* gdb-events.sh: Add architecture_changed event.
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
c906108c 1/* GDB-specific functions for operating on agent expressions
b6ba6518 2 Copyright 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
c906108c 3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
33
6426a772
JM
34/* To make sense of this file, you should read doc/agentexpr.texi.
35 Then look at the types and enums in ax-gdb.h. For the code itself,
36 look at gen_expr, towards the bottom; that's the main function that
37 looks at the GDB expressions and calls everything else to generate
38 code.
c906108c
SS
39
40 I'm beginning to wonder whether it wouldn't be nicer to internally
41 generate trees, with types, and then spit out the bytecode in
42 linear form afterwards; we could generate fewer `swap', `ext', and
43 `zero_ext' bytecodes that way; it would make good constant folding
44 easier, too. But at the moment, I think we should be willing to
45 pay for the simplicity of this code with less-than-optimal bytecode
46 strings.
47
c5aa993b
JM
48 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
49\f
c906108c
SS
50
51
c906108c
SS
52/* Prototypes for local functions. */
53
54/* There's a standard order to the arguments of these functions:
55 union exp_element ** --- pointer into expression
56 struct agent_expr * --- agent expression buffer to generate code into
57 struct axs_value * --- describes value left on top of stack */
c5aa993b 58
a14ed312
KB
59static struct value *const_var_ref (struct symbol *var);
60static struct value *const_expr (union exp_element **pc);
61static struct value *maybe_const_expr (union exp_element **pc);
62
63static void gen_traced_pop (struct agent_expr *, struct axs_value *);
64
65static void gen_sign_extend (struct agent_expr *, struct type *);
66static void gen_extend (struct agent_expr *, struct type *);
67static void gen_fetch (struct agent_expr *, struct type *);
68static void gen_left_shift (struct agent_expr *, int);
69
70
71static void gen_frame_args_address (struct agent_expr *);
72static void gen_frame_locals_address (struct agent_expr *);
73static void gen_offset (struct agent_expr *ax, int offset);
74static void gen_sym_offset (struct agent_expr *, struct symbol *);
75static void gen_var_ref (struct agent_expr *ax,
76 struct axs_value *value, struct symbol *var);
77
78
79static void gen_int_literal (struct agent_expr *ax,
80 struct axs_value *value,
81 LONGEST k, struct type *type);
82
83
84static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
85static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
86static int type_wider_than (struct type *type1, struct type *type2);
87static struct type *max_type (struct type *type1, struct type *type2);
88static void gen_conversion (struct agent_expr *ax,
89 struct type *from, struct type *to);
90static int is_nontrivial_conversion (struct type *from, struct type *to);
91static void gen_usual_arithmetic (struct agent_expr *ax,
92 struct axs_value *value1,
93 struct axs_value *value2);
94static void gen_integral_promotions (struct agent_expr *ax,
95 struct axs_value *value);
96static void gen_cast (struct agent_expr *ax,
97 struct axs_value *value, struct type *type);
98static void gen_scale (struct agent_expr *ax,
99 enum agent_op op, struct type *type);
100static void gen_add (struct agent_expr *ax,
101 struct axs_value *value,
102 struct axs_value *value1,
103 struct axs_value *value2, char *name);
104static void gen_sub (struct agent_expr *ax,
105 struct axs_value *value,
106 struct axs_value *value1, struct axs_value *value2);
107static void gen_binop (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1,
110 struct axs_value *value2,
111 enum agent_op op,
112 enum agent_op op_unsigned, int may_carry, char *name);
113static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
114static void gen_complement (struct agent_expr *ax, struct axs_value *value);
115static void gen_deref (struct agent_expr *, struct axs_value *);
116static void gen_address_of (struct agent_expr *, struct axs_value *);
117static int find_field (struct type *type, char *name);
118static void gen_bitfield_ref (struct agent_expr *ax,
119 struct axs_value *value,
120 struct type *type, int start, int end);
121static void gen_struct_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 char *field,
124 char *operator_name, char *operand_name);
125static void gen_repeat (union exp_element **pc,
126 struct agent_expr *ax, struct axs_value *value);
127static void gen_sizeof (union exp_element **pc,
128 struct agent_expr *ax, struct axs_value *value);
129static void gen_expr (union exp_element **pc,
130 struct agent_expr *ax, struct axs_value *value);
c5aa993b 131
d9fcf2fb 132static void print_axs_value (struct ui_file *f, struct axs_value * value);
a14ed312 133static void agent_command (char *exp, int from_tty);
c906108c 134\f
c5aa993b 135
c906108c
SS
136/* Detecting constant expressions. */
137
138/* If the variable reference at *PC is a constant, return its value.
139 Otherwise, return zero.
140
141 Hey, Wally! How can a variable reference be a constant?
142
143 Well, Beav, this function really handles the OP_VAR_VALUE operator,
144 not specifically variable references. GDB uses OP_VAR_VALUE to
145 refer to any kind of symbolic reference: function names, enum
146 elements, and goto labels are all handled through the OP_VAR_VALUE
147 operator, even though they're constants. It makes sense given the
148 situation.
149
150 Gee, Wally, don'cha wonder sometimes if data representations that
151 subvert commonly accepted definitions of terms in favor of heavily
152 context-specific interpretations are really just a tool of the
153 programming hegemony to preserve their power and exclude the
154 proletariat? */
155
156static struct value *
fba45db2 157const_var_ref (struct symbol *var)
c906108c
SS
158{
159 struct type *type = SYMBOL_TYPE (var);
160
161 switch (SYMBOL_CLASS (var))
162 {
163 case LOC_CONST:
164 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
165
166 case LOC_LABEL:
4478b372 167 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
168
169 default:
170 return 0;
171 }
172}
173
174
175/* If the expression starting at *PC has a constant value, return it.
176 Otherwise, return zero. If we return a value, then *PC will be
177 advanced to the end of it. If we return zero, *PC could be
178 anywhere. */
179static struct value *
fba45db2 180const_expr (union exp_element **pc)
c906108c
SS
181{
182 enum exp_opcode op = (*pc)->opcode;
183 struct value *v1;
184
185 switch (op)
186 {
187 case OP_LONG:
188 {
189 struct type *type = (*pc)[1].type;
190 LONGEST k = (*pc)[2].longconst;
191 (*pc) += 4;
192 return value_from_longest (type, k);
193 }
194
195 case OP_VAR_VALUE:
196 {
197 struct value *v = const_var_ref ((*pc)[2].symbol);
198 (*pc) += 4;
199 return v;
200 }
201
c5aa993b 202 /* We could add more operators in here. */
c906108c
SS
203
204 case UNOP_NEG:
205 (*pc)++;
206 v1 = const_expr (pc);
207 if (v1)
208 return value_neg (v1);
209 else
210 return 0;
211
212 default:
213 return 0;
214 }
215}
216
217
218/* Like const_expr, but guarantee also that *PC is undisturbed if the
219 expression is not constant. */
220static struct value *
fba45db2 221maybe_const_expr (union exp_element **pc)
c906108c
SS
222{
223 union exp_element *tentative_pc = *pc;
224 struct value *v = const_expr (&tentative_pc);
225
226 /* If we got a value, then update the real PC. */
227 if (v)
228 *pc = tentative_pc;
c5aa993b 229
c906108c
SS
230 return v;
231}
c906108c 232\f
c5aa993b 233
c906108c
SS
234/* Generating bytecode from GDB expressions: general assumptions */
235
236/* Here are a few general assumptions made throughout the code; if you
237 want to make a change that contradicts one of these, then you'd
238 better scan things pretty thoroughly.
239
240 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
241 sometimes we'll swap to get at the left argument to a binary
242 operator. If we decide that void values should occupy no stack
243 elements, or that synthetic arrays (whose size is determined at
244 run time, created by the `@' operator) should occupy two stack
245 elements (address and length), then this will cause trouble.
c906108c
SS
246
247 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
248 don't have to worry what happens if the user requests an
249 operation that is wider than the actual interpreter's stack.
250 That is, it's up to the interpreter to handle directly all the
251 integer widths the user has access to. (Woe betide the language
252 with bignums!)
c906108c
SS
253
254 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 255 GCC's generalized lvalues, function calls, etc.
c906108c
SS
256
257 - We don't support floating point. Many places where we switch on
c5aa993b
JM
258 some type don't bother to include cases for floating point; there
259 may be even more subtle ways this assumption exists. For
260 example, the arguments to % must be integers.
c906108c
SS
261
262 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
263 we tried to support convenience variables, this would be a
264 problem.
c906108c
SS
265
266 - All values on the stack should always be fully zero- or
c5aa993b
JM
267 sign-extended.
268
269 (I wasn't sure whether to choose this or its opposite --- that
270 only addresses are assumed extended --- but it turns out that
271 neither convention completely eliminates spurious extend
272 operations (if everything is always extended, then you have to
273 extend after add, because it could overflow; if nothing is
274 extended, then you end up producing extends whenever you change
275 sizes), and this is simpler.) */
c906108c 276\f
c5aa993b 277
c906108c
SS
278/* Generating bytecode from GDB expressions: the `trace' kludge */
279
280/* The compiler in this file is a general-purpose mechanism for
281 translating GDB expressions into bytecode. One ought to be able to
282 find a million and one uses for it.
283
284 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
285 of expediency. Let he who is without sin cast the first stone.
286
287 For the data tracing facility, we need to insert `trace' bytecodes
288 before each data fetch; this records all the memory that the
289 expression touches in the course of evaluation, so that memory will
290 be available when the user later tries to evaluate the expression
291 in GDB.
292
293 This should be done (I think) in a post-processing pass, that walks
294 an arbitrary agent expression and inserts `trace' operations at the
295 appropriate points. But it's much faster to just hack them
296 directly into the code. And since we're in a crunch, that's what
297 I've done.
298
299 Setting the flag trace_kludge to non-zero enables the code that
300 emits the trace bytecodes at the appropriate points. */
301static int trace_kludge;
302
303/* Trace the lvalue on the stack, if it needs it. In either case, pop
304 the value. Useful on the left side of a comma, and at the end of
305 an expression being used for tracing. */
306static void
fba45db2 307gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
308{
309 if (trace_kludge)
310 switch (value->kind)
311 {
312 case axs_rvalue:
313 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 314 produce them. So just dispose of this value. */
c906108c
SS
315 ax_simple (ax, aop_pop);
316 break;
317
318 case axs_lvalue_memory:
319 {
320 int length = TYPE_LENGTH (value->type);
321
322 /* There's no point in trying to use a trace_quick bytecode
323 here, since "trace_quick SIZE pop" is three bytes, whereas
324 "const8 SIZE trace" is also three bytes, does the same
325 thing, and the simplest code which generates that will also
326 work correctly for objects with large sizes. */
327 ax_const_l (ax, length);
328 ax_simple (ax, aop_trace);
329 }
c5aa993b 330 break;
c906108c
SS
331
332 case axs_lvalue_register:
333 /* We need to mention the register somewhere in the bytecode,
334 so ax_reqs will pick it up and add it to the mask of
335 registers used. */
336 ax_reg (ax, value->u.reg);
337 ax_simple (ax, aop_pop);
338 break;
339 }
340 else
341 /* If we're not tracing, just pop the value. */
342 ax_simple (ax, aop_pop);
343}
c5aa993b 344\f
c906108c
SS
345
346
c906108c
SS
347/* Generating bytecode from GDB expressions: helper functions */
348
349/* Assume that the lower bits of the top of the stack is a value of
350 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
351static void
fba45db2 352gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
353{
354 /* Do we need to sign-extend this? */
c5aa993b 355 if (!TYPE_UNSIGNED (type))
c906108c
SS
356 ax_ext (ax, type->length * TARGET_CHAR_BIT);
357}
358
359
360/* Assume the lower bits of the top of the stack hold a value of type
361 TYPE, and the upper bits are garbage. Sign-extend or truncate as
362 needed. */
363static void
fba45db2 364gen_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
365{
366 int bits = type->length * TARGET_CHAR_BIT;
367 /* I just had to. */
368 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
369}
370
371
372/* Assume that the top of the stack contains a value of type "pointer
373 to TYPE"; generate code to fetch its value. Note that TYPE is the
374 target type, not the pointer type. */
375static void
fba45db2 376gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
377{
378 if (trace_kludge)
379 {
380 /* Record the area of memory we're about to fetch. */
381 ax_trace_quick (ax, TYPE_LENGTH (type));
382 }
383
384 switch (type->code)
385 {
386 case TYPE_CODE_PTR:
387 case TYPE_CODE_ENUM:
388 case TYPE_CODE_INT:
389 case TYPE_CODE_CHAR:
390 /* It's a scalar value, so we know how to dereference it. How
391 many bytes long is it? */
392 switch (type->length)
393 {
c5aa993b
JM
394 case 8 / TARGET_CHAR_BIT:
395 ax_simple (ax, aop_ref8);
396 break;
397 case 16 / TARGET_CHAR_BIT:
398 ax_simple (ax, aop_ref16);
399 break;
400 case 32 / TARGET_CHAR_BIT:
401 ax_simple (ax, aop_ref32);
402 break;
403 case 64 / TARGET_CHAR_BIT:
404 ax_simple (ax, aop_ref64);
405 break;
c906108c
SS
406
407 /* Either our caller shouldn't have asked us to dereference
408 that pointer (other code's fault), or we're not
409 implementing something we should be (this code's fault).
410 In any case, it's a bug the user shouldn't see. */
411 default:
8e65ff28
AC
412 internal_error (__FILE__, __LINE__,
413 "gen_fetch: strange size");
c906108c
SS
414 }
415
416 gen_sign_extend (ax, type);
417 break;
418
419 default:
420 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
421 pointer (other code's fault), or we're not implementing
422 something we should be (this code's fault). In any case,
423 it's a bug the user shouldn't see. */
8e65ff28
AC
424 internal_error (__FILE__, __LINE__,
425 "gen_fetch: bad type code");
c906108c
SS
426 }
427}
428
429
430/* Generate code to left shift the top of the stack by DISTANCE bits, or
431 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
432 unsigned (logical) right shifts. */
433static void
fba45db2 434gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
435{
436 if (distance > 0)
437 {
438 ax_const_l (ax, distance);
439 ax_simple (ax, aop_lsh);
440 }
441 else if (distance < 0)
442 {
443 ax_const_l (ax, -distance);
444 ax_simple (ax, aop_rsh_unsigned);
445 }
446}
c5aa993b 447\f
c906108c
SS
448
449
c906108c
SS
450/* Generating bytecode from GDB expressions: symbol references */
451
452/* Generate code to push the base address of the argument portion of
453 the top stack frame. */
454static void
fba45db2 455gen_frame_args_address (struct agent_expr *ax)
c906108c
SS
456{
457 long frame_reg, frame_offset;
458
459 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 460 ax_reg (ax, frame_reg);
c906108c
SS
461 gen_offset (ax, frame_offset);
462}
463
464
465/* Generate code to push the base address of the locals portion of the
466 top stack frame. */
467static void
fba45db2 468gen_frame_locals_address (struct agent_expr *ax)
c906108c
SS
469{
470 long frame_reg, frame_offset;
471
472 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 473 ax_reg (ax, frame_reg);
c906108c
SS
474 gen_offset (ax, frame_offset);
475}
476
477
478/* Generate code to add OFFSET to the top of the stack. Try to
479 generate short and readable code. We use this for getting to
480 variables on the stack, and structure members. If we were
481 programming in ML, it would be clearer why these are the same
482 thing. */
483static void
fba45db2 484gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
485{
486 /* It would suffice to simply push the offset and add it, but this
487 makes it easier to read positive and negative offsets in the
488 bytecode. */
489 if (offset > 0)
490 {
491 ax_const_l (ax, offset);
492 ax_simple (ax, aop_add);
493 }
494 else if (offset < 0)
495 {
496 ax_const_l (ax, -offset);
497 ax_simple (ax, aop_sub);
498 }
499}
500
501
502/* In many cases, a symbol's value is the offset from some other
503 address (stack frame, base register, etc.) Generate code to add
504 VAR's value to the top of the stack. */
505static void
fba45db2 506gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
507{
508 gen_offset (ax, SYMBOL_VALUE (var));
509}
510
511
512/* Generate code for a variable reference to AX. The variable is the
513 symbol VAR. Set VALUE to describe the result. */
514
515static void
fba45db2 516gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
c906108c
SS
517{
518 /* Dereference any typedefs. */
519 value->type = check_typedef (SYMBOL_TYPE (var));
520
521 /* I'm imitating the code in read_var_value. */
522 switch (SYMBOL_CLASS (var))
523 {
524 case LOC_CONST: /* A constant, like an enum value. */
525 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
526 value->kind = axs_rvalue;
527 break;
528
529 case LOC_LABEL: /* A goto label, being used as a value. */
530 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
531 value->kind = axs_rvalue;
532 break;
533
534 case LOC_CONST_BYTES:
8e65ff28
AC
535 internal_error (__FILE__, __LINE__,
536 "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
c906108c
SS
537
538 /* Variable at a fixed location in memory. Easy. */
539 case LOC_STATIC:
540 /* Push the address of the variable. */
541 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
542 value->kind = axs_lvalue_memory;
543 break;
544
545 case LOC_ARG: /* var lives in argument area of frame */
546 gen_frame_args_address (ax);
547 gen_sym_offset (ax, var);
548 value->kind = axs_lvalue_memory;
549 break;
550
551 case LOC_REF_ARG: /* As above, but the frame slot really
552 holds the address of the variable. */
553 gen_frame_args_address (ax);
554 gen_sym_offset (ax, var);
555 /* Don't assume any particular pointer size. */
556 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
557 value->kind = axs_lvalue_memory;
558 break;
559
560 case LOC_LOCAL: /* var lives in locals area of frame */
561 case LOC_LOCAL_ARG:
562 gen_frame_locals_address (ax);
563 gen_sym_offset (ax, var);
564 value->kind = axs_lvalue_memory;
565 break;
566
567 case LOC_BASEREG: /* relative to some base register */
568 case LOC_BASEREG_ARG:
569 ax_reg (ax, SYMBOL_BASEREG (var));
570 gen_sym_offset (ax, var);
571 value->kind = axs_lvalue_memory;
572 break;
573
574 case LOC_TYPEDEF:
575 error ("Cannot compute value of typedef `%s'.",
576 SYMBOL_SOURCE_NAME (var));
577 break;
578
579 case LOC_BLOCK:
580 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
581 value->kind = axs_rvalue;
582 break;
583
584 case LOC_REGISTER:
585 case LOC_REGPARM:
586 /* Don't generate any code at all; in the process of treating
587 this as an lvalue or rvalue, the caller will generate the
588 right code. */
589 value->kind = axs_lvalue_register;
590 value->u.reg = SYMBOL_VALUE (var);
591 break;
592
593 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
c5aa993b
JM
594 register, not on the stack. Simpler than LOC_REGISTER and
595 LOC_REGPARM, because it's just like any other case where the
596 thing has a real address. */
c906108c
SS
597 case LOC_REGPARM_ADDR:
598 ax_reg (ax, SYMBOL_VALUE (var));
599 value->kind = axs_lvalue_memory;
600 break;
601
602 case LOC_UNRESOLVED:
603 {
c5aa993b
JM
604 struct minimal_symbol *msym
605 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
606 if (!msym)
c906108c 607 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
c5aa993b 608
c906108c
SS
609 /* Push the address of the variable. */
610 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
611 value->kind = axs_lvalue_memory;
612 }
c5aa993b 613 break;
c906108c
SS
614
615 case LOC_OPTIMIZED_OUT:
616 error ("The variable `%s' has been optimized out.",
617 SYMBOL_SOURCE_NAME (var));
618 break;
619
620 default:
621 error ("Cannot find value of botched symbol `%s'.",
622 SYMBOL_SOURCE_NAME (var));
623 break;
624 }
625}
c5aa993b 626\f
c906108c
SS
627
628
c906108c
SS
629/* Generating bytecode from GDB expressions: literals */
630
631static void
fba45db2
KB
632gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
633 struct type *type)
c906108c
SS
634{
635 ax_const_l (ax, k);
636 value->kind = axs_rvalue;
637 value->type = type;
638}
c5aa993b 639\f
c906108c
SS
640
641
c906108c
SS
642/* Generating bytecode from GDB expressions: unary conversions, casts */
643
644/* Take what's on the top of the stack (as described by VALUE), and
645 try to make an rvalue out of it. Signal an error if we can't do
646 that. */
647static void
fba45db2 648require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
649{
650 switch (value->kind)
651 {
652 case axs_rvalue:
653 /* It's already an rvalue. */
654 break;
655
656 case axs_lvalue_memory:
657 /* The top of stack is the address of the object. Dereference. */
658 gen_fetch (ax, value->type);
659 break;
660
661 case axs_lvalue_register:
662 /* There's nothing on the stack, but value->u.reg is the
663 register number containing the value.
664
c5aa993b
JM
665 When we add floating-point support, this is going to have to
666 change. What about SPARC register pairs, for example? */
c906108c
SS
667 ax_reg (ax, value->u.reg);
668 gen_extend (ax, value->type);
669 break;
670 }
671
672 value->kind = axs_rvalue;
673}
674
675
676/* Assume the top of the stack is described by VALUE, and perform the
677 usual unary conversions. This is motivated by ANSI 6.2.2, but of
678 course GDB expressions are not ANSI; they're the mishmash union of
679 a bunch of languages. Rah.
680
681 NOTE! This function promises to produce an rvalue only when the
682 incoming value is of an appropriate type. In other words, the
683 consumer of the value this function produces may assume the value
684 is an rvalue only after checking its type.
685
686 The immediate issue is that if the user tries to use a structure or
687 union as an operand of, say, the `+' operator, we don't want to try
688 to convert that structure to an rvalue; require_rvalue will bomb on
689 structs and unions. Rather, we want to simply pass the struct
690 lvalue through unchanged, and let `+' raise an error. */
691
692static void
fba45db2 693gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
694{
695 /* We don't have to generate any code for the usual integral
696 conversions, since values are always represented as full-width on
697 the stack. Should we tweak the type? */
698
699 /* Some types require special handling. */
700 switch (value->type->code)
701 {
702 /* Functions get converted to a pointer to the function. */
703 case TYPE_CODE_FUNC:
704 value->type = lookup_pointer_type (value->type);
705 value->kind = axs_rvalue; /* Should always be true, but just in case. */
706 break;
707
708 /* Arrays get converted to a pointer to their first element, and
c5aa993b 709 are no longer an lvalue. */
c906108c
SS
710 case TYPE_CODE_ARRAY:
711 {
712 struct type *elements = TYPE_TARGET_TYPE (value->type);
713 value->type = lookup_pointer_type (elements);
714 value->kind = axs_rvalue;
715 /* We don't need to generate any code; the address of the array
716 is also the address of its first element. */
717 }
c5aa993b 718 break;
c906108c 719
c5aa993b
JM
720 /* Don't try to convert structures and unions to rvalues. Let the
721 consumer signal an error. */
c906108c
SS
722 case TYPE_CODE_STRUCT:
723 case TYPE_CODE_UNION:
724 return;
725
726 /* If the value is an enum, call it an integer. */
727 case TYPE_CODE_ENUM:
728 value->type = builtin_type_int;
729 break;
730 }
731
732 /* If the value is an lvalue, dereference it. */
733 require_rvalue (ax, value);
734}
735
736
737/* Return non-zero iff the type TYPE1 is considered "wider" than the
738 type TYPE2, according to the rules described in gen_usual_arithmetic. */
739static int
fba45db2 740type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
741{
742 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
743 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
744 && TYPE_UNSIGNED (type1)
c5aa993b 745 && !TYPE_UNSIGNED (type2)));
c906108c
SS
746}
747
748
749/* Return the "wider" of the two types TYPE1 and TYPE2. */
750static struct type *
fba45db2 751max_type (struct type *type1, struct type *type2)
c906108c
SS
752{
753 return type_wider_than (type1, type2) ? type1 : type2;
754}
755
756
757/* Generate code to convert a scalar value of type FROM to type TO. */
758static void
fba45db2 759gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
760{
761 /* Perhaps there is a more graceful way to state these rules. */
762
763 /* If we're converting to a narrower type, then we need to clear out
764 the upper bits. */
765 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
766 gen_extend (ax, from);
767
768 /* If the two values have equal width, but different signednesses,
769 then we need to extend. */
770 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
771 {
772 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
773 gen_extend (ax, to);
774 }
775
776 /* If we're converting to a wider type, and becoming unsigned, then
777 we need to zero out any possible sign bits. */
778 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
779 {
780 if (TYPE_UNSIGNED (to))
781 gen_extend (ax, to);
782 }
783}
784
785
786/* Return non-zero iff the type FROM will require any bytecodes to be
787 emitted to be converted to the type TO. */
788static int
fba45db2 789is_nontrivial_conversion (struct type *from, struct type *to)
c906108c
SS
790{
791 struct agent_expr *ax = new_agent_expr (0);
792 int nontrivial;
793
794 /* Actually generate the code, and see if anything came out. At the
795 moment, it would be trivial to replicate the code in
796 gen_conversion here, but in the future, when we're supporting
797 floating point and the like, it may not be. Doing things this
798 way allows this function to be independent of the logic in
799 gen_conversion. */
800 gen_conversion (ax, from, to);
801 nontrivial = ax->len > 0;
802 free_agent_expr (ax);
803 return nontrivial;
804}
805
806
807/* Generate code to perform the "usual arithmetic conversions" (ANSI C
808 6.2.1.5) for the two operands of an arithmetic operator. This
809 effectively finds a "least upper bound" type for the two arguments,
810 and promotes each argument to that type. *VALUE1 and *VALUE2
811 describe the values as they are passed in, and as they are left. */
812static void
fba45db2
KB
813gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
814 struct axs_value *value2)
c906108c
SS
815{
816 /* Do the usual binary conversions. */
817 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
818 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
819 {
820 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
821 integer types by size, and then by signedness: an n-bit
822 unsigned type is considered "wider" than an n-bit signed
823 type. Promote to the "wider" of the two types, and always
824 promote at least to int. */
c906108c
SS
825 struct type *target = max_type (builtin_type_int,
826 max_type (value1->type, value2->type));
827
828 /* Deal with value2, on the top of the stack. */
829 gen_conversion (ax, value2->type, target);
830
831 /* Deal with value1, not on the top of the stack. Don't
832 generate the `swap' instructions if we're not actually going
833 to do anything. */
834 if (is_nontrivial_conversion (value1->type, target))
835 {
836 ax_simple (ax, aop_swap);
837 gen_conversion (ax, value1->type, target);
838 ax_simple (ax, aop_swap);
839 }
840
841 value1->type = value2->type = target;
842 }
843}
844
845
846/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
847 the value on the top of the stack, as described by VALUE. Assume
848 the value has integral type. */
849static void
fba45db2 850gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
c906108c 851{
c5aa993b 852 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
853 {
854 gen_conversion (ax, value->type, builtin_type_int);
855 value->type = builtin_type_int;
856 }
c5aa993b 857 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
858 {
859 gen_conversion (ax, value->type, builtin_type_unsigned_int);
860 value->type = builtin_type_unsigned_int;
861 }
862}
863
864
865/* Generate code for a cast to TYPE. */
866static void
fba45db2 867gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
868{
869 /* GCC does allow casts to yield lvalues, so this should be fixed
870 before merging these changes into the trunk. */
871 require_rvalue (ax, value);
872 /* Dereference typedefs. */
873 type = check_typedef (type);
874
875 switch (type->code)
876 {
877 case TYPE_CODE_PTR:
878 /* It's implementation-defined, and I'll bet this is what GCC
879 does. */
880 break;
881
882 case TYPE_CODE_ARRAY:
883 case TYPE_CODE_STRUCT:
884 case TYPE_CODE_UNION:
885 case TYPE_CODE_FUNC:
886 error ("Illegal type cast: intended type must be scalar.");
887
888 case TYPE_CODE_ENUM:
889 /* We don't have to worry about the size of the value, because
890 all our integral values are fully sign-extended, and when
891 casting pointers we can do anything we like. Is there any
892 way for us to actually know what GCC actually does with a
893 cast like this? */
894 value->type = type;
895 break;
c5aa993b 896
c906108c
SS
897 case TYPE_CODE_INT:
898 gen_conversion (ax, value->type, type);
899 break;
900
901 case TYPE_CODE_VOID:
902 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
903 the type and notice that this value doesn't occupy a stack
904 slot. But for now, leave the value on the stack, and
905 preserve the "value == stack element" assumption. */
c906108c
SS
906 break;
907
908 default:
909 error ("Casts to requested type are not yet implemented.");
910 }
911
912 value->type = type;
913}
c5aa993b 914\f
c906108c
SS
915
916
c906108c
SS
917/* Generating bytecode from GDB expressions: arithmetic */
918
919/* Scale the integer on the top of the stack by the size of the target
920 of the pointer type TYPE. */
921static void
fba45db2 922gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
923{
924 struct type *element = TYPE_TARGET_TYPE (type);
925
926 if (element->length != 1)
927 {
928 ax_const_l (ax, element->length);
929 ax_simple (ax, op);
930 }
931}
932
933
934/* Generate code for an addition; non-trivial because we deal with
935 pointer arithmetic. We set VALUE to describe the result value; we
936 assume VALUE1 and VALUE2 describe the two operands, and that
937 they've undergone the usual binary conversions. Used by both
938 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
939static void
fba45db2
KB
940gen_add (struct agent_expr *ax, struct axs_value *value,
941 struct axs_value *value1, struct axs_value *value2, char *name)
c906108c
SS
942{
943 /* Is it INT+PTR? */
944 if (value1->type->code == TYPE_CODE_INT
945 && value2->type->code == TYPE_CODE_PTR)
946 {
947 /* Swap the values and proceed normally. */
948 ax_simple (ax, aop_swap);
949 gen_scale (ax, aop_mul, value2->type);
950 ax_simple (ax, aop_add);
c5aa993b 951 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
952 value->type = value2->type;
953 }
954
955 /* Is it PTR+INT? */
956 else if (value1->type->code == TYPE_CODE_PTR
957 && value2->type->code == TYPE_CODE_INT)
958 {
959 gen_scale (ax, aop_mul, value1->type);
960 ax_simple (ax, aop_add);
c5aa993b 961 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
962 value->type = value1->type;
963 }
964
965 /* Must be number + number; the usual binary conversions will have
966 brought them both to the same width. */
967 else if (value1->type->code == TYPE_CODE_INT
968 && value2->type->code == TYPE_CODE_INT)
969 {
970 ax_simple (ax, aop_add);
c5aa993b 971 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
972 value->type = value1->type;
973 }
974
975 else
976 error ("Illegal combination of types in %s.", name);
977
978 value->kind = axs_rvalue;
979}
980
981
982/* Generate code for an addition; non-trivial because we have to deal
983 with pointer arithmetic. We set VALUE to describe the result
984 value; we assume VALUE1 and VALUE2 describe the two operands, and
985 that they've undergone the usual binary conversions. */
986static void
fba45db2
KB
987gen_sub (struct agent_expr *ax, struct axs_value *value,
988 struct axs_value *value1, struct axs_value *value2)
c906108c 989{
c906108c
SS
990 if (value1->type->code == TYPE_CODE_PTR)
991 {
992 /* Is it PTR - INT? */
993 if (value2->type->code == TYPE_CODE_INT)
994 {
995 gen_scale (ax, aop_mul, value1->type);
996 ax_simple (ax, aop_sub);
c5aa993b 997 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
998 value->type = value1->type;
999 }
1000
1001 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1002 match, but this is what the normal GDB expression evaluator
1003 tests for. */
c906108c
SS
1004 else if (value2->type->code == TYPE_CODE_PTR
1005 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1006 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1007 {
1008 ax_simple (ax, aop_sub);
1009 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1010 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1011 }
1012 else
1013 error ("\
1014First argument of `-' is a pointer, but second argument is neither\n\
1015an integer nor a pointer of the same type.");
1016 }
1017
1018 /* Must be number + number. */
1019 else if (value1->type->code == TYPE_CODE_INT
1020 && value2->type->code == TYPE_CODE_INT)
1021 {
1022 ax_simple (ax, aop_sub);
c5aa993b 1023 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1024 value->type = value1->type;
1025 }
c5aa993b 1026
c906108c
SS
1027 else
1028 error ("Illegal combination of types in subtraction.");
1029
1030 value->kind = axs_rvalue;
1031}
1032
1033/* Generate code for a binary operator that doesn't do pointer magic.
1034 We set VALUE to describe the result value; we assume VALUE1 and
1035 VALUE2 describe the two operands, and that they've undergone the
1036 usual binary conversions. MAY_CARRY should be non-zero iff the
1037 result needs to be extended. NAME is the English name of the
1038 operator, used in error messages */
1039static void
fba45db2
KB
1040gen_binop (struct agent_expr *ax, struct axs_value *value,
1041 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1042 enum agent_op op_unsigned, int may_carry, char *name)
c906108c
SS
1043{
1044 /* We only handle INT op INT. */
1045 if ((value1->type->code != TYPE_CODE_INT)
1046 || (value2->type->code != TYPE_CODE_INT))
1047 error ("Illegal combination of types in %s.", name);
c5aa993b 1048
c906108c
SS
1049 ax_simple (ax,
1050 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1051 if (may_carry)
c5aa993b 1052 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1053 value->type = value1->type;
1054 value->kind = axs_rvalue;
1055}
1056
1057
1058static void
fba45db2 1059gen_logical_not (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1060{
1061 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1062 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1063 error ("Illegal type of operand to `!'.");
1064
1065 gen_usual_unary (ax, value);
1066 ax_simple (ax, aop_log_not);
1067 value->type = builtin_type_int;
1068}
1069
1070
1071static void
fba45db2 1072gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1073{
1074 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1075 error ("Illegal type of operand to `~'.");
1076
1077 gen_usual_unary (ax, value);
1078 gen_integral_promotions (ax, value);
1079 ax_simple (ax, aop_bit_not);
1080 gen_extend (ax, value->type);
1081}
c5aa993b 1082\f
c906108c
SS
1083
1084
c906108c
SS
1085/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1086
1087/* Dereference the value on the top of the stack. */
1088static void
fba45db2 1089gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1090{
1091 /* The caller should check the type, because several operators use
1092 this, and we don't know what error message to generate. */
1093 if (value->type->code != TYPE_CODE_PTR)
8e65ff28
AC
1094 internal_error (__FILE__, __LINE__,
1095 "gen_deref: expected a pointer");
c906108c
SS
1096
1097 /* We've got an rvalue now, which is a pointer. We want to yield an
1098 lvalue, whose address is exactly that pointer. So we don't
1099 actually emit any code; we just change the type from "Pointer to
1100 T" to "T", and mark the value as an lvalue in memory. Leave it
1101 to the consumer to actually dereference it. */
1102 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1103 value->kind = ((value->type->code == TYPE_CODE_FUNC)
1104 ? axs_rvalue : axs_lvalue_memory);
1105}
1106
1107
1108/* Produce the address of the lvalue on the top of the stack. */
1109static void
fba45db2 1110gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1111{
1112 /* Special case for taking the address of a function. The ANSI
1113 standard describes this as a special case, too, so this
1114 arrangement is not without motivation. */
1115 if (value->type->code == TYPE_CODE_FUNC)
1116 /* The value's already an rvalue on the stack, so we just need to
1117 change the type. */
1118 value->type = lookup_pointer_type (value->type);
1119 else
1120 switch (value->kind)
1121 {
1122 case axs_rvalue:
1123 error ("Operand of `&' is an rvalue, which has no address.");
1124
1125 case axs_lvalue_register:
1126 error ("Operand of `&' is in a register, and has no address.");
1127
1128 case axs_lvalue_memory:
1129 value->kind = axs_rvalue;
1130 value->type = lookup_pointer_type (value->type);
1131 break;
1132 }
1133}
1134
1135
1136/* A lot of this stuff will have to change to support C++. But we're
1137 not going to deal with that at the moment. */
1138
1139/* Find the field in the structure type TYPE named NAME, and return
1140 its index in TYPE's field array. */
1141static int
fba45db2 1142find_field (struct type *type, char *name)
c906108c
SS
1143{
1144 int i;
1145
1146 CHECK_TYPEDEF (type);
1147
1148 /* Make sure this isn't C++. */
1149 if (TYPE_N_BASECLASSES (type) != 0)
8e65ff28
AC
1150 internal_error (__FILE__, __LINE__,
1151 "find_field: derived classes supported");
c906108c
SS
1152
1153 for (i = 0; i < TYPE_NFIELDS (type); i++)
1154 {
1155 char *this_name = TYPE_FIELD_NAME (type, i);
1156
1157 if (this_name && STREQ (name, this_name))
1158 return i;
1159
1160 if (this_name[0] == '\0')
8e65ff28
AC
1161 internal_error (__FILE__, __LINE__,
1162 "find_field: anonymous unions not supported");
c906108c
SS
1163 }
1164
1165 error ("Couldn't find member named `%s' in struct/union `%s'",
1166 name, type->tag_name);
1167
1168 return 0;
1169}
1170
1171
1172/* Generate code to push the value of a bitfield of a structure whose
1173 address is on the top of the stack. START and END give the
1174 starting and one-past-ending *bit* numbers of the field within the
1175 structure. */
1176static void
fba45db2
KB
1177gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1178 struct type *type, int start, int end)
c906108c
SS
1179{
1180 /* Note that ops[i] fetches 8 << i bits. */
1181 static enum agent_op ops[]
c5aa993b
JM
1182 =
1183 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1184 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1185
1186 /* We don't want to touch any byte that the bitfield doesn't
1187 actually occupy; we shouldn't make any accesses we're not
1188 explicitly permitted to. We rely here on the fact that the
1189 bytecode `ref' operators work on unaligned addresses.
1190
1191 It takes some fancy footwork to get the stack to work the way
1192 we'd like. Say we're retrieving a bitfield that requires three
1193 fetches. Initially, the stack just contains the address:
c5aa993b 1194 addr
c906108c 1195 For the first fetch, we duplicate the address
c5aa993b 1196 addr addr
c906108c
SS
1197 then add the byte offset, do the fetch, and shift and mask as
1198 needed, yielding a fragment of the value, properly aligned for
1199 the final bitwise or:
c5aa993b 1200 addr frag1
c906108c 1201 then we swap, and repeat the process:
c5aa993b
JM
1202 frag1 addr --- address on top
1203 frag1 addr addr --- duplicate it
1204 frag1 addr frag2 --- get second fragment
1205 frag1 frag2 addr --- swap again
1206 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1207 Notice that, since the third fragment is the last one, we don't
1208 bother duplicating the address this time. Now we have all the
1209 fragments on the stack, and we can simply `or' them together,
1210 yielding the final value of the bitfield. */
1211
1212 /* The first and one-after-last bits in the field, but rounded down
1213 and up to byte boundaries. */
1214 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1215 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1216 / TARGET_CHAR_BIT)
1217 * TARGET_CHAR_BIT);
c906108c
SS
1218
1219 /* current bit offset within the structure */
1220 int offset;
1221
1222 /* The index in ops of the opcode we're considering. */
1223 int op;
1224
1225 /* The number of fragments we generated in the process. Probably
1226 equal to the number of `one' bits in bytesize, but who cares? */
1227 int fragment_count;
1228
1229 /* Dereference any typedefs. */
1230 type = check_typedef (type);
1231
1232 /* Can we fetch the number of bits requested at all? */
1233 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28
AC
1234 internal_error (__FILE__, __LINE__,
1235 "gen_bitfield_ref: bitfield too wide");
c906108c
SS
1236
1237 /* Note that we know here that we only need to try each opcode once.
1238 That may not be true on machines with weird byte sizes. */
1239 offset = bound_start;
1240 fragment_count = 0;
1241 for (op = num_ops - 1; op >= 0; op--)
1242 {
1243 /* number of bits that ops[op] would fetch */
1244 int op_size = 8 << op;
1245
1246 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1247 more fragments, then the address. */
1248
c906108c
SS
1249 /* Does this fetch fit within the bitfield? */
1250 if (offset + op_size <= bound_end)
1251 {
1252 /* Is this the last fragment? */
1253 int last_frag = (offset + op_size == bound_end);
1254
c5aa993b
JM
1255 if (!last_frag)
1256 ax_simple (ax, aop_dup); /* keep a copy of the address */
1257
c906108c
SS
1258 /* Add the offset. */
1259 gen_offset (ax, offset / TARGET_CHAR_BIT);
1260
1261 if (trace_kludge)
1262 {
1263 /* Record the area of memory we're about to fetch. */
1264 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1265 }
1266
1267 /* Perform the fetch. */
1268 ax_simple (ax, ops[op]);
c5aa993b
JM
1269
1270 /* Shift the bits we have to their proper position.
c906108c
SS
1271 gen_left_shift will generate right shifts when the operand
1272 is negative.
1273
c5aa993b
JM
1274 A big-endian field diagram to ponder:
1275 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1276 +------++------++------++------++------++------++------++------+
1277 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1278 ^ ^ ^ ^
1279 bit number 16 32 48 53
c906108c
SS
1280 These are bit numbers as supplied by GDB. Note that the
1281 bit numbers run from right to left once you've fetched the
1282 value!
1283
c5aa993b
JM
1284 A little-endian field diagram to ponder:
1285 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1286 +------++------++------++------++------++------++------++------+
1287 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1288 ^ ^ ^ ^ ^
1289 bit number 48 32 16 4 0
1290
1291 In both cases, the most significant end is on the left
1292 (i.e. normal numeric writing order), which means that you
1293 don't go crazy thinking about `left' and `right' shifts.
1294
1295 We don't have to worry about masking yet:
1296 - If they contain garbage off the least significant end, then we
1297 must be looking at the low end of the field, and the right
1298 shift will wipe them out.
1299 - If they contain garbage off the most significant end, then we
1300 must be looking at the most significant end of the word, and
1301 the sign/zero extension will wipe them out.
1302 - If we're in the interior of the word, then there is no garbage
1303 on either end, because the ref operators zero-extend. */
c906108c
SS
1304 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1305 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1306 else
c906108c
SS
1307 gen_left_shift (ax, offset - start);
1308
c5aa993b 1309 if (!last_frag)
c906108c
SS
1310 /* Bring the copy of the address up to the top. */
1311 ax_simple (ax, aop_swap);
1312
1313 offset += op_size;
1314 fragment_count++;
1315 }
1316 }
1317
1318 /* Generate enough bitwise `or' operations to combine all the
1319 fragments we left on the stack. */
1320 while (fragment_count-- > 1)
1321 ax_simple (ax, aop_bit_or);
1322
1323 /* Sign- or zero-extend the value as appropriate. */
1324 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1325
1326 /* This is *not* an lvalue. Ugh. */
1327 value->kind = axs_rvalue;
1328 value->type = type;
1329}
1330
1331
1332/* Generate code to reference the member named FIELD of a structure or
1333 union. The top of the stack, as described by VALUE, should have
1334 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1335 the operator being compiled, and OPERAND_NAME is the kind of thing
1336 it operates on; we use them in error messages. */
1337static void
fba45db2
KB
1338gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1339 char *operator_name, char *operand_name)
c906108c
SS
1340{
1341 struct type *type;
1342 int i;
1343
1344 /* Follow pointers until we reach a non-pointer. These aren't the C
1345 semantics, but they're what the normal GDB evaluator does, so we
1346 should at least be consistent. */
1347 while (value->type->code == TYPE_CODE_PTR)
1348 {
1349 gen_usual_unary (ax, value);
1350 gen_deref (ax, value);
1351 }
e8860ec2 1352 type = check_typedef (value->type);
c906108c
SS
1353
1354 /* This must yield a structure or a union. */
1355 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1356 && TYPE_CODE (type) != TYPE_CODE_UNION)
1357 error ("The left operand of `%s' is not a %s.",
1358 operator_name, operand_name);
1359
1360 /* And it must be in memory; we don't deal with structure rvalues,
1361 or structures living in registers. */
1362 if (value->kind != axs_lvalue_memory)
1363 error ("Structure does not live in memory.");
1364
1365 i = find_field (type, field);
c5aa993b 1366
c906108c
SS
1367 /* Is this a bitfield? */
1368 if (TYPE_FIELD_PACKED (type, i))
1369 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1370 TYPE_FIELD_BITPOS (type, i),
1371 (TYPE_FIELD_BITPOS (type, i)
1372 + TYPE_FIELD_BITSIZE (type, i)));
1373 else
1374 {
1375 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1376 value->kind = axs_lvalue_memory;
1377 value->type = TYPE_FIELD_TYPE (type, i);
1378 }
1379}
1380
1381
1382/* Generate code for GDB's magical `repeat' operator.
1383 LVALUE @ INT creates an array INT elements long, and whose elements
1384 have the same type as LVALUE, located in memory so that LVALUE is
1385 its first element. For example, argv[0]@argc gives you the array
1386 of command-line arguments.
1387
1388 Unfortunately, because we have to know the types before we actually
1389 have a value for the expression, we can't implement this perfectly
1390 without changing the type system, having values that occupy two
1391 stack slots, doing weird things with sizeof, etc. So we require
1392 the right operand to be a constant expression. */
1393static void
fba45db2
KB
1394gen_repeat (union exp_element **pc, struct agent_expr *ax,
1395 struct axs_value *value)
c906108c
SS
1396{
1397 struct axs_value value1;
1398 /* We don't want to turn this into an rvalue, so no conversions
1399 here. */
1400 gen_expr (pc, ax, &value1);
1401 if (value1.kind != axs_lvalue_memory)
1402 error ("Left operand of `@' must be an object in memory.");
1403
1404 /* Evaluate the length; it had better be a constant. */
1405 {
1406 struct value *v = const_expr (pc);
1407 int length;
1408
c5aa993b 1409 if (!v)
c906108c
SS
1410 error ("Right operand of `@' must be a constant, in agent expressions.");
1411 if (v->type->code != TYPE_CODE_INT)
1412 error ("Right operand of `@' must be an integer.");
1413 length = value_as_long (v);
1414 if (length <= 0)
1415 error ("Right operand of `@' must be positive.");
1416
1417 /* The top of the stack is already the address of the object, so
1418 all we need to do is frob the type of the lvalue. */
1419 {
1420 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1421 done with it. */
c906108c 1422 struct type *range
c5aa993b 1423 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1424 struct type *array = create_array_type (0, value1.type, range);
1425
1426 value->kind = axs_lvalue_memory;
1427 value->type = array;
1428 }
1429 }
1430}
1431
1432
1433/* Emit code for the `sizeof' operator.
1434 *PC should point at the start of the operand expression; we advance it
1435 to the first instruction after the operand. */
1436static void
fba45db2
KB
1437gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1438 struct axs_value *value)
c906108c
SS
1439{
1440 /* We don't care about the value of the operand expression; we only
1441 care about its type. However, in the current arrangement, the
1442 only way to find an expression's type is to generate code for it.
1443 So we generate code for the operand, and then throw it away,
1444 replacing it with code that simply pushes its size. */
1445 int start = ax->len;
1446 gen_expr (pc, ax, value);
1447
1448 /* Throw away the code we just generated. */
1449 ax->len = start;
c5aa993b 1450
c906108c
SS
1451 ax_const_l (ax, TYPE_LENGTH (value->type));
1452 value->kind = axs_rvalue;
1453 value->type = builtin_type_int;
1454}
c906108c 1455\f
c5aa993b 1456
c906108c
SS
1457/* Generating bytecode from GDB expressions: general recursive thingy */
1458
1459/* A gen_expr function written by a Gen-X'er guy.
1460 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1461static void
fba45db2
KB
1462gen_expr (union exp_element **pc, struct agent_expr *ax,
1463 struct axs_value *value)
c906108c
SS
1464{
1465 /* Used to hold the descriptions of operand expressions. */
1466 struct axs_value value1, value2;
1467 enum exp_opcode op = (*pc)[0].opcode;
1468
1469 /* If we're looking at a constant expression, just push its value. */
1470 {
1471 struct value *v = maybe_const_expr (pc);
c5aa993b 1472
c906108c
SS
1473 if (v)
1474 {
1475 ax_const_l (ax, value_as_long (v));
1476 value->kind = axs_rvalue;
1477 value->type = check_typedef (VALUE_TYPE (v));
1478 return;
1479 }
1480 }
1481
1482 /* Otherwise, go ahead and generate code for it. */
1483 switch (op)
1484 {
1485 /* Binary arithmetic operators. */
1486 case BINOP_ADD:
1487 case BINOP_SUB:
1488 case BINOP_MUL:
1489 case BINOP_DIV:
1490 case BINOP_REM:
1491 case BINOP_SUBSCRIPT:
1492 case BINOP_BITWISE_AND:
1493 case BINOP_BITWISE_IOR:
1494 case BINOP_BITWISE_XOR:
1495 (*pc)++;
1496 gen_expr (pc, ax, &value1);
1497 gen_usual_unary (ax, &value1);
1498 gen_expr (pc, ax, &value2);
1499 gen_usual_unary (ax, &value2);
1500 gen_usual_arithmetic (ax, &value1, &value2);
1501 switch (op)
1502 {
1503 case BINOP_ADD:
1504 gen_add (ax, value, &value1, &value2, "addition");
1505 break;
1506 case BINOP_SUB:
1507 gen_sub (ax, value, &value1, &value2);
1508 break;
1509 case BINOP_MUL:
1510 gen_binop (ax, value, &value1, &value2,
1511 aop_mul, aop_mul, 1, "multiplication");
1512 break;
1513 case BINOP_DIV:
1514 gen_binop (ax, value, &value1, &value2,
1515 aop_div_signed, aop_div_unsigned, 1, "division");
1516 break;
1517 case BINOP_REM:
1518 gen_binop (ax, value, &value1, &value2,
1519 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1520 break;
1521 case BINOP_SUBSCRIPT:
1522 gen_add (ax, value, &value1, &value2, "array subscripting");
1523 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1524 error ("Illegal combination of types in array subscripting.");
1525 gen_deref (ax, value);
1526 break;
1527 case BINOP_BITWISE_AND:
1528 gen_binop (ax, value, &value1, &value2,
1529 aop_bit_and, aop_bit_and, 0, "bitwise and");
1530 break;
1531
1532 case BINOP_BITWISE_IOR:
1533 gen_binop (ax, value, &value1, &value2,
1534 aop_bit_or, aop_bit_or, 0, "bitwise or");
1535 break;
1536
1537 case BINOP_BITWISE_XOR:
1538 gen_binop (ax, value, &value1, &value2,
1539 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1540 break;
1541
1542 default:
1543 /* We should only list operators in the outer case statement
c5aa993b 1544 that we actually handle in the inner case statement. */
8e65ff28
AC
1545 internal_error (__FILE__, __LINE__,
1546 "gen_expr: op case sets don't match");
c906108c
SS
1547 }
1548 break;
1549
1550 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1551 for comma. In C, we can do some optimizations here because
1552 we know the left operand is only being evaluated for effect.
1553 However, if the tracing kludge is in effect, then we always
1554 need to evaluate the left hand side fully, so that all the
1555 variables it mentions get traced. */
c906108c
SS
1556 case BINOP_COMMA:
1557 (*pc)++;
1558 gen_expr (pc, ax, &value1);
1559 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1560 in which case we want to emit code to trace it if it's an
1561 lvalue. */
c906108c
SS
1562 gen_traced_pop (ax, &value1);
1563 gen_expr (pc, ax, value);
1564 /* It's the consumer's responsibility to trace the right operand. */
1565 break;
c5aa993b 1566
c906108c
SS
1567 case OP_LONG: /* some integer constant */
1568 {
1569 struct type *type = (*pc)[1].type;
1570 LONGEST k = (*pc)[2].longconst;
1571 (*pc) += 4;
1572 gen_int_literal (ax, value, k, type);
1573 }
c5aa993b 1574 break;
c906108c
SS
1575
1576 case OP_VAR_VALUE:
1577 gen_var_ref (ax, value, (*pc)[2].symbol);
1578 (*pc) += 4;
1579 break;
1580
1581 case OP_REGISTER:
1582 {
1583 int reg = (int) (*pc)[1].longconst;
1584 (*pc) += 3;
1585 value->kind = axs_lvalue_register;
1586 value->u.reg = reg;
1587 value->type = REGISTER_VIRTUAL_TYPE (reg);
1588 }
c5aa993b 1589 break;
c906108c
SS
1590
1591 case OP_INTERNALVAR:
1592 error ("GDB agent expressions cannot use convenience variables.");
1593
c5aa993b 1594 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1595 case BINOP_REPEAT:
1596 /* Note that gen_repeat handles its own argument evaluation. */
1597 (*pc)++;
1598 gen_repeat (pc, ax, value);
1599 break;
1600
1601 case UNOP_CAST:
1602 {
1603 struct type *type = (*pc)[1].type;
1604 (*pc) += 3;
1605 gen_expr (pc, ax, value);
1606 gen_cast (ax, value, type);
1607 }
c5aa993b 1608 break;
c906108c
SS
1609
1610 case UNOP_MEMVAL:
1611 {
1612 struct type *type = check_typedef ((*pc)[1].type);
1613 (*pc) += 3;
1614 gen_expr (pc, ax, value);
1615 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1616 it's just a hack for dealing with minsyms; you take some
1617 integer constant, pretend it's the address of an lvalue of
1618 the given type, and dereference it. */
1619 if (value->kind != axs_rvalue)
1620 /* This would be weird. */
8e65ff28
AC
1621 internal_error (__FILE__, __LINE__,
1622 "gen_expr: OP_MEMVAL operand isn't an rvalue???");
c906108c
SS
1623 value->type = type;
1624 value->kind = axs_lvalue_memory;
1625 }
c5aa993b 1626 break;
c906108c
SS
1627
1628 case UNOP_NEG:
1629 (*pc)++;
1630 /* -FOO is equivalent to 0 - FOO. */
1631 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1632 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1633 gen_expr (pc, ax, &value2);
1634 gen_usual_unary (ax, &value2);
1635 gen_usual_arithmetic (ax, &value1, &value2);
1636 gen_sub (ax, value, &value1, &value2);
1637 break;
1638
1639 case UNOP_LOGICAL_NOT:
1640 (*pc)++;
1641 gen_expr (pc, ax, value);
1642 gen_logical_not (ax, value);
1643 break;
1644
1645 case UNOP_COMPLEMENT:
1646 (*pc)++;
1647 gen_expr (pc, ax, value);
1648 gen_complement (ax, value);
1649 break;
1650
1651 case UNOP_IND:
1652 (*pc)++;
1653 gen_expr (pc, ax, value);
1654 gen_usual_unary (ax, value);
1655 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1656 error ("Argument of unary `*' is not a pointer.");
1657 gen_deref (ax, value);
1658 break;
1659
1660 case UNOP_ADDR:
1661 (*pc)++;
1662 gen_expr (pc, ax, value);
1663 gen_address_of (ax, value);
1664 break;
1665
1666 case UNOP_SIZEOF:
1667 (*pc)++;
1668 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1669 of the other unary operator functions. This is because we
1670 have to throw away the code we generate. */
c906108c
SS
1671 gen_sizeof (pc, ax, value);
1672 break;
1673
1674 case STRUCTOP_STRUCT:
1675 case STRUCTOP_PTR:
1676 {
1677 int length = (*pc)[1].longconst;
1678 char *name = &(*pc)[2].string;
1679
1680 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1681 gen_expr (pc, ax, value);
1682 if (op == STRUCTOP_STRUCT)
1683 gen_struct_ref (ax, value, name, ".", "structure or union");
1684 else if (op == STRUCTOP_PTR)
1685 gen_struct_ref (ax, value, name, "->",
1686 "pointer to a structure or union");
1687 else
1688 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1689 shouldn't mention it, and we shouldn't be here. */
8e65ff28
AC
1690 internal_error (__FILE__, __LINE__,
1691 "gen_expr: unhandled struct case");
c906108c 1692 }
c5aa993b 1693 break;
c906108c
SS
1694
1695 case OP_TYPE:
1696 error ("Attempt to use a type name as an expression.");
1697
1698 default:
1699 error ("Unsupported operator in expression.");
1700 }
1701}
c906108c 1702\f
c5aa993b
JM
1703
1704
c906108c
SS
1705/* Generating bytecode from GDB expressions: driver */
1706
1707/* Given a GDB expression EXPR, produce a string of agent bytecode
1708 which computes its value. Return the agent expression, and set
1709 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1710struct agent_expr *
fba45db2 1711expr_to_agent (struct expression *expr, struct axs_value *value)
c906108c
SS
1712{
1713 struct cleanup *old_chain = 0;
6426a772 1714 struct agent_expr *ax = new_agent_expr (0);
c906108c
SS
1715 union exp_element *pc;
1716
f23d52e0 1717 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1718
1719 pc = expr->elts;
1720 trace_kludge = 0;
1721 gen_expr (&pc, ax, value);
1722
1723 /* We have successfully built the agent expr, so cancel the cleanup
1724 request. If we add more cleanups that we always want done, this
1725 will have to get more complicated. */
1726 discard_cleanups (old_chain);
1727 return ax;
1728}
1729
1730
6426a772 1731#if 0 /* not used */
c906108c
SS
1732/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1733 string of agent bytecode which will leave its address and size on
1734 the top of stack. Return the agent expression.
1735
1736 Not sure this function is useful at all. */
1737struct agent_expr *
fba45db2 1738expr_to_address_and_size (struct expression *expr)
c906108c
SS
1739{
1740 struct axs_value value;
1741 struct agent_expr *ax = expr_to_agent (expr, &value);
1742
1743 /* Complain if the result is not a memory lvalue. */
1744 if (value.kind != axs_lvalue_memory)
1745 {
1746 free_agent_expr (ax);
1747 error ("Expression does not denote an object in memory.");
1748 }
1749
1750 /* Push the object's size on the stack. */
1751 ax_const_l (ax, TYPE_LENGTH (value.type));
1752
1753 return ax;
1754}
6426a772 1755#endif
c906108c
SS
1756
1757/* Given a GDB expression EXPR, return bytecode to trace its value.
1758 The result will use the `trace' and `trace_quick' bytecodes to
1759 record the value of all memory touched by the expression. The
1760 caller can then use the ax_reqs function to discover which
1761 registers it relies upon. */
1762struct agent_expr *
fba45db2 1763gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
1764{
1765 struct cleanup *old_chain = 0;
1766 struct agent_expr *ax = new_agent_expr (scope);
1767 union exp_element *pc;
1768 struct axs_value value;
1769
f23d52e0 1770 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1771
1772 pc = expr->elts;
1773 trace_kludge = 1;
1774 gen_expr (&pc, ax, &value);
1775
1776 /* Make sure we record the final object, and get rid of it. */
1777 gen_traced_pop (ax, &value);
1778
1779 /* Oh, and terminate. */
1780 ax_simple (ax, aop_end);
1781
1782 /* We have successfully built the agent expr, so cancel the cleanup
1783 request. If we add more cleanups that we always want done, this
1784 will have to get more complicated. */
1785 discard_cleanups (old_chain);
1786 return ax;
1787}
c5aa993b 1788\f
c906108c
SS
1789
1790
c906108c
SS
1791/* The "agent" command, for testing: compile and disassemble an expression. */
1792
1793static void
fba45db2 1794print_axs_value (struct ui_file *f, struct axs_value *value)
c906108c
SS
1795{
1796 switch (value->kind)
1797 {
1798 case axs_rvalue:
1799 fputs_filtered ("rvalue", f);
1800 break;
1801
1802 case axs_lvalue_memory:
1803 fputs_filtered ("memory lvalue", f);
1804 break;
1805
1806 case axs_lvalue_register:
1807 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1808 break;
1809 }
1810
1811 fputs_filtered (" : ", f);
1812 type_print (value->type, "", f, -1);
1813}
1814
1815
1816static void
fba45db2 1817agent_command (char *exp, int from_tty)
c906108c
SS
1818{
1819 struct cleanup *old_chain = 0;
1820 struct expression *expr;
1821 struct agent_expr *agent;
6426a772 1822 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1823
1824 /* We don't deal with overlay debugging at the moment. We need to
1825 think more carefully about this. If you copy this code into
1826 another command, change the error message; the user shouldn't
1827 have to know anything about agent expressions. */
1828 if (overlay_debugging)
1829 error ("GDB can't do agent expression translation with overlays.");
1830
1831 if (exp == 0)
1832 error_no_arg ("expression to translate");
c5aa993b 1833
c906108c 1834 expr = parse_expression (exp);
c13c43fd 1835 old_chain = make_cleanup (free_current_contents, &expr);
c906108c 1836 agent = gen_trace_for_expr (fi->pc, expr);
f23d52e0 1837 make_cleanup_free_agent_expr (agent);
c906108c 1838 ax_print (gdb_stdout, agent);
085dd6e6
JM
1839
1840 /* It would be nice to call ax_reqs here to gather some general info
1841 about the expression, and then print out the result. */
c906108c
SS
1842
1843 do_cleanups (old_chain);
1844 dont_repeat ();
1845}
c906108c 1846\f
c5aa993b 1847
c906108c
SS
1848/* Initialization code. */
1849
a14ed312 1850void _initialize_ax_gdb (void);
c906108c 1851void
fba45db2 1852_initialize_ax_gdb (void)
c906108c 1853{
c906108c
SS
1854 add_cmd ("agent", class_maintenance, agent_command,
1855 "Translate an expression into remote agent bytecode.",
1856 &maintenancelist);
1857}
This page took 0.198091 seconds and 4 git commands to generate.