* frame.h (frame_unwind_arch): New.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
76a9d10f 4 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
a9762ec7 9 This file is part of GDB.
29134980 10
a9762ec7
JB
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
29134980 15
a9762ec7
JB
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
29134980 20
a9762ec7
JB
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
23
24#include "defs.h"
25#include "frame.h"
2e4b5889
OF
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "trad-frame.h"
29#include "dwarf2-frame.h"
29134980
OF
30#include "symtab.h"
31#include "inferior.h"
32#include "gdbtypes.h"
33#include "gdbcore.h"
34#include "gdbcmd.h"
35#include "target.h"
36#include "value.h"
37#include "opcode/cris.h"
38#include "arch-utils.h"
39#include "regcache.h"
36482093 40#include "gdb_assert.h"
29134980
OF
41
42/* To get entry_point_address. */
9ab9195f 43#include "objfiles.h"
29134980 44
a5f6c8f5 45#include "solib.h" /* Support for shared libraries. */
76a9d10f 46#include "solib-svr4.h"
9bbe19fb 47#include "gdb_string.h"
a89aa300 48#include "dis-asm.h"
dbbff683 49
29134980
OF
50enum cris_num_regs
51{
52 /* There are no floating point registers. Used in gdbserver low-linux.c. */
53 NUM_FREGS = 0,
54
55 /* There are 16 general registers. */
56 NUM_GENREGS = 16,
57
58 /* There are 16 special registers. */
c600d464
OF
59 NUM_SPECREGS = 16,
60
61 /* CRISv32 has a pseudo PC register, not noted here. */
62
63 /* CRISv32 has 16 support registers. */
64 NUM_SUPPREGS = 16
29134980
OF
65};
66
67/* Register numbers of various important registers.
2e4b5889 68 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
69 STR_REGNUM Contains the address of structure return values.
70 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
71 ARG1_REGNUM Contains the first parameter to a function.
72 ARG2_REGNUM Contains the second parameter to a function.
73 ARG3_REGNUM Contains the third parameter to a function.
74 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
75 gdbarch_sp_regnum Contains address of top of stack.
76 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
77 SRP_REGNUM Subroutine return pointer register.
78 BRP_REGNUM Breakpoint return pointer register. */
79
29134980
OF
80enum cris_regnums
81{
82 /* Enums with respect to the general registers, valid for all
c600d464 83 CRIS versions. The frame pointer is always in R8. */
2e4b5889 84 CRIS_FP_REGNUM = 8,
c600d464 85 /* ABI related registers. */
29134980
OF
86 STR_REGNUM = 9,
87 RET_REGNUM = 10,
88 ARG1_REGNUM = 10,
89 ARG2_REGNUM = 11,
90 ARG3_REGNUM = 12,
91 ARG4_REGNUM = 13,
92
c600d464 93 /* Registers which happen to be common. */
29134980 94 VR_REGNUM = 17,
c600d464
OF
95 MOF_REGNUM = 23,
96 SRP_REGNUM = 27,
97
98 /* CRISv10 et. al. specific registers. */
99 P0_REGNUM = 16,
29134980
OF
100 P4_REGNUM = 20,
101 CCR_REGNUM = 21,
29134980
OF
102 P8_REGNUM = 24,
103 IBR_REGNUM = 25,
104 IRP_REGNUM = 26,
29134980 105 BAR_REGNUM = 28,
2a9ecef2 106 DCCR_REGNUM = 29,
29134980 107 BRP_REGNUM = 30,
c600d464
OF
108 USP_REGNUM = 31,
109
110 /* CRISv32 specific registers. */
111 ACR_REGNUM = 15,
112 BZ_REGNUM = 16,
113 PID_REGNUM = 18,
114 SRS_REGNUM = 19,
115 WZ_REGNUM = 20,
116 EXS_REGNUM = 21,
117 EDA_REGNUM = 22,
118 DZ_REGNUM = 24,
119 EBP_REGNUM = 25,
120 ERP_REGNUM = 26,
121 NRP_REGNUM = 28,
122 CCS_REGNUM = 29,
123 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
124 SPC_REGNUM = 31,
125 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
126
127 S0_REGNUM = 33,
128 S1_REGNUM = 34,
129 S2_REGNUM = 35,
130 S3_REGNUM = 36,
131 S4_REGNUM = 37,
132 S5_REGNUM = 38,
133 S6_REGNUM = 39,
134 S7_REGNUM = 40,
135 S8_REGNUM = 41,
136 S9_REGNUM = 42,
137 S10_REGNUM = 43,
138 S11_REGNUM = 44,
139 S12_REGNUM = 45,
140 S13_REGNUM = 46,
141 S14_REGNUM = 47,
142 S15_REGNUM = 48,
29134980
OF
143};
144
145extern const struct cris_spec_reg cris_spec_regs[];
146
147/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
148 register names and sizes. */
149static int usr_cmd_cris_version;
29134980
OF
150
151/* Indicates whether to trust the above variable. */
152static int usr_cmd_cris_version_valid = 0;
153
41922353
OF
154static const char cris_mode_normal[] = "normal";
155static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
156static const char *cris_modes[] = {
157 cris_mode_normal,
158 cris_mode_guru,
159 0
160};
161
162/* CRIS mode, set via the user command 'set cris-mode'. Affects
163 type of break instruction among other things. */
164static const char *usr_cmd_cris_mode = cris_mode_normal;
165
a5f6c8f5
OF
166/* Whether to make use of Dwarf-2 CFI (default on). */
167static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 168
29134980
OF
169/* CRIS architecture specific information. */
170struct gdbarch_tdep
171{
0e6bdb31
OF
172 int cris_version;
173 const char *cris_mode;
a5f6c8f5 174 int cris_dwarf2_cfi;
29134980
OF
175};
176
a5f6c8f5
OF
177/* Sigtramp identification code copied from i386-linux-tdep.c. */
178
179#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
180#define SIGTRAMP_OFFSET0 0
181#define SIGTRAMP_INSN1 0xe93d /* break 13 */
182#define SIGTRAMP_OFFSET1 4
183
184static const unsigned short sigtramp_code[] =
185{
186 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
187 SIGTRAMP_INSN1 /* break 13 */
188};
189
190#define SIGTRAMP_LEN (sizeof sigtramp_code)
191
192/* Note: same length as normal sigtramp code. */
193
194static const unsigned short rt_sigtramp_code[] =
29134980 195{
a5f6c8f5
OF
196 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
197 SIGTRAMP_INSN1 /* break 13 */
198};
199
200/* If PC is in a sigtramp routine, return the address of the start of
201 the routine. Otherwise, return 0. */
202
203static CORE_ADDR
94afd7a6 204cris_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 205{
94afd7a6 206 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 207 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 208
94afd7a6 209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
210 return 0;
211
e2a2a3e8 212 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 213 {
e2a2a3e8 214 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
215 return 0;
216
217 pc -= SIGTRAMP_OFFSET1;
94afd7a6 218 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
219 return 0;
220 }
221
222 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
223 return 0;
224
225 return pc;
226}
227
228/* If PC is in a RT sigtramp routine, return the address of the start of
229 the routine. Otherwise, return 0. */
230
231static CORE_ADDR
94afd7a6 232cris_rt_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 233{
94afd7a6 234 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 235 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 236
94afd7a6 237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
238 return 0;
239
e2a2a3e8 240 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 241 {
e2a2a3e8 242 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
243 return 0;
244
245 pc -= SIGTRAMP_OFFSET1;
94afd7a6 246 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
247 return 0;
248 }
249
250 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
251 return 0;
252
253 return pc;
254}
255
94afd7a6
UW
256/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
257 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
258
259static CORE_ADDR
94afd7a6 260cris_sigcontext_addr (struct frame_info *this_frame)
a5f6c8f5
OF
261{
262 CORE_ADDR pc;
263 CORE_ADDR sp;
264 char buf[4];
265
94afd7a6
UW
266 get_frame_register (this_frame,
267 gdbarch_sp_regnum (get_frame_arch (this_frame)), buf);
a5f6c8f5
OF
268 sp = extract_unsigned_integer (buf, 4);
269
270 /* Look for normal sigtramp frame first. */
94afd7a6 271 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
94afd7a6 280 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
8a3fe4f8 291 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 292 return 0;
29134980
OF
293}
294
2e4b5889 295struct cris_unwind_cache
29134980 296{
2e4b5889
OF
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
29134980
OF
311 CORE_ADDR return_pc;
312 int leaf_function;
2e4b5889
OF
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
29134980
OF
316};
317
a5f6c8f5 318static struct cris_unwind_cache *
94afd7a6 319cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a5f6c8f5
OF
320 void **this_cache)
321{
94afd7a6 322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7fbe2eba 323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a5f6c8f5
OF
324 struct cris_unwind_cache *info;
325 CORE_ADDR pc;
326 CORE_ADDR sp;
327 CORE_ADDR addr;
328 char buf[4];
329 int i;
330
331 if ((*this_cache))
332 return (*this_cache);
333
334 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
335 (*this_cache) = info;
94afd7a6 336 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
337
338 /* Zero all fields. */
339 info->prev_sp = 0;
340 info->base = 0;
341 info->size = 0;
342 info->sp_offset = 0;
343 info->r8_offset = 0;
344 info->uses_frame = 0;
345 info->return_pc = 0;
346 info->leaf_function = 0;
347
94afd7a6 348 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
a5f6c8f5
OF
349 info->base = extract_unsigned_integer (buf, 4);
350
94afd7a6 351 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
352
353 /* Layout of the sigcontext struct:
354 struct sigcontext {
355 struct pt_regs regs;
356 unsigned long oldmask;
357 unsigned long usp;
358 }; */
359
c600d464
OF
360 if (tdep->cris_version == 10)
361 {
362 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
363 struct pt_regs. */
364 for (i = 0; i <= 13; i++)
365 info->saved_regs[i].addr = addr + ((15 - i) * 4);
366
367 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
368 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
369 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
370 /* Note: IRP is off by 2 at this point. There's no point in correcting
371 it though since that will mean that the backtrace will show a PC
372 different from what is shown when stopped. */
373 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
7fbe2eba 374 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 375 = info->saved_regs[IRP_REGNUM];
7fbe2eba 376 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
c600d464
OF
377 }
378 else
379 {
380 /* CRISv32. */
381 /* R0 to R13 are stored in order at offset (1 * 4) in
382 struct pt_regs. */
383 for (i = 0; i <= 13; i++)
384 info->saved_regs[i].addr = addr + ((i + 1) * 4);
385
386 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
387 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
388 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
389 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
390 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
391 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
392 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
393 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
394 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
395
396 /* FIXME: If ERP is in a delay slot at this point then the PC will
397 be wrong at this point. This problem manifests itself in the
398 sigaltstack.exp test case, which occasionally generates FAILs when
399 the signal is received while in a delay slot.
400
401 This could be solved by a couple of read_memory_unsigned_integer and a
402 trad_frame_set_value. */
7fbe2eba 403 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 404 = info->saved_regs[ERP_REGNUM];
c600d464 405
7fbe2eba 406 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
3e8c568d 407 = addr + (25 * 4);
c600d464 408 }
a5f6c8f5
OF
409
410 return info;
411}
412
413static void
94afd7a6 414cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
a5f6c8f5
OF
415 struct frame_id *this_id)
416{
417 struct cris_unwind_cache *cache =
94afd7a6
UW
418 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
419 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
420}
421
422/* Forward declaration. */
423
94afd7a6
UW
424static struct value *cris_frame_prev_register (struct frame_info *this_frame,
425 void **this_cache, int regnum);
426static struct value *
427cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
428 void **this_cache, int regnum)
a5f6c8f5
OF
429{
430 /* Make sure we've initialized the cache. */
94afd7a6
UW
431 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
432 return cris_frame_prev_register (this_frame, this_cache, regnum);
433}
434
435static int
436cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
437 struct frame_info *this_frame,
438 void **this_cache)
439{
440 if (cris_sigtramp_start (this_frame)
441 || cris_rt_sigtramp_start (this_frame))
442 return 1;
443
444 return 0;
a5f6c8f5
OF
445}
446
447static const struct frame_unwind cris_sigtramp_frame_unwind =
448{
449 SIGTRAMP_FRAME,
450 cris_sigtramp_frame_this_id,
94afd7a6
UW
451 cris_sigtramp_frame_prev_register,
452 NULL,
453 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
454};
455
63807e1d 456static int
c600d464
OF
457crisv32_single_step_through_delay (struct gdbarch *gdbarch,
458 struct frame_info *this_frame)
459{
7fbe2eba 460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c600d464
OF
461 ULONGEST erp;
462 int ret = 0;
c600d464 463
35488783 464 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 465 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 466 else
395f2fc2 467 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
468
469 if (erp & 0x1)
470 {
471 /* In delay slot - check if there's a breakpoint at the preceding
472 instruction. */
473 if (breakpoint_here_p (erp & ~0x1))
474 ret = 1;
475 }
476 return ret;
477}
478
479/* Hardware watchpoint support. */
480
481/* We support 6 hardware data watchpoints, but cannot trigger on execute
482 (any combination of read/write is fine). */
483
484int
485cris_can_use_hardware_watchpoint (int type, int count, int other)
486{
1cf3db46 487 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
c600d464
OF
488
489 /* No bookkeeping is done here; it is handled by the remote debug agent. */
490
491 if (tdep->cris_version != 32)
492 return 0;
493 else
494 /* CRISv32: Six data watchpoints, one for instructions. */
495 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
496 || type == bp_hardware_watchpoint) && count <= 6)
497 || (type == bp_hardware_breakpoint && count <= 1));
498}
499
500/* The CRISv32 hardware data watchpoints work by specifying ranges,
501 which have no alignment or length restrictions. */
502
503int
504cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
505{
506 return 1;
507}
508
509/* If the inferior has some watchpoint that triggered, return the
510 address associated with that watchpoint. Otherwise, return
511 zero. */
512
513CORE_ADDR
514cris_stopped_data_address (void)
515{
516 CORE_ADDR eda;
1b5a9a8f 517 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
c600d464
OF
518 return eda;
519}
520
29134980 521/* The instruction environment needed to find single-step breakpoints. */
c600d464 522
29134980
OF
523typedef
524struct instruction_environment
525{
526 unsigned long reg[NUM_GENREGS];
527 unsigned long preg[NUM_SPECREGS];
528 unsigned long branch_break_address;
529 unsigned long delay_slot_pc;
530 unsigned long prefix_value;
531 int branch_found;
532 int prefix_found;
533 int invalid;
534 int slot_needed;
535 int delay_slot_pc_active;
536 int xflag_found;
537 int disable_interrupt;
538} inst_env_type;
539
29134980
OF
540/* Machine-dependencies in CRIS for opcodes. */
541
542/* Instruction sizes. */
543enum cris_instruction_sizes
544{
545 INST_BYTE_SIZE = 0,
546 INST_WORD_SIZE = 1,
547 INST_DWORD_SIZE = 2
548};
549
550/* Addressing modes. */
551enum cris_addressing_modes
552{
553 REGISTER_MODE = 1,
554 INDIRECT_MODE = 2,
555 AUTOINC_MODE = 3
556};
557
558/* Prefix addressing modes. */
559enum cris_prefix_addressing_modes
560{
561 PREFIX_INDEX_MODE = 2,
562 PREFIX_ASSIGN_MODE = 3,
563
564 /* Handle immediate byte offset addressing mode prefix format. */
565 PREFIX_OFFSET_MODE = 2
566};
567
568/* Masks for opcodes. */
569enum cris_opcode_masks
570{
571 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
572 SIGNED_EXTEND_BIT_MASK = 0x2,
573 SIGNED_BYTE_MASK = 0x80,
574 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
575 SIGNED_WORD_MASK = 0x8000,
576 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
577 SIGNED_DWORD_MASK = 0x80000000,
578 SIGNED_QUICK_VALUE_MASK = 0x20,
579 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
580};
581
582/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
583 Bit 15 - 12 Operand2
584 11 - 10 Mode
585 9 - 6 Opcode
586 5 - 4 Size
587 3 - 0 Operand1 */
588
589static int
590cris_get_operand2 (unsigned short insn)
591{
592 return ((insn & 0xF000) >> 12);
593}
594
595static int
596cris_get_mode (unsigned short insn)
597{
598 return ((insn & 0x0C00) >> 10);
599}
600
601static int
602cris_get_opcode (unsigned short insn)
603{
604 return ((insn & 0x03C0) >> 6);
605}
606
607static int
608cris_get_size (unsigned short insn)
609{
610 return ((insn & 0x0030) >> 4);
611}
612
613static int
614cris_get_operand1 (unsigned short insn)
615{
616 return (insn & 0x000F);
617}
618
619/* Additional functions in order to handle opcodes. */
620
29134980
OF
621static int
622cris_get_quick_value (unsigned short insn)
623{
624 return (insn & 0x003F);
625}
626
627static int
628cris_get_bdap_quick_offset (unsigned short insn)
629{
630 return (insn & 0x00FF);
631}
632
633static int
634cris_get_branch_short_offset (unsigned short insn)
635{
636 return (insn & 0x00FF);
637}
638
639static int
640cris_get_asr_shift_steps (unsigned long value)
641{
642 return (value & 0x3F);
643}
644
29134980
OF
645static int
646cris_get_clear_size (unsigned short insn)
647{
648 return ((insn) & 0xC000);
649}
650
651static int
652cris_is_signed_extend_bit_on (unsigned short insn)
653{
654 return (((insn) & 0x20) == 0x20);
655}
656
657static int
658cris_is_xflag_bit_on (unsigned short insn)
659{
660 return (((insn) & 0x1000) == 0x1000);
661}
662
663static void
664cris_set_size_to_dword (unsigned short *insn)
665{
666 *insn &= 0xFFCF;
667 *insn |= 0x20;
668}
669
8535cb38 670static signed char
29134980
OF
671cris_get_signed_offset (unsigned short insn)
672{
8535cb38 673 return ((signed char) (insn & 0x00FF));
29134980
OF
674}
675
676/* Calls an op function given the op-type, working on the insn and the
677 inst_env. */
be8626e0
MD
678static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
679 inst_env_type *);
29134980 680
29134980
OF
681static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
682 struct gdbarch_list *);
683
29134980
OF
684static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
685
a5f6c8f5
OF
686static void set_cris_version (char *ignore_args, int from_tty,
687 struct cmd_list_element *c);
29134980 688
0e6bdb31
OF
689static void set_cris_mode (char *ignore_args, int from_tty,
690 struct cmd_list_element *c);
691
a5f6c8f5
OF
692static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
693 struct cmd_list_element *c);
29134980 694
2e4b5889 695static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
94afd7a6 696 struct frame_info *this_frame,
2e4b5889
OF
697 struct cris_unwind_cache *info);
698
5114e29d 699static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
94afd7a6 700 struct frame_info *this_frame,
5114e29d
OF
701 struct cris_unwind_cache *info);
702
2e4b5889
OF
703static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
704 struct frame_info *next_frame);
705
706static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
707 struct frame_info *next_frame);
708
709/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
710 order. The below implements a FILO (stack) to do this.
711 Copied from d10v-tdep.c. */
2e4b5889
OF
712
713struct stack_item
714{
715 int len;
716 struct stack_item *prev;
717 void *data;
718};
719
720static struct stack_item *
721push_stack_item (struct stack_item *prev, void *contents, int len)
722{
723 struct stack_item *si;
724 si = xmalloc (sizeof (struct stack_item));
725 si->data = xmalloc (len);
726 si->len = len;
727 si->prev = prev;
728 memcpy (si->data, contents, len);
729 return si;
730}
731
732static struct stack_item *
733pop_stack_item (struct stack_item *si)
734{
735 struct stack_item *dead = si;
736 si = si->prev;
737 xfree (dead->data);
738 xfree (dead);
739 return si;
740}
741
742/* Put here the code to store, into fi->saved_regs, the addresses of
743 the saved registers of frame described by FRAME_INFO. This
744 includes special registers such as pc and fp saved in special ways
745 in the stack frame. sp is even more special: the address we return
a5f6c8f5 746 for it IS the sp for the next frame. */
2e4b5889 747
63807e1d 748static struct cris_unwind_cache *
94afd7a6 749cris_frame_unwind_cache (struct frame_info *this_frame,
2e4b5889
OF
750 void **this_prologue_cache)
751{
35488783
UW
752 struct gdbarch *gdbarch = get_frame_arch (this_frame);
753 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
754 CORE_ADDR pc;
755 struct cris_unwind_cache *info;
756 int i;
757
758 if ((*this_prologue_cache))
759 return (*this_prologue_cache);
760
761 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
762 (*this_prologue_cache) = info;
94afd7a6 763 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
764
765 /* Zero all fields. */
766 info->prev_sp = 0;
767 info->base = 0;
768 info->size = 0;
769 info->sp_offset = 0;
770 info->r8_offset = 0;
771 info->uses_frame = 0;
772 info->return_pc = 0;
773 info->leaf_function = 0;
774
775 /* Prologue analysis does the rest... */
35488783 776 if (tdep->cris_version == 32)
94afd7a6 777 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 778 else
94afd7a6 779 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
780
781 return info;
782}
783
784/* Given a GDB frame, determine the address of the calling function's
785 frame. This will be used to create a new GDB frame struct. */
786
787static void
94afd7a6 788cris_frame_this_id (struct frame_info *this_frame,
2e4b5889
OF
789 void **this_prologue_cache,
790 struct frame_id *this_id)
791{
792 struct cris_unwind_cache *info
94afd7a6 793 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
794 CORE_ADDR base;
795 CORE_ADDR func;
796 struct frame_id id;
797
798 /* The FUNC is easy. */
94afd7a6 799 func = get_frame_func (this_frame);
2e4b5889
OF
800
801 /* Hopefully the prologue analysis either correctly determined the
802 frame's base (which is the SP from the previous frame), or set
803 that base to "NULL". */
804 base = info->prev_sp;
805 if (base == 0)
806 return;
807
808 id = frame_id_build (base, func);
809
810 (*this_id) = id;
811}
812
94afd7a6
UW
813static struct value *
814cris_frame_prev_register (struct frame_info *this_frame,
815 void **this_prologue_cache, int regnum)
2e4b5889
OF
816{
817 struct cris_unwind_cache *info
94afd7a6
UW
818 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
819 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
820}
821
94afd7a6
UW
822/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
823 frame. The frame ID's base needs to match the TOS value saved by
824 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
2e4b5889
OF
825
826static struct frame_id
94afd7a6 827cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2e4b5889 828{
94afd7a6
UW
829 CORE_ADDR sp;
830 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
831 return frame_id_build (sp, get_frame_pc (this_frame));
2e4b5889
OF
832}
833
834static CORE_ADDR
835cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
836{
837 /* Align to the size of an instruction (so that they can safely be
838 pushed onto the stack). */
839 return sp & ~3;
840}
841
842static CORE_ADDR
843cris_push_dummy_code (struct gdbarch *gdbarch,
82585c72 844 CORE_ADDR sp, CORE_ADDR funaddr,
2e4b5889
OF
845 struct value **args, int nargs,
846 struct type *value_type,
e4fd649a
UW
847 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
848 struct regcache *regcache)
2e4b5889
OF
849{
850 /* Allocate space sufficient for a breakpoint. */
851 sp = (sp - 4) & ~3;
852 /* Store the address of that breakpoint */
853 *bp_addr = sp;
854 /* CRIS always starts the call at the callee's entry point. */
855 *real_pc = funaddr;
856 return sp;
857}
858
859static CORE_ADDR
7d9b040b 860cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
861 struct regcache *regcache, CORE_ADDR bp_addr,
862 int nargs, struct value **args, CORE_ADDR sp,
863 int struct_return, CORE_ADDR struct_addr)
864{
865 int stack_alloc;
866 int stack_offset;
867 int argreg;
868 int argnum;
869
870 CORE_ADDR regval;
871
872 /* The function's arguments and memory allocated by gdb for the arguments to
873 point at reside in separate areas on the stack.
874 Both frame pointers grow toward higher addresses. */
875 CORE_ADDR fp_arg;
876 CORE_ADDR fp_mem;
877
878 struct stack_item *si = NULL;
879
a5f6c8f5 880 /* Push the return address. */
2e4b5889
OF
881 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
882
883 /* Are we returning a value using a structure return or a normal value
884 return? struct_addr is the address of the reserved space for the return
885 structure to be written on the stack. */
886 if (struct_return)
887 {
888 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
889 }
890
891 /* Now load as many as possible of the first arguments into registers,
892 and push the rest onto the stack. */
893 argreg = ARG1_REGNUM;
894 stack_offset = 0;
895
896 for (argnum = 0; argnum < nargs; argnum++)
897 {
898 int len;
899 char *val;
900 int reg_demand;
901 int i;
902
4991999e 903 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 904 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
905
906 /* How may registers worth of storage do we need for this argument? */
907 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
908
909 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
910 {
911 /* Data passed by value. Fits in available register(s). */
912 for (i = 0; i < reg_demand; i++)
913 {
f6e56ab3 914 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
915 argreg++;
916 val += 4;
917 }
918 }
919 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
920 {
921 /* Data passed by value. Does not fit in available register(s).
922 Use the register(s) first, then the stack. */
923 for (i = 0; i < reg_demand; i++)
924 {
925 if (argreg <= ARG4_REGNUM)
926 {
f6e56ab3 927 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
928 argreg++;
929 val += 4;
930 }
931 else
932 {
933 /* Push item for later so that pushed arguments
934 come in the right order. */
935 si = push_stack_item (si, val, 4);
936 val += 4;
937 }
938 }
939 }
940 else if (len > (2 * 4))
941 {
f6e56ab3
UW
942 /* Data passed by reference. Push copy of data onto stack
943 and pass pointer to this copy as argument. */
944 sp = (sp - len) & ~3;
945 write_memory (sp, val, len);
946
947 if (argreg <= ARG4_REGNUM)
948 {
949 regcache_cooked_write_unsigned (regcache, argreg, sp);
950 argreg++;
951 }
952 else
953 {
954 gdb_byte buf[4];
955 store_unsigned_integer (buf, 4, sp);
956 si = push_stack_item (si, buf, 4);
957 }
2e4b5889
OF
958 }
959 else
960 {
961 /* Data passed by value. No available registers. Put it on
962 the stack. */
963 si = push_stack_item (si, val, len);
964 }
965 }
966
967 while (si)
968 {
969 /* fp_arg must be word-aligned (i.e., don't += len) to match
970 the function prologue. */
971 sp = (sp - si->len) & ~3;
972 write_memory (sp, si->data, si->len);
973 si = pop_stack_item (si);
974 }
975
976 /* Finally, update the SP register. */
7fbe2eba 977 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
978
979 return sp;
980}
981
e2a2a3e8
OF
982static const struct frame_unwind cris_frame_unwind =
983{
2e4b5889
OF
984 NORMAL_FRAME,
985 cris_frame_this_id,
94afd7a6
UW
986 cris_frame_prev_register,
987 NULL,
988 default_frame_sniffer
2e4b5889
OF
989};
990
2e4b5889 991static CORE_ADDR
94afd7a6 992cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
2e4b5889
OF
993{
994 struct cris_unwind_cache *info
94afd7a6 995 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
996 return info->base;
997}
998
e2a2a3e8
OF
999static const struct frame_base cris_frame_base =
1000{
2e4b5889
OF
1001 &cris_frame_unwind,
1002 cris_frame_base_address,
1003 cris_frame_base_address,
1004 cris_frame_base_address
1005};
1006
29134980
OF
1007/* Frames information. The definition of the struct frame_info is
1008
1009 CORE_ADDR frame
1010 CORE_ADDR pc
5a203e44 1011 enum frame_type type;
29134980
OF
1012 CORE_ADDR return_pc
1013 int leaf_function
1014
1015 If the compilation option -fno-omit-frame-pointer is present the
1016 variable frame will be set to the content of R8 which is the frame
1017 pointer register.
1018
1019 The variable pc contains the address where execution is performed
1020 in the present frame. The innermost frame contains the current content
1021 of the register PC. All other frames contain the content of the
1022 register PC in the next frame.
1023
5a203e44
AC
1024 The variable `type' indicates the frame's type: normal, SIGTRAMP
1025 (associated with a signal handler), dummy (associated with a dummy
1026 frame).
29134980
OF
1027
1028 The variable return_pc contains the address where execution should be
1029 resumed when the present frame has finished, the return address.
1030
1031 The variable leaf_function is 1 if the return address is in the register
1032 SRP, and 0 if it is on the stack.
1033
1034 Prologue instructions C-code.
1035 The prologue may consist of (-fno-omit-frame-pointer)
1036 1) 2)
1037 push srp
1038 push r8 push r8
1039 move.d sp,r8 move.d sp,r8
1040 subq X,sp subq X,sp
1041 movem rY,[sp] movem rY,[sp]
1042 move.S rZ,[r8-U] move.S rZ,[r8-U]
1043
1044 where 1 is a non-terminal function, and 2 is a leaf-function.
1045
1046 Note that this assumption is extremely brittle, and will break at the
1047 slightest change in GCC's prologue.
1048
1049 If local variables are declared or register contents are saved on stack
1050 the subq-instruction will be present with X as the number of bytes
1051 needed for storage. The reshuffle with respect to r8 may be performed
1052 with any size S (b, w, d) and any of the general registers Z={0..13}.
1053 The offset U should be representable by a signed 8-bit value in all cases.
1054 Thus, the prefix word is assumed to be immediate byte offset mode followed
1055 by another word containing the instruction.
1056
1057 Degenerate cases:
1058 3)
1059 push r8
1060 move.d sp,r8
1061 move.d r8,sp
1062 pop r8
1063
1064 Prologue instructions C++-code.
1065 Case 1) and 2) in the C-code may be followed by
1066
1067 move.d r10,rS ; this
1068 move.d r11,rT ; P1
1069 move.d r12,rU ; P2
1070 move.d r13,rV ; P3
1071 move.S [r8+U],rZ ; P4
1072
1073 if any of the call parameters are stored. The host expects these
1074 instructions to be executed in order to get the call parameters right. */
1075
1076/* Examine the prologue of a function. The variable ip is the address of
1077 the first instruction of the prologue. The variable limit is the address
1078 of the first instruction after the prologue. The variable fi contains the
1079 information in struct frame_info. The variable frameless_p controls whether
1080 the entire prologue is examined (0) or just enough instructions to
1081 determine that it is a prologue (1). */
1082
a78f21af 1083static CORE_ADDR
94afd7a6 1084cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
2e4b5889 1085 struct cris_unwind_cache *info)
29134980 1086{
94afd7a6 1087 struct gdbarch *gdbarch = get_frame_arch (this_frame);
29134980
OF
1088 /* Present instruction. */
1089 unsigned short insn;
1090
1091 /* Next instruction, lookahead. */
1092 unsigned short insn_next;
1093 int regno;
1094
1095 /* Is there a push fp? */
1096 int have_fp;
1097
1098 /* Number of byte on stack used for local variables and movem. */
1099 int val;
1100
1101 /* Highest register number in a movem. */
1102 int regsave;
1103
1104 /* move.d r<source_register>,rS */
1105 short source_register;
1106
2e4b5889
OF
1107 /* Scan limit. */
1108 int limit;
29134980 1109
2e4b5889
OF
1110 /* This frame is with respect to a leaf until a push srp is found. */
1111 if (info)
1112 {
1113 info->leaf_function = 1;
1114 }
29134980
OF
1115
1116 /* Assume nothing on stack. */
1117 val = 0;
1118 regsave = -1;
1119
94afd7a6 1120 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1121 from cris_skip_prologue which already tried to find the end of the
1122 prologue through the symbol information. 64 instructions past current
1123 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1124 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1125
29134980 1126 /* Find the prologue instructions. */
a5f6c8f5 1127 while (pc > 0 && pc < limit)
29134980 1128 {
2e4b5889
OF
1129 insn = read_memory_unsigned_integer (pc, 2);
1130 pc += 2;
29134980
OF
1131 if (insn == 0xE1FC)
1132 {
1133 /* push <reg> 32 bit instruction */
2e4b5889
OF
1134 insn_next = read_memory_unsigned_integer (pc, 2);
1135 pc += 2;
29134980 1136 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1137 if (info)
1138 {
1139 info->sp_offset += 4;
1140 }
dbbff683
OF
1141 /* This check, meant to recognize srp, used to be regno ==
1142 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1143 if (insn_next == 0xBE7E)
29134980 1144 {
2e4b5889
OF
1145 if (info)
1146 {
1147 info->leaf_function = 0;
1148 }
29134980 1149 }
b4206d25
OF
1150 else if (insn_next == 0x8FEE)
1151 {
1152 /* push $r8 */
1153 if (info)
1154 {
1155 info->r8_offset = info->sp_offset;
1156 }
1157 }
29134980
OF
1158 }
1159 else if (insn == 0x866E)
1160 {
1161 /* move.d sp,r8 */
2e4b5889
OF
1162 if (info)
1163 {
1164 info->uses_frame = 1;
2e4b5889 1165 }
29134980
OF
1166 continue;
1167 }
7fbe2eba 1168 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1169 && cris_get_mode (insn) == 0x0000
1170 && cris_get_opcode (insn) == 0x000A)
1171 {
1172 /* subq <val>,sp */
2e4b5889
OF
1173 if (info)
1174 {
1175 info->sp_offset += cris_get_quick_value (insn);
1176 }
29134980
OF
1177 }
1178 else if (cris_get_mode (insn) == 0x0002
1179 && cris_get_opcode (insn) == 0x000F
1180 && cris_get_size (insn) == 0x0003
7fbe2eba 1181 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
29134980
OF
1182 {
1183 /* movem r<regsave>,[sp] */
29134980
OF
1184 regsave = cris_get_operand2 (insn);
1185 }
7fbe2eba 1186 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1187 && ((insn & 0x0F00) >> 8) == 0x0001
1188 && (cris_get_signed_offset (insn) < 0))
1189 {
1190 /* Immediate byte offset addressing prefix word with sp as base
1191 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1192 is between 64 and 128.
1193 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1194 if (info)
1195 {
1196 info->sp_offset += -cris_get_signed_offset (insn);
1197 }
1198 insn_next = read_memory_unsigned_integer (pc, 2);
1199 pc += 2;
29134980
OF
1200 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1201 && cris_get_opcode (insn_next) == 0x000F
1202 && cris_get_size (insn_next) == 0x0003
3e8c568d 1203 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1204 (gdbarch))
29134980 1205 {
29134980
OF
1206 regsave = cris_get_operand2 (insn_next);
1207 }
1208 else
1209 {
1210 /* The prologue ended before the limit was reached. */
2e4b5889 1211 pc -= 4;
29134980
OF
1212 break;
1213 }
1214 }
1215 else if (cris_get_mode (insn) == 0x0001
1216 && cris_get_opcode (insn) == 0x0009
1217 && cris_get_size (insn) == 0x0002)
1218 {
1219 /* move.d r<10..13>,r<0..15> */
29134980 1220 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1221
1222 /* FIXME? In the glibc solibs, the prologue might contain something
1223 like (this example taken from relocate_doit):
1224 move.d $pc,$r0
1225 sub.d 0xfffef426,$r0
1226 which isn't covered by the source_register check below. Question
1227 is whether to add a check for this combo, or make better use of
1228 the limit variable instead. */
29134980
OF
1229 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1230 {
1231 /* The prologue ended before the limit was reached. */
2e4b5889 1232 pc -= 2;
29134980
OF
1233 break;
1234 }
1235 }
2e4b5889 1236 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1237 /* The size is a fixed-size. */
1238 && ((insn & 0x0F00) >> 8) == 0x0001
1239 /* A negative offset. */
1240 && (cris_get_signed_offset (insn) < 0))
1241 {
1242 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1243 insn_next = read_memory_unsigned_integer (pc, 2);
1244 pc += 2;
29134980 1245 regno = cris_get_operand2 (insn_next);
7fbe2eba 1246 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1247 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1248 && cris_get_opcode (insn_next) == 0x000F)
1249 {
1250 /* move.S rZ,[r8-U] */
1251 continue;
1252 }
1253 else
1254 {
1255 /* The prologue ended before the limit was reached. */
2e4b5889 1256 pc -= 4;
29134980
OF
1257 break;
1258 }
1259 }
2e4b5889 1260 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1261 /* The size is a fixed-size. */
1262 && ((insn & 0x0F00) >> 8) == 0x0001
1263 /* A positive offset. */
1264 && (cris_get_signed_offset (insn) > 0))
1265 {
1266 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1267 insn_next = read_memory_unsigned_integer (pc, 2);
1268 pc += 2;
29134980 1269 regno = cris_get_operand2 (insn_next);
7fbe2eba 1270 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1271 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1272 && cris_get_opcode (insn_next) == 0x0009
1273 && cris_get_operand1 (insn_next) == regno)
1274 {
1275 /* move.S [r8+U],rZ */
1276 continue;
1277 }
1278 else
1279 {
1280 /* The prologue ended before the limit was reached. */
2e4b5889 1281 pc -= 4;
29134980
OF
1282 break;
1283 }
1284 }
1285 else
1286 {
1287 /* The prologue ended before the limit was reached. */
2e4b5889 1288 pc -= 2;
29134980
OF
1289 break;
1290 }
1291 }
29134980 1292
94afd7a6 1293 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1294 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1295 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1296 {
1297 return pc;
1298 }
29134980 1299
2e4b5889
OF
1300 info->size = info->sp_offset;
1301
1302 /* Compute the previous frame's stack pointer (which is also the
1303 frame's ID's stack address), and this frame's base pointer. */
1304 if (info->uses_frame)
29134980 1305 {
2e4b5889
OF
1306 ULONGEST this_base;
1307 /* The SP was moved to the FP. This indicates that a new frame
1308 was created. Get THIS frame's FP value by unwinding it from
1309 the next frame. */
94afd7a6 1310 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1311 info->base = this_base;
b4206d25
OF
1312 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1313
2e4b5889
OF
1314 /* The FP points at the last saved register. Adjust the FP back
1315 to before the first saved register giving the SP. */
1316 info->prev_sp = info->base + info->r8_offset;
1317 }
1318 else
1319 {
1320 ULONGEST this_base;
1321 /* Assume that the FP is this frame's SP but with that pushed
1322 stack space added back. */
94afd7a6
UW
1323 this_base = get_frame_register_unsigned (this_frame,
1324 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1325 info->base = this_base;
1326 info->prev_sp = info->base + info->size;
1327 }
29134980 1328
2e4b5889
OF
1329 /* Calculate the addresses for the saved registers on the stack. */
1330 /* FIXME: The address calculation should really be done on the fly while
1331 we're analyzing the prologue (we only hold one regsave value as it is
1332 now). */
1333 val = info->sp_offset;
1334
1335 for (regno = regsave; regno >= 0; regno--)
1336 {
1337 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1338 val -= 4;
1339 }
1340
1341 /* The previous frame's SP needed to be computed. Save the computed
1342 value. */
3e8c568d 1343 trad_frame_set_value (info->saved_regs,
7fbe2eba 1344 gdbarch_sp_regnum (gdbarch), info->prev_sp);
2e4b5889
OF
1345
1346 if (!info->leaf_function)
1347 {
b4206d25
OF
1348 /* SRP saved on the stack. But where? */
1349 if (info->r8_offset == 0)
1350 {
1351 /* R8 not pushed yet. */
1352 info->saved_regs[SRP_REGNUM].addr = info->base;
1353 }
1354 else
1355 {
1356 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1358 }
29134980 1359 }
2e4b5889
OF
1360
1361 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1362 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1363 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1364
1365 return pc;
29134980
OF
1366}
1367
5114e29d 1368static CORE_ADDR
94afd7a6 1369crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
5114e29d
OF
1370 struct cris_unwind_cache *info)
1371{
94afd7a6 1372 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1373 ULONGEST this_base;
1374
1375 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1376 meant to be a full-fledged prologue scanner. It is only needed for
1377 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1378
1379 * PLT stubs (library calls)
1380 * call dummys
1381 * signal trampolines
1382
1383 For those cases, it is assumed that there is no actual prologue; that
1384 the stack pointer is not adjusted, and (as a consequence) the return
1385 address is not pushed onto the stack. */
1386
94afd7a6 1387 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1388 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1389 if (this_frame == NULL && info == NULL)
5114e29d
OF
1390 {
1391 return pc;
1392 }
1393
1394 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1395 this_base = get_frame_register_unsigned (this_frame,
1396 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1397 info->base = this_base;
1398 info->prev_sp = this_base;
1399
1400 /* The PC is assumed to be found in SRP. */
7fbe2eba 1401 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1402 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1403
1404 return pc;
1405}
1406
29134980
OF
1407/* Advance pc beyond any function entry prologue instructions at pc
1408 to reach some "real" code. */
1409
29134980
OF
1410/* Given a PC value corresponding to the start of a function, return the PC
1411 of the first instruction after the function prologue. */
1412
a78f21af 1413static CORE_ADDR
6093d2eb 1414cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1415{
35488783 1416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
1417 CORE_ADDR func_addr, func_end;
1418 struct symtab_and_line sal;
29134980
OF
1419 CORE_ADDR pc_after_prologue;
1420
2e4b5889
OF
1421 /* If we have line debugging information, then the end of the prologue
1422 should the first assembly instruction of the first source line. */
1423 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1424 {
1425 sal = find_pc_line (func_addr, 0);
1426 if (sal.end > 0 && sal.end < func_end)
1427 return sal.end;
1428 }
29134980 1429
35488783 1430 if (tdep->cris_version == 32)
5114e29d
OF
1431 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1432 else
1433 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1434
29134980
OF
1435 return pc_after_prologue;
1436}
1437
2e4b5889
OF
1438static CORE_ADDR
1439cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1440{
1441 ULONGEST pc;
11411de3
DJ
1442 pc = frame_unwind_register_unsigned (next_frame,
1443 gdbarch_pc_regnum (gdbarch));
2e4b5889
OF
1444 return pc;
1445}
1446
1447static CORE_ADDR
1448cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1449{
1450 ULONGEST sp;
11411de3
DJ
1451 sp = frame_unwind_register_unsigned (next_frame,
1452 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1453 return sp;
1454}
1455
29134980
OF
1456/* Use the program counter to determine the contents and size of a breakpoint
1457 instruction. It returns a pointer to a string of bytes that encode a
1458 breakpoint instruction, stores the length of the string to *lenptr, and
1459 adjusts pcptr (if necessary) to point to the actual memory location where
1460 the breakpoint should be inserted. */
1461
a78f21af 1462static const unsigned char *
67d57894 1463cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
29134980 1464{
35488783 1465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
0e6bdb31
OF
1466 static unsigned char break8_insn[] = {0x38, 0xe9};
1467 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1468 *lenptr = 2;
1469
35488783 1470 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1471 return break15_insn;
1472 else
1473 return break8_insn;
29134980
OF
1474}
1475
29134980
OF
1476/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1477 0 otherwise. */
1478
a78f21af 1479static int
35488783
UW
1480cris_spec_reg_applicable (struct gdbarch *gdbarch,
1481 struct cris_spec_reg spec_reg)
29134980 1482{
35488783
UW
1483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1484 int version = tdep->cris_version;
29134980
OF
1485
1486 switch (spec_reg.applicable_version)
1487 {
1488 case cris_ver_version_all:
1489 return 1;
1490 case cris_ver_warning:
1491 /* Indeterminate/obsolete. */
1492 return 0;
29134980
OF
1493 case cris_ver_v0_3:
1494 return (version >= 0 && version <= 3);
1495 case cris_ver_v3p:
1496 return (version >= 3);
1497 case cris_ver_v8:
1498 return (version == 8 || version == 9);
1499 case cris_ver_v8p:
1500 return (version >= 8);
c600d464
OF
1501 case cris_ver_v0_10:
1502 return (version >= 0 && version <= 10);
1503 case cris_ver_v3_10:
1504 return (version >= 3 && version <= 10);
1505 case cris_ver_v8_10:
1506 return (version >= 8 && version <= 10);
1507 case cris_ver_v10:
1508 return (version == 10);
29134980
OF
1509 case cris_ver_v10p:
1510 return (version >= 10);
c600d464
OF
1511 case cris_ver_v32p:
1512 return (version >= 32);
29134980
OF
1513 default:
1514 /* Invalid cris version. */
1515 return 0;
1516 }
1517}
1518
1d94326f
AC
1519/* Returns the register size in unit byte. Returns 0 for an unimplemented
1520 register, -1 for an invalid register. */
1521
1522static int
be8626e0 1523cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f 1524{
be8626e0 1525 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1d94326f
AC
1526 int i;
1527 int spec_regno;
1528
1529 if (regno >= 0 && regno < NUM_GENREGS)
1530 {
1531 /* General registers (R0 - R15) are 32 bits. */
1532 return 4;
1533 }
c600d464 1534 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1535 {
1536 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1537 Adjust regno accordingly. */
1538 spec_regno = regno - NUM_GENREGS;
1539
c600d464 1540 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1541 {
1542 if (cris_spec_regs[i].number == spec_regno
35488783 1543 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1d94326f
AC
1544 /* Go with the first applicable register. */
1545 return cris_spec_regs[i].reg_size;
1546 }
1547 /* Special register not applicable to this CRIS version. */
1548 return 0;
1549 }
be8626e0
MD
1550 else if (regno >= gdbarch_pc_regnum (gdbarch)
1551 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1552 {
c600d464
OF
1553 /* This will apply to CRISv32 only where there are additional registers
1554 after the special registers (pseudo PC and support registers). */
1555 return 4;
1d94326f 1556 }
c600d464
OF
1557
1558
1559 return -1;
1d94326f
AC
1560}
1561
29134980
OF
1562/* Nonzero if regno should not be fetched from the target. This is the case
1563 for unimplemented (size 0) and non-existant registers. */
1564
a78f21af 1565static int
64a3914f 1566cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1567{
64a3914f 1568 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1569 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1570}
1571
1572/* Nonzero if regno should not be written to the target, for various
1573 reasons. */
1574
a78f21af 1575static int
64a3914f 1576cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1577{
1578 /* There are three kinds of registers we refuse to write to.
1579 1. Those that not implemented.
1580 2. Those that are read-only (depends on the processor mode).
1581 3. Those registers to which a write has no effect.
1582 */
1583
f57d151a 1584 if (regno < 0
64a3914f 1585 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1586 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1587 /* Not implemented. */
1588 return 1;
1589
1590 else if (regno == VR_REGNUM)
1591 /* Read-only. */
1592 return 1;
1593
1594 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1595 /* Writing has no effect. */
1596 return 1;
1597
a5f6c8f5
OF
1598 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1599 agent decide whether they are writable. */
29134980
OF
1600
1601 return 0;
1602}
1603
c600d464
OF
1604/* Nonzero if regno should not be fetched from the target. This is the case
1605 for unimplemented (size 0) and non-existant registers. */
1606
1607static int
64a3914f 1608crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1609{
64a3914f 1610 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1611 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1612}
1613
1614/* Nonzero if regno should not be written to the target, for various
1615 reasons. */
1616
1617static int
64a3914f 1618crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1619{
1620 /* There are three kinds of registers we refuse to write to.
1621 1. Those that not implemented.
1622 2. Those that are read-only (depends on the processor mode).
1623 3. Those registers to which a write has no effect.
1624 */
1625
f57d151a 1626 if (regno < 0
64a3914f 1627 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1628 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1629 /* Not implemented. */
1630 return 1;
1631
1632 else if (regno == VR_REGNUM)
1633 /* Read-only. */
1634 return 1;
1635
1636 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1637 /* Writing has no effect. */
1638 return 1;
1639
1640 /* Many special registers are read-only in user mode. Let the debug
1641 agent decide whether they are writable. */
1642
1643 return 0;
1644}
1645
29134980
OF
1646/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1647 of data in register regno. */
1648
a78f21af 1649static struct type *
c1d546cd 1650cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1651{
7fbe2eba 1652 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1653 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1654 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1655 || regno == CRIS_FP_REGNUM)
0dfff4cb 1656 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1657 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1658 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1659 /* Note: R8 taken care of previous clause. */
df4df182 1660 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1661 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1662 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1663 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1664 return builtin_type (gdbarch)->builtin_uint8;
29134980 1665 else
a5f6c8f5 1666 /* Invalid (unimplemented) register. */
df4df182 1667 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1668}
1669
c600d464
OF
1670static struct type *
1671crisv32_register_type (struct gdbarch *gdbarch, int regno)
1672{
7fbe2eba 1673 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1674 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1675 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1676 || regno == CRIS_FP_REGNUM)
0dfff4cb 1677 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1678 else if ((regno >= 0 && regno <= ACR_REGNUM)
1679 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1680 || (regno == PID_REGNUM)
1681 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1682 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1683 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1684 else if (regno == WZ_REGNUM)
df4df182 1685 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1686 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1687 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1688 else
1689 {
1690 /* Invalid (unimplemented) register. Should not happen as there are
1691 no unimplemented CRISv32 registers. */
8a3fe4f8 1692 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1693 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1694 }
1695}
1696
2e4b5889
OF
1697/* Stores a function return value of type type, where valbuf is the address
1698 of the value to be stored. */
29134980 1699
2e4b5889 1700/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1701
2e4b5889
OF
1702static void
1703cris_store_return_value (struct type *type, struct regcache *regcache,
1704 const void *valbuf)
29134980 1705{
2e4b5889
OF
1706 ULONGEST val;
1707 int len = TYPE_LENGTH (type);
29134980 1708
2e4b5889 1709 if (len <= 4)
29134980 1710 {
2e4b5889
OF
1711 /* Put the return value in R10. */
1712 val = extract_unsigned_integer (valbuf, len);
1713 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1714 }
2e4b5889 1715 else if (len <= 8)
29134980 1716 {
2e4b5889
OF
1717 /* Put the return value in R10 and R11. */
1718 val = extract_unsigned_integer (valbuf, 4);
1719 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1720 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1721 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1722 }
2e4b5889 1723 else
8a3fe4f8 1724 error (_("cris_store_return_value: type length too large."));
29134980
OF
1725}
1726
2e4b5889
OF
1727/* Return the name of register regno as a string. Return NULL for an invalid or
1728 unimplemented register. */
29134980 1729
c600d464 1730static const char *
35488783 1731cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1732{
1733 int spec_regno;
1734 int i;
1735
1736 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1737 Adjust regno accordingly. */
1738 spec_regno = regno - NUM_GENREGS;
1739
1740 /* Assume nothing about the layout of the cris_spec_regs struct
1741 when searching. */
1742 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1743 {
1744 if (cris_spec_regs[i].number == spec_regno
35488783 1745 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1746 /* Go with the first applicable register. */
1747 return cris_spec_regs[i].name;
1748 }
1749 /* Special register not applicable to this CRIS version. */
1750 return NULL;
1751}
1752
2e4b5889 1753static const char *
d93859e2 1754cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889
OF
1755{
1756 static char *cris_genreg_names[] =
1757 { "r0", "r1", "r2", "r3", \
1758 "r4", "r5", "r6", "r7", \
1759 "r8", "r9", "r10", "r11", \
1760 "r12", "r13", "sp", "pc" };
29134980 1761
2e4b5889 1762 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1763 {
2e4b5889
OF
1764 /* General register. */
1765 return cris_genreg_names[regno];
29134980 1766 }
d93859e2 1767 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1768 {
35488783 1769 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1770 }
1771 else
1772 {
1773 /* Invalid register. */
2e4b5889
OF
1774 return NULL;
1775 }
c600d464
OF
1776}
1777
1778static const char *
d93859e2 1779crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1780{
1781 static char *crisv32_genreg_names[] =
1782 { "r0", "r1", "r2", "r3", \
1783 "r4", "r5", "r6", "r7", \
1784 "r8", "r9", "r10", "r11", \
1785 "r12", "r13", "sp", "acr"
1786 };
1787
1788 static char *crisv32_sreg_names[] =
1789 { "s0", "s1", "s2", "s3", \
1790 "s4", "s5", "s6", "s7", \
1791 "s8", "s9", "s10", "s11", \
1792 "s12", "s13", "s14", "s15"
1793 };
1794
1795 if (regno >= 0 && regno < NUM_GENREGS)
1796 {
1797 /* General register. */
1798 return crisv32_genreg_names[regno];
1799 }
1800 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1801 {
35488783 1802 return cris_special_register_name (gdbarch, regno);
c600d464 1803 }
d93859e2 1804 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1805 {
1806 return "pc";
1807 }
1808 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1809 {
1810 return crisv32_sreg_names[regno - S0_REGNUM];
1811 }
2e4b5889
OF
1812 else
1813 {
1814 /* Invalid register. */
1815 return NULL;
29134980 1816 }
29134980
OF
1817}
1818
a5f6c8f5
OF
1819/* Convert DWARF register number REG to the appropriate register
1820 number used by GDB. */
1821
2e4b5889 1822static int
d3f73121 1823cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1824{
a5f6c8f5
OF
1825 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1826 numbering, MOF is 18).
1827 Adapted from gcc/config/cris/cris.h. */
1828 static int cris_dwarf_regmap[] = {
1829 0, 1, 2, 3,
1830 4, 5, 6, 7,
1831 8, 9, 10, 11,
1832 12, 13, 14, 15,
1833 27, -1, -1, -1,
1834 -1, -1, -1, 23,
1835 -1, -1, -1, 27,
1836 -1, -1, -1, -1
1837 };
1838 int regnum = -1;
1839
1840 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1841 regnum = cris_dwarf_regmap[reg];
1842
1843 if (regnum == -1)
8a3fe4f8 1844 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1845
1846 return regnum;
1847}
1848
1849/* DWARF-2 frame support. */
1850
1851static void
1852cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1853 struct dwarf2_frame_state_reg *reg,
4a4e5149 1854 struct frame_info *this_frame)
a5f6c8f5
OF
1855{
1856 /* The return address column. */
7fbe2eba 1857 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1858 reg->how = DWARF2_FRAME_REG_RA;
1859
1860 /* The call frame address. */
7fbe2eba 1861 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1862 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1863}
1864
2e4b5889
OF
1865/* Extract from an array regbuf containing the raw register state a function
1866 return value of type type, and copy that, in virtual format, into
1867 valbuf. */
1868
1869/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1870
2e4b5889
OF
1871static void
1872cris_extract_return_value (struct type *type, struct regcache *regcache,
1873 void *valbuf)
29134980 1874{
2e4b5889
OF
1875 ULONGEST val;
1876 int len = TYPE_LENGTH (type);
29134980 1877
2e4b5889 1878 if (len <= 4)
29134980 1879 {
2e4b5889
OF
1880 /* Get the return value from R10. */
1881 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1882 store_unsigned_integer (valbuf, len, val);
29134980 1883 }
2e4b5889 1884 else if (len <= 8)
29134980 1885 {
2e4b5889
OF
1886 /* Get the return value from R10 and R11. */
1887 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1888 store_unsigned_integer (valbuf, 4, val);
1889 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1890 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1891 }
2e4b5889 1892 else
8a3fe4f8 1893 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1894}
1895
b4206d25
OF
1896/* Handle the CRIS return value convention. */
1897
1898static enum return_value_convention
c055b101
CV
1899cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1900 struct type *type, struct regcache *regcache,
1901 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25
OF
1902{
1903 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1904 || TYPE_CODE (type) == TYPE_CODE_UNION
1905 || TYPE_LENGTH (type) > 8)
1906 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1907 goes on the stack. */
1908 return RETURN_VALUE_STRUCT_CONVENTION;
1909
1910 if (readbuf)
1911 cris_extract_return_value (type, regcache, readbuf);
1912 if (writebuf)
1913 cris_store_return_value (type, regcache, writebuf);
1914
1915 return RETURN_VALUE_REGISTER_CONVENTION;
1916}
1917
29134980
OF
1918/* Calculates a value that measures how good inst_args constraints an
1919 instruction. It stems from cris_constraint, found in cris-dis.c. */
1920
1921static int
1922constraint (unsigned int insn, const signed char *inst_args,
1923 inst_env_type *inst_env)
1924{
1925 int retval = 0;
1926 int tmp, i;
1927
1928 const char *s = inst_args;
1929
1930 for (; *s; s++)
1931 switch (*s)
1932 {
1933 case 'm':
1934 if ((insn & 0x30) == 0x30)
1935 return -1;
1936 break;
1937
1938 case 'S':
1939 /* A prefix operand. */
1940 if (inst_env->prefix_found)
1941 break;
1942 else
1943 return -1;
1944
1945 case 'B':
1946 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1947 valid "push" size. In case of special register, it may be != 4. */
1948 if (inst_env->prefix_found)
1949 break;
1950 else
1951 return -1;
1952
1953 case 'D':
1954 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1955 if (!retval)
1956 return -1;
1957 else
1958 retval += 4;
1959 break;
1960
1961 case 'P':
1962 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1963
1964 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1965 {
1966 /* Since we match four bits, we will give a value of
1967 4 - 1 = 3 in a match. If there is a corresponding
1968 exact match of a special register in another pattern, it
1969 will get a value of 4, which will be higher. This should
1970 be correct in that an exact pattern would match better that
1971 a general pattern.
1972 Note that there is a reason for not returning zero; the
1973 pattern for "clear" is partly matched in the bit-pattern
1974 (the two lower bits must be zero), while the bit-pattern
1975 for a move from a special register is matched in the
1976 register constraint.
1977 This also means we will will have a race condition if
1978 there is a partly match in three bits in the bit pattern. */
1979 if (tmp == cris_spec_regs[i].number)
1980 {
1981 retval += 3;
1982 break;
1983 }
1984 }
1985
1986 if (cris_spec_regs[i].name == NULL)
29134980
OF
1987 return -1;
1988 break;
1989 }
1990 return retval;
1991}
1992
1993/* Returns the number of bits set in the variable value. */
1994
1995static int
1996number_of_bits (unsigned int value)
1997{
1998 int number_of_bits = 0;
1999
2000 while (value != 0)
2001 {
2002 number_of_bits += 1;
2003 value &= (value - 1);
2004 }
2005 return number_of_bits;
2006}
2007
2008/* Finds the address that should contain the single step breakpoint(s).
2009 It stems from code in cris-dis.c. */
2010
2011static int
2012find_cris_op (unsigned short insn, inst_env_type *inst_env)
2013{
2014 int i;
2015 int max_level_of_match = -1;
2016 int max_matched = -1;
2017 int level_of_match;
2018
2019 for (i = 0; cris_opcodes[i].name != NULL; i++)
2020 {
2021 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2022 && ((cris_opcodes[i].lose & insn) == 0)
2023 /* Only CRISv10 instructions, please. */
2024 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2025 {
2026 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2027 if (level_of_match >= 0)
2028 {
2029 level_of_match +=
2030 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2031 if (level_of_match > max_level_of_match)
2032 {
2033 max_matched = i;
2034 max_level_of_match = level_of_match;
2035 if (level_of_match == 16)
2036 {
2037 /* All bits matched, cannot find better. */
2038 break;
2039 }
2040 }
2041 }
2042 }
2043 }
2044 return max_matched;
2045}
2046
2047/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2048 actually an internal error. */
2049
2050static int
0b1b3e42 2051find_step_target (struct frame_info *frame, inst_env_type *inst_env)
29134980
OF
2052{
2053 int i;
2054 int offset;
2055 unsigned short insn;
7fbe2eba 2056 struct gdbarch *gdbarch = get_frame_arch (frame);
29134980
OF
2057
2058 /* Create a local register image and set the initial state. */
2059 for (i = 0; i < NUM_GENREGS; i++)
2060 {
0b1b3e42
UW
2061 inst_env->reg[i] =
2062 (unsigned long) get_frame_register_unsigned (frame, i);
29134980
OF
2063 }
2064 offset = NUM_GENREGS;
2065 for (i = 0; i < NUM_SPECREGS; i++)
2066 {
0b1b3e42
UW
2067 inst_env->preg[i] =
2068 (unsigned long) get_frame_register_unsigned (frame, offset + i);
29134980
OF
2069 }
2070 inst_env->branch_found = 0;
2071 inst_env->slot_needed = 0;
2072 inst_env->delay_slot_pc_active = 0;
2073 inst_env->prefix_found = 0;
2074 inst_env->invalid = 0;
2075 inst_env->xflag_found = 0;
2076 inst_env->disable_interrupt = 0;
2077
2078 /* Look for a step target. */
2079 do
2080 {
2081 /* Read an instruction from the client. */
3e8c568d 2082 insn = read_memory_unsigned_integer
7fbe2eba 2083 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2);
29134980
OF
2084
2085 /* If the instruction is not in a delay slot the new content of the
2086 PC is [PC] + 2. If the instruction is in a delay slot it is not
2087 that simple. Since a instruction in a delay slot cannot change
2088 the content of the PC, it does not matter what value PC will have.
2089 Just make sure it is a valid instruction. */
2090 if (!inst_env->delay_slot_pc_active)
2091 {
7fbe2eba 2092 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
29134980
OF
2093 }
2094 else
2095 {
2096 inst_env->delay_slot_pc_active = 0;
7fbe2eba 2097 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2098 = inst_env->delay_slot_pc;
29134980
OF
2099 }
2100 /* Analyse the present instruction. */
2101 i = find_cris_op (insn, inst_env);
2102 if (i == -1)
2103 {
2104 inst_env->invalid = 1;
2105 }
2106 else
2107 {
be8626e0 2108 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
29134980
OF
2109 }
2110 } while (!inst_env->invalid
2111 && (inst_env->prefix_found || inst_env->xflag_found
2112 || inst_env->slot_needed));
2113 return i;
2114}
2115
2116/* There is no hardware single-step support. The function find_step_target
2117 digs through the opcodes in order to find all possible targets.
2118 Either one ordinary target or two targets for branches may be found. */
2119
e6590a1b 2120static int
0b1b3e42 2121cris_software_single_step (struct frame_info *frame)
29134980
OF
2122{
2123 inst_env_type inst_env;
8181d85f 2124
e0cd558a
UW
2125 /* Analyse the present instruction environment and insert
2126 breakpoints. */
0b1b3e42 2127 int status = find_step_target (frame, &inst_env);
e0cd558a 2128 if (status == -1)
29134980 2129 {
e0cd558a
UW
2130 /* Could not find a target. Things are likely to go downhill
2131 from here. */
2132 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2133 }
2134 else
e0cd558a
UW
2135 {
2136 /* Insert at most two breakpoints. One for the next PC content
2137 and possibly another one for a branch, jump, etc. */
3e8c568d 2138 CORE_ADDR next_pc =
7fbe2eba 2139 (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (get_frame_arch (frame))];
e0cd558a
UW
2140 insert_single_step_breakpoint (next_pc);
2141 if (inst_env.branch_found
2142 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2143 {
2144 CORE_ADDR branch_target_address
2145 = (CORE_ADDR) inst_env.branch_break_address;
2146 insert_single_step_breakpoint (branch_target_address);
2147 }
2148 }
e6590a1b
UW
2149
2150 return 1;
29134980
OF
2151}
2152
2153/* Calculates the prefix value for quick offset addressing mode. */
2154
a78f21af 2155static void
29134980
OF
2156quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2157{
2158 /* It's invalid to be in a delay slot. You can't have a prefix to this
2159 instruction (not 100% sure). */
2160 if (inst_env->slot_needed || inst_env->prefix_found)
2161 {
2162 inst_env->invalid = 1;
2163 return;
2164 }
2165
2166 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2167 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2168
2169 /* A prefix doesn't change the xflag_found. But the rest of the flags
2170 need updating. */
2171 inst_env->slot_needed = 0;
2172 inst_env->prefix_found = 1;
2173}
2174
2175/* Updates the autoincrement register. The size of the increment is derived
2176 from the size of the operation. The PC is always kept aligned on even
2177 word addresses. */
2178
a78f21af 2179static void
29134980
OF
2180process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2181{
2182 if (size == INST_BYTE_SIZE)
2183 {
2184 inst_env->reg[cris_get_operand1 (inst)] += 1;
2185
2186 /* The PC must be word aligned, so increase the PC with one
2187 word even if the size is byte. */
2188 if (cris_get_operand1 (inst) == REG_PC)
2189 {
2190 inst_env->reg[REG_PC] += 1;
2191 }
2192 }
2193 else if (size == INST_WORD_SIZE)
2194 {
2195 inst_env->reg[cris_get_operand1 (inst)] += 2;
2196 }
2197 else if (size == INST_DWORD_SIZE)
2198 {
2199 inst_env->reg[cris_get_operand1 (inst)] += 4;
2200 }
2201 else
2202 {
2203 /* Invalid size. */
2204 inst_env->invalid = 1;
2205 }
2206}
2207
2a9ecef2
OF
2208/* Just a forward declaration. */
2209
a78f21af
AC
2210static unsigned long get_data_from_address (unsigned short *inst,
2211 CORE_ADDR address);
2a9ecef2 2212
29134980
OF
2213/* Calculates the prefix value for the general case of offset addressing
2214 mode. */
2215
a78f21af 2216static void
29134980
OF
2217bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2218{
2219
2220 long offset;
2221
2222 /* It's invalid to be in a delay slot. */
2223 if (inst_env->slot_needed || inst_env->prefix_found)
2224 {
2225 inst_env->invalid = 1;
2226 return;
2227 }
2228
fa4e4598
OF
2229 /* The calculation of prefix_value used to be after process_autoincrement,
2230 but that fails for an instruction such as jsr [$r0+12] which is encoded
2231 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2232 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2233 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2234
2235 /* The offset is an indirection of the contents of the operand1 register. */
2236 inst_env->prefix_value +=
2a9ecef2
OF
2237 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2238
fa4e4598
OF
2239 if (cris_get_mode (inst) == AUTOINC_MODE)
2240 {
2241 process_autoincrement (cris_get_size (inst), inst, inst_env);
2242 }
2243
29134980
OF
2244 /* A prefix doesn't change the xflag_found. But the rest of the flags
2245 need updating. */
2246 inst_env->slot_needed = 0;
2247 inst_env->prefix_found = 1;
2248}
2249
2250/* Calculates the prefix value for the index addressing mode. */
2251
a78f21af 2252static void
29134980
OF
2253biap_prefix (unsigned short inst, inst_env_type *inst_env)
2254{
2255 /* It's invalid to be in a delay slot. I can't see that it's possible to
2256 have a prefix to this instruction. So I will treat this as invalid. */
2257 if (inst_env->slot_needed || inst_env->prefix_found)
2258 {
2259 inst_env->invalid = 1;
2260 return;
2261 }
2262
2263 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2264
2265 /* The offset is the operand2 value shifted the size of the instruction
2266 to the left. */
2267 inst_env->prefix_value +=
2268 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2269
2270 /* If the PC is operand1 (base) the address used is the address after
2271 the main instruction, i.e. address + 2 (the PC is already compensated
2272 for the prefix operation). */
2273 if (cris_get_operand1 (inst) == REG_PC)
2274 {
2275 inst_env->prefix_value += 2;
2276 }
2277
2278 /* A prefix doesn't change the xflag_found. But the rest of the flags
2279 need updating. */
2280 inst_env->slot_needed = 0;
2281 inst_env->xflag_found = 0;
2282 inst_env->prefix_found = 1;
2283}
2284
2285/* Calculates the prefix value for the double indirect addressing mode. */
2286
a78f21af 2287static void
29134980
OF
2288dip_prefix (unsigned short inst, inst_env_type *inst_env)
2289{
2290
2291 CORE_ADDR address;
2292
2293 /* It's invalid to be in a delay slot. */
2294 if (inst_env->slot_needed || inst_env->prefix_found)
2295 {
2296 inst_env->invalid = 1;
2297 return;
2298 }
2299
2300 /* The prefix value is one dereference of the contents of the operand1
2301 register. */
2302 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2303 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2304
2305 /* Check if the mode is autoincrement. */
2306 if (cris_get_mode (inst) == AUTOINC_MODE)
2307 {
2308 inst_env->reg[cris_get_operand1 (inst)] += 4;
2309 }
2310
2311 /* A prefix doesn't change the xflag_found. But the rest of the flags
2312 need updating. */
2313 inst_env->slot_needed = 0;
2314 inst_env->xflag_found = 0;
2315 inst_env->prefix_found = 1;
2316}
2317
2318/* Finds the destination for a branch with 8-bits offset. */
2319
a78f21af 2320static void
29134980
OF
2321eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2322{
2323
2324 short offset;
2325
2326 /* If we have a prefix or are in a delay slot it's bad. */
2327 if (inst_env->slot_needed || inst_env->prefix_found)
2328 {
2329 inst_env->invalid = 1;
2330 return;
2331 }
2332
2333 /* We have a branch, find out where the branch will land. */
2334 offset = cris_get_branch_short_offset (inst);
2335
2336 /* Check if the offset is signed. */
2337 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2338 {
2339 offset |= 0xFF00;
2340 }
2341
2342 /* The offset ends with the sign bit, set it to zero. The address
2343 should always be word aligned. */
2344 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2345
2346 inst_env->branch_found = 1;
2347 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2348
2349 inst_env->slot_needed = 1;
2350 inst_env->prefix_found = 0;
2351 inst_env->xflag_found = 0;
2352 inst_env->disable_interrupt = 1;
2353}
2354
2355/* Finds the destination for a branch with 16-bits offset. */
2356
a78f21af 2357static void
29134980
OF
2358sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2359{
2360 short offset;
2361
2362 /* If we have a prefix or is in a delay slot it's bad. */
2363 if (inst_env->slot_needed || inst_env->prefix_found)
2364 {
2365 inst_env->invalid = 1;
2366 return;
2367 }
2368
2369 /* We have a branch, find out the offset for the branch. */
2370 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2371
2372 /* The instruction is one word longer than normal, so add one word
2373 to the PC. */
2374 inst_env->reg[REG_PC] += 2;
2375
2376 inst_env->branch_found = 1;
2377 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2378
2379
2380 inst_env->slot_needed = 1;
2381 inst_env->prefix_found = 0;
2382 inst_env->xflag_found = 0;
2383 inst_env->disable_interrupt = 1;
2384}
2385
2386/* Handles the ABS instruction. */
2387
a78f21af 2388static void
29134980
OF
2389abs_op (unsigned short inst, inst_env_type *inst_env)
2390{
2391
2392 long value;
2393
2394 /* ABS can't have a prefix, so it's bad if it does. */
2395 if (inst_env->prefix_found)
2396 {
2397 inst_env->invalid = 1;
2398 return;
2399 }
2400
2401 /* Check if the operation affects the PC. */
2402 if (cris_get_operand2 (inst) == REG_PC)
2403 {
2404
2405 /* It's invalid to change to the PC if we are in a delay slot. */
2406 if (inst_env->slot_needed)
2407 {
2408 inst_env->invalid = 1;
2409 return;
2410 }
2411
2412 value = (long) inst_env->reg[REG_PC];
2413
2414 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2415 if (value != SIGNED_DWORD_MASK)
2416 {
2417 value = -value;
2418 inst_env->reg[REG_PC] = (long) value;
2419 }
2420 }
2421
2422 inst_env->slot_needed = 0;
2423 inst_env->prefix_found = 0;
2424 inst_env->xflag_found = 0;
2425 inst_env->disable_interrupt = 0;
2426}
2427
2428/* Handles the ADDI instruction. */
2429
a78f21af 2430static void
29134980
OF
2431addi_op (unsigned short inst, inst_env_type *inst_env)
2432{
2433 /* It's invalid to have the PC as base register. And ADDI can't have
2434 a prefix. */
2435 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2436 {
2437 inst_env->invalid = 1;
2438 return;
2439 }
2440
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2445}
2446
2447/* Handles the ASR instruction. */
2448
a78f21af 2449static void
29134980
OF
2450asr_op (unsigned short inst, inst_env_type *inst_env)
2451{
2452 int shift_steps;
2453 unsigned long value;
2454 unsigned long signed_extend_mask = 0;
2455
2456 /* ASR can't have a prefix, so check that it doesn't. */
2457 if (inst_env->prefix_found)
2458 {
2459 inst_env->invalid = 1;
2460 return;
2461 }
2462
2463 /* Check if the PC is the target register. */
2464 if (cris_get_operand2 (inst) == REG_PC)
2465 {
2466 /* It's invalid to change the PC in a delay slot. */
2467 if (inst_env->slot_needed)
2468 {
2469 inst_env->invalid = 1;
2470 return;
2471 }
2472 /* Get the number of bits to shift. */
2473 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2474 value = inst_env->reg[REG_PC];
2475
2476 /* Find out how many bits the operation should apply to. */
2477 if (cris_get_size (inst) == INST_BYTE_SIZE)
2478 {
2479 if (value & SIGNED_BYTE_MASK)
2480 {
2481 signed_extend_mask = 0xFF;
2482 signed_extend_mask = signed_extend_mask >> shift_steps;
2483 signed_extend_mask = ~signed_extend_mask;
2484 }
2485 value = value >> shift_steps;
2486 value |= signed_extend_mask;
2487 value &= 0xFF;
2488 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2489 inst_env->reg[REG_PC] |= value;
2490 }
2491 else if (cris_get_size (inst) == INST_WORD_SIZE)
2492 {
2493 if (value & SIGNED_WORD_MASK)
2494 {
2495 signed_extend_mask = 0xFFFF;
2496 signed_extend_mask = signed_extend_mask >> shift_steps;
2497 signed_extend_mask = ~signed_extend_mask;
2498 }
2499 value = value >> shift_steps;
2500 value |= signed_extend_mask;
2501 value &= 0xFFFF;
2502 inst_env->reg[REG_PC] &= 0xFFFF0000;
2503 inst_env->reg[REG_PC] |= value;
2504 }
2505 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2506 {
2507 if (value & SIGNED_DWORD_MASK)
2508 {
2509 signed_extend_mask = 0xFFFFFFFF;
2510 signed_extend_mask = signed_extend_mask >> shift_steps;
2511 signed_extend_mask = ~signed_extend_mask;
2512 }
2513 value = value >> shift_steps;
2514 value |= signed_extend_mask;
2515 inst_env->reg[REG_PC] = value;
2516 }
2517 }
2518 inst_env->slot_needed = 0;
2519 inst_env->prefix_found = 0;
2520 inst_env->xflag_found = 0;
2521 inst_env->disable_interrupt = 0;
2522}
2523
2524/* Handles the ASRQ instruction. */
2525
a78f21af 2526static void
29134980
OF
2527asrq_op (unsigned short inst, inst_env_type *inst_env)
2528{
2529
2530 int shift_steps;
2531 unsigned long value;
2532 unsigned long signed_extend_mask = 0;
2533
2534 /* ASRQ can't have a prefix, so check that it doesn't. */
2535 if (inst_env->prefix_found)
2536 {
2537 inst_env->invalid = 1;
2538 return;
2539 }
2540
2541 /* Check if the PC is the target register. */
2542 if (cris_get_operand2 (inst) == REG_PC)
2543 {
2544
2545 /* It's invalid to change the PC in a delay slot. */
2546 if (inst_env->slot_needed)
2547 {
2548 inst_env->invalid = 1;
2549 return;
2550 }
2551 /* The shift size is given as a 5 bit quick value, i.e. we don't
2552 want the the sign bit of the quick value. */
2553 shift_steps = cris_get_asr_shift_steps (inst);
2554 value = inst_env->reg[REG_PC];
2555 if (value & SIGNED_DWORD_MASK)
2556 {
2557 signed_extend_mask = 0xFFFFFFFF;
2558 signed_extend_mask = signed_extend_mask >> shift_steps;
2559 signed_extend_mask = ~signed_extend_mask;
2560 }
2561 value = value >> shift_steps;
2562 value |= signed_extend_mask;
2563 inst_env->reg[REG_PC] = value;
2564 }
2565 inst_env->slot_needed = 0;
2566 inst_env->prefix_found = 0;
2567 inst_env->xflag_found = 0;
2568 inst_env->disable_interrupt = 0;
2569}
2570
2571/* Handles the AX, EI and SETF instruction. */
2572
a78f21af 2573static void
29134980
OF
2574ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2575{
2576 if (inst_env->prefix_found)
2577 {
2578 inst_env->invalid = 1;
2579 return;
2580 }
2581 /* Check if the instruction is setting the X flag. */
2582 if (cris_is_xflag_bit_on (inst))
2583 {
2584 inst_env->xflag_found = 1;
2585 }
2586 else
2587 {
2588 inst_env->xflag_found = 0;
2589 }
2590 inst_env->slot_needed = 0;
2591 inst_env->prefix_found = 0;
2592 inst_env->disable_interrupt = 1;
2593}
2594
2595/* Checks if the instruction is in assign mode. If so, it updates the assign
2596 register. Note that check_assign assumes that the caller has checked that
2597 there is a prefix to this instruction. The mode check depends on this. */
2598
a78f21af 2599static void
29134980
OF
2600check_assign (unsigned short inst, inst_env_type *inst_env)
2601{
2602 /* Check if it's an assign addressing mode. */
2603 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2604 {
2605 /* Assign the prefix value to operand 1. */
2606 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2607 }
2608}
2609
2610/* Handles the 2-operand BOUND instruction. */
2611
a78f21af 2612static void
29134980
OF
2613two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2614{
2615 /* It's invalid to have the PC as the index operand. */
2616 if (cris_get_operand2 (inst) == REG_PC)
2617 {
2618 inst_env->invalid = 1;
2619 return;
2620 }
2621 /* Check if we have a prefix. */
2622 if (inst_env->prefix_found)
2623 {
2624 check_assign (inst, inst_env);
2625 }
2626 /* Check if this is an autoincrement mode. */
2627 else if (cris_get_mode (inst) == AUTOINC_MODE)
2628 {
2629 /* It's invalid to change the PC in a delay slot. */
2630 if (inst_env->slot_needed)
2631 {
2632 inst_env->invalid = 1;
2633 return;
2634 }
2635 process_autoincrement (cris_get_size (inst), inst, inst_env);
2636 }
2637 inst_env->slot_needed = 0;
2638 inst_env->prefix_found = 0;
2639 inst_env->xflag_found = 0;
2640 inst_env->disable_interrupt = 0;
2641}
2642
2643/* Handles the 3-operand BOUND instruction. */
2644
a78f21af 2645static void
29134980
OF
2646three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2647{
2648 /* It's an error if we haven't got a prefix. And it's also an error
2649 if the PC is the destination register. */
2650 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2651 {
2652 inst_env->invalid = 1;
2653 return;
2654 }
2655 inst_env->slot_needed = 0;
2656 inst_env->prefix_found = 0;
2657 inst_env->xflag_found = 0;
2658 inst_env->disable_interrupt = 0;
2659}
2660
2661/* Clears the status flags in inst_env. */
2662
a78f21af 2663static void
29134980
OF
2664btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2665{
2666 /* It's an error if we have got a prefix. */
2667 if (inst_env->prefix_found)
2668 {
2669 inst_env->invalid = 1;
2670 return;
2671 }
2672
2673 inst_env->slot_needed = 0;
2674 inst_env->prefix_found = 0;
2675 inst_env->xflag_found = 0;
2676 inst_env->disable_interrupt = 0;
2677}
2678
2679/* Clears the status flags in inst_env. */
2680
a78f21af 2681static void
29134980
OF
2682clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2683{
2684 /* It's an error if we have got a prefix. */
2685 if (inst_env->prefix_found)
2686 {
2687 inst_env->invalid = 1;
2688 return;
2689 }
2690
2691 inst_env->slot_needed = 0;
2692 inst_env->prefix_found = 0;
2693 inst_env->xflag_found = 0;
2694 inst_env->disable_interrupt = 1;
2695}
2696
2697/* Handles the CLEAR instruction if it's in register mode. */
2698
a78f21af 2699static void
29134980
OF
2700reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2701{
2702 /* Check if the target is the PC. */
2703 if (cris_get_operand2 (inst) == REG_PC)
2704 {
2705 /* The instruction will clear the instruction's size bits. */
2706 int clear_size = cris_get_clear_size (inst);
2707 if (clear_size == INST_BYTE_SIZE)
2708 {
2709 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2710 }
2711 if (clear_size == INST_WORD_SIZE)
2712 {
2713 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2714 }
2715 if (clear_size == INST_DWORD_SIZE)
2716 {
2717 inst_env->delay_slot_pc = 0x0;
2718 }
2719 /* The jump will be delayed with one delay slot. So we need a delay
2720 slot. */
2721 inst_env->slot_needed = 1;
2722 inst_env->delay_slot_pc_active = 1;
2723 }
2724 else
2725 {
2726 /* The PC will not change => no delay slot. */
2727 inst_env->slot_needed = 0;
2728 }
2729 inst_env->prefix_found = 0;
2730 inst_env->xflag_found = 0;
2731 inst_env->disable_interrupt = 0;
2732}
2733
2734/* Handles the TEST instruction if it's in register mode. */
2735
a78f21af 2736static void
29134980
OF
2737reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2738{
2739 /* It's an error if we have got a prefix. */
2740 if (inst_env->prefix_found)
2741 {
2742 inst_env->invalid = 1;
2743 return;
2744 }
2745 inst_env->slot_needed = 0;
2746 inst_env->prefix_found = 0;
2747 inst_env->xflag_found = 0;
2748 inst_env->disable_interrupt = 0;
2749
2750}
2751
2752/* Handles the CLEAR and TEST instruction if the instruction isn't
2753 in register mode. */
2754
a78f21af 2755static void
29134980
OF
2756none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2757{
2758 /* Check if we are in a prefix mode. */
2759 if (inst_env->prefix_found)
2760 {
2761 /* The only way the PC can change is if this instruction is in
2762 assign addressing mode. */
2763 check_assign (inst, inst_env);
2764 }
2765 /* Indirect mode can't change the PC so just check if the mode is
2766 autoincrement. */
2767 else if (cris_get_mode (inst) == AUTOINC_MODE)
2768 {
2769 process_autoincrement (cris_get_size (inst), inst, inst_env);
2770 }
2771 inst_env->slot_needed = 0;
2772 inst_env->prefix_found = 0;
2773 inst_env->xflag_found = 0;
2774 inst_env->disable_interrupt = 0;
2775}
2776
2777/* Checks that the PC isn't the destination register or the instructions has
2778 a prefix. */
2779
a78f21af 2780static void
29134980
OF
2781dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2782{
2783 /* It's invalid to have the PC as the destination. The instruction can't
2784 have a prefix. */
2785 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2786 {
2787 inst_env->invalid = 1;
2788 return;
2789 }
2790
2791 inst_env->slot_needed = 0;
2792 inst_env->prefix_found = 0;
2793 inst_env->xflag_found = 0;
2794 inst_env->disable_interrupt = 0;
2795}
2796
2797/* Checks that the instruction doesn't have a prefix. */
2798
a78f21af 2799static void
29134980
OF
2800break_op (unsigned short inst, inst_env_type *inst_env)
2801{
2802 /* The instruction can't have a prefix. */
2803 if (inst_env->prefix_found)
2804 {
2805 inst_env->invalid = 1;
2806 return;
2807 }
2808
2809 inst_env->slot_needed = 0;
2810 inst_env->prefix_found = 0;
2811 inst_env->xflag_found = 0;
2812 inst_env->disable_interrupt = 1;
2813}
2814
2815/* Checks that the PC isn't the destination register and that the instruction
2816 doesn't have a prefix. */
2817
a78f21af 2818static void
29134980
OF
2819scc_op (unsigned short inst, inst_env_type *inst_env)
2820{
2821 /* It's invalid to have the PC as the destination. The instruction can't
2822 have a prefix. */
2823 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2824 {
2825 inst_env->invalid = 1;
2826 return;
2827 }
2828
2829 inst_env->slot_needed = 0;
2830 inst_env->prefix_found = 0;
2831 inst_env->xflag_found = 0;
2832 inst_env->disable_interrupt = 1;
2833}
2834
2835/* Handles the register mode JUMP instruction. */
2836
a78f21af 2837static void
29134980
OF
2838reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2839{
2840 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2841 you can't have a prefix. */
2842 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2847
2848 /* Just change the PC. */
2849 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2850 inst_env->slot_needed = 0;
2851 inst_env->prefix_found = 0;
2852 inst_env->xflag_found = 0;
2853 inst_env->disable_interrupt = 1;
2854}
2855
2856/* Handles the JUMP instruction for all modes except register. */
2857
a78f21af
AC
2858static void
2859none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2860{
2861 unsigned long newpc;
2862 CORE_ADDR address;
2863
2864 /* It's invalid to do a JUMP in a delay slot. */
2865 if (inst_env->slot_needed)
2866 {
2867 inst_env->invalid = 1;
2868 }
2869 else
2870 {
2871 /* Check if we have a prefix. */
2872 if (inst_env->prefix_found)
2873 {
2874 check_assign (inst, inst_env);
2875
2876 /* Get the new value for the the PC. */
2877 newpc =
2878 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2879 4);
2880 }
2881 else
2882 {
2883 /* Get the new value for the PC. */
2884 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2885 newpc = read_memory_unsigned_integer (address, 4);
2886
2887 /* Check if we should increment a register. */
2888 if (cris_get_mode (inst) == AUTOINC_MODE)
2889 {
2890 inst_env->reg[cris_get_operand1 (inst)] += 4;
2891 }
2892 }
2893 inst_env->reg[REG_PC] = newpc;
2894 }
2895 inst_env->slot_needed = 0;
2896 inst_env->prefix_found = 0;
2897 inst_env->xflag_found = 0;
2898 inst_env->disable_interrupt = 1;
2899}
2900
2901/* Handles moves to special registers (aka P-register) for all modes. */
2902
a78f21af 2903static void
be8626e0
MD
2904move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2905 inst_env_type *inst_env)
29134980
OF
2906{
2907 if (inst_env->prefix_found)
2908 {
2909 /* The instruction has a prefix that means we are only interested if
2910 the instruction is in assign mode. */
2911 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2912 {
2913 /* The prefix handles the problem if we are in a delay slot. */
2914 if (cris_get_operand1 (inst) == REG_PC)
2915 {
2916 /* Just take care of the assign. */
2917 check_assign (inst, inst_env);
2918 }
2919 }
2920 }
2921 else if (cris_get_mode (inst) == AUTOINC_MODE)
2922 {
2923 /* The instruction doesn't have a prefix, the only case left that we
2924 are interested in is the autoincrement mode. */
2925 if (cris_get_operand1 (inst) == REG_PC)
2926 {
2927 /* If the PC is to be incremented it's invalid to be in a
2928 delay slot. */
2929 if (inst_env->slot_needed)
2930 {
2931 inst_env->invalid = 1;
2932 return;
2933 }
2a9ecef2
OF
2934
2935 /* The increment depends on the size of the special register. */
be8626e0 2936 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2937 {
2938 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2939 }
be8626e0 2940 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2941 {
2942 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2943 }
2944 else
2945 {
2946 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2947 }
2948 }
2949 }
2950 inst_env->slot_needed = 0;
2951 inst_env->prefix_found = 0;
2952 inst_env->xflag_found = 0;
2953 inst_env->disable_interrupt = 1;
2954}
2955
2956/* Handles moves from special registers (aka P-register) for all modes
2957 except register. */
2958
a78f21af 2959static void
be8626e0
MD
2960none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2961 inst_env_type *inst_env)
29134980
OF
2962{
2963 if (inst_env->prefix_found)
2964 {
2965 /* The instruction has a prefix that means we are only interested if
2966 the instruction is in assign mode. */
2967 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2968 {
2969 /* The prefix handles the problem if we are in a delay slot. */
2970 if (cris_get_operand1 (inst) == REG_PC)
2971 {
2972 /* Just take care of the assign. */
2973 check_assign (inst, inst_env);
2974 }
2975 }
2976 }
2977 /* The instruction doesn't have a prefix, the only case left that we
2978 are interested in is the autoincrement mode. */
2979 else if (cris_get_mode (inst) == AUTOINC_MODE)
2980 {
2981 if (cris_get_operand1 (inst) == REG_PC)
2982 {
2983 /* If the PC is to be incremented it's invalid to be in a
2984 delay slot. */
2985 if (inst_env->slot_needed)
2986 {
2987 inst_env->invalid = 1;
2988 return;
2989 }
2a9ecef2
OF
2990
2991 /* The increment depends on the size of the special register. */
be8626e0 2992 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2993 {
2994 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2995 }
be8626e0 2996 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2997 {
2998 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2999 }
3000 else
3001 {
3002 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3003 }
3004 }
3005 }
3006 inst_env->slot_needed = 0;
3007 inst_env->prefix_found = 0;
3008 inst_env->xflag_found = 0;
3009 inst_env->disable_interrupt = 1;
3010}
3011
3012/* Handles moves from special registers (aka P-register) when the mode
3013 is register. */
3014
a78f21af 3015static void
29134980
OF
3016reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3017{
3018 /* Register mode move from special register can't have a prefix. */
3019 if (inst_env->prefix_found)
3020 {
3021 inst_env->invalid = 1;
3022 return;
3023 }
3024
3025 if (cris_get_operand1 (inst) == REG_PC)
3026 {
3027 /* It's invalid to change the PC in a delay slot. */
3028 if (inst_env->slot_needed)
3029 {
3030 inst_env->invalid = 1;
3031 return;
3032 }
3033 /* The destination is the PC, the jump will have a delay slot. */
3034 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3035 inst_env->slot_needed = 1;
3036 inst_env->delay_slot_pc_active = 1;
3037 }
3038 else
3039 {
3040 /* If the destination isn't PC, there will be no jump. */
3041 inst_env->slot_needed = 0;
3042 }
3043 inst_env->prefix_found = 0;
3044 inst_env->xflag_found = 0;
3045 inst_env->disable_interrupt = 1;
3046}
3047
3048/* Handles the MOVEM from memory to general register instruction. */
3049
a78f21af 3050static void
29134980
OF
3051move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3052{
3053 if (inst_env->prefix_found)
3054 {
3055 /* The prefix handles the problem if we are in a delay slot. Is the
3056 MOVEM instruction going to change the PC? */
3057 if (cris_get_operand2 (inst) >= REG_PC)
3058 {
3059 inst_env->reg[REG_PC] =
3060 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3061 }
3062 /* The assign value is the value after the increment. Normally, the
3063 assign value is the value before the increment. */
3064 if ((cris_get_operand1 (inst) == REG_PC)
3065 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3066 {
3067 inst_env->reg[REG_PC] = inst_env->prefix_value;
3068 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3069 }
3070 }
3071 else
3072 {
3073 /* Is the MOVEM instruction going to change the PC? */
3074 if (cris_get_operand2 (inst) == REG_PC)
3075 {
3076 /* It's invalid to change the PC in a delay slot. */
3077 if (inst_env->slot_needed)
3078 {
3079 inst_env->invalid = 1;
3080 return;
3081 }
3082 inst_env->reg[REG_PC] =
3083 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3084 4);
3085 }
3086 /* The increment is not depending on the size, instead it's depending
3087 on the number of registers loaded from memory. */
3088 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3089 {
3090 /* It's invalid to change the PC in a delay slot. */
3091 if (inst_env->slot_needed)
3092 {
3093 inst_env->invalid = 1;
3094 return;
3095 }
3096 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3097 }
3098 }
3099 inst_env->slot_needed = 0;
3100 inst_env->prefix_found = 0;
3101 inst_env->xflag_found = 0;
3102 inst_env->disable_interrupt = 0;
3103}
3104
3105/* Handles the MOVEM to memory from general register instruction. */
3106
a78f21af 3107static void
29134980
OF
3108move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3109{
3110 if (inst_env->prefix_found)
3111 {
3112 /* The assign value is the value after the increment. Normally, the
3113 assign value is the value before the increment. */
3114 if ((cris_get_operand1 (inst) == REG_PC) &&
3115 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3116 {
3117 /* The prefix handles the problem if we are in a delay slot. */
3118 inst_env->reg[REG_PC] = inst_env->prefix_value;
3119 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3120 }
3121 }
3122 else
3123 {
3124 /* The increment is not depending on the size, instead it's depending
3125 on the number of registers loaded to memory. */
3126 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3127 {
3128 /* It's invalid to change the PC in a delay slot. */
3129 if (inst_env->slot_needed)
3130 {
3131 inst_env->invalid = 1;
3132 return;
3133 }
3134 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3135 }
3136 }
3137 inst_env->slot_needed = 0;
3138 inst_env->prefix_found = 0;
3139 inst_env->xflag_found = 0;
3140 inst_env->disable_interrupt = 0;
3141}
3142
29134980
OF
3143/* Handles the intructions that's not yet implemented, by setting
3144 inst_env->invalid to true. */
3145
a78f21af 3146static void
29134980
OF
3147not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3148{
3149 inst_env->invalid = 1;
3150}
3151
3152/* Handles the XOR instruction. */
3153
a78f21af 3154static void
29134980
OF
3155xor_op (unsigned short inst, inst_env_type *inst_env)
3156{
3157 /* XOR can't have a prefix. */
3158 if (inst_env->prefix_found)
3159 {
3160 inst_env->invalid = 1;
3161 return;
3162 }
3163
3164 /* Check if the PC is the target. */
3165 if (cris_get_operand2 (inst) == REG_PC)
3166 {
3167 /* It's invalid to change the PC in a delay slot. */
3168 if (inst_env->slot_needed)
3169 {
3170 inst_env->invalid = 1;
3171 return;
3172 }
3173 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3174 }
3175 inst_env->slot_needed = 0;
3176 inst_env->prefix_found = 0;
3177 inst_env->xflag_found = 0;
3178 inst_env->disable_interrupt = 0;
3179}
3180
3181/* Handles the MULS instruction. */
3182
a78f21af 3183static void
29134980
OF
3184muls_op (unsigned short inst, inst_env_type *inst_env)
3185{
3186 /* MULS/U can't have a prefix. */
3187 if (inst_env->prefix_found)
3188 {
3189 inst_env->invalid = 1;
3190 return;
3191 }
3192
3193 /* Consider it invalid if the PC is the target. */
3194 if (cris_get_operand2 (inst) == REG_PC)
3195 {
3196 inst_env->invalid = 1;
3197 return;
3198 }
3199 inst_env->slot_needed = 0;
3200 inst_env->prefix_found = 0;
3201 inst_env->xflag_found = 0;
3202 inst_env->disable_interrupt = 0;
3203}
3204
3205/* Handles the MULU instruction. */
3206
a78f21af 3207static void
29134980
OF
3208mulu_op (unsigned short inst, inst_env_type *inst_env)
3209{
3210 /* MULS/U can't have a prefix. */
3211 if (inst_env->prefix_found)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216
3217 /* Consider it invalid if the PC is the target. */
3218 if (cris_get_operand2 (inst) == REG_PC)
3219 {
3220 inst_env->invalid = 1;
3221 return;
3222 }
3223 inst_env->slot_needed = 0;
3224 inst_env->prefix_found = 0;
3225 inst_env->xflag_found = 0;
3226 inst_env->disable_interrupt = 0;
3227}
3228
3229/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3230 The MOVE instruction is the move from source to register. */
3231
a78f21af 3232static void
29134980
OF
3233add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3234 unsigned long source1, unsigned long source2)
3235{
3236 unsigned long pc_mask;
3237 unsigned long operation_mask;
3238
3239 /* Find out how many bits the operation should apply to. */
3240 if (cris_get_size (inst) == INST_BYTE_SIZE)
3241 {
3242 pc_mask = 0xFFFFFF00;
3243 operation_mask = 0xFF;
3244 }
3245 else if (cris_get_size (inst) == INST_WORD_SIZE)
3246 {
3247 pc_mask = 0xFFFF0000;
3248 operation_mask = 0xFFFF;
3249 }
3250 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3251 {
3252 pc_mask = 0x0;
3253 operation_mask = 0xFFFFFFFF;
3254 }
3255 else
3256 {
3257 /* The size is out of range. */
3258 inst_env->invalid = 1;
3259 return;
3260 }
3261
3262 /* The instruction just works on uw_operation_mask bits. */
3263 source2 &= operation_mask;
3264 source1 &= operation_mask;
3265
3266 /* Now calculate the result. The opcode's 3 first bits separates
3267 the different actions. */
3268 switch (cris_get_opcode (inst) & 7)
3269 {
3270 case 0: /* add */
3271 source1 += source2;
3272 break;
3273
3274 case 1: /* move */
3275 source1 = source2;
3276 break;
3277
3278 case 2: /* subtract */
3279 source1 -= source2;
3280 break;
3281
3282 case 3: /* compare */
3283 break;
3284
3285 case 4: /* and */
3286 source1 &= source2;
3287 break;
3288
3289 case 5: /* or */
3290 source1 |= source2;
3291 break;
3292
3293 default:
3294 inst_env->invalid = 1;
3295 return;
3296
3297 break;
3298 }
3299
3300 /* Make sure that the result doesn't contain more than the instruction
3301 size bits. */
3302 source2 &= operation_mask;
3303
3304 /* Calculate the new breakpoint address. */
3305 inst_env->reg[REG_PC] &= pc_mask;
3306 inst_env->reg[REG_PC] |= source1;
3307
3308}
3309
3310/* Extends the value from either byte or word size to a dword. If the mode
3311 is zero extend then the value is extended with zero. If instead the mode
3312 is signed extend the sign bit of the value is taken into consideration. */
3313
a78f21af 3314static unsigned long
29134980
OF
3315do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3316{
3317 /* The size can be either byte or word, check which one it is.
3318 Don't check the highest bit, it's indicating if it's a zero
3319 or sign extend. */
3320 if (cris_get_size (*inst) & INST_WORD_SIZE)
3321 {
3322 /* Word size. */
3323 value &= 0xFFFF;
3324
3325 /* Check if the instruction is signed extend. If so, check if value has
3326 the sign bit on. */
3327 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3328 {
3329 value |= SIGNED_WORD_EXTEND_MASK;
3330 }
3331 }
3332 else
3333 {
3334 /* Byte size. */
3335 value &= 0xFF;
3336
3337 /* Check if the instruction is signed extend. If so, check if value has
3338 the sign bit on. */
3339 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3340 {
3341 value |= SIGNED_BYTE_EXTEND_MASK;
3342 }
3343 }
3344 /* The size should now be dword. */
3345 cris_set_size_to_dword (inst);
3346 return value;
3347}
3348
3349/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3350 instruction. The MOVE instruction is the move from source to register. */
3351
a78f21af 3352static void
29134980
OF
3353reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3354 inst_env_type *inst_env)
3355{
3356 unsigned long operand1;
3357 unsigned long operand2;
3358
3359 /* It's invalid to have a prefix to the instruction. This is a register
3360 mode instruction and can't have a prefix. */
3361 if (inst_env->prefix_found)
3362 {
3363 inst_env->invalid = 1;
3364 return;
3365 }
3366 /* Check if the instruction has PC as its target. */
3367 if (cris_get_operand2 (inst) == REG_PC)
3368 {
3369 if (inst_env->slot_needed)
3370 {
3371 inst_env->invalid = 1;
3372 return;
3373 }
3374 /* The instruction has the PC as its target register. */
7ab98e9e 3375 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3376 operand2 = inst_env->reg[REG_PC];
3377
3378 /* Check if it's a extend, signed or zero instruction. */
3379 if (cris_get_opcode (inst) < 4)
3380 {
3381 operand1 = do_sign_or_zero_extend (operand1, &inst);
3382 }
3383 /* Calculate the PC value after the instruction, i.e. where the
3384 breakpoint should be. The order of the udw_operands is vital. */
3385 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3386 }
3387 inst_env->slot_needed = 0;
3388 inst_env->prefix_found = 0;
3389 inst_env->xflag_found = 0;
3390 inst_env->disable_interrupt = 0;
3391}
3392
3393/* Returns the data contained at address. The size of the data is derived from
3394 the size of the operation. If the instruction is a zero or signed
3395 extend instruction, the size field is changed in instruction. */
3396
a78f21af 3397static unsigned long
29134980
OF
3398get_data_from_address (unsigned short *inst, CORE_ADDR address)
3399{
3400 int size = cris_get_size (*inst);
3401 unsigned long value;
3402
3403 /* If it's an extend instruction we don't want the signed extend bit,
3404 because it influences the size. */
3405 if (cris_get_opcode (*inst) < 4)
3406 {
3407 size &= ~SIGNED_EXTEND_BIT_MASK;
3408 }
3409 /* Is there a need for checking the size? Size should contain the number of
3410 bytes to read. */
3411 size = 1 << size;
3412 value = read_memory_unsigned_integer (address, size);
3413
3414 /* Check if it's an extend, signed or zero instruction. */
3415 if (cris_get_opcode (*inst) < 4)
3416 {
3417 value = do_sign_or_zero_extend (value, inst);
3418 }
3419 return value;
3420}
3421
3422/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3423 instructions. The MOVE instruction is the move from source to register. */
3424
a78f21af 3425static void
29134980
OF
3426handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3427 inst_env_type *inst_env)
3428{
3429 unsigned long operand2;
3430 unsigned long operand3;
3431
3432 check_assign (inst, inst_env);
3433 if (cris_get_operand2 (inst) == REG_PC)
3434 {
3435 operand2 = inst_env->reg[REG_PC];
3436
3437 /* Get the value of the third operand. */
3438 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3439
3440 /* Calculate the PC value after the instruction, i.e. where the
3441 breakpoint should be. The order of the udw_operands is vital. */
3442 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3443 }
3444 inst_env->slot_needed = 0;
3445 inst_env->prefix_found = 0;
3446 inst_env->xflag_found = 0;
3447 inst_env->disable_interrupt = 0;
3448}
3449
3450/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3451 OR instructions. Note that for this to work as expected, the calling
3452 function must have made sure that there is a prefix to this instruction. */
3453
a78f21af 3454static void
29134980
OF
3455three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3456 inst_env_type *inst_env)
3457{
3458 unsigned long operand2;
3459 unsigned long operand3;
3460
3461 if (cris_get_operand1 (inst) == REG_PC)
3462 {
3463 /* The PC will be changed by the instruction. */
3464 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3465
3466 /* Get the value of the third operand. */
3467 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3468
3469 /* Calculate the PC value after the instruction, i.e. where the
3470 breakpoint should be. */
3471 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3472 }
3473 inst_env->slot_needed = 0;
3474 inst_env->prefix_found = 0;
3475 inst_env->xflag_found = 0;
3476 inst_env->disable_interrupt = 0;
3477}
3478
3479/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3480 instructions. The MOVE instruction is the move from source to register. */
3481
a78f21af 3482static void
29134980
OF
3483handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3484 inst_env_type *inst_env)
3485{
3486 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3487 {
3488 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3489 SUB, AND or OR something weird is going on (if everything works these
3490 instructions should end up in the three operand version). */
3491 inst_env->invalid = 1;
3492 return;
3493 }
3494 else
3495 {
3496 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3497 so use it. */
3498 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3499 }
3500 inst_env->slot_needed = 0;
3501 inst_env->prefix_found = 0;
3502 inst_env->xflag_found = 0;
3503 inst_env->disable_interrupt = 0;
3504}
3505
3506/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3507 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3508 source to register. */
3509
a78f21af 3510static void
29134980
OF
3511handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3512 inst_env_type *inst_env)
3513{
3514 unsigned long operand1;
3515 unsigned long operand2;
3516 unsigned long operand3;
3517 int size;
3518
3519 /* The instruction is either an indirect or autoincrement addressing mode.
3520 Check if the destination register is the PC. */
3521 if (cris_get_operand2 (inst) == REG_PC)
3522 {
3523 /* Must be done here, get_data_from_address may change the size
3524 field. */
3525 size = cris_get_size (inst);
3526 operand2 = inst_env->reg[REG_PC];
3527
3528 /* Get the value of the third operand, i.e. the indirect operand. */
3529 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3530 operand3 = get_data_from_address (&inst, operand1);
3531
3532 /* Calculate the PC value after the instruction, i.e. where the
3533 breakpoint should be. The order of the udw_operands is vital. */
3534 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3535 }
3536 /* If this is an autoincrement addressing mode, check if the increment
3537 changes the PC. */
3538 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3539 {
3540 /* Get the size field. */
3541 size = cris_get_size (inst);
3542
3543 /* If it's an extend instruction we don't want the signed extend bit,
3544 because it influences the size. */
3545 if (cris_get_opcode (inst) < 4)
3546 {
3547 size &= ~SIGNED_EXTEND_BIT_MASK;
3548 }
3549 process_autoincrement (size, inst, inst_env);
3550 }
3551 inst_env->slot_needed = 0;
3552 inst_env->prefix_found = 0;
3553 inst_env->xflag_found = 0;
3554 inst_env->disable_interrupt = 0;
3555}
3556
3557/* Handles the two-operand addressing mode, all modes except register, for
3558 the ADD, SUB CMP, AND and OR instruction. */
3559
a78f21af 3560static void
29134980
OF
3561none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3562 inst_env_type *inst_env)
3563{
3564 if (inst_env->prefix_found)
3565 {
3566 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3567 {
3568 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3569 }
3570 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3571 {
3572 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3573 }
3574 else
3575 {
3576 /* The mode is invalid for a prefixed base instruction. */
3577 inst_env->invalid = 1;
3578 return;
3579 }
3580 }
3581 else
3582 {
3583 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3584 }
3585}
3586
3587/* Handles the quick addressing mode for the ADD and SUB instruction. */
3588
a78f21af 3589static void
29134980
OF
3590quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3591{
3592 unsigned long operand1;
3593 unsigned long operand2;
3594
3595 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3596 instruction and can't have a prefix. */
3597 if (inst_env->prefix_found)
3598 {
3599 inst_env->invalid = 1;
3600 return;
3601 }
3602
3603 /* Check if the instruction has PC as its target. */
3604 if (cris_get_operand2 (inst) == REG_PC)
3605 {
3606 if (inst_env->slot_needed)
3607 {
3608 inst_env->invalid = 1;
3609 return;
3610 }
3611 operand1 = cris_get_quick_value (inst);
3612 operand2 = inst_env->reg[REG_PC];
3613
3614 /* The size should now be dword. */
3615 cris_set_size_to_dword (&inst);
3616
3617 /* Calculate the PC value after the instruction, i.e. where the
3618 breakpoint should be. */
3619 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3620 }
3621 inst_env->slot_needed = 0;
3622 inst_env->prefix_found = 0;
3623 inst_env->xflag_found = 0;
3624 inst_env->disable_interrupt = 0;
3625}
3626
3627/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3628
a78f21af 3629static void
29134980
OF
3630quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3631{
3632 unsigned long operand1;
3633 unsigned long operand2;
3634
3635 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3636 instruction and can't have a prefix. */
3637 if (inst_env->prefix_found)
3638 {
3639 inst_env->invalid = 1;
3640 return;
3641 }
3642 /* Check if the instruction has PC as its target. */
3643 if (cris_get_operand2 (inst) == REG_PC)
3644 {
3645 if (inst_env->slot_needed)
3646 {
3647 inst_env->invalid = 1;
3648 return;
3649 }
3650 /* The instruction has the PC as its target register. */
3651 operand1 = cris_get_quick_value (inst);
3652 operand2 = inst_env->reg[REG_PC];
3653
3654 /* The quick value is signed, so check if we must do a signed extend. */
3655 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3656 {
3657 /* sign extend */
3658 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3659 }
3660 /* The size should now be dword. */
3661 cris_set_size_to_dword (&inst);
3662
3663 /* Calculate the PC value after the instruction, i.e. where the
3664 breakpoint should be. */
3665 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3666 }
3667 inst_env->slot_needed = 0;
3668 inst_env->prefix_found = 0;
3669 inst_env->xflag_found = 0;
3670 inst_env->disable_interrupt = 0;
3671}
3672
3673/* Translate op_type to a function and call it. */
3674
a78f21af 3675static void
be8626e0
MD
3676cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3677 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3678{
3679 switch (op_type)
3680 {
3681 case cris_not_implemented_op:
3682 not_implemented_op (inst, inst_env);
3683 break;
3684
3685 case cris_abs_op:
3686 abs_op (inst, inst_env);
3687 break;
3688
3689 case cris_addi_op:
3690 addi_op (inst, inst_env);
3691 break;
3692
3693 case cris_asr_op:
3694 asr_op (inst, inst_env);
3695 break;
3696
3697 case cris_asrq_op:
3698 asrq_op (inst, inst_env);
3699 break;
3700
3701 case cris_ax_ei_setf_op:
3702 ax_ei_setf_op (inst, inst_env);
3703 break;
3704
3705 case cris_bdap_prefix:
3706 bdap_prefix (inst, inst_env);
3707 break;
3708
3709 case cris_biap_prefix:
3710 biap_prefix (inst, inst_env);
3711 break;
3712
3713 case cris_break_op:
3714 break_op (inst, inst_env);
3715 break;
3716
3717 case cris_btst_nop_op:
3718 btst_nop_op (inst, inst_env);
3719 break;
3720
3721 case cris_clearf_di_op:
3722 clearf_di_op (inst, inst_env);
3723 break;
3724
3725 case cris_dip_prefix:
3726 dip_prefix (inst, inst_env);
3727 break;
3728
3729 case cris_dstep_logshift_mstep_neg_not_op:
3730 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3731 break;
3732
3733 case cris_eight_bit_offset_branch_op:
3734 eight_bit_offset_branch_op (inst, inst_env);
3735 break;
3736
3737 case cris_move_mem_to_reg_movem_op:
3738 move_mem_to_reg_movem_op (inst, inst_env);
3739 break;
3740
3741 case cris_move_reg_to_mem_movem_op:
3742 move_reg_to_mem_movem_op (inst, inst_env);
3743 break;
3744
3745 case cris_move_to_preg_op:
be8626e0 3746 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3747 break;
3748
3749 case cris_muls_op:
3750 muls_op (inst, inst_env);
3751 break;
3752
3753 case cris_mulu_op:
3754 mulu_op (inst, inst_env);
3755 break;
3756
3757 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3758 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3759 break;
3760
3761 case cris_none_reg_mode_clear_test_op:
3762 none_reg_mode_clear_test_op (inst, inst_env);
3763 break;
3764
3765 case cris_none_reg_mode_jump_op:
3766 none_reg_mode_jump_op (inst, inst_env);
3767 break;
3768
3769 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3770 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3771 break;
3772
3773 case cris_quick_mode_add_sub_op:
3774 quick_mode_add_sub_op (inst, inst_env);
3775 break;
3776
3777 case cris_quick_mode_and_cmp_move_or_op:
3778 quick_mode_and_cmp_move_or_op (inst, inst_env);
3779 break;
3780
3781 case cris_quick_mode_bdap_prefix:
3782 quick_mode_bdap_prefix (inst, inst_env);
3783 break;
3784
3785 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3786 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3787 break;
3788
3789 case cris_reg_mode_clear_op:
3790 reg_mode_clear_op (inst, inst_env);
3791 break;
3792
3793 case cris_reg_mode_jump_op:
3794 reg_mode_jump_op (inst, inst_env);
3795 break;
3796
3797 case cris_reg_mode_move_from_preg_op:
3798 reg_mode_move_from_preg_op (inst, inst_env);
3799 break;
3800
3801 case cris_reg_mode_test_op:
3802 reg_mode_test_op (inst, inst_env);
3803 break;
3804
3805 case cris_scc_op:
3806 scc_op (inst, inst_env);
3807 break;
3808
3809 case cris_sixteen_bit_offset_branch_op:
3810 sixteen_bit_offset_branch_op (inst, inst_env);
3811 break;
3812
3813 case cris_three_operand_add_sub_cmp_and_or_op:
3814 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3815 break;
3816
3817 case cris_three_operand_bound_op:
3818 three_operand_bound_op (inst, inst_env);
3819 break;
3820
3821 case cris_two_operand_bound_op:
3822 two_operand_bound_op (inst, inst_env);
3823 break;
3824
3825 case cris_xor_op:
3826 xor_op (inst, inst_env);
3827 break;
3828 }
3829}
3830
3831/* This wrapper is to avoid cris_get_assembler being called before
3832 exec_bfd has been set. */
3833
3834static int
a89aa300 3835cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3836{
a89aa300 3837 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3838 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3839 disassembler, even when there is no BFD. Does something like
3840 "gdb; target remote; disassmeble *0x123" work? */
3841 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3842 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3843 gdb_assert (print_insn != NULL);
3844 return print_insn (addr, info);
29134980
OF
3845}
3846
dbbff683
OF
3847/* Copied from <asm/elf.h>. */
3848typedef unsigned long elf_greg_t;
3849
3850/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3851#define CRISV10_ELF_NGREG 35
3852typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3853
3854#define CRISV32_ELF_NGREG 32
3855typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3856
3857/* Unpack an elf_gregset_t into GDB's register cache. */
3858
a78f21af 3859static void
c6b4e5a2 3860cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
dbbff683 3861{
7fbe2eba
UW
3862 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
dbbff683
OF
3864 int i;
3865 elf_greg_t *regp = *gregsetp;
3866 static char zerobuf[4] = {0};
3867
3868 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3869 knows about the actual size of each register so that's no problem. */
3870 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3871 {
c6b4e5a2 3872 regcache_raw_supply (regcache, i, (char *)&regp[i]);
dbbff683 3873 }
c600d464
OF
3874
3875 if (tdep->cris_version == 32)
3876 {
3877 /* Needed to set pseudo-register PC for CRISv32. */
3878 /* FIXME: If ERP is in a delay slot at this point then the PC will
3879 be wrong. Issue a warning to alert the user. */
7fbe2eba 3880 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
c600d464
OF
3881 (char *)&regp[ERP_REGNUM]);
3882
3883 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3884 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3885 }
dbbff683
OF
3886}
3887
3888/* Use a local version of this function to get the correct types for
3889 regsets, until multi-arch core support is ready. */
3890
3891static void
9eefc95f
UW
3892fetch_core_registers (struct regcache *regcache,
3893 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3894 int which, CORE_ADDR reg_addr)
3895{
3896 elf_gregset_t gregset;
3897
3898 switch (which)
3899 {
3900 case 0:
c600d464
OF
3901 if (core_reg_size != sizeof (elf_gregset_t)
3902 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3903 {
8a3fe4f8 3904 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3905 }
3906 else
3907 {
3908 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3909 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3910 }
3911
3912 default:
3913 /* We've covered all the kinds of registers we know about here,
3914 so this must be something we wouldn't know what to do with
3915 anyway. Just ignore it. */
3916 break;
3917 }
3918}
3919
3920static struct core_fns cris_elf_core_fns =
3921{
3922 bfd_target_elf_flavour, /* core_flavour */
3923 default_check_format, /* check_format */
3924 default_core_sniffer, /* core_sniffer */
3925 fetch_core_registers, /* core_read_registers */
3926 NULL /* next */
3927};
3928
a78f21af
AC
3929extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3930
29134980
OF
3931void
3932_initialize_cris_tdep (void)
3933{
a5f6c8f5
OF
3934 static struct cmd_list_element *cris_set_cmdlist;
3935 static struct cmd_list_element *cris_show_cmdlist;
3936
29134980
OF
3937 struct cmd_list_element *c;
3938
3939 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3940
29134980 3941 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3942 add_setshow_uinteger_cmd ("cris-version", class_support,
3943 &usr_cmd_cris_version,
7915a72c
AC
3944 _("Set the current CRIS version."),
3945 _("Show the current CRIS version."),
bdd56253
OF
3946 _("\
3947Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3948Defaults to 10. "),
2c5b56ce 3949 set_cris_version,
7915a72c 3950 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3951 &setlist, &showlist);
0e6bdb31
OF
3952
3953 add_setshow_enum_cmd ("cris-mode", class_support,
3954 cris_modes, &usr_cmd_cris_mode,
3955 _("Set the current CRIS mode."),
3956 _("Show the current CRIS mode."),
bdd56253
OF
3957 _("\
3958Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3959Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3960 set_cris_mode,
3961 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3962 &setlist, &showlist);
dbbff683 3963
a5f6c8f5
OF
3964 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3965 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3966 _("Set the usage of Dwarf-2 CFI for CRIS."),
3967 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3968 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3969 set_cris_dwarf2_cfi,
7915a72c 3970 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3971 &setlist, &showlist);
3972
52bd1401 3973 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3974}
3975
3976/* Prints out all target specific values. */
3977
3978static void
3979cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3980{
7fbe2eba 3981 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29134980
OF
3982 if (tdep != NULL)
3983 {
3984 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3985 tdep->cris_version);
0e6bdb31
OF
3986 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3987 tdep->cris_mode);
a5f6c8f5
OF
3988 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3989 tdep->cris_dwarf2_cfi);
29134980
OF
3990 }
3991}
3992
3993static void
a5f6c8f5
OF
3994set_cris_version (char *ignore_args, int from_tty,
3995 struct cmd_list_element *c)
29134980
OF
3996{
3997 struct gdbarch_info info;
3998
a5f6c8f5 3999 usr_cmd_cris_version_valid = 1;
29134980 4000
a5f6c8f5
OF
4001 /* Update the current architecture, if needed. */
4002 gdbarch_info_init (&info);
4003 if (!gdbarch_update_p (info))
4004 internal_error (__FILE__, __LINE__,
e2e0b3e5 4005 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4006}
4007
0e6bdb31
OF
4008static void
4009set_cris_mode (char *ignore_args, int from_tty,
4010 struct cmd_list_element *c)
4011{
4012 struct gdbarch_info info;
4013
4014 /* Update the current architecture, if needed. */
4015 gdbarch_info_init (&info);
4016 if (!gdbarch_update_p (info))
4017 internal_error (__FILE__, __LINE__,
4018 "cris_gdbarch_update: failed to update architecture.");
4019}
4020
29134980 4021static void
a5f6c8f5
OF
4022set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4023 struct cmd_list_element *c)
29134980
OF
4024{
4025 struct gdbarch_info info;
a5f6c8f5
OF
4026
4027 /* Update the current architecture, if needed. */
4028 gdbarch_info_init (&info);
4029 if (!gdbarch_update_p (info))
4030 internal_error (__FILE__, __LINE__,
e2e0b3e5 4031 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4032}
4033
29134980
OF
4034static struct gdbarch *
4035cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4036{
4037 struct gdbarch *gdbarch;
4038 struct gdbarch_tdep *tdep;
4039 int cris_version;
29134980
OF
4040
4041 if (usr_cmd_cris_version_valid)
4042 {
4043 /* Trust the user's CRIS version setting. */
4044 cris_version = usr_cmd_cris_version;
4045 }
c600d464
OF
4046 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4047 {
4048 cris_version = 32;
4049 }
29134980
OF
4050 else
4051 {
4052 /* Assume it's CRIS version 10. */
4053 cris_version = 10;
4054 }
4055
29134980
OF
4056 /* Make the current settings visible to the user. */
4057 usr_cmd_cris_version = cris_version;
29134980 4058
0e6bdb31 4059 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4060 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4061 arches != NULL;
4062 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4063 {
a5f6c8f5
OF
4064 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4065 == usr_cmd_cris_version)
0e6bdb31
OF
4066 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4067 == usr_cmd_cris_mode)
a5f6c8f5
OF
4068 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4069 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4070 return arches->gdbarch;
4071 }
4072
4073 /* No matching architecture was found. Create a new one. */
4074 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4075 gdbarch = gdbarch_alloc (&info, tdep);
4076
a5f6c8f5 4077 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4078 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4079 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4080
4081 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4082 switch (info.byte_order)
4083 {
778eb05e 4084 case BFD_ENDIAN_LITTLE:
29134980
OF
4085 /* Ok. */
4086 break;
4087
d7449b42 4088 case BFD_ENDIAN_BIG:
e2e0b3e5 4089 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4090 break;
4091
4092 default:
e2e0b3e5 4093 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4094 }
4095
b4206d25 4096 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 4097
29134980 4098 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4099
4100 /* Length of ordinary registers used in push_word and a few other
4101 places. register_size() is the real way to know how big a
4102 register is. */
a5f6c8f5 4103
2e4b5889 4104 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 4105 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 4106 which means we have to set this explicitly. */
c600d464 4107 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4108
29134980
OF
4109 /* The total amount of space needed to store (in an array called registers)
4110 GDB's copy of the machine's register state. Note: We can not use
d93859e2 4111 cris_register_size at this point, since it relies on gdbarch
29134980
OF
4112 being set. */
4113 switch (tdep->cris_version)
4114 {
4115 case 0:
4116 case 1:
4117 case 2:
4118 case 3:
29134980
OF
4119 case 8:
4120 case 9:
a5f6c8f5
OF
4121 /* Old versions; not supported. */
4122 internal_error (__FILE__, __LINE__,
e2e0b3e5 4123 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4124 break;
4125
4126 case 10:
4127 case 11:
4128 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4129 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4130 set_gdbarch_pc_regnum (gdbarch, 15);
4131 set_gdbarch_register_type (gdbarch, cris_register_type);
4132 /* There are 32 registers (some of which may not be implemented). */
4133 set_gdbarch_num_regs (gdbarch, 32);
4134 set_gdbarch_register_name (gdbarch, cris_register_name);
4135 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4136 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4137
4138 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4139 break;
4140
4141 case 32:
4142 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4143 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4144 and pseudo-register PC (32 bits). */
4145 set_gdbarch_pc_regnum (gdbarch, 32);
4146 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4147 /* 32 registers + pseudo-register PC + 16 support registers. */
4148 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4149 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4150
4151 set_gdbarch_cannot_store_register
4152 (gdbarch, crisv32_cannot_store_register);
4153 set_gdbarch_cannot_fetch_register
4154 (gdbarch, crisv32_cannot_fetch_register);
4155
4156 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4157
4158 set_gdbarch_single_step_through_delay
4159 (gdbarch, crisv32_single_step_through_delay);
4160
29134980
OF
4161 break;
4162
4163 default:
c600d464 4164 internal_error (__FILE__, __LINE__,
e2e0b3e5 4165 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4166 }
4167
c600d464
OF
4168 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4169 have the same ABI). */
2e4b5889
OF
4170 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4171 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4172 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4173 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4174
4175 /* The stack grows downward. */
4176 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4177
4178 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4179
2e4b5889
OF
4180 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4181 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
94afd7a6 4182 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
2e4b5889 4183
a5f6c8f5
OF
4184 if (tdep->cris_dwarf2_cfi == 1)
4185 {
4186 /* Hook in the Dwarf-2 frame sniffer. */
4187 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4188 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4189 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4190 }
4191
0e6bdb31
OF
4192 if (tdep->cris_mode != cris_mode_guru)
4193 {
94afd7a6 4194 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4195 }
a5f6c8f5 4196
94afd7a6 4197 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4198 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4199
76a9d10f
MK
4200 set_solib_svr4_fetch_link_map_offsets
4201 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4202
36482093
AC
4203 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4204 disassembler, even when there is no BFD. Does something like
4205 "gdb; target remote; disassmeble *0x123" work? */
4206 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4207
29134980
OF
4208 return gdbarch;
4209}
This page took 0.800902 seconds and 4 git commands to generate.