2005-05-13 Orjan Friberg <orjanf@axis.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
0fd88904
AC
3 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
4 Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "frame.h"
2e4b5889
OF
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
30#include "dwarf2-frame.h"
29134980
OF
31#include "symtab.h"
32#include "inferior.h"
33#include "gdbtypes.h"
34#include "gdbcore.h"
35#include "gdbcmd.h"
36#include "target.h"
37#include "value.h"
38#include "opcode/cris.h"
39#include "arch-utils.h"
40#include "regcache.h"
36482093 41#include "gdb_assert.h"
29134980
OF
42
43/* To get entry_point_address. */
9ab9195f 44#include "objfiles.h"
29134980 45
a5f6c8f5 46#include "solib.h" /* Support for shared libraries. */
dbbff683 47#include "solib-svr4.h" /* For struct link_map_offsets. */
9bbe19fb 48#include "gdb_string.h"
a89aa300 49#include "dis-asm.h"
dbbff683 50
29134980
OF
51enum cris_num_regs
52{
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
54 NUM_FREGS = 0,
55
56 /* There are 16 general registers. */
57 NUM_GENREGS = 16,
58
59 /* There are 16 special registers. */
c600d464
OF
60 NUM_SPECREGS = 16,
61
62 /* CRISv32 has a pseudo PC register, not noted here. */
63
64 /* CRISv32 has 16 support registers. */
65 NUM_SUPPREGS = 16
29134980
OF
66};
67
68/* Register numbers of various important registers.
2e4b5889 69 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
70 STR_REGNUM Contains the address of structure return values.
71 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
72 ARG1_REGNUM Contains the first parameter to a function.
73 ARG2_REGNUM Contains the second parameter to a function.
74 ARG3_REGNUM Contains the third parameter to a function.
75 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
76 SP_REGNUM Contains address of top of stack.
77 PC_REGNUM Contains address of next instruction.
78 SRP_REGNUM Subroutine return pointer register.
79 BRP_REGNUM Breakpoint return pointer register. */
80
29134980
OF
81enum cris_regnums
82{
83 /* Enums with respect to the general registers, valid for all
c600d464 84 CRIS versions. The frame pointer is always in R8. */
2e4b5889 85 CRIS_FP_REGNUM = 8,
c600d464 86 /* ABI related registers. */
29134980
OF
87 STR_REGNUM = 9,
88 RET_REGNUM = 10,
89 ARG1_REGNUM = 10,
90 ARG2_REGNUM = 11,
91 ARG3_REGNUM = 12,
92 ARG4_REGNUM = 13,
93
c600d464 94 /* Registers which happen to be common. */
29134980 95 VR_REGNUM = 17,
c600d464
OF
96 MOF_REGNUM = 23,
97 SRP_REGNUM = 27,
98
99 /* CRISv10 et. al. specific registers. */
100 P0_REGNUM = 16,
29134980
OF
101 P4_REGNUM = 20,
102 CCR_REGNUM = 21,
29134980
OF
103 P8_REGNUM = 24,
104 IBR_REGNUM = 25,
105 IRP_REGNUM = 26,
29134980 106 BAR_REGNUM = 28,
2a9ecef2 107 DCCR_REGNUM = 29,
29134980 108 BRP_REGNUM = 30,
c600d464
OF
109 USP_REGNUM = 31,
110
111 /* CRISv32 specific registers. */
112 ACR_REGNUM = 15,
113 BZ_REGNUM = 16,
114 PID_REGNUM = 18,
115 SRS_REGNUM = 19,
116 WZ_REGNUM = 20,
117 EXS_REGNUM = 21,
118 EDA_REGNUM = 22,
119 DZ_REGNUM = 24,
120 EBP_REGNUM = 25,
121 ERP_REGNUM = 26,
122 NRP_REGNUM = 28,
123 CCS_REGNUM = 29,
124 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
125 SPC_REGNUM = 31,
126 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
127
128 S0_REGNUM = 33,
129 S1_REGNUM = 34,
130 S2_REGNUM = 35,
131 S3_REGNUM = 36,
132 S4_REGNUM = 37,
133 S5_REGNUM = 38,
134 S6_REGNUM = 39,
135 S7_REGNUM = 40,
136 S8_REGNUM = 41,
137 S9_REGNUM = 42,
138 S10_REGNUM = 43,
139 S11_REGNUM = 44,
140 S12_REGNUM = 45,
141 S13_REGNUM = 46,
142 S14_REGNUM = 47,
143 S15_REGNUM = 48,
29134980
OF
144};
145
146extern const struct cris_spec_reg cris_spec_regs[];
147
148/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
149 register names and sizes. */
150static int usr_cmd_cris_version;
29134980
OF
151
152/* Indicates whether to trust the above variable. */
153static int usr_cmd_cris_version_valid = 0;
154
0e6bdb31
OF
155static const char cris_mode_normal[] = "CRIS_MODE_NORMAL";
156static const char cris_mode_guru[] = "CRIS_MODE_GURU";
157static const char *cris_modes[] = {
158 cris_mode_normal,
159 cris_mode_guru,
160 0
161};
162
163/* CRIS mode, set via the user command 'set cris-mode'. Affects
164 type of break instruction among other things. */
165static const char *usr_cmd_cris_mode = cris_mode_normal;
166
a5f6c8f5
OF
167/* Whether to make use of Dwarf-2 CFI (default on). */
168static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 169
29134980
OF
170/* CRIS architecture specific information. */
171struct gdbarch_tdep
172{
0e6bdb31
OF
173 int cris_version;
174 const char *cris_mode;
a5f6c8f5 175 int cris_dwarf2_cfi;
29134980
OF
176};
177
178/* Functions for accessing target dependent data. */
179
180static int
181cris_version (void)
182{
183 return (gdbarch_tdep (current_gdbarch)->cris_version);
184}
185
0e6bdb31
OF
186static const char *
187cris_mode (void)
188{
189 return (gdbarch_tdep (current_gdbarch)->cris_mode);
190}
191
a5f6c8f5
OF
192/* Sigtramp identification code copied from i386-linux-tdep.c. */
193
194#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
195#define SIGTRAMP_OFFSET0 0
196#define SIGTRAMP_INSN1 0xe93d /* break 13 */
197#define SIGTRAMP_OFFSET1 4
198
199static const unsigned short sigtramp_code[] =
200{
201 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
202 SIGTRAMP_INSN1 /* break 13 */
203};
204
205#define SIGTRAMP_LEN (sizeof sigtramp_code)
206
207/* Note: same length as normal sigtramp code. */
208
209static const unsigned short rt_sigtramp_code[] =
29134980 210{
a5f6c8f5
OF
211 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
212 SIGTRAMP_INSN1 /* break 13 */
213};
214
215/* If PC is in a sigtramp routine, return the address of the start of
216 the routine. Otherwise, return 0. */
217
218static CORE_ADDR
219cris_sigtramp_start (struct frame_info *next_frame)
220{
221 CORE_ADDR pc = frame_pc_unwind (next_frame);
222 unsigned short buf[SIGTRAMP_LEN];
223
224 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
225 return 0;
226
227 if (buf[0] != SIGTRAMP_INSN0)
228 {
229 if (buf[0] != SIGTRAMP_INSN1)
230 return 0;
231
232 pc -= SIGTRAMP_OFFSET1;
233 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
234 return 0;
235 }
236
237 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
238 return 0;
239
240 return pc;
241}
242
243/* If PC is in a RT sigtramp routine, return the address of the start of
244 the routine. Otherwise, return 0. */
245
246static CORE_ADDR
247cris_rt_sigtramp_start (struct frame_info *next_frame)
248{
249 CORE_ADDR pc = frame_pc_unwind (next_frame);
250 unsigned short buf[SIGTRAMP_LEN];
251
252 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
253 return 0;
254
255 if (buf[0] != SIGTRAMP_INSN0)
256 {
257 if (buf[0] != SIGTRAMP_INSN1)
258 return 0;
259
260 pc -= SIGTRAMP_OFFSET1;
261 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
262 return 0;
263 }
264
265 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
266 return 0;
267
268 return pc;
269}
270
271/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
272 routine, return the address of the associated sigcontext structure. */
273
274static CORE_ADDR
275cris_sigcontext_addr (struct frame_info *next_frame)
276{
277 CORE_ADDR pc;
278 CORE_ADDR sp;
279 char buf[4];
280
281 frame_unwind_register (next_frame, SP_REGNUM, buf);
282 sp = extract_unsigned_integer (buf, 4);
283
284 /* Look for normal sigtramp frame first. */
285 pc = cris_sigtramp_start (next_frame);
286 if (pc)
287 {
288 /* struct signal_frame (arch/cris/kernel/signal.c) contains
289 struct sigcontext as its first member, meaning the SP points to
290 it already. */
291 return sp;
292 }
293
294 pc = cris_rt_sigtramp_start (next_frame);
295 if (pc)
296 {
297 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
298 a struct ucontext, which in turn contains a struct sigcontext.
299 Magic digging:
300 4 + 4 + 128 to struct ucontext, then
301 4 + 4 + 12 to struct sigcontext. */
302 return (sp + 156);
303 }
304
8a3fe4f8 305 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 306 return 0;
29134980
OF
307}
308
2e4b5889 309struct cris_unwind_cache
29134980 310{
2e4b5889
OF
311 /* The previous frame's inner most stack address. Used as this
312 frame ID's stack_addr. */
313 CORE_ADDR prev_sp;
314 /* The frame's base, optionally used by the high-level debug info. */
315 CORE_ADDR base;
316 int size;
317 /* How far the SP and r8 (FP) have been offset from the start of
318 the stack frame (as defined by the previous frame's stack
319 pointer). */
320 LONGEST sp_offset;
321 LONGEST r8_offset;
322 int uses_frame;
323
324 /* From old frame_extra_info struct. */
29134980
OF
325 CORE_ADDR return_pc;
326 int leaf_function;
2e4b5889
OF
327
328 /* Table indicating the location of each and every register. */
329 struct trad_frame_saved_reg *saved_regs;
29134980
OF
330};
331
a5f6c8f5
OF
332static struct cris_unwind_cache *
333cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
334 void **this_cache)
335{
336 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
337 struct cris_unwind_cache *info;
338 CORE_ADDR pc;
339 CORE_ADDR sp;
340 CORE_ADDR addr;
341 char buf[4];
342 int i;
343
344 if ((*this_cache))
345 return (*this_cache);
346
347 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
348 (*this_cache) = info;
349 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
350
351 /* Zero all fields. */
352 info->prev_sp = 0;
353 info->base = 0;
354 info->size = 0;
355 info->sp_offset = 0;
356 info->r8_offset = 0;
357 info->uses_frame = 0;
358 info->return_pc = 0;
359 info->leaf_function = 0;
360
361 frame_unwind_register (next_frame, SP_REGNUM, buf);
362 info->base = extract_unsigned_integer (buf, 4);
363
364 addr = cris_sigcontext_addr (next_frame);
365
366 /* Layout of the sigcontext struct:
367 struct sigcontext {
368 struct pt_regs regs;
369 unsigned long oldmask;
370 unsigned long usp;
371 }; */
372
c600d464
OF
373 if (tdep->cris_version == 10)
374 {
375 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
376 struct pt_regs. */
377 for (i = 0; i <= 13; i++)
378 info->saved_regs[i].addr = addr + ((15 - i) * 4);
379
380 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
381 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
383 /* Note: IRP is off by 2 at this point. There's no point in correcting
384 it though since that will mean that the backtrace will show a PC
385 different from what is shown when stopped. */
386 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
387 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
388 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
389 }
390 else
391 {
392 /* CRISv32. */
393 /* R0 to R13 are stored in order at offset (1 * 4) in
394 struct pt_regs. */
395 for (i = 0; i <= 13; i++)
396 info->saved_regs[i].addr = addr + ((i + 1) * 4);
397
398 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
399 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
400 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
401 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
402 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
403 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
404 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
405 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
406 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
407
408 /* FIXME: If ERP is in a delay slot at this point then the PC will
409 be wrong at this point. This problem manifests itself in the
410 sigaltstack.exp test case, which occasionally generates FAILs when
411 the signal is received while in a delay slot.
412
413 This could be solved by a couple of read_memory_unsigned_integer and a
414 trad_frame_set_value. */
415 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
416
417 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
418 }
a5f6c8f5
OF
419
420 return info;
421}
422
423static void
424cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
425 struct frame_id *this_id)
426{
427 struct cris_unwind_cache *cache =
428 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
429 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
430}
431
432/* Forward declaration. */
433
434static void cris_frame_prev_register (struct frame_info *next_frame,
435 void **this_prologue_cache,
436 int regnum, int *optimizedp,
437 enum lval_type *lvalp, CORE_ADDR *addrp,
438 int *realnump, void *bufferp);
439static void
440cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
441 void **this_cache,
442 int regnum, int *optimizedp,
443 enum lval_type *lvalp, CORE_ADDR *addrp,
444 int *realnump, void *valuep)
445{
446 /* Make sure we've initialized the cache. */
447 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
448 cris_frame_prev_register (next_frame, this_cache, regnum,
449 optimizedp, lvalp, addrp, realnump, valuep);
450}
451
452static const struct frame_unwind cris_sigtramp_frame_unwind =
453{
454 SIGTRAMP_FRAME,
455 cris_sigtramp_frame_this_id,
456 cris_sigtramp_frame_prev_register
457};
458
459static const struct frame_unwind *
460cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
461{
462 if (cris_sigtramp_start (next_frame)
463 || cris_rt_sigtramp_start (next_frame))
464 return &cris_sigtramp_frame_unwind;
465
466 return NULL;
467}
468
c600d464
OF
469int
470crisv32_single_step_through_delay (struct gdbarch *gdbarch,
471 struct frame_info *this_frame)
472{
473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
474 ULONGEST erp;
475 int ret = 0;
476 char buf[4];
477
0e6bdb31
OF
478 if (cris_mode () == cris_mode_guru)
479 {
480 frame_unwind_register (this_frame, NRP_REGNUM, buf);
481 }
482 else
483 {
484 frame_unwind_register (this_frame, ERP_REGNUM, buf);
485 }
486
c600d464
OF
487 erp = extract_unsigned_integer (buf, 4);
488
489 if (erp & 0x1)
490 {
491 /* In delay slot - check if there's a breakpoint at the preceding
492 instruction. */
493 if (breakpoint_here_p (erp & ~0x1))
494 ret = 1;
495 }
496 return ret;
497}
498
499/* Hardware watchpoint support. */
500
501/* We support 6 hardware data watchpoints, but cannot trigger on execute
502 (any combination of read/write is fine). */
503
504int
505cris_can_use_hardware_watchpoint (int type, int count, int other)
506{
507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
508
509 /* No bookkeeping is done here; it is handled by the remote debug agent. */
510
511 if (tdep->cris_version != 32)
512 return 0;
513 else
514 /* CRISv32: Six data watchpoints, one for instructions. */
515 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
516 || type == bp_hardware_watchpoint) && count <= 6)
517 || (type == bp_hardware_breakpoint && count <= 1));
518}
519
520/* The CRISv32 hardware data watchpoints work by specifying ranges,
521 which have no alignment or length restrictions. */
522
523int
524cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
525{
526 return 1;
527}
528
529/* If the inferior has some watchpoint that triggered, return the
530 address associated with that watchpoint. Otherwise, return
531 zero. */
532
533CORE_ADDR
534cris_stopped_data_address (void)
535{
536 CORE_ADDR eda;
537 eda = read_register (EDA_REGNUM);
538 return eda;
539}
540
29134980 541/* The instruction environment needed to find single-step breakpoints. */
c600d464 542
29134980
OF
543typedef
544struct instruction_environment
545{
546 unsigned long reg[NUM_GENREGS];
547 unsigned long preg[NUM_SPECREGS];
548 unsigned long branch_break_address;
549 unsigned long delay_slot_pc;
550 unsigned long prefix_value;
551 int branch_found;
552 int prefix_found;
553 int invalid;
554 int slot_needed;
555 int delay_slot_pc_active;
556 int xflag_found;
557 int disable_interrupt;
558} inst_env_type;
559
560/* Save old breakpoints in order to restore the state before a single_step.
561 At most, two breakpoints will have to be remembered. */
562typedef
563char binsn_quantum[BREAKPOINT_MAX];
564static binsn_quantum break_mem[2];
565static CORE_ADDR next_pc = 0;
566static CORE_ADDR branch_target_address = 0;
567static unsigned char branch_break_inserted = 0;
568
569/* Machine-dependencies in CRIS for opcodes. */
570
571/* Instruction sizes. */
572enum cris_instruction_sizes
573{
574 INST_BYTE_SIZE = 0,
575 INST_WORD_SIZE = 1,
576 INST_DWORD_SIZE = 2
577};
578
579/* Addressing modes. */
580enum cris_addressing_modes
581{
582 REGISTER_MODE = 1,
583 INDIRECT_MODE = 2,
584 AUTOINC_MODE = 3
585};
586
587/* Prefix addressing modes. */
588enum cris_prefix_addressing_modes
589{
590 PREFIX_INDEX_MODE = 2,
591 PREFIX_ASSIGN_MODE = 3,
592
593 /* Handle immediate byte offset addressing mode prefix format. */
594 PREFIX_OFFSET_MODE = 2
595};
596
597/* Masks for opcodes. */
598enum cris_opcode_masks
599{
600 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
601 SIGNED_EXTEND_BIT_MASK = 0x2,
602 SIGNED_BYTE_MASK = 0x80,
603 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
604 SIGNED_WORD_MASK = 0x8000,
605 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
606 SIGNED_DWORD_MASK = 0x80000000,
607 SIGNED_QUICK_VALUE_MASK = 0x20,
608 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
609};
610
611/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
612 Bit 15 - 12 Operand2
613 11 - 10 Mode
614 9 - 6 Opcode
615 5 - 4 Size
616 3 - 0 Operand1 */
617
618static int
619cris_get_operand2 (unsigned short insn)
620{
621 return ((insn & 0xF000) >> 12);
622}
623
624static int
625cris_get_mode (unsigned short insn)
626{
627 return ((insn & 0x0C00) >> 10);
628}
629
630static int
631cris_get_opcode (unsigned short insn)
632{
633 return ((insn & 0x03C0) >> 6);
634}
635
636static int
637cris_get_size (unsigned short insn)
638{
639 return ((insn & 0x0030) >> 4);
640}
641
642static int
643cris_get_operand1 (unsigned short insn)
644{
645 return (insn & 0x000F);
646}
647
648/* Additional functions in order to handle opcodes. */
649
29134980
OF
650static int
651cris_get_quick_value (unsigned short insn)
652{
653 return (insn & 0x003F);
654}
655
656static int
657cris_get_bdap_quick_offset (unsigned short insn)
658{
659 return (insn & 0x00FF);
660}
661
662static int
663cris_get_branch_short_offset (unsigned short insn)
664{
665 return (insn & 0x00FF);
666}
667
668static int
669cris_get_asr_shift_steps (unsigned long value)
670{
671 return (value & 0x3F);
672}
673
29134980
OF
674static int
675cris_get_clear_size (unsigned short insn)
676{
677 return ((insn) & 0xC000);
678}
679
680static int
681cris_is_signed_extend_bit_on (unsigned short insn)
682{
683 return (((insn) & 0x20) == 0x20);
684}
685
686static int
687cris_is_xflag_bit_on (unsigned short insn)
688{
689 return (((insn) & 0x1000) == 0x1000);
690}
691
692static void
693cris_set_size_to_dword (unsigned short *insn)
694{
695 *insn &= 0xFFCF;
696 *insn |= 0x20;
697}
698
8535cb38 699static signed char
29134980
OF
700cris_get_signed_offset (unsigned short insn)
701{
8535cb38 702 return ((signed char) (insn & 0x00FF));
29134980
OF
703}
704
705/* Calls an op function given the op-type, working on the insn and the
706 inst_env. */
707static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
708
29134980
OF
709static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
710 struct gdbarch_list *);
711
29134980
OF
712static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
713
a5f6c8f5
OF
714static void set_cris_version (char *ignore_args, int from_tty,
715 struct cmd_list_element *c);
29134980 716
0e6bdb31
OF
717static void set_cris_mode (char *ignore_args, int from_tty,
718 struct cmd_list_element *c);
719
a5f6c8f5
OF
720static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
721 struct cmd_list_element *c);
29134980 722
2e4b5889
OF
723static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
724 struct frame_info *next_frame,
725 struct cris_unwind_cache *info);
726
727static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
728 struct frame_info *next_frame);
729
730static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
731 struct frame_info *next_frame);
732
733/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
734 order. The below implements a FILO (stack) to do this.
735 Copied from d10v-tdep.c. */
2e4b5889
OF
736
737struct stack_item
738{
739 int len;
740 struct stack_item *prev;
741 void *data;
742};
743
744static struct stack_item *
745push_stack_item (struct stack_item *prev, void *contents, int len)
746{
747 struct stack_item *si;
748 si = xmalloc (sizeof (struct stack_item));
749 si->data = xmalloc (len);
750 si->len = len;
751 si->prev = prev;
752 memcpy (si->data, contents, len);
753 return si;
754}
755
756static struct stack_item *
757pop_stack_item (struct stack_item *si)
758{
759 struct stack_item *dead = si;
760 si = si->prev;
761 xfree (dead->data);
762 xfree (dead);
763 return si;
764}
765
766/* Put here the code to store, into fi->saved_regs, the addresses of
767 the saved registers of frame described by FRAME_INFO. This
768 includes special registers such as pc and fp saved in special ways
769 in the stack frame. sp is even more special: the address we return
a5f6c8f5 770 for it IS the sp for the next frame. */
2e4b5889
OF
771
772struct cris_unwind_cache *
773cris_frame_unwind_cache (struct frame_info *next_frame,
774 void **this_prologue_cache)
775{
776 CORE_ADDR pc;
777 struct cris_unwind_cache *info;
778 int i;
779
780 if ((*this_prologue_cache))
781 return (*this_prologue_cache);
782
783 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
784 (*this_prologue_cache) = info;
785 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
786
787 /* Zero all fields. */
788 info->prev_sp = 0;
789 info->base = 0;
790 info->size = 0;
791 info->sp_offset = 0;
792 info->r8_offset = 0;
793 info->uses_frame = 0;
794 info->return_pc = 0;
795 info->leaf_function = 0;
796
797 /* Prologue analysis does the rest... */
798 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
799
800 return info;
801}
802
803/* Given a GDB frame, determine the address of the calling function's
804 frame. This will be used to create a new GDB frame struct. */
805
806static void
807cris_frame_this_id (struct frame_info *next_frame,
808 void **this_prologue_cache,
809 struct frame_id *this_id)
810{
811 struct cris_unwind_cache *info
812 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
813 CORE_ADDR base;
814 CORE_ADDR func;
815 struct frame_id id;
816
817 /* The FUNC is easy. */
818 func = frame_func_unwind (next_frame);
819
820 /* Hopefully the prologue analysis either correctly determined the
821 frame's base (which is the SP from the previous frame), or set
822 that base to "NULL". */
823 base = info->prev_sp;
824 if (base == 0)
825 return;
826
827 id = frame_id_build (base, func);
828
829 (*this_id) = id;
830}
831
832static void
833cris_frame_prev_register (struct frame_info *next_frame,
834 void **this_prologue_cache,
835 int regnum, int *optimizedp,
836 enum lval_type *lvalp, CORE_ADDR *addrp,
837 int *realnump, void *bufferp)
838{
839 struct cris_unwind_cache *info
840 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
841 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
842 optimizedp, lvalp, addrp, realnump, bufferp);
2e4b5889
OF
843}
844
845/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
846 dummy frame. The frame ID's base needs to match the TOS value
847 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
848 breakpoint. */
849
850static struct frame_id
851cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
852{
853 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
854 frame_pc_unwind (next_frame));
855}
856
857static CORE_ADDR
858cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
859{
860 /* Align to the size of an instruction (so that they can safely be
861 pushed onto the stack). */
862 return sp & ~3;
863}
864
865static CORE_ADDR
866cris_push_dummy_code (struct gdbarch *gdbarch,
867 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
868 struct value **args, int nargs,
869 struct type *value_type,
870 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
871{
872 /* Allocate space sufficient for a breakpoint. */
873 sp = (sp - 4) & ~3;
874 /* Store the address of that breakpoint */
875 *bp_addr = sp;
876 /* CRIS always starts the call at the callee's entry point. */
877 *real_pc = funaddr;
878 return sp;
879}
880
881static CORE_ADDR
7d9b040b 882cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
883 struct regcache *regcache, CORE_ADDR bp_addr,
884 int nargs, struct value **args, CORE_ADDR sp,
885 int struct_return, CORE_ADDR struct_addr)
886{
887 int stack_alloc;
888 int stack_offset;
889 int argreg;
890 int argnum;
891
892 CORE_ADDR regval;
893
894 /* The function's arguments and memory allocated by gdb for the arguments to
895 point at reside in separate areas on the stack.
896 Both frame pointers grow toward higher addresses. */
897 CORE_ADDR fp_arg;
898 CORE_ADDR fp_mem;
899
900 struct stack_item *si = NULL;
901
a5f6c8f5 902 /* Push the return address. */
2e4b5889
OF
903 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
904
905 /* Are we returning a value using a structure return or a normal value
906 return? struct_addr is the address of the reserved space for the return
907 structure to be written on the stack. */
908 if (struct_return)
909 {
910 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
911 }
912
913 /* Now load as many as possible of the first arguments into registers,
914 and push the rest onto the stack. */
915 argreg = ARG1_REGNUM;
916 stack_offset = 0;
917
918 for (argnum = 0; argnum < nargs; argnum++)
919 {
920 int len;
921 char *val;
922 int reg_demand;
923 int i;
924
4991999e 925 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 926 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
927
928 /* How may registers worth of storage do we need for this argument? */
929 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
930
931 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
932 {
933 /* Data passed by value. Fits in available register(s). */
934 for (i = 0; i < reg_demand; i++)
935 {
936 regcache_cooked_write_unsigned (regcache, argreg,
937 *(unsigned long *) val);
938 argreg++;
939 val += 4;
940 }
941 }
942 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
943 {
944 /* Data passed by value. Does not fit in available register(s).
945 Use the register(s) first, then the stack. */
946 for (i = 0; i < reg_demand; i++)
947 {
948 if (argreg <= ARG4_REGNUM)
949 {
950 regcache_cooked_write_unsigned (regcache, argreg,
951 *(unsigned long *) val);
952 argreg++;
953 val += 4;
954 }
955 else
956 {
957 /* Push item for later so that pushed arguments
958 come in the right order. */
959 si = push_stack_item (si, val, 4);
960 val += 4;
961 }
962 }
963 }
964 else if (len > (2 * 4))
965 {
966 /* FIXME */
e2e0b3e5 967 internal_error (__FILE__, __LINE__, _("We don't do this"));
2e4b5889
OF
968 }
969 else
970 {
971 /* Data passed by value. No available registers. Put it on
972 the stack. */
973 si = push_stack_item (si, val, len);
974 }
975 }
976
977 while (si)
978 {
979 /* fp_arg must be word-aligned (i.e., don't += len) to match
980 the function prologue. */
981 sp = (sp - si->len) & ~3;
982 write_memory (sp, si->data, si->len);
983 si = pop_stack_item (si);
984 }
985
986 /* Finally, update the SP register. */
987 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
988
989 return sp;
990}
991
992static const struct frame_unwind cris_frame_unwind = {
993 NORMAL_FRAME,
994 cris_frame_this_id,
995 cris_frame_prev_register
996};
997
998const struct frame_unwind *
999cris_frame_sniffer (struct frame_info *next_frame)
1000{
1001 return &cris_frame_unwind;
1002}
1003
1004static CORE_ADDR
1005cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1006{
1007 struct cris_unwind_cache *info
1008 = cris_frame_unwind_cache (next_frame, this_cache);
1009 return info->base;
1010}
1011
1012static const struct frame_base cris_frame_base = {
1013 &cris_frame_unwind,
1014 cris_frame_base_address,
1015 cris_frame_base_address,
1016 cris_frame_base_address
1017};
1018
29134980
OF
1019/* Frames information. The definition of the struct frame_info is
1020
1021 CORE_ADDR frame
1022 CORE_ADDR pc
5a203e44 1023 enum frame_type type;
29134980
OF
1024 CORE_ADDR return_pc
1025 int leaf_function
1026
1027 If the compilation option -fno-omit-frame-pointer is present the
1028 variable frame will be set to the content of R8 which is the frame
1029 pointer register.
1030
1031 The variable pc contains the address where execution is performed
1032 in the present frame. The innermost frame contains the current content
1033 of the register PC. All other frames contain the content of the
1034 register PC in the next frame.
1035
5a203e44
AC
1036 The variable `type' indicates the frame's type: normal, SIGTRAMP
1037 (associated with a signal handler), dummy (associated with a dummy
1038 frame).
29134980
OF
1039
1040 The variable return_pc contains the address where execution should be
1041 resumed when the present frame has finished, the return address.
1042
1043 The variable leaf_function is 1 if the return address is in the register
1044 SRP, and 0 if it is on the stack.
1045
1046 Prologue instructions C-code.
1047 The prologue may consist of (-fno-omit-frame-pointer)
1048 1) 2)
1049 push srp
1050 push r8 push r8
1051 move.d sp,r8 move.d sp,r8
1052 subq X,sp subq X,sp
1053 movem rY,[sp] movem rY,[sp]
1054 move.S rZ,[r8-U] move.S rZ,[r8-U]
1055
1056 where 1 is a non-terminal function, and 2 is a leaf-function.
1057
1058 Note that this assumption is extremely brittle, and will break at the
1059 slightest change in GCC's prologue.
1060
1061 If local variables are declared or register contents are saved on stack
1062 the subq-instruction will be present with X as the number of bytes
1063 needed for storage. The reshuffle with respect to r8 may be performed
1064 with any size S (b, w, d) and any of the general registers Z={0..13}.
1065 The offset U should be representable by a signed 8-bit value in all cases.
1066 Thus, the prefix word is assumed to be immediate byte offset mode followed
1067 by another word containing the instruction.
1068
1069 Degenerate cases:
1070 3)
1071 push r8
1072 move.d sp,r8
1073 move.d r8,sp
1074 pop r8
1075
1076 Prologue instructions C++-code.
1077 Case 1) and 2) in the C-code may be followed by
1078
1079 move.d r10,rS ; this
1080 move.d r11,rT ; P1
1081 move.d r12,rU ; P2
1082 move.d r13,rV ; P3
1083 move.S [r8+U],rZ ; P4
1084
1085 if any of the call parameters are stored. The host expects these
1086 instructions to be executed in order to get the call parameters right. */
1087
1088/* Examine the prologue of a function. The variable ip is the address of
1089 the first instruction of the prologue. The variable limit is the address
1090 of the first instruction after the prologue. The variable fi contains the
1091 information in struct frame_info. The variable frameless_p controls whether
1092 the entire prologue is examined (0) or just enough instructions to
1093 determine that it is a prologue (1). */
1094
a78f21af 1095static CORE_ADDR
2e4b5889
OF
1096cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1097 struct cris_unwind_cache *info)
29134980
OF
1098{
1099 /* Present instruction. */
1100 unsigned short insn;
1101
1102 /* Next instruction, lookahead. */
1103 unsigned short insn_next;
1104 int regno;
1105
1106 /* Is there a push fp? */
1107 int have_fp;
1108
1109 /* Number of byte on stack used for local variables and movem. */
1110 int val;
1111
1112 /* Highest register number in a movem. */
1113 int regsave;
1114
1115 /* move.d r<source_register>,rS */
1116 short source_register;
1117
2e4b5889
OF
1118 /* Scan limit. */
1119 int limit;
29134980 1120
2e4b5889
OF
1121 /* This frame is with respect to a leaf until a push srp is found. */
1122 if (info)
1123 {
1124 info->leaf_function = 1;
1125 }
29134980
OF
1126
1127 /* Assume nothing on stack. */
1128 val = 0;
1129 regsave = -1;
1130
2e4b5889
OF
1131 /* If we were called without a next_frame, that means we were called
1132 from cris_skip_prologue which already tried to find the end of the
1133 prologue through the symbol information. 64 instructions past current
1134 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1135 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
29134980 1136
29134980 1137 /* Find the prologue instructions. */
a5f6c8f5 1138 while (pc > 0 && pc < limit)
29134980 1139 {
2e4b5889
OF
1140 insn = read_memory_unsigned_integer (pc, 2);
1141 pc += 2;
29134980
OF
1142 if (insn == 0xE1FC)
1143 {
1144 /* push <reg> 32 bit instruction */
2e4b5889
OF
1145 insn_next = read_memory_unsigned_integer (pc, 2);
1146 pc += 2;
29134980 1147 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1148 if (info)
1149 {
1150 info->sp_offset += 4;
1151 }
dbbff683
OF
1152 /* This check, meant to recognize srp, used to be regno ==
1153 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1154 if (insn_next == 0xBE7E)
29134980 1155 {
2e4b5889
OF
1156 if (info)
1157 {
1158 info->leaf_function = 0;
1159 }
29134980 1160 }
b4206d25
OF
1161 else if (insn_next == 0x8FEE)
1162 {
1163 /* push $r8 */
1164 if (info)
1165 {
1166 info->r8_offset = info->sp_offset;
1167 }
1168 }
29134980
OF
1169 }
1170 else if (insn == 0x866E)
1171 {
1172 /* move.d sp,r8 */
2e4b5889
OF
1173 if (info)
1174 {
1175 info->uses_frame = 1;
2e4b5889 1176 }
29134980
OF
1177 continue;
1178 }
1179 else if (cris_get_operand2 (insn) == SP_REGNUM
1180 && cris_get_mode (insn) == 0x0000
1181 && cris_get_opcode (insn) == 0x000A)
1182 {
1183 /* subq <val>,sp */
2e4b5889
OF
1184 if (info)
1185 {
1186 info->sp_offset += cris_get_quick_value (insn);
1187 }
29134980
OF
1188 }
1189 else if (cris_get_mode (insn) == 0x0002
1190 && cris_get_opcode (insn) == 0x000F
1191 && cris_get_size (insn) == 0x0003
1192 && cris_get_operand1 (insn) == SP_REGNUM)
1193 {
1194 /* movem r<regsave>,[sp] */
29134980
OF
1195 regsave = cris_get_operand2 (insn);
1196 }
1197 else if (cris_get_operand2 (insn) == SP_REGNUM
1198 && ((insn & 0x0F00) >> 8) == 0x0001
1199 && (cris_get_signed_offset (insn) < 0))
1200 {
1201 /* Immediate byte offset addressing prefix word with sp as base
1202 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1203 is between 64 and 128.
1204 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1205 if (info)
1206 {
1207 info->sp_offset += -cris_get_signed_offset (insn);
1208 }
1209 insn_next = read_memory_unsigned_integer (pc, 2);
1210 pc += 2;
29134980
OF
1211 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1212 && cris_get_opcode (insn_next) == 0x000F
1213 && cris_get_size (insn_next) == 0x0003
1214 && cris_get_operand1 (insn_next) == SP_REGNUM)
1215 {
29134980
OF
1216 regsave = cris_get_operand2 (insn_next);
1217 }
1218 else
1219 {
1220 /* The prologue ended before the limit was reached. */
2e4b5889 1221 pc -= 4;
29134980
OF
1222 break;
1223 }
1224 }
1225 else if (cris_get_mode (insn) == 0x0001
1226 && cris_get_opcode (insn) == 0x0009
1227 && cris_get_size (insn) == 0x0002)
1228 {
1229 /* move.d r<10..13>,r<0..15> */
29134980 1230 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1231
1232 /* FIXME? In the glibc solibs, the prologue might contain something
1233 like (this example taken from relocate_doit):
1234 move.d $pc,$r0
1235 sub.d 0xfffef426,$r0
1236 which isn't covered by the source_register check below. Question
1237 is whether to add a check for this combo, or make better use of
1238 the limit variable instead. */
29134980
OF
1239 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1240 {
1241 /* The prologue ended before the limit was reached. */
2e4b5889 1242 pc -= 2;
29134980
OF
1243 break;
1244 }
1245 }
2e4b5889 1246 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1247 /* The size is a fixed-size. */
1248 && ((insn & 0x0F00) >> 8) == 0x0001
1249 /* A negative offset. */
1250 && (cris_get_signed_offset (insn) < 0))
1251 {
1252 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1253 insn_next = read_memory_unsigned_integer (pc, 2);
1254 pc += 2;
29134980
OF
1255 regno = cris_get_operand2 (insn_next);
1256 if ((regno >= 0 && regno < SP_REGNUM)
1257 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1258 && cris_get_opcode (insn_next) == 0x000F)
1259 {
1260 /* move.S rZ,[r8-U] */
1261 continue;
1262 }
1263 else
1264 {
1265 /* The prologue ended before the limit was reached. */
2e4b5889 1266 pc -= 4;
29134980
OF
1267 break;
1268 }
1269 }
2e4b5889 1270 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1271 /* The size is a fixed-size. */
1272 && ((insn & 0x0F00) >> 8) == 0x0001
1273 /* A positive offset. */
1274 && (cris_get_signed_offset (insn) > 0))
1275 {
1276 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1277 insn_next = read_memory_unsigned_integer (pc, 2);
1278 pc += 2;
29134980
OF
1279 regno = cris_get_operand2 (insn_next);
1280 if ((regno >= 0 && regno < SP_REGNUM)
1281 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1282 && cris_get_opcode (insn_next) == 0x0009
1283 && cris_get_operand1 (insn_next) == regno)
1284 {
1285 /* move.S [r8+U],rZ */
1286 continue;
1287 }
1288 else
1289 {
1290 /* The prologue ended before the limit was reached. */
2e4b5889 1291 pc -= 4;
29134980
OF
1292 break;
1293 }
1294 }
1295 else
1296 {
1297 /* The prologue ended before the limit was reached. */
2e4b5889 1298 pc -= 2;
29134980
OF
1299 break;
1300 }
1301 }
29134980 1302
2e4b5889
OF
1303 /* We only want to know the end of the prologue when next_frame and info
1304 are NULL (called from cris_skip_prologue i.e.). */
1305 if (next_frame == NULL && info == NULL)
1306 {
1307 return pc;
1308 }
29134980 1309
2e4b5889
OF
1310 info->size = info->sp_offset;
1311
1312 /* Compute the previous frame's stack pointer (which is also the
1313 frame's ID's stack address), and this frame's base pointer. */
1314 if (info->uses_frame)
29134980 1315 {
2e4b5889
OF
1316 ULONGEST this_base;
1317 /* The SP was moved to the FP. This indicates that a new frame
1318 was created. Get THIS frame's FP value by unwinding it from
1319 the next frame. */
1320 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1321 &this_base);
1322 info->base = this_base;
b4206d25
OF
1323 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1324
2e4b5889
OF
1325 /* The FP points at the last saved register. Adjust the FP back
1326 to before the first saved register giving the SP. */
1327 info->prev_sp = info->base + info->r8_offset;
1328 }
1329 else
1330 {
1331 ULONGEST this_base;
1332 /* Assume that the FP is this frame's SP but with that pushed
1333 stack space added back. */
1334 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1335 info->base = this_base;
1336 info->prev_sp = info->base + info->size;
1337 }
29134980 1338
2e4b5889
OF
1339 /* Calculate the addresses for the saved registers on the stack. */
1340 /* FIXME: The address calculation should really be done on the fly while
1341 we're analyzing the prologue (we only hold one regsave value as it is
1342 now). */
1343 val = info->sp_offset;
1344
1345 for (regno = regsave; regno >= 0; regno--)
1346 {
1347 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1348 val -= 4;
1349 }
1350
1351 /* The previous frame's SP needed to be computed. Save the computed
1352 value. */
1353 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1354
1355 if (!info->leaf_function)
1356 {
b4206d25
OF
1357 /* SRP saved on the stack. But where? */
1358 if (info->r8_offset == 0)
1359 {
1360 /* R8 not pushed yet. */
1361 info->saved_regs[SRP_REGNUM].addr = info->base;
1362 }
1363 else
1364 {
1365 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1366 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1367 }
29134980 1368 }
2e4b5889
OF
1369
1370 /* The PC is found in SRP (the actual register or located on the stack). */
1371 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1372
1373 return pc;
29134980
OF
1374}
1375
1376/* Advance pc beyond any function entry prologue instructions at pc
1377 to reach some "real" code. */
1378
29134980
OF
1379/* Given a PC value corresponding to the start of a function, return the PC
1380 of the first instruction after the function prologue. */
1381
a78f21af 1382static CORE_ADDR
2e4b5889 1383cris_skip_prologue (CORE_ADDR pc)
29134980 1384{
2e4b5889
OF
1385 CORE_ADDR func_addr, func_end;
1386 struct symtab_and_line sal;
29134980
OF
1387 CORE_ADDR pc_after_prologue;
1388
2e4b5889
OF
1389 /* If we have line debugging information, then the end of the prologue
1390 should the first assembly instruction of the first source line. */
1391 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1392 {
1393 sal = find_pc_line (func_addr, 0);
1394 if (sal.end > 0 && sal.end < func_end)
1395 return sal.end;
1396 }
29134980 1397
2e4b5889 1398 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
29134980
OF
1399 return pc_after_prologue;
1400}
1401
2e4b5889
OF
1402static CORE_ADDR
1403cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1404{
1405 ULONGEST pc;
1406 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1407 return pc;
1408}
1409
1410static CORE_ADDR
1411cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1412{
1413 ULONGEST sp;
1414 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1415 return sp;
1416}
1417
29134980
OF
1418/* Use the program counter to determine the contents and size of a breakpoint
1419 instruction. It returns a pointer to a string of bytes that encode a
1420 breakpoint instruction, stores the length of the string to *lenptr, and
1421 adjusts pcptr (if necessary) to point to the actual memory location where
1422 the breakpoint should be inserted. */
1423
a78f21af 1424static const unsigned char *
29134980
OF
1425cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1426{
0e6bdb31
OF
1427 static unsigned char break8_insn[] = {0x38, 0xe9};
1428 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1429 *lenptr = 2;
1430
0e6bdb31
OF
1431 if (cris_mode () == cris_mode_guru)
1432 return break15_insn;
1433 else
1434 return break8_insn;
29134980
OF
1435}
1436
29134980
OF
1437/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1438 0 otherwise. */
1439
a78f21af 1440static int
29134980
OF
1441cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1442{
1443 int version = cris_version ();
1444
1445 switch (spec_reg.applicable_version)
1446 {
1447 case cris_ver_version_all:
1448 return 1;
1449 case cris_ver_warning:
1450 /* Indeterminate/obsolete. */
1451 return 0;
29134980
OF
1452 case cris_ver_v0_3:
1453 return (version >= 0 && version <= 3);
1454 case cris_ver_v3p:
1455 return (version >= 3);
1456 case cris_ver_v8:
1457 return (version == 8 || version == 9);
1458 case cris_ver_v8p:
1459 return (version >= 8);
c600d464
OF
1460 case cris_ver_v0_10:
1461 return (version >= 0 && version <= 10);
1462 case cris_ver_v3_10:
1463 return (version >= 3 && version <= 10);
1464 case cris_ver_v8_10:
1465 return (version >= 8 && version <= 10);
1466 case cris_ver_v10:
1467 return (version == 10);
29134980
OF
1468 case cris_ver_v10p:
1469 return (version >= 10);
c600d464
OF
1470 case cris_ver_v32p:
1471 return (version >= 32);
29134980
OF
1472 default:
1473 /* Invalid cris version. */
1474 return 0;
1475 }
1476}
1477
1d94326f
AC
1478/* Returns the register size in unit byte. Returns 0 for an unimplemented
1479 register, -1 for an invalid register. */
1480
1481static int
1482cris_register_size (int regno)
1483{
c600d464 1484 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1d94326f
AC
1485 int i;
1486 int spec_regno;
1487
1488 if (regno >= 0 && regno < NUM_GENREGS)
1489 {
1490 /* General registers (R0 - R15) are 32 bits. */
1491 return 4;
1492 }
c600d464 1493 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1494 {
1495 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1496 Adjust regno accordingly. */
1497 spec_regno = regno - NUM_GENREGS;
1498
c600d464 1499 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1500 {
1501 if (cris_spec_regs[i].number == spec_regno
1502 && cris_spec_reg_applicable (cris_spec_regs[i]))
1503 /* Go with the first applicable register. */
1504 return cris_spec_regs[i].reg_size;
1505 }
1506 /* Special register not applicable to this CRIS version. */
1507 return 0;
1508 }
c600d464 1509 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1d94326f 1510 {
c600d464
OF
1511 /* This will apply to CRISv32 only where there are additional registers
1512 after the special registers (pseudo PC and support registers). */
1513 return 4;
1d94326f 1514 }
c600d464
OF
1515
1516
1517 return -1;
1d94326f
AC
1518}
1519
29134980
OF
1520/* Nonzero if regno should not be fetched from the target. This is the case
1521 for unimplemented (size 0) and non-existant registers. */
1522
a78f21af 1523static int
29134980
OF
1524cris_cannot_fetch_register (int regno)
1525{
1526 return ((regno < 0 || regno >= NUM_REGS)
1527 || (cris_register_size (regno) == 0));
1528}
1529
1530/* Nonzero if regno should not be written to the target, for various
1531 reasons. */
1532
a78f21af 1533static int
29134980
OF
1534cris_cannot_store_register (int regno)
1535{
1536 /* There are three kinds of registers we refuse to write to.
1537 1. Those that not implemented.
1538 2. Those that are read-only (depends on the processor mode).
1539 3. Those registers to which a write has no effect.
1540 */
1541
1542 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1543 /* Not implemented. */
1544 return 1;
1545
1546 else if (regno == VR_REGNUM)
1547 /* Read-only. */
1548 return 1;
1549
1550 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1551 /* Writing has no effect. */
1552 return 1;
1553
a5f6c8f5
OF
1554 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1555 agent decide whether they are writable. */
29134980
OF
1556
1557 return 0;
1558}
1559
c600d464
OF
1560/* Nonzero if regno should not be fetched from the target. This is the case
1561 for unimplemented (size 0) and non-existant registers. */
1562
1563static int
1564crisv32_cannot_fetch_register (int regno)
1565{
1566 return ((regno < 0 || regno >= NUM_REGS)
1567 || (cris_register_size (regno) == 0));
1568}
1569
1570/* Nonzero if regno should not be written to the target, for various
1571 reasons. */
1572
1573static int
1574crisv32_cannot_store_register (int regno)
1575{
1576 /* There are three kinds of registers we refuse to write to.
1577 1. Those that not implemented.
1578 2. Those that are read-only (depends on the processor mode).
1579 3. Those registers to which a write has no effect.
1580 */
1581
1582 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1583 /* Not implemented. */
1584 return 1;
1585
1586 else if (regno == VR_REGNUM)
1587 /* Read-only. */
1588 return 1;
1589
1590 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1591 /* Writing has no effect. */
1592 return 1;
1593
1594 /* Many special registers are read-only in user mode. Let the debug
1595 agent decide whether they are writable. */
1596
1597 return 0;
1598}
1599
29134980
OF
1600/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1601 of data in register regno. */
1602
a78f21af 1603static struct type *
c1d546cd 1604cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1605{
a5f6c8f5
OF
1606 if (regno == PC_REGNUM)
1607 return builtin_type_void_func_ptr;
1608 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1609 return builtin_type_void_data_ptr;
1610 else if ((regno >= 0 && regno < SP_REGNUM)
1611 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1612 /* Note: R8 taken care of previous clause. */
1613 return builtin_type_uint32;
1614 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1615 return builtin_type_uint16;
1616 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1617 return builtin_type_uint8;
29134980 1618 else
a5f6c8f5
OF
1619 /* Invalid (unimplemented) register. */
1620 return builtin_type_int0;
29134980
OF
1621}
1622
c600d464
OF
1623static struct type *
1624crisv32_register_type (struct gdbarch *gdbarch, int regno)
1625{
1626 if (regno == PC_REGNUM)
1627 return builtin_type_void_func_ptr;
1628 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1629 return builtin_type_void_data_ptr;
1630 else if ((regno >= 0 && regno <= ACR_REGNUM)
1631 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1632 || (regno == PID_REGNUM)
1633 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1634 /* Note: R8 and SP taken care of by previous clause. */
1635 return builtin_type_uint32;
1636 else if (regno == WZ_REGNUM)
1637 return builtin_type_uint16;
1638 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1639 return builtin_type_uint8;
1640 else
1641 {
1642 /* Invalid (unimplemented) register. Should not happen as there are
1643 no unimplemented CRISv32 registers. */
8a3fe4f8 1644 warning (_("crisv32_register_type: unknown regno %d"), regno);
c600d464
OF
1645 return builtin_type_int0;
1646 }
1647}
1648
2e4b5889
OF
1649/* Stores a function return value of type type, where valbuf is the address
1650 of the value to be stored. */
29134980 1651
2e4b5889 1652/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1653
2e4b5889
OF
1654static void
1655cris_store_return_value (struct type *type, struct regcache *regcache,
1656 const void *valbuf)
29134980 1657{
2e4b5889
OF
1658 ULONGEST val;
1659 int len = TYPE_LENGTH (type);
29134980 1660
2e4b5889 1661 if (len <= 4)
29134980 1662 {
2e4b5889
OF
1663 /* Put the return value in R10. */
1664 val = extract_unsigned_integer (valbuf, len);
1665 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1666 }
2e4b5889 1667 else if (len <= 8)
29134980 1668 {
2e4b5889
OF
1669 /* Put the return value in R10 and R11. */
1670 val = extract_unsigned_integer (valbuf, 4);
1671 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1672 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1673 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1674 }
2e4b5889 1675 else
8a3fe4f8 1676 error (_("cris_store_return_value: type length too large."));
29134980
OF
1677}
1678
2e4b5889
OF
1679/* Return the name of register regno as a string. Return NULL for an invalid or
1680 unimplemented register. */
29134980 1681
c600d464
OF
1682static const char *
1683cris_special_register_name (int regno)
1684{
1685 int spec_regno;
1686 int i;
1687
1688 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1689 Adjust regno accordingly. */
1690 spec_regno = regno - NUM_GENREGS;
1691
1692 /* Assume nothing about the layout of the cris_spec_regs struct
1693 when searching. */
1694 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1695 {
1696 if (cris_spec_regs[i].number == spec_regno
1697 && cris_spec_reg_applicable (cris_spec_regs[i]))
1698 /* Go with the first applicable register. */
1699 return cris_spec_regs[i].name;
1700 }
1701 /* Special register not applicable to this CRIS version. */
1702 return NULL;
1703}
1704
2e4b5889
OF
1705static const char *
1706cris_register_name (int regno)
1707{
1708 static char *cris_genreg_names[] =
1709 { "r0", "r1", "r2", "r3", \
1710 "r4", "r5", "r6", "r7", \
1711 "r8", "r9", "r10", "r11", \
1712 "r12", "r13", "sp", "pc" };
29134980 1713
2e4b5889 1714 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1715 {
2e4b5889
OF
1716 /* General register. */
1717 return cris_genreg_names[regno];
29134980 1718 }
2e4b5889 1719 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
29134980 1720 {
c600d464
OF
1721 return cris_special_register_name (regno);
1722 }
1723 else
1724 {
1725 /* Invalid register. */
2e4b5889
OF
1726 return NULL;
1727 }
c600d464
OF
1728}
1729
1730static const char *
1731crisv32_register_name (int regno)
1732{
1733 static char *crisv32_genreg_names[] =
1734 { "r0", "r1", "r2", "r3", \
1735 "r4", "r5", "r6", "r7", \
1736 "r8", "r9", "r10", "r11", \
1737 "r12", "r13", "sp", "acr"
1738 };
1739
1740 static char *crisv32_sreg_names[] =
1741 { "s0", "s1", "s2", "s3", \
1742 "s4", "s5", "s6", "s7", \
1743 "s8", "s9", "s10", "s11", \
1744 "s12", "s13", "s14", "s15"
1745 };
1746
1747 if (regno >= 0 && regno < NUM_GENREGS)
1748 {
1749 /* General register. */
1750 return crisv32_genreg_names[regno];
1751 }
1752 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1753 {
1754 return cris_special_register_name (regno);
1755 }
1756 else if (regno == PC_REGNUM)
1757 {
1758 return "pc";
1759 }
1760 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1761 {
1762 return crisv32_sreg_names[regno - S0_REGNUM];
1763 }
2e4b5889
OF
1764 else
1765 {
1766 /* Invalid register. */
1767 return NULL;
29134980 1768 }
29134980
OF
1769}
1770
a5f6c8f5
OF
1771/* Convert DWARF register number REG to the appropriate register
1772 number used by GDB. */
1773
2e4b5889 1774static int
a5f6c8f5 1775cris_dwarf2_reg_to_regnum (int reg)
29134980 1776{
a5f6c8f5
OF
1777 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1778 numbering, MOF is 18).
1779 Adapted from gcc/config/cris/cris.h. */
1780 static int cris_dwarf_regmap[] = {
1781 0, 1, 2, 3,
1782 4, 5, 6, 7,
1783 8, 9, 10, 11,
1784 12, 13, 14, 15,
1785 27, -1, -1, -1,
1786 -1, -1, -1, 23,
1787 -1, -1, -1, 27,
1788 -1, -1, -1, -1
1789 };
1790 int regnum = -1;
1791
1792 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1793 regnum = cris_dwarf_regmap[reg];
1794
1795 if (regnum == -1)
8a3fe4f8 1796 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1797
1798 return regnum;
1799}
1800
1801/* DWARF-2 frame support. */
1802
1803static void
1804cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1805 struct dwarf2_frame_state_reg *reg)
1806{
1807 /* The return address column. */
1808 if (regnum == PC_REGNUM)
1809 reg->how = DWARF2_FRAME_REG_RA;
1810
1811 /* The call frame address. */
1812 else if (regnum == SP_REGNUM)
1813 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1814}
1815
2e4b5889
OF
1816/* Extract from an array regbuf containing the raw register state a function
1817 return value of type type, and copy that, in virtual format, into
1818 valbuf. */
1819
1820/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1821
2e4b5889
OF
1822static void
1823cris_extract_return_value (struct type *type, struct regcache *regcache,
1824 void *valbuf)
29134980 1825{
2e4b5889
OF
1826 ULONGEST val;
1827 int len = TYPE_LENGTH (type);
29134980 1828
2e4b5889 1829 if (len <= 4)
29134980 1830 {
2e4b5889
OF
1831 /* Get the return value from R10. */
1832 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1833 store_unsigned_integer (valbuf, len, val);
29134980 1834 }
2e4b5889 1835 else if (len <= 8)
29134980 1836 {
2e4b5889
OF
1837 /* Get the return value from R10 and R11. */
1838 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1839 store_unsigned_integer (valbuf, 4, val);
1840 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1841 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1842 }
2e4b5889 1843 else
8a3fe4f8 1844 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1845}
1846
b4206d25
OF
1847/* Handle the CRIS return value convention. */
1848
1849static enum return_value_convention
1850cris_return_value (struct gdbarch *gdbarch, struct type *type,
1851 struct regcache *regcache, void *readbuf,
1852 const void *writebuf)
1853{
1854 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION
1856 || TYPE_LENGTH (type) > 8)
1857 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1858 goes on the stack. */
1859 return RETURN_VALUE_STRUCT_CONVENTION;
1860
1861 if (readbuf)
1862 cris_extract_return_value (type, regcache, readbuf);
1863 if (writebuf)
1864 cris_store_return_value (type, regcache, writebuf);
1865
1866 return RETURN_VALUE_REGISTER_CONVENTION;
1867}
1868
2e4b5889
OF
1869/* Returns 1 if the given type will be passed by pointer rather than
1870 directly. */
1871
1872/* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1873 by value. */
1874
1875static int
1876cris_reg_struct_has_addr (int gcc_p, struct type *type)
1877{
1878 return (TYPE_LENGTH (type) > 8);
29134980
OF
1879}
1880
1881/* Calculates a value that measures how good inst_args constraints an
1882 instruction. It stems from cris_constraint, found in cris-dis.c. */
1883
1884static int
1885constraint (unsigned int insn, const signed char *inst_args,
1886 inst_env_type *inst_env)
1887{
1888 int retval = 0;
1889 int tmp, i;
1890
1891 const char *s = inst_args;
1892
1893 for (; *s; s++)
1894 switch (*s)
1895 {
1896 case 'm':
1897 if ((insn & 0x30) == 0x30)
1898 return -1;
1899 break;
1900
1901 case 'S':
1902 /* A prefix operand. */
1903 if (inst_env->prefix_found)
1904 break;
1905 else
1906 return -1;
1907
1908 case 'B':
1909 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1910 valid "push" size. In case of special register, it may be != 4. */
1911 if (inst_env->prefix_found)
1912 break;
1913 else
1914 return -1;
1915
1916 case 'D':
1917 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1918 if (!retval)
1919 return -1;
1920 else
1921 retval += 4;
1922 break;
1923
1924 case 'P':
1925 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1926
1927 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1928 {
1929 /* Since we match four bits, we will give a value of
1930 4 - 1 = 3 in a match. If there is a corresponding
1931 exact match of a special register in another pattern, it
1932 will get a value of 4, which will be higher. This should
1933 be correct in that an exact pattern would match better that
1934 a general pattern.
1935 Note that there is a reason for not returning zero; the
1936 pattern for "clear" is partly matched in the bit-pattern
1937 (the two lower bits must be zero), while the bit-pattern
1938 for a move from a special register is matched in the
1939 register constraint.
1940 This also means we will will have a race condition if
1941 there is a partly match in three bits in the bit pattern. */
1942 if (tmp == cris_spec_regs[i].number)
1943 {
1944 retval += 3;
1945 break;
1946 }
1947 }
1948
1949 if (cris_spec_regs[i].name == NULL)
29134980
OF
1950 return -1;
1951 break;
1952 }
1953 return retval;
1954}
1955
1956/* Returns the number of bits set in the variable value. */
1957
1958static int
1959number_of_bits (unsigned int value)
1960{
1961 int number_of_bits = 0;
1962
1963 while (value != 0)
1964 {
1965 number_of_bits += 1;
1966 value &= (value - 1);
1967 }
1968 return number_of_bits;
1969}
1970
1971/* Finds the address that should contain the single step breakpoint(s).
1972 It stems from code in cris-dis.c. */
1973
1974static int
1975find_cris_op (unsigned short insn, inst_env_type *inst_env)
1976{
1977 int i;
1978 int max_level_of_match = -1;
1979 int max_matched = -1;
1980 int level_of_match;
1981
1982 for (i = 0; cris_opcodes[i].name != NULL; i++)
1983 {
1984 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
1985 && ((cris_opcodes[i].lose & insn) == 0)
1986 /* Only CRISv10 instructions, please. */
1987 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
1988 {
1989 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1990 if (level_of_match >= 0)
1991 {
1992 level_of_match +=
1993 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1994 if (level_of_match > max_level_of_match)
1995 {
1996 max_matched = i;
1997 max_level_of_match = level_of_match;
1998 if (level_of_match == 16)
1999 {
2000 /* All bits matched, cannot find better. */
2001 break;
2002 }
2003 }
2004 }
2005 }
2006 }
2007 return max_matched;
2008}
2009
2010/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2011 actually an internal error. */
2012
2013static int
2014find_step_target (inst_env_type *inst_env)
2015{
2016 int i;
2017 int offset;
2018 unsigned short insn;
2019
2020 /* Create a local register image and set the initial state. */
2021 for (i = 0; i < NUM_GENREGS; i++)
2022 {
2023 inst_env->reg[i] = (unsigned long) read_register (i);
2024 }
2025 offset = NUM_GENREGS;
2026 for (i = 0; i < NUM_SPECREGS; i++)
2027 {
2028 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2029 }
2030 inst_env->branch_found = 0;
2031 inst_env->slot_needed = 0;
2032 inst_env->delay_slot_pc_active = 0;
2033 inst_env->prefix_found = 0;
2034 inst_env->invalid = 0;
2035 inst_env->xflag_found = 0;
2036 inst_env->disable_interrupt = 0;
2037
2038 /* Look for a step target. */
2039 do
2040 {
2041 /* Read an instruction from the client. */
2042 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2043
2044 /* If the instruction is not in a delay slot the new content of the
2045 PC is [PC] + 2. If the instruction is in a delay slot it is not
2046 that simple. Since a instruction in a delay slot cannot change
2047 the content of the PC, it does not matter what value PC will have.
2048 Just make sure it is a valid instruction. */
2049 if (!inst_env->delay_slot_pc_active)
2050 {
2051 inst_env->reg[PC_REGNUM] += 2;
2052 }
2053 else
2054 {
2055 inst_env->delay_slot_pc_active = 0;
2056 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2057 }
2058 /* Analyse the present instruction. */
2059 i = find_cris_op (insn, inst_env);
2060 if (i == -1)
2061 {
2062 inst_env->invalid = 1;
2063 }
2064 else
2065 {
2066 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2067 }
2068 } while (!inst_env->invalid
2069 && (inst_env->prefix_found || inst_env->xflag_found
2070 || inst_env->slot_needed));
2071 return i;
2072}
2073
2074/* There is no hardware single-step support. The function find_step_target
2075 digs through the opcodes in order to find all possible targets.
2076 Either one ordinary target or two targets for branches may be found. */
2077
a78f21af 2078static void
29134980
OF
2079cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2080{
2081 inst_env_type inst_env;
2082
2083 if (insert_breakpoints)
2084 {
2085 /* Analyse the present instruction environment and insert
2086 breakpoints. */
2087 int status = find_step_target (&inst_env);
2088 if (status == -1)
2089 {
c600d464
OF
2090 /* Could not find a target. Things are likely to go downhill
2091 from here. */
8a3fe4f8 2092 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2093 }
2094 else
2095 {
2096 /* Insert at most two breakpoints. One for the next PC content
2097 and possibly another one for a branch, jump, etc. */
2098 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2099 target_insert_breakpoint (next_pc, break_mem[0]);
2100 if (inst_env.branch_found
2101 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2102 {
2103 branch_target_address =
2104 (CORE_ADDR) inst_env.branch_break_address;
2105 target_insert_breakpoint (branch_target_address, break_mem[1]);
2106 branch_break_inserted = 1;
2107 }
2108 }
2109 }
2110 else
2111 {
2112 /* Remove breakpoints. */
2113 target_remove_breakpoint (next_pc, break_mem[0]);
2114 if (branch_break_inserted)
2115 {
2116 target_remove_breakpoint (branch_target_address, break_mem[1]);
2117 branch_break_inserted = 0;
2118 }
2119 }
2120}
2121
2122/* Calculates the prefix value for quick offset addressing mode. */
2123
a78f21af 2124static void
29134980
OF
2125quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2126{
2127 /* It's invalid to be in a delay slot. You can't have a prefix to this
2128 instruction (not 100% sure). */
2129 if (inst_env->slot_needed || inst_env->prefix_found)
2130 {
2131 inst_env->invalid = 1;
2132 return;
2133 }
2134
2135 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2136 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2137
2138 /* A prefix doesn't change the xflag_found. But the rest of the flags
2139 need updating. */
2140 inst_env->slot_needed = 0;
2141 inst_env->prefix_found = 1;
2142}
2143
2144/* Updates the autoincrement register. The size of the increment is derived
2145 from the size of the operation. The PC is always kept aligned on even
2146 word addresses. */
2147
a78f21af 2148static void
29134980
OF
2149process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2150{
2151 if (size == INST_BYTE_SIZE)
2152 {
2153 inst_env->reg[cris_get_operand1 (inst)] += 1;
2154
2155 /* The PC must be word aligned, so increase the PC with one
2156 word even if the size is byte. */
2157 if (cris_get_operand1 (inst) == REG_PC)
2158 {
2159 inst_env->reg[REG_PC] += 1;
2160 }
2161 }
2162 else if (size == INST_WORD_SIZE)
2163 {
2164 inst_env->reg[cris_get_operand1 (inst)] += 2;
2165 }
2166 else if (size == INST_DWORD_SIZE)
2167 {
2168 inst_env->reg[cris_get_operand1 (inst)] += 4;
2169 }
2170 else
2171 {
2172 /* Invalid size. */
2173 inst_env->invalid = 1;
2174 }
2175}
2176
2a9ecef2
OF
2177/* Just a forward declaration. */
2178
a78f21af
AC
2179static unsigned long get_data_from_address (unsigned short *inst,
2180 CORE_ADDR address);
2a9ecef2 2181
29134980
OF
2182/* Calculates the prefix value for the general case of offset addressing
2183 mode. */
2184
a78f21af 2185static void
29134980
OF
2186bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2187{
2188
2189 long offset;
2190
2191 /* It's invalid to be in a delay slot. */
2192 if (inst_env->slot_needed || inst_env->prefix_found)
2193 {
2194 inst_env->invalid = 1;
2195 return;
2196 }
2197
fa4e4598
OF
2198 /* The calculation of prefix_value used to be after process_autoincrement,
2199 but that fails for an instruction such as jsr [$r0+12] which is encoded
2200 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2201 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2202 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2203
2204 /* The offset is an indirection of the contents of the operand1 register. */
2205 inst_env->prefix_value +=
2a9ecef2
OF
2206 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2207
fa4e4598
OF
2208 if (cris_get_mode (inst) == AUTOINC_MODE)
2209 {
2210 process_autoincrement (cris_get_size (inst), inst, inst_env);
2211 }
2212
29134980
OF
2213 /* A prefix doesn't change the xflag_found. But the rest of the flags
2214 need updating. */
2215 inst_env->slot_needed = 0;
2216 inst_env->prefix_found = 1;
2217}
2218
2219/* Calculates the prefix value for the index addressing mode. */
2220
a78f21af 2221static void
29134980
OF
2222biap_prefix (unsigned short inst, inst_env_type *inst_env)
2223{
2224 /* It's invalid to be in a delay slot. I can't see that it's possible to
2225 have a prefix to this instruction. So I will treat this as invalid. */
2226 if (inst_env->slot_needed || inst_env->prefix_found)
2227 {
2228 inst_env->invalid = 1;
2229 return;
2230 }
2231
2232 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2233
2234 /* The offset is the operand2 value shifted the size of the instruction
2235 to the left. */
2236 inst_env->prefix_value +=
2237 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2238
2239 /* If the PC is operand1 (base) the address used is the address after
2240 the main instruction, i.e. address + 2 (the PC is already compensated
2241 for the prefix operation). */
2242 if (cris_get_operand1 (inst) == REG_PC)
2243 {
2244 inst_env->prefix_value += 2;
2245 }
2246
2247 /* A prefix doesn't change the xflag_found. But the rest of the flags
2248 need updating. */
2249 inst_env->slot_needed = 0;
2250 inst_env->xflag_found = 0;
2251 inst_env->prefix_found = 1;
2252}
2253
2254/* Calculates the prefix value for the double indirect addressing mode. */
2255
a78f21af 2256static void
29134980
OF
2257dip_prefix (unsigned short inst, inst_env_type *inst_env)
2258{
2259
2260 CORE_ADDR address;
2261
2262 /* It's invalid to be in a delay slot. */
2263 if (inst_env->slot_needed || inst_env->prefix_found)
2264 {
2265 inst_env->invalid = 1;
2266 return;
2267 }
2268
2269 /* The prefix value is one dereference of the contents of the operand1
2270 register. */
2271 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2272 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2273
2274 /* Check if the mode is autoincrement. */
2275 if (cris_get_mode (inst) == AUTOINC_MODE)
2276 {
2277 inst_env->reg[cris_get_operand1 (inst)] += 4;
2278 }
2279
2280 /* A prefix doesn't change the xflag_found. But the rest of the flags
2281 need updating. */
2282 inst_env->slot_needed = 0;
2283 inst_env->xflag_found = 0;
2284 inst_env->prefix_found = 1;
2285}
2286
2287/* Finds the destination for a branch with 8-bits offset. */
2288
a78f21af 2289static void
29134980
OF
2290eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2291{
2292
2293 short offset;
2294
2295 /* If we have a prefix or are in a delay slot it's bad. */
2296 if (inst_env->slot_needed || inst_env->prefix_found)
2297 {
2298 inst_env->invalid = 1;
2299 return;
2300 }
2301
2302 /* We have a branch, find out where the branch will land. */
2303 offset = cris_get_branch_short_offset (inst);
2304
2305 /* Check if the offset is signed. */
2306 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2307 {
2308 offset |= 0xFF00;
2309 }
2310
2311 /* The offset ends with the sign bit, set it to zero. The address
2312 should always be word aligned. */
2313 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2314
2315 inst_env->branch_found = 1;
2316 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2317
2318 inst_env->slot_needed = 1;
2319 inst_env->prefix_found = 0;
2320 inst_env->xflag_found = 0;
2321 inst_env->disable_interrupt = 1;
2322}
2323
2324/* Finds the destination for a branch with 16-bits offset. */
2325
a78f21af 2326static void
29134980
OF
2327sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2328{
2329 short offset;
2330
2331 /* If we have a prefix or is in a delay slot it's bad. */
2332 if (inst_env->slot_needed || inst_env->prefix_found)
2333 {
2334 inst_env->invalid = 1;
2335 return;
2336 }
2337
2338 /* We have a branch, find out the offset for the branch. */
2339 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2340
2341 /* The instruction is one word longer than normal, so add one word
2342 to the PC. */
2343 inst_env->reg[REG_PC] += 2;
2344
2345 inst_env->branch_found = 1;
2346 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2347
2348
2349 inst_env->slot_needed = 1;
2350 inst_env->prefix_found = 0;
2351 inst_env->xflag_found = 0;
2352 inst_env->disable_interrupt = 1;
2353}
2354
2355/* Handles the ABS instruction. */
2356
a78f21af 2357static void
29134980
OF
2358abs_op (unsigned short inst, inst_env_type *inst_env)
2359{
2360
2361 long value;
2362
2363 /* ABS can't have a prefix, so it's bad if it does. */
2364 if (inst_env->prefix_found)
2365 {
2366 inst_env->invalid = 1;
2367 return;
2368 }
2369
2370 /* Check if the operation affects the PC. */
2371 if (cris_get_operand2 (inst) == REG_PC)
2372 {
2373
2374 /* It's invalid to change to the PC if we are in a delay slot. */
2375 if (inst_env->slot_needed)
2376 {
2377 inst_env->invalid = 1;
2378 return;
2379 }
2380
2381 value = (long) inst_env->reg[REG_PC];
2382
2383 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2384 if (value != SIGNED_DWORD_MASK)
2385 {
2386 value = -value;
2387 inst_env->reg[REG_PC] = (long) value;
2388 }
2389 }
2390
2391 inst_env->slot_needed = 0;
2392 inst_env->prefix_found = 0;
2393 inst_env->xflag_found = 0;
2394 inst_env->disable_interrupt = 0;
2395}
2396
2397/* Handles the ADDI instruction. */
2398
a78f21af 2399static void
29134980
OF
2400addi_op (unsigned short inst, inst_env_type *inst_env)
2401{
2402 /* It's invalid to have the PC as base register. And ADDI can't have
2403 a prefix. */
2404 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2405 {
2406 inst_env->invalid = 1;
2407 return;
2408 }
2409
2410 inst_env->slot_needed = 0;
2411 inst_env->prefix_found = 0;
2412 inst_env->xflag_found = 0;
2413 inst_env->disable_interrupt = 0;
2414}
2415
2416/* Handles the ASR instruction. */
2417
a78f21af 2418static void
29134980
OF
2419asr_op (unsigned short inst, inst_env_type *inst_env)
2420{
2421 int shift_steps;
2422 unsigned long value;
2423 unsigned long signed_extend_mask = 0;
2424
2425 /* ASR can't have a prefix, so check that it doesn't. */
2426 if (inst_env->prefix_found)
2427 {
2428 inst_env->invalid = 1;
2429 return;
2430 }
2431
2432 /* Check if the PC is the target register. */
2433 if (cris_get_operand2 (inst) == REG_PC)
2434 {
2435 /* It's invalid to change the PC in a delay slot. */
2436 if (inst_env->slot_needed)
2437 {
2438 inst_env->invalid = 1;
2439 return;
2440 }
2441 /* Get the number of bits to shift. */
2442 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2443 value = inst_env->reg[REG_PC];
2444
2445 /* Find out how many bits the operation should apply to. */
2446 if (cris_get_size (inst) == INST_BYTE_SIZE)
2447 {
2448 if (value & SIGNED_BYTE_MASK)
2449 {
2450 signed_extend_mask = 0xFF;
2451 signed_extend_mask = signed_extend_mask >> shift_steps;
2452 signed_extend_mask = ~signed_extend_mask;
2453 }
2454 value = value >> shift_steps;
2455 value |= signed_extend_mask;
2456 value &= 0xFF;
2457 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2458 inst_env->reg[REG_PC] |= value;
2459 }
2460 else if (cris_get_size (inst) == INST_WORD_SIZE)
2461 {
2462 if (value & SIGNED_WORD_MASK)
2463 {
2464 signed_extend_mask = 0xFFFF;
2465 signed_extend_mask = signed_extend_mask >> shift_steps;
2466 signed_extend_mask = ~signed_extend_mask;
2467 }
2468 value = value >> shift_steps;
2469 value |= signed_extend_mask;
2470 value &= 0xFFFF;
2471 inst_env->reg[REG_PC] &= 0xFFFF0000;
2472 inst_env->reg[REG_PC] |= value;
2473 }
2474 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2475 {
2476 if (value & SIGNED_DWORD_MASK)
2477 {
2478 signed_extend_mask = 0xFFFFFFFF;
2479 signed_extend_mask = signed_extend_mask >> shift_steps;
2480 signed_extend_mask = ~signed_extend_mask;
2481 }
2482 value = value >> shift_steps;
2483 value |= signed_extend_mask;
2484 inst_env->reg[REG_PC] = value;
2485 }
2486 }
2487 inst_env->slot_needed = 0;
2488 inst_env->prefix_found = 0;
2489 inst_env->xflag_found = 0;
2490 inst_env->disable_interrupt = 0;
2491}
2492
2493/* Handles the ASRQ instruction. */
2494
a78f21af 2495static void
29134980
OF
2496asrq_op (unsigned short inst, inst_env_type *inst_env)
2497{
2498
2499 int shift_steps;
2500 unsigned long value;
2501 unsigned long signed_extend_mask = 0;
2502
2503 /* ASRQ can't have a prefix, so check that it doesn't. */
2504 if (inst_env->prefix_found)
2505 {
2506 inst_env->invalid = 1;
2507 return;
2508 }
2509
2510 /* Check if the PC is the target register. */
2511 if (cris_get_operand2 (inst) == REG_PC)
2512 {
2513
2514 /* It's invalid to change the PC in a delay slot. */
2515 if (inst_env->slot_needed)
2516 {
2517 inst_env->invalid = 1;
2518 return;
2519 }
2520 /* The shift size is given as a 5 bit quick value, i.e. we don't
2521 want the the sign bit of the quick value. */
2522 shift_steps = cris_get_asr_shift_steps (inst);
2523 value = inst_env->reg[REG_PC];
2524 if (value & SIGNED_DWORD_MASK)
2525 {
2526 signed_extend_mask = 0xFFFFFFFF;
2527 signed_extend_mask = signed_extend_mask >> shift_steps;
2528 signed_extend_mask = ~signed_extend_mask;
2529 }
2530 value = value >> shift_steps;
2531 value |= signed_extend_mask;
2532 inst_env->reg[REG_PC] = value;
2533 }
2534 inst_env->slot_needed = 0;
2535 inst_env->prefix_found = 0;
2536 inst_env->xflag_found = 0;
2537 inst_env->disable_interrupt = 0;
2538}
2539
2540/* Handles the AX, EI and SETF instruction. */
2541
a78f21af 2542static void
29134980
OF
2543ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2544{
2545 if (inst_env->prefix_found)
2546 {
2547 inst_env->invalid = 1;
2548 return;
2549 }
2550 /* Check if the instruction is setting the X flag. */
2551 if (cris_is_xflag_bit_on (inst))
2552 {
2553 inst_env->xflag_found = 1;
2554 }
2555 else
2556 {
2557 inst_env->xflag_found = 0;
2558 }
2559 inst_env->slot_needed = 0;
2560 inst_env->prefix_found = 0;
2561 inst_env->disable_interrupt = 1;
2562}
2563
2564/* Checks if the instruction is in assign mode. If so, it updates the assign
2565 register. Note that check_assign assumes that the caller has checked that
2566 there is a prefix to this instruction. The mode check depends on this. */
2567
a78f21af 2568static void
29134980
OF
2569check_assign (unsigned short inst, inst_env_type *inst_env)
2570{
2571 /* Check if it's an assign addressing mode. */
2572 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2573 {
2574 /* Assign the prefix value to operand 1. */
2575 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2576 }
2577}
2578
2579/* Handles the 2-operand BOUND instruction. */
2580
a78f21af 2581static void
29134980
OF
2582two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2583{
2584 /* It's invalid to have the PC as the index operand. */
2585 if (cris_get_operand2 (inst) == REG_PC)
2586 {
2587 inst_env->invalid = 1;
2588 return;
2589 }
2590 /* Check if we have a prefix. */
2591 if (inst_env->prefix_found)
2592 {
2593 check_assign (inst, inst_env);
2594 }
2595 /* Check if this is an autoincrement mode. */
2596 else if (cris_get_mode (inst) == AUTOINC_MODE)
2597 {
2598 /* It's invalid to change the PC in a delay slot. */
2599 if (inst_env->slot_needed)
2600 {
2601 inst_env->invalid = 1;
2602 return;
2603 }
2604 process_autoincrement (cris_get_size (inst), inst, inst_env);
2605 }
2606 inst_env->slot_needed = 0;
2607 inst_env->prefix_found = 0;
2608 inst_env->xflag_found = 0;
2609 inst_env->disable_interrupt = 0;
2610}
2611
2612/* Handles the 3-operand BOUND instruction. */
2613
a78f21af 2614static void
29134980
OF
2615three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2616{
2617 /* It's an error if we haven't got a prefix. And it's also an error
2618 if the PC is the destination register. */
2619 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2620 {
2621 inst_env->invalid = 1;
2622 return;
2623 }
2624 inst_env->slot_needed = 0;
2625 inst_env->prefix_found = 0;
2626 inst_env->xflag_found = 0;
2627 inst_env->disable_interrupt = 0;
2628}
2629
2630/* Clears the status flags in inst_env. */
2631
a78f21af 2632static void
29134980
OF
2633btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2634{
2635 /* It's an error if we have got a prefix. */
2636 if (inst_env->prefix_found)
2637 {
2638 inst_env->invalid = 1;
2639 return;
2640 }
2641
2642 inst_env->slot_needed = 0;
2643 inst_env->prefix_found = 0;
2644 inst_env->xflag_found = 0;
2645 inst_env->disable_interrupt = 0;
2646}
2647
2648/* Clears the status flags in inst_env. */
2649
a78f21af 2650static void
29134980
OF
2651clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2652{
2653 /* It's an error if we have got a prefix. */
2654 if (inst_env->prefix_found)
2655 {
2656 inst_env->invalid = 1;
2657 return;
2658 }
2659
2660 inst_env->slot_needed = 0;
2661 inst_env->prefix_found = 0;
2662 inst_env->xflag_found = 0;
2663 inst_env->disable_interrupt = 1;
2664}
2665
2666/* Handles the CLEAR instruction if it's in register mode. */
2667
a78f21af 2668static void
29134980
OF
2669reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2670{
2671 /* Check if the target is the PC. */
2672 if (cris_get_operand2 (inst) == REG_PC)
2673 {
2674 /* The instruction will clear the instruction's size bits. */
2675 int clear_size = cris_get_clear_size (inst);
2676 if (clear_size == INST_BYTE_SIZE)
2677 {
2678 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2679 }
2680 if (clear_size == INST_WORD_SIZE)
2681 {
2682 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2683 }
2684 if (clear_size == INST_DWORD_SIZE)
2685 {
2686 inst_env->delay_slot_pc = 0x0;
2687 }
2688 /* The jump will be delayed with one delay slot. So we need a delay
2689 slot. */
2690 inst_env->slot_needed = 1;
2691 inst_env->delay_slot_pc_active = 1;
2692 }
2693 else
2694 {
2695 /* The PC will not change => no delay slot. */
2696 inst_env->slot_needed = 0;
2697 }
2698 inst_env->prefix_found = 0;
2699 inst_env->xflag_found = 0;
2700 inst_env->disable_interrupt = 0;
2701}
2702
2703/* Handles the TEST instruction if it's in register mode. */
2704
a78f21af 2705static void
29134980
OF
2706reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2707{
2708 /* It's an error if we have got a prefix. */
2709 if (inst_env->prefix_found)
2710 {
2711 inst_env->invalid = 1;
2712 return;
2713 }
2714 inst_env->slot_needed = 0;
2715 inst_env->prefix_found = 0;
2716 inst_env->xflag_found = 0;
2717 inst_env->disable_interrupt = 0;
2718
2719}
2720
2721/* Handles the CLEAR and TEST instruction if the instruction isn't
2722 in register mode. */
2723
a78f21af 2724static void
29134980
OF
2725none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2726{
2727 /* Check if we are in a prefix mode. */
2728 if (inst_env->prefix_found)
2729 {
2730 /* The only way the PC can change is if this instruction is in
2731 assign addressing mode. */
2732 check_assign (inst, inst_env);
2733 }
2734 /* Indirect mode can't change the PC so just check if the mode is
2735 autoincrement. */
2736 else if (cris_get_mode (inst) == AUTOINC_MODE)
2737 {
2738 process_autoincrement (cris_get_size (inst), inst, inst_env);
2739 }
2740 inst_env->slot_needed = 0;
2741 inst_env->prefix_found = 0;
2742 inst_env->xflag_found = 0;
2743 inst_env->disable_interrupt = 0;
2744}
2745
2746/* Checks that the PC isn't the destination register or the instructions has
2747 a prefix. */
2748
a78f21af 2749static void
29134980
OF
2750dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2751{
2752 /* It's invalid to have the PC as the destination. The instruction can't
2753 have a prefix. */
2754 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2755 {
2756 inst_env->invalid = 1;
2757 return;
2758 }
2759
2760 inst_env->slot_needed = 0;
2761 inst_env->prefix_found = 0;
2762 inst_env->xflag_found = 0;
2763 inst_env->disable_interrupt = 0;
2764}
2765
2766/* Checks that the instruction doesn't have a prefix. */
2767
a78f21af 2768static void
29134980
OF
2769break_op (unsigned short inst, inst_env_type *inst_env)
2770{
2771 /* The instruction can't have a prefix. */
2772 if (inst_env->prefix_found)
2773 {
2774 inst_env->invalid = 1;
2775 return;
2776 }
2777
2778 inst_env->slot_needed = 0;
2779 inst_env->prefix_found = 0;
2780 inst_env->xflag_found = 0;
2781 inst_env->disable_interrupt = 1;
2782}
2783
2784/* Checks that the PC isn't the destination register and that the instruction
2785 doesn't have a prefix. */
2786
a78f21af 2787static void
29134980
OF
2788scc_op (unsigned short inst, inst_env_type *inst_env)
2789{
2790 /* It's invalid to have the PC as the destination. The instruction can't
2791 have a prefix. */
2792 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2793 {
2794 inst_env->invalid = 1;
2795 return;
2796 }
2797
2798 inst_env->slot_needed = 0;
2799 inst_env->prefix_found = 0;
2800 inst_env->xflag_found = 0;
2801 inst_env->disable_interrupt = 1;
2802}
2803
2804/* Handles the register mode JUMP instruction. */
2805
a78f21af 2806static void
29134980
OF
2807reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2808{
2809 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2810 you can't have a prefix. */
2811 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2812 {
2813 inst_env->invalid = 1;
2814 return;
2815 }
2816
2817 /* Just change the PC. */
2818 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2819 inst_env->slot_needed = 0;
2820 inst_env->prefix_found = 0;
2821 inst_env->xflag_found = 0;
2822 inst_env->disable_interrupt = 1;
2823}
2824
2825/* Handles the JUMP instruction for all modes except register. */
2826
a78f21af
AC
2827static void
2828none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2829{
2830 unsigned long newpc;
2831 CORE_ADDR address;
2832
2833 /* It's invalid to do a JUMP in a delay slot. */
2834 if (inst_env->slot_needed)
2835 {
2836 inst_env->invalid = 1;
2837 }
2838 else
2839 {
2840 /* Check if we have a prefix. */
2841 if (inst_env->prefix_found)
2842 {
2843 check_assign (inst, inst_env);
2844
2845 /* Get the new value for the the PC. */
2846 newpc =
2847 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2848 4);
2849 }
2850 else
2851 {
2852 /* Get the new value for the PC. */
2853 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2854 newpc = read_memory_unsigned_integer (address, 4);
2855
2856 /* Check if we should increment a register. */
2857 if (cris_get_mode (inst) == AUTOINC_MODE)
2858 {
2859 inst_env->reg[cris_get_operand1 (inst)] += 4;
2860 }
2861 }
2862 inst_env->reg[REG_PC] = newpc;
2863 }
2864 inst_env->slot_needed = 0;
2865 inst_env->prefix_found = 0;
2866 inst_env->xflag_found = 0;
2867 inst_env->disable_interrupt = 1;
2868}
2869
2870/* Handles moves to special registers (aka P-register) for all modes. */
2871
a78f21af 2872static void
29134980
OF
2873move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2874{
2875 if (inst_env->prefix_found)
2876 {
2877 /* The instruction has a prefix that means we are only interested if
2878 the instruction is in assign mode. */
2879 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2880 {
2881 /* The prefix handles the problem if we are in a delay slot. */
2882 if (cris_get_operand1 (inst) == REG_PC)
2883 {
2884 /* Just take care of the assign. */
2885 check_assign (inst, inst_env);
2886 }
2887 }
2888 }
2889 else if (cris_get_mode (inst) == AUTOINC_MODE)
2890 {
2891 /* The instruction doesn't have a prefix, the only case left that we
2892 are interested in is the autoincrement mode. */
2893 if (cris_get_operand1 (inst) == REG_PC)
2894 {
2895 /* If the PC is to be incremented it's invalid to be in a
2896 delay slot. */
2897 if (inst_env->slot_needed)
2898 {
2899 inst_env->invalid = 1;
2900 return;
2901 }
2a9ecef2
OF
2902
2903 /* The increment depends on the size of the special register. */
2904 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2905 {
2906 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2907 }
2a9ecef2 2908 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2909 {
2910 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2911 }
2912 else
2913 {
2914 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2915 }
2916 }
2917 }
2918 inst_env->slot_needed = 0;
2919 inst_env->prefix_found = 0;
2920 inst_env->xflag_found = 0;
2921 inst_env->disable_interrupt = 1;
2922}
2923
2924/* Handles moves from special registers (aka P-register) for all modes
2925 except register. */
2926
a78f21af 2927static void
29134980
OF
2928none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2929{
2930 if (inst_env->prefix_found)
2931 {
2932 /* The instruction has a prefix that means we are only interested if
2933 the instruction is in assign mode. */
2934 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2935 {
2936 /* The prefix handles the problem if we are in a delay slot. */
2937 if (cris_get_operand1 (inst) == REG_PC)
2938 {
2939 /* Just take care of the assign. */
2940 check_assign (inst, inst_env);
2941 }
2942 }
2943 }
2944 /* The instruction doesn't have a prefix, the only case left that we
2945 are interested in is the autoincrement mode. */
2946 else if (cris_get_mode (inst) == AUTOINC_MODE)
2947 {
2948 if (cris_get_operand1 (inst) == REG_PC)
2949 {
2950 /* If the PC is to be incremented it's invalid to be in a
2951 delay slot. */
2952 if (inst_env->slot_needed)
2953 {
2954 inst_env->invalid = 1;
2955 return;
2956 }
2a9ecef2
OF
2957
2958 /* The increment depends on the size of the special register. */
2959 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2960 {
2961 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2962 }
2a9ecef2 2963 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2964 {
2965 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2966 }
2967 else
2968 {
2969 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2970 }
2971 }
2972 }
2973 inst_env->slot_needed = 0;
2974 inst_env->prefix_found = 0;
2975 inst_env->xflag_found = 0;
2976 inst_env->disable_interrupt = 1;
2977}
2978
2979/* Handles moves from special registers (aka P-register) when the mode
2980 is register. */
2981
a78f21af 2982static void
29134980
OF
2983reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2984{
2985 /* Register mode move from special register can't have a prefix. */
2986 if (inst_env->prefix_found)
2987 {
2988 inst_env->invalid = 1;
2989 return;
2990 }
2991
2992 if (cris_get_operand1 (inst) == REG_PC)
2993 {
2994 /* It's invalid to change the PC in a delay slot. */
2995 if (inst_env->slot_needed)
2996 {
2997 inst_env->invalid = 1;
2998 return;
2999 }
3000 /* The destination is the PC, the jump will have a delay slot. */
3001 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3002 inst_env->slot_needed = 1;
3003 inst_env->delay_slot_pc_active = 1;
3004 }
3005 else
3006 {
3007 /* If the destination isn't PC, there will be no jump. */
3008 inst_env->slot_needed = 0;
3009 }
3010 inst_env->prefix_found = 0;
3011 inst_env->xflag_found = 0;
3012 inst_env->disable_interrupt = 1;
3013}
3014
3015/* Handles the MOVEM from memory to general register instruction. */
3016
a78f21af 3017static void
29134980
OF
3018move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3019{
3020 if (inst_env->prefix_found)
3021 {
3022 /* The prefix handles the problem if we are in a delay slot. Is the
3023 MOVEM instruction going to change the PC? */
3024 if (cris_get_operand2 (inst) >= REG_PC)
3025 {
3026 inst_env->reg[REG_PC] =
3027 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3028 }
3029 /* The assign value is the value after the increment. Normally, the
3030 assign value is the value before the increment. */
3031 if ((cris_get_operand1 (inst) == REG_PC)
3032 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3033 {
3034 inst_env->reg[REG_PC] = inst_env->prefix_value;
3035 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3036 }
3037 }
3038 else
3039 {
3040 /* Is the MOVEM instruction going to change the PC? */
3041 if (cris_get_operand2 (inst) == REG_PC)
3042 {
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3045 {
3046 inst_env->invalid = 1;
3047 return;
3048 }
3049 inst_env->reg[REG_PC] =
3050 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3051 4);
3052 }
3053 /* The increment is not depending on the size, instead it's depending
3054 on the number of registers loaded from memory. */
3055 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3056 {
3057 /* It's invalid to change the PC in a delay slot. */
3058 if (inst_env->slot_needed)
3059 {
3060 inst_env->invalid = 1;
3061 return;
3062 }
3063 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3064 }
3065 }
3066 inst_env->slot_needed = 0;
3067 inst_env->prefix_found = 0;
3068 inst_env->xflag_found = 0;
3069 inst_env->disable_interrupt = 0;
3070}
3071
3072/* Handles the MOVEM to memory from general register instruction. */
3073
a78f21af 3074static void
29134980
OF
3075move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3076{
3077 if (inst_env->prefix_found)
3078 {
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC) &&
3082 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3083 {
3084 /* The prefix handles the problem if we are in a delay slot. */
3085 inst_env->reg[REG_PC] = inst_env->prefix_value;
3086 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3087 }
3088 }
3089 else
3090 {
3091 /* The increment is not depending on the size, instead it's depending
3092 on the number of registers loaded to memory. */
3093 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3094 {
3095 /* It's invalid to change the PC in a delay slot. */
3096 if (inst_env->slot_needed)
3097 {
3098 inst_env->invalid = 1;
3099 return;
3100 }
3101 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3102 }
3103 }
3104 inst_env->slot_needed = 0;
3105 inst_env->prefix_found = 0;
3106 inst_env->xflag_found = 0;
3107 inst_env->disable_interrupt = 0;
3108}
3109
29134980
OF
3110/* Handles the intructions that's not yet implemented, by setting
3111 inst_env->invalid to true. */
3112
a78f21af 3113static void
29134980
OF
3114not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3115{
3116 inst_env->invalid = 1;
3117}
3118
3119/* Handles the XOR instruction. */
3120
a78f21af 3121static void
29134980
OF
3122xor_op (unsigned short inst, inst_env_type *inst_env)
3123{
3124 /* XOR can't have a prefix. */
3125 if (inst_env->prefix_found)
3126 {
3127 inst_env->invalid = 1;
3128 return;
3129 }
3130
3131 /* Check if the PC is the target. */
3132 if (cris_get_operand2 (inst) == REG_PC)
3133 {
3134 /* It's invalid to change the PC in a delay slot. */
3135 if (inst_env->slot_needed)
3136 {
3137 inst_env->invalid = 1;
3138 return;
3139 }
3140 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3141 }
3142 inst_env->slot_needed = 0;
3143 inst_env->prefix_found = 0;
3144 inst_env->xflag_found = 0;
3145 inst_env->disable_interrupt = 0;
3146}
3147
3148/* Handles the MULS instruction. */
3149
a78f21af 3150static void
29134980
OF
3151muls_op (unsigned short inst, inst_env_type *inst_env)
3152{
3153 /* MULS/U can't have a prefix. */
3154 if (inst_env->prefix_found)
3155 {
3156 inst_env->invalid = 1;
3157 return;
3158 }
3159
3160 /* Consider it invalid if the PC is the target. */
3161 if (cris_get_operand2 (inst) == REG_PC)
3162 {
3163 inst_env->invalid = 1;
3164 return;
3165 }
3166 inst_env->slot_needed = 0;
3167 inst_env->prefix_found = 0;
3168 inst_env->xflag_found = 0;
3169 inst_env->disable_interrupt = 0;
3170}
3171
3172/* Handles the MULU instruction. */
3173
a78f21af 3174static void
29134980
OF
3175mulu_op (unsigned short inst, inst_env_type *inst_env)
3176{
3177 /* MULS/U can't have a prefix. */
3178 if (inst_env->prefix_found)
3179 {
3180 inst_env->invalid = 1;
3181 return;
3182 }
3183
3184 /* Consider it invalid if the PC is the target. */
3185 if (cris_get_operand2 (inst) == REG_PC)
3186 {
3187 inst_env->invalid = 1;
3188 return;
3189 }
3190 inst_env->slot_needed = 0;
3191 inst_env->prefix_found = 0;
3192 inst_env->xflag_found = 0;
3193 inst_env->disable_interrupt = 0;
3194}
3195
3196/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3197 The MOVE instruction is the move from source to register. */
3198
a78f21af 3199static void
29134980
OF
3200add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3201 unsigned long source1, unsigned long source2)
3202{
3203 unsigned long pc_mask;
3204 unsigned long operation_mask;
3205
3206 /* Find out how many bits the operation should apply to. */
3207 if (cris_get_size (inst) == INST_BYTE_SIZE)
3208 {
3209 pc_mask = 0xFFFFFF00;
3210 operation_mask = 0xFF;
3211 }
3212 else if (cris_get_size (inst) == INST_WORD_SIZE)
3213 {
3214 pc_mask = 0xFFFF0000;
3215 operation_mask = 0xFFFF;
3216 }
3217 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3218 {
3219 pc_mask = 0x0;
3220 operation_mask = 0xFFFFFFFF;
3221 }
3222 else
3223 {
3224 /* The size is out of range. */
3225 inst_env->invalid = 1;
3226 return;
3227 }
3228
3229 /* The instruction just works on uw_operation_mask bits. */
3230 source2 &= operation_mask;
3231 source1 &= operation_mask;
3232
3233 /* Now calculate the result. The opcode's 3 first bits separates
3234 the different actions. */
3235 switch (cris_get_opcode (inst) & 7)
3236 {
3237 case 0: /* add */
3238 source1 += source2;
3239 break;
3240
3241 case 1: /* move */
3242 source1 = source2;
3243 break;
3244
3245 case 2: /* subtract */
3246 source1 -= source2;
3247 break;
3248
3249 case 3: /* compare */
3250 break;
3251
3252 case 4: /* and */
3253 source1 &= source2;
3254 break;
3255
3256 case 5: /* or */
3257 source1 |= source2;
3258 break;
3259
3260 default:
3261 inst_env->invalid = 1;
3262 return;
3263
3264 break;
3265 }
3266
3267 /* Make sure that the result doesn't contain more than the instruction
3268 size bits. */
3269 source2 &= operation_mask;
3270
3271 /* Calculate the new breakpoint address. */
3272 inst_env->reg[REG_PC] &= pc_mask;
3273 inst_env->reg[REG_PC] |= source1;
3274
3275}
3276
3277/* Extends the value from either byte or word size to a dword. If the mode
3278 is zero extend then the value is extended with zero. If instead the mode
3279 is signed extend the sign bit of the value is taken into consideration. */
3280
a78f21af 3281static unsigned long
29134980
OF
3282do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3283{
3284 /* The size can be either byte or word, check which one it is.
3285 Don't check the highest bit, it's indicating if it's a zero
3286 or sign extend. */
3287 if (cris_get_size (*inst) & INST_WORD_SIZE)
3288 {
3289 /* Word size. */
3290 value &= 0xFFFF;
3291
3292 /* Check if the instruction is signed extend. If so, check if value has
3293 the sign bit on. */
3294 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3295 {
3296 value |= SIGNED_WORD_EXTEND_MASK;
3297 }
3298 }
3299 else
3300 {
3301 /* Byte size. */
3302 value &= 0xFF;
3303
3304 /* Check if the instruction is signed extend. If so, check if value has
3305 the sign bit on. */
3306 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3307 {
3308 value |= SIGNED_BYTE_EXTEND_MASK;
3309 }
3310 }
3311 /* The size should now be dword. */
3312 cris_set_size_to_dword (inst);
3313 return value;
3314}
3315
3316/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3317 instruction. The MOVE instruction is the move from source to register. */
3318
a78f21af 3319static void
29134980
OF
3320reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3321 inst_env_type *inst_env)
3322{
3323 unsigned long operand1;
3324 unsigned long operand2;
3325
3326 /* It's invalid to have a prefix to the instruction. This is a register
3327 mode instruction and can't have a prefix. */
3328 if (inst_env->prefix_found)
3329 {
3330 inst_env->invalid = 1;
3331 return;
3332 }
3333 /* Check if the instruction has PC as its target. */
3334 if (cris_get_operand2 (inst) == REG_PC)
3335 {
3336 if (inst_env->slot_needed)
3337 {
3338 inst_env->invalid = 1;
3339 return;
3340 }
3341 /* The instruction has the PC as its target register. */
7ab98e9e 3342 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3343 operand2 = inst_env->reg[REG_PC];
3344
3345 /* Check if it's a extend, signed or zero instruction. */
3346 if (cris_get_opcode (inst) < 4)
3347 {
3348 operand1 = do_sign_or_zero_extend (operand1, &inst);
3349 }
3350 /* Calculate the PC value after the instruction, i.e. where the
3351 breakpoint should be. The order of the udw_operands is vital. */
3352 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3353 }
3354 inst_env->slot_needed = 0;
3355 inst_env->prefix_found = 0;
3356 inst_env->xflag_found = 0;
3357 inst_env->disable_interrupt = 0;
3358}
3359
3360/* Returns the data contained at address. The size of the data is derived from
3361 the size of the operation. If the instruction is a zero or signed
3362 extend instruction, the size field is changed in instruction. */
3363
a78f21af 3364static unsigned long
29134980
OF
3365get_data_from_address (unsigned short *inst, CORE_ADDR address)
3366{
3367 int size = cris_get_size (*inst);
3368 unsigned long value;
3369
3370 /* If it's an extend instruction we don't want the signed extend bit,
3371 because it influences the size. */
3372 if (cris_get_opcode (*inst) < 4)
3373 {
3374 size &= ~SIGNED_EXTEND_BIT_MASK;
3375 }
3376 /* Is there a need for checking the size? Size should contain the number of
3377 bytes to read. */
3378 size = 1 << size;
3379 value = read_memory_unsigned_integer (address, size);
3380
3381 /* Check if it's an extend, signed or zero instruction. */
3382 if (cris_get_opcode (*inst) < 4)
3383 {
3384 value = do_sign_or_zero_extend (value, inst);
3385 }
3386 return value;
3387}
3388
3389/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3390 instructions. The MOVE instruction is the move from source to register. */
3391
a78f21af 3392static void
29134980
OF
3393handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3394 inst_env_type *inst_env)
3395{
3396 unsigned long operand2;
3397 unsigned long operand3;
3398
3399 check_assign (inst, inst_env);
3400 if (cris_get_operand2 (inst) == REG_PC)
3401 {
3402 operand2 = inst_env->reg[REG_PC];
3403
3404 /* Get the value of the third operand. */
3405 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3406
3407 /* Calculate the PC value after the instruction, i.e. where the
3408 breakpoint should be. The order of the udw_operands is vital. */
3409 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3410 }
3411 inst_env->slot_needed = 0;
3412 inst_env->prefix_found = 0;
3413 inst_env->xflag_found = 0;
3414 inst_env->disable_interrupt = 0;
3415}
3416
3417/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3418 OR instructions. Note that for this to work as expected, the calling
3419 function must have made sure that there is a prefix to this instruction. */
3420
a78f21af 3421static void
29134980
OF
3422three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3423 inst_env_type *inst_env)
3424{
3425 unsigned long operand2;
3426 unsigned long operand3;
3427
3428 if (cris_get_operand1 (inst) == REG_PC)
3429 {
3430 /* The PC will be changed by the instruction. */
3431 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3432
3433 /* Get the value of the third operand. */
3434 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3435
3436 /* Calculate the PC value after the instruction, i.e. where the
3437 breakpoint should be. */
3438 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3439 }
3440 inst_env->slot_needed = 0;
3441 inst_env->prefix_found = 0;
3442 inst_env->xflag_found = 0;
3443 inst_env->disable_interrupt = 0;
3444}
3445
3446/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3447 instructions. The MOVE instruction is the move from source to register. */
3448
a78f21af 3449static void
29134980
OF
3450handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3451 inst_env_type *inst_env)
3452{
3453 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3454 {
3455 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3456 SUB, AND or OR something weird is going on (if everything works these
3457 instructions should end up in the three operand version). */
3458 inst_env->invalid = 1;
3459 return;
3460 }
3461 else
3462 {
3463 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3464 so use it. */
3465 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3466 }
3467 inst_env->slot_needed = 0;
3468 inst_env->prefix_found = 0;
3469 inst_env->xflag_found = 0;
3470 inst_env->disable_interrupt = 0;
3471}
3472
3473/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3474 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3475 source to register. */
3476
a78f21af 3477static void
29134980
OF
3478handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3479 inst_env_type *inst_env)
3480{
3481 unsigned long operand1;
3482 unsigned long operand2;
3483 unsigned long operand3;
3484 int size;
3485
3486 /* The instruction is either an indirect or autoincrement addressing mode.
3487 Check if the destination register is the PC. */
3488 if (cris_get_operand2 (inst) == REG_PC)
3489 {
3490 /* Must be done here, get_data_from_address may change the size
3491 field. */
3492 size = cris_get_size (inst);
3493 operand2 = inst_env->reg[REG_PC];
3494
3495 /* Get the value of the third operand, i.e. the indirect operand. */
3496 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3497 operand3 = get_data_from_address (&inst, operand1);
3498
3499 /* Calculate the PC value after the instruction, i.e. where the
3500 breakpoint should be. The order of the udw_operands is vital. */
3501 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3502 }
3503 /* If this is an autoincrement addressing mode, check if the increment
3504 changes the PC. */
3505 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3506 {
3507 /* Get the size field. */
3508 size = cris_get_size (inst);
3509
3510 /* If it's an extend instruction we don't want the signed extend bit,
3511 because it influences the size. */
3512 if (cris_get_opcode (inst) < 4)
3513 {
3514 size &= ~SIGNED_EXTEND_BIT_MASK;
3515 }
3516 process_autoincrement (size, inst, inst_env);
3517 }
3518 inst_env->slot_needed = 0;
3519 inst_env->prefix_found = 0;
3520 inst_env->xflag_found = 0;
3521 inst_env->disable_interrupt = 0;
3522}
3523
3524/* Handles the two-operand addressing mode, all modes except register, for
3525 the ADD, SUB CMP, AND and OR instruction. */
3526
a78f21af 3527static void
29134980
OF
3528none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3529 inst_env_type *inst_env)
3530{
3531 if (inst_env->prefix_found)
3532 {
3533 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3534 {
3535 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3536 }
3537 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3538 {
3539 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3540 }
3541 else
3542 {
3543 /* The mode is invalid for a prefixed base instruction. */
3544 inst_env->invalid = 1;
3545 return;
3546 }
3547 }
3548 else
3549 {
3550 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3551 }
3552}
3553
3554/* Handles the quick addressing mode for the ADD and SUB instruction. */
3555
a78f21af 3556static void
29134980
OF
3557quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3558{
3559 unsigned long operand1;
3560 unsigned long operand2;
3561
3562 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3563 instruction and can't have a prefix. */
3564 if (inst_env->prefix_found)
3565 {
3566 inst_env->invalid = 1;
3567 return;
3568 }
3569
3570 /* Check if the instruction has PC as its target. */
3571 if (cris_get_operand2 (inst) == REG_PC)
3572 {
3573 if (inst_env->slot_needed)
3574 {
3575 inst_env->invalid = 1;
3576 return;
3577 }
3578 operand1 = cris_get_quick_value (inst);
3579 operand2 = inst_env->reg[REG_PC];
3580
3581 /* The size should now be dword. */
3582 cris_set_size_to_dword (&inst);
3583
3584 /* Calculate the PC value after the instruction, i.e. where the
3585 breakpoint should be. */
3586 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3587 }
3588 inst_env->slot_needed = 0;
3589 inst_env->prefix_found = 0;
3590 inst_env->xflag_found = 0;
3591 inst_env->disable_interrupt = 0;
3592}
3593
3594/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3595
a78f21af 3596static void
29134980
OF
3597quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3598{
3599 unsigned long operand1;
3600 unsigned long operand2;
3601
3602 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3603 instruction and can't have a prefix. */
3604 if (inst_env->prefix_found)
3605 {
3606 inst_env->invalid = 1;
3607 return;
3608 }
3609 /* Check if the instruction has PC as its target. */
3610 if (cris_get_operand2 (inst) == REG_PC)
3611 {
3612 if (inst_env->slot_needed)
3613 {
3614 inst_env->invalid = 1;
3615 return;
3616 }
3617 /* The instruction has the PC as its target register. */
3618 operand1 = cris_get_quick_value (inst);
3619 operand2 = inst_env->reg[REG_PC];
3620
3621 /* The quick value is signed, so check if we must do a signed extend. */
3622 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3623 {
3624 /* sign extend */
3625 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3626 }
3627 /* The size should now be dword. */
3628 cris_set_size_to_dword (&inst);
3629
3630 /* Calculate the PC value after the instruction, i.e. where the
3631 breakpoint should be. */
3632 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3633 }
3634 inst_env->slot_needed = 0;
3635 inst_env->prefix_found = 0;
3636 inst_env->xflag_found = 0;
3637 inst_env->disable_interrupt = 0;
3638}
3639
3640/* Translate op_type to a function and call it. */
3641
a78f21af
AC
3642static void
3643cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3644 inst_env_type *inst_env)
29134980
OF
3645{
3646 switch (op_type)
3647 {
3648 case cris_not_implemented_op:
3649 not_implemented_op (inst, inst_env);
3650 break;
3651
3652 case cris_abs_op:
3653 abs_op (inst, inst_env);
3654 break;
3655
3656 case cris_addi_op:
3657 addi_op (inst, inst_env);
3658 break;
3659
3660 case cris_asr_op:
3661 asr_op (inst, inst_env);
3662 break;
3663
3664 case cris_asrq_op:
3665 asrq_op (inst, inst_env);
3666 break;
3667
3668 case cris_ax_ei_setf_op:
3669 ax_ei_setf_op (inst, inst_env);
3670 break;
3671
3672 case cris_bdap_prefix:
3673 bdap_prefix (inst, inst_env);
3674 break;
3675
3676 case cris_biap_prefix:
3677 biap_prefix (inst, inst_env);
3678 break;
3679
3680 case cris_break_op:
3681 break_op (inst, inst_env);
3682 break;
3683
3684 case cris_btst_nop_op:
3685 btst_nop_op (inst, inst_env);
3686 break;
3687
3688 case cris_clearf_di_op:
3689 clearf_di_op (inst, inst_env);
3690 break;
3691
3692 case cris_dip_prefix:
3693 dip_prefix (inst, inst_env);
3694 break;
3695
3696 case cris_dstep_logshift_mstep_neg_not_op:
3697 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3698 break;
3699
3700 case cris_eight_bit_offset_branch_op:
3701 eight_bit_offset_branch_op (inst, inst_env);
3702 break;
3703
3704 case cris_move_mem_to_reg_movem_op:
3705 move_mem_to_reg_movem_op (inst, inst_env);
3706 break;
3707
3708 case cris_move_reg_to_mem_movem_op:
3709 move_reg_to_mem_movem_op (inst, inst_env);
3710 break;
3711
3712 case cris_move_to_preg_op:
3713 move_to_preg_op (inst, inst_env);
3714 break;
3715
3716 case cris_muls_op:
3717 muls_op (inst, inst_env);
3718 break;
3719
3720 case cris_mulu_op:
3721 mulu_op (inst, inst_env);
3722 break;
3723
3724 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3725 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3726 break;
3727
3728 case cris_none_reg_mode_clear_test_op:
3729 none_reg_mode_clear_test_op (inst, inst_env);
3730 break;
3731
3732 case cris_none_reg_mode_jump_op:
3733 none_reg_mode_jump_op (inst, inst_env);
3734 break;
3735
3736 case cris_none_reg_mode_move_from_preg_op:
3737 none_reg_mode_move_from_preg_op (inst, inst_env);
3738 break;
3739
3740 case cris_quick_mode_add_sub_op:
3741 quick_mode_add_sub_op (inst, inst_env);
3742 break;
3743
3744 case cris_quick_mode_and_cmp_move_or_op:
3745 quick_mode_and_cmp_move_or_op (inst, inst_env);
3746 break;
3747
3748 case cris_quick_mode_bdap_prefix:
3749 quick_mode_bdap_prefix (inst, inst_env);
3750 break;
3751
3752 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3753 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3754 break;
3755
3756 case cris_reg_mode_clear_op:
3757 reg_mode_clear_op (inst, inst_env);
3758 break;
3759
3760 case cris_reg_mode_jump_op:
3761 reg_mode_jump_op (inst, inst_env);
3762 break;
3763
3764 case cris_reg_mode_move_from_preg_op:
3765 reg_mode_move_from_preg_op (inst, inst_env);
3766 break;
3767
3768 case cris_reg_mode_test_op:
3769 reg_mode_test_op (inst, inst_env);
3770 break;
3771
3772 case cris_scc_op:
3773 scc_op (inst, inst_env);
3774 break;
3775
3776 case cris_sixteen_bit_offset_branch_op:
3777 sixteen_bit_offset_branch_op (inst, inst_env);
3778 break;
3779
3780 case cris_three_operand_add_sub_cmp_and_or_op:
3781 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3782 break;
3783
3784 case cris_three_operand_bound_op:
3785 three_operand_bound_op (inst, inst_env);
3786 break;
3787
3788 case cris_two_operand_bound_op:
3789 two_operand_bound_op (inst, inst_env);
3790 break;
3791
3792 case cris_xor_op:
3793 xor_op (inst, inst_env);
3794 break;
3795 }
3796}
3797
3798/* This wrapper is to avoid cris_get_assembler being called before
3799 exec_bfd has been set. */
3800
3801static int
a89aa300 3802cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3803{
a89aa300 3804 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3805 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3806 disassembler, even when there is no BFD. Does something like
3807 "gdb; target remote; disassmeble *0x123" work? */
3808 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3809 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3810 gdb_assert (print_insn != NULL);
3811 return print_insn (addr, info);
29134980
OF
3812}
3813
dbbff683
OF
3814/* Copied from <asm/elf.h>. */
3815typedef unsigned long elf_greg_t;
3816
3817/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3818#define CRISV10_ELF_NGREG 35
3819typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3820
3821#define CRISV32_ELF_NGREG 32
3822typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3823
3824/* Unpack an elf_gregset_t into GDB's register cache. */
3825
a78f21af 3826static void
dbbff683
OF
3827supply_gregset (elf_gregset_t *gregsetp)
3828{
c600d464 3829 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
dbbff683
OF
3830 int i;
3831 elf_greg_t *regp = *gregsetp;
3832 static char zerobuf[4] = {0};
3833
3834 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3835 knows about the actual size of each register so that's no problem. */
3836 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3837 {
23a6d369 3838 regcache_raw_supply (current_regcache, i, (char *)&regp[i]);
dbbff683 3839 }
c600d464
OF
3840
3841 if (tdep->cris_version == 32)
3842 {
3843 /* Needed to set pseudo-register PC for CRISv32. */
3844 /* FIXME: If ERP is in a delay slot at this point then the PC will
3845 be wrong. Issue a warning to alert the user. */
3846 regcache_raw_supply (current_regcache, PC_REGNUM,
3847 (char *)&regp[ERP_REGNUM]);
3848
3849 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3850 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3851 }
dbbff683
OF
3852}
3853
3854/* Use a local version of this function to get the correct types for
3855 regsets, until multi-arch core support is ready. */
3856
3857static void
3858fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3859 int which, CORE_ADDR reg_addr)
3860{
3861 elf_gregset_t gregset;
3862
3863 switch (which)
3864 {
3865 case 0:
c600d464
OF
3866 if (core_reg_size != sizeof (elf_gregset_t)
3867 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3868 {
8a3fe4f8 3869 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3870 }
3871 else
3872 {
3873 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3874 supply_gregset (&gregset);
3875 }
3876
3877 default:
3878 /* We've covered all the kinds of registers we know about here,
3879 so this must be something we wouldn't know what to do with
3880 anyway. Just ignore it. */
3881 break;
3882 }
3883}
3884
3885static struct core_fns cris_elf_core_fns =
3886{
3887 bfd_target_elf_flavour, /* core_flavour */
3888 default_check_format, /* check_format */
3889 default_core_sniffer, /* core_sniffer */
3890 fetch_core_registers, /* core_read_registers */
3891 NULL /* next */
3892};
3893
3894/* Fetch (and possibly build) an appropriate link_map_offsets
8605d56e
AC
3895 structure for native GNU/Linux CRIS targets using the struct
3896 offsets defined in link.h (but without actual reference to that
3897 file).
dbbff683 3898
8605d56e
AC
3899 This makes it possible to access GNU/Linux CRIS shared libraries
3900 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3901 debugging).
dbbff683
OF
3902
3903 See gdb/solib-svr4.h for an explanation of these fields. */
3904
a78f21af 3905static struct link_map_offsets *
dbbff683
OF
3906cris_linux_svr4_fetch_link_map_offsets (void)
3907{
3908 static struct link_map_offsets lmo;
3909 static struct link_map_offsets *lmp = NULL;
3910
3911 if (lmp == NULL)
3912 {
3913 lmp = &lmo;
3914
3915 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3916 this is all we need. */
3917 lmo.r_map_offset = 4;
3918 lmo.r_map_size = 4;
3919
3920 lmo.link_map_size = 20;
3921
3922 lmo.l_addr_offset = 0;
3923 lmo.l_addr_size = 4;
3924
3925 lmo.l_name_offset = 4;
3926 lmo.l_name_size = 4;
3927
3928 lmo.l_next_offset = 12;
3929 lmo.l_next_size = 4;
3930
3931 lmo.l_prev_offset = 16;
3932 lmo.l_prev_size = 4;
3933 }
3934
3935 return lmp;
3936}
3937
a78f21af
AC
3938extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3939
29134980
OF
3940void
3941_initialize_cris_tdep (void)
3942{
a5f6c8f5
OF
3943 static struct cmd_list_element *cris_set_cmdlist;
3944 static struct cmd_list_element *cris_show_cmdlist;
3945
29134980
OF
3946 struct cmd_list_element *c;
3947
3948 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3949
29134980 3950 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3951 add_setshow_uinteger_cmd ("cris-version", class_support,
3952 &usr_cmd_cris_version,
7915a72c
AC
3953 _("Set the current CRIS version."),
3954 _("Show the current CRIS version."),
3955 _("Set if autodetection fails."),
2c5b56ce 3956 set_cris_version,
7915a72c 3957 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3958 &setlist, &showlist);
0e6bdb31
OF
3959
3960 add_setshow_enum_cmd ("cris-mode", class_support,
3961 cris_modes, &usr_cmd_cris_mode,
3962 _("Set the current CRIS mode."),
3963 _("Show the current CRIS mode."),
3964 _("Set if autodetection fails."),
3965 set_cris_mode,
3966 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3967 &setlist, &showlist);
dbbff683 3968
a5f6c8f5
OF
3969 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3970 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3971 _("Set the usage of Dwarf-2 CFI for CRIS."),
3972 _("Show the usage of Dwarf-2 CFI for CRIS."),
3973 _("Set to \"off\" if using gcc-cris < R59."),
2c5b56ce 3974 set_cris_dwarf2_cfi,
7915a72c 3975 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3976 &setlist, &showlist);
3977
52bd1401 3978 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3979}
3980
3981/* Prints out all target specific values. */
3982
3983static void
3984cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3985{
3986 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3987 if (tdep != NULL)
3988 {
3989 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3990 tdep->cris_version);
0e6bdb31
OF
3991 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3992 tdep->cris_mode);
a5f6c8f5
OF
3993 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3994 tdep->cris_dwarf2_cfi);
29134980
OF
3995 }
3996}
3997
3998static void
a5f6c8f5
OF
3999set_cris_version (char *ignore_args, int from_tty,
4000 struct cmd_list_element *c)
29134980
OF
4001{
4002 struct gdbarch_info info;
4003
a5f6c8f5 4004 usr_cmd_cris_version_valid = 1;
29134980 4005
a5f6c8f5
OF
4006 /* Update the current architecture, if needed. */
4007 gdbarch_info_init (&info);
4008 if (!gdbarch_update_p (info))
4009 internal_error (__FILE__, __LINE__,
e2e0b3e5 4010 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4011}
4012
0e6bdb31
OF
4013static void
4014set_cris_mode (char *ignore_args, int from_tty,
4015 struct cmd_list_element *c)
4016{
4017 struct gdbarch_info info;
4018
4019 /* Update the current architecture, if needed. */
4020 gdbarch_info_init (&info);
4021 if (!gdbarch_update_p (info))
4022 internal_error (__FILE__, __LINE__,
4023 "cris_gdbarch_update: failed to update architecture.");
4024}
4025
29134980 4026static void
a5f6c8f5
OF
4027set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4028 struct cmd_list_element *c)
29134980
OF
4029{
4030 struct gdbarch_info info;
a5f6c8f5
OF
4031
4032 /* Update the current architecture, if needed. */
4033 gdbarch_info_init (&info);
4034 if (!gdbarch_update_p (info))
4035 internal_error (__FILE__, __LINE__,
e2e0b3e5 4036 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4037}
4038
29134980
OF
4039static struct gdbarch *
4040cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4041{
4042 struct gdbarch *gdbarch;
4043 struct gdbarch_tdep *tdep;
4044 int cris_version;
29134980
OF
4045
4046 if (usr_cmd_cris_version_valid)
4047 {
4048 /* Trust the user's CRIS version setting. */
4049 cris_version = usr_cmd_cris_version;
4050 }
c600d464
OF
4051 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4052 {
4053 cris_version = 32;
4054 }
29134980
OF
4055 else
4056 {
4057 /* Assume it's CRIS version 10. */
4058 cris_version = 10;
4059 }
4060
29134980
OF
4061 /* Make the current settings visible to the user. */
4062 usr_cmd_cris_version = cris_version;
29134980 4063
0e6bdb31 4064 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4065 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4066 arches != NULL;
4067 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4068 {
a5f6c8f5
OF
4069 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4070 == usr_cmd_cris_version)
0e6bdb31
OF
4071 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4072 == usr_cmd_cris_mode)
a5f6c8f5
OF
4073 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4074 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4075 return arches->gdbarch;
4076 }
4077
4078 /* No matching architecture was found. Create a new one. */
4079 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4080 gdbarch = gdbarch_alloc (&info, tdep);
4081
a5f6c8f5 4082 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4083 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4084 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4085
4086 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4087 switch (info.byte_order)
4088 {
778eb05e 4089 case BFD_ENDIAN_LITTLE:
29134980
OF
4090 /* Ok. */
4091 break;
4092
d7449b42 4093 case BFD_ENDIAN_BIG:
e2e0b3e5 4094 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4095 break;
4096
4097 default:
e2e0b3e5 4098 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4099 }
4100
b4206d25 4101 set_gdbarch_return_value (gdbarch, cris_return_value);
2e4b5889
OF
4102 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4103 cris_reg_struct_has_addr);
b5622e8d 4104 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
29134980 4105
29134980 4106 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4107
4108 /* Length of ordinary registers used in push_word and a few other
4109 places. register_size() is the real way to know how big a
4110 register is. */
a5f6c8f5 4111
2e4b5889
OF
4112 set_gdbarch_double_bit (gdbarch, 64);
4113 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4114 which means we have to set this explicitly. */
c600d464 4115 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4116
29134980
OF
4117 /* The total amount of space needed to store (in an array called registers)
4118 GDB's copy of the machine's register state. Note: We can not use
4119 cris_register_size at this point, since it relies on current_gdbarch
4120 being set. */
4121 switch (tdep->cris_version)
4122 {
4123 case 0:
4124 case 1:
4125 case 2:
4126 case 3:
29134980
OF
4127 case 8:
4128 case 9:
a5f6c8f5
OF
4129 /* Old versions; not supported. */
4130 internal_error (__FILE__, __LINE__,
e2e0b3e5 4131 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4132 break;
4133
4134 case 10:
4135 case 11:
4136 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4137 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4138 set_gdbarch_pc_regnum (gdbarch, 15);
4139 set_gdbarch_register_type (gdbarch, cris_register_type);
4140 /* There are 32 registers (some of which may not be implemented). */
4141 set_gdbarch_num_regs (gdbarch, 32);
4142 set_gdbarch_register_name (gdbarch, cris_register_name);
4143 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4144 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4145
4146 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4147 break;
4148
4149 case 32:
4150 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4151 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4152 and pseudo-register PC (32 bits). */
4153 set_gdbarch_pc_regnum (gdbarch, 32);
4154 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4155 /* 32 registers + pseudo-register PC + 16 support registers. */
4156 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4157 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4158
4159 set_gdbarch_cannot_store_register
4160 (gdbarch, crisv32_cannot_store_register);
4161 set_gdbarch_cannot_fetch_register
4162 (gdbarch, crisv32_cannot_fetch_register);
4163
4164 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4165
4166 set_gdbarch_single_step_through_delay
4167 (gdbarch, crisv32_single_step_through_delay);
4168
29134980
OF
4169 break;
4170
4171 default:
c600d464 4172 internal_error (__FILE__, __LINE__,
e2e0b3e5 4173 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4174 }
4175
c600d464
OF
4176 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4177 have the same ABI). */
2e4b5889
OF
4178 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4179 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4180 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4181 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4182
4183 /* The stack grows downward. */
4184 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4185
4186 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4187
2e4b5889
OF
4188 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4189 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4190 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4191
a5f6c8f5
OF
4192 if (tdep->cris_dwarf2_cfi == 1)
4193 {
4194 /* Hook in the Dwarf-2 frame sniffer. */
4195 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4196 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4197 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4198 }
4199
0e6bdb31
OF
4200 if (tdep->cris_mode != cris_mode_guru)
4201 {
4202 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4203 }
a5f6c8f5 4204
2e4b5889
OF
4205 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4206 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4207
dbbff683
OF
4208 /* Use target_specific function to define link map offsets. */
4209 set_solib_svr4_fetch_link_map_offsets
4210 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4211
36482093
AC
4212 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4213 disassembler, even when there is no BFD. Does something like
4214 "gdb; target remote; disassmeble *0x123" work? */
4215 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4216
29134980
OF
4217 return gdbarch;
4218}
This page took 0.526773 seconds and 4 git commands to generate.