* gdb.dwarf2/dw2-basic.exp, gdb.dwarf2/dw2-intercu.exp: Run tests
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
0fd88904
AC
3 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation,
4 Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
23Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25#include "defs.h"
26#include "frame.h"
2e4b5889
OF
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
30#include "dwarf2-frame.h"
29134980
OF
31#include "symtab.h"
32#include "inferior.h"
33#include "gdbtypes.h"
34#include "gdbcore.h"
35#include "gdbcmd.h"
36#include "target.h"
37#include "value.h"
38#include "opcode/cris.h"
39#include "arch-utils.h"
40#include "regcache.h"
36482093 41#include "gdb_assert.h"
29134980
OF
42
43/* To get entry_point_address. */
9ab9195f 44#include "objfiles.h"
29134980 45
a5f6c8f5 46#include "solib.h" /* Support for shared libraries. */
dbbff683 47#include "solib-svr4.h" /* For struct link_map_offsets. */
9bbe19fb 48#include "gdb_string.h"
a89aa300 49#include "dis-asm.h"
dbbff683 50
29134980
OF
51enum cris_num_regs
52{
53 /* There are no floating point registers. Used in gdbserver low-linux.c. */
54 NUM_FREGS = 0,
55
56 /* There are 16 general registers. */
57 NUM_GENREGS = 16,
58
59 /* There are 16 special registers. */
c600d464
OF
60 NUM_SPECREGS = 16,
61
62 /* CRISv32 has a pseudo PC register, not noted here. */
63
64 /* CRISv32 has 16 support registers. */
65 NUM_SUPPREGS = 16
29134980
OF
66};
67
68/* Register numbers of various important registers.
2e4b5889 69 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
70 STR_REGNUM Contains the address of structure return values.
71 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
72 ARG1_REGNUM Contains the first parameter to a function.
73 ARG2_REGNUM Contains the second parameter to a function.
74 ARG3_REGNUM Contains the third parameter to a function.
75 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
76 SP_REGNUM Contains address of top of stack.
77 PC_REGNUM Contains address of next instruction.
78 SRP_REGNUM Subroutine return pointer register.
79 BRP_REGNUM Breakpoint return pointer register. */
80
29134980
OF
81enum cris_regnums
82{
83 /* Enums with respect to the general registers, valid for all
c600d464 84 CRIS versions. The frame pointer is always in R8. */
2e4b5889 85 CRIS_FP_REGNUM = 8,
c600d464 86 /* ABI related registers. */
29134980
OF
87 STR_REGNUM = 9,
88 RET_REGNUM = 10,
89 ARG1_REGNUM = 10,
90 ARG2_REGNUM = 11,
91 ARG3_REGNUM = 12,
92 ARG4_REGNUM = 13,
93
c600d464 94 /* Registers which happen to be common. */
29134980 95 VR_REGNUM = 17,
c600d464
OF
96 MOF_REGNUM = 23,
97 SRP_REGNUM = 27,
98
99 /* CRISv10 et. al. specific registers. */
100 P0_REGNUM = 16,
29134980
OF
101 P4_REGNUM = 20,
102 CCR_REGNUM = 21,
29134980
OF
103 P8_REGNUM = 24,
104 IBR_REGNUM = 25,
105 IRP_REGNUM = 26,
29134980 106 BAR_REGNUM = 28,
2a9ecef2 107 DCCR_REGNUM = 29,
29134980 108 BRP_REGNUM = 30,
c600d464
OF
109 USP_REGNUM = 31,
110
111 /* CRISv32 specific registers. */
112 ACR_REGNUM = 15,
113 BZ_REGNUM = 16,
114 PID_REGNUM = 18,
115 SRS_REGNUM = 19,
116 WZ_REGNUM = 20,
117 EXS_REGNUM = 21,
118 EDA_REGNUM = 22,
119 DZ_REGNUM = 24,
120 EBP_REGNUM = 25,
121 ERP_REGNUM = 26,
122 NRP_REGNUM = 28,
123 CCS_REGNUM = 29,
124 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
125 SPC_REGNUM = 31,
126 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
127
128 S0_REGNUM = 33,
129 S1_REGNUM = 34,
130 S2_REGNUM = 35,
131 S3_REGNUM = 36,
132 S4_REGNUM = 37,
133 S5_REGNUM = 38,
134 S6_REGNUM = 39,
135 S7_REGNUM = 40,
136 S8_REGNUM = 41,
137 S9_REGNUM = 42,
138 S10_REGNUM = 43,
139 S11_REGNUM = 44,
140 S12_REGNUM = 45,
141 S13_REGNUM = 46,
142 S14_REGNUM = 47,
143 S15_REGNUM = 48,
29134980
OF
144};
145
146extern const struct cris_spec_reg cris_spec_regs[];
147
148/* CRIS version, set via the user command 'set cris-version'. Affects
149 register names and sizes.*/
a5f6c8f5 150static unsigned int usr_cmd_cris_version;
29134980
OF
151
152/* Indicates whether to trust the above variable. */
153static int usr_cmd_cris_version_valid = 0;
154
a5f6c8f5
OF
155/* Whether to make use of Dwarf-2 CFI (default on). */
156static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 157
29134980
OF
158/* CRIS architecture specific information. */
159struct gdbarch_tdep
160{
a5f6c8f5
OF
161 unsigned int cris_version;
162 int cris_dwarf2_cfi;
29134980
OF
163};
164
165/* Functions for accessing target dependent data. */
166
167static int
168cris_version (void)
169{
170 return (gdbarch_tdep (current_gdbarch)->cris_version);
171}
172
a5f6c8f5
OF
173/* Sigtramp identification code copied from i386-linux-tdep.c. */
174
175#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
176#define SIGTRAMP_OFFSET0 0
177#define SIGTRAMP_INSN1 0xe93d /* break 13 */
178#define SIGTRAMP_OFFSET1 4
179
180static const unsigned short sigtramp_code[] =
181{
182 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
183 SIGTRAMP_INSN1 /* break 13 */
184};
185
186#define SIGTRAMP_LEN (sizeof sigtramp_code)
187
188/* Note: same length as normal sigtramp code. */
189
190static const unsigned short rt_sigtramp_code[] =
29134980 191{
a5f6c8f5
OF
192 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
193 SIGTRAMP_INSN1 /* break 13 */
194};
195
196/* If PC is in a sigtramp routine, return the address of the start of
197 the routine. Otherwise, return 0. */
198
199static CORE_ADDR
200cris_sigtramp_start (struct frame_info *next_frame)
201{
202 CORE_ADDR pc = frame_pc_unwind (next_frame);
203 unsigned short buf[SIGTRAMP_LEN];
204
205 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
206 return 0;
207
208 if (buf[0] != SIGTRAMP_INSN0)
209 {
210 if (buf[0] != SIGTRAMP_INSN1)
211 return 0;
212
213 pc -= SIGTRAMP_OFFSET1;
214 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
215 return 0;
216 }
217
218 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
219 return 0;
220
221 return pc;
222}
223
224/* If PC is in a RT sigtramp routine, return the address of the start of
225 the routine. Otherwise, return 0. */
226
227static CORE_ADDR
228cris_rt_sigtramp_start (struct frame_info *next_frame)
229{
230 CORE_ADDR pc = frame_pc_unwind (next_frame);
231 unsigned short buf[SIGTRAMP_LEN];
232
233 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
234 return 0;
235
236 if (buf[0] != SIGTRAMP_INSN0)
237 {
238 if (buf[0] != SIGTRAMP_INSN1)
239 return 0;
240
241 pc -= SIGTRAMP_OFFSET1;
242 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
243 return 0;
244 }
245
246 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
247 return 0;
248
249 return pc;
250}
251
252/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
253 routine, return the address of the associated sigcontext structure. */
254
255static CORE_ADDR
256cris_sigcontext_addr (struct frame_info *next_frame)
257{
258 CORE_ADDR pc;
259 CORE_ADDR sp;
260 char buf[4];
261
262 frame_unwind_register (next_frame, SP_REGNUM, buf);
263 sp = extract_unsigned_integer (buf, 4);
264
265 /* Look for normal sigtramp frame first. */
266 pc = cris_sigtramp_start (next_frame);
267 if (pc)
268 {
269 /* struct signal_frame (arch/cris/kernel/signal.c) contains
270 struct sigcontext as its first member, meaning the SP points to
271 it already. */
272 return sp;
273 }
274
275 pc = cris_rt_sigtramp_start (next_frame);
276 if (pc)
277 {
278 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
279 a struct ucontext, which in turn contains a struct sigcontext.
280 Magic digging:
281 4 + 4 + 128 to struct ucontext, then
282 4 + 4 + 12 to struct sigcontext. */
283 return (sp + 156);
284 }
285
286 error ("Couldn't recognize signal trampoline.");
287 return 0;
29134980
OF
288}
289
2e4b5889 290struct cris_unwind_cache
29134980 291{
2e4b5889
OF
292 /* The previous frame's inner most stack address. Used as this
293 frame ID's stack_addr. */
294 CORE_ADDR prev_sp;
295 /* The frame's base, optionally used by the high-level debug info. */
296 CORE_ADDR base;
297 int size;
298 /* How far the SP and r8 (FP) have been offset from the start of
299 the stack frame (as defined by the previous frame's stack
300 pointer). */
301 LONGEST sp_offset;
302 LONGEST r8_offset;
303 int uses_frame;
304
305 /* From old frame_extra_info struct. */
29134980
OF
306 CORE_ADDR return_pc;
307 int leaf_function;
2e4b5889
OF
308
309 /* Table indicating the location of each and every register. */
310 struct trad_frame_saved_reg *saved_regs;
29134980
OF
311};
312
a5f6c8f5
OF
313static struct cris_unwind_cache *
314cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
315 void **this_cache)
316{
317 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
318 struct cris_unwind_cache *info;
319 CORE_ADDR pc;
320 CORE_ADDR sp;
321 CORE_ADDR addr;
322 char buf[4];
323 int i;
324
325 if ((*this_cache))
326 return (*this_cache);
327
328 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
329 (*this_cache) = info;
330 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
331
332 /* Zero all fields. */
333 info->prev_sp = 0;
334 info->base = 0;
335 info->size = 0;
336 info->sp_offset = 0;
337 info->r8_offset = 0;
338 info->uses_frame = 0;
339 info->return_pc = 0;
340 info->leaf_function = 0;
341
342 frame_unwind_register (next_frame, SP_REGNUM, buf);
343 info->base = extract_unsigned_integer (buf, 4);
344
345 addr = cris_sigcontext_addr (next_frame);
346
347 /* Layout of the sigcontext struct:
348 struct sigcontext {
349 struct pt_regs regs;
350 unsigned long oldmask;
351 unsigned long usp;
352 }; */
353
c600d464
OF
354 if (tdep->cris_version == 10)
355 {
356 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
357 struct pt_regs. */
358 for (i = 0; i <= 13; i++)
359 info->saved_regs[i].addr = addr + ((15 - i) * 4);
360
361 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
362 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
363 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
364 /* Note: IRP is off by 2 at this point. There's no point in correcting
365 it though since that will mean that the backtrace will show a PC
366 different from what is shown when stopped. */
367 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
368 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
369 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
370 }
371 else
372 {
373 /* CRISv32. */
374 /* R0 to R13 are stored in order at offset (1 * 4) in
375 struct pt_regs. */
376 for (i = 0; i <= 13; i++)
377 info->saved_regs[i].addr = addr + ((i + 1) * 4);
378
379 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
380 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
381 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
382 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
383 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
384 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
385 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
386 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
387 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
388
389 /* FIXME: If ERP is in a delay slot at this point then the PC will
390 be wrong at this point. This problem manifests itself in the
391 sigaltstack.exp test case, which occasionally generates FAILs when
392 the signal is received while in a delay slot.
393
394 This could be solved by a couple of read_memory_unsigned_integer and a
395 trad_frame_set_value. */
396 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
397
398 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
399 }
a5f6c8f5
OF
400
401 return info;
402}
403
404static void
405cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
406 struct frame_id *this_id)
407{
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
411}
412
413/* Forward declaration. */
414
415static void cris_frame_prev_register (struct frame_info *next_frame,
416 void **this_prologue_cache,
417 int regnum, int *optimizedp,
418 enum lval_type *lvalp, CORE_ADDR *addrp,
419 int *realnump, void *bufferp);
420static void
421cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
422 void **this_cache,
423 int regnum, int *optimizedp,
424 enum lval_type *lvalp, CORE_ADDR *addrp,
425 int *realnump, void *valuep)
426{
427 /* Make sure we've initialized the cache. */
428 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
429 cris_frame_prev_register (next_frame, this_cache, regnum,
430 optimizedp, lvalp, addrp, realnump, valuep);
431}
432
433static const struct frame_unwind cris_sigtramp_frame_unwind =
434{
435 SIGTRAMP_FRAME,
436 cris_sigtramp_frame_this_id,
437 cris_sigtramp_frame_prev_register
438};
439
440static const struct frame_unwind *
441cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
442{
443 if (cris_sigtramp_start (next_frame)
444 || cris_rt_sigtramp_start (next_frame))
445 return &cris_sigtramp_frame_unwind;
446
447 return NULL;
448}
449
c600d464
OF
450int
451crisv32_single_step_through_delay (struct gdbarch *gdbarch,
452 struct frame_info *this_frame)
453{
454 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
455 ULONGEST erp;
456 int ret = 0;
457 char buf[4];
458
459 frame_unwind_register (this_frame, ERP_REGNUM, buf);
460 erp = extract_unsigned_integer (buf, 4);
461
462 if (erp & 0x1)
463 {
464 /* In delay slot - check if there's a breakpoint at the preceding
465 instruction. */
466 if (breakpoint_here_p (erp & ~0x1))
467 ret = 1;
468 }
469 return ret;
470}
471
472/* Hardware watchpoint support. */
473
474/* We support 6 hardware data watchpoints, but cannot trigger on execute
475 (any combination of read/write is fine). */
476
477int
478cris_can_use_hardware_watchpoint (int type, int count, int other)
479{
480 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
481
482 /* No bookkeeping is done here; it is handled by the remote debug agent. */
483
484 if (tdep->cris_version != 32)
485 return 0;
486 else
487 /* CRISv32: Six data watchpoints, one for instructions. */
488 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
489 || type == bp_hardware_watchpoint) && count <= 6)
490 || (type == bp_hardware_breakpoint && count <= 1));
491}
492
493/* The CRISv32 hardware data watchpoints work by specifying ranges,
494 which have no alignment or length restrictions. */
495
496int
497cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
498{
499 return 1;
500}
501
502/* If the inferior has some watchpoint that triggered, return the
503 address associated with that watchpoint. Otherwise, return
504 zero. */
505
506CORE_ADDR
507cris_stopped_data_address (void)
508{
509 CORE_ADDR eda;
510 eda = read_register (EDA_REGNUM);
511 return eda;
512}
513
29134980 514/* The instruction environment needed to find single-step breakpoints. */
c600d464 515
29134980
OF
516typedef
517struct instruction_environment
518{
519 unsigned long reg[NUM_GENREGS];
520 unsigned long preg[NUM_SPECREGS];
521 unsigned long branch_break_address;
522 unsigned long delay_slot_pc;
523 unsigned long prefix_value;
524 int branch_found;
525 int prefix_found;
526 int invalid;
527 int slot_needed;
528 int delay_slot_pc_active;
529 int xflag_found;
530 int disable_interrupt;
531} inst_env_type;
532
533/* Save old breakpoints in order to restore the state before a single_step.
534 At most, two breakpoints will have to be remembered. */
535typedef
536char binsn_quantum[BREAKPOINT_MAX];
537static binsn_quantum break_mem[2];
538static CORE_ADDR next_pc = 0;
539static CORE_ADDR branch_target_address = 0;
540static unsigned char branch_break_inserted = 0;
541
542/* Machine-dependencies in CRIS for opcodes. */
543
544/* Instruction sizes. */
545enum cris_instruction_sizes
546{
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550};
551
552/* Addressing modes. */
553enum cris_addressing_modes
554{
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558};
559
560/* Prefix addressing modes. */
561enum cris_prefix_addressing_modes
562{
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568};
569
570/* Masks for opcodes. */
571enum cris_opcode_masks
572{
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582};
583
584/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591static int
592cris_get_operand2 (unsigned short insn)
593{
594 return ((insn & 0xF000) >> 12);
595}
596
597static int
598cris_get_mode (unsigned short insn)
599{
600 return ((insn & 0x0C00) >> 10);
601}
602
603static int
604cris_get_opcode (unsigned short insn)
605{
606 return ((insn & 0x03C0) >> 6);
607}
608
609static int
610cris_get_size (unsigned short insn)
611{
612 return ((insn & 0x0030) >> 4);
613}
614
615static int
616cris_get_operand1 (unsigned short insn)
617{
618 return (insn & 0x000F);
619}
620
621/* Additional functions in order to handle opcodes. */
622
29134980
OF
623static int
624cris_get_quick_value (unsigned short insn)
625{
626 return (insn & 0x003F);
627}
628
629static int
630cris_get_bdap_quick_offset (unsigned short insn)
631{
632 return (insn & 0x00FF);
633}
634
635static int
636cris_get_branch_short_offset (unsigned short insn)
637{
638 return (insn & 0x00FF);
639}
640
641static int
642cris_get_asr_shift_steps (unsigned long value)
643{
644 return (value & 0x3F);
645}
646
29134980
OF
647static int
648cris_get_clear_size (unsigned short insn)
649{
650 return ((insn) & 0xC000);
651}
652
653static int
654cris_is_signed_extend_bit_on (unsigned short insn)
655{
656 return (((insn) & 0x20) == 0x20);
657}
658
659static int
660cris_is_xflag_bit_on (unsigned short insn)
661{
662 return (((insn) & 0x1000) == 0x1000);
663}
664
665static void
666cris_set_size_to_dword (unsigned short *insn)
667{
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670}
671
8535cb38 672static signed char
29134980
OF
673cris_get_signed_offset (unsigned short insn)
674{
8535cb38 675 return ((signed char) (insn & 0x00FF));
29134980
OF
676}
677
678/* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
680static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
681
29134980
OF
682static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
683 struct gdbarch_list *);
684
29134980
OF
685static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
686
a5f6c8f5
OF
687static void set_cris_version (char *ignore_args, int from_tty,
688 struct cmd_list_element *c);
29134980 689
a5f6c8f5
OF
690static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
691 struct cmd_list_element *c);
29134980 692
2e4b5889
OF
693static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
694 struct frame_info *next_frame,
695 struct cris_unwind_cache *info);
696
697static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
698 struct frame_info *next_frame);
699
700static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
701 struct frame_info *next_frame);
702
703/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
704 order. The below implements a FILO (stack) to do this.
705 Copied from d10v-tdep.c. */
2e4b5889
OF
706
707struct stack_item
708{
709 int len;
710 struct stack_item *prev;
711 void *data;
712};
713
714static struct stack_item *
715push_stack_item (struct stack_item *prev, void *contents, int len)
716{
717 struct stack_item *si;
718 si = xmalloc (sizeof (struct stack_item));
719 si->data = xmalloc (len);
720 si->len = len;
721 si->prev = prev;
722 memcpy (si->data, contents, len);
723 return si;
724}
725
726static struct stack_item *
727pop_stack_item (struct stack_item *si)
728{
729 struct stack_item *dead = si;
730 si = si->prev;
731 xfree (dead->data);
732 xfree (dead);
733 return si;
734}
735
736/* Put here the code to store, into fi->saved_regs, the addresses of
737 the saved registers of frame described by FRAME_INFO. This
738 includes special registers such as pc and fp saved in special ways
739 in the stack frame. sp is even more special: the address we return
a5f6c8f5 740 for it IS the sp for the next frame. */
2e4b5889
OF
741
742struct cris_unwind_cache *
743cris_frame_unwind_cache (struct frame_info *next_frame,
744 void **this_prologue_cache)
745{
746 CORE_ADDR pc;
747 struct cris_unwind_cache *info;
748 int i;
749
750 if ((*this_prologue_cache))
751 return (*this_prologue_cache);
752
753 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
754 (*this_prologue_cache) = info;
755 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
756
757 /* Zero all fields. */
758 info->prev_sp = 0;
759 info->base = 0;
760 info->size = 0;
761 info->sp_offset = 0;
762 info->r8_offset = 0;
763 info->uses_frame = 0;
764 info->return_pc = 0;
765 info->leaf_function = 0;
766
767 /* Prologue analysis does the rest... */
768 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
769
770 return info;
771}
772
773/* Given a GDB frame, determine the address of the calling function's
774 frame. This will be used to create a new GDB frame struct. */
775
776static void
777cris_frame_this_id (struct frame_info *next_frame,
778 void **this_prologue_cache,
779 struct frame_id *this_id)
780{
781 struct cris_unwind_cache *info
782 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
783 CORE_ADDR base;
784 CORE_ADDR func;
785 struct frame_id id;
786
787 /* The FUNC is easy. */
788 func = frame_func_unwind (next_frame);
789
790 /* Hopefully the prologue analysis either correctly determined the
791 frame's base (which is the SP from the previous frame), or set
792 that base to "NULL". */
793 base = info->prev_sp;
794 if (base == 0)
795 return;
796
797 id = frame_id_build (base, func);
798
799 (*this_id) = id;
800}
801
802static void
803cris_frame_prev_register (struct frame_info *next_frame,
804 void **this_prologue_cache,
805 int regnum, int *optimizedp,
806 enum lval_type *lvalp, CORE_ADDR *addrp,
807 int *realnump, void *bufferp)
808{
809 struct cris_unwind_cache *info
810 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
811 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
812 optimizedp, lvalp, addrp, realnump, bufferp);
2e4b5889
OF
813}
814
815/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
816 dummy frame. The frame ID's base needs to match the TOS value
817 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
818 breakpoint. */
819
820static struct frame_id
821cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
822{
823 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
824 frame_pc_unwind (next_frame));
825}
826
827static CORE_ADDR
828cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
829{
830 /* Align to the size of an instruction (so that they can safely be
831 pushed onto the stack). */
832 return sp & ~3;
833}
834
835static CORE_ADDR
836cris_push_dummy_code (struct gdbarch *gdbarch,
837 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
838 struct value **args, int nargs,
839 struct type *value_type,
840 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
841{
842 /* Allocate space sufficient for a breakpoint. */
843 sp = (sp - 4) & ~3;
844 /* Store the address of that breakpoint */
845 *bp_addr = sp;
846 /* CRIS always starts the call at the callee's entry point. */
847 *real_pc = funaddr;
848 return sp;
849}
850
851static CORE_ADDR
7d9b040b 852cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
853 struct regcache *regcache, CORE_ADDR bp_addr,
854 int nargs, struct value **args, CORE_ADDR sp,
855 int struct_return, CORE_ADDR struct_addr)
856{
857 int stack_alloc;
858 int stack_offset;
859 int argreg;
860 int argnum;
861
862 CORE_ADDR regval;
863
864 /* The function's arguments and memory allocated by gdb for the arguments to
865 point at reside in separate areas on the stack.
866 Both frame pointers grow toward higher addresses. */
867 CORE_ADDR fp_arg;
868 CORE_ADDR fp_mem;
869
870 struct stack_item *si = NULL;
871
a5f6c8f5 872 /* Push the return address. */
2e4b5889
OF
873 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
874
875 /* Are we returning a value using a structure return or a normal value
876 return? struct_addr is the address of the reserved space for the return
877 structure to be written on the stack. */
878 if (struct_return)
879 {
880 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
881 }
882
883 /* Now load as many as possible of the first arguments into registers,
884 and push the rest onto the stack. */
885 argreg = ARG1_REGNUM;
886 stack_offset = 0;
887
888 for (argnum = 0; argnum < nargs; argnum++)
889 {
890 int len;
891 char *val;
892 int reg_demand;
893 int i;
894
4991999e 895 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 896 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
897
898 /* How may registers worth of storage do we need for this argument? */
899 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
900
901 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
902 {
903 /* Data passed by value. Fits in available register(s). */
904 for (i = 0; i < reg_demand; i++)
905 {
906 regcache_cooked_write_unsigned (regcache, argreg,
907 *(unsigned long *) val);
908 argreg++;
909 val += 4;
910 }
911 }
912 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
913 {
914 /* Data passed by value. Does not fit in available register(s).
915 Use the register(s) first, then the stack. */
916 for (i = 0; i < reg_demand; i++)
917 {
918 if (argreg <= ARG4_REGNUM)
919 {
920 regcache_cooked_write_unsigned (regcache, argreg,
921 *(unsigned long *) val);
922 argreg++;
923 val += 4;
924 }
925 else
926 {
927 /* Push item for later so that pushed arguments
928 come in the right order. */
929 si = push_stack_item (si, val, 4);
930 val += 4;
931 }
932 }
933 }
934 else if (len > (2 * 4))
935 {
936 /* FIXME */
937 internal_error (__FILE__, __LINE__, "We don't do this");
938 }
939 else
940 {
941 /* Data passed by value. No available registers. Put it on
942 the stack. */
943 si = push_stack_item (si, val, len);
944 }
945 }
946
947 while (si)
948 {
949 /* fp_arg must be word-aligned (i.e., don't += len) to match
950 the function prologue. */
951 sp = (sp - si->len) & ~3;
952 write_memory (sp, si->data, si->len);
953 si = pop_stack_item (si);
954 }
955
956 /* Finally, update the SP register. */
957 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
958
959 return sp;
960}
961
962static const struct frame_unwind cris_frame_unwind = {
963 NORMAL_FRAME,
964 cris_frame_this_id,
965 cris_frame_prev_register
966};
967
968const struct frame_unwind *
969cris_frame_sniffer (struct frame_info *next_frame)
970{
971 return &cris_frame_unwind;
972}
973
974static CORE_ADDR
975cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
976{
977 struct cris_unwind_cache *info
978 = cris_frame_unwind_cache (next_frame, this_cache);
979 return info->base;
980}
981
982static const struct frame_base cris_frame_base = {
983 &cris_frame_unwind,
984 cris_frame_base_address,
985 cris_frame_base_address,
986 cris_frame_base_address
987};
988
29134980
OF
989/* Frames information. The definition of the struct frame_info is
990
991 CORE_ADDR frame
992 CORE_ADDR pc
5a203e44 993 enum frame_type type;
29134980
OF
994 CORE_ADDR return_pc
995 int leaf_function
996
997 If the compilation option -fno-omit-frame-pointer is present the
998 variable frame will be set to the content of R8 which is the frame
999 pointer register.
1000
1001 The variable pc contains the address where execution is performed
1002 in the present frame. The innermost frame contains the current content
1003 of the register PC. All other frames contain the content of the
1004 register PC in the next frame.
1005
5a203e44
AC
1006 The variable `type' indicates the frame's type: normal, SIGTRAMP
1007 (associated with a signal handler), dummy (associated with a dummy
1008 frame).
29134980
OF
1009
1010 The variable return_pc contains the address where execution should be
1011 resumed when the present frame has finished, the return address.
1012
1013 The variable leaf_function is 1 if the return address is in the register
1014 SRP, and 0 if it is on the stack.
1015
1016 Prologue instructions C-code.
1017 The prologue may consist of (-fno-omit-frame-pointer)
1018 1) 2)
1019 push srp
1020 push r8 push r8
1021 move.d sp,r8 move.d sp,r8
1022 subq X,sp subq X,sp
1023 movem rY,[sp] movem rY,[sp]
1024 move.S rZ,[r8-U] move.S rZ,[r8-U]
1025
1026 where 1 is a non-terminal function, and 2 is a leaf-function.
1027
1028 Note that this assumption is extremely brittle, and will break at the
1029 slightest change in GCC's prologue.
1030
1031 If local variables are declared or register contents are saved on stack
1032 the subq-instruction will be present with X as the number of bytes
1033 needed for storage. The reshuffle with respect to r8 may be performed
1034 with any size S (b, w, d) and any of the general registers Z={0..13}.
1035 The offset U should be representable by a signed 8-bit value in all cases.
1036 Thus, the prefix word is assumed to be immediate byte offset mode followed
1037 by another word containing the instruction.
1038
1039 Degenerate cases:
1040 3)
1041 push r8
1042 move.d sp,r8
1043 move.d r8,sp
1044 pop r8
1045
1046 Prologue instructions C++-code.
1047 Case 1) and 2) in the C-code may be followed by
1048
1049 move.d r10,rS ; this
1050 move.d r11,rT ; P1
1051 move.d r12,rU ; P2
1052 move.d r13,rV ; P3
1053 move.S [r8+U],rZ ; P4
1054
1055 if any of the call parameters are stored. The host expects these
1056 instructions to be executed in order to get the call parameters right. */
1057
1058/* Examine the prologue of a function. The variable ip is the address of
1059 the first instruction of the prologue. The variable limit is the address
1060 of the first instruction after the prologue. The variable fi contains the
1061 information in struct frame_info. The variable frameless_p controls whether
1062 the entire prologue is examined (0) or just enough instructions to
1063 determine that it is a prologue (1). */
1064
a78f21af 1065static CORE_ADDR
2e4b5889
OF
1066cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1067 struct cris_unwind_cache *info)
29134980
OF
1068{
1069 /* Present instruction. */
1070 unsigned short insn;
1071
1072 /* Next instruction, lookahead. */
1073 unsigned short insn_next;
1074 int regno;
1075
1076 /* Is there a push fp? */
1077 int have_fp;
1078
1079 /* Number of byte on stack used for local variables and movem. */
1080 int val;
1081
1082 /* Highest register number in a movem. */
1083 int regsave;
1084
1085 /* move.d r<source_register>,rS */
1086 short source_register;
1087
2e4b5889
OF
1088 /* Scan limit. */
1089 int limit;
29134980 1090
2e4b5889
OF
1091 /* This frame is with respect to a leaf until a push srp is found. */
1092 if (info)
1093 {
1094 info->leaf_function = 1;
1095 }
29134980
OF
1096
1097 /* Assume nothing on stack. */
1098 val = 0;
1099 regsave = -1;
1100
2e4b5889
OF
1101 /* If we were called without a next_frame, that means we were called
1102 from cris_skip_prologue which already tried to find the end of the
1103 prologue through the symbol information. 64 instructions past current
1104 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1105 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
29134980 1106
29134980 1107 /* Find the prologue instructions. */
a5f6c8f5 1108 while (pc > 0 && pc < limit)
29134980 1109 {
2e4b5889
OF
1110 insn = read_memory_unsigned_integer (pc, 2);
1111 pc += 2;
29134980
OF
1112 if (insn == 0xE1FC)
1113 {
1114 /* push <reg> 32 bit instruction */
2e4b5889
OF
1115 insn_next = read_memory_unsigned_integer (pc, 2);
1116 pc += 2;
29134980 1117 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1118 if (info)
1119 {
1120 info->sp_offset += 4;
1121 }
dbbff683
OF
1122 /* This check, meant to recognize srp, used to be regno ==
1123 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1124 if (insn_next == 0xBE7E)
29134980 1125 {
2e4b5889
OF
1126 if (info)
1127 {
1128 info->leaf_function = 0;
1129 }
29134980 1130 }
b4206d25
OF
1131 else if (insn_next == 0x8FEE)
1132 {
1133 /* push $r8 */
1134 if (info)
1135 {
1136 info->r8_offset = info->sp_offset;
1137 }
1138 }
29134980
OF
1139 }
1140 else if (insn == 0x866E)
1141 {
1142 /* move.d sp,r8 */
2e4b5889
OF
1143 if (info)
1144 {
1145 info->uses_frame = 1;
2e4b5889 1146 }
29134980
OF
1147 continue;
1148 }
1149 else if (cris_get_operand2 (insn) == SP_REGNUM
1150 && cris_get_mode (insn) == 0x0000
1151 && cris_get_opcode (insn) == 0x000A)
1152 {
1153 /* subq <val>,sp */
2e4b5889
OF
1154 if (info)
1155 {
1156 info->sp_offset += cris_get_quick_value (insn);
1157 }
29134980
OF
1158 }
1159 else if (cris_get_mode (insn) == 0x0002
1160 && cris_get_opcode (insn) == 0x000F
1161 && cris_get_size (insn) == 0x0003
1162 && cris_get_operand1 (insn) == SP_REGNUM)
1163 {
1164 /* movem r<regsave>,[sp] */
29134980
OF
1165 regsave = cris_get_operand2 (insn);
1166 }
1167 else if (cris_get_operand2 (insn) == SP_REGNUM
1168 && ((insn & 0x0F00) >> 8) == 0x0001
1169 && (cris_get_signed_offset (insn) < 0))
1170 {
1171 /* Immediate byte offset addressing prefix word with sp as base
1172 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1173 is between 64 and 128.
1174 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1175 if (info)
1176 {
1177 info->sp_offset += -cris_get_signed_offset (insn);
1178 }
1179 insn_next = read_memory_unsigned_integer (pc, 2);
1180 pc += 2;
29134980
OF
1181 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1182 && cris_get_opcode (insn_next) == 0x000F
1183 && cris_get_size (insn_next) == 0x0003
1184 && cris_get_operand1 (insn_next) == SP_REGNUM)
1185 {
29134980
OF
1186 regsave = cris_get_operand2 (insn_next);
1187 }
1188 else
1189 {
1190 /* The prologue ended before the limit was reached. */
2e4b5889 1191 pc -= 4;
29134980
OF
1192 break;
1193 }
1194 }
1195 else if (cris_get_mode (insn) == 0x0001
1196 && cris_get_opcode (insn) == 0x0009
1197 && cris_get_size (insn) == 0x0002)
1198 {
1199 /* move.d r<10..13>,r<0..15> */
29134980 1200 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1201
1202 /* FIXME? In the glibc solibs, the prologue might contain something
1203 like (this example taken from relocate_doit):
1204 move.d $pc,$r0
1205 sub.d 0xfffef426,$r0
1206 which isn't covered by the source_register check below. Question
1207 is whether to add a check for this combo, or make better use of
1208 the limit variable instead. */
29134980
OF
1209 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1210 {
1211 /* The prologue ended before the limit was reached. */
2e4b5889 1212 pc -= 2;
29134980
OF
1213 break;
1214 }
1215 }
2e4b5889 1216 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1217 /* The size is a fixed-size. */
1218 && ((insn & 0x0F00) >> 8) == 0x0001
1219 /* A negative offset. */
1220 && (cris_get_signed_offset (insn) < 0))
1221 {
1222 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1223 insn_next = read_memory_unsigned_integer (pc, 2);
1224 pc += 2;
29134980
OF
1225 regno = cris_get_operand2 (insn_next);
1226 if ((regno >= 0 && regno < SP_REGNUM)
1227 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1228 && cris_get_opcode (insn_next) == 0x000F)
1229 {
1230 /* move.S rZ,[r8-U] */
1231 continue;
1232 }
1233 else
1234 {
1235 /* The prologue ended before the limit was reached. */
2e4b5889 1236 pc -= 4;
29134980
OF
1237 break;
1238 }
1239 }
2e4b5889 1240 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1241 /* The size is a fixed-size. */
1242 && ((insn & 0x0F00) >> 8) == 0x0001
1243 /* A positive offset. */
1244 && (cris_get_signed_offset (insn) > 0))
1245 {
1246 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1247 insn_next = read_memory_unsigned_integer (pc, 2);
1248 pc += 2;
29134980
OF
1249 regno = cris_get_operand2 (insn_next);
1250 if ((regno >= 0 && regno < SP_REGNUM)
1251 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1252 && cris_get_opcode (insn_next) == 0x0009
1253 && cris_get_operand1 (insn_next) == regno)
1254 {
1255 /* move.S [r8+U],rZ */
1256 continue;
1257 }
1258 else
1259 {
1260 /* The prologue ended before the limit was reached. */
2e4b5889 1261 pc -= 4;
29134980
OF
1262 break;
1263 }
1264 }
1265 else
1266 {
1267 /* The prologue ended before the limit was reached. */
2e4b5889 1268 pc -= 2;
29134980
OF
1269 break;
1270 }
1271 }
29134980 1272
2e4b5889
OF
1273 /* We only want to know the end of the prologue when next_frame and info
1274 are NULL (called from cris_skip_prologue i.e.). */
1275 if (next_frame == NULL && info == NULL)
1276 {
1277 return pc;
1278 }
29134980 1279
2e4b5889
OF
1280 info->size = info->sp_offset;
1281
1282 /* Compute the previous frame's stack pointer (which is also the
1283 frame's ID's stack address), and this frame's base pointer. */
1284 if (info->uses_frame)
29134980 1285 {
2e4b5889
OF
1286 ULONGEST this_base;
1287 /* The SP was moved to the FP. This indicates that a new frame
1288 was created. Get THIS frame's FP value by unwinding it from
1289 the next frame. */
1290 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1291 &this_base);
1292 info->base = this_base;
b4206d25
OF
1293 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1294
2e4b5889
OF
1295 /* The FP points at the last saved register. Adjust the FP back
1296 to before the first saved register giving the SP. */
1297 info->prev_sp = info->base + info->r8_offset;
1298 }
1299 else
1300 {
1301 ULONGEST this_base;
1302 /* Assume that the FP is this frame's SP but with that pushed
1303 stack space added back. */
1304 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1305 info->base = this_base;
1306 info->prev_sp = info->base + info->size;
1307 }
29134980 1308
2e4b5889
OF
1309 /* Calculate the addresses for the saved registers on the stack. */
1310 /* FIXME: The address calculation should really be done on the fly while
1311 we're analyzing the prologue (we only hold one regsave value as it is
1312 now). */
1313 val = info->sp_offset;
1314
1315 for (regno = regsave; regno >= 0; regno--)
1316 {
1317 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1318 val -= 4;
1319 }
1320
1321 /* The previous frame's SP needed to be computed. Save the computed
1322 value. */
1323 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1324
1325 if (!info->leaf_function)
1326 {
b4206d25
OF
1327 /* SRP saved on the stack. But where? */
1328 if (info->r8_offset == 0)
1329 {
1330 /* R8 not pushed yet. */
1331 info->saved_regs[SRP_REGNUM].addr = info->base;
1332 }
1333 else
1334 {
1335 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1336 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1337 }
29134980 1338 }
2e4b5889
OF
1339
1340 /* The PC is found in SRP (the actual register or located on the stack). */
1341 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1342
1343 return pc;
29134980
OF
1344}
1345
1346/* Advance pc beyond any function entry prologue instructions at pc
1347 to reach some "real" code. */
1348
29134980
OF
1349/* Given a PC value corresponding to the start of a function, return the PC
1350 of the first instruction after the function prologue. */
1351
a78f21af 1352static CORE_ADDR
2e4b5889 1353cris_skip_prologue (CORE_ADDR pc)
29134980 1354{
2e4b5889
OF
1355 CORE_ADDR func_addr, func_end;
1356 struct symtab_and_line sal;
29134980
OF
1357 CORE_ADDR pc_after_prologue;
1358
2e4b5889
OF
1359 /* If we have line debugging information, then the end of the prologue
1360 should the first assembly instruction of the first source line. */
1361 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1362 {
1363 sal = find_pc_line (func_addr, 0);
1364 if (sal.end > 0 && sal.end < func_end)
1365 return sal.end;
1366 }
29134980 1367
2e4b5889 1368 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
29134980
OF
1369 return pc_after_prologue;
1370}
1371
2e4b5889
OF
1372static CORE_ADDR
1373cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1374{
1375 ULONGEST pc;
1376 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1377 return pc;
1378}
1379
1380static CORE_ADDR
1381cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1382{
1383 ULONGEST sp;
1384 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1385 return sp;
1386}
1387
29134980
OF
1388/* Use the program counter to determine the contents and size of a breakpoint
1389 instruction. It returns a pointer to a string of bytes that encode a
1390 breakpoint instruction, stores the length of the string to *lenptr, and
1391 adjusts pcptr (if necessary) to point to the actual memory location where
1392 the breakpoint should be inserted. */
1393
a78f21af 1394static const unsigned char *
29134980
OF
1395cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1396{
1397 static unsigned char break_insn[] = {0x38, 0xe9};
1398 *lenptr = 2;
1399
1400 return break_insn;
1401}
1402
29134980
OF
1403/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1404 0 otherwise. */
1405
a78f21af 1406static int
29134980
OF
1407cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1408{
1409 int version = cris_version ();
1410
1411 switch (spec_reg.applicable_version)
1412 {
1413 case cris_ver_version_all:
1414 return 1;
1415 case cris_ver_warning:
1416 /* Indeterminate/obsolete. */
1417 return 0;
29134980
OF
1418 case cris_ver_v0_3:
1419 return (version >= 0 && version <= 3);
1420 case cris_ver_v3p:
1421 return (version >= 3);
1422 case cris_ver_v8:
1423 return (version == 8 || version == 9);
1424 case cris_ver_v8p:
1425 return (version >= 8);
c600d464
OF
1426 case cris_ver_v0_10:
1427 return (version >= 0 && version <= 10);
1428 case cris_ver_v3_10:
1429 return (version >= 3 && version <= 10);
1430 case cris_ver_v8_10:
1431 return (version >= 8 && version <= 10);
1432 case cris_ver_v10:
1433 return (version == 10);
29134980
OF
1434 case cris_ver_v10p:
1435 return (version >= 10);
c600d464
OF
1436 case cris_ver_v32p:
1437 return (version >= 32);
29134980
OF
1438 default:
1439 /* Invalid cris version. */
1440 return 0;
1441 }
1442}
1443
1d94326f
AC
1444/* Returns the register size in unit byte. Returns 0 for an unimplemented
1445 register, -1 for an invalid register. */
1446
1447static int
1448cris_register_size (int regno)
1449{
c600d464 1450 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1d94326f
AC
1451 int i;
1452 int spec_regno;
1453
1454 if (regno >= 0 && regno < NUM_GENREGS)
1455 {
1456 /* General registers (R0 - R15) are 32 bits. */
1457 return 4;
1458 }
c600d464 1459 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1460 {
1461 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1462 Adjust regno accordingly. */
1463 spec_regno = regno - NUM_GENREGS;
1464
c600d464 1465 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1466 {
1467 if (cris_spec_regs[i].number == spec_regno
1468 && cris_spec_reg_applicable (cris_spec_regs[i]))
1469 /* Go with the first applicable register. */
1470 return cris_spec_regs[i].reg_size;
1471 }
1472 /* Special register not applicable to this CRIS version. */
1473 return 0;
1474 }
c600d464 1475 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1d94326f 1476 {
c600d464
OF
1477 /* This will apply to CRISv32 only where there are additional registers
1478 after the special registers (pseudo PC and support registers). */
1479 return 4;
1d94326f 1480 }
c600d464
OF
1481
1482
1483 return -1;
1d94326f
AC
1484}
1485
29134980
OF
1486/* Nonzero if regno should not be fetched from the target. This is the case
1487 for unimplemented (size 0) and non-existant registers. */
1488
a78f21af 1489static int
29134980
OF
1490cris_cannot_fetch_register (int regno)
1491{
1492 return ((regno < 0 || regno >= NUM_REGS)
1493 || (cris_register_size (regno) == 0));
1494}
1495
1496/* Nonzero if regno should not be written to the target, for various
1497 reasons. */
1498
a78f21af 1499static int
29134980
OF
1500cris_cannot_store_register (int regno)
1501{
1502 /* There are three kinds of registers we refuse to write to.
1503 1. Those that not implemented.
1504 2. Those that are read-only (depends on the processor mode).
1505 3. Those registers to which a write has no effect.
1506 */
1507
1508 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1509 /* Not implemented. */
1510 return 1;
1511
1512 else if (regno == VR_REGNUM)
1513 /* Read-only. */
1514 return 1;
1515
1516 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1517 /* Writing has no effect. */
1518 return 1;
1519
a5f6c8f5
OF
1520 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1521 agent decide whether they are writable. */
29134980
OF
1522
1523 return 0;
1524}
1525
c600d464
OF
1526/* Nonzero if regno should not be fetched from the target. This is the case
1527 for unimplemented (size 0) and non-existant registers. */
1528
1529static int
1530crisv32_cannot_fetch_register (int regno)
1531{
1532 return ((regno < 0 || regno >= NUM_REGS)
1533 || (cris_register_size (regno) == 0));
1534}
1535
1536/* Nonzero if regno should not be written to the target, for various
1537 reasons. */
1538
1539static int
1540crisv32_cannot_store_register (int regno)
1541{
1542 /* There are three kinds of registers we refuse to write to.
1543 1. Those that not implemented.
1544 2. Those that are read-only (depends on the processor mode).
1545 3. Those registers to which a write has no effect.
1546 */
1547
1548 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1549 /* Not implemented. */
1550 return 1;
1551
1552 else if (regno == VR_REGNUM)
1553 /* Read-only. */
1554 return 1;
1555
1556 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1557 /* Writing has no effect. */
1558 return 1;
1559
1560 /* Many special registers are read-only in user mode. Let the debug
1561 agent decide whether they are writable. */
1562
1563 return 0;
1564}
1565
29134980
OF
1566/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1567 of data in register regno. */
1568
a78f21af 1569static struct type *
c1d546cd 1570cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1571{
a5f6c8f5
OF
1572 if (regno == PC_REGNUM)
1573 return builtin_type_void_func_ptr;
1574 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1575 return builtin_type_void_data_ptr;
1576 else if ((regno >= 0 && regno < SP_REGNUM)
1577 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1578 /* Note: R8 taken care of previous clause. */
1579 return builtin_type_uint32;
1580 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1581 return builtin_type_uint16;
1582 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1583 return builtin_type_uint8;
29134980 1584 else
a5f6c8f5
OF
1585 /* Invalid (unimplemented) register. */
1586 return builtin_type_int0;
29134980
OF
1587}
1588
c600d464
OF
1589static struct type *
1590crisv32_register_type (struct gdbarch *gdbarch, int regno)
1591{
1592 if (regno == PC_REGNUM)
1593 return builtin_type_void_func_ptr;
1594 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1595 return builtin_type_void_data_ptr;
1596 else if ((regno >= 0 && regno <= ACR_REGNUM)
1597 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1598 || (regno == PID_REGNUM)
1599 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1600 /* Note: R8 and SP taken care of by previous clause. */
1601 return builtin_type_uint32;
1602 else if (regno == WZ_REGNUM)
1603 return builtin_type_uint16;
1604 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1605 return builtin_type_uint8;
1606 else
1607 {
1608 /* Invalid (unimplemented) register. Should not happen as there are
1609 no unimplemented CRISv32 registers. */
1610 warning ("crisv32_register_type: unknown regno %d", regno);
1611 return builtin_type_int0;
1612 }
1613}
1614
2e4b5889
OF
1615/* Stores a function return value of type type, where valbuf is the address
1616 of the value to be stored. */
29134980 1617
2e4b5889 1618/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1619
2e4b5889
OF
1620static void
1621cris_store_return_value (struct type *type, struct regcache *regcache,
1622 const void *valbuf)
29134980 1623{
2e4b5889
OF
1624 ULONGEST val;
1625 int len = TYPE_LENGTH (type);
29134980 1626
2e4b5889 1627 if (len <= 4)
29134980 1628 {
2e4b5889
OF
1629 /* Put the return value in R10. */
1630 val = extract_unsigned_integer (valbuf, len);
1631 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1632 }
2e4b5889 1633 else if (len <= 8)
29134980 1634 {
2e4b5889
OF
1635 /* Put the return value in R10 and R11. */
1636 val = extract_unsigned_integer (valbuf, 4);
1637 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1638 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1639 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1640 }
2e4b5889
OF
1641 else
1642 error ("cris_store_return_value: type length too large.");
29134980
OF
1643}
1644
2e4b5889
OF
1645/* Return the name of register regno as a string. Return NULL for an invalid or
1646 unimplemented register. */
29134980 1647
c600d464
OF
1648static const char *
1649cris_special_register_name (int regno)
1650{
1651 int spec_regno;
1652 int i;
1653
1654 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1655 Adjust regno accordingly. */
1656 spec_regno = regno - NUM_GENREGS;
1657
1658 /* Assume nothing about the layout of the cris_spec_regs struct
1659 when searching. */
1660 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1661 {
1662 if (cris_spec_regs[i].number == spec_regno
1663 && cris_spec_reg_applicable (cris_spec_regs[i]))
1664 /* Go with the first applicable register. */
1665 return cris_spec_regs[i].name;
1666 }
1667 /* Special register not applicable to this CRIS version. */
1668 return NULL;
1669}
1670
2e4b5889
OF
1671static const char *
1672cris_register_name (int regno)
1673{
1674 static char *cris_genreg_names[] =
1675 { "r0", "r1", "r2", "r3", \
1676 "r4", "r5", "r6", "r7", \
1677 "r8", "r9", "r10", "r11", \
1678 "r12", "r13", "sp", "pc" };
29134980 1679
2e4b5889 1680 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1681 {
2e4b5889
OF
1682 /* General register. */
1683 return cris_genreg_names[regno];
29134980 1684 }
2e4b5889 1685 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
29134980 1686 {
c600d464
OF
1687 return cris_special_register_name (regno);
1688 }
1689 else
1690 {
1691 /* Invalid register. */
2e4b5889
OF
1692 return NULL;
1693 }
c600d464
OF
1694}
1695
1696static const char *
1697crisv32_register_name (int regno)
1698{
1699 static char *crisv32_genreg_names[] =
1700 { "r0", "r1", "r2", "r3", \
1701 "r4", "r5", "r6", "r7", \
1702 "r8", "r9", "r10", "r11", \
1703 "r12", "r13", "sp", "acr"
1704 };
1705
1706 static char *crisv32_sreg_names[] =
1707 { "s0", "s1", "s2", "s3", \
1708 "s4", "s5", "s6", "s7", \
1709 "s8", "s9", "s10", "s11", \
1710 "s12", "s13", "s14", "s15"
1711 };
1712
1713 if (regno >= 0 && regno < NUM_GENREGS)
1714 {
1715 /* General register. */
1716 return crisv32_genreg_names[regno];
1717 }
1718 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1719 {
1720 return cris_special_register_name (regno);
1721 }
1722 else if (regno == PC_REGNUM)
1723 {
1724 return "pc";
1725 }
1726 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1727 {
1728 return crisv32_sreg_names[regno - S0_REGNUM];
1729 }
2e4b5889
OF
1730 else
1731 {
1732 /* Invalid register. */
1733 return NULL;
29134980 1734 }
29134980
OF
1735}
1736
a5f6c8f5
OF
1737/* Convert DWARF register number REG to the appropriate register
1738 number used by GDB. */
1739
2e4b5889 1740static int
a5f6c8f5 1741cris_dwarf2_reg_to_regnum (int reg)
29134980 1742{
a5f6c8f5
OF
1743 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1744 numbering, MOF is 18).
1745 Adapted from gcc/config/cris/cris.h. */
1746 static int cris_dwarf_regmap[] = {
1747 0, 1, 2, 3,
1748 4, 5, 6, 7,
1749 8, 9, 10, 11,
1750 12, 13, 14, 15,
1751 27, -1, -1, -1,
1752 -1, -1, -1, 23,
1753 -1, -1, -1, 27,
1754 -1, -1, -1, -1
1755 };
1756 int regnum = -1;
1757
1758 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1759 regnum = cris_dwarf_regmap[reg];
1760
1761 if (regnum == -1)
1762 warning ("Unmapped DWARF Register #%d encountered\n", reg);
1763
1764 return regnum;
1765}
1766
1767/* DWARF-2 frame support. */
1768
1769static void
1770cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1771 struct dwarf2_frame_state_reg *reg)
1772{
1773 /* The return address column. */
1774 if (regnum == PC_REGNUM)
1775 reg->how = DWARF2_FRAME_REG_RA;
1776
1777 /* The call frame address. */
1778 else if (regnum == SP_REGNUM)
1779 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1780}
1781
2e4b5889
OF
1782/* Extract from an array regbuf containing the raw register state a function
1783 return value of type type, and copy that, in virtual format, into
1784 valbuf. */
1785
1786/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1787
2e4b5889
OF
1788static void
1789cris_extract_return_value (struct type *type, struct regcache *regcache,
1790 void *valbuf)
29134980 1791{
2e4b5889
OF
1792 ULONGEST val;
1793 int len = TYPE_LENGTH (type);
29134980 1794
2e4b5889 1795 if (len <= 4)
29134980 1796 {
2e4b5889
OF
1797 /* Get the return value from R10. */
1798 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1799 store_unsigned_integer (valbuf, len, val);
29134980 1800 }
2e4b5889 1801 else if (len <= 8)
29134980 1802 {
2e4b5889
OF
1803 /* Get the return value from R10 and R11. */
1804 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1805 store_unsigned_integer (valbuf, 4, val);
1806 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1807 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1808 }
2e4b5889
OF
1809 else
1810 error ("cris_extract_return_value: type length too large");
1811}
1812
b4206d25
OF
1813/* Handle the CRIS return value convention. */
1814
1815static enum return_value_convention
1816cris_return_value (struct gdbarch *gdbarch, struct type *type,
1817 struct regcache *regcache, void *readbuf,
1818 const void *writebuf)
1819{
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 || TYPE_CODE (type) == TYPE_CODE_UNION
1822 || TYPE_LENGTH (type) > 8)
1823 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1824 goes on the stack. */
1825 return RETURN_VALUE_STRUCT_CONVENTION;
1826
1827 if (readbuf)
1828 cris_extract_return_value (type, regcache, readbuf);
1829 if (writebuf)
1830 cris_store_return_value (type, regcache, writebuf);
1831
1832 return RETURN_VALUE_REGISTER_CONVENTION;
1833}
1834
2e4b5889
OF
1835/* Returns 1 if the given type will be passed by pointer rather than
1836 directly. */
1837
1838/* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1839 by value. */
1840
1841static int
1842cris_reg_struct_has_addr (int gcc_p, struct type *type)
1843{
1844 return (TYPE_LENGTH (type) > 8);
29134980
OF
1845}
1846
1847/* Calculates a value that measures how good inst_args constraints an
1848 instruction. It stems from cris_constraint, found in cris-dis.c. */
1849
1850static int
1851constraint (unsigned int insn, const signed char *inst_args,
1852 inst_env_type *inst_env)
1853{
1854 int retval = 0;
1855 int tmp, i;
1856
1857 const char *s = inst_args;
1858
1859 for (; *s; s++)
1860 switch (*s)
1861 {
1862 case 'm':
1863 if ((insn & 0x30) == 0x30)
1864 return -1;
1865 break;
1866
1867 case 'S':
1868 /* A prefix operand. */
1869 if (inst_env->prefix_found)
1870 break;
1871 else
1872 return -1;
1873
1874 case 'B':
1875 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1876 valid "push" size. In case of special register, it may be != 4. */
1877 if (inst_env->prefix_found)
1878 break;
1879 else
1880 return -1;
1881
1882 case 'D':
1883 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1884 if (!retval)
1885 return -1;
1886 else
1887 retval += 4;
1888 break;
1889
1890 case 'P':
1891 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1892
1893 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1894 {
1895 /* Since we match four bits, we will give a value of
1896 4 - 1 = 3 in a match. If there is a corresponding
1897 exact match of a special register in another pattern, it
1898 will get a value of 4, which will be higher. This should
1899 be correct in that an exact pattern would match better that
1900 a general pattern.
1901 Note that there is a reason for not returning zero; the
1902 pattern for "clear" is partly matched in the bit-pattern
1903 (the two lower bits must be zero), while the bit-pattern
1904 for a move from a special register is matched in the
1905 register constraint.
1906 This also means we will will have a race condition if
1907 there is a partly match in three bits in the bit pattern. */
1908 if (tmp == cris_spec_regs[i].number)
1909 {
1910 retval += 3;
1911 break;
1912 }
1913 }
1914
1915 if (cris_spec_regs[i].name == NULL)
29134980
OF
1916 return -1;
1917 break;
1918 }
1919 return retval;
1920}
1921
1922/* Returns the number of bits set in the variable value. */
1923
1924static int
1925number_of_bits (unsigned int value)
1926{
1927 int number_of_bits = 0;
1928
1929 while (value != 0)
1930 {
1931 number_of_bits += 1;
1932 value &= (value - 1);
1933 }
1934 return number_of_bits;
1935}
1936
1937/* Finds the address that should contain the single step breakpoint(s).
1938 It stems from code in cris-dis.c. */
1939
1940static int
1941find_cris_op (unsigned short insn, inst_env_type *inst_env)
1942{
1943 int i;
1944 int max_level_of_match = -1;
1945 int max_matched = -1;
1946 int level_of_match;
1947
1948 for (i = 0; cris_opcodes[i].name != NULL; i++)
1949 {
1950 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
1951 && ((cris_opcodes[i].lose & insn) == 0)
1952 /* Only CRISv10 instructions, please. */
1953 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
1954 {
1955 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1956 if (level_of_match >= 0)
1957 {
1958 level_of_match +=
1959 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1960 if (level_of_match > max_level_of_match)
1961 {
1962 max_matched = i;
1963 max_level_of_match = level_of_match;
1964 if (level_of_match == 16)
1965 {
1966 /* All bits matched, cannot find better. */
1967 break;
1968 }
1969 }
1970 }
1971 }
1972 }
1973 return max_matched;
1974}
1975
1976/* Attempts to find single-step breakpoints. Returns -1 on failure which is
1977 actually an internal error. */
1978
1979static int
1980find_step_target (inst_env_type *inst_env)
1981{
1982 int i;
1983 int offset;
1984 unsigned short insn;
1985
1986 /* Create a local register image and set the initial state. */
1987 for (i = 0; i < NUM_GENREGS; i++)
1988 {
1989 inst_env->reg[i] = (unsigned long) read_register (i);
1990 }
1991 offset = NUM_GENREGS;
1992 for (i = 0; i < NUM_SPECREGS; i++)
1993 {
1994 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1995 }
1996 inst_env->branch_found = 0;
1997 inst_env->slot_needed = 0;
1998 inst_env->delay_slot_pc_active = 0;
1999 inst_env->prefix_found = 0;
2000 inst_env->invalid = 0;
2001 inst_env->xflag_found = 0;
2002 inst_env->disable_interrupt = 0;
2003
2004 /* Look for a step target. */
2005 do
2006 {
2007 /* Read an instruction from the client. */
2008 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2009
2010 /* If the instruction is not in a delay slot the new content of the
2011 PC is [PC] + 2. If the instruction is in a delay slot it is not
2012 that simple. Since a instruction in a delay slot cannot change
2013 the content of the PC, it does not matter what value PC will have.
2014 Just make sure it is a valid instruction. */
2015 if (!inst_env->delay_slot_pc_active)
2016 {
2017 inst_env->reg[PC_REGNUM] += 2;
2018 }
2019 else
2020 {
2021 inst_env->delay_slot_pc_active = 0;
2022 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2023 }
2024 /* Analyse the present instruction. */
2025 i = find_cris_op (insn, inst_env);
2026 if (i == -1)
2027 {
2028 inst_env->invalid = 1;
2029 }
2030 else
2031 {
2032 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2033 }
2034 } while (!inst_env->invalid
2035 && (inst_env->prefix_found || inst_env->xflag_found
2036 || inst_env->slot_needed));
2037 return i;
2038}
2039
2040/* There is no hardware single-step support. The function find_step_target
2041 digs through the opcodes in order to find all possible targets.
2042 Either one ordinary target or two targets for branches may be found. */
2043
a78f21af 2044static void
29134980
OF
2045cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2046{
2047 inst_env_type inst_env;
2048
2049 if (insert_breakpoints)
2050 {
2051 /* Analyse the present instruction environment and insert
2052 breakpoints. */
2053 int status = find_step_target (&inst_env);
2054 if (status == -1)
2055 {
c600d464
OF
2056 /* Could not find a target. Things are likely to go downhill
2057 from here. */
2058 warning ("CRIS software single step could not find a step target.");
29134980
OF
2059 }
2060 else
2061 {
2062 /* Insert at most two breakpoints. One for the next PC content
2063 and possibly another one for a branch, jump, etc. */
2064 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2065 target_insert_breakpoint (next_pc, break_mem[0]);
2066 if (inst_env.branch_found
2067 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2068 {
2069 branch_target_address =
2070 (CORE_ADDR) inst_env.branch_break_address;
2071 target_insert_breakpoint (branch_target_address, break_mem[1]);
2072 branch_break_inserted = 1;
2073 }
2074 }
2075 }
2076 else
2077 {
2078 /* Remove breakpoints. */
2079 target_remove_breakpoint (next_pc, break_mem[0]);
2080 if (branch_break_inserted)
2081 {
2082 target_remove_breakpoint (branch_target_address, break_mem[1]);
2083 branch_break_inserted = 0;
2084 }
2085 }
2086}
2087
2088/* Calculates the prefix value for quick offset addressing mode. */
2089
a78f21af 2090static void
29134980
OF
2091quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2092{
2093 /* It's invalid to be in a delay slot. You can't have a prefix to this
2094 instruction (not 100% sure). */
2095 if (inst_env->slot_needed || inst_env->prefix_found)
2096 {
2097 inst_env->invalid = 1;
2098 return;
2099 }
2100
2101 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2102 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2103
2104 /* A prefix doesn't change the xflag_found. But the rest of the flags
2105 need updating. */
2106 inst_env->slot_needed = 0;
2107 inst_env->prefix_found = 1;
2108}
2109
2110/* Updates the autoincrement register. The size of the increment is derived
2111 from the size of the operation. The PC is always kept aligned on even
2112 word addresses. */
2113
a78f21af 2114static void
29134980
OF
2115process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2116{
2117 if (size == INST_BYTE_SIZE)
2118 {
2119 inst_env->reg[cris_get_operand1 (inst)] += 1;
2120
2121 /* The PC must be word aligned, so increase the PC with one
2122 word even if the size is byte. */
2123 if (cris_get_operand1 (inst) == REG_PC)
2124 {
2125 inst_env->reg[REG_PC] += 1;
2126 }
2127 }
2128 else if (size == INST_WORD_SIZE)
2129 {
2130 inst_env->reg[cris_get_operand1 (inst)] += 2;
2131 }
2132 else if (size == INST_DWORD_SIZE)
2133 {
2134 inst_env->reg[cris_get_operand1 (inst)] += 4;
2135 }
2136 else
2137 {
2138 /* Invalid size. */
2139 inst_env->invalid = 1;
2140 }
2141}
2142
2a9ecef2
OF
2143/* Just a forward declaration. */
2144
a78f21af
AC
2145static unsigned long get_data_from_address (unsigned short *inst,
2146 CORE_ADDR address);
2a9ecef2 2147
29134980
OF
2148/* Calculates the prefix value for the general case of offset addressing
2149 mode. */
2150
a78f21af 2151static void
29134980
OF
2152bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2153{
2154
2155 long offset;
2156
2157 /* It's invalid to be in a delay slot. */
2158 if (inst_env->slot_needed || inst_env->prefix_found)
2159 {
2160 inst_env->invalid = 1;
2161 return;
2162 }
2163
fa4e4598
OF
2164 /* The calculation of prefix_value used to be after process_autoincrement,
2165 but that fails for an instruction such as jsr [$r0+12] which is encoded
2166 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2167 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2168 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2169
2170 /* The offset is an indirection of the contents of the operand1 register. */
2171 inst_env->prefix_value +=
2a9ecef2
OF
2172 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2173
fa4e4598
OF
2174 if (cris_get_mode (inst) == AUTOINC_MODE)
2175 {
2176 process_autoincrement (cris_get_size (inst), inst, inst_env);
2177 }
2178
29134980
OF
2179 /* A prefix doesn't change the xflag_found. But the rest of the flags
2180 need updating. */
2181 inst_env->slot_needed = 0;
2182 inst_env->prefix_found = 1;
2183}
2184
2185/* Calculates the prefix value for the index addressing mode. */
2186
a78f21af 2187static void
29134980
OF
2188biap_prefix (unsigned short inst, inst_env_type *inst_env)
2189{
2190 /* It's invalid to be in a delay slot. I can't see that it's possible to
2191 have a prefix to this instruction. So I will treat this as invalid. */
2192 if (inst_env->slot_needed || inst_env->prefix_found)
2193 {
2194 inst_env->invalid = 1;
2195 return;
2196 }
2197
2198 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2199
2200 /* The offset is the operand2 value shifted the size of the instruction
2201 to the left. */
2202 inst_env->prefix_value +=
2203 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2204
2205 /* If the PC is operand1 (base) the address used is the address after
2206 the main instruction, i.e. address + 2 (the PC is already compensated
2207 for the prefix operation). */
2208 if (cris_get_operand1 (inst) == REG_PC)
2209 {
2210 inst_env->prefix_value += 2;
2211 }
2212
2213 /* A prefix doesn't change the xflag_found. But the rest of the flags
2214 need updating. */
2215 inst_env->slot_needed = 0;
2216 inst_env->xflag_found = 0;
2217 inst_env->prefix_found = 1;
2218}
2219
2220/* Calculates the prefix value for the double indirect addressing mode. */
2221
a78f21af 2222static void
29134980
OF
2223dip_prefix (unsigned short inst, inst_env_type *inst_env)
2224{
2225
2226 CORE_ADDR address;
2227
2228 /* It's invalid to be in a delay slot. */
2229 if (inst_env->slot_needed || inst_env->prefix_found)
2230 {
2231 inst_env->invalid = 1;
2232 return;
2233 }
2234
2235 /* The prefix value is one dereference of the contents of the operand1
2236 register. */
2237 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2238 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2239
2240 /* Check if the mode is autoincrement. */
2241 if (cris_get_mode (inst) == AUTOINC_MODE)
2242 {
2243 inst_env->reg[cris_get_operand1 (inst)] += 4;
2244 }
2245
2246 /* A prefix doesn't change the xflag_found. But the rest of the flags
2247 need updating. */
2248 inst_env->slot_needed = 0;
2249 inst_env->xflag_found = 0;
2250 inst_env->prefix_found = 1;
2251}
2252
2253/* Finds the destination for a branch with 8-bits offset. */
2254
a78f21af 2255static void
29134980
OF
2256eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2257{
2258
2259 short offset;
2260
2261 /* If we have a prefix or are in a delay slot it's bad. */
2262 if (inst_env->slot_needed || inst_env->prefix_found)
2263 {
2264 inst_env->invalid = 1;
2265 return;
2266 }
2267
2268 /* We have a branch, find out where the branch will land. */
2269 offset = cris_get_branch_short_offset (inst);
2270
2271 /* Check if the offset is signed. */
2272 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2273 {
2274 offset |= 0xFF00;
2275 }
2276
2277 /* The offset ends with the sign bit, set it to zero. The address
2278 should always be word aligned. */
2279 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2280
2281 inst_env->branch_found = 1;
2282 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2283
2284 inst_env->slot_needed = 1;
2285 inst_env->prefix_found = 0;
2286 inst_env->xflag_found = 0;
2287 inst_env->disable_interrupt = 1;
2288}
2289
2290/* Finds the destination for a branch with 16-bits offset. */
2291
a78f21af 2292static void
29134980
OF
2293sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2294{
2295 short offset;
2296
2297 /* If we have a prefix or is in a delay slot it's bad. */
2298 if (inst_env->slot_needed || inst_env->prefix_found)
2299 {
2300 inst_env->invalid = 1;
2301 return;
2302 }
2303
2304 /* We have a branch, find out the offset for the branch. */
2305 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2306
2307 /* The instruction is one word longer than normal, so add one word
2308 to the PC. */
2309 inst_env->reg[REG_PC] += 2;
2310
2311 inst_env->branch_found = 1;
2312 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2313
2314
2315 inst_env->slot_needed = 1;
2316 inst_env->prefix_found = 0;
2317 inst_env->xflag_found = 0;
2318 inst_env->disable_interrupt = 1;
2319}
2320
2321/* Handles the ABS instruction. */
2322
a78f21af 2323static void
29134980
OF
2324abs_op (unsigned short inst, inst_env_type *inst_env)
2325{
2326
2327 long value;
2328
2329 /* ABS can't have a prefix, so it's bad if it does. */
2330 if (inst_env->prefix_found)
2331 {
2332 inst_env->invalid = 1;
2333 return;
2334 }
2335
2336 /* Check if the operation affects the PC. */
2337 if (cris_get_operand2 (inst) == REG_PC)
2338 {
2339
2340 /* It's invalid to change to the PC if we are in a delay slot. */
2341 if (inst_env->slot_needed)
2342 {
2343 inst_env->invalid = 1;
2344 return;
2345 }
2346
2347 value = (long) inst_env->reg[REG_PC];
2348
2349 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2350 if (value != SIGNED_DWORD_MASK)
2351 {
2352 value = -value;
2353 inst_env->reg[REG_PC] = (long) value;
2354 }
2355 }
2356
2357 inst_env->slot_needed = 0;
2358 inst_env->prefix_found = 0;
2359 inst_env->xflag_found = 0;
2360 inst_env->disable_interrupt = 0;
2361}
2362
2363/* Handles the ADDI instruction. */
2364
a78f21af 2365static void
29134980
OF
2366addi_op (unsigned short inst, inst_env_type *inst_env)
2367{
2368 /* It's invalid to have the PC as base register. And ADDI can't have
2369 a prefix. */
2370 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2371 {
2372 inst_env->invalid = 1;
2373 return;
2374 }
2375
2376 inst_env->slot_needed = 0;
2377 inst_env->prefix_found = 0;
2378 inst_env->xflag_found = 0;
2379 inst_env->disable_interrupt = 0;
2380}
2381
2382/* Handles the ASR instruction. */
2383
a78f21af 2384static void
29134980
OF
2385asr_op (unsigned short inst, inst_env_type *inst_env)
2386{
2387 int shift_steps;
2388 unsigned long value;
2389 unsigned long signed_extend_mask = 0;
2390
2391 /* ASR can't have a prefix, so check that it doesn't. */
2392 if (inst_env->prefix_found)
2393 {
2394 inst_env->invalid = 1;
2395 return;
2396 }
2397
2398 /* Check if the PC is the target register. */
2399 if (cris_get_operand2 (inst) == REG_PC)
2400 {
2401 /* It's invalid to change the PC in a delay slot. */
2402 if (inst_env->slot_needed)
2403 {
2404 inst_env->invalid = 1;
2405 return;
2406 }
2407 /* Get the number of bits to shift. */
2408 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2409 value = inst_env->reg[REG_PC];
2410
2411 /* Find out how many bits the operation should apply to. */
2412 if (cris_get_size (inst) == INST_BYTE_SIZE)
2413 {
2414 if (value & SIGNED_BYTE_MASK)
2415 {
2416 signed_extend_mask = 0xFF;
2417 signed_extend_mask = signed_extend_mask >> shift_steps;
2418 signed_extend_mask = ~signed_extend_mask;
2419 }
2420 value = value >> shift_steps;
2421 value |= signed_extend_mask;
2422 value &= 0xFF;
2423 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2424 inst_env->reg[REG_PC] |= value;
2425 }
2426 else if (cris_get_size (inst) == INST_WORD_SIZE)
2427 {
2428 if (value & SIGNED_WORD_MASK)
2429 {
2430 signed_extend_mask = 0xFFFF;
2431 signed_extend_mask = signed_extend_mask >> shift_steps;
2432 signed_extend_mask = ~signed_extend_mask;
2433 }
2434 value = value >> shift_steps;
2435 value |= signed_extend_mask;
2436 value &= 0xFFFF;
2437 inst_env->reg[REG_PC] &= 0xFFFF0000;
2438 inst_env->reg[REG_PC] |= value;
2439 }
2440 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2441 {
2442 if (value & SIGNED_DWORD_MASK)
2443 {
2444 signed_extend_mask = 0xFFFFFFFF;
2445 signed_extend_mask = signed_extend_mask >> shift_steps;
2446 signed_extend_mask = ~signed_extend_mask;
2447 }
2448 value = value >> shift_steps;
2449 value |= signed_extend_mask;
2450 inst_env->reg[REG_PC] = value;
2451 }
2452 }
2453 inst_env->slot_needed = 0;
2454 inst_env->prefix_found = 0;
2455 inst_env->xflag_found = 0;
2456 inst_env->disable_interrupt = 0;
2457}
2458
2459/* Handles the ASRQ instruction. */
2460
a78f21af 2461static void
29134980
OF
2462asrq_op (unsigned short inst, inst_env_type *inst_env)
2463{
2464
2465 int shift_steps;
2466 unsigned long value;
2467 unsigned long signed_extend_mask = 0;
2468
2469 /* ASRQ can't have a prefix, so check that it doesn't. */
2470 if (inst_env->prefix_found)
2471 {
2472 inst_env->invalid = 1;
2473 return;
2474 }
2475
2476 /* Check if the PC is the target register. */
2477 if (cris_get_operand2 (inst) == REG_PC)
2478 {
2479
2480 /* It's invalid to change the PC in a delay slot. */
2481 if (inst_env->slot_needed)
2482 {
2483 inst_env->invalid = 1;
2484 return;
2485 }
2486 /* The shift size is given as a 5 bit quick value, i.e. we don't
2487 want the the sign bit of the quick value. */
2488 shift_steps = cris_get_asr_shift_steps (inst);
2489 value = inst_env->reg[REG_PC];
2490 if (value & SIGNED_DWORD_MASK)
2491 {
2492 signed_extend_mask = 0xFFFFFFFF;
2493 signed_extend_mask = signed_extend_mask >> shift_steps;
2494 signed_extend_mask = ~signed_extend_mask;
2495 }
2496 value = value >> shift_steps;
2497 value |= signed_extend_mask;
2498 inst_env->reg[REG_PC] = value;
2499 }
2500 inst_env->slot_needed = 0;
2501 inst_env->prefix_found = 0;
2502 inst_env->xflag_found = 0;
2503 inst_env->disable_interrupt = 0;
2504}
2505
2506/* Handles the AX, EI and SETF instruction. */
2507
a78f21af 2508static void
29134980
OF
2509ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2510{
2511 if (inst_env->prefix_found)
2512 {
2513 inst_env->invalid = 1;
2514 return;
2515 }
2516 /* Check if the instruction is setting the X flag. */
2517 if (cris_is_xflag_bit_on (inst))
2518 {
2519 inst_env->xflag_found = 1;
2520 }
2521 else
2522 {
2523 inst_env->xflag_found = 0;
2524 }
2525 inst_env->slot_needed = 0;
2526 inst_env->prefix_found = 0;
2527 inst_env->disable_interrupt = 1;
2528}
2529
2530/* Checks if the instruction is in assign mode. If so, it updates the assign
2531 register. Note that check_assign assumes that the caller has checked that
2532 there is a prefix to this instruction. The mode check depends on this. */
2533
a78f21af 2534static void
29134980
OF
2535check_assign (unsigned short inst, inst_env_type *inst_env)
2536{
2537 /* Check if it's an assign addressing mode. */
2538 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2539 {
2540 /* Assign the prefix value to operand 1. */
2541 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2542 }
2543}
2544
2545/* Handles the 2-operand BOUND instruction. */
2546
a78f21af 2547static void
29134980
OF
2548two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2549{
2550 /* It's invalid to have the PC as the index operand. */
2551 if (cris_get_operand2 (inst) == REG_PC)
2552 {
2553 inst_env->invalid = 1;
2554 return;
2555 }
2556 /* Check if we have a prefix. */
2557 if (inst_env->prefix_found)
2558 {
2559 check_assign (inst, inst_env);
2560 }
2561 /* Check if this is an autoincrement mode. */
2562 else if (cris_get_mode (inst) == AUTOINC_MODE)
2563 {
2564 /* It's invalid to change the PC in a delay slot. */
2565 if (inst_env->slot_needed)
2566 {
2567 inst_env->invalid = 1;
2568 return;
2569 }
2570 process_autoincrement (cris_get_size (inst), inst, inst_env);
2571 }
2572 inst_env->slot_needed = 0;
2573 inst_env->prefix_found = 0;
2574 inst_env->xflag_found = 0;
2575 inst_env->disable_interrupt = 0;
2576}
2577
2578/* Handles the 3-operand BOUND instruction. */
2579
a78f21af 2580static void
29134980
OF
2581three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2582{
2583 /* It's an error if we haven't got a prefix. And it's also an error
2584 if the PC is the destination register. */
2585 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2586 {
2587 inst_env->invalid = 1;
2588 return;
2589 }
2590 inst_env->slot_needed = 0;
2591 inst_env->prefix_found = 0;
2592 inst_env->xflag_found = 0;
2593 inst_env->disable_interrupt = 0;
2594}
2595
2596/* Clears the status flags in inst_env. */
2597
a78f21af 2598static void
29134980
OF
2599btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2600{
2601 /* It's an error if we have got a prefix. */
2602 if (inst_env->prefix_found)
2603 {
2604 inst_env->invalid = 1;
2605 return;
2606 }
2607
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->xflag_found = 0;
2611 inst_env->disable_interrupt = 0;
2612}
2613
2614/* Clears the status flags in inst_env. */
2615
a78f21af 2616static void
29134980
OF
2617clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2618{
2619 /* It's an error if we have got a prefix. */
2620 if (inst_env->prefix_found)
2621 {
2622 inst_env->invalid = 1;
2623 return;
2624 }
2625
2626 inst_env->slot_needed = 0;
2627 inst_env->prefix_found = 0;
2628 inst_env->xflag_found = 0;
2629 inst_env->disable_interrupt = 1;
2630}
2631
2632/* Handles the CLEAR instruction if it's in register mode. */
2633
a78f21af 2634static void
29134980
OF
2635reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2636{
2637 /* Check if the target is the PC. */
2638 if (cris_get_operand2 (inst) == REG_PC)
2639 {
2640 /* The instruction will clear the instruction's size bits. */
2641 int clear_size = cris_get_clear_size (inst);
2642 if (clear_size == INST_BYTE_SIZE)
2643 {
2644 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2645 }
2646 if (clear_size == INST_WORD_SIZE)
2647 {
2648 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2649 }
2650 if (clear_size == INST_DWORD_SIZE)
2651 {
2652 inst_env->delay_slot_pc = 0x0;
2653 }
2654 /* The jump will be delayed with one delay slot. So we need a delay
2655 slot. */
2656 inst_env->slot_needed = 1;
2657 inst_env->delay_slot_pc_active = 1;
2658 }
2659 else
2660 {
2661 /* The PC will not change => no delay slot. */
2662 inst_env->slot_needed = 0;
2663 }
2664 inst_env->prefix_found = 0;
2665 inst_env->xflag_found = 0;
2666 inst_env->disable_interrupt = 0;
2667}
2668
2669/* Handles the TEST instruction if it's in register mode. */
2670
a78f21af 2671static void
29134980
OF
2672reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2673{
2674 /* It's an error if we have got a prefix. */
2675 if (inst_env->prefix_found)
2676 {
2677 inst_env->invalid = 1;
2678 return;
2679 }
2680 inst_env->slot_needed = 0;
2681 inst_env->prefix_found = 0;
2682 inst_env->xflag_found = 0;
2683 inst_env->disable_interrupt = 0;
2684
2685}
2686
2687/* Handles the CLEAR and TEST instruction if the instruction isn't
2688 in register mode. */
2689
a78f21af 2690static void
29134980
OF
2691none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2692{
2693 /* Check if we are in a prefix mode. */
2694 if (inst_env->prefix_found)
2695 {
2696 /* The only way the PC can change is if this instruction is in
2697 assign addressing mode. */
2698 check_assign (inst, inst_env);
2699 }
2700 /* Indirect mode can't change the PC so just check if the mode is
2701 autoincrement. */
2702 else if (cris_get_mode (inst) == AUTOINC_MODE)
2703 {
2704 process_autoincrement (cris_get_size (inst), inst, inst_env);
2705 }
2706 inst_env->slot_needed = 0;
2707 inst_env->prefix_found = 0;
2708 inst_env->xflag_found = 0;
2709 inst_env->disable_interrupt = 0;
2710}
2711
2712/* Checks that the PC isn't the destination register or the instructions has
2713 a prefix. */
2714
a78f21af 2715static void
29134980
OF
2716dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2717{
2718 /* It's invalid to have the PC as the destination. The instruction can't
2719 have a prefix. */
2720 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2721 {
2722 inst_env->invalid = 1;
2723 return;
2724 }
2725
2726 inst_env->slot_needed = 0;
2727 inst_env->prefix_found = 0;
2728 inst_env->xflag_found = 0;
2729 inst_env->disable_interrupt = 0;
2730}
2731
2732/* Checks that the instruction doesn't have a prefix. */
2733
a78f21af 2734static void
29134980
OF
2735break_op (unsigned short inst, inst_env_type *inst_env)
2736{
2737 /* The instruction can't have a prefix. */
2738 if (inst_env->prefix_found)
2739 {
2740 inst_env->invalid = 1;
2741 return;
2742 }
2743
2744 inst_env->slot_needed = 0;
2745 inst_env->prefix_found = 0;
2746 inst_env->xflag_found = 0;
2747 inst_env->disable_interrupt = 1;
2748}
2749
2750/* Checks that the PC isn't the destination register and that the instruction
2751 doesn't have a prefix. */
2752
a78f21af 2753static void
29134980
OF
2754scc_op (unsigned short inst, inst_env_type *inst_env)
2755{
2756 /* It's invalid to have the PC as the destination. The instruction can't
2757 have a prefix. */
2758 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2759 {
2760 inst_env->invalid = 1;
2761 return;
2762 }
2763
2764 inst_env->slot_needed = 0;
2765 inst_env->prefix_found = 0;
2766 inst_env->xflag_found = 0;
2767 inst_env->disable_interrupt = 1;
2768}
2769
2770/* Handles the register mode JUMP instruction. */
2771
a78f21af 2772static void
29134980
OF
2773reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2774{
2775 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2776 you can't have a prefix. */
2777 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2778 {
2779 inst_env->invalid = 1;
2780 return;
2781 }
2782
2783 /* Just change the PC. */
2784 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2785 inst_env->slot_needed = 0;
2786 inst_env->prefix_found = 0;
2787 inst_env->xflag_found = 0;
2788 inst_env->disable_interrupt = 1;
2789}
2790
2791/* Handles the JUMP instruction for all modes except register. */
2792
a78f21af
AC
2793static void
2794none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2795{
2796 unsigned long newpc;
2797 CORE_ADDR address;
2798
2799 /* It's invalid to do a JUMP in a delay slot. */
2800 if (inst_env->slot_needed)
2801 {
2802 inst_env->invalid = 1;
2803 }
2804 else
2805 {
2806 /* Check if we have a prefix. */
2807 if (inst_env->prefix_found)
2808 {
2809 check_assign (inst, inst_env);
2810
2811 /* Get the new value for the the PC. */
2812 newpc =
2813 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2814 4);
2815 }
2816 else
2817 {
2818 /* Get the new value for the PC. */
2819 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2820 newpc = read_memory_unsigned_integer (address, 4);
2821
2822 /* Check if we should increment a register. */
2823 if (cris_get_mode (inst) == AUTOINC_MODE)
2824 {
2825 inst_env->reg[cris_get_operand1 (inst)] += 4;
2826 }
2827 }
2828 inst_env->reg[REG_PC] = newpc;
2829 }
2830 inst_env->slot_needed = 0;
2831 inst_env->prefix_found = 0;
2832 inst_env->xflag_found = 0;
2833 inst_env->disable_interrupt = 1;
2834}
2835
2836/* Handles moves to special registers (aka P-register) for all modes. */
2837
a78f21af 2838static void
29134980
OF
2839move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2840{
2841 if (inst_env->prefix_found)
2842 {
2843 /* The instruction has a prefix that means we are only interested if
2844 the instruction is in assign mode. */
2845 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2846 {
2847 /* The prefix handles the problem if we are in a delay slot. */
2848 if (cris_get_operand1 (inst) == REG_PC)
2849 {
2850 /* Just take care of the assign. */
2851 check_assign (inst, inst_env);
2852 }
2853 }
2854 }
2855 else if (cris_get_mode (inst) == AUTOINC_MODE)
2856 {
2857 /* The instruction doesn't have a prefix, the only case left that we
2858 are interested in is the autoincrement mode. */
2859 if (cris_get_operand1 (inst) == REG_PC)
2860 {
2861 /* If the PC is to be incremented it's invalid to be in a
2862 delay slot. */
2863 if (inst_env->slot_needed)
2864 {
2865 inst_env->invalid = 1;
2866 return;
2867 }
2a9ecef2
OF
2868
2869 /* The increment depends on the size of the special register. */
2870 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2871 {
2872 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2873 }
2a9ecef2 2874 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2875 {
2876 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2877 }
2878 else
2879 {
2880 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2881 }
2882 }
2883 }
2884 inst_env->slot_needed = 0;
2885 inst_env->prefix_found = 0;
2886 inst_env->xflag_found = 0;
2887 inst_env->disable_interrupt = 1;
2888}
2889
2890/* Handles moves from special registers (aka P-register) for all modes
2891 except register. */
2892
a78f21af 2893static void
29134980
OF
2894none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2895{
2896 if (inst_env->prefix_found)
2897 {
2898 /* The instruction has a prefix that means we are only interested if
2899 the instruction is in assign mode. */
2900 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2901 {
2902 /* The prefix handles the problem if we are in a delay slot. */
2903 if (cris_get_operand1 (inst) == REG_PC)
2904 {
2905 /* Just take care of the assign. */
2906 check_assign (inst, inst_env);
2907 }
2908 }
2909 }
2910 /* The instruction doesn't have a prefix, the only case left that we
2911 are interested in is the autoincrement mode. */
2912 else if (cris_get_mode (inst) == AUTOINC_MODE)
2913 {
2914 if (cris_get_operand1 (inst) == REG_PC)
2915 {
2916 /* If the PC is to be incremented it's invalid to be in a
2917 delay slot. */
2918 if (inst_env->slot_needed)
2919 {
2920 inst_env->invalid = 1;
2921 return;
2922 }
2a9ecef2
OF
2923
2924 /* The increment depends on the size of the special register. */
2925 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2926 {
2927 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2928 }
2a9ecef2 2929 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2930 {
2931 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2932 }
2933 else
2934 {
2935 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2936 }
2937 }
2938 }
2939 inst_env->slot_needed = 0;
2940 inst_env->prefix_found = 0;
2941 inst_env->xflag_found = 0;
2942 inst_env->disable_interrupt = 1;
2943}
2944
2945/* Handles moves from special registers (aka P-register) when the mode
2946 is register. */
2947
a78f21af 2948static void
29134980
OF
2949reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2950{
2951 /* Register mode move from special register can't have a prefix. */
2952 if (inst_env->prefix_found)
2953 {
2954 inst_env->invalid = 1;
2955 return;
2956 }
2957
2958 if (cris_get_operand1 (inst) == REG_PC)
2959 {
2960 /* It's invalid to change the PC in a delay slot. */
2961 if (inst_env->slot_needed)
2962 {
2963 inst_env->invalid = 1;
2964 return;
2965 }
2966 /* The destination is the PC, the jump will have a delay slot. */
2967 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2968 inst_env->slot_needed = 1;
2969 inst_env->delay_slot_pc_active = 1;
2970 }
2971 else
2972 {
2973 /* If the destination isn't PC, there will be no jump. */
2974 inst_env->slot_needed = 0;
2975 }
2976 inst_env->prefix_found = 0;
2977 inst_env->xflag_found = 0;
2978 inst_env->disable_interrupt = 1;
2979}
2980
2981/* Handles the MOVEM from memory to general register instruction. */
2982
a78f21af 2983static void
29134980
OF
2984move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2985{
2986 if (inst_env->prefix_found)
2987 {
2988 /* The prefix handles the problem if we are in a delay slot. Is the
2989 MOVEM instruction going to change the PC? */
2990 if (cris_get_operand2 (inst) >= REG_PC)
2991 {
2992 inst_env->reg[REG_PC] =
2993 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2994 }
2995 /* The assign value is the value after the increment. Normally, the
2996 assign value is the value before the increment. */
2997 if ((cris_get_operand1 (inst) == REG_PC)
2998 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2999 {
3000 inst_env->reg[REG_PC] = inst_env->prefix_value;
3001 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3002 }
3003 }
3004 else
3005 {
3006 /* Is the MOVEM instruction going to change the PC? */
3007 if (cris_get_operand2 (inst) == REG_PC)
3008 {
3009 /* It's invalid to change the PC in a delay slot. */
3010 if (inst_env->slot_needed)
3011 {
3012 inst_env->invalid = 1;
3013 return;
3014 }
3015 inst_env->reg[REG_PC] =
3016 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3017 4);
3018 }
3019 /* The increment is not depending on the size, instead it's depending
3020 on the number of registers loaded from memory. */
3021 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3022 {
3023 /* It's invalid to change the PC in a delay slot. */
3024 if (inst_env->slot_needed)
3025 {
3026 inst_env->invalid = 1;
3027 return;
3028 }
3029 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3030 }
3031 }
3032 inst_env->slot_needed = 0;
3033 inst_env->prefix_found = 0;
3034 inst_env->xflag_found = 0;
3035 inst_env->disable_interrupt = 0;
3036}
3037
3038/* Handles the MOVEM to memory from general register instruction. */
3039
a78f21af 3040static void
29134980
OF
3041move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3042{
3043 if (inst_env->prefix_found)
3044 {
3045 /* The assign value is the value after the increment. Normally, the
3046 assign value is the value before the increment. */
3047 if ((cris_get_operand1 (inst) == REG_PC) &&
3048 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3049 {
3050 /* The prefix handles the problem if we are in a delay slot. */
3051 inst_env->reg[REG_PC] = inst_env->prefix_value;
3052 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3053 }
3054 }
3055 else
3056 {
3057 /* The increment is not depending on the size, instead it's depending
3058 on the number of registers loaded to memory. */
3059 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3060 {
3061 /* It's invalid to change the PC in a delay slot. */
3062 if (inst_env->slot_needed)
3063 {
3064 inst_env->invalid = 1;
3065 return;
3066 }
3067 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3068 }
3069 }
3070 inst_env->slot_needed = 0;
3071 inst_env->prefix_found = 0;
3072 inst_env->xflag_found = 0;
3073 inst_env->disable_interrupt = 0;
3074}
3075
29134980
OF
3076/* Handles the intructions that's not yet implemented, by setting
3077 inst_env->invalid to true. */
3078
a78f21af 3079static void
29134980
OF
3080not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3081{
3082 inst_env->invalid = 1;
3083}
3084
3085/* Handles the XOR instruction. */
3086
a78f21af 3087static void
29134980
OF
3088xor_op (unsigned short inst, inst_env_type *inst_env)
3089{
3090 /* XOR can't have a prefix. */
3091 if (inst_env->prefix_found)
3092 {
3093 inst_env->invalid = 1;
3094 return;
3095 }
3096
3097 /* Check if the PC is the target. */
3098 if (cris_get_operand2 (inst) == REG_PC)
3099 {
3100 /* It's invalid to change the PC in a delay slot. */
3101 if (inst_env->slot_needed)
3102 {
3103 inst_env->invalid = 1;
3104 return;
3105 }
3106 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3107 }
3108 inst_env->slot_needed = 0;
3109 inst_env->prefix_found = 0;
3110 inst_env->xflag_found = 0;
3111 inst_env->disable_interrupt = 0;
3112}
3113
3114/* Handles the MULS instruction. */
3115
a78f21af 3116static void
29134980
OF
3117muls_op (unsigned short inst, inst_env_type *inst_env)
3118{
3119 /* MULS/U can't have a prefix. */
3120 if (inst_env->prefix_found)
3121 {
3122 inst_env->invalid = 1;
3123 return;
3124 }
3125
3126 /* Consider it invalid if the PC is the target. */
3127 if (cris_get_operand2 (inst) == REG_PC)
3128 {
3129 inst_env->invalid = 1;
3130 return;
3131 }
3132 inst_env->slot_needed = 0;
3133 inst_env->prefix_found = 0;
3134 inst_env->xflag_found = 0;
3135 inst_env->disable_interrupt = 0;
3136}
3137
3138/* Handles the MULU instruction. */
3139
a78f21af 3140static void
29134980
OF
3141mulu_op (unsigned short inst, inst_env_type *inst_env)
3142{
3143 /* MULS/U can't have a prefix. */
3144 if (inst_env->prefix_found)
3145 {
3146 inst_env->invalid = 1;
3147 return;
3148 }
3149
3150 /* Consider it invalid if the PC is the target. */
3151 if (cris_get_operand2 (inst) == REG_PC)
3152 {
3153 inst_env->invalid = 1;
3154 return;
3155 }
3156 inst_env->slot_needed = 0;
3157 inst_env->prefix_found = 0;
3158 inst_env->xflag_found = 0;
3159 inst_env->disable_interrupt = 0;
3160}
3161
3162/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3163 The MOVE instruction is the move from source to register. */
3164
a78f21af 3165static void
29134980
OF
3166add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3167 unsigned long source1, unsigned long source2)
3168{
3169 unsigned long pc_mask;
3170 unsigned long operation_mask;
3171
3172 /* Find out how many bits the operation should apply to. */
3173 if (cris_get_size (inst) == INST_BYTE_SIZE)
3174 {
3175 pc_mask = 0xFFFFFF00;
3176 operation_mask = 0xFF;
3177 }
3178 else if (cris_get_size (inst) == INST_WORD_SIZE)
3179 {
3180 pc_mask = 0xFFFF0000;
3181 operation_mask = 0xFFFF;
3182 }
3183 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3184 {
3185 pc_mask = 0x0;
3186 operation_mask = 0xFFFFFFFF;
3187 }
3188 else
3189 {
3190 /* The size is out of range. */
3191 inst_env->invalid = 1;
3192 return;
3193 }
3194
3195 /* The instruction just works on uw_operation_mask bits. */
3196 source2 &= operation_mask;
3197 source1 &= operation_mask;
3198
3199 /* Now calculate the result. The opcode's 3 first bits separates
3200 the different actions. */
3201 switch (cris_get_opcode (inst) & 7)
3202 {
3203 case 0: /* add */
3204 source1 += source2;
3205 break;
3206
3207 case 1: /* move */
3208 source1 = source2;
3209 break;
3210
3211 case 2: /* subtract */
3212 source1 -= source2;
3213 break;
3214
3215 case 3: /* compare */
3216 break;
3217
3218 case 4: /* and */
3219 source1 &= source2;
3220 break;
3221
3222 case 5: /* or */
3223 source1 |= source2;
3224 break;
3225
3226 default:
3227 inst_env->invalid = 1;
3228 return;
3229
3230 break;
3231 }
3232
3233 /* Make sure that the result doesn't contain more than the instruction
3234 size bits. */
3235 source2 &= operation_mask;
3236
3237 /* Calculate the new breakpoint address. */
3238 inst_env->reg[REG_PC] &= pc_mask;
3239 inst_env->reg[REG_PC] |= source1;
3240
3241}
3242
3243/* Extends the value from either byte or word size to a dword. If the mode
3244 is zero extend then the value is extended with zero. If instead the mode
3245 is signed extend the sign bit of the value is taken into consideration. */
3246
a78f21af 3247static unsigned long
29134980
OF
3248do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3249{
3250 /* The size can be either byte or word, check which one it is.
3251 Don't check the highest bit, it's indicating if it's a zero
3252 or sign extend. */
3253 if (cris_get_size (*inst) & INST_WORD_SIZE)
3254 {
3255 /* Word size. */
3256 value &= 0xFFFF;
3257
3258 /* Check if the instruction is signed extend. If so, check if value has
3259 the sign bit on. */
3260 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3261 {
3262 value |= SIGNED_WORD_EXTEND_MASK;
3263 }
3264 }
3265 else
3266 {
3267 /* Byte size. */
3268 value &= 0xFF;
3269
3270 /* Check if the instruction is signed extend. If so, check if value has
3271 the sign bit on. */
3272 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3273 {
3274 value |= SIGNED_BYTE_EXTEND_MASK;
3275 }
3276 }
3277 /* The size should now be dword. */
3278 cris_set_size_to_dword (inst);
3279 return value;
3280}
3281
3282/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3283 instruction. The MOVE instruction is the move from source to register. */
3284
a78f21af 3285static void
29134980
OF
3286reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3287 inst_env_type *inst_env)
3288{
3289 unsigned long operand1;
3290 unsigned long operand2;
3291
3292 /* It's invalid to have a prefix to the instruction. This is a register
3293 mode instruction and can't have a prefix. */
3294 if (inst_env->prefix_found)
3295 {
3296 inst_env->invalid = 1;
3297 return;
3298 }
3299 /* Check if the instruction has PC as its target. */
3300 if (cris_get_operand2 (inst) == REG_PC)
3301 {
3302 if (inst_env->slot_needed)
3303 {
3304 inst_env->invalid = 1;
3305 return;
3306 }
3307 /* The instruction has the PC as its target register. */
7ab98e9e 3308 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3309 operand2 = inst_env->reg[REG_PC];
3310
3311 /* Check if it's a extend, signed or zero instruction. */
3312 if (cris_get_opcode (inst) < 4)
3313 {
3314 operand1 = do_sign_or_zero_extend (operand1, &inst);
3315 }
3316 /* Calculate the PC value after the instruction, i.e. where the
3317 breakpoint should be. The order of the udw_operands is vital. */
3318 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3319 }
3320 inst_env->slot_needed = 0;
3321 inst_env->prefix_found = 0;
3322 inst_env->xflag_found = 0;
3323 inst_env->disable_interrupt = 0;
3324}
3325
3326/* Returns the data contained at address. The size of the data is derived from
3327 the size of the operation. If the instruction is a zero or signed
3328 extend instruction, the size field is changed in instruction. */
3329
a78f21af 3330static unsigned long
29134980
OF
3331get_data_from_address (unsigned short *inst, CORE_ADDR address)
3332{
3333 int size = cris_get_size (*inst);
3334 unsigned long value;
3335
3336 /* If it's an extend instruction we don't want the signed extend bit,
3337 because it influences the size. */
3338 if (cris_get_opcode (*inst) < 4)
3339 {
3340 size &= ~SIGNED_EXTEND_BIT_MASK;
3341 }
3342 /* Is there a need for checking the size? Size should contain the number of
3343 bytes to read. */
3344 size = 1 << size;
3345 value = read_memory_unsigned_integer (address, size);
3346
3347 /* Check if it's an extend, signed or zero instruction. */
3348 if (cris_get_opcode (*inst) < 4)
3349 {
3350 value = do_sign_or_zero_extend (value, inst);
3351 }
3352 return value;
3353}
3354
3355/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3356 instructions. The MOVE instruction is the move from source to register. */
3357
a78f21af 3358static void
29134980
OF
3359handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3360 inst_env_type *inst_env)
3361{
3362 unsigned long operand2;
3363 unsigned long operand3;
3364
3365 check_assign (inst, inst_env);
3366 if (cris_get_operand2 (inst) == REG_PC)
3367 {
3368 operand2 = inst_env->reg[REG_PC];
3369
3370 /* Get the value of the third operand. */
3371 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3372
3373 /* Calculate the PC value after the instruction, i.e. where the
3374 breakpoint should be. The order of the udw_operands is vital. */
3375 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3376 }
3377 inst_env->slot_needed = 0;
3378 inst_env->prefix_found = 0;
3379 inst_env->xflag_found = 0;
3380 inst_env->disable_interrupt = 0;
3381}
3382
3383/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3384 OR instructions. Note that for this to work as expected, the calling
3385 function must have made sure that there is a prefix to this instruction. */
3386
a78f21af 3387static void
29134980
OF
3388three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3389 inst_env_type *inst_env)
3390{
3391 unsigned long operand2;
3392 unsigned long operand3;
3393
3394 if (cris_get_operand1 (inst) == REG_PC)
3395 {
3396 /* The PC will be changed by the instruction. */
3397 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3398
3399 /* Get the value of the third operand. */
3400 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3401
3402 /* Calculate the PC value after the instruction, i.e. where the
3403 breakpoint should be. */
3404 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3405 }
3406 inst_env->slot_needed = 0;
3407 inst_env->prefix_found = 0;
3408 inst_env->xflag_found = 0;
3409 inst_env->disable_interrupt = 0;
3410}
3411
3412/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3413 instructions. The MOVE instruction is the move from source to register. */
3414
a78f21af 3415static void
29134980
OF
3416handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3417 inst_env_type *inst_env)
3418{
3419 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3420 {
3421 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3422 SUB, AND or OR something weird is going on (if everything works these
3423 instructions should end up in the three operand version). */
3424 inst_env->invalid = 1;
3425 return;
3426 }
3427 else
3428 {
3429 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3430 so use it. */
3431 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3432 }
3433 inst_env->slot_needed = 0;
3434 inst_env->prefix_found = 0;
3435 inst_env->xflag_found = 0;
3436 inst_env->disable_interrupt = 0;
3437}
3438
3439/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3440 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3441 source to register. */
3442
a78f21af 3443static void
29134980
OF
3444handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3445 inst_env_type *inst_env)
3446{
3447 unsigned long operand1;
3448 unsigned long operand2;
3449 unsigned long operand3;
3450 int size;
3451
3452 /* The instruction is either an indirect or autoincrement addressing mode.
3453 Check if the destination register is the PC. */
3454 if (cris_get_operand2 (inst) == REG_PC)
3455 {
3456 /* Must be done here, get_data_from_address may change the size
3457 field. */
3458 size = cris_get_size (inst);
3459 operand2 = inst_env->reg[REG_PC];
3460
3461 /* Get the value of the third operand, i.e. the indirect operand. */
3462 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3463 operand3 = get_data_from_address (&inst, operand1);
3464
3465 /* Calculate the PC value after the instruction, i.e. where the
3466 breakpoint should be. The order of the udw_operands is vital. */
3467 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3468 }
3469 /* If this is an autoincrement addressing mode, check if the increment
3470 changes the PC. */
3471 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3472 {
3473 /* Get the size field. */
3474 size = cris_get_size (inst);
3475
3476 /* If it's an extend instruction we don't want the signed extend bit,
3477 because it influences the size. */
3478 if (cris_get_opcode (inst) < 4)
3479 {
3480 size &= ~SIGNED_EXTEND_BIT_MASK;
3481 }
3482 process_autoincrement (size, inst, inst_env);
3483 }
3484 inst_env->slot_needed = 0;
3485 inst_env->prefix_found = 0;
3486 inst_env->xflag_found = 0;
3487 inst_env->disable_interrupt = 0;
3488}
3489
3490/* Handles the two-operand addressing mode, all modes except register, for
3491 the ADD, SUB CMP, AND and OR instruction. */
3492
a78f21af 3493static void
29134980
OF
3494none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3495 inst_env_type *inst_env)
3496{
3497 if (inst_env->prefix_found)
3498 {
3499 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3500 {
3501 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3502 }
3503 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3504 {
3505 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3506 }
3507 else
3508 {
3509 /* The mode is invalid for a prefixed base instruction. */
3510 inst_env->invalid = 1;
3511 return;
3512 }
3513 }
3514 else
3515 {
3516 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3517 }
3518}
3519
3520/* Handles the quick addressing mode for the ADD and SUB instruction. */
3521
a78f21af 3522static void
29134980
OF
3523quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3524{
3525 unsigned long operand1;
3526 unsigned long operand2;
3527
3528 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3529 instruction and can't have a prefix. */
3530 if (inst_env->prefix_found)
3531 {
3532 inst_env->invalid = 1;
3533 return;
3534 }
3535
3536 /* Check if the instruction has PC as its target. */
3537 if (cris_get_operand2 (inst) == REG_PC)
3538 {
3539 if (inst_env->slot_needed)
3540 {
3541 inst_env->invalid = 1;
3542 return;
3543 }
3544 operand1 = cris_get_quick_value (inst);
3545 operand2 = inst_env->reg[REG_PC];
3546
3547 /* The size should now be dword. */
3548 cris_set_size_to_dword (&inst);
3549
3550 /* Calculate the PC value after the instruction, i.e. where the
3551 breakpoint should be. */
3552 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3553 }
3554 inst_env->slot_needed = 0;
3555 inst_env->prefix_found = 0;
3556 inst_env->xflag_found = 0;
3557 inst_env->disable_interrupt = 0;
3558}
3559
3560/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3561
a78f21af 3562static void
29134980
OF
3563quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3564{
3565 unsigned long operand1;
3566 unsigned long operand2;
3567
3568 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3569 instruction and can't have a prefix. */
3570 if (inst_env->prefix_found)
3571 {
3572 inst_env->invalid = 1;
3573 return;
3574 }
3575 /* Check if the instruction has PC as its target. */
3576 if (cris_get_operand2 (inst) == REG_PC)
3577 {
3578 if (inst_env->slot_needed)
3579 {
3580 inst_env->invalid = 1;
3581 return;
3582 }
3583 /* The instruction has the PC as its target register. */
3584 operand1 = cris_get_quick_value (inst);
3585 operand2 = inst_env->reg[REG_PC];
3586
3587 /* The quick value is signed, so check if we must do a signed extend. */
3588 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3589 {
3590 /* sign extend */
3591 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3592 }
3593 /* The size should now be dword. */
3594 cris_set_size_to_dword (&inst);
3595
3596 /* Calculate the PC value after the instruction, i.e. where the
3597 breakpoint should be. */
3598 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3599 }
3600 inst_env->slot_needed = 0;
3601 inst_env->prefix_found = 0;
3602 inst_env->xflag_found = 0;
3603 inst_env->disable_interrupt = 0;
3604}
3605
3606/* Translate op_type to a function and call it. */
3607
a78f21af
AC
3608static void
3609cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3610 inst_env_type *inst_env)
29134980
OF
3611{
3612 switch (op_type)
3613 {
3614 case cris_not_implemented_op:
3615 not_implemented_op (inst, inst_env);
3616 break;
3617
3618 case cris_abs_op:
3619 abs_op (inst, inst_env);
3620 break;
3621
3622 case cris_addi_op:
3623 addi_op (inst, inst_env);
3624 break;
3625
3626 case cris_asr_op:
3627 asr_op (inst, inst_env);
3628 break;
3629
3630 case cris_asrq_op:
3631 asrq_op (inst, inst_env);
3632 break;
3633
3634 case cris_ax_ei_setf_op:
3635 ax_ei_setf_op (inst, inst_env);
3636 break;
3637
3638 case cris_bdap_prefix:
3639 bdap_prefix (inst, inst_env);
3640 break;
3641
3642 case cris_biap_prefix:
3643 biap_prefix (inst, inst_env);
3644 break;
3645
3646 case cris_break_op:
3647 break_op (inst, inst_env);
3648 break;
3649
3650 case cris_btst_nop_op:
3651 btst_nop_op (inst, inst_env);
3652 break;
3653
3654 case cris_clearf_di_op:
3655 clearf_di_op (inst, inst_env);
3656 break;
3657
3658 case cris_dip_prefix:
3659 dip_prefix (inst, inst_env);
3660 break;
3661
3662 case cris_dstep_logshift_mstep_neg_not_op:
3663 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3664 break;
3665
3666 case cris_eight_bit_offset_branch_op:
3667 eight_bit_offset_branch_op (inst, inst_env);
3668 break;
3669
3670 case cris_move_mem_to_reg_movem_op:
3671 move_mem_to_reg_movem_op (inst, inst_env);
3672 break;
3673
3674 case cris_move_reg_to_mem_movem_op:
3675 move_reg_to_mem_movem_op (inst, inst_env);
3676 break;
3677
3678 case cris_move_to_preg_op:
3679 move_to_preg_op (inst, inst_env);
3680 break;
3681
3682 case cris_muls_op:
3683 muls_op (inst, inst_env);
3684 break;
3685
3686 case cris_mulu_op:
3687 mulu_op (inst, inst_env);
3688 break;
3689
3690 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3691 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3692 break;
3693
3694 case cris_none_reg_mode_clear_test_op:
3695 none_reg_mode_clear_test_op (inst, inst_env);
3696 break;
3697
3698 case cris_none_reg_mode_jump_op:
3699 none_reg_mode_jump_op (inst, inst_env);
3700 break;
3701
3702 case cris_none_reg_mode_move_from_preg_op:
3703 none_reg_mode_move_from_preg_op (inst, inst_env);
3704 break;
3705
3706 case cris_quick_mode_add_sub_op:
3707 quick_mode_add_sub_op (inst, inst_env);
3708 break;
3709
3710 case cris_quick_mode_and_cmp_move_or_op:
3711 quick_mode_and_cmp_move_or_op (inst, inst_env);
3712 break;
3713
3714 case cris_quick_mode_bdap_prefix:
3715 quick_mode_bdap_prefix (inst, inst_env);
3716 break;
3717
3718 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3719 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3720 break;
3721
3722 case cris_reg_mode_clear_op:
3723 reg_mode_clear_op (inst, inst_env);
3724 break;
3725
3726 case cris_reg_mode_jump_op:
3727 reg_mode_jump_op (inst, inst_env);
3728 break;
3729
3730 case cris_reg_mode_move_from_preg_op:
3731 reg_mode_move_from_preg_op (inst, inst_env);
3732 break;
3733
3734 case cris_reg_mode_test_op:
3735 reg_mode_test_op (inst, inst_env);
3736 break;
3737
3738 case cris_scc_op:
3739 scc_op (inst, inst_env);
3740 break;
3741
3742 case cris_sixteen_bit_offset_branch_op:
3743 sixteen_bit_offset_branch_op (inst, inst_env);
3744 break;
3745
3746 case cris_three_operand_add_sub_cmp_and_or_op:
3747 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3748 break;
3749
3750 case cris_three_operand_bound_op:
3751 three_operand_bound_op (inst, inst_env);
3752 break;
3753
3754 case cris_two_operand_bound_op:
3755 two_operand_bound_op (inst, inst_env);
3756 break;
3757
3758 case cris_xor_op:
3759 xor_op (inst, inst_env);
3760 break;
3761 }
3762}
3763
3764/* This wrapper is to avoid cris_get_assembler being called before
3765 exec_bfd has been set. */
3766
3767static int
a89aa300 3768cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3769{
a89aa300 3770 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3771 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3772 disassembler, even when there is no BFD. Does something like
3773 "gdb; target remote; disassmeble *0x123" work? */
3774 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3775 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3776 gdb_assert (print_insn != NULL);
3777 return print_insn (addr, info);
29134980
OF
3778}
3779
dbbff683
OF
3780/* Copied from <asm/elf.h>. */
3781typedef unsigned long elf_greg_t;
3782
3783/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3784#define CRISV10_ELF_NGREG 35
3785typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3786
3787#define CRISV32_ELF_NGREG 32
3788typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3789
3790/* Unpack an elf_gregset_t into GDB's register cache. */
3791
a78f21af 3792static void
dbbff683
OF
3793supply_gregset (elf_gregset_t *gregsetp)
3794{
c600d464 3795 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
dbbff683
OF
3796 int i;
3797 elf_greg_t *regp = *gregsetp;
3798 static char zerobuf[4] = {0};
3799
3800 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3801 knows about the actual size of each register so that's no problem. */
3802 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3803 {
23a6d369 3804 regcache_raw_supply (current_regcache, i, (char *)&regp[i]);
dbbff683 3805 }
c600d464
OF
3806
3807 if (tdep->cris_version == 32)
3808 {
3809 /* Needed to set pseudo-register PC for CRISv32. */
3810 /* FIXME: If ERP is in a delay slot at this point then the PC will
3811 be wrong. Issue a warning to alert the user. */
3812 regcache_raw_supply (current_regcache, PC_REGNUM,
3813 (char *)&regp[ERP_REGNUM]);
3814
3815 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3816 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3817 }
dbbff683
OF
3818}
3819
3820/* Use a local version of this function to get the correct types for
3821 regsets, until multi-arch core support is ready. */
3822
3823static void
3824fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3825 int which, CORE_ADDR reg_addr)
3826{
3827 elf_gregset_t gregset;
3828
3829 switch (which)
3830 {
3831 case 0:
c600d464
OF
3832 if (core_reg_size != sizeof (elf_gregset_t)
3833 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683
OF
3834 {
3835 warning ("wrong size gregset struct in core file");
3836 }
3837 else
3838 {
3839 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3840 supply_gregset (&gregset);
3841 }
3842
3843 default:
3844 /* We've covered all the kinds of registers we know about here,
3845 so this must be something we wouldn't know what to do with
3846 anyway. Just ignore it. */
3847 break;
3848 }
3849}
3850
3851static struct core_fns cris_elf_core_fns =
3852{
3853 bfd_target_elf_flavour, /* core_flavour */
3854 default_check_format, /* check_format */
3855 default_core_sniffer, /* core_sniffer */
3856 fetch_core_registers, /* core_read_registers */
3857 NULL /* next */
3858};
3859
3860/* Fetch (and possibly build) an appropriate link_map_offsets
8605d56e
AC
3861 structure for native GNU/Linux CRIS targets using the struct
3862 offsets defined in link.h (but without actual reference to that
3863 file).
dbbff683 3864
8605d56e
AC
3865 This makes it possible to access GNU/Linux CRIS shared libraries
3866 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3867 debugging).
dbbff683
OF
3868
3869 See gdb/solib-svr4.h for an explanation of these fields. */
3870
a78f21af 3871static struct link_map_offsets *
dbbff683
OF
3872cris_linux_svr4_fetch_link_map_offsets (void)
3873{
3874 static struct link_map_offsets lmo;
3875 static struct link_map_offsets *lmp = NULL;
3876
3877 if (lmp == NULL)
3878 {
3879 lmp = &lmo;
3880
3881 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3882 this is all we need. */
3883 lmo.r_map_offset = 4;
3884 lmo.r_map_size = 4;
3885
3886 lmo.link_map_size = 20;
3887
3888 lmo.l_addr_offset = 0;
3889 lmo.l_addr_size = 4;
3890
3891 lmo.l_name_offset = 4;
3892 lmo.l_name_size = 4;
3893
3894 lmo.l_next_offset = 12;
3895 lmo.l_next_size = 4;
3896
3897 lmo.l_prev_offset = 16;
3898 lmo.l_prev_size = 4;
3899 }
3900
3901 return lmp;
3902}
3903
a78f21af
AC
3904extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3905
29134980
OF
3906void
3907_initialize_cris_tdep (void)
3908{
a5f6c8f5
OF
3909 static struct cmd_list_element *cris_set_cmdlist;
3910 static struct cmd_list_element *cris_show_cmdlist;
3911
29134980
OF
3912 struct cmd_list_element *c;
3913
3914 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3915
29134980 3916 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3917 add_setshow_uinteger_cmd ("cris-version", class_support,
3918 &usr_cmd_cris_version,
3919 "Set the current CRIS version.",
3920 "Show the current CRIS version.",
3921 "Set if autodetection fails.",
335cca0d 3922 NULL, /* PRINT: Current CRIS version is %s. */
a5f6c8f5
OF
3923 set_cris_version, NULL,
3924 &setlist, &showlist);
dbbff683 3925
a5f6c8f5
OF
3926 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3927 &usr_cmd_cris_dwarf2_cfi,
3928 "Set the usage of Dwarf-2 CFI for CRIS.",
3929 "Show the usage of Dwarf-2 CFI for CRIS.",
3930 "Set to \"off\" if using gcc-cris < R59.",
335cca0d 3931 NULL, /* PRINT: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3932 set_cris_dwarf2_cfi, NULL,
3933 &setlist, &showlist);
3934
52bd1401 3935 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3936}
3937
3938/* Prints out all target specific values. */
3939
3940static void
3941cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3942{
3943 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3944 if (tdep != NULL)
3945 {
3946 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3947 tdep->cris_version);
a5f6c8f5
OF
3948 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3949 tdep->cris_dwarf2_cfi);
29134980
OF
3950 }
3951}
3952
3953static void
a5f6c8f5
OF
3954set_cris_version (char *ignore_args, int from_tty,
3955 struct cmd_list_element *c)
29134980
OF
3956{
3957 struct gdbarch_info info;
3958
a5f6c8f5 3959 usr_cmd_cris_version_valid = 1;
29134980 3960
a5f6c8f5
OF
3961 /* Update the current architecture, if needed. */
3962 gdbarch_info_init (&info);
3963 if (!gdbarch_update_p (info))
3964 internal_error (__FILE__, __LINE__,
3965 "cris_gdbarch_update: failed to update architecture.");
29134980
OF
3966}
3967
3968static void
a5f6c8f5
OF
3969set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
3970 struct cmd_list_element *c)
29134980
OF
3971{
3972 struct gdbarch_info info;
a5f6c8f5
OF
3973
3974 /* Update the current architecture, if needed. */
3975 gdbarch_info_init (&info);
3976 if (!gdbarch_update_p (info))
3977 internal_error (__FILE__, __LINE__,
3978 "cris_gdbarch_update: failed to update architecture.");
29134980
OF
3979}
3980
29134980
OF
3981static struct gdbarch *
3982cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3983{
3984 struct gdbarch *gdbarch;
3985 struct gdbarch_tdep *tdep;
3986 int cris_version;
29134980
OF
3987
3988 if (usr_cmd_cris_version_valid)
3989 {
3990 /* Trust the user's CRIS version setting. */
3991 cris_version = usr_cmd_cris_version;
3992 }
c600d464
OF
3993 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3994 {
3995 cris_version = 32;
3996 }
29134980
OF
3997 else
3998 {
3999 /* Assume it's CRIS version 10. */
4000 cris_version = 10;
4001 }
4002
29134980
OF
4003 /* Make the current settings visible to the user. */
4004 usr_cmd_cris_version = cris_version;
29134980
OF
4005
4006 /* Find a candidate among the list of pre-declared architectures. Both
4007 CRIS version and ABI must match. */
4008 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4009 arches != NULL;
4010 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4011 {
a5f6c8f5
OF
4012 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4013 == usr_cmd_cris_version)
4014 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4015 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4016 return arches->gdbarch;
4017 }
4018
4019 /* No matching architecture was found. Create a new one. */
4020 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4021 gdbarch = gdbarch_alloc (&info, tdep);
4022
a5f6c8f5
OF
4023 tdep->cris_version = usr_cmd_cris_version;
4024 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4025
4026 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4027 switch (info.byte_order)
4028 {
778eb05e 4029 case BFD_ENDIAN_LITTLE:
29134980
OF
4030 /* Ok. */
4031 break;
4032
d7449b42 4033 case BFD_ENDIAN_BIG:
29134980
OF
4034 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4035 break;
4036
4037 default:
4038 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4039 }
4040
b4206d25 4041 set_gdbarch_return_value (gdbarch, cris_return_value);
2e4b5889
OF
4042 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4043 cris_reg_struct_has_addr);
b5622e8d 4044 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
29134980 4045
29134980 4046 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4047
4048 /* Length of ordinary registers used in push_word and a few other
4049 places. register_size() is the real way to know how big a
4050 register is. */
a5f6c8f5 4051
2e4b5889
OF
4052 set_gdbarch_double_bit (gdbarch, 64);
4053 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4054 which means we have to set this explicitly. */
c600d464 4055 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4056
29134980
OF
4057 /* The total amount of space needed to store (in an array called registers)
4058 GDB's copy of the machine's register state. Note: We can not use
4059 cris_register_size at this point, since it relies on current_gdbarch
4060 being set. */
4061 switch (tdep->cris_version)
4062 {
4063 case 0:
4064 case 1:
4065 case 2:
4066 case 3:
29134980
OF
4067 case 8:
4068 case 9:
a5f6c8f5
OF
4069 /* Old versions; not supported. */
4070 internal_error (__FILE__, __LINE__,
4071 "cris_gdbarch_init: unsupported CRIS version");
29134980
OF
4072 break;
4073
4074 case 10:
4075 case 11:
4076 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4077 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4078 set_gdbarch_pc_regnum (gdbarch, 15);
4079 set_gdbarch_register_type (gdbarch, cris_register_type);
4080 /* There are 32 registers (some of which may not be implemented). */
4081 set_gdbarch_num_regs (gdbarch, 32);
4082 set_gdbarch_register_name (gdbarch, cris_register_name);
4083 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4084 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4085
4086 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4087 break;
4088
4089 case 32:
4090 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4091 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4092 and pseudo-register PC (32 bits). */
4093 set_gdbarch_pc_regnum (gdbarch, 32);
4094 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4095 /* 32 registers + pseudo-register PC + 16 support registers. */
4096 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4097 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4098
4099 set_gdbarch_cannot_store_register
4100 (gdbarch, crisv32_cannot_store_register);
4101 set_gdbarch_cannot_fetch_register
4102 (gdbarch, crisv32_cannot_fetch_register);
4103
4104 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4105
4106 set_gdbarch_single_step_through_delay
4107 (gdbarch, crisv32_single_step_through_delay);
4108
29134980
OF
4109 break;
4110
4111 default:
c600d464
OF
4112 internal_error (__FILE__, __LINE__,
4113 "cris_gdbarch_init: unknown CRIS version");
29134980
OF
4114 }
4115
c600d464
OF
4116 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4117 have the same ABI). */
2e4b5889
OF
4118 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4119 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4120 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4121 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4122
4123 /* The stack grows downward. */
4124 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4125
4126 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4127
2e4b5889
OF
4128 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4129 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4130 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4131
a5f6c8f5
OF
4132 if (tdep->cris_dwarf2_cfi == 1)
4133 {
4134 /* Hook in the Dwarf-2 frame sniffer. */
4135 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4136 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4137 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4138 }
4139
4140 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4141
2e4b5889
OF
4142 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4143 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4144
dbbff683
OF
4145 /* Use target_specific function to define link map offsets. */
4146 set_solib_svr4_fetch_link_map_offsets
4147 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4148
36482093
AC
4149 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4150 disassembler, even when there is no BFD. Does something like
4151 "gdb; target remote; disassmeble *0x123" work? */
4152 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4153
29134980
OF
4154 return gdbarch;
4155}
This page took 0.581338 seconds and 4 git commands to generate.