daily update
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
4c38e0a4 3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008, 2009, 2010
6aba47ca 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
b97aedf3 25#include "language.h"
c906108c
SS
26#include "value.h"
27#include "expression.h"
28#include "command.h"
29#include "gdbcmd.h"
30#include "frame.h"
31#include "target.h"
32#include "ax.h"
33#include "ax-gdb.h"
309367d4 34#include "gdb_string.h"
fe898f56 35#include "block.h"
7b83296f 36#include "regcache.h"
029a67e4 37#include "user-regs.h"
f7c79c41 38#include "language.h"
6c228b9c 39#include "dictionary.h"
00bf0b85 40#include "breakpoint.h"
f61e138d 41#include "tracepoint.h"
c906108c 42
6426a772
JM
43/* To make sense of this file, you should read doc/agentexpr.texi.
44 Then look at the types and enums in ax-gdb.h. For the code itself,
45 look at gen_expr, towards the bottom; that's the main function that
46 looks at the GDB expressions and calls everything else to generate
47 code.
c906108c
SS
48
49 I'm beginning to wonder whether it wouldn't be nicer to internally
50 generate trees, with types, and then spit out the bytecode in
51 linear form afterwards; we could generate fewer `swap', `ext', and
52 `zero_ext' bytecodes that way; it would make good constant folding
53 easier, too. But at the moment, I think we should be willing to
54 pay for the simplicity of this code with less-than-optimal bytecode
55 strings.
56
c5aa993b
JM
57 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
58\f
c906108c
SS
59
60
c906108c
SS
61/* Prototypes for local functions. */
62
63/* There's a standard order to the arguments of these functions:
64 union exp_element ** --- pointer into expression
65 struct agent_expr * --- agent expression buffer to generate code into
66 struct axs_value * --- describes value left on top of stack */
c5aa993b 67
a14ed312
KB
68static struct value *const_var_ref (struct symbol *var);
69static struct value *const_expr (union exp_element **pc);
70static struct value *maybe_const_expr (union exp_element **pc);
71
72static void gen_traced_pop (struct agent_expr *, struct axs_value *);
73
74static void gen_sign_extend (struct agent_expr *, struct type *);
75static void gen_extend (struct agent_expr *, struct type *);
76static void gen_fetch (struct agent_expr *, struct type *);
77static void gen_left_shift (struct agent_expr *, int);
78
79
f7c79c41
UW
80static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
81static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
a14ed312
KB
82static void gen_offset (struct agent_expr *ax, int offset);
83static void gen_sym_offset (struct agent_expr *, struct symbol *);
f7c79c41 84static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
a14ed312
KB
85 struct axs_value *value, struct symbol *var);
86
87
88static void gen_int_literal (struct agent_expr *ax,
89 struct axs_value *value,
90 LONGEST k, struct type *type);
91
92
93static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
f7c79c41
UW
94static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
95 struct axs_value *value);
a14ed312
KB
96static int type_wider_than (struct type *type1, struct type *type2);
97static struct type *max_type (struct type *type1, struct type *type2);
98static void gen_conversion (struct agent_expr *ax,
99 struct type *from, struct type *to);
100static int is_nontrivial_conversion (struct type *from, struct type *to);
f7c79c41
UW
101static void gen_usual_arithmetic (struct expression *exp,
102 struct agent_expr *ax,
a14ed312
KB
103 struct axs_value *value1,
104 struct axs_value *value2);
f7c79c41
UW
105static void gen_integral_promotions (struct expression *exp,
106 struct agent_expr *ax,
a14ed312
KB
107 struct axs_value *value);
108static void gen_cast (struct agent_expr *ax,
109 struct axs_value *value, struct type *type);
110static void gen_scale (struct agent_expr *ax,
111 enum agent_op op, struct type *type);
f7c79c41
UW
112static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
113 struct axs_value *value1, struct axs_value *value2);
114static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
115 struct axs_value *value1, struct axs_value *value2);
116static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
117 struct axs_value *value1, struct axs_value *value2,
118 struct type *result_type);
a14ed312
KB
119static void gen_binop (struct agent_expr *ax,
120 struct axs_value *value,
121 struct axs_value *value1,
122 struct axs_value *value2,
123 enum agent_op op,
124 enum agent_op op_unsigned, int may_carry, char *name);
f7c79c41
UW
125static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
126 struct type *result_type);
a14ed312
KB
127static void gen_complement (struct agent_expr *ax, struct axs_value *value);
128static void gen_deref (struct agent_expr *, struct axs_value *);
129static void gen_address_of (struct agent_expr *, struct axs_value *);
130static int find_field (struct type *type, char *name);
505e835d 131static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
132 struct axs_value *value,
133 struct type *type, int start, int end);
505e835d 134static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
135 struct axs_value *value,
136 char *field,
137 char *operator_name, char *operand_name);
f7c79c41 138static void gen_repeat (struct expression *exp, union exp_element **pc,
a14ed312 139 struct agent_expr *ax, struct axs_value *value);
f7c79c41
UW
140static void gen_sizeof (struct expression *exp, union exp_element **pc,
141 struct agent_expr *ax, struct axs_value *value,
142 struct type *size_type);
143static void gen_expr (struct expression *exp, union exp_element **pc,
a14ed312 144 struct agent_expr *ax, struct axs_value *value);
f61e138d
SS
145static void gen_expr_binop_rest (struct expression *exp,
146 enum exp_opcode op, union exp_element **pc,
147 struct agent_expr *ax,
148 struct axs_value *value,
149 struct axs_value *value1,
150 struct axs_value *value2);
c5aa993b 151
a14ed312 152static void agent_command (char *exp, int from_tty);
c906108c 153\f
c5aa993b 154
c906108c
SS
155/* Detecting constant expressions. */
156
157/* If the variable reference at *PC is a constant, return its value.
158 Otherwise, return zero.
159
160 Hey, Wally! How can a variable reference be a constant?
161
162 Well, Beav, this function really handles the OP_VAR_VALUE operator,
163 not specifically variable references. GDB uses OP_VAR_VALUE to
164 refer to any kind of symbolic reference: function names, enum
165 elements, and goto labels are all handled through the OP_VAR_VALUE
166 operator, even though they're constants. It makes sense given the
167 situation.
168
169 Gee, Wally, don'cha wonder sometimes if data representations that
170 subvert commonly accepted definitions of terms in favor of heavily
171 context-specific interpretations are really just a tool of the
172 programming hegemony to preserve their power and exclude the
173 proletariat? */
174
175static struct value *
fba45db2 176const_var_ref (struct symbol *var)
c906108c
SS
177{
178 struct type *type = SYMBOL_TYPE (var);
179
180 switch (SYMBOL_CLASS (var))
181 {
182 case LOC_CONST:
183 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
184
185 case LOC_LABEL:
4478b372 186 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
187
188 default:
189 return 0;
190 }
191}
192
193
194/* If the expression starting at *PC has a constant value, return it.
195 Otherwise, return zero. If we return a value, then *PC will be
196 advanced to the end of it. If we return zero, *PC could be
197 anywhere. */
198static struct value *
fba45db2 199const_expr (union exp_element **pc)
c906108c
SS
200{
201 enum exp_opcode op = (*pc)->opcode;
202 struct value *v1;
203
204 switch (op)
205 {
206 case OP_LONG:
207 {
208 struct type *type = (*pc)[1].type;
209 LONGEST k = (*pc)[2].longconst;
210 (*pc) += 4;
211 return value_from_longest (type, k);
212 }
213
214 case OP_VAR_VALUE:
215 {
216 struct value *v = const_var_ref ((*pc)[2].symbol);
217 (*pc) += 4;
218 return v;
219 }
220
c5aa993b 221 /* We could add more operators in here. */
c906108c
SS
222
223 case UNOP_NEG:
224 (*pc)++;
225 v1 = const_expr (pc);
226 if (v1)
227 return value_neg (v1);
228 else
229 return 0;
230
231 default:
232 return 0;
233 }
234}
235
236
237/* Like const_expr, but guarantee also that *PC is undisturbed if the
238 expression is not constant. */
239static struct value *
fba45db2 240maybe_const_expr (union exp_element **pc)
c906108c
SS
241{
242 union exp_element *tentative_pc = *pc;
243 struct value *v = const_expr (&tentative_pc);
244
245 /* If we got a value, then update the real PC. */
246 if (v)
247 *pc = tentative_pc;
c5aa993b 248
c906108c
SS
249 return v;
250}
c906108c 251\f
c5aa993b 252
c906108c
SS
253/* Generating bytecode from GDB expressions: general assumptions */
254
255/* Here are a few general assumptions made throughout the code; if you
256 want to make a change that contradicts one of these, then you'd
257 better scan things pretty thoroughly.
258
259 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
260 sometimes we'll swap to get at the left argument to a binary
261 operator. If we decide that void values should occupy no stack
262 elements, or that synthetic arrays (whose size is determined at
263 run time, created by the `@' operator) should occupy two stack
264 elements (address and length), then this will cause trouble.
c906108c
SS
265
266 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
267 don't have to worry what happens if the user requests an
268 operation that is wider than the actual interpreter's stack.
269 That is, it's up to the interpreter to handle directly all the
270 integer widths the user has access to. (Woe betide the language
271 with bignums!)
c906108c
SS
272
273 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 274 GCC's generalized lvalues, function calls, etc.
c906108c
SS
275
276 - We don't support floating point. Many places where we switch on
c5aa993b
JM
277 some type don't bother to include cases for floating point; there
278 may be even more subtle ways this assumption exists. For
279 example, the arguments to % must be integers.
c906108c
SS
280
281 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
282 we tried to support convenience variables, this would be a
283 problem.
c906108c
SS
284
285 - All values on the stack should always be fully zero- or
c5aa993b
JM
286 sign-extended.
287
288 (I wasn't sure whether to choose this or its opposite --- that
289 only addresses are assumed extended --- but it turns out that
290 neither convention completely eliminates spurious extend
291 operations (if everything is always extended, then you have to
292 extend after add, because it could overflow; if nothing is
293 extended, then you end up producing extends whenever you change
294 sizes), and this is simpler.) */
c906108c 295\f
c5aa993b 296
c906108c
SS
297/* Generating bytecode from GDB expressions: the `trace' kludge */
298
299/* The compiler in this file is a general-purpose mechanism for
300 translating GDB expressions into bytecode. One ought to be able to
301 find a million and one uses for it.
302
303 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
304 of expediency. Let he who is without sin cast the first stone.
305
306 For the data tracing facility, we need to insert `trace' bytecodes
307 before each data fetch; this records all the memory that the
308 expression touches in the course of evaluation, so that memory will
309 be available when the user later tries to evaluate the expression
310 in GDB.
311
312 This should be done (I think) in a post-processing pass, that walks
313 an arbitrary agent expression and inserts `trace' operations at the
314 appropriate points. But it's much faster to just hack them
315 directly into the code. And since we're in a crunch, that's what
316 I've done.
317
318 Setting the flag trace_kludge to non-zero enables the code that
319 emits the trace bytecodes at the appropriate points. */
320static int trace_kludge;
321
322/* Trace the lvalue on the stack, if it needs it. In either case, pop
323 the value. Useful on the left side of a comma, and at the end of
324 an expression being used for tracing. */
325static void
fba45db2 326gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
327{
328 if (trace_kludge)
329 switch (value->kind)
330 {
331 case axs_rvalue:
332 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 333 produce them. So just dispose of this value. */
c906108c
SS
334 ax_simple (ax, aop_pop);
335 break;
336
337 case axs_lvalue_memory:
338 {
648027cc 339 int length = TYPE_LENGTH (check_typedef (value->type));
c906108c
SS
340
341 /* There's no point in trying to use a trace_quick bytecode
342 here, since "trace_quick SIZE pop" is three bytes, whereas
343 "const8 SIZE trace" is also three bytes, does the same
344 thing, and the simplest code which generates that will also
345 work correctly for objects with large sizes. */
346 ax_const_l (ax, length);
347 ax_simple (ax, aop_trace);
348 }
c5aa993b 349 break;
c906108c
SS
350
351 case axs_lvalue_register:
352 /* We need to mention the register somewhere in the bytecode,
353 so ax_reqs will pick it up and add it to the mask of
354 registers used. */
355 ax_reg (ax, value->u.reg);
356 ax_simple (ax, aop_pop);
357 break;
358 }
359 else
360 /* If we're not tracing, just pop the value. */
361 ax_simple (ax, aop_pop);
362}
c5aa993b 363\f
c906108c
SS
364
365
c906108c
SS
366/* Generating bytecode from GDB expressions: helper functions */
367
368/* Assume that the lower bits of the top of the stack is a value of
369 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
370static void
fba45db2 371gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
372{
373 /* Do we need to sign-extend this? */
c5aa993b 374 if (!TYPE_UNSIGNED (type))
0004e5a2 375 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
376}
377
378
379/* Assume the lower bits of the top of the stack hold a value of type
380 TYPE, and the upper bits are garbage. Sign-extend or truncate as
381 needed. */
382static void
fba45db2 383gen_extend (struct agent_expr *ax, struct type *type)
c906108c 384{
0004e5a2 385 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
c906108c
SS
386 /* I just had to. */
387 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
388}
389
390
391/* Assume that the top of the stack contains a value of type "pointer
392 to TYPE"; generate code to fetch its value. Note that TYPE is the
393 target type, not the pointer type. */
394static void
fba45db2 395gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
396{
397 if (trace_kludge)
398 {
399 /* Record the area of memory we're about to fetch. */
400 ax_trace_quick (ax, TYPE_LENGTH (type));
401 }
402
0004e5a2 403 switch (TYPE_CODE (type))
c906108c
SS
404 {
405 case TYPE_CODE_PTR:
b97aedf3 406 case TYPE_CODE_REF:
c906108c
SS
407 case TYPE_CODE_ENUM:
408 case TYPE_CODE_INT:
409 case TYPE_CODE_CHAR:
410 /* It's a scalar value, so we know how to dereference it. How
411 many bytes long is it? */
0004e5a2 412 switch (TYPE_LENGTH (type))
c906108c 413 {
c5aa993b
JM
414 case 8 / TARGET_CHAR_BIT:
415 ax_simple (ax, aop_ref8);
416 break;
417 case 16 / TARGET_CHAR_BIT:
418 ax_simple (ax, aop_ref16);
419 break;
420 case 32 / TARGET_CHAR_BIT:
421 ax_simple (ax, aop_ref32);
422 break;
423 case 64 / TARGET_CHAR_BIT:
424 ax_simple (ax, aop_ref64);
425 break;
c906108c
SS
426
427 /* Either our caller shouldn't have asked us to dereference
428 that pointer (other code's fault), or we're not
429 implementing something we should be (this code's fault).
430 In any case, it's a bug the user shouldn't see. */
431 default:
8e65ff28 432 internal_error (__FILE__, __LINE__,
3d263c1d 433 _("gen_fetch: strange size"));
c906108c
SS
434 }
435
436 gen_sign_extend (ax, type);
437 break;
438
439 default:
440 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
441 pointer (other code's fault), or we're not implementing
442 something we should be (this code's fault). In any case,
443 it's a bug the user shouldn't see. */
8e65ff28 444 internal_error (__FILE__, __LINE__,
3d263c1d 445 _("gen_fetch: bad type code"));
c906108c
SS
446 }
447}
448
449
450/* Generate code to left shift the top of the stack by DISTANCE bits, or
451 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
452 unsigned (logical) right shifts. */
453static void
fba45db2 454gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
455{
456 if (distance > 0)
457 {
458 ax_const_l (ax, distance);
459 ax_simple (ax, aop_lsh);
460 }
461 else if (distance < 0)
462 {
463 ax_const_l (ax, -distance);
464 ax_simple (ax, aop_rsh_unsigned);
465 }
466}
c5aa993b 467\f
c906108c
SS
468
469
c906108c
SS
470/* Generating bytecode from GDB expressions: symbol references */
471
472/* Generate code to push the base address of the argument portion of
473 the top stack frame. */
474static void
f7c79c41 475gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 476{
39d4ef09
AC
477 int frame_reg;
478 LONGEST frame_offset;
c906108c 479
f7c79c41 480 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 481 ax->scope, &frame_reg, &frame_offset);
c5aa993b 482 ax_reg (ax, frame_reg);
c906108c
SS
483 gen_offset (ax, frame_offset);
484}
485
486
487/* Generate code to push the base address of the locals portion of the
488 top stack frame. */
489static void
f7c79c41 490gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 491{
39d4ef09
AC
492 int frame_reg;
493 LONGEST frame_offset;
c906108c 494
f7c79c41 495 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 496 ax->scope, &frame_reg, &frame_offset);
c5aa993b 497 ax_reg (ax, frame_reg);
c906108c
SS
498 gen_offset (ax, frame_offset);
499}
500
501
502/* Generate code to add OFFSET to the top of the stack. Try to
503 generate short and readable code. We use this for getting to
504 variables on the stack, and structure members. If we were
505 programming in ML, it would be clearer why these are the same
506 thing. */
507static void
fba45db2 508gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
509{
510 /* It would suffice to simply push the offset and add it, but this
511 makes it easier to read positive and negative offsets in the
512 bytecode. */
513 if (offset > 0)
514 {
515 ax_const_l (ax, offset);
516 ax_simple (ax, aop_add);
517 }
518 else if (offset < 0)
519 {
520 ax_const_l (ax, -offset);
521 ax_simple (ax, aop_sub);
522 }
523}
524
525
526/* In many cases, a symbol's value is the offset from some other
527 address (stack frame, base register, etc.) Generate code to add
528 VAR's value to the top of the stack. */
529static void
fba45db2 530gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
531{
532 gen_offset (ax, SYMBOL_VALUE (var));
533}
534
535
536/* Generate code for a variable reference to AX. The variable is the
537 symbol VAR. Set VALUE to describe the result. */
538
539static void
f7c79c41
UW
540gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
541 struct axs_value *value, struct symbol *var)
c906108c
SS
542{
543 /* Dereference any typedefs. */
544 value->type = check_typedef (SYMBOL_TYPE (var));
545
546 /* I'm imitating the code in read_var_value. */
547 switch (SYMBOL_CLASS (var))
548 {
549 case LOC_CONST: /* A constant, like an enum value. */
550 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
551 value->kind = axs_rvalue;
552 break;
553
554 case LOC_LABEL: /* A goto label, being used as a value. */
555 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
556 value->kind = axs_rvalue;
557 break;
558
559 case LOC_CONST_BYTES:
8e65ff28 560 internal_error (__FILE__, __LINE__,
3d263c1d 561 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
c906108c
SS
562
563 /* Variable at a fixed location in memory. Easy. */
564 case LOC_STATIC:
565 /* Push the address of the variable. */
566 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
567 value->kind = axs_lvalue_memory;
568 break;
569
570 case LOC_ARG: /* var lives in argument area of frame */
f7c79c41 571 gen_frame_args_address (gdbarch, ax);
c906108c
SS
572 gen_sym_offset (ax, var);
573 value->kind = axs_lvalue_memory;
574 break;
575
576 case LOC_REF_ARG: /* As above, but the frame slot really
577 holds the address of the variable. */
f7c79c41 578 gen_frame_args_address (gdbarch, ax);
c906108c
SS
579 gen_sym_offset (ax, var);
580 /* Don't assume any particular pointer size. */
f7c79c41 581 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
c906108c
SS
582 value->kind = axs_lvalue_memory;
583 break;
584
585 case LOC_LOCAL: /* var lives in locals area of frame */
f7c79c41 586 gen_frame_locals_address (gdbarch, ax);
c906108c
SS
587 gen_sym_offset (ax, var);
588 value->kind = axs_lvalue_memory;
589 break;
590
c906108c 591 case LOC_TYPEDEF:
3d263c1d 592 error (_("Cannot compute value of typedef `%s'."),
de5ad195 593 SYMBOL_PRINT_NAME (var));
c906108c
SS
594 break;
595
596 case LOC_BLOCK:
597 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
598 value->kind = axs_rvalue;
599 break;
600
601 case LOC_REGISTER:
c906108c
SS
602 /* Don't generate any code at all; in the process of treating
603 this as an lvalue or rvalue, the caller will generate the
604 right code. */
605 value->kind = axs_lvalue_register;
768a979c 606 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
c906108c
SS
607 break;
608
609 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
2a2d4dc3
AS
610 register, not on the stack. Simpler than LOC_REGISTER
611 because it's just like any other case where the thing
612 has a real address. */
c906108c 613 case LOC_REGPARM_ADDR:
768a979c 614 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
c906108c
SS
615 value->kind = axs_lvalue_memory;
616 break;
617
618 case LOC_UNRESOLVED:
619 {
c5aa993b 620 struct minimal_symbol *msym
3567439c 621 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
c5aa993b 622 if (!msym)
3d263c1d 623 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
c5aa993b 624
c906108c
SS
625 /* Push the address of the variable. */
626 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
627 value->kind = axs_lvalue_memory;
628 }
c5aa993b 629 break;
c906108c 630
a55cc764 631 case LOC_COMPUTED:
a67af2b9 632 /* FIXME: cagney/2004-01-26: It should be possible to
768a979c 633 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
d3efc286 634 Unfortunately DWARF 2 stores the frame-base (instead of the
a67af2b9
AC
635 function) location in a function's symbol. Oops! For the
636 moment enable this when/where applicable. */
505e835d 637 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
a55cc764
DJ
638 break;
639
c906108c 640 case LOC_OPTIMIZED_OUT:
3d263c1d 641 error (_("The variable `%s' has been optimized out."),
de5ad195 642 SYMBOL_PRINT_NAME (var));
c906108c
SS
643 break;
644
645 default:
3d263c1d 646 error (_("Cannot find value of botched symbol `%s'."),
de5ad195 647 SYMBOL_PRINT_NAME (var));
c906108c
SS
648 break;
649 }
650}
c5aa993b 651\f
c906108c
SS
652
653
c906108c
SS
654/* Generating bytecode from GDB expressions: literals */
655
656static void
fba45db2
KB
657gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
658 struct type *type)
c906108c
SS
659{
660 ax_const_l (ax, k);
661 value->kind = axs_rvalue;
648027cc 662 value->type = check_typedef (type);
c906108c 663}
c5aa993b 664\f
c906108c
SS
665
666
c906108c
SS
667/* Generating bytecode from GDB expressions: unary conversions, casts */
668
669/* Take what's on the top of the stack (as described by VALUE), and
670 try to make an rvalue out of it. Signal an error if we can't do
671 that. */
672static void
fba45db2 673require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
674{
675 switch (value->kind)
676 {
677 case axs_rvalue:
678 /* It's already an rvalue. */
679 break;
680
681 case axs_lvalue_memory:
682 /* The top of stack is the address of the object. Dereference. */
683 gen_fetch (ax, value->type);
684 break;
685
686 case axs_lvalue_register:
687 /* There's nothing on the stack, but value->u.reg is the
688 register number containing the value.
689
c5aa993b
JM
690 When we add floating-point support, this is going to have to
691 change. What about SPARC register pairs, for example? */
c906108c
SS
692 ax_reg (ax, value->u.reg);
693 gen_extend (ax, value->type);
694 break;
695 }
696
697 value->kind = axs_rvalue;
698}
699
700
701/* Assume the top of the stack is described by VALUE, and perform the
702 usual unary conversions. This is motivated by ANSI 6.2.2, but of
703 course GDB expressions are not ANSI; they're the mishmash union of
704 a bunch of languages. Rah.
705
706 NOTE! This function promises to produce an rvalue only when the
707 incoming value is of an appropriate type. In other words, the
708 consumer of the value this function produces may assume the value
709 is an rvalue only after checking its type.
710
711 The immediate issue is that if the user tries to use a structure or
712 union as an operand of, say, the `+' operator, we don't want to try
713 to convert that structure to an rvalue; require_rvalue will bomb on
714 structs and unions. Rather, we want to simply pass the struct
715 lvalue through unchanged, and let `+' raise an error. */
716
717static void
f7c79c41
UW
718gen_usual_unary (struct expression *exp, struct agent_expr *ax,
719 struct axs_value *value)
c906108c
SS
720{
721 /* We don't have to generate any code for the usual integral
722 conversions, since values are always represented as full-width on
723 the stack. Should we tweak the type? */
724
725 /* Some types require special handling. */
0004e5a2 726 switch (TYPE_CODE (value->type))
c906108c
SS
727 {
728 /* Functions get converted to a pointer to the function. */
729 case TYPE_CODE_FUNC:
730 value->type = lookup_pointer_type (value->type);
731 value->kind = axs_rvalue; /* Should always be true, but just in case. */
732 break;
733
734 /* Arrays get converted to a pointer to their first element, and
c5aa993b 735 are no longer an lvalue. */
c906108c
SS
736 case TYPE_CODE_ARRAY:
737 {
738 struct type *elements = TYPE_TARGET_TYPE (value->type);
739 value->type = lookup_pointer_type (elements);
740 value->kind = axs_rvalue;
741 /* We don't need to generate any code; the address of the array
742 is also the address of its first element. */
743 }
c5aa993b 744 break;
c906108c 745
c5aa993b
JM
746 /* Don't try to convert structures and unions to rvalues. Let the
747 consumer signal an error. */
c906108c
SS
748 case TYPE_CODE_STRUCT:
749 case TYPE_CODE_UNION:
750 return;
751
752 /* If the value is an enum, call it an integer. */
753 case TYPE_CODE_ENUM:
f7c79c41 754 value->type = builtin_type (exp->gdbarch)->builtin_int;
c906108c
SS
755 break;
756 }
757
758 /* If the value is an lvalue, dereference it. */
759 require_rvalue (ax, value);
760}
761
762
763/* Return non-zero iff the type TYPE1 is considered "wider" than the
764 type TYPE2, according to the rules described in gen_usual_arithmetic. */
765static int
fba45db2 766type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
767{
768 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
769 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
770 && TYPE_UNSIGNED (type1)
c5aa993b 771 && !TYPE_UNSIGNED (type2)));
c906108c
SS
772}
773
774
775/* Return the "wider" of the two types TYPE1 and TYPE2. */
776static struct type *
fba45db2 777max_type (struct type *type1, struct type *type2)
c906108c
SS
778{
779 return type_wider_than (type1, type2) ? type1 : type2;
780}
781
782
783/* Generate code to convert a scalar value of type FROM to type TO. */
784static void
fba45db2 785gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
786{
787 /* Perhaps there is a more graceful way to state these rules. */
788
789 /* If we're converting to a narrower type, then we need to clear out
790 the upper bits. */
791 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
792 gen_extend (ax, from);
793
794 /* If the two values have equal width, but different signednesses,
795 then we need to extend. */
796 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
797 {
798 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
799 gen_extend (ax, to);
800 }
801
802 /* If we're converting to a wider type, and becoming unsigned, then
803 we need to zero out any possible sign bits. */
804 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
805 {
806 if (TYPE_UNSIGNED (to))
807 gen_extend (ax, to);
808 }
809}
810
811
812/* Return non-zero iff the type FROM will require any bytecodes to be
813 emitted to be converted to the type TO. */
814static int
fba45db2 815is_nontrivial_conversion (struct type *from, struct type *to)
c906108c
SS
816{
817 struct agent_expr *ax = new_agent_expr (0);
818 int nontrivial;
819
820 /* Actually generate the code, and see if anything came out. At the
821 moment, it would be trivial to replicate the code in
822 gen_conversion here, but in the future, when we're supporting
823 floating point and the like, it may not be. Doing things this
824 way allows this function to be independent of the logic in
825 gen_conversion. */
826 gen_conversion (ax, from, to);
827 nontrivial = ax->len > 0;
828 free_agent_expr (ax);
829 return nontrivial;
830}
831
832
833/* Generate code to perform the "usual arithmetic conversions" (ANSI C
834 6.2.1.5) for the two operands of an arithmetic operator. This
835 effectively finds a "least upper bound" type for the two arguments,
836 and promotes each argument to that type. *VALUE1 and *VALUE2
837 describe the values as they are passed in, and as they are left. */
838static void
f7c79c41
UW
839gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
840 struct axs_value *value1, struct axs_value *value2)
c906108c
SS
841{
842 /* Do the usual binary conversions. */
843 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
844 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
845 {
846 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
847 integer types by size, and then by signedness: an n-bit
848 unsigned type is considered "wider" than an n-bit signed
849 type. Promote to the "wider" of the two types, and always
850 promote at least to int. */
f7c79c41 851 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
c906108c
SS
852 max_type (value1->type, value2->type));
853
854 /* Deal with value2, on the top of the stack. */
855 gen_conversion (ax, value2->type, target);
856
857 /* Deal with value1, not on the top of the stack. Don't
858 generate the `swap' instructions if we're not actually going
859 to do anything. */
860 if (is_nontrivial_conversion (value1->type, target))
861 {
862 ax_simple (ax, aop_swap);
863 gen_conversion (ax, value1->type, target);
864 ax_simple (ax, aop_swap);
865 }
866
648027cc 867 value1->type = value2->type = check_typedef (target);
c906108c
SS
868 }
869}
870
871
872/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
873 the value on the top of the stack, as described by VALUE. Assume
874 the value has integral type. */
875static void
f7c79c41
UW
876gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
877 struct axs_value *value)
c906108c 878{
f7c79c41
UW
879 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
880
881 if (!type_wider_than (value->type, builtin->builtin_int))
c906108c 882 {
f7c79c41
UW
883 gen_conversion (ax, value->type, builtin->builtin_int);
884 value->type = builtin->builtin_int;
c906108c 885 }
f7c79c41 886 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
c906108c 887 {
f7c79c41
UW
888 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
889 value->type = builtin->builtin_unsigned_int;
c906108c
SS
890 }
891}
892
893
894/* Generate code for a cast to TYPE. */
895static void
fba45db2 896gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
897{
898 /* GCC does allow casts to yield lvalues, so this should be fixed
899 before merging these changes into the trunk. */
900 require_rvalue (ax, value);
901 /* Dereference typedefs. */
902 type = check_typedef (type);
903
0004e5a2 904 switch (TYPE_CODE (type))
c906108c
SS
905 {
906 case TYPE_CODE_PTR:
b97aedf3 907 case TYPE_CODE_REF:
c906108c
SS
908 /* It's implementation-defined, and I'll bet this is what GCC
909 does. */
910 break;
911
912 case TYPE_CODE_ARRAY:
913 case TYPE_CODE_STRUCT:
914 case TYPE_CODE_UNION:
915 case TYPE_CODE_FUNC:
3d263c1d 916 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
917
918 case TYPE_CODE_ENUM:
919 /* We don't have to worry about the size of the value, because
920 all our integral values are fully sign-extended, and when
921 casting pointers we can do anything we like. Is there any
74b35824
JB
922 way for us to know what GCC actually does with a cast like
923 this? */
c906108c 924 break;
c5aa993b 925
c906108c
SS
926 case TYPE_CODE_INT:
927 gen_conversion (ax, value->type, type);
928 break;
929
930 case TYPE_CODE_VOID:
931 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
932 the type and notice that this value doesn't occupy a stack
933 slot. But for now, leave the value on the stack, and
934 preserve the "value == stack element" assumption. */
c906108c
SS
935 break;
936
937 default:
3d263c1d 938 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
939 }
940
941 value->type = type;
942}
c5aa993b 943\f
c906108c
SS
944
945
c906108c
SS
946/* Generating bytecode from GDB expressions: arithmetic */
947
948/* Scale the integer on the top of the stack by the size of the target
949 of the pointer type TYPE. */
950static void
fba45db2 951gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
952{
953 struct type *element = TYPE_TARGET_TYPE (type);
954
0004e5a2 955 if (TYPE_LENGTH (element) != 1)
c906108c 956 {
0004e5a2 957 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
958 ax_simple (ax, op);
959 }
960}
961
962
f7c79c41 963/* Generate code for pointer arithmetic PTR + INT. */
c906108c 964static void
f7c79c41
UW
965gen_ptradd (struct agent_expr *ax, struct axs_value *value,
966 struct axs_value *value1, struct axs_value *value2)
c906108c 967{
b97aedf3 968 gdb_assert (pointer_type (value1->type));
f7c79c41 969 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 970
f7c79c41
UW
971 gen_scale (ax, aop_mul, value1->type);
972 ax_simple (ax, aop_add);
973 gen_extend (ax, value1->type); /* Catch overflow. */
974 value->type = value1->type;
975 value->kind = axs_rvalue;
976}
c906108c 977
c906108c 978
f7c79c41
UW
979/* Generate code for pointer arithmetic PTR - INT. */
980static void
981gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
982 struct axs_value *value1, struct axs_value *value2)
983{
b97aedf3 984 gdb_assert (pointer_type (value1->type));
f7c79c41 985 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 986
f7c79c41
UW
987 gen_scale (ax, aop_mul, value1->type);
988 ax_simple (ax, aop_sub);
989 gen_extend (ax, value1->type); /* Catch overflow. */
990 value->type = value1->type;
c906108c
SS
991 value->kind = axs_rvalue;
992}
993
994
f7c79c41 995/* Generate code for pointer arithmetic PTR - PTR. */
c906108c 996static void
f7c79c41
UW
997gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
998 struct axs_value *value1, struct axs_value *value2,
999 struct type *result_type)
c906108c 1000{
b97aedf3
SS
1001 gdb_assert (pointer_type (value1->type));
1002 gdb_assert (pointer_type (value2->type));
c906108c 1003
f7c79c41
UW
1004 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1005 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1006 error (_("\
c906108c 1007First argument of `-' is a pointer, but second argument is neither\n\
3d263c1d 1008an integer nor a pointer of the same type."));
c906108c 1009
f7c79c41
UW
1010 ax_simple (ax, aop_sub);
1011 gen_scale (ax, aop_div_unsigned, value1->type);
1012 value->type = result_type;
c906108c
SS
1013 value->kind = axs_rvalue;
1014}
1015
f7c79c41 1016
c906108c
SS
1017/* Generate code for a binary operator that doesn't do pointer magic.
1018 We set VALUE to describe the result value; we assume VALUE1 and
1019 VALUE2 describe the two operands, and that they've undergone the
1020 usual binary conversions. MAY_CARRY should be non-zero iff the
1021 result needs to be extended. NAME is the English name of the
1022 operator, used in error messages */
1023static void
fba45db2
KB
1024gen_binop (struct agent_expr *ax, struct axs_value *value,
1025 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1026 enum agent_op op_unsigned, int may_carry, char *name)
c906108c
SS
1027{
1028 /* We only handle INT op INT. */
0004e5a2
DJ
1029 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1030 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1031 error (_("Invalid combination of types in %s."), name);
c5aa993b 1032
c906108c
SS
1033 ax_simple (ax,
1034 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1035 if (may_carry)
c5aa993b 1036 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1037 value->type = value1->type;
1038 value->kind = axs_rvalue;
1039}
1040
1041
1042static void
f7c79c41
UW
1043gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1044 struct type *result_type)
c906108c
SS
1045{
1046 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1047 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1048 error (_("Invalid type of operand to `!'."));
c906108c 1049
c906108c 1050 ax_simple (ax, aop_log_not);
f7c79c41 1051 value->type = result_type;
c906108c
SS
1052}
1053
1054
1055static void
fba45db2 1056gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1057{
1058 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1059 error (_("Invalid type of operand to `~'."));
c906108c 1060
c906108c
SS
1061 ax_simple (ax, aop_bit_not);
1062 gen_extend (ax, value->type);
1063}
c5aa993b 1064\f
c906108c
SS
1065
1066
c906108c
SS
1067/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1068
1069/* Dereference the value on the top of the stack. */
1070static void
fba45db2 1071gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1072{
1073 /* The caller should check the type, because several operators use
1074 this, and we don't know what error message to generate. */
b97aedf3 1075 if (!pointer_type (value->type))
8e65ff28 1076 internal_error (__FILE__, __LINE__,
3d263c1d 1077 _("gen_deref: expected a pointer"));
c906108c
SS
1078
1079 /* We've got an rvalue now, which is a pointer. We want to yield an
1080 lvalue, whose address is exactly that pointer. So we don't
1081 actually emit any code; we just change the type from "Pointer to
1082 T" to "T", and mark the value as an lvalue in memory. Leave it
1083 to the consumer to actually dereference it. */
1084 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
b1028c8e
PA
1085 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1086 error (_("Attempt to dereference a generic pointer."));
0004e5a2 1087 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1088 ? axs_rvalue : axs_lvalue_memory);
1089}
1090
1091
1092/* Produce the address of the lvalue on the top of the stack. */
1093static void
fba45db2 1094gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1095{
1096 /* Special case for taking the address of a function. The ANSI
1097 standard describes this as a special case, too, so this
1098 arrangement is not without motivation. */
0004e5a2 1099 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1100 /* The value's already an rvalue on the stack, so we just need to
1101 change the type. */
1102 value->type = lookup_pointer_type (value->type);
1103 else
1104 switch (value->kind)
1105 {
1106 case axs_rvalue:
3d263c1d 1107 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1108
1109 case axs_lvalue_register:
3d263c1d 1110 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1111
1112 case axs_lvalue_memory:
1113 value->kind = axs_rvalue;
1114 value->type = lookup_pointer_type (value->type);
1115 break;
1116 }
1117}
1118
1119
1120/* A lot of this stuff will have to change to support C++. But we're
1121 not going to deal with that at the moment. */
1122
1123/* Find the field in the structure type TYPE named NAME, and return
1124 its index in TYPE's field array. */
1125static int
fba45db2 1126find_field (struct type *type, char *name)
c906108c
SS
1127{
1128 int i;
1129
1130 CHECK_TYPEDEF (type);
1131
1132 /* Make sure this isn't C++. */
1133 if (TYPE_N_BASECLASSES (type) != 0)
8e65ff28 1134 internal_error (__FILE__, __LINE__,
3d263c1d 1135 _("find_field: derived classes supported"));
c906108c
SS
1136
1137 for (i = 0; i < TYPE_NFIELDS (type); i++)
1138 {
1139 char *this_name = TYPE_FIELD_NAME (type, i);
1140
747f3d18
MS
1141 if (this_name)
1142 {
1143 if (strcmp (name, this_name) == 0)
1144 return i;
c906108c 1145
747f3d18
MS
1146 if (this_name[0] == '\0')
1147 internal_error (__FILE__, __LINE__,
1148 _("find_field: anonymous unions not supported"));
1149 }
c906108c
SS
1150 }
1151
3d263c1d 1152 error (_("Couldn't find member named `%s' in struct/union `%s'"),
7495dfdb 1153 name, TYPE_TAG_NAME (type));
c906108c
SS
1154
1155 return 0;
1156}
1157
1158
1159/* Generate code to push the value of a bitfield of a structure whose
1160 address is on the top of the stack. START and END give the
1161 starting and one-past-ending *bit* numbers of the field within the
1162 structure. */
1163static void
505e835d
UW
1164gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1165 struct axs_value *value, struct type *type,
1166 int start, int end)
c906108c
SS
1167{
1168 /* Note that ops[i] fetches 8 << i bits. */
1169 static enum agent_op ops[]
c5aa993b
JM
1170 =
1171 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1172 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1173
1174 /* We don't want to touch any byte that the bitfield doesn't
1175 actually occupy; we shouldn't make any accesses we're not
1176 explicitly permitted to. We rely here on the fact that the
1177 bytecode `ref' operators work on unaligned addresses.
1178
1179 It takes some fancy footwork to get the stack to work the way
1180 we'd like. Say we're retrieving a bitfield that requires three
1181 fetches. Initially, the stack just contains the address:
c5aa993b 1182 addr
c906108c 1183 For the first fetch, we duplicate the address
c5aa993b 1184 addr addr
c906108c
SS
1185 then add the byte offset, do the fetch, and shift and mask as
1186 needed, yielding a fragment of the value, properly aligned for
1187 the final bitwise or:
c5aa993b 1188 addr frag1
c906108c 1189 then we swap, and repeat the process:
c5aa993b
JM
1190 frag1 addr --- address on top
1191 frag1 addr addr --- duplicate it
1192 frag1 addr frag2 --- get second fragment
1193 frag1 frag2 addr --- swap again
1194 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1195 Notice that, since the third fragment is the last one, we don't
1196 bother duplicating the address this time. Now we have all the
1197 fragments on the stack, and we can simply `or' them together,
1198 yielding the final value of the bitfield. */
1199
1200 /* The first and one-after-last bits in the field, but rounded down
1201 and up to byte boundaries. */
1202 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1203 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1204 / TARGET_CHAR_BIT)
1205 * TARGET_CHAR_BIT);
c906108c
SS
1206
1207 /* current bit offset within the structure */
1208 int offset;
1209
1210 /* The index in ops of the opcode we're considering. */
1211 int op;
1212
1213 /* The number of fragments we generated in the process. Probably
1214 equal to the number of `one' bits in bytesize, but who cares? */
1215 int fragment_count;
1216
1217 /* Dereference any typedefs. */
1218 type = check_typedef (type);
1219
1220 /* Can we fetch the number of bits requested at all? */
1221 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1222 internal_error (__FILE__, __LINE__,
3d263c1d 1223 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1224
1225 /* Note that we know here that we only need to try each opcode once.
1226 That may not be true on machines with weird byte sizes. */
1227 offset = bound_start;
1228 fragment_count = 0;
1229 for (op = num_ops - 1; op >= 0; op--)
1230 {
1231 /* number of bits that ops[op] would fetch */
1232 int op_size = 8 << op;
1233
1234 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1235 more fragments, then the address. */
1236
c906108c
SS
1237 /* Does this fetch fit within the bitfield? */
1238 if (offset + op_size <= bound_end)
1239 {
1240 /* Is this the last fragment? */
1241 int last_frag = (offset + op_size == bound_end);
1242
c5aa993b
JM
1243 if (!last_frag)
1244 ax_simple (ax, aop_dup); /* keep a copy of the address */
1245
c906108c
SS
1246 /* Add the offset. */
1247 gen_offset (ax, offset / TARGET_CHAR_BIT);
1248
1249 if (trace_kludge)
1250 {
1251 /* Record the area of memory we're about to fetch. */
1252 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1253 }
1254
1255 /* Perform the fetch. */
1256 ax_simple (ax, ops[op]);
c5aa993b
JM
1257
1258 /* Shift the bits we have to their proper position.
c906108c
SS
1259 gen_left_shift will generate right shifts when the operand
1260 is negative.
1261
c5aa993b
JM
1262 A big-endian field diagram to ponder:
1263 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1264 +------++------++------++------++------++------++------++------+
1265 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1266 ^ ^ ^ ^
1267 bit number 16 32 48 53
c906108c
SS
1268 These are bit numbers as supplied by GDB. Note that the
1269 bit numbers run from right to left once you've fetched the
1270 value!
1271
c5aa993b
JM
1272 A little-endian field diagram to ponder:
1273 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1274 +------++------++------++------++------++------++------++------+
1275 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1276 ^ ^ ^ ^ ^
1277 bit number 48 32 16 4 0
1278
1279 In both cases, the most significant end is on the left
1280 (i.e. normal numeric writing order), which means that you
1281 don't go crazy thinking about `left' and `right' shifts.
1282
1283 We don't have to worry about masking yet:
1284 - If they contain garbage off the least significant end, then we
1285 must be looking at the low end of the field, and the right
1286 shift will wipe them out.
1287 - If they contain garbage off the most significant end, then we
1288 must be looking at the most significant end of the word, and
1289 the sign/zero extension will wipe them out.
1290 - If we're in the interior of the word, then there is no garbage
1291 on either end, because the ref operators zero-extend. */
505e835d 1292 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
c906108c 1293 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1294 else
c906108c
SS
1295 gen_left_shift (ax, offset - start);
1296
c5aa993b 1297 if (!last_frag)
c906108c
SS
1298 /* Bring the copy of the address up to the top. */
1299 ax_simple (ax, aop_swap);
1300
1301 offset += op_size;
1302 fragment_count++;
1303 }
1304 }
1305
1306 /* Generate enough bitwise `or' operations to combine all the
1307 fragments we left on the stack. */
1308 while (fragment_count-- > 1)
1309 ax_simple (ax, aop_bit_or);
1310
1311 /* Sign- or zero-extend the value as appropriate. */
1312 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1313
1314 /* This is *not* an lvalue. Ugh. */
1315 value->kind = axs_rvalue;
1316 value->type = type;
1317}
1318
1319
1320/* Generate code to reference the member named FIELD of a structure or
1321 union. The top of the stack, as described by VALUE, should have
1322 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1323 the operator being compiled, and OPERAND_NAME is the kind of thing
1324 it operates on; we use them in error messages. */
1325static void
505e835d
UW
1326gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1327 struct axs_value *value, char *field,
fba45db2 1328 char *operator_name, char *operand_name)
c906108c
SS
1329{
1330 struct type *type;
1331 int i;
1332
1333 /* Follow pointers until we reach a non-pointer. These aren't the C
1334 semantics, but they're what the normal GDB evaluator does, so we
1335 should at least be consistent. */
b97aedf3 1336 while (pointer_type (value->type))
c906108c 1337 {
f7c79c41 1338 require_rvalue (ax, value);
c906108c
SS
1339 gen_deref (ax, value);
1340 }
e8860ec2 1341 type = check_typedef (value->type);
c906108c
SS
1342
1343 /* This must yield a structure or a union. */
1344 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1345 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1346 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1347 operator_name, operand_name);
1348
1349 /* And it must be in memory; we don't deal with structure rvalues,
1350 or structures living in registers. */
1351 if (value->kind != axs_lvalue_memory)
3d263c1d 1352 error (_("Structure does not live in memory."));
c906108c
SS
1353
1354 i = find_field (type, field);
c5aa993b 1355
c906108c
SS
1356 /* Is this a bitfield? */
1357 if (TYPE_FIELD_PACKED (type, i))
505e835d 1358 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, i),
c906108c
SS
1359 TYPE_FIELD_BITPOS (type, i),
1360 (TYPE_FIELD_BITPOS (type, i)
1361 + TYPE_FIELD_BITSIZE (type, i)));
1362 else
1363 {
1364 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1365 value->kind = axs_lvalue_memory;
1366 value->type = TYPE_FIELD_TYPE (type, i);
1367 }
1368}
1369
1370
1371/* Generate code for GDB's magical `repeat' operator.
1372 LVALUE @ INT creates an array INT elements long, and whose elements
1373 have the same type as LVALUE, located in memory so that LVALUE is
1374 its first element. For example, argv[0]@argc gives you the array
1375 of command-line arguments.
1376
1377 Unfortunately, because we have to know the types before we actually
1378 have a value for the expression, we can't implement this perfectly
1379 without changing the type system, having values that occupy two
1380 stack slots, doing weird things with sizeof, etc. So we require
1381 the right operand to be a constant expression. */
1382static void
f7c79c41
UW
1383gen_repeat (struct expression *exp, union exp_element **pc,
1384 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1385{
1386 struct axs_value value1;
1387 /* We don't want to turn this into an rvalue, so no conversions
1388 here. */
f7c79c41 1389 gen_expr (exp, pc, ax, &value1);
c906108c 1390 if (value1.kind != axs_lvalue_memory)
3d263c1d 1391 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1392
1393 /* Evaluate the length; it had better be a constant. */
1394 {
1395 struct value *v = const_expr (pc);
1396 int length;
1397
c5aa993b 1398 if (!v)
3d263c1d 1399 error (_("Right operand of `@' must be a constant, in agent expressions."));
04624583 1400 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1401 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1402 length = value_as_long (v);
1403 if (length <= 0)
3d263c1d 1404 error (_("Right operand of `@' must be positive."));
c906108c
SS
1405
1406 /* The top of the stack is already the address of the object, so
1407 all we need to do is frob the type of the lvalue. */
1408 {
1409 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1410 done with it. */
e3506a9f
UW
1411 struct type *array
1412 = lookup_array_range_type (value1.type, 0, length - 1);
c906108c
SS
1413
1414 value->kind = axs_lvalue_memory;
1415 value->type = array;
1416 }
1417 }
1418}
1419
1420
1421/* Emit code for the `sizeof' operator.
1422 *PC should point at the start of the operand expression; we advance it
1423 to the first instruction after the operand. */
1424static void
f7c79c41
UW
1425gen_sizeof (struct expression *exp, union exp_element **pc,
1426 struct agent_expr *ax, struct axs_value *value,
1427 struct type *size_type)
c906108c
SS
1428{
1429 /* We don't care about the value of the operand expression; we only
1430 care about its type. However, in the current arrangement, the
1431 only way to find an expression's type is to generate code for it.
1432 So we generate code for the operand, and then throw it away,
1433 replacing it with code that simply pushes its size. */
1434 int start = ax->len;
f7c79c41 1435 gen_expr (exp, pc, ax, value);
c906108c
SS
1436
1437 /* Throw away the code we just generated. */
1438 ax->len = start;
c5aa993b 1439
c906108c
SS
1440 ax_const_l (ax, TYPE_LENGTH (value->type));
1441 value->kind = axs_rvalue;
f7c79c41 1442 value->type = size_type;
c906108c 1443}
c906108c 1444\f
c5aa993b 1445
c906108c
SS
1446/* Generating bytecode from GDB expressions: general recursive thingy */
1447
3d263c1d 1448/* XXX: i18n */
c906108c
SS
1449/* A gen_expr function written by a Gen-X'er guy.
1450 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1451static void
f7c79c41
UW
1452gen_expr (struct expression *exp, union exp_element **pc,
1453 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1454{
1455 /* Used to hold the descriptions of operand expressions. */
09d559e4 1456 struct axs_value value1, value2, value3;
f61e138d 1457 enum exp_opcode op = (*pc)[0].opcode, op2;
09d559e4 1458 int if1, go1, if2, go2, end;
c906108c
SS
1459
1460 /* If we're looking at a constant expression, just push its value. */
1461 {
1462 struct value *v = maybe_const_expr (pc);
c5aa993b 1463
c906108c
SS
1464 if (v)
1465 {
1466 ax_const_l (ax, value_as_long (v));
1467 value->kind = axs_rvalue;
df407dfe 1468 value->type = check_typedef (value_type (v));
c906108c
SS
1469 return;
1470 }
1471 }
1472
1473 /* Otherwise, go ahead and generate code for it. */
1474 switch (op)
1475 {
1476 /* Binary arithmetic operators. */
1477 case BINOP_ADD:
1478 case BINOP_SUB:
1479 case BINOP_MUL:
1480 case BINOP_DIV:
1481 case BINOP_REM:
1482 case BINOP_SUBSCRIPT:
1483 case BINOP_BITWISE_AND:
1484 case BINOP_BITWISE_IOR:
1485 case BINOP_BITWISE_XOR:
782b2b07
SS
1486 case BINOP_EQUAL:
1487 case BINOP_NOTEQUAL:
1488 case BINOP_LESS:
1489 case BINOP_GTR:
1490 case BINOP_LEQ:
1491 case BINOP_GEQ:
c906108c 1492 (*pc)++;
f7c79c41
UW
1493 gen_expr (exp, pc, ax, &value1);
1494 gen_usual_unary (exp, ax, &value1);
f61e138d
SS
1495 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1496 break;
1497
09d559e4
SS
1498 case BINOP_LOGICAL_AND:
1499 (*pc)++;
1500 /* Generate the obvious sequence of tests and jumps. */
1501 gen_expr (exp, pc, ax, &value1);
1502 gen_usual_unary (exp, ax, &value1);
1503 if1 = ax_goto (ax, aop_if_goto);
1504 go1 = ax_goto (ax, aop_goto);
1505 ax_label (ax, if1, ax->len);
1506 gen_expr (exp, pc, ax, &value2);
1507 gen_usual_unary (exp, ax, &value2);
1508 if2 = ax_goto (ax, aop_if_goto);
1509 go2 = ax_goto (ax, aop_goto);
1510 ax_label (ax, if2, ax->len);
1511 ax_const_l (ax, 1);
1512 end = ax_goto (ax, aop_goto);
1513 ax_label (ax, go1, ax->len);
1514 ax_label (ax, go2, ax->len);
1515 ax_const_l (ax, 0);
1516 ax_label (ax, end, ax->len);
1517 value->kind = axs_rvalue;
1518 value->type = language_bool_type (exp->language_defn, exp->gdbarch);
1519 break;
1520
1521 case BINOP_LOGICAL_OR:
1522 (*pc)++;
1523 /* Generate the obvious sequence of tests and jumps. */
1524 gen_expr (exp, pc, ax, &value1);
1525 gen_usual_unary (exp, ax, &value1);
1526 if1 = ax_goto (ax, aop_if_goto);
1527 gen_expr (exp, pc, ax, &value2);
1528 gen_usual_unary (exp, ax, &value2);
1529 if2 = ax_goto (ax, aop_if_goto);
1530 ax_const_l (ax, 0);
1531 end = ax_goto (ax, aop_goto);
1532 ax_label (ax, if1, ax->len);
1533 ax_label (ax, if2, ax->len);
1534 ax_const_l (ax, 1);
1535 ax_label (ax, end, ax->len);
1536 value->kind = axs_rvalue;
1537 value->type = language_bool_type (exp->language_defn, exp->gdbarch);
1538 break;
1539
1540 case TERNOP_COND:
1541 (*pc)++;
1542 gen_expr (exp, pc, ax, &value1);
1543 gen_usual_unary (exp, ax, &value1);
1544 /* For (A ? B : C), it's easiest to generate subexpression
1545 bytecodes in order, but if_goto jumps on true, so we invert
1546 the sense of A. Then we can do B by dropping through, and
1547 jump to do C. */
1548 gen_logical_not (ax, &value1,
1549 language_bool_type (exp->language_defn, exp->gdbarch));
1550 if1 = ax_goto (ax, aop_if_goto);
1551 gen_expr (exp, pc, ax, &value2);
1552 gen_usual_unary (exp, ax, &value2);
1553 end = ax_goto (ax, aop_goto);
1554 ax_label (ax, if1, ax->len);
1555 gen_expr (exp, pc, ax, &value3);
1556 gen_usual_unary (exp, ax, &value3);
1557 ax_label (ax, end, ax->len);
1558 /* This is arbitary - what if B and C are incompatible types? */
1559 value->type = value2.type;
1560 value->kind = value2.kind;
1561 break;
1562
f61e138d
SS
1563 case BINOP_ASSIGN:
1564 (*pc)++;
1565 if ((*pc)[0].opcode == OP_INTERNALVAR)
c906108c 1566 {
f61e138d
SS
1567 char *name = internalvar_name ((*pc)[1].internalvar);
1568 struct trace_state_variable *tsv;
1569 (*pc) += 3;
1570 gen_expr (exp, pc, ax, value);
1571 tsv = find_trace_state_variable (name);
1572 if (tsv)
f7c79c41 1573 {
f61e138d
SS
1574 ax_tsv (ax, aop_setv, tsv->number);
1575 if (trace_kludge)
1576 ax_tsv (ax, aop_tracev, tsv->number);
f7c79c41 1577 }
f7c79c41 1578 else
f61e138d
SS
1579 error (_("$%s is not a trace state variable, may not assign to it"), name);
1580 }
1581 else
1582 error (_("May only assign to trace state variables"));
1583 break;
782b2b07 1584
f61e138d
SS
1585 case BINOP_ASSIGN_MODIFY:
1586 (*pc)++;
1587 op2 = (*pc)[0].opcode;
1588 (*pc)++;
1589 (*pc)++;
1590 if ((*pc)[0].opcode == OP_INTERNALVAR)
1591 {
1592 char *name = internalvar_name ((*pc)[1].internalvar);
1593 struct trace_state_variable *tsv;
1594 (*pc) += 3;
1595 tsv = find_trace_state_variable (name);
1596 if (tsv)
1597 {
1598 /* The tsv will be the left half of the binary operation. */
1599 ax_tsv (ax, aop_getv, tsv->number);
1600 if (trace_kludge)
1601 ax_tsv (ax, aop_tracev, tsv->number);
1602 /* Trace state variables are always 64-bit integers. */
1603 value1.kind = axs_rvalue;
1604 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1605 /* Now do right half of expression. */
1606 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1607 /* We have a result of the binary op, set the tsv. */
1608 ax_tsv (ax, aop_setv, tsv->number);
1609 if (trace_kludge)
1610 ax_tsv (ax, aop_tracev, tsv->number);
1611 }
1612 else
1613 error (_("$%s is not a trace state variable, may not assign to it"), name);
c906108c 1614 }
f61e138d
SS
1615 else
1616 error (_("May only assign to trace state variables"));
c906108c
SS
1617 break;
1618
1619 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1620 for comma. In C, we can do some optimizations here because
1621 we know the left operand is only being evaluated for effect.
1622 However, if the tracing kludge is in effect, then we always
1623 need to evaluate the left hand side fully, so that all the
1624 variables it mentions get traced. */
c906108c
SS
1625 case BINOP_COMMA:
1626 (*pc)++;
f7c79c41 1627 gen_expr (exp, pc, ax, &value1);
c906108c 1628 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1629 in which case we want to emit code to trace it if it's an
1630 lvalue. */
c906108c 1631 gen_traced_pop (ax, &value1);
f7c79c41 1632 gen_expr (exp, pc, ax, value);
c906108c
SS
1633 /* It's the consumer's responsibility to trace the right operand. */
1634 break;
c5aa993b 1635
c906108c
SS
1636 case OP_LONG: /* some integer constant */
1637 {
1638 struct type *type = (*pc)[1].type;
1639 LONGEST k = (*pc)[2].longconst;
1640 (*pc) += 4;
1641 gen_int_literal (ax, value, k, type);
1642 }
c5aa993b 1643 break;
c906108c
SS
1644
1645 case OP_VAR_VALUE:
f7c79c41 1646 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
c906108c
SS
1647 (*pc) += 4;
1648 break;
1649
1650 case OP_REGISTER:
1651 {
67f3407f
DJ
1652 const char *name = &(*pc)[2].string;
1653 int reg;
1654 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
f7c79c41 1655 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
67f3407f
DJ
1656 if (reg == -1)
1657 internal_error (__FILE__, __LINE__,
1658 _("Register $%s not available"), name);
f7c79c41 1659 if (reg >= gdbarch_num_regs (exp->gdbarch))
02e4669d
JB
1660 error (_("'%s' is a pseudo-register; "
1661 "GDB cannot yet trace pseudoregister contents."),
1662 name);
c906108c
SS
1663 value->kind = axs_lvalue_register;
1664 value->u.reg = reg;
f7c79c41 1665 value->type = register_type (exp->gdbarch, reg);
c906108c 1666 }
c5aa993b 1667 break;
c906108c
SS
1668
1669 case OP_INTERNALVAR:
f61e138d
SS
1670 {
1671 const char *name = internalvar_name ((*pc)[1].internalvar);
1672 struct trace_state_variable *tsv;
1673 (*pc) += 3;
1674 tsv = find_trace_state_variable (name);
1675 if (tsv)
1676 {
1677 ax_tsv (ax, aop_getv, tsv->number);
1678 if (trace_kludge)
1679 ax_tsv (ax, aop_tracev, tsv->number);
1680 /* Trace state variables are always 64-bit integers. */
1681 value->kind = axs_rvalue;
1682 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
1683 }
1684 else
1685 error (_("$%s is not a trace state variable; GDB agent expressions cannot use convenience variables."), name);
1686 }
1687 break;
c906108c 1688
c5aa993b 1689 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1690 case BINOP_REPEAT:
1691 /* Note that gen_repeat handles its own argument evaluation. */
1692 (*pc)++;
f7c79c41 1693 gen_repeat (exp, pc, ax, value);
c906108c
SS
1694 break;
1695
1696 case UNOP_CAST:
1697 {
1698 struct type *type = (*pc)[1].type;
1699 (*pc) += 3;
f7c79c41 1700 gen_expr (exp, pc, ax, value);
c906108c
SS
1701 gen_cast (ax, value, type);
1702 }
c5aa993b 1703 break;
c906108c
SS
1704
1705 case UNOP_MEMVAL:
1706 {
1707 struct type *type = check_typedef ((*pc)[1].type);
1708 (*pc) += 3;
f7c79c41 1709 gen_expr (exp, pc, ax, value);
c906108c
SS
1710 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1711 it's just a hack for dealing with minsyms; you take some
1712 integer constant, pretend it's the address of an lvalue of
1713 the given type, and dereference it. */
1714 if (value->kind != axs_rvalue)
1715 /* This would be weird. */
8e65ff28 1716 internal_error (__FILE__, __LINE__,
3d263c1d 1717 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
c906108c
SS
1718 value->type = type;
1719 value->kind = axs_lvalue_memory;
1720 }
c5aa993b 1721 break;
c906108c 1722
36e9969c
NS
1723 case UNOP_PLUS:
1724 (*pc)++;
1725 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
f7c79c41
UW
1726 gen_expr (exp, pc, ax, value);
1727 gen_usual_unary (exp, ax, value);
36e9969c
NS
1728 break;
1729
c906108c
SS
1730 case UNOP_NEG:
1731 (*pc)++;
1732 /* -FOO is equivalent to 0 - FOO. */
22601c15
UW
1733 gen_int_literal (ax, &value1, 0,
1734 builtin_type (exp->gdbarch)->builtin_int);
f7c79c41
UW
1735 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
1736 gen_expr (exp, pc, ax, &value2);
1737 gen_usual_unary (exp, ax, &value2);
1738 gen_usual_arithmetic (exp, ax, &value1, &value2);
1739 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
c906108c
SS
1740 break;
1741
1742 case UNOP_LOGICAL_NOT:
1743 (*pc)++;
f7c79c41
UW
1744 gen_expr (exp, pc, ax, value);
1745 gen_usual_unary (exp, ax, value);
1746 gen_logical_not (ax, value,
1747 language_bool_type (exp->language_defn, exp->gdbarch));
c906108c
SS
1748 break;
1749
1750 case UNOP_COMPLEMENT:
1751 (*pc)++;
f7c79c41
UW
1752 gen_expr (exp, pc, ax, value);
1753 gen_usual_unary (exp, ax, value);
1754 gen_integral_promotions (exp, ax, value);
c906108c
SS
1755 gen_complement (ax, value);
1756 break;
1757
1758 case UNOP_IND:
1759 (*pc)++;
f7c79c41
UW
1760 gen_expr (exp, pc, ax, value);
1761 gen_usual_unary (exp, ax, value);
b97aedf3 1762 if (!pointer_type (value->type))
3d263c1d 1763 error (_("Argument of unary `*' is not a pointer."));
c906108c
SS
1764 gen_deref (ax, value);
1765 break;
1766
1767 case UNOP_ADDR:
1768 (*pc)++;
f7c79c41 1769 gen_expr (exp, pc, ax, value);
c906108c
SS
1770 gen_address_of (ax, value);
1771 break;
1772
1773 case UNOP_SIZEOF:
1774 (*pc)++;
1775 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1776 of the other unary operator functions. This is because we
1777 have to throw away the code we generate. */
f7c79c41
UW
1778 gen_sizeof (exp, pc, ax, value,
1779 builtin_type (exp->gdbarch)->builtin_int);
c906108c
SS
1780 break;
1781
1782 case STRUCTOP_STRUCT:
1783 case STRUCTOP_PTR:
1784 {
1785 int length = (*pc)[1].longconst;
1786 char *name = &(*pc)[2].string;
1787
1788 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
f7c79c41 1789 gen_expr (exp, pc, ax, value);
c906108c 1790 if (op == STRUCTOP_STRUCT)
505e835d 1791 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
c906108c 1792 else if (op == STRUCTOP_PTR)
505e835d 1793 gen_struct_ref (exp, ax, value, name, "->",
c906108c
SS
1794 "pointer to a structure or union");
1795 else
1796 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1797 shouldn't mention it, and we shouldn't be here. */
8e65ff28 1798 internal_error (__FILE__, __LINE__,
3d263c1d 1799 _("gen_expr: unhandled struct case"));
c906108c 1800 }
c5aa993b 1801 break;
c906108c 1802
6c228b9c
SS
1803 case OP_THIS:
1804 {
6a0fc12f 1805 char *this_name;
6c228b9c
SS
1806 struct symbol *func, *sym;
1807 struct block *b;
1808
6a0fc12f
PA
1809 func = block_linkage_function (block_for_pc (ax->scope));
1810 this_name = language_def (SYMBOL_LANGUAGE (func))->la_name_of_this;
6c228b9c 1811 b = SYMBOL_BLOCK_VALUE (func);
6c228b9c
SS
1812
1813 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
1814 symbol instead of the LOC_ARG one (if both exist). */
94af9270 1815 sym = lookup_block_symbol (b, this_name, VAR_DOMAIN);
6c228b9c 1816 if (!sym)
6a0fc12f 1817 error (_("no `%s' found"), this_name);
6c228b9c
SS
1818
1819 gen_var_ref (exp->gdbarch, ax, value, sym);
1820 (*pc) += 2;
1821 }
1822 break;
1823
c906108c 1824 case OP_TYPE:
3d263c1d 1825 error (_("Attempt to use a type name as an expression."));
c906108c
SS
1826
1827 default:
3d263c1d 1828 error (_("Unsupported operator in expression."));
c906108c
SS
1829 }
1830}
f61e138d
SS
1831
1832/* This handles the middle-to-right-side of code generation for binary
1833 expressions, which is shared between regular binary operations and
1834 assign-modify (+= and friends) expressions. */
1835
1836static void
1837gen_expr_binop_rest (struct expression *exp,
1838 enum exp_opcode op, union exp_element **pc,
1839 struct agent_expr *ax, struct axs_value *value,
1840 struct axs_value *value1, struct axs_value *value2)
1841{
1842 gen_expr (exp, pc, ax, value2);
1843 gen_usual_unary (exp, ax, value2);
1844 gen_usual_arithmetic (exp, ax, value1, value2);
1845 switch (op)
1846 {
1847 case BINOP_ADD:
1848 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
b97aedf3 1849 && pointer_type (value2->type))
f61e138d
SS
1850 {
1851 /* Swap the values and proceed normally. */
1852 ax_simple (ax, aop_swap);
1853 gen_ptradd (ax, value, value2, value1);
1854 }
b97aedf3 1855 else if (pointer_type (value1->type)
f61e138d
SS
1856 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1857 gen_ptradd (ax, value, value1, value2);
1858 else
1859 gen_binop (ax, value, value1, value2,
1860 aop_add, aop_add, 1, "addition");
1861 break;
1862 case BINOP_SUB:
b97aedf3 1863 if (pointer_type (value1->type)
f61e138d
SS
1864 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
1865 gen_ptrsub (ax,value, value1, value2);
b97aedf3
SS
1866 else if (pointer_type (value1->type)
1867 && pointer_type (value2->type))
f61e138d
SS
1868 /* FIXME --- result type should be ptrdiff_t */
1869 gen_ptrdiff (ax, value, value1, value2,
1870 builtin_type (exp->gdbarch)->builtin_long);
1871 else
1872 gen_binop (ax, value, value1, value2,
1873 aop_sub, aop_sub, 1, "subtraction");
1874 break;
1875 case BINOP_MUL:
1876 gen_binop (ax, value, value1, value2,
1877 aop_mul, aop_mul, 1, "multiplication");
1878 break;
1879 case BINOP_DIV:
1880 gen_binop (ax, value, value1, value2,
1881 aop_div_signed, aop_div_unsigned, 1, "division");
1882 break;
1883 case BINOP_REM:
1884 gen_binop (ax, value, value1, value2,
1885 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1886 break;
1887 case BINOP_SUBSCRIPT:
be636754
PA
1888 {
1889 struct type *type;
1890
1891 if (binop_types_user_defined_p (op, value1->type, value2->type))
1892 {
1893 error (_("\
1894cannot subscript requested type: cannot call user defined functions"));
1895 }
1896 else
1897 {
1898 /* If the user attempts to subscript something that is not
1899 an array or pointer type (like a plain int variable for
1900 example), then report this as an error. */
1901 type = check_typedef (value1->type);
1902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
1903 && TYPE_CODE (type) != TYPE_CODE_PTR)
1904 {
1905 if (TYPE_NAME (type))
1906 error (_("cannot subscript something of type `%s'"),
1907 TYPE_NAME (type));
1908 else
1909 error (_("cannot subscript requested type"));
1910 }
1911 }
1912
5d5b640e
PA
1913 if (!is_integral_type (value2->type))
1914 error (_("Argument to arithmetic operation not a number or boolean."));
1915
be636754
PA
1916 gen_ptradd (ax, value, value1, value2);
1917 gen_deref (ax, value);
1918 break;
1919 }
f61e138d
SS
1920 case BINOP_BITWISE_AND:
1921 gen_binop (ax, value, value1, value2,
1922 aop_bit_and, aop_bit_and, 0, "bitwise and");
1923 break;
1924
1925 case BINOP_BITWISE_IOR:
1926 gen_binop (ax, value, value1, value2,
1927 aop_bit_or, aop_bit_or, 0, "bitwise or");
1928 break;
1929
1930 case BINOP_BITWISE_XOR:
1931 gen_binop (ax, value, value1, value2,
1932 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1933 break;
1934
1935 case BINOP_EQUAL:
1936 gen_binop (ax, value, value1, value2,
1937 aop_equal, aop_equal, 0, "equal");
1938 break;
1939
1940 case BINOP_NOTEQUAL:
1941 gen_binop (ax, value, value1, value2,
1942 aop_equal, aop_equal, 0, "equal");
1943 gen_logical_not (ax, value,
1944 language_bool_type (exp->language_defn,
1945 exp->gdbarch));
1946 break;
1947
1948 case BINOP_LESS:
1949 gen_binop (ax, value, value1, value2,
1950 aop_less_signed, aop_less_unsigned, 0, "less than");
1951 break;
1952
1953 case BINOP_GTR:
1954 ax_simple (ax, aop_swap);
1955 gen_binop (ax, value, value1, value2,
1956 aop_less_signed, aop_less_unsigned, 0, "less than");
1957 break;
1958
1959 case BINOP_LEQ:
1960 ax_simple (ax, aop_swap);
1961 gen_binop (ax, value, value1, value2,
1962 aop_less_signed, aop_less_unsigned, 0, "less than");
1963 gen_logical_not (ax, value,
1964 language_bool_type (exp->language_defn,
1965 exp->gdbarch));
1966 break;
1967
1968 case BINOP_GEQ:
1969 gen_binop (ax, value, value1, value2,
1970 aop_less_signed, aop_less_unsigned, 0, "less than");
1971 gen_logical_not (ax, value,
1972 language_bool_type (exp->language_defn,
1973 exp->gdbarch));
1974 break;
1975
1976 default:
1977 /* We should only list operators in the outer case statement
1978 that we actually handle in the inner case statement. */
1979 internal_error (__FILE__, __LINE__,
1980 _("gen_expr: op case sets don't match"));
1981 }
1982}
c906108c 1983\f
c5aa993b 1984
0936ad1d
SS
1985/* Given a single variable and a scope, generate bytecodes to trace
1986 its value. This is for use in situations where we have only a
1987 variable's name, and no parsed expression; for instance, when the
1988 name comes from a list of local variables of a function. */
1989
1990struct agent_expr *
1991gen_trace_for_var (CORE_ADDR scope, struct symbol *var)
1992{
1993 struct cleanup *old_chain = 0;
1994 struct agent_expr *ax = new_agent_expr (scope);
1995 struct axs_value value;
1996
1997 old_chain = make_cleanup_free_agent_expr (ax);
1998
1999 trace_kludge = 1;
2000 gen_var_ref (NULL, ax, &value, var);
2001
2002 /* Make sure we record the final object, and get rid of it. */
2003 gen_traced_pop (ax, &value);
2004
2005 /* Oh, and terminate. */
2006 ax_simple (ax, aop_end);
2007
2008 /* We have successfully built the agent expr, so cancel the cleanup
2009 request. If we add more cleanups that we always want done, this
2010 will have to get more complicated. */
2011 discard_cleanups (old_chain);
2012 return ax;
2013}
c5aa993b 2014
c906108c
SS
2015/* Generating bytecode from GDB expressions: driver */
2016
c906108c
SS
2017/* Given a GDB expression EXPR, return bytecode to trace its value.
2018 The result will use the `trace' and `trace_quick' bytecodes to
2019 record the value of all memory touched by the expression. The
2020 caller can then use the ax_reqs function to discover which
2021 registers it relies upon. */
2022struct agent_expr *
fba45db2 2023gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
2024{
2025 struct cleanup *old_chain = 0;
2026 struct agent_expr *ax = new_agent_expr (scope);
2027 union exp_element *pc;
2028 struct axs_value value;
2029
f23d52e0 2030 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
2031
2032 pc = expr->elts;
2033 trace_kludge = 1;
f7c79c41 2034 gen_expr (expr, &pc, ax, &value);
c906108c
SS
2035
2036 /* Make sure we record the final object, and get rid of it. */
2037 gen_traced_pop (ax, &value);
2038
2039 /* Oh, and terminate. */
2040 ax_simple (ax, aop_end);
2041
2042 /* We have successfully built the agent expr, so cancel the cleanup
2043 request. If we add more cleanups that we always want done, this
2044 will have to get more complicated. */
2045 discard_cleanups (old_chain);
2046 return ax;
2047}
c906108c 2048
782b2b07
SS
2049/* Given a GDB expression EXPR, return a bytecode sequence that will
2050 evaluate and return a result. The bytecodes will do a direct
2051 evaluation, using the current data on the target, rather than
2052 recording blocks of memory and registers for later use, as
2053 gen_trace_for_expr does. The generated bytecode sequence leaves
2054 the result of expression evaluation on the top of the stack. */
2055
2056struct agent_expr *
2057gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2058{
2059 struct cleanup *old_chain = 0;
2060 struct agent_expr *ax = new_agent_expr (scope);
2061 union exp_element *pc;
2062 struct axs_value value;
2063
2064 old_chain = make_cleanup_free_agent_expr (ax);
2065
2066 pc = expr->elts;
2067 trace_kludge = 0;
2068 gen_expr (expr, &pc, ax, &value);
2069
2070 /* Oh, and terminate. */
2071 ax_simple (ax, aop_end);
2072
2073 /* We have successfully built the agent expr, so cancel the cleanup
2074 request. If we add more cleanups that we always want done, this
2075 will have to get more complicated. */
2076 discard_cleanups (old_chain);
2077 return ax;
2078}
2079
c906108c 2080static void
fba45db2 2081agent_command (char *exp, int from_tty)
c906108c
SS
2082{
2083 struct cleanup *old_chain = 0;
2084 struct expression *expr;
2085 struct agent_expr *agent;
6426a772 2086 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
2087
2088 /* We don't deal with overlay debugging at the moment. We need to
2089 think more carefully about this. If you copy this code into
2090 another command, change the error message; the user shouldn't
2091 have to know anything about agent expressions. */
2092 if (overlay_debugging)
3d263c1d 2093 error (_("GDB can't do agent expression translation with overlays."));
c906108c
SS
2094
2095 if (exp == 0)
3d263c1d 2096 error_no_arg (_("expression to translate"));
c5aa993b 2097
c906108c 2098 expr = parse_expression (exp);
c13c43fd 2099 old_chain = make_cleanup (free_current_contents, &expr);
bdd78e62 2100 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
f23d52e0 2101 make_cleanup_free_agent_expr (agent);
c906108c 2102 ax_print (gdb_stdout, agent);
085dd6e6
JM
2103
2104 /* It would be nice to call ax_reqs here to gather some general info
2105 about the expression, and then print out the result. */
c906108c
SS
2106
2107 do_cleanups (old_chain);
2108 dont_repeat ();
2109}
782b2b07
SS
2110
2111/* Parse the given expression, compile it into an agent expression
2112 that does direct evaluation, and display the resulting
2113 expression. */
2114
2115static void
2116agent_eval_command (char *exp, int from_tty)
2117{
2118 struct cleanup *old_chain = 0;
2119 struct expression *expr;
2120 struct agent_expr *agent;
2121 struct frame_info *fi = get_current_frame (); /* need current scope */
2122
2123 /* We don't deal with overlay debugging at the moment. We need to
2124 think more carefully about this. If you copy this code into
2125 another command, change the error message; the user shouldn't
2126 have to know anything about agent expressions. */
2127 if (overlay_debugging)
2128 error (_("GDB can't do agent expression translation with overlays."));
2129
2130 if (exp == 0)
2131 error_no_arg (_("expression to translate"));
2132
2133 expr = parse_expression (exp);
2134 old_chain = make_cleanup (free_current_contents, &expr);
2135 agent = gen_eval_for_expr (get_frame_pc (fi), expr);
2136 make_cleanup_free_agent_expr (agent);
2137 ax_print (gdb_stdout, agent);
2138
2139 /* It would be nice to call ax_reqs here to gather some general info
2140 about the expression, and then print out the result. */
2141
2142 do_cleanups (old_chain);
2143 dont_repeat ();
2144}
c906108c 2145\f
c5aa993b 2146
c906108c
SS
2147/* Initialization code. */
2148
a14ed312 2149void _initialize_ax_gdb (void);
c906108c 2150void
fba45db2 2151_initialize_ax_gdb (void)
c906108c 2152{
c906108c 2153 add_cmd ("agent", class_maintenance, agent_command,
782b2b07
SS
2154 _("Translate an expression into remote agent bytecode for tracing."),
2155 &maintenancelist);
2156
2157 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2158 _("Translate an expression into remote agent bytecode for evaluation."),
c906108c
SS
2159 &maintenancelist);
2160}
This page took 0.783421 seconds and 4 git commands to generate.