, &value1, &value2);
1719 gen_sub (ax, value, &value1, &value2);
1720 break;
1721
1722 case UNOP_LOGICAL_NOT:
1723 (*pc)++;
1724 gen_expr (pc, ax, value);
1725 gen_logical_not (ax, value);
1726 break;
1727
1728 case UNOP_COMPLEMENT:
1729 (*pc)++;
1730 gen_expr (pc, ax, value);
1731 gen_complement (ax, value);
1732 break;
1733
1734 case UNOP_IND:
1735 (*pc)++;
1736 gen_expr (pc, ax, value);
1737 gen_usual_unary (ax, value);
1738 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1739 error ("Argument of unary `*' is not a pointer.");
1740 gen_deref (ax, value);
1741 break;
1742
1743 case UNOP_ADDR:
1744 (*pc)++;
1745 gen_expr (pc, ax, value);
1746 gen_address_of (ax, value);
1747 break;
1748
1749 case UNOP_SIZEOF:
1750 (*pc)++;
1751 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1752 of the other unary operator functions. This is because we
1753 have to throw away the code we generate. */
c906108c
SS
1754 gen_sizeof (pc, ax, value);
1755 break;
1756
1757 case STRUCTOP_STRUCT:
1758 case STRUCTOP_PTR:
1759 {
1760 int length = (*pc)[1].longconst;
1761 char *name = &(*pc)[2].string;
1762
1763 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1764 gen_expr (pc, ax, value);
1765 if (op == STRUCTOP_STRUCT)
1766 gen_struct_ref (ax, value, name, ".", "structure or union");
1767 else if (op == STRUCTOP_PTR)
1768 gen_struct_ref (ax, value, name, "->",
1769 "pointer to a structure or union");
1770 else
1771 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1772 shouldn't mention it, and we shouldn't be here. */
6426a772 1773 internal_error ("ax-gdb.c (gen_expr): unhandled struct case");
c906108c 1774 }
c5aa993b 1775 break;
c906108c
SS
1776
1777 case OP_TYPE:
1778 error ("Attempt to use a type name as an expression.");
1779
1780 default:
1781 error ("Unsupported operator in expression.");
1782 }
1783}
c906108c 1784\f
c5aa993b
JM
1785
1786
c906108c
SS
1787/* Generating bytecode from GDB expressions: driver */
1788
1789/* Given a GDB expression EXPR, produce a string of agent bytecode
1790 which computes its value. Return the agent expression, and set
1791 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1792struct agent_expr *
1793expr_to_agent (expr, value)
1794 struct expression *expr;
1795 struct axs_value *value;
1796{
1797 struct cleanup *old_chain = 0;
6426a772 1798 struct agent_expr *ax = new_agent_expr (0);
c906108c
SS
1799 union exp_element *pc;
1800
f23d52e0 1801 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1802
1803 pc = expr->elts;
1804 trace_kludge = 0;
1805 gen_expr (&pc, ax, value);
1806
1807 /* We have successfully built the agent expr, so cancel the cleanup
1808 request. If we add more cleanups that we always want done, this
1809 will have to get more complicated. */
1810 discard_cleanups (old_chain);
1811 return ax;
1812}
1813
1814
6426a772 1815#if 0 /* not used */
c906108c
SS
1816/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1817 string of agent bytecode which will leave its address and size on
1818 the top of stack. Return the agent expression.
1819
1820 Not sure this function is useful at all. */
1821struct agent_expr *
1822expr_to_address_and_size (expr)
1823 struct expression *expr;
1824{
1825 struct axs_value value;
1826 struct agent_expr *ax = expr_to_agent (expr, &value);
1827
1828 /* Complain if the result is not a memory lvalue. */
1829 if (value.kind != axs_lvalue_memory)
1830 {
1831 free_agent_expr (ax);
1832 error ("Expression does not denote an object in memory.");
1833 }
1834
1835 /* Push the object's size on the stack. */
1836 ax_const_l (ax, TYPE_LENGTH (value.type));
1837
1838 return ax;
1839}
6426a772 1840#endif
c906108c
SS
1841
1842/* Given a GDB expression EXPR, return bytecode to trace its value.
1843 The result will use the `trace' and `trace_quick' bytecodes to
1844 record the value of all memory touched by the expression. The
1845 caller can then use the ax_reqs function to discover which
1846 registers it relies upon. */
1847struct agent_expr *
1848gen_trace_for_expr (scope, expr)
1849 CORE_ADDR scope;
1850 struct expression *expr;
1851{
1852 struct cleanup *old_chain = 0;
1853 struct agent_expr *ax = new_agent_expr (scope);
1854 union exp_element *pc;
1855 struct axs_value value;
1856
f23d52e0 1857 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1858
1859 pc = expr->elts;
1860 trace_kludge = 1;
1861 gen_expr (&pc, ax, &value);
1862
1863 /* Make sure we record the final object, and get rid of it. */
1864 gen_traced_pop (ax, &value);
1865
1866 /* Oh, and terminate. */
1867 ax_simple (ax, aop_end);
1868
1869 /* We have successfully built the agent expr, so cancel the cleanup
1870 request. If we add more cleanups that we always want done, this
1871 will have to get more complicated. */
1872 discard_cleanups (old_chain);
1873 return ax;
1874}
c5aa993b 1875\f
c906108c
SS
1876
1877
c906108c
SS
1878/* The "agent" command, for testing: compile and disassemble an expression. */
1879
1880static void
1881print_axs_value (f, value)
d9fcf2fb 1882 struct ui_file *f;
c906108c
SS
1883 struct axs_value *value;
1884{
1885 switch (value->kind)
1886 {
1887 case axs_rvalue:
1888 fputs_filtered ("rvalue", f);
1889 break;
1890
1891 case axs_lvalue_memory:
1892 fputs_filtered ("memory lvalue", f);
1893 break;
1894
1895 case axs_lvalue_register:
1896 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1897 break;
1898 }
1899
1900 fputs_filtered (" : ", f);
1901 type_print (value->type, "", f, -1);
1902}
1903
1904
1905static void
1906agent_command (exp, from_tty)
1907 char *exp;
1908 int from_tty;
1909{
1910 struct cleanup *old_chain = 0;
1911 struct expression *expr;
1912 struct agent_expr *agent;
6426a772 1913 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1914
1915 /* We don't deal with overlay debugging at the moment. We need to
1916 think more carefully about this. If you copy this code into
1917 another command, change the error message; the user shouldn't
1918 have to know anything about agent expressions. */
1919 if (overlay_debugging)
1920 error ("GDB can't do agent expression translation with overlays.");
1921
1922 if (exp == 0)
1923 error_no_arg ("expression to translate");
c5aa993b 1924
c906108c 1925 expr = parse_expression (exp);
c13c43fd 1926 old_chain = make_cleanup (free_current_contents, &expr);
c906108c 1927 agent = gen_trace_for_expr (fi->pc, expr);
f23d52e0 1928 make_cleanup_free_agent_expr (agent);
c906108c 1929 ax_print (gdb_stdout, agent);
085dd6e6
JM
1930
1931 /* It would be nice to call ax_reqs here to gather some general info
1932 about the expression, and then print out the result. */
c906108c
SS
1933
1934 do_cleanups (old_chain);
1935 dont_repeat ();
1936}
c906108c 1937\f
c5aa993b 1938
c906108c
SS
1939/* Initialization code. */
1940
1941void _initialize_ax_gdb PARAMS ((void));
1942void
1943_initialize_ax_gdb ()
1944{
c906108c
SS
1945 add_cmd ("agent", class_maintenance, agent_command,
1946 "Translate an expression into remote agent bytecode.",
1947 &maintenancelist);
1948}
This page took 0.148554 seconds and 4 git commands to generate.