* elf32-arm.c (elf32_arm_symbian_link_hash_table_create): Use
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
d4f3574e 2880* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2881* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2882@end menu
2883
6d2ebf8b 2884@node Set Breaks
79a6e687 2885@subsection Setting Breakpoints
c906108c 2886
5d161b24 2887@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2888@c consider in particular declaration with/without initialization.
2889@c
2890@c FIXME 2 is there stuff on this already? break at fun start, already init?
2891
2892@kindex break
41afff9a
EZ
2893@kindex b @r{(@code{break})}
2894@vindex $bpnum@r{, convenience variable}
c906108c
SS
2895@cindex latest breakpoint
2896Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2897@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2898number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2899Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2900convenience variables.
2901
c906108c 2902@table @code
2a25a5ba
EZ
2903@item break @var{location}
2904Set a breakpoint at the given @var{location}, which can specify a
2905function name, a line number, or an address of an instruction.
2906(@xref{Specify Location}, for a list of all the possible ways to
2907specify a @var{location}.) The breakpoint will stop your program just
2908before it executes any of the code in the specified @var{location}.
2909
c906108c 2910When using source languages that permit overloading of symbols, such as
2a25a5ba 2911C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2912@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2913that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
2e9132cc
EZ
3075@cindex multiple locations, breakpoints
3076@cindex breakpoints, multiple locations
fcda367b 3077It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3078in your program. Examples of this situation are:
3079
3080@itemize @bullet
fe6fbf8b
VP
3081@item
3082For a C@t{++} constructor, the @value{NGCC} compiler generates several
3083instances of the function body, used in different cases.
3084
3085@item
3086For a C@t{++} template function, a given line in the function can
3087correspond to any number of instantiations.
3088
3089@item
3090For an inlined function, a given source line can correspond to
3091several places where that function is inlined.
fe6fbf8b
VP
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3095the relevant locations@footnote{
3096As of this writing, multiple-location breakpoints work only if there's
3097line number information for all the locations. This means that they
3098will generally not work in system libraries, unless you have debug
3099info with line numbers for them.}.
fe6fbf8b 3100
3b784c4f
EZ
3101A breakpoint with multiple locations is displayed in the breakpoint
3102table using several rows---one header row, followed by one row for
3103each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3104address column. The rows for individual locations contain the actual
3105addresses for locations, and show the functions to which those
3106locations belong. The number column for a location is of the form
fe6fbf8b
VP
3107@var{breakpoint-number}.@var{location-number}.
3108
3109For example:
3b784c4f 3110
fe6fbf8b
VP
3111@smallexample
3112Num Type Disp Enb Address What
31131 breakpoint keep y <MULTIPLE>
3114 stop only if i==1
3115 breakpoint already hit 1 time
31161.1 y 0x080486a2 in void foo<int>() at t.cc:8
31171.2 y 0x080486ca in void foo<double>() at t.cc:8
3118@end smallexample
3119
3120Each location can be individually enabled or disabled by passing
3121@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3122@code{enable} and @code{disable} commands. Note that you cannot
3123delete the individual locations from the list, you can only delete the
16bfc218 3124entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3125the @kbd{delete @var{num}} command, where @var{num} is the number of
3126the parent breakpoint, 1 in the above example). Disabling or enabling
3127the parent breakpoint (@pxref{Disabling}) affects all of the locations
3128that belong to that breakpoint.
fe6fbf8b 3129
2650777c 3130@cindex pending breakpoints
fe6fbf8b 3131It's quite common to have a breakpoint inside a shared library.
3b784c4f 3132Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3133and possibly repeatedly, as the program is executed. To support
3134this use case, @value{GDBN} updates breakpoint locations whenever
3135any shared library is loaded or unloaded. Typically, you would
fcda367b 3136set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3137debugging session, when the library is not loaded, and when the
3138symbols from the library are not available. When you try to set
3139breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3140a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3141is not yet resolved.
3142
3143After the program is run, whenever a new shared library is loaded,
3144@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3145shared library contains the symbol or line referred to by some
3146pending breakpoint, that breakpoint is resolved and becomes an
3147ordinary breakpoint. When a library is unloaded, all breakpoints
3148that refer to its symbols or source lines become pending again.
3149
3150This logic works for breakpoints with multiple locations, too. For
3151example, if you have a breakpoint in a C@t{++} template function, and
3152a newly loaded shared library has an instantiation of that template,
3153a new location is added to the list of locations for the breakpoint.
3154
3155Except for having unresolved address, pending breakpoints do not
3156differ from regular breakpoints. You can set conditions or commands,
3157enable and disable them and perform other breakpoint operations.
3158
3159@value{GDBN} provides some additional commands for controlling what
3160happens when the @samp{break} command cannot resolve breakpoint
3161address specification to an address:
dd79a6cf
JJ
3162
3163@kindex set breakpoint pending
3164@kindex show breakpoint pending
3165@table @code
3166@item set breakpoint pending auto
3167This is the default behavior. When @value{GDBN} cannot find the breakpoint
3168location, it queries you whether a pending breakpoint should be created.
3169
3170@item set breakpoint pending on
3171This indicates that an unrecognized breakpoint location should automatically
3172result in a pending breakpoint being created.
3173
3174@item set breakpoint pending off
3175This indicates that pending breakpoints are not to be created. Any
3176unrecognized breakpoint location results in an error. This setting does
3177not affect any pending breakpoints previously created.
3178
3179@item show breakpoint pending
3180Show the current behavior setting for creating pending breakpoints.
3181@end table
2650777c 3182
fe6fbf8b
VP
3183The settings above only affect the @code{break} command and its
3184variants. Once breakpoint is set, it will be automatically updated
3185as shared libraries are loaded and unloaded.
2650777c 3186
765dc015
VP
3187@cindex automatic hardware breakpoints
3188For some targets, @value{GDBN} can automatically decide if hardware or
3189software breakpoints should be used, depending on whether the
3190breakpoint address is read-only or read-write. This applies to
3191breakpoints set with the @code{break} command as well as to internal
3192breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3193breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3194breakpoints.
3195
3196You can control this automatic behaviour with the following commands::
3197
3198@kindex set breakpoint auto-hw
3199@kindex show breakpoint auto-hw
3200@table @code
3201@item set breakpoint auto-hw on
3202This is the default behavior. When @value{GDBN} sets a breakpoint, it
3203will try to use the target memory map to decide if software or hardware
3204breakpoint must be used.
3205
3206@item set breakpoint auto-hw off
3207This indicates @value{GDBN} should not automatically select breakpoint
3208type. If the target provides a memory map, @value{GDBN} will warn when
3209trying to set software breakpoint at a read-only address.
3210@end table
3211
74960c60
VP
3212@value{GDBN} normally implements breakpoints by replacing the program code
3213at the breakpoint address with a special instruction, which, when
3214executed, given control to the debugger. By default, the program
3215code is so modified only when the program is resumed. As soon as
3216the program stops, @value{GDBN} restores the original instructions. This
3217behaviour guards against leaving breakpoints inserted in the
3218target should gdb abrubptly disconnect. However, with slow remote
3219targets, inserting and removing breakpoint can reduce the performance.
3220This behavior can be controlled with the following commands::
3221
3222@kindex set breakpoint always-inserted
3223@kindex show breakpoint always-inserted
3224@table @code
3225@item set breakpoint always-inserted off
3226This is the default behaviour. All breakpoints, including newly added
3227by the user, are inserted in the target only when the target is
3228resumed. All breakpoints are removed from the target when it stops.
3229
3230@item set breakpoint always-inserted on
3231Causes all breakpoints to be inserted in the target at all times. If
3232the user adds a new breakpoint, or changes an existing breakpoint, the
3233breakpoints in the target are updated immediately. A breakpoint is
3234removed from the target only when breakpoint itself is removed.
3235@end table
765dc015 3236
c906108c
SS
3237@cindex negative breakpoint numbers
3238@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3239@value{GDBN} itself sometimes sets breakpoints in your program for
3240special purposes, such as proper handling of @code{longjmp} (in C
3241programs). These internal breakpoints are assigned negative numbers,
3242starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3243You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3244@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3245
3246
6d2ebf8b 3247@node Set Watchpoints
79a6e687 3248@subsection Setting Watchpoints
c906108c
SS
3249
3250@cindex setting watchpoints
c906108c
SS
3251You can use a watchpoint to stop execution whenever the value of an
3252expression changes, without having to predict a particular place where
fd60e0df
EZ
3253this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3254The expression may be as simple as the value of a single variable, or
3255as complex as many variables combined by operators. Examples include:
3256
3257@itemize @bullet
3258@item
3259A reference to the value of a single variable.
3260
3261@item
3262An address cast to an appropriate data type. For example,
3263@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3264address (assuming an @code{int} occupies 4 bytes).
3265
3266@item
3267An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3268expression can use any operators valid in the program's native
3269language (@pxref{Languages}).
3270@end itemize
c906108c 3271
fa4727a6
DJ
3272You can set a watchpoint on an expression even if the expression can
3273not be evaluated yet. For instance, you can set a watchpoint on
3274@samp{*global_ptr} before @samp{global_ptr} is initialized.
3275@value{GDBN} will stop when your program sets @samp{global_ptr} and
3276the expression produces a valid value. If the expression becomes
3277valid in some other way than changing a variable (e.g.@: if the memory
3278pointed to by @samp{*global_ptr} becomes readable as the result of a
3279@code{malloc} call), @value{GDBN} may not stop until the next time
3280the expression changes.
3281
82f2d802
EZ
3282@cindex software watchpoints
3283@cindex hardware watchpoints
c906108c 3284Depending on your system, watchpoints may be implemented in software or
2df3850c 3285hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3286program and testing the variable's value each time, which is hundreds of
3287times slower than normal execution. (But this may still be worth it, to
3288catch errors where you have no clue what part of your program is the
3289culprit.)
3290
37e4754d 3291On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3292x86-based targets, @value{GDBN} includes support for hardware
3293watchpoints, which do not slow down the running of your program.
c906108c
SS
3294
3295@table @code
3296@kindex watch
d8b2a693 3297@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3298Set a watchpoint for an expression. @value{GDBN} will break when the
3299expression @var{expr} is written into by the program and its value
3300changes. The simplest (and the most popular) use of this command is
3301to watch the value of a single variable:
3302
3303@smallexample
3304(@value{GDBP}) watch foo
3305@end smallexample
c906108c 3306
d8b2a693
JB
3307If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3308clause, @value{GDBN} breaks only when the thread identified by
3309@var{threadnum} changes the value of @var{expr}. If any other threads
3310change the value of @var{expr}, @value{GDBN} will not break. Note
3311that watchpoints restricted to a single thread in this way only work
3312with Hardware Watchpoints.
3313
c906108c 3314@kindex rwatch
d8b2a693 3315@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3316Set a watchpoint that will break when the value of @var{expr} is read
3317by the program.
c906108c
SS
3318
3319@kindex awatch
d8b2a693 3320@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3321Set a watchpoint that will break when @var{expr} is either read from
3322or written into by the program.
c906108c 3323
45ac1734 3324@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3325@item info watchpoints
3326This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3327it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3328@end table
3329
3330@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3331watchpoints execute very quickly, and the debugger reports a change in
3332value at the exact instruction where the change occurs. If @value{GDBN}
3333cannot set a hardware watchpoint, it sets a software watchpoint, which
3334executes more slowly and reports the change in value at the next
82f2d802
EZ
3335@emph{statement}, not the instruction, after the change occurs.
3336
82f2d802
EZ
3337@cindex use only software watchpoints
3338You can force @value{GDBN} to use only software watchpoints with the
3339@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3340zero, @value{GDBN} will never try to use hardware watchpoints, even if
3341the underlying system supports them. (Note that hardware-assisted
3342watchpoints that were set @emph{before} setting
3343@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3344mechanism of watching expression values.)
c906108c 3345
9c16f35a
EZ
3346@table @code
3347@item set can-use-hw-watchpoints
3348@kindex set can-use-hw-watchpoints
3349Set whether or not to use hardware watchpoints.
3350
3351@item show can-use-hw-watchpoints
3352@kindex show can-use-hw-watchpoints
3353Show the current mode of using hardware watchpoints.
3354@end table
3355
3356For remote targets, you can restrict the number of hardware
3357watchpoints @value{GDBN} will use, see @ref{set remote
3358hardware-breakpoint-limit}.
3359
c906108c
SS
3360When you issue the @code{watch} command, @value{GDBN} reports
3361
474c8240 3362@smallexample
c906108c 3363Hardware watchpoint @var{num}: @var{expr}
474c8240 3364@end smallexample
c906108c
SS
3365
3366@noindent
3367if it was able to set a hardware watchpoint.
3368
7be570e7
JM
3369Currently, the @code{awatch} and @code{rwatch} commands can only set
3370hardware watchpoints, because accesses to data that don't change the
3371value of the watched expression cannot be detected without examining
3372every instruction as it is being executed, and @value{GDBN} does not do
3373that currently. If @value{GDBN} finds that it is unable to set a
3374hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3375will print a message like this:
3376
3377@smallexample
3378Expression cannot be implemented with read/access watchpoint.
3379@end smallexample
3380
3381Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3382data type of the watched expression is wider than what a hardware
3383watchpoint on the target machine can handle. For example, some systems
3384can only watch regions that are up to 4 bytes wide; on such systems you
3385cannot set hardware watchpoints for an expression that yields a
3386double-precision floating-point number (which is typically 8 bytes
3387wide). As a work-around, it might be possible to break the large region
3388into a series of smaller ones and watch them with separate watchpoints.
3389
3390If you set too many hardware watchpoints, @value{GDBN} might be unable
3391to insert all of them when you resume the execution of your program.
3392Since the precise number of active watchpoints is unknown until such
3393time as the program is about to be resumed, @value{GDBN} might not be
3394able to warn you about this when you set the watchpoints, and the
3395warning will be printed only when the program is resumed:
3396
3397@smallexample
3398Hardware watchpoint @var{num}: Could not insert watchpoint
3399@end smallexample
3400
3401@noindent
3402If this happens, delete or disable some of the watchpoints.
3403
fd60e0df
EZ
3404Watching complex expressions that reference many variables can also
3405exhaust the resources available for hardware-assisted watchpoints.
3406That's because @value{GDBN} needs to watch every variable in the
3407expression with separately allocated resources.
3408
c906108c 3409If you call a function interactively using @code{print} or @code{call},
2df3850c 3410any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3411kind of breakpoint or the call completes.
3412
7be570e7
JM
3413@value{GDBN} automatically deletes watchpoints that watch local
3414(automatic) variables, or expressions that involve such variables, when
3415they go out of scope, that is, when the execution leaves the block in
3416which these variables were defined. In particular, when the program
3417being debugged terminates, @emph{all} local variables go out of scope,
3418and so only watchpoints that watch global variables remain set. If you
3419rerun the program, you will need to set all such watchpoints again. One
3420way of doing that would be to set a code breakpoint at the entry to the
3421@code{main} function and when it breaks, set all the watchpoints.
3422
c906108c
SS
3423@cindex watchpoints and threads
3424@cindex threads and watchpoints
d983da9c
DJ
3425In multi-threaded programs, watchpoints will detect changes to the
3426watched expression from every thread.
3427
3428@quotation
3429@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3430have only limited usefulness. If @value{GDBN} creates a software
3431watchpoint, it can only watch the value of an expression @emph{in a
3432single thread}. If you are confident that the expression can only
3433change due to the current thread's activity (and if you are also
3434confident that no other thread can become current), then you can use
3435software watchpoints as usual. However, @value{GDBN} may not notice
3436when a non-current thread's activity changes the expression. (Hardware
3437watchpoints, in contrast, watch an expression in all threads.)
c906108c 3438@end quotation
c906108c 3439
501eef12
AC
3440@xref{set remote hardware-watchpoint-limit}.
3441
6d2ebf8b 3442@node Set Catchpoints
79a6e687 3443@subsection Setting Catchpoints
d4f3574e 3444@cindex catchpoints, setting
c906108c
SS
3445@cindex exception handlers
3446@cindex event handling
3447
3448You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3449kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3450shared library. Use the @code{catch} command to set a catchpoint.
3451
3452@table @code
3453@kindex catch
3454@item catch @var{event}
3455Stop when @var{event} occurs. @var{event} can be any of the following:
3456@table @code
3457@item throw
4644b6e3 3458@cindex stop on C@t{++} exceptions
b37052ae 3459The throwing of a C@t{++} exception.
c906108c
SS
3460
3461@item catch
b37052ae 3462The catching of a C@t{++} exception.
c906108c 3463
8936fcda
JB
3464@item exception
3465@cindex Ada exception catching
3466@cindex catch Ada exceptions
3467An Ada exception being raised. If an exception name is specified
3468at the end of the command (eg @code{catch exception Program_Error}),
3469the debugger will stop only when this specific exception is raised.
3470Otherwise, the debugger stops execution when any Ada exception is raised.
3471
3472@item exception unhandled
3473An exception that was raised but is not handled by the program.
3474
3475@item assert
3476A failed Ada assertion.
3477
c906108c 3478@item exec
4644b6e3 3479@cindex break on fork/exec
5ee187d7
DJ
3480A call to @code{exec}. This is currently only available for HP-UX
3481and @sc{gnu}/Linux.
c906108c
SS
3482
3483@item fork
5ee187d7
DJ
3484A call to @code{fork}. This is currently only available for HP-UX
3485and @sc{gnu}/Linux.
c906108c
SS
3486
3487@item vfork
5ee187d7
DJ
3488A call to @code{vfork}. This is currently only available for HP-UX
3489and @sc{gnu}/Linux.
c906108c
SS
3490
3491@item load
3492@itemx load @var{libname}
4644b6e3 3493@cindex break on load/unload of shared library
c906108c
SS
3494The dynamic loading of any shared library, or the loading of the library
3495@var{libname}. This is currently only available for HP-UX.
3496
3497@item unload
3498@itemx unload @var{libname}
c906108c
SS
3499The unloading of any dynamically loaded shared library, or the unloading
3500of the library @var{libname}. This is currently only available for HP-UX.
3501@end table
3502
3503@item tcatch @var{event}
3504Set a catchpoint that is enabled only for one stop. The catchpoint is
3505automatically deleted after the first time the event is caught.
3506
3507@end table
3508
3509Use the @code{info break} command to list the current catchpoints.
3510
b37052ae 3511There are currently some limitations to C@t{++} exception handling
c906108c
SS
3512(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3513
3514@itemize @bullet
3515@item
3516If you call a function interactively, @value{GDBN} normally returns
3517control to you when the function has finished executing. If the call
3518raises an exception, however, the call may bypass the mechanism that
3519returns control to you and cause your program either to abort or to
3520simply continue running until it hits a breakpoint, catches a signal
3521that @value{GDBN} is listening for, or exits. This is the case even if
3522you set a catchpoint for the exception; catchpoints on exceptions are
3523disabled within interactive calls.
3524
3525@item
3526You cannot raise an exception interactively.
3527
3528@item
3529You cannot install an exception handler interactively.
3530@end itemize
3531
3532@cindex raise exceptions
3533Sometimes @code{catch} is not the best way to debug exception handling:
3534if you need to know exactly where an exception is raised, it is better to
3535stop @emph{before} the exception handler is called, since that way you
3536can see the stack before any unwinding takes place. If you set a
3537breakpoint in an exception handler instead, it may not be easy to find
3538out where the exception was raised.
3539
3540To stop just before an exception handler is called, you need some
b37052ae 3541knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3542raised by calling a library function named @code{__raise_exception}
3543which has the following ANSI C interface:
3544
474c8240 3545@smallexample
c906108c 3546 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3547 @var{id} is the exception identifier. */
3548 void __raise_exception (void **addr, void *id);
474c8240 3549@end smallexample
c906108c
SS
3550
3551@noindent
3552To make the debugger catch all exceptions before any stack
3553unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3554(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3555
79a6e687 3556With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3557that depends on the value of @var{id}, you can stop your program when
3558a specific exception is raised. You can use multiple conditional
3559breakpoints to stop your program when any of a number of exceptions are
3560raised.
3561
3562
6d2ebf8b 3563@node Delete Breaks
79a6e687 3564@subsection Deleting Breakpoints
c906108c
SS
3565
3566@cindex clearing breakpoints, watchpoints, catchpoints
3567@cindex deleting breakpoints, watchpoints, catchpoints
3568It is often necessary to eliminate a breakpoint, watchpoint, or
3569catchpoint once it has done its job and you no longer want your program
3570to stop there. This is called @dfn{deleting} the breakpoint. A
3571breakpoint that has been deleted no longer exists; it is forgotten.
3572
3573With the @code{clear} command you can delete breakpoints according to
3574where they are in your program. With the @code{delete} command you can
3575delete individual breakpoints, watchpoints, or catchpoints by specifying
3576their breakpoint numbers.
3577
3578It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3579automatically ignores breakpoints on the first instruction to be executed
3580when you continue execution without changing the execution address.
3581
3582@table @code
3583@kindex clear
3584@item clear
3585Delete any breakpoints at the next instruction to be executed in the
79a6e687 3586selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3587the innermost frame is selected, this is a good way to delete a
3588breakpoint where your program just stopped.
3589
2a25a5ba
EZ
3590@item clear @var{location}
3591Delete any breakpoints set at the specified @var{location}.
3592@xref{Specify Location}, for the various forms of @var{location}; the
3593most useful ones are listed below:
3594
3595@table @code
c906108c
SS
3596@item clear @var{function}
3597@itemx clear @var{filename}:@var{function}
09d4efe1 3598Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3599
3600@item clear @var{linenum}
3601@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3602Delete any breakpoints set at or within the code of the specified
3603@var{linenum} of the specified @var{filename}.
2a25a5ba 3604@end table
c906108c
SS
3605
3606@cindex delete breakpoints
3607@kindex delete
41afff9a 3608@kindex d @r{(@code{delete})}
c5394b80
JM
3609@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3610Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3611ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3612breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3613confirm off}). You can abbreviate this command as @code{d}.
3614@end table
3615
6d2ebf8b 3616@node Disabling
79a6e687 3617@subsection Disabling Breakpoints
c906108c 3618
4644b6e3 3619@cindex enable/disable a breakpoint
c906108c
SS
3620Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3621prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3622it had been deleted, but remembers the information on the breakpoint so
3623that you can @dfn{enable} it again later.
3624
3625You disable and enable breakpoints, watchpoints, and catchpoints with
3626the @code{enable} and @code{disable} commands, optionally specifying one
3627or more breakpoint numbers as arguments. Use @code{info break} or
3628@code{info watch} to print a list of breakpoints, watchpoints, and
3629catchpoints if you do not know which numbers to use.
3630
3b784c4f
EZ
3631Disabling and enabling a breakpoint that has multiple locations
3632affects all of its locations.
3633
c906108c
SS
3634A breakpoint, watchpoint, or catchpoint can have any of four different
3635states of enablement:
3636
3637@itemize @bullet
3638@item
3639Enabled. The breakpoint stops your program. A breakpoint set
3640with the @code{break} command starts out in this state.
3641@item
3642Disabled. The breakpoint has no effect on your program.
3643@item
3644Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3645disabled.
c906108c
SS
3646@item
3647Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3648immediately after it does so it is deleted permanently. A breakpoint
3649set with the @code{tbreak} command starts out in this state.
c906108c
SS
3650@end itemize
3651
3652You can use the following commands to enable or disable breakpoints,
3653watchpoints, and catchpoints:
3654
3655@table @code
c906108c 3656@kindex disable
41afff9a 3657@kindex dis @r{(@code{disable})}
c5394b80 3658@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3659Disable the specified breakpoints---or all breakpoints, if none are
3660listed. A disabled breakpoint has no effect but is not forgotten. All
3661options such as ignore-counts, conditions and commands are remembered in
3662case the breakpoint is enabled again later. You may abbreviate
3663@code{disable} as @code{dis}.
3664
c906108c 3665@kindex enable
c5394b80 3666@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3667Enable the specified breakpoints (or all defined breakpoints). They
3668become effective once again in stopping your program.
3669
c5394b80 3670@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3671Enable the specified breakpoints temporarily. @value{GDBN} disables any
3672of these breakpoints immediately after stopping your program.
3673
c5394b80 3674@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3675Enable the specified breakpoints to work once, then die. @value{GDBN}
3676deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3677Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3678@end table
3679
d4f3574e
SS
3680@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3681@c confusing: tbreak is also initially enabled.
c906108c 3682Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3683,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3684subsequently, they become disabled or enabled only when you use one of
3685the commands above. (The command @code{until} can set and delete a
3686breakpoint of its own, but it does not change the state of your other
3687breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3688Stepping}.)
c906108c 3689
6d2ebf8b 3690@node Conditions
79a6e687 3691@subsection Break Conditions
c906108c
SS
3692@cindex conditional breakpoints
3693@cindex breakpoint conditions
3694
3695@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3696@c in particular for a watchpoint?
c906108c
SS
3697The simplest sort of breakpoint breaks every time your program reaches a
3698specified place. You can also specify a @dfn{condition} for a
3699breakpoint. A condition is just a Boolean expression in your
3700programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3701a condition evaluates the expression each time your program reaches it,
3702and your program stops only if the condition is @emph{true}.
3703
3704This is the converse of using assertions for program validation; in that
3705situation, you want to stop when the assertion is violated---that is,
3706when the condition is false. In C, if you want to test an assertion expressed
3707by the condition @var{assert}, you should set the condition
3708@samp{! @var{assert}} on the appropriate breakpoint.
3709
3710Conditions are also accepted for watchpoints; you may not need them,
3711since a watchpoint is inspecting the value of an expression anyhow---but
3712it might be simpler, say, to just set a watchpoint on a variable name,
3713and specify a condition that tests whether the new value is an interesting
3714one.
3715
3716Break conditions can have side effects, and may even call functions in
3717your program. This can be useful, for example, to activate functions
3718that log program progress, or to use your own print functions to
3719format special data structures. The effects are completely predictable
3720unless there is another enabled breakpoint at the same address. (In
3721that case, @value{GDBN} might see the other breakpoint first and stop your
3722program without checking the condition of this one.) Note that
d4f3574e
SS
3723breakpoint commands are usually more convenient and flexible than break
3724conditions for the
c906108c 3725purpose of performing side effects when a breakpoint is reached
79a6e687 3726(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3727
3728Break conditions can be specified when a breakpoint is set, by using
3729@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3730Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3731with the @code{condition} command.
53a5351d 3732
c906108c
SS
3733You can also use the @code{if} keyword with the @code{watch} command.
3734The @code{catch} command does not recognize the @code{if} keyword;
3735@code{condition} is the only way to impose a further condition on a
3736catchpoint.
c906108c
SS
3737
3738@table @code
3739@kindex condition
3740@item condition @var{bnum} @var{expression}
3741Specify @var{expression} as the break condition for breakpoint,
3742watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3743breakpoint @var{bnum} stops your program only if the value of
3744@var{expression} is true (nonzero, in C). When you use
3745@code{condition}, @value{GDBN} checks @var{expression} immediately for
3746syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3747referents in the context of your breakpoint. If @var{expression} uses
3748symbols not referenced in the context of the breakpoint, @value{GDBN}
3749prints an error message:
3750
474c8240 3751@smallexample
d4f3574e 3752No symbol "foo" in current context.
474c8240 3753@end smallexample
d4f3574e
SS
3754
3755@noindent
c906108c
SS
3756@value{GDBN} does
3757not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3758command (or a command that sets a breakpoint with a condition, like
3759@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3760
3761@item condition @var{bnum}
3762Remove the condition from breakpoint number @var{bnum}. It becomes
3763an ordinary unconditional breakpoint.
3764@end table
3765
3766@cindex ignore count (of breakpoint)
3767A special case of a breakpoint condition is to stop only when the
3768breakpoint has been reached a certain number of times. This is so
3769useful that there is a special way to do it, using the @dfn{ignore
3770count} of the breakpoint. Every breakpoint has an ignore count, which
3771is an integer. Most of the time, the ignore count is zero, and
3772therefore has no effect. But if your program reaches a breakpoint whose
3773ignore count is positive, then instead of stopping, it just decrements
3774the ignore count by one and continues. As a result, if the ignore count
3775value is @var{n}, the breakpoint does not stop the next @var{n} times
3776your program reaches it.
3777
3778@table @code
3779@kindex ignore
3780@item ignore @var{bnum} @var{count}
3781Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3782The next @var{count} times the breakpoint is reached, your program's
3783execution does not stop; other than to decrement the ignore count, @value{GDBN}
3784takes no action.
3785
3786To make the breakpoint stop the next time it is reached, specify
3787a count of zero.
3788
3789When you use @code{continue} to resume execution of your program from a
3790breakpoint, you can specify an ignore count directly as an argument to
3791@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3792Stepping,,Continuing and Stepping}.
c906108c
SS
3793
3794If a breakpoint has a positive ignore count and a condition, the
3795condition is not checked. Once the ignore count reaches zero,
3796@value{GDBN} resumes checking the condition.
3797
3798You could achieve the effect of the ignore count with a condition such
3799as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3800is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3801Variables}.
c906108c
SS
3802@end table
3803
3804Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3805
3806
6d2ebf8b 3807@node Break Commands
79a6e687 3808@subsection Breakpoint Command Lists
c906108c
SS
3809
3810@cindex breakpoint commands
3811You can give any breakpoint (or watchpoint or catchpoint) a series of
3812commands to execute when your program stops due to that breakpoint. For
3813example, you might want to print the values of certain expressions, or
3814enable other breakpoints.
3815
3816@table @code
3817@kindex commands
ca91424e 3818@kindex end@r{ (breakpoint commands)}
c906108c
SS
3819@item commands @r{[}@var{bnum}@r{]}
3820@itemx @dots{} @var{command-list} @dots{}
3821@itemx end
3822Specify a list of commands for breakpoint number @var{bnum}. The commands
3823themselves appear on the following lines. Type a line containing just
3824@code{end} to terminate the commands.
3825
3826To remove all commands from a breakpoint, type @code{commands} and
3827follow it immediately with @code{end}; that is, give no commands.
3828
3829With no @var{bnum} argument, @code{commands} refers to the last
3830breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3831recently encountered).
3832@end table
3833
3834Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3835disabled within a @var{command-list}.
3836
3837You can use breakpoint commands to start your program up again. Simply
3838use the @code{continue} command, or @code{step}, or any other command
3839that resumes execution.
3840
3841Any other commands in the command list, after a command that resumes
3842execution, are ignored. This is because any time you resume execution
3843(even with a simple @code{next} or @code{step}), you may encounter
3844another breakpoint---which could have its own command list, leading to
3845ambiguities about which list to execute.
3846
3847@kindex silent
3848If the first command you specify in a command list is @code{silent}, the
3849usual message about stopping at a breakpoint is not printed. This may
3850be desirable for breakpoints that are to print a specific message and
3851then continue. If none of the remaining commands print anything, you
3852see no sign that the breakpoint was reached. @code{silent} is
3853meaningful only at the beginning of a breakpoint command list.
3854
3855The commands @code{echo}, @code{output}, and @code{printf} allow you to
3856print precisely controlled output, and are often useful in silent
79a6e687 3857breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3858
3859For example, here is how you could use breakpoint commands to print the
3860value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3861
474c8240 3862@smallexample
c906108c
SS
3863break foo if x>0
3864commands
3865silent
3866printf "x is %d\n",x
3867cont
3868end
474c8240 3869@end smallexample
c906108c
SS
3870
3871One application for breakpoint commands is to compensate for one bug so
3872you can test for another. Put a breakpoint just after the erroneous line
3873of code, give it a condition to detect the case in which something
3874erroneous has been done, and give it commands to assign correct values
3875to any variables that need them. End with the @code{continue} command
3876so that your program does not stop, and start with the @code{silent}
3877command so that no output is produced. Here is an example:
3878
474c8240 3879@smallexample
c906108c
SS
3880break 403
3881commands
3882silent
3883set x = y + 4
3884cont
3885end
474c8240 3886@end smallexample
c906108c 3887
c906108c 3888@c @ifclear BARETARGET
6d2ebf8b 3889@node Error in Breakpoints
d4f3574e 3890@subsection ``Cannot insert breakpoints''
c906108c
SS
3891@c
3892@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3893@c
d4f3574e
SS
3894Under some operating systems, breakpoints cannot be used in a program if
3895any other process is running that program. In this situation,
5d161b24 3896attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3897@value{GDBN} to print an error message:
3898
474c8240 3899@smallexample
d4f3574e
SS
3900Cannot insert breakpoints.
3901The same program may be running in another process.
474c8240 3902@end smallexample
d4f3574e
SS
3903
3904When this happens, you have three ways to proceed:
3905
3906@enumerate
3907@item
3908Remove or disable the breakpoints, then continue.
3909
3910@item
5d161b24 3911Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3912name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3913that @value{GDBN} should run your program under that name.
d4f3574e
SS
3914Then start your program again.
3915
3916@item
3917Relink your program so that the text segment is nonsharable, using the
3918linker option @samp{-N}. The operating system limitation may not apply
3919to nonsharable executables.
3920@end enumerate
c906108c
SS
3921@c @end ifclear
3922
d4f3574e
SS
3923A similar message can be printed if you request too many active
3924hardware-assisted breakpoints and watchpoints:
3925
3926@c FIXME: the precise wording of this message may change; the relevant
3927@c source change is not committed yet (Sep 3, 1999).
3928@smallexample
3929Stopped; cannot insert breakpoints.
3930You may have requested too many hardware breakpoints and watchpoints.
3931@end smallexample
3932
3933@noindent
3934This message is printed when you attempt to resume the program, since
3935only then @value{GDBN} knows exactly how many hardware breakpoints and
3936watchpoints it needs to insert.
3937
3938When this message is printed, you need to disable or remove some of the
3939hardware-assisted breakpoints and watchpoints, and then continue.
3940
79a6e687 3941@node Breakpoint-related Warnings
1485d690
KB
3942@subsection ``Breakpoint address adjusted...''
3943@cindex breakpoint address adjusted
3944
3945Some processor architectures place constraints on the addresses at
3946which breakpoints may be placed. For architectures thus constrained,
3947@value{GDBN} will attempt to adjust the breakpoint's address to comply
3948with the constraints dictated by the architecture.
3949
3950One example of such an architecture is the Fujitsu FR-V. The FR-V is
3951a VLIW architecture in which a number of RISC-like instructions may be
3952bundled together for parallel execution. The FR-V architecture
3953constrains the location of a breakpoint instruction within such a
3954bundle to the instruction with the lowest address. @value{GDBN}
3955honors this constraint by adjusting a breakpoint's address to the
3956first in the bundle.
3957
3958It is not uncommon for optimized code to have bundles which contain
3959instructions from different source statements, thus it may happen that
3960a breakpoint's address will be adjusted from one source statement to
3961another. Since this adjustment may significantly alter @value{GDBN}'s
3962breakpoint related behavior from what the user expects, a warning is
3963printed when the breakpoint is first set and also when the breakpoint
3964is hit.
3965
3966A warning like the one below is printed when setting a breakpoint
3967that's been subject to address adjustment:
3968
3969@smallexample
3970warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3971@end smallexample
3972
3973Such warnings are printed both for user settable and @value{GDBN}'s
3974internal breakpoints. If you see one of these warnings, you should
3975verify that a breakpoint set at the adjusted address will have the
3976desired affect. If not, the breakpoint in question may be removed and
b383017d 3977other breakpoints may be set which will have the desired behavior.
1485d690
KB
3978E.g., it may be sufficient to place the breakpoint at a later
3979instruction. A conditional breakpoint may also be useful in some
3980cases to prevent the breakpoint from triggering too often.
3981
3982@value{GDBN} will also issue a warning when stopping at one of these
3983adjusted breakpoints:
3984
3985@smallexample
3986warning: Breakpoint 1 address previously adjusted from 0x00010414
3987to 0x00010410.
3988@end smallexample
3989
3990When this warning is encountered, it may be too late to take remedial
3991action except in cases where the breakpoint is hit earlier or more
3992frequently than expected.
d4f3574e 3993
6d2ebf8b 3994@node Continuing and Stepping
79a6e687 3995@section Continuing and Stepping
c906108c
SS
3996
3997@cindex stepping
3998@cindex continuing
3999@cindex resuming execution
4000@dfn{Continuing} means resuming program execution until your program
4001completes normally. In contrast, @dfn{stepping} means executing just
4002one more ``step'' of your program, where ``step'' may mean either one
4003line of source code, or one machine instruction (depending on what
7a292a7a
SS
4004particular command you use). Either when continuing or when stepping,
4005your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4006it stops due to a signal, you may want to use @code{handle}, or use
4007@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4008
4009@table @code
4010@kindex continue
41afff9a
EZ
4011@kindex c @r{(@code{continue})}
4012@kindex fg @r{(resume foreground execution)}
c906108c
SS
4013@item continue @r{[}@var{ignore-count}@r{]}
4014@itemx c @r{[}@var{ignore-count}@r{]}
4015@itemx fg @r{[}@var{ignore-count}@r{]}
4016Resume program execution, at the address where your program last stopped;
4017any breakpoints set at that address are bypassed. The optional argument
4018@var{ignore-count} allows you to specify a further number of times to
4019ignore a breakpoint at this location; its effect is like that of
79a6e687 4020@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4021
4022The argument @var{ignore-count} is meaningful only when your program
4023stopped due to a breakpoint. At other times, the argument to
4024@code{continue} is ignored.
4025
d4f3574e
SS
4026The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4027debugged program is deemed to be the foreground program) are provided
4028purely for convenience, and have exactly the same behavior as
4029@code{continue}.
c906108c
SS
4030@end table
4031
4032To resume execution at a different place, you can use @code{return}
79a6e687 4033(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4034calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4035Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4036
4037A typical technique for using stepping is to set a breakpoint
79a6e687 4038(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4039beginning of the function or the section of your program where a problem
4040is believed to lie, run your program until it stops at that breakpoint,
4041and then step through the suspect area, examining the variables that are
4042interesting, until you see the problem happen.
4043
4044@table @code
4045@kindex step
41afff9a 4046@kindex s @r{(@code{step})}
c906108c
SS
4047@item step
4048Continue running your program until control reaches a different source
4049line, then stop it and return control to @value{GDBN}. This command is
4050abbreviated @code{s}.
4051
4052@quotation
4053@c "without debugging information" is imprecise; actually "without line
4054@c numbers in the debugging information". (gcc -g1 has debugging info but
4055@c not line numbers). But it seems complex to try to make that
4056@c distinction here.
4057@emph{Warning:} If you use the @code{step} command while control is
4058within a function that was compiled without debugging information,
4059execution proceeds until control reaches a function that does have
4060debugging information. Likewise, it will not step into a function which
4061is compiled without debugging information. To step through functions
4062without debugging information, use the @code{stepi} command, described
4063below.
4064@end quotation
4065
4a92d011
EZ
4066The @code{step} command only stops at the first instruction of a source
4067line. This prevents the multiple stops that could otherwise occur in
4068@code{switch} statements, @code{for} loops, etc. @code{step} continues
4069to stop if a function that has debugging information is called within
4070the line. In other words, @code{step} @emph{steps inside} any functions
4071called within the line.
c906108c 4072
d4f3574e
SS
4073Also, the @code{step} command only enters a function if there is line
4074number information for the function. Otherwise it acts like the
5d161b24 4075@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4076on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4077was any debugging information about the routine.
c906108c
SS
4078
4079@item step @var{count}
4080Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4081breakpoint is reached, or a signal not related to stepping occurs before
4082@var{count} steps, stepping stops right away.
c906108c
SS
4083
4084@kindex next
41afff9a 4085@kindex n @r{(@code{next})}
c906108c
SS
4086@item next @r{[}@var{count}@r{]}
4087Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4088This is similar to @code{step}, but function calls that appear within
4089the line of code are executed without stopping. Execution stops when
4090control reaches a different line of code at the original stack level
4091that was executing when you gave the @code{next} command. This command
4092is abbreviated @code{n}.
c906108c
SS
4093
4094An argument @var{count} is a repeat count, as for @code{step}.
4095
4096
4097@c FIX ME!! Do we delete this, or is there a way it fits in with
4098@c the following paragraph? --- Vctoria
4099@c
4100@c @code{next} within a function that lacks debugging information acts like
4101@c @code{step}, but any function calls appearing within the code of the
4102@c function are executed without stopping.
4103
d4f3574e
SS
4104The @code{next} command only stops at the first instruction of a
4105source line. This prevents multiple stops that could otherwise occur in
4a92d011 4106@code{switch} statements, @code{for} loops, etc.
c906108c 4107
b90a5f51
CF
4108@kindex set step-mode
4109@item set step-mode
4110@cindex functions without line info, and stepping
4111@cindex stepping into functions with no line info
4112@itemx set step-mode on
4a92d011 4113The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4114stop at the first instruction of a function which contains no debug line
4115information rather than stepping over it.
4116
4a92d011
EZ
4117This is useful in cases where you may be interested in inspecting the
4118machine instructions of a function which has no symbolic info and do not
4119want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4120
4121@item set step-mode off
4a92d011 4122Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4123debug information. This is the default.
4124
9c16f35a
EZ
4125@item show step-mode
4126Show whether @value{GDBN} will stop in or step over functions without
4127source line debug information.
4128
c906108c
SS
4129@kindex finish
4130@item finish
4131Continue running until just after function in the selected stack frame
4132returns. Print the returned value (if any).
4133
4134Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4135,Returning from a Function}).
c906108c
SS
4136
4137@kindex until
41afff9a 4138@kindex u @r{(@code{until})}
09d4efe1 4139@cindex run until specified location
c906108c
SS
4140@item until
4141@itemx u
4142Continue running until a source line past the current line, in the
4143current stack frame, is reached. This command is used to avoid single
4144stepping through a loop more than once. It is like the @code{next}
4145command, except that when @code{until} encounters a jump, it
4146automatically continues execution until the program counter is greater
4147than the address of the jump.
4148
4149This means that when you reach the end of a loop after single stepping
4150though it, @code{until} makes your program continue execution until it
4151exits the loop. In contrast, a @code{next} command at the end of a loop
4152simply steps back to the beginning of the loop, which forces you to step
4153through the next iteration.
4154
4155@code{until} always stops your program if it attempts to exit the current
4156stack frame.
4157
4158@code{until} may produce somewhat counterintuitive results if the order
4159of machine code does not match the order of the source lines. For
4160example, in the following excerpt from a debugging session, the @code{f}
4161(@code{frame}) command shows that execution is stopped at line
4162@code{206}; yet when we use @code{until}, we get to line @code{195}:
4163
474c8240 4164@smallexample
c906108c
SS
4165(@value{GDBP}) f
4166#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4167206 expand_input();
4168(@value{GDBP}) until
4169195 for ( ; argc > 0; NEXTARG) @{
474c8240 4170@end smallexample
c906108c
SS
4171
4172This happened because, for execution efficiency, the compiler had
4173generated code for the loop closure test at the end, rather than the
4174start, of the loop---even though the test in a C @code{for}-loop is
4175written before the body of the loop. The @code{until} command appeared
4176to step back to the beginning of the loop when it advanced to this
4177expression; however, it has not really gone to an earlier
4178statement---not in terms of the actual machine code.
4179
4180@code{until} with no argument works by means of single
4181instruction stepping, and hence is slower than @code{until} with an
4182argument.
4183
4184@item until @var{location}
4185@itemx u @var{location}
4186Continue running your program until either the specified location is
4187reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4188the forms described in @ref{Specify Location}.
4189This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4190hence is quicker than @code{until} without an argument. The specified
4191location is actually reached only if it is in the current frame. This
4192implies that @code{until} can be used to skip over recursive function
4193invocations. For instance in the code below, if the current location is
4194line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4195line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4196invocations have returned.
4197
4198@smallexample
419994 int factorial (int value)
420095 @{
420196 if (value > 1) @{
420297 value *= factorial (value - 1);
420398 @}
420499 return (value);
4205100 @}
4206@end smallexample
4207
4208
4209@kindex advance @var{location}
4210@itemx advance @var{location}
09d4efe1 4211Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4212required, which should be of one of the forms described in
4213@ref{Specify Location}.
4214Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4215frame. This command is similar to @code{until}, but @code{advance} will
4216not skip over recursive function calls, and the target location doesn't
4217have to be in the same frame as the current one.
4218
c906108c
SS
4219
4220@kindex stepi
41afff9a 4221@kindex si @r{(@code{stepi})}
c906108c 4222@item stepi
96a2c332 4223@itemx stepi @var{arg}
c906108c
SS
4224@itemx si
4225Execute one machine instruction, then stop and return to the debugger.
4226
4227It is often useful to do @samp{display/i $pc} when stepping by machine
4228instructions. This makes @value{GDBN} automatically display the next
4229instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4230Display,, Automatic Display}.
c906108c
SS
4231
4232An argument is a repeat count, as in @code{step}.
4233
4234@need 750
4235@kindex nexti
41afff9a 4236@kindex ni @r{(@code{nexti})}
c906108c 4237@item nexti
96a2c332 4238@itemx nexti @var{arg}
c906108c
SS
4239@itemx ni
4240Execute one machine instruction, but if it is a function call,
4241proceed until the function returns.
4242
4243An argument is a repeat count, as in @code{next}.
4244@end table
4245
6d2ebf8b 4246@node Signals
c906108c
SS
4247@section Signals
4248@cindex signals
4249
4250A signal is an asynchronous event that can happen in a program. The
4251operating system defines the possible kinds of signals, and gives each
4252kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4253signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4254@code{SIGSEGV} is the signal a program gets from referencing a place in
4255memory far away from all the areas in use; @code{SIGALRM} occurs when
4256the alarm clock timer goes off (which happens only if your program has
4257requested an alarm).
4258
4259@cindex fatal signals
4260Some signals, including @code{SIGALRM}, are a normal part of the
4261functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4262errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4263program has not specified in advance some other way to handle the signal.
4264@code{SIGINT} does not indicate an error in your program, but it is normally
4265fatal so it can carry out the purpose of the interrupt: to kill the program.
4266
4267@value{GDBN} has the ability to detect any occurrence of a signal in your
4268program. You can tell @value{GDBN} in advance what to do for each kind of
4269signal.
4270
4271@cindex handling signals
24f93129
EZ
4272Normally, @value{GDBN} is set up to let the non-erroneous signals like
4273@code{SIGALRM} be silently passed to your program
4274(so as not to interfere with their role in the program's functioning)
c906108c
SS
4275but to stop your program immediately whenever an error signal happens.
4276You can change these settings with the @code{handle} command.
4277
4278@table @code
4279@kindex info signals
09d4efe1 4280@kindex info handle
c906108c 4281@item info signals
96a2c332 4282@itemx info handle
c906108c
SS
4283Print a table of all the kinds of signals and how @value{GDBN} has been told to
4284handle each one. You can use this to see the signal numbers of all
4285the defined types of signals.
4286
45ac1734
EZ
4287@item info signals @var{sig}
4288Similar, but print information only about the specified signal number.
4289
d4f3574e 4290@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4291
4292@kindex handle
45ac1734 4293@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4294Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4295can be the number of a signal or its name (with or without the
24f93129 4296@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4297@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4298known signals. Optional arguments @var{keywords}, described below,
4299say what change to make.
c906108c
SS
4300@end table
4301
4302@c @group
4303The keywords allowed by the @code{handle} command can be abbreviated.
4304Their full names are:
4305
4306@table @code
4307@item nostop
4308@value{GDBN} should not stop your program when this signal happens. It may
4309still print a message telling you that the signal has come in.
4310
4311@item stop
4312@value{GDBN} should stop your program when this signal happens. This implies
4313the @code{print} keyword as well.
4314
4315@item print
4316@value{GDBN} should print a message when this signal happens.
4317
4318@item noprint
4319@value{GDBN} should not mention the occurrence of the signal at all. This
4320implies the @code{nostop} keyword as well.
4321
4322@item pass
5ece1a18 4323@itemx noignore
c906108c
SS
4324@value{GDBN} should allow your program to see this signal; your program
4325can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4326and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4327
4328@item nopass
5ece1a18 4329@itemx ignore
c906108c 4330@value{GDBN} should not allow your program to see this signal.
5ece1a18 4331@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4332@end table
4333@c @end group
4334
d4f3574e
SS
4335When a signal stops your program, the signal is not visible to the
4336program until you
c906108c
SS
4337continue. Your program sees the signal then, if @code{pass} is in
4338effect for the signal in question @emph{at that time}. In other words,
4339after @value{GDBN} reports a signal, you can use the @code{handle}
4340command with @code{pass} or @code{nopass} to control whether your
4341program sees that signal when you continue.
4342
24f93129
EZ
4343The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4344non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4345@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4346erroneous signals.
4347
c906108c
SS
4348You can also use the @code{signal} command to prevent your program from
4349seeing a signal, or cause it to see a signal it normally would not see,
4350or to give it any signal at any time. For example, if your program stopped
4351due to some sort of memory reference error, you might store correct
4352values into the erroneous variables and continue, hoping to see more
4353execution; but your program would probably terminate immediately as
4354a result of the fatal signal once it saw the signal. To prevent this,
4355you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4356Program a Signal}.
c906108c 4357
6d2ebf8b 4358@node Thread Stops
79a6e687 4359@section Stopping and Starting Multi-thread Programs
c906108c
SS
4360
4361When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4362Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4363breakpoints on all threads, or on a particular thread.
4364
4365@table @code
4366@cindex breakpoints and threads
4367@cindex thread breakpoints
4368@kindex break @dots{} thread @var{threadno}
4369@item break @var{linespec} thread @var{threadno}
4370@itemx break @var{linespec} thread @var{threadno} if @dots{}
4371@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4372writing them (@pxref{Specify Location}), but the effect is always to
4373specify some source line.
c906108c
SS
4374
4375Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4376to specify that you only want @value{GDBN} to stop the program when a
4377particular thread reaches this breakpoint. @var{threadno} is one of the
4378numeric thread identifiers assigned by @value{GDBN}, shown in the first
4379column of the @samp{info threads} display.
4380
4381If you do not specify @samp{thread @var{threadno}} when you set a
4382breakpoint, the breakpoint applies to @emph{all} threads of your
4383program.
4384
4385You can use the @code{thread} qualifier on conditional breakpoints as
4386well; in this case, place @samp{thread @var{threadno}} before the
4387breakpoint condition, like this:
4388
4389@smallexample
2df3850c 4390(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4391@end smallexample
4392
4393@end table
4394
4395@cindex stopped threads
4396@cindex threads, stopped
4397Whenever your program stops under @value{GDBN} for any reason,
4398@emph{all} threads of execution stop, not just the current thread. This
4399allows you to examine the overall state of the program, including
4400switching between threads, without worrying that things may change
4401underfoot.
4402
36d86913
MC
4403@cindex thread breakpoints and system calls
4404@cindex system calls and thread breakpoints
4405@cindex premature return from system calls
4406There is an unfortunate side effect. If one thread stops for a
4407breakpoint, or for some other reason, and another thread is blocked in a
4408system call, then the system call may return prematurely. This is a
4409consequence of the interaction between multiple threads and the signals
4410that @value{GDBN} uses to implement breakpoints and other events that
4411stop execution.
4412
4413To handle this problem, your program should check the return value of
4414each system call and react appropriately. This is good programming
4415style anyways.
4416
4417For example, do not write code like this:
4418
4419@smallexample
4420 sleep (10);
4421@end smallexample
4422
4423The call to @code{sleep} will return early if a different thread stops
4424at a breakpoint or for some other reason.
4425
4426Instead, write this:
4427
4428@smallexample
4429 int unslept = 10;
4430 while (unslept > 0)
4431 unslept = sleep (unslept);
4432@end smallexample
4433
4434A system call is allowed to return early, so the system is still
4435conforming to its specification. But @value{GDBN} does cause your
4436multi-threaded program to behave differently than it would without
4437@value{GDBN}.
4438
4439Also, @value{GDBN} uses internal breakpoints in the thread library to
4440monitor certain events such as thread creation and thread destruction.
4441When such an event happens, a system call in another thread may return
4442prematurely, even though your program does not appear to stop.
4443
c906108c
SS
4444@cindex continuing threads
4445@cindex threads, continuing
4446Conversely, whenever you restart the program, @emph{all} threads start
4447executing. @emph{This is true even when single-stepping} with commands
5d161b24 4448like @code{step} or @code{next}.
c906108c
SS
4449
4450In particular, @value{GDBN} cannot single-step all threads in lockstep.
4451Since thread scheduling is up to your debugging target's operating
4452system (not controlled by @value{GDBN}), other threads may
4453execute more than one statement while the current thread completes a
4454single step. Moreover, in general other threads stop in the middle of a
4455statement, rather than at a clean statement boundary, when the program
4456stops.
4457
4458You might even find your program stopped in another thread after
4459continuing or even single-stepping. This happens whenever some other
4460thread runs into a breakpoint, a signal, or an exception before the
4461first thread completes whatever you requested.
4462
4463On some OSes, you can lock the OS scheduler and thus allow only a single
4464thread to run.
4465
4466@table @code
4467@item set scheduler-locking @var{mode}
9c16f35a
EZ
4468@cindex scheduler locking mode
4469@cindex lock scheduler
c906108c
SS
4470Set the scheduler locking mode. If it is @code{off}, then there is no
4471locking and any thread may run at any time. If @code{on}, then only the
4472current thread may run when the inferior is resumed. The @code{step}
4473mode optimizes for single-stepping. It stops other threads from
4474``seizing the prompt'' by preempting the current thread while you are
4475stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4476when you step. They are more likely to run when you @samp{next} over a
c906108c 4477function call, and they are completely free to run when you use commands
d4f3574e 4478like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4479thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4480@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4481
4482@item show scheduler-locking
4483Display the current scheduler locking mode.
4484@end table
4485
c906108c 4486
6d2ebf8b 4487@node Stack
c906108c
SS
4488@chapter Examining the Stack
4489
4490When your program has stopped, the first thing you need to know is where it
4491stopped and how it got there.
4492
4493@cindex call stack
5d161b24
DB
4494Each time your program performs a function call, information about the call
4495is generated.
4496That information includes the location of the call in your program,
4497the arguments of the call,
c906108c 4498and the local variables of the function being called.
5d161b24 4499The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4500The stack frames are allocated in a region of memory called the @dfn{call
4501stack}.
4502
4503When your program stops, the @value{GDBN} commands for examining the
4504stack allow you to see all of this information.
4505
4506@cindex selected frame
4507One of the stack frames is @dfn{selected} by @value{GDBN} and many
4508@value{GDBN} commands refer implicitly to the selected frame. In
4509particular, whenever you ask @value{GDBN} for the value of a variable in
4510your program, the value is found in the selected frame. There are
4511special @value{GDBN} commands to select whichever frame you are
79a6e687 4512interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4513
4514When your program stops, @value{GDBN} automatically selects the
5d161b24 4515currently executing frame and describes it briefly, similar to the
79a6e687 4516@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4517
4518@menu
4519* Frames:: Stack frames
4520* Backtrace:: Backtraces
4521* Selection:: Selecting a frame
4522* Frame Info:: Information on a frame
c906108c
SS
4523
4524@end menu
4525
6d2ebf8b 4526@node Frames
79a6e687 4527@section Stack Frames
c906108c 4528
d4f3574e 4529@cindex frame, definition
c906108c
SS
4530@cindex stack frame
4531The call stack is divided up into contiguous pieces called @dfn{stack
4532frames}, or @dfn{frames} for short; each frame is the data associated
4533with one call to one function. The frame contains the arguments given
4534to the function, the function's local variables, and the address at
4535which the function is executing.
4536
4537@cindex initial frame
4538@cindex outermost frame
4539@cindex innermost frame
4540When your program is started, the stack has only one frame, that of the
4541function @code{main}. This is called the @dfn{initial} frame or the
4542@dfn{outermost} frame. Each time a function is called, a new frame is
4543made. Each time a function returns, the frame for that function invocation
4544is eliminated. If a function is recursive, there can be many frames for
4545the same function. The frame for the function in which execution is
4546actually occurring is called the @dfn{innermost} frame. This is the most
4547recently created of all the stack frames that still exist.
4548
4549@cindex frame pointer
4550Inside your program, stack frames are identified by their addresses. A
4551stack frame consists of many bytes, each of which has its own address; each
4552kind of computer has a convention for choosing one byte whose
4553address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4554in a register called the @dfn{frame pointer register}
4555(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4556
4557@cindex frame number
4558@value{GDBN} assigns numbers to all existing stack frames, starting with
4559zero for the innermost frame, one for the frame that called it,
4560and so on upward. These numbers do not really exist in your program;
4561they are assigned by @value{GDBN} to give you a way of designating stack
4562frames in @value{GDBN} commands.
4563
6d2ebf8b
SS
4564@c The -fomit-frame-pointer below perennially causes hbox overflow
4565@c underflow problems.
c906108c
SS
4566@cindex frameless execution
4567Some compilers provide a way to compile functions so that they operate
e22ea452 4568without stack frames. (For example, the @value{NGCC} option
474c8240 4569@smallexample
6d2ebf8b 4570@samp{-fomit-frame-pointer}
474c8240 4571@end smallexample
6d2ebf8b 4572generates functions without a frame.)
c906108c
SS
4573This is occasionally done with heavily used library functions to save
4574the frame setup time. @value{GDBN} has limited facilities for dealing
4575with these function invocations. If the innermost function invocation
4576has no stack frame, @value{GDBN} nevertheless regards it as though
4577it had a separate frame, which is numbered zero as usual, allowing
4578correct tracing of the function call chain. However, @value{GDBN} has
4579no provision for frameless functions elsewhere in the stack.
4580
4581@table @code
d4f3574e 4582@kindex frame@r{, command}
41afff9a 4583@cindex current stack frame
c906108c 4584@item frame @var{args}
5d161b24 4585The @code{frame} command allows you to move from one stack frame to another,
c906108c 4586and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4587address of the frame or the stack frame number. Without an argument,
4588@code{frame} prints the current stack frame.
c906108c
SS
4589
4590@kindex select-frame
41afff9a 4591@cindex selecting frame silently
c906108c
SS
4592@item select-frame
4593The @code{select-frame} command allows you to move from one stack frame
4594to another without printing the frame. This is the silent version of
4595@code{frame}.
4596@end table
4597
6d2ebf8b 4598@node Backtrace
c906108c
SS
4599@section Backtraces
4600
09d4efe1
EZ
4601@cindex traceback
4602@cindex call stack traces
c906108c
SS
4603A backtrace is a summary of how your program got where it is. It shows one
4604line per frame, for many frames, starting with the currently executing
4605frame (frame zero), followed by its caller (frame one), and on up the
4606stack.
4607
4608@table @code
4609@kindex backtrace
41afff9a 4610@kindex bt @r{(@code{backtrace})}
c906108c
SS
4611@item backtrace
4612@itemx bt
4613Print a backtrace of the entire stack: one line per frame for all
4614frames in the stack.
4615
4616You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4617character, normally @kbd{Ctrl-c}.
c906108c
SS
4618
4619@item backtrace @var{n}
4620@itemx bt @var{n}
4621Similar, but print only the innermost @var{n} frames.
4622
4623@item backtrace -@var{n}
4624@itemx bt -@var{n}
4625Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4626
4627@item backtrace full
0f061b69 4628@itemx bt full
dd74f6ae
NR
4629@itemx bt full @var{n}
4630@itemx bt full -@var{n}
e7109c7e 4631Print the values of the local variables also. @var{n} specifies the
286ba84d 4632number of frames to print, as described above.
c906108c
SS
4633@end table
4634
4635@kindex where
4636@kindex info stack
c906108c
SS
4637The names @code{where} and @code{info stack} (abbreviated @code{info s})
4638are additional aliases for @code{backtrace}.
4639
839c27b7
EZ
4640@cindex multiple threads, backtrace
4641In a multi-threaded program, @value{GDBN} by default shows the
4642backtrace only for the current thread. To display the backtrace for
4643several or all of the threads, use the command @code{thread apply}
4644(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4645apply all backtrace}, @value{GDBN} will display the backtrace for all
4646the threads; this is handy when you debug a core dump of a
4647multi-threaded program.
4648
c906108c
SS
4649Each line in the backtrace shows the frame number and the function name.
4650The program counter value is also shown---unless you use @code{set
4651print address off}. The backtrace also shows the source file name and
4652line number, as well as the arguments to the function. The program
4653counter value is omitted if it is at the beginning of the code for that
4654line number.
4655
4656Here is an example of a backtrace. It was made with the command
4657@samp{bt 3}, so it shows the innermost three frames.
4658
4659@smallexample
4660@group
5d161b24 4661#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4662 at builtin.c:993
4663#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4664#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4665 at macro.c:71
4666(More stack frames follow...)
4667@end group
4668@end smallexample
4669
4670@noindent
4671The display for frame zero does not begin with a program counter
4672value, indicating that your program has stopped at the beginning of the
4673code for line @code{993} of @code{builtin.c}.
4674
18999be5
EZ
4675@cindex value optimized out, in backtrace
4676@cindex function call arguments, optimized out
4677If your program was compiled with optimizations, some compilers will
4678optimize away arguments passed to functions if those arguments are
4679never used after the call. Such optimizations generate code that
4680passes arguments through registers, but doesn't store those arguments
4681in the stack frame. @value{GDBN} has no way of displaying such
4682arguments in stack frames other than the innermost one. Here's what
4683such a backtrace might look like:
4684
4685@smallexample
4686@group
4687#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4688 at builtin.c:993
4689#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4690#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4691 at macro.c:71
4692(More stack frames follow...)
4693@end group
4694@end smallexample
4695
4696@noindent
4697The values of arguments that were not saved in their stack frames are
4698shown as @samp{<value optimized out>}.
4699
4700If you need to display the values of such optimized-out arguments,
4701either deduce that from other variables whose values depend on the one
4702you are interested in, or recompile without optimizations.
4703
a8f24a35
EZ
4704@cindex backtrace beyond @code{main} function
4705@cindex program entry point
4706@cindex startup code, and backtrace
25d29d70
AC
4707Most programs have a standard user entry point---a place where system
4708libraries and startup code transition into user code. For C this is
d416eeec
EZ
4709@code{main}@footnote{
4710Note that embedded programs (the so-called ``free-standing''
4711environment) are not required to have a @code{main} function as the
4712entry point. They could even have multiple entry points.}.
4713When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4714it will terminate the backtrace, to avoid tracing into highly
4715system-specific (and generally uninteresting) code.
4716
4717If you need to examine the startup code, or limit the number of levels
4718in a backtrace, you can change this behavior:
95f90d25
DJ
4719
4720@table @code
25d29d70
AC
4721@item set backtrace past-main
4722@itemx set backtrace past-main on
4644b6e3 4723@kindex set backtrace
25d29d70
AC
4724Backtraces will continue past the user entry point.
4725
4726@item set backtrace past-main off
95f90d25
DJ
4727Backtraces will stop when they encounter the user entry point. This is the
4728default.
4729
25d29d70 4730@item show backtrace past-main
4644b6e3 4731@kindex show backtrace
25d29d70
AC
4732Display the current user entry point backtrace policy.
4733
2315ffec
RC
4734@item set backtrace past-entry
4735@itemx set backtrace past-entry on
a8f24a35 4736Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4737This entry point is encoded by the linker when the application is built,
4738and is likely before the user entry point @code{main} (or equivalent) is called.
4739
4740@item set backtrace past-entry off
d3e8051b 4741Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4742application. This is the default.
4743
4744@item show backtrace past-entry
4745Display the current internal entry point backtrace policy.
4746
25d29d70
AC
4747@item set backtrace limit @var{n}
4748@itemx set backtrace limit 0
4749@cindex backtrace limit
4750Limit the backtrace to @var{n} levels. A value of zero means
4751unlimited.
95f90d25 4752
25d29d70
AC
4753@item show backtrace limit
4754Display the current limit on backtrace levels.
95f90d25
DJ
4755@end table
4756
6d2ebf8b 4757@node Selection
79a6e687 4758@section Selecting a Frame
c906108c
SS
4759
4760Most commands for examining the stack and other data in your program work on
4761whichever stack frame is selected at the moment. Here are the commands for
4762selecting a stack frame; all of them finish by printing a brief description
4763of the stack frame just selected.
4764
4765@table @code
d4f3574e 4766@kindex frame@r{, selecting}
41afff9a 4767@kindex f @r{(@code{frame})}
c906108c
SS
4768@item frame @var{n}
4769@itemx f @var{n}
4770Select frame number @var{n}. Recall that frame zero is the innermost
4771(currently executing) frame, frame one is the frame that called the
4772innermost one, and so on. The highest-numbered frame is the one for
4773@code{main}.
4774
4775@item frame @var{addr}
4776@itemx f @var{addr}
4777Select the frame at address @var{addr}. This is useful mainly if the
4778chaining of stack frames has been damaged by a bug, making it
4779impossible for @value{GDBN} to assign numbers properly to all frames. In
4780addition, this can be useful when your program has multiple stacks and
4781switches between them.
4782
c906108c
SS
4783On the SPARC architecture, @code{frame} needs two addresses to
4784select an arbitrary frame: a frame pointer and a stack pointer.
4785
4786On the MIPS and Alpha architecture, it needs two addresses: a stack
4787pointer and a program counter.
4788
4789On the 29k architecture, it needs three addresses: a register stack
4790pointer, a program counter, and a memory stack pointer.
c906108c
SS
4791
4792@kindex up
4793@item up @var{n}
4794Move @var{n} frames up the stack. For positive numbers @var{n}, this
4795advances toward the outermost frame, to higher frame numbers, to frames
4796that have existed longer. @var{n} defaults to one.
4797
4798@kindex down
41afff9a 4799@kindex do @r{(@code{down})}
c906108c
SS
4800@item down @var{n}
4801Move @var{n} frames down the stack. For positive numbers @var{n}, this
4802advances toward the innermost frame, to lower frame numbers, to frames
4803that were created more recently. @var{n} defaults to one. You may
4804abbreviate @code{down} as @code{do}.
4805@end table
4806
4807All of these commands end by printing two lines of output describing the
4808frame. The first line shows the frame number, the function name, the
4809arguments, and the source file and line number of execution in that
5d161b24 4810frame. The second line shows the text of that source line.
c906108c
SS
4811
4812@need 1000
4813For example:
4814
4815@smallexample
4816@group
4817(@value{GDBP}) up
4818#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4819 at env.c:10
482010 read_input_file (argv[i]);
4821@end group
4822@end smallexample
4823
4824After such a printout, the @code{list} command with no arguments
4825prints ten lines centered on the point of execution in the frame.
87885426
FN
4826You can also edit the program at the point of execution with your favorite
4827editing program by typing @code{edit}.
79a6e687 4828@xref{List, ,Printing Source Lines},
87885426 4829for details.
c906108c
SS
4830
4831@table @code
4832@kindex down-silently
4833@kindex up-silently
4834@item up-silently @var{n}
4835@itemx down-silently @var{n}
4836These two commands are variants of @code{up} and @code{down},
4837respectively; they differ in that they do their work silently, without
4838causing display of the new frame. They are intended primarily for use
4839in @value{GDBN} command scripts, where the output might be unnecessary and
4840distracting.
4841@end table
4842
6d2ebf8b 4843@node Frame Info
79a6e687 4844@section Information About a Frame
c906108c
SS
4845
4846There are several other commands to print information about the selected
4847stack frame.
4848
4849@table @code
4850@item frame
4851@itemx f
4852When used without any argument, this command does not change which
4853frame is selected, but prints a brief description of the currently
4854selected stack frame. It can be abbreviated @code{f}. With an
4855argument, this command is used to select a stack frame.
79a6e687 4856@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4857
4858@kindex info frame
41afff9a 4859@kindex info f @r{(@code{info frame})}
c906108c
SS
4860@item info frame
4861@itemx info f
4862This command prints a verbose description of the selected stack frame,
4863including:
4864
4865@itemize @bullet
5d161b24
DB
4866@item
4867the address of the frame
c906108c
SS
4868@item
4869the address of the next frame down (called by this frame)
4870@item
4871the address of the next frame up (caller of this frame)
4872@item
4873the language in which the source code corresponding to this frame is written
4874@item
4875the address of the frame's arguments
4876@item
d4f3574e
SS
4877the address of the frame's local variables
4878@item
c906108c
SS
4879the program counter saved in it (the address of execution in the caller frame)
4880@item
4881which registers were saved in the frame
4882@end itemize
4883
4884@noindent The verbose description is useful when
4885something has gone wrong that has made the stack format fail to fit
4886the usual conventions.
4887
4888@item info frame @var{addr}
4889@itemx info f @var{addr}
4890Print a verbose description of the frame at address @var{addr}, without
4891selecting that frame. The selected frame remains unchanged by this
4892command. This requires the same kind of address (more than one for some
4893architectures) that you specify in the @code{frame} command.
79a6e687 4894@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4895
4896@kindex info args
4897@item info args
4898Print the arguments of the selected frame, each on a separate line.
4899
4900@item info locals
4901@kindex info locals
4902Print the local variables of the selected frame, each on a separate
4903line. These are all variables (declared either static or automatic)
4904accessible at the point of execution of the selected frame.
4905
c906108c 4906@kindex info catch
d4f3574e
SS
4907@cindex catch exceptions, list active handlers
4908@cindex exception handlers, how to list
c906108c
SS
4909@item info catch
4910Print a list of all the exception handlers that are active in the
4911current stack frame at the current point of execution. To see other
4912exception handlers, visit the associated frame (using the @code{up},
4913@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4914@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4915
c906108c
SS
4916@end table
4917
c906108c 4918
6d2ebf8b 4919@node Source
c906108c
SS
4920@chapter Examining Source Files
4921
4922@value{GDBN} can print parts of your program's source, since the debugging
4923information recorded in the program tells @value{GDBN} what source files were
4924used to build it. When your program stops, @value{GDBN} spontaneously prints
4925the line where it stopped. Likewise, when you select a stack frame
79a6e687 4926(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4927execution in that frame has stopped. You can print other portions of
4928source files by explicit command.
4929
7a292a7a 4930If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4931prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4932@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4933
4934@menu
4935* List:: Printing source lines
2a25a5ba 4936* Specify Location:: How to specify code locations
87885426 4937* Edit:: Editing source files
c906108c 4938* Search:: Searching source files
c906108c
SS
4939* Source Path:: Specifying source directories
4940* Machine Code:: Source and machine code
4941@end menu
4942
6d2ebf8b 4943@node List
79a6e687 4944@section Printing Source Lines
c906108c
SS
4945
4946@kindex list
41afff9a 4947@kindex l @r{(@code{list})}
c906108c 4948To print lines from a source file, use the @code{list} command
5d161b24 4949(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4950There are several ways to specify what part of the file you want to
4951print; see @ref{Specify Location}, for the full list.
c906108c
SS
4952
4953Here are the forms of the @code{list} command most commonly used:
4954
4955@table @code
4956@item list @var{linenum}
4957Print lines centered around line number @var{linenum} in the
4958current source file.
4959
4960@item list @var{function}
4961Print lines centered around the beginning of function
4962@var{function}.
4963
4964@item list
4965Print more lines. If the last lines printed were printed with a
4966@code{list} command, this prints lines following the last lines
4967printed; however, if the last line printed was a solitary line printed
4968as part of displaying a stack frame (@pxref{Stack, ,Examining the
4969Stack}), this prints lines centered around that line.
4970
4971@item list -
4972Print lines just before the lines last printed.
4973@end table
4974
9c16f35a 4975@cindex @code{list}, how many lines to display
c906108c
SS
4976By default, @value{GDBN} prints ten source lines with any of these forms of
4977the @code{list} command. You can change this using @code{set listsize}:
4978
4979@table @code
4980@kindex set listsize
4981@item set listsize @var{count}
4982Make the @code{list} command display @var{count} source lines (unless
4983the @code{list} argument explicitly specifies some other number).
4984
4985@kindex show listsize
4986@item show listsize
4987Display the number of lines that @code{list} prints.
4988@end table
4989
4990Repeating a @code{list} command with @key{RET} discards the argument,
4991so it is equivalent to typing just @code{list}. This is more useful
4992than listing the same lines again. An exception is made for an
4993argument of @samp{-}; that argument is preserved in repetition so that
4994each repetition moves up in the source file.
4995
c906108c
SS
4996In general, the @code{list} command expects you to supply zero, one or two
4997@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4998of writing them (@pxref{Specify Location}), but the effect is always
4999to specify some source line.
5000
c906108c
SS
5001Here is a complete description of the possible arguments for @code{list}:
5002
5003@table @code
5004@item list @var{linespec}
5005Print lines centered around the line specified by @var{linespec}.
5006
5007@item list @var{first},@var{last}
5008Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5009linespecs. When a @code{list} command has two linespecs, and the
5010source file of the second linespec is omitted, this refers to
5011the same source file as the first linespec.
c906108c
SS
5012
5013@item list ,@var{last}
5014Print lines ending with @var{last}.
5015
5016@item list @var{first},
5017Print lines starting with @var{first}.
5018
5019@item list +
5020Print lines just after the lines last printed.
5021
5022@item list -
5023Print lines just before the lines last printed.
5024
5025@item list
5026As described in the preceding table.
5027@end table
5028
2a25a5ba
EZ
5029@node Specify Location
5030@section Specifying a Location
5031@cindex specifying location
5032@cindex linespec
c906108c 5033
2a25a5ba
EZ
5034Several @value{GDBN} commands accept arguments that specify a location
5035of your program's code. Since @value{GDBN} is a source-level
5036debugger, a location usually specifies some line in the source code;
5037for that reason, locations are also known as @dfn{linespecs}.
c906108c 5038
2a25a5ba
EZ
5039Here are all the different ways of specifying a code location that
5040@value{GDBN} understands:
c906108c 5041
2a25a5ba
EZ
5042@table @code
5043@item @var{linenum}
5044Specifies the line number @var{linenum} of the current source file.
c906108c 5045
2a25a5ba
EZ
5046@item -@var{offset}
5047@itemx +@var{offset}
5048Specifies the line @var{offset} lines before or after the @dfn{current
5049line}. For the @code{list} command, the current line is the last one
5050printed; for the breakpoint commands, this is the line at which
5051execution stopped in the currently selected @dfn{stack frame}
5052(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5053used as the second of the two linespecs in a @code{list} command,
5054this specifies the line @var{offset} lines up or down from the first
5055linespec.
5056
5057@item @var{filename}:@var{linenum}
5058Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5059
5060@item @var{function}
5061Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5062For example, in C, this is the line with the open brace.
c906108c
SS
5063
5064@item @var{filename}:@var{function}
2a25a5ba
EZ
5065Specifies the line that begins the body of the function @var{function}
5066in the file @var{filename}. You only need the file name with a
5067function name to avoid ambiguity when there are identically named
5068functions in different source files.
c906108c
SS
5069
5070@item *@var{address}
2a25a5ba
EZ
5071Specifies the program address @var{address}. For line-oriented
5072commands, such as @code{list} and @code{edit}, this specifies a source
5073line that contains @var{address}. For @code{break} and other
5074breakpoint oriented commands, this can be used to set breakpoints in
5075parts of your program which do not have debugging information or
5076source files.
5077
5078Here @var{address} may be any expression valid in the current working
5079language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5080address. In addition, as a convenience, @value{GDBN} extends the
5081semantics of expressions used in locations to cover the situations
5082that frequently happen during debugging. Here are the various forms
5083of @var{address}:
2a25a5ba
EZ
5084
5085@table @code
5086@item @var{expression}
5087Any expression valid in the current working language.
5088
5089@item @var{funcaddr}
5090An address of a function or procedure derived from its name. In C,
5091C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5092simply the function's name @var{function} (and actually a special case
5093of a valid expression). In Pascal and Modula-2, this is
5094@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5095(although the Pascal form also works).
5096
5097This form specifies the address of the function's first instruction,
5098before the stack frame and arguments have been set up.
5099
5100@item '@var{filename}'::@var{funcaddr}
5101Like @var{funcaddr} above, but also specifies the name of the source
5102file explicitly. This is useful if the name of the function does not
5103specify the function unambiguously, e.g., if there are several
5104functions with identical names in different source files.
c906108c
SS
5105@end table
5106
2a25a5ba
EZ
5107@end table
5108
5109
87885426 5110@node Edit
79a6e687 5111@section Editing Source Files
87885426
FN
5112@cindex editing source files
5113
5114@kindex edit
5115@kindex e @r{(@code{edit})}
5116To edit the lines in a source file, use the @code{edit} command.
5117The editing program of your choice
5118is invoked with the current line set to
5119the active line in the program.
5120Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5121want to print if you want to see other parts of the program:
87885426
FN
5122
5123@table @code
2a25a5ba
EZ
5124@item edit @var{location}
5125Edit the source file specified by @code{location}. Editing starts at
5126that @var{location}, e.g., at the specified source line of the
5127specified file. @xref{Specify Location}, for all the possible forms
5128of the @var{location} argument; here are the forms of the @code{edit}
5129command most commonly used:
87885426 5130
2a25a5ba 5131@table @code
87885426
FN
5132@item edit @var{number}
5133Edit the current source file with @var{number} as the active line number.
5134
5135@item edit @var{function}
5136Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5137@end table
87885426 5138
87885426
FN
5139@end table
5140
79a6e687 5141@subsection Choosing your Editor
87885426
FN
5142You can customize @value{GDBN} to use any editor you want
5143@footnote{
5144The only restriction is that your editor (say @code{ex}), recognizes the
5145following command-line syntax:
10998722 5146@smallexample
87885426 5147ex +@var{number} file
10998722 5148@end smallexample
15387254
EZ
5149The optional numeric value +@var{number} specifies the number of the line in
5150the file where to start editing.}.
5151By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5152by setting the environment variable @code{EDITOR} before using
5153@value{GDBN}. For example, to configure @value{GDBN} to use the
5154@code{vi} editor, you could use these commands with the @code{sh} shell:
5155@smallexample
87885426
FN
5156EDITOR=/usr/bin/vi
5157export EDITOR
15387254 5158gdb @dots{}
10998722 5159@end smallexample
87885426 5160or in the @code{csh} shell,
10998722 5161@smallexample
87885426 5162setenv EDITOR /usr/bin/vi
15387254 5163gdb @dots{}
10998722 5164@end smallexample
87885426 5165
6d2ebf8b 5166@node Search
79a6e687 5167@section Searching Source Files
15387254 5168@cindex searching source files
c906108c
SS
5169
5170There are two commands for searching through the current source file for a
5171regular expression.
5172
5173@table @code
5174@kindex search
5175@kindex forward-search
5176@item forward-search @var{regexp}
5177@itemx search @var{regexp}
5178The command @samp{forward-search @var{regexp}} checks each line,
5179starting with the one following the last line listed, for a match for
5d161b24 5180@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5181synonym @samp{search @var{regexp}} or abbreviate the command name as
5182@code{fo}.
5183
09d4efe1 5184@kindex reverse-search
c906108c
SS
5185@item reverse-search @var{regexp}
5186The command @samp{reverse-search @var{regexp}} checks each line, starting
5187with the one before the last line listed and going backward, for a match
5188for @var{regexp}. It lists the line that is found. You can abbreviate
5189this command as @code{rev}.
5190@end table
c906108c 5191
6d2ebf8b 5192@node Source Path
79a6e687 5193@section Specifying Source Directories
c906108c
SS
5194
5195@cindex source path
5196@cindex directories for source files
5197Executable programs sometimes do not record the directories of the source
5198files from which they were compiled, just the names. Even when they do,
5199the directories could be moved between the compilation and your debugging
5200session. @value{GDBN} has a list of directories to search for source files;
5201this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5202it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5203in the list, until it finds a file with the desired name.
5204
5205For example, suppose an executable references the file
5206@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5207@file{/mnt/cross}. The file is first looked up literally; if this
5208fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5209fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5210message is printed. @value{GDBN} does not look up the parts of the
5211source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5212Likewise, the subdirectories of the source path are not searched: if
5213the source path is @file{/mnt/cross}, and the binary refers to
5214@file{foo.c}, @value{GDBN} would not find it under
5215@file{/mnt/cross/usr/src/foo-1.0/lib}.
5216
5217Plain file names, relative file names with leading directories, file
5218names containing dots, etc.@: are all treated as described above; for
5219instance, if the source path is @file{/mnt/cross}, and the source file
5220is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5221@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5222that---@file{/mnt/cross/foo.c}.
5223
5224Note that the executable search path is @emph{not} used to locate the
cd852561 5225source files.
c906108c
SS
5226
5227Whenever you reset or rearrange the source path, @value{GDBN} clears out
5228any information it has cached about where source files are found and where
5229each line is in the file.
5230
5231@kindex directory
5232@kindex dir
d4f3574e
SS
5233When you start @value{GDBN}, its source path includes only @samp{cdir}
5234and @samp{cwd}, in that order.
c906108c
SS
5235To add other directories, use the @code{directory} command.
5236
4b505b12
AS
5237The search path is used to find both program source files and @value{GDBN}
5238script files (read using the @samp{-command} option and @samp{source} command).
5239
30daae6c
JB
5240In addition to the source path, @value{GDBN} provides a set of commands
5241that manage a list of source path substitution rules. A @dfn{substitution
5242rule} specifies how to rewrite source directories stored in the program's
5243debug information in case the sources were moved to a different
5244directory between compilation and debugging. A rule is made of
5245two strings, the first specifying what needs to be rewritten in
5246the path, and the second specifying how it should be rewritten.
5247In @ref{set substitute-path}, we name these two parts @var{from} and
5248@var{to} respectively. @value{GDBN} does a simple string replacement
5249of @var{from} with @var{to} at the start of the directory part of the
5250source file name, and uses that result instead of the original file
5251name to look up the sources.
5252
5253Using the previous example, suppose the @file{foo-1.0} tree has been
5254moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5255@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5256@file{/mnt/cross}. The first lookup will then be
5257@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5258of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5259substitution rule, use the @code{set substitute-path} command
5260(@pxref{set substitute-path}).
5261
5262To avoid unexpected substitution results, a rule is applied only if the
5263@var{from} part of the directory name ends at a directory separator.
5264For instance, a rule substituting @file{/usr/source} into
5265@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5266not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5267is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5268not be applied to @file{/root/usr/source/baz.c} either.
5269
5270In many cases, you can achieve the same result using the @code{directory}
5271command. However, @code{set substitute-path} can be more efficient in
5272the case where the sources are organized in a complex tree with multiple
5273subdirectories. With the @code{directory} command, you need to add each
5274subdirectory of your project. If you moved the entire tree while
5275preserving its internal organization, then @code{set substitute-path}
5276allows you to direct the debugger to all the sources with one single
5277command.
5278
5279@code{set substitute-path} is also more than just a shortcut command.
5280The source path is only used if the file at the original location no
5281longer exists. On the other hand, @code{set substitute-path} modifies
5282the debugger behavior to look at the rewritten location instead. So, if
5283for any reason a source file that is not relevant to your executable is
5284located at the original location, a substitution rule is the only
3f94c067 5285method available to point @value{GDBN} at the new location.
30daae6c 5286
c906108c
SS
5287@table @code
5288@item directory @var{dirname} @dots{}
5289@item dir @var{dirname} @dots{}
5290Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5291directory names may be given to this command, separated by @samp{:}
5292(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5293part of absolute file names) or
c906108c
SS
5294whitespace. You may specify a directory that is already in the source
5295path; this moves it forward, so @value{GDBN} searches it sooner.
5296
5297@kindex cdir
5298@kindex cwd
41afff9a 5299@vindex $cdir@r{, convenience variable}
d3e8051b 5300@vindex $cwd@r{, convenience variable}
c906108c
SS
5301@cindex compilation directory
5302@cindex current directory
5303@cindex working directory
5304@cindex directory, current
5305@cindex directory, compilation
5306You can use the string @samp{$cdir} to refer to the compilation
5307directory (if one is recorded), and @samp{$cwd} to refer to the current
5308working directory. @samp{$cwd} is not the same as @samp{.}---the former
5309tracks the current working directory as it changes during your @value{GDBN}
5310session, while the latter is immediately expanded to the current
5311directory at the time you add an entry to the source path.
5312
5313@item directory
cd852561 5314Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5315
5316@c RET-repeat for @code{directory} is explicitly disabled, but since
5317@c repeating it would be a no-op we do not say that. (thanks to RMS)
5318
5319@item show directories
5320@kindex show directories
5321Print the source path: show which directories it contains.
30daae6c
JB
5322
5323@anchor{set substitute-path}
5324@item set substitute-path @var{from} @var{to}
5325@kindex set substitute-path
5326Define a source path substitution rule, and add it at the end of the
5327current list of existing substitution rules. If a rule with the same
5328@var{from} was already defined, then the old rule is also deleted.
5329
5330For example, if the file @file{/foo/bar/baz.c} was moved to
5331@file{/mnt/cross/baz.c}, then the command
5332
5333@smallexample
5334(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5335@end smallexample
5336
5337@noindent
5338will tell @value{GDBN} to replace @samp{/usr/src} with
5339@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5340@file{baz.c} even though it was moved.
5341
5342In the case when more than one substitution rule have been defined,
5343the rules are evaluated one by one in the order where they have been
5344defined. The first one matching, if any, is selected to perform
5345the substitution.
5346
5347For instance, if we had entered the following commands:
5348
5349@smallexample
5350(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5351(@value{GDBP}) set substitute-path /usr/src /mnt/src
5352@end smallexample
5353
5354@noindent
5355@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5356@file{/mnt/include/defs.h} by using the first rule. However, it would
5357use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5358@file{/mnt/src/lib/foo.c}.
5359
5360
5361@item unset substitute-path [path]
5362@kindex unset substitute-path
5363If a path is specified, search the current list of substitution rules
5364for a rule that would rewrite that path. Delete that rule if found.
5365A warning is emitted by the debugger if no rule could be found.
5366
5367If no path is specified, then all substitution rules are deleted.
5368
5369@item show substitute-path [path]
5370@kindex show substitute-path
5371If a path is specified, then print the source path substitution rule
5372which would rewrite that path, if any.
5373
5374If no path is specified, then print all existing source path substitution
5375rules.
5376
c906108c
SS
5377@end table
5378
5379If your source path is cluttered with directories that are no longer of
5380interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5381versions of source. You can correct the situation as follows:
5382
5383@enumerate
5384@item
cd852561 5385Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5386
5387@item
5388Use @code{directory} with suitable arguments to reinstall the
5389directories you want in the source path. You can add all the
5390directories in one command.
5391@end enumerate
5392
6d2ebf8b 5393@node Machine Code
79a6e687 5394@section Source and Machine Code
15387254 5395@cindex source line and its code address
c906108c
SS
5396
5397You can use the command @code{info line} to map source lines to program
5398addresses (and vice versa), and the command @code{disassemble} to display
5399a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5400mode, the @code{info line} command causes the arrow to point to the
5d161b24 5401line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5402well as hex.
5403
5404@table @code
5405@kindex info line
5406@item info line @var{linespec}
5407Print the starting and ending addresses of the compiled code for
5408source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5409the ways documented in @ref{Specify Location}.
c906108c
SS
5410@end table
5411
5412For example, we can use @code{info line} to discover the location of
5413the object code for the first line of function
5414@code{m4_changequote}:
5415
d4f3574e
SS
5416@c FIXME: I think this example should also show the addresses in
5417@c symbolic form, as they usually would be displayed.
c906108c 5418@smallexample
96a2c332 5419(@value{GDBP}) info line m4_changequote
c906108c
SS
5420Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5421@end smallexample
5422
5423@noindent
15387254 5424@cindex code address and its source line
c906108c
SS
5425We can also inquire (using @code{*@var{addr}} as the form for
5426@var{linespec}) what source line covers a particular address:
5427@smallexample
5428(@value{GDBP}) info line *0x63ff
5429Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5430@end smallexample
5431
5432@cindex @code{$_} and @code{info line}
15387254 5433@cindex @code{x} command, default address
41afff9a 5434@kindex x@r{(examine), and} info line
c906108c
SS
5435After @code{info line}, the default address for the @code{x} command
5436is changed to the starting address of the line, so that @samp{x/i} is
5437sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5438,Examining Memory}). Also, this address is saved as the value of the
c906108c 5439convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5440Variables}).
c906108c
SS
5441
5442@table @code
5443@kindex disassemble
5444@cindex assembly instructions
5445@cindex instructions, assembly
5446@cindex machine instructions
5447@cindex listing machine instructions
5448@item disassemble
5449This specialized command dumps a range of memory as machine
5450instructions. The default memory range is the function surrounding the
5451program counter of the selected frame. A single argument to this
5452command is a program counter value; @value{GDBN} dumps the function
5453surrounding this value. Two arguments specify a range of addresses
5454(first inclusive, second exclusive) to dump.
5455@end table
5456
c906108c
SS
5457The following example shows the disassembly of a range of addresses of
5458HP PA-RISC 2.0 code:
5459
5460@smallexample
5461(@value{GDBP}) disas 0x32c4 0x32e4
5462Dump of assembler code from 0x32c4 to 0x32e4:
54630x32c4 <main+204>: addil 0,dp
54640x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54650x32cc <main+212>: ldil 0x3000,r31
54660x32d0 <main+216>: ble 0x3f8(sr4,r31)
54670x32d4 <main+220>: ldo 0(r31),rp
54680x32d8 <main+224>: addil -0x800,dp
54690x32dc <main+228>: ldo 0x588(r1),r26
54700x32e0 <main+232>: ldil 0x3000,r31
5471End of assembler dump.
5472@end smallexample
c906108c
SS
5473
5474Some architectures have more than one commonly-used set of instruction
5475mnemonics or other syntax.
5476
76d17f34
EZ
5477For programs that were dynamically linked and use shared libraries,
5478instructions that call functions or branch to locations in the shared
5479libraries might show a seemingly bogus location---it's actually a
5480location of the relocation table. On some architectures, @value{GDBN}
5481might be able to resolve these to actual function names.
5482
c906108c 5483@table @code
d4f3574e 5484@kindex set disassembly-flavor
d4f3574e
SS
5485@cindex Intel disassembly flavor
5486@cindex AT&T disassembly flavor
5487@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5488Select the instruction set to use when disassembling the
5489program via the @code{disassemble} or @code{x/i} commands.
5490
5491Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5492can set @var{instruction-set} to either @code{intel} or @code{att}.
5493The default is @code{att}, the AT&T flavor used by default by Unix
5494assemblers for x86-based targets.
9c16f35a
EZ
5495
5496@kindex show disassembly-flavor
5497@item show disassembly-flavor
5498Show the current setting of the disassembly flavor.
c906108c
SS
5499@end table
5500
5501
6d2ebf8b 5502@node Data
c906108c
SS
5503@chapter Examining Data
5504
5505@cindex printing data
5506@cindex examining data
5507@kindex print
5508@kindex inspect
5509@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5510@c document because it is nonstandard... Under Epoch it displays in a
5511@c different window or something like that.
5512The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5513command (abbreviated @code{p}), or its synonym @code{inspect}. It
5514evaluates and prints the value of an expression of the language your
5515program is written in (@pxref{Languages, ,Using @value{GDBN} with
5516Different Languages}).
c906108c
SS
5517
5518@table @code
d4f3574e
SS
5519@item print @var{expr}
5520@itemx print /@var{f} @var{expr}
5521@var{expr} is an expression (in the source language). By default the
5522value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5523you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5524@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5525Formats}.
c906108c
SS
5526
5527@item print
5528@itemx print /@var{f}
15387254 5529@cindex reprint the last value
d4f3574e 5530If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5531@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5532conveniently inspect the same value in an alternative format.
5533@end table
5534
5535A more low-level way of examining data is with the @code{x} command.
5536It examines data in memory at a specified address and prints it in a
79a6e687 5537specified format. @xref{Memory, ,Examining Memory}.
c906108c 5538
7a292a7a 5539If you are interested in information about types, or about how the
d4f3574e
SS
5540fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5541command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5542Table}.
c906108c
SS
5543
5544@menu
5545* Expressions:: Expressions
6ba66d6a 5546* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5547* Variables:: Program variables
5548* Arrays:: Artificial arrays
5549* Output Formats:: Output formats
5550* Memory:: Examining memory
5551* Auto Display:: Automatic display
5552* Print Settings:: Print settings
5553* Value History:: Value history
5554* Convenience Vars:: Convenience variables
5555* Registers:: Registers
c906108c 5556* Floating Point Hardware:: Floating point hardware
53c69bd7 5557* Vector Unit:: Vector Unit
721c2651 5558* OS Information:: Auxiliary data provided by operating system
29e57380 5559* Memory Region Attributes:: Memory region attributes
16d9dec6 5560* Dump/Restore Files:: Copy between memory and a file
384ee23f 5561* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5562* Character Sets:: Debugging programs that use a different
5563 character set than GDB does
09d4efe1 5564* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5565@end menu
5566
6d2ebf8b 5567@node Expressions
c906108c
SS
5568@section Expressions
5569
5570@cindex expressions
5571@code{print} and many other @value{GDBN} commands accept an expression and
5572compute its value. Any kind of constant, variable or operator defined
5573by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5574@value{GDBN}. This includes conditional expressions, function calls,
5575casts, and string constants. It also includes preprocessor macros, if
5576you compiled your program to include this information; see
5577@ref{Compilation}.
c906108c 5578
15387254 5579@cindex arrays in expressions
d4f3574e
SS
5580@value{GDBN} supports array constants in expressions input by
5581the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5582you can use the command @code{print @{1, 2, 3@}} to create an array
5583of three integers. If you pass an array to a function or assign it
5584to a program variable, @value{GDBN} copies the array to memory that
5585is @code{malloc}ed in the target program.
c906108c 5586
c906108c
SS
5587Because C is so widespread, most of the expressions shown in examples in
5588this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5589Languages}, for information on how to use expressions in other
5590languages.
5591
5592In this section, we discuss operators that you can use in @value{GDBN}
5593expressions regardless of your programming language.
5594
15387254 5595@cindex casts, in expressions
c906108c
SS
5596Casts are supported in all languages, not just in C, because it is so
5597useful to cast a number into a pointer in order to examine a structure
5598at that address in memory.
5599@c FIXME: casts supported---Mod2 true?
c906108c
SS
5600
5601@value{GDBN} supports these operators, in addition to those common
5602to programming languages:
5603
5604@table @code
5605@item @@
5606@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5607@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5608
5609@item ::
5610@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5611function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5612
5613@cindex @{@var{type}@}
5614@cindex type casting memory
5615@cindex memory, viewing as typed object
5616@cindex casts, to view memory
5617@item @{@var{type}@} @var{addr}
5618Refers to an object of type @var{type} stored at address @var{addr} in
5619memory. @var{addr} may be any expression whose value is an integer or
5620pointer (but parentheses are required around binary operators, just as in
5621a cast). This construct is allowed regardless of what kind of data is
5622normally supposed to reside at @var{addr}.
5623@end table
5624
6ba66d6a
JB
5625@node Ambiguous Expressions
5626@section Ambiguous Expressions
5627@cindex ambiguous expressions
5628
5629Expressions can sometimes contain some ambiguous elements. For instance,
5630some programming languages (notably Ada, C@t{++} and Objective-C) permit
5631a single function name to be defined several times, for application in
5632different contexts. This is called @dfn{overloading}. Another example
5633involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5634templates and is typically instantiated several times, resulting in
5635the same function name being defined in different contexts.
5636
5637In some cases and depending on the language, it is possible to adjust
5638the expression to remove the ambiguity. For instance in C@t{++}, you
5639can specify the signature of the function you want to break on, as in
5640@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5641qualified name of your function often makes the expression unambiguous
5642as well.
5643
5644When an ambiguity that needs to be resolved is detected, the debugger
5645has the capability to display a menu of numbered choices for each
5646possibility, and then waits for the selection with the prompt @samp{>}.
5647The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5648aborts the current command. If the command in which the expression was
5649used allows more than one choice to be selected, the next option in the
5650menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5651choices.
5652
5653For example, the following session excerpt shows an attempt to set a
5654breakpoint at the overloaded symbol @code{String::after}.
5655We choose three particular definitions of that function name:
5656
5657@c FIXME! This is likely to change to show arg type lists, at least
5658@smallexample
5659@group
5660(@value{GDBP}) b String::after
5661[0] cancel
5662[1] all
5663[2] file:String.cc; line number:867
5664[3] file:String.cc; line number:860
5665[4] file:String.cc; line number:875
5666[5] file:String.cc; line number:853
5667[6] file:String.cc; line number:846
5668[7] file:String.cc; line number:735
5669> 2 4 6
5670Breakpoint 1 at 0xb26c: file String.cc, line 867.
5671Breakpoint 2 at 0xb344: file String.cc, line 875.
5672Breakpoint 3 at 0xafcc: file String.cc, line 846.
5673Multiple breakpoints were set.
5674Use the "delete" command to delete unwanted
5675 breakpoints.
5676(@value{GDBP})
5677@end group
5678@end smallexample
5679
5680@table @code
5681@kindex set multiple-symbols
5682@item set multiple-symbols @var{mode}
5683@cindex multiple-symbols menu
5684
5685This option allows you to adjust the debugger behavior when an expression
5686is ambiguous.
5687
5688By default, @var{mode} is set to @code{all}. If the command with which
5689the expression is used allows more than one choice, then @value{GDBN}
5690automatically selects all possible choices. For instance, inserting
5691a breakpoint on a function using an ambiguous name results in a breakpoint
5692inserted on each possible match. However, if a unique choice must be made,
5693then @value{GDBN} uses the menu to help you disambiguate the expression.
5694For instance, printing the address of an overloaded function will result
5695in the use of the menu.
5696
5697When @var{mode} is set to @code{ask}, the debugger always uses the menu
5698when an ambiguity is detected.
5699
5700Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5701an error due to the ambiguity and the command is aborted.
5702
5703@kindex show multiple-symbols
5704@item show multiple-symbols
5705Show the current value of the @code{multiple-symbols} setting.
5706@end table
5707
6d2ebf8b 5708@node Variables
79a6e687 5709@section Program Variables
c906108c
SS
5710
5711The most common kind of expression to use is the name of a variable
5712in your program.
5713
5714Variables in expressions are understood in the selected stack frame
79a6e687 5715(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5716
5717@itemize @bullet
5718@item
5719global (or file-static)
5720@end itemize
5721
5d161b24 5722@noindent or
c906108c
SS
5723
5724@itemize @bullet
5725@item
5726visible according to the scope rules of the
5727programming language from the point of execution in that frame
5d161b24 5728@end itemize
c906108c
SS
5729
5730@noindent This means that in the function
5731
474c8240 5732@smallexample
c906108c
SS
5733foo (a)
5734 int a;
5735@{
5736 bar (a);
5737 @{
5738 int b = test ();
5739 bar (b);
5740 @}
5741@}
474c8240 5742@end smallexample
c906108c
SS
5743
5744@noindent
5745you can examine and use the variable @code{a} whenever your program is
5746executing within the function @code{foo}, but you can only use or
5747examine the variable @code{b} while your program is executing inside
5748the block where @code{b} is declared.
5749
5750@cindex variable name conflict
5751There is an exception: you can refer to a variable or function whose
5752scope is a single source file even if the current execution point is not
5753in this file. But it is possible to have more than one such variable or
5754function with the same name (in different source files). If that
5755happens, referring to that name has unpredictable effects. If you wish,
5756you can specify a static variable in a particular function or file,
15387254 5757using the colon-colon (@code{::}) notation:
c906108c 5758
d4f3574e 5759@cindex colon-colon, context for variables/functions
12c27660 5760@ifnotinfo
c906108c 5761@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5762@cindex @code{::}, context for variables/functions
12c27660 5763@end ifnotinfo
474c8240 5764@smallexample
c906108c
SS
5765@var{file}::@var{variable}
5766@var{function}::@var{variable}
474c8240 5767@end smallexample
c906108c
SS
5768
5769@noindent
5770Here @var{file} or @var{function} is the name of the context for the
5771static @var{variable}. In the case of file names, you can use quotes to
5772make sure @value{GDBN} parses the file name as a single word---for example,
5773to print a global value of @code{x} defined in @file{f2.c}:
5774
474c8240 5775@smallexample
c906108c 5776(@value{GDBP}) p 'f2.c'::x
474c8240 5777@end smallexample
c906108c 5778
b37052ae 5779@cindex C@t{++} scope resolution
c906108c 5780This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5781use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5782scope resolution operator in @value{GDBN} expressions.
5783@c FIXME: Um, so what happens in one of those rare cases where it's in
5784@c conflict?? --mew
c906108c
SS
5785
5786@cindex wrong values
5787@cindex variable values, wrong
15387254
EZ
5788@cindex function entry/exit, wrong values of variables
5789@cindex optimized code, wrong values of variables
c906108c
SS
5790@quotation
5791@emph{Warning:} Occasionally, a local variable may appear to have the
5792wrong value at certain points in a function---just after entry to a new
5793scope, and just before exit.
5794@end quotation
5795You may see this problem when you are stepping by machine instructions.
5796This is because, on most machines, it takes more than one instruction to
5797set up a stack frame (including local variable definitions); if you are
5798stepping by machine instructions, variables may appear to have the wrong
5799values until the stack frame is completely built. On exit, it usually
5800also takes more than one machine instruction to destroy a stack frame;
5801after you begin stepping through that group of instructions, local
5802variable definitions may be gone.
5803
5804This may also happen when the compiler does significant optimizations.
5805To be sure of always seeing accurate values, turn off all optimization
5806when compiling.
5807
d4f3574e
SS
5808@cindex ``No symbol "foo" in current context''
5809Another possible effect of compiler optimizations is to optimize
5810unused variables out of existence, or assign variables to registers (as
5811opposed to memory addresses). Depending on the support for such cases
5812offered by the debug info format used by the compiler, @value{GDBN}
5813might not be able to display values for such local variables. If that
5814happens, @value{GDBN} will print a message like this:
5815
474c8240 5816@smallexample
d4f3574e 5817No symbol "foo" in current context.
474c8240 5818@end smallexample
d4f3574e
SS
5819
5820To solve such problems, either recompile without optimizations, or use a
5821different debug info format, if the compiler supports several such
15387254 5822formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5823usually supports the @option{-gstabs+} option. @option{-gstabs+}
5824produces debug info in a format that is superior to formats such as
5825COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5826an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5827for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5828Compiler Collection (GCC)}.
79a6e687 5829@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5830that are best suited to C@t{++} programs.
d4f3574e 5831
ab1adacd
EZ
5832If you ask to print an object whose contents are unknown to
5833@value{GDBN}, e.g., because its data type is not completely specified
5834by the debug information, @value{GDBN} will say @samp{<incomplete
5835type>}. @xref{Symbols, incomplete type}, for more about this.
5836
3a60f64e
JK
5837Strings are identified as arrays of @code{char} values without specified
5838signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5839printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5840@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5841defines literal string type @code{"char"} as @code{char} without a sign.
5842For program code
5843
5844@smallexample
5845char var0[] = "A";
5846signed char var1[] = "A";
5847@end smallexample
5848
5849You get during debugging
5850@smallexample
5851(gdb) print var0
5852$1 = "A"
5853(gdb) print var1
5854$2 = @{65 'A', 0 '\0'@}
5855@end smallexample
5856
6d2ebf8b 5857@node Arrays
79a6e687 5858@section Artificial Arrays
c906108c
SS
5859
5860@cindex artificial array
15387254 5861@cindex arrays
41afff9a 5862@kindex @@@r{, referencing memory as an array}
c906108c
SS
5863It is often useful to print out several successive objects of the
5864same type in memory; a section of an array, or an array of
5865dynamically determined size for which only a pointer exists in the
5866program.
5867
5868You can do this by referring to a contiguous span of memory as an
5869@dfn{artificial array}, using the binary operator @samp{@@}. The left
5870operand of @samp{@@} should be the first element of the desired array
5871and be an individual object. The right operand should be the desired length
5872of the array. The result is an array value whose elements are all of
5873the type of the left argument. The first element is actually the left
5874argument; the second element comes from bytes of memory immediately
5875following those that hold the first element, and so on. Here is an
5876example. If a program says
5877
474c8240 5878@smallexample
c906108c 5879int *array = (int *) malloc (len * sizeof (int));
474c8240 5880@end smallexample
c906108c
SS
5881
5882@noindent
5883you can print the contents of @code{array} with
5884
474c8240 5885@smallexample
c906108c 5886p *array@@len
474c8240 5887@end smallexample
c906108c
SS
5888
5889The left operand of @samp{@@} must reside in memory. Array values made
5890with @samp{@@} in this way behave just like other arrays in terms of
5891subscripting, and are coerced to pointers when used in expressions.
5892Artificial arrays most often appear in expressions via the value history
79a6e687 5893(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5894
5895Another way to create an artificial array is to use a cast.
5896This re-interprets a value as if it were an array.
5897The value need not be in memory:
474c8240 5898@smallexample
c906108c
SS
5899(@value{GDBP}) p/x (short[2])0x12345678
5900$1 = @{0x1234, 0x5678@}
474c8240 5901@end smallexample
c906108c
SS
5902
5903As a convenience, if you leave the array length out (as in
c3f6f71d 5904@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5905the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5906@smallexample
c906108c
SS
5907(@value{GDBP}) p/x (short[])0x12345678
5908$2 = @{0x1234, 0x5678@}
474c8240 5909@end smallexample
c906108c
SS
5910
5911Sometimes the artificial array mechanism is not quite enough; in
5912moderately complex data structures, the elements of interest may not
5913actually be adjacent---for example, if you are interested in the values
5914of pointers in an array. One useful work-around in this situation is
5915to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5916Variables}) as a counter in an expression that prints the first
c906108c
SS
5917interesting value, and then repeat that expression via @key{RET}. For
5918instance, suppose you have an array @code{dtab} of pointers to
5919structures, and you are interested in the values of a field @code{fv}
5920in each structure. Here is an example of what you might type:
5921
474c8240 5922@smallexample
c906108c
SS
5923set $i = 0
5924p dtab[$i++]->fv
5925@key{RET}
5926@key{RET}
5927@dots{}
474c8240 5928@end smallexample
c906108c 5929
6d2ebf8b 5930@node Output Formats
79a6e687 5931@section Output Formats
c906108c
SS
5932
5933@cindex formatted output
5934@cindex output formats
5935By default, @value{GDBN} prints a value according to its data type. Sometimes
5936this is not what you want. For example, you might want to print a number
5937in hex, or a pointer in decimal. Or you might want to view data in memory
5938at a certain address as a character string or as an instruction. To do
5939these things, specify an @dfn{output format} when you print a value.
5940
5941The simplest use of output formats is to say how to print a value
5942already computed. This is done by starting the arguments of the
5943@code{print} command with a slash and a format letter. The format
5944letters supported are:
5945
5946@table @code
5947@item x
5948Regard the bits of the value as an integer, and print the integer in
5949hexadecimal.
5950
5951@item d
5952Print as integer in signed decimal.
5953
5954@item u
5955Print as integer in unsigned decimal.
5956
5957@item o
5958Print as integer in octal.
5959
5960@item t
5961Print as integer in binary. The letter @samp{t} stands for ``two''.
5962@footnote{@samp{b} cannot be used because these format letters are also
5963used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5964see @ref{Memory,,Examining Memory}.}
c906108c
SS
5965
5966@item a
5967@cindex unknown address, locating
3d67e040 5968@cindex locate address
c906108c
SS
5969Print as an address, both absolute in hexadecimal and as an offset from
5970the nearest preceding symbol. You can use this format used to discover
5971where (in what function) an unknown address is located:
5972
474c8240 5973@smallexample
c906108c
SS
5974(@value{GDBP}) p/a 0x54320
5975$3 = 0x54320 <_initialize_vx+396>
474c8240 5976@end smallexample
c906108c 5977
3d67e040
EZ
5978@noindent
5979The command @code{info symbol 0x54320} yields similar results.
5980@xref{Symbols, info symbol}.
5981
c906108c 5982@item c
51274035
EZ
5983Regard as an integer and print it as a character constant. This
5984prints both the numerical value and its character representation. The
5985character representation is replaced with the octal escape @samp{\nnn}
5986for characters outside the 7-bit @sc{ascii} range.
c906108c 5987
ea37ba09
DJ
5988Without this format, @value{GDBN} displays @code{char},
5989@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5990constants. Single-byte members of vectors are displayed as integer
5991data.
5992
c906108c
SS
5993@item f
5994Regard the bits of the value as a floating point number and print
5995using typical floating point syntax.
ea37ba09
DJ
5996
5997@item s
5998@cindex printing strings
5999@cindex printing byte arrays
6000Regard as a string, if possible. With this format, pointers to single-byte
6001data are displayed as null-terminated strings and arrays of single-byte data
6002are displayed as fixed-length strings. Other values are displayed in their
6003natural types.
6004
6005Without this format, @value{GDBN} displays pointers to and arrays of
6006@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
6007strings. Single-byte members of a vector are displayed as an integer
6008array.
c906108c
SS
6009@end table
6010
6011For example, to print the program counter in hex (@pxref{Registers}), type
6012
474c8240 6013@smallexample
c906108c 6014p/x $pc
474c8240 6015@end smallexample
c906108c
SS
6016
6017@noindent
6018Note that no space is required before the slash; this is because command
6019names in @value{GDBN} cannot contain a slash.
6020
6021To reprint the last value in the value history with a different format,
6022you can use the @code{print} command with just a format and no
6023expression. For example, @samp{p/x} reprints the last value in hex.
6024
6d2ebf8b 6025@node Memory
79a6e687 6026@section Examining Memory
c906108c
SS
6027
6028You can use the command @code{x} (for ``examine'') to examine memory in
6029any of several formats, independently of your program's data types.
6030
6031@cindex examining memory
6032@table @code
41afff9a 6033@kindex x @r{(examine memory)}
c906108c
SS
6034@item x/@var{nfu} @var{addr}
6035@itemx x @var{addr}
6036@itemx x
6037Use the @code{x} command to examine memory.
6038@end table
6039
6040@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6041much memory to display and how to format it; @var{addr} is an
6042expression giving the address where you want to start displaying memory.
6043If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6044Several commands set convenient defaults for @var{addr}.
6045
6046@table @r
6047@item @var{n}, the repeat count
6048The repeat count is a decimal integer; the default is 1. It specifies
6049how much memory (counting by units @var{u}) to display.
6050@c This really is **decimal**; unaffected by 'set radix' as of GDB
6051@c 4.1.2.
6052
6053@item @var{f}, the display format
51274035
EZ
6054The display format is one of the formats used by @code{print}
6055(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6056@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6057The default is @samp{x} (hexadecimal) initially. The default changes
6058each time you use either @code{x} or @code{print}.
c906108c
SS
6059
6060@item @var{u}, the unit size
6061The unit size is any of
6062
6063@table @code
6064@item b
6065Bytes.
6066@item h
6067Halfwords (two bytes).
6068@item w
6069Words (four bytes). This is the initial default.
6070@item g
6071Giant words (eight bytes).
6072@end table
6073
6074Each time you specify a unit size with @code{x}, that size becomes the
6075default unit the next time you use @code{x}. (For the @samp{s} and
6076@samp{i} formats, the unit size is ignored and is normally not written.)
6077
6078@item @var{addr}, starting display address
6079@var{addr} is the address where you want @value{GDBN} to begin displaying
6080memory. The expression need not have a pointer value (though it may);
6081it is always interpreted as an integer address of a byte of memory.
6082@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6083@var{addr} is usually just after the last address examined---but several
6084other commands also set the default address: @code{info breakpoints} (to
6085the address of the last breakpoint listed), @code{info line} (to the
6086starting address of a line), and @code{print} (if you use it to display
6087a value from memory).
6088@end table
6089
6090For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6091(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6092starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6093words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6094@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6095
6096Since the letters indicating unit sizes are all distinct from the
6097letters specifying output formats, you do not have to remember whether
6098unit size or format comes first; either order works. The output
6099specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6100(However, the count @var{n} must come first; @samp{wx4} does not work.)
6101
6102Even though the unit size @var{u} is ignored for the formats @samp{s}
6103and @samp{i}, you might still want to use a count @var{n}; for example,
6104@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6105including any operands. For convenience, especially when used with
6106the @code{display} command, the @samp{i} format also prints branch delay
6107slot instructions, if any, beyond the count specified, which immediately
6108follow the last instruction that is within the count. The command
6109@code{disassemble} gives an alternative way of inspecting machine
6110instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6111
6112All the defaults for the arguments to @code{x} are designed to make it
6113easy to continue scanning memory with minimal specifications each time
6114you use @code{x}. For example, after you have inspected three machine
6115instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6116with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6117the repeat count @var{n} is used again; the other arguments default as
6118for successive uses of @code{x}.
6119
6120@cindex @code{$_}, @code{$__}, and value history
6121The addresses and contents printed by the @code{x} command are not saved
6122in the value history because there is often too much of them and they
6123would get in the way. Instead, @value{GDBN} makes these values available for
6124subsequent use in expressions as values of the convenience variables
6125@code{$_} and @code{$__}. After an @code{x} command, the last address
6126examined is available for use in expressions in the convenience variable
6127@code{$_}. The contents of that address, as examined, are available in
6128the convenience variable @code{$__}.
6129
6130If the @code{x} command has a repeat count, the address and contents saved
6131are from the last memory unit printed; this is not the same as the last
6132address printed if several units were printed on the last line of output.
6133
09d4efe1
EZ
6134@cindex remote memory comparison
6135@cindex verify remote memory image
6136When you are debugging a program running on a remote target machine
ea35711c 6137(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6138remote machine's memory against the executable file you downloaded to
6139the target. The @code{compare-sections} command is provided for such
6140situations.
6141
6142@table @code
6143@kindex compare-sections
6144@item compare-sections @r{[}@var{section-name}@r{]}
6145Compare the data of a loadable section @var{section-name} in the
6146executable file of the program being debugged with the same section in
6147the remote machine's memory, and report any mismatches. With no
6148arguments, compares all loadable sections. This command's
6149availability depends on the target's support for the @code{"qCRC"}
6150remote request.
6151@end table
6152
6d2ebf8b 6153@node Auto Display
79a6e687 6154@section Automatic Display
c906108c
SS
6155@cindex automatic display
6156@cindex display of expressions
6157
6158If you find that you want to print the value of an expression frequently
6159(to see how it changes), you might want to add it to the @dfn{automatic
6160display list} so that @value{GDBN} prints its value each time your program stops.
6161Each expression added to the list is given a number to identify it;
6162to remove an expression from the list, you specify that number.
6163The automatic display looks like this:
6164
474c8240 6165@smallexample
c906108c
SS
61662: foo = 38
61673: bar[5] = (struct hack *) 0x3804
474c8240 6168@end smallexample
c906108c
SS
6169
6170@noindent
6171This display shows item numbers, expressions and their current values. As with
6172displays you request manually using @code{x} or @code{print}, you can
6173specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6174whether to use @code{print} or @code{x} depending your format
6175specification---it uses @code{x} if you specify either the @samp{i}
6176or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6177
6178@table @code
6179@kindex display
d4f3574e
SS
6180@item display @var{expr}
6181Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6182each time your program stops. @xref{Expressions, ,Expressions}.
6183
6184@code{display} does not repeat if you press @key{RET} again after using it.
6185
d4f3574e 6186@item display/@var{fmt} @var{expr}
c906108c 6187For @var{fmt} specifying only a display format and not a size or
d4f3574e 6188count, add the expression @var{expr} to the auto-display list but
c906108c 6189arrange to display it each time in the specified format @var{fmt}.
79a6e687 6190@xref{Output Formats,,Output Formats}.
c906108c
SS
6191
6192@item display/@var{fmt} @var{addr}
6193For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6194number of units, add the expression @var{addr} as a memory address to
6195be examined each time your program stops. Examining means in effect
79a6e687 6196doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6197@end table
6198
6199For example, @samp{display/i $pc} can be helpful, to see the machine
6200instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6201is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6202
6203@table @code
6204@kindex delete display
6205@kindex undisplay
6206@item undisplay @var{dnums}@dots{}
6207@itemx delete display @var{dnums}@dots{}
6208Remove item numbers @var{dnums} from the list of expressions to display.
6209
6210@code{undisplay} does not repeat if you press @key{RET} after using it.
6211(Otherwise you would just get the error @samp{No display number @dots{}}.)
6212
6213@kindex disable display
6214@item disable display @var{dnums}@dots{}
6215Disable the display of item numbers @var{dnums}. A disabled display
6216item is not printed automatically, but is not forgotten. It may be
6217enabled again later.
6218
6219@kindex enable display
6220@item enable display @var{dnums}@dots{}
6221Enable display of item numbers @var{dnums}. It becomes effective once
6222again in auto display of its expression, until you specify otherwise.
6223
6224@item display
6225Display the current values of the expressions on the list, just as is
6226done when your program stops.
6227
6228@kindex info display
6229@item info display
6230Print the list of expressions previously set up to display
6231automatically, each one with its item number, but without showing the
6232values. This includes disabled expressions, which are marked as such.
6233It also includes expressions which would not be displayed right now
6234because they refer to automatic variables not currently available.
6235@end table
6236
15387254 6237@cindex display disabled out of scope
c906108c
SS
6238If a display expression refers to local variables, then it does not make
6239sense outside the lexical context for which it was set up. Such an
6240expression is disabled when execution enters a context where one of its
6241variables is not defined. For example, if you give the command
6242@code{display last_char} while inside a function with an argument
6243@code{last_char}, @value{GDBN} displays this argument while your program
6244continues to stop inside that function. When it stops elsewhere---where
6245there is no variable @code{last_char}---the display is disabled
6246automatically. The next time your program stops where @code{last_char}
6247is meaningful, you can enable the display expression once again.
6248
6d2ebf8b 6249@node Print Settings
79a6e687 6250@section Print Settings
c906108c
SS
6251
6252@cindex format options
6253@cindex print settings
6254@value{GDBN} provides the following ways to control how arrays, structures,
6255and symbols are printed.
6256
6257@noindent
6258These settings are useful for debugging programs in any language:
6259
6260@table @code
4644b6e3 6261@kindex set print
c906108c
SS
6262@item set print address
6263@itemx set print address on
4644b6e3 6264@cindex print/don't print memory addresses
c906108c
SS
6265@value{GDBN} prints memory addresses showing the location of stack
6266traces, structure values, pointer values, breakpoints, and so forth,
6267even when it also displays the contents of those addresses. The default
6268is @code{on}. For example, this is what a stack frame display looks like with
6269@code{set print address on}:
6270
6271@smallexample
6272@group
6273(@value{GDBP}) f
6274#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6275 at input.c:530
6276530 if (lquote != def_lquote)
6277@end group
6278@end smallexample
6279
6280@item set print address off
6281Do not print addresses when displaying their contents. For example,
6282this is the same stack frame displayed with @code{set print address off}:
6283
6284@smallexample
6285@group
6286(@value{GDBP}) set print addr off
6287(@value{GDBP}) f
6288#0 set_quotes (lq="<<", rq=">>") at input.c:530
6289530 if (lquote != def_lquote)
6290@end group
6291@end smallexample
6292
6293You can use @samp{set print address off} to eliminate all machine
6294dependent displays from the @value{GDBN} interface. For example, with
6295@code{print address off}, you should get the same text for backtraces on
6296all machines---whether or not they involve pointer arguments.
6297
4644b6e3 6298@kindex show print
c906108c
SS
6299@item show print address
6300Show whether or not addresses are to be printed.
6301@end table
6302
6303When @value{GDBN} prints a symbolic address, it normally prints the
6304closest earlier symbol plus an offset. If that symbol does not uniquely
6305identify the address (for example, it is a name whose scope is a single
6306source file), you may need to clarify. One way to do this is with
6307@code{info line}, for example @samp{info line *0x4537}. Alternately,
6308you can set @value{GDBN} to print the source file and line number when
6309it prints a symbolic address:
6310
6311@table @code
c906108c 6312@item set print symbol-filename on
9c16f35a
EZ
6313@cindex source file and line of a symbol
6314@cindex symbol, source file and line
c906108c
SS
6315Tell @value{GDBN} to print the source file name and line number of a
6316symbol in the symbolic form of an address.
6317
6318@item set print symbol-filename off
6319Do not print source file name and line number of a symbol. This is the
6320default.
6321
c906108c
SS
6322@item show print symbol-filename
6323Show whether or not @value{GDBN} will print the source file name and
6324line number of a symbol in the symbolic form of an address.
6325@end table
6326
6327Another situation where it is helpful to show symbol filenames and line
6328numbers is when disassembling code; @value{GDBN} shows you the line
6329number and source file that corresponds to each instruction.
6330
6331Also, you may wish to see the symbolic form only if the address being
6332printed is reasonably close to the closest earlier symbol:
6333
6334@table @code
c906108c 6335@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6336@cindex maximum value for offset of closest symbol
c906108c
SS
6337Tell @value{GDBN} to only display the symbolic form of an address if the
6338offset between the closest earlier symbol and the address is less than
5d161b24 6339@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6340to always print the symbolic form of an address if any symbol precedes it.
6341
c906108c
SS
6342@item show print max-symbolic-offset
6343Ask how large the maximum offset is that @value{GDBN} prints in a
6344symbolic address.
6345@end table
6346
6347@cindex wild pointer, interpreting
6348@cindex pointer, finding referent
6349If you have a pointer and you are not sure where it points, try
6350@samp{set print symbol-filename on}. Then you can determine the name
6351and source file location of the variable where it points, using
6352@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6353For example, here @value{GDBN} shows that a variable @code{ptt} points
6354at another variable @code{t}, defined in @file{hi2.c}:
6355
474c8240 6356@smallexample
c906108c
SS
6357(@value{GDBP}) set print symbol-filename on
6358(@value{GDBP}) p/a ptt
6359$4 = 0xe008 <t in hi2.c>
474c8240 6360@end smallexample
c906108c
SS
6361
6362@quotation
6363@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6364does not show the symbol name and filename of the referent, even with
6365the appropriate @code{set print} options turned on.
6366@end quotation
6367
6368Other settings control how different kinds of objects are printed:
6369
6370@table @code
c906108c
SS
6371@item set print array
6372@itemx set print array on
4644b6e3 6373@cindex pretty print arrays
c906108c
SS
6374Pretty print arrays. This format is more convenient to read,
6375but uses more space. The default is off.
6376
6377@item set print array off
6378Return to compressed format for arrays.
6379
c906108c
SS
6380@item show print array
6381Show whether compressed or pretty format is selected for displaying
6382arrays.
6383
3c9c013a
JB
6384@cindex print array indexes
6385@item set print array-indexes
6386@itemx set print array-indexes on
6387Print the index of each element when displaying arrays. May be more
6388convenient to locate a given element in the array or quickly find the
6389index of a given element in that printed array. The default is off.
6390
6391@item set print array-indexes off
6392Stop printing element indexes when displaying arrays.
6393
6394@item show print array-indexes
6395Show whether the index of each element is printed when displaying
6396arrays.
6397
c906108c 6398@item set print elements @var{number-of-elements}
4644b6e3 6399@cindex number of array elements to print
9c16f35a 6400@cindex limit on number of printed array elements
c906108c
SS
6401Set a limit on how many elements of an array @value{GDBN} will print.
6402If @value{GDBN} is printing a large array, it stops printing after it has
6403printed the number of elements set by the @code{set print elements} command.
6404This limit also applies to the display of strings.
d4f3574e 6405When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6406Setting @var{number-of-elements} to zero means that the printing is unlimited.
6407
c906108c
SS
6408@item show print elements
6409Display the number of elements of a large array that @value{GDBN} will print.
6410If the number is 0, then the printing is unlimited.
6411
b4740add
JB
6412@item set print frame-arguments @var{value}
6413@cindex printing frame argument values
6414@cindex print all frame argument values
6415@cindex print frame argument values for scalars only
6416@cindex do not print frame argument values
6417This command allows to control how the values of arguments are printed
6418when the debugger prints a frame (@pxref{Frames}). The possible
6419values are:
6420
6421@table @code
6422@item all
6423The values of all arguments are printed. This is the default.
6424
6425@item scalars
6426Print the value of an argument only if it is a scalar. The value of more
6427complex arguments such as arrays, structures, unions, etc, is replaced
6428by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6429
6430@smallexample
6431#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6432 at frame-args.c:23
6433@end smallexample
6434
6435@item none
6436None of the argument values are printed. Instead, the value of each argument
6437is replaced by @code{@dots{}}. In this case, the example above now becomes:
6438
6439@smallexample
6440#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6441 at frame-args.c:23
6442@end smallexample
6443@end table
6444
6445By default, all argument values are always printed. But this command
6446can be useful in several cases. For instance, it can be used to reduce
6447the amount of information printed in each frame, making the backtrace
6448more readable. Also, this command can be used to improve performance
6449when displaying Ada frames, because the computation of large arguments
6450can sometimes be CPU-intensive, especiallly in large applications.
6451Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6452avoids this computation, thus speeding up the display of each Ada frame.
6453
6454@item show print frame-arguments
6455Show how the value of arguments should be displayed when printing a frame.
6456
9c16f35a
EZ
6457@item set print repeats
6458@cindex repeated array elements
6459Set the threshold for suppressing display of repeated array
d3e8051b 6460elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6461array exceeds the threshold, @value{GDBN} prints the string
6462@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6463identical repetitions, instead of displaying the identical elements
6464themselves. Setting the threshold to zero will cause all elements to
6465be individually printed. The default threshold is 10.
6466
6467@item show print repeats
6468Display the current threshold for printing repeated identical
6469elements.
6470
c906108c 6471@item set print null-stop
4644b6e3 6472@cindex @sc{null} elements in arrays
c906108c 6473Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6474@sc{null} is encountered. This is useful when large arrays actually
c906108c 6475contain only short strings.
d4f3574e 6476The default is off.
c906108c 6477
9c16f35a
EZ
6478@item show print null-stop
6479Show whether @value{GDBN} stops printing an array on the first
6480@sc{null} character.
6481
c906108c 6482@item set print pretty on
9c16f35a
EZ
6483@cindex print structures in indented form
6484@cindex indentation in structure display
5d161b24 6485Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6486per line, like this:
6487
6488@smallexample
6489@group
6490$1 = @{
6491 next = 0x0,
6492 flags = @{
6493 sweet = 1,
6494 sour = 1
6495 @},
6496 meat = 0x54 "Pork"
6497@}
6498@end group
6499@end smallexample
6500
6501@item set print pretty off
6502Cause @value{GDBN} to print structures in a compact format, like this:
6503
6504@smallexample
6505@group
6506$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6507meat = 0x54 "Pork"@}
6508@end group
6509@end smallexample
6510
6511@noindent
6512This is the default format.
6513
c906108c
SS
6514@item show print pretty
6515Show which format @value{GDBN} is using to print structures.
6516
c906108c 6517@item set print sevenbit-strings on
4644b6e3
EZ
6518@cindex eight-bit characters in strings
6519@cindex octal escapes in strings
c906108c
SS
6520Print using only seven-bit characters; if this option is set,
6521@value{GDBN} displays any eight-bit characters (in strings or
6522character values) using the notation @code{\}@var{nnn}. This setting is
6523best if you are working in English (@sc{ascii}) and you use the
6524high-order bit of characters as a marker or ``meta'' bit.
6525
6526@item set print sevenbit-strings off
6527Print full eight-bit characters. This allows the use of more
6528international character sets, and is the default.
6529
c906108c
SS
6530@item show print sevenbit-strings
6531Show whether or not @value{GDBN} is printing only seven-bit characters.
6532
c906108c 6533@item set print union on
4644b6e3 6534@cindex unions in structures, printing
9c16f35a
EZ
6535Tell @value{GDBN} to print unions which are contained in structures
6536and other unions. This is the default setting.
c906108c
SS
6537
6538@item set print union off
9c16f35a
EZ
6539Tell @value{GDBN} not to print unions which are contained in
6540structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6541instead.
c906108c 6542
c906108c
SS
6543@item show print union
6544Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6545structures and other unions.
c906108c
SS
6546
6547For example, given the declarations
6548
6549@smallexample
6550typedef enum @{Tree, Bug@} Species;
6551typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6552typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6553 Bug_forms;
6554
6555struct thing @{
6556 Species it;
6557 union @{
6558 Tree_forms tree;
6559 Bug_forms bug;
6560 @} form;
6561@};
6562
6563struct thing foo = @{Tree, @{Acorn@}@};
6564@end smallexample
6565
6566@noindent
6567with @code{set print union on} in effect @samp{p foo} would print
6568
6569@smallexample
6570$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6571@end smallexample
6572
6573@noindent
6574and with @code{set print union off} in effect it would print
6575
6576@smallexample
6577$1 = @{it = Tree, form = @{...@}@}
6578@end smallexample
9c16f35a
EZ
6579
6580@noindent
6581@code{set print union} affects programs written in C-like languages
6582and in Pascal.
c906108c
SS
6583@end table
6584
c906108c
SS
6585@need 1000
6586@noindent
b37052ae 6587These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6588
6589@table @code
4644b6e3 6590@cindex demangling C@t{++} names
c906108c
SS
6591@item set print demangle
6592@itemx set print demangle on
b37052ae 6593Print C@t{++} names in their source form rather than in the encoded
c906108c 6594(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6595linkage. The default is on.
c906108c 6596
c906108c 6597@item show print demangle
b37052ae 6598Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6599
c906108c
SS
6600@item set print asm-demangle
6601@itemx set print asm-demangle on
b37052ae 6602Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6603in assembler code printouts such as instruction disassemblies.
6604The default is off.
6605
c906108c 6606@item show print asm-demangle
b37052ae 6607Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6608or demangled form.
6609
b37052ae
EZ
6610@cindex C@t{++} symbol decoding style
6611@cindex symbol decoding style, C@t{++}
a8f24a35 6612@kindex set demangle-style
c906108c
SS
6613@item set demangle-style @var{style}
6614Choose among several encoding schemes used by different compilers to
b37052ae 6615represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6616
6617@table @code
6618@item auto
6619Allow @value{GDBN} to choose a decoding style by inspecting your program.
6620
6621@item gnu
b37052ae 6622Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6623This is the default.
c906108c
SS
6624
6625@item hp
b37052ae 6626Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6627
6628@item lucid
b37052ae 6629Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6630
6631@item arm
b37052ae 6632Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6633@strong{Warning:} this setting alone is not sufficient to allow
6634debugging @code{cfront}-generated executables. @value{GDBN} would
6635require further enhancement to permit that.
6636
6637@end table
6638If you omit @var{style}, you will see a list of possible formats.
6639
c906108c 6640@item show demangle-style
b37052ae 6641Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6642
c906108c
SS
6643@item set print object
6644@itemx set print object on
4644b6e3 6645@cindex derived type of an object, printing
9c16f35a 6646@cindex display derived types
c906108c
SS
6647When displaying a pointer to an object, identify the @emph{actual}
6648(derived) type of the object rather than the @emph{declared} type, using
6649the virtual function table.
6650
6651@item set print object off
6652Display only the declared type of objects, without reference to the
6653virtual function table. This is the default setting.
6654
c906108c
SS
6655@item show print object
6656Show whether actual, or declared, object types are displayed.
6657
c906108c
SS
6658@item set print static-members
6659@itemx set print static-members on
4644b6e3 6660@cindex static members of C@t{++} objects
b37052ae 6661Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6662
6663@item set print static-members off
b37052ae 6664Do not print static members when displaying a C@t{++} object.
c906108c 6665
c906108c 6666@item show print static-members
9c16f35a
EZ
6667Show whether C@t{++} static members are printed or not.
6668
6669@item set print pascal_static-members
6670@itemx set print pascal_static-members on
d3e8051b
EZ
6671@cindex static members of Pascal objects
6672@cindex Pascal objects, static members display
9c16f35a
EZ
6673Print static members when displaying a Pascal object. The default is on.
6674
6675@item set print pascal_static-members off
6676Do not print static members when displaying a Pascal object.
6677
6678@item show print pascal_static-members
6679Show whether Pascal static members are printed or not.
c906108c
SS
6680
6681@c These don't work with HP ANSI C++ yet.
c906108c
SS
6682@item set print vtbl
6683@itemx set print vtbl on
4644b6e3 6684@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6685@cindex virtual functions (C@t{++}) display
6686@cindex VTBL display
b37052ae 6687Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6688(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6689ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6690
6691@item set print vtbl off
b37052ae 6692Do not pretty print C@t{++} virtual function tables.
c906108c 6693
c906108c 6694@item show print vtbl
b37052ae 6695Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6696@end table
c906108c 6697
6d2ebf8b 6698@node Value History
79a6e687 6699@section Value History
c906108c
SS
6700
6701@cindex value history
9c16f35a 6702@cindex history of values printed by @value{GDBN}
5d161b24
DB
6703Values printed by the @code{print} command are saved in the @value{GDBN}
6704@dfn{value history}. This allows you to refer to them in other expressions.
6705Values are kept until the symbol table is re-read or discarded
6706(for example with the @code{file} or @code{symbol-file} commands).
6707When the symbol table changes, the value history is discarded,
6708since the values may contain pointers back to the types defined in the
c906108c
SS
6709symbol table.
6710
6711@cindex @code{$}
6712@cindex @code{$$}
6713@cindex history number
6714The values printed are given @dfn{history numbers} by which you can
6715refer to them. These are successive integers starting with one.
6716@code{print} shows you the history number assigned to a value by
6717printing @samp{$@var{num} = } before the value; here @var{num} is the
6718history number.
6719
6720To refer to any previous value, use @samp{$} followed by the value's
6721history number. The way @code{print} labels its output is designed to
6722remind you of this. Just @code{$} refers to the most recent value in
6723the history, and @code{$$} refers to the value before that.
6724@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6725is the value just prior to @code{$$}, @code{$$1} is equivalent to
6726@code{$$}, and @code{$$0} is equivalent to @code{$}.
6727
6728For example, suppose you have just printed a pointer to a structure and
6729want to see the contents of the structure. It suffices to type
6730
474c8240 6731@smallexample
c906108c 6732p *$
474c8240 6733@end smallexample
c906108c
SS
6734
6735If you have a chain of structures where the component @code{next} points
6736to the next one, you can print the contents of the next one with this:
6737
474c8240 6738@smallexample
c906108c 6739p *$.next
474c8240 6740@end smallexample
c906108c
SS
6741
6742@noindent
6743You can print successive links in the chain by repeating this
6744command---which you can do by just typing @key{RET}.
6745
6746Note that the history records values, not expressions. If the value of
6747@code{x} is 4 and you type these commands:
6748
474c8240 6749@smallexample
c906108c
SS
6750print x
6751set x=5
474c8240 6752@end smallexample
c906108c
SS
6753
6754@noindent
6755then the value recorded in the value history by the @code{print} command
6756remains 4 even though the value of @code{x} has changed.
6757
6758@table @code
6759@kindex show values
6760@item show values
6761Print the last ten values in the value history, with their item numbers.
6762This is like @samp{p@ $$9} repeated ten times, except that @code{show
6763values} does not change the history.
6764
6765@item show values @var{n}
6766Print ten history values centered on history item number @var{n}.
6767
6768@item show values +
6769Print ten history values just after the values last printed. If no more
6770values are available, @code{show values +} produces no display.
6771@end table
6772
6773Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6774same effect as @samp{show values +}.
6775
6d2ebf8b 6776@node Convenience Vars
79a6e687 6777@section Convenience Variables
c906108c
SS
6778
6779@cindex convenience variables
9c16f35a 6780@cindex user-defined variables
c906108c
SS
6781@value{GDBN} provides @dfn{convenience variables} that you can use within
6782@value{GDBN} to hold on to a value and refer to it later. These variables
6783exist entirely within @value{GDBN}; they are not part of your program, and
6784setting a convenience variable has no direct effect on further execution
6785of your program. That is why you can use them freely.
6786
6787Convenience variables are prefixed with @samp{$}. Any name preceded by
6788@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6789the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6790(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6791by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6792
6793You can save a value in a convenience variable with an assignment
6794expression, just as you would set a variable in your program.
6795For example:
6796
474c8240 6797@smallexample
c906108c 6798set $foo = *object_ptr
474c8240 6799@end smallexample
c906108c
SS
6800
6801@noindent
6802would save in @code{$foo} the value contained in the object pointed to by
6803@code{object_ptr}.
6804
6805Using a convenience variable for the first time creates it, but its
6806value is @code{void} until you assign a new value. You can alter the
6807value with another assignment at any time.
6808
6809Convenience variables have no fixed types. You can assign a convenience
6810variable any type of value, including structures and arrays, even if
6811that variable already has a value of a different type. The convenience
6812variable, when used as an expression, has the type of its current value.
6813
6814@table @code
6815@kindex show convenience
9c16f35a 6816@cindex show all user variables
c906108c
SS
6817@item show convenience
6818Print a list of convenience variables used so far, and their values.
d4f3574e 6819Abbreviated @code{show conv}.
53e5f3cf
AS
6820
6821@kindex init-if-undefined
6822@cindex convenience variables, initializing
6823@item init-if-undefined $@var{variable} = @var{expression}
6824Set a convenience variable if it has not already been set. This is useful
6825for user-defined commands that keep some state. It is similar, in concept,
6826to using local static variables with initializers in C (except that
6827convenience variables are global). It can also be used to allow users to
6828override default values used in a command script.
6829
6830If the variable is already defined then the expression is not evaluated so
6831any side-effects do not occur.
c906108c
SS
6832@end table
6833
6834One of the ways to use a convenience variable is as a counter to be
6835incremented or a pointer to be advanced. For example, to print
6836a field from successive elements of an array of structures:
6837
474c8240 6838@smallexample
c906108c
SS
6839set $i = 0
6840print bar[$i++]->contents
474c8240 6841@end smallexample
c906108c 6842
d4f3574e
SS
6843@noindent
6844Repeat that command by typing @key{RET}.
c906108c
SS
6845
6846Some convenience variables are created automatically by @value{GDBN} and given
6847values likely to be useful.
6848
6849@table @code
41afff9a 6850@vindex $_@r{, convenience variable}
c906108c
SS
6851@item $_
6852The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6853the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6854commands which provide a default address for @code{x} to examine also
6855set @code{$_} to that address; these commands include @code{info line}
6856and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6857except when set by the @code{x} command, in which case it is a pointer
6858to the type of @code{$__}.
6859
41afff9a 6860@vindex $__@r{, convenience variable}
c906108c
SS
6861@item $__
6862The variable @code{$__} is automatically set by the @code{x} command
6863to the value found in the last address examined. Its type is chosen
6864to match the format in which the data was printed.
6865
6866@item $_exitcode
41afff9a 6867@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6868The variable @code{$_exitcode} is automatically set to the exit code when
6869the program being debugged terminates.
6870@end table
6871
53a5351d
JM
6872On HP-UX systems, if you refer to a function or variable name that
6873begins with a dollar sign, @value{GDBN} searches for a user or system
6874name first, before it searches for a convenience variable.
c906108c 6875
6d2ebf8b 6876@node Registers
c906108c
SS
6877@section Registers
6878
6879@cindex registers
6880You can refer to machine register contents, in expressions, as variables
6881with names starting with @samp{$}. The names of registers are different
6882for each machine; use @code{info registers} to see the names used on
6883your machine.
6884
6885@table @code
6886@kindex info registers
6887@item info registers
6888Print the names and values of all registers except floating-point
c85508ee 6889and vector registers (in the selected stack frame).
c906108c
SS
6890
6891@kindex info all-registers
6892@cindex floating point registers
6893@item info all-registers
6894Print the names and values of all registers, including floating-point
c85508ee 6895and vector registers (in the selected stack frame).
c906108c
SS
6896
6897@item info registers @var{regname} @dots{}
6898Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6899As discussed in detail below, register values are normally relative to
6900the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6901the machine you are using, with or without the initial @samp{$}.
6902@end table
6903
e09f16f9
EZ
6904@cindex stack pointer register
6905@cindex program counter register
6906@cindex process status register
6907@cindex frame pointer register
6908@cindex standard registers
c906108c
SS
6909@value{GDBN} has four ``standard'' register names that are available (in
6910expressions) on most machines---whenever they do not conflict with an
6911architecture's canonical mnemonics for registers. The register names
6912@code{$pc} and @code{$sp} are used for the program counter register and
6913the stack pointer. @code{$fp} is used for a register that contains a
6914pointer to the current stack frame, and @code{$ps} is used for a
6915register that contains the processor status. For example,
6916you could print the program counter in hex with
6917
474c8240 6918@smallexample
c906108c 6919p/x $pc
474c8240 6920@end smallexample
c906108c
SS
6921
6922@noindent
6923or print the instruction to be executed next with
6924
474c8240 6925@smallexample
c906108c 6926x/i $pc
474c8240 6927@end smallexample
c906108c
SS
6928
6929@noindent
6930or add four to the stack pointer@footnote{This is a way of removing
6931one word from the stack, on machines where stacks grow downward in
6932memory (most machines, nowadays). This assumes that the innermost
6933stack frame is selected; setting @code{$sp} is not allowed when other
6934stack frames are selected. To pop entire frames off the stack,
6935regardless of machine architecture, use @code{return};
79a6e687 6936see @ref{Returning, ,Returning from a Function}.} with
c906108c 6937
474c8240 6938@smallexample
c906108c 6939set $sp += 4
474c8240 6940@end smallexample
c906108c
SS
6941
6942Whenever possible, these four standard register names are available on
6943your machine even though the machine has different canonical mnemonics,
6944so long as there is no conflict. The @code{info registers} command
6945shows the canonical names. For example, on the SPARC, @code{info
6946registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6947can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6948is an alias for the @sc{eflags} register.
c906108c
SS
6949
6950@value{GDBN} always considers the contents of an ordinary register as an
6951integer when the register is examined in this way. Some machines have
6952special registers which can hold nothing but floating point; these
6953registers are considered to have floating point values. There is no way
6954to refer to the contents of an ordinary register as floating point value
6955(although you can @emph{print} it as a floating point value with
6956@samp{print/f $@var{regname}}).
6957
6958Some registers have distinct ``raw'' and ``virtual'' data formats. This
6959means that the data format in which the register contents are saved by
6960the operating system is not the same one that your program normally
6961sees. For example, the registers of the 68881 floating point
6962coprocessor are always saved in ``extended'' (raw) format, but all C
6963programs expect to work with ``double'' (virtual) format. In such
5d161b24 6964cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6965that makes sense for your program), but the @code{info registers} command
6966prints the data in both formats.
6967
36b80e65
EZ
6968@cindex SSE registers (x86)
6969@cindex MMX registers (x86)
6970Some machines have special registers whose contents can be interpreted
6971in several different ways. For example, modern x86-based machines
6972have SSE and MMX registers that can hold several values packed
6973together in several different formats. @value{GDBN} refers to such
6974registers in @code{struct} notation:
6975
6976@smallexample
6977(@value{GDBP}) print $xmm1
6978$1 = @{
6979 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6980 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6981 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6982 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6983 v4_int32 = @{0, 20657912, 11, 13@},
6984 v2_int64 = @{88725056443645952, 55834574859@},
6985 uint128 = 0x0000000d0000000b013b36f800000000
6986@}
6987@end smallexample
6988
6989@noindent
6990To set values of such registers, you need to tell @value{GDBN} which
6991view of the register you wish to change, as if you were assigning
6992value to a @code{struct} member:
6993
6994@smallexample
6995 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6996@end smallexample
6997
c906108c 6998Normally, register values are relative to the selected stack frame
79a6e687 6999(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
7000value that the register would contain if all stack frames farther in
7001were exited and their saved registers restored. In order to see the
7002true contents of hardware registers, you must select the innermost
7003frame (with @samp{frame 0}).
7004
7005However, @value{GDBN} must deduce where registers are saved, from the machine
7006code generated by your compiler. If some registers are not saved, or if
7007@value{GDBN} is unable to locate the saved registers, the selected stack
7008frame makes no difference.
7009
6d2ebf8b 7010@node Floating Point Hardware
79a6e687 7011@section Floating Point Hardware
c906108c
SS
7012@cindex floating point
7013
7014Depending on the configuration, @value{GDBN} may be able to give
7015you more information about the status of the floating point hardware.
7016
7017@table @code
7018@kindex info float
7019@item info float
7020Display hardware-dependent information about the floating
7021point unit. The exact contents and layout vary depending on the
7022floating point chip. Currently, @samp{info float} is supported on
7023the ARM and x86 machines.
7024@end table
c906108c 7025
e76f1f2e
AC
7026@node Vector Unit
7027@section Vector Unit
7028@cindex vector unit
7029
7030Depending on the configuration, @value{GDBN} may be able to give you
7031more information about the status of the vector unit.
7032
7033@table @code
7034@kindex info vector
7035@item info vector
7036Display information about the vector unit. The exact contents and
7037layout vary depending on the hardware.
7038@end table
7039
721c2651 7040@node OS Information
79a6e687 7041@section Operating System Auxiliary Information
721c2651
EZ
7042@cindex OS information
7043
7044@value{GDBN} provides interfaces to useful OS facilities that can help
7045you debug your program.
7046
7047@cindex @code{ptrace} system call
7048@cindex @code{struct user} contents
7049When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7050machines), it interfaces with the inferior via the @code{ptrace}
7051system call. The operating system creates a special sata structure,
7052called @code{struct user}, for this interface. You can use the
7053command @code{info udot} to display the contents of this data
7054structure.
7055
7056@table @code
7057@item info udot
7058@kindex info udot
7059Display the contents of the @code{struct user} maintained by the OS
7060kernel for the program being debugged. @value{GDBN} displays the
7061contents of @code{struct user} as a list of hex numbers, similar to
7062the @code{examine} command.
7063@end table
7064
b383017d
RM
7065@cindex auxiliary vector
7066@cindex vector, auxiliary
b383017d
RM
7067Some operating systems supply an @dfn{auxiliary vector} to programs at
7068startup. This is akin to the arguments and environment that you
7069specify for a program, but contains a system-dependent variety of
7070binary values that tell system libraries important details about the
7071hardware, operating system, and process. Each value's purpose is
7072identified by an integer tag; the meanings are well-known but system-specific.
7073Depending on the configuration and operating system facilities,
9c16f35a
EZ
7074@value{GDBN} may be able to show you this information. For remote
7075targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7076support of the @samp{qXfer:auxv:read} packet, see
7077@ref{qXfer auxiliary vector read}.
b383017d
RM
7078
7079@table @code
7080@kindex info auxv
7081@item info auxv
7082Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7083live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7084numerically, and also shows names and text descriptions for recognized
7085tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7086pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7087most appropriate form for a recognized tag, and in hexadecimal for
7088an unrecognized tag.
7089@end table
7090
721c2651 7091
29e57380 7092@node Memory Region Attributes
79a6e687 7093@section Memory Region Attributes
29e57380
C
7094@cindex memory region attributes
7095
b383017d 7096@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7097required by regions of your target's memory. @value{GDBN} uses
7098attributes to determine whether to allow certain types of memory
7099accesses; whether to use specific width accesses; and whether to cache
7100target memory. By default the description of memory regions is
7101fetched from the target (if the current target supports this), but the
7102user can override the fetched regions.
29e57380
C
7103
7104Defined memory regions can be individually enabled and disabled. When a
7105memory region is disabled, @value{GDBN} uses the default attributes when
7106accessing memory in that region. Similarly, if no memory regions have
7107been defined, @value{GDBN} uses the default attributes when accessing
7108all memory.
7109
b383017d 7110When a memory region is defined, it is given a number to identify it;
29e57380
C
7111to enable, disable, or remove a memory region, you specify that number.
7112
7113@table @code
7114@kindex mem
bfac230e 7115@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7116Define a memory region bounded by @var{lower} and @var{upper} with
7117attributes @var{attributes}@dots{}, and add it to the list of regions
7118monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7119case: it is treated as the target's maximum memory address.
bfac230e 7120(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7121
fd79ecee
DJ
7122@item mem auto
7123Discard any user changes to the memory regions and use target-supplied
7124regions, if available, or no regions if the target does not support.
7125
29e57380
C
7126@kindex delete mem
7127@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7128Remove memory regions @var{nums}@dots{} from the list of regions
7129monitored by @value{GDBN}.
29e57380
C
7130
7131@kindex disable mem
7132@item disable mem @var{nums}@dots{}
09d4efe1 7133Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7134A disabled memory region is not forgotten.
29e57380
C
7135It may be enabled again later.
7136
7137@kindex enable mem
7138@item enable mem @var{nums}@dots{}
09d4efe1 7139Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7140
7141@kindex info mem
7142@item info mem
7143Print a table of all defined memory regions, with the following columns
09d4efe1 7144for each region:
29e57380
C
7145
7146@table @emph
7147@item Memory Region Number
7148@item Enabled or Disabled.
b383017d 7149Enabled memory regions are marked with @samp{y}.
29e57380
C
7150Disabled memory regions are marked with @samp{n}.
7151
7152@item Lo Address
7153The address defining the inclusive lower bound of the memory region.
7154
7155@item Hi Address
7156The address defining the exclusive upper bound of the memory region.
7157
7158@item Attributes
7159The list of attributes set for this memory region.
7160@end table
7161@end table
7162
7163
7164@subsection Attributes
7165
b383017d 7166@subsubsection Memory Access Mode
29e57380
C
7167The access mode attributes set whether @value{GDBN} may make read or
7168write accesses to a memory region.
7169
7170While these attributes prevent @value{GDBN} from performing invalid
7171memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7172etc.@: from accessing memory.
29e57380
C
7173
7174@table @code
7175@item ro
7176Memory is read only.
7177@item wo
7178Memory is write only.
7179@item rw
6ca652b0 7180Memory is read/write. This is the default.
29e57380
C
7181@end table
7182
7183@subsubsection Memory Access Size
d3e8051b 7184The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7185accesses in the memory region. Often memory mapped device registers
7186require specific sized accesses. If no access size attribute is
7187specified, @value{GDBN} may use accesses of any size.
7188
7189@table @code
7190@item 8
7191Use 8 bit memory accesses.
7192@item 16
7193Use 16 bit memory accesses.
7194@item 32
7195Use 32 bit memory accesses.
7196@item 64
7197Use 64 bit memory accesses.
7198@end table
7199
7200@c @subsubsection Hardware/Software Breakpoints
7201@c The hardware/software breakpoint attributes set whether @value{GDBN}
7202@c will use hardware or software breakpoints for the internal breakpoints
7203@c used by the step, next, finish, until, etc. commands.
7204@c
7205@c @table @code
7206@c @item hwbreak
b383017d 7207@c Always use hardware breakpoints
29e57380
C
7208@c @item swbreak (default)
7209@c @end table
7210
7211@subsubsection Data Cache
7212The data cache attributes set whether @value{GDBN} will cache target
7213memory. While this generally improves performance by reducing debug
7214protocol overhead, it can lead to incorrect results because @value{GDBN}
7215does not know about volatile variables or memory mapped device
7216registers.
7217
7218@table @code
7219@item cache
b383017d 7220Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7221@item nocache
7222Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7223@end table
7224
4b5752d0
VP
7225@subsection Memory Access Checking
7226@value{GDBN} can be instructed to refuse accesses to memory that is
7227not explicitly described. This can be useful if accessing such
7228regions has undesired effects for a specific target, or to provide
7229better error checking. The following commands control this behaviour.
7230
7231@table @code
7232@kindex set mem inaccessible-by-default
7233@item set mem inaccessible-by-default [on|off]
7234If @code{on} is specified, make @value{GDBN} treat memory not
7235explicitly described by the memory ranges as non-existent and refuse accesses
7236to such memory. The checks are only performed if there's at least one
7237memory range defined. If @code{off} is specified, make @value{GDBN}
7238treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7239The default value is @code{on}.
4b5752d0
VP
7240@kindex show mem inaccessible-by-default
7241@item show mem inaccessible-by-default
7242Show the current handling of accesses to unknown memory.
7243@end table
7244
7245
29e57380 7246@c @subsubsection Memory Write Verification
b383017d 7247@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7248@c will re-reads data after each write to verify the write was successful.
7249@c
7250@c @table @code
7251@c @item verify
7252@c @item noverify (default)
7253@c @end table
7254
16d9dec6 7255@node Dump/Restore Files
79a6e687 7256@section Copy Between Memory and a File
16d9dec6
MS
7257@cindex dump/restore files
7258@cindex append data to a file
7259@cindex dump data to a file
7260@cindex restore data from a file
16d9dec6 7261
df5215a6
JB
7262You can use the commands @code{dump}, @code{append}, and
7263@code{restore} to copy data between target memory and a file. The
7264@code{dump} and @code{append} commands write data to a file, and the
7265@code{restore} command reads data from a file back into the inferior's
7266memory. Files may be in binary, Motorola S-record, Intel hex, or
7267Tektronix Hex format; however, @value{GDBN} can only append to binary
7268files.
7269
7270@table @code
7271
7272@kindex dump
7273@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7274@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7275Dump the contents of memory from @var{start_addr} to @var{end_addr},
7276or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7277
df5215a6 7278The @var{format} parameter may be any one of:
16d9dec6 7279@table @code
df5215a6
JB
7280@item binary
7281Raw binary form.
7282@item ihex
7283Intel hex format.
7284@item srec
7285Motorola S-record format.
7286@item tekhex
7287Tektronix Hex format.
7288@end table
7289
7290@value{GDBN} uses the same definitions of these formats as the
7291@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7292@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7293form.
7294
7295@kindex append
7296@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7297@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7298Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7299or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7300(@value{GDBN} can only append data to files in raw binary form.)
7301
7302@kindex restore
7303@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7304Restore the contents of file @var{filename} into memory. The
7305@code{restore} command can automatically recognize any known @sc{bfd}
7306file format, except for raw binary. To restore a raw binary file you
7307must specify the optional keyword @code{binary} after the filename.
16d9dec6 7308
b383017d 7309If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7310contained in the file. Binary files always start at address zero, so
7311they will be restored at address @var{bias}. Other bfd files have
7312a built-in location; they will be restored at offset @var{bias}
7313from that location.
7314
7315If @var{start} and/or @var{end} are non-zero, then only data between
7316file offset @var{start} and file offset @var{end} will be restored.
b383017d 7317These offsets are relative to the addresses in the file, before
16d9dec6
MS
7318the @var{bias} argument is applied.
7319
7320@end table
7321
384ee23f
EZ
7322@node Core File Generation
7323@section How to Produce a Core File from Your Program
7324@cindex dump core from inferior
7325
7326A @dfn{core file} or @dfn{core dump} is a file that records the memory
7327image of a running process and its process status (register values
7328etc.). Its primary use is post-mortem debugging of a program that
7329crashed while it ran outside a debugger. A program that crashes
7330automatically produces a core file, unless this feature is disabled by
7331the user. @xref{Files}, for information on invoking @value{GDBN} in
7332the post-mortem debugging mode.
7333
7334Occasionally, you may wish to produce a core file of the program you
7335are debugging in order to preserve a snapshot of its state.
7336@value{GDBN} has a special command for that.
7337
7338@table @code
7339@kindex gcore
7340@kindex generate-core-file
7341@item generate-core-file [@var{file}]
7342@itemx gcore [@var{file}]
7343Produce a core dump of the inferior process. The optional argument
7344@var{file} specifies the file name where to put the core dump. If not
7345specified, the file name defaults to @file{core.@var{pid}}, where
7346@var{pid} is the inferior process ID.
7347
7348Note that this command is implemented only for some systems (as of
7349this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7350@end table
7351
a0eb71c5
KB
7352@node Character Sets
7353@section Character Sets
7354@cindex character sets
7355@cindex charset
7356@cindex translating between character sets
7357@cindex host character set
7358@cindex target character set
7359
7360If the program you are debugging uses a different character set to
7361represent characters and strings than the one @value{GDBN} uses itself,
7362@value{GDBN} can automatically translate between the character sets for
7363you. The character set @value{GDBN} uses we call the @dfn{host
7364character set}; the one the inferior program uses we call the
7365@dfn{target character set}.
7366
7367For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7368uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7369remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7370running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7371then the host character set is Latin-1, and the target character set is
7372@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7373target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7374@sc{ebcdic} and Latin 1 as you print character or string values, or use
7375character and string literals in expressions.
7376
7377@value{GDBN} has no way to automatically recognize which character set
7378the inferior program uses; you must tell it, using the @code{set
7379target-charset} command, described below.
7380
7381Here are the commands for controlling @value{GDBN}'s character set
7382support:
7383
7384@table @code
7385@item set target-charset @var{charset}
7386@kindex set target-charset
7387Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7388character set names @value{GDBN} recognizes below, but if you type
7389@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7390list the target character sets it supports.
a0eb71c5
KB
7391@end table
7392
7393@table @code
7394@item set host-charset @var{charset}
7395@kindex set host-charset
7396Set the current host character set to @var{charset}.
7397
7398By default, @value{GDBN} uses a host character set appropriate to the
7399system it is running on; you can override that default using the
7400@code{set host-charset} command.
7401
7402@value{GDBN} can only use certain character sets as its host character
7403set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7404indicate which can be host character sets, but if you type
7405@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7406list the host character sets it supports.
a0eb71c5
KB
7407
7408@item set charset @var{charset}
7409@kindex set charset
e33d66ec
EZ
7410Set the current host and target character sets to @var{charset}. As
7411above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7412@value{GDBN} will list the name of the character sets that can be used
7413for both host and target.
7414
a0eb71c5
KB
7415
7416@item show charset
a0eb71c5 7417@kindex show charset
b383017d 7418Show the names of the current host and target charsets.
e33d66ec
EZ
7419
7420@itemx show host-charset
a0eb71c5 7421@kindex show host-charset
b383017d 7422Show the name of the current host charset.
e33d66ec
EZ
7423
7424@itemx show target-charset
a0eb71c5 7425@kindex show target-charset
b383017d 7426Show the name of the current target charset.
a0eb71c5
KB
7427
7428@end table
7429
7430@value{GDBN} currently includes support for the following character
7431sets:
7432
7433@table @code
7434
7435@item ASCII
7436@cindex ASCII character set
7437Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7438character set.
7439
7440@item ISO-8859-1
7441@cindex ISO 8859-1 character set
7442@cindex ISO Latin 1 character set
e33d66ec 7443The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7444characters needed for French, German, and Spanish. @value{GDBN} can use
7445this as its host character set.
7446
7447@item EBCDIC-US
7448@itemx IBM1047
7449@cindex EBCDIC character set
7450@cindex IBM1047 character set
7451Variants of the @sc{ebcdic} character set, used on some of IBM's
7452mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7453@value{GDBN} cannot use these as its host character set.
7454
7455@end table
7456
7457Note that these are all single-byte character sets. More work inside
3f94c067 7458@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7459encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7460
7461Here is an example of @value{GDBN}'s character set support in action.
7462Assume that the following source code has been placed in the file
7463@file{charset-test.c}:
7464
7465@smallexample
7466#include <stdio.h>
7467
7468char ascii_hello[]
7469 = @{72, 101, 108, 108, 111, 44, 32, 119,
7470 111, 114, 108, 100, 33, 10, 0@};
7471char ibm1047_hello[]
7472 = @{200, 133, 147, 147, 150, 107, 64, 166,
7473 150, 153, 147, 132, 90, 37, 0@};
7474
7475main ()
7476@{
7477 printf ("Hello, world!\n");
7478@}
10998722 7479@end smallexample
a0eb71c5
KB
7480
7481In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7482containing the string @samp{Hello, world!} followed by a newline,
7483encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7484
7485We compile the program, and invoke the debugger on it:
7486
7487@smallexample
7488$ gcc -g charset-test.c -o charset-test
7489$ gdb -nw charset-test
7490GNU gdb 2001-12-19-cvs
7491Copyright 2001 Free Software Foundation, Inc.
7492@dots{}
f7dc1244 7493(@value{GDBP})
10998722 7494@end smallexample
a0eb71c5
KB
7495
7496We can use the @code{show charset} command to see what character sets
7497@value{GDBN} is currently using to interpret and display characters and
7498strings:
7499
7500@smallexample
f7dc1244 7501(@value{GDBP}) show charset
e33d66ec 7502The current host and target character set is `ISO-8859-1'.
f7dc1244 7503(@value{GDBP})
10998722 7504@end smallexample
a0eb71c5
KB
7505
7506For the sake of printing this manual, let's use @sc{ascii} as our
7507initial character set:
7508@smallexample
f7dc1244
EZ
7509(@value{GDBP}) set charset ASCII
7510(@value{GDBP}) show charset
e33d66ec 7511The current host and target character set is `ASCII'.
f7dc1244 7512(@value{GDBP})
10998722 7513@end smallexample
a0eb71c5
KB
7514
7515Let's assume that @sc{ascii} is indeed the correct character set for our
7516host system --- in other words, let's assume that if @value{GDBN} prints
7517characters using the @sc{ascii} character set, our terminal will display
7518them properly. Since our current target character set is also
7519@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7520
7521@smallexample
f7dc1244 7522(@value{GDBP}) print ascii_hello
a0eb71c5 7523$1 = 0x401698 "Hello, world!\n"
f7dc1244 7524(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7525$2 = 72 'H'
f7dc1244 7526(@value{GDBP})
10998722 7527@end smallexample
a0eb71c5
KB
7528
7529@value{GDBN} uses the target character set for character and string
7530literals you use in expressions:
7531
7532@smallexample
f7dc1244 7533(@value{GDBP}) print '+'
a0eb71c5 7534$3 = 43 '+'
f7dc1244 7535(@value{GDBP})
10998722 7536@end smallexample
a0eb71c5
KB
7537
7538The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7539character.
7540
7541@value{GDBN} relies on the user to tell it which character set the
7542target program uses. If we print @code{ibm1047_hello} while our target
7543character set is still @sc{ascii}, we get jibberish:
7544
7545@smallexample
f7dc1244 7546(@value{GDBP}) print ibm1047_hello
a0eb71c5 7547$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7548(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7549$5 = 200 '\310'
f7dc1244 7550(@value{GDBP})
10998722 7551@end smallexample
a0eb71c5 7552
e33d66ec 7553If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7554@value{GDBN} tells us the character sets it supports:
7555
7556@smallexample
f7dc1244 7557(@value{GDBP}) set target-charset
b383017d 7558ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7559(@value{GDBP}) set target-charset
10998722 7560@end smallexample
a0eb71c5
KB
7561
7562We can select @sc{ibm1047} as our target character set, and examine the
7563program's strings again. Now the @sc{ascii} string is wrong, but
7564@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7565target character set, @sc{ibm1047}, to the host character set,
7566@sc{ascii}, and they display correctly:
7567
7568@smallexample
f7dc1244
EZ
7569(@value{GDBP}) set target-charset IBM1047
7570(@value{GDBP}) show charset
e33d66ec
EZ
7571The current host character set is `ASCII'.
7572The current target character set is `IBM1047'.
f7dc1244 7573(@value{GDBP}) print ascii_hello
a0eb71c5 7574$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7575(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7576$7 = 72 '\110'
f7dc1244 7577(@value{GDBP}) print ibm1047_hello
a0eb71c5 7578$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7579(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7580$9 = 200 'H'
f7dc1244 7581(@value{GDBP})
10998722 7582@end smallexample
a0eb71c5
KB
7583
7584As above, @value{GDBN} uses the target character set for character and
7585string literals you use in expressions:
7586
7587@smallexample
f7dc1244 7588(@value{GDBP}) print '+'
a0eb71c5 7589$10 = 78 '+'
f7dc1244 7590(@value{GDBP})
10998722 7591@end smallexample
a0eb71c5 7592
e33d66ec 7593The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7594character.
7595
09d4efe1
EZ
7596@node Caching Remote Data
7597@section Caching Data of Remote Targets
7598@cindex caching data of remote targets
7599
7600@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7601remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7602performance, because it reduces the overhead of the remote protocol by
7603bundling memory reads and writes into large chunks. Unfortunately,
7604@value{GDBN} does not currently know anything about volatile
7605registers, and thus data caching will produce incorrect results when
7606volatile registers are in use.
7607
7608@table @code
7609@kindex set remotecache
7610@item set remotecache on
7611@itemx set remotecache off
7612Set caching state for remote targets. When @code{ON}, use data
7613caching. By default, this option is @code{OFF}.
7614
7615@kindex show remotecache
7616@item show remotecache
7617Show the current state of data caching for remote targets.
7618
7619@kindex info dcache
7620@item info dcache
7621Print the information about the data cache performance. The
7622information displayed includes: the dcache width and depth; and for
7623each cache line, how many times it was referenced, and its data and
7624state (dirty, bad, ok, etc.). This command is useful for debugging
7625the data cache operation.
7626@end table
7627
a0eb71c5 7628
e2e0bcd1
JB
7629@node Macros
7630@chapter C Preprocessor Macros
7631
49efadf5 7632Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7633``preprocessor macros'' which expand into strings of tokens.
7634@value{GDBN} can evaluate expressions containing macro invocations, show
7635the result of macro expansion, and show a macro's definition, including
7636where it was defined.
7637
7638You may need to compile your program specially to provide @value{GDBN}
7639with information about preprocessor macros. Most compilers do not
7640include macros in their debugging information, even when you compile
7641with the @option{-g} flag. @xref{Compilation}.
7642
7643A program may define a macro at one point, remove that definition later,
7644and then provide a different definition after that. Thus, at different
7645points in the program, a macro may have different definitions, or have
7646no definition at all. If there is a current stack frame, @value{GDBN}
7647uses the macros in scope at that frame's source code line. Otherwise,
7648@value{GDBN} uses the macros in scope at the current listing location;
7649see @ref{List}.
7650
7651At the moment, @value{GDBN} does not support the @code{##}
7652token-splicing operator, the @code{#} stringification operator, or
7653variable-arity macros.
7654
7655Whenever @value{GDBN} evaluates an expression, it always expands any
7656macro invocations present in the expression. @value{GDBN} also provides
7657the following commands for working with macros explicitly.
7658
7659@table @code
7660
7661@kindex macro expand
7662@cindex macro expansion, showing the results of preprocessor
7663@cindex preprocessor macro expansion, showing the results of
7664@cindex expanding preprocessor macros
7665@item macro expand @var{expression}
7666@itemx macro exp @var{expression}
7667Show the results of expanding all preprocessor macro invocations in
7668@var{expression}. Since @value{GDBN} simply expands macros, but does
7669not parse the result, @var{expression} need not be a valid expression;
7670it can be any string of tokens.
7671
09d4efe1 7672@kindex macro exp1
e2e0bcd1
JB
7673@item macro expand-once @var{expression}
7674@itemx macro exp1 @var{expression}
4644b6e3 7675@cindex expand macro once
e2e0bcd1
JB
7676@i{(This command is not yet implemented.)} Show the results of
7677expanding those preprocessor macro invocations that appear explicitly in
7678@var{expression}. Macro invocations appearing in that expansion are
7679left unchanged. This command allows you to see the effect of a
7680particular macro more clearly, without being confused by further
7681expansions. Since @value{GDBN} simply expands macros, but does not
7682parse the result, @var{expression} need not be a valid expression; it
7683can be any string of tokens.
7684
475b0867 7685@kindex info macro
e2e0bcd1
JB
7686@cindex macro definition, showing
7687@cindex definition, showing a macro's
475b0867 7688@item info macro @var{macro}
e2e0bcd1
JB
7689Show the definition of the macro named @var{macro}, and describe the
7690source location where that definition was established.
7691
7692@kindex macro define
7693@cindex user-defined macros
7694@cindex defining macros interactively
7695@cindex macros, user-defined
7696@item macro define @var{macro} @var{replacement-list}
7697@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7698@i{(This command is not yet implemented.)} Introduce a definition for a
7699preprocessor macro named @var{macro}, invocations of which are replaced
7700by the tokens given in @var{replacement-list}. The first form of this
7701command defines an ``object-like'' macro, which takes no arguments; the
7702second form defines a ``function-like'' macro, which takes the arguments
7703given in @var{arglist}.
7704
7705A definition introduced by this command is in scope in every expression
7706evaluated in @value{GDBN}, until it is removed with the @command{macro
7707undef} command, described below. The definition overrides all
7708definitions for @var{macro} present in the program being debugged, as
7709well as any previous user-supplied definition.
7710
7711@kindex macro undef
7712@item macro undef @var{macro}
7713@i{(This command is not yet implemented.)} Remove any user-supplied
7714definition for the macro named @var{macro}. This command only affects
7715definitions provided with the @command{macro define} command, described
7716above; it cannot remove definitions present in the program being
7717debugged.
7718
09d4efe1
EZ
7719@kindex macro list
7720@item macro list
7721@i{(This command is not yet implemented.)} List all the macros
7722defined using the @code{macro define} command.
e2e0bcd1
JB
7723@end table
7724
7725@cindex macros, example of debugging with
7726Here is a transcript showing the above commands in action. First, we
7727show our source files:
7728
7729@smallexample
7730$ cat sample.c
7731#include <stdio.h>
7732#include "sample.h"
7733
7734#define M 42
7735#define ADD(x) (M + x)
7736
7737main ()
7738@{
7739#define N 28
7740 printf ("Hello, world!\n");
7741#undef N
7742 printf ("We're so creative.\n");
7743#define N 1729
7744 printf ("Goodbye, world!\n");
7745@}
7746$ cat sample.h
7747#define Q <
7748$
7749@end smallexample
7750
7751Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7752We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7753compiler includes information about preprocessor macros in the debugging
7754information.
7755
7756@smallexample
7757$ gcc -gdwarf-2 -g3 sample.c -o sample
7758$
7759@end smallexample
7760
7761Now, we start @value{GDBN} on our sample program:
7762
7763@smallexample
7764$ gdb -nw sample
7765GNU gdb 2002-05-06-cvs
7766Copyright 2002 Free Software Foundation, Inc.
7767GDB is free software, @dots{}
f7dc1244 7768(@value{GDBP})
e2e0bcd1
JB
7769@end smallexample
7770
7771We can expand macros and examine their definitions, even when the
7772program is not running. @value{GDBN} uses the current listing position
7773to decide which macro definitions are in scope:
7774
7775@smallexample
f7dc1244 7776(@value{GDBP}) list main
e2e0bcd1
JB
77773
77784 #define M 42
77795 #define ADD(x) (M + x)
77806
77817 main ()
77828 @{
77839 #define N 28
778410 printf ("Hello, world!\n");
778511 #undef N
778612 printf ("We're so creative.\n");
f7dc1244 7787(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7788Defined at /home/jimb/gdb/macros/play/sample.c:5
7789#define ADD(x) (M + x)
f7dc1244 7790(@value{GDBP}) info macro Q
e2e0bcd1
JB
7791Defined at /home/jimb/gdb/macros/play/sample.h:1
7792 included at /home/jimb/gdb/macros/play/sample.c:2
7793#define Q <
f7dc1244 7794(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7795expands to: (42 + 1)
f7dc1244 7796(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7797expands to: once (M + 1)
f7dc1244 7798(@value{GDBP})
e2e0bcd1
JB
7799@end smallexample
7800
7801In the example above, note that @command{macro expand-once} expands only
7802the macro invocation explicit in the original text --- the invocation of
7803@code{ADD} --- but does not expand the invocation of the macro @code{M},
7804which was introduced by @code{ADD}.
7805
3f94c067
BW
7806Once the program is running, @value{GDBN} uses the macro definitions in
7807force at the source line of the current stack frame:
e2e0bcd1
JB
7808
7809@smallexample
f7dc1244 7810(@value{GDBP}) break main
e2e0bcd1 7811Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7812(@value{GDBP}) run
b383017d 7813Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7814
7815Breakpoint 1, main () at sample.c:10
781610 printf ("Hello, world!\n");
f7dc1244 7817(@value{GDBP})
e2e0bcd1
JB
7818@end smallexample
7819
7820At line 10, the definition of the macro @code{N} at line 9 is in force:
7821
7822@smallexample
f7dc1244 7823(@value{GDBP}) info macro N
e2e0bcd1
JB
7824Defined at /home/jimb/gdb/macros/play/sample.c:9
7825#define N 28
f7dc1244 7826(@value{GDBP}) macro expand N Q M
e2e0bcd1 7827expands to: 28 < 42
f7dc1244 7828(@value{GDBP}) print N Q M
e2e0bcd1 7829$1 = 1
f7dc1244 7830(@value{GDBP})
e2e0bcd1
JB
7831@end smallexample
7832
7833As we step over directives that remove @code{N}'s definition, and then
7834give it a new definition, @value{GDBN} finds the definition (or lack
7835thereof) in force at each point:
7836
7837@smallexample
f7dc1244 7838(@value{GDBP}) next
e2e0bcd1
JB
7839Hello, world!
784012 printf ("We're so creative.\n");
f7dc1244 7841(@value{GDBP}) info macro N
e2e0bcd1
JB
7842The symbol `N' has no definition as a C/C++ preprocessor macro
7843at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7844(@value{GDBP}) next
e2e0bcd1
JB
7845We're so creative.
784614 printf ("Goodbye, world!\n");
f7dc1244 7847(@value{GDBP}) info macro N
e2e0bcd1
JB
7848Defined at /home/jimb/gdb/macros/play/sample.c:13
7849#define N 1729
f7dc1244 7850(@value{GDBP}) macro expand N Q M
e2e0bcd1 7851expands to: 1729 < 42
f7dc1244 7852(@value{GDBP}) print N Q M
e2e0bcd1 7853$2 = 0
f7dc1244 7854(@value{GDBP})
e2e0bcd1
JB
7855@end smallexample
7856
7857
b37052ae
EZ
7858@node Tracepoints
7859@chapter Tracepoints
7860@c This chapter is based on the documentation written by Michael
7861@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7862
7863@cindex tracepoints
7864In some applications, it is not feasible for the debugger to interrupt
7865the program's execution long enough for the developer to learn
7866anything helpful about its behavior. If the program's correctness
7867depends on its real-time behavior, delays introduced by a debugger
7868might cause the program to change its behavior drastically, or perhaps
7869fail, even when the code itself is correct. It is useful to be able
7870to observe the program's behavior without interrupting it.
7871
7872Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7873specify locations in the program, called @dfn{tracepoints}, and
7874arbitrary expressions to evaluate when those tracepoints are reached.
7875Later, using the @code{tfind} command, you can examine the values
7876those expressions had when the program hit the tracepoints. The
7877expressions may also denote objects in memory---structures or arrays,
7878for example---whose values @value{GDBN} should record; while visiting
7879a particular tracepoint, you may inspect those objects as if they were
7880in memory at that moment. However, because @value{GDBN} records these
7881values without interacting with you, it can do so quickly and
7882unobtrusively, hopefully not disturbing the program's behavior.
7883
7884The tracepoint facility is currently available only for remote
9d29849a
JB
7885targets. @xref{Targets}. In addition, your remote target must know
7886how to collect trace data. This functionality is implemented in the
7887remote stub; however, none of the stubs distributed with @value{GDBN}
7888support tracepoints as of this writing. The format of the remote
7889packets used to implement tracepoints are described in @ref{Tracepoint
7890Packets}.
b37052ae
EZ
7891
7892This chapter describes the tracepoint commands and features.
7893
7894@menu
b383017d
RM
7895* Set Tracepoints::
7896* Analyze Collected Data::
7897* Tracepoint Variables::
b37052ae
EZ
7898@end menu
7899
7900@node Set Tracepoints
7901@section Commands to Set Tracepoints
7902
7903Before running such a @dfn{trace experiment}, an arbitrary number of
7904tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7905tracepoint has a number assigned to it by @value{GDBN}. Like with
7906breakpoints, tracepoint numbers are successive integers starting from
7907one. Many of the commands associated with tracepoints take the
7908tracepoint number as their argument, to identify which tracepoint to
7909work on.
7910
7911For each tracepoint, you can specify, in advance, some arbitrary set
7912of data that you want the target to collect in the trace buffer when
7913it hits that tracepoint. The collected data can include registers,
7914local variables, or global data. Later, you can use @value{GDBN}
7915commands to examine the values these data had at the time the
7916tracepoint was hit.
7917
7918This section describes commands to set tracepoints and associated
7919conditions and actions.
7920
7921@menu
b383017d
RM
7922* Create and Delete Tracepoints::
7923* Enable and Disable Tracepoints::
7924* Tracepoint Passcounts::
7925* Tracepoint Actions::
7926* Listing Tracepoints::
79a6e687 7927* Starting and Stopping Trace Experiments::
b37052ae
EZ
7928@end menu
7929
7930@node Create and Delete Tracepoints
7931@subsection Create and Delete Tracepoints
7932
7933@table @code
7934@cindex set tracepoint
7935@kindex trace
7936@item trace
7937The @code{trace} command is very similar to the @code{break} command.
7938Its argument can be a source line, a function name, or an address in
7939the target program. @xref{Set Breaks}. The @code{trace} command
7940defines a tracepoint, which is a point in the target program where the
7941debugger will briefly stop, collect some data, and then allow the
7942program to continue. Setting a tracepoint or changing its commands
7943doesn't take effect until the next @code{tstart} command; thus, you
7944cannot change the tracepoint attributes once a trace experiment is
7945running.
7946
7947Here are some examples of using the @code{trace} command:
7948
7949@smallexample
7950(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7951
7952(@value{GDBP}) @b{trace +2} // 2 lines forward
7953
7954(@value{GDBP}) @b{trace my_function} // first source line of function
7955
7956(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7957
7958(@value{GDBP}) @b{trace *0x2117c4} // an address
7959@end smallexample
7960
7961@noindent
7962You can abbreviate @code{trace} as @code{tr}.
7963
7964@vindex $tpnum
7965@cindex last tracepoint number
7966@cindex recent tracepoint number
7967@cindex tracepoint number
7968The convenience variable @code{$tpnum} records the tracepoint number
7969of the most recently set tracepoint.
7970
7971@kindex delete tracepoint
7972@cindex tracepoint deletion
7973@item delete tracepoint @r{[}@var{num}@r{]}
7974Permanently delete one or more tracepoints. With no argument, the
7975default is to delete all tracepoints.
7976
7977Examples:
7978
7979@smallexample
7980(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7981
7982(@value{GDBP}) @b{delete trace} // remove all tracepoints
7983@end smallexample
7984
7985@noindent
7986You can abbreviate this command as @code{del tr}.
7987@end table
7988
7989@node Enable and Disable Tracepoints
7990@subsection Enable and Disable Tracepoints
7991
7992@table @code
7993@kindex disable tracepoint
7994@item disable tracepoint @r{[}@var{num}@r{]}
7995Disable tracepoint @var{num}, or all tracepoints if no argument
7996@var{num} is given. A disabled tracepoint will have no effect during
7997the next trace experiment, but it is not forgotten. You can re-enable
7998a disabled tracepoint using the @code{enable tracepoint} command.
7999
8000@kindex enable tracepoint
8001@item enable tracepoint @r{[}@var{num}@r{]}
8002Enable tracepoint @var{num}, or all tracepoints. The enabled
8003tracepoints will become effective the next time a trace experiment is
8004run.
8005@end table
8006
8007@node Tracepoint Passcounts
8008@subsection Tracepoint Passcounts
8009
8010@table @code
8011@kindex passcount
8012@cindex tracepoint pass count
8013@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
8014Set the @dfn{passcount} of a tracepoint. The passcount is a way to
8015automatically stop a trace experiment. If a tracepoint's passcount is
8016@var{n}, then the trace experiment will be automatically stopped on
8017the @var{n}'th time that tracepoint is hit. If the tracepoint number
8018@var{num} is not specified, the @code{passcount} command sets the
8019passcount of the most recently defined tracepoint. If no passcount is
8020given, the trace experiment will run until stopped explicitly by the
8021user.
8022
8023Examples:
8024
8025@smallexample
b383017d 8026(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8027@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8028
8029(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8030@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8031(@value{GDBP}) @b{trace foo}
8032(@value{GDBP}) @b{pass 3}
8033(@value{GDBP}) @b{trace bar}
8034(@value{GDBP}) @b{pass 2}
8035(@value{GDBP}) @b{trace baz}
8036(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8037@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8038@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8039@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8040@end smallexample
8041@end table
8042
8043@node Tracepoint Actions
8044@subsection Tracepoint Action Lists
8045
8046@table @code
8047@kindex actions
8048@cindex tracepoint actions
8049@item actions @r{[}@var{num}@r{]}
8050This command will prompt for a list of actions to be taken when the
8051tracepoint is hit. If the tracepoint number @var{num} is not
8052specified, this command sets the actions for the one that was most
8053recently defined (so that you can define a tracepoint and then say
8054@code{actions} without bothering about its number). You specify the
8055actions themselves on the following lines, one action at a time, and
8056terminate the actions list with a line containing just @code{end}. So
8057far, the only defined actions are @code{collect} and
8058@code{while-stepping}.
8059
8060@cindex remove actions from a tracepoint
8061To remove all actions from a tracepoint, type @samp{actions @var{num}}
8062and follow it immediately with @samp{end}.
8063
8064@smallexample
8065(@value{GDBP}) @b{collect @var{data}} // collect some data
8066
6826cf00 8067(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8068
6826cf00 8069(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8070@end smallexample
8071
8072In the following example, the action list begins with @code{collect}
8073commands indicating the things to be collected when the tracepoint is
8074hit. Then, in order to single-step and collect additional data
8075following the tracepoint, a @code{while-stepping} command is used,
8076followed by the list of things to be collected while stepping. The
8077@code{while-stepping} command is terminated by its own separate
8078@code{end} command. Lastly, the action list is terminated by an
8079@code{end} command.
8080
8081@smallexample
8082(@value{GDBP}) @b{trace foo}
8083(@value{GDBP}) @b{actions}
8084Enter actions for tracepoint 1, one per line:
8085> collect bar,baz
8086> collect $regs
8087> while-stepping 12
8088 > collect $fp, $sp
8089 > end
8090end
8091@end smallexample
8092
8093@kindex collect @r{(tracepoints)}
8094@item collect @var{expr1}, @var{expr2}, @dots{}
8095Collect values of the given expressions when the tracepoint is hit.
8096This command accepts a comma-separated list of any valid expressions.
8097In addition to global, static, or local variables, the following
8098special arguments are supported:
8099
8100@table @code
8101@item $regs
8102collect all registers
8103
8104@item $args
8105collect all function arguments
8106
8107@item $locals
8108collect all local variables.
8109@end table
8110
8111You can give several consecutive @code{collect} commands, each one
8112with a single argument, or one @code{collect} command with several
8113arguments separated by commas: the effect is the same.
8114
f5c37c66
EZ
8115The command @code{info scope} (@pxref{Symbols, info scope}) is
8116particularly useful for figuring out what data to collect.
8117
b37052ae
EZ
8118@kindex while-stepping @r{(tracepoints)}
8119@item while-stepping @var{n}
8120Perform @var{n} single-step traces after the tracepoint, collecting
8121new data at each step. The @code{while-stepping} command is
8122followed by the list of what to collect while stepping (followed by
8123its own @code{end} command):
8124
8125@smallexample
8126> while-stepping 12
8127 > collect $regs, myglobal
8128 > end
8129>
8130@end smallexample
8131
8132@noindent
8133You may abbreviate @code{while-stepping} as @code{ws} or
8134@code{stepping}.
8135@end table
8136
8137@node Listing Tracepoints
8138@subsection Listing Tracepoints
8139
8140@table @code
8141@kindex info tracepoints
09d4efe1 8142@kindex info tp
b37052ae
EZ
8143@cindex information about tracepoints
8144@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8145Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8146a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8147defined so far. For each tracepoint, the following information is
8148shown:
8149
8150@itemize @bullet
8151@item
8152its number
8153@item
8154whether it is enabled or disabled
8155@item
8156its address
8157@item
8158its passcount as given by the @code{passcount @var{n}} command
8159@item
8160its step count as given by the @code{while-stepping @var{n}} command
8161@item
8162where in the source files is the tracepoint set
8163@item
8164its action list as given by the @code{actions} command
8165@end itemize
8166
8167@smallexample
8168(@value{GDBP}) @b{info trace}
8169Num Enb Address PassC StepC What
81701 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81712 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81723 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8173(@value{GDBP})
8174@end smallexample
8175
8176@noindent
8177This command can be abbreviated @code{info tp}.
8178@end table
8179
79a6e687
BW
8180@node Starting and Stopping Trace Experiments
8181@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8182
8183@table @code
8184@kindex tstart
8185@cindex start a new trace experiment
8186@cindex collected data discarded
8187@item tstart
8188This command takes no arguments. It starts the trace experiment, and
8189begins collecting data. This has the side effect of discarding all
8190the data collected in the trace buffer during the previous trace
8191experiment.
8192
8193@kindex tstop
8194@cindex stop a running trace experiment
8195@item tstop
8196This command takes no arguments. It ends the trace experiment, and
8197stops collecting data.
8198
68c71a2e 8199@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8200automatically if any tracepoint's passcount is reached
8201(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8202
8203@kindex tstatus
8204@cindex status of trace data collection
8205@cindex trace experiment, status of
8206@item tstatus
8207This command displays the status of the current trace data
8208collection.
8209@end table
8210
8211Here is an example of the commands we described so far:
8212
8213@smallexample
8214(@value{GDBP}) @b{trace gdb_c_test}
8215(@value{GDBP}) @b{actions}
8216Enter actions for tracepoint #1, one per line.
8217> collect $regs,$locals,$args
8218> while-stepping 11
8219 > collect $regs
8220 > end
8221> end
8222(@value{GDBP}) @b{tstart}
8223 [time passes @dots{}]
8224(@value{GDBP}) @b{tstop}
8225@end smallexample
8226
8227
8228@node Analyze Collected Data
79a6e687 8229@section Using the Collected Data
b37052ae
EZ
8230
8231After the tracepoint experiment ends, you use @value{GDBN} commands
8232for examining the trace data. The basic idea is that each tracepoint
8233collects a trace @dfn{snapshot} every time it is hit and another
8234snapshot every time it single-steps. All these snapshots are
8235consecutively numbered from zero and go into a buffer, and you can
8236examine them later. The way you examine them is to @dfn{focus} on a
8237specific trace snapshot. When the remote stub is focused on a trace
8238snapshot, it will respond to all @value{GDBN} requests for memory and
8239registers by reading from the buffer which belongs to that snapshot,
8240rather than from @emph{real} memory or registers of the program being
8241debugged. This means that @strong{all} @value{GDBN} commands
8242(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8243behave as if we were currently debugging the program state as it was
8244when the tracepoint occurred. Any requests for data that are not in
8245the buffer will fail.
8246
8247@menu
8248* tfind:: How to select a trace snapshot
8249* tdump:: How to display all data for a snapshot
8250* save-tracepoints:: How to save tracepoints for a future run
8251@end menu
8252
8253@node tfind
8254@subsection @code{tfind @var{n}}
8255
8256@kindex tfind
8257@cindex select trace snapshot
8258@cindex find trace snapshot
8259The basic command for selecting a trace snapshot from the buffer is
8260@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8261counting from zero. If no argument @var{n} is given, the next
8262snapshot is selected.
8263
8264Here are the various forms of using the @code{tfind} command.
8265
8266@table @code
8267@item tfind start
8268Find the first snapshot in the buffer. This is a synonym for
8269@code{tfind 0} (since 0 is the number of the first snapshot).
8270
8271@item tfind none
8272Stop debugging trace snapshots, resume @emph{live} debugging.
8273
8274@item tfind end
8275Same as @samp{tfind none}.
8276
8277@item tfind
8278No argument means find the next trace snapshot.
8279
8280@item tfind -
8281Find the previous trace snapshot before the current one. This permits
8282retracing earlier steps.
8283
8284@item tfind tracepoint @var{num}
8285Find the next snapshot associated with tracepoint @var{num}. Search
8286proceeds forward from the last examined trace snapshot. If no
8287argument @var{num} is given, it means find the next snapshot collected
8288for the same tracepoint as the current snapshot.
8289
8290@item tfind pc @var{addr}
8291Find the next snapshot associated with the value @var{addr} of the
8292program counter. Search proceeds forward from the last examined trace
8293snapshot. If no argument @var{addr} is given, it means find the next
8294snapshot with the same value of PC as the current snapshot.
8295
8296@item tfind outside @var{addr1}, @var{addr2}
8297Find the next snapshot whose PC is outside the given range of
8298addresses.
8299
8300@item tfind range @var{addr1}, @var{addr2}
8301Find the next snapshot whose PC is between @var{addr1} and
8302@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8303
8304@item tfind line @r{[}@var{file}:@r{]}@var{n}
8305Find the next snapshot associated with the source line @var{n}. If
8306the optional argument @var{file} is given, refer to line @var{n} in
8307that source file. Search proceeds forward from the last examined
8308trace snapshot. If no argument @var{n} is given, it means find the
8309next line other than the one currently being examined; thus saying
8310@code{tfind line} repeatedly can appear to have the same effect as
8311stepping from line to line in a @emph{live} debugging session.
8312@end table
8313
8314The default arguments for the @code{tfind} commands are specifically
8315designed to make it easy to scan through the trace buffer. For
8316instance, @code{tfind} with no argument selects the next trace
8317snapshot, and @code{tfind -} with no argument selects the previous
8318trace snapshot. So, by giving one @code{tfind} command, and then
8319simply hitting @key{RET} repeatedly you can examine all the trace
8320snapshots in order. Or, by saying @code{tfind -} and then hitting
8321@key{RET} repeatedly you can examine the snapshots in reverse order.
8322The @code{tfind line} command with no argument selects the snapshot
8323for the next source line executed. The @code{tfind pc} command with
8324no argument selects the next snapshot with the same program counter
8325(PC) as the current frame. The @code{tfind tracepoint} command with
8326no argument selects the next trace snapshot collected by the same
8327tracepoint as the current one.
8328
8329In addition to letting you scan through the trace buffer manually,
8330these commands make it easy to construct @value{GDBN} scripts that
8331scan through the trace buffer and print out whatever collected data
8332you are interested in. Thus, if we want to examine the PC, FP, and SP
8333registers from each trace frame in the buffer, we can say this:
8334
8335@smallexample
8336(@value{GDBP}) @b{tfind start}
8337(@value{GDBP}) @b{while ($trace_frame != -1)}
8338> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8339 $trace_frame, $pc, $sp, $fp
8340> tfind
8341> end
8342
8343Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8344Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8345Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8346Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8347Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8348Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8349Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8350Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8351Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8352Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8353Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8354@end smallexample
8355
8356Or, if we want to examine the variable @code{X} at each source line in
8357the buffer:
8358
8359@smallexample
8360(@value{GDBP}) @b{tfind start}
8361(@value{GDBP}) @b{while ($trace_frame != -1)}
8362> printf "Frame %d, X == %d\n", $trace_frame, X
8363> tfind line
8364> end
8365
8366Frame 0, X = 1
8367Frame 7, X = 2
8368Frame 13, X = 255
8369@end smallexample
8370
8371@node tdump
8372@subsection @code{tdump}
8373@kindex tdump
8374@cindex dump all data collected at tracepoint
8375@cindex tracepoint data, display
8376
8377This command takes no arguments. It prints all the data collected at
8378the current trace snapshot.
8379
8380@smallexample
8381(@value{GDBP}) @b{trace 444}
8382(@value{GDBP}) @b{actions}
8383Enter actions for tracepoint #2, one per line:
8384> collect $regs, $locals, $args, gdb_long_test
8385> end
8386
8387(@value{GDBP}) @b{tstart}
8388
8389(@value{GDBP}) @b{tfind line 444}
8390#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8391at gdb_test.c:444
8392444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8393
8394(@value{GDBP}) @b{tdump}
8395Data collected at tracepoint 2, trace frame 1:
8396d0 0xc4aa0085 -995491707
8397d1 0x18 24
8398d2 0x80 128
8399d3 0x33 51
8400d4 0x71aea3d 119204413
8401d5 0x22 34
8402d6 0xe0 224
8403d7 0x380035 3670069
8404a0 0x19e24a 1696330
8405a1 0x3000668 50333288
8406a2 0x100 256
8407a3 0x322000 3284992
8408a4 0x3000698 50333336
8409a5 0x1ad3cc 1758156
8410fp 0x30bf3c 0x30bf3c
8411sp 0x30bf34 0x30bf34
8412ps 0x0 0
8413pc 0x20b2c8 0x20b2c8
8414fpcontrol 0x0 0
8415fpstatus 0x0 0
8416fpiaddr 0x0 0
8417p = 0x20e5b4 "gdb-test"
8418p1 = (void *) 0x11
8419p2 = (void *) 0x22
8420p3 = (void *) 0x33
8421p4 = (void *) 0x44
8422p5 = (void *) 0x55
8423p6 = (void *) 0x66
8424gdb_long_test = 17 '\021'
8425
8426(@value{GDBP})
8427@end smallexample
8428
8429@node save-tracepoints
8430@subsection @code{save-tracepoints @var{filename}}
8431@kindex save-tracepoints
8432@cindex save tracepoints for future sessions
8433
8434This command saves all current tracepoint definitions together with
8435their actions and passcounts, into a file @file{@var{filename}}
8436suitable for use in a later debugging session. To read the saved
8437tracepoint definitions, use the @code{source} command (@pxref{Command
8438Files}).
8439
8440@node Tracepoint Variables
8441@section Convenience Variables for Tracepoints
8442@cindex tracepoint variables
8443@cindex convenience variables for tracepoints
8444
8445@table @code
8446@vindex $trace_frame
8447@item (int) $trace_frame
8448The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8449snapshot is selected.
8450
8451@vindex $tracepoint
8452@item (int) $tracepoint
8453The tracepoint for the current trace snapshot.
8454
8455@vindex $trace_line
8456@item (int) $trace_line
8457The line number for the current trace snapshot.
8458
8459@vindex $trace_file
8460@item (char []) $trace_file
8461The source file for the current trace snapshot.
8462
8463@vindex $trace_func
8464@item (char []) $trace_func
8465The name of the function containing @code{$tracepoint}.
8466@end table
8467
8468Note: @code{$trace_file} is not suitable for use in @code{printf},
8469use @code{output} instead.
8470
8471Here's a simple example of using these convenience variables for
8472stepping through all the trace snapshots and printing some of their
8473data.
8474
8475@smallexample
8476(@value{GDBP}) @b{tfind start}
8477
8478(@value{GDBP}) @b{while $trace_frame != -1}
8479> output $trace_file
8480> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8481> tfind
8482> end
8483@end smallexample
8484
df0cd8c5
JB
8485@node Overlays
8486@chapter Debugging Programs That Use Overlays
8487@cindex overlays
8488
8489If your program is too large to fit completely in your target system's
8490memory, you can sometimes use @dfn{overlays} to work around this
8491problem. @value{GDBN} provides some support for debugging programs that
8492use overlays.
8493
8494@menu
8495* How Overlays Work:: A general explanation of overlays.
8496* Overlay Commands:: Managing overlays in @value{GDBN}.
8497* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8498 mapped by asking the inferior.
8499* Overlay Sample Program:: A sample program using overlays.
8500@end menu
8501
8502@node How Overlays Work
8503@section How Overlays Work
8504@cindex mapped overlays
8505@cindex unmapped overlays
8506@cindex load address, overlay's
8507@cindex mapped address
8508@cindex overlay area
8509
8510Suppose you have a computer whose instruction address space is only 64
8511kilobytes long, but which has much more memory which can be accessed by
8512other means: special instructions, segment registers, or memory
8513management hardware, for example. Suppose further that you want to
8514adapt a program which is larger than 64 kilobytes to run on this system.
8515
8516One solution is to identify modules of your program which are relatively
8517independent, and need not call each other directly; call these modules
8518@dfn{overlays}. Separate the overlays from the main program, and place
8519their machine code in the larger memory. Place your main program in
8520instruction memory, but leave at least enough space there to hold the
8521largest overlay as well.
8522
8523Now, to call a function located in an overlay, you must first copy that
8524overlay's machine code from the large memory into the space set aside
8525for it in the instruction memory, and then jump to its entry point
8526there.
8527
c928edc0
AC
8528@c NB: In the below the mapped area's size is greater or equal to the
8529@c size of all overlays. This is intentional to remind the developer
8530@c that overlays don't necessarily need to be the same size.
8531
474c8240 8532@smallexample
df0cd8c5 8533@group
c928edc0
AC
8534 Data Instruction Larger
8535Address Space Address Space Address Space
8536+-----------+ +-----------+ +-----------+
8537| | | | | |
8538+-----------+ +-----------+ +-----------+<-- overlay 1
8539| program | | main | .----| overlay 1 | load address
8540| variables | | program | | +-----------+
8541| and heap | | | | | |
8542+-----------+ | | | +-----------+<-- overlay 2
8543| | +-----------+ | | | load address
8544+-----------+ | | | .-| overlay 2 |
8545 | | | | | |
8546 mapped --->+-----------+ | | +-----------+
8547 address | | | | | |
8548 | overlay | <-' | | |
8549 | area | <---' +-----------+<-- overlay 3
8550 | | <---. | | load address
8551 +-----------+ `--| overlay 3 |
8552 | | | |
8553 +-----------+ | |
8554 +-----------+
8555 | |
8556 +-----------+
8557
8558 @anchor{A code overlay}A code overlay
df0cd8c5 8559@end group
474c8240 8560@end smallexample
df0cd8c5 8561
c928edc0
AC
8562The diagram (@pxref{A code overlay}) shows a system with separate data
8563and instruction address spaces. To map an overlay, the program copies
8564its code from the larger address space to the instruction address space.
8565Since the overlays shown here all use the same mapped address, only one
8566may be mapped at a time. For a system with a single address space for
8567data and instructions, the diagram would be similar, except that the
8568program variables and heap would share an address space with the main
8569program and the overlay area.
df0cd8c5
JB
8570
8571An overlay loaded into instruction memory and ready for use is called a
8572@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8573instruction memory. An overlay not present (or only partially present)
8574in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8575is its address in the larger memory. The mapped address is also called
8576the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8577called the @dfn{load memory address}, or @dfn{LMA}.
8578
8579Unfortunately, overlays are not a completely transparent way to adapt a
8580program to limited instruction memory. They introduce a new set of
8581global constraints you must keep in mind as you design your program:
8582
8583@itemize @bullet
8584
8585@item
8586Before calling or returning to a function in an overlay, your program
8587must make sure that overlay is actually mapped. Otherwise, the call or
8588return will transfer control to the right address, but in the wrong
8589overlay, and your program will probably crash.
8590
8591@item
8592If the process of mapping an overlay is expensive on your system, you
8593will need to choose your overlays carefully to minimize their effect on
8594your program's performance.
8595
8596@item
8597The executable file you load onto your system must contain each
8598overlay's instructions, appearing at the overlay's load address, not its
8599mapped address. However, each overlay's instructions must be relocated
8600and its symbols defined as if the overlay were at its mapped address.
8601You can use GNU linker scripts to specify different load and relocation
8602addresses for pieces of your program; see @ref{Overlay Description,,,
8603ld.info, Using ld: the GNU linker}.
8604
8605@item
8606The procedure for loading executable files onto your system must be able
8607to load their contents into the larger address space as well as the
8608instruction and data spaces.
8609
8610@end itemize
8611
8612The overlay system described above is rather simple, and could be
8613improved in many ways:
8614
8615@itemize @bullet
8616
8617@item
8618If your system has suitable bank switch registers or memory management
8619hardware, you could use those facilities to make an overlay's load area
8620contents simply appear at their mapped address in instruction space.
8621This would probably be faster than copying the overlay to its mapped
8622area in the usual way.
8623
8624@item
8625If your overlays are small enough, you could set aside more than one
8626overlay area, and have more than one overlay mapped at a time.
8627
8628@item
8629You can use overlays to manage data, as well as instructions. In
8630general, data overlays are even less transparent to your design than
8631code overlays: whereas code overlays only require care when you call or
8632return to functions, data overlays require care every time you access
8633the data. Also, if you change the contents of a data overlay, you
8634must copy its contents back out to its load address before you can copy a
8635different data overlay into the same mapped area.
8636
8637@end itemize
8638
8639
8640@node Overlay Commands
8641@section Overlay Commands
8642
8643To use @value{GDBN}'s overlay support, each overlay in your program must
8644correspond to a separate section of the executable file. The section's
8645virtual memory address and load memory address must be the overlay's
8646mapped and load addresses. Identifying overlays with sections allows
8647@value{GDBN} to determine the appropriate address of a function or
8648variable, depending on whether the overlay is mapped or not.
8649
8650@value{GDBN}'s overlay commands all start with the word @code{overlay};
8651you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8652
8653@table @code
8654@item overlay off
4644b6e3 8655@kindex overlay
df0cd8c5
JB
8656Disable @value{GDBN}'s overlay support. When overlay support is
8657disabled, @value{GDBN} assumes that all functions and variables are
8658always present at their mapped addresses. By default, @value{GDBN}'s
8659overlay support is disabled.
8660
8661@item overlay manual
df0cd8c5
JB
8662@cindex manual overlay debugging
8663Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8664relies on you to tell it which overlays are mapped, and which are not,
8665using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8666commands described below.
8667
8668@item overlay map-overlay @var{overlay}
8669@itemx overlay map @var{overlay}
df0cd8c5
JB
8670@cindex map an overlay
8671Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8672be the name of the object file section containing the overlay. When an
8673overlay is mapped, @value{GDBN} assumes it can find the overlay's
8674functions and variables at their mapped addresses. @value{GDBN} assumes
8675that any other overlays whose mapped ranges overlap that of
8676@var{overlay} are now unmapped.
8677
8678@item overlay unmap-overlay @var{overlay}
8679@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8680@cindex unmap an overlay
8681Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8682must be the name of the object file section containing the overlay.
8683When an overlay is unmapped, @value{GDBN} assumes it can find the
8684overlay's functions and variables at their load addresses.
8685
8686@item overlay auto
df0cd8c5
JB
8687Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8688consults a data structure the overlay manager maintains in the inferior
8689to see which overlays are mapped. For details, see @ref{Automatic
8690Overlay Debugging}.
8691
8692@item overlay load-target
8693@itemx overlay load
df0cd8c5
JB
8694@cindex reloading the overlay table
8695Re-read the overlay table from the inferior. Normally, @value{GDBN}
8696re-reads the table @value{GDBN} automatically each time the inferior
8697stops, so this command should only be necessary if you have changed the
8698overlay mapping yourself using @value{GDBN}. This command is only
8699useful when using automatic overlay debugging.
8700
8701@item overlay list-overlays
8702@itemx overlay list
8703@cindex listing mapped overlays
8704Display a list of the overlays currently mapped, along with their mapped
8705addresses, load addresses, and sizes.
8706
8707@end table
8708
8709Normally, when @value{GDBN} prints a code address, it includes the name
8710of the function the address falls in:
8711
474c8240 8712@smallexample
f7dc1244 8713(@value{GDBP}) print main
df0cd8c5 8714$3 = @{int ()@} 0x11a0 <main>
474c8240 8715@end smallexample
df0cd8c5
JB
8716@noindent
8717When overlay debugging is enabled, @value{GDBN} recognizes code in
8718unmapped overlays, and prints the names of unmapped functions with
8719asterisks around them. For example, if @code{foo} is a function in an
8720unmapped overlay, @value{GDBN} prints it this way:
8721
474c8240 8722@smallexample
f7dc1244 8723(@value{GDBP}) overlay list
df0cd8c5 8724No sections are mapped.
f7dc1244 8725(@value{GDBP}) print foo
df0cd8c5 8726$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8727@end smallexample
df0cd8c5
JB
8728@noindent
8729When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8730name normally:
8731
474c8240 8732@smallexample
f7dc1244 8733(@value{GDBP}) overlay list
b383017d 8734Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8735 mapped at 0x1016 - 0x104a
f7dc1244 8736(@value{GDBP}) print foo
df0cd8c5 8737$6 = @{int (int)@} 0x1016 <foo>
474c8240 8738@end smallexample
df0cd8c5
JB
8739
8740When overlay debugging is enabled, @value{GDBN} can find the correct
8741address for functions and variables in an overlay, whether or not the
8742overlay is mapped. This allows most @value{GDBN} commands, like
8743@code{break} and @code{disassemble}, to work normally, even on unmapped
8744code. However, @value{GDBN}'s breakpoint support has some limitations:
8745
8746@itemize @bullet
8747@item
8748@cindex breakpoints in overlays
8749@cindex overlays, setting breakpoints in
8750You can set breakpoints in functions in unmapped overlays, as long as
8751@value{GDBN} can write to the overlay at its load address.
8752@item
8753@value{GDBN} can not set hardware or simulator-based breakpoints in
8754unmapped overlays. However, if you set a breakpoint at the end of your
8755overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8756you are using manual overlay management), @value{GDBN} will re-set its
8757breakpoints properly.
8758@end itemize
8759
8760
8761@node Automatic Overlay Debugging
8762@section Automatic Overlay Debugging
8763@cindex automatic overlay debugging
8764
8765@value{GDBN} can automatically track which overlays are mapped and which
8766are not, given some simple co-operation from the overlay manager in the
8767inferior. If you enable automatic overlay debugging with the
8768@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8769looks in the inferior's memory for certain variables describing the
8770current state of the overlays.
8771
8772Here are the variables your overlay manager must define to support
8773@value{GDBN}'s automatic overlay debugging:
8774
8775@table @asis
8776
8777@item @code{_ovly_table}:
8778This variable must be an array of the following structures:
8779
474c8240 8780@smallexample
df0cd8c5
JB
8781struct
8782@{
8783 /* The overlay's mapped address. */
8784 unsigned long vma;
8785
8786 /* The size of the overlay, in bytes. */
8787 unsigned long size;
8788
8789 /* The overlay's load address. */
8790 unsigned long lma;
8791
8792 /* Non-zero if the overlay is currently mapped;
8793 zero otherwise. */
8794 unsigned long mapped;
8795@}
474c8240 8796@end smallexample
df0cd8c5
JB
8797
8798@item @code{_novlys}:
8799This variable must be a four-byte signed integer, holding the total
8800number of elements in @code{_ovly_table}.
8801
8802@end table
8803
8804To decide whether a particular overlay is mapped or not, @value{GDBN}
8805looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8806@code{lma} members equal the VMA and LMA of the overlay's section in the
8807executable file. When @value{GDBN} finds a matching entry, it consults
8808the entry's @code{mapped} member to determine whether the overlay is
8809currently mapped.
8810
81d46470 8811In addition, your overlay manager may define a function called
def71bfa 8812@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8813will silently set a breakpoint there. If the overlay manager then
8814calls this function whenever it has changed the overlay table, this
8815will enable @value{GDBN} to accurately keep track of which overlays
8816are in program memory, and update any breakpoints that may be set
b383017d 8817in overlays. This will allow breakpoints to work even if the
81d46470
MS
8818overlays are kept in ROM or other non-writable memory while they
8819are not being executed.
df0cd8c5
JB
8820
8821@node Overlay Sample Program
8822@section Overlay Sample Program
8823@cindex overlay example program
8824
8825When linking a program which uses overlays, you must place the overlays
8826at their load addresses, while relocating them to run at their mapped
8827addresses. To do this, you must write a linker script (@pxref{Overlay
8828Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8829since linker scripts are specific to a particular host system, target
8830architecture, and target memory layout, this manual cannot provide
8831portable sample code demonstrating @value{GDBN}'s overlay support.
8832
8833However, the @value{GDBN} source distribution does contain an overlaid
8834program, with linker scripts for a few systems, as part of its test
8835suite. The program consists of the following files from
8836@file{gdb/testsuite/gdb.base}:
8837
8838@table @file
8839@item overlays.c
8840The main program file.
8841@item ovlymgr.c
8842A simple overlay manager, used by @file{overlays.c}.
8843@item foo.c
8844@itemx bar.c
8845@itemx baz.c
8846@itemx grbx.c
8847Overlay modules, loaded and used by @file{overlays.c}.
8848@item d10v.ld
8849@itemx m32r.ld
8850Linker scripts for linking the test program on the @code{d10v-elf}
8851and @code{m32r-elf} targets.
8852@end table
8853
8854You can build the test program using the @code{d10v-elf} GCC
8855cross-compiler like this:
8856
474c8240 8857@smallexample
df0cd8c5
JB
8858$ d10v-elf-gcc -g -c overlays.c
8859$ d10v-elf-gcc -g -c ovlymgr.c
8860$ d10v-elf-gcc -g -c foo.c
8861$ d10v-elf-gcc -g -c bar.c
8862$ d10v-elf-gcc -g -c baz.c
8863$ d10v-elf-gcc -g -c grbx.c
8864$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8865 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8866@end smallexample
df0cd8c5
JB
8867
8868The build process is identical for any other architecture, except that
8869you must substitute the appropriate compiler and linker script for the
8870target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8871
8872
6d2ebf8b 8873@node Languages
c906108c
SS
8874@chapter Using @value{GDBN} with Different Languages
8875@cindex languages
8876
c906108c
SS
8877Although programming languages generally have common aspects, they are
8878rarely expressed in the same manner. For instance, in ANSI C,
8879dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8880Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8881represented (and displayed) differently. Hex numbers in C appear as
c906108c 8882@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8883
8884@cindex working language
8885Language-specific information is built into @value{GDBN} for some languages,
8886allowing you to express operations like the above in your program's
8887native language, and allowing @value{GDBN} to output values in a manner
8888consistent with the syntax of your program's native language. The
8889language you use to build expressions is called the @dfn{working
8890language}.
8891
8892@menu
8893* Setting:: Switching between source languages
8894* Show:: Displaying the language
c906108c 8895* Checks:: Type and range checks
79a6e687
BW
8896* Supported Languages:: Supported languages
8897* Unsupported Languages:: Unsupported languages
c906108c
SS
8898@end menu
8899
6d2ebf8b 8900@node Setting
79a6e687 8901@section Switching Between Source Languages
c906108c
SS
8902
8903There are two ways to control the working language---either have @value{GDBN}
8904set it automatically, or select it manually yourself. You can use the
8905@code{set language} command for either purpose. On startup, @value{GDBN}
8906defaults to setting the language automatically. The working language is
8907used to determine how expressions you type are interpreted, how values
8908are printed, etc.
8909
8910In addition to the working language, every source file that
8911@value{GDBN} knows about has its own working language. For some object
8912file formats, the compiler might indicate which language a particular
8913source file is in. However, most of the time @value{GDBN} infers the
8914language from the name of the file. The language of a source file
b37052ae 8915controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8916show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8917set the language of a source file from within @value{GDBN}, but you can
8918set the language associated with a filename extension. @xref{Show, ,
79a6e687 8919Displaying the Language}.
c906108c
SS
8920
8921This is most commonly a problem when you use a program, such
5d161b24 8922as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8923another language. In that case, make the
8924program use @code{#line} directives in its C output; that way
8925@value{GDBN} will know the correct language of the source code of the original
8926program, and will display that source code, not the generated C code.
8927
8928@menu
8929* Filenames:: Filename extensions and languages.
8930* Manually:: Setting the working language manually
8931* Automatically:: Having @value{GDBN} infer the source language
8932@end menu
8933
6d2ebf8b 8934@node Filenames
79a6e687 8935@subsection List of Filename Extensions and Languages
c906108c
SS
8936
8937If a source file name ends in one of the following extensions, then
8938@value{GDBN} infers that its language is the one indicated.
8939
8940@table @file
e07c999f
PH
8941@item .ada
8942@itemx .ads
8943@itemx .adb
8944@itemx .a
8945Ada source file.
c906108c
SS
8946
8947@item .c
8948C source file
8949
8950@item .C
8951@itemx .cc
8952@itemx .cp
8953@itemx .cpp
8954@itemx .cxx
8955@itemx .c++
b37052ae 8956C@t{++} source file
c906108c 8957
b37303ee
AF
8958@item .m
8959Objective-C source file
8960
c906108c
SS
8961@item .f
8962@itemx .F
8963Fortran source file
8964
c906108c
SS
8965@item .mod
8966Modula-2 source file
c906108c
SS
8967
8968@item .s
8969@itemx .S
8970Assembler source file. This actually behaves almost like C, but
8971@value{GDBN} does not skip over function prologues when stepping.
8972@end table
8973
8974In addition, you may set the language associated with a filename
79a6e687 8975extension. @xref{Show, , Displaying the Language}.
c906108c 8976
6d2ebf8b 8977@node Manually
79a6e687 8978@subsection Setting the Working Language
c906108c
SS
8979
8980If you allow @value{GDBN} to set the language automatically,
8981expressions are interpreted the same way in your debugging session and
8982your program.
8983
8984@kindex set language
8985If you wish, you may set the language manually. To do this, issue the
8986command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8987a language, such as
c906108c 8988@code{c} or @code{modula-2}.
c906108c
SS
8989For a list of the supported languages, type @samp{set language}.
8990
c906108c
SS
8991Setting the language manually prevents @value{GDBN} from updating the working
8992language automatically. This can lead to confusion if you try
8993to debug a program when the working language is not the same as the
8994source language, when an expression is acceptable to both
8995languages---but means different things. For instance, if the current
8996source file were written in C, and @value{GDBN} was parsing Modula-2, a
8997command such as:
8998
474c8240 8999@smallexample
c906108c 9000print a = b + c
474c8240 9001@end smallexample
c906108c
SS
9002
9003@noindent
9004might not have the effect you intended. In C, this means to add
9005@code{b} and @code{c} and place the result in @code{a}. The result
9006printed would be the value of @code{a}. In Modula-2, this means to compare
9007@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 9008
6d2ebf8b 9009@node Automatically
79a6e687 9010@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
9011
9012To have @value{GDBN} set the working language automatically, use
9013@samp{set language local} or @samp{set language auto}. @value{GDBN}
9014then infers the working language. That is, when your program stops in a
9015frame (usually by encountering a breakpoint), @value{GDBN} sets the
9016working language to the language recorded for the function in that
9017frame. If the language for a frame is unknown (that is, if the function
9018or block corresponding to the frame was defined in a source file that
9019does not have a recognized extension), the current working language is
9020not changed, and @value{GDBN} issues a warning.
9021
9022This may not seem necessary for most programs, which are written
9023entirely in one source language. However, program modules and libraries
9024written in one source language can be used by a main program written in
9025a different source language. Using @samp{set language auto} in this
9026case frees you from having to set the working language manually.
9027
6d2ebf8b 9028@node Show
79a6e687 9029@section Displaying the Language
c906108c
SS
9030
9031The following commands help you find out which language is the
9032working language, and also what language source files were written in.
9033
c906108c
SS
9034@table @code
9035@item show language
9c16f35a 9036@kindex show language
c906108c
SS
9037Display the current working language. This is the
9038language you can use with commands such as @code{print} to
9039build and compute expressions that may involve variables in your program.
9040
9041@item info frame
4644b6e3 9042@kindex info frame@r{, show the source language}
5d161b24 9043Display the source language for this frame. This language becomes the
c906108c 9044working language if you use an identifier from this frame.
79a6e687 9045@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9046information listed here.
9047
9048@item info source
4644b6e3 9049@kindex info source@r{, show the source language}
c906108c 9050Display the source language of this source file.
5d161b24 9051@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9052information listed here.
9053@end table
9054
9055In unusual circumstances, you may have source files with extensions
9056not in the standard list. You can then set the extension associated
9057with a language explicitly:
9058
c906108c 9059@table @code
09d4efe1 9060@item set extension-language @var{ext} @var{language}
9c16f35a 9061@kindex set extension-language
09d4efe1
EZ
9062Tell @value{GDBN} that source files with extension @var{ext} are to be
9063assumed as written in the source language @var{language}.
c906108c
SS
9064
9065@item info extensions
9c16f35a 9066@kindex info extensions
c906108c
SS
9067List all the filename extensions and the associated languages.
9068@end table
9069
6d2ebf8b 9070@node Checks
79a6e687 9071@section Type and Range Checking
c906108c
SS
9072
9073@quotation
9074@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9075checking are included, but they do not yet have any effect. This
9076section documents the intended facilities.
9077@end quotation
9078@c FIXME remove warning when type/range code added
9079
9080Some languages are designed to guard you against making seemingly common
9081errors through a series of compile- and run-time checks. These include
9082checking the type of arguments to functions and operators, and making
9083sure mathematical overflows are caught at run time. Checks such as
9084these help to ensure a program's correctness once it has been compiled
9085by eliminating type mismatches, and providing active checks for range
9086errors when your program is running.
9087
9088@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9089Although @value{GDBN} does not check the statements in your program,
9090it can check expressions entered directly into @value{GDBN} for
9091evaluation via the @code{print} command, for example. As with the
9092working language, @value{GDBN} can also decide whether or not to check
9093automatically based on your program's source language.
79a6e687 9094@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9095settings of supported languages.
c906108c
SS
9096
9097@menu
9098* Type Checking:: An overview of type checking
9099* Range Checking:: An overview of range checking
9100@end menu
9101
9102@cindex type checking
9103@cindex checks, type
6d2ebf8b 9104@node Type Checking
79a6e687 9105@subsection An Overview of Type Checking
c906108c
SS
9106
9107Some languages, such as Modula-2, are strongly typed, meaning that the
9108arguments to operators and functions have to be of the correct type,
9109otherwise an error occurs. These checks prevent type mismatch
9110errors from ever causing any run-time problems. For example,
9111
9112@smallexample
91131 + 2 @result{} 3
9114@exdent but
9115@error{} 1 + 2.3
9116@end smallexample
9117
9118The second example fails because the @code{CARDINAL} 1 is not
9119type-compatible with the @code{REAL} 2.3.
9120
5d161b24
DB
9121For the expressions you use in @value{GDBN} commands, you can tell the
9122@value{GDBN} type checker to skip checking;
9123to treat any mismatches as errors and abandon the expression;
9124or to only issue warnings when type mismatches occur,
c906108c
SS
9125but evaluate the expression anyway. When you choose the last of
9126these, @value{GDBN} evaluates expressions like the second example above, but
9127also issues a warning.
9128
5d161b24
DB
9129Even if you turn type checking off, there may be other reasons
9130related to type that prevent @value{GDBN} from evaluating an expression.
9131For instance, @value{GDBN} does not know how to add an @code{int} and
9132a @code{struct foo}. These particular type errors have nothing to do
9133with the language in use, and usually arise from expressions, such as
c906108c
SS
9134the one described above, which make little sense to evaluate anyway.
9135
9136Each language defines to what degree it is strict about type. For
9137instance, both Modula-2 and C require the arguments to arithmetical
9138operators to be numbers. In C, enumerated types and pointers can be
9139represented as numbers, so that they are valid arguments to mathematical
79a6e687 9140operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9141details on specific languages.
9142
9143@value{GDBN} provides some additional commands for controlling the type checker:
9144
c906108c
SS
9145@kindex set check type
9146@kindex show check type
9147@table @code
9148@item set check type auto
9149Set type checking on or off based on the current working language.
79a6e687 9150@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9151each language.
9152
9153@item set check type on
9154@itemx set check type off
9155Set type checking on or off, overriding the default setting for the
9156current working language. Issue a warning if the setting does not
9157match the language default. If any type mismatches occur in
d4f3574e 9158evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9159message and aborts evaluation of the expression.
9160
9161@item set check type warn
9162Cause the type checker to issue warnings, but to always attempt to
9163evaluate the expression. Evaluating the expression may still
9164be impossible for other reasons. For example, @value{GDBN} cannot add
9165numbers and structures.
9166
9167@item show type
5d161b24 9168Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9169is setting it automatically.
9170@end table
9171
9172@cindex range checking
9173@cindex checks, range
6d2ebf8b 9174@node Range Checking
79a6e687 9175@subsection An Overview of Range Checking
c906108c
SS
9176
9177In some languages (such as Modula-2), it is an error to exceed the
9178bounds of a type; this is enforced with run-time checks. Such range
9179checking is meant to ensure program correctness by making sure
9180computations do not overflow, or indices on an array element access do
9181not exceed the bounds of the array.
9182
9183For expressions you use in @value{GDBN} commands, you can tell
9184@value{GDBN} to treat range errors in one of three ways: ignore them,
9185always treat them as errors and abandon the expression, or issue
9186warnings but evaluate the expression anyway.
9187
9188A range error can result from numerical overflow, from exceeding an
9189array index bound, or when you type a constant that is not a member
9190of any type. Some languages, however, do not treat overflows as an
9191error. In many implementations of C, mathematical overflow causes the
9192result to ``wrap around'' to lower values---for example, if @var{m} is
9193the largest integer value, and @var{s} is the smallest, then
9194
474c8240 9195@smallexample
c906108c 9196@var{m} + 1 @result{} @var{s}
474c8240 9197@end smallexample
c906108c
SS
9198
9199This, too, is specific to individual languages, and in some cases
79a6e687
BW
9200specific to individual compilers or machines. @xref{Supported Languages, ,
9201Supported Languages}, for further details on specific languages.
c906108c
SS
9202
9203@value{GDBN} provides some additional commands for controlling the range checker:
9204
c906108c
SS
9205@kindex set check range
9206@kindex show check range
9207@table @code
9208@item set check range auto
9209Set range checking on or off based on the current working language.
79a6e687 9210@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9211each language.
9212
9213@item set check range on
9214@itemx set check range off
9215Set range checking on or off, overriding the default setting for the
9216current working language. A warning is issued if the setting does not
c3f6f71d
JM
9217match the language default. If a range error occurs and range checking is on,
9218then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9219
9220@item set check range warn
9221Output messages when the @value{GDBN} range checker detects a range error,
9222but attempt to evaluate the expression anyway. Evaluating the
9223expression may still be impossible for other reasons, such as accessing
9224memory that the process does not own (a typical example from many Unix
9225systems).
9226
9227@item show range
9228Show the current setting of the range checker, and whether or not it is
9229being set automatically by @value{GDBN}.
9230@end table
c906108c 9231
79a6e687
BW
9232@node Supported Languages
9233@section Supported Languages
c906108c 9234
9c16f35a
EZ
9235@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9236assembly, Modula-2, and Ada.
cce74817 9237@c This is false ...
c906108c
SS
9238Some @value{GDBN} features may be used in expressions regardless of the
9239language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9240and the @samp{@{type@}addr} construct (@pxref{Expressions,
9241,Expressions}) can be used with the constructs of any supported
9242language.
9243
9244The following sections detail to what degree each source language is
9245supported by @value{GDBN}. These sections are not meant to be language
9246tutorials or references, but serve only as a reference guide to what the
9247@value{GDBN} expression parser accepts, and what input and output
9248formats should look like for different languages. There are many good
9249books written on each of these languages; please look to these for a
9250language reference or tutorial.
9251
c906108c 9252@menu
b37303ee 9253* C:: C and C@t{++}
b383017d 9254* Objective-C:: Objective-C
09d4efe1 9255* Fortran:: Fortran
9c16f35a 9256* Pascal:: Pascal
b37303ee 9257* Modula-2:: Modula-2
e07c999f 9258* Ada:: Ada
c906108c
SS
9259@end menu
9260
6d2ebf8b 9261@node C
b37052ae 9262@subsection C and C@t{++}
7a292a7a 9263
b37052ae
EZ
9264@cindex C and C@t{++}
9265@cindex expressions in C or C@t{++}
c906108c 9266
b37052ae 9267Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9268to both languages. Whenever this is the case, we discuss those languages
9269together.
9270
41afff9a
EZ
9271@cindex C@t{++}
9272@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9273@cindex @sc{gnu} C@t{++}
9274The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9275compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9276effectively, you must compile your C@t{++} programs with a supported
9277C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9278compiler (@code{aCC}).
9279
0179ffac
DC
9280For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9281format; if it doesn't work on your system, try the stabs+ debugging
9282format. You can select those formats explicitly with the @code{g++}
9283command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9284@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9285gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9286
c906108c 9287@menu
b37052ae
EZ
9288* C Operators:: C and C@t{++} operators
9289* C Constants:: C and C@t{++} constants
79a6e687 9290* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9291* C Defaults:: Default settings for C and C@t{++}
9292* C Checks:: C and C@t{++} type and range checks
c906108c 9293* Debugging C:: @value{GDBN} and C
79a6e687 9294* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9295* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9296@end menu
c906108c 9297
6d2ebf8b 9298@node C Operators
79a6e687 9299@subsubsection C and C@t{++} Operators
7a292a7a 9300
b37052ae 9301@cindex C and C@t{++} operators
c906108c
SS
9302
9303Operators must be defined on values of specific types. For instance,
9304@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9305often defined on groups of types.
c906108c 9306
b37052ae 9307For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9308
9309@itemize @bullet
53a5351d 9310
c906108c 9311@item
c906108c 9312@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9313specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9314
9315@item
d4f3574e
SS
9316@emph{Floating-point types} include @code{float}, @code{double}, and
9317@code{long double} (if supported by the target platform).
c906108c
SS
9318
9319@item
53a5351d 9320@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9321
9322@item
9323@emph{Scalar types} include all of the above.
53a5351d 9324
c906108c
SS
9325@end itemize
9326
9327@noindent
9328The following operators are supported. They are listed here
9329in order of increasing precedence:
9330
9331@table @code
9332@item ,
9333The comma or sequencing operator. Expressions in a comma-separated list
9334are evaluated from left to right, with the result of the entire
9335expression being the last expression evaluated.
9336
9337@item =
9338Assignment. The value of an assignment expression is the value
9339assigned. Defined on scalar types.
9340
9341@item @var{op}=
9342Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9343and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9344@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9345@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9346@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9347
9348@item ?:
9349The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9350of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9351integral type.
9352
9353@item ||
9354Logical @sc{or}. Defined on integral types.
9355
9356@item &&
9357Logical @sc{and}. Defined on integral types.
9358
9359@item |
9360Bitwise @sc{or}. Defined on integral types.
9361
9362@item ^
9363Bitwise exclusive-@sc{or}. Defined on integral types.
9364
9365@item &
9366Bitwise @sc{and}. Defined on integral types.
9367
9368@item ==@r{, }!=
9369Equality and inequality. Defined on scalar types. The value of these
9370expressions is 0 for false and non-zero for true.
9371
9372@item <@r{, }>@r{, }<=@r{, }>=
9373Less than, greater than, less than or equal, greater than or equal.
9374Defined on scalar types. The value of these expressions is 0 for false
9375and non-zero for true.
9376
9377@item <<@r{, }>>
9378left shift, and right shift. Defined on integral types.
9379
9380@item @@
9381The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9382
9383@item +@r{, }-
9384Addition and subtraction. Defined on integral types, floating-point types and
9385pointer types.
9386
9387@item *@r{, }/@r{, }%
9388Multiplication, division, and modulus. Multiplication and division are
9389defined on integral and floating-point types. Modulus is defined on
9390integral types.
9391
9392@item ++@r{, }--
9393Increment and decrement. When appearing before a variable, the
9394operation is performed before the variable is used in an expression;
9395when appearing after it, the variable's value is used before the
9396operation takes place.
9397
9398@item *
9399Pointer dereferencing. Defined on pointer types. Same precedence as
9400@code{++}.
9401
9402@item &
9403Address operator. Defined on variables. Same precedence as @code{++}.
9404
b37052ae
EZ
9405For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9406allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9407to examine the address
b37052ae 9408where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9409stored.
c906108c
SS
9410
9411@item -
9412Negative. Defined on integral and floating-point types. Same
9413precedence as @code{++}.
9414
9415@item !
9416Logical negation. Defined on integral types. Same precedence as
9417@code{++}.
9418
9419@item ~
9420Bitwise complement operator. Defined on integral types. Same precedence as
9421@code{++}.
9422
9423
9424@item .@r{, }->
9425Structure member, and pointer-to-structure member. For convenience,
9426@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9427pointer based on the stored type information.
9428Defined on @code{struct} and @code{union} data.
9429
c906108c
SS
9430@item .*@r{, }->*
9431Dereferences of pointers to members.
c906108c
SS
9432
9433@item []
9434Array indexing. @code{@var{a}[@var{i}]} is defined as
9435@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9436
9437@item ()
9438Function parameter list. Same precedence as @code{->}.
9439
c906108c 9440@item ::
b37052ae 9441C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9442and @code{class} types.
c906108c
SS
9443
9444@item ::
7a292a7a
SS
9445Doubled colons also represent the @value{GDBN} scope operator
9446(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9447above.
c906108c
SS
9448@end table
9449
c906108c
SS
9450If an operator is redefined in the user code, @value{GDBN} usually
9451attempts to invoke the redefined version instead of using the operator's
9452predefined meaning.
c906108c 9453
6d2ebf8b 9454@node C Constants
79a6e687 9455@subsubsection C and C@t{++} Constants
c906108c 9456
b37052ae 9457@cindex C and C@t{++} constants
c906108c 9458
b37052ae 9459@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9460following ways:
c906108c
SS
9461
9462@itemize @bullet
9463@item
9464Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9465specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9466by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9467@samp{l}, specifying that the constant should be treated as a
9468@code{long} value.
9469
9470@item
9471Floating point constants are a sequence of digits, followed by a decimal
9472point, followed by a sequence of digits, and optionally followed by an
9473exponent. An exponent is of the form:
9474@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9475sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9476A floating-point constant may also end with a letter @samp{f} or
9477@samp{F}, specifying that the constant should be treated as being of
9478the @code{float} (as opposed to the default @code{double}) type; or with
9479a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9480constant.
c906108c
SS
9481
9482@item
9483Enumerated constants consist of enumerated identifiers, or their
9484integral equivalents.
9485
9486@item
9487Character constants are a single character surrounded by single quotes
9488(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9489(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9490be represented by a letter or by @dfn{escape sequences}, which are of
9491the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9492of the character's ordinal value; or of the form @samp{\@var{x}}, where
9493@samp{@var{x}} is a predefined special character---for example,
9494@samp{\n} for newline.
9495
9496@item
96a2c332
SS
9497String constants are a sequence of character constants surrounded by
9498double quotes (@code{"}). Any valid character constant (as described
9499above) may appear. Double quotes within the string must be preceded by
9500a backslash, so for instance @samp{"a\"b'c"} is a string of five
9501characters.
c906108c
SS
9502
9503@item
9504Pointer constants are an integral value. You can also write pointers
9505to constants using the C operator @samp{&}.
9506
9507@item
9508Array constants are comma-separated lists surrounded by braces @samp{@{}
9509and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9510integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9511and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9512@end itemize
9513
79a6e687
BW
9514@node C Plus Plus Expressions
9515@subsubsection C@t{++} Expressions
b37052ae
EZ
9516
9517@cindex expressions in C@t{++}
9518@value{GDBN} expression handling can interpret most C@t{++} expressions.
9519
0179ffac
DC
9520@cindex debugging C@t{++} programs
9521@cindex C@t{++} compilers
9522@cindex debug formats and C@t{++}
9523@cindex @value{NGCC} and C@t{++}
c906108c 9524@quotation
b37052ae 9525@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9526proper compiler and the proper debug format. Currently, @value{GDBN}
9527works best when debugging C@t{++} code that is compiled with
9528@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9529@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9530stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9531stabs+ as their default debug format, so you usually don't need to
9532specify a debug format explicitly. Other compilers and/or debug formats
9533are likely to work badly or not at all when using @value{GDBN} to debug
9534C@t{++} code.
c906108c 9535@end quotation
c906108c
SS
9536
9537@enumerate
9538
9539@cindex member functions
9540@item
9541Member function calls are allowed; you can use expressions like
9542
474c8240 9543@smallexample
c906108c 9544count = aml->GetOriginal(x, y)
474c8240 9545@end smallexample
c906108c 9546
41afff9a 9547@vindex this@r{, inside C@t{++} member functions}
b37052ae 9548@cindex namespace in C@t{++}
c906108c
SS
9549@item
9550While a member function is active (in the selected stack frame), your
9551expressions have the same namespace available as the member function;
9552that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9553pointer @code{this} following the same rules as C@t{++}.
c906108c 9554
c906108c 9555@cindex call overloaded functions
d4f3574e 9556@cindex overloaded functions, calling
b37052ae 9557@cindex type conversions in C@t{++}
c906108c
SS
9558@item
9559You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9560call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9561perform overload resolution involving user-defined type conversions,
9562calls to constructors, or instantiations of templates that do not exist
9563in the program. It also cannot handle ellipsis argument lists or
9564default arguments.
9565
9566It does perform integral conversions and promotions, floating-point
9567promotions, arithmetic conversions, pointer conversions, conversions of
9568class objects to base classes, and standard conversions such as those of
9569functions or arrays to pointers; it requires an exact match on the
9570number of function arguments.
9571
9572Overload resolution is always performed, unless you have specified
79a6e687
BW
9573@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9574,@value{GDBN} Features for C@t{++}}.
c906108c 9575
d4f3574e 9576You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9577explicit function signature to call an overloaded function, as in
9578@smallexample
9579p 'foo(char,int)'('x', 13)
9580@end smallexample
d4f3574e 9581
c906108c 9582The @value{GDBN} command-completion facility can simplify this;
79a6e687 9583see @ref{Completion, ,Command Completion}.
c906108c 9584
c906108c
SS
9585@cindex reference declarations
9586@item
b37052ae
EZ
9587@value{GDBN} understands variables declared as C@t{++} references; you can use
9588them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9589dereferenced.
9590
9591In the parameter list shown when @value{GDBN} displays a frame, the values of
9592reference variables are not displayed (unlike other variables); this
9593avoids clutter, since references are often used for large structures.
9594The @emph{address} of a reference variable is always shown, unless
9595you have specified @samp{set print address off}.
9596
9597@item
b37052ae 9598@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9599expressions can use it just as expressions in your program do. Since
9600one scope may be defined in another, you can use @code{::} repeatedly if
9601necessary, for example in an expression like
9602@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9603resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9604debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9605@end enumerate
9606
b37052ae 9607In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9608calling virtual functions correctly, printing out virtual bases of
9609objects, calling functions in a base subobject, casting objects, and
9610invoking user-defined operators.
c906108c 9611
6d2ebf8b 9612@node C Defaults
79a6e687 9613@subsubsection C and C@t{++} Defaults
7a292a7a 9614
b37052ae 9615@cindex C and C@t{++} defaults
c906108c 9616
c906108c
SS
9617If you allow @value{GDBN} to set type and range checking automatically, they
9618both default to @code{off} whenever the working language changes to
b37052ae 9619C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9620selects the working language.
c906108c
SS
9621
9622If you allow @value{GDBN} to set the language automatically, it
9623recognizes source files whose names end with @file{.c}, @file{.C}, or
9624@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9625these files, it sets the working language to C or C@t{++}.
79a6e687 9626@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9627for further details.
9628
c906108c
SS
9629@c Type checking is (a) primarily motivated by Modula-2, and (b)
9630@c unimplemented. If (b) changes, it might make sense to let this node
9631@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9632
6d2ebf8b 9633@node C Checks
79a6e687 9634@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9635
b37052ae 9636@cindex C and C@t{++} checks
c906108c 9637
b37052ae 9638By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9639is not used. However, if you turn type checking on, @value{GDBN}
9640considers two variables type equivalent if:
9641
9642@itemize @bullet
9643@item
9644The two variables are structured and have the same structure, union, or
9645enumerated tag.
9646
9647@item
9648The two variables have the same type name, or types that have been
9649declared equivalent through @code{typedef}.
9650
9651@ignore
9652@c leaving this out because neither J Gilmore nor R Pesch understand it.
9653@c FIXME--beers?
9654@item
9655The two @code{struct}, @code{union}, or @code{enum} variables are
9656declared in the same declaration. (Note: this may not be true for all C
9657compilers.)
9658@end ignore
9659@end itemize
9660
9661Range checking, if turned on, is done on mathematical operations. Array
9662indices are not checked, since they are often used to index a pointer
9663that is not itself an array.
c906108c 9664
6d2ebf8b 9665@node Debugging C
c906108c 9666@subsubsection @value{GDBN} and C
c906108c
SS
9667
9668The @code{set print union} and @code{show print union} commands apply to
9669the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9670inside a @code{struct} or @code{class} is also printed. Otherwise, it
9671appears as @samp{@{...@}}.
c906108c
SS
9672
9673The @code{@@} operator aids in the debugging of dynamic arrays, formed
9674with pointers and a memory allocation function. @xref{Expressions,
9675,Expressions}.
9676
79a6e687
BW
9677@node Debugging C Plus Plus
9678@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9679
b37052ae 9680@cindex commands for C@t{++}
7a292a7a 9681
b37052ae
EZ
9682Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9683designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9684
9685@table @code
9686@cindex break in overloaded functions
9687@item @r{breakpoint menus}
9688When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9689@value{GDBN} has the capability to display a menu of possible breakpoint
9690locations to help you specify which function definition you want.
9691@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9692
b37052ae 9693@cindex overloading in C@t{++}
c906108c
SS
9694@item rbreak @var{regex}
9695Setting breakpoints using regular expressions is helpful for setting
9696breakpoints on overloaded functions that are not members of any special
9697classes.
79a6e687 9698@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9699
b37052ae 9700@cindex C@t{++} exception handling
c906108c
SS
9701@item catch throw
9702@itemx catch catch
b37052ae 9703Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9704Catchpoints, , Setting Catchpoints}.
c906108c
SS
9705
9706@cindex inheritance
9707@item ptype @var{typename}
9708Print inheritance relationships as well as other information for type
9709@var{typename}.
9710@xref{Symbols, ,Examining the Symbol Table}.
9711
b37052ae 9712@cindex C@t{++} symbol display
c906108c
SS
9713@item set print demangle
9714@itemx show print demangle
9715@itemx set print asm-demangle
9716@itemx show print asm-demangle
b37052ae
EZ
9717Control whether C@t{++} symbols display in their source form, both when
9718displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9719@xref{Print Settings, ,Print Settings}.
c906108c
SS
9720
9721@item set print object
9722@itemx show print object
9723Choose whether to print derived (actual) or declared types of objects.
79a6e687 9724@xref{Print Settings, ,Print Settings}.
c906108c
SS
9725
9726@item set print vtbl
9727@itemx show print vtbl
9728Control the format for printing virtual function tables.
79a6e687 9729@xref{Print Settings, ,Print Settings}.
c906108c 9730(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9731ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9732
9733@kindex set overload-resolution
d4f3574e 9734@cindex overloaded functions, overload resolution
c906108c 9735@item set overload-resolution on
b37052ae 9736Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9737is on. For overloaded functions, @value{GDBN} evaluates the arguments
9738and searches for a function whose signature matches the argument types,
79a6e687
BW
9739using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9740Expressions, ,C@t{++} Expressions}, for details).
9741If it cannot find a match, it emits a message.
c906108c
SS
9742
9743@item set overload-resolution off
b37052ae 9744Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9745overloaded functions that are not class member functions, @value{GDBN}
9746chooses the first function of the specified name that it finds in the
9747symbol table, whether or not its arguments are of the correct type. For
9748overloaded functions that are class member functions, @value{GDBN}
9749searches for a function whose signature @emph{exactly} matches the
9750argument types.
c906108c 9751
9c16f35a
EZ
9752@kindex show overload-resolution
9753@item show overload-resolution
9754Show the current setting of overload resolution.
9755
c906108c
SS
9756@item @r{Overloaded symbol names}
9757You can specify a particular definition of an overloaded symbol, using
b37052ae 9758the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9759@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9760also use the @value{GDBN} command-line word completion facilities to list the
9761available choices, or to finish the type list for you.
79a6e687 9762@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9763@end table
c906108c 9764
febe4383
TJB
9765@node Decimal Floating Point
9766@subsubsection Decimal Floating Point format
9767@cindex decimal floating point format
9768
9769@value{GDBN} can examine, set and perform computations with numbers in
9770decimal floating point format, which in the C language correspond to the
9771@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9772specified by the extension to support decimal floating-point arithmetic.
9773
9774There are two encodings in use, depending on the architecture: BID (Binary
9775Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9776PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9777target.
9778
9779Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9780to manipulate decimal floating point numbers, it is not possible to convert
9781(using a cast, for example) integers wider than 32-bit to decimal float.
9782
9783In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9784point computations, error checking in decimal float operations ignores
9785underflow, overflow and divide by zero exceptions.
9786
4acd40f3
TJB
9787In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9788to inspect @code{_Decimal128} values stored in floating point registers. See
9789@ref{PowerPC,,PowerPC} for more details.
9790
b37303ee
AF
9791@node Objective-C
9792@subsection Objective-C
9793
9794@cindex Objective-C
9795This section provides information about some commands and command
721c2651
EZ
9796options that are useful for debugging Objective-C code. See also
9797@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9798few more commands specific to Objective-C support.
b37303ee
AF
9799
9800@menu
b383017d
RM
9801* Method Names in Commands::
9802* The Print Command with Objective-C::
b37303ee
AF
9803@end menu
9804
c8f4133a 9805@node Method Names in Commands
b37303ee
AF
9806@subsubsection Method Names in Commands
9807
9808The following commands have been extended to accept Objective-C method
9809names as line specifications:
9810
9811@kindex clear@r{, and Objective-C}
9812@kindex break@r{, and Objective-C}
9813@kindex info line@r{, and Objective-C}
9814@kindex jump@r{, and Objective-C}
9815@kindex list@r{, and Objective-C}
9816@itemize
9817@item @code{clear}
9818@item @code{break}
9819@item @code{info line}
9820@item @code{jump}
9821@item @code{list}
9822@end itemize
9823
9824A fully qualified Objective-C method name is specified as
9825
9826@smallexample
9827-[@var{Class} @var{methodName}]
9828@end smallexample
9829
c552b3bb
JM
9830where the minus sign is used to indicate an instance method and a
9831plus sign (not shown) is used to indicate a class method. The class
9832name @var{Class} and method name @var{methodName} are enclosed in
9833brackets, similar to the way messages are specified in Objective-C
9834source code. For example, to set a breakpoint at the @code{create}
9835instance method of class @code{Fruit} in the program currently being
9836debugged, enter:
b37303ee
AF
9837
9838@smallexample
9839break -[Fruit create]
9840@end smallexample
9841
9842To list ten program lines around the @code{initialize} class method,
9843enter:
9844
9845@smallexample
9846list +[NSText initialize]
9847@end smallexample
9848
c552b3bb
JM
9849In the current version of @value{GDBN}, the plus or minus sign is
9850required. In future versions of @value{GDBN}, the plus or minus
9851sign will be optional, but you can use it to narrow the search. It
9852is also possible to specify just a method name:
b37303ee
AF
9853
9854@smallexample
9855break create
9856@end smallexample
9857
9858You must specify the complete method name, including any colons. If
9859your program's source files contain more than one @code{create} method,
9860you'll be presented with a numbered list of classes that implement that
9861method. Indicate your choice by number, or type @samp{0} to exit if
9862none apply.
9863
9864As another example, to clear a breakpoint established at the
9865@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9866
9867@smallexample
9868clear -[NSWindow makeKeyAndOrderFront:]
9869@end smallexample
9870
9871@node The Print Command with Objective-C
9872@subsubsection The Print Command With Objective-C
721c2651 9873@cindex Objective-C, print objects
c552b3bb
JM
9874@kindex print-object
9875@kindex po @r{(@code{print-object})}
b37303ee 9876
c552b3bb 9877The print command has also been extended to accept methods. For example:
b37303ee
AF
9878
9879@smallexample
c552b3bb 9880print -[@var{object} hash]
b37303ee
AF
9881@end smallexample
9882
9883@cindex print an Objective-C object description
c552b3bb
JM
9884@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9885@noindent
9886will tell @value{GDBN} to send the @code{hash} message to @var{object}
9887and print the result. Also, an additional command has been added,
9888@code{print-object} or @code{po} for short, which is meant to print
9889the description of an object. However, this command may only work
9890with certain Objective-C libraries that have a particular hook
9891function, @code{_NSPrintForDebugger}, defined.
b37303ee 9892
09d4efe1
EZ
9893@node Fortran
9894@subsection Fortran
9895@cindex Fortran-specific support in @value{GDBN}
9896
814e32d7
WZ
9897@value{GDBN} can be used to debug programs written in Fortran, but it
9898currently supports only the features of Fortran 77 language.
9899
9900@cindex trailing underscore, in Fortran symbols
9901Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9902among them) append an underscore to the names of variables and
9903functions. When you debug programs compiled by those compilers, you
9904will need to refer to variables and functions with a trailing
9905underscore.
9906
9907@menu
9908* Fortran Operators:: Fortran operators and expressions
9909* Fortran Defaults:: Default settings for Fortran
79a6e687 9910* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9911@end menu
9912
9913@node Fortran Operators
79a6e687 9914@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9915
9916@cindex Fortran operators and expressions
9917
9918Operators must be defined on values of specific types. For instance,
9919@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9920arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9921
9922@table @code
9923@item **
9924The exponentiation operator. It raises the first operand to the power
9925of the second one.
9926
9927@item :
9928The range operator. Normally used in the form of array(low:high) to
9929represent a section of array.
68837c9d
MD
9930
9931@item %
9932The access component operator. Normally used to access elements in derived
9933types. Also suitable for unions. As unions aren't part of regular Fortran,
9934this can only happen when accessing a register that uses a gdbarch-defined
9935union type.
814e32d7
WZ
9936@end table
9937
9938@node Fortran Defaults
9939@subsubsection Fortran Defaults
9940
9941@cindex Fortran Defaults
9942
9943Fortran symbols are usually case-insensitive, so @value{GDBN} by
9944default uses case-insensitive matches for Fortran symbols. You can
9945change that with the @samp{set case-insensitive} command, see
9946@ref{Symbols}, for the details.
9947
79a6e687
BW
9948@node Special Fortran Commands
9949@subsubsection Special Fortran Commands
814e32d7
WZ
9950
9951@cindex Special Fortran commands
9952
db2e3e2e
BW
9953@value{GDBN} has some commands to support Fortran-specific features,
9954such as displaying common blocks.
814e32d7 9955
09d4efe1
EZ
9956@table @code
9957@cindex @code{COMMON} blocks, Fortran
9958@kindex info common
9959@item info common @r{[}@var{common-name}@r{]}
9960This command prints the values contained in the Fortran @code{COMMON}
9961block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9962all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9963printed.
9964@end table
9965
9c16f35a
EZ
9966@node Pascal
9967@subsection Pascal
9968
9969@cindex Pascal support in @value{GDBN}, limitations
9970Debugging Pascal programs which use sets, subranges, file variables, or
9971nested functions does not currently work. @value{GDBN} does not support
9972entering expressions, printing values, or similar features using Pascal
9973syntax.
9974
9975The Pascal-specific command @code{set print pascal_static-members}
9976controls whether static members of Pascal objects are displayed.
9977@xref{Print Settings, pascal_static-members}.
9978
09d4efe1 9979@node Modula-2
c906108c 9980@subsection Modula-2
7a292a7a 9981
d4f3574e 9982@cindex Modula-2, @value{GDBN} support
c906108c
SS
9983
9984The extensions made to @value{GDBN} to support Modula-2 only support
9985output from the @sc{gnu} Modula-2 compiler (which is currently being
9986developed). Other Modula-2 compilers are not currently supported, and
9987attempting to debug executables produced by them is most likely
9988to give an error as @value{GDBN} reads in the executable's symbol
9989table.
9990
9991@cindex expressions in Modula-2
9992@menu
9993* M2 Operators:: Built-in operators
9994* Built-In Func/Proc:: Built-in functions and procedures
9995* M2 Constants:: Modula-2 constants
72019c9c 9996* M2 Types:: Modula-2 types
c906108c
SS
9997* M2 Defaults:: Default settings for Modula-2
9998* Deviations:: Deviations from standard Modula-2
9999* M2 Checks:: Modula-2 type and range checks
10000* M2 Scope:: The scope operators @code{::} and @code{.}
10001* GDB/M2:: @value{GDBN} and Modula-2
10002@end menu
10003
6d2ebf8b 10004@node M2 Operators
c906108c
SS
10005@subsubsection Operators
10006@cindex Modula-2 operators
10007
10008Operators must be defined on values of specific types. For instance,
10009@code{+} is defined on numbers, but not on structures. Operators are
10010often defined on groups of types. For the purposes of Modula-2, the
10011following definitions hold:
10012
10013@itemize @bullet
10014
10015@item
10016@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
10017their subranges.
10018
10019@item
10020@emph{Character types} consist of @code{CHAR} and its subranges.
10021
10022@item
10023@emph{Floating-point types} consist of @code{REAL}.
10024
10025@item
10026@emph{Pointer types} consist of anything declared as @code{POINTER TO
10027@var{type}}.
10028
10029@item
10030@emph{Scalar types} consist of all of the above.
10031
10032@item
10033@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10034
10035@item
10036@emph{Boolean types} consist of @code{BOOLEAN}.
10037@end itemize
10038
10039@noindent
10040The following operators are supported, and appear in order of
10041increasing precedence:
10042
10043@table @code
10044@item ,
10045Function argument or array index separator.
10046
10047@item :=
10048Assignment. The value of @var{var} @code{:=} @var{value} is
10049@var{value}.
10050
10051@item <@r{, }>
10052Less than, greater than on integral, floating-point, or enumerated
10053types.
10054
10055@item <=@r{, }>=
96a2c332 10056Less than or equal to, greater than or equal to
c906108c
SS
10057on integral, floating-point and enumerated types, or set inclusion on
10058set types. Same precedence as @code{<}.
10059
10060@item =@r{, }<>@r{, }#
10061Equality and two ways of expressing inequality, valid on scalar types.
10062Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10063available for inequality, since @code{#} conflicts with the script
10064comment character.
10065
10066@item IN
10067Set membership. Defined on set types and the types of their members.
10068Same precedence as @code{<}.
10069
10070@item OR
10071Boolean disjunction. Defined on boolean types.
10072
10073@item AND@r{, }&
d4f3574e 10074Boolean conjunction. Defined on boolean types.
c906108c
SS
10075
10076@item @@
10077The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10078
10079@item +@r{, }-
10080Addition and subtraction on integral and floating-point types, or union
10081and difference on set types.
10082
10083@item *
10084Multiplication on integral and floating-point types, or set intersection
10085on set types.
10086
10087@item /
10088Division on floating-point types, or symmetric set difference on set
10089types. Same precedence as @code{*}.
10090
10091@item DIV@r{, }MOD
10092Integer division and remainder. Defined on integral types. Same
10093precedence as @code{*}.
10094
10095@item -
10096Negative. Defined on @code{INTEGER} and @code{REAL} data.
10097
10098@item ^
10099Pointer dereferencing. Defined on pointer types.
10100
10101@item NOT
10102Boolean negation. Defined on boolean types. Same precedence as
10103@code{^}.
10104
10105@item .
10106@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10107precedence as @code{^}.
10108
10109@item []
10110Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10111
10112@item ()
10113Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10114as @code{^}.
10115
10116@item ::@r{, }.
10117@value{GDBN} and Modula-2 scope operators.
10118@end table
10119
10120@quotation
72019c9c 10121@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10122treats the use of the operator @code{IN}, or the use of operators
10123@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10124@code{<=}, and @code{>=} on sets as an error.
10125@end quotation
10126
cb51c4e0 10127
6d2ebf8b 10128@node Built-In Func/Proc
79a6e687 10129@subsubsection Built-in Functions and Procedures
cb51c4e0 10130@cindex Modula-2 built-ins
c906108c
SS
10131
10132Modula-2 also makes available several built-in procedures and functions.
10133In describing these, the following metavariables are used:
10134
10135@table @var
10136
10137@item a
10138represents an @code{ARRAY} variable.
10139
10140@item c
10141represents a @code{CHAR} constant or variable.
10142
10143@item i
10144represents a variable or constant of integral type.
10145
10146@item m
10147represents an identifier that belongs to a set. Generally used in the
10148same function with the metavariable @var{s}. The type of @var{s} should
10149be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10150
10151@item n
10152represents a variable or constant of integral or floating-point type.
10153
10154@item r
10155represents a variable or constant of floating-point type.
10156
10157@item t
10158represents a type.
10159
10160@item v
10161represents a variable.
10162
10163@item x
10164represents a variable or constant of one of many types. See the
10165explanation of the function for details.
10166@end table
10167
10168All Modula-2 built-in procedures also return a result, described below.
10169
10170@table @code
10171@item ABS(@var{n})
10172Returns the absolute value of @var{n}.
10173
10174@item CAP(@var{c})
10175If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10176equivalent, otherwise it returns its argument.
c906108c
SS
10177
10178@item CHR(@var{i})
10179Returns the character whose ordinal value is @var{i}.
10180
10181@item DEC(@var{v})
c3f6f71d 10182Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10183
10184@item DEC(@var{v},@var{i})
10185Decrements the value in the variable @var{v} by @var{i}. Returns the
10186new value.
10187
10188@item EXCL(@var{m},@var{s})
10189Removes the element @var{m} from the set @var{s}. Returns the new
10190set.
10191
10192@item FLOAT(@var{i})
10193Returns the floating point equivalent of the integer @var{i}.
10194
10195@item HIGH(@var{a})
10196Returns the index of the last member of @var{a}.
10197
10198@item INC(@var{v})
c3f6f71d 10199Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10200
10201@item INC(@var{v},@var{i})
10202Increments the value in the variable @var{v} by @var{i}. Returns the
10203new value.
10204
10205@item INCL(@var{m},@var{s})
10206Adds the element @var{m} to the set @var{s} if it is not already
10207there. Returns the new set.
10208
10209@item MAX(@var{t})
10210Returns the maximum value of the type @var{t}.
10211
10212@item MIN(@var{t})
10213Returns the minimum value of the type @var{t}.
10214
10215@item ODD(@var{i})
10216Returns boolean TRUE if @var{i} is an odd number.
10217
10218@item ORD(@var{x})
10219Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10220value of a character is its @sc{ascii} value (on machines supporting the
10221@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10222integral, character and enumerated types.
10223
10224@item SIZE(@var{x})
10225Returns the size of its argument. @var{x} can be a variable or a type.
10226
10227@item TRUNC(@var{r})
10228Returns the integral part of @var{r}.
10229
844781a1
GM
10230@item TSIZE(@var{x})
10231Returns the size of its argument. @var{x} can be a variable or a type.
10232
c906108c
SS
10233@item VAL(@var{t},@var{i})
10234Returns the member of the type @var{t} whose ordinal value is @var{i}.
10235@end table
10236
10237@quotation
10238@emph{Warning:} Sets and their operations are not yet supported, so
10239@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10240an error.
10241@end quotation
10242
10243@cindex Modula-2 constants
6d2ebf8b 10244@node M2 Constants
c906108c
SS
10245@subsubsection Constants
10246
10247@value{GDBN} allows you to express the constants of Modula-2 in the following
10248ways:
10249
10250@itemize @bullet
10251
10252@item
10253Integer constants are simply a sequence of digits. When used in an
10254expression, a constant is interpreted to be type-compatible with the
10255rest of the expression. Hexadecimal integers are specified by a
10256trailing @samp{H}, and octal integers by a trailing @samp{B}.
10257
10258@item
10259Floating point constants appear as a sequence of digits, followed by a
10260decimal point and another sequence of digits. An optional exponent can
10261then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10262@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10263digits of the floating point constant must be valid decimal (base 10)
10264digits.
10265
10266@item
10267Character constants consist of a single character enclosed by a pair of
10268like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10269also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10270followed by a @samp{C}.
10271
10272@item
10273String constants consist of a sequence of characters enclosed by a
10274pair of like quotes, either single (@code{'}) or double (@code{"}).
10275Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10276Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10277sequences.
10278
10279@item
10280Enumerated constants consist of an enumerated identifier.
10281
10282@item
10283Boolean constants consist of the identifiers @code{TRUE} and
10284@code{FALSE}.
10285
10286@item
10287Pointer constants consist of integral values only.
10288
10289@item
10290Set constants are not yet supported.
10291@end itemize
10292
72019c9c
GM
10293@node M2 Types
10294@subsubsection Modula-2 Types
10295@cindex Modula-2 types
10296
10297Currently @value{GDBN} can print the following data types in Modula-2
10298syntax: array types, record types, set types, pointer types, procedure
10299types, enumerated types, subrange types and base types. You can also
10300print the contents of variables declared using these type.
10301This section gives a number of simple source code examples together with
10302sample @value{GDBN} sessions.
10303
10304The first example contains the following section of code:
10305
10306@smallexample
10307VAR
10308 s: SET OF CHAR ;
10309 r: [20..40] ;
10310@end smallexample
10311
10312@noindent
10313and you can request @value{GDBN} to interrogate the type and value of
10314@code{r} and @code{s}.
10315
10316@smallexample
10317(@value{GDBP}) print s
10318@{'A'..'C', 'Z'@}
10319(@value{GDBP}) ptype s
10320SET OF CHAR
10321(@value{GDBP}) print r
1032221
10323(@value{GDBP}) ptype r
10324[20..40]
10325@end smallexample
10326
10327@noindent
10328Likewise if your source code declares @code{s} as:
10329
10330@smallexample
10331VAR
10332 s: SET ['A'..'Z'] ;
10333@end smallexample
10334
10335@noindent
10336then you may query the type of @code{s} by:
10337
10338@smallexample
10339(@value{GDBP}) ptype s
10340type = SET ['A'..'Z']
10341@end smallexample
10342
10343@noindent
10344Note that at present you cannot interactively manipulate set
10345expressions using the debugger.
10346
10347The following example shows how you might declare an array in Modula-2
10348and how you can interact with @value{GDBN} to print its type and contents:
10349
10350@smallexample
10351VAR
10352 s: ARRAY [-10..10] OF CHAR ;
10353@end smallexample
10354
10355@smallexample
10356(@value{GDBP}) ptype s
10357ARRAY [-10..10] OF CHAR
10358@end smallexample
10359
10360Note that the array handling is not yet complete and although the type
10361is printed correctly, expression handling still assumes that all
10362arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10363above.
72019c9c
GM
10364
10365Here are some more type related Modula-2 examples:
10366
10367@smallexample
10368TYPE
10369 colour = (blue, red, yellow, green) ;
10370 t = [blue..yellow] ;
10371VAR
10372 s: t ;
10373BEGIN
10374 s := blue ;
10375@end smallexample
10376
10377@noindent
10378The @value{GDBN} interaction shows how you can query the data type
10379and value of a variable.
10380
10381@smallexample
10382(@value{GDBP}) print s
10383$1 = blue
10384(@value{GDBP}) ptype t
10385type = [blue..yellow]
10386@end smallexample
10387
10388@noindent
10389In this example a Modula-2 array is declared and its contents
10390displayed. Observe that the contents are written in the same way as
10391their @code{C} counterparts.
10392
10393@smallexample
10394VAR
10395 s: ARRAY [1..5] OF CARDINAL ;
10396BEGIN
10397 s[1] := 1 ;
10398@end smallexample
10399
10400@smallexample
10401(@value{GDBP}) print s
10402$1 = @{1, 0, 0, 0, 0@}
10403(@value{GDBP}) ptype s
10404type = ARRAY [1..5] OF CARDINAL
10405@end smallexample
10406
10407The Modula-2 language interface to @value{GDBN} also understands
10408pointer types as shown in this example:
10409
10410@smallexample
10411VAR
10412 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10413BEGIN
10414 NEW(s) ;
10415 s^[1] := 1 ;
10416@end smallexample
10417
10418@noindent
10419and you can request that @value{GDBN} describes the type of @code{s}.
10420
10421@smallexample
10422(@value{GDBP}) ptype s
10423type = POINTER TO ARRAY [1..5] OF CARDINAL
10424@end smallexample
10425
10426@value{GDBN} handles compound types as we can see in this example.
10427Here we combine array types, record types, pointer types and subrange
10428types:
10429
10430@smallexample
10431TYPE
10432 foo = RECORD
10433 f1: CARDINAL ;
10434 f2: CHAR ;
10435 f3: myarray ;
10436 END ;
10437
10438 myarray = ARRAY myrange OF CARDINAL ;
10439 myrange = [-2..2] ;
10440VAR
10441 s: POINTER TO ARRAY myrange OF foo ;
10442@end smallexample
10443
10444@noindent
10445and you can ask @value{GDBN} to describe the type of @code{s} as shown
10446below.
10447
10448@smallexample
10449(@value{GDBP}) ptype s
10450type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10451 f1 : CARDINAL;
10452 f2 : CHAR;
10453 f3 : ARRAY [-2..2] OF CARDINAL;
10454END
10455@end smallexample
10456
6d2ebf8b 10457@node M2 Defaults
79a6e687 10458@subsubsection Modula-2 Defaults
c906108c
SS
10459@cindex Modula-2 defaults
10460
10461If type and range checking are set automatically by @value{GDBN}, they
10462both default to @code{on} whenever the working language changes to
d4f3574e 10463Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10464selected the working language.
10465
10466If you allow @value{GDBN} to set the language automatically, then entering
10467code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10468working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10469Infer the Source Language}, for further details.
c906108c 10470
6d2ebf8b 10471@node Deviations
79a6e687 10472@subsubsection Deviations from Standard Modula-2
c906108c
SS
10473@cindex Modula-2, deviations from
10474
10475A few changes have been made to make Modula-2 programs easier to debug.
10476This is done primarily via loosening its type strictness:
10477
10478@itemize @bullet
10479@item
10480Unlike in standard Modula-2, pointer constants can be formed by
10481integers. This allows you to modify pointer variables during
10482debugging. (In standard Modula-2, the actual address contained in a
10483pointer variable is hidden from you; it can only be modified
10484through direct assignment to another pointer variable or expression that
10485returned a pointer.)
10486
10487@item
10488C escape sequences can be used in strings and characters to represent
10489non-printable characters. @value{GDBN} prints out strings with these
10490escape sequences embedded. Single non-printable characters are
10491printed using the @samp{CHR(@var{nnn})} format.
10492
10493@item
10494The assignment operator (@code{:=}) returns the value of its right-hand
10495argument.
10496
10497@item
10498All built-in procedures both modify @emph{and} return their argument.
10499@end itemize
10500
6d2ebf8b 10501@node M2 Checks
79a6e687 10502@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10503@cindex Modula-2 checks
10504
10505@quotation
10506@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10507range checking.
10508@end quotation
10509@c FIXME remove warning when type/range checks added
10510
10511@value{GDBN} considers two Modula-2 variables type equivalent if:
10512
10513@itemize @bullet
10514@item
10515They are of types that have been declared equivalent via a @code{TYPE
10516@var{t1} = @var{t2}} statement
10517
10518@item
10519They have been declared on the same line. (Note: This is true of the
10520@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10521@end itemize
10522
10523As long as type checking is enabled, any attempt to combine variables
10524whose types are not equivalent is an error.
10525
10526Range checking is done on all mathematical operations, assignment, array
10527index bounds, and all built-in functions and procedures.
10528
6d2ebf8b 10529@node M2 Scope
79a6e687 10530@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10531@cindex scope
41afff9a 10532@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10533@cindex colon, doubled as scope operator
10534@ifinfo
41afff9a 10535@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10536@c Info cannot handle :: but TeX can.
10537@end ifinfo
10538@iftex
41afff9a 10539@vindex ::@r{, in Modula-2}
c906108c
SS
10540@end iftex
10541
10542There are a few subtle differences between the Modula-2 scope operator
10543(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10544similar syntax:
10545
474c8240 10546@smallexample
c906108c
SS
10547
10548@var{module} . @var{id}
10549@var{scope} :: @var{id}
474c8240 10550@end smallexample
c906108c
SS
10551
10552@noindent
10553where @var{scope} is the name of a module or a procedure,
10554@var{module} the name of a module, and @var{id} is any declared
10555identifier within your program, except another module.
10556
10557Using the @code{::} operator makes @value{GDBN} search the scope
10558specified by @var{scope} for the identifier @var{id}. If it is not
10559found in the specified scope, then @value{GDBN} searches all scopes
10560enclosing the one specified by @var{scope}.
10561
10562Using the @code{.} operator makes @value{GDBN} search the current scope for
10563the identifier specified by @var{id} that was imported from the
10564definition module specified by @var{module}. With this operator, it is
10565an error if the identifier @var{id} was not imported from definition
10566module @var{module}, or if @var{id} is not an identifier in
10567@var{module}.
10568
6d2ebf8b 10569@node GDB/M2
c906108c
SS
10570@subsubsection @value{GDBN} and Modula-2
10571
10572Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10573Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10574specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10575@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10576apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10577analogue in Modula-2.
10578
10579The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10580with any language, is not useful with Modula-2. Its
c906108c 10581intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10582created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10583address can be specified by an integral constant, the construct
d4f3574e 10584@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10585
10586@cindex @code{#} in Modula-2
10587In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10588interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10589
e07c999f
PH
10590@node Ada
10591@subsection Ada
10592@cindex Ada
10593
10594The extensions made to @value{GDBN} for Ada only support
10595output from the @sc{gnu} Ada (GNAT) compiler.
10596Other Ada compilers are not currently supported, and
10597attempting to debug executables produced by them is most likely
10598to be difficult.
10599
10600
10601@cindex expressions in Ada
10602@menu
10603* Ada Mode Intro:: General remarks on the Ada syntax
10604 and semantics supported by Ada mode
10605 in @value{GDBN}.
10606* Omissions from Ada:: Restrictions on the Ada expression syntax.
10607* Additions to Ada:: Extensions of the Ada expression syntax.
10608* Stopping Before Main Program:: Debugging the program during elaboration.
10609* Ada Glitches:: Known peculiarities of Ada mode.
10610@end menu
10611
10612@node Ada Mode Intro
10613@subsubsection Introduction
10614@cindex Ada mode, general
10615
10616The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10617syntax, with some extensions.
10618The philosophy behind the design of this subset is
10619
10620@itemize @bullet
10621@item
10622That @value{GDBN} should provide basic literals and access to operations for
10623arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10624leaving more sophisticated computations to subprograms written into the
10625program (which therefore may be called from @value{GDBN}).
10626
10627@item
10628That type safety and strict adherence to Ada language restrictions
10629are not particularly important to the @value{GDBN} user.
10630
10631@item
10632That brevity is important to the @value{GDBN} user.
10633@end itemize
10634
10635Thus, for brevity, the debugger acts as if there were
10636implicit @code{with} and @code{use} clauses in effect for all user-written
10637packages, making it unnecessary to fully qualify most names with
10638their packages, regardless of context. Where this causes ambiguity,
10639@value{GDBN} asks the user's intent.
10640
10641The debugger will start in Ada mode if it detects an Ada main program.
10642As for other languages, it will enter Ada mode when stopped in a program that
10643was translated from an Ada source file.
10644
10645While in Ada mode, you may use `@t{--}' for comments. This is useful
10646mostly for documenting command files. The standard @value{GDBN} comment
10647(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10648middle (to allow based literals).
10649
10650The debugger supports limited overloading. Given a subprogram call in which
10651the function symbol has multiple definitions, it will use the number of
10652actual parameters and some information about their types to attempt to narrow
10653the set of definitions. It also makes very limited use of context, preferring
10654procedures to functions in the context of the @code{call} command, and
10655functions to procedures elsewhere.
10656
10657@node Omissions from Ada
10658@subsubsection Omissions from Ada
10659@cindex Ada, omissions from
10660
10661Here are the notable omissions from the subset:
10662
10663@itemize @bullet
10664@item
10665Only a subset of the attributes are supported:
10666
10667@itemize @minus
10668@item
10669@t{'First}, @t{'Last}, and @t{'Length}
10670 on array objects (not on types and subtypes).
10671
10672@item
10673@t{'Min} and @t{'Max}.
10674
10675@item
10676@t{'Pos} and @t{'Val}.
10677
10678@item
10679@t{'Tag}.
10680
10681@item
10682@t{'Range} on array objects (not subtypes), but only as the right
10683operand of the membership (@code{in}) operator.
10684
10685@item
10686@t{'Access}, @t{'Unchecked_Access}, and
10687@t{'Unrestricted_Access} (a GNAT extension).
10688
10689@item
10690@t{'Address}.
10691@end itemize
10692
10693@item
10694The names in
10695@code{Characters.Latin_1} are not available and
10696concatenation is not implemented. Thus, escape characters in strings are
10697not currently available.
10698
10699@item
10700Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10701equality of representations. They will generally work correctly
10702for strings and arrays whose elements have integer or enumeration types.
10703They may not work correctly for arrays whose element
10704types have user-defined equality, for arrays of real values
10705(in particular, IEEE-conformant floating point, because of negative
10706zeroes and NaNs), and for arrays whose elements contain unused bits with
10707indeterminate values.
10708
10709@item
10710The other component-by-component array operations (@code{and}, @code{or},
10711@code{xor}, @code{not}, and relational tests other than equality)
10712are not implemented.
10713
10714@item
860701dc
PH
10715@cindex array aggregates (Ada)
10716@cindex record aggregates (Ada)
10717@cindex aggregates (Ada)
10718There is limited support for array and record aggregates. They are
10719permitted only on the right sides of assignments, as in these examples:
10720
10721@smallexample
10722set An_Array := (1, 2, 3, 4, 5, 6)
10723set An_Array := (1, others => 0)
10724set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10725set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10726set A_Record := (1, "Peter", True);
10727set A_Record := (Name => "Peter", Id => 1, Alive => True)
10728@end smallexample
10729
10730Changing a
10731discriminant's value by assigning an aggregate has an
10732undefined effect if that discriminant is used within the record.
10733However, you can first modify discriminants by directly assigning to
10734them (which normally would not be allowed in Ada), and then performing an
10735aggregate assignment. For example, given a variable @code{A_Rec}
10736declared to have a type such as:
10737
10738@smallexample
10739type Rec (Len : Small_Integer := 0) is record
10740 Id : Integer;
10741 Vals : IntArray (1 .. Len);
10742end record;
10743@end smallexample
10744
10745you can assign a value with a different size of @code{Vals} with two
10746assignments:
10747
10748@smallexample
10749set A_Rec.Len := 4
10750set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10751@end smallexample
10752
10753As this example also illustrates, @value{GDBN} is very loose about the usual
10754rules concerning aggregates. You may leave out some of the
10755components of an array or record aggregate (such as the @code{Len}
10756component in the assignment to @code{A_Rec} above); they will retain their
10757original values upon assignment. You may freely use dynamic values as
10758indices in component associations. You may even use overlapping or
10759redundant component associations, although which component values are
10760assigned in such cases is not defined.
e07c999f
PH
10761
10762@item
10763Calls to dispatching subprograms are not implemented.
10764
10765@item
10766The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10767than that of real Ada. It makes only limited use of the context in
10768which a subexpression appears to resolve its meaning, and it is much
10769looser in its rules for allowing type matches. As a result, some
10770function calls will be ambiguous, and the user will be asked to choose
10771the proper resolution.
e07c999f
PH
10772
10773@item
10774The @code{new} operator is not implemented.
10775
10776@item
10777Entry calls are not implemented.
10778
10779@item
10780Aside from printing, arithmetic operations on the native VAX floating-point
10781formats are not supported.
10782
10783@item
10784It is not possible to slice a packed array.
10785@end itemize
10786
10787@node Additions to Ada
10788@subsubsection Additions to Ada
10789@cindex Ada, deviations from
10790
10791As it does for other languages, @value{GDBN} makes certain generic
10792extensions to Ada (@pxref{Expressions}):
10793
10794@itemize @bullet
10795@item
ae21e955
BW
10796If the expression @var{E} is a variable residing in memory (typically
10797a local variable or array element) and @var{N} is a positive integer,
10798then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10799@var{N}-1 adjacent variables following it in memory as an array. In
10800Ada, this operator is generally not necessary, since its prime use is
10801in displaying parts of an array, and slicing will usually do this in
10802Ada. However, there are occasional uses when debugging programs in
10803which certain debugging information has been optimized away.
e07c999f
PH
10804
10805@item
ae21e955
BW
10806@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10807appears in function or file @var{B}.'' When @var{B} is a file name,
10808you must typically surround it in single quotes.
e07c999f
PH
10809
10810@item
10811The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10812@var{type} that appears at address @var{addr}.''
10813
10814@item
10815A name starting with @samp{$} is a convenience variable
10816(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10817@end itemize
10818
ae21e955
BW
10819In addition, @value{GDBN} provides a few other shortcuts and outright
10820additions specific to Ada:
e07c999f
PH
10821
10822@itemize @bullet
10823@item
10824The assignment statement is allowed as an expression, returning
10825its right-hand operand as its value. Thus, you may enter
10826
10827@smallexample
10828set x := y + 3
10829print A(tmp := y + 1)
10830@end smallexample
10831
10832@item
10833The semicolon is allowed as an ``operator,'' returning as its value
10834the value of its right-hand operand.
10835This allows, for example,
10836complex conditional breaks:
10837
10838@smallexample
10839break f
10840condition 1 (report(i); k += 1; A(k) > 100)
10841@end smallexample
10842
10843@item
10844Rather than use catenation and symbolic character names to introduce special
10845characters into strings, one may instead use a special bracket notation,
10846which is also used to print strings. A sequence of characters of the form
10847@samp{["@var{XX}"]} within a string or character literal denotes the
10848(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10849sequence of characters @samp{["""]} also denotes a single quotation mark
10850in strings. For example,
10851@smallexample
10852 "One line.["0a"]Next line.["0a"]"
10853@end smallexample
10854@noindent
ae21e955
BW
10855contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10856after each period.
e07c999f
PH
10857
10858@item
10859The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10860@t{'Max} is optional (and is ignored in any case). For example, it is valid
10861to write
10862
10863@smallexample
10864print 'max(x, y)
10865@end smallexample
10866
10867@item
10868When printing arrays, @value{GDBN} uses positional notation when the
10869array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10870For example, a one-dimensional array of three integers with a lower bound
10871of 3 might print as
e07c999f
PH
10872
10873@smallexample
10874(3 => 10, 17, 1)
10875@end smallexample
10876
10877@noindent
10878That is, in contrast to valid Ada, only the first component has a @code{=>}
10879clause.
10880
10881@item
10882You may abbreviate attributes in expressions with any unique,
10883multi-character subsequence of
10884their names (an exact match gets preference).
10885For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10886in place of @t{a'length}.
10887
10888@item
10889@cindex quoting Ada internal identifiers
10890Since Ada is case-insensitive, the debugger normally maps identifiers you type
10891to lower case. The GNAT compiler uses upper-case characters for
10892some of its internal identifiers, which are normally of no interest to users.
10893For the rare occasions when you actually have to look at them,
10894enclose them in angle brackets to avoid the lower-case mapping.
10895For example,
10896@smallexample
10897@value{GDBP} print <JMPBUF_SAVE>[0]
10898@end smallexample
10899
10900@item
10901Printing an object of class-wide type or dereferencing an
10902access-to-class-wide value will display all the components of the object's
10903specific type (as indicated by its run-time tag). Likewise, component
10904selection on such a value will operate on the specific type of the
10905object.
10906
10907@end itemize
10908
10909@node Stopping Before Main Program
10910@subsubsection Stopping at the Very Beginning
10911
10912@cindex breakpointing Ada elaboration code
10913It is sometimes necessary to debug the program during elaboration, and
10914before reaching the main procedure.
10915As defined in the Ada Reference
10916Manual, the elaboration code is invoked from a procedure called
10917@code{adainit}. To run your program up to the beginning of
10918elaboration, simply use the following two commands:
10919@code{tbreak adainit} and @code{run}.
10920
10921@node Ada Glitches
10922@subsubsection Known Peculiarities of Ada Mode
10923@cindex Ada, problems
10924
10925Besides the omissions listed previously (@pxref{Omissions from Ada}),
10926we know of several problems with and limitations of Ada mode in
10927@value{GDBN},
10928some of which will be fixed with planned future releases of the debugger
10929and the GNU Ada compiler.
10930
10931@itemize @bullet
10932@item
10933Currently, the debugger
10934has insufficient information to determine whether certain pointers represent
10935pointers to objects or the objects themselves.
10936Thus, the user may have to tack an extra @code{.all} after an expression
10937to get it printed properly.
10938
10939@item
10940Static constants that the compiler chooses not to materialize as objects in
10941storage are invisible to the debugger.
10942
10943@item
10944Named parameter associations in function argument lists are ignored (the
10945argument lists are treated as positional).
10946
10947@item
10948Many useful library packages are currently invisible to the debugger.
10949
10950@item
10951Fixed-point arithmetic, conversions, input, and output is carried out using
10952floating-point arithmetic, and may give results that only approximate those on
10953the host machine.
10954
10955@item
10956The type of the @t{'Address} attribute may not be @code{System.Address}.
10957
10958@item
10959The GNAT compiler never generates the prefix @code{Standard} for any of
10960the standard symbols defined by the Ada language. @value{GDBN} knows about
10961this: it will strip the prefix from names when you use it, and will never
10962look for a name you have so qualified among local symbols, nor match against
10963symbols in other packages or subprograms. If you have
10964defined entities anywhere in your program other than parameters and
10965local variables whose simple names match names in @code{Standard},
10966GNAT's lack of qualification here can cause confusion. When this happens,
10967you can usually resolve the confusion
10968by qualifying the problematic names with package
10969@code{Standard} explicitly.
10970@end itemize
10971
79a6e687
BW
10972@node Unsupported Languages
10973@section Unsupported Languages
4e562065
JB
10974
10975@cindex unsupported languages
10976@cindex minimal language
10977In addition to the other fully-supported programming languages,
10978@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10979It does not represent a real programming language, but provides a set
10980of capabilities close to what the C or assembly languages provide.
10981This should allow most simple operations to be performed while debugging
10982an application that uses a language currently not supported by @value{GDBN}.
10983
10984If the language is set to @code{auto}, @value{GDBN} will automatically
10985select this language if the current frame corresponds to an unsupported
10986language.
10987
6d2ebf8b 10988@node Symbols
c906108c
SS
10989@chapter Examining the Symbol Table
10990
d4f3574e 10991The commands described in this chapter allow you to inquire about the
c906108c
SS
10992symbols (names of variables, functions and types) defined in your
10993program. This information is inherent in the text of your program and
10994does not change as your program executes. @value{GDBN} finds it in your
10995program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10996(@pxref{File Options, ,Choosing Files}), or by one of the
10997file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10998
10999@cindex symbol names
11000@cindex names of symbols
11001@cindex quoting names
11002Occasionally, you may need to refer to symbols that contain unusual
11003characters, which @value{GDBN} ordinarily treats as word delimiters. The
11004most frequent case is in referring to static variables in other
79a6e687 11005source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
11006are recorded in object files as debugging symbols, but @value{GDBN} would
11007ordinarily parse a typical file name, like @file{foo.c}, as the three words
11008@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
11009@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
11010
474c8240 11011@smallexample
c906108c 11012p 'foo.c'::x
474c8240 11013@end smallexample
c906108c
SS
11014
11015@noindent
11016looks up the value of @code{x} in the scope of the file @file{foo.c}.
11017
11018@table @code
a8f24a35
EZ
11019@cindex case-insensitive symbol names
11020@cindex case sensitivity in symbol names
11021@kindex set case-sensitive
11022@item set case-sensitive on
11023@itemx set case-sensitive off
11024@itemx set case-sensitive auto
11025Normally, when @value{GDBN} looks up symbols, it matches their names
11026with case sensitivity determined by the current source language.
11027Occasionally, you may wish to control that. The command @code{set
11028case-sensitive} lets you do that by specifying @code{on} for
11029case-sensitive matches or @code{off} for case-insensitive ones. If
11030you specify @code{auto}, case sensitivity is reset to the default
11031suitable for the source language. The default is case-sensitive
11032matches for all languages except for Fortran, for which the default is
11033case-insensitive matches.
11034
9c16f35a
EZ
11035@kindex show case-sensitive
11036@item show case-sensitive
a8f24a35
EZ
11037This command shows the current setting of case sensitivity for symbols
11038lookups.
11039
c906108c 11040@kindex info address
b37052ae 11041@cindex address of a symbol
c906108c
SS
11042@item info address @var{symbol}
11043Describe where the data for @var{symbol} is stored. For a register
11044variable, this says which register it is kept in. For a non-register
11045local variable, this prints the stack-frame offset at which the variable
11046is always stored.
11047
11048Note the contrast with @samp{print &@var{symbol}}, which does not work
11049at all for a register variable, and for a stack local variable prints
11050the exact address of the current instantiation of the variable.
11051
3d67e040 11052@kindex info symbol
b37052ae 11053@cindex symbol from address
9c16f35a 11054@cindex closest symbol and offset for an address
3d67e040
EZ
11055@item info symbol @var{addr}
11056Print the name of a symbol which is stored at the address @var{addr}.
11057If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11058nearest symbol and an offset from it:
11059
474c8240 11060@smallexample
3d67e040
EZ
11061(@value{GDBP}) info symbol 0x54320
11062_initialize_vx + 396 in section .text
474c8240 11063@end smallexample
3d67e040
EZ
11064
11065@noindent
11066This is the opposite of the @code{info address} command. You can use
11067it to find out the name of a variable or a function given its address.
11068
c906108c 11069@kindex whatis
62f3a2ba
FF
11070@item whatis [@var{arg}]
11071Print the data type of @var{arg}, which can be either an expression or
11072a data type. With no argument, print the data type of @code{$}, the
11073last value in the value history. If @var{arg} is an expression, it is
11074not actually evaluated, and any side-effecting operations (such as
11075assignments or function calls) inside it do not take place. If
11076@var{arg} is a type name, it may be the name of a type or typedef, or
11077for C code it may have the form @samp{class @var{class-name}},
11078@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11079@samp{enum @var{enum-tag}}.
c906108c
SS
11080@xref{Expressions, ,Expressions}.
11081
c906108c 11082@kindex ptype
62f3a2ba
FF
11083@item ptype [@var{arg}]
11084@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11085detailed description of the type, instead of just the name of the type.
11086@xref{Expressions, ,Expressions}.
c906108c
SS
11087
11088For example, for this variable declaration:
11089
474c8240 11090@smallexample
c906108c 11091struct complex @{double real; double imag;@} v;
474c8240 11092@end smallexample
c906108c
SS
11093
11094@noindent
11095the two commands give this output:
11096
474c8240 11097@smallexample
c906108c
SS
11098@group
11099(@value{GDBP}) whatis v
11100type = struct complex
11101(@value{GDBP}) ptype v
11102type = struct complex @{
11103 double real;
11104 double imag;
11105@}
11106@end group
474c8240 11107@end smallexample
c906108c
SS
11108
11109@noindent
11110As with @code{whatis}, using @code{ptype} without an argument refers to
11111the type of @code{$}, the last value in the value history.
11112
ab1adacd
EZ
11113@cindex incomplete type
11114Sometimes, programs use opaque data types or incomplete specifications
11115of complex data structure. If the debug information included in the
11116program does not allow @value{GDBN} to display a full declaration of
11117the data type, it will say @samp{<incomplete type>}. For example,
11118given these declarations:
11119
11120@smallexample
11121 struct foo;
11122 struct foo *fooptr;
11123@end smallexample
11124
11125@noindent
11126but no definition for @code{struct foo} itself, @value{GDBN} will say:
11127
11128@smallexample
ddb50cd7 11129 (@value{GDBP}) ptype foo
ab1adacd
EZ
11130 $1 = <incomplete type>
11131@end smallexample
11132
11133@noindent
11134``Incomplete type'' is C terminology for data types that are not
11135completely specified.
11136
c906108c
SS
11137@kindex info types
11138@item info types @var{regexp}
11139@itemx info types
09d4efe1
EZ
11140Print a brief description of all types whose names match the regular
11141expression @var{regexp} (or all types in your program, if you supply
11142no argument). Each complete typename is matched as though it were a
11143complete line; thus, @samp{i type value} gives information on all
11144types in your program whose names include the string @code{value}, but
11145@samp{i type ^value$} gives information only on types whose complete
11146name is @code{value}.
c906108c
SS
11147
11148This command differs from @code{ptype} in two ways: first, like
11149@code{whatis}, it does not print a detailed description; second, it
11150lists all source files where a type is defined.
11151
b37052ae
EZ
11152@kindex info scope
11153@cindex local variables
09d4efe1 11154@item info scope @var{location}
b37052ae 11155List all the variables local to a particular scope. This command
09d4efe1
EZ
11156accepts a @var{location} argument---a function name, a source line, or
11157an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11158to the scope defined by that location. (@xref{Specify Location}, for
11159details about supported forms of @var{location}.) For example:
b37052ae
EZ
11160
11161@smallexample
11162(@value{GDBP}) @b{info scope command_line_handler}
11163Scope for command_line_handler:
11164Symbol rl is an argument at stack/frame offset 8, length 4.
11165Symbol linebuffer is in static storage at address 0x150a18, length 4.
11166Symbol linelength is in static storage at address 0x150a1c, length 4.
11167Symbol p is a local variable in register $esi, length 4.
11168Symbol p1 is a local variable in register $ebx, length 4.
11169Symbol nline is a local variable in register $edx, length 4.
11170Symbol repeat is a local variable at frame offset -8, length 4.
11171@end smallexample
11172
f5c37c66
EZ
11173@noindent
11174This command is especially useful for determining what data to collect
11175during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11176collect}.
11177
c906108c
SS
11178@kindex info source
11179@item info source
919d772c
JB
11180Show information about the current source file---that is, the source file for
11181the function containing the current point of execution:
11182@itemize @bullet
11183@item
11184the name of the source file, and the directory containing it,
11185@item
11186the directory it was compiled in,
11187@item
11188its length, in lines,
11189@item
11190which programming language it is written in,
11191@item
11192whether the executable includes debugging information for that file, and
11193if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11194@item
11195whether the debugging information includes information about
11196preprocessor macros.
11197@end itemize
11198
c906108c
SS
11199
11200@kindex info sources
11201@item info sources
11202Print the names of all source files in your program for which there is
11203debugging information, organized into two lists: files whose symbols
11204have already been read, and files whose symbols will be read when needed.
11205
11206@kindex info functions
11207@item info functions
11208Print the names and data types of all defined functions.
11209
11210@item info functions @var{regexp}
11211Print the names and data types of all defined functions
11212whose names contain a match for regular expression @var{regexp}.
11213Thus, @samp{info fun step} finds all functions whose names
11214include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11215start with @code{step}. If a function name contains characters
c1468174 11216that conflict with the regular expression language (e.g.@:
1c5dfdad 11217@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11218
11219@kindex info variables
11220@item info variables
11221Print the names and data types of all variables that are declared
6ca652b0 11222outside of functions (i.e.@: excluding local variables).
c906108c
SS
11223
11224@item info variables @var{regexp}
11225Print the names and data types of all variables (except for local
11226variables) whose names contain a match for regular expression
11227@var{regexp}.
11228
b37303ee 11229@kindex info classes
721c2651 11230@cindex Objective-C, classes and selectors
b37303ee
AF
11231@item info classes
11232@itemx info classes @var{regexp}
11233Display all Objective-C classes in your program, or
11234(with the @var{regexp} argument) all those matching a particular regular
11235expression.
11236
11237@kindex info selectors
11238@item info selectors
11239@itemx info selectors @var{regexp}
11240Display all Objective-C selectors in your program, or
11241(with the @var{regexp} argument) all those matching a particular regular
11242expression.
11243
c906108c
SS
11244@ignore
11245This was never implemented.
11246@kindex info methods
11247@item info methods
11248@itemx info methods @var{regexp}
11249The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11250methods within C@t{++} program, or (with the @var{regexp} argument) a
11251specific set of methods found in the various C@t{++} classes. Many
11252C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11253from the @code{ptype} command can be overwhelming and hard to use. The
11254@code{info-methods} command filters the methods, printing only those
11255which match the regular-expression @var{regexp}.
11256@end ignore
11257
c906108c
SS
11258@cindex reloading symbols
11259Some systems allow individual object files that make up your program to
7a292a7a
SS
11260be replaced without stopping and restarting your program. For example,
11261in VxWorks you can simply recompile a defective object file and keep on
11262running. If you are running on one of these systems, you can allow
11263@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11264
11265@table @code
11266@kindex set symbol-reloading
11267@item set symbol-reloading on
11268Replace symbol definitions for the corresponding source file when an
11269object file with a particular name is seen again.
11270
11271@item set symbol-reloading off
6d2ebf8b
SS
11272Do not replace symbol definitions when encountering object files of the
11273same name more than once. This is the default state; if you are not
11274running on a system that permits automatic relinking of modules, you
11275should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11276may discard symbols when linking large programs, that may contain
11277several modules (from different directories or libraries) with the same
11278name.
c906108c
SS
11279
11280@kindex show symbol-reloading
11281@item show symbol-reloading
11282Show the current @code{on} or @code{off} setting.
11283@end table
c906108c 11284
9c16f35a 11285@cindex opaque data types
c906108c
SS
11286@kindex set opaque-type-resolution
11287@item set opaque-type-resolution on
11288Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11289declared as a pointer to a @code{struct}, @code{class}, or
11290@code{union}---for example, @code{struct MyType *}---that is used in one
11291source file although the full declaration of @code{struct MyType} is in
11292another source file. The default is on.
11293
11294A change in the setting of this subcommand will not take effect until
11295the next time symbols for a file are loaded.
11296
11297@item set opaque-type-resolution off
11298Tell @value{GDBN} not to resolve opaque types. In this case, the type
11299is printed as follows:
11300@smallexample
11301@{<no data fields>@}
11302@end smallexample
11303
11304@kindex show opaque-type-resolution
11305@item show opaque-type-resolution
11306Show whether opaque types are resolved or not.
c906108c
SS
11307
11308@kindex maint print symbols
11309@cindex symbol dump
11310@kindex maint print psymbols
11311@cindex partial symbol dump
11312@item maint print symbols @var{filename}
11313@itemx maint print psymbols @var{filename}
11314@itemx maint print msymbols @var{filename}
11315Write a dump of debugging symbol data into the file @var{filename}.
11316These commands are used to debug the @value{GDBN} symbol-reading code. Only
11317symbols with debugging data are included. If you use @samp{maint print
11318symbols}, @value{GDBN} includes all the symbols for which it has already
11319collected full details: that is, @var{filename} reflects symbols for
11320only those files whose symbols @value{GDBN} has read. You can use the
11321command @code{info sources} to find out which files these are. If you
11322use @samp{maint print psymbols} instead, the dump shows information about
11323symbols that @value{GDBN} only knows partially---that is, symbols defined in
11324files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11325@samp{maint print msymbols} dumps just the minimal symbol information
11326required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11327@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11328@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11329
5e7b2f39
JB
11330@kindex maint info symtabs
11331@kindex maint info psymtabs
44ea7b70
JB
11332@cindex listing @value{GDBN}'s internal symbol tables
11333@cindex symbol tables, listing @value{GDBN}'s internal
11334@cindex full symbol tables, listing @value{GDBN}'s internal
11335@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11336@item maint info symtabs @r{[} @var{regexp} @r{]}
11337@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11338
11339List the @code{struct symtab} or @code{struct partial_symtab}
11340structures whose names match @var{regexp}. If @var{regexp} is not
11341given, list them all. The output includes expressions which you can
11342copy into a @value{GDBN} debugging this one to examine a particular
11343structure in more detail. For example:
11344
11345@smallexample
5e7b2f39 11346(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11347@{ objfile /home/gnu/build/gdb/gdb
11348 ((struct objfile *) 0x82e69d0)
b383017d 11349 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11350 ((struct partial_symtab *) 0x8474b10)
11351 readin no
11352 fullname (null)
11353 text addresses 0x814d3c8 -- 0x8158074
11354 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11355 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11356 dependencies (none)
11357 @}
11358@}
5e7b2f39 11359(@value{GDBP}) maint info symtabs
44ea7b70
JB
11360(@value{GDBP})
11361@end smallexample
11362@noindent
11363We see that there is one partial symbol table whose filename contains
11364the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11365and we see that @value{GDBN} has not read in any symtabs yet at all.
11366If we set a breakpoint on a function, that will cause @value{GDBN} to
11367read the symtab for the compilation unit containing that function:
11368
11369@smallexample
11370(@value{GDBP}) break dwarf2_psymtab_to_symtab
11371Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11372line 1574.
5e7b2f39 11373(@value{GDBP}) maint info symtabs
b383017d 11374@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11375 ((struct objfile *) 0x82e69d0)
b383017d 11376 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11377 ((struct symtab *) 0x86c1f38)
11378 dirname (null)
11379 fullname (null)
11380 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11381 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11382 debugformat DWARF 2
11383 @}
11384@}
b383017d 11385(@value{GDBP})
44ea7b70 11386@end smallexample
c906108c
SS
11387@end table
11388
44ea7b70 11389
6d2ebf8b 11390@node Altering
c906108c
SS
11391@chapter Altering Execution
11392
11393Once you think you have found an error in your program, you might want to
11394find out for certain whether correcting the apparent error would lead to
11395correct results in the rest of the run. You can find the answer by
11396experiment, using the @value{GDBN} features for altering execution of the
11397program.
11398
11399For example, you can store new values into variables or memory
7a292a7a
SS
11400locations, give your program a signal, restart it at a different
11401address, or even return prematurely from a function.
c906108c
SS
11402
11403@menu
11404* Assignment:: Assignment to variables
11405* Jumping:: Continuing at a different address
c906108c 11406* Signaling:: Giving your program a signal
c906108c
SS
11407* Returning:: Returning from a function
11408* Calling:: Calling your program's functions
11409* Patching:: Patching your program
11410@end menu
11411
6d2ebf8b 11412@node Assignment
79a6e687 11413@section Assignment to Variables
c906108c
SS
11414
11415@cindex assignment
11416@cindex setting variables
11417To alter the value of a variable, evaluate an assignment expression.
11418@xref{Expressions, ,Expressions}. For example,
11419
474c8240 11420@smallexample
c906108c 11421print x=4
474c8240 11422@end smallexample
c906108c
SS
11423
11424@noindent
11425stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11426value of the assignment expression (which is 4).
c906108c
SS
11427@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11428information on operators in supported languages.
c906108c
SS
11429
11430@kindex set variable
11431@cindex variables, setting
11432If you are not interested in seeing the value of the assignment, use the
11433@code{set} command instead of the @code{print} command. @code{set} is
11434really the same as @code{print} except that the expression's value is
11435not printed and is not put in the value history (@pxref{Value History,
79a6e687 11436,Value History}). The expression is evaluated only for its effects.
c906108c 11437
c906108c
SS
11438If the beginning of the argument string of the @code{set} command
11439appears identical to a @code{set} subcommand, use the @code{set
11440variable} command instead of just @code{set}. This command is identical
11441to @code{set} except for its lack of subcommands. For example, if your
11442program has a variable @code{width}, you get an error if you try to set
11443a new value with just @samp{set width=13}, because @value{GDBN} has the
11444command @code{set width}:
11445
474c8240 11446@smallexample
c906108c
SS
11447(@value{GDBP}) whatis width
11448type = double
11449(@value{GDBP}) p width
11450$4 = 13
11451(@value{GDBP}) set width=47
11452Invalid syntax in expression.
474c8240 11453@end smallexample
c906108c
SS
11454
11455@noindent
11456The invalid expression, of course, is @samp{=47}. In
11457order to actually set the program's variable @code{width}, use
11458
474c8240 11459@smallexample
c906108c 11460(@value{GDBP}) set var width=47
474c8240 11461@end smallexample
53a5351d 11462
c906108c
SS
11463Because the @code{set} command has many subcommands that can conflict
11464with the names of program variables, it is a good idea to use the
11465@code{set variable} command instead of just @code{set}. For example, if
11466your program has a variable @code{g}, you run into problems if you try
11467to set a new value with just @samp{set g=4}, because @value{GDBN} has
11468the command @code{set gnutarget}, abbreviated @code{set g}:
11469
474c8240 11470@smallexample
c906108c
SS
11471@group
11472(@value{GDBP}) whatis g
11473type = double
11474(@value{GDBP}) p g
11475$1 = 1
11476(@value{GDBP}) set g=4
2df3850c 11477(@value{GDBP}) p g
c906108c
SS
11478$2 = 1
11479(@value{GDBP}) r
11480The program being debugged has been started already.
11481Start it from the beginning? (y or n) y
11482Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11483"/home/smith/cc_progs/a.out": can't open to read symbols:
11484 Invalid bfd target.
c906108c
SS
11485(@value{GDBP}) show g
11486The current BFD target is "=4".
11487@end group
474c8240 11488@end smallexample
c906108c
SS
11489
11490@noindent
11491The program variable @code{g} did not change, and you silently set the
11492@code{gnutarget} to an invalid value. In order to set the variable
11493@code{g}, use
11494
474c8240 11495@smallexample
c906108c 11496(@value{GDBP}) set var g=4
474c8240 11497@end smallexample
c906108c
SS
11498
11499@value{GDBN} allows more implicit conversions in assignments than C; you can
11500freely store an integer value into a pointer variable or vice versa,
11501and you can convert any structure to any other structure that is the
11502same length or shorter.
11503@comment FIXME: how do structs align/pad in these conversions?
11504@comment /doc@cygnus.com 18dec1990
11505
11506To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11507construct to generate a value of specified type at a specified address
11508(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11509to memory location @code{0x83040} as an integer (which implies a certain size
11510and representation in memory), and
11511
474c8240 11512@smallexample
c906108c 11513set @{int@}0x83040 = 4
474c8240 11514@end smallexample
c906108c
SS
11515
11516@noindent
11517stores the value 4 into that memory location.
11518
6d2ebf8b 11519@node Jumping
79a6e687 11520@section Continuing at a Different Address
c906108c
SS
11521
11522Ordinarily, when you continue your program, you do so at the place where
11523it stopped, with the @code{continue} command. You can instead continue at
11524an address of your own choosing, with the following commands:
11525
11526@table @code
11527@kindex jump
11528@item jump @var{linespec}
2a25a5ba
EZ
11529@itemx jump @var{location}
11530Resume execution at line @var{linespec} or at address given by
11531@var{location}. Execution stops again immediately if there is a
11532breakpoint there. @xref{Specify Location}, for a description of the
11533different forms of @var{linespec} and @var{location}. It is common
11534practice to use the @code{tbreak} command in conjunction with
11535@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11536
11537The @code{jump} command does not change the current stack frame, or
11538the stack pointer, or the contents of any memory location or any
11539register other than the program counter. If line @var{linespec} is in
11540a different function from the one currently executing, the results may
11541be bizarre if the two functions expect different patterns of arguments or
11542of local variables. For this reason, the @code{jump} command requests
11543confirmation if the specified line is not in the function currently
11544executing. However, even bizarre results are predictable if you are
11545well acquainted with the machine-language code of your program.
c906108c
SS
11546@end table
11547
c906108c 11548@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11549On many systems, you can get much the same effect as the @code{jump}
11550command by storing a new value into the register @code{$pc}. The
11551difference is that this does not start your program running; it only
11552changes the address of where it @emph{will} run when you continue. For
11553example,
c906108c 11554
474c8240 11555@smallexample
c906108c 11556set $pc = 0x485
474c8240 11557@end smallexample
c906108c
SS
11558
11559@noindent
11560makes the next @code{continue} command or stepping command execute at
11561address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11562@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11563
11564The most common occasion to use the @code{jump} command is to back
11565up---perhaps with more breakpoints set---over a portion of a program
11566that has already executed, in order to examine its execution in more
11567detail.
11568
c906108c 11569@c @group
6d2ebf8b 11570@node Signaling
79a6e687 11571@section Giving your Program a Signal
9c16f35a 11572@cindex deliver a signal to a program
c906108c
SS
11573
11574@table @code
11575@kindex signal
11576@item signal @var{signal}
11577Resume execution where your program stopped, but immediately give it the
11578signal @var{signal}. @var{signal} can be the name or the number of a
11579signal. For example, on many systems @code{signal 2} and @code{signal
11580SIGINT} are both ways of sending an interrupt signal.
11581
11582Alternatively, if @var{signal} is zero, continue execution without
11583giving a signal. This is useful when your program stopped on account of
11584a signal and would ordinary see the signal when resumed with the
11585@code{continue} command; @samp{signal 0} causes it to resume without a
11586signal.
11587
11588@code{signal} does not repeat when you press @key{RET} a second time
11589after executing the command.
11590@end table
11591@c @end group
11592
11593Invoking the @code{signal} command is not the same as invoking the
11594@code{kill} utility from the shell. Sending a signal with @code{kill}
11595causes @value{GDBN} to decide what to do with the signal depending on
11596the signal handling tables (@pxref{Signals}). The @code{signal} command
11597passes the signal directly to your program.
11598
c906108c 11599
6d2ebf8b 11600@node Returning
79a6e687 11601@section Returning from a Function
c906108c
SS
11602
11603@table @code
11604@cindex returning from a function
11605@kindex return
11606@item return
11607@itemx return @var{expression}
11608You can cancel execution of a function call with the @code{return}
11609command. If you give an
11610@var{expression} argument, its value is used as the function's return
11611value.
11612@end table
11613
11614When you use @code{return}, @value{GDBN} discards the selected stack frame
11615(and all frames within it). You can think of this as making the
11616discarded frame return prematurely. If you wish to specify a value to
11617be returned, give that value as the argument to @code{return}.
11618
11619This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11620Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11621innermost remaining frame. That frame becomes selected. The
11622specified value is stored in the registers used for returning values
11623of functions.
11624
11625The @code{return} command does not resume execution; it leaves the
11626program stopped in the state that would exist if the function had just
11627returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11628and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11629selected stack frame returns naturally.
11630
6d2ebf8b 11631@node Calling
79a6e687 11632@section Calling Program Functions
c906108c 11633
f8568604 11634@table @code
c906108c 11635@cindex calling functions
f8568604
EZ
11636@cindex inferior functions, calling
11637@item print @var{expr}
d3e8051b 11638Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11639@var{expr} may include calls to functions in the program being
11640debugged.
11641
c906108c 11642@kindex call
c906108c
SS
11643@item call @var{expr}
11644Evaluate the expression @var{expr} without displaying @code{void}
11645returned values.
c906108c
SS
11646
11647You can use this variant of the @code{print} command if you want to
f8568604
EZ
11648execute a function from your program that does not return anything
11649(a.k.a.@: @dfn{a void function}), but without cluttering the output
11650with @code{void} returned values that @value{GDBN} will otherwise
11651print. If the result is not void, it is printed and saved in the
11652value history.
11653@end table
11654
9c16f35a
EZ
11655It is possible for the function you call via the @code{print} or
11656@code{call} command to generate a signal (e.g., if there's a bug in
11657the function, or if you passed it incorrect arguments). What happens
11658in that case is controlled by the @code{set unwindonsignal} command.
11659
11660@table @code
11661@item set unwindonsignal
11662@kindex set unwindonsignal
11663@cindex unwind stack in called functions
11664@cindex call dummy stack unwinding
11665Set unwinding of the stack if a signal is received while in a function
11666that @value{GDBN} called in the program being debugged. If set to on,
11667@value{GDBN} unwinds the stack it created for the call and restores
11668the context to what it was before the call. If set to off (the
11669default), @value{GDBN} stops in the frame where the signal was
11670received.
11671
11672@item show unwindonsignal
11673@kindex show unwindonsignal
11674Show the current setting of stack unwinding in the functions called by
11675@value{GDBN}.
11676@end table
11677
f8568604
EZ
11678@cindex weak alias functions
11679Sometimes, a function you wish to call is actually a @dfn{weak alias}
11680for another function. In such case, @value{GDBN} might not pick up
11681the type information, including the types of the function arguments,
11682which causes @value{GDBN} to call the inferior function incorrectly.
11683As a result, the called function will function erroneously and may
11684even crash. A solution to that is to use the name of the aliased
11685function instead.
c906108c 11686
6d2ebf8b 11687@node Patching
79a6e687 11688@section Patching Programs
7a292a7a 11689
c906108c
SS
11690@cindex patching binaries
11691@cindex writing into executables
c906108c 11692@cindex writing into corefiles
c906108c 11693
7a292a7a
SS
11694By default, @value{GDBN} opens the file containing your program's
11695executable code (or the corefile) read-only. This prevents accidental
11696alterations to machine code; but it also prevents you from intentionally
11697patching your program's binary.
c906108c
SS
11698
11699If you'd like to be able to patch the binary, you can specify that
11700explicitly with the @code{set write} command. For example, you might
11701want to turn on internal debugging flags, or even to make emergency
11702repairs.
11703
11704@table @code
11705@kindex set write
11706@item set write on
11707@itemx set write off
7a292a7a
SS
11708If you specify @samp{set write on}, @value{GDBN} opens executable and
11709core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11710off} (the default), @value{GDBN} opens them read-only.
11711
11712If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11713@code{exec-file} or @code{core-file} command) after changing @code{set
11714write}, for your new setting to take effect.
c906108c
SS
11715
11716@item show write
11717@kindex show write
7a292a7a
SS
11718Display whether executable files and core files are opened for writing
11719as well as reading.
c906108c
SS
11720@end table
11721
6d2ebf8b 11722@node GDB Files
c906108c
SS
11723@chapter @value{GDBN} Files
11724
7a292a7a
SS
11725@value{GDBN} needs to know the file name of the program to be debugged,
11726both in order to read its symbol table and in order to start your
11727program. To debug a core dump of a previous run, you must also tell
11728@value{GDBN} the name of the core dump file.
c906108c
SS
11729
11730@menu
11731* Files:: Commands to specify files
5b5d99cf 11732* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11733* Symbol Errors:: Errors reading symbol files
11734@end menu
11735
6d2ebf8b 11736@node Files
79a6e687 11737@section Commands to Specify Files
c906108c 11738
7a292a7a 11739@cindex symbol table
c906108c 11740@cindex core dump file
7a292a7a
SS
11741
11742You may want to specify executable and core dump file names. The usual
11743way to do this is at start-up time, using the arguments to
11744@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11745Out of @value{GDBN}}).
c906108c
SS
11746
11747Occasionally it is necessary to change to a different file during a
397ca115
EZ
11748@value{GDBN} session. Or you may run @value{GDBN} and forget to
11749specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11750via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11751Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11752new files are useful.
c906108c
SS
11753
11754@table @code
11755@cindex executable file
11756@kindex file
11757@item file @var{filename}
11758Use @var{filename} as the program to be debugged. It is read for its
11759symbols and for the contents of pure memory. It is also the program
11760executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11761directory and the file is not found in the @value{GDBN} working directory,
11762@value{GDBN} uses the environment variable @code{PATH} as a list of
11763directories to search, just as the shell does when looking for a program
11764to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11765and your program, using the @code{path} command.
11766
fc8be69e
EZ
11767@cindex unlinked object files
11768@cindex patching object files
11769You can load unlinked object @file{.o} files into @value{GDBN} using
11770the @code{file} command. You will not be able to ``run'' an object
11771file, but you can disassemble functions and inspect variables. Also,
11772if the underlying BFD functionality supports it, you could use
11773@kbd{gdb -write} to patch object files using this technique. Note
11774that @value{GDBN} can neither interpret nor modify relocations in this
11775case, so branches and some initialized variables will appear to go to
11776the wrong place. But this feature is still handy from time to time.
11777
c906108c
SS
11778@item file
11779@code{file} with no argument makes @value{GDBN} discard any information it
11780has on both executable file and the symbol table.
11781
11782@kindex exec-file
11783@item exec-file @r{[} @var{filename} @r{]}
11784Specify that the program to be run (but not the symbol table) is found
11785in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11786if necessary to locate your program. Omitting @var{filename} means to
11787discard information on the executable file.
11788
11789@kindex symbol-file
11790@item symbol-file @r{[} @var{filename} @r{]}
11791Read symbol table information from file @var{filename}. @code{PATH} is
11792searched when necessary. Use the @code{file} command to get both symbol
11793table and program to run from the same file.
11794
11795@code{symbol-file} with no argument clears out @value{GDBN} information on your
11796program's symbol table.
11797
ae5a43e0
DJ
11798The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11799some breakpoints and auto-display expressions. This is because they may
11800contain pointers to the internal data recording symbols and data types,
11801which are part of the old symbol table data being discarded inside
11802@value{GDBN}.
c906108c
SS
11803
11804@code{symbol-file} does not repeat if you press @key{RET} again after
11805executing it once.
11806
11807When @value{GDBN} is configured for a particular environment, it
11808understands debugging information in whatever format is the standard
11809generated for that environment; you may use either a @sc{gnu} compiler, or
11810other compilers that adhere to the local conventions.
c906108c 11811Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11812using @code{@value{NGCC}} you can generate debugging information for
c906108c 11813optimized code.
c906108c
SS
11814
11815For most kinds of object files, with the exception of old SVR3 systems
11816using COFF, the @code{symbol-file} command does not normally read the
11817symbol table in full right away. Instead, it scans the symbol table
11818quickly to find which source files and which symbols are present. The
11819details are read later, one source file at a time, as they are needed.
11820
11821The purpose of this two-stage reading strategy is to make @value{GDBN}
11822start up faster. For the most part, it is invisible except for
11823occasional pauses while the symbol table details for a particular source
11824file are being read. (The @code{set verbose} command can turn these
11825pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11826Warnings and Messages}.)
c906108c 11827
c906108c
SS
11828We have not implemented the two-stage strategy for COFF yet. When the
11829symbol table is stored in COFF format, @code{symbol-file} reads the
11830symbol table data in full right away. Note that ``stabs-in-COFF''
11831still does the two-stage strategy, since the debug info is actually
11832in stabs format.
11833
11834@kindex readnow
11835@cindex reading symbols immediately
11836@cindex symbols, reading immediately
a94ab193
EZ
11837@item symbol-file @var{filename} @r{[} -readnow @r{]}
11838@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11839You can override the @value{GDBN} two-stage strategy for reading symbol
11840tables by using the @samp{-readnow} option with any of the commands that
11841load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11842entire symbol table available.
c906108c 11843
c906108c
SS
11844@c FIXME: for now no mention of directories, since this seems to be in
11845@c flux. 13mar1992 status is that in theory GDB would look either in
11846@c current dir or in same dir as myprog; but issues like competing
11847@c GDB's, or clutter in system dirs, mean that in practice right now
11848@c only current dir is used. FFish says maybe a special GDB hierarchy
11849@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11850@c files.
11851
c906108c 11852@kindex core-file
09d4efe1 11853@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11854@itemx core
c906108c
SS
11855Specify the whereabouts of a core dump file to be used as the ``contents
11856of memory''. Traditionally, core files contain only some parts of the
11857address space of the process that generated them; @value{GDBN} can access the
11858executable file itself for other parts.
11859
11860@code{core-file} with no argument specifies that no core file is
11861to be used.
11862
11863Note that the core file is ignored when your program is actually running
7a292a7a
SS
11864under @value{GDBN}. So, if you have been running your program and you
11865wish to debug a core file instead, you must kill the subprocess in which
11866the program is running. To do this, use the @code{kill} command
79a6e687 11867(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11868
c906108c
SS
11869@kindex add-symbol-file
11870@cindex dynamic linking
11871@item add-symbol-file @var{filename} @var{address}
a94ab193 11872@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11873@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11874The @code{add-symbol-file} command reads additional symbol table
11875information from the file @var{filename}. You would use this command
11876when @var{filename} has been dynamically loaded (by some other means)
11877into the program that is running. @var{address} should be the memory
11878address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11879this out for itself. You can additionally specify an arbitrary number
11880of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11881section name and base address for that section. You can specify any
11882@var{address} as an expression.
c906108c
SS
11883
11884The symbol table of the file @var{filename} is added to the symbol table
11885originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11886@code{add-symbol-file} command any number of times; the new symbol data
11887thus read keeps adding to the old. To discard all old symbol data
11888instead, use the @code{symbol-file} command without any arguments.
c906108c 11889
17d9d558
JB
11890@cindex relocatable object files, reading symbols from
11891@cindex object files, relocatable, reading symbols from
11892@cindex reading symbols from relocatable object files
11893@cindex symbols, reading from relocatable object files
11894@cindex @file{.o} files, reading symbols from
11895Although @var{filename} is typically a shared library file, an
11896executable file, or some other object file which has been fully
11897relocated for loading into a process, you can also load symbolic
11898information from relocatable @file{.o} files, as long as:
11899
11900@itemize @bullet
11901@item
11902the file's symbolic information refers only to linker symbols defined in
11903that file, not to symbols defined by other object files,
11904@item
11905every section the file's symbolic information refers to has actually
11906been loaded into the inferior, as it appears in the file, and
11907@item
11908you can determine the address at which every section was loaded, and
11909provide these to the @code{add-symbol-file} command.
11910@end itemize
11911
11912@noindent
11913Some embedded operating systems, like Sun Chorus and VxWorks, can load
11914relocatable files into an already running program; such systems
11915typically make the requirements above easy to meet. However, it's
11916important to recognize that many native systems use complex link
49efadf5 11917procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11918assembly, for example) that make the requirements difficult to meet. In
11919general, one cannot assume that using @code{add-symbol-file} to read a
11920relocatable object file's symbolic information will have the same effect
11921as linking the relocatable object file into the program in the normal
11922way.
11923
c906108c
SS
11924@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11925
c45da7e6
EZ
11926@kindex add-symbol-file-from-memory
11927@cindex @code{syscall DSO}
11928@cindex load symbols from memory
11929@item add-symbol-file-from-memory @var{address}
11930Load symbols from the given @var{address} in a dynamically loaded
11931object file whose image is mapped directly into the inferior's memory.
11932For example, the Linux kernel maps a @code{syscall DSO} into each
11933process's address space; this DSO provides kernel-specific code for
11934some system calls. The argument can be any expression whose
11935evaluation yields the address of the file's shared object file header.
11936For this command to work, you must have used @code{symbol-file} or
11937@code{exec-file} commands in advance.
11938
09d4efe1
EZ
11939@kindex add-shared-symbol-files
11940@kindex assf
11941@item add-shared-symbol-files @var{library-file}
11942@itemx assf @var{library-file}
11943The @code{add-shared-symbol-files} command can currently be used only
11944in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11945alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11946@value{GDBN} automatically looks for shared libraries, however if
11947@value{GDBN} does not find yours, you can invoke
11948@code{add-shared-symbol-files}. It takes one argument: the shared
11949library's file name. @code{assf} is a shorthand alias for
11950@code{add-shared-symbol-files}.
c906108c 11951
c906108c 11952@kindex section
09d4efe1
EZ
11953@item section @var{section} @var{addr}
11954The @code{section} command changes the base address of the named
11955@var{section} of the exec file to @var{addr}. This can be used if the
11956exec file does not contain section addresses, (such as in the
11957@code{a.out} format), or when the addresses specified in the file
11958itself are wrong. Each section must be changed separately. The
11959@code{info files} command, described below, lists all the sections and
11960their addresses.
c906108c
SS
11961
11962@kindex info files
11963@kindex info target
11964@item info files
11965@itemx info target
7a292a7a
SS
11966@code{info files} and @code{info target} are synonymous; both print the
11967current target (@pxref{Targets, ,Specifying a Debugging Target}),
11968including the names of the executable and core dump files currently in
11969use by @value{GDBN}, and the files from which symbols were loaded. The
11970command @code{help target} lists all possible targets rather than
11971current ones.
11972
fe95c787
MS
11973@kindex maint info sections
11974@item maint info sections
11975Another command that can give you extra information about program sections
11976is @code{maint info sections}. In addition to the section information
11977displayed by @code{info files}, this command displays the flags and file
11978offset of each section in the executable and core dump files. In addition,
11979@code{maint info sections} provides the following command options (which
11980may be arbitrarily combined):
11981
11982@table @code
11983@item ALLOBJ
11984Display sections for all loaded object files, including shared libraries.
11985@item @var{sections}
6600abed 11986Display info only for named @var{sections}.
fe95c787
MS
11987@item @var{section-flags}
11988Display info only for sections for which @var{section-flags} are true.
11989The section flags that @value{GDBN} currently knows about are:
11990@table @code
11991@item ALLOC
11992Section will have space allocated in the process when loaded.
11993Set for all sections except those containing debug information.
11994@item LOAD
11995Section will be loaded from the file into the child process memory.
11996Set for pre-initialized code and data, clear for @code{.bss} sections.
11997@item RELOC
11998Section needs to be relocated before loading.
11999@item READONLY
12000Section cannot be modified by the child process.
12001@item CODE
12002Section contains executable code only.
6600abed 12003@item DATA
fe95c787
MS
12004Section contains data only (no executable code).
12005@item ROM
12006Section will reside in ROM.
12007@item CONSTRUCTOR
12008Section contains data for constructor/destructor lists.
12009@item HAS_CONTENTS
12010Section is not empty.
12011@item NEVER_LOAD
12012An instruction to the linker to not output the section.
12013@item COFF_SHARED_LIBRARY
12014A notification to the linker that the section contains
12015COFF shared library information.
12016@item IS_COMMON
12017Section contains common symbols.
12018@end table
12019@end table
6763aef9 12020@kindex set trust-readonly-sections
9c16f35a 12021@cindex read-only sections
6763aef9
MS
12022@item set trust-readonly-sections on
12023Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12024really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12025In that case, @value{GDBN} can fetch values from these sections
12026out of the object file, rather than from the target program.
12027For some targets (notably embedded ones), this can be a significant
12028enhancement to debugging performance.
12029
12030The default is off.
12031
12032@item set trust-readonly-sections off
15110bc3 12033Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12034the contents of the section might change while the program is running,
12035and must therefore be fetched from the target when needed.
9c16f35a
EZ
12036
12037@item show trust-readonly-sections
12038Show the current setting of trusting readonly sections.
c906108c
SS
12039@end table
12040
12041All file-specifying commands allow both absolute and relative file names
12042as arguments. @value{GDBN} always converts the file name to an absolute file
12043name and remembers it that way.
12044
c906108c 12045@cindex shared libraries
9cceb671
DJ
12046@anchor{Shared Libraries}
12047@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12048and IBM RS/6000 AIX shared libraries.
53a5351d 12049
9cceb671
DJ
12050On MS-Windows @value{GDBN} must be linked with the Expat library to support
12051shared libraries. @xref{Expat}.
12052
c906108c
SS
12053@value{GDBN} automatically loads symbol definitions from shared libraries
12054when you use the @code{run} command, or when you examine a core file.
12055(Before you issue the @code{run} command, @value{GDBN} does not understand
12056references to a function in a shared library, however---unless you are
12057debugging a core file).
53a5351d
JM
12058
12059On HP-UX, if the program loads a library explicitly, @value{GDBN}
12060automatically loads the symbols at the time of the @code{shl_load} call.
12061
c906108c
SS
12062@c FIXME: some @value{GDBN} release may permit some refs to undef
12063@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12064@c FIXME...lib; check this from time to time when updating manual
12065
b7209cb4
FF
12066There are times, however, when you may wish to not automatically load
12067symbol definitions from shared libraries, such as when they are
12068particularly large or there are many of them.
12069
12070To control the automatic loading of shared library symbols, use the
12071commands:
12072
12073@table @code
12074@kindex set auto-solib-add
12075@item set auto-solib-add @var{mode}
12076If @var{mode} is @code{on}, symbols from all shared object libraries
12077will be loaded automatically when the inferior begins execution, you
12078attach to an independently started inferior, or when the dynamic linker
12079informs @value{GDBN} that a new library has been loaded. If @var{mode}
12080is @code{off}, symbols must be loaded manually, using the
12081@code{sharedlibrary} command. The default value is @code{on}.
12082
dcaf7c2c
EZ
12083@cindex memory used for symbol tables
12084If your program uses lots of shared libraries with debug info that
12085takes large amounts of memory, you can decrease the @value{GDBN}
12086memory footprint by preventing it from automatically loading the
12087symbols from shared libraries. To that end, type @kbd{set
12088auto-solib-add off} before running the inferior, then load each
12089library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12090@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12091the libraries whose symbols you want to be loaded.
12092
b7209cb4
FF
12093@kindex show auto-solib-add
12094@item show auto-solib-add
12095Display the current autoloading mode.
12096@end table
12097
c45da7e6 12098@cindex load shared library
b7209cb4
FF
12099To explicitly load shared library symbols, use the @code{sharedlibrary}
12100command:
12101
c906108c
SS
12102@table @code
12103@kindex info sharedlibrary
12104@kindex info share
12105@item info share
12106@itemx info sharedlibrary
12107Print the names of the shared libraries which are currently loaded.
12108
12109@kindex sharedlibrary
12110@kindex share
12111@item sharedlibrary @var{regex}
12112@itemx share @var{regex}
c906108c
SS
12113Load shared object library symbols for files matching a
12114Unix regular expression.
12115As with files loaded automatically, it only loads shared libraries
12116required by your program for a core file or after typing @code{run}. If
12117@var{regex} is omitted all shared libraries required by your program are
12118loaded.
c45da7e6
EZ
12119
12120@item nosharedlibrary
12121@kindex nosharedlibrary
12122@cindex unload symbols from shared libraries
12123Unload all shared object library symbols. This discards all symbols
12124that have been loaded from all shared libraries. Symbols from shared
12125libraries that were loaded by explicit user requests are not
12126discarded.
c906108c
SS
12127@end table
12128
721c2651
EZ
12129Sometimes you may wish that @value{GDBN} stops and gives you control
12130when any of shared library events happen. Use the @code{set
12131stop-on-solib-events} command for this:
12132
12133@table @code
12134@item set stop-on-solib-events
12135@kindex set stop-on-solib-events
12136This command controls whether @value{GDBN} should give you control
12137when the dynamic linker notifies it about some shared library event.
12138The most common event of interest is loading or unloading of a new
12139shared library.
12140
12141@item show stop-on-solib-events
12142@kindex show stop-on-solib-events
12143Show whether @value{GDBN} stops and gives you control when shared
12144library events happen.
12145@end table
12146
f5ebfba0
DJ
12147Shared libraries are also supported in many cross or remote debugging
12148configurations. A copy of the target's libraries need to be present on the
12149host system; they need to be the same as the target libraries, although the
12150copies on the target can be stripped as long as the copies on the host are
12151not.
12152
59b7b46f
EZ
12153@cindex where to look for shared libraries
12154For remote debugging, you need to tell @value{GDBN} where the target
12155libraries are, so that it can load the correct copies---otherwise, it
12156may try to load the host's libraries. @value{GDBN} has two variables
12157to specify the search directories for target libraries.
f5ebfba0
DJ
12158
12159@table @code
59b7b46f 12160@cindex prefix for shared library file names
f822c95b 12161@cindex system root, alternate
f5ebfba0 12162@kindex set solib-absolute-prefix
f822c95b
DJ
12163@kindex set sysroot
12164@item set sysroot @var{path}
12165Use @var{path} as the system root for the program being debugged. Any
12166absolute shared library paths will be prefixed with @var{path}; many
12167runtime loaders store the absolute paths to the shared library in the
12168target program's memory. If you use @code{set sysroot} to find shared
12169libraries, they need to be laid out in the same way that they are on
12170the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12171under @var{path}.
12172
12173The @code{set solib-absolute-prefix} command is an alias for @code{set
12174sysroot}.
12175
12176@cindex default system root
59b7b46f 12177@cindex @samp{--with-sysroot}
f822c95b
DJ
12178You can set the default system root by using the configure-time
12179@samp{--with-sysroot} option. If the system root is inside
12180@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12181@samp{--exec-prefix}), then the default system root will be updated
12182automatically if the installed @value{GDBN} is moved to a new
12183location.
12184
12185@kindex show sysroot
12186@item show sysroot
f5ebfba0
DJ
12187Display the current shared library prefix.
12188
12189@kindex set solib-search-path
12190@item set solib-search-path @var{path}
f822c95b
DJ
12191If this variable is set, @var{path} is a colon-separated list of
12192directories to search for shared libraries. @samp{solib-search-path}
12193is used after @samp{sysroot} fails to locate the library, or if the
12194path to the library is relative instead of absolute. If you want to
12195use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12196@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12197finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12198it to a nonexistent directory may interfere with automatic loading
f822c95b 12199of shared library symbols.
f5ebfba0
DJ
12200
12201@kindex show solib-search-path
12202@item show solib-search-path
12203Display the current shared library search path.
12204@end table
12205
5b5d99cf
JB
12206
12207@node Separate Debug Files
12208@section Debugging Information in Separate Files
12209@cindex separate debugging information files
12210@cindex debugging information in separate files
12211@cindex @file{.debug} subdirectories
12212@cindex debugging information directory, global
12213@cindex global debugging information directory
c7e83d54
EZ
12214@cindex build ID, and separate debugging files
12215@cindex @file{.build-id} directory
5b5d99cf
JB
12216
12217@value{GDBN} allows you to put a program's debugging information in a
12218file separate from the executable itself, in a way that allows
12219@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12220Since debugging information can be very large---sometimes larger
12221than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12222information for their executables in separate files, which users can
12223install only when they need to debug a problem.
12224
c7e83d54
EZ
12225@value{GDBN} supports two ways of specifying the separate debug info
12226file:
5b5d99cf
JB
12227
12228@itemize @bullet
12229@item
c7e83d54
EZ
12230The executable contains a @dfn{debug link} that specifies the name of
12231the separate debug info file. The separate debug file's name is
12232usually @file{@var{executable}.debug}, where @var{executable} is the
12233name of the corresponding executable file without leading directories
12234(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12235debug link specifies a CRC32 checksum for the debug file, which
12236@value{GDBN} uses to validate that the executable and the debug file
12237came from the same build.
12238
12239@item
7e27a47a 12240The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12241also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12242only on some operating systems, notably those which use the ELF format
12243for binary files and the @sc{gnu} Binutils.) For more details about
12244this feature, see the description of the @option{--build-id}
12245command-line option in @ref{Options, , Command Line Options, ld.info,
12246The GNU Linker}. The debug info file's name is not specified
12247explicitly by the build ID, but can be computed from the build ID, see
12248below.
d3750b24
JK
12249@end itemize
12250
c7e83d54
EZ
12251Depending on the way the debug info file is specified, @value{GDBN}
12252uses two different methods of looking for the debug file:
d3750b24
JK
12253
12254@itemize @bullet
12255@item
c7e83d54
EZ
12256For the ``debug link'' method, @value{GDBN} looks up the named file in
12257the directory of the executable file, then in a subdirectory of that
12258directory named @file{.debug}, and finally under the global debug
12259directory, in a subdirectory whose name is identical to the leading
12260directories of the executable's absolute file name.
12261
12262@item
83f83d7f 12263For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12264@file{.build-id} subdirectory of the global debug directory for a file
12265named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12266first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12267are the rest of the bit string. (Real build ID strings are 32 or more
12268hex characters, not 10.)
c7e83d54
EZ
12269@end itemize
12270
12271So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12272@file{/usr/bin/ls}, which has a debug link that specifies the
12273file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12274@code{abcdef1234}. If the global debug directory is
12275@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12276debug information files, in the indicated order:
12277
12278@itemize @minus
12279@item
12280@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12281@item
c7e83d54 12282@file{/usr/bin/ls.debug}
5b5d99cf 12283@item
c7e83d54 12284@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12285@item
c7e83d54 12286@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12287@end itemize
5b5d99cf
JB
12288
12289You can set the global debugging info directory's name, and view the
12290name @value{GDBN} is currently using.
12291
12292@table @code
12293
12294@kindex set debug-file-directory
12295@item set debug-file-directory @var{directory}
12296Set the directory which @value{GDBN} searches for separate debugging
12297information files to @var{directory}.
12298
12299@kindex show debug-file-directory
12300@item show debug-file-directory
12301Show the directory @value{GDBN} searches for separate debugging
12302information files.
12303
12304@end table
12305
12306@cindex @code{.gnu_debuglink} sections
c7e83d54 12307@cindex debug link sections
5b5d99cf
JB
12308A debug link is a special section of the executable file named
12309@code{.gnu_debuglink}. The section must contain:
12310
12311@itemize
12312@item
12313A filename, with any leading directory components removed, followed by
12314a zero byte,
12315@item
12316zero to three bytes of padding, as needed to reach the next four-byte
12317boundary within the section, and
12318@item
12319a four-byte CRC checksum, stored in the same endianness used for the
12320executable file itself. The checksum is computed on the debugging
12321information file's full contents by the function given below, passing
12322zero as the @var{crc} argument.
12323@end itemize
12324
12325Any executable file format can carry a debug link, as long as it can
12326contain a section named @code{.gnu_debuglink} with the contents
12327described above.
12328
d3750b24 12329@cindex @code{.note.gnu.build-id} sections
c7e83d54 12330@cindex build ID sections
7e27a47a
EZ
12331The build ID is a special section in the executable file (and in other
12332ELF binary files that @value{GDBN} may consider). This section is
12333often named @code{.note.gnu.build-id}, but that name is not mandatory.
12334It contains unique identification for the built files---the ID remains
12335the same across multiple builds of the same build tree. The default
12336algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12337content for the build ID string. The same section with an identical
12338value is present in the original built binary with symbols, in its
12339stripped variant, and in the separate debugging information file.
d3750b24 12340
5b5d99cf
JB
12341The debugging information file itself should be an ordinary
12342executable, containing a full set of linker symbols, sections, and
12343debugging information. The sections of the debugging information file
c7e83d54
EZ
12344should have the same names, addresses, and sizes as the original file,
12345but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12346in an ordinary executable.
12347
7e27a47a 12348The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12349@samp{objcopy} utility that can produce
12350the separated executable / debugging information file pairs using the
12351following commands:
12352
12353@smallexample
12354@kbd{objcopy --only-keep-debug foo foo.debug}
12355@kbd{strip -g foo}
c7e83d54
EZ
12356@end smallexample
12357
12358@noindent
12359These commands remove the debugging
83f83d7f
JK
12360information from the executable file @file{foo} and place it in the file
12361@file{foo.debug}. You can use the first, second or both methods to link the
12362two files:
12363
12364@itemize @bullet
12365@item
12366The debug link method needs the following additional command to also leave
12367behind a debug link in @file{foo}:
12368
12369@smallexample
12370@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12371@end smallexample
12372
12373Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12374a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12375foo.debug} has the same functionality as the two @code{objcopy} commands and
12376the @code{ln -s} command above, together.
12377
12378@item
12379Build ID gets embedded into the main executable using @code{ld --build-id} or
12380the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12381compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12382utilities (Binutils) package since version 2.18.
83f83d7f
JK
12383@end itemize
12384
12385@noindent
d3750b24 12386
c7e83d54
EZ
12387Since there are many different ways to compute CRC's for the debug
12388link (different polynomials, reversals, byte ordering, etc.), the
12389simplest way to describe the CRC used in @code{.gnu_debuglink}
12390sections is to give the complete code for a function that computes it:
5b5d99cf 12391
4644b6e3 12392@kindex gnu_debuglink_crc32
5b5d99cf
JB
12393@smallexample
12394unsigned long
12395gnu_debuglink_crc32 (unsigned long crc,
12396 unsigned char *buf, size_t len)
12397@{
12398 static const unsigned long crc32_table[256] =
12399 @{
12400 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12401 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12402 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12403 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12404 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12405 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12406 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12407 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12408 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12409 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12410 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12411 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12412 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12413 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12414 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12415 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12416 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12417 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12418 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12419 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12420 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12421 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12422 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12423 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12424 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12425 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12426 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12427 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12428 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12429 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12430 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12431 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12432 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12433 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12434 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12435 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12436 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12437 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12438 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12439 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12440 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12441 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12442 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12443 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12444 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12445 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12446 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12447 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12448 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12449 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12450 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12451 0x2d02ef8d
12452 @};
12453 unsigned char *end;
12454
12455 crc = ~crc & 0xffffffff;
12456 for (end = buf + len; buf < end; ++buf)
12457 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12458 return ~crc & 0xffffffff;
5b5d99cf
JB
12459@}
12460@end smallexample
12461
c7e83d54
EZ
12462@noindent
12463This computation does not apply to the ``build ID'' method.
12464
5b5d99cf 12465
6d2ebf8b 12466@node Symbol Errors
79a6e687 12467@section Errors Reading Symbol Files
c906108c
SS
12468
12469While reading a symbol file, @value{GDBN} occasionally encounters problems,
12470such as symbol types it does not recognize, or known bugs in compiler
12471output. By default, @value{GDBN} does not notify you of such problems, since
12472they are relatively common and primarily of interest to people
12473debugging compilers. If you are interested in seeing information
12474about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12475only one message about each such type of problem, no matter how many
12476times the problem occurs; or you can ask @value{GDBN} to print more messages,
12477to see how many times the problems occur, with the @code{set
79a6e687
BW
12478complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12479Messages}).
c906108c
SS
12480
12481The messages currently printed, and their meanings, include:
12482
12483@table @code
12484@item inner block not inside outer block in @var{symbol}
12485
12486The symbol information shows where symbol scopes begin and end
12487(such as at the start of a function or a block of statements). This
12488error indicates that an inner scope block is not fully contained
12489in its outer scope blocks.
12490
12491@value{GDBN} circumvents the problem by treating the inner block as if it had
12492the same scope as the outer block. In the error message, @var{symbol}
12493may be shown as ``@code{(don't know)}'' if the outer block is not a
12494function.
12495
12496@item block at @var{address} out of order
12497
12498The symbol information for symbol scope blocks should occur in
12499order of increasing addresses. This error indicates that it does not
12500do so.
12501
12502@value{GDBN} does not circumvent this problem, and has trouble
12503locating symbols in the source file whose symbols it is reading. (You
12504can often determine what source file is affected by specifying
79a6e687
BW
12505@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12506Messages}.)
c906108c
SS
12507
12508@item bad block start address patched
12509
12510The symbol information for a symbol scope block has a start address
12511smaller than the address of the preceding source line. This is known
12512to occur in the SunOS 4.1.1 (and earlier) C compiler.
12513
12514@value{GDBN} circumvents the problem by treating the symbol scope block as
12515starting on the previous source line.
12516
12517@item bad string table offset in symbol @var{n}
12518
12519@cindex foo
12520Symbol number @var{n} contains a pointer into the string table which is
12521larger than the size of the string table.
12522
12523@value{GDBN} circumvents the problem by considering the symbol to have the
12524name @code{foo}, which may cause other problems if many symbols end up
12525with this name.
12526
12527@item unknown symbol type @code{0x@var{nn}}
12528
7a292a7a
SS
12529The symbol information contains new data types that @value{GDBN} does
12530not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12531uncomprehended information, in hexadecimal.
c906108c 12532
7a292a7a
SS
12533@value{GDBN} circumvents the error by ignoring this symbol information.
12534This usually allows you to debug your program, though certain symbols
c906108c 12535are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12536debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12537on @code{complain}, then go up to the function @code{read_dbx_symtab}
12538and examine @code{*bufp} to see the symbol.
c906108c
SS
12539
12540@item stub type has NULL name
c906108c 12541
7a292a7a 12542@value{GDBN} could not find the full definition for a struct or class.
c906108c 12543
7a292a7a 12544@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12545The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12546information that recent versions of the compiler should have output for
12547it.
c906108c
SS
12548
12549@item info mismatch between compiler and debugger
12550
12551@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12552
c906108c
SS
12553@end table
12554
6d2ebf8b 12555@node Targets
c906108c 12556@chapter Specifying a Debugging Target
7a292a7a 12557
c906108c 12558@cindex debugging target
c906108c 12559A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12560
12561Often, @value{GDBN} runs in the same host environment as your program;
12562in that case, the debugging target is specified as a side effect when
12563you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12564flexibility---for example, running @value{GDBN} on a physically separate
12565host, or controlling a standalone system over a serial port or a
53a5351d
JM
12566realtime system over a TCP/IP connection---you can use the @code{target}
12567command to specify one of the target types configured for @value{GDBN}
79a6e687 12568(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12569
a8f24a35
EZ
12570@cindex target architecture
12571It is possible to build @value{GDBN} for several different @dfn{target
12572architectures}. When @value{GDBN} is built like that, you can choose
12573one of the available architectures with the @kbd{set architecture}
12574command.
12575
12576@table @code
12577@kindex set architecture
12578@kindex show architecture
12579@item set architecture @var{arch}
12580This command sets the current target architecture to @var{arch}. The
12581value of @var{arch} can be @code{"auto"}, in addition to one of the
12582supported architectures.
12583
12584@item show architecture
12585Show the current target architecture.
9c16f35a
EZ
12586
12587@item set processor
12588@itemx processor
12589@kindex set processor
12590@kindex show processor
12591These are alias commands for, respectively, @code{set architecture}
12592and @code{show architecture}.
a8f24a35
EZ
12593@end table
12594
c906108c
SS
12595@menu
12596* Active Targets:: Active targets
12597* Target Commands:: Commands for managing targets
c906108c 12598* Byte Order:: Choosing target byte order
c906108c
SS
12599@end menu
12600
6d2ebf8b 12601@node Active Targets
79a6e687 12602@section Active Targets
7a292a7a 12603
c906108c
SS
12604@cindex stacking targets
12605@cindex active targets
12606@cindex multiple targets
12607
c906108c 12608There are three classes of targets: processes, core files, and
7a292a7a
SS
12609executable files. @value{GDBN} can work concurrently on up to three
12610active targets, one in each class. This allows you to (for example)
12611start a process and inspect its activity without abandoning your work on
12612a core file.
c906108c
SS
12613
12614For example, if you execute @samp{gdb a.out}, then the executable file
12615@code{a.out} is the only active target. If you designate a core file as
12616well---presumably from a prior run that crashed and coredumped---then
12617@value{GDBN} has two active targets and uses them in tandem, looking
12618first in the corefile target, then in the executable file, to satisfy
12619requests for memory addresses. (Typically, these two classes of target
12620are complementary, since core files contain only a program's
12621read-write memory---variables and so on---plus machine status, while
12622executable files contain only the program text and initialized data.)
c906108c
SS
12623
12624When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12625target as well. When a process target is active, all @value{GDBN}
12626commands requesting memory addresses refer to that target; addresses in
12627an active core file or executable file target are obscured while the
12628process target is active.
c906108c 12629
7a292a7a 12630Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12631core file or executable target (@pxref{Files, ,Commands to Specify
12632Files}). To specify as a target a process that is already running, use
12633the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12634Process}).
c906108c 12635
6d2ebf8b 12636@node Target Commands
79a6e687 12637@section Commands for Managing Targets
c906108c
SS
12638
12639@table @code
12640@item target @var{type} @var{parameters}
7a292a7a
SS
12641Connects the @value{GDBN} host environment to a target machine or
12642process. A target is typically a protocol for talking to debugging
12643facilities. You use the argument @var{type} to specify the type or
12644protocol of the target machine.
c906108c
SS
12645
12646Further @var{parameters} are interpreted by the target protocol, but
12647typically include things like device names or host names to connect
12648with, process numbers, and baud rates.
c906108c
SS
12649
12650The @code{target} command does not repeat if you press @key{RET} again
12651after executing the command.
12652
12653@kindex help target
12654@item help target
12655Displays the names of all targets available. To display targets
12656currently selected, use either @code{info target} or @code{info files}
79a6e687 12657(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12658
12659@item help target @var{name}
12660Describe a particular target, including any parameters necessary to
12661select it.
12662
12663@kindex set gnutarget
12664@item set gnutarget @var{args}
5d161b24 12665@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12666knows whether it is reading an @dfn{executable},
5d161b24
DB
12667a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12668with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12669with @code{gnutarget} the @code{target} refers to a program, not a machine.
12670
d4f3574e 12671@quotation
c906108c
SS
12672@emph{Warning:} To specify a file format with @code{set gnutarget},
12673you must know the actual BFD name.
d4f3574e 12674@end quotation
c906108c 12675
d4f3574e 12676@noindent
79a6e687 12677@xref{Files, , Commands to Specify Files}.
c906108c 12678
5d161b24 12679@kindex show gnutarget
c906108c
SS
12680@item show gnutarget
12681Use the @code{show gnutarget} command to display what file format
12682@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12683@value{GDBN} will determine the file format for each file automatically,
12684and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12685@end table
12686
4644b6e3 12687@cindex common targets
c906108c
SS
12688Here are some common targets (available, or not, depending on the GDB
12689configuration):
c906108c
SS
12690
12691@table @code
4644b6e3 12692@kindex target
c906108c 12693@item target exec @var{program}
4644b6e3 12694@cindex executable file target
c906108c
SS
12695An executable file. @samp{target exec @var{program}} is the same as
12696@samp{exec-file @var{program}}.
12697
c906108c 12698@item target core @var{filename}
4644b6e3 12699@cindex core dump file target
c906108c
SS
12700A core dump file. @samp{target core @var{filename}} is the same as
12701@samp{core-file @var{filename}}.
c906108c 12702
1a10341b 12703@item target remote @var{medium}
4644b6e3 12704@cindex remote target
1a10341b
JB
12705A remote system connected to @value{GDBN} via a serial line or network
12706connection. This command tells @value{GDBN} to use its own remote
12707protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12708
12709For example, if you have a board connected to @file{/dev/ttya} on the
12710machine running @value{GDBN}, you could say:
12711
12712@smallexample
12713target remote /dev/ttya
12714@end smallexample
12715
12716@code{target remote} supports the @code{load} command. This is only
12717useful if you have some other way of getting the stub to the target
12718system, and you can put it somewhere in memory where it won't get
12719clobbered by the download.
c906108c 12720
c906108c 12721@item target sim
4644b6e3 12722@cindex built-in simulator target
2df3850c 12723Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12724In general,
474c8240 12725@smallexample
104c1213
JM
12726 target sim
12727 load
12728 run
474c8240 12729@end smallexample
d4f3574e 12730@noindent
104c1213 12731works; however, you cannot assume that a specific memory map, device
d4f3574e 12732drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12733provide these. For info about any processor-specific simulator details,
12734see the appropriate section in @ref{Embedded Processors, ,Embedded
12735Processors}.
12736
c906108c
SS
12737@end table
12738
104c1213 12739Some configurations may include these targets as well:
c906108c
SS
12740
12741@table @code
12742
c906108c 12743@item target nrom @var{dev}
4644b6e3 12744@cindex NetROM ROM emulator target
c906108c
SS
12745NetROM ROM emulator. This target only supports downloading.
12746
c906108c
SS
12747@end table
12748
5d161b24 12749Different targets are available on different configurations of @value{GDBN};
c906108c 12750your configuration may have more or fewer targets.
c906108c 12751
721c2651
EZ
12752Many remote targets require you to download the executable's code once
12753you've successfully established a connection. You may wish to control
3d00d119
DJ
12754various aspects of this process.
12755
12756@table @code
721c2651
EZ
12757
12758@item set hash
12759@kindex set hash@r{, for remote monitors}
12760@cindex hash mark while downloading
12761This command controls whether a hash mark @samp{#} is displayed while
12762downloading a file to the remote monitor. If on, a hash mark is
12763displayed after each S-record is successfully downloaded to the
12764monitor.
12765
12766@item show hash
12767@kindex show hash@r{, for remote monitors}
12768Show the current status of displaying the hash mark.
12769
12770@item set debug monitor
12771@kindex set debug monitor
12772@cindex display remote monitor communications
12773Enable or disable display of communications messages between
12774@value{GDBN} and the remote monitor.
12775
12776@item show debug monitor
12777@kindex show debug monitor
12778Show the current status of displaying communications between
12779@value{GDBN} and the remote monitor.
a8f24a35 12780@end table
c906108c
SS
12781
12782@table @code
12783
12784@kindex load @var{filename}
12785@item load @var{filename}
8edfe269 12786@anchor{load}
c906108c
SS
12787Depending on what remote debugging facilities are configured into
12788@value{GDBN}, the @code{load} command may be available. Where it exists, it
12789is meant to make @var{filename} (an executable) available for debugging
12790on the remote system---by downloading, or dynamic linking, for example.
12791@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12792the @code{add-symbol-file} command.
12793
12794If your @value{GDBN} does not have a @code{load} command, attempting to
12795execute it gets the error message ``@code{You can't do that when your
12796target is @dots{}}''
c906108c
SS
12797
12798The file is loaded at whatever address is specified in the executable.
12799For some object file formats, you can specify the load address when you
12800link the program; for other formats, like a.out, the object file format
12801specifies a fixed address.
12802@c FIXME! This would be a good place for an xref to the GNU linker doc.
12803
68437a39
DJ
12804Depending on the remote side capabilities, @value{GDBN} may be able to
12805load programs into flash memory.
12806
c906108c
SS
12807@code{load} does not repeat if you press @key{RET} again after using it.
12808@end table
12809
6d2ebf8b 12810@node Byte Order
79a6e687 12811@section Choosing Target Byte Order
7a292a7a 12812
c906108c
SS
12813@cindex choosing target byte order
12814@cindex target byte order
c906108c 12815
172c2a43 12816Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12817offer the ability to run either big-endian or little-endian byte
12818orders. Usually the executable or symbol will include a bit to
12819designate the endian-ness, and you will not need to worry about
12820which to use. However, you may still find it useful to adjust
d4f3574e 12821@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12822
12823@table @code
4644b6e3 12824@kindex set endian
c906108c
SS
12825@item set endian big
12826Instruct @value{GDBN} to assume the target is big-endian.
12827
c906108c
SS
12828@item set endian little
12829Instruct @value{GDBN} to assume the target is little-endian.
12830
c906108c
SS
12831@item set endian auto
12832Instruct @value{GDBN} to use the byte order associated with the
12833executable.
12834
12835@item show endian
12836Display @value{GDBN}'s current idea of the target byte order.
12837
12838@end table
12839
12840Note that these commands merely adjust interpretation of symbolic
12841data on the host, and that they have absolutely no effect on the
12842target system.
12843
ea35711c
DJ
12844
12845@node Remote Debugging
12846@chapter Debugging Remote Programs
c906108c
SS
12847@cindex remote debugging
12848
12849If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12850@value{GDBN} in the usual way, it is often useful to use remote debugging.
12851For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12852or on a small system which does not have a general purpose operating system
12853powerful enough to run a full-featured debugger.
12854
12855Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12856to make this work with particular debugging targets. In addition,
5d161b24 12857@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12858but not specific to any particular target system) which you can use if you
12859write the remote stubs---the code that runs on the remote system to
12860communicate with @value{GDBN}.
12861
12862Other remote targets may be available in your
12863configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12864
6b2f586d 12865@menu
07f31aa6 12866* Connecting:: Connecting to a remote target
a6b151f1 12867* File Transfer:: Sending files to a remote system
6b2f586d 12868* Server:: Using the gdbserver program
79a6e687
BW
12869* Remote Configuration:: Remote configuration
12870* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12871@end menu
12872
07f31aa6 12873@node Connecting
79a6e687 12874@section Connecting to a Remote Target
07f31aa6
DJ
12875
12876On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12877your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12878Start up @value{GDBN} as usual, using the name of the local copy of your
12879program as the first argument.
12880
86941c27
JB
12881@cindex @code{target remote}
12882@value{GDBN} can communicate with the target over a serial line, or
12883over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12884each case, @value{GDBN} uses the same protocol for debugging your
12885program; only the medium carrying the debugging packets varies. The
12886@code{target remote} command establishes a connection to the target.
12887Its arguments indicate which medium to use:
12888
12889@table @code
12890
12891@item target remote @var{serial-device}
07f31aa6 12892@cindex serial line, @code{target remote}
86941c27
JB
12893Use @var{serial-device} to communicate with the target. For example,
12894to use a serial line connected to the device named @file{/dev/ttyb}:
12895
12896@smallexample
12897target remote /dev/ttyb
12898@end smallexample
12899
07f31aa6
DJ
12900If you're using a serial line, you may want to give @value{GDBN} the
12901@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12902(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12903@code{target} command.
07f31aa6 12904
86941c27
JB
12905@item target remote @code{@var{host}:@var{port}}
12906@itemx target remote @code{tcp:@var{host}:@var{port}}
12907@cindex @acronym{TCP} port, @code{target remote}
12908Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12909The @var{host} may be either a host name or a numeric @acronym{IP}
12910address; @var{port} must be a decimal number. The @var{host} could be
12911the target machine itself, if it is directly connected to the net, or
12912it might be a terminal server which in turn has a serial line to the
12913target.
07f31aa6 12914
86941c27
JB
12915For example, to connect to port 2828 on a terminal server named
12916@code{manyfarms}:
07f31aa6
DJ
12917
12918@smallexample
12919target remote manyfarms:2828
12920@end smallexample
12921
86941c27
JB
12922If your remote target is actually running on the same machine as your
12923debugger session (e.g.@: a simulator for your target running on the
12924same host), you can omit the hostname. For example, to connect to
12925port 1234 on your local machine:
07f31aa6
DJ
12926
12927@smallexample
12928target remote :1234
12929@end smallexample
12930@noindent
12931
12932Note that the colon is still required here.
12933
86941c27
JB
12934@item target remote @code{udp:@var{host}:@var{port}}
12935@cindex @acronym{UDP} port, @code{target remote}
12936Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12937connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12938
12939@smallexample
12940target remote udp:manyfarms:2828
12941@end smallexample
12942
86941c27
JB
12943When using a @acronym{UDP} connection for remote debugging, you should
12944keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12945can silently drop packets on busy or unreliable networks, which will
12946cause havoc with your debugging session.
12947
66b8c7f6
JB
12948@item target remote | @var{command}
12949@cindex pipe, @code{target remote} to
12950Run @var{command} in the background and communicate with it using a
12951pipe. The @var{command} is a shell command, to be parsed and expanded
12952by the system's command shell, @code{/bin/sh}; it should expect remote
12953protocol packets on its standard input, and send replies on its
12954standard output. You could use this to run a stand-alone simulator
12955that speaks the remote debugging protocol, to make net connections
12956using programs like @code{ssh}, or for other similar tricks.
12957
12958If @var{command} closes its standard output (perhaps by exiting),
12959@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12960program has already exited, this will have no effect.)
12961
86941c27 12962@end table
07f31aa6 12963
86941c27 12964Once the connection has been established, you can use all the usual
8edfe269
DJ
12965commands to examine and change data. The remote program is already
12966running; you can use @kbd{step} and @kbd{continue}, and you do not
12967need to use @kbd{run}.
07f31aa6
DJ
12968
12969@cindex interrupting remote programs
12970@cindex remote programs, interrupting
12971Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12972interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12973program. This may or may not succeed, depending in part on the hardware
12974and the serial drivers the remote system uses. If you type the
12975interrupt character once again, @value{GDBN} displays this prompt:
12976
12977@smallexample
12978Interrupted while waiting for the program.
12979Give up (and stop debugging it)? (y or n)
12980@end smallexample
12981
12982If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12983(If you decide you want to try again later, you can use @samp{target
12984remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12985goes back to waiting.
12986
12987@table @code
12988@kindex detach (remote)
12989@item detach
12990When you have finished debugging the remote program, you can use the
12991@code{detach} command to release it from @value{GDBN} control.
12992Detaching from the target normally resumes its execution, but the results
12993will depend on your particular remote stub. After the @code{detach}
12994command, @value{GDBN} is free to connect to another target.
12995
12996@kindex disconnect
12997@item disconnect
12998The @code{disconnect} command behaves like @code{detach}, except that
12999the target is generally not resumed. It will wait for @value{GDBN}
13000(this instance or another one) to connect and continue debugging. After
13001the @code{disconnect} command, @value{GDBN} is again free to connect to
13002another target.
09d4efe1
EZ
13003
13004@cindex send command to remote monitor
fad38dfa
EZ
13005@cindex extend @value{GDBN} for remote targets
13006@cindex add new commands for external monitor
09d4efe1
EZ
13007@kindex monitor
13008@item monitor @var{cmd}
fad38dfa
EZ
13009This command allows you to send arbitrary commands directly to the
13010remote monitor. Since @value{GDBN} doesn't care about the commands it
13011sends like this, this command is the way to extend @value{GDBN}---you
13012can add new commands that only the external monitor will understand
13013and implement.
07f31aa6
DJ
13014@end table
13015
a6b151f1
DJ
13016@node File Transfer
13017@section Sending files to a remote system
13018@cindex remote target, file transfer
13019@cindex file transfer
13020@cindex sending files to remote systems
13021
13022Some remote targets offer the ability to transfer files over the same
13023connection used to communicate with @value{GDBN}. This is convenient
13024for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13025running @code{gdbserver} over a network interface. For other targets,
13026e.g.@: embedded devices with only a single serial port, this may be
13027the only way to upload or download files.
13028
13029Not all remote targets support these commands.
13030
13031@table @code
13032@kindex remote put
13033@item remote put @var{hostfile} @var{targetfile}
13034Copy file @var{hostfile} from the host system (the machine running
13035@value{GDBN}) to @var{targetfile} on the target system.
13036
13037@kindex remote get
13038@item remote get @var{targetfile} @var{hostfile}
13039Copy file @var{targetfile} from the target system to @var{hostfile}
13040on the host system.
13041
13042@kindex remote delete
13043@item remote delete @var{targetfile}
13044Delete @var{targetfile} from the target system.
13045
13046@end table
13047
6f05cf9f 13048@node Server
79a6e687 13049@section Using the @code{gdbserver} Program
6f05cf9f
AC
13050
13051@kindex gdbserver
13052@cindex remote connection without stubs
13053@code{gdbserver} is a control program for Unix-like systems, which
13054allows you to connect your program with a remote @value{GDBN} via
13055@code{target remote}---but without linking in the usual debugging stub.
13056
13057@code{gdbserver} is not a complete replacement for the debugging stubs,
13058because it requires essentially the same operating-system facilities
13059that @value{GDBN} itself does. In fact, a system that can run
13060@code{gdbserver} to connect to a remote @value{GDBN} could also run
13061@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13062because it is a much smaller program than @value{GDBN} itself. It is
13063also easier to port than all of @value{GDBN}, so you may be able to get
13064started more quickly on a new system by using @code{gdbserver}.
13065Finally, if you develop code for real-time systems, you may find that
13066the tradeoffs involved in real-time operation make it more convenient to
13067do as much development work as possible on another system, for example
13068by cross-compiling. You can use @code{gdbserver} to make a similar
13069choice for debugging.
13070
13071@value{GDBN} and @code{gdbserver} communicate via either a serial line
13072or a TCP connection, using the standard @value{GDBN} remote serial
13073protocol.
13074
2d717e4f
DJ
13075@quotation
13076@emph{Warning:} @code{gdbserver} does not have any built-in security.
13077Do not run @code{gdbserver} connected to any public network; a
13078@value{GDBN} connection to @code{gdbserver} provides access to the
13079target system with the same privileges as the user running
13080@code{gdbserver}.
13081@end quotation
13082
13083@subsection Running @code{gdbserver}
13084@cindex arguments, to @code{gdbserver}
13085
13086Run @code{gdbserver} on the target system. You need a copy of the
13087program you want to debug, including any libraries it requires.
6f05cf9f
AC
13088@code{gdbserver} does not need your program's symbol table, so you can
13089strip the program if necessary to save space. @value{GDBN} on the host
13090system does all the symbol handling.
13091
13092To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13093the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13094syntax is:
13095
13096@smallexample
13097target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13098@end smallexample
13099
13100@var{comm} is either a device name (to use a serial line) or a TCP
13101hostname and portnumber. For example, to debug Emacs with the argument
13102@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13103@file{/dev/com1}:
13104
13105@smallexample
13106target> gdbserver /dev/com1 emacs foo.txt
13107@end smallexample
13108
13109@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13110with it.
13111
13112To use a TCP connection instead of a serial line:
13113
13114@smallexample
13115target> gdbserver host:2345 emacs foo.txt
13116@end smallexample
13117
13118The only difference from the previous example is the first argument,
13119specifying that you are communicating with the host @value{GDBN} via
13120TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13121expect a TCP connection from machine @samp{host} to local TCP port 2345.
13122(Currently, the @samp{host} part is ignored.) You can choose any number
13123you want for the port number as long as it does not conflict with any
13124TCP ports already in use on the target system (for example, @code{23} is
13125reserved for @code{telnet}).@footnote{If you choose a port number that
13126conflicts with another service, @code{gdbserver} prints an error message
13127and exits.} You must use the same port number with the host @value{GDBN}
13128@code{target remote} command.
13129
2d717e4f
DJ
13130@subsubsection Attaching to a Running Program
13131
56460a61
DJ
13132On some targets, @code{gdbserver} can also attach to running programs.
13133This is accomplished via the @code{--attach} argument. The syntax is:
13134
13135@smallexample
2d717e4f 13136target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13137@end smallexample
13138
13139@var{pid} is the process ID of a currently running process. It isn't necessary
13140to point @code{gdbserver} at a binary for the running process.
13141
b1fe9455
DJ
13142@pindex pidof
13143@cindex attach to a program by name
13144You can debug processes by name instead of process ID if your target has the
13145@code{pidof} utility:
13146
13147@smallexample
2d717e4f 13148target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13149@end smallexample
13150
f822c95b 13151In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13152has multiple threads, most versions of @code{pidof} support the
13153@code{-s} option to only return the first process ID.
13154
2d717e4f
DJ
13155@subsubsection Multi-Process Mode for @code{gdbserver}
13156@cindex gdbserver, multiple processes
13157@cindex multiple processes with gdbserver
13158
13159When you connect to @code{gdbserver} using @code{target remote},
13160@code{gdbserver} debugs the specified program only once. When the
13161program exits, or you detach from it, @value{GDBN} closes the connection
13162and @code{gdbserver} exits.
13163
6e6c6f50 13164If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13165enters multi-process mode. When the debugged program exits, or you
13166detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13167though no program is running. The @code{run} and @code{attach}
13168commands instruct @code{gdbserver} to run or attach to a new program.
13169The @code{run} command uses @code{set remote exec-file} (@pxref{set
13170remote exec-file}) to select the program to run. Command line
13171arguments are supported, except for wildcard expansion and I/O
13172redirection (@pxref{Arguments}).
13173
13174To start @code{gdbserver} without supplying an initial command to run
13175or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13176Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13177the program you want to debug.
13178
13179@code{gdbserver} does not automatically exit in multi-process mode.
13180You can terminate it by using @code{monitor exit}
13181(@pxref{Monitor Commands for gdbserver}).
13182
13183@subsubsection Other Command-Line Arguments for @code{gdbserver}
13184
13185You can include @option{--debug} on the @code{gdbserver} command line.
13186@code{gdbserver} will display extra status information about the debugging
13187process. This option is intended for @code{gdbserver} development and
13188for bug reports to the developers.
13189
ccd213ac
DJ
13190The @option{--wrapper} option specifies a wrapper to launch programs
13191for debugging. The option should be followed by the name of the
13192wrapper, then any command-line arguments to pass to the wrapper, then
13193@kbd{--} indicating the end of the wrapper arguments.
13194
13195@code{gdbserver} runs the specified wrapper program with a combined
13196command line including the wrapper arguments, then the name of the
13197program to debug, then any arguments to the program. The wrapper
13198runs until it executes your program, and then @value{GDBN} gains control.
13199
13200You can use any program that eventually calls @code{execve} with
13201its arguments as a wrapper. Several standard Unix utilities do
13202this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13203with @code{exec "$@@"} will also work.
13204
13205For example, you can use @code{env} to pass an environment variable to
13206the debugged program, without setting the variable in @code{gdbserver}'s
13207environment:
13208
13209@smallexample
13210$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13211@end smallexample
13212
2d717e4f
DJ
13213@subsection Connecting to @code{gdbserver}
13214
13215Run @value{GDBN} on the host system.
13216
13217First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13218your application using the @code{file} command before you connect. Use
13219@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13220was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13221
13222The symbol file and target libraries must exactly match the executable
13223and libraries on the target, with one exception: the files on the host
13224system should not be stripped, even if the files on the target system
13225are. Mismatched or missing files will lead to confusing results
13226during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13227files may also prevent @code{gdbserver} from debugging multi-threaded
13228programs.
13229
79a6e687 13230Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13231For TCP connections, you must start up @code{gdbserver} prior to using
13232the @code{target remote} command. Otherwise you may get an error whose
13233text depends on the host system, but which usually looks something like
2d717e4f 13234@samp{Connection refused}. Don't use the @code{load}
397ca115 13235command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13236already on the target.
07f31aa6 13237
79a6e687 13238@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13239@cindex monitor commands, for @code{gdbserver}
2d717e4f 13240@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13241
13242During a @value{GDBN} session using @code{gdbserver}, you can use the
13243@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13244Here are the available commands.
c74d0ad8
DJ
13245
13246@table @code
13247@item monitor help
13248List the available monitor commands.
13249
13250@item monitor set debug 0
13251@itemx monitor set debug 1
13252Disable or enable general debugging messages.
13253
13254@item monitor set remote-debug 0
13255@itemx monitor set remote-debug 1
13256Disable or enable specific debugging messages associated with the remote
13257protocol (@pxref{Remote Protocol}).
13258
2d717e4f
DJ
13259@item monitor exit
13260Tell gdbserver to exit immediately. This command should be followed by
13261@code{disconnect} to close the debugging session. @code{gdbserver} will
13262detach from any attached processes and kill any processes it created.
13263Use @code{monitor exit} to terminate @code{gdbserver} at the end
13264of a multi-process mode debug session.
13265
c74d0ad8
DJ
13266@end table
13267
79a6e687
BW
13268@node Remote Configuration
13269@section Remote Configuration
501eef12 13270
9c16f35a
EZ
13271@kindex set remote
13272@kindex show remote
13273This section documents the configuration options available when
13274debugging remote programs. For the options related to the File I/O
fc320d37 13275extensions of the remote protocol, see @ref{system,
9c16f35a 13276system-call-allowed}.
501eef12
AC
13277
13278@table @code
9c16f35a 13279@item set remoteaddresssize @var{bits}
d3e8051b 13280@cindex address size for remote targets
9c16f35a
EZ
13281@cindex bits in remote address
13282Set the maximum size of address in a memory packet to the specified
13283number of bits. @value{GDBN} will mask off the address bits above
13284that number, when it passes addresses to the remote target. The
13285default value is the number of bits in the target's address.
13286
13287@item show remoteaddresssize
13288Show the current value of remote address size in bits.
13289
13290@item set remotebaud @var{n}
13291@cindex baud rate for remote targets
13292Set the baud rate for the remote serial I/O to @var{n} baud. The
13293value is used to set the speed of the serial port used for debugging
13294remote targets.
13295
13296@item show remotebaud
13297Show the current speed of the remote connection.
13298
13299@item set remotebreak
13300@cindex interrupt remote programs
13301@cindex BREAK signal instead of Ctrl-C
9a6253be 13302@anchor{set remotebreak}
9c16f35a 13303If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13304when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13305on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13306character instead. The default is off, since most remote systems
13307expect to see @samp{Ctrl-C} as the interrupt signal.
13308
13309@item show remotebreak
13310Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13311interrupt the remote program.
13312
23776285
MR
13313@item set remoteflow on
13314@itemx set remoteflow off
13315@kindex set remoteflow
13316Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13317on the serial port used to communicate to the remote target.
13318
13319@item show remoteflow
13320@kindex show remoteflow
13321Show the current setting of hardware flow control.
13322
9c16f35a
EZ
13323@item set remotelogbase @var{base}
13324Set the base (a.k.a.@: radix) of logging serial protocol
13325communications to @var{base}. Supported values of @var{base} are:
13326@code{ascii}, @code{octal}, and @code{hex}. The default is
13327@code{ascii}.
13328
13329@item show remotelogbase
13330Show the current setting of the radix for logging remote serial
13331protocol.
13332
13333@item set remotelogfile @var{file}
13334@cindex record serial communications on file
13335Record remote serial communications on the named @var{file}. The
13336default is not to record at all.
13337
13338@item show remotelogfile.
13339Show the current setting of the file name on which to record the
13340serial communications.
13341
13342@item set remotetimeout @var{num}
13343@cindex timeout for serial communications
13344@cindex remote timeout
13345Set the timeout limit to wait for the remote target to respond to
13346@var{num} seconds. The default is 2 seconds.
13347
13348@item show remotetimeout
13349Show the current number of seconds to wait for the remote target
13350responses.
13351
13352@cindex limit hardware breakpoints and watchpoints
13353@cindex remote target, limit break- and watchpoints
501eef12
AC
13354@anchor{set remote hardware-watchpoint-limit}
13355@anchor{set remote hardware-breakpoint-limit}
13356@item set remote hardware-watchpoint-limit @var{limit}
13357@itemx set remote hardware-breakpoint-limit @var{limit}
13358Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13359watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13360
13361@item set remote exec-file @var{filename}
13362@itemx show remote exec-file
13363@anchor{set remote exec-file}
13364@cindex executable file, for remote target
13365Select the file used for @code{run} with @code{target
13366extended-remote}. This should be set to a filename valid on the
13367target system. If it is not set, the target will use a default
13368filename (e.g.@: the last program run).
501eef12
AC
13369@end table
13370
427c3a89
DJ
13371@cindex remote packets, enabling and disabling
13372The @value{GDBN} remote protocol autodetects the packets supported by
13373your debugging stub. If you need to override the autodetection, you
13374can use these commands to enable or disable individual packets. Each
13375packet can be set to @samp{on} (the remote target supports this
13376packet), @samp{off} (the remote target does not support this packet),
13377or @samp{auto} (detect remote target support for this packet). They
13378all default to @samp{auto}. For more information about each packet,
13379see @ref{Remote Protocol}.
13380
13381During normal use, you should not have to use any of these commands.
13382If you do, that may be a bug in your remote debugging stub, or a bug
13383in @value{GDBN}. You may want to report the problem to the
13384@value{GDBN} developers.
13385
cfa9d6d9
DJ
13386For each packet @var{name}, the command to enable or disable the
13387packet is @code{set remote @var{name}-packet}. The available settings
13388are:
427c3a89 13389
cfa9d6d9 13390@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13391@item Command Name
13392@tab Remote Packet
13393@tab Related Features
13394
cfa9d6d9 13395@item @code{fetch-register}
427c3a89
DJ
13396@tab @code{p}
13397@tab @code{info registers}
13398
cfa9d6d9 13399@item @code{set-register}
427c3a89
DJ
13400@tab @code{P}
13401@tab @code{set}
13402
cfa9d6d9 13403@item @code{binary-download}
427c3a89
DJ
13404@tab @code{X}
13405@tab @code{load}, @code{set}
13406
cfa9d6d9 13407@item @code{read-aux-vector}
427c3a89
DJ
13408@tab @code{qXfer:auxv:read}
13409@tab @code{info auxv}
13410
cfa9d6d9 13411@item @code{symbol-lookup}
427c3a89
DJ
13412@tab @code{qSymbol}
13413@tab Detecting multiple threads
13414
2d717e4f
DJ
13415@item @code{attach}
13416@tab @code{vAttach}
13417@tab @code{attach}
13418
cfa9d6d9 13419@item @code{verbose-resume}
427c3a89
DJ
13420@tab @code{vCont}
13421@tab Stepping or resuming multiple threads
13422
2d717e4f
DJ
13423@item @code{run}
13424@tab @code{vRun}
13425@tab @code{run}
13426
cfa9d6d9 13427@item @code{software-breakpoint}
427c3a89
DJ
13428@tab @code{Z0}
13429@tab @code{break}
13430
cfa9d6d9 13431@item @code{hardware-breakpoint}
427c3a89
DJ
13432@tab @code{Z1}
13433@tab @code{hbreak}
13434
cfa9d6d9 13435@item @code{write-watchpoint}
427c3a89
DJ
13436@tab @code{Z2}
13437@tab @code{watch}
13438
cfa9d6d9 13439@item @code{read-watchpoint}
427c3a89
DJ
13440@tab @code{Z3}
13441@tab @code{rwatch}
13442
cfa9d6d9 13443@item @code{access-watchpoint}
427c3a89
DJ
13444@tab @code{Z4}
13445@tab @code{awatch}
13446
cfa9d6d9
DJ
13447@item @code{target-features}
13448@tab @code{qXfer:features:read}
13449@tab @code{set architecture}
13450
13451@item @code{library-info}
13452@tab @code{qXfer:libraries:read}
13453@tab @code{info sharedlibrary}
13454
13455@item @code{memory-map}
13456@tab @code{qXfer:memory-map:read}
13457@tab @code{info mem}
13458
13459@item @code{read-spu-object}
13460@tab @code{qXfer:spu:read}
13461@tab @code{info spu}
13462
13463@item @code{write-spu-object}
13464@tab @code{qXfer:spu:write}
13465@tab @code{info spu}
13466
13467@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13468@tab @code{qGetTLSAddr}
13469@tab Displaying @code{__thread} variables
13470
13471@item @code{supported-packets}
13472@tab @code{qSupported}
13473@tab Remote communications parameters
13474
cfa9d6d9 13475@item @code{pass-signals}
89be2091
DJ
13476@tab @code{QPassSignals}
13477@tab @code{handle @var{signal}}
13478
a6b151f1
DJ
13479@item @code{hostio-close-packet}
13480@tab @code{vFile:close}
13481@tab @code{remote get}, @code{remote put}
13482
13483@item @code{hostio-open-packet}
13484@tab @code{vFile:open}
13485@tab @code{remote get}, @code{remote put}
13486
13487@item @code{hostio-pread-packet}
13488@tab @code{vFile:pread}
13489@tab @code{remote get}, @code{remote put}
13490
13491@item @code{hostio-pwrite-packet}
13492@tab @code{vFile:pwrite}
13493@tab @code{remote get}, @code{remote put}
13494
13495@item @code{hostio-unlink-packet}
13496@tab @code{vFile:unlink}
13497@tab @code{remote delete}
427c3a89
DJ
13498@end multitable
13499
79a6e687
BW
13500@node Remote Stub
13501@section Implementing a Remote Stub
7a292a7a 13502
8e04817f
AC
13503@cindex debugging stub, example
13504@cindex remote stub, example
13505@cindex stub example, remote debugging
13506The stub files provided with @value{GDBN} implement the target side of the
13507communication protocol, and the @value{GDBN} side is implemented in the
13508@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13509these subroutines to communicate, and ignore the details. (If you're
13510implementing your own stub file, you can still ignore the details: start
13511with one of the existing stub files. @file{sparc-stub.c} is the best
13512organized, and therefore the easiest to read.)
13513
104c1213
JM
13514@cindex remote serial debugging, overview
13515To debug a program running on another machine (the debugging
13516@dfn{target} machine), you must first arrange for all the usual
13517prerequisites for the program to run by itself. For example, for a C
13518program, you need:
c906108c 13519
104c1213
JM
13520@enumerate
13521@item
13522A startup routine to set up the C runtime environment; these usually
13523have a name like @file{crt0}. The startup routine may be supplied by
13524your hardware supplier, or you may have to write your own.
96baa820 13525
5d161b24 13526@item
d4f3574e 13527A C subroutine library to support your program's
104c1213 13528subroutine calls, notably managing input and output.
96baa820 13529
104c1213
JM
13530@item
13531A way of getting your program to the other machine---for example, a
13532download program. These are often supplied by the hardware
13533manufacturer, but you may have to write your own from hardware
13534documentation.
13535@end enumerate
96baa820 13536
104c1213
JM
13537The next step is to arrange for your program to use a serial port to
13538communicate with the machine where @value{GDBN} is running (the @dfn{host}
13539machine). In general terms, the scheme looks like this:
96baa820 13540
104c1213
JM
13541@table @emph
13542@item On the host,
13543@value{GDBN} already understands how to use this protocol; when everything
13544else is set up, you can simply use the @samp{target remote} command
13545(@pxref{Targets,,Specifying a Debugging Target}).
13546
13547@item On the target,
13548you must link with your program a few special-purpose subroutines that
13549implement the @value{GDBN} remote serial protocol. The file containing these
13550subroutines is called a @dfn{debugging stub}.
13551
13552On certain remote targets, you can use an auxiliary program
13553@code{gdbserver} instead of linking a stub into your program.
79a6e687 13554@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13555@end table
96baa820 13556
104c1213
JM
13557The debugging stub is specific to the architecture of the remote
13558machine; for example, use @file{sparc-stub.c} to debug programs on
13559@sc{sparc} boards.
96baa820 13560
104c1213
JM
13561@cindex remote serial stub list
13562These working remote stubs are distributed with @value{GDBN}:
96baa820 13563
104c1213
JM
13564@table @code
13565
13566@item i386-stub.c
41afff9a 13567@cindex @file{i386-stub.c}
104c1213
JM
13568@cindex Intel
13569@cindex i386
13570For Intel 386 and compatible architectures.
13571
13572@item m68k-stub.c
41afff9a 13573@cindex @file{m68k-stub.c}
104c1213
JM
13574@cindex Motorola 680x0
13575@cindex m680x0
13576For Motorola 680x0 architectures.
13577
13578@item sh-stub.c
41afff9a 13579@cindex @file{sh-stub.c}
172c2a43 13580@cindex Renesas
104c1213 13581@cindex SH
172c2a43 13582For Renesas SH architectures.
104c1213
JM
13583
13584@item sparc-stub.c
41afff9a 13585@cindex @file{sparc-stub.c}
104c1213
JM
13586@cindex Sparc
13587For @sc{sparc} architectures.
13588
13589@item sparcl-stub.c
41afff9a 13590@cindex @file{sparcl-stub.c}
104c1213
JM
13591@cindex Fujitsu
13592@cindex SparcLite
13593For Fujitsu @sc{sparclite} architectures.
13594
13595@end table
13596
13597The @file{README} file in the @value{GDBN} distribution may list other
13598recently added stubs.
13599
13600@menu
13601* Stub Contents:: What the stub can do for you
13602* Bootstrapping:: What you must do for the stub
13603* Debug Session:: Putting it all together
104c1213
JM
13604@end menu
13605
6d2ebf8b 13606@node Stub Contents
79a6e687 13607@subsection What the Stub Can Do for You
104c1213
JM
13608
13609@cindex remote serial stub
13610The debugging stub for your architecture supplies these three
13611subroutines:
13612
13613@table @code
13614@item set_debug_traps
4644b6e3 13615@findex set_debug_traps
104c1213
JM
13616@cindex remote serial stub, initialization
13617This routine arranges for @code{handle_exception} to run when your
13618program stops. You must call this subroutine explicitly near the
13619beginning of your program.
13620
13621@item handle_exception
4644b6e3 13622@findex handle_exception
104c1213
JM
13623@cindex remote serial stub, main routine
13624This is the central workhorse, but your program never calls it
13625explicitly---the setup code arranges for @code{handle_exception} to
13626run when a trap is triggered.
13627
13628@code{handle_exception} takes control when your program stops during
13629execution (for example, on a breakpoint), and mediates communications
13630with @value{GDBN} on the host machine. This is where the communications
13631protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13632representative on the target machine. It begins by sending summary
104c1213
JM
13633information on the state of your program, then continues to execute,
13634retrieving and transmitting any information @value{GDBN} needs, until you
13635execute a @value{GDBN} command that makes your program resume; at that point,
13636@code{handle_exception} returns control to your own code on the target
5d161b24 13637machine.
104c1213
JM
13638
13639@item breakpoint
13640@cindex @code{breakpoint} subroutine, remote
13641Use this auxiliary subroutine to make your program contain a
13642breakpoint. Depending on the particular situation, this may be the only
13643way for @value{GDBN} to get control. For instance, if your target
13644machine has some sort of interrupt button, you won't need to call this;
13645pressing the interrupt button transfers control to
13646@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13647simply receiving characters on the serial port may also trigger a trap;
13648again, in that situation, you don't need to call @code{breakpoint} from
13649your own program---simply running @samp{target remote} from the host
5d161b24 13650@value{GDBN} session gets control.
104c1213
JM
13651
13652Call @code{breakpoint} if none of these is true, or if you simply want
13653to make certain your program stops at a predetermined point for the
13654start of your debugging session.
13655@end table
13656
6d2ebf8b 13657@node Bootstrapping
79a6e687 13658@subsection What You Must Do for the Stub
104c1213
JM
13659
13660@cindex remote stub, support routines
13661The debugging stubs that come with @value{GDBN} are set up for a particular
13662chip architecture, but they have no information about the rest of your
13663debugging target machine.
13664
13665First of all you need to tell the stub how to communicate with the
13666serial port.
13667
13668@table @code
13669@item int getDebugChar()
4644b6e3 13670@findex getDebugChar
104c1213
JM
13671Write this subroutine to read a single character from the serial port.
13672It may be identical to @code{getchar} for your target system; a
13673different name is used to allow you to distinguish the two if you wish.
13674
13675@item void putDebugChar(int)
4644b6e3 13676@findex putDebugChar
104c1213 13677Write this subroutine to write a single character to the serial port.
5d161b24 13678It may be identical to @code{putchar} for your target system; a
104c1213
JM
13679different name is used to allow you to distinguish the two if you wish.
13680@end table
13681
13682@cindex control C, and remote debugging
13683@cindex interrupting remote targets
13684If you want @value{GDBN} to be able to stop your program while it is
13685running, you need to use an interrupt-driven serial driver, and arrange
13686for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13687character). That is the character which @value{GDBN} uses to tell the
13688remote system to stop.
13689
13690Getting the debugging target to return the proper status to @value{GDBN}
13691probably requires changes to the standard stub; one quick and dirty way
13692is to just execute a breakpoint instruction (the ``dirty'' part is that
13693@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13694
13695Other routines you need to supply are:
13696
13697@table @code
13698@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13699@findex exceptionHandler
104c1213
JM
13700Write this function to install @var{exception_address} in the exception
13701handling tables. You need to do this because the stub does not have any
13702way of knowing what the exception handling tables on your target system
13703are like (for example, the processor's table might be in @sc{rom},
13704containing entries which point to a table in @sc{ram}).
13705@var{exception_number} is the exception number which should be changed;
13706its meaning is architecture-dependent (for example, different numbers
13707might represent divide by zero, misaligned access, etc). When this
13708exception occurs, control should be transferred directly to
13709@var{exception_address}, and the processor state (stack, registers,
13710and so on) should be just as it is when a processor exception occurs. So if
13711you want to use a jump instruction to reach @var{exception_address}, it
13712should be a simple jump, not a jump to subroutine.
13713
13714For the 386, @var{exception_address} should be installed as an interrupt
13715gate so that interrupts are masked while the handler runs. The gate
13716should be at privilege level 0 (the most privileged level). The
13717@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13718help from @code{exceptionHandler}.
13719
13720@item void flush_i_cache()
4644b6e3 13721@findex flush_i_cache
d4f3574e 13722On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13723instruction cache, if any, on your target machine. If there is no
13724instruction cache, this subroutine may be a no-op.
13725
13726On target machines that have instruction caches, @value{GDBN} requires this
13727function to make certain that the state of your program is stable.
13728@end table
13729
13730@noindent
13731You must also make sure this library routine is available:
13732
13733@table @code
13734@item void *memset(void *, int, int)
4644b6e3 13735@findex memset
104c1213
JM
13736This is the standard library function @code{memset} that sets an area of
13737memory to a known value. If you have one of the free versions of
13738@code{libc.a}, @code{memset} can be found there; otherwise, you must
13739either obtain it from your hardware manufacturer, or write your own.
13740@end table
13741
13742If you do not use the GNU C compiler, you may need other standard
13743library subroutines as well; this varies from one stub to another,
13744but in general the stubs are likely to use any of the common library
e22ea452 13745subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13746
13747
6d2ebf8b 13748@node Debug Session
79a6e687 13749@subsection Putting it All Together
104c1213
JM
13750
13751@cindex remote serial debugging summary
13752In summary, when your program is ready to debug, you must follow these
13753steps.
13754
13755@enumerate
13756@item
6d2ebf8b 13757Make sure you have defined the supporting low-level routines
79a6e687 13758(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13759@display
13760@code{getDebugChar}, @code{putDebugChar},
13761@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13762@end display
13763
13764@item
13765Insert these lines near the top of your program:
13766
474c8240 13767@smallexample
104c1213
JM
13768set_debug_traps();
13769breakpoint();
474c8240 13770@end smallexample
104c1213
JM
13771
13772@item
13773For the 680x0 stub only, you need to provide a variable called
13774@code{exceptionHook}. Normally you just use:
13775
474c8240 13776@smallexample
104c1213 13777void (*exceptionHook)() = 0;
474c8240 13778@end smallexample
104c1213 13779
d4f3574e 13780@noindent
104c1213 13781but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13782function in your program, that function is called when
104c1213
JM
13783@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13784error). The function indicated by @code{exceptionHook} is called with
13785one parameter: an @code{int} which is the exception number.
13786
13787@item
13788Compile and link together: your program, the @value{GDBN} debugging stub for
13789your target architecture, and the supporting subroutines.
13790
13791@item
13792Make sure you have a serial connection between your target machine and
13793the @value{GDBN} host, and identify the serial port on the host.
13794
13795@item
13796@c The "remote" target now provides a `load' command, so we should
13797@c document that. FIXME.
13798Download your program to your target machine (or get it there by
13799whatever means the manufacturer provides), and start it.
13800
13801@item
07f31aa6 13802Start @value{GDBN} on the host, and connect to the target
79a6e687 13803(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13804
104c1213
JM
13805@end enumerate
13806
8e04817f
AC
13807@node Configurations
13808@chapter Configuration-Specific Information
104c1213 13809
8e04817f
AC
13810While nearly all @value{GDBN} commands are available for all native and
13811cross versions of the debugger, there are some exceptions. This chapter
13812describes things that are only available in certain configurations.
104c1213 13813
8e04817f
AC
13814There are three major categories of configurations: native
13815configurations, where the host and target are the same, embedded
13816operating system configurations, which are usually the same for several
13817different processor architectures, and bare embedded processors, which
13818are quite different from each other.
104c1213 13819
8e04817f
AC
13820@menu
13821* Native::
13822* Embedded OS::
13823* Embedded Processors::
13824* Architectures::
13825@end menu
104c1213 13826
8e04817f
AC
13827@node Native
13828@section Native
104c1213 13829
8e04817f
AC
13830This section describes details specific to particular native
13831configurations.
6cf7e474 13832
8e04817f
AC
13833@menu
13834* HP-UX:: HP-UX
7561d450 13835* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13836* SVR4 Process Information:: SVR4 process information
13837* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13838* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13839* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13840* Neutrino:: Features specific to QNX Neutrino
8e04817f 13841@end menu
6cf7e474 13842
8e04817f
AC
13843@node HP-UX
13844@subsection HP-UX
104c1213 13845
8e04817f
AC
13846On HP-UX systems, if you refer to a function or variable name that
13847begins with a dollar sign, @value{GDBN} searches for a user or system
13848name first, before it searches for a convenience variable.
104c1213 13849
9c16f35a 13850
7561d450
MK
13851@node BSD libkvm Interface
13852@subsection BSD libkvm Interface
13853
13854@cindex libkvm
13855@cindex kernel memory image
13856@cindex kernel crash dump
13857
13858BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13859interface that provides a uniform interface for accessing kernel virtual
13860memory images, including live systems and crash dumps. @value{GDBN}
13861uses this interface to allow you to debug live kernels and kernel crash
13862dumps on many native BSD configurations. This is implemented as a
13863special @code{kvm} debugging target. For debugging a live system, load
13864the currently running kernel into @value{GDBN} and connect to the
13865@code{kvm} target:
13866
13867@smallexample
13868(@value{GDBP}) @b{target kvm}
13869@end smallexample
13870
13871For debugging crash dumps, provide the file name of the crash dump as an
13872argument:
13873
13874@smallexample
13875(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13876@end smallexample
13877
13878Once connected to the @code{kvm} target, the following commands are
13879available:
13880
13881@table @code
13882@kindex kvm
13883@item kvm pcb
721c2651 13884Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13885
13886@item kvm proc
13887Set current context from proc address. This command isn't available on
13888modern FreeBSD systems.
13889@end table
13890
8e04817f 13891@node SVR4 Process Information
79a6e687 13892@subsection SVR4 Process Information
60bf7e09
EZ
13893@cindex /proc
13894@cindex examine process image
13895@cindex process info via @file{/proc}
104c1213 13896
60bf7e09
EZ
13897Many versions of SVR4 and compatible systems provide a facility called
13898@samp{/proc} that can be used to examine the image of a running
13899process using file-system subroutines. If @value{GDBN} is configured
13900for an operating system with this facility, the command @code{info
13901proc} is available to report information about the process running
13902your program, or about any process running on your system. @code{info
13903proc} works only on SVR4 systems that include the @code{procfs} code.
13904This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13905Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13906
8e04817f
AC
13907@table @code
13908@kindex info proc
60bf7e09 13909@cindex process ID
8e04817f 13910@item info proc
60bf7e09
EZ
13911@itemx info proc @var{process-id}
13912Summarize available information about any running process. If a
13913process ID is specified by @var{process-id}, display information about
13914that process; otherwise display information about the program being
13915debugged. The summary includes the debugged process ID, the command
13916line used to invoke it, its current working directory, and its
13917executable file's absolute file name.
13918
13919On some systems, @var{process-id} can be of the form
13920@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13921within a process. If the optional @var{pid} part is missing, it means
13922a thread from the process being debugged (the leading @samp{/} still
13923needs to be present, or else @value{GDBN} will interpret the number as
13924a process ID rather than a thread ID).
6cf7e474 13925
8e04817f 13926@item info proc mappings
60bf7e09
EZ
13927@cindex memory address space mappings
13928Report the memory address space ranges accessible in the program, with
13929information on whether the process has read, write, or execute access
13930rights to each range. On @sc{gnu}/Linux systems, each memory range
13931includes the object file which is mapped to that range, instead of the
13932memory access rights to that range.
13933
13934@item info proc stat
13935@itemx info proc status
13936@cindex process detailed status information
13937These subcommands are specific to @sc{gnu}/Linux systems. They show
13938the process-related information, including the user ID and group ID;
13939how many threads are there in the process; its virtual memory usage;
13940the signals that are pending, blocked, and ignored; its TTY; its
13941consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13942value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13943(type @kbd{man 5 proc} from your shell prompt).
13944
13945@item info proc all
13946Show all the information about the process described under all of the
13947above @code{info proc} subcommands.
13948
8e04817f
AC
13949@ignore
13950@comment These sub-options of 'info proc' were not included when
13951@comment procfs.c was re-written. Keep their descriptions around
13952@comment against the day when someone finds the time to put them back in.
13953@kindex info proc times
13954@item info proc times
13955Starting time, user CPU time, and system CPU time for your program and
13956its children.
6cf7e474 13957
8e04817f
AC
13958@kindex info proc id
13959@item info proc id
13960Report on the process IDs related to your program: its own process ID,
13961the ID of its parent, the process group ID, and the session ID.
8e04817f 13962@end ignore
721c2651
EZ
13963
13964@item set procfs-trace
13965@kindex set procfs-trace
13966@cindex @code{procfs} API calls
13967This command enables and disables tracing of @code{procfs} API calls.
13968
13969@item show procfs-trace
13970@kindex show procfs-trace
13971Show the current state of @code{procfs} API call tracing.
13972
13973@item set procfs-file @var{file}
13974@kindex set procfs-file
13975Tell @value{GDBN} to write @code{procfs} API trace to the named
13976@var{file}. @value{GDBN} appends the trace info to the previous
13977contents of the file. The default is to display the trace on the
13978standard output.
13979
13980@item show procfs-file
13981@kindex show procfs-file
13982Show the file to which @code{procfs} API trace is written.
13983
13984@item proc-trace-entry
13985@itemx proc-trace-exit
13986@itemx proc-untrace-entry
13987@itemx proc-untrace-exit
13988@kindex proc-trace-entry
13989@kindex proc-trace-exit
13990@kindex proc-untrace-entry
13991@kindex proc-untrace-exit
13992These commands enable and disable tracing of entries into and exits
13993from the @code{syscall} interface.
13994
13995@item info pidlist
13996@kindex info pidlist
13997@cindex process list, QNX Neutrino
13998For QNX Neutrino only, this command displays the list of all the
13999processes and all the threads within each process.
14000
14001@item info meminfo
14002@kindex info meminfo
14003@cindex mapinfo list, QNX Neutrino
14004For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 14005@end table
104c1213 14006
8e04817f
AC
14007@node DJGPP Native
14008@subsection Features for Debugging @sc{djgpp} Programs
14009@cindex @sc{djgpp} debugging
14010@cindex native @sc{djgpp} debugging
14011@cindex MS-DOS-specific commands
104c1213 14012
514c4d71
EZ
14013@cindex DPMI
14014@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
14015MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
14016that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
14017top of real-mode DOS systems and their emulations.
104c1213 14018
8e04817f
AC
14019@value{GDBN} supports native debugging of @sc{djgpp} programs, and
14020defines a few commands specific to the @sc{djgpp} port. This
14021subsection describes those commands.
104c1213 14022
8e04817f
AC
14023@table @code
14024@kindex info dos
14025@item info dos
14026This is a prefix of @sc{djgpp}-specific commands which print
14027information about the target system and important OS structures.
f1251bdd 14028
8e04817f
AC
14029@kindex sysinfo
14030@cindex MS-DOS system info
14031@cindex free memory information (MS-DOS)
14032@item info dos sysinfo
14033This command displays assorted information about the underlying
14034platform: the CPU type and features, the OS version and flavor, the
14035DPMI version, and the available conventional and DPMI memory.
104c1213 14036
8e04817f
AC
14037@cindex GDT
14038@cindex LDT
14039@cindex IDT
14040@cindex segment descriptor tables
14041@cindex descriptor tables display
14042@item info dos gdt
14043@itemx info dos ldt
14044@itemx info dos idt
14045These 3 commands display entries from, respectively, Global, Local,
14046and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14047tables are data structures which store a descriptor for each segment
14048that is currently in use. The segment's selector is an index into a
14049descriptor table; the table entry for that index holds the
14050descriptor's base address and limit, and its attributes and access
14051rights.
104c1213 14052
8e04817f
AC
14053A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14054segment (used for both data and the stack), and a DOS segment (which
14055allows access to DOS/BIOS data structures and absolute addresses in
14056conventional memory). However, the DPMI host will usually define
14057additional segments in order to support the DPMI environment.
d4f3574e 14058
8e04817f
AC
14059@cindex garbled pointers
14060These commands allow to display entries from the descriptor tables.
14061Without an argument, all entries from the specified table are
14062displayed. An argument, which should be an integer expression, means
14063display a single entry whose index is given by the argument. For
14064example, here's a convenient way to display information about the
14065debugged program's data segment:
104c1213 14066
8e04817f
AC
14067@smallexample
14068@exdent @code{(@value{GDBP}) info dos ldt $ds}
14069@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14070@end smallexample
104c1213 14071
8e04817f
AC
14072@noindent
14073This comes in handy when you want to see whether a pointer is outside
14074the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14075
8e04817f
AC
14076@cindex page tables display (MS-DOS)
14077@item info dos pde
14078@itemx info dos pte
14079These two commands display entries from, respectively, the Page
14080Directory and the Page Tables. Page Directories and Page Tables are
14081data structures which control how virtual memory addresses are mapped
14082into physical addresses. A Page Table includes an entry for every
14083page of memory that is mapped into the program's address space; there
14084may be several Page Tables, each one holding up to 4096 entries. A
14085Page Directory has up to 4096 entries, one each for every Page Table
14086that is currently in use.
104c1213 14087
8e04817f
AC
14088Without an argument, @kbd{info dos pde} displays the entire Page
14089Directory, and @kbd{info dos pte} displays all the entries in all of
14090the Page Tables. An argument, an integer expression, given to the
14091@kbd{info dos pde} command means display only that entry from the Page
14092Directory table. An argument given to the @kbd{info dos pte} command
14093means display entries from a single Page Table, the one pointed to by
14094the specified entry in the Page Directory.
104c1213 14095
8e04817f
AC
14096@cindex direct memory access (DMA) on MS-DOS
14097These commands are useful when your program uses @dfn{DMA} (Direct
14098Memory Access), which needs physical addresses to program the DMA
14099controller.
104c1213 14100
8e04817f 14101These commands are supported only with some DPMI servers.
104c1213 14102
8e04817f
AC
14103@cindex physical address from linear address
14104@item info dos address-pte @var{addr}
14105This command displays the Page Table entry for a specified linear
514c4d71
EZ
14106address. The argument @var{addr} is a linear address which should
14107already have the appropriate segment's base address added to it,
14108because this command accepts addresses which may belong to @emph{any}
14109segment. For example, here's how to display the Page Table entry for
14110the page where a variable @code{i} is stored:
104c1213 14111
b383017d 14112@smallexample
8e04817f
AC
14113@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14114@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14115@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14116@end smallexample
104c1213 14117
8e04817f
AC
14118@noindent
14119This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14120whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14121attributes of that page.
104c1213 14122
8e04817f
AC
14123Note that you must cast the addresses of variables to a @code{char *},
14124since otherwise the value of @code{__djgpp_base_address}, the base
14125address of all variables and functions in a @sc{djgpp} program, will
14126be added using the rules of C pointer arithmetics: if @code{i} is
14127declared an @code{int}, @value{GDBN} will add 4 times the value of
14128@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14129
8e04817f
AC
14130Here's another example, it displays the Page Table entry for the
14131transfer buffer:
104c1213 14132
8e04817f
AC
14133@smallexample
14134@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14135@exdent @code{Page Table entry for address 0x29110:}
14136@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14137@end smallexample
104c1213 14138
8e04817f
AC
14139@noindent
14140(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
141413rd member of the @code{_go32_info_block} structure.) The output
14142clearly shows that this DPMI server maps the addresses in conventional
14143memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14144linear (@code{0x29110}) addresses are identical.
104c1213 14145
8e04817f
AC
14146This command is supported only with some DPMI servers.
14147@end table
104c1213 14148
c45da7e6 14149@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14150In addition to native debugging, the DJGPP port supports remote
14151debugging via a serial data link. The following commands are specific
14152to remote serial debugging in the DJGPP port of @value{GDBN}.
14153
14154@table @code
14155@kindex set com1base
14156@kindex set com1irq
14157@kindex set com2base
14158@kindex set com2irq
14159@kindex set com3base
14160@kindex set com3irq
14161@kindex set com4base
14162@kindex set com4irq
14163@item set com1base @var{addr}
14164This command sets the base I/O port address of the @file{COM1} serial
14165port.
14166
14167@item set com1irq @var{irq}
14168This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14169for the @file{COM1} serial port.
14170
14171There are similar commands @samp{set com2base}, @samp{set com3irq},
14172etc.@: for setting the port address and the @code{IRQ} lines for the
14173other 3 COM ports.
14174
14175@kindex show com1base
14176@kindex show com1irq
14177@kindex show com2base
14178@kindex show com2irq
14179@kindex show com3base
14180@kindex show com3irq
14181@kindex show com4base
14182@kindex show com4irq
14183The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14184display the current settings of the base address and the @code{IRQ}
14185lines used by the COM ports.
c45da7e6
EZ
14186
14187@item info serial
14188@kindex info serial
14189@cindex DOS serial port status
14190This command prints the status of the 4 DOS serial ports. For each
14191port, it prints whether it's active or not, its I/O base address and
14192IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14193counts of various errors encountered so far.
a8f24a35
EZ
14194@end table
14195
14196
78c47bea 14197@node Cygwin Native
79a6e687 14198@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14199@cindex MS Windows debugging
14200@cindex native Cygwin debugging
14201@cindex Cygwin-specific commands
14202
be448670 14203@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14204DLLs with and without symbolic debugging information. There are various
14205additional Cygwin-specific commands, described in this section.
14206Working with DLLs that have no debugging symbols is described in
14207@ref{Non-debug DLL Symbols}.
78c47bea
PM
14208
14209@table @code
14210@kindex info w32
14211@item info w32
db2e3e2e 14212This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14213information about the target system and important OS structures.
14214
14215@item info w32 selector
14216This command displays information returned by
14217the Win32 API @code{GetThreadSelectorEntry} function.
14218It takes an optional argument that is evaluated to
14219a long value to give the information about this given selector.
14220Without argument, this command displays information
d3e8051b 14221about the six segment registers.
78c47bea
PM
14222
14223@kindex info dll
14224@item info dll
db2e3e2e 14225This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14226
14227@kindex dll-symbols
14228@item dll-symbols
14229This command loads symbols from a dll similarly to
14230add-sym command but without the need to specify a base address.
14231
be90c084 14232@kindex set cygwin-exceptions
e16b02ee
EZ
14233@cindex debugging the Cygwin DLL
14234@cindex Cygwin DLL, debugging
be90c084 14235@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14236If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14237happen inside the Cygwin DLL. If @var{mode} is @code{off},
14238@value{GDBN} will delay recognition of exceptions, and may ignore some
14239exceptions which seem to be caused by internal Cygwin DLL
14240``bookkeeping''. This option is meant primarily for debugging the
14241Cygwin DLL itself; the default value is @code{off} to avoid annoying
14242@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14243
14244@kindex show cygwin-exceptions
14245@item show cygwin-exceptions
e16b02ee
EZ
14246Displays whether @value{GDBN} will break on exceptions that happen
14247inside the Cygwin DLL itself.
be90c084 14248
b383017d 14249@kindex set new-console
78c47bea 14250@item set new-console @var{mode}
b383017d 14251If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14252be started in a new console on next start.
14253If @var{mode} is @code{off}i, the debuggee will
14254be started in the same console as the debugger.
14255
14256@kindex show new-console
14257@item show new-console
14258Displays whether a new console is used
14259when the debuggee is started.
14260
14261@kindex set new-group
14262@item set new-group @var{mode}
14263This boolean value controls whether the debuggee should
14264start a new group or stay in the same group as the debugger.
14265This affects the way the Windows OS handles
c8aa23ab 14266@samp{Ctrl-C}.
78c47bea
PM
14267
14268@kindex show new-group
14269@item show new-group
14270Displays current value of new-group boolean.
14271
14272@kindex set debugevents
14273@item set debugevents
219eec71
EZ
14274This boolean value adds debug output concerning kernel events related
14275to the debuggee seen by the debugger. This includes events that
14276signal thread and process creation and exit, DLL loading and
14277unloading, console interrupts, and debugging messages produced by the
14278Windows @code{OutputDebugString} API call.
78c47bea
PM
14279
14280@kindex set debugexec
14281@item set debugexec
b383017d 14282This boolean value adds debug output concerning execute events
219eec71 14283(such as resume thread) seen by the debugger.
78c47bea
PM
14284
14285@kindex set debugexceptions
14286@item set debugexceptions
219eec71
EZ
14287This boolean value adds debug output concerning exceptions in the
14288debuggee seen by the debugger.
78c47bea
PM
14289
14290@kindex set debugmemory
14291@item set debugmemory
219eec71
EZ
14292This boolean value adds debug output concerning debuggee memory reads
14293and writes by the debugger.
78c47bea
PM
14294
14295@kindex set shell
14296@item set shell
14297This boolean values specifies whether the debuggee is called
14298via a shell or directly (default value is on).
14299
14300@kindex show shell
14301@item show shell
14302Displays if the debuggee will be started with a shell.
14303
14304@end table
14305
be448670 14306@menu
79a6e687 14307* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14308@end menu
14309
79a6e687
BW
14310@node Non-debug DLL Symbols
14311@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14312@cindex DLLs with no debugging symbols
14313@cindex Minimal symbols and DLLs
14314
14315Very often on windows, some of the DLLs that your program relies on do
14316not include symbolic debugging information (for example,
db2e3e2e 14317@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14318symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14319information contained in the DLL's export table. This section
be448670
CF
14320describes working with such symbols, known internally to @value{GDBN} as
14321``minimal symbols''.
14322
14323Note that before the debugged program has started execution, no DLLs
db2e3e2e 14324will have been loaded. The easiest way around this problem is simply to
be448670 14325start the program --- either by setting a breakpoint or letting the
db2e3e2e 14326program run once to completion. It is also possible to force
be448670 14327@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14328see the shared library information in @ref{Files}, or the
db2e3e2e 14329@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14330explicitly loading symbols from a DLL with no debugging information will
14331cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14332which may adversely affect symbol lookup performance.
14333
79a6e687 14334@subsubsection DLL Name Prefixes
be448670
CF
14335
14336In keeping with the naming conventions used by the Microsoft debugging
14337tools, DLL export symbols are made available with a prefix based on the
14338DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14339also entered into the symbol table, so @code{CreateFileA} is often
14340sufficient. In some cases there will be name clashes within a program
14341(particularly if the executable itself includes full debugging symbols)
14342necessitating the use of the fully qualified name when referring to the
14343contents of the DLL. Use single-quotes around the name to avoid the
14344exclamation mark (``!'') being interpreted as a language operator.
14345
14346Note that the internal name of the DLL may be all upper-case, even
14347though the file name of the DLL is lower-case, or vice-versa. Since
14348symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14349some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14350@code{info variables} commands or even @code{maint print msymbols}
14351(@pxref{Symbols}). Here's an example:
be448670
CF
14352
14353@smallexample
f7dc1244 14354(@value{GDBP}) info function CreateFileA
be448670
CF
14355All functions matching regular expression "CreateFileA":
14356
14357Non-debugging symbols:
143580x77e885f4 CreateFileA
143590x77e885f4 KERNEL32!CreateFileA
14360@end smallexample
14361
14362@smallexample
f7dc1244 14363(@value{GDBP}) info function !
be448670
CF
14364All functions matching regular expression "!":
14365
14366Non-debugging symbols:
143670x6100114c cygwin1!__assert
143680x61004034 cygwin1!_dll_crt0@@0
143690x61004240 cygwin1!dll_crt0(per_process *)
14370[etc...]
14371@end smallexample
14372
79a6e687 14373@subsubsection Working with Minimal Symbols
be448670
CF
14374
14375Symbols extracted from a DLL's export table do not contain very much
14376type information. All that @value{GDBN} can do is guess whether a symbol
14377refers to a function or variable depending on the linker section that
14378contains the symbol. Also note that the actual contents of the memory
14379contained in a DLL are not available unless the program is running. This
14380means that you cannot examine the contents of a variable or disassemble
14381a function within a DLL without a running program.
14382
14383Variables are generally treated as pointers and dereferenced
14384automatically. For this reason, it is often necessary to prefix a
14385variable name with the address-of operator (``&'') and provide explicit
14386type information in the command. Here's an example of the type of
14387problem:
14388
14389@smallexample
f7dc1244 14390(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14391$1 = 268572168
14392@end smallexample
14393
14394@smallexample
f7dc1244 14395(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143960x10021610: "\230y\""
14397@end smallexample
14398
14399And two possible solutions:
14400
14401@smallexample
f7dc1244 14402(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14403$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14404@end smallexample
14405
14406@smallexample
f7dc1244 14407(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 144080x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14409(@value{GDBP}) x/x 0x10021608
be448670 144100x10021608: 0x0022fd98
f7dc1244 14411(@value{GDBP}) x/s 0x0022fd98
be448670
CF
144120x22fd98: "/cygdrive/c/mydirectory/myprogram"
14413@end smallexample
14414
14415Setting a break point within a DLL is possible even before the program
14416starts execution. However, under these circumstances, @value{GDBN} can't
14417examine the initial instructions of the function in order to skip the
14418function's frame set-up code. You can work around this by using ``*&''
14419to set the breakpoint at a raw memory address:
14420
14421@smallexample
f7dc1244 14422(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14423Breakpoint 1 at 0x1e04eff0
14424@end smallexample
14425
14426The author of these extensions is not entirely convinced that setting a
14427break point within a shared DLL like @file{kernel32.dll} is completely
14428safe.
14429
14d6dd68 14430@node Hurd Native
79a6e687 14431@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14432@cindex @sc{gnu} Hurd debugging
14433
14434This subsection describes @value{GDBN} commands specific to the
14435@sc{gnu} Hurd native debugging.
14436
14437@table @code
14438@item set signals
14439@itemx set sigs
14440@kindex set signals@r{, Hurd command}
14441@kindex set sigs@r{, Hurd command}
14442This command toggles the state of inferior signal interception by
14443@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14444affected by this command. @code{sigs} is a shorthand alias for
14445@code{signals}.
14446
14447@item show signals
14448@itemx show sigs
14449@kindex show signals@r{, Hurd command}
14450@kindex show sigs@r{, Hurd command}
14451Show the current state of intercepting inferior's signals.
14452
14453@item set signal-thread
14454@itemx set sigthread
14455@kindex set signal-thread
14456@kindex set sigthread
14457This command tells @value{GDBN} which thread is the @code{libc} signal
14458thread. That thread is run when a signal is delivered to a running
14459process. @code{set sigthread} is the shorthand alias of @code{set
14460signal-thread}.
14461
14462@item show signal-thread
14463@itemx show sigthread
14464@kindex show signal-thread
14465@kindex show sigthread
14466These two commands show which thread will run when the inferior is
14467delivered a signal.
14468
14469@item set stopped
14470@kindex set stopped@r{, Hurd command}
14471This commands tells @value{GDBN} that the inferior process is stopped,
14472as with the @code{SIGSTOP} signal. The stopped process can be
14473continued by delivering a signal to it.
14474
14475@item show stopped
14476@kindex show stopped@r{, Hurd command}
14477This command shows whether @value{GDBN} thinks the debuggee is
14478stopped.
14479
14480@item set exceptions
14481@kindex set exceptions@r{, Hurd command}
14482Use this command to turn off trapping of exceptions in the inferior.
14483When exception trapping is off, neither breakpoints nor
14484single-stepping will work. To restore the default, set exception
14485trapping on.
14486
14487@item show exceptions
14488@kindex show exceptions@r{, Hurd command}
14489Show the current state of trapping exceptions in the inferior.
14490
14491@item set task pause
14492@kindex set task@r{, Hurd commands}
14493@cindex task attributes (@sc{gnu} Hurd)
14494@cindex pause current task (@sc{gnu} Hurd)
14495This command toggles task suspension when @value{GDBN} has control.
14496Setting it to on takes effect immediately, and the task is suspended
14497whenever @value{GDBN} gets control. Setting it to off will take
14498effect the next time the inferior is continued. If this option is set
14499to off, you can use @code{set thread default pause on} or @code{set
14500thread pause on} (see below) to pause individual threads.
14501
14502@item show task pause
14503@kindex show task@r{, Hurd commands}
14504Show the current state of task suspension.
14505
14506@item set task detach-suspend-count
14507@cindex task suspend count
14508@cindex detach from task, @sc{gnu} Hurd
14509This command sets the suspend count the task will be left with when
14510@value{GDBN} detaches from it.
14511
14512@item show task detach-suspend-count
14513Show the suspend count the task will be left with when detaching.
14514
14515@item set task exception-port
14516@itemx set task excp
14517@cindex task exception port, @sc{gnu} Hurd
14518This command sets the task exception port to which @value{GDBN} will
14519forward exceptions. The argument should be the value of the @dfn{send
14520rights} of the task. @code{set task excp} is a shorthand alias.
14521
14522@item set noninvasive
14523@cindex noninvasive task options
14524This command switches @value{GDBN} to a mode that is the least
14525invasive as far as interfering with the inferior is concerned. This
14526is the same as using @code{set task pause}, @code{set exceptions}, and
14527@code{set signals} to values opposite to the defaults.
14528
14529@item info send-rights
14530@itemx info receive-rights
14531@itemx info port-rights
14532@itemx info port-sets
14533@itemx info dead-names
14534@itemx info ports
14535@itemx info psets
14536@cindex send rights, @sc{gnu} Hurd
14537@cindex receive rights, @sc{gnu} Hurd
14538@cindex port rights, @sc{gnu} Hurd
14539@cindex port sets, @sc{gnu} Hurd
14540@cindex dead names, @sc{gnu} Hurd
14541These commands display information about, respectively, send rights,
14542receive rights, port rights, port sets, and dead names of a task.
14543There are also shorthand aliases: @code{info ports} for @code{info
14544port-rights} and @code{info psets} for @code{info port-sets}.
14545
14546@item set thread pause
14547@kindex set thread@r{, Hurd command}
14548@cindex thread properties, @sc{gnu} Hurd
14549@cindex pause current thread (@sc{gnu} Hurd)
14550This command toggles current thread suspension when @value{GDBN} has
14551control. Setting it to on takes effect immediately, and the current
14552thread is suspended whenever @value{GDBN} gets control. Setting it to
14553off will take effect the next time the inferior is continued.
14554Normally, this command has no effect, since when @value{GDBN} has
14555control, the whole task is suspended. However, if you used @code{set
14556task pause off} (see above), this command comes in handy to suspend
14557only the current thread.
14558
14559@item show thread pause
14560@kindex show thread@r{, Hurd command}
14561This command shows the state of current thread suspension.
14562
14563@item set thread run
d3e8051b 14564This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14565
14566@item show thread run
14567Show whether the current thread is allowed to run.
14568
14569@item set thread detach-suspend-count
14570@cindex thread suspend count, @sc{gnu} Hurd
14571@cindex detach from thread, @sc{gnu} Hurd
14572This command sets the suspend count @value{GDBN} will leave on a
14573thread when detaching. This number is relative to the suspend count
14574found by @value{GDBN} when it notices the thread; use @code{set thread
14575takeover-suspend-count} to force it to an absolute value.
14576
14577@item show thread detach-suspend-count
14578Show the suspend count @value{GDBN} will leave on the thread when
14579detaching.
14580
14581@item set thread exception-port
14582@itemx set thread excp
14583Set the thread exception port to which to forward exceptions. This
14584overrides the port set by @code{set task exception-port} (see above).
14585@code{set thread excp} is the shorthand alias.
14586
14587@item set thread takeover-suspend-count
14588Normally, @value{GDBN}'s thread suspend counts are relative to the
14589value @value{GDBN} finds when it notices each thread. This command
14590changes the suspend counts to be absolute instead.
14591
14592@item set thread default
14593@itemx show thread default
14594@cindex thread default settings, @sc{gnu} Hurd
14595Each of the above @code{set thread} commands has a @code{set thread
14596default} counterpart (e.g., @code{set thread default pause}, @code{set
14597thread default exception-port}, etc.). The @code{thread default}
14598variety of commands sets the default thread properties for all
14599threads; you can then change the properties of individual threads with
14600the non-default commands.
14601@end table
14602
14603
a64548ea
EZ
14604@node Neutrino
14605@subsection QNX Neutrino
14606@cindex QNX Neutrino
14607
14608@value{GDBN} provides the following commands specific to the QNX
14609Neutrino target:
14610
14611@table @code
14612@item set debug nto-debug
14613@kindex set debug nto-debug
14614When set to on, enables debugging messages specific to the QNX
14615Neutrino support.
14616
14617@item show debug nto-debug
14618@kindex show debug nto-debug
14619Show the current state of QNX Neutrino messages.
14620@end table
14621
14622
8e04817f
AC
14623@node Embedded OS
14624@section Embedded Operating Systems
104c1213 14625
8e04817f
AC
14626This section describes configurations involving the debugging of
14627embedded operating systems that are available for several different
14628architectures.
d4f3574e 14629
8e04817f
AC
14630@menu
14631* VxWorks:: Using @value{GDBN} with VxWorks
14632@end menu
104c1213 14633
8e04817f
AC
14634@value{GDBN} includes the ability to debug programs running on
14635various real-time operating systems.
104c1213 14636
8e04817f
AC
14637@node VxWorks
14638@subsection Using @value{GDBN} with VxWorks
104c1213 14639
8e04817f 14640@cindex VxWorks
104c1213 14641
8e04817f 14642@table @code
104c1213 14643
8e04817f
AC
14644@kindex target vxworks
14645@item target vxworks @var{machinename}
14646A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14647is the target system's machine name or IP address.
104c1213 14648
8e04817f 14649@end table
104c1213 14650
8e04817f
AC
14651On VxWorks, @code{load} links @var{filename} dynamically on the
14652current target system as well as adding its symbols in @value{GDBN}.
104c1213 14653
8e04817f
AC
14654@value{GDBN} enables developers to spawn and debug tasks running on networked
14655VxWorks targets from a Unix host. Already-running tasks spawned from
14656the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14657both the Unix host and on the VxWorks target. The program
14658@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14659installed with the name @code{vxgdb}, to distinguish it from a
14660@value{GDBN} for debugging programs on the host itself.)
104c1213 14661
8e04817f
AC
14662@table @code
14663@item VxWorks-timeout @var{args}
14664@kindex vxworks-timeout
14665All VxWorks-based targets now support the option @code{vxworks-timeout}.
14666This option is set by the user, and @var{args} represents the number of
14667seconds @value{GDBN} waits for responses to rpc's. You might use this if
14668your VxWorks target is a slow software simulator or is on the far side
14669of a thin network line.
14670@end table
104c1213 14671
8e04817f
AC
14672The following information on connecting to VxWorks was current when
14673this manual was produced; newer releases of VxWorks may use revised
14674procedures.
104c1213 14675
4644b6e3 14676@findex INCLUDE_RDB
8e04817f
AC
14677To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14678to include the remote debugging interface routines in the VxWorks
14679library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14680VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14681kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14682source debugging task @code{tRdbTask} when VxWorks is booted. For more
14683information on configuring and remaking VxWorks, see the manufacturer's
14684manual.
14685@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14686
8e04817f
AC
14687Once you have included @file{rdb.a} in your VxWorks system image and set
14688your Unix execution search path to find @value{GDBN}, you are ready to
14689run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14690@code{vxgdb}, depending on your installation).
104c1213 14691
8e04817f 14692@value{GDBN} comes up showing the prompt:
104c1213 14693
474c8240 14694@smallexample
8e04817f 14695(vxgdb)
474c8240 14696@end smallexample
104c1213 14697
8e04817f
AC
14698@menu
14699* VxWorks Connection:: Connecting to VxWorks
14700* VxWorks Download:: VxWorks download
14701* VxWorks Attach:: Running tasks
14702@end menu
104c1213 14703
8e04817f
AC
14704@node VxWorks Connection
14705@subsubsection Connecting to VxWorks
104c1213 14706
8e04817f
AC
14707The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14708network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14709
474c8240 14710@smallexample
8e04817f 14711(vxgdb) target vxworks tt
474c8240 14712@end smallexample
104c1213 14713
8e04817f
AC
14714@need 750
14715@value{GDBN} displays messages like these:
104c1213 14716
8e04817f
AC
14717@smallexample
14718Attaching remote machine across net...
14719Connected to tt.
14720@end smallexample
104c1213 14721
8e04817f
AC
14722@need 1000
14723@value{GDBN} then attempts to read the symbol tables of any object modules
14724loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14725these files by searching the directories listed in the command search
79a6e687 14726path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14727to find an object file, it displays a message such as:
5d161b24 14728
474c8240 14729@smallexample
8e04817f 14730prog.o: No such file or directory.
474c8240 14731@end smallexample
104c1213 14732
8e04817f
AC
14733When this happens, add the appropriate directory to the search path with
14734the @value{GDBN} command @code{path}, and execute the @code{target}
14735command again.
104c1213 14736
8e04817f 14737@node VxWorks Download
79a6e687 14738@subsubsection VxWorks Download
104c1213 14739
8e04817f
AC
14740@cindex download to VxWorks
14741If you have connected to the VxWorks target and you want to debug an
14742object that has not yet been loaded, you can use the @value{GDBN}
14743@code{load} command to download a file from Unix to VxWorks
14744incrementally. The object file given as an argument to the @code{load}
14745command is actually opened twice: first by the VxWorks target in order
14746to download the code, then by @value{GDBN} in order to read the symbol
14747table. This can lead to problems if the current working directories on
14748the two systems differ. If both systems have NFS mounted the same
14749filesystems, you can avoid these problems by using absolute paths.
14750Otherwise, it is simplest to set the working directory on both systems
14751to the directory in which the object file resides, and then to reference
14752the file by its name, without any path. For instance, a program
14753@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14754and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14755program, type this on VxWorks:
104c1213 14756
474c8240 14757@smallexample
8e04817f 14758-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14759@end smallexample
104c1213 14760
8e04817f
AC
14761@noindent
14762Then, in @value{GDBN}, type:
104c1213 14763
474c8240 14764@smallexample
8e04817f
AC
14765(vxgdb) cd @var{hostpath}/vw/demo/rdb
14766(vxgdb) load prog.o
474c8240 14767@end smallexample
104c1213 14768
8e04817f 14769@value{GDBN} displays a response similar to this:
104c1213 14770
8e04817f
AC
14771@smallexample
14772Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14773@end smallexample
104c1213 14774
8e04817f
AC
14775You can also use the @code{load} command to reload an object module
14776after editing and recompiling the corresponding source file. Note that
14777this makes @value{GDBN} delete all currently-defined breakpoints,
14778auto-displays, and convenience variables, and to clear the value
14779history. (This is necessary in order to preserve the integrity of
14780debugger's data structures that reference the target system's symbol
14781table.)
104c1213 14782
8e04817f 14783@node VxWorks Attach
79a6e687 14784@subsubsection Running Tasks
104c1213
JM
14785
14786@cindex running VxWorks tasks
14787You can also attach to an existing task using the @code{attach} command as
14788follows:
14789
474c8240 14790@smallexample
104c1213 14791(vxgdb) attach @var{task}
474c8240 14792@end smallexample
104c1213
JM
14793
14794@noindent
14795where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14796or suspended when you attach to it. Running tasks are suspended at
14797the time of attachment.
14798
6d2ebf8b 14799@node Embedded Processors
104c1213
JM
14800@section Embedded Processors
14801
14802This section goes into details specific to particular embedded
14803configurations.
14804
c45da7e6
EZ
14805@cindex send command to simulator
14806Whenever a specific embedded processor has a simulator, @value{GDBN}
14807allows to send an arbitrary command to the simulator.
14808
14809@table @code
14810@item sim @var{command}
14811@kindex sim@r{, a command}
14812Send an arbitrary @var{command} string to the simulator. Consult the
14813documentation for the specific simulator in use for information about
14814acceptable commands.
14815@end table
14816
7d86b5d5 14817
104c1213 14818@menu
c45da7e6 14819* ARM:: ARM RDI
172c2a43 14820* M32R/D:: Renesas M32R/D
104c1213 14821* M68K:: Motorola M68K
104c1213 14822* MIPS Embedded:: MIPS Embedded
a37295f9 14823* OpenRISC 1000:: OpenRisc 1000
104c1213 14824* PA:: HP PA Embedded
4acd40f3 14825* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14826* Sparclet:: Tsqware Sparclet
14827* Sparclite:: Fujitsu Sparclite
104c1213 14828* Z8000:: Zilog Z8000
a64548ea
EZ
14829* AVR:: Atmel AVR
14830* CRIS:: CRIS
14831* Super-H:: Renesas Super-H
104c1213
JM
14832@end menu
14833
6d2ebf8b 14834@node ARM
104c1213 14835@subsection ARM
c45da7e6 14836@cindex ARM RDI
104c1213
JM
14837
14838@table @code
8e04817f
AC
14839@kindex target rdi
14840@item target rdi @var{dev}
14841ARM Angel monitor, via RDI library interface to ADP protocol. You may
14842use this target to communicate with both boards running the Angel
14843monitor, or with the EmbeddedICE JTAG debug device.
14844
14845@kindex target rdp
14846@item target rdp @var{dev}
14847ARM Demon monitor.
14848
14849@end table
14850
e2f4edfd
EZ
14851@value{GDBN} provides the following ARM-specific commands:
14852
14853@table @code
14854@item set arm disassembler
14855@kindex set arm
14856This commands selects from a list of disassembly styles. The
14857@code{"std"} style is the standard style.
14858
14859@item show arm disassembler
14860@kindex show arm
14861Show the current disassembly style.
14862
14863@item set arm apcs32
14864@cindex ARM 32-bit mode
14865This command toggles ARM operation mode between 32-bit and 26-bit.
14866
14867@item show arm apcs32
14868Display the current usage of the ARM 32-bit mode.
14869
14870@item set arm fpu @var{fputype}
14871This command sets the ARM floating-point unit (FPU) type. The
14872argument @var{fputype} can be one of these:
14873
14874@table @code
14875@item auto
14876Determine the FPU type by querying the OS ABI.
14877@item softfpa
14878Software FPU, with mixed-endian doubles on little-endian ARM
14879processors.
14880@item fpa
14881GCC-compiled FPA co-processor.
14882@item softvfp
14883Software FPU with pure-endian doubles.
14884@item vfp
14885VFP co-processor.
14886@end table
14887
14888@item show arm fpu
14889Show the current type of the FPU.
14890
14891@item set arm abi
14892This command forces @value{GDBN} to use the specified ABI.
14893
14894@item show arm abi
14895Show the currently used ABI.
14896
0428b8f5
DJ
14897@item set arm fallback-mode (arm|thumb|auto)
14898@value{GDBN} uses the symbol table, when available, to determine
14899whether instructions are ARM or Thumb. This command controls
14900@value{GDBN}'s default behavior when the symbol table is not
14901available. The default is @samp{auto}, which causes @value{GDBN} to
14902use the current execution mode (from the @code{T} bit in the @code{CPSR}
14903register).
14904
14905@item show arm fallback-mode
14906Show the current fallback instruction mode.
14907
14908@item set arm force-mode (arm|thumb|auto)
14909This command overrides use of the symbol table to determine whether
14910instructions are ARM or Thumb. The default is @samp{auto}, which
14911causes @value{GDBN} to use the symbol table and then the setting
14912of @samp{set arm fallback-mode}.
14913
14914@item show arm force-mode
14915Show the current forced instruction mode.
14916
e2f4edfd
EZ
14917@item set debug arm
14918Toggle whether to display ARM-specific debugging messages from the ARM
14919target support subsystem.
14920
14921@item show debug arm
14922Show whether ARM-specific debugging messages are enabled.
14923@end table
14924
c45da7e6
EZ
14925The following commands are available when an ARM target is debugged
14926using the RDI interface:
14927
14928@table @code
14929@item rdilogfile @r{[}@var{file}@r{]}
14930@kindex rdilogfile
14931@cindex ADP (Angel Debugger Protocol) logging
14932Set the filename for the ADP (Angel Debugger Protocol) packet log.
14933With an argument, sets the log file to the specified @var{file}. With
14934no argument, show the current log file name. The default log file is
14935@file{rdi.log}.
14936
14937@item rdilogenable @r{[}@var{arg}@r{]}
14938@kindex rdilogenable
14939Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14940enables logging, with an argument 0 or @code{"no"} disables it. With
14941no arguments displays the current setting. When logging is enabled,
14942ADP packets exchanged between @value{GDBN} and the RDI target device
14943are logged to a file.
14944
14945@item set rdiromatzero
14946@kindex set rdiromatzero
14947@cindex ROM at zero address, RDI
14948Tell @value{GDBN} whether the target has ROM at address 0. If on,
14949vector catching is disabled, so that zero address can be used. If off
14950(the default), vector catching is enabled. For this command to take
14951effect, it needs to be invoked prior to the @code{target rdi} command.
14952
14953@item show rdiromatzero
14954@kindex show rdiromatzero
14955Show the current setting of ROM at zero address.
14956
14957@item set rdiheartbeat
14958@kindex set rdiheartbeat
14959@cindex RDI heartbeat
14960Enable or disable RDI heartbeat packets. It is not recommended to
14961turn on this option, since it confuses ARM and EPI JTAG interface, as
14962well as the Angel monitor.
14963
14964@item show rdiheartbeat
14965@kindex show rdiheartbeat
14966Show the setting of RDI heartbeat packets.
14967@end table
14968
e2f4edfd 14969
8e04817f 14970@node M32R/D
ba04e063 14971@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14972
14973@table @code
8e04817f
AC
14974@kindex target m32r
14975@item target m32r @var{dev}
172c2a43 14976Renesas M32R/D ROM monitor.
8e04817f 14977
fb3e19c0
KI
14978@kindex target m32rsdi
14979@item target m32rsdi @var{dev}
14980Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14981@end table
14982
14983The following @value{GDBN} commands are specific to the M32R monitor:
14984
14985@table @code
14986@item set download-path @var{path}
14987@kindex set download-path
14988@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14989Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14990
14991@item show download-path
14992@kindex show download-path
14993Show the default path for downloadable @sc{srec} files.
fb3e19c0 14994
721c2651
EZ
14995@item set board-address @var{addr}
14996@kindex set board-address
14997@cindex M32-EVA target board address
14998Set the IP address for the M32R-EVA target board.
14999
15000@item show board-address
15001@kindex show board-address
15002Show the current IP address of the target board.
15003
15004@item set server-address @var{addr}
15005@kindex set server-address
15006@cindex download server address (M32R)
15007Set the IP address for the download server, which is the @value{GDBN}'s
15008host machine.
15009
15010@item show server-address
15011@kindex show server-address
15012Display the IP address of the download server.
15013
15014@item upload @r{[}@var{file}@r{]}
15015@kindex upload@r{, M32R}
15016Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
15017upload capability. If no @var{file} argument is given, the current
15018executable file is uploaded.
15019
15020@item tload @r{[}@var{file}@r{]}
15021@kindex tload@r{, M32R}
15022Test the @code{upload} command.
8e04817f
AC
15023@end table
15024
ba04e063
EZ
15025The following commands are available for M32R/SDI:
15026
15027@table @code
15028@item sdireset
15029@kindex sdireset
15030@cindex reset SDI connection, M32R
15031This command resets the SDI connection.
15032
15033@item sdistatus
15034@kindex sdistatus
15035This command shows the SDI connection status.
15036
15037@item debug_chaos
15038@kindex debug_chaos
15039@cindex M32R/Chaos debugging
15040Instructs the remote that M32R/Chaos debugging is to be used.
15041
15042@item use_debug_dma
15043@kindex use_debug_dma
15044Instructs the remote to use the DEBUG_DMA method of accessing memory.
15045
15046@item use_mon_code
15047@kindex use_mon_code
15048Instructs the remote to use the MON_CODE method of accessing memory.
15049
15050@item use_ib_break
15051@kindex use_ib_break
15052Instructs the remote to set breakpoints by IB break.
15053
15054@item use_dbt_break
15055@kindex use_dbt_break
15056Instructs the remote to set breakpoints by DBT.
15057@end table
15058
8e04817f
AC
15059@node M68K
15060@subsection M68k
15061
7ce59000
DJ
15062The Motorola m68k configuration includes ColdFire support, and a
15063target command for the following ROM monitor.
8e04817f
AC
15064
15065@table @code
15066
8e04817f
AC
15067@kindex target dbug
15068@item target dbug @var{dev}
15069dBUG ROM monitor for Motorola ColdFire.
15070
8e04817f
AC
15071@end table
15072
8e04817f
AC
15073@node MIPS Embedded
15074@subsection MIPS Embedded
15075
15076@cindex MIPS boards
15077@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15078MIPS board attached to a serial line. This is available when
15079you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15080
8e04817f
AC
15081@need 1000
15082Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15083
8e04817f
AC
15084@table @code
15085@item target mips @var{port}
15086@kindex target mips @var{port}
15087To run a program on the board, start up @code{@value{GDBP}} with the
15088name of your program as the argument. To connect to the board, use the
15089command @samp{target mips @var{port}}, where @var{port} is the name of
15090the serial port connected to the board. If the program has not already
15091been downloaded to the board, you may use the @code{load} command to
15092download it. You can then use all the usual @value{GDBN} commands.
104c1213 15093
8e04817f
AC
15094For example, this sequence connects to the target board through a serial
15095port, and loads and runs a program called @var{prog} through the
15096debugger:
104c1213 15097
474c8240 15098@smallexample
8e04817f
AC
15099host$ @value{GDBP} @var{prog}
15100@value{GDBN} is free software and @dots{}
15101(@value{GDBP}) target mips /dev/ttyb
15102(@value{GDBP}) load @var{prog}
15103(@value{GDBP}) run
474c8240 15104@end smallexample
104c1213 15105
8e04817f
AC
15106@item target mips @var{hostname}:@var{portnumber}
15107On some @value{GDBN} host configurations, you can specify a TCP
15108connection (for instance, to a serial line managed by a terminal
15109concentrator) instead of a serial port, using the syntax
15110@samp{@var{hostname}:@var{portnumber}}.
104c1213 15111
8e04817f
AC
15112@item target pmon @var{port}
15113@kindex target pmon @var{port}
15114PMON ROM monitor.
104c1213 15115
8e04817f
AC
15116@item target ddb @var{port}
15117@kindex target ddb @var{port}
15118NEC's DDB variant of PMON for Vr4300.
104c1213 15119
8e04817f
AC
15120@item target lsi @var{port}
15121@kindex target lsi @var{port}
15122LSI variant of PMON.
104c1213 15123
8e04817f
AC
15124@kindex target r3900
15125@item target r3900 @var{dev}
15126Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15127
8e04817f
AC
15128@kindex target array
15129@item target array @var{dev}
15130Array Tech LSI33K RAID controller board.
104c1213 15131
8e04817f 15132@end table
104c1213 15133
104c1213 15134
8e04817f
AC
15135@noindent
15136@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15137
8e04817f 15138@table @code
8e04817f
AC
15139@item set mipsfpu double
15140@itemx set mipsfpu single
15141@itemx set mipsfpu none
a64548ea 15142@itemx set mipsfpu auto
8e04817f
AC
15143@itemx show mipsfpu
15144@kindex set mipsfpu
15145@kindex show mipsfpu
15146@cindex MIPS remote floating point
15147@cindex floating point, MIPS remote
15148If your target board does not support the MIPS floating point
15149coprocessor, you should use the command @samp{set mipsfpu none} (if you
15150need this, you may wish to put the command in your @value{GDBN} init
15151file). This tells @value{GDBN} how to find the return value of
15152functions which return floating point values. It also allows
15153@value{GDBN} to avoid saving the floating point registers when calling
15154functions on the board. If you are using a floating point coprocessor
15155with only single precision floating point support, as on the @sc{r4650}
15156processor, use the command @samp{set mipsfpu single}. The default
15157double precision floating point coprocessor may be selected using
15158@samp{set mipsfpu double}.
104c1213 15159
8e04817f
AC
15160In previous versions the only choices were double precision or no
15161floating point, so @samp{set mipsfpu on} will select double precision
15162and @samp{set mipsfpu off} will select no floating point.
104c1213 15163
8e04817f
AC
15164As usual, you can inquire about the @code{mipsfpu} variable with
15165@samp{show mipsfpu}.
104c1213 15166
8e04817f
AC
15167@item set timeout @var{seconds}
15168@itemx set retransmit-timeout @var{seconds}
15169@itemx show timeout
15170@itemx show retransmit-timeout
15171@cindex @code{timeout}, MIPS protocol
15172@cindex @code{retransmit-timeout}, MIPS protocol
15173@kindex set timeout
15174@kindex show timeout
15175@kindex set retransmit-timeout
15176@kindex show retransmit-timeout
15177You can control the timeout used while waiting for a packet, in the MIPS
15178remote protocol, with the @code{set timeout @var{seconds}} command. The
15179default is 5 seconds. Similarly, you can control the timeout used while
15180waiting for an acknowledgement of a packet with the @code{set
15181retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15182You can inspect both values with @code{show timeout} and @code{show
15183retransmit-timeout}. (These commands are @emph{only} available when
15184@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15185
8e04817f
AC
15186The timeout set by @code{set timeout} does not apply when @value{GDBN}
15187is waiting for your program to stop. In that case, @value{GDBN} waits
15188forever because it has no way of knowing how long the program is going
15189to run before stopping.
ba04e063
EZ
15190
15191@item set syn-garbage-limit @var{num}
15192@kindex set syn-garbage-limit@r{, MIPS remote}
15193@cindex synchronize with remote MIPS target
15194Limit the maximum number of characters @value{GDBN} should ignore when
15195it tries to synchronize with the remote target. The default is 10
15196characters. Setting the limit to -1 means there's no limit.
15197
15198@item show syn-garbage-limit
15199@kindex show syn-garbage-limit@r{, MIPS remote}
15200Show the current limit on the number of characters to ignore when
15201trying to synchronize with the remote system.
15202
15203@item set monitor-prompt @var{prompt}
15204@kindex set monitor-prompt@r{, MIPS remote}
15205@cindex remote monitor prompt
15206Tell @value{GDBN} to expect the specified @var{prompt} string from the
15207remote monitor. The default depends on the target:
15208@table @asis
15209@item pmon target
15210@samp{PMON}
15211@item ddb target
15212@samp{NEC010}
15213@item lsi target
15214@samp{PMON>}
15215@end table
15216
15217@item show monitor-prompt
15218@kindex show monitor-prompt@r{, MIPS remote}
15219Show the current strings @value{GDBN} expects as the prompt from the
15220remote monitor.
15221
15222@item set monitor-warnings
15223@kindex set monitor-warnings@r{, MIPS remote}
15224Enable or disable monitor warnings about hardware breakpoints. This
15225has effect only for the @code{lsi} target. When on, @value{GDBN} will
15226display warning messages whose codes are returned by the @code{lsi}
15227PMON monitor for breakpoint commands.
15228
15229@item show monitor-warnings
15230@kindex show monitor-warnings@r{, MIPS remote}
15231Show the current setting of printing monitor warnings.
15232
15233@item pmon @var{command}
15234@kindex pmon@r{, MIPS remote}
15235@cindex send PMON command
15236This command allows sending an arbitrary @var{command} string to the
15237monitor. The monitor must be in debug mode for this to work.
8e04817f 15238@end table
104c1213 15239
a37295f9
MM
15240@node OpenRISC 1000
15241@subsection OpenRISC 1000
15242@cindex OpenRISC 1000
15243
15244@cindex or1k boards
15245See OR1k Architecture document (@uref{www.opencores.org}) for more information
15246about platform and commands.
15247
15248@table @code
15249
15250@kindex target jtag
15251@item target jtag jtag://@var{host}:@var{port}
15252
15253Connects to remote JTAG server.
15254JTAG remote server can be either an or1ksim or JTAG server,
15255connected via parallel port to the board.
15256
15257Example: @code{target jtag jtag://localhost:9999}
15258
15259@kindex or1ksim
15260@item or1ksim @var{command}
15261If connected to @code{or1ksim} OpenRISC 1000 Architectural
15262Simulator, proprietary commands can be executed.
15263
15264@kindex info or1k spr
15265@item info or1k spr
15266Displays spr groups.
15267
15268@item info or1k spr @var{group}
15269@itemx info or1k spr @var{groupno}
15270Displays register names in selected group.
15271
15272@item info or1k spr @var{group} @var{register}
15273@itemx info or1k spr @var{register}
15274@itemx info or1k spr @var{groupno} @var{registerno}
15275@itemx info or1k spr @var{registerno}
15276Shows information about specified spr register.
15277
15278@kindex spr
15279@item spr @var{group} @var{register} @var{value}
15280@itemx spr @var{register @var{value}}
15281@itemx spr @var{groupno} @var{registerno @var{value}}
15282@itemx spr @var{registerno @var{value}}
15283Writes @var{value} to specified spr register.
15284@end table
15285
15286Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15287It is very similar to @value{GDBN} trace, except it does not interfere with normal
15288program execution and is thus much faster. Hardware breakpoints/watchpoint
15289triggers can be set using:
15290@table @code
15291@item $LEA/$LDATA
15292Load effective address/data
15293@item $SEA/$SDATA
15294Store effective address/data
15295@item $AEA/$ADATA
15296Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15297@item $FETCH
15298Fetch data
15299@end table
15300
15301When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15302@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15303
15304@code{htrace} commands:
15305@cindex OpenRISC 1000 htrace
15306@table @code
15307@kindex hwatch
15308@item hwatch @var{conditional}
d3e8051b 15309Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15310or Data. For example:
15311
15312@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15313
15314@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15315
4644b6e3 15316@kindex htrace
a37295f9
MM
15317@item htrace info
15318Display information about current HW trace configuration.
15319
a37295f9
MM
15320@item htrace trigger @var{conditional}
15321Set starting criteria for HW trace.
15322
a37295f9
MM
15323@item htrace qualifier @var{conditional}
15324Set acquisition qualifier for HW trace.
15325
a37295f9
MM
15326@item htrace stop @var{conditional}
15327Set HW trace stopping criteria.
15328
f153cc92 15329@item htrace record [@var{data}]*
a37295f9
MM
15330Selects the data to be recorded, when qualifier is met and HW trace was
15331triggered.
15332
a37295f9 15333@item htrace enable
a37295f9
MM
15334@itemx htrace disable
15335Enables/disables the HW trace.
15336
f153cc92 15337@item htrace rewind [@var{filename}]
a37295f9
MM
15338Clears currently recorded trace data.
15339
15340If filename is specified, new trace file is made and any newly collected data
15341will be written there.
15342
f153cc92 15343@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15344Prints trace buffer, using current record configuration.
15345
a37295f9
MM
15346@item htrace mode continuous
15347Set continuous trace mode.
15348
a37295f9
MM
15349@item htrace mode suspend
15350Set suspend trace mode.
15351
15352@end table
15353
4acd40f3
TJB
15354@node PowerPC Embedded
15355@subsection PowerPC Embedded
104c1213 15356
55eddb0f
DJ
15357@value{GDBN} provides the following PowerPC-specific commands:
15358
104c1213 15359@table @code
55eddb0f
DJ
15360@kindex set powerpc
15361@item set powerpc soft-float
15362@itemx show powerpc soft-float
15363Force @value{GDBN} to use (or not use) a software floating point calling
15364convention. By default, @value{GDBN} selects the calling convention based
15365on the selected architecture and the provided executable file.
15366
15367@item set powerpc vector-abi
15368@itemx show powerpc vector-abi
15369Force @value{GDBN} to use the specified calling convention for vector
15370arguments and return values. The valid options are @samp{auto};
15371@samp{generic}, to avoid vector registers even if they are present;
15372@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15373registers. By default, @value{GDBN} selects the calling convention
15374based on the selected architecture and the provided executable file.
15375
8e04817f
AC
15376@kindex target dink32
15377@item target dink32 @var{dev}
15378DINK32 ROM monitor.
104c1213 15379
8e04817f
AC
15380@kindex target ppcbug
15381@item target ppcbug @var{dev}
15382@kindex target ppcbug1
15383@item target ppcbug1 @var{dev}
15384PPCBUG ROM monitor for PowerPC.
104c1213 15385
8e04817f
AC
15386@kindex target sds
15387@item target sds @var{dev}
15388SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15389@end table
8e04817f 15390
c45da7e6 15391@cindex SDS protocol
d52fb0e9 15392The following commands specific to the SDS protocol are supported
55eddb0f 15393by @value{GDBN}:
c45da7e6
EZ
15394
15395@table @code
15396@item set sdstimeout @var{nsec}
15397@kindex set sdstimeout
15398Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15399default is 2 seconds.
15400
15401@item show sdstimeout
15402@kindex show sdstimeout
15403Show the current value of the SDS timeout.
15404
15405@item sds @var{command}
15406@kindex sds@r{, a command}
15407Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15408@end table
15409
c45da7e6 15410
8e04817f
AC
15411@node PA
15412@subsection HP PA Embedded
104c1213
JM
15413
15414@table @code
15415
8e04817f
AC
15416@kindex target op50n
15417@item target op50n @var{dev}
15418OP50N monitor, running on an OKI HPPA board.
15419
15420@kindex target w89k
15421@item target w89k @var{dev}
15422W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15423
15424@end table
15425
8e04817f
AC
15426@node Sparclet
15427@subsection Tsqware Sparclet
104c1213 15428
8e04817f
AC
15429@cindex Sparclet
15430
15431@value{GDBN} enables developers to debug tasks running on
15432Sparclet targets from a Unix host.
15433@value{GDBN} uses code that runs on
15434both the Unix host and on the Sparclet target. The program
15435@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15436
8e04817f
AC
15437@table @code
15438@item remotetimeout @var{args}
15439@kindex remotetimeout
15440@value{GDBN} supports the option @code{remotetimeout}.
15441This option is set by the user, and @var{args} represents the number of
15442seconds @value{GDBN} waits for responses.
104c1213
JM
15443@end table
15444
8e04817f
AC
15445@cindex compiling, on Sparclet
15446When compiling for debugging, include the options @samp{-g} to get debug
15447information and @samp{-Ttext} to relocate the program to where you wish to
15448load it on the target. You may also want to add the options @samp{-n} or
15449@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15450
474c8240 15451@smallexample
8e04817f 15452sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15453@end smallexample
104c1213 15454
8e04817f 15455You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15456
474c8240 15457@smallexample
8e04817f 15458sparclet-aout-objdump --headers --syms prog
474c8240 15459@end smallexample
104c1213 15460
8e04817f
AC
15461@cindex running, on Sparclet
15462Once you have set
15463your Unix execution search path to find @value{GDBN}, you are ready to
15464run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15465(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15466
8e04817f
AC
15467@value{GDBN} comes up showing the prompt:
15468
474c8240 15469@smallexample
8e04817f 15470(gdbslet)
474c8240 15471@end smallexample
104c1213
JM
15472
15473@menu
8e04817f
AC
15474* Sparclet File:: Setting the file to debug
15475* Sparclet Connection:: Connecting to Sparclet
15476* Sparclet Download:: Sparclet download
15477* Sparclet Execution:: Running and debugging
104c1213
JM
15478@end menu
15479
8e04817f 15480@node Sparclet File
79a6e687 15481@subsubsection Setting File to Debug
104c1213 15482
8e04817f 15483The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15484
474c8240 15485@smallexample
8e04817f 15486(gdbslet) file prog
474c8240 15487@end smallexample
104c1213 15488
8e04817f
AC
15489@need 1000
15490@value{GDBN} then attempts to read the symbol table of @file{prog}.
15491@value{GDBN} locates
15492the file by searching the directories listed in the command search
15493path.
12c27660 15494If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15495files will be searched as well.
15496@value{GDBN} locates
15497the source files by searching the directories listed in the directory search
79a6e687 15498path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15499If it fails
15500to find a file, it displays a message such as:
104c1213 15501
474c8240 15502@smallexample
8e04817f 15503prog: No such file or directory.
474c8240 15504@end smallexample
104c1213 15505
8e04817f
AC
15506When this happens, add the appropriate directories to the search paths with
15507the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15508@code{target} command again.
104c1213 15509
8e04817f
AC
15510@node Sparclet Connection
15511@subsubsection Connecting to Sparclet
104c1213 15512
8e04817f
AC
15513The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15514To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15515
474c8240 15516@smallexample
8e04817f
AC
15517(gdbslet) target sparclet /dev/ttya
15518Remote target sparclet connected to /dev/ttya
15519main () at ../prog.c:3
474c8240 15520@end smallexample
104c1213 15521
8e04817f
AC
15522@need 750
15523@value{GDBN} displays messages like these:
104c1213 15524
474c8240 15525@smallexample
8e04817f 15526Connected to ttya.
474c8240 15527@end smallexample
104c1213 15528
8e04817f 15529@node Sparclet Download
79a6e687 15530@subsubsection Sparclet Download
104c1213 15531
8e04817f
AC
15532@cindex download to Sparclet
15533Once connected to the Sparclet target,
15534you can use the @value{GDBN}
15535@code{load} command to download the file from the host to the target.
15536The file name and load offset should be given as arguments to the @code{load}
15537command.
15538Since the file format is aout, the program must be loaded to the starting
15539address. You can use @code{objdump} to find out what this value is. The load
15540offset is an offset which is added to the VMA (virtual memory address)
15541of each of the file's sections.
15542For instance, if the program
15543@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15544and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15545
474c8240 15546@smallexample
8e04817f
AC
15547(gdbslet) load prog 0x12010000
15548Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15549@end smallexample
104c1213 15550
8e04817f
AC
15551If the code is loaded at a different address then what the program was linked
15552to, you may need to use the @code{section} and @code{add-symbol-file} commands
15553to tell @value{GDBN} where to map the symbol table.
15554
15555@node Sparclet Execution
79a6e687 15556@subsubsection Running and Debugging
8e04817f
AC
15557
15558@cindex running and debugging Sparclet programs
15559You can now begin debugging the task using @value{GDBN}'s execution control
15560commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15561manual for the list of commands.
15562
474c8240 15563@smallexample
8e04817f
AC
15564(gdbslet) b main
15565Breakpoint 1 at 0x12010000: file prog.c, line 3.
15566(gdbslet) run
15567Starting program: prog
15568Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
155693 char *symarg = 0;
15570(gdbslet) step
155714 char *execarg = "hello!";
15572(gdbslet)
474c8240 15573@end smallexample
8e04817f
AC
15574
15575@node Sparclite
15576@subsection Fujitsu Sparclite
104c1213
JM
15577
15578@table @code
15579
8e04817f
AC
15580@kindex target sparclite
15581@item target sparclite @var{dev}
15582Fujitsu sparclite boards, used only for the purpose of loading.
15583You must use an additional command to debug the program.
15584For example: target remote @var{dev} using @value{GDBN} standard
15585remote protocol.
104c1213
JM
15586
15587@end table
15588
8e04817f
AC
15589@node Z8000
15590@subsection Zilog Z8000
104c1213 15591
8e04817f
AC
15592@cindex Z8000
15593@cindex simulator, Z8000
15594@cindex Zilog Z8000 simulator
104c1213 15595
8e04817f
AC
15596When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15597a Z8000 simulator.
15598
15599For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15600unsegmented variant of the Z8000 architecture) or the Z8001 (the
15601segmented variant). The simulator recognizes which architecture is
15602appropriate by inspecting the object code.
104c1213 15603
8e04817f
AC
15604@table @code
15605@item target sim @var{args}
15606@kindex sim
15607@kindex target sim@r{, with Z8000}
15608Debug programs on a simulated CPU. If the simulator supports setup
15609options, specify them via @var{args}.
104c1213
JM
15610@end table
15611
8e04817f
AC
15612@noindent
15613After specifying this target, you can debug programs for the simulated
15614CPU in the same style as programs for your host computer; use the
15615@code{file} command to load a new program image, the @code{run} command
15616to run your program, and so on.
15617
15618As well as making available all the usual machine registers
15619(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15620additional items of information as specially named registers:
104c1213
JM
15621
15622@table @code
15623
8e04817f
AC
15624@item cycles
15625Counts clock-ticks in the simulator.
104c1213 15626
8e04817f
AC
15627@item insts
15628Counts instructions run in the simulator.
104c1213 15629
8e04817f
AC
15630@item time
15631Execution time in 60ths of a second.
104c1213 15632
8e04817f 15633@end table
104c1213 15634
8e04817f
AC
15635You can refer to these values in @value{GDBN} expressions with the usual
15636conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15637conditional breakpoint that suspends only after at least 5000
15638simulated clock ticks.
104c1213 15639
a64548ea
EZ
15640@node AVR
15641@subsection Atmel AVR
15642@cindex AVR
15643
15644When configured for debugging the Atmel AVR, @value{GDBN} supports the
15645following AVR-specific commands:
15646
15647@table @code
15648@item info io_registers
15649@kindex info io_registers@r{, AVR}
15650@cindex I/O registers (Atmel AVR)
15651This command displays information about the AVR I/O registers. For
15652each register, @value{GDBN} prints its number and value.
15653@end table
15654
15655@node CRIS
15656@subsection CRIS
15657@cindex CRIS
15658
15659When configured for debugging CRIS, @value{GDBN} provides the
15660following CRIS-specific commands:
15661
15662@table @code
15663@item set cris-version @var{ver}
15664@cindex CRIS version
e22e55c9
OF
15665Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15666The CRIS version affects register names and sizes. This command is useful in
15667case autodetection of the CRIS version fails.
a64548ea
EZ
15668
15669@item show cris-version
15670Show the current CRIS version.
15671
15672@item set cris-dwarf2-cfi
15673@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15674Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15675Change to @samp{off} when using @code{gcc-cris} whose version is below
15676@code{R59}.
a64548ea
EZ
15677
15678@item show cris-dwarf2-cfi
15679Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15680
15681@item set cris-mode @var{mode}
15682@cindex CRIS mode
15683Set the current CRIS mode to @var{mode}. It should only be changed when
15684debugging in guru mode, in which case it should be set to
15685@samp{guru} (the default is @samp{normal}).
15686
15687@item show cris-mode
15688Show the current CRIS mode.
a64548ea
EZ
15689@end table
15690
15691@node Super-H
15692@subsection Renesas Super-H
15693@cindex Super-H
15694
15695For the Renesas Super-H processor, @value{GDBN} provides these
15696commands:
15697
15698@table @code
15699@item regs
15700@kindex regs@r{, Super-H}
15701Show the values of all Super-H registers.
c055b101
CV
15702
15703@item set sh calling-convention @var{convention}
15704@kindex set sh calling-convention
15705Set the calling-convention used when calling functions from @value{GDBN}.
15706Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
15707With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
15708convention. If the DWARF-2 information of the called function specifies
15709that the function follows the Renesas calling convention, the function
15710is called using the Renesas calling convention. If the calling convention
15711is set to @samp{renesas}, the Renesas calling convention is always used,
15712regardless of the DWARF-2 information. This can be used to override the
15713default of @samp{gcc} if debug information is missing, or the compiler
15714does not emit the DWARF-2 calling convention entry for a function.
15715
15716@item show sh calling-convention
15717@kindex show sh calling-convention
15718Show the current calling convention setting.
15719
a64548ea
EZ
15720@end table
15721
15722
8e04817f
AC
15723@node Architectures
15724@section Architectures
104c1213 15725
8e04817f
AC
15726This section describes characteristics of architectures that affect
15727all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15728
8e04817f 15729@menu
9c16f35a 15730* i386::
8e04817f
AC
15731* A29K::
15732* Alpha::
15733* MIPS::
a64548ea 15734* HPPA:: HP PA architecture
23d964e7 15735* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15736* PowerPC::
8e04817f 15737@end menu
104c1213 15738
9c16f35a 15739@node i386
db2e3e2e 15740@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15741
15742@table @code
15743@item set struct-convention @var{mode}
15744@kindex set struct-convention
15745@cindex struct return convention
15746@cindex struct/union returned in registers
15747Set the convention used by the inferior to return @code{struct}s and
15748@code{union}s from functions to @var{mode}. Possible values of
15749@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15750default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15751are returned on the stack, while @code{"reg"} means that a
15752@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15753be returned in a register.
15754
15755@item show struct-convention
15756@kindex show struct-convention
15757Show the current setting of the convention to return @code{struct}s
15758from functions.
15759@end table
15760
8e04817f
AC
15761@node A29K
15762@subsection A29K
104c1213
JM
15763
15764@table @code
104c1213 15765
8e04817f
AC
15766@kindex set rstack_high_address
15767@cindex AMD 29K register stack
15768@cindex register stack, AMD29K
15769@item set rstack_high_address @var{address}
15770On AMD 29000 family processors, registers are saved in a separate
15771@dfn{register stack}. There is no way for @value{GDBN} to determine the
15772extent of this stack. Normally, @value{GDBN} just assumes that the
15773stack is ``large enough''. This may result in @value{GDBN} referencing
15774memory locations that do not exist. If necessary, you can get around
15775this problem by specifying the ending address of the register stack with
15776the @code{set rstack_high_address} command. The argument should be an
15777address, which you probably want to precede with @samp{0x} to specify in
15778hexadecimal.
104c1213 15779
8e04817f
AC
15780@kindex show rstack_high_address
15781@item show rstack_high_address
15782Display the current limit of the register stack, on AMD 29000 family
15783processors.
104c1213 15784
8e04817f 15785@end table
104c1213 15786
8e04817f
AC
15787@node Alpha
15788@subsection Alpha
104c1213 15789
8e04817f 15790See the following section.
104c1213 15791
8e04817f
AC
15792@node MIPS
15793@subsection MIPS
104c1213 15794
8e04817f
AC
15795@cindex stack on Alpha
15796@cindex stack on MIPS
15797@cindex Alpha stack
15798@cindex MIPS stack
15799Alpha- and MIPS-based computers use an unusual stack frame, which
15800sometimes requires @value{GDBN} to search backward in the object code to
15801find the beginning of a function.
104c1213 15802
8e04817f
AC
15803@cindex response time, MIPS debugging
15804To improve response time (especially for embedded applications, where
15805@value{GDBN} may be restricted to a slow serial line for this search)
15806you may want to limit the size of this search, using one of these
15807commands:
104c1213 15808
8e04817f
AC
15809@table @code
15810@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15811@item set heuristic-fence-post @var{limit}
15812Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15813search for the beginning of a function. A value of @var{0} (the
15814default) means there is no limit. However, except for @var{0}, the
15815larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15816and therefore the longer it takes to run. You should only need to use
15817this command when debugging a stripped executable.
104c1213 15818
8e04817f
AC
15819@item show heuristic-fence-post
15820Display the current limit.
15821@end table
104c1213
JM
15822
15823@noindent
8e04817f
AC
15824These commands are available @emph{only} when @value{GDBN} is configured
15825for debugging programs on Alpha or MIPS processors.
104c1213 15826
a64548ea
EZ
15827Several MIPS-specific commands are available when debugging MIPS
15828programs:
15829
15830@table @code
a64548ea
EZ
15831@item set mips abi @var{arg}
15832@kindex set mips abi
15833@cindex set ABI for MIPS
15834Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15835values of @var{arg} are:
15836
15837@table @samp
15838@item auto
15839The default ABI associated with the current binary (this is the
15840default).
15841@item o32
15842@item o64
15843@item n32
15844@item n64
15845@item eabi32
15846@item eabi64
15847@item auto
15848@end table
15849
15850@item show mips abi
15851@kindex show mips abi
15852Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15853
15854@item set mipsfpu
15855@itemx show mipsfpu
15856@xref{MIPS Embedded, set mipsfpu}.
15857
15858@item set mips mask-address @var{arg}
15859@kindex set mips mask-address
15860@cindex MIPS addresses, masking
15861This command determines whether the most-significant 32 bits of 64-bit
15862MIPS addresses are masked off. The argument @var{arg} can be
15863@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15864setting, which lets @value{GDBN} determine the correct value.
15865
15866@item show mips mask-address
15867@kindex show mips mask-address
15868Show whether the upper 32 bits of MIPS addresses are masked off or
15869not.
15870
15871@item set remote-mips64-transfers-32bit-regs
15872@kindex set remote-mips64-transfers-32bit-regs
15873This command controls compatibility with 64-bit MIPS targets that
15874transfer data in 32-bit quantities. If you have an old MIPS 64 target
15875that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15876and 64 bits for other registers, set this option to @samp{on}.
15877
15878@item show remote-mips64-transfers-32bit-regs
15879@kindex show remote-mips64-transfers-32bit-regs
15880Show the current setting of compatibility with older MIPS 64 targets.
15881
15882@item set debug mips
15883@kindex set debug mips
15884This command turns on and off debugging messages for the MIPS-specific
15885target code in @value{GDBN}.
15886
15887@item show debug mips
15888@kindex show debug mips
15889Show the current setting of MIPS debugging messages.
15890@end table
15891
15892
15893@node HPPA
15894@subsection HPPA
15895@cindex HPPA support
15896
d3e8051b 15897When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15898following special commands:
15899
15900@table @code
15901@item set debug hppa
15902@kindex set debug hppa
db2e3e2e 15903This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15904messages are to be displayed.
15905
15906@item show debug hppa
15907Show whether HPPA debugging messages are displayed.
15908
15909@item maint print unwind @var{address}
15910@kindex maint print unwind@r{, HPPA}
15911This command displays the contents of the unwind table entry at the
15912given @var{address}.
15913
15914@end table
15915
104c1213 15916
23d964e7
UW
15917@node SPU
15918@subsection Cell Broadband Engine SPU architecture
15919@cindex Cell Broadband Engine
15920@cindex SPU
15921
15922When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15923it provides the following special commands:
15924
15925@table @code
15926@item info spu event
15927@kindex info spu
15928Display SPU event facility status. Shows current event mask
15929and pending event status.
15930
15931@item info spu signal
15932Display SPU signal notification facility status. Shows pending
15933signal-control word and signal notification mode of both signal
15934notification channels.
15935
15936@item info spu mailbox
15937Display SPU mailbox facility status. Shows all pending entries,
15938in order of processing, in each of the SPU Write Outbound,
15939SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15940
15941@item info spu dma
15942Display MFC DMA status. Shows all pending commands in the MFC
15943DMA queue. For each entry, opcode, tag, class IDs, effective
15944and local store addresses and transfer size are shown.
15945
15946@item info spu proxydma
15947Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15948Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15949and local store addresses and transfer size are shown.
15950
15951@end table
15952
4acd40f3
TJB
15953@node PowerPC
15954@subsection PowerPC
15955@cindex PowerPC architecture
15956
15957When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15958pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15959numbers stored in the floating point registers. These values must be stored
15960in two consecutive registers, always starting at an even register like
15961@code{f0} or @code{f2}.
15962
15963The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15964by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15965@code{f2} and @code{f3} for @code{$dl1} and so on.
15966
23d964e7 15967
8e04817f
AC
15968@node Controlling GDB
15969@chapter Controlling @value{GDBN}
15970
15971You can alter the way @value{GDBN} interacts with you by using the
15972@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15973data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15974described here.
15975
15976@menu
15977* Prompt:: Prompt
15978* Editing:: Command editing
d620b259 15979* Command History:: Command history
8e04817f
AC
15980* Screen Size:: Screen size
15981* Numbers:: Numbers
1e698235 15982* ABI:: Configuring the current ABI
8e04817f
AC
15983* Messages/Warnings:: Optional warnings and messages
15984* Debugging Output:: Optional messages about internal happenings
15985@end menu
15986
15987@node Prompt
15988@section Prompt
104c1213 15989
8e04817f 15990@cindex prompt
104c1213 15991
8e04817f
AC
15992@value{GDBN} indicates its readiness to read a command by printing a string
15993called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15994can change the prompt string with the @code{set prompt} command. For
15995instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15996the prompt in one of the @value{GDBN} sessions so that you can always tell
15997which one you are talking to.
104c1213 15998
8e04817f
AC
15999@emph{Note:} @code{set prompt} does not add a space for you after the
16000prompt you set. This allows you to set a prompt which ends in a space
16001or a prompt that does not.
104c1213 16002
8e04817f
AC
16003@table @code
16004@kindex set prompt
16005@item set prompt @var{newprompt}
16006Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 16007
8e04817f
AC
16008@kindex show prompt
16009@item show prompt
16010Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
16011@end table
16012
8e04817f 16013@node Editing
79a6e687 16014@section Command Editing
8e04817f
AC
16015@cindex readline
16016@cindex command line editing
104c1213 16017
703663ab 16018@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
16019@sc{gnu} library provides consistent behavior for programs which provide a
16020command line interface to the user. Advantages are @sc{gnu} Emacs-style
16021or @dfn{vi}-style inline editing of commands, @code{csh}-like history
16022substitution, and a storage and recall of command history across
16023debugging sessions.
104c1213 16024
8e04817f
AC
16025You may control the behavior of command line editing in @value{GDBN} with the
16026command @code{set}.
104c1213 16027
8e04817f
AC
16028@table @code
16029@kindex set editing
16030@cindex editing
16031@item set editing
16032@itemx set editing on
16033Enable command line editing (enabled by default).
104c1213 16034
8e04817f
AC
16035@item set editing off
16036Disable command line editing.
104c1213 16037
8e04817f
AC
16038@kindex show editing
16039@item show editing
16040Show whether command line editing is enabled.
104c1213
JM
16041@end table
16042
703663ab
EZ
16043@xref{Command Line Editing}, for more details about the Readline
16044interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
16045encouraged to read that chapter.
16046
d620b259 16047@node Command History
79a6e687 16048@section Command History
703663ab 16049@cindex command history
8e04817f
AC
16050
16051@value{GDBN} can keep track of the commands you type during your
16052debugging sessions, so that you can be certain of precisely what
16053happened. Use these commands to manage the @value{GDBN} command
16054history facility.
104c1213 16055
703663ab
EZ
16056@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
16057package, to provide the history facility. @xref{Using History
16058Interactively}, for the detailed description of the History library.
16059
d620b259 16060To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
16061the state which is seen by users, prefix it with @samp{server }
16062(@pxref{Server Prefix}). This
d620b259
NR
16063means that this command will not affect the command history, nor will it
16064affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16065pressed on a line by itself.
16066
16067@cindex @code{server}, command prefix
16068The server prefix does not affect the recording of values into the value
16069history; to print a value without recording it into the value history,
16070use the @code{output} command instead of the @code{print} command.
16071
703663ab
EZ
16072Here is the description of @value{GDBN} commands related to command
16073history.
16074
104c1213 16075@table @code
8e04817f
AC
16076@cindex history substitution
16077@cindex history file
16078@kindex set history filename
4644b6e3 16079@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16080@item set history filename @var{fname}
16081Set the name of the @value{GDBN} command history file to @var{fname}.
16082This is the file where @value{GDBN} reads an initial command history
16083list, and where it writes the command history from this session when it
16084exits. You can access this list through history expansion or through
16085the history command editing characters listed below. This file defaults
16086to the value of the environment variable @code{GDBHISTFILE}, or to
16087@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16088is not set.
104c1213 16089
9c16f35a
EZ
16090@cindex save command history
16091@kindex set history save
8e04817f
AC
16092@item set history save
16093@itemx set history save on
16094Record command history in a file, whose name may be specified with the
16095@code{set history filename} command. By default, this option is disabled.
104c1213 16096
8e04817f
AC
16097@item set history save off
16098Stop recording command history in a file.
104c1213 16099
8e04817f 16100@cindex history size
9c16f35a 16101@kindex set history size
6fc08d32 16102@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16103@item set history size @var{size}
16104Set the number of commands which @value{GDBN} keeps in its history list.
16105This defaults to the value of the environment variable
16106@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16107@end table
16108
8e04817f 16109History expansion assigns special meaning to the character @kbd{!}.
703663ab 16110@xref{Event Designators}, for more details.
8e04817f 16111
703663ab 16112@cindex history expansion, turn on/off
8e04817f
AC
16113Since @kbd{!} is also the logical not operator in C, history expansion
16114is off by default. If you decide to enable history expansion with the
16115@code{set history expansion on} command, you may sometimes need to
16116follow @kbd{!} (when it is used as logical not, in an expression) with
16117a space or a tab to prevent it from being expanded. The readline
16118history facilities do not attempt substitution on the strings
16119@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16120
16121The commands to control history expansion are:
104c1213
JM
16122
16123@table @code
8e04817f
AC
16124@item set history expansion on
16125@itemx set history expansion
703663ab 16126@kindex set history expansion
8e04817f 16127Enable history expansion. History expansion is off by default.
104c1213 16128
8e04817f
AC
16129@item set history expansion off
16130Disable history expansion.
104c1213 16131
8e04817f
AC
16132@c @group
16133@kindex show history
16134@item show history
16135@itemx show history filename
16136@itemx show history save
16137@itemx show history size
16138@itemx show history expansion
16139These commands display the state of the @value{GDBN} history parameters.
16140@code{show history} by itself displays all four states.
16141@c @end group
16142@end table
16143
16144@table @code
9c16f35a
EZ
16145@kindex show commands
16146@cindex show last commands
16147@cindex display command history
8e04817f
AC
16148@item show commands
16149Display the last ten commands in the command history.
104c1213 16150
8e04817f
AC
16151@item show commands @var{n}
16152Print ten commands centered on command number @var{n}.
16153
16154@item show commands +
16155Print ten commands just after the commands last printed.
104c1213
JM
16156@end table
16157
8e04817f 16158@node Screen Size
79a6e687 16159@section Screen Size
8e04817f
AC
16160@cindex size of screen
16161@cindex pauses in output
104c1213 16162
8e04817f
AC
16163Certain commands to @value{GDBN} may produce large amounts of
16164information output to the screen. To help you read all of it,
16165@value{GDBN} pauses and asks you for input at the end of each page of
16166output. Type @key{RET} when you want to continue the output, or @kbd{q}
16167to discard the remaining output. Also, the screen width setting
16168determines when to wrap lines of output. Depending on what is being
16169printed, @value{GDBN} tries to break the line at a readable place,
16170rather than simply letting it overflow onto the following line.
16171
16172Normally @value{GDBN} knows the size of the screen from the terminal
16173driver software. For example, on Unix @value{GDBN} uses the termcap data base
16174together with the value of the @code{TERM} environment variable and the
16175@code{stty rows} and @code{stty cols} settings. If this is not correct,
16176you can override it with the @code{set height} and @code{set
16177width} commands:
16178
16179@table @code
16180@kindex set height
16181@kindex set width
16182@kindex show width
16183@kindex show height
16184@item set height @var{lpp}
16185@itemx show height
16186@itemx set width @var{cpl}
16187@itemx show width
16188These @code{set} commands specify a screen height of @var{lpp} lines and
16189a screen width of @var{cpl} characters. The associated @code{show}
16190commands display the current settings.
104c1213 16191
8e04817f
AC
16192If you specify a height of zero lines, @value{GDBN} does not pause during
16193output no matter how long the output is. This is useful if output is to a
16194file or to an editor buffer.
104c1213 16195
8e04817f
AC
16196Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16197from wrapping its output.
9c16f35a
EZ
16198
16199@item set pagination on
16200@itemx set pagination off
16201@kindex set pagination
16202Turn the output pagination on or off; the default is on. Turning
16203pagination off is the alternative to @code{set height 0}.
16204
16205@item show pagination
16206@kindex show pagination
16207Show the current pagination mode.
104c1213
JM
16208@end table
16209
8e04817f
AC
16210@node Numbers
16211@section Numbers
16212@cindex number representation
16213@cindex entering numbers
104c1213 16214
8e04817f
AC
16215You can always enter numbers in octal, decimal, or hexadecimal in
16216@value{GDBN} by the usual conventions: octal numbers begin with
16217@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16218begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16219@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1622010; likewise, the default display for numbers---when no particular
16221format is specified---is base 10. You can change the default base for
16222both input and output with the commands described below.
104c1213 16223
8e04817f
AC
16224@table @code
16225@kindex set input-radix
16226@item set input-radix @var{base}
16227Set the default base for numeric input. Supported choices
16228for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16229specified either unambiguously or using the current input radix; for
8e04817f 16230example, any of
104c1213 16231
8e04817f 16232@smallexample
9c16f35a
EZ
16233set input-radix 012
16234set input-radix 10.
16235set input-radix 0xa
8e04817f 16236@end smallexample
104c1213 16237
8e04817f 16238@noindent
9c16f35a 16239sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16240leaves the input radix unchanged, no matter what it was, since
16241@samp{10}, being without any leading or trailing signs of its base, is
16242interpreted in the current radix. Thus, if the current radix is 16,
16243@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16244change the radix.
104c1213 16245
8e04817f
AC
16246@kindex set output-radix
16247@item set output-radix @var{base}
16248Set the default base for numeric display. Supported choices
16249for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16250specified either unambiguously or using the current input radix.
104c1213 16251
8e04817f
AC
16252@kindex show input-radix
16253@item show input-radix
16254Display the current default base for numeric input.
104c1213 16255
8e04817f
AC
16256@kindex show output-radix
16257@item show output-radix
16258Display the current default base for numeric display.
9c16f35a
EZ
16259
16260@item set radix @r{[}@var{base}@r{]}
16261@itemx show radix
16262@kindex set radix
16263@kindex show radix
16264These commands set and show the default base for both input and output
16265of numbers. @code{set radix} sets the radix of input and output to
16266the same base; without an argument, it resets the radix back to its
16267default value of 10.
16268
8e04817f 16269@end table
104c1213 16270
1e698235 16271@node ABI
79a6e687 16272@section Configuring the Current ABI
1e698235
DJ
16273
16274@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16275application automatically. However, sometimes you need to override its
16276conclusions. Use these commands to manage @value{GDBN}'s view of the
16277current ABI.
16278
98b45e30
DJ
16279@cindex OS ABI
16280@kindex set osabi
b4e9345d 16281@kindex show osabi
98b45e30
DJ
16282
16283One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16284system targets, either via remote debugging or native emulation.
98b45e30
DJ
16285@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16286but you can override its conclusion using the @code{set osabi} command.
16287One example where this is useful is in debugging of binaries which use
16288an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16289not have the same identifying marks that the standard C library for your
16290platform provides.
16291
16292@table @code
16293@item show osabi
16294Show the OS ABI currently in use.
16295
16296@item set osabi
16297With no argument, show the list of registered available OS ABI's.
16298
16299@item set osabi @var{abi}
16300Set the current OS ABI to @var{abi}.
16301@end table
16302
1e698235 16303@cindex float promotion
1e698235
DJ
16304
16305Generally, the way that an argument of type @code{float} is passed to a
16306function depends on whether the function is prototyped. For a prototyped
16307(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16308according to the architecture's convention for @code{float}. For unprototyped
16309(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16310@code{double} and then passed.
16311
16312Unfortunately, some forms of debug information do not reliably indicate whether
16313a function is prototyped. If @value{GDBN} calls a function that is not marked
16314as prototyped, it consults @kbd{set coerce-float-to-double}.
16315
16316@table @code
a8f24a35 16317@kindex set coerce-float-to-double
1e698235
DJ
16318@item set coerce-float-to-double
16319@itemx set coerce-float-to-double on
16320Arguments of type @code{float} will be promoted to @code{double} when passed
16321to an unprototyped function. This is the default setting.
16322
16323@item set coerce-float-to-double off
16324Arguments of type @code{float} will be passed directly to unprototyped
16325functions.
9c16f35a
EZ
16326
16327@kindex show coerce-float-to-double
16328@item show coerce-float-to-double
16329Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16330@end table
16331
f1212245
DJ
16332@kindex set cp-abi
16333@kindex show cp-abi
16334@value{GDBN} needs to know the ABI used for your program's C@t{++}
16335objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16336used to build your application. @value{GDBN} only fully supports
16337programs with a single C@t{++} ABI; if your program contains code using
16338multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16339program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16340Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16341before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16342``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16343use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16344``auto''.
16345
16346@table @code
16347@item show cp-abi
16348Show the C@t{++} ABI currently in use.
16349
16350@item set cp-abi
16351With no argument, show the list of supported C@t{++} ABI's.
16352
16353@item set cp-abi @var{abi}
16354@itemx set cp-abi auto
16355Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16356@end table
16357
8e04817f 16358@node Messages/Warnings
79a6e687 16359@section Optional Warnings and Messages
104c1213 16360
9c16f35a
EZ
16361@cindex verbose operation
16362@cindex optional warnings
8e04817f
AC
16363By default, @value{GDBN} is silent about its inner workings. If you are
16364running on a slow machine, you may want to use the @code{set verbose}
16365command. This makes @value{GDBN} tell you when it does a lengthy
16366internal operation, so you will not think it has crashed.
104c1213 16367
8e04817f
AC
16368Currently, the messages controlled by @code{set verbose} are those
16369which announce that the symbol table for a source file is being read;
79a6e687 16370see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16371
8e04817f
AC
16372@table @code
16373@kindex set verbose
16374@item set verbose on
16375Enables @value{GDBN} output of certain informational messages.
104c1213 16376
8e04817f
AC
16377@item set verbose off
16378Disables @value{GDBN} output of certain informational messages.
104c1213 16379
8e04817f
AC
16380@kindex show verbose
16381@item show verbose
16382Displays whether @code{set verbose} is on or off.
16383@end table
104c1213 16384
8e04817f
AC
16385By default, if @value{GDBN} encounters bugs in the symbol table of an
16386object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16387find this information useful (@pxref{Symbol Errors, ,Errors Reading
16388Symbol Files}).
104c1213 16389
8e04817f 16390@table @code
104c1213 16391
8e04817f
AC
16392@kindex set complaints
16393@item set complaints @var{limit}
16394Permits @value{GDBN} to output @var{limit} complaints about each type of
16395unusual symbols before becoming silent about the problem. Set
16396@var{limit} to zero to suppress all complaints; set it to a large number
16397to prevent complaints from being suppressed.
104c1213 16398
8e04817f
AC
16399@kindex show complaints
16400@item show complaints
16401Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16402
8e04817f 16403@end table
104c1213 16404
8e04817f
AC
16405By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16406lot of stupid questions to confirm certain commands. For example, if
16407you try to run a program which is already running:
104c1213 16408
474c8240 16409@smallexample
8e04817f
AC
16410(@value{GDBP}) run
16411The program being debugged has been started already.
16412Start it from the beginning? (y or n)
474c8240 16413@end smallexample
104c1213 16414
8e04817f
AC
16415If you are willing to unflinchingly face the consequences of your own
16416commands, you can disable this ``feature'':
104c1213 16417
8e04817f 16418@table @code
104c1213 16419
8e04817f
AC
16420@kindex set confirm
16421@cindex flinching
16422@cindex confirmation
16423@cindex stupid questions
16424@item set confirm off
16425Disables confirmation requests.
104c1213 16426
8e04817f
AC
16427@item set confirm on
16428Enables confirmation requests (the default).
104c1213 16429
8e04817f
AC
16430@kindex show confirm
16431@item show confirm
16432Displays state of confirmation requests.
16433
16434@end table
104c1213 16435
16026cd7
AS
16436@cindex command tracing
16437If you need to debug user-defined commands or sourced files you may find it
16438useful to enable @dfn{command tracing}. In this mode each command will be
16439printed as it is executed, prefixed with one or more @samp{+} symbols, the
16440quantity denoting the call depth of each command.
16441
16442@table @code
16443@kindex set trace-commands
16444@cindex command scripts, debugging
16445@item set trace-commands on
16446Enable command tracing.
16447@item set trace-commands off
16448Disable command tracing.
16449@item show trace-commands
16450Display the current state of command tracing.
16451@end table
16452
8e04817f 16453@node Debugging Output
79a6e687 16454@section Optional Messages about Internal Happenings
4644b6e3
EZ
16455@cindex optional debugging messages
16456
da316a69
EZ
16457@value{GDBN} has commands that enable optional debugging messages from
16458various @value{GDBN} subsystems; normally these commands are of
16459interest to @value{GDBN} maintainers, or when reporting a bug. This
16460section documents those commands.
16461
104c1213 16462@table @code
a8f24a35
EZ
16463@kindex set exec-done-display
16464@item set exec-done-display
16465Turns on or off the notification of asynchronous commands'
16466completion. When on, @value{GDBN} will print a message when an
16467asynchronous command finishes its execution. The default is off.
16468@kindex show exec-done-display
16469@item show exec-done-display
16470Displays the current setting of asynchronous command completion
16471notification.
4644b6e3
EZ
16472@kindex set debug
16473@cindex gdbarch debugging info
a8f24a35 16474@cindex architecture debugging info
8e04817f 16475@item set debug arch
a8f24a35 16476Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16477@kindex show debug
8e04817f
AC
16478@item show debug arch
16479Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16480@item set debug aix-thread
16481@cindex AIX threads
16482Display debugging messages about inner workings of the AIX thread
16483module.
16484@item show debug aix-thread
16485Show the current state of AIX thread debugging info display.
237fc4c9
PA
16486@item set debug displaced
16487@cindex displaced stepping debugging info
16488Turns on or off display of @value{GDBN} debugging info for the
16489displaced stepping support. The default is off.
16490@item show debug displaced
16491Displays the current state of displaying @value{GDBN} debugging info
16492related to displaced stepping.
8e04817f 16493@item set debug event
4644b6e3 16494@cindex event debugging info
a8f24a35 16495Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16496default is off.
8e04817f
AC
16497@item show debug event
16498Displays the current state of displaying @value{GDBN} event debugging
16499info.
8e04817f 16500@item set debug expression
4644b6e3 16501@cindex expression debugging info
721c2651
EZ
16502Turns on or off display of debugging info about @value{GDBN}
16503expression parsing. The default is off.
8e04817f 16504@item show debug expression
721c2651
EZ
16505Displays the current state of displaying debugging info about
16506@value{GDBN} expression parsing.
7453dc06 16507@item set debug frame
4644b6e3 16508@cindex frame debugging info
7453dc06
AC
16509Turns on or off display of @value{GDBN} frame debugging info. The
16510default is off.
7453dc06
AC
16511@item show debug frame
16512Displays the current state of displaying @value{GDBN} frame debugging
16513info.
30e91e0b
RC
16514@item set debug infrun
16515@cindex inferior debugging info
16516Turns on or off display of @value{GDBN} debugging info for running the inferior.
16517The default is off. @file{infrun.c} contains GDB's runtime state machine used
16518for implementing operations such as single-stepping the inferior.
16519@item show debug infrun
16520Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16521@item set debug lin-lwp
16522@cindex @sc{gnu}/Linux LWP debug messages
16523@cindex Linux lightweight processes
721c2651 16524Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16525@item show debug lin-lwp
16526Show the current state of Linux LWP debugging messages.
b84876c2
PA
16527@item set debug lin-lwp-async
16528@cindex @sc{gnu}/Linux LWP async debug messages
16529@cindex Linux lightweight processes
16530Turns on or off debugging messages from the Linux LWP async debug support.
16531@item show debug lin-lwp-async
16532Show the current state of Linux LWP async debugging messages.
2b4855ab 16533@item set debug observer
4644b6e3 16534@cindex observer debugging info
2b4855ab
AC
16535Turns on or off display of @value{GDBN} observer debugging. This
16536includes info such as the notification of observable events.
2b4855ab
AC
16537@item show debug observer
16538Displays the current state of observer debugging.
8e04817f 16539@item set debug overload
4644b6e3 16540@cindex C@t{++} overload debugging info
8e04817f 16541Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16542info. This includes info such as ranking of functions, etc. The default
8e04817f 16543is off.
8e04817f
AC
16544@item show debug overload
16545Displays the current state of displaying @value{GDBN} C@t{++} overload
16546debugging info.
8e04817f
AC
16547@cindex packets, reporting on stdout
16548@cindex serial connections, debugging
605a56cb
DJ
16549@cindex debug remote protocol
16550@cindex remote protocol debugging
16551@cindex display remote packets
8e04817f
AC
16552@item set debug remote
16553Turns on or off display of reports on all packets sent back and forth across
16554the serial line to the remote machine. The info is printed on the
16555@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16556@item show debug remote
16557Displays the state of display of remote packets.
8e04817f
AC
16558@item set debug serial
16559Turns on or off display of @value{GDBN} serial debugging info. The
16560default is off.
8e04817f
AC
16561@item show debug serial
16562Displays the current state of displaying @value{GDBN} serial debugging
16563info.
c45da7e6
EZ
16564@item set debug solib-frv
16565@cindex FR-V shared-library debugging
16566Turns on or off debugging messages for FR-V shared-library code.
16567@item show debug solib-frv
16568Display the current state of FR-V shared-library code debugging
16569messages.
8e04817f 16570@item set debug target
4644b6e3 16571@cindex target debugging info
8e04817f
AC
16572Turns on or off display of @value{GDBN} target debugging info. This info
16573includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16574default is 0. Set it to 1 to track events, and to 2 to also track the
16575value of large memory transfers. Changes to this flag do not take effect
16576until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16577@item show debug target
16578Displays the current state of displaying @value{GDBN} target debugging
16579info.
75feb17d
DJ
16580@item set debug timestamp
16581@cindex timestampping debugging info
16582Turns on or off display of timestamps with @value{GDBN} debugging info.
16583When enabled, seconds and microseconds are displayed before each debugging
16584message.
16585@item show debug timestamp
16586Displays the current state of displaying timestamps with @value{GDBN}
16587debugging info.
c45da7e6 16588@item set debugvarobj
4644b6e3 16589@cindex variable object debugging info
8e04817f
AC
16590Turns on or off display of @value{GDBN} variable object debugging
16591info. The default is off.
c45da7e6 16592@item show debugvarobj
8e04817f
AC
16593Displays the current state of displaying @value{GDBN} variable object
16594debugging info.
e776119f
DJ
16595@item set debug xml
16596@cindex XML parser debugging
16597Turns on or off debugging messages for built-in XML parsers.
16598@item show debug xml
16599Displays the current state of XML debugging messages.
8e04817f 16600@end table
104c1213 16601
8e04817f
AC
16602@node Sequences
16603@chapter Canned Sequences of Commands
104c1213 16604
8e04817f 16605Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16606Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16607commands for execution as a unit: user-defined commands and command
16608files.
104c1213 16609
8e04817f 16610@menu
fcc73fe3
EZ
16611* Define:: How to define your own commands
16612* Hooks:: Hooks for user-defined commands
16613* Command Files:: How to write scripts of commands to be stored in a file
16614* Output:: Commands for controlled output
8e04817f 16615@end menu
104c1213 16616
8e04817f 16617@node Define
79a6e687 16618@section User-defined Commands
104c1213 16619
8e04817f 16620@cindex user-defined command
fcc73fe3 16621@cindex arguments, to user-defined commands
8e04817f
AC
16622A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16623which you assign a new name as a command. This is done with the
16624@code{define} command. User commands may accept up to 10 arguments
16625separated by whitespace. Arguments are accessed within the user command
c03c782f 16626via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16627
8e04817f
AC
16628@smallexample
16629define adder
16630 print $arg0 + $arg1 + $arg2
c03c782f 16631end
8e04817f 16632@end smallexample
104c1213
JM
16633
16634@noindent
8e04817f 16635To execute the command use:
104c1213 16636
8e04817f
AC
16637@smallexample
16638adder 1 2 3
16639@end smallexample
104c1213 16640
8e04817f
AC
16641@noindent
16642This defines the command @code{adder}, which prints the sum of
16643its three arguments. Note the arguments are text substitutions, so they may
16644reference variables, use complex expressions, or even perform inferior
16645functions calls.
104c1213 16646
fcc73fe3
EZ
16647@cindex argument count in user-defined commands
16648@cindex how many arguments (user-defined commands)
c03c782f
AS
16649In addition, @code{$argc} may be used to find out how many arguments have
16650been passed. This expands to a number in the range 0@dots{}10.
16651
16652@smallexample
16653define adder
16654 if $argc == 2
16655 print $arg0 + $arg1
16656 end
16657 if $argc == 3
16658 print $arg0 + $arg1 + $arg2
16659 end
16660end
16661@end smallexample
16662
104c1213 16663@table @code
104c1213 16664
8e04817f
AC
16665@kindex define
16666@item define @var{commandname}
16667Define a command named @var{commandname}. If there is already a command
16668by that name, you are asked to confirm that you want to redefine it.
104c1213 16669
8e04817f
AC
16670The definition of the command is made up of other @value{GDBN} command lines,
16671which are given following the @code{define} command. The end of these
16672commands is marked by a line containing @code{end}.
104c1213 16673
8e04817f 16674@kindex document
ca91424e 16675@kindex end@r{ (user-defined commands)}
8e04817f
AC
16676@item document @var{commandname}
16677Document the user-defined command @var{commandname}, so that it can be
16678accessed by @code{help}. The command @var{commandname} must already be
16679defined. This command reads lines of documentation just as @code{define}
16680reads the lines of the command definition, ending with @code{end}.
16681After the @code{document} command is finished, @code{help} on command
16682@var{commandname} displays the documentation you have written.
104c1213 16683
8e04817f
AC
16684You may use the @code{document} command again to change the
16685documentation of a command. Redefining the command with @code{define}
16686does not change the documentation.
104c1213 16687
c45da7e6
EZ
16688@kindex dont-repeat
16689@cindex don't repeat command
16690@item dont-repeat
16691Used inside a user-defined command, this tells @value{GDBN} that this
16692command should not be repeated when the user hits @key{RET}
16693(@pxref{Command Syntax, repeat last command}).
16694
8e04817f
AC
16695@kindex help user-defined
16696@item help user-defined
16697List all user-defined commands, with the first line of the documentation
16698(if any) for each.
104c1213 16699
8e04817f
AC
16700@kindex show user
16701@item show user
16702@itemx show user @var{commandname}
16703Display the @value{GDBN} commands used to define @var{commandname} (but
16704not its documentation). If no @var{commandname} is given, display the
16705definitions for all user-defined commands.
104c1213 16706
fcc73fe3 16707@cindex infinite recursion in user-defined commands
20f01a46
DH
16708@kindex show max-user-call-depth
16709@kindex set max-user-call-depth
16710@item show max-user-call-depth
5ca0cb28
DH
16711@itemx set max-user-call-depth
16712The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16713levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16714infinite recursion and aborts the command.
104c1213
JM
16715@end table
16716
fcc73fe3
EZ
16717In addition to the above commands, user-defined commands frequently
16718use control flow commands, described in @ref{Command Files}.
16719
8e04817f
AC
16720When user-defined commands are executed, the
16721commands of the definition are not printed. An error in any command
16722stops execution of the user-defined command.
104c1213 16723
8e04817f
AC
16724If used interactively, commands that would ask for confirmation proceed
16725without asking when used inside a user-defined command. Many @value{GDBN}
16726commands that normally print messages to say what they are doing omit the
16727messages when used in a user-defined command.
104c1213 16728
8e04817f 16729@node Hooks
79a6e687 16730@section User-defined Command Hooks
8e04817f
AC
16731@cindex command hooks
16732@cindex hooks, for commands
16733@cindex hooks, pre-command
104c1213 16734
8e04817f 16735@kindex hook
8e04817f
AC
16736You may define @dfn{hooks}, which are a special kind of user-defined
16737command. Whenever you run the command @samp{foo}, if the user-defined
16738command @samp{hook-foo} exists, it is executed (with no arguments)
16739before that command.
104c1213 16740
8e04817f
AC
16741@cindex hooks, post-command
16742@kindex hookpost
8e04817f
AC
16743A hook may also be defined which is run after the command you executed.
16744Whenever you run the command @samp{foo}, if the user-defined command
16745@samp{hookpost-foo} exists, it is executed (with no arguments) after
16746that command. Post-execution hooks may exist simultaneously with
16747pre-execution hooks, for the same command.
104c1213 16748
8e04817f 16749It is valid for a hook to call the command which it hooks. If this
9f1c6395 16750occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16751
8e04817f
AC
16752@c It would be nice if hookpost could be passed a parameter indicating
16753@c if the command it hooks executed properly or not. FIXME!
104c1213 16754
8e04817f
AC
16755@kindex stop@r{, a pseudo-command}
16756In addition, a pseudo-command, @samp{stop} exists. Defining
16757(@samp{hook-stop}) makes the associated commands execute every time
16758execution stops in your program: before breakpoint commands are run,
16759displays are printed, or the stack frame is printed.
104c1213 16760
8e04817f
AC
16761For example, to ignore @code{SIGALRM} signals while
16762single-stepping, but treat them normally during normal execution,
16763you could define:
104c1213 16764
474c8240 16765@smallexample
8e04817f
AC
16766define hook-stop
16767handle SIGALRM nopass
16768end
104c1213 16769
8e04817f
AC
16770define hook-run
16771handle SIGALRM pass
16772end
104c1213 16773
8e04817f 16774define hook-continue
d3e8051b 16775handle SIGALRM pass
8e04817f 16776end
474c8240 16777@end smallexample
104c1213 16778
d3e8051b 16779As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16780command, and to add extra text to the beginning and end of the message,
8e04817f 16781you could define:
104c1213 16782
474c8240 16783@smallexample
8e04817f
AC
16784define hook-echo
16785echo <<<---
16786end
104c1213 16787
8e04817f
AC
16788define hookpost-echo
16789echo --->>>\n
16790end
104c1213 16791
8e04817f
AC
16792(@value{GDBP}) echo Hello World
16793<<<---Hello World--->>>
16794(@value{GDBP})
104c1213 16795
474c8240 16796@end smallexample
104c1213 16797
8e04817f
AC
16798You can define a hook for any single-word command in @value{GDBN}, but
16799not for command aliases; you should define a hook for the basic command
c1468174 16800name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16801@c FIXME! So how does Joe User discover whether a command is an alias
16802@c or not?
16803If an error occurs during the execution of your hook, execution of
16804@value{GDBN} commands stops and @value{GDBN} issues a prompt
16805(before the command that you actually typed had a chance to run).
104c1213 16806
8e04817f
AC
16807If you try to define a hook which does not match any known command, you
16808get a warning from the @code{define} command.
c906108c 16809
8e04817f 16810@node Command Files
79a6e687 16811@section Command Files
c906108c 16812
8e04817f 16813@cindex command files
fcc73fe3 16814@cindex scripting commands
6fc08d32
EZ
16815A command file for @value{GDBN} is a text file made of lines that are
16816@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16817also be included. An empty line in a command file does nothing; it
16818does not mean to repeat the last command, as it would from the
16819terminal.
c906108c 16820
6fc08d32
EZ
16821You can request the execution of a command file with the @code{source}
16822command:
c906108c 16823
8e04817f
AC
16824@table @code
16825@kindex source
ca91424e 16826@cindex execute commands from a file
16026cd7 16827@item source [@code{-v}] @var{filename}
8e04817f 16828Execute the command file @var{filename}.
c906108c
SS
16829@end table
16830
fcc73fe3
EZ
16831The lines in a command file are generally executed sequentially,
16832unless the order of execution is changed by one of the
16833@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16834printed as they are executed. An error in any command terminates
16835execution of the command file and control is returned to the console.
c906108c 16836
4b505b12
AS
16837@value{GDBN} searches for @var{filename} in the current directory and then
16838on the search path (specified with the @samp{directory} command).
16839
16026cd7
AS
16840If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16841each command as it is executed. The option must be given before
16842@var{filename}, and is interpreted as part of the filename anywhere else.
16843
8e04817f
AC
16844Commands that would ask for confirmation if used interactively proceed
16845without asking when used in a command file. Many @value{GDBN} commands that
16846normally print messages to say what they are doing omit the messages
16847when called from command files.
c906108c 16848
8e04817f
AC
16849@value{GDBN} also accepts command input from standard input. In this
16850mode, normal output goes to standard output and error output goes to
16851standard error. Errors in a command file supplied on standard input do
6fc08d32 16852not terminate execution of the command file---execution continues with
8e04817f 16853the next command.
c906108c 16854
474c8240 16855@smallexample
8e04817f 16856gdb < cmds > log 2>&1
474c8240 16857@end smallexample
c906108c 16858
8e04817f
AC
16859(The syntax above will vary depending on the shell used.) This example
16860will execute commands from the file @file{cmds}. All output and errors
16861would be directed to @file{log}.
c906108c 16862
fcc73fe3
EZ
16863Since commands stored on command files tend to be more general than
16864commands typed interactively, they frequently need to deal with
16865complicated situations, such as different or unexpected values of
16866variables and symbols, changes in how the program being debugged is
16867built, etc. @value{GDBN} provides a set of flow-control commands to
16868deal with these complexities. Using these commands, you can write
16869complex scripts that loop over data structures, execute commands
16870conditionally, etc.
16871
16872@table @code
16873@kindex if
16874@kindex else
16875@item if
16876@itemx else
16877This command allows to include in your script conditionally executed
16878commands. The @code{if} command takes a single argument, which is an
16879expression to evaluate. It is followed by a series of commands that
16880are executed only if the expression is true (its value is nonzero).
16881There can then optionally be an @code{else} line, followed by a series
16882of commands that are only executed if the expression was false. The
16883end of the list is marked by a line containing @code{end}.
16884
16885@kindex while
16886@item while
16887This command allows to write loops. Its syntax is similar to
16888@code{if}: the command takes a single argument, which is an expression
16889to evaluate, and must be followed by the commands to execute, one per
16890line, terminated by an @code{end}. These commands are called the
16891@dfn{body} of the loop. The commands in the body of @code{while} are
16892executed repeatedly as long as the expression evaluates to true.
16893
16894@kindex loop_break
16895@item loop_break
16896This command exits the @code{while} loop in whose body it is included.
16897Execution of the script continues after that @code{while}s @code{end}
16898line.
16899
16900@kindex loop_continue
16901@item loop_continue
16902This command skips the execution of the rest of the body of commands
16903in the @code{while} loop in whose body it is included. Execution
16904branches to the beginning of the @code{while} loop, where it evaluates
16905the controlling expression.
ca91424e
EZ
16906
16907@kindex end@r{ (if/else/while commands)}
16908@item end
16909Terminate the block of commands that are the body of @code{if},
16910@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16911@end table
16912
16913
8e04817f 16914@node Output
79a6e687 16915@section Commands for Controlled Output
c906108c 16916
8e04817f
AC
16917During the execution of a command file or a user-defined command, normal
16918@value{GDBN} output is suppressed; the only output that appears is what is
16919explicitly printed by the commands in the definition. This section
16920describes three commands useful for generating exactly the output you
16921want.
c906108c
SS
16922
16923@table @code
8e04817f
AC
16924@kindex echo
16925@item echo @var{text}
16926@c I do not consider backslash-space a standard C escape sequence
16927@c because it is not in ANSI.
16928Print @var{text}. Nonprinting characters can be included in
16929@var{text} using C escape sequences, such as @samp{\n} to print a
16930newline. @strong{No newline is printed unless you specify one.}
16931In addition to the standard C escape sequences, a backslash followed
16932by a space stands for a space. This is useful for displaying a
16933string with spaces at the beginning or the end, since leading and
16934trailing spaces are otherwise trimmed from all arguments.
16935To print @samp{@w{ }and foo =@w{ }}, use the command
16936@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16937
8e04817f
AC
16938A backslash at the end of @var{text} can be used, as in C, to continue
16939the command onto subsequent lines. For example,
c906108c 16940
474c8240 16941@smallexample
8e04817f
AC
16942echo This is some text\n\
16943which is continued\n\
16944onto several lines.\n
474c8240 16945@end smallexample
c906108c 16946
8e04817f 16947produces the same output as
c906108c 16948
474c8240 16949@smallexample
8e04817f
AC
16950echo This is some text\n
16951echo which is continued\n
16952echo onto several lines.\n
474c8240 16953@end smallexample
c906108c 16954
8e04817f
AC
16955@kindex output
16956@item output @var{expression}
16957Print the value of @var{expression} and nothing but that value: no
16958newlines, no @samp{$@var{nn} = }. The value is not entered in the
16959value history either. @xref{Expressions, ,Expressions}, for more information
16960on expressions.
c906108c 16961
8e04817f
AC
16962@item output/@var{fmt} @var{expression}
16963Print the value of @var{expression} in format @var{fmt}. You can use
16964the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16965Formats}, for more information.
c906108c 16966
8e04817f 16967@kindex printf
82160952
EZ
16968@item printf @var{template}, @var{expressions}@dots{}
16969Print the values of one or more @var{expressions} under the control of
16970the string @var{template}. To print several values, make
16971@var{expressions} be a comma-separated list of individual expressions,
16972which may be either numbers or pointers. Their values are printed as
16973specified by @var{template}, exactly as a C program would do by
16974executing the code below:
c906108c 16975
474c8240 16976@smallexample
82160952 16977printf (@var{template}, @var{expressions}@dots{});
474c8240 16978@end smallexample
c906108c 16979
82160952
EZ
16980As in @code{C} @code{printf}, ordinary characters in @var{template}
16981are printed verbatim, while @dfn{conversion specification} introduced
16982by the @samp{%} character cause subsequent @var{expressions} to be
16983evaluated, their values converted and formatted according to type and
16984style information encoded in the conversion specifications, and then
16985printed.
16986
8e04817f 16987For example, you can print two values in hex like this:
c906108c 16988
8e04817f
AC
16989@smallexample
16990printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16991@end smallexample
c906108c 16992
82160952
EZ
16993@code{printf} supports all the standard @code{C} conversion
16994specifications, including the flags and modifiers between the @samp{%}
16995character and the conversion letter, with the following exceptions:
16996
16997@itemize @bullet
16998@item
16999The argument-ordering modifiers, such as @samp{2$}, are not supported.
17000
17001@item
17002The modifier @samp{*} is not supported for specifying precision or
17003width.
17004
17005@item
17006The @samp{'} flag (for separation of digits into groups according to
17007@code{LC_NUMERIC'}) is not supported.
17008
17009@item
17010The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
17011supported.
17012
17013@item
17014The conversion letter @samp{n} (as in @samp{%n}) is not supported.
17015
17016@item
17017The conversion letters @samp{a} and @samp{A} are not supported.
17018@end itemize
17019
17020@noindent
17021Note that the @samp{ll} type modifier is supported only if the
17022underlying @code{C} implementation used to build @value{GDBN} supports
17023the @code{long long int} type, and the @samp{L} type modifier is
17024supported only if @code{long double} type is available.
17025
17026As in @code{C}, @code{printf} supports simple backslash-escape
17027sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
17028@samp{\a}, and @samp{\f}, that consist of backslash followed by a
17029single character. Octal and hexadecimal escape sequences are not
17030supported.
1a619819
LM
17031
17032Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
17033(@dfn{Decimal Floating Point}) types using the following length modifiers
17034together with a floating point specifier.
1a619819
LM
17035letters:
17036
17037@itemize @bullet
17038@item
17039@samp{H} for printing @code{Decimal32} types.
17040
17041@item
17042@samp{D} for printing @code{Decimal64} types.
17043
17044@item
17045@samp{DD} for printing @code{Decimal128} types.
17046@end itemize
17047
17048If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 17049support for the three length modifiers for DFP types, other modifiers
3b784c4f 17050such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
17051
17052In case there is no such @code{C} support, no additional modifiers will be
17053available and the value will be printed in the standard way.
17054
17055Here's an example of printing DFP types using the above conversion letters:
17056@smallexample
0aea4bf3 17057printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
17058@end smallexample
17059
c906108c
SS
17060@end table
17061
21c294e6
AC
17062@node Interpreters
17063@chapter Command Interpreters
17064@cindex command interpreters
17065
17066@value{GDBN} supports multiple command interpreters, and some command
17067infrastructure to allow users or user interface writers to switch
17068between interpreters or run commands in other interpreters.
17069
17070@value{GDBN} currently supports two command interpreters, the console
17071interpreter (sometimes called the command-line interpreter or @sc{cli})
17072and the machine interface interpreter (or @sc{gdb/mi}). This manual
17073describes both of these interfaces in great detail.
17074
17075By default, @value{GDBN} will start with the console interpreter.
17076However, the user may choose to start @value{GDBN} with another
17077interpreter by specifying the @option{-i} or @option{--interpreter}
17078startup options. Defined interpreters include:
17079
17080@table @code
17081@item console
17082@cindex console interpreter
17083The traditional console or command-line interpreter. This is the most often
17084used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17085@value{GDBN} will use this interpreter.
17086
17087@item mi
17088@cindex mi interpreter
17089The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17090by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17091or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17092Interface}.
17093
17094@item mi2
17095@cindex mi2 interpreter
17096The current @sc{gdb/mi} interface.
17097
17098@item mi1
17099@cindex mi1 interpreter
17100The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17101
17102@end table
17103
17104@cindex invoke another interpreter
17105The interpreter being used by @value{GDBN} may not be dynamically
17106switched at runtime. Although possible, this could lead to a very
17107precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17108enters the command "interpreter-set console" in a console view,
17109@value{GDBN} would switch to using the console interpreter, rendering
17110the IDE inoperable!
17111
17112@kindex interpreter-exec
17113Although you may only choose a single interpreter at startup, you may execute
17114commands in any interpreter from the current interpreter using the appropriate
17115command. If you are running the console interpreter, simply use the
17116@code{interpreter-exec} command:
17117
17118@smallexample
17119interpreter-exec mi "-data-list-register-names"
17120@end smallexample
17121
17122@sc{gdb/mi} has a similar command, although it is only available in versions of
17123@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17124
8e04817f
AC
17125@node TUI
17126@chapter @value{GDBN} Text User Interface
17127@cindex TUI
d0d5df6f 17128@cindex Text User Interface
c906108c 17129
8e04817f
AC
17130@menu
17131* TUI Overview:: TUI overview
17132* TUI Keys:: TUI key bindings
7cf36c78 17133* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17134* TUI Commands:: TUI-specific commands
8e04817f
AC
17135* TUI Configuration:: TUI configuration variables
17136@end menu
c906108c 17137
46ba6afa 17138The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17139interface which uses the @code{curses} library to show the source
17140file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17141commands in separate text windows. The TUI mode is supported only
17142on platforms where a suitable version of the @code{curses} library
17143is available.
d0d5df6f 17144
46ba6afa
BW
17145@pindex @value{GDBTUI}
17146The TUI mode is enabled by default when you invoke @value{GDBN} as
17147either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17148You can also switch in and out of TUI mode while @value{GDBN} runs by
17149using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17150@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17151
8e04817f 17152@node TUI Overview
79a6e687 17153@section TUI Overview
c906108c 17154
46ba6afa 17155In TUI mode, @value{GDBN} can display several text windows:
c906108c 17156
8e04817f
AC
17157@table @emph
17158@item command
17159This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17160prompt and the @value{GDBN} output. The @value{GDBN} input is still
17161managed using readline.
c906108c 17162
8e04817f
AC
17163@item source
17164The source window shows the source file of the program. The current
46ba6afa 17165line and active breakpoints are displayed in this window.
c906108c 17166
8e04817f
AC
17167@item assembly
17168The assembly window shows the disassembly output of the program.
c906108c 17169
8e04817f 17170@item register
46ba6afa
BW
17171This window shows the processor registers. Registers are highlighted
17172when their values change.
c906108c
SS
17173@end table
17174
269c21fe 17175The source and assembly windows show the current program position
46ba6afa
BW
17176by highlighting the current line and marking it with a @samp{>} marker.
17177Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17178indicates the breakpoint type:
17179
17180@table @code
17181@item B
17182Breakpoint which was hit at least once.
17183
17184@item b
17185Breakpoint which was never hit.
17186
17187@item H
17188Hardware breakpoint which was hit at least once.
17189
17190@item h
17191Hardware breakpoint which was never hit.
269c21fe
SC
17192@end table
17193
17194The second marker indicates whether the breakpoint is enabled or not:
17195
17196@table @code
17197@item +
17198Breakpoint is enabled.
17199
17200@item -
17201Breakpoint is disabled.
269c21fe
SC
17202@end table
17203
46ba6afa
BW
17204The source, assembly and register windows are updated when the current
17205thread changes, when the frame changes, or when the program counter
17206changes.
17207
17208These windows are not all visible at the same time. The command
17209window is always visible. The others can be arranged in several
17210layouts:
c906108c 17211
8e04817f
AC
17212@itemize @bullet
17213@item
46ba6afa 17214source only,
2df3850c 17215
8e04817f 17216@item
46ba6afa 17217assembly only,
8e04817f
AC
17218
17219@item
46ba6afa 17220source and assembly,
8e04817f
AC
17221
17222@item
46ba6afa 17223source and registers, or
c906108c 17224
8e04817f 17225@item
46ba6afa 17226assembly and registers.
8e04817f 17227@end itemize
c906108c 17228
46ba6afa 17229A status line above the command window shows the following information:
b7bb15bc
SC
17230
17231@table @emph
17232@item target
46ba6afa 17233Indicates the current @value{GDBN} target.
b7bb15bc
SC
17234(@pxref{Targets, ,Specifying a Debugging Target}).
17235
17236@item process
46ba6afa 17237Gives the current process or thread number.
b7bb15bc
SC
17238When no process is being debugged, this field is set to @code{No process}.
17239
17240@item function
17241Gives the current function name for the selected frame.
17242The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17243When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17244the string @code{??} is displayed.
17245
17246@item line
17247Indicates the current line number for the selected frame.
46ba6afa 17248When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17249
17250@item pc
17251Indicates the current program counter address.
b7bb15bc
SC
17252@end table
17253
8e04817f
AC
17254@node TUI Keys
17255@section TUI Key Bindings
17256@cindex TUI key bindings
c906108c 17257
8e04817f 17258The TUI installs several key bindings in the readline keymaps
46ba6afa 17259(@pxref{Command Line Editing}). The following key bindings
8e04817f 17260are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17261
8e04817f
AC
17262@table @kbd
17263@kindex C-x C-a
17264@item C-x C-a
17265@kindex C-x a
17266@itemx C-x a
17267@kindex C-x A
17268@itemx C-x A
46ba6afa
BW
17269Enter or leave the TUI mode. When leaving the TUI mode,
17270the curses window management stops and @value{GDBN} operates using
17271its standard mode, writing on the terminal directly. When reentering
17272the TUI mode, control is given back to the curses windows.
8e04817f 17273The screen is then refreshed.
c906108c 17274
8e04817f
AC
17275@kindex C-x 1
17276@item C-x 1
17277Use a TUI layout with only one window. The layout will
17278either be @samp{source} or @samp{assembly}. When the TUI mode
17279is not active, it will switch to the TUI mode.
2df3850c 17280
8e04817f 17281Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17282
8e04817f
AC
17283@kindex C-x 2
17284@item C-x 2
17285Use a TUI layout with at least two windows. When the current
46ba6afa 17286layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17287When a new layout is chosen, one window will always be common to the
17288previous layout and the new one.
c906108c 17289
8e04817f 17290Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17291
72ffddc9
SC
17292@kindex C-x o
17293@item C-x o
17294Change the active window. The TUI associates several key bindings
46ba6afa 17295(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17296gives the focus to the next TUI window.
17297
17298Think of it as the Emacs @kbd{C-x o} binding.
17299
7cf36c78
SC
17300@kindex C-x s
17301@item C-x s
46ba6afa
BW
17302Switch in and out of the TUI SingleKey mode that binds single
17303keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17304@end table
17305
46ba6afa 17306The following key bindings only work in the TUI mode:
5d161b24 17307
46ba6afa 17308@table @asis
8e04817f 17309@kindex PgUp
46ba6afa 17310@item @key{PgUp}
8e04817f 17311Scroll the active window one page up.
c906108c 17312
8e04817f 17313@kindex PgDn
46ba6afa 17314@item @key{PgDn}
8e04817f 17315Scroll the active window one page down.
c906108c 17316
8e04817f 17317@kindex Up
46ba6afa 17318@item @key{Up}
8e04817f 17319Scroll the active window one line up.
c906108c 17320
8e04817f 17321@kindex Down
46ba6afa 17322@item @key{Down}
8e04817f 17323Scroll the active window one line down.
c906108c 17324
8e04817f 17325@kindex Left
46ba6afa 17326@item @key{Left}
8e04817f 17327Scroll the active window one column left.
c906108c 17328
8e04817f 17329@kindex Right
46ba6afa 17330@item @key{Right}
8e04817f 17331Scroll the active window one column right.
c906108c 17332
8e04817f 17333@kindex C-L
46ba6afa 17334@item @kbd{C-L}
8e04817f 17335Refresh the screen.
8e04817f 17336@end table
c906108c 17337
46ba6afa
BW
17338Because the arrow keys scroll the active window in the TUI mode, they
17339are not available for their normal use by readline unless the command
17340window has the focus. When another window is active, you must use
17341other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17342and @kbd{C-f} to control the command window.
8e04817f 17343
7cf36c78
SC
17344@node TUI Single Key Mode
17345@section TUI Single Key Mode
17346@cindex TUI single key mode
17347
46ba6afa
BW
17348The TUI also provides a @dfn{SingleKey} mode, which binds several
17349frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17350switch into this mode, where the following key bindings are used:
7cf36c78
SC
17351
17352@table @kbd
17353@kindex c @r{(SingleKey TUI key)}
17354@item c
17355continue
17356
17357@kindex d @r{(SingleKey TUI key)}
17358@item d
17359down
17360
17361@kindex f @r{(SingleKey TUI key)}
17362@item f
17363finish
17364
17365@kindex n @r{(SingleKey TUI key)}
17366@item n
17367next
17368
17369@kindex q @r{(SingleKey TUI key)}
17370@item q
46ba6afa 17371exit the SingleKey mode.
7cf36c78
SC
17372
17373@kindex r @r{(SingleKey TUI key)}
17374@item r
17375run
17376
17377@kindex s @r{(SingleKey TUI key)}
17378@item s
17379step
17380
17381@kindex u @r{(SingleKey TUI key)}
17382@item u
17383up
17384
17385@kindex v @r{(SingleKey TUI key)}
17386@item v
17387info locals
17388
17389@kindex w @r{(SingleKey TUI key)}
17390@item w
17391where
7cf36c78
SC
17392@end table
17393
17394Other keys temporarily switch to the @value{GDBN} command prompt.
17395The key that was pressed is inserted in the editing buffer so that
17396it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17397with the TUI SingleKey mode. Once the command is entered the TUI
17398SingleKey mode is restored. The only way to permanently leave
7f9087cb 17399this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17400
17401
8e04817f 17402@node TUI Commands
db2e3e2e 17403@section TUI-specific Commands
8e04817f
AC
17404@cindex TUI commands
17405
17406The TUI has specific commands to control the text windows.
46ba6afa
BW
17407These commands are always available, even when @value{GDBN} is not in
17408the TUI mode. When @value{GDBN} is in the standard mode, most
17409of these commands will automatically switch to the TUI mode.
c906108c
SS
17410
17411@table @code
3d757584
SC
17412@item info win
17413@kindex info win
17414List and give the size of all displayed windows.
17415
8e04817f 17416@item layout next
4644b6e3 17417@kindex layout
8e04817f 17418Display the next layout.
2df3850c 17419
8e04817f 17420@item layout prev
8e04817f 17421Display the previous layout.
c906108c 17422
8e04817f 17423@item layout src
8e04817f 17424Display the source window only.
c906108c 17425
8e04817f 17426@item layout asm
8e04817f 17427Display the assembly window only.
c906108c 17428
8e04817f 17429@item layout split
8e04817f 17430Display the source and assembly window.
c906108c 17431
8e04817f 17432@item layout regs
8e04817f
AC
17433Display the register window together with the source or assembly window.
17434
46ba6afa 17435@item focus next
8e04817f 17436@kindex focus
46ba6afa
BW
17437Make the next window active for scrolling.
17438
17439@item focus prev
17440Make the previous window active for scrolling.
17441
17442@item focus src
17443Make the source window active for scrolling.
17444
17445@item focus asm
17446Make the assembly window active for scrolling.
17447
17448@item focus regs
17449Make the register window active for scrolling.
17450
17451@item focus cmd
17452Make the command window active for scrolling.
c906108c 17453
8e04817f
AC
17454@item refresh
17455@kindex refresh
7f9087cb 17456Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17457
6a1b180d
SC
17458@item tui reg float
17459@kindex tui reg
17460Show the floating point registers in the register window.
17461
17462@item tui reg general
17463Show the general registers in the register window.
17464
17465@item tui reg next
17466Show the next register group. The list of register groups as well as
17467their order is target specific. The predefined register groups are the
17468following: @code{general}, @code{float}, @code{system}, @code{vector},
17469@code{all}, @code{save}, @code{restore}.
17470
17471@item tui reg system
17472Show the system registers in the register window.
17473
8e04817f
AC
17474@item update
17475@kindex update
17476Update the source window and the current execution point.
c906108c 17477
8e04817f
AC
17478@item winheight @var{name} +@var{count}
17479@itemx winheight @var{name} -@var{count}
17480@kindex winheight
17481Change the height of the window @var{name} by @var{count}
17482lines. Positive counts increase the height, while negative counts
17483decrease it.
2df3850c 17484
46ba6afa
BW
17485@item tabset @var{nchars}
17486@kindex tabset
c45da7e6 17487Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17488@end table
17489
8e04817f 17490@node TUI Configuration
79a6e687 17491@section TUI Configuration Variables
8e04817f 17492@cindex TUI configuration variables
c906108c 17493
46ba6afa 17494Several configuration variables control the appearance of TUI windows.
c906108c 17495
8e04817f
AC
17496@table @code
17497@item set tui border-kind @var{kind}
17498@kindex set tui border-kind
17499Select the border appearance for the source, assembly and register windows.
17500The possible values are the following:
17501@table @code
17502@item space
17503Use a space character to draw the border.
c906108c 17504
8e04817f 17505@item ascii
46ba6afa 17506Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17507
8e04817f
AC
17508@item acs
17509Use the Alternate Character Set to draw the border. The border is
17510drawn using character line graphics if the terminal supports them.
8e04817f 17511@end table
c78b4128 17512
8e04817f
AC
17513@item set tui border-mode @var{mode}
17514@kindex set tui border-mode
46ba6afa
BW
17515@itemx set tui active-border-mode @var{mode}
17516@kindex set tui active-border-mode
17517Select the display attributes for the borders of the inactive windows
17518or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17519@table @code
17520@item normal
17521Use normal attributes to display the border.
c906108c 17522
8e04817f
AC
17523@item standout
17524Use standout mode.
c906108c 17525
8e04817f
AC
17526@item reverse
17527Use reverse video mode.
c906108c 17528
8e04817f
AC
17529@item half
17530Use half bright mode.
c906108c 17531
8e04817f
AC
17532@item half-standout
17533Use half bright and standout mode.
c906108c 17534
8e04817f
AC
17535@item bold
17536Use extra bright or bold mode.
c78b4128 17537
8e04817f
AC
17538@item bold-standout
17539Use extra bright or bold and standout mode.
8e04817f 17540@end table
8e04817f 17541@end table
c78b4128 17542
8e04817f
AC
17543@node Emacs
17544@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17545
8e04817f
AC
17546@cindex Emacs
17547@cindex @sc{gnu} Emacs
17548A special interface allows you to use @sc{gnu} Emacs to view (and
17549edit) the source files for the program you are debugging with
17550@value{GDBN}.
c906108c 17551
8e04817f
AC
17552To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17553executable file you want to debug as an argument. This command starts
17554@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17555created Emacs buffer.
17556@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17557
5e252a2e 17558Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17559things:
c906108c 17560
8e04817f
AC
17561@itemize @bullet
17562@item
5e252a2e
NR
17563All ``terminal'' input and output goes through an Emacs buffer, called
17564the GUD buffer.
c906108c 17565
8e04817f
AC
17566This applies both to @value{GDBN} commands and their output, and to the input
17567and output done by the program you are debugging.
bf0184be 17568
8e04817f
AC
17569This is useful because it means that you can copy the text of previous
17570commands and input them again; you can even use parts of the output
17571in this way.
bf0184be 17572
8e04817f
AC
17573All the facilities of Emacs' Shell mode are available for interacting
17574with your program. In particular, you can send signals the usual
17575way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17576stop.
bf0184be
ND
17577
17578@item
8e04817f 17579@value{GDBN} displays source code through Emacs.
bf0184be 17580
8e04817f
AC
17581Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17582source file for that frame and puts an arrow (@samp{=>}) at the
17583left margin of the current line. Emacs uses a separate buffer for
17584source display, and splits the screen to show both your @value{GDBN} session
17585and the source.
bf0184be 17586
8e04817f
AC
17587Explicit @value{GDBN} @code{list} or search commands still produce output as
17588usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17589@end itemize
17590
17591We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17592a graphical mode, enabled by default, which provides further buffers
17593that can control the execution and describe the state of your program.
17594@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17595
64fabec2
AC
17596If you specify an absolute file name when prompted for the @kbd{M-x
17597gdb} argument, then Emacs sets your current working directory to where
17598your program resides. If you only specify the file name, then Emacs
17599sets your current working directory to to the directory associated
17600with the previous buffer. In this case, @value{GDBN} may find your
17601program by searching your environment's @code{PATH} variable, but on
17602some operating systems it might not find the source. So, although the
17603@value{GDBN} input and output session proceeds normally, the auxiliary
17604buffer does not display the current source and line of execution.
17605
17606The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17607line of the GUD buffer and this serves as a default for the commands
17608that specify files for @value{GDBN} to operate on. @xref{Files,
17609,Commands to Specify Files}.
64fabec2
AC
17610
17611By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17612need to call @value{GDBN} by a different name (for example, if you
17613keep several configurations around, with different names) you can
17614customize the Emacs variable @code{gud-gdb-command-name} to run the
17615one you want.
8e04817f 17616
5e252a2e 17617In the GUD buffer, you can use these special Emacs commands in
8e04817f 17618addition to the standard Shell mode commands:
c906108c 17619
8e04817f
AC
17620@table @kbd
17621@item C-h m
5e252a2e 17622Describe the features of Emacs' GUD Mode.
c906108c 17623
64fabec2 17624@item C-c C-s
8e04817f
AC
17625Execute to another source line, like the @value{GDBN} @code{step} command; also
17626update the display window to show the current file and location.
c906108c 17627
64fabec2 17628@item C-c C-n
8e04817f
AC
17629Execute to next source line in this function, skipping all function
17630calls, like the @value{GDBN} @code{next} command. Then update the display window
17631to show the current file and location.
c906108c 17632
64fabec2 17633@item C-c C-i
8e04817f
AC
17634Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17635display window accordingly.
c906108c 17636
8e04817f
AC
17637@item C-c C-f
17638Execute until exit from the selected stack frame, like the @value{GDBN}
17639@code{finish} command.
c906108c 17640
64fabec2 17641@item C-c C-r
8e04817f
AC
17642Continue execution of your program, like the @value{GDBN} @code{continue}
17643command.
b433d00b 17644
64fabec2 17645@item C-c <
8e04817f
AC
17646Go up the number of frames indicated by the numeric argument
17647(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17648like the @value{GDBN} @code{up} command.
b433d00b 17649
64fabec2 17650@item C-c >
8e04817f
AC
17651Go down the number of frames indicated by the numeric argument, like the
17652@value{GDBN} @code{down} command.
8e04817f 17653@end table
c906108c 17654
7f9087cb 17655In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17656tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17657
5e252a2e
NR
17658In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17659separate frame which shows a backtrace when the GUD buffer is current.
17660Move point to any frame in the stack and type @key{RET} to make it
17661become the current frame and display the associated source in the
17662source buffer. Alternatively, click @kbd{Mouse-2} to make the
17663selected frame become the current one. In graphical mode, the
17664speedbar displays watch expressions.
64fabec2 17665
8e04817f
AC
17666If you accidentally delete the source-display buffer, an easy way to get
17667it back is to type the command @code{f} in the @value{GDBN} buffer, to
17668request a frame display; when you run under Emacs, this recreates
17669the source buffer if necessary to show you the context of the current
17670frame.
c906108c 17671
8e04817f
AC
17672The source files displayed in Emacs are in ordinary Emacs buffers
17673which are visiting the source files in the usual way. You can edit
17674the files with these buffers if you wish; but keep in mind that @value{GDBN}
17675communicates with Emacs in terms of line numbers. If you add or
17676delete lines from the text, the line numbers that @value{GDBN} knows cease
17677to correspond properly with the code.
b383017d 17678
5e252a2e
NR
17679A more detailed description of Emacs' interaction with @value{GDBN} is
17680given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17681Emacs Manual}).
c906108c 17682
8e04817f
AC
17683@c The following dropped because Epoch is nonstandard. Reactivate
17684@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17685@ignore
17686@kindex Emacs Epoch environment
17687@kindex Epoch
17688@kindex inspect
c906108c 17689
8e04817f
AC
17690Version 18 of @sc{gnu} Emacs has a built-in window system
17691called the @code{epoch}
17692environment. Users of this environment can use a new command,
17693@code{inspect} which performs identically to @code{print} except that
17694each value is printed in its own window.
17695@end ignore
c906108c 17696
922fbb7b
AC
17697
17698@node GDB/MI
17699@chapter The @sc{gdb/mi} Interface
17700
17701@unnumberedsec Function and Purpose
17702
17703@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17704@sc{gdb/mi} is a line based machine oriented text interface to
17705@value{GDBN} and is activated by specifying using the
17706@option{--interpreter} command line option (@pxref{Mode Options}). It
17707is specifically intended to support the development of systems which
17708use the debugger as just one small component of a larger system.
922fbb7b
AC
17709
17710This chapter is a specification of the @sc{gdb/mi} interface. It is written
17711in the form of a reference manual.
17712
17713Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17714features described below are incomplete and subject to change
17715(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17716
17717@unnumberedsec Notation and Terminology
17718
17719@cindex notational conventions, for @sc{gdb/mi}
17720This chapter uses the following notation:
17721
17722@itemize @bullet
17723@item
17724@code{|} separates two alternatives.
17725
17726@item
17727@code{[ @var{something} ]} indicates that @var{something} is optional:
17728it may or may not be given.
17729
17730@item
17731@code{( @var{group} )*} means that @var{group} inside the parentheses
17732may repeat zero or more times.
17733
17734@item
17735@code{( @var{group} )+} means that @var{group} inside the parentheses
17736may repeat one or more times.
17737
17738@item
17739@code{"@var{string}"} means a literal @var{string}.
17740@end itemize
17741
17742@ignore
17743@heading Dependencies
17744@end ignore
17745
922fbb7b
AC
17746@menu
17747* GDB/MI Command Syntax::
17748* GDB/MI Compatibility with CLI::
af6eff6f 17749* GDB/MI Development and Front Ends::
922fbb7b 17750* GDB/MI Output Records::
ef21caaf 17751* GDB/MI Simple Examples::
922fbb7b 17752* GDB/MI Command Description Format::
ef21caaf 17753* GDB/MI Breakpoint Commands::
a2c02241
NR
17754* GDB/MI Program Context::
17755* GDB/MI Thread Commands::
17756* GDB/MI Program Execution::
17757* GDB/MI Stack Manipulation::
17758* GDB/MI Variable Objects::
922fbb7b 17759* GDB/MI Data Manipulation::
a2c02241
NR
17760* GDB/MI Tracepoint Commands::
17761* GDB/MI Symbol Query::
351ff01a 17762* GDB/MI File Commands::
922fbb7b
AC
17763@ignore
17764* GDB/MI Kod Commands::
17765* GDB/MI Memory Overlay Commands::
17766* GDB/MI Signal Handling Commands::
17767@end ignore
922fbb7b 17768* GDB/MI Target Manipulation::
a6b151f1 17769* GDB/MI File Transfer Commands::
ef21caaf 17770* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17771@end menu
17772
17773@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17774@node GDB/MI Command Syntax
17775@section @sc{gdb/mi} Command Syntax
17776
17777@menu
17778* GDB/MI Input Syntax::
17779* GDB/MI Output Syntax::
922fbb7b
AC
17780@end menu
17781
17782@node GDB/MI Input Syntax
17783@subsection @sc{gdb/mi} Input Syntax
17784
17785@cindex input syntax for @sc{gdb/mi}
17786@cindex @sc{gdb/mi}, input syntax
17787@table @code
17788@item @var{command} @expansion{}
17789@code{@var{cli-command} | @var{mi-command}}
17790
17791@item @var{cli-command} @expansion{}
17792@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17793@var{cli-command} is any existing @value{GDBN} CLI command.
17794
17795@item @var{mi-command} @expansion{}
17796@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17797@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17798
17799@item @var{token} @expansion{}
17800"any sequence of digits"
17801
17802@item @var{option} @expansion{}
17803@code{"-" @var{parameter} [ " " @var{parameter} ]}
17804
17805@item @var{parameter} @expansion{}
17806@code{@var{non-blank-sequence} | @var{c-string}}
17807
17808@item @var{operation} @expansion{}
17809@emph{any of the operations described in this chapter}
17810
17811@item @var{non-blank-sequence} @expansion{}
17812@emph{anything, provided it doesn't contain special characters such as
17813"-", @var{nl}, """ and of course " "}
17814
17815@item @var{c-string} @expansion{}
17816@code{""" @var{seven-bit-iso-c-string-content} """}
17817
17818@item @var{nl} @expansion{}
17819@code{CR | CR-LF}
17820@end table
17821
17822@noindent
17823Notes:
17824
17825@itemize @bullet
17826@item
17827The CLI commands are still handled by the @sc{mi} interpreter; their
17828output is described below.
17829
17830@item
17831The @code{@var{token}}, when present, is passed back when the command
17832finishes.
17833
17834@item
17835Some @sc{mi} commands accept optional arguments as part of the parameter
17836list. Each option is identified by a leading @samp{-} (dash) and may be
17837followed by an optional argument parameter. Options occur first in the
17838parameter list and can be delimited from normal parameters using
17839@samp{--} (this is useful when some parameters begin with a dash).
17840@end itemize
17841
17842Pragmatics:
17843
17844@itemize @bullet
17845@item
17846We want easy access to the existing CLI syntax (for debugging).
17847
17848@item
17849We want it to be easy to spot a @sc{mi} operation.
17850@end itemize
17851
17852@node GDB/MI Output Syntax
17853@subsection @sc{gdb/mi} Output Syntax
17854
17855@cindex output syntax of @sc{gdb/mi}
17856@cindex @sc{gdb/mi}, output syntax
17857The output from @sc{gdb/mi} consists of zero or more out-of-band records
17858followed, optionally, by a single result record. This result record
17859is for the most recent command. The sequence of output records is
594fe323 17860terminated by @samp{(gdb)}.
922fbb7b
AC
17861
17862If an input command was prefixed with a @code{@var{token}} then the
17863corresponding output for that command will also be prefixed by that same
17864@var{token}.
17865
17866@table @code
17867@item @var{output} @expansion{}
594fe323 17868@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17869
17870@item @var{result-record} @expansion{}
17871@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17872
17873@item @var{out-of-band-record} @expansion{}
17874@code{@var{async-record} | @var{stream-record}}
17875
17876@item @var{async-record} @expansion{}
17877@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17878
17879@item @var{exec-async-output} @expansion{}
17880@code{[ @var{token} ] "*" @var{async-output}}
17881
17882@item @var{status-async-output} @expansion{}
17883@code{[ @var{token} ] "+" @var{async-output}}
17884
17885@item @var{notify-async-output} @expansion{}
17886@code{[ @var{token} ] "=" @var{async-output}}
17887
17888@item @var{async-output} @expansion{}
17889@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17890
17891@item @var{result-class} @expansion{}
17892@code{"done" | "running" | "connected" | "error" | "exit"}
17893
17894@item @var{async-class} @expansion{}
17895@code{"stopped" | @var{others}} (where @var{others} will be added
17896depending on the needs---this is still in development).
17897
17898@item @var{result} @expansion{}
17899@code{ @var{variable} "=" @var{value}}
17900
17901@item @var{variable} @expansion{}
17902@code{ @var{string} }
17903
17904@item @var{value} @expansion{}
17905@code{ @var{const} | @var{tuple} | @var{list} }
17906
17907@item @var{const} @expansion{}
17908@code{@var{c-string}}
17909
17910@item @var{tuple} @expansion{}
17911@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17912
17913@item @var{list} @expansion{}
17914@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17915@var{result} ( "," @var{result} )* "]" }
17916
17917@item @var{stream-record} @expansion{}
17918@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17919
17920@item @var{console-stream-output} @expansion{}
17921@code{"~" @var{c-string}}
17922
17923@item @var{target-stream-output} @expansion{}
17924@code{"@@" @var{c-string}}
17925
17926@item @var{log-stream-output} @expansion{}
17927@code{"&" @var{c-string}}
17928
17929@item @var{nl} @expansion{}
17930@code{CR | CR-LF}
17931
17932@item @var{token} @expansion{}
17933@emph{any sequence of digits}.
17934@end table
17935
17936@noindent
17937Notes:
17938
17939@itemize @bullet
17940@item
17941All output sequences end in a single line containing a period.
17942
17943@item
721c02de
VP
17944The @code{@var{token}} is from the corresponding request. Note that
17945for all async output, while the token is allowed by the grammar and
17946may be output by future versions of @value{GDBN} for select async
17947output messages, it is generally omitted. Frontends should treat
17948all async output as reporting general changes in the state of the
17949target and there should be no need to associate async output to any
17950prior command.
922fbb7b
AC
17951
17952@item
17953@cindex status output in @sc{gdb/mi}
17954@var{status-async-output} contains on-going status information about the
17955progress of a slow operation. It can be discarded. All status output is
17956prefixed by @samp{+}.
17957
17958@item
17959@cindex async output in @sc{gdb/mi}
17960@var{exec-async-output} contains asynchronous state change on the target
17961(stopped, started, disappeared). All async output is prefixed by
17962@samp{*}.
17963
17964@item
17965@cindex notify output in @sc{gdb/mi}
17966@var{notify-async-output} contains supplementary information that the
17967client should handle (e.g., a new breakpoint information). All notify
17968output is prefixed by @samp{=}.
17969
17970@item
17971@cindex console output in @sc{gdb/mi}
17972@var{console-stream-output} is output that should be displayed as is in the
17973console. It is the textual response to a CLI command. All the console
17974output is prefixed by @samp{~}.
17975
17976@item
17977@cindex target output in @sc{gdb/mi}
17978@var{target-stream-output} is the output produced by the target program.
17979All the target output is prefixed by @samp{@@}.
17980
17981@item
17982@cindex log output in @sc{gdb/mi}
17983@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17984instance messages that should be displayed as part of an error log. All
17985the log output is prefixed by @samp{&}.
17986
17987@item
17988@cindex list output in @sc{gdb/mi}
17989New @sc{gdb/mi} commands should only output @var{lists} containing
17990@var{values}.
17991
17992
17993@end itemize
17994
17995@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17996details about the various output records.
17997
922fbb7b
AC
17998@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17999@node GDB/MI Compatibility with CLI
18000@section @sc{gdb/mi} Compatibility with CLI
18001
18002@cindex compatibility, @sc{gdb/mi} and CLI
18003@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 18004
a2c02241
NR
18005For the developers convenience CLI commands can be entered directly,
18006but there may be some unexpected behaviour. For example, commands
18007that query the user will behave as if the user replied yes, breakpoint
18008command lists are not executed and some CLI commands, such as
18009@code{if}, @code{when} and @code{define}, prompt for further input with
18010@samp{>}, which is not valid MI output.
ef21caaf
NR
18011
18012This feature may be removed at some stage in the future and it is
a2c02241
NR
18013recommended that front ends use the @code{-interpreter-exec} command
18014(@pxref{-interpreter-exec}).
922fbb7b 18015
af6eff6f
NR
18016@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18017@node GDB/MI Development and Front Ends
18018@section @sc{gdb/mi} Development and Front Ends
18019@cindex @sc{gdb/mi} development
18020
18021The application which takes the MI output and presents the state of the
18022program being debugged to the user is called a @dfn{front end}.
18023
18024Although @sc{gdb/mi} is still incomplete, it is currently being used
18025by a variety of front ends to @value{GDBN}. This makes it difficult
18026to introduce new functionality without breaking existing usage. This
18027section tries to minimize the problems by describing how the protocol
18028might change.
18029
18030Some changes in MI need not break a carefully designed front end, and
18031for these the MI version will remain unchanged. The following is a
18032list of changes that may occur within one level, so front ends should
18033parse MI output in a way that can handle them:
18034
18035@itemize @bullet
18036@item
18037New MI commands may be added.
18038
18039@item
18040New fields may be added to the output of any MI command.
18041
36ece8b3
NR
18042@item
18043The range of values for fields with specified values, e.g.,
9f708cb2 18044@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 18045
af6eff6f
NR
18046@c The format of field's content e.g type prefix, may change so parse it
18047@c at your own risk. Yes, in general?
18048
18049@c The order of fields may change? Shouldn't really matter but it might
18050@c resolve inconsistencies.
18051@end itemize
18052
18053If the changes are likely to break front ends, the MI version level
18054will be increased by one. This will allow the front end to parse the
18055output according to the MI version. Apart from mi0, new versions of
18056@value{GDBN} will not support old versions of MI and it will be the
18057responsibility of the front end to work with the new one.
18058
18059@c Starting with mi3, add a new command -mi-version that prints the MI
18060@c version?
18061
18062The best way to avoid unexpected changes in MI that might break your front
18063end is to make your project known to @value{GDBN} developers and
7a9a6b69 18064follow development on @email{gdb@@sourceware.org} and
fa0f268d 18065@email{gdb-patches@@sourceware.org}.
af6eff6f
NR
18066@cindex mailing lists
18067
922fbb7b
AC
18068@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18069@node GDB/MI Output Records
18070@section @sc{gdb/mi} Output Records
18071
18072@menu
18073* GDB/MI Result Records::
18074* GDB/MI Stream Records::
18075* GDB/MI Out-of-band Records::
18076@end menu
18077
18078@node GDB/MI Result Records
18079@subsection @sc{gdb/mi} Result Records
18080
18081@cindex result records in @sc{gdb/mi}
18082@cindex @sc{gdb/mi}, result records
18083In addition to a number of out-of-band notifications, the response to a
18084@sc{gdb/mi} command includes one of the following result indications:
18085
18086@table @code
18087@findex ^done
18088@item "^done" [ "," @var{results} ]
18089The synchronous operation was successful, @code{@var{results}} are the return
18090values.
18091
18092@item "^running"
18093@findex ^running
18094@c Is this one correct? Should it be an out-of-band notification?
18095The asynchronous operation was successfully started. The target is
18096running.
18097
ef21caaf
NR
18098@item "^connected"
18099@findex ^connected
3f94c067 18100@value{GDBN} has connected to a remote target.
ef21caaf 18101
922fbb7b
AC
18102@item "^error" "," @var{c-string}
18103@findex ^error
18104The operation failed. The @code{@var{c-string}} contains the corresponding
18105error message.
ef21caaf
NR
18106
18107@item "^exit"
18108@findex ^exit
3f94c067 18109@value{GDBN} has terminated.
ef21caaf 18110
922fbb7b
AC
18111@end table
18112
18113@node GDB/MI Stream Records
18114@subsection @sc{gdb/mi} Stream Records
18115
18116@cindex @sc{gdb/mi}, stream records
18117@cindex stream records in @sc{gdb/mi}
18118@value{GDBN} internally maintains a number of output streams: the console, the
18119target, and the log. The output intended for each of these streams is
18120funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18121
18122Each stream record begins with a unique @dfn{prefix character} which
18123identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18124Syntax}). In addition to the prefix, each stream record contains a
18125@code{@var{string-output}}. This is either raw text (with an implicit new
18126line) or a quoted C string (which does not contain an implicit newline).
18127
18128@table @code
18129@item "~" @var{string-output}
18130The console output stream contains text that should be displayed in the
18131CLI console window. It contains the textual responses to CLI commands.
18132
18133@item "@@" @var{string-output}
18134The target output stream contains any textual output from the running
ef21caaf
NR
18135target. This is only present when GDB's event loop is truly
18136asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18137
18138@item "&" @var{string-output}
18139The log stream contains debugging messages being produced by @value{GDBN}'s
18140internals.
18141@end table
18142
18143@node GDB/MI Out-of-band Records
18144@subsection @sc{gdb/mi} Out-of-band Records
18145
18146@cindex out-of-band records in @sc{gdb/mi}
18147@cindex @sc{gdb/mi}, out-of-band records
18148@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18149additional changes that have occurred. Those changes can either be a
18150consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18151target activity (e.g., target stopped).
18152
18153The following is a preliminary list of possible out-of-band records.
034dad6f 18154In particular, the @var{exec-async-output} records.
922fbb7b
AC
18155
18156@table @code
034dad6f
BR
18157@item *stopped,reason="@var{reason}"
18158@end table
18159
18160@var{reason} can be one of the following:
18161
18162@table @code
18163@item breakpoint-hit
18164A breakpoint was reached.
18165@item watchpoint-trigger
18166A watchpoint was triggered.
18167@item read-watchpoint-trigger
18168A read watchpoint was triggered.
18169@item access-watchpoint-trigger
18170An access watchpoint was triggered.
18171@item function-finished
18172An -exec-finish or similar CLI command was accomplished.
18173@item location-reached
18174An -exec-until or similar CLI command was accomplished.
18175@item watchpoint-scope
18176A watchpoint has gone out of scope.
18177@item end-stepping-range
18178An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18179similar CLI command was accomplished.
18180@item exited-signalled
18181The inferior exited because of a signal.
18182@item exited
18183The inferior exited.
18184@item exited-normally
18185The inferior exited normally.
18186@item signal-received
18187A signal was received by the inferior.
922fbb7b
AC
18188@end table
18189
18190
ef21caaf
NR
18191@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18192@node GDB/MI Simple Examples
18193@section Simple Examples of @sc{gdb/mi} Interaction
18194@cindex @sc{gdb/mi}, simple examples
18195
18196This subsection presents several simple examples of interaction using
18197the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18198following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18199the output received from @sc{gdb/mi}.
18200
d3e8051b 18201Note the line breaks shown in the examples are here only for
ef21caaf
NR
18202readability, they don't appear in the real output.
18203
79a6e687 18204@subheading Setting a Breakpoint
ef21caaf
NR
18205
18206Setting a breakpoint generates synchronous output which contains detailed
18207information of the breakpoint.
18208
18209@smallexample
18210-> -break-insert main
18211<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18212 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18213 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18214<- (gdb)
18215@end smallexample
18216
18217@subheading Program Execution
18218
18219Program execution generates asynchronous records and MI gives the
18220reason that execution stopped.
18221
18222@smallexample
18223-> -exec-run
18224<- ^running
18225<- (gdb)
a47ec5fe 18226<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18227 frame=@{addr="0x08048564",func="main",
18228 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18229 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18230<- (gdb)
18231-> -exec-continue
18232<- ^running
18233<- (gdb)
18234<- *stopped,reason="exited-normally"
18235<- (gdb)
18236@end smallexample
18237
3f94c067 18238@subheading Quitting @value{GDBN}
ef21caaf 18239
3f94c067 18240Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18241
18242@smallexample
18243-> (gdb)
18244<- -gdb-exit
18245<- ^exit
18246@end smallexample
18247
a2c02241 18248@subheading A Bad Command
ef21caaf
NR
18249
18250Here's what happens if you pass a non-existent command:
18251
18252@smallexample
18253-> -rubbish
18254<- ^error,msg="Undefined MI command: rubbish"
594fe323 18255<- (gdb)
ef21caaf
NR
18256@end smallexample
18257
18258
922fbb7b
AC
18259@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18260@node GDB/MI Command Description Format
18261@section @sc{gdb/mi} Command Description Format
18262
18263The remaining sections describe blocks of commands. Each block of
18264commands is laid out in a fashion similar to this section.
18265
922fbb7b
AC
18266@subheading Motivation
18267
18268The motivation for this collection of commands.
18269
18270@subheading Introduction
18271
18272A brief introduction to this collection of commands as a whole.
18273
18274@subheading Commands
18275
18276For each command in the block, the following is described:
18277
18278@subsubheading Synopsis
18279
18280@smallexample
18281 -command @var{args}@dots{}
18282@end smallexample
18283
922fbb7b
AC
18284@subsubheading Result
18285
265eeb58 18286@subsubheading @value{GDBN} Command
922fbb7b 18287
265eeb58 18288The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18289
18290@subsubheading Example
18291
ef21caaf
NR
18292Example(s) formatted for readability. Some of the described commands have
18293not been implemented yet and these are labeled N.A.@: (not available).
18294
18295
922fbb7b 18296@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18297@node GDB/MI Breakpoint Commands
18298@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18299
18300@cindex breakpoint commands for @sc{gdb/mi}
18301@cindex @sc{gdb/mi}, breakpoint commands
18302This section documents @sc{gdb/mi} commands for manipulating
18303breakpoints.
18304
18305@subheading The @code{-break-after} Command
18306@findex -break-after
18307
18308@subsubheading Synopsis
18309
18310@smallexample
18311 -break-after @var{number} @var{count}
18312@end smallexample
18313
18314The breakpoint number @var{number} is not in effect until it has been
18315hit @var{count} times. To see how this is reflected in the output of
18316the @samp{-break-list} command, see the description of the
18317@samp{-break-list} command below.
18318
18319@subsubheading @value{GDBN} Command
18320
18321The corresponding @value{GDBN} command is @samp{ignore}.
18322
18323@subsubheading Example
18324
18325@smallexample
594fe323 18326(gdb)
922fbb7b 18327-break-insert main
a47ec5fe
AR
18328^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18329enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18330fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18331(gdb)
922fbb7b
AC
18332-break-after 1 3
18333~
18334^done
594fe323 18335(gdb)
922fbb7b
AC
18336-break-list
18337^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18338hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18339@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18340@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18341@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18342@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18343@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18344body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18345addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18346line="5",times="0",ignore="3"@}]@}
594fe323 18347(gdb)
922fbb7b
AC
18348@end smallexample
18349
18350@ignore
18351@subheading The @code{-break-catch} Command
18352@findex -break-catch
18353
18354@subheading The @code{-break-commands} Command
18355@findex -break-commands
18356@end ignore
18357
18358
18359@subheading The @code{-break-condition} Command
18360@findex -break-condition
18361
18362@subsubheading Synopsis
18363
18364@smallexample
18365 -break-condition @var{number} @var{expr}
18366@end smallexample
18367
18368Breakpoint @var{number} will stop the program only if the condition in
18369@var{expr} is true. The condition becomes part of the
18370@samp{-break-list} output (see the description of the @samp{-break-list}
18371command below).
18372
18373@subsubheading @value{GDBN} Command
18374
18375The corresponding @value{GDBN} command is @samp{condition}.
18376
18377@subsubheading Example
18378
18379@smallexample
594fe323 18380(gdb)
922fbb7b
AC
18381-break-condition 1 1
18382^done
594fe323 18383(gdb)
922fbb7b
AC
18384-break-list
18385^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18386hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18387@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18388@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18389@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18390@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18391@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18392body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18393addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18394line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18395(gdb)
922fbb7b
AC
18396@end smallexample
18397
18398@subheading The @code{-break-delete} Command
18399@findex -break-delete
18400
18401@subsubheading Synopsis
18402
18403@smallexample
18404 -break-delete ( @var{breakpoint} )+
18405@end smallexample
18406
18407Delete the breakpoint(s) whose number(s) are specified in the argument
18408list. This is obviously reflected in the breakpoint list.
18409
79a6e687 18410@subsubheading @value{GDBN} Command
922fbb7b
AC
18411
18412The corresponding @value{GDBN} command is @samp{delete}.
18413
18414@subsubheading Example
18415
18416@smallexample
594fe323 18417(gdb)
922fbb7b
AC
18418-break-delete 1
18419^done
594fe323 18420(gdb)
922fbb7b
AC
18421-break-list
18422^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18423hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18424@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18425@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18426@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18427@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18428@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18429body=[]@}
594fe323 18430(gdb)
922fbb7b
AC
18431@end smallexample
18432
18433@subheading The @code{-break-disable} Command
18434@findex -break-disable
18435
18436@subsubheading Synopsis
18437
18438@smallexample
18439 -break-disable ( @var{breakpoint} )+
18440@end smallexample
18441
18442Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18443break list is now set to @samp{n} for the named @var{breakpoint}(s).
18444
18445@subsubheading @value{GDBN} Command
18446
18447The corresponding @value{GDBN} command is @samp{disable}.
18448
18449@subsubheading Example
18450
18451@smallexample
594fe323 18452(gdb)
922fbb7b
AC
18453-break-disable 2
18454^done
594fe323 18455(gdb)
922fbb7b
AC
18456-break-list
18457^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18458hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18459@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18460@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18461@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18462@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18463@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18464body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18465addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18466line="5",times="0"@}]@}
594fe323 18467(gdb)
922fbb7b
AC
18468@end smallexample
18469
18470@subheading The @code{-break-enable} Command
18471@findex -break-enable
18472
18473@subsubheading Synopsis
18474
18475@smallexample
18476 -break-enable ( @var{breakpoint} )+
18477@end smallexample
18478
18479Enable (previously disabled) @var{breakpoint}(s).
18480
18481@subsubheading @value{GDBN} Command
18482
18483The corresponding @value{GDBN} command is @samp{enable}.
18484
18485@subsubheading Example
18486
18487@smallexample
594fe323 18488(gdb)
922fbb7b
AC
18489-break-enable 2
18490^done
594fe323 18491(gdb)
922fbb7b
AC
18492-break-list
18493^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18494hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18495@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18496@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18497@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18498@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18499@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18500body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18501addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18502line="5",times="0"@}]@}
594fe323 18503(gdb)
922fbb7b
AC
18504@end smallexample
18505
18506@subheading The @code{-break-info} Command
18507@findex -break-info
18508
18509@subsubheading Synopsis
18510
18511@smallexample
18512 -break-info @var{breakpoint}
18513@end smallexample
18514
18515@c REDUNDANT???
18516Get information about a single breakpoint.
18517
79a6e687 18518@subsubheading @value{GDBN} Command
922fbb7b
AC
18519
18520The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18521
18522@subsubheading Example
18523N.A.
18524
18525@subheading The @code{-break-insert} Command
18526@findex -break-insert
18527
18528@subsubheading Synopsis
18529
18530@smallexample
afe8ab22 18531 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18532 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18533 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18534@end smallexample
18535
18536@noindent
afe8ab22 18537If specified, @var{location}, can be one of:
922fbb7b
AC
18538
18539@itemize @bullet
18540@item function
18541@c @item +offset
18542@c @item -offset
18543@c @item linenum
18544@item filename:linenum
18545@item filename:function
18546@item *address
18547@end itemize
18548
18549The possible optional parameters of this command are:
18550
18551@table @samp
18552@item -t
948d5102 18553Insert a temporary breakpoint.
922fbb7b
AC
18554@item -h
18555Insert a hardware breakpoint.
18556@item -c @var{condition}
18557Make the breakpoint conditional on @var{condition}.
18558@item -i @var{ignore-count}
18559Initialize the @var{ignore-count}.
afe8ab22
VP
18560@item -f
18561If @var{location} cannot be parsed (for example if it
18562refers to unknown files or functions), create a pending
18563breakpoint. Without this flag, @value{GDBN} will report
18564an error, and won't create a breakpoint, if @var{location}
18565cannot be parsed.
922fbb7b
AC
18566@end table
18567
18568@subsubheading Result
18569
18570The result is in the form:
18571
18572@smallexample
948d5102
NR
18573^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18574enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18575fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18576times="@var{times}"@}
922fbb7b
AC
18577@end smallexample
18578
18579@noindent
948d5102
NR
18580where @var{number} is the @value{GDBN} number for this breakpoint,
18581@var{funcname} is the name of the function where the breakpoint was
18582inserted, @var{filename} is the name of the source file which contains
18583this function, @var{lineno} is the source line number within that file
18584and @var{times} the number of times that the breakpoint has been hit
18585(always 0 for -break-insert but may be greater for -break-info or -break-list
18586which use the same output).
922fbb7b
AC
18587
18588Note: this format is open to change.
18589@c An out-of-band breakpoint instead of part of the result?
18590
18591@subsubheading @value{GDBN} Command
18592
18593The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18594@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18595
18596@subsubheading Example
18597
18598@smallexample
594fe323 18599(gdb)
922fbb7b 18600-break-insert main
948d5102
NR
18601^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18602fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18603(gdb)
922fbb7b 18604-break-insert -t foo
948d5102
NR
18605^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18606fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18607(gdb)
922fbb7b
AC
18608-break-list
18609^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18610hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18611@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18612@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18613@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18614@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18615@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18616body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18617addr="0x0001072c", func="main",file="recursive2.c",
18618fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18619bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18620addr="0x00010774",func="foo",file="recursive2.c",
18621fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18622(gdb)
922fbb7b
AC
18623-break-insert -r foo.*
18624~int foo(int, int);
948d5102
NR
18625^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18626"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18627(gdb)
922fbb7b
AC
18628@end smallexample
18629
18630@subheading The @code{-break-list} Command
18631@findex -break-list
18632
18633@subsubheading Synopsis
18634
18635@smallexample
18636 -break-list
18637@end smallexample
18638
18639Displays the list of inserted breakpoints, showing the following fields:
18640
18641@table @samp
18642@item Number
18643number of the breakpoint
18644@item Type
18645type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18646@item Disposition
18647should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18648or @samp{nokeep}
18649@item Enabled
18650is the breakpoint enabled or no: @samp{y} or @samp{n}
18651@item Address
18652memory location at which the breakpoint is set
18653@item What
18654logical location of the breakpoint, expressed by function name, file
18655name, line number
18656@item Times
18657number of times the breakpoint has been hit
18658@end table
18659
18660If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18661@code{body} field is an empty list.
18662
18663@subsubheading @value{GDBN} Command
18664
18665The corresponding @value{GDBN} command is @samp{info break}.
18666
18667@subsubheading Example
18668
18669@smallexample
594fe323 18670(gdb)
922fbb7b
AC
18671-break-list
18672^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18673hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18674@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18675@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18676@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18677@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18678@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18679body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18680addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18681bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18682addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18683line="13",times="0"@}]@}
594fe323 18684(gdb)
922fbb7b
AC
18685@end smallexample
18686
18687Here's an example of the result when there are no breakpoints:
18688
18689@smallexample
594fe323 18690(gdb)
922fbb7b
AC
18691-break-list
18692^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18693hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18694@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18695@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18696@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18697@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18698@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18699body=[]@}
594fe323 18700(gdb)
922fbb7b
AC
18701@end smallexample
18702
18703@subheading The @code{-break-watch} Command
18704@findex -break-watch
18705
18706@subsubheading Synopsis
18707
18708@smallexample
18709 -break-watch [ -a | -r ]
18710@end smallexample
18711
18712Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18713@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18714read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18715option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18716trigger only when the memory location is accessed for reading. Without
18717either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18718i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18719@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18720
18721Note that @samp{-break-list} will report a single list of watchpoints and
18722breakpoints inserted.
18723
18724@subsubheading @value{GDBN} Command
18725
18726The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18727@samp{rwatch}.
18728
18729@subsubheading Example
18730
18731Setting a watchpoint on a variable in the @code{main} function:
18732
18733@smallexample
594fe323 18734(gdb)
922fbb7b
AC
18735-break-watch x
18736^done,wpt=@{number="2",exp="x"@}
594fe323 18737(gdb)
922fbb7b
AC
18738-exec-continue
18739^running
0869d01b
NR
18740(gdb)
18741*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18742value=@{old="-268439212",new="55"@},
76ff342d 18743frame=@{func="main",args=[],file="recursive2.c",
948d5102 18744fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18745(gdb)
922fbb7b
AC
18746@end smallexample
18747
18748Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18749the program execution twice: first for the variable changing value, then
18750for the watchpoint going out of scope.
18751
18752@smallexample
594fe323 18753(gdb)
922fbb7b
AC
18754-break-watch C
18755^done,wpt=@{number="5",exp="C"@}
594fe323 18756(gdb)
922fbb7b
AC
18757-exec-continue
18758^running
0869d01b
NR
18759(gdb)
18760*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18761wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18762frame=@{func="callee4",args=[],
76ff342d
DJ
18763file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18764fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18765(gdb)
922fbb7b
AC
18766-exec-continue
18767^running
0869d01b
NR
18768(gdb)
18769*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18770frame=@{func="callee3",args=[@{name="strarg",
18771value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18772file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18773fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18774(gdb)
922fbb7b
AC
18775@end smallexample
18776
18777Listing breakpoints and watchpoints, at different points in the program
18778execution. Note that once the watchpoint goes out of scope, it is
18779deleted.
18780
18781@smallexample
594fe323 18782(gdb)
922fbb7b
AC
18783-break-watch C
18784^done,wpt=@{number="2",exp="C"@}
594fe323 18785(gdb)
922fbb7b
AC
18786-break-list
18787^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18788hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18789@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18790@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18791@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18792@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18793@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18794body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18795addr="0x00010734",func="callee4",
948d5102
NR
18796file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18797fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18798bkpt=@{number="2",type="watchpoint",disp="keep",
18799enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18800(gdb)
922fbb7b
AC
18801-exec-continue
18802^running
0869d01b
NR
18803(gdb)
18804*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18805value=@{old="-276895068",new="3"@},
18806frame=@{func="callee4",args=[],
76ff342d
DJ
18807file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18808fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18809(gdb)
922fbb7b
AC
18810-break-list
18811^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18812hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18813@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18814@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18815@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18816@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18817@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18818body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18819addr="0x00010734",func="callee4",
948d5102
NR
18820file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18821fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18822bkpt=@{number="2",type="watchpoint",disp="keep",
18823enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18824(gdb)
922fbb7b
AC
18825-exec-continue
18826^running
18827^done,reason="watchpoint-scope",wpnum="2",
18828frame=@{func="callee3",args=[@{name="strarg",
18829value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18830file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18831fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18832(gdb)
922fbb7b
AC
18833-break-list
18834^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18835hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18836@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18837@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18838@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18839@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18840@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18841body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18842addr="0x00010734",func="callee4",
948d5102
NR
18843file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18844fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18845times="1"@}]@}
594fe323 18846(gdb)
922fbb7b
AC
18847@end smallexample
18848
18849@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18850@node GDB/MI Program Context
18851@section @sc{gdb/mi} Program Context
922fbb7b 18852
a2c02241
NR
18853@subheading The @code{-exec-arguments} Command
18854@findex -exec-arguments
922fbb7b 18855
922fbb7b
AC
18856
18857@subsubheading Synopsis
18858
18859@smallexample
a2c02241 18860 -exec-arguments @var{args}
922fbb7b
AC
18861@end smallexample
18862
a2c02241
NR
18863Set the inferior program arguments, to be used in the next
18864@samp{-exec-run}.
922fbb7b 18865
a2c02241 18866@subsubheading @value{GDBN} Command
922fbb7b 18867
a2c02241 18868The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18869
a2c02241 18870@subsubheading Example
922fbb7b 18871
a2c02241
NR
18872@c FIXME!
18873Don't have one around.
922fbb7b 18874
a2c02241
NR
18875
18876@subheading The @code{-exec-show-arguments} Command
18877@findex -exec-show-arguments
18878
18879@subsubheading Synopsis
18880
18881@smallexample
18882 -exec-show-arguments
18883@end smallexample
18884
18885Print the arguments of the program.
922fbb7b
AC
18886
18887@subsubheading @value{GDBN} Command
18888
a2c02241 18889The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18890
18891@subsubheading Example
a2c02241 18892N.A.
922fbb7b 18893
922fbb7b 18894
a2c02241
NR
18895@subheading The @code{-environment-cd} Command
18896@findex -environment-cd
922fbb7b 18897
a2c02241 18898@subsubheading Synopsis
922fbb7b
AC
18899
18900@smallexample
a2c02241 18901 -environment-cd @var{pathdir}
922fbb7b
AC
18902@end smallexample
18903
a2c02241 18904Set @value{GDBN}'s working directory.
922fbb7b 18905
a2c02241 18906@subsubheading @value{GDBN} Command
922fbb7b 18907
a2c02241
NR
18908The corresponding @value{GDBN} command is @samp{cd}.
18909
18910@subsubheading Example
922fbb7b
AC
18911
18912@smallexample
594fe323 18913(gdb)
a2c02241
NR
18914-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18915^done
594fe323 18916(gdb)
922fbb7b
AC
18917@end smallexample
18918
18919
a2c02241
NR
18920@subheading The @code{-environment-directory} Command
18921@findex -environment-directory
922fbb7b
AC
18922
18923@subsubheading Synopsis
18924
18925@smallexample
a2c02241 18926 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18927@end smallexample
18928
a2c02241
NR
18929Add directories @var{pathdir} to beginning of search path for source files.
18930If the @samp{-r} option is used, the search path is reset to the default
18931search path. If directories @var{pathdir} are supplied in addition to the
18932@samp{-r} option, the search path is first reset and then addition
18933occurs as normal.
18934Multiple directories may be specified, separated by blanks. Specifying
18935multiple directories in a single command
18936results in the directories added to the beginning of the
18937search path in the same order they were presented in the command.
18938If blanks are needed as
18939part of a directory name, double-quotes should be used around
18940the name. In the command output, the path will show up separated
d3e8051b 18941by the system directory-separator character. The directory-separator
a2c02241
NR
18942character must not be used
18943in any directory name.
18944If no directories are specified, the current search path is displayed.
922fbb7b
AC
18945
18946@subsubheading @value{GDBN} Command
18947
a2c02241 18948The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18949
18950@subsubheading Example
18951
922fbb7b 18952@smallexample
594fe323 18953(gdb)
a2c02241
NR
18954-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18955^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18956(gdb)
a2c02241
NR
18957-environment-directory ""
18958^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18959(gdb)
a2c02241
NR
18960-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18961^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18962(gdb)
a2c02241
NR
18963-environment-directory -r
18964^done,source-path="$cdir:$cwd"
594fe323 18965(gdb)
922fbb7b
AC
18966@end smallexample
18967
18968
a2c02241
NR
18969@subheading The @code{-environment-path} Command
18970@findex -environment-path
922fbb7b
AC
18971
18972@subsubheading Synopsis
18973
18974@smallexample
a2c02241 18975 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18976@end smallexample
18977
a2c02241
NR
18978Add directories @var{pathdir} to beginning of search path for object files.
18979If the @samp{-r} option is used, the search path is reset to the original
18980search path that existed at gdb start-up. If directories @var{pathdir} are
18981supplied in addition to the
18982@samp{-r} option, the search path is first reset and then addition
18983occurs as normal.
18984Multiple directories may be specified, separated by blanks. Specifying
18985multiple directories in a single command
18986results in the directories added to the beginning of the
18987search path in the same order they were presented in the command.
18988If blanks are needed as
18989part of a directory name, double-quotes should be used around
18990the name. In the command output, the path will show up separated
d3e8051b 18991by the system directory-separator character. The directory-separator
a2c02241
NR
18992character must not be used
18993in any directory name.
18994If no directories are specified, the current path is displayed.
18995
922fbb7b
AC
18996
18997@subsubheading @value{GDBN} Command
18998
a2c02241 18999The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
19000
19001@subsubheading Example
19002
922fbb7b 19003@smallexample
594fe323 19004(gdb)
a2c02241
NR
19005-environment-path
19006^done,path="/usr/bin"
594fe323 19007(gdb)
a2c02241
NR
19008-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
19009^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 19010(gdb)
a2c02241
NR
19011-environment-path -r /usr/local/bin
19012^done,path="/usr/local/bin:/usr/bin"
594fe323 19013(gdb)
922fbb7b
AC
19014@end smallexample
19015
19016
a2c02241
NR
19017@subheading The @code{-environment-pwd} Command
19018@findex -environment-pwd
922fbb7b
AC
19019
19020@subsubheading Synopsis
19021
19022@smallexample
a2c02241 19023 -environment-pwd
922fbb7b
AC
19024@end smallexample
19025
a2c02241 19026Show the current working directory.
922fbb7b 19027
79a6e687 19028@subsubheading @value{GDBN} Command
922fbb7b 19029
a2c02241 19030The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
19031
19032@subsubheading Example
19033
922fbb7b 19034@smallexample
594fe323 19035(gdb)
a2c02241
NR
19036-environment-pwd
19037^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 19038(gdb)
922fbb7b
AC
19039@end smallexample
19040
a2c02241
NR
19041@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19042@node GDB/MI Thread Commands
19043@section @sc{gdb/mi} Thread Commands
19044
19045
19046@subheading The @code{-thread-info} Command
19047@findex -thread-info
922fbb7b
AC
19048
19049@subsubheading Synopsis
19050
19051@smallexample
8e8901c5 19052 -thread-info [ @var{thread-id} ]
922fbb7b
AC
19053@end smallexample
19054
8e8901c5
VP
19055Reports information about either a specific thread, if
19056the @var{thread-id} parameter is present, or about all
19057threads. When printing information about all threads,
19058also reports the current thread.
19059
79a6e687 19060@subsubheading @value{GDBN} Command
922fbb7b 19061
8e8901c5
VP
19062The @samp{info thread} command prints the same information
19063about all threads.
922fbb7b
AC
19064
19065@subsubheading Example
922fbb7b
AC
19066
19067@smallexample
8e8901c5
VP
19068-thread-info
19069^done,threads=[
19070@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19071 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19072@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19073 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19074 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19075current-thread-id="1"
19076(gdb)
922fbb7b
AC
19077@end smallexample
19078
a2c02241
NR
19079@subheading The @code{-thread-list-ids} Command
19080@findex -thread-list-ids
922fbb7b 19081
a2c02241 19082@subsubheading Synopsis
922fbb7b 19083
a2c02241
NR
19084@smallexample
19085 -thread-list-ids
19086@end smallexample
922fbb7b 19087
a2c02241
NR
19088Produces a list of the currently known @value{GDBN} thread ids. At the
19089end of the list it also prints the total number of such threads.
922fbb7b
AC
19090
19091@subsubheading @value{GDBN} Command
19092
a2c02241 19093Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19094
19095@subsubheading Example
19096
a2c02241 19097No threads present, besides the main process:
922fbb7b
AC
19098
19099@smallexample
594fe323 19100(gdb)
a2c02241
NR
19101-thread-list-ids
19102^done,thread-ids=@{@},number-of-threads="0"
594fe323 19103(gdb)
922fbb7b
AC
19104@end smallexample
19105
922fbb7b 19106
a2c02241 19107Several threads:
922fbb7b
AC
19108
19109@smallexample
594fe323 19110(gdb)
a2c02241
NR
19111-thread-list-ids
19112^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19113number-of-threads="3"
594fe323 19114(gdb)
922fbb7b
AC
19115@end smallexample
19116
a2c02241
NR
19117
19118@subheading The @code{-thread-select} Command
19119@findex -thread-select
922fbb7b
AC
19120
19121@subsubheading Synopsis
19122
19123@smallexample
a2c02241 19124 -thread-select @var{threadnum}
922fbb7b
AC
19125@end smallexample
19126
a2c02241
NR
19127Make @var{threadnum} the current thread. It prints the number of the new
19128current thread, and the topmost frame for that thread.
922fbb7b
AC
19129
19130@subsubheading @value{GDBN} Command
19131
a2c02241 19132The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19133
19134@subsubheading Example
922fbb7b
AC
19135
19136@smallexample
594fe323 19137(gdb)
a2c02241
NR
19138-exec-next
19139^running
594fe323 19140(gdb)
a2c02241
NR
19141*stopped,reason="end-stepping-range",thread-id="2",line="187",
19142file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19143(gdb)
a2c02241
NR
19144-thread-list-ids
19145^done,
19146thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19147number-of-threads="3"
594fe323 19148(gdb)
a2c02241
NR
19149-thread-select 3
19150^done,new-thread-id="3",
19151frame=@{level="0",func="vprintf",
19152args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19153@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19154(gdb)
922fbb7b
AC
19155@end smallexample
19156
a2c02241
NR
19157@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19158@node GDB/MI Program Execution
19159@section @sc{gdb/mi} Program Execution
922fbb7b 19160
ef21caaf 19161These are the asynchronous commands which generate the out-of-band
3f94c067 19162record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19163asynchronously with remote targets and this interaction is mimicked in
19164other cases.
922fbb7b 19165
922fbb7b
AC
19166@subheading The @code{-exec-continue} Command
19167@findex -exec-continue
19168
19169@subsubheading Synopsis
19170
19171@smallexample
19172 -exec-continue
19173@end smallexample
19174
ef21caaf
NR
19175Resumes the execution of the inferior program until a breakpoint is
19176encountered, or until the inferior exits.
922fbb7b
AC
19177
19178@subsubheading @value{GDBN} Command
19179
19180The corresponding @value{GDBN} corresponding is @samp{continue}.
19181
19182@subsubheading Example
19183
19184@smallexample
19185-exec-continue
19186^running
594fe323 19187(gdb)
922fbb7b 19188@@Hello world
a47ec5fe
AR
19189*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19190func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19191line="13"@}
594fe323 19192(gdb)
922fbb7b
AC
19193@end smallexample
19194
19195
19196@subheading The @code{-exec-finish} Command
19197@findex -exec-finish
19198
19199@subsubheading Synopsis
19200
19201@smallexample
19202 -exec-finish
19203@end smallexample
19204
ef21caaf
NR
19205Resumes the execution of the inferior program until the current
19206function is exited. Displays the results returned by the function.
922fbb7b
AC
19207
19208@subsubheading @value{GDBN} Command
19209
19210The corresponding @value{GDBN} command is @samp{finish}.
19211
19212@subsubheading Example
19213
19214Function returning @code{void}.
19215
19216@smallexample
19217-exec-finish
19218^running
594fe323 19219(gdb)
922fbb7b
AC
19220@@hello from foo
19221*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19222file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19223(gdb)
922fbb7b
AC
19224@end smallexample
19225
19226Function returning other than @code{void}. The name of the internal
19227@value{GDBN} variable storing the result is printed, together with the
19228value itself.
19229
19230@smallexample
19231-exec-finish
19232^running
594fe323 19233(gdb)
922fbb7b
AC
19234*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19235args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19236file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19237gdb-result-var="$1",return-value="0"
594fe323 19238(gdb)
922fbb7b
AC
19239@end smallexample
19240
19241
19242@subheading The @code{-exec-interrupt} Command
19243@findex -exec-interrupt
19244
19245@subsubheading Synopsis
19246
19247@smallexample
19248 -exec-interrupt
19249@end smallexample
19250
ef21caaf
NR
19251Interrupts the background execution of the target. Note how the token
19252associated with the stop message is the one for the execution command
19253that has been interrupted. The token for the interrupt itself only
19254appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19255interrupt a non-running program, an error message will be printed.
19256
19257@subsubheading @value{GDBN} Command
19258
19259The corresponding @value{GDBN} command is @samp{interrupt}.
19260
19261@subsubheading Example
19262
19263@smallexample
594fe323 19264(gdb)
922fbb7b
AC
19265111-exec-continue
19266111^running
19267
594fe323 19268(gdb)
922fbb7b
AC
19269222-exec-interrupt
19270222^done
594fe323 19271(gdb)
922fbb7b 19272111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19273frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19274fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19275(gdb)
922fbb7b 19276
594fe323 19277(gdb)
922fbb7b
AC
19278-exec-interrupt
19279^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19280(gdb)
922fbb7b
AC
19281@end smallexample
19282
19283
19284@subheading The @code{-exec-next} Command
19285@findex -exec-next
19286
19287@subsubheading Synopsis
19288
19289@smallexample
19290 -exec-next
19291@end smallexample
19292
ef21caaf
NR
19293Resumes execution of the inferior program, stopping when the beginning
19294of the next source line is reached.
922fbb7b
AC
19295
19296@subsubheading @value{GDBN} Command
19297
19298The corresponding @value{GDBN} command is @samp{next}.
19299
19300@subsubheading Example
19301
19302@smallexample
19303-exec-next
19304^running
594fe323 19305(gdb)
922fbb7b 19306*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19307(gdb)
922fbb7b
AC
19308@end smallexample
19309
19310
19311@subheading The @code{-exec-next-instruction} Command
19312@findex -exec-next-instruction
19313
19314@subsubheading Synopsis
19315
19316@smallexample
19317 -exec-next-instruction
19318@end smallexample
19319
ef21caaf
NR
19320Executes one machine instruction. If the instruction is a function
19321call, continues until the function returns. If the program stops at an
19322instruction in the middle of a source line, the address will be
19323printed as well.
922fbb7b
AC
19324
19325@subsubheading @value{GDBN} Command
19326
19327The corresponding @value{GDBN} command is @samp{nexti}.
19328
19329@subsubheading Example
19330
19331@smallexample
594fe323 19332(gdb)
922fbb7b
AC
19333-exec-next-instruction
19334^running
19335
594fe323 19336(gdb)
922fbb7b
AC
19337*stopped,reason="end-stepping-range",
19338addr="0x000100d4",line="5",file="hello.c"
594fe323 19339(gdb)
922fbb7b
AC
19340@end smallexample
19341
19342
19343@subheading The @code{-exec-return} Command
19344@findex -exec-return
19345
19346@subsubheading Synopsis
19347
19348@smallexample
19349 -exec-return
19350@end smallexample
19351
19352Makes current function return immediately. Doesn't execute the inferior.
19353Displays the new current frame.
19354
19355@subsubheading @value{GDBN} Command
19356
19357The corresponding @value{GDBN} command is @samp{return}.
19358
19359@subsubheading Example
19360
19361@smallexample
594fe323 19362(gdb)
922fbb7b
AC
19363200-break-insert callee4
19364200^done,bkpt=@{number="1",addr="0x00010734",
19365file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19366(gdb)
922fbb7b
AC
19367000-exec-run
19368000^running
594fe323 19369(gdb)
a47ec5fe 19370000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19371frame=@{func="callee4",args=[],
76ff342d
DJ
19372file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19373fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19374(gdb)
922fbb7b
AC
19375205-break-delete
19376205^done
594fe323 19377(gdb)
922fbb7b
AC
19378111-exec-return
19379111^done,frame=@{level="0",func="callee3",
19380args=[@{name="strarg",
19381value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19382file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19383fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19384(gdb)
922fbb7b
AC
19385@end smallexample
19386
19387
19388@subheading The @code{-exec-run} Command
19389@findex -exec-run
19390
19391@subsubheading Synopsis
19392
19393@smallexample
19394 -exec-run
19395@end smallexample
19396
ef21caaf
NR
19397Starts execution of the inferior from the beginning. The inferior
19398executes until either a breakpoint is encountered or the program
19399exits. In the latter case the output will include an exit code, if
19400the program has exited exceptionally.
922fbb7b
AC
19401
19402@subsubheading @value{GDBN} Command
19403
19404The corresponding @value{GDBN} command is @samp{run}.
19405
ef21caaf 19406@subsubheading Examples
922fbb7b
AC
19407
19408@smallexample
594fe323 19409(gdb)
922fbb7b
AC
19410-break-insert main
19411^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19412(gdb)
922fbb7b
AC
19413-exec-run
19414^running
594fe323 19415(gdb)
a47ec5fe 19416*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19417frame=@{func="main",args=[],file="recursive2.c",
948d5102 19418fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19419(gdb)
922fbb7b
AC
19420@end smallexample
19421
ef21caaf
NR
19422@noindent
19423Program exited normally:
19424
19425@smallexample
594fe323 19426(gdb)
ef21caaf
NR
19427-exec-run
19428^running
594fe323 19429(gdb)
ef21caaf
NR
19430x = 55
19431*stopped,reason="exited-normally"
594fe323 19432(gdb)
ef21caaf
NR
19433@end smallexample
19434
19435@noindent
19436Program exited exceptionally:
19437
19438@smallexample
594fe323 19439(gdb)
ef21caaf
NR
19440-exec-run
19441^running
594fe323 19442(gdb)
ef21caaf
NR
19443x = 55
19444*stopped,reason="exited",exit-code="01"
594fe323 19445(gdb)
ef21caaf
NR
19446@end smallexample
19447
19448Another way the program can terminate is if it receives a signal such as
19449@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19450
19451@smallexample
594fe323 19452(gdb)
ef21caaf
NR
19453*stopped,reason="exited-signalled",signal-name="SIGINT",
19454signal-meaning="Interrupt"
19455@end smallexample
19456
922fbb7b 19457
a2c02241
NR
19458@c @subheading -exec-signal
19459
19460
19461@subheading The @code{-exec-step} Command
19462@findex -exec-step
922fbb7b
AC
19463
19464@subsubheading Synopsis
19465
19466@smallexample
a2c02241 19467 -exec-step
922fbb7b
AC
19468@end smallexample
19469
a2c02241
NR
19470Resumes execution of the inferior program, stopping when the beginning
19471of the next source line is reached, if the next source line is not a
19472function call. If it is, stop at the first instruction of the called
19473function.
922fbb7b
AC
19474
19475@subsubheading @value{GDBN} Command
19476
a2c02241 19477The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19478
19479@subsubheading Example
19480
19481Stepping into a function:
19482
19483@smallexample
19484-exec-step
19485^running
594fe323 19486(gdb)
922fbb7b
AC
19487*stopped,reason="end-stepping-range",
19488frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19489@{name="b",value="0"@}],file="recursive2.c",
948d5102 19490fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19491(gdb)
922fbb7b
AC
19492@end smallexample
19493
19494Regular stepping:
19495
19496@smallexample
19497-exec-step
19498^running
594fe323 19499(gdb)
922fbb7b 19500*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19501(gdb)
922fbb7b
AC
19502@end smallexample
19503
19504
19505@subheading The @code{-exec-step-instruction} Command
19506@findex -exec-step-instruction
19507
19508@subsubheading Synopsis
19509
19510@smallexample
19511 -exec-step-instruction
19512@end smallexample
19513
ef21caaf
NR
19514Resumes the inferior which executes one machine instruction. The
19515output, once @value{GDBN} has stopped, will vary depending on whether
19516we have stopped in the middle of a source line or not. In the former
19517case, the address at which the program stopped will be printed as
922fbb7b
AC
19518well.
19519
19520@subsubheading @value{GDBN} Command
19521
19522The corresponding @value{GDBN} command is @samp{stepi}.
19523
19524@subsubheading Example
19525
19526@smallexample
594fe323 19527(gdb)
922fbb7b
AC
19528-exec-step-instruction
19529^running
19530
594fe323 19531(gdb)
922fbb7b 19532*stopped,reason="end-stepping-range",
76ff342d 19533frame=@{func="foo",args=[],file="try.c",
948d5102 19534fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19535(gdb)
922fbb7b
AC
19536-exec-step-instruction
19537^running
19538
594fe323 19539(gdb)
922fbb7b 19540*stopped,reason="end-stepping-range",
76ff342d 19541frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19542fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19543(gdb)
922fbb7b
AC
19544@end smallexample
19545
19546
19547@subheading The @code{-exec-until} Command
19548@findex -exec-until
19549
19550@subsubheading Synopsis
19551
19552@smallexample
19553 -exec-until [ @var{location} ]
19554@end smallexample
19555
ef21caaf
NR
19556Executes the inferior until the @var{location} specified in the
19557argument is reached. If there is no argument, the inferior executes
19558until a source line greater than the current one is reached. The
19559reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19560
19561@subsubheading @value{GDBN} Command
19562
19563The corresponding @value{GDBN} command is @samp{until}.
19564
19565@subsubheading Example
19566
19567@smallexample
594fe323 19568(gdb)
922fbb7b
AC
19569-exec-until recursive2.c:6
19570^running
594fe323 19571(gdb)
922fbb7b
AC
19572x = 55
19573*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19574file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19575(gdb)
922fbb7b
AC
19576@end smallexample
19577
19578@ignore
19579@subheading -file-clear
19580Is this going away????
19581@end ignore
19582
351ff01a 19583@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19584@node GDB/MI Stack Manipulation
19585@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19586
922fbb7b 19587
a2c02241
NR
19588@subheading The @code{-stack-info-frame} Command
19589@findex -stack-info-frame
922fbb7b
AC
19590
19591@subsubheading Synopsis
19592
19593@smallexample
a2c02241 19594 -stack-info-frame
922fbb7b
AC
19595@end smallexample
19596
a2c02241 19597Get info on the selected frame.
922fbb7b
AC
19598
19599@subsubheading @value{GDBN} Command
19600
a2c02241
NR
19601The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19602(without arguments).
922fbb7b
AC
19603
19604@subsubheading Example
19605
19606@smallexample
594fe323 19607(gdb)
a2c02241
NR
19608-stack-info-frame
19609^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19610file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19611fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19612(gdb)
922fbb7b
AC
19613@end smallexample
19614
a2c02241
NR
19615@subheading The @code{-stack-info-depth} Command
19616@findex -stack-info-depth
922fbb7b
AC
19617
19618@subsubheading Synopsis
19619
19620@smallexample
a2c02241 19621 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19622@end smallexample
19623
a2c02241
NR
19624Return the depth of the stack. If the integer argument @var{max-depth}
19625is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19626
19627@subsubheading @value{GDBN} Command
19628
a2c02241 19629There's no equivalent @value{GDBN} command.
922fbb7b
AC
19630
19631@subsubheading Example
19632
a2c02241
NR
19633For a stack with frame levels 0 through 11:
19634
922fbb7b 19635@smallexample
594fe323 19636(gdb)
a2c02241
NR
19637-stack-info-depth
19638^done,depth="12"
594fe323 19639(gdb)
a2c02241
NR
19640-stack-info-depth 4
19641^done,depth="4"
594fe323 19642(gdb)
a2c02241
NR
19643-stack-info-depth 12
19644^done,depth="12"
594fe323 19645(gdb)
a2c02241
NR
19646-stack-info-depth 11
19647^done,depth="11"
594fe323 19648(gdb)
a2c02241
NR
19649-stack-info-depth 13
19650^done,depth="12"
594fe323 19651(gdb)
922fbb7b
AC
19652@end smallexample
19653
a2c02241
NR
19654@subheading The @code{-stack-list-arguments} Command
19655@findex -stack-list-arguments
922fbb7b
AC
19656
19657@subsubheading Synopsis
19658
19659@smallexample
a2c02241
NR
19660 -stack-list-arguments @var{show-values}
19661 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19662@end smallexample
19663
a2c02241
NR
19664Display a list of the arguments for the frames between @var{low-frame}
19665and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19666@var{high-frame} are not provided, list the arguments for the whole
19667call stack. If the two arguments are equal, show the single frame
19668at the corresponding level. It is an error if @var{low-frame} is
19669larger than the actual number of frames. On the other hand,
19670@var{high-frame} may be larger than the actual number of frames, in
19671which case only existing frames will be returned.
a2c02241
NR
19672
19673The @var{show-values} argument must have a value of 0 or 1. A value of
196740 means that only the names of the arguments are listed, a value of 1
19675means that both names and values of the arguments are printed.
922fbb7b
AC
19676
19677@subsubheading @value{GDBN} Command
19678
a2c02241
NR
19679@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19680@samp{gdb_get_args} command which partially overlaps with the
19681functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19682
19683@subsubheading Example
922fbb7b 19684
a2c02241 19685@smallexample
594fe323 19686(gdb)
a2c02241
NR
19687-stack-list-frames
19688^done,
19689stack=[
19690frame=@{level="0",addr="0x00010734",func="callee4",
19691file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19692fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19693frame=@{level="1",addr="0x0001076c",func="callee3",
19694file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19695fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19696frame=@{level="2",addr="0x0001078c",func="callee2",
19697file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19698fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19699frame=@{level="3",addr="0x000107b4",func="callee1",
19700file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19701fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19702frame=@{level="4",addr="0x000107e0",func="main",
19703file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19704fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19705(gdb)
a2c02241
NR
19706-stack-list-arguments 0
19707^done,
19708stack-args=[
19709frame=@{level="0",args=[]@},
19710frame=@{level="1",args=[name="strarg"]@},
19711frame=@{level="2",args=[name="intarg",name="strarg"]@},
19712frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19713frame=@{level="4",args=[]@}]
594fe323 19714(gdb)
a2c02241
NR
19715-stack-list-arguments 1
19716^done,
19717stack-args=[
19718frame=@{level="0",args=[]@},
19719frame=@{level="1",
19720 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19721frame=@{level="2",args=[
19722@{name="intarg",value="2"@},
19723@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19724@{frame=@{level="3",args=[
19725@{name="intarg",value="2"@},
19726@{name="strarg",value="0x11940 \"A string argument.\""@},
19727@{name="fltarg",value="3.5"@}]@},
19728frame=@{level="4",args=[]@}]
594fe323 19729(gdb)
a2c02241
NR
19730-stack-list-arguments 0 2 2
19731^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19732(gdb)
a2c02241
NR
19733-stack-list-arguments 1 2 2
19734^done,stack-args=[frame=@{level="2",
19735args=[@{name="intarg",value="2"@},
19736@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19737(gdb)
a2c02241
NR
19738@end smallexample
19739
19740@c @subheading -stack-list-exception-handlers
922fbb7b 19741
a2c02241
NR
19742
19743@subheading The @code{-stack-list-frames} Command
19744@findex -stack-list-frames
1abaf70c
BR
19745
19746@subsubheading Synopsis
19747
19748@smallexample
a2c02241 19749 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19750@end smallexample
19751
a2c02241
NR
19752List the frames currently on the stack. For each frame it displays the
19753following info:
19754
19755@table @samp
19756@item @var{level}
d3e8051b 19757The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19758@item @var{addr}
19759The @code{$pc} value for that frame.
19760@item @var{func}
19761Function name.
19762@item @var{file}
19763File name of the source file where the function lives.
19764@item @var{line}
19765Line number corresponding to the @code{$pc}.
19766@end table
19767
19768If invoked without arguments, this command prints a backtrace for the
19769whole stack. If given two integer arguments, it shows the frames whose
19770levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19771are equal, it shows the single frame at the corresponding level. It is
19772an error if @var{low-frame} is larger than the actual number of
a5451f4e 19773frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19774actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19775
19776@subsubheading @value{GDBN} Command
19777
a2c02241 19778The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19779
19780@subsubheading Example
19781
a2c02241
NR
19782Full stack backtrace:
19783
1abaf70c 19784@smallexample
594fe323 19785(gdb)
a2c02241
NR
19786-stack-list-frames
19787^done,stack=
19788[frame=@{level="0",addr="0x0001076c",func="foo",
19789 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19790frame=@{level="1",addr="0x000107a4",func="foo",
19791 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19792frame=@{level="2",addr="0x000107a4",func="foo",
19793 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19794frame=@{level="3",addr="0x000107a4",func="foo",
19795 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19796frame=@{level="4",addr="0x000107a4",func="foo",
19797 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19798frame=@{level="5",addr="0x000107a4",func="foo",
19799 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19800frame=@{level="6",addr="0x000107a4",func="foo",
19801 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19802frame=@{level="7",addr="0x000107a4",func="foo",
19803 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19804frame=@{level="8",addr="0x000107a4",func="foo",
19805 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19806frame=@{level="9",addr="0x000107a4",func="foo",
19807 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19808frame=@{level="10",addr="0x000107a4",func="foo",
19809 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19810frame=@{level="11",addr="0x00010738",func="main",
19811 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19812(gdb)
1abaf70c
BR
19813@end smallexample
19814
a2c02241 19815Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19816
a2c02241 19817@smallexample
594fe323 19818(gdb)
a2c02241
NR
19819-stack-list-frames 3 5
19820^done,stack=
19821[frame=@{level="3",addr="0x000107a4",func="foo",
19822 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19823frame=@{level="4",addr="0x000107a4",func="foo",
19824 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19825frame=@{level="5",addr="0x000107a4",func="foo",
19826 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19827(gdb)
a2c02241 19828@end smallexample
922fbb7b 19829
a2c02241 19830Show a single frame:
922fbb7b
AC
19831
19832@smallexample
594fe323 19833(gdb)
a2c02241
NR
19834-stack-list-frames 3 3
19835^done,stack=
19836[frame=@{level="3",addr="0x000107a4",func="foo",
19837 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19838(gdb)
922fbb7b
AC
19839@end smallexample
19840
922fbb7b 19841
a2c02241
NR
19842@subheading The @code{-stack-list-locals} Command
19843@findex -stack-list-locals
57c22c6c 19844
a2c02241 19845@subsubheading Synopsis
922fbb7b
AC
19846
19847@smallexample
a2c02241 19848 -stack-list-locals @var{print-values}
922fbb7b
AC
19849@end smallexample
19850
a2c02241
NR
19851Display the local variable names for the selected frame. If
19852@var{print-values} is 0 or @code{--no-values}, print only the names of
19853the variables; if it is 1 or @code{--all-values}, print also their
19854values; and if it is 2 or @code{--simple-values}, print the name,
19855type and value for simple data types and the name and type for arrays,
19856structures and unions. In this last case, a frontend can immediately
19857display the value of simple data types and create variable objects for
d3e8051b 19858other data types when the user wishes to explore their values in
a2c02241 19859more detail.
922fbb7b
AC
19860
19861@subsubheading @value{GDBN} Command
19862
a2c02241 19863@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19864
19865@subsubheading Example
922fbb7b
AC
19866
19867@smallexample
594fe323 19868(gdb)
a2c02241
NR
19869-stack-list-locals 0
19870^done,locals=[name="A",name="B",name="C"]
594fe323 19871(gdb)
a2c02241
NR
19872-stack-list-locals --all-values
19873^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19874 @{name="C",value="@{1, 2, 3@}"@}]
19875-stack-list-locals --simple-values
19876^done,locals=[@{name="A",type="int",value="1"@},
19877 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19878(gdb)
922fbb7b
AC
19879@end smallexample
19880
922fbb7b 19881
a2c02241
NR
19882@subheading The @code{-stack-select-frame} Command
19883@findex -stack-select-frame
922fbb7b
AC
19884
19885@subsubheading Synopsis
19886
19887@smallexample
a2c02241 19888 -stack-select-frame @var{framenum}
922fbb7b
AC
19889@end smallexample
19890
a2c02241
NR
19891Change the selected frame. Select a different frame @var{framenum} on
19892the stack.
922fbb7b
AC
19893
19894@subsubheading @value{GDBN} Command
19895
a2c02241
NR
19896The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19897@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19898
19899@subsubheading Example
19900
19901@smallexample
594fe323 19902(gdb)
a2c02241 19903-stack-select-frame 2
922fbb7b 19904^done
594fe323 19905(gdb)
922fbb7b
AC
19906@end smallexample
19907
19908@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19909@node GDB/MI Variable Objects
19910@section @sc{gdb/mi} Variable Objects
922fbb7b 19911
a1b5960f 19912@ignore
922fbb7b 19913
a2c02241 19914@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19915
a2c02241
NR
19916For the implementation of a variable debugger window (locals, watched
19917expressions, etc.), we are proposing the adaptation of the existing code
19918used by @code{Insight}.
922fbb7b 19919
a2c02241 19920The two main reasons for that are:
922fbb7b 19921
a2c02241
NR
19922@enumerate 1
19923@item
19924It has been proven in practice (it is already on its second generation).
922fbb7b 19925
a2c02241
NR
19926@item
19927It will shorten development time (needless to say how important it is
19928now).
19929@end enumerate
922fbb7b 19930
a2c02241
NR
19931The original interface was designed to be used by Tcl code, so it was
19932slightly changed so it could be used through @sc{gdb/mi}. This section
19933describes the @sc{gdb/mi} operations that will be available and gives some
19934hints about their use.
922fbb7b 19935
a2c02241
NR
19936@emph{Note}: In addition to the set of operations described here, we
19937expect the @sc{gui} implementation of a variable window to require, at
19938least, the following operations:
922fbb7b 19939
a2c02241
NR
19940@itemize @bullet
19941@item @code{-gdb-show} @code{output-radix}
19942@item @code{-stack-list-arguments}
19943@item @code{-stack-list-locals}
19944@item @code{-stack-select-frame}
19945@end itemize
922fbb7b 19946
a1b5960f
VP
19947@end ignore
19948
c8b2f53c 19949@subheading Introduction to Variable Objects
922fbb7b 19950
a2c02241 19951@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19952
19953Variable objects are "object-oriented" MI interface for examining and
19954changing values of expressions. Unlike some other MI interfaces that
19955work with expressions, variable objects are specifically designed for
19956simple and efficient presentation in the frontend. A variable object
19957is identified by string name. When a variable object is created, the
19958frontend specifies the expression for that variable object. The
19959expression can be a simple variable, or it can be an arbitrary complex
19960expression, and can even involve CPU registers. After creating a
19961variable object, the frontend can invoke other variable object
19962operations---for example to obtain or change the value of a variable
19963object, or to change display format.
19964
19965Variable objects have hierarchical tree structure. Any variable object
19966that corresponds to a composite type, such as structure in C, has
19967a number of child variable objects, for example corresponding to each
19968element of a structure. A child variable object can itself have
19969children, recursively. Recursion ends when we reach
25d5ea92
VP
19970leaf variable objects, which always have built-in types. Child variable
19971objects are created only by explicit request, so if a frontend
19972is not interested in the children of a particular variable object, no
19973child will be created.
c8b2f53c
VP
19974
19975For a leaf variable object it is possible to obtain its value as a
19976string, or set the value from a string. String value can be also
19977obtained for a non-leaf variable object, but it's generally a string
19978that only indicates the type of the object, and does not list its
19979contents. Assignment to a non-leaf variable object is not allowed.
19980
19981A frontend does not need to read the values of all variable objects each time
19982the program stops. Instead, MI provides an update command that lists all
19983variable objects whose values has changed since the last update
19984operation. This considerably reduces the amount of data that must
25d5ea92
VP
19985be transferred to the frontend. As noted above, children variable
19986objects are created on demand, and only leaf variable objects have a
19987real value. As result, gdb will read target memory only for leaf
19988variables that frontend has created.
19989
19990The automatic update is not always desirable. For example, a frontend
19991might want to keep a value of some expression for future reference,
19992and never update it. For another example, fetching memory is
19993relatively slow for embedded targets, so a frontend might want
19994to disable automatic update for the variables that are either not
19995visible on the screen, or ``closed''. This is possible using so
19996called ``frozen variable objects''. Such variable objects are never
19997implicitly updated.
922fbb7b 19998
a2c02241
NR
19999The following is the complete set of @sc{gdb/mi} operations defined to
20000access this functionality:
922fbb7b 20001
a2c02241
NR
20002@multitable @columnfractions .4 .6
20003@item @strong{Operation}
20004@tab @strong{Description}
922fbb7b 20005
a2c02241
NR
20006@item @code{-var-create}
20007@tab create a variable object
20008@item @code{-var-delete}
22d8a470 20009@tab delete the variable object and/or its children
a2c02241
NR
20010@item @code{-var-set-format}
20011@tab set the display format of this variable
20012@item @code{-var-show-format}
20013@tab show the display format of this variable
20014@item @code{-var-info-num-children}
20015@tab tells how many children this object has
20016@item @code{-var-list-children}
20017@tab return a list of the object's children
20018@item @code{-var-info-type}
20019@tab show the type of this variable object
20020@item @code{-var-info-expression}
02142340
VP
20021@tab print parent-relative expression that this variable object represents
20022@item @code{-var-info-path-expression}
20023@tab print full expression that this variable object represents
a2c02241
NR
20024@item @code{-var-show-attributes}
20025@tab is this variable editable? does it exist here?
20026@item @code{-var-evaluate-expression}
20027@tab get the value of this variable
20028@item @code{-var-assign}
20029@tab set the value of this variable
20030@item @code{-var-update}
20031@tab update the variable and its children
25d5ea92
VP
20032@item @code{-var-set-frozen}
20033@tab set frozeness attribute
a2c02241 20034@end multitable
922fbb7b 20035
a2c02241
NR
20036In the next subsection we describe each operation in detail and suggest
20037how it can be used.
922fbb7b 20038
a2c02241 20039@subheading Description And Use of Operations on Variable Objects
922fbb7b 20040
a2c02241
NR
20041@subheading The @code{-var-create} Command
20042@findex -var-create
ef21caaf 20043
a2c02241 20044@subsubheading Synopsis
ef21caaf 20045
a2c02241
NR
20046@smallexample
20047 -var-create @{@var{name} | "-"@}
20048 @{@var{frame-addr} | "*"@} @var{expression}
20049@end smallexample
20050
20051This operation creates a variable object, which allows the monitoring of
20052a variable, the result of an expression, a memory cell or a CPU
20053register.
ef21caaf 20054
a2c02241
NR
20055The @var{name} parameter is the string by which the object can be
20056referenced. It must be unique. If @samp{-} is specified, the varobj
20057system will generate a string ``varNNNNNN'' automatically. It will be
20058unique provided that one does not specify @var{name} on that format.
20059The command fails if a duplicate name is found.
ef21caaf 20060
a2c02241
NR
20061The frame under which the expression should be evaluated can be
20062specified by @var{frame-addr}. A @samp{*} indicates that the current
20063frame should be used.
922fbb7b 20064
a2c02241
NR
20065@var{expression} is any expression valid on the current language set (must not
20066begin with a @samp{*}), or one of the following:
922fbb7b 20067
a2c02241
NR
20068@itemize @bullet
20069@item
20070@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20071
a2c02241
NR
20072@item
20073@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20074
a2c02241
NR
20075@item
20076@samp{$@var{regname}} --- a CPU register name
20077@end itemize
922fbb7b 20078
a2c02241 20079@subsubheading Result
922fbb7b 20080
a2c02241
NR
20081This operation returns the name, number of children and the type of the
20082object created. Type is returned as a string as the ones generated by
20083the @value{GDBN} CLI:
922fbb7b
AC
20084
20085@smallexample
a2c02241 20086 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20087@end smallexample
20088
a2c02241
NR
20089
20090@subheading The @code{-var-delete} Command
20091@findex -var-delete
922fbb7b
AC
20092
20093@subsubheading Synopsis
20094
20095@smallexample
22d8a470 20096 -var-delete [ -c ] @var{name}
922fbb7b
AC
20097@end smallexample
20098
a2c02241 20099Deletes a previously created variable object and all of its children.
22d8a470 20100With the @samp{-c} option, just deletes the children.
922fbb7b 20101
a2c02241 20102Returns an error if the object @var{name} is not found.
922fbb7b 20103
922fbb7b 20104
a2c02241
NR
20105@subheading The @code{-var-set-format} Command
20106@findex -var-set-format
922fbb7b 20107
a2c02241 20108@subsubheading Synopsis
922fbb7b
AC
20109
20110@smallexample
a2c02241 20111 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20112@end smallexample
20113
a2c02241
NR
20114Sets the output format for the value of the object @var{name} to be
20115@var{format-spec}.
20116
de051565 20117@anchor{-var-set-format}
a2c02241
NR
20118The syntax for the @var{format-spec} is as follows:
20119
20120@smallexample
20121 @var{format-spec} @expansion{}
20122 @{binary | decimal | hexadecimal | octal | natural@}
20123@end smallexample
20124
c8b2f53c
VP
20125The natural format is the default format choosen automatically
20126based on the variable type (like decimal for an @code{int}, hex
20127for pointers, etc.).
20128
20129For a variable with children, the format is set only on the
20130variable itself, and the children are not affected.
a2c02241
NR
20131
20132@subheading The @code{-var-show-format} Command
20133@findex -var-show-format
922fbb7b
AC
20134
20135@subsubheading Synopsis
20136
20137@smallexample
a2c02241 20138 -var-show-format @var{name}
922fbb7b
AC
20139@end smallexample
20140
a2c02241 20141Returns the format used to display the value of the object @var{name}.
922fbb7b 20142
a2c02241
NR
20143@smallexample
20144 @var{format} @expansion{}
20145 @var{format-spec}
20146@end smallexample
922fbb7b 20147
922fbb7b 20148
a2c02241
NR
20149@subheading The @code{-var-info-num-children} Command
20150@findex -var-info-num-children
20151
20152@subsubheading Synopsis
20153
20154@smallexample
20155 -var-info-num-children @var{name}
20156@end smallexample
20157
20158Returns the number of children of a variable object @var{name}:
20159
20160@smallexample
20161 numchild=@var{n}
20162@end smallexample
20163
20164
20165@subheading The @code{-var-list-children} Command
20166@findex -var-list-children
20167
20168@subsubheading Synopsis
20169
20170@smallexample
20171 -var-list-children [@var{print-values}] @var{name}
20172@end smallexample
20173@anchor{-var-list-children}
20174
20175Return a list of the children of the specified variable object and
20176create variable objects for them, if they do not already exist. With
20177a single argument or if @var{print-values} has a value for of 0 or
20178@code{--no-values}, print only the names of the variables; if
20179@var{print-values} is 1 or @code{--all-values}, also print their
20180values; and if it is 2 or @code{--simple-values} print the name and
20181value for simple data types and just the name for arrays, structures
20182and unions.
922fbb7b
AC
20183
20184@subsubheading Example
20185
20186@smallexample
594fe323 20187(gdb)
a2c02241
NR
20188 -var-list-children n
20189 ^done,numchild=@var{n},children=[@{name=@var{name},
20190 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20191(gdb)
a2c02241
NR
20192 -var-list-children --all-values n
20193 ^done,numchild=@var{n},children=[@{name=@var{name},
20194 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20195@end smallexample
20196
922fbb7b 20197
a2c02241
NR
20198@subheading The @code{-var-info-type} Command
20199@findex -var-info-type
922fbb7b 20200
a2c02241
NR
20201@subsubheading Synopsis
20202
20203@smallexample
20204 -var-info-type @var{name}
20205@end smallexample
20206
20207Returns the type of the specified variable @var{name}. The type is
20208returned as a string in the same format as it is output by the
20209@value{GDBN} CLI:
20210
20211@smallexample
20212 type=@var{typename}
20213@end smallexample
20214
20215
20216@subheading The @code{-var-info-expression} Command
20217@findex -var-info-expression
922fbb7b
AC
20218
20219@subsubheading Synopsis
20220
20221@smallexample
a2c02241 20222 -var-info-expression @var{name}
922fbb7b
AC
20223@end smallexample
20224
02142340
VP
20225Returns a string that is suitable for presenting this
20226variable object in user interface. The string is generally
20227not valid expression in the current language, and cannot be evaluated.
20228
20229For example, if @code{a} is an array, and variable object
20230@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20231
a2c02241 20232@smallexample
02142340
VP
20233(gdb) -var-info-expression A.1
20234^done,lang="C",exp="1"
a2c02241 20235@end smallexample
922fbb7b 20236
a2c02241 20237@noindent
02142340
VP
20238Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20239
20240Note that the output of the @code{-var-list-children} command also
20241includes those expressions, so the @code{-var-info-expression} command
20242is of limited use.
20243
20244@subheading The @code{-var-info-path-expression} Command
20245@findex -var-info-path-expression
20246
20247@subsubheading Synopsis
20248
20249@smallexample
20250 -var-info-path-expression @var{name}
20251@end smallexample
20252
20253Returns an expression that can be evaluated in the current
20254context and will yield the same value that a variable object has.
20255Compare this with the @code{-var-info-expression} command, which
20256result can be used only for UI presentation. Typical use of
20257the @code{-var-info-path-expression} command is creating a
20258watchpoint from a variable object.
20259
20260For example, suppose @code{C} is a C@t{++} class, derived from class
20261@code{Base}, and that the @code{Base} class has a member called
20262@code{m_size}. Assume a variable @code{c} is has the type of
20263@code{C} and a variable object @code{C} was created for variable
20264@code{c}. Then, we'll get this output:
20265@smallexample
20266(gdb) -var-info-path-expression C.Base.public.m_size
20267^done,path_expr=((Base)c).m_size)
20268@end smallexample
922fbb7b 20269
a2c02241
NR
20270@subheading The @code{-var-show-attributes} Command
20271@findex -var-show-attributes
922fbb7b 20272
a2c02241 20273@subsubheading Synopsis
922fbb7b 20274
a2c02241
NR
20275@smallexample
20276 -var-show-attributes @var{name}
20277@end smallexample
922fbb7b 20278
a2c02241 20279List attributes of the specified variable object @var{name}:
922fbb7b
AC
20280
20281@smallexample
a2c02241 20282 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20283@end smallexample
20284
a2c02241
NR
20285@noindent
20286where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20287
20288@subheading The @code{-var-evaluate-expression} Command
20289@findex -var-evaluate-expression
20290
20291@subsubheading Synopsis
20292
20293@smallexample
de051565 20294 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20295@end smallexample
20296
20297Evaluates the expression that is represented by the specified variable
de051565
MK
20298object and returns its value as a string. The format of the string
20299can be specified with the @samp{-f} option. The possible values of
20300this option are the same as for @code{-var-set-format}
20301(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20302the current display format will be used. The current display format
20303can be changed using the @code{-var-set-format} command.
a2c02241
NR
20304
20305@smallexample
20306 value=@var{value}
20307@end smallexample
20308
20309Note that one must invoke @code{-var-list-children} for a variable
20310before the value of a child variable can be evaluated.
20311
20312@subheading The @code{-var-assign} Command
20313@findex -var-assign
20314
20315@subsubheading Synopsis
20316
20317@smallexample
20318 -var-assign @var{name} @var{expression}
20319@end smallexample
20320
20321Assigns the value of @var{expression} to the variable object specified
20322by @var{name}. The object must be @samp{editable}. If the variable's
20323value is altered by the assign, the variable will show up in any
20324subsequent @code{-var-update} list.
20325
20326@subsubheading Example
922fbb7b
AC
20327
20328@smallexample
594fe323 20329(gdb)
a2c02241
NR
20330-var-assign var1 3
20331^done,value="3"
594fe323 20332(gdb)
a2c02241
NR
20333-var-update *
20334^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20335(gdb)
922fbb7b
AC
20336@end smallexample
20337
a2c02241
NR
20338@subheading The @code{-var-update} Command
20339@findex -var-update
20340
20341@subsubheading Synopsis
20342
20343@smallexample
20344 -var-update [@var{print-values}] @{@var{name} | "*"@}
20345@end smallexample
20346
c8b2f53c
VP
20347Reevaluate the expressions corresponding to the variable object
20348@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20349list of variable objects whose values have changed; @var{name} must
20350be a root variable object. Here, ``changed'' means that the result of
20351@code{-var-evaluate-expression} before and after the
20352@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20353object names, all existing variable objects are updated, except
20354for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20355@var{print-values} determines whether both names and values, or just
de051565 20356names are printed. The possible values of this option are the same
36ece8b3
NR
20357as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20358recommended to use the @samp{--all-values} option, to reduce the
20359number of MI commands needed on each program stop.
c8b2f53c 20360
a2c02241
NR
20361
20362@subsubheading Example
922fbb7b
AC
20363
20364@smallexample
594fe323 20365(gdb)
a2c02241
NR
20366-var-assign var1 3
20367^done,value="3"
594fe323 20368(gdb)
a2c02241
NR
20369-var-update --all-values var1
20370^done,changelist=[@{name="var1",value="3",in_scope="true",
20371type_changed="false"@}]
594fe323 20372(gdb)
922fbb7b
AC
20373@end smallexample
20374
9f708cb2 20375@anchor{-var-update}
36ece8b3
NR
20376The field in_scope may take three values:
20377
20378@table @code
20379@item "true"
20380The variable object's current value is valid.
20381
20382@item "false"
20383The variable object does not currently hold a valid value but it may
20384hold one in the future if its associated expression comes back into
20385scope.
20386
20387@item "invalid"
20388The variable object no longer holds a valid value.
20389This can occur when the executable file being debugged has changed,
20390either through recompilation or by using the @value{GDBN} @code{file}
20391command. The front end should normally choose to delete these variable
20392objects.
20393@end table
20394
20395In the future new values may be added to this list so the front should
20396be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20397
25d5ea92
VP
20398@subheading The @code{-var-set-frozen} Command
20399@findex -var-set-frozen
9f708cb2 20400@anchor{-var-set-frozen}
25d5ea92
VP
20401
20402@subsubheading Synopsis
20403
20404@smallexample
9f708cb2 20405 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20406@end smallexample
20407
9f708cb2 20408Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20409@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20410frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20411frozen, then neither itself, nor any of its children, are
9f708cb2 20412implicitly updated by @code{-var-update} of
25d5ea92
VP
20413a parent variable or by @code{-var-update *}. Only
20414@code{-var-update} of the variable itself will update its value and
20415values of its children. After a variable object is unfrozen, it is
20416implicitly updated by all subsequent @code{-var-update} operations.
20417Unfreezing a variable does not update it, only subsequent
20418@code{-var-update} does.
20419
20420@subsubheading Example
20421
20422@smallexample
20423(gdb)
20424-var-set-frozen V 1
20425^done
20426(gdb)
20427@end smallexample
20428
20429
a2c02241
NR
20430@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20431@node GDB/MI Data Manipulation
20432@section @sc{gdb/mi} Data Manipulation
922fbb7b 20433
a2c02241
NR
20434@cindex data manipulation, in @sc{gdb/mi}
20435@cindex @sc{gdb/mi}, data manipulation
20436This section describes the @sc{gdb/mi} commands that manipulate data:
20437examine memory and registers, evaluate expressions, etc.
20438
20439@c REMOVED FROM THE INTERFACE.
20440@c @subheading -data-assign
20441@c Change the value of a program variable. Plenty of side effects.
79a6e687 20442@c @subsubheading GDB Command
a2c02241
NR
20443@c set variable
20444@c @subsubheading Example
20445@c N.A.
20446
20447@subheading The @code{-data-disassemble} Command
20448@findex -data-disassemble
922fbb7b
AC
20449
20450@subsubheading Synopsis
20451
20452@smallexample
a2c02241
NR
20453 -data-disassemble
20454 [ -s @var{start-addr} -e @var{end-addr} ]
20455 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20456 -- @var{mode}
922fbb7b
AC
20457@end smallexample
20458
a2c02241
NR
20459@noindent
20460Where:
20461
20462@table @samp
20463@item @var{start-addr}
20464is the beginning address (or @code{$pc})
20465@item @var{end-addr}
20466is the end address
20467@item @var{filename}
20468is the name of the file to disassemble
20469@item @var{linenum}
20470is the line number to disassemble around
20471@item @var{lines}
d3e8051b 20472is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20473the whole function will be disassembled, in case no @var{end-addr} is
20474specified. If @var{end-addr} is specified as a non-zero value, and
20475@var{lines} is lower than the number of disassembly lines between
20476@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20477displayed; if @var{lines} is higher than the number of lines between
20478@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20479are displayed.
20480@item @var{mode}
20481is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20482disassembly).
20483@end table
20484
20485@subsubheading Result
20486
20487The output for each instruction is composed of four fields:
20488
20489@itemize @bullet
20490@item Address
20491@item Func-name
20492@item Offset
20493@item Instruction
20494@end itemize
20495
20496Note that whatever included in the instruction field, is not manipulated
d3e8051b 20497directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20498
20499@subsubheading @value{GDBN} Command
20500
a2c02241 20501There's no direct mapping from this command to the CLI.
922fbb7b
AC
20502
20503@subsubheading Example
20504
a2c02241
NR
20505Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20506
922fbb7b 20507@smallexample
594fe323 20508(gdb)
a2c02241
NR
20509-data-disassemble -s $pc -e "$pc + 20" -- 0
20510^done,
20511asm_insns=[
20512@{address="0x000107c0",func-name="main",offset="4",
20513inst="mov 2, %o0"@},
20514@{address="0x000107c4",func-name="main",offset="8",
20515inst="sethi %hi(0x11800), %o2"@},
20516@{address="0x000107c8",func-name="main",offset="12",
20517inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20518@{address="0x000107cc",func-name="main",offset="16",
20519inst="sethi %hi(0x11800), %o2"@},
20520@{address="0x000107d0",func-name="main",offset="20",
20521inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20522(gdb)
a2c02241
NR
20523@end smallexample
20524
20525Disassemble the whole @code{main} function. Line 32 is part of
20526@code{main}.
20527
20528@smallexample
20529-data-disassemble -f basics.c -l 32 -- 0
20530^done,asm_insns=[
20531@{address="0x000107bc",func-name="main",offset="0",
20532inst="save %sp, -112, %sp"@},
20533@{address="0x000107c0",func-name="main",offset="4",
20534inst="mov 2, %o0"@},
20535@{address="0x000107c4",func-name="main",offset="8",
20536inst="sethi %hi(0x11800), %o2"@},
20537[@dots{}]
20538@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20539@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20540(gdb)
922fbb7b
AC
20541@end smallexample
20542
a2c02241 20543Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20544
a2c02241 20545@smallexample
594fe323 20546(gdb)
a2c02241
NR
20547-data-disassemble -f basics.c -l 32 -n 3 -- 0
20548^done,asm_insns=[
20549@{address="0x000107bc",func-name="main",offset="0",
20550inst="save %sp, -112, %sp"@},
20551@{address="0x000107c0",func-name="main",offset="4",
20552inst="mov 2, %o0"@},
20553@{address="0x000107c4",func-name="main",offset="8",
20554inst="sethi %hi(0x11800), %o2"@}]
594fe323 20555(gdb)
a2c02241
NR
20556@end smallexample
20557
20558Disassemble 3 instructions from the start of @code{main} in mixed mode:
20559
20560@smallexample
594fe323 20561(gdb)
a2c02241
NR
20562-data-disassemble -f basics.c -l 32 -n 3 -- 1
20563^done,asm_insns=[
20564src_and_asm_line=@{line="31",
20565file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20566 testsuite/gdb.mi/basics.c",line_asm_insn=[
20567@{address="0x000107bc",func-name="main",offset="0",
20568inst="save %sp, -112, %sp"@}]@},
20569src_and_asm_line=@{line="32",
20570file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20571 testsuite/gdb.mi/basics.c",line_asm_insn=[
20572@{address="0x000107c0",func-name="main",offset="4",
20573inst="mov 2, %o0"@},
20574@{address="0x000107c4",func-name="main",offset="8",
20575inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20576(gdb)
a2c02241
NR
20577@end smallexample
20578
20579
20580@subheading The @code{-data-evaluate-expression} Command
20581@findex -data-evaluate-expression
922fbb7b
AC
20582
20583@subsubheading Synopsis
20584
20585@smallexample
a2c02241 20586 -data-evaluate-expression @var{expr}
922fbb7b
AC
20587@end smallexample
20588
a2c02241
NR
20589Evaluate @var{expr} as an expression. The expression could contain an
20590inferior function call. The function call will execute synchronously.
20591If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20592
20593@subsubheading @value{GDBN} Command
20594
a2c02241
NR
20595The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20596@samp{call}. In @code{gdbtk} only, there's a corresponding
20597@samp{gdb_eval} command.
922fbb7b
AC
20598
20599@subsubheading Example
20600
a2c02241
NR
20601In the following example, the numbers that precede the commands are the
20602@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20603Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20604output.
20605
922fbb7b 20606@smallexample
a2c02241
NR
20607211-data-evaluate-expression A
20608211^done,value="1"
594fe323 20609(gdb)
a2c02241
NR
20610311-data-evaluate-expression &A
20611311^done,value="0xefffeb7c"
594fe323 20612(gdb)
a2c02241
NR
20613411-data-evaluate-expression A+3
20614411^done,value="4"
594fe323 20615(gdb)
a2c02241
NR
20616511-data-evaluate-expression "A + 3"
20617511^done,value="4"
594fe323 20618(gdb)
a2c02241 20619@end smallexample
922fbb7b
AC
20620
20621
a2c02241
NR
20622@subheading The @code{-data-list-changed-registers} Command
20623@findex -data-list-changed-registers
922fbb7b
AC
20624
20625@subsubheading Synopsis
20626
20627@smallexample
a2c02241 20628 -data-list-changed-registers
922fbb7b
AC
20629@end smallexample
20630
a2c02241 20631Display a list of the registers that have changed.
922fbb7b
AC
20632
20633@subsubheading @value{GDBN} Command
20634
a2c02241
NR
20635@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20636has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20637
20638@subsubheading Example
922fbb7b 20639
a2c02241 20640On a PPC MBX board:
922fbb7b
AC
20641
20642@smallexample
594fe323 20643(gdb)
a2c02241
NR
20644-exec-continue
20645^running
922fbb7b 20646
594fe323 20647(gdb)
a47ec5fe
AR
20648*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20649func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20650line="5"@}
594fe323 20651(gdb)
a2c02241
NR
20652-data-list-changed-registers
20653^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20654"10","11","13","14","15","16","17","18","19","20","21","22","23",
20655"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20656(gdb)
a2c02241 20657@end smallexample
922fbb7b
AC
20658
20659
a2c02241
NR
20660@subheading The @code{-data-list-register-names} Command
20661@findex -data-list-register-names
922fbb7b
AC
20662
20663@subsubheading Synopsis
20664
20665@smallexample
a2c02241 20666 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20667@end smallexample
20668
a2c02241
NR
20669Show a list of register names for the current target. If no arguments
20670are given, it shows a list of the names of all the registers. If
20671integer numbers are given as arguments, it will print a list of the
20672names of the registers corresponding to the arguments. To ensure
20673consistency between a register name and its number, the output list may
20674include empty register names.
922fbb7b
AC
20675
20676@subsubheading @value{GDBN} Command
20677
a2c02241
NR
20678@value{GDBN} does not have a command which corresponds to
20679@samp{-data-list-register-names}. In @code{gdbtk} there is a
20680corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20681
20682@subsubheading Example
922fbb7b 20683
a2c02241
NR
20684For the PPC MBX board:
20685@smallexample
594fe323 20686(gdb)
a2c02241
NR
20687-data-list-register-names
20688^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20689"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20690"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20691"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20692"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20693"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20694"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20695(gdb)
a2c02241
NR
20696-data-list-register-names 1 2 3
20697^done,register-names=["r1","r2","r3"]
594fe323 20698(gdb)
a2c02241 20699@end smallexample
922fbb7b 20700
a2c02241
NR
20701@subheading The @code{-data-list-register-values} Command
20702@findex -data-list-register-values
922fbb7b
AC
20703
20704@subsubheading Synopsis
20705
20706@smallexample
a2c02241 20707 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20708@end smallexample
20709
a2c02241
NR
20710Display the registers' contents. @var{fmt} is the format according to
20711which the registers' contents are to be returned, followed by an optional
20712list of numbers specifying the registers to display. A missing list of
20713numbers indicates that the contents of all the registers must be returned.
20714
20715Allowed formats for @var{fmt} are:
20716
20717@table @code
20718@item x
20719Hexadecimal
20720@item o
20721Octal
20722@item t
20723Binary
20724@item d
20725Decimal
20726@item r
20727Raw
20728@item N
20729Natural
20730@end table
922fbb7b
AC
20731
20732@subsubheading @value{GDBN} Command
20733
a2c02241
NR
20734The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20735all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20736
20737@subsubheading Example
922fbb7b 20738
a2c02241
NR
20739For a PPC MBX board (note: line breaks are for readability only, they
20740don't appear in the actual output):
20741
20742@smallexample
594fe323 20743(gdb)
a2c02241
NR
20744-data-list-register-values r 64 65
20745^done,register-values=[@{number="64",value="0xfe00a300"@},
20746@{number="65",value="0x00029002"@}]
594fe323 20747(gdb)
a2c02241
NR
20748-data-list-register-values x
20749^done,register-values=[@{number="0",value="0xfe0043c8"@},
20750@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20751@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20752@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20753@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20754@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20755@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20756@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20757@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20758@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20759@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20760@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20761@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20762@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20763@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20764@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20765@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20766@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20767@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20768@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20769@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20770@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20771@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20772@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20773@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20774@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20775@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20776@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20777@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20778@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20779@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20780@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20781@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20782@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20783@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20784@{number="69",value="0x20002b03"@}]
594fe323 20785(gdb)
a2c02241 20786@end smallexample
922fbb7b 20787
a2c02241
NR
20788
20789@subheading The @code{-data-read-memory} Command
20790@findex -data-read-memory
922fbb7b
AC
20791
20792@subsubheading Synopsis
20793
20794@smallexample
a2c02241
NR
20795 -data-read-memory [ -o @var{byte-offset} ]
20796 @var{address} @var{word-format} @var{word-size}
20797 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20798@end smallexample
20799
a2c02241
NR
20800@noindent
20801where:
922fbb7b 20802
a2c02241
NR
20803@table @samp
20804@item @var{address}
20805An expression specifying the address of the first memory word to be
20806read. Complex expressions containing embedded white space should be
20807quoted using the C convention.
922fbb7b 20808
a2c02241
NR
20809@item @var{word-format}
20810The format to be used to print the memory words. The notation is the
20811same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20812,Output Formats}).
922fbb7b 20813
a2c02241
NR
20814@item @var{word-size}
20815The size of each memory word in bytes.
922fbb7b 20816
a2c02241
NR
20817@item @var{nr-rows}
20818The number of rows in the output table.
922fbb7b 20819
a2c02241
NR
20820@item @var{nr-cols}
20821The number of columns in the output table.
922fbb7b 20822
a2c02241
NR
20823@item @var{aschar}
20824If present, indicates that each row should include an @sc{ascii} dump. The
20825value of @var{aschar} is used as a padding character when a byte is not a
20826member of the printable @sc{ascii} character set (printable @sc{ascii}
20827characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20828
a2c02241
NR
20829@item @var{byte-offset}
20830An offset to add to the @var{address} before fetching memory.
20831@end table
922fbb7b 20832
a2c02241
NR
20833This command displays memory contents as a table of @var{nr-rows} by
20834@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20835@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20836(returned as @samp{total-bytes}). Should less than the requested number
20837of bytes be returned by the target, the missing words are identified
20838using @samp{N/A}. The number of bytes read from the target is returned
20839in @samp{nr-bytes} and the starting address used to read memory in
20840@samp{addr}.
20841
20842The address of the next/previous row or page is available in
20843@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20844@samp{prev-page}.
922fbb7b
AC
20845
20846@subsubheading @value{GDBN} Command
20847
a2c02241
NR
20848The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20849@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20850
20851@subsubheading Example
32e7087d 20852
a2c02241
NR
20853Read six bytes of memory starting at @code{bytes+6} but then offset by
20854@code{-6} bytes. Format as three rows of two columns. One byte per
20855word. Display each word in hex.
32e7087d
JB
20856
20857@smallexample
594fe323 20858(gdb)
a2c02241
NR
208599-data-read-memory -o -6 -- bytes+6 x 1 3 2
208609^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20861next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20862prev-page="0x0000138a",memory=[
20863@{addr="0x00001390",data=["0x00","0x01"]@},
20864@{addr="0x00001392",data=["0x02","0x03"]@},
20865@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20866(gdb)
32e7087d
JB
20867@end smallexample
20868
a2c02241
NR
20869Read two bytes of memory starting at address @code{shorts + 64} and
20870display as a single word formatted in decimal.
32e7087d 20871
32e7087d 20872@smallexample
594fe323 20873(gdb)
a2c02241
NR
208745-data-read-memory shorts+64 d 2 1 1
208755^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20876next-row="0x00001512",prev-row="0x0000150e",
20877next-page="0x00001512",prev-page="0x0000150e",memory=[
20878@{addr="0x00001510",data=["128"]@}]
594fe323 20879(gdb)
32e7087d
JB
20880@end smallexample
20881
a2c02241
NR
20882Read thirty two bytes of memory starting at @code{bytes+16} and format
20883as eight rows of four columns. Include a string encoding with @samp{x}
20884used as the non-printable character.
922fbb7b
AC
20885
20886@smallexample
594fe323 20887(gdb)
a2c02241
NR
208884-data-read-memory bytes+16 x 1 8 4 x
208894^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20890next-row="0x000013c0",prev-row="0x0000139c",
20891next-page="0x000013c0",prev-page="0x00001380",memory=[
20892@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20893@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20894@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20895@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20896@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20897@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20898@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20899@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20900(gdb)
922fbb7b
AC
20901@end smallexample
20902
a2c02241
NR
20903@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20904@node GDB/MI Tracepoint Commands
20905@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20906
a2c02241 20907The tracepoint commands are not yet implemented.
922fbb7b 20908
a2c02241 20909@c @subheading -trace-actions
922fbb7b 20910
a2c02241 20911@c @subheading -trace-delete
922fbb7b 20912
a2c02241 20913@c @subheading -trace-disable
922fbb7b 20914
a2c02241 20915@c @subheading -trace-dump
922fbb7b 20916
a2c02241 20917@c @subheading -trace-enable
922fbb7b 20918
a2c02241 20919@c @subheading -trace-exists
922fbb7b 20920
a2c02241 20921@c @subheading -trace-find
922fbb7b 20922
a2c02241 20923@c @subheading -trace-frame-number
922fbb7b 20924
a2c02241 20925@c @subheading -trace-info
922fbb7b 20926
a2c02241 20927@c @subheading -trace-insert
922fbb7b 20928
a2c02241 20929@c @subheading -trace-list
922fbb7b 20930
a2c02241 20931@c @subheading -trace-pass-count
922fbb7b 20932
a2c02241 20933@c @subheading -trace-save
922fbb7b 20934
a2c02241 20935@c @subheading -trace-start
922fbb7b 20936
a2c02241 20937@c @subheading -trace-stop
922fbb7b 20938
922fbb7b 20939
a2c02241
NR
20940@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20941@node GDB/MI Symbol Query
20942@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20943
20944
a2c02241
NR
20945@subheading The @code{-symbol-info-address} Command
20946@findex -symbol-info-address
922fbb7b
AC
20947
20948@subsubheading Synopsis
20949
20950@smallexample
a2c02241 20951 -symbol-info-address @var{symbol}
922fbb7b
AC
20952@end smallexample
20953
a2c02241 20954Describe where @var{symbol} is stored.
922fbb7b
AC
20955
20956@subsubheading @value{GDBN} Command
20957
a2c02241 20958The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20959
20960@subsubheading Example
20961N.A.
20962
20963
a2c02241
NR
20964@subheading The @code{-symbol-info-file} Command
20965@findex -symbol-info-file
922fbb7b
AC
20966
20967@subsubheading Synopsis
20968
20969@smallexample
a2c02241 20970 -symbol-info-file
922fbb7b
AC
20971@end smallexample
20972
a2c02241 20973Show the file for the symbol.
922fbb7b 20974
a2c02241 20975@subsubheading @value{GDBN} Command
922fbb7b 20976
a2c02241
NR
20977There's no equivalent @value{GDBN} command. @code{gdbtk} has
20978@samp{gdb_find_file}.
922fbb7b
AC
20979
20980@subsubheading Example
20981N.A.
20982
20983
a2c02241
NR
20984@subheading The @code{-symbol-info-function} Command
20985@findex -symbol-info-function
922fbb7b
AC
20986
20987@subsubheading Synopsis
20988
20989@smallexample
a2c02241 20990 -symbol-info-function
922fbb7b
AC
20991@end smallexample
20992
a2c02241 20993Show which function the symbol lives in.
922fbb7b
AC
20994
20995@subsubheading @value{GDBN} Command
20996
a2c02241 20997@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20998
20999@subsubheading Example
21000N.A.
21001
21002
a2c02241
NR
21003@subheading The @code{-symbol-info-line} Command
21004@findex -symbol-info-line
922fbb7b
AC
21005
21006@subsubheading Synopsis
21007
21008@smallexample
a2c02241 21009 -symbol-info-line
922fbb7b
AC
21010@end smallexample
21011
a2c02241 21012Show the core addresses of the code for a source line.
922fbb7b 21013
a2c02241 21014@subsubheading @value{GDBN} Command
922fbb7b 21015
a2c02241
NR
21016The corresponding @value{GDBN} command is @samp{info line}.
21017@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
21018
21019@subsubheading Example
a2c02241 21020N.A.
922fbb7b
AC
21021
21022
a2c02241
NR
21023@subheading The @code{-symbol-info-symbol} Command
21024@findex -symbol-info-symbol
07f31aa6
DJ
21025
21026@subsubheading Synopsis
21027
a2c02241
NR
21028@smallexample
21029 -symbol-info-symbol @var{addr}
21030@end smallexample
07f31aa6 21031
a2c02241 21032Describe what symbol is at location @var{addr}.
07f31aa6 21033
a2c02241 21034@subsubheading @value{GDBN} Command
07f31aa6 21035
a2c02241 21036The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
21037
21038@subsubheading Example
a2c02241 21039N.A.
07f31aa6
DJ
21040
21041
a2c02241
NR
21042@subheading The @code{-symbol-list-functions} Command
21043@findex -symbol-list-functions
922fbb7b
AC
21044
21045@subsubheading Synopsis
21046
21047@smallexample
a2c02241 21048 -symbol-list-functions
922fbb7b
AC
21049@end smallexample
21050
a2c02241 21051List the functions in the executable.
922fbb7b
AC
21052
21053@subsubheading @value{GDBN} Command
21054
a2c02241
NR
21055@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
21056@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21057
21058@subsubheading Example
a2c02241 21059N.A.
922fbb7b
AC
21060
21061
a2c02241
NR
21062@subheading The @code{-symbol-list-lines} Command
21063@findex -symbol-list-lines
922fbb7b
AC
21064
21065@subsubheading Synopsis
21066
21067@smallexample
a2c02241 21068 -symbol-list-lines @var{filename}
922fbb7b
AC
21069@end smallexample
21070
a2c02241
NR
21071Print the list of lines that contain code and their associated program
21072addresses for the given source filename. The entries are sorted in
21073ascending PC order.
922fbb7b
AC
21074
21075@subsubheading @value{GDBN} Command
21076
a2c02241 21077There is no corresponding @value{GDBN} command.
922fbb7b
AC
21078
21079@subsubheading Example
a2c02241 21080@smallexample
594fe323 21081(gdb)
a2c02241
NR
21082-symbol-list-lines basics.c
21083^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21084(gdb)
a2c02241 21085@end smallexample
922fbb7b
AC
21086
21087
a2c02241
NR
21088@subheading The @code{-symbol-list-types} Command
21089@findex -symbol-list-types
922fbb7b
AC
21090
21091@subsubheading Synopsis
21092
21093@smallexample
a2c02241 21094 -symbol-list-types
922fbb7b
AC
21095@end smallexample
21096
a2c02241 21097List all the type names.
922fbb7b
AC
21098
21099@subsubheading @value{GDBN} Command
21100
a2c02241
NR
21101The corresponding commands are @samp{info types} in @value{GDBN},
21102@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21103
21104@subsubheading Example
21105N.A.
21106
21107
a2c02241
NR
21108@subheading The @code{-symbol-list-variables} Command
21109@findex -symbol-list-variables
922fbb7b
AC
21110
21111@subsubheading Synopsis
21112
21113@smallexample
a2c02241 21114 -symbol-list-variables
922fbb7b
AC
21115@end smallexample
21116
a2c02241 21117List all the global and static variable names.
922fbb7b
AC
21118
21119@subsubheading @value{GDBN} Command
21120
a2c02241 21121@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21122
21123@subsubheading Example
21124N.A.
21125
21126
a2c02241
NR
21127@subheading The @code{-symbol-locate} Command
21128@findex -symbol-locate
922fbb7b
AC
21129
21130@subsubheading Synopsis
21131
21132@smallexample
a2c02241 21133 -symbol-locate
922fbb7b
AC
21134@end smallexample
21135
922fbb7b
AC
21136@subsubheading @value{GDBN} Command
21137
a2c02241 21138@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21139
21140@subsubheading Example
21141N.A.
21142
21143
a2c02241
NR
21144@subheading The @code{-symbol-type} Command
21145@findex -symbol-type
922fbb7b
AC
21146
21147@subsubheading Synopsis
21148
21149@smallexample
a2c02241 21150 -symbol-type @var{variable}
922fbb7b
AC
21151@end smallexample
21152
a2c02241 21153Show type of @var{variable}.
922fbb7b 21154
a2c02241 21155@subsubheading @value{GDBN} Command
922fbb7b 21156
a2c02241
NR
21157The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21158@samp{gdb_obj_variable}.
21159
21160@subsubheading Example
21161N.A.
21162
21163
21164@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21165@node GDB/MI File Commands
21166@section @sc{gdb/mi} File Commands
21167
21168This section describes the GDB/MI commands to specify executable file names
21169and to read in and obtain symbol table information.
21170
21171@subheading The @code{-file-exec-and-symbols} Command
21172@findex -file-exec-and-symbols
21173
21174@subsubheading Synopsis
922fbb7b
AC
21175
21176@smallexample
a2c02241 21177 -file-exec-and-symbols @var{file}
922fbb7b
AC
21178@end smallexample
21179
a2c02241
NR
21180Specify the executable file to be debugged. This file is the one from
21181which the symbol table is also read. If no file is specified, the
21182command clears the executable and symbol information. If breakpoints
21183are set when using this command with no arguments, @value{GDBN} will produce
21184error messages. Otherwise, no output is produced, except a completion
21185notification.
21186
922fbb7b
AC
21187@subsubheading @value{GDBN} Command
21188
a2c02241 21189The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21190
21191@subsubheading Example
21192
21193@smallexample
594fe323 21194(gdb)
a2c02241
NR
21195-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21196^done
594fe323 21197(gdb)
922fbb7b
AC
21198@end smallexample
21199
922fbb7b 21200
a2c02241
NR
21201@subheading The @code{-file-exec-file} Command
21202@findex -file-exec-file
922fbb7b
AC
21203
21204@subsubheading Synopsis
21205
21206@smallexample
a2c02241 21207 -file-exec-file @var{file}
922fbb7b
AC
21208@end smallexample
21209
a2c02241
NR
21210Specify the executable file to be debugged. Unlike
21211@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21212from this file. If used without argument, @value{GDBN} clears the information
21213about the executable file. No output is produced, except a completion
21214notification.
922fbb7b 21215
a2c02241
NR
21216@subsubheading @value{GDBN} Command
21217
21218The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21219
21220@subsubheading Example
a2c02241
NR
21221
21222@smallexample
594fe323 21223(gdb)
a2c02241
NR
21224-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21225^done
594fe323 21226(gdb)
a2c02241 21227@end smallexample
922fbb7b
AC
21228
21229
a2c02241
NR
21230@subheading The @code{-file-list-exec-sections} Command
21231@findex -file-list-exec-sections
922fbb7b
AC
21232
21233@subsubheading Synopsis
21234
21235@smallexample
a2c02241 21236 -file-list-exec-sections
922fbb7b
AC
21237@end smallexample
21238
a2c02241
NR
21239List the sections of the current executable file.
21240
922fbb7b
AC
21241@subsubheading @value{GDBN} Command
21242
a2c02241
NR
21243The @value{GDBN} command @samp{info file} shows, among the rest, the same
21244information as this command. @code{gdbtk} has a corresponding command
21245@samp{gdb_load_info}.
922fbb7b
AC
21246
21247@subsubheading Example
21248N.A.
21249
21250
a2c02241
NR
21251@subheading The @code{-file-list-exec-source-file} Command
21252@findex -file-list-exec-source-file
922fbb7b
AC
21253
21254@subsubheading Synopsis
21255
21256@smallexample
a2c02241 21257 -file-list-exec-source-file
922fbb7b
AC
21258@end smallexample
21259
a2c02241 21260List the line number, the current source file, and the absolute path
44288b44
NR
21261to the current source file for the current executable. The macro
21262information field has a value of @samp{1} or @samp{0} depending on
21263whether or not the file includes preprocessor macro information.
922fbb7b
AC
21264
21265@subsubheading @value{GDBN} Command
21266
a2c02241 21267The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21268
21269@subsubheading Example
21270
922fbb7b 21271@smallexample
594fe323 21272(gdb)
a2c02241 21273123-file-list-exec-source-file
44288b44 21274123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21275(gdb)
922fbb7b
AC
21276@end smallexample
21277
21278
a2c02241
NR
21279@subheading The @code{-file-list-exec-source-files} Command
21280@findex -file-list-exec-source-files
922fbb7b
AC
21281
21282@subsubheading Synopsis
21283
21284@smallexample
a2c02241 21285 -file-list-exec-source-files
922fbb7b
AC
21286@end smallexample
21287
a2c02241
NR
21288List the source files for the current executable.
21289
3f94c067
BW
21290It will always output the filename, but only when @value{GDBN} can find
21291the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21292
21293@subsubheading @value{GDBN} Command
21294
a2c02241
NR
21295The @value{GDBN} equivalent is @samp{info sources}.
21296@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21297
21298@subsubheading Example
922fbb7b 21299@smallexample
594fe323 21300(gdb)
a2c02241
NR
21301-file-list-exec-source-files
21302^done,files=[
21303@{file=foo.c,fullname=/home/foo.c@},
21304@{file=/home/bar.c,fullname=/home/bar.c@},
21305@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21306(gdb)
922fbb7b
AC
21307@end smallexample
21308
a2c02241
NR
21309@subheading The @code{-file-list-shared-libraries} Command
21310@findex -file-list-shared-libraries
922fbb7b 21311
a2c02241 21312@subsubheading Synopsis
922fbb7b 21313
a2c02241
NR
21314@smallexample
21315 -file-list-shared-libraries
21316@end smallexample
922fbb7b 21317
a2c02241 21318List the shared libraries in the program.
922fbb7b 21319
a2c02241 21320@subsubheading @value{GDBN} Command
922fbb7b 21321
a2c02241 21322The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21323
a2c02241
NR
21324@subsubheading Example
21325N.A.
922fbb7b
AC
21326
21327
a2c02241
NR
21328@subheading The @code{-file-list-symbol-files} Command
21329@findex -file-list-symbol-files
922fbb7b 21330
a2c02241 21331@subsubheading Synopsis
922fbb7b 21332
a2c02241
NR
21333@smallexample
21334 -file-list-symbol-files
21335@end smallexample
922fbb7b 21336
a2c02241 21337List symbol files.
922fbb7b 21338
a2c02241 21339@subsubheading @value{GDBN} Command
922fbb7b 21340
a2c02241 21341The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21342
a2c02241
NR
21343@subsubheading Example
21344N.A.
922fbb7b 21345
922fbb7b 21346
a2c02241
NR
21347@subheading The @code{-file-symbol-file} Command
21348@findex -file-symbol-file
922fbb7b 21349
a2c02241 21350@subsubheading Synopsis
922fbb7b 21351
a2c02241
NR
21352@smallexample
21353 -file-symbol-file @var{file}
21354@end smallexample
922fbb7b 21355
a2c02241
NR
21356Read symbol table info from the specified @var{file} argument. When
21357used without arguments, clears @value{GDBN}'s symbol table info. No output is
21358produced, except for a completion notification.
922fbb7b 21359
a2c02241 21360@subsubheading @value{GDBN} Command
922fbb7b 21361
a2c02241 21362The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21363
a2c02241 21364@subsubheading Example
922fbb7b 21365
a2c02241 21366@smallexample
594fe323 21367(gdb)
a2c02241
NR
21368-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21369^done
594fe323 21370(gdb)
a2c02241 21371@end smallexample
922fbb7b 21372
a2c02241 21373@ignore
a2c02241
NR
21374@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21375@node GDB/MI Memory Overlay Commands
21376@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21377
a2c02241 21378The memory overlay commands are not implemented.
922fbb7b 21379
a2c02241 21380@c @subheading -overlay-auto
922fbb7b 21381
a2c02241 21382@c @subheading -overlay-list-mapping-state
922fbb7b 21383
a2c02241 21384@c @subheading -overlay-list-overlays
922fbb7b 21385
a2c02241 21386@c @subheading -overlay-map
922fbb7b 21387
a2c02241 21388@c @subheading -overlay-off
922fbb7b 21389
a2c02241 21390@c @subheading -overlay-on
922fbb7b 21391
a2c02241 21392@c @subheading -overlay-unmap
922fbb7b 21393
a2c02241
NR
21394@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21395@node GDB/MI Signal Handling Commands
21396@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21397
a2c02241 21398Signal handling commands are not implemented.
922fbb7b 21399
a2c02241 21400@c @subheading -signal-handle
922fbb7b 21401
a2c02241 21402@c @subheading -signal-list-handle-actions
922fbb7b 21403
a2c02241
NR
21404@c @subheading -signal-list-signal-types
21405@end ignore
922fbb7b 21406
922fbb7b 21407
a2c02241
NR
21408@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21409@node GDB/MI Target Manipulation
21410@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21411
21412
a2c02241
NR
21413@subheading The @code{-target-attach} Command
21414@findex -target-attach
922fbb7b
AC
21415
21416@subsubheading Synopsis
21417
21418@smallexample
a2c02241 21419 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21420@end smallexample
21421
a2c02241 21422Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21423
79a6e687 21424@subsubheading @value{GDBN} Command
922fbb7b 21425
a2c02241 21426The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21427
a2c02241
NR
21428@subsubheading Example
21429N.A.
922fbb7b 21430
a2c02241
NR
21431
21432@subheading The @code{-target-compare-sections} Command
21433@findex -target-compare-sections
922fbb7b
AC
21434
21435@subsubheading Synopsis
21436
21437@smallexample
a2c02241 21438 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21439@end smallexample
21440
a2c02241
NR
21441Compare data of section @var{section} on target to the exec file.
21442Without the argument, all sections are compared.
922fbb7b 21443
a2c02241 21444@subsubheading @value{GDBN} Command
922fbb7b 21445
a2c02241 21446The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21447
a2c02241
NR
21448@subsubheading Example
21449N.A.
21450
21451
21452@subheading The @code{-target-detach} Command
21453@findex -target-detach
922fbb7b
AC
21454
21455@subsubheading Synopsis
21456
21457@smallexample
a2c02241 21458 -target-detach
922fbb7b
AC
21459@end smallexample
21460
a2c02241
NR
21461Detach from the remote target which normally resumes its execution.
21462There's no output.
21463
79a6e687 21464@subsubheading @value{GDBN} Command
a2c02241
NR
21465
21466The corresponding @value{GDBN} command is @samp{detach}.
21467
21468@subsubheading Example
922fbb7b
AC
21469
21470@smallexample
594fe323 21471(gdb)
a2c02241
NR
21472-target-detach
21473^done
594fe323 21474(gdb)
922fbb7b
AC
21475@end smallexample
21476
21477
a2c02241
NR
21478@subheading The @code{-target-disconnect} Command
21479@findex -target-disconnect
922fbb7b
AC
21480
21481@subsubheading Synopsis
21482
123dc839 21483@smallexample
a2c02241 21484 -target-disconnect
123dc839 21485@end smallexample
922fbb7b 21486
a2c02241
NR
21487Disconnect from the remote target. There's no output and the target is
21488generally not resumed.
21489
79a6e687 21490@subsubheading @value{GDBN} Command
a2c02241
NR
21491
21492The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21493
21494@subsubheading Example
922fbb7b
AC
21495
21496@smallexample
594fe323 21497(gdb)
a2c02241
NR
21498-target-disconnect
21499^done
594fe323 21500(gdb)
922fbb7b
AC
21501@end smallexample
21502
21503
a2c02241
NR
21504@subheading The @code{-target-download} Command
21505@findex -target-download
922fbb7b
AC
21506
21507@subsubheading Synopsis
21508
21509@smallexample
a2c02241 21510 -target-download
922fbb7b
AC
21511@end smallexample
21512
a2c02241
NR
21513Loads the executable onto the remote target.
21514It prints out an update message every half second, which includes the fields:
21515
21516@table @samp
21517@item section
21518The name of the section.
21519@item section-sent
21520The size of what has been sent so far for that section.
21521@item section-size
21522The size of the section.
21523@item total-sent
21524The total size of what was sent so far (the current and the previous sections).
21525@item total-size
21526The size of the overall executable to download.
21527@end table
21528
21529@noindent
21530Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21531@sc{gdb/mi} Output Syntax}).
21532
21533In addition, it prints the name and size of the sections, as they are
21534downloaded. These messages include the following fields:
21535
21536@table @samp
21537@item section
21538The name of the section.
21539@item section-size
21540The size of the section.
21541@item total-size
21542The size of the overall executable to download.
21543@end table
21544
21545@noindent
21546At the end, a summary is printed.
21547
21548@subsubheading @value{GDBN} Command
21549
21550The corresponding @value{GDBN} command is @samp{load}.
21551
21552@subsubheading Example
21553
21554Note: each status message appears on a single line. Here the messages
21555have been broken down so that they can fit onto a page.
922fbb7b
AC
21556
21557@smallexample
594fe323 21558(gdb)
a2c02241
NR
21559-target-download
21560+download,@{section=".text",section-size="6668",total-size="9880"@}
21561+download,@{section=".text",section-sent="512",section-size="6668",
21562total-sent="512",total-size="9880"@}
21563+download,@{section=".text",section-sent="1024",section-size="6668",
21564total-sent="1024",total-size="9880"@}
21565+download,@{section=".text",section-sent="1536",section-size="6668",
21566total-sent="1536",total-size="9880"@}
21567+download,@{section=".text",section-sent="2048",section-size="6668",
21568total-sent="2048",total-size="9880"@}
21569+download,@{section=".text",section-sent="2560",section-size="6668",
21570total-sent="2560",total-size="9880"@}
21571+download,@{section=".text",section-sent="3072",section-size="6668",
21572total-sent="3072",total-size="9880"@}
21573+download,@{section=".text",section-sent="3584",section-size="6668",
21574total-sent="3584",total-size="9880"@}
21575+download,@{section=".text",section-sent="4096",section-size="6668",
21576total-sent="4096",total-size="9880"@}
21577+download,@{section=".text",section-sent="4608",section-size="6668",
21578total-sent="4608",total-size="9880"@}
21579+download,@{section=".text",section-sent="5120",section-size="6668",
21580total-sent="5120",total-size="9880"@}
21581+download,@{section=".text",section-sent="5632",section-size="6668",
21582total-sent="5632",total-size="9880"@}
21583+download,@{section=".text",section-sent="6144",section-size="6668",
21584total-sent="6144",total-size="9880"@}
21585+download,@{section=".text",section-sent="6656",section-size="6668",
21586total-sent="6656",total-size="9880"@}
21587+download,@{section=".init",section-size="28",total-size="9880"@}
21588+download,@{section=".fini",section-size="28",total-size="9880"@}
21589+download,@{section=".data",section-size="3156",total-size="9880"@}
21590+download,@{section=".data",section-sent="512",section-size="3156",
21591total-sent="7236",total-size="9880"@}
21592+download,@{section=".data",section-sent="1024",section-size="3156",
21593total-sent="7748",total-size="9880"@}
21594+download,@{section=".data",section-sent="1536",section-size="3156",
21595total-sent="8260",total-size="9880"@}
21596+download,@{section=".data",section-sent="2048",section-size="3156",
21597total-sent="8772",total-size="9880"@}
21598+download,@{section=".data",section-sent="2560",section-size="3156",
21599total-sent="9284",total-size="9880"@}
21600+download,@{section=".data",section-sent="3072",section-size="3156",
21601total-sent="9796",total-size="9880"@}
21602^done,address="0x10004",load-size="9880",transfer-rate="6586",
21603write-rate="429"
594fe323 21604(gdb)
922fbb7b
AC
21605@end smallexample
21606
21607
a2c02241
NR
21608@subheading The @code{-target-exec-status} Command
21609@findex -target-exec-status
922fbb7b
AC
21610
21611@subsubheading Synopsis
21612
21613@smallexample
a2c02241 21614 -target-exec-status
922fbb7b
AC
21615@end smallexample
21616
a2c02241
NR
21617Provide information on the state of the target (whether it is running or
21618not, for instance).
922fbb7b 21619
a2c02241 21620@subsubheading @value{GDBN} Command
922fbb7b 21621
a2c02241
NR
21622There's no equivalent @value{GDBN} command.
21623
21624@subsubheading Example
21625N.A.
922fbb7b 21626
a2c02241
NR
21627
21628@subheading The @code{-target-list-available-targets} Command
21629@findex -target-list-available-targets
922fbb7b
AC
21630
21631@subsubheading Synopsis
21632
21633@smallexample
a2c02241 21634 -target-list-available-targets
922fbb7b
AC
21635@end smallexample
21636
a2c02241 21637List the possible targets to connect to.
922fbb7b 21638
a2c02241 21639@subsubheading @value{GDBN} Command
922fbb7b 21640
a2c02241 21641The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21642
a2c02241
NR
21643@subsubheading Example
21644N.A.
21645
21646
21647@subheading The @code{-target-list-current-targets} Command
21648@findex -target-list-current-targets
922fbb7b
AC
21649
21650@subsubheading Synopsis
21651
21652@smallexample
a2c02241 21653 -target-list-current-targets
922fbb7b
AC
21654@end smallexample
21655
a2c02241 21656Describe the current target.
922fbb7b 21657
a2c02241 21658@subsubheading @value{GDBN} Command
922fbb7b 21659
a2c02241
NR
21660The corresponding information is printed by @samp{info file} (among
21661other things).
922fbb7b 21662
a2c02241
NR
21663@subsubheading Example
21664N.A.
21665
21666
21667@subheading The @code{-target-list-parameters} Command
21668@findex -target-list-parameters
922fbb7b
AC
21669
21670@subsubheading Synopsis
21671
21672@smallexample
a2c02241 21673 -target-list-parameters
922fbb7b
AC
21674@end smallexample
21675
a2c02241
NR
21676@c ????
21677
21678@subsubheading @value{GDBN} Command
21679
21680No equivalent.
922fbb7b
AC
21681
21682@subsubheading Example
a2c02241
NR
21683N.A.
21684
21685
21686@subheading The @code{-target-select} Command
21687@findex -target-select
21688
21689@subsubheading Synopsis
922fbb7b
AC
21690
21691@smallexample
a2c02241 21692 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21693@end smallexample
21694
a2c02241 21695Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21696
a2c02241
NR
21697@table @samp
21698@item @var{type}
21699The type of target, for instance @samp{async}, @samp{remote}, etc.
21700@item @var{parameters}
21701Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21702Commands for Managing Targets}, for more details.
a2c02241
NR
21703@end table
21704
21705The output is a connection notification, followed by the address at
21706which the target program is, in the following form:
922fbb7b
AC
21707
21708@smallexample
a2c02241
NR
21709^connected,addr="@var{address}",func="@var{function name}",
21710 args=[@var{arg list}]
922fbb7b
AC
21711@end smallexample
21712
a2c02241
NR
21713@subsubheading @value{GDBN} Command
21714
21715The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21716
21717@subsubheading Example
922fbb7b 21718
265eeb58 21719@smallexample
594fe323 21720(gdb)
a2c02241
NR
21721-target-select async /dev/ttya
21722^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21723(gdb)
265eeb58 21724@end smallexample
ef21caaf 21725
a6b151f1
DJ
21726@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21727@node GDB/MI File Transfer Commands
21728@section @sc{gdb/mi} File Transfer Commands
21729
21730
21731@subheading The @code{-target-file-put} Command
21732@findex -target-file-put
21733
21734@subsubheading Synopsis
21735
21736@smallexample
21737 -target-file-put @var{hostfile} @var{targetfile}
21738@end smallexample
21739
21740Copy file @var{hostfile} from the host system (the machine running
21741@value{GDBN}) to @var{targetfile} on the target system.
21742
21743@subsubheading @value{GDBN} Command
21744
21745The corresponding @value{GDBN} command is @samp{remote put}.
21746
21747@subsubheading Example
21748
21749@smallexample
21750(gdb)
21751-target-file-put localfile remotefile
21752^done
21753(gdb)
21754@end smallexample
21755
21756
21757@subheading The @code{-target-file-put} Command
21758@findex -target-file-get
21759
21760@subsubheading Synopsis
21761
21762@smallexample
21763 -target-file-get @var{targetfile} @var{hostfile}
21764@end smallexample
21765
21766Copy file @var{targetfile} from the target system to @var{hostfile}
21767on the host system.
21768
21769@subsubheading @value{GDBN} Command
21770
21771The corresponding @value{GDBN} command is @samp{remote get}.
21772
21773@subsubheading Example
21774
21775@smallexample
21776(gdb)
21777-target-file-get remotefile localfile
21778^done
21779(gdb)
21780@end smallexample
21781
21782
21783@subheading The @code{-target-file-delete} Command
21784@findex -target-file-delete
21785
21786@subsubheading Synopsis
21787
21788@smallexample
21789 -target-file-delete @var{targetfile}
21790@end smallexample
21791
21792Delete @var{targetfile} from the target system.
21793
21794@subsubheading @value{GDBN} Command
21795
21796The corresponding @value{GDBN} command is @samp{remote delete}.
21797
21798@subsubheading Example
21799
21800@smallexample
21801(gdb)
21802-target-file-delete remotefile
21803^done
21804(gdb)
21805@end smallexample
21806
21807
ef21caaf
NR
21808@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21809@node GDB/MI Miscellaneous Commands
21810@section Miscellaneous @sc{gdb/mi} Commands
21811
21812@c @subheading -gdb-complete
21813
21814@subheading The @code{-gdb-exit} Command
21815@findex -gdb-exit
21816
21817@subsubheading Synopsis
21818
21819@smallexample
21820 -gdb-exit
21821@end smallexample
21822
21823Exit @value{GDBN} immediately.
21824
21825@subsubheading @value{GDBN} Command
21826
21827Approximately corresponds to @samp{quit}.
21828
21829@subsubheading Example
21830
21831@smallexample
594fe323 21832(gdb)
ef21caaf
NR
21833-gdb-exit
21834^exit
21835@end smallexample
21836
a2c02241
NR
21837
21838@subheading The @code{-exec-abort} Command
21839@findex -exec-abort
21840
21841@subsubheading Synopsis
21842
21843@smallexample
21844 -exec-abort
21845@end smallexample
21846
21847Kill the inferior running program.
21848
21849@subsubheading @value{GDBN} Command
21850
21851The corresponding @value{GDBN} command is @samp{kill}.
21852
21853@subsubheading Example
21854N.A.
21855
21856
ef21caaf
NR
21857@subheading The @code{-gdb-set} Command
21858@findex -gdb-set
21859
21860@subsubheading Synopsis
21861
21862@smallexample
21863 -gdb-set
21864@end smallexample
21865
21866Set an internal @value{GDBN} variable.
21867@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21868
21869@subsubheading @value{GDBN} Command
21870
21871The corresponding @value{GDBN} command is @samp{set}.
21872
21873@subsubheading Example
21874
21875@smallexample
594fe323 21876(gdb)
ef21caaf
NR
21877-gdb-set $foo=3
21878^done
594fe323 21879(gdb)
ef21caaf
NR
21880@end smallexample
21881
21882
21883@subheading The @code{-gdb-show} Command
21884@findex -gdb-show
21885
21886@subsubheading Synopsis
21887
21888@smallexample
21889 -gdb-show
21890@end smallexample
21891
21892Show the current value of a @value{GDBN} variable.
21893
79a6e687 21894@subsubheading @value{GDBN} Command
ef21caaf
NR
21895
21896The corresponding @value{GDBN} command is @samp{show}.
21897
21898@subsubheading Example
21899
21900@smallexample
594fe323 21901(gdb)
ef21caaf
NR
21902-gdb-show annotate
21903^done,value="0"
594fe323 21904(gdb)
ef21caaf
NR
21905@end smallexample
21906
21907@c @subheading -gdb-source
21908
21909
21910@subheading The @code{-gdb-version} Command
21911@findex -gdb-version
21912
21913@subsubheading Synopsis
21914
21915@smallexample
21916 -gdb-version
21917@end smallexample
21918
21919Show version information for @value{GDBN}. Used mostly in testing.
21920
21921@subsubheading @value{GDBN} Command
21922
21923The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21924default shows this information when you start an interactive session.
21925
21926@subsubheading Example
21927
21928@c This example modifies the actual output from GDB to avoid overfull
21929@c box in TeX.
21930@smallexample
594fe323 21931(gdb)
ef21caaf
NR
21932-gdb-version
21933~GNU gdb 5.2.1
21934~Copyright 2000 Free Software Foundation, Inc.
21935~GDB is free software, covered by the GNU General Public License, and
21936~you are welcome to change it and/or distribute copies of it under
21937~ certain conditions.
21938~Type "show copying" to see the conditions.
21939~There is absolutely no warranty for GDB. Type "show warranty" for
21940~ details.
21941~This GDB was configured as
21942 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21943^done
594fe323 21944(gdb)
ef21caaf
NR
21945@end smallexample
21946
084344da
VP
21947@subheading The @code{-list-features} Command
21948@findex -list-features
21949
21950Returns a list of particular features of the MI protocol that
21951this version of gdb implements. A feature can be a command,
21952or a new field in an output of some command, or even an
21953important bugfix. While a frontend can sometimes detect presence
21954of a feature at runtime, it is easier to perform detection at debugger
21955startup.
21956
21957The command returns a list of strings, with each string naming an
21958available feature. Each returned string is just a name, it does not
21959have any internal structure. The list of possible feature names
21960is given below.
21961
21962Example output:
21963
21964@smallexample
21965(gdb) -list-features
21966^done,result=["feature1","feature2"]
21967@end smallexample
21968
21969The current list of features is:
21970
21971@itemize @minus
21972@item
21973@samp{frozen-varobjs}---indicates presence of the
21974@code{-var-set-frozen} command, as well as possible presense of the
21975@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21976@item
21977@samp{pending-breakpoints}---indicates presence of the @code{-f}
21978option to the @code{-break-insert} command.
8e8901c5
VP
21979@item
21980@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21981
084344da
VP
21982@end itemize
21983
ef21caaf
NR
21984@subheading The @code{-interpreter-exec} Command
21985@findex -interpreter-exec
21986
21987@subheading Synopsis
21988
21989@smallexample
21990-interpreter-exec @var{interpreter} @var{command}
21991@end smallexample
a2c02241 21992@anchor{-interpreter-exec}
ef21caaf
NR
21993
21994Execute the specified @var{command} in the given @var{interpreter}.
21995
21996@subheading @value{GDBN} Command
21997
21998The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21999
22000@subheading Example
22001
22002@smallexample
594fe323 22003(gdb)
ef21caaf
NR
22004-interpreter-exec console "break main"
22005&"During symbol reading, couldn't parse type; debugger out of date?.\n"
22006&"During symbol reading, bad structure-type format.\n"
22007~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
22008^done
594fe323 22009(gdb)
ef21caaf
NR
22010@end smallexample
22011
22012@subheading The @code{-inferior-tty-set} Command
22013@findex -inferior-tty-set
22014
22015@subheading Synopsis
22016
22017@smallexample
22018-inferior-tty-set /dev/pts/1
22019@end smallexample
22020
22021Set terminal for future runs of the program being debugged.
22022
22023@subheading @value{GDBN} Command
22024
22025The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
22026
22027@subheading Example
22028
22029@smallexample
594fe323 22030(gdb)
ef21caaf
NR
22031-inferior-tty-set /dev/pts/1
22032^done
594fe323 22033(gdb)
ef21caaf
NR
22034@end smallexample
22035
22036@subheading The @code{-inferior-tty-show} Command
22037@findex -inferior-tty-show
22038
22039@subheading Synopsis
22040
22041@smallexample
22042-inferior-tty-show
22043@end smallexample
22044
22045Show terminal for future runs of program being debugged.
22046
22047@subheading @value{GDBN} Command
22048
22049The corresponding @value{GDBN} command is @samp{show inferior-tty}.
22050
22051@subheading Example
22052
22053@smallexample
594fe323 22054(gdb)
ef21caaf
NR
22055-inferior-tty-set /dev/pts/1
22056^done
594fe323 22057(gdb)
ef21caaf
NR
22058-inferior-tty-show
22059^done,inferior_tty_terminal="/dev/pts/1"
594fe323 22060(gdb)
ef21caaf 22061@end smallexample
922fbb7b 22062
a4eefcd8
NR
22063@subheading The @code{-enable-timings} Command
22064@findex -enable-timings
22065
22066@subheading Synopsis
22067
22068@smallexample
22069-enable-timings [yes | no]
22070@end smallexample
22071
22072Toggle the printing of the wallclock, user and system times for an MI
22073command as a field in its output. This command is to help frontend
22074developers optimize the performance of their code. No argument is
22075equivalent to @samp{yes}.
22076
22077@subheading @value{GDBN} Command
22078
22079No equivalent.
22080
22081@subheading Example
22082
22083@smallexample
22084(gdb)
22085-enable-timings
22086^done
22087(gdb)
22088-break-insert main
22089^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22090addr="0x080484ed",func="main",file="myprog.c",
22091fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22092time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22093(gdb)
22094-enable-timings no
22095^done
22096(gdb)
22097-exec-run
22098^running
22099(gdb)
a47ec5fe 22100*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22101frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22102@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22103fullname="/home/nickrob/myprog.c",line="73"@}
22104(gdb)
22105@end smallexample
22106
922fbb7b
AC
22107@node Annotations
22108@chapter @value{GDBN} Annotations
22109
086432e2
AC
22110This chapter describes annotations in @value{GDBN}. Annotations were
22111designed to interface @value{GDBN} to graphical user interfaces or other
22112similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22113relatively high level.
22114
d3e8051b 22115The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22116(@pxref{GDB/MI}).
22117
922fbb7b
AC
22118@ignore
22119This is Edition @value{EDITION}, @value{DATE}.
22120@end ignore
22121
22122@menu
22123* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22124* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22125* Prompting:: Annotations marking @value{GDBN}'s need for input.
22126* Errors:: Annotations for error messages.
922fbb7b
AC
22127* Invalidation:: Some annotations describe things now invalid.
22128* Annotations for Running::
22129 Whether the program is running, how it stopped, etc.
22130* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22131@end menu
22132
22133@node Annotations Overview
22134@section What is an Annotation?
22135@cindex annotations
22136
922fbb7b
AC
22137Annotations start with a newline character, two @samp{control-z}
22138characters, and the name of the annotation. If there is no additional
22139information associated with this annotation, the name of the annotation
22140is followed immediately by a newline. If there is additional
22141information, the name of the annotation is followed by a space, the
22142additional information, and a newline. The additional information
22143cannot contain newline characters.
22144
22145Any output not beginning with a newline and two @samp{control-z}
22146characters denotes literal output from @value{GDBN}. Currently there is
22147no need for @value{GDBN} to output a newline followed by two
22148@samp{control-z} characters, but if there was such a need, the
22149annotations could be extended with an @samp{escape} annotation which
22150means those three characters as output.
22151
086432e2
AC
22152The annotation @var{level}, which is specified using the
22153@option{--annotate} command line option (@pxref{Mode Options}), controls
22154how much information @value{GDBN} prints together with its prompt,
22155values of expressions, source lines, and other types of output. Level 0
d3e8051b 22156is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22157subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22158for programs that control @value{GDBN}, and level 2 annotations have
22159been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22160Interface, annotate, GDB's Obsolete Annotations}).
22161
22162@table @code
22163@kindex set annotate
22164@item set annotate @var{level}
e09f16f9 22165The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22166annotations to the specified @var{level}.
9c16f35a
EZ
22167
22168@item show annotate
22169@kindex show annotate
22170Show the current annotation level.
09d4efe1
EZ
22171@end table
22172
22173This chapter describes level 3 annotations.
086432e2 22174
922fbb7b
AC
22175A simple example of starting up @value{GDBN} with annotations is:
22176
22177@smallexample
086432e2
AC
22178$ @kbd{gdb --annotate=3}
22179GNU gdb 6.0
22180Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22181GDB is free software, covered by the GNU General Public License,
22182and you are welcome to change it and/or distribute copies of it
22183under certain conditions.
22184Type "show copying" to see the conditions.
22185There is absolutely no warranty for GDB. Type "show warranty"
22186for details.
086432e2 22187This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22188
22189^Z^Zpre-prompt
f7dc1244 22190(@value{GDBP})
922fbb7b 22191^Z^Zprompt
086432e2 22192@kbd{quit}
922fbb7b
AC
22193
22194^Z^Zpost-prompt
b383017d 22195$
922fbb7b
AC
22196@end smallexample
22197
22198Here @samp{quit} is input to @value{GDBN}; the rest is output from
22199@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22200denotes a @samp{control-z} character) are annotations; the rest is
22201output from @value{GDBN}.
22202
9e6c4bd5
NR
22203@node Server Prefix
22204@section The Server Prefix
22205@cindex server prefix
22206
22207If you prefix a command with @samp{server } then it will not affect
22208the command history, nor will it affect @value{GDBN}'s notion of which
22209command to repeat if @key{RET} is pressed on a line by itself. This
22210means that commands can be run behind a user's back by a front-end in
22211a transparent manner.
22212
22213The server prefix does not affect the recording of values into the value
22214history; to print a value without recording it into the value history,
22215use the @code{output} command instead of the @code{print} command.
22216
922fbb7b
AC
22217@node Prompting
22218@section Annotation for @value{GDBN} Input
22219
22220@cindex annotations for prompts
22221When @value{GDBN} prompts for input, it annotates this fact so it is possible
22222to know when to send output, when the output from a given command is
22223over, etc.
22224
22225Different kinds of input each have a different @dfn{input type}. Each
22226input type has three annotations: a @code{pre-} annotation, which
22227denotes the beginning of any prompt which is being output, a plain
22228annotation, which denotes the end of the prompt, and then a @code{post-}
22229annotation which denotes the end of any echo which may (or may not) be
22230associated with the input. For example, the @code{prompt} input type
22231features the following annotations:
22232
22233@smallexample
22234^Z^Zpre-prompt
22235^Z^Zprompt
22236^Z^Zpost-prompt
22237@end smallexample
22238
22239The input types are
22240
22241@table @code
e5ac9b53
EZ
22242@findex pre-prompt annotation
22243@findex prompt annotation
22244@findex post-prompt annotation
922fbb7b
AC
22245@item prompt
22246When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22247
e5ac9b53
EZ
22248@findex pre-commands annotation
22249@findex commands annotation
22250@findex post-commands annotation
922fbb7b
AC
22251@item commands
22252When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22253command. The annotations are repeated for each command which is input.
22254
e5ac9b53
EZ
22255@findex pre-overload-choice annotation
22256@findex overload-choice annotation
22257@findex post-overload-choice annotation
922fbb7b
AC
22258@item overload-choice
22259When @value{GDBN} wants the user to select between various overloaded functions.
22260
e5ac9b53
EZ
22261@findex pre-query annotation
22262@findex query annotation
22263@findex post-query annotation
922fbb7b
AC
22264@item query
22265When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22266
e5ac9b53
EZ
22267@findex pre-prompt-for-continue annotation
22268@findex prompt-for-continue annotation
22269@findex post-prompt-for-continue annotation
922fbb7b
AC
22270@item prompt-for-continue
22271When @value{GDBN} is asking the user to press return to continue. Note: Don't
22272expect this to work well; instead use @code{set height 0} to disable
22273prompting. This is because the counting of lines is buggy in the
22274presence of annotations.
22275@end table
22276
22277@node Errors
22278@section Errors
22279@cindex annotations for errors, warnings and interrupts
22280
e5ac9b53 22281@findex quit annotation
922fbb7b
AC
22282@smallexample
22283^Z^Zquit
22284@end smallexample
22285
22286This annotation occurs right before @value{GDBN} responds to an interrupt.
22287
e5ac9b53 22288@findex error annotation
922fbb7b
AC
22289@smallexample
22290^Z^Zerror
22291@end smallexample
22292
22293This annotation occurs right before @value{GDBN} responds to an error.
22294
22295Quit and error annotations indicate that any annotations which @value{GDBN} was
22296in the middle of may end abruptly. For example, if a
22297@code{value-history-begin} annotation is followed by a @code{error}, one
22298cannot expect to receive the matching @code{value-history-end}. One
22299cannot expect not to receive it either, however; an error annotation
22300does not necessarily mean that @value{GDBN} is immediately returning all the way
22301to the top level.
22302
e5ac9b53 22303@findex error-begin annotation
922fbb7b
AC
22304A quit or error annotation may be preceded by
22305
22306@smallexample
22307^Z^Zerror-begin
22308@end smallexample
22309
22310Any output between that and the quit or error annotation is the error
22311message.
22312
22313Warning messages are not yet annotated.
22314@c If we want to change that, need to fix warning(), type_error(),
22315@c range_error(), and possibly other places.
22316
922fbb7b
AC
22317@node Invalidation
22318@section Invalidation Notices
22319
22320@cindex annotations for invalidation messages
22321The following annotations say that certain pieces of state may have
22322changed.
22323
22324@table @code
e5ac9b53 22325@findex frames-invalid annotation
922fbb7b
AC
22326@item ^Z^Zframes-invalid
22327
22328The frames (for example, output from the @code{backtrace} command) may
22329have changed.
22330
e5ac9b53 22331@findex breakpoints-invalid annotation
922fbb7b
AC
22332@item ^Z^Zbreakpoints-invalid
22333
22334The breakpoints may have changed. For example, the user just added or
22335deleted a breakpoint.
22336@end table
22337
22338@node Annotations for Running
22339@section Running the Program
22340@cindex annotations for running programs
22341
e5ac9b53
EZ
22342@findex starting annotation
22343@findex stopping annotation
922fbb7b 22344When the program starts executing due to a @value{GDBN} command such as
b383017d 22345@code{step} or @code{continue},
922fbb7b
AC
22346
22347@smallexample
22348^Z^Zstarting
22349@end smallexample
22350
b383017d 22351is output. When the program stops,
922fbb7b
AC
22352
22353@smallexample
22354^Z^Zstopped
22355@end smallexample
22356
22357is output. Before the @code{stopped} annotation, a variety of
22358annotations describe how the program stopped.
22359
22360@table @code
e5ac9b53 22361@findex exited annotation
922fbb7b
AC
22362@item ^Z^Zexited @var{exit-status}
22363The program exited, and @var{exit-status} is the exit status (zero for
22364successful exit, otherwise nonzero).
22365
e5ac9b53
EZ
22366@findex signalled annotation
22367@findex signal-name annotation
22368@findex signal-name-end annotation
22369@findex signal-string annotation
22370@findex signal-string-end annotation
922fbb7b
AC
22371@item ^Z^Zsignalled
22372The program exited with a signal. After the @code{^Z^Zsignalled}, the
22373annotation continues:
22374
22375@smallexample
22376@var{intro-text}
22377^Z^Zsignal-name
22378@var{name}
22379^Z^Zsignal-name-end
22380@var{middle-text}
22381^Z^Zsignal-string
22382@var{string}
22383^Z^Zsignal-string-end
22384@var{end-text}
22385@end smallexample
22386
22387@noindent
22388where @var{name} is the name of the signal, such as @code{SIGILL} or
22389@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22390as @code{Illegal Instruction} or @code{Segmentation fault}.
22391@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22392user's benefit and have no particular format.
22393
e5ac9b53 22394@findex signal annotation
922fbb7b
AC
22395@item ^Z^Zsignal
22396The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22397just saying that the program received the signal, not that it was
22398terminated with it.
22399
e5ac9b53 22400@findex breakpoint annotation
922fbb7b
AC
22401@item ^Z^Zbreakpoint @var{number}
22402The program hit breakpoint number @var{number}.
22403
e5ac9b53 22404@findex watchpoint annotation
922fbb7b
AC
22405@item ^Z^Zwatchpoint @var{number}
22406The program hit watchpoint number @var{number}.
22407@end table
22408
22409@node Source Annotations
22410@section Displaying Source
22411@cindex annotations for source display
22412
e5ac9b53 22413@findex source annotation
922fbb7b
AC
22414The following annotation is used instead of displaying source code:
22415
22416@smallexample
22417^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22418@end smallexample
22419
22420where @var{filename} is an absolute file name indicating which source
22421file, @var{line} is the line number within that file (where 1 is the
22422first line in the file), @var{character} is the character position
22423within the file (where 0 is the first character in the file) (for most
22424debug formats this will necessarily point to the beginning of a line),
22425@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22426line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22427@var{addr} is the address in the target program associated with the
22428source which is being displayed. @var{addr} is in the form @samp{0x}
22429followed by one or more lowercase hex digits (note that this does not
22430depend on the language).
22431
8e04817f
AC
22432@node GDB Bugs
22433@chapter Reporting Bugs in @value{GDBN}
22434@cindex bugs in @value{GDBN}
22435@cindex reporting bugs in @value{GDBN}
c906108c 22436
8e04817f 22437Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22438
8e04817f
AC
22439Reporting a bug may help you by bringing a solution to your problem, or it
22440may not. But in any case the principal function of a bug report is to help
22441the entire community by making the next version of @value{GDBN} work better. Bug
22442reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22443
8e04817f
AC
22444In order for a bug report to serve its purpose, you must include the
22445information that enables us to fix the bug.
c4555f82
SC
22446
22447@menu
8e04817f
AC
22448* Bug Criteria:: Have you found a bug?
22449* Bug Reporting:: How to report bugs
c4555f82
SC
22450@end menu
22451
8e04817f 22452@node Bug Criteria
79a6e687 22453@section Have You Found a Bug?
8e04817f 22454@cindex bug criteria
c4555f82 22455
8e04817f 22456If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22457
22458@itemize @bullet
8e04817f
AC
22459@cindex fatal signal
22460@cindex debugger crash
22461@cindex crash of debugger
c4555f82 22462@item
8e04817f
AC
22463If the debugger gets a fatal signal, for any input whatever, that is a
22464@value{GDBN} bug. Reliable debuggers never crash.
22465
22466@cindex error on valid input
22467@item
22468If @value{GDBN} produces an error message for valid input, that is a
22469bug. (Note that if you're cross debugging, the problem may also be
22470somewhere in the connection to the target.)
c4555f82 22471
8e04817f 22472@cindex invalid input
c4555f82 22473@item
8e04817f
AC
22474If @value{GDBN} does not produce an error message for invalid input,
22475that is a bug. However, you should note that your idea of
22476``invalid input'' might be our idea of ``an extension'' or ``support
22477for traditional practice''.
22478
22479@item
22480If you are an experienced user of debugging tools, your suggestions
22481for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22482@end itemize
22483
8e04817f 22484@node Bug Reporting
79a6e687 22485@section How to Report Bugs
8e04817f
AC
22486@cindex bug reports
22487@cindex @value{GDBN} bugs, reporting
22488
22489A number of companies and individuals offer support for @sc{gnu} products.
22490If you obtained @value{GDBN} from a support organization, we recommend you
22491contact that organization first.
22492
22493You can find contact information for many support companies and
22494individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22495distribution.
22496@c should add a web page ref...
22497
129188f6 22498In any event, we also recommend that you submit bug reports for
d3e8051b 22499@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22500@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22501page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22502be used.
8e04817f
AC
22503
22504@strong{Do not send bug reports to @samp{info-gdb}, or to
22505@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22506not want to receive bug reports. Those that do have arranged to receive
22507@samp{bug-gdb}.
22508
22509The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22510serves as a repeater. The mailing list and the newsgroup carry exactly
22511the same messages. Often people think of posting bug reports to the
22512newsgroup instead of mailing them. This appears to work, but it has one
22513problem which can be crucial: a newsgroup posting often lacks a mail
22514path back to the sender. Thus, if we need to ask for more information,
22515we may be unable to reach you. For this reason, it is better to send
22516bug reports to the mailing list.
c4555f82 22517
8e04817f
AC
22518The fundamental principle of reporting bugs usefully is this:
22519@strong{report all the facts}. If you are not sure whether to state a
22520fact or leave it out, state it!
c4555f82 22521
8e04817f
AC
22522Often people omit facts because they think they know what causes the
22523problem and assume that some details do not matter. Thus, you might
22524assume that the name of the variable you use in an example does not matter.
22525Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22526stray memory reference which happens to fetch from the location where that
22527name is stored in memory; perhaps, if the name were different, the contents
22528of that location would fool the debugger into doing the right thing despite
22529the bug. Play it safe and give a specific, complete example. That is the
22530easiest thing for you to do, and the most helpful.
c4555f82 22531
8e04817f
AC
22532Keep in mind that the purpose of a bug report is to enable us to fix the
22533bug. It may be that the bug has been reported previously, but neither
22534you nor we can know that unless your bug report is complete and
22535self-contained.
c4555f82 22536
8e04817f
AC
22537Sometimes people give a few sketchy facts and ask, ``Does this ring a
22538bell?'' Those bug reports are useless, and we urge everyone to
22539@emph{refuse to respond to them} except to chide the sender to report
22540bugs properly.
22541
22542To enable us to fix the bug, you should include all these things:
c4555f82
SC
22543
22544@itemize @bullet
22545@item
8e04817f
AC
22546The version of @value{GDBN}. @value{GDBN} announces it if you start
22547with no arguments; you can also print it at any time using @code{show
22548version}.
c4555f82 22549
8e04817f
AC
22550Without this, we will not know whether there is any point in looking for
22551the bug in the current version of @value{GDBN}.
c4555f82
SC
22552
22553@item
8e04817f
AC
22554The type of machine you are using, and the operating system name and
22555version number.
c4555f82
SC
22556
22557@item
c1468174 22558What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22559``@value{GCC}--2.8.1''.
c4555f82
SC
22560
22561@item
8e04817f 22562What compiler (and its version) was used to compile the program you are
c1468174 22563debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22564C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22565to get this information; for other compilers, see the documentation for
22566those compilers.
c4555f82 22567
8e04817f
AC
22568@item
22569The command arguments you gave the compiler to compile your example and
22570observe the bug. For example, did you use @samp{-O}? To guarantee
22571you will not omit something important, list them all. A copy of the
22572Makefile (or the output from make) is sufficient.
c4555f82 22573
8e04817f
AC
22574If we were to try to guess the arguments, we would probably guess wrong
22575and then we might not encounter the bug.
c4555f82 22576
8e04817f
AC
22577@item
22578A complete input script, and all necessary source files, that will
22579reproduce the bug.
c4555f82 22580
8e04817f
AC
22581@item
22582A description of what behavior you observe that you believe is
22583incorrect. For example, ``It gets a fatal signal.''
c4555f82 22584
8e04817f
AC
22585Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22586will certainly notice it. But if the bug is incorrect output, we might
22587not notice unless it is glaringly wrong. You might as well not give us
22588a chance to make a mistake.
c4555f82 22589
8e04817f
AC
22590Even if the problem you experience is a fatal signal, you should still
22591say so explicitly. Suppose something strange is going on, such as, your
22592copy of @value{GDBN} is out of synch, or you have encountered a bug in
22593the C library on your system. (This has happened!) Your copy might
22594crash and ours would not. If you told us to expect a crash, then when
22595ours fails to crash, we would know that the bug was not happening for
22596us. If you had not told us to expect a crash, then we would not be able
22597to draw any conclusion from our observations.
c4555f82 22598
e0c07bf0
MC
22599@pindex script
22600@cindex recording a session script
22601To collect all this information, you can use a session recording program
22602such as @command{script}, which is available on many Unix systems.
22603Just run your @value{GDBN} session inside @command{script} and then
22604include the @file{typescript} file with your bug report.
22605
22606Another way to record a @value{GDBN} session is to run @value{GDBN}
22607inside Emacs and then save the entire buffer to a file.
22608
8e04817f
AC
22609@item
22610If you wish to suggest changes to the @value{GDBN} source, send us context
22611diffs. If you even discuss something in the @value{GDBN} source, refer to
22612it by context, not by line number.
c4555f82 22613
8e04817f
AC
22614The line numbers in our development sources will not match those in your
22615sources. Your line numbers would convey no useful information to us.
c4555f82 22616
8e04817f 22617@end itemize
c4555f82 22618
8e04817f 22619Here are some things that are not necessary:
c4555f82 22620
8e04817f
AC
22621@itemize @bullet
22622@item
22623A description of the envelope of the bug.
c4555f82 22624
8e04817f
AC
22625Often people who encounter a bug spend a lot of time investigating
22626which changes to the input file will make the bug go away and which
22627changes will not affect it.
c4555f82 22628
8e04817f
AC
22629This is often time consuming and not very useful, because the way we
22630will find the bug is by running a single example under the debugger
22631with breakpoints, not by pure deduction from a series of examples.
22632We recommend that you save your time for something else.
c4555f82 22633
8e04817f
AC
22634Of course, if you can find a simpler example to report @emph{instead}
22635of the original one, that is a convenience for us. Errors in the
22636output will be easier to spot, running under the debugger will take
22637less time, and so on.
c4555f82 22638
8e04817f
AC
22639However, simplification is not vital; if you do not want to do this,
22640report the bug anyway and send us the entire test case you used.
c4555f82 22641
8e04817f
AC
22642@item
22643A patch for the bug.
c4555f82 22644
8e04817f
AC
22645A patch for the bug does help us if it is a good one. But do not omit
22646the necessary information, such as the test case, on the assumption that
22647a patch is all we need. We might see problems with your patch and decide
22648to fix the problem another way, or we might not understand it at all.
c4555f82 22649
8e04817f
AC
22650Sometimes with a program as complicated as @value{GDBN} it is very hard to
22651construct an example that will make the program follow a certain path
22652through the code. If you do not send us the example, we will not be able
22653to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22654
8e04817f
AC
22655And if we cannot understand what bug you are trying to fix, or why your
22656patch should be an improvement, we will not install it. A test case will
22657help us to understand.
c4555f82 22658
8e04817f
AC
22659@item
22660A guess about what the bug is or what it depends on.
c4555f82 22661
8e04817f
AC
22662Such guesses are usually wrong. Even we cannot guess right about such
22663things without first using the debugger to find the facts.
22664@end itemize
c4555f82 22665
8e04817f
AC
22666@c The readline documentation is distributed with the readline code
22667@c and consists of the two following files:
22668@c rluser.texinfo
22669@c inc-hist.texinfo
22670@c Use -I with makeinfo to point to the appropriate directory,
22671@c environment var TEXINPUTS with TeX.
5bdf8622 22672@include rluser.texi
8e04817f 22673@include inc-hist.texinfo
c4555f82 22674
c4555f82 22675
8e04817f
AC
22676@node Formatting Documentation
22677@appendix Formatting Documentation
c4555f82 22678
8e04817f
AC
22679@cindex @value{GDBN} reference card
22680@cindex reference card
22681The @value{GDBN} 4 release includes an already-formatted reference card, ready
22682for printing with PostScript or Ghostscript, in the @file{gdb}
22683subdirectory of the main source directory@footnote{In
22684@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22685release.}. If you can use PostScript or Ghostscript with your printer,
22686you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22687
8e04817f
AC
22688The release also includes the source for the reference card. You
22689can format it, using @TeX{}, by typing:
c4555f82 22690
474c8240 22691@smallexample
8e04817f 22692make refcard.dvi
474c8240 22693@end smallexample
c4555f82 22694
8e04817f
AC
22695The @value{GDBN} reference card is designed to print in @dfn{landscape}
22696mode on US ``letter'' size paper;
22697that is, on a sheet 11 inches wide by 8.5 inches
22698high. You will need to specify this form of printing as an option to
22699your @sc{dvi} output program.
c4555f82 22700
8e04817f 22701@cindex documentation
c4555f82 22702
8e04817f
AC
22703All the documentation for @value{GDBN} comes as part of the machine-readable
22704distribution. The documentation is written in Texinfo format, which is
22705a documentation system that uses a single source file to produce both
22706on-line information and a printed manual. You can use one of the Info
22707formatting commands to create the on-line version of the documentation
22708and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22709
8e04817f
AC
22710@value{GDBN} includes an already formatted copy of the on-line Info
22711version of this manual in the @file{gdb} subdirectory. The main Info
22712file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22713subordinate files matching @samp{gdb.info*} in the same directory. If
22714necessary, you can print out these files, or read them with any editor;
22715but they are easier to read using the @code{info} subsystem in @sc{gnu}
22716Emacs or the standalone @code{info} program, available as part of the
22717@sc{gnu} Texinfo distribution.
c4555f82 22718
8e04817f
AC
22719If you want to format these Info files yourself, you need one of the
22720Info formatting programs, such as @code{texinfo-format-buffer} or
22721@code{makeinfo}.
c4555f82 22722
8e04817f
AC
22723If you have @code{makeinfo} installed, and are in the top level
22724@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22725version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22726
474c8240 22727@smallexample
8e04817f
AC
22728cd gdb
22729make gdb.info
474c8240 22730@end smallexample
c4555f82 22731
8e04817f
AC
22732If you want to typeset and print copies of this manual, you need @TeX{},
22733a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22734Texinfo definitions file.
c4555f82 22735
8e04817f
AC
22736@TeX{} is a typesetting program; it does not print files directly, but
22737produces output files called @sc{dvi} files. To print a typeset
22738document, you need a program to print @sc{dvi} files. If your system
22739has @TeX{} installed, chances are it has such a program. The precise
22740command to use depends on your system; @kbd{lpr -d} is common; another
22741(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22742require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22743
8e04817f
AC
22744@TeX{} also requires a macro definitions file called
22745@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22746written in Texinfo format. On its own, @TeX{} cannot either read or
22747typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22748and is located in the @file{gdb-@var{version-number}/texinfo}
22749directory.
c4555f82 22750
8e04817f 22751If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22752typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22753subdirectory of the main source directory (for example, to
22754@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22755
474c8240 22756@smallexample
8e04817f 22757make gdb.dvi
474c8240 22758@end smallexample
c4555f82 22759
8e04817f 22760Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22761
8e04817f
AC
22762@node Installing GDB
22763@appendix Installing @value{GDBN}
8e04817f 22764@cindex installation
c4555f82 22765
7fa2210b
DJ
22766@menu
22767* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22768* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22769* Separate Objdir:: Compiling @value{GDBN} in another directory
22770* Config Names:: Specifying names for hosts and targets
22771* Configure Options:: Summary of options for configure
22772@end menu
22773
22774@node Requirements
79a6e687 22775@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22776@cindex building @value{GDBN}, requirements for
22777
22778Building @value{GDBN} requires various tools and packages to be available.
22779Other packages will be used only if they are found.
22780
79a6e687 22781@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22782@table @asis
22783@item ISO C90 compiler
22784@value{GDBN} is written in ISO C90. It should be buildable with any
22785working C90 compiler, e.g.@: GCC.
22786
22787@end table
22788
79a6e687 22789@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22790@table @asis
22791@item Expat
123dc839 22792@anchor{Expat}
7fa2210b
DJ
22793@value{GDBN} can use the Expat XML parsing library. This library may be
22794included with your operating system distribution; if it is not, you
22795can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22796The @file{configure} script will search for this library in several
7fa2210b
DJ
22797standard locations; if it is installed in an unusual path, you can
22798use the @option{--with-libexpat-prefix} option to specify its location.
22799
9cceb671
DJ
22800Expat is used for:
22801
22802@itemize @bullet
22803@item
22804Remote protocol memory maps (@pxref{Memory Map Format})
22805@item
22806Target descriptions (@pxref{Target Descriptions})
22807@item
22808Remote shared library lists (@pxref{Library List Format})
22809@item
22810MS-Windows shared libraries (@pxref{Shared Libraries})
22811@end itemize
7fa2210b 22812
31fffb02
CS
22813@item zlib
22814@cindex compressed debug sections
22815@value{GDBN} will use the @samp{zlib} library, if available, to read
22816compressed debug sections. Some linkers, such as GNU gold, are capable
22817of producing binaries with compressed debug sections. If @value{GDBN}
22818is compiled with @samp{zlib}, it will be able to read the debug
22819information in such binaries.
22820
22821The @samp{zlib} library is likely included with your operating system
22822distribution; if it is not, you can get the latest version from
22823@url{http://zlib.net}.
22824
7fa2210b
DJ
22825@end table
22826
22827@node Running Configure
db2e3e2e 22828@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22829@cindex configuring @value{GDBN}
db2e3e2e 22830@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22831of preparing @value{GDBN} for installation; you can then use @code{make} to
22832build the @code{gdb} program.
22833@iftex
22834@c irrelevant in info file; it's as current as the code it lives with.
22835@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22836look at the @file{README} file in the sources; we may have improved the
22837installation procedures since publishing this manual.}
22838@end iftex
c4555f82 22839
8e04817f
AC
22840The @value{GDBN} distribution includes all the source code you need for
22841@value{GDBN} in a single directory, whose name is usually composed by
22842appending the version number to @samp{gdb}.
c4555f82 22843
8e04817f
AC
22844For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22845@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22846
8e04817f
AC
22847@table @code
22848@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22849script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22850
8e04817f
AC
22851@item gdb-@value{GDBVN}/gdb
22852the source specific to @value{GDBN} itself
c4555f82 22853
8e04817f
AC
22854@item gdb-@value{GDBVN}/bfd
22855source for the Binary File Descriptor library
c906108c 22856
8e04817f
AC
22857@item gdb-@value{GDBVN}/include
22858@sc{gnu} include files
c906108c 22859
8e04817f
AC
22860@item gdb-@value{GDBVN}/libiberty
22861source for the @samp{-liberty} free software library
c906108c 22862
8e04817f
AC
22863@item gdb-@value{GDBVN}/opcodes
22864source for the library of opcode tables and disassemblers
c906108c 22865
8e04817f
AC
22866@item gdb-@value{GDBVN}/readline
22867source for the @sc{gnu} command-line interface
c906108c 22868
8e04817f
AC
22869@item gdb-@value{GDBVN}/glob
22870source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22871
8e04817f
AC
22872@item gdb-@value{GDBVN}/mmalloc
22873source for the @sc{gnu} memory-mapped malloc package
22874@end table
c906108c 22875
db2e3e2e 22876The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22877from the @file{gdb-@var{version-number}} source directory, which in
22878this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22879
8e04817f 22880First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22881if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22882identifier for the platform on which @value{GDBN} will run as an
22883argument.
c906108c 22884
8e04817f 22885For example:
c906108c 22886
474c8240 22887@smallexample
8e04817f
AC
22888cd gdb-@value{GDBVN}
22889./configure @var{host}
22890make
474c8240 22891@end smallexample
c906108c 22892
8e04817f
AC
22893@noindent
22894where @var{host} is an identifier such as @samp{sun4} or
22895@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22896(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22897correct value by examining your system.)
c906108c 22898
8e04817f
AC
22899Running @samp{configure @var{host}} and then running @code{make} builds the
22900@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22901libraries, then @code{gdb} itself. The configured source files, and the
22902binaries, are left in the corresponding source directories.
c906108c 22903
8e04817f 22904@need 750
db2e3e2e 22905@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22906system does not recognize this automatically when you run a different
22907shell, you may need to run @code{sh} on it explicitly:
c906108c 22908
474c8240 22909@smallexample
8e04817f 22910sh configure @var{host}
474c8240 22911@end smallexample
c906108c 22912
db2e3e2e 22913If you run @file{configure} from a directory that contains source
8e04817f 22914directories for multiple libraries or programs, such as the
db2e3e2e
BW
22915@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22916@file{configure}
8e04817f
AC
22917creates configuration files for every directory level underneath (unless
22918you tell it not to, with the @samp{--norecursion} option).
22919
db2e3e2e 22920You should run the @file{configure} script from the top directory in the
94e91d6d 22921source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22922@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22923that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22924if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22925of the @file{gdb-@var{version-number}} directory, you will omit the
22926configuration of @file{bfd}, @file{readline}, and other sibling
22927directories of the @file{gdb} subdirectory. This leads to build errors
22928about missing include files such as @file{bfd/bfd.h}.
c906108c 22929
8e04817f
AC
22930You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22931However, you should make sure that the shell on your path (named by
22932the @samp{SHELL} environment variable) is publicly readable. Remember
22933that @value{GDBN} uses the shell to start your program---some systems refuse to
22934let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22935
8e04817f 22936@node Separate Objdir
79a6e687 22937@section Compiling @value{GDBN} in Another Directory
c906108c 22938
8e04817f
AC
22939If you want to run @value{GDBN} versions for several host or target machines,
22940you need a different @code{gdb} compiled for each combination of
db2e3e2e 22941host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22942allowing you to generate each configuration in a separate subdirectory,
22943rather than in the source directory. If your @code{make} program
22944handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22945@code{make} in each of these directories builds the @code{gdb}
22946program specified there.
c906108c 22947
db2e3e2e 22948To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22949with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22950(You also need to specify a path to find @file{configure}
22951itself from your working directory. If the path to @file{configure}
8e04817f
AC
22952would be the same as the argument to @samp{--srcdir}, you can leave out
22953the @samp{--srcdir} option; it is assumed.)
c906108c 22954
8e04817f
AC
22955For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22956separate directory for a Sun 4 like this:
c906108c 22957
474c8240 22958@smallexample
8e04817f
AC
22959@group
22960cd gdb-@value{GDBVN}
22961mkdir ../gdb-sun4
22962cd ../gdb-sun4
22963../gdb-@value{GDBVN}/configure sun4
22964make
22965@end group
474c8240 22966@end smallexample
c906108c 22967
db2e3e2e 22968When @file{configure} builds a configuration using a remote source
8e04817f
AC
22969directory, it creates a tree for the binaries with the same structure
22970(and using the same names) as the tree under the source directory. In
22971the example, you'd find the Sun 4 library @file{libiberty.a} in the
22972directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22973@file{gdb-sun4/gdb}.
c906108c 22974
94e91d6d
MC
22975Make sure that your path to the @file{configure} script has just one
22976instance of @file{gdb} in it. If your path to @file{configure} looks
22977like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22978one subdirectory of @value{GDBN}, not the whole package. This leads to
22979build errors about missing include files such as @file{bfd/bfd.h}.
22980
8e04817f
AC
22981One popular reason to build several @value{GDBN} configurations in separate
22982directories is to configure @value{GDBN} for cross-compiling (where
22983@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22984programs that run on another machine---the @dfn{target}).
22985You specify a cross-debugging target by
db2e3e2e 22986giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22987
8e04817f
AC
22988When you run @code{make} to build a program or library, you must run
22989it in a configured directory---whatever directory you were in when you
db2e3e2e 22990called @file{configure} (or one of its subdirectories).
c906108c 22991
db2e3e2e 22992The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22993directory also runs recursively. If you type @code{make} in a source
22994directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22995directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22996will build all the required libraries, and then build GDB.
c906108c 22997
8e04817f
AC
22998When you have multiple hosts or targets configured in separate
22999directories, you can run @code{make} on them in parallel (for example,
23000if they are NFS-mounted on each of the hosts); they will not interfere
23001with each other.
c906108c 23002
8e04817f 23003@node Config Names
79a6e687 23004@section Specifying Names for Hosts and Targets
c906108c 23005
db2e3e2e 23006The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
23007script are based on a three-part naming scheme, but some short predefined
23008aliases are also supported. The full naming scheme encodes three pieces
23009of information in the following pattern:
c906108c 23010
474c8240 23011@smallexample
8e04817f 23012@var{architecture}-@var{vendor}-@var{os}
474c8240 23013@end smallexample
c906108c 23014
8e04817f
AC
23015For example, you can use the alias @code{sun4} as a @var{host} argument,
23016or as the value for @var{target} in a @code{--target=@var{target}}
23017option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 23018
db2e3e2e 23019The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 23020any query facility to list all supported host and target names or
db2e3e2e 23021aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
23022@code{config.sub} to map abbreviations to full names; you can read the
23023script, if you wish, or you can use it to test your guesses on
23024abbreviations---for example:
c906108c 23025
8e04817f
AC
23026@smallexample
23027% sh config.sub i386-linux
23028i386-pc-linux-gnu
23029% sh config.sub alpha-linux
23030alpha-unknown-linux-gnu
23031% sh config.sub hp9k700
23032hppa1.1-hp-hpux
23033% sh config.sub sun4
23034sparc-sun-sunos4.1.1
23035% sh config.sub sun3
23036m68k-sun-sunos4.1.1
23037% sh config.sub i986v
23038Invalid configuration `i986v': machine `i986v' not recognized
23039@end smallexample
c906108c 23040
8e04817f
AC
23041@noindent
23042@code{config.sub} is also distributed in the @value{GDBN} source
23043directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 23044
8e04817f 23045@node Configure Options
db2e3e2e 23046@section @file{configure} Options
c906108c 23047
db2e3e2e
BW
23048Here is a summary of the @file{configure} options and arguments that
23049are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 23050several other options not listed here. @inforef{What Configure
db2e3e2e 23051Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 23052
474c8240 23053@smallexample
8e04817f
AC
23054configure @r{[}--help@r{]}
23055 @r{[}--prefix=@var{dir}@r{]}
23056 @r{[}--exec-prefix=@var{dir}@r{]}
23057 @r{[}--srcdir=@var{dirname}@r{]}
23058 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
23059 @r{[}--target=@var{target}@r{]}
23060 @var{host}
474c8240 23061@end smallexample
c906108c 23062
8e04817f
AC
23063@noindent
23064You may introduce options with a single @samp{-} rather than
23065@samp{--} if you prefer; but you may abbreviate option names if you use
23066@samp{--}.
c906108c 23067
8e04817f
AC
23068@table @code
23069@item --help
db2e3e2e 23070Display a quick summary of how to invoke @file{configure}.
c906108c 23071
8e04817f
AC
23072@item --prefix=@var{dir}
23073Configure the source to install programs and files under directory
23074@file{@var{dir}}.
c906108c 23075
8e04817f
AC
23076@item --exec-prefix=@var{dir}
23077Configure the source to install programs under directory
23078@file{@var{dir}}.
c906108c 23079
8e04817f
AC
23080@c avoid splitting the warning from the explanation:
23081@need 2000
23082@item --srcdir=@var{dirname}
23083@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23084@code{make} that implements the @code{VPATH} feature.}@*
23085Use this option to make configurations in directories separate from the
23086@value{GDBN} source directories. Among other things, you can use this to
23087build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23088directories. @file{configure} writes configuration-specific files in
8e04817f 23089the current directory, but arranges for them to use the source in the
db2e3e2e 23090directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23091the working directory in parallel to the source directories below
23092@var{dirname}.
c906108c 23093
8e04817f 23094@item --norecursion
db2e3e2e 23095Configure only the directory level where @file{configure} is executed; do not
8e04817f 23096propagate configuration to subdirectories.
c906108c 23097
8e04817f
AC
23098@item --target=@var{target}
23099Configure @value{GDBN} for cross-debugging programs running on the specified
23100@var{target}. Without this option, @value{GDBN} is configured to debug
23101programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23102
8e04817f 23103There is no convenient way to generate a list of all available targets.
c906108c 23104
8e04817f
AC
23105@item @var{host} @dots{}
23106Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23107
8e04817f
AC
23108There is no convenient way to generate a list of all available hosts.
23109@end table
c906108c 23110
8e04817f
AC
23111There are many other options available as well, but they are generally
23112needed for special purposes only.
c906108c 23113
8e04817f
AC
23114@node Maintenance Commands
23115@appendix Maintenance Commands
23116@cindex maintenance commands
23117@cindex internal commands
c906108c 23118
8e04817f 23119In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23120includes a number of commands intended for @value{GDBN} developers,
23121that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23122provided here for reference. (For commands that turn on debugging
23123messages, see @ref{Debugging Output}.)
c906108c 23124
8e04817f 23125@table @code
09d4efe1
EZ
23126@kindex maint agent
23127@item maint agent @var{expression}
23128Translate the given @var{expression} into remote agent bytecodes.
23129This command is useful for debugging the Agent Expression mechanism
23130(@pxref{Agent Expressions}).
23131
8e04817f
AC
23132@kindex maint info breakpoints
23133@item @anchor{maint info breakpoints}maint info breakpoints
23134Using the same format as @samp{info breakpoints}, display both the
23135breakpoints you've set explicitly, and those @value{GDBN} is using for
23136internal purposes. Internal breakpoints are shown with negative
23137breakpoint numbers. The type column identifies what kind of breakpoint
23138is shown:
c906108c 23139
8e04817f
AC
23140@table @code
23141@item breakpoint
23142Normal, explicitly set breakpoint.
c906108c 23143
8e04817f
AC
23144@item watchpoint
23145Normal, explicitly set watchpoint.
c906108c 23146
8e04817f
AC
23147@item longjmp
23148Internal breakpoint, used to handle correctly stepping through
23149@code{longjmp} calls.
c906108c 23150
8e04817f
AC
23151@item longjmp resume
23152Internal breakpoint at the target of a @code{longjmp}.
c906108c 23153
8e04817f
AC
23154@item until
23155Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23156
8e04817f
AC
23157@item finish
23158Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23159
8e04817f
AC
23160@item shlib events
23161Shared library events.
c906108c 23162
8e04817f 23163@end table
c906108c 23164
237fc4c9
PA
23165@kindex maint set can-use-displaced-stepping
23166@kindex maint show can-use-displaced-stepping
23167@cindex displaced stepping support
23168@cindex out-of-line single-stepping
23169@item maint set can-use-displaced-stepping
23170@itemx maint show can-use-displaced-stepping
23171Control whether or not @value{GDBN} will do @dfn{displaced stepping}
23172if the target supports it. The default is on. Displaced stepping is
23173a way to single-step over breakpoints without removing them from the
23174inferior, by executing an out-of-line copy of the instruction that was
23175originally at the breakpoint location. It is also known as
23176out-of-line single-stepping.
23177
09d4efe1
EZ
23178@kindex maint check-symtabs
23179@item maint check-symtabs
23180Check the consistency of psymtabs and symtabs.
23181
23182@kindex maint cplus first_component
23183@item maint cplus first_component @var{name}
23184Print the first C@t{++} class/namespace component of @var{name}.
23185
23186@kindex maint cplus namespace
23187@item maint cplus namespace
23188Print the list of possible C@t{++} namespaces.
23189
23190@kindex maint demangle
23191@item maint demangle @var{name}
d3e8051b 23192Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23193
23194@kindex maint deprecate
23195@kindex maint undeprecate
23196@cindex deprecated commands
23197@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23198@itemx maint undeprecate @var{command}
23199Deprecate or undeprecate the named @var{command}. Deprecated commands
23200cause @value{GDBN} to issue a warning when you use them. The optional
23201argument @var{replacement} says which newer command should be used in
23202favor of the deprecated one; if it is given, @value{GDBN} will mention
23203the replacement as part of the warning.
23204
23205@kindex maint dump-me
23206@item maint dump-me
721c2651 23207@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23208Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23209This is supported only on systems which support aborting a program
23210with the @code{SIGQUIT} signal.
09d4efe1 23211
8d30a00d
AC
23212@kindex maint internal-error
23213@kindex maint internal-warning
09d4efe1
EZ
23214@item maint internal-error @r{[}@var{message-text}@r{]}
23215@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23216Cause @value{GDBN} to call the internal function @code{internal_error}
23217or @code{internal_warning} and hence behave as though an internal error
23218or internal warning has been detected. In addition to reporting the
23219internal problem, these functions give the user the opportunity to
23220either quit @value{GDBN} or create a core file of the current
23221@value{GDBN} session.
23222
09d4efe1
EZ
23223These commands take an optional parameter @var{message-text} that is
23224used as the text of the error or warning message.
23225
d3e8051b 23226Here's an example of using @code{internal-error}:
09d4efe1 23227
8d30a00d 23228@smallexample
f7dc1244 23229(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23230@dots{}/maint.c:121: internal-error: testing, 1, 2
23231A problem internal to GDB has been detected. Further
23232debugging may prove unreliable.
23233Quit this debugging session? (y or n) @kbd{n}
23234Create a core file? (y or n) @kbd{n}
f7dc1244 23235(@value{GDBP})
8d30a00d
AC
23236@end smallexample
23237
09d4efe1
EZ
23238@kindex maint packet
23239@item maint packet @var{text}
23240If @value{GDBN} is talking to an inferior via the serial protocol,
23241then this command sends the string @var{text} to the inferior, and
23242displays the response packet. @value{GDBN} supplies the initial
23243@samp{$} character, the terminating @samp{#} character, and the
23244checksum.
23245
23246@kindex maint print architecture
23247@item maint print architecture @r{[}@var{file}@r{]}
23248Print the entire architecture configuration. The optional argument
23249@var{file} names the file where the output goes.
8d30a00d 23250
81adfced
DJ
23251@kindex maint print c-tdesc
23252@item maint print c-tdesc
23253Print the current target description (@pxref{Target Descriptions}) as
23254a C source file. The created source file can be used in @value{GDBN}
23255when an XML parser is not available to parse the description.
23256
00905d52
AC
23257@kindex maint print dummy-frames
23258@item maint print dummy-frames
00905d52
AC
23259Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23260
23261@smallexample
f7dc1244 23262(@value{GDBP}) @kbd{b add}
00905d52 23263@dots{}
f7dc1244 23264(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23265Breakpoint 2, add (a=2, b=3) at @dots{}
2326658 return (a + b);
23267The program being debugged stopped while in a function called from GDB.
23268@dots{}
f7dc1244 23269(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
232700x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23271 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23272 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23273(@value{GDBP})
00905d52
AC
23274@end smallexample
23275
23276Takes an optional file parameter.
23277
0680b120
AC
23278@kindex maint print registers
23279@kindex maint print raw-registers
23280@kindex maint print cooked-registers
617073a9 23281@kindex maint print register-groups
09d4efe1
EZ
23282@item maint print registers @r{[}@var{file}@r{]}
23283@itemx maint print raw-registers @r{[}@var{file}@r{]}
23284@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23285@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23286Print @value{GDBN}'s internal register data structures.
23287
617073a9
AC
23288The command @code{maint print raw-registers} includes the contents of
23289the raw register cache; the command @code{maint print cooked-registers}
23290includes the (cooked) value of all registers; and the command
23291@code{maint print register-groups} includes the groups that each
23292register is a member of. @xref{Registers,, Registers, gdbint,
23293@value{GDBN} Internals}.
0680b120 23294
09d4efe1
EZ
23295These commands take an optional parameter, a file name to which to
23296write the information.
0680b120 23297
617073a9 23298@kindex maint print reggroups
09d4efe1
EZ
23299@item maint print reggroups @r{[}@var{file}@r{]}
23300Print @value{GDBN}'s internal register group data structures. The
23301optional argument @var{file} tells to what file to write the
23302information.
617073a9 23303
09d4efe1 23304The register groups info looks like this:
617073a9
AC
23305
23306@smallexample
f7dc1244 23307(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23308 Group Type
23309 general user
23310 float user
23311 all user
23312 vector user
23313 system user
23314 save internal
23315 restore internal
617073a9
AC
23316@end smallexample
23317
09d4efe1
EZ
23318@kindex flushregs
23319@item flushregs
23320This command forces @value{GDBN} to flush its internal register cache.
23321
23322@kindex maint print objfiles
23323@cindex info for known object files
23324@item maint print objfiles
23325Print a dump of all known object files. For each object file, this
23326command prints its name, address in memory, and all of its psymtabs
23327and symtabs.
23328
23329@kindex maint print statistics
23330@cindex bcache statistics
23331@item maint print statistics
23332This command prints, for each object file in the program, various data
23333about that object file followed by the byte cache (@dfn{bcache})
23334statistics for the object file. The objfile data includes the number
d3e8051b 23335of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23336defined by the objfile, the number of as yet unexpanded psym tables,
23337the number of line tables and string tables, and the amount of memory
23338used by the various tables. The bcache statistics include the counts,
23339sizes, and counts of duplicates of all and unique objects, max,
23340average, and median entry size, total memory used and its overhead and
23341savings, and various measures of the hash table size and chain
23342lengths.
23343
c7ba131e
JB
23344@kindex maint print target-stack
23345@cindex target stack description
23346@item maint print target-stack
23347A @dfn{target} is an interface between the debugger and a particular
23348kind of file or process. Targets can be stacked in @dfn{strata},
23349so that more than one target can potentially respond to a request.
23350In particular, memory accesses will walk down the stack of targets
23351until they find a target that is interested in handling that particular
23352address.
23353
23354This command prints a short description of each layer that was pushed on
23355the @dfn{target stack}, starting from the top layer down to the bottom one.
23356
09d4efe1
EZ
23357@kindex maint print type
23358@cindex type chain of a data type
23359@item maint print type @var{expr}
23360Print the type chain for a type specified by @var{expr}. The argument
23361can be either a type name or a symbol. If it is a symbol, the type of
23362that symbol is described. The type chain produced by this command is
23363a recursive definition of the data type as stored in @value{GDBN}'s
23364data structures, including its flags and contained types.
23365
23366@kindex maint set dwarf2 max-cache-age
23367@kindex maint show dwarf2 max-cache-age
23368@item maint set dwarf2 max-cache-age
23369@itemx maint show dwarf2 max-cache-age
23370Control the DWARF 2 compilation unit cache.
23371
23372@cindex DWARF 2 compilation units cache
23373In object files with inter-compilation-unit references, such as those
23374produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23375reader needs to frequently refer to previously read compilation units.
23376This setting controls how long a compilation unit will remain in the
23377cache if it is not referenced. A higher limit means that cached
23378compilation units will be stored in memory longer, and more total
23379memory will be used. Setting it to zero disables caching, which will
23380slow down @value{GDBN} startup, but reduce memory consumption.
23381
e7ba9c65
DJ
23382@kindex maint set profile
23383@kindex maint show profile
23384@cindex profiling GDB
23385@item maint set profile
23386@itemx maint show profile
23387Control profiling of @value{GDBN}.
23388
23389Profiling will be disabled until you use the @samp{maint set profile}
23390command to enable it. When you enable profiling, the system will begin
23391collecting timing and execution count data; when you disable profiling or
23392exit @value{GDBN}, the results will be written to a log file. Remember that
23393if you use profiling, @value{GDBN} will overwrite the profiling log file
23394(often called @file{gmon.out}). If you have a record of important profiling
23395data in a @file{gmon.out} file, be sure to move it to a safe location.
23396
23397Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23398compiled with the @samp{-pg} compiler option.
e7ba9c65 23399
b84876c2
PA
23400@kindex maint set linux-async
23401@kindex maint show linux-async
23402@cindex asynchronous support
23403@item maint set linux-async
23404@itemx maint show linux-async
23405Control the GNU/Linux native asynchronous support of @value{GDBN}.
23406
23407GNU/Linux native asynchronous support will be disabled until you use
23408the @samp{maint set linux-async} command to enable it.
23409
09d4efe1
EZ
23410@kindex maint show-debug-regs
23411@cindex x86 hardware debug registers
23412@item maint show-debug-regs
23413Control whether to show variables that mirror the x86 hardware debug
23414registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23415enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23416removes a hardware breakpoint or watchpoint, and when the inferior
23417triggers a hardware-assisted breakpoint or watchpoint.
23418
23419@kindex maint space
23420@cindex memory used by commands
23421@item maint space
23422Control whether to display memory usage for each command. If set to a
23423nonzero value, @value{GDBN} will display how much memory each command
23424took, following the command's own output. This can also be requested
23425by invoking @value{GDBN} with the @option{--statistics} command-line
23426switch (@pxref{Mode Options}).
23427
23428@kindex maint time
23429@cindex time of command execution
23430@item maint time
23431Control whether to display the execution time for each command. If
23432set to a nonzero value, @value{GDBN} will display how much time it
23433took to execute each command, following the command's own output.
23434This can also be requested by invoking @value{GDBN} with the
23435@option{--statistics} command-line switch (@pxref{Mode Options}).
23436
23437@kindex maint translate-address
23438@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23439Find the symbol stored at the location specified by the address
23440@var{addr} and an optional section name @var{section}. If found,
23441@value{GDBN} prints the name of the closest symbol and an offset from
23442the symbol's location to the specified address. This is similar to
23443the @code{info address} command (@pxref{Symbols}), except that this
23444command also allows to find symbols in other sections.
ae038cb0 23445
8e04817f 23446@end table
c906108c 23447
9c16f35a
EZ
23448The following command is useful for non-interactive invocations of
23449@value{GDBN}, such as in the test suite.
23450
23451@table @code
23452@item set watchdog @var{nsec}
23453@kindex set watchdog
23454@cindex watchdog timer
23455@cindex timeout for commands
23456Set the maximum number of seconds @value{GDBN} will wait for the
23457target operation to finish. If this time expires, @value{GDBN}
23458reports and error and the command is aborted.
23459
23460@item show watchdog
23461Show the current setting of the target wait timeout.
23462@end table
c906108c 23463
e0ce93ac 23464@node Remote Protocol
8e04817f 23465@appendix @value{GDBN} Remote Serial Protocol
c906108c 23466
ee2d5c50
AC
23467@menu
23468* Overview::
23469* Packets::
23470* Stop Reply Packets::
23471* General Query Packets::
23472* Register Packet Format::
9d29849a 23473* Tracepoint Packets::
a6b151f1 23474* Host I/O Packets::
9a6253be 23475* Interrupts::
ee2d5c50 23476* Examples::
79a6e687 23477* File-I/O Remote Protocol Extension::
cfa9d6d9 23478* Library List Format::
79a6e687 23479* Memory Map Format::
ee2d5c50
AC
23480@end menu
23481
23482@node Overview
23483@section Overview
23484
8e04817f
AC
23485There may be occasions when you need to know something about the
23486protocol---for example, if there is only one serial port to your target
23487machine, you might want your program to do something special if it
23488recognizes a packet meant for @value{GDBN}.
c906108c 23489
d2c6833e 23490In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23491transmitted and received data, respectively.
c906108c 23492
8e04817f
AC
23493@cindex protocol, @value{GDBN} remote serial
23494@cindex serial protocol, @value{GDBN} remote
23495@cindex remote serial protocol
23496All @value{GDBN} commands and responses (other than acknowledgments) are
23497sent as a @var{packet}. A @var{packet} is introduced with the character
23498@samp{$}, the actual @var{packet-data}, and the terminating character
23499@samp{#} followed by a two-digit @var{checksum}:
c906108c 23500
474c8240 23501@smallexample
8e04817f 23502@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23503@end smallexample
8e04817f 23504@noindent
c906108c 23505
8e04817f
AC
23506@cindex checksum, for @value{GDBN} remote
23507@noindent
23508The two-digit @var{checksum} is computed as the modulo 256 sum of all
23509characters between the leading @samp{$} and the trailing @samp{#} (an
23510eight bit unsigned checksum).
c906108c 23511
8e04817f
AC
23512Implementors should note that prior to @value{GDBN} 5.0 the protocol
23513specification also included an optional two-digit @var{sequence-id}:
c906108c 23514
474c8240 23515@smallexample
8e04817f 23516@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23517@end smallexample
c906108c 23518
8e04817f
AC
23519@cindex sequence-id, for @value{GDBN} remote
23520@noindent
23521That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23522has never output @var{sequence-id}s. Stubs that handle packets added
23523since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23524
8e04817f
AC
23525@cindex acknowledgment, for @value{GDBN} remote
23526When either the host or the target machine receives a packet, the first
23527response expected is an acknowledgment: either @samp{+} (to indicate
23528the package was received correctly) or @samp{-} (to request
23529retransmission):
c906108c 23530
474c8240 23531@smallexample
d2c6833e
AC
23532-> @code{$}@var{packet-data}@code{#}@var{checksum}
23533<- @code{+}
474c8240 23534@end smallexample
8e04817f 23535@noindent
53a5351d 23536
8e04817f
AC
23537The host (@value{GDBN}) sends @var{command}s, and the target (the
23538debugging stub incorporated in your program) sends a @var{response}. In
23539the case of step and continue @var{command}s, the response is only sent
23540when the operation has completed (the target has again stopped).
c906108c 23541
8e04817f
AC
23542@var{packet-data} consists of a sequence of characters with the
23543exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23544exceptions).
c906108c 23545
ee2d5c50 23546@cindex remote protocol, field separator
0876f84a 23547Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23548@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23549@sc{hex} with leading zeros suppressed.
c906108c 23550
8e04817f
AC
23551Implementors should note that prior to @value{GDBN} 5.0, the character
23552@samp{:} could not appear as the third character in a packet (as it
23553would potentially conflict with the @var{sequence-id}).
c906108c 23554
0876f84a
DJ
23555@cindex remote protocol, binary data
23556@anchor{Binary Data}
23557Binary data in most packets is encoded either as two hexadecimal
23558digits per byte of binary data. This allowed the traditional remote
23559protocol to work over connections which were only seven-bit clean.
23560Some packets designed more recently assume an eight-bit clean
23561connection, and use a more efficient encoding to send and receive
23562binary data.
23563
23564The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23565as an escape character. Any escaped byte is transmitted as the escape
23566character followed by the original character XORed with @code{0x20}.
23567For example, the byte @code{0x7d} would be transmitted as the two
23568bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23569@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23570@samp{@}}) must always be escaped. Responses sent by the stub
23571must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23572is not interpreted as the start of a run-length encoded sequence
23573(described next).
23574
1d3811f6
DJ
23575Response @var{data} can be run-length encoded to save space.
23576Run-length encoding replaces runs of identical characters with one
23577instance of the repeated character, followed by a @samp{*} and a
23578repeat count. The repeat count is itself sent encoded, to avoid
23579binary characters in @var{data}: a value of @var{n} is sent as
23580@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23581produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23582code 32) for a repeat count of 3. (This is because run-length
23583encoding starts to win for counts 3 or more.) Thus, for example,
23584@samp{0* } is a run-length encoding of ``0000'': the space character
23585after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
235863}} more times.
23587
23588The printable characters @samp{#} and @samp{$} or with a numeric value
23589greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23590seven repeats (@samp{$}) can be expanded using a repeat count of only
23591five (@samp{"}). For example, @samp{00000000} can be encoded as
23592@samp{0*"00}.
c906108c 23593
8e04817f
AC
23594The error response returned for some packets includes a two character
23595error number. That number is not well defined.
c906108c 23596
f8da2bff 23597@cindex empty response, for unsupported packets
8e04817f
AC
23598For any @var{command} not supported by the stub, an empty response
23599(@samp{$#00}) should be returned. That way it is possible to extend the
23600protocol. A newer @value{GDBN} can tell if a packet is supported based
23601on that response.
c906108c 23602
b383017d
RM
23603A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23604@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23605optional.
c906108c 23606
ee2d5c50
AC
23607@node Packets
23608@section Packets
23609
23610The following table provides a complete list of all currently defined
23611@var{command}s and their corresponding response @var{data}.
79a6e687 23612@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23613I/O extension of the remote protocol.
ee2d5c50 23614
b8ff78ce
JB
23615Each packet's description has a template showing the packet's overall
23616syntax, followed by an explanation of the packet's meaning. We
23617include spaces in some of the templates for clarity; these are not
23618part of the packet's syntax. No @value{GDBN} packet uses spaces to
23619separate its components. For example, a template like @samp{foo
23620@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23621bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23622@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23623@samp{foo} and the @var{bar}, or between the @var{bar} and the
23624@var{baz}.
23625
8ffe2530
JB
23626Note that all packet forms beginning with an upper- or lower-case
23627letter, other than those described here, are reserved for future use.
23628
b8ff78ce 23629Here are the packet descriptions.
ee2d5c50 23630
b8ff78ce 23631@table @samp
ee2d5c50 23632
b8ff78ce
JB
23633@item !
23634@cindex @samp{!} packet
2d717e4f 23635@anchor{extended mode}
8e04817f
AC
23636Enable extended mode. In extended mode, the remote server is made
23637persistent. The @samp{R} packet is used to restart the program being
23638debugged.
ee2d5c50
AC
23639
23640Reply:
23641@table @samp
23642@item OK
8e04817f 23643The remote target both supports and has enabled extended mode.
ee2d5c50 23644@end table
c906108c 23645
b8ff78ce
JB
23646@item ?
23647@cindex @samp{?} packet
ee2d5c50
AC
23648Indicate the reason the target halted. The reply is the same as for
23649step and continue.
c906108c 23650
ee2d5c50
AC
23651Reply:
23652@xref{Stop Reply Packets}, for the reply specifications.
23653
b8ff78ce
JB
23654@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23655@cindex @samp{A} packet
23656Initialized @code{argv[]} array passed into program. @var{arglen}
23657specifies the number of bytes in the hex encoded byte stream
23658@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23659
23660Reply:
23661@table @samp
23662@item OK
b8ff78ce
JB
23663The arguments were set.
23664@item E @var{NN}
23665An error occurred.
ee2d5c50
AC
23666@end table
23667
b8ff78ce
JB
23668@item b @var{baud}
23669@cindex @samp{b} packet
23670(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23671Change the serial line speed to @var{baud}.
23672
23673JTC: @emph{When does the transport layer state change? When it's
23674received, or after the ACK is transmitted. In either case, there are
23675problems if the command or the acknowledgment packet is dropped.}
23676
23677Stan: @emph{If people really wanted to add something like this, and get
23678it working for the first time, they ought to modify ser-unix.c to send
23679some kind of out-of-band message to a specially-setup stub and have the
23680switch happen "in between" packets, so that from remote protocol's point
23681of view, nothing actually happened.}
23682
b8ff78ce
JB
23683@item B @var{addr},@var{mode}
23684@cindex @samp{B} packet
8e04817f 23685Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23686breakpoint at @var{addr}.
23687
b8ff78ce 23688Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23689(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23690
4f553f88 23691@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23692@cindex @samp{c} packet
23693Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23694resume at current address.
c906108c 23695
ee2d5c50
AC
23696Reply:
23697@xref{Stop Reply Packets}, for the reply specifications.
23698
4f553f88 23699@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23700@cindex @samp{C} packet
8e04817f 23701Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23702@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23703
ee2d5c50
AC
23704Reply:
23705@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23706
b8ff78ce
JB
23707@item d
23708@cindex @samp{d} packet
ee2d5c50
AC
23709Toggle debug flag.
23710
b8ff78ce
JB
23711Don't use this packet; instead, define a general set packet
23712(@pxref{General Query Packets}).
ee2d5c50 23713
b8ff78ce
JB
23714@item D
23715@cindex @samp{D} packet
ee2d5c50 23716Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23717before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23718
23719Reply:
23720@table @samp
10fac096
NW
23721@item OK
23722for success
b8ff78ce 23723@item E @var{NN}
10fac096 23724for an error
ee2d5c50 23725@end table
c906108c 23726
b8ff78ce
JB
23727@item F @var{RC},@var{EE},@var{CF};@var{XX}
23728@cindex @samp{F} packet
23729A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23730This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23731Remote Protocol Extension}, for the specification.
ee2d5c50 23732
b8ff78ce 23733@item g
ee2d5c50 23734@anchor{read registers packet}
b8ff78ce 23735@cindex @samp{g} packet
ee2d5c50
AC
23736Read general registers.
23737
23738Reply:
23739@table @samp
23740@item @var{XX@dots{}}
8e04817f
AC
23741Each byte of register data is described by two hex digits. The bytes
23742with the register are transmitted in target byte order. The size of
b8ff78ce 23743each register and their position within the @samp{g} packet are
4a9bb1df
UW
23744determined by the @value{GDBN} internal gdbarch functions
23745@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23746specification of several standard @samp{g} packets is specified below.
23747@item E @var{NN}
ee2d5c50
AC
23748for an error.
23749@end table
c906108c 23750
b8ff78ce
JB
23751@item G @var{XX@dots{}}
23752@cindex @samp{G} packet
23753Write general registers. @xref{read registers packet}, for a
23754description of the @var{XX@dots{}} data.
ee2d5c50
AC
23755
23756Reply:
23757@table @samp
23758@item OK
23759for success
b8ff78ce 23760@item E @var{NN}
ee2d5c50
AC
23761for an error
23762@end table
23763
b8ff78ce
JB
23764@item H @var{c} @var{t}
23765@cindex @samp{H} packet
8e04817f 23766Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23767@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23768should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23769operations. The thread designator @var{t} may be @samp{-1}, meaning all
23770the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23771
23772Reply:
23773@table @samp
23774@item OK
23775for success
b8ff78ce 23776@item E @var{NN}
ee2d5c50
AC
23777for an error
23778@end table
c906108c 23779
8e04817f
AC
23780@c FIXME: JTC:
23781@c 'H': How restrictive (or permissive) is the thread model. If a
23782@c thread is selected and stopped, are other threads allowed
23783@c to continue to execute? As I mentioned above, I think the
23784@c semantics of each command when a thread is selected must be
23785@c described. For example:
23786@c
23787@c 'g': If the stub supports threads and a specific thread is
23788@c selected, returns the register block from that thread;
23789@c otherwise returns current registers.
23790@c
23791@c 'G' If the stub supports threads and a specific thread is
23792@c selected, sets the registers of the register block of
23793@c that thread; otherwise sets current registers.
c906108c 23794
b8ff78ce 23795@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23796@anchor{cycle step packet}
b8ff78ce
JB
23797@cindex @samp{i} packet
23798Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23799present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23800step starting at that address.
c906108c 23801
b8ff78ce
JB
23802@item I
23803@cindex @samp{I} packet
23804Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23805step packet}.
ee2d5c50 23806
b8ff78ce
JB
23807@item k
23808@cindex @samp{k} packet
23809Kill request.
c906108c 23810
ac282366 23811FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23812thread context has been selected (i.e.@: does 'k' kill only that
23813thread?)}.
c906108c 23814
b8ff78ce
JB
23815@item m @var{addr},@var{length}
23816@cindex @samp{m} packet
8e04817f 23817Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23818Note that @var{addr} may not be aligned to any particular boundary.
23819
23820The stub need not use any particular size or alignment when gathering
23821data from memory for the response; even if @var{addr} is word-aligned
23822and @var{length} is a multiple of the word size, the stub is free to
23823use byte accesses, or not. For this reason, this packet may not be
23824suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23825@cindex alignment of remote memory accesses
23826@cindex size of remote memory accesses
23827@cindex memory, alignment and size of remote accesses
c906108c 23828
ee2d5c50
AC
23829Reply:
23830@table @samp
23831@item @var{XX@dots{}}
599b237a 23832Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23833number. The reply may contain fewer bytes than requested if the
23834server was able to read only part of the region of memory.
23835@item E @var{NN}
ee2d5c50
AC
23836@var{NN} is errno
23837@end table
23838
b8ff78ce
JB
23839@item M @var{addr},@var{length}:@var{XX@dots{}}
23840@cindex @samp{M} packet
8e04817f 23841Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23842@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23843hexadecimal number.
ee2d5c50
AC
23844
23845Reply:
23846@table @samp
23847@item OK
23848for success
b8ff78ce 23849@item E @var{NN}
8e04817f
AC
23850for an error (this includes the case where only part of the data was
23851written).
ee2d5c50 23852@end table
c906108c 23853
b8ff78ce
JB
23854@item p @var{n}
23855@cindex @samp{p} packet
23856Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23857@xref{read registers packet}, for a description of how the returned
23858register value is encoded.
ee2d5c50
AC
23859
23860Reply:
23861@table @samp
2e868123
AC
23862@item @var{XX@dots{}}
23863the register's value
b8ff78ce 23864@item E @var{NN}
2e868123
AC
23865for an error
23866@item
23867Indicating an unrecognized @var{query}.
ee2d5c50
AC
23868@end table
23869
b8ff78ce 23870@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23871@anchor{write register packet}
b8ff78ce
JB
23872@cindex @samp{P} packet
23873Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23874number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23875digits for each byte in the register (target byte order).
c906108c 23876
ee2d5c50
AC
23877Reply:
23878@table @samp
23879@item OK
23880for success
b8ff78ce 23881@item E @var{NN}
ee2d5c50
AC
23882for an error
23883@end table
23884
5f3bebba
JB
23885@item q @var{name} @var{params}@dots{}
23886@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23887@cindex @samp{q} packet
b8ff78ce 23888@cindex @samp{Q} packet
5f3bebba
JB
23889General query (@samp{q}) and set (@samp{Q}). These packets are
23890described fully in @ref{General Query Packets}.
c906108c 23891
b8ff78ce
JB
23892@item r
23893@cindex @samp{r} packet
8e04817f 23894Reset the entire system.
c906108c 23895
b8ff78ce 23896Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23897
b8ff78ce
JB
23898@item R @var{XX}
23899@cindex @samp{R} packet
8e04817f 23900Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23901This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23902
8e04817f 23903The @samp{R} packet has no reply.
ee2d5c50 23904
4f553f88 23905@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23906@cindex @samp{s} packet
23907Single step. @var{addr} is the address at which to resume. If
23908@var{addr} is omitted, resume at same address.
c906108c 23909
ee2d5c50
AC
23910Reply:
23911@xref{Stop Reply Packets}, for the reply specifications.
23912
4f553f88 23913@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23914@anchor{step with signal packet}
b8ff78ce
JB
23915@cindex @samp{S} packet
23916Step with signal. This is analogous to the @samp{C} packet, but
23917requests a single-step, rather than a normal resumption of execution.
c906108c 23918
ee2d5c50
AC
23919Reply:
23920@xref{Stop Reply Packets}, for the reply specifications.
23921
b8ff78ce
JB
23922@item t @var{addr}:@var{PP},@var{MM}
23923@cindex @samp{t} packet
8e04817f 23924Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23925@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23926@var{addr} must be at least 3 digits.
c906108c 23927
b8ff78ce
JB
23928@item T @var{XX}
23929@cindex @samp{T} packet
ee2d5c50 23930Find out if the thread XX is alive.
c906108c 23931
ee2d5c50
AC
23932Reply:
23933@table @samp
23934@item OK
23935thread is still alive
b8ff78ce 23936@item E @var{NN}
ee2d5c50
AC
23937thread is dead
23938@end table
23939
b8ff78ce
JB
23940@item v
23941Packets starting with @samp{v} are identified by a multi-letter name,
23942up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23943
2d717e4f
DJ
23944@item vAttach;@var{pid}
23945@cindex @samp{vAttach} packet
23946Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23947hexadecimal integer identifying the process. If the stub is currently
23948controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23949
23950This packet is only available in extended mode (@pxref{extended mode}).
23951
23952Reply:
23953@table @samp
23954@item E @var{nn}
23955for an error
23956@item @r{Any stop packet}
23957for success (@pxref{Stop Reply Packets})
23958@end table
23959
b8ff78ce
JB
23960@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23961@cindex @samp{vCont} packet
23962Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23963If an action is specified with no @var{tid}, then it is applied to any
23964threads that don't have a specific action specified; if no default action is
23965specified then other threads should remain stopped. Specifying multiple
23966default actions is an error; specifying no actions is also an error.
23967Thread IDs are specified in hexadecimal. Currently supported actions are:
23968
b8ff78ce 23969@table @samp
86d30acc
DJ
23970@item c
23971Continue.
b8ff78ce 23972@item C @var{sig}
86d30acc
DJ
23973Continue with signal @var{sig}. @var{sig} should be two hex digits.
23974@item s
23975Step.
b8ff78ce 23976@item S @var{sig}
86d30acc
DJ
23977Step with signal @var{sig}. @var{sig} should be two hex digits.
23978@end table
23979
23980The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23981not supported in @samp{vCont}.
86d30acc
DJ
23982
23983Reply:
23984@xref{Stop Reply Packets}, for the reply specifications.
23985
b8ff78ce
JB
23986@item vCont?
23987@cindex @samp{vCont?} packet
d3e8051b 23988Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23989
23990Reply:
23991@table @samp
b8ff78ce
JB
23992@item vCont@r{[};@var{action}@dots{}@r{]}
23993The @samp{vCont} packet is supported. Each @var{action} is a supported
23994command in the @samp{vCont} packet.
86d30acc 23995@item
b8ff78ce 23996The @samp{vCont} packet is not supported.
86d30acc 23997@end table
ee2d5c50 23998
a6b151f1
DJ
23999@item vFile:@var{operation}:@var{parameter}@dots{}
24000@cindex @samp{vFile} packet
24001Perform a file operation on the target system. For details,
24002see @ref{Host I/O Packets}.
24003
68437a39
DJ
24004@item vFlashErase:@var{addr},@var{length}
24005@cindex @samp{vFlashErase} packet
24006Direct the stub to erase @var{length} bytes of flash starting at
24007@var{addr}. The region may enclose any number of flash blocks, but
24008its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
24009flash block size appearing in the memory map (@pxref{Memory Map
24010Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
24011together, and sends a @samp{vFlashDone} request after each group; the
24012stub is allowed to delay erase operation until the @samp{vFlashDone}
24013packet is received.
24014
24015Reply:
24016@table @samp
24017@item OK
24018for success
24019@item E @var{NN}
24020for an error
24021@end table
24022
24023@item vFlashWrite:@var{addr}:@var{XX@dots{}}
24024@cindex @samp{vFlashWrite} packet
24025Direct the stub to write data to flash address @var{addr}. The data
24026is passed in binary form using the same encoding as for the @samp{X}
24027packet (@pxref{Binary Data}). The memory ranges specified by
24028@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
24029not overlap, and must appear in order of increasing addresses
24030(although @samp{vFlashErase} packets for higher addresses may already
24031have been received; the ordering is guaranteed only between
24032@samp{vFlashWrite} packets). If a packet writes to an address that was
24033neither erased by a preceding @samp{vFlashErase} packet nor by some other
24034target-specific method, the results are unpredictable.
24035
24036
24037Reply:
24038@table @samp
24039@item OK
24040for success
24041@item E.memtype
24042for vFlashWrite addressing non-flash memory
24043@item E @var{NN}
24044for an error
24045@end table
24046
24047@item vFlashDone
24048@cindex @samp{vFlashDone} packet
24049Indicate to the stub that flash programming operation is finished.
24050The stub is permitted to delay or batch the effects of a group of
24051@samp{vFlashErase} and @samp{vFlashWrite} packets until a
24052@samp{vFlashDone} packet is received. The contents of the affected
24053regions of flash memory are unpredictable until the @samp{vFlashDone}
24054request is completed.
24055
2d717e4f
DJ
24056@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
24057@cindex @samp{vRun} packet
24058Run the program @var{filename}, passing it each @var{argument} on its
24059command line. The file and arguments are hex-encoded strings. If
24060@var{filename} is an empty string, the stub may use a default program
24061(e.g.@: the last program run). The program is created in the stopped
1fddbabb 24062state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
24063
24064This packet is only available in extended mode (@pxref{extended mode}).
24065
24066Reply:
24067@table @samp
24068@item E @var{nn}
24069for an error
24070@item @r{Any stop packet}
24071for success (@pxref{Stop Reply Packets})
24072@end table
24073
b8ff78ce 24074@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 24075@anchor{X packet}
b8ff78ce
JB
24076@cindex @samp{X} packet
24077Write data to memory, where the data is transmitted in binary.
24078@var{addr} is address, @var{length} is number of bytes,
0876f84a 24079@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 24080
ee2d5c50
AC
24081Reply:
24082@table @samp
24083@item OK
24084for success
b8ff78ce 24085@item E @var{NN}
ee2d5c50
AC
24086for an error
24087@end table
24088
b8ff78ce
JB
24089@item z @var{type},@var{addr},@var{length}
24090@itemx Z @var{type},@var{addr},@var{length}
2f870471 24091@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24092@cindex @samp{z} packet
24093@cindex @samp{Z} packets
24094Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24095watchpoint starting at address @var{address} and covering the next
24096@var{length} bytes.
ee2d5c50 24097
2f870471
AC
24098Each breakpoint and watchpoint packet @var{type} is documented
24099separately.
24100
512217c7
AC
24101@emph{Implementation notes: A remote target shall return an empty string
24102for an unrecognized breakpoint or watchpoint packet @var{type}. A
24103remote target shall support either both or neither of a given
b8ff78ce 24104@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24105avoid potential problems with duplicate packets, the operations should
24106be implemented in an idempotent way.}
24107
b8ff78ce
JB
24108@item z0,@var{addr},@var{length}
24109@itemx Z0,@var{addr},@var{length}
24110@cindex @samp{z0} packet
24111@cindex @samp{Z0} packet
24112Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24113@var{addr} of size @var{length}.
2f870471
AC
24114
24115A memory breakpoint is implemented by replacing the instruction at
24116@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24117@var{length} is used by targets that indicates the size of the
2f870471
AC
24118breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24119@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24120
2f870471
AC
24121@emph{Implementation note: It is possible for a target to copy or move
24122code that contains memory breakpoints (e.g., when implementing
24123overlays). The behavior of this packet, in the presence of such a
24124target, is not defined.}
c906108c 24125
ee2d5c50
AC
24126Reply:
24127@table @samp
2f870471
AC
24128@item OK
24129success
24130@item
24131not supported
b8ff78ce 24132@item E @var{NN}
ee2d5c50 24133for an error
2f870471
AC
24134@end table
24135
b8ff78ce
JB
24136@item z1,@var{addr},@var{length}
24137@itemx Z1,@var{addr},@var{length}
24138@cindex @samp{z1} packet
24139@cindex @samp{Z1} packet
24140Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24141address @var{addr} of size @var{length}.
2f870471
AC
24142
24143A hardware breakpoint is implemented using a mechanism that is not
24144dependant on being able to modify the target's memory.
24145
24146@emph{Implementation note: A hardware breakpoint is not affected by code
24147movement.}
24148
24149Reply:
24150@table @samp
ee2d5c50 24151@item OK
2f870471
AC
24152success
24153@item
24154not supported
b8ff78ce 24155@item E @var{NN}
2f870471
AC
24156for an error
24157@end table
24158
b8ff78ce
JB
24159@item z2,@var{addr},@var{length}
24160@itemx Z2,@var{addr},@var{length}
24161@cindex @samp{z2} packet
24162@cindex @samp{Z2} packet
24163Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24164
24165Reply:
24166@table @samp
24167@item OK
24168success
24169@item
24170not supported
b8ff78ce 24171@item E @var{NN}
2f870471
AC
24172for an error
24173@end table
24174
b8ff78ce
JB
24175@item z3,@var{addr},@var{length}
24176@itemx Z3,@var{addr},@var{length}
24177@cindex @samp{z3} packet
24178@cindex @samp{Z3} packet
24179Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24180
24181Reply:
24182@table @samp
24183@item OK
24184success
24185@item
24186not supported
b8ff78ce 24187@item E @var{NN}
2f870471
AC
24188for an error
24189@end table
24190
b8ff78ce
JB
24191@item z4,@var{addr},@var{length}
24192@itemx Z4,@var{addr},@var{length}
24193@cindex @samp{z4} packet
24194@cindex @samp{Z4} packet
24195Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24196
24197Reply:
24198@table @samp
24199@item OK
24200success
24201@item
24202not supported
b8ff78ce 24203@item E @var{NN}
2f870471 24204for an error
ee2d5c50
AC
24205@end table
24206
24207@end table
c906108c 24208
ee2d5c50
AC
24209@node Stop Reply Packets
24210@section Stop Reply Packets
24211@cindex stop reply packets
c906108c 24212
8e04817f
AC
24213The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24214receive any of the below as a reply. In the case of the @samp{C},
24215@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24216when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24217number} is defined by the header @file{include/gdb/signals.h} in the
24218@value{GDBN} source code.
c906108c 24219
b8ff78ce
JB
24220As in the description of request packets, we include spaces in the
24221reply templates for clarity; these are not part of the reply packet's
24222syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24223components.
c906108c 24224
b8ff78ce 24225@table @samp
ee2d5c50 24226
b8ff78ce 24227@item S @var{AA}
599b237a 24228The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24229number). This is equivalent to a @samp{T} response with no
24230@var{n}:@var{r} pairs.
c906108c 24231
b8ff78ce
JB
24232@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24233@cindex @samp{T} packet reply
599b237a 24234The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24235number). This is equivalent to an @samp{S} response, except that the
24236@samp{@var{n}:@var{r}} pairs can carry values of important registers
24237and other information directly in the stop reply packet, reducing
24238round-trip latency. Single-step and breakpoint traps are reported
24239this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24240
24241@itemize @bullet
b8ff78ce 24242@item
599b237a 24243If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24244corresponding @var{r} gives that register's value. @var{r} is a
24245series of bytes in target byte order, with each byte given by a
24246two-digit hex number.
cfa9d6d9 24247
b8ff78ce
JB
24248@item
24249If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24250hex.
cfa9d6d9 24251
b8ff78ce 24252@item
cfa9d6d9
DJ
24253If @var{n} is a recognized @dfn{stop reason}, it describes a more
24254specific event that stopped the target. The currently defined stop
24255reasons are listed below. @var{aa} should be @samp{05}, the trap
24256signal. At most one stop reason should be present.
24257
b8ff78ce
JB
24258@item
24259Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24260and go on to the next; this allows us to extend the protocol in the
24261future.
cfa9d6d9
DJ
24262@end itemize
24263
24264The currently defined stop reasons are:
24265
24266@table @samp
24267@item watch
24268@itemx rwatch
24269@itemx awatch
24270The packet indicates a watchpoint hit, and @var{r} is the data address, in
24271hex.
24272
24273@cindex shared library events, remote reply
24274@item library
24275The packet indicates that the loaded libraries have changed.
24276@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24277list of loaded libraries. @var{r} is ignored.
24278@end table
ee2d5c50 24279
b8ff78ce 24280@item W @var{AA}
8e04817f 24281The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24282applicable to certain targets.
24283
b8ff78ce 24284@item X @var{AA}
8e04817f 24285The process terminated with signal @var{AA}.
c906108c 24286
b8ff78ce
JB
24287@item O @var{XX}@dots{}
24288@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24289written as the program's console output. This can happen at any time
24290while the program is running and the debugger should continue to wait
24291for @samp{W}, @samp{T}, etc.
0ce1b118 24292
b8ff78ce 24293@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24294@var{call-id} is the identifier which says which host system call should
24295be called. This is just the name of the function. Translation into the
24296correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24297@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24298system calls.
24299
b8ff78ce
JB
24300@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24301this very system call.
0ce1b118 24302
b8ff78ce
JB
24303The target replies with this packet when it expects @value{GDBN} to
24304call a host system call on behalf of the target. @value{GDBN} replies
24305with an appropriate @samp{F} packet and keeps up waiting for the next
24306reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24307or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24308Protocol Extension}, for more details.
0ce1b118 24309
ee2d5c50
AC
24310@end table
24311
24312@node General Query Packets
24313@section General Query Packets
9c16f35a 24314@cindex remote query requests
c906108c 24315
5f3bebba
JB
24316Packets starting with @samp{q} are @dfn{general query packets};
24317packets starting with @samp{Q} are @dfn{general set packets}. General
24318query and set packets are a semi-unified form for retrieving and
24319sending information to and from the stub.
24320
24321The initial letter of a query or set packet is followed by a name
24322indicating what sort of thing the packet applies to. For example,
24323@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24324definitions with the stub. These packet names follow some
24325conventions:
24326
24327@itemize @bullet
24328@item
24329The name must not contain commas, colons or semicolons.
24330@item
24331Most @value{GDBN} query and set packets have a leading upper case
24332letter.
24333@item
24334The names of custom vendor packets should use a company prefix, in
24335lower case, followed by a period. For example, packets designed at
24336the Acme Corporation might begin with @samp{qacme.foo} (for querying
24337foos) or @samp{Qacme.bar} (for setting bars).
24338@end itemize
24339
aa56d27a
JB
24340The name of a query or set packet should be separated from any
24341parameters by a @samp{:}; the parameters themselves should be
24342separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24343full packet name, and check for a separator or the end of the packet,
24344in case two packet names share a common prefix. New packets should not begin
24345with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24346packets predate these conventions, and have arguments without any terminator
24347for the packet name; we suspect they are in widespread use in places that
24348are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24349existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24350packet.}.
c906108c 24351
b8ff78ce
JB
24352Like the descriptions of the other packets, each description here
24353has a template showing the packet's overall syntax, followed by an
24354explanation of the packet's meaning. We include spaces in some of the
24355templates for clarity; these are not part of the packet's syntax. No
24356@value{GDBN} packet uses spaces to separate its components.
24357
5f3bebba
JB
24358Here are the currently defined query and set packets:
24359
b8ff78ce 24360@table @samp
c906108c 24361
b8ff78ce 24362@item qC
9c16f35a 24363@cindex current thread, remote request
b8ff78ce 24364@cindex @samp{qC} packet
ee2d5c50
AC
24365Return the current thread id.
24366
24367Reply:
24368@table @samp
b8ff78ce 24369@item QC @var{pid}
599b237a 24370Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24371@item @r{(anything else)}
ee2d5c50
AC
24372Any other reply implies the old pid.
24373@end table
24374
b8ff78ce 24375@item qCRC:@var{addr},@var{length}
ff2587ec 24376@cindex CRC of memory block, remote request
b8ff78ce
JB
24377@cindex @samp{qCRC} packet
24378Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24379Reply:
24380@table @samp
b8ff78ce 24381@item E @var{NN}
ff2587ec 24382An error (such as memory fault)
b8ff78ce
JB
24383@item C @var{crc32}
24384The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24385@end table
24386
b8ff78ce
JB
24387@item qfThreadInfo
24388@itemx qsThreadInfo
9c16f35a 24389@cindex list active threads, remote request
b8ff78ce
JB
24390@cindex @samp{qfThreadInfo} packet
24391@cindex @samp{qsThreadInfo} packet
24392Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24393may be too many active threads to fit into one reply packet, this query
24394works iteratively: it may require more than one query/reply sequence to
24395obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24396be the @samp{qfThreadInfo} query; subsequent queries in the
24397sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24398
b8ff78ce 24399NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24400
24401Reply:
24402@table @samp
b8ff78ce 24403@item m @var{id}
ee2d5c50 24404A single thread id
b8ff78ce 24405@item m @var{id},@var{id}@dots{}
ee2d5c50 24406a comma-separated list of thread ids
b8ff78ce
JB
24407@item l
24408(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24409@end table
24410
24411In response to each query, the target will reply with a list of one or
e1aac25b
JB
24412more thread ids, in big-endian unsigned hex, separated by commas.
24413@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24414ids (using the @samp{qs} form of the query), until the target responds
24415with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24416
b8ff78ce 24417@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24418@cindex get thread-local storage address, remote request
b8ff78ce 24419@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24420Fetch the address associated with thread local storage specified
24421by @var{thread-id}, @var{offset}, and @var{lm}.
24422
24423@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24424thread for which to fetch the TLS address.
24425
24426@var{offset} is the (big endian, hex encoded) offset associated with the
24427thread local variable. (This offset is obtained from the debug
24428information associated with the variable.)
24429
db2e3e2e 24430@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24431the load module associated with the thread local storage. For example,
24432a @sc{gnu}/Linux system will pass the link map address of the shared
24433object associated with the thread local storage under consideration.
24434Other operating environments may choose to represent the load module
24435differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24436
24437Reply:
b8ff78ce
JB
24438@table @samp
24439@item @var{XX}@dots{}
ff2587ec
WZ
24440Hex encoded (big endian) bytes representing the address of the thread
24441local storage requested.
24442
b8ff78ce
JB
24443@item E @var{nn}
24444An error occurred. @var{nn} are hex digits.
ff2587ec 24445
b8ff78ce
JB
24446@item
24447An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24448@end table
24449
b8ff78ce 24450@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24451Obtain thread information from RTOS. Where: @var{startflag} (one hex
24452digit) is one to indicate the first query and zero to indicate a
24453subsequent query; @var{threadcount} (two hex digits) is the maximum
24454number of threads the response packet can contain; and @var{nextthread}
24455(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24456returned in the response as @var{argthread}.
ee2d5c50 24457
b8ff78ce 24458Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24459
24460Reply:
24461@table @samp
b8ff78ce 24462@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24463Where: @var{count} (two hex digits) is the number of threads being
24464returned; @var{done} (one hex digit) is zero to indicate more threads
24465and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24466digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24467is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24468digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24469@end table
c906108c 24470
b8ff78ce 24471@item qOffsets
9c16f35a 24472@cindex section offsets, remote request
b8ff78ce 24473@cindex @samp{qOffsets} packet
31d99776
DJ
24474Get section offsets that the target used when relocating the downloaded
24475image.
c906108c 24476
ee2d5c50
AC
24477Reply:
24478@table @samp
31d99776
DJ
24479@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24480Relocate the @code{Text} section by @var{xxx} from its original address.
24481Relocate the @code{Data} section by @var{yyy} from its original address.
24482If the object file format provides segment information (e.g.@: @sc{elf}
24483@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24484segments by the supplied offsets.
24485
24486@emph{Note: while a @code{Bss} offset may be included in the response,
24487@value{GDBN} ignores this and instead applies the @code{Data} offset
24488to the @code{Bss} section.}
24489
24490@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24491Relocate the first segment of the object file, which conventionally
24492contains program code, to a starting address of @var{xxx}. If
24493@samp{DataSeg} is specified, relocate the second segment, which
24494conventionally contains modifiable data, to a starting address of
24495@var{yyy}. @value{GDBN} will report an error if the object file
24496does not contain segment information, or does not contain at least
24497as many segments as mentioned in the reply. Extra segments are
24498kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24499@end table
24500
b8ff78ce 24501@item qP @var{mode} @var{threadid}
9c16f35a 24502@cindex thread information, remote request
b8ff78ce 24503@cindex @samp{qP} packet
8e04817f
AC
24504Returns information on @var{threadid}. Where: @var{mode} is a hex
24505encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24506
aa56d27a
JB
24507Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24508(see below).
24509
b8ff78ce 24510Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24511
89be2091
DJ
24512@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24513@cindex pass signals to inferior, remote request
24514@cindex @samp{QPassSignals} packet
23181151 24515@anchor{QPassSignals}
89be2091
DJ
24516Each listed @var{signal} should be passed directly to the inferior process.
24517Signals are numbered identically to continue packets and stop replies
24518(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24519strictly greater than the previous item. These signals do not need to stop
24520the inferior, or be reported to @value{GDBN}. All other signals should be
24521reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24522combine; any earlier @samp{QPassSignals} list is completely replaced by the
24523new list. This packet improves performance when using @samp{handle
24524@var{signal} nostop noprint pass}.
24525
24526Reply:
24527@table @samp
24528@item OK
24529The request succeeded.
24530
24531@item E @var{nn}
24532An error occurred. @var{nn} are hex digits.
24533
24534@item
24535An empty reply indicates that @samp{QPassSignals} is not supported by
24536the stub.
24537@end table
24538
24539Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24540command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24541This packet is not probed by default; the remote stub must request it,
24542by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24543
b8ff78ce 24544@item qRcmd,@var{command}
ff2587ec 24545@cindex execute remote command, remote request
b8ff78ce 24546@cindex @samp{qRcmd} packet
ff2587ec 24547@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24548execution. Invalid commands should be reported using the output
24549string. Before the final result packet, the target may also respond
24550with a number of intermediate @samp{O@var{output}} console output
24551packets. @emph{Implementors should note that providing access to a
24552stubs's interpreter may have security implications}.
fa93a9d8 24553
ff2587ec
WZ
24554Reply:
24555@table @samp
24556@item OK
24557A command response with no output.
24558@item @var{OUTPUT}
24559A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24560@item E @var{NN}
ff2587ec 24561Indicate a badly formed request.
b8ff78ce
JB
24562@item
24563An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24564@end table
fa93a9d8 24565
aa56d27a
JB
24566(Note that the @code{qRcmd} packet's name is separated from the
24567command by a @samp{,}, not a @samp{:}, contrary to the naming
24568conventions above. Please don't use this packet as a model for new
24569packets.)
24570
be2a5f71
DJ
24571@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24572@cindex supported packets, remote query
24573@cindex features of the remote protocol
24574@cindex @samp{qSupported} packet
0876f84a 24575@anchor{qSupported}
be2a5f71
DJ
24576Tell the remote stub about features supported by @value{GDBN}, and
24577query the stub for features it supports. This packet allows
24578@value{GDBN} and the remote stub to take advantage of each others'
24579features. @samp{qSupported} also consolidates multiple feature probes
24580at startup, to improve @value{GDBN} performance---a single larger
24581packet performs better than multiple smaller probe packets on
24582high-latency links. Some features may enable behavior which must not
24583be on by default, e.g.@: because it would confuse older clients or
24584stubs. Other features may describe packets which could be
24585automatically probed for, but are not. These features must be
24586reported before @value{GDBN} will use them. This ``default
24587unsupported'' behavior is not appropriate for all packets, but it
24588helps to keep the initial connection time under control with new
24589versions of @value{GDBN} which support increasing numbers of packets.
24590
24591Reply:
24592@table @samp
24593@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24594The stub supports or does not support each returned @var{stubfeature},
24595depending on the form of each @var{stubfeature} (see below for the
24596possible forms).
24597@item
24598An empty reply indicates that @samp{qSupported} is not recognized,
24599or that no features needed to be reported to @value{GDBN}.
24600@end table
24601
24602The allowed forms for each feature (either a @var{gdbfeature} in the
24603@samp{qSupported} packet, or a @var{stubfeature} in the response)
24604are:
24605
24606@table @samp
24607@item @var{name}=@var{value}
24608The remote protocol feature @var{name} is supported, and associated
24609with the specified @var{value}. The format of @var{value} depends
24610on the feature, but it must not include a semicolon.
24611@item @var{name}+
24612The remote protocol feature @var{name} is supported, and does not
24613need an associated value.
24614@item @var{name}-
24615The remote protocol feature @var{name} is not supported.
24616@item @var{name}?
24617The remote protocol feature @var{name} may be supported, and
24618@value{GDBN} should auto-detect support in some other way when it is
24619needed. This form will not be used for @var{gdbfeature} notifications,
24620but may be used for @var{stubfeature} responses.
24621@end table
24622
24623Whenever the stub receives a @samp{qSupported} request, the
24624supplied set of @value{GDBN} features should override any previous
24625request. This allows @value{GDBN} to put the stub in a known
24626state, even if the stub had previously been communicating with
24627a different version of @value{GDBN}.
24628
24629No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24630are defined yet. Stubs should ignore any unknown values for
24631@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24632packet supports receiving packets of unlimited length (earlier
24633versions of @value{GDBN} may reject overly long responses). Values
24634for @var{gdbfeature} may be defined in the future to let the stub take
24635advantage of new features in @value{GDBN}, e.g.@: incompatible
24636improvements in the remote protocol---support for unlimited length
24637responses would be a @var{gdbfeature} example, if it were not implied by
24638the @samp{qSupported} query. The stub's reply should be independent
24639of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24640describes all the features it supports, and then the stub replies with
24641all the features it supports.
24642
24643Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24644responses, as long as each response uses one of the standard forms.
24645
24646Some features are flags. A stub which supports a flag feature
24647should respond with a @samp{+} form response. Other features
24648require values, and the stub should respond with an @samp{=}
24649form response.
24650
24651Each feature has a default value, which @value{GDBN} will use if
24652@samp{qSupported} is not available or if the feature is not mentioned
24653in the @samp{qSupported} response. The default values are fixed; a
24654stub is free to omit any feature responses that match the defaults.
24655
24656Not all features can be probed, but for those which can, the probing
24657mechanism is useful: in some cases, a stub's internal
24658architecture may not allow the protocol layer to know some information
24659about the underlying target in advance. This is especially common in
24660stubs which may be configured for multiple targets.
24661
24662These are the currently defined stub features and their properties:
24663
cfa9d6d9 24664@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24665@c NOTE: The first row should be @headitem, but we do not yet require
24666@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24667@item Feature Name
be2a5f71
DJ
24668@tab Value Required
24669@tab Default
24670@tab Probe Allowed
24671
24672@item @samp{PacketSize}
24673@tab Yes
24674@tab @samp{-}
24675@tab No
24676
0876f84a
DJ
24677@item @samp{qXfer:auxv:read}
24678@tab No
24679@tab @samp{-}
24680@tab Yes
24681
23181151
DJ
24682@item @samp{qXfer:features:read}
24683@tab No
24684@tab @samp{-}
24685@tab Yes
24686
cfa9d6d9
DJ
24687@item @samp{qXfer:libraries:read}
24688@tab No
24689@tab @samp{-}
24690@tab Yes
24691
68437a39
DJ
24692@item @samp{qXfer:memory-map:read}
24693@tab No
24694@tab @samp{-}
24695@tab Yes
24696
0e7f50da
UW
24697@item @samp{qXfer:spu:read}
24698@tab No
24699@tab @samp{-}
24700@tab Yes
24701
24702@item @samp{qXfer:spu:write}
24703@tab No
24704@tab @samp{-}
24705@tab Yes
24706
89be2091
DJ
24707@item @samp{QPassSignals}
24708@tab No
24709@tab @samp{-}
24710@tab Yes
24711
be2a5f71
DJ
24712@end multitable
24713
24714These are the currently defined stub features, in more detail:
24715
24716@table @samp
24717@cindex packet size, remote protocol
24718@item PacketSize=@var{bytes}
24719The remote stub can accept packets up to at least @var{bytes} in
24720length. @value{GDBN} will send packets up to this size for bulk
24721transfers, and will never send larger packets. This is a limit on the
24722data characters in the packet, including the frame and checksum.
24723There is no trailing NUL byte in a remote protocol packet; if the stub
24724stores packets in a NUL-terminated format, it should allow an extra
24725byte in its buffer for the NUL. If this stub feature is not supported,
24726@value{GDBN} guesses based on the size of the @samp{g} packet response.
24727
0876f84a
DJ
24728@item qXfer:auxv:read
24729The remote stub understands the @samp{qXfer:auxv:read} packet
24730(@pxref{qXfer auxiliary vector read}).
24731
23181151
DJ
24732@item qXfer:features:read
24733The remote stub understands the @samp{qXfer:features:read} packet
24734(@pxref{qXfer target description read}).
24735
cfa9d6d9
DJ
24736@item qXfer:libraries:read
24737The remote stub understands the @samp{qXfer:libraries:read} packet
24738(@pxref{qXfer library list read}).
24739
23181151
DJ
24740@item qXfer:memory-map:read
24741The remote stub understands the @samp{qXfer:memory-map:read} packet
24742(@pxref{qXfer memory map read}).
24743
0e7f50da
UW
24744@item qXfer:spu:read
24745The remote stub understands the @samp{qXfer:spu:read} packet
24746(@pxref{qXfer spu read}).
24747
24748@item qXfer:spu:write
24749The remote stub understands the @samp{qXfer:spu:write} packet
24750(@pxref{qXfer spu write}).
24751
23181151
DJ
24752@item QPassSignals
24753The remote stub understands the @samp{QPassSignals} packet
24754(@pxref{QPassSignals}).
24755
be2a5f71
DJ
24756@end table
24757
b8ff78ce 24758@item qSymbol::
ff2587ec 24759@cindex symbol lookup, remote request
b8ff78ce 24760@cindex @samp{qSymbol} packet
ff2587ec
WZ
24761Notify the target that @value{GDBN} is prepared to serve symbol lookup
24762requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24763
24764Reply:
ff2587ec 24765@table @samp
b8ff78ce 24766@item OK
ff2587ec 24767The target does not need to look up any (more) symbols.
b8ff78ce 24768@item qSymbol:@var{sym_name}
ff2587ec
WZ
24769The target requests the value of symbol @var{sym_name} (hex encoded).
24770@value{GDBN} may provide the value by using the
b8ff78ce
JB
24771@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24772below.
ff2587ec 24773@end table
83761cbd 24774
b8ff78ce 24775@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24776Set the value of @var{sym_name} to @var{sym_value}.
24777
24778@var{sym_name} (hex encoded) is the name of a symbol whose value the
24779target has previously requested.
24780
24781@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24782@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24783will be empty.
24784
24785Reply:
24786@table @samp
b8ff78ce 24787@item OK
ff2587ec 24788The target does not need to look up any (more) symbols.
b8ff78ce 24789@item qSymbol:@var{sym_name}
ff2587ec
WZ
24790The target requests the value of a new symbol @var{sym_name} (hex
24791encoded). @value{GDBN} will continue to supply the values of symbols
24792(if available), until the target ceases to request them.
fa93a9d8 24793@end table
0abb7bc7 24794
9d29849a
JB
24795@item QTDP
24796@itemx QTFrame
24797@xref{Tracepoint Packets}.
24798
b8ff78ce 24799@item qThreadExtraInfo,@var{id}
ff2587ec 24800@cindex thread attributes info, remote request
b8ff78ce
JB
24801@cindex @samp{qThreadExtraInfo} packet
24802Obtain a printable string description of a thread's attributes from
24803the target OS. @var{id} is a thread-id in big-endian hex. This
24804string may contain anything that the target OS thinks is interesting
24805for @value{GDBN} to tell the user about the thread. The string is
24806displayed in @value{GDBN}'s @code{info threads} display. Some
24807examples of possible thread extra info strings are @samp{Runnable}, or
24808@samp{Blocked on Mutex}.
ff2587ec
WZ
24809
24810Reply:
24811@table @samp
b8ff78ce
JB
24812@item @var{XX}@dots{}
24813Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24814comprising the printable string containing the extra information about
24815the thread's attributes.
ff2587ec 24816@end table
814e32d7 24817
aa56d27a
JB
24818(Note that the @code{qThreadExtraInfo} packet's name is separated from
24819the command by a @samp{,}, not a @samp{:}, contrary to the naming
24820conventions above. Please don't use this packet as a model for new
24821packets.)
24822
9d29849a
JB
24823@item QTStart
24824@itemx QTStop
24825@itemx QTinit
24826@itemx QTro
24827@itemx qTStatus
24828@xref{Tracepoint Packets}.
24829
0876f84a
DJ
24830@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24831@cindex read special object, remote request
24832@cindex @samp{qXfer} packet
68437a39 24833@anchor{qXfer read}
0876f84a
DJ
24834Read uninterpreted bytes from the target's special data area
24835identified by the keyword @var{object}. Request @var{length} bytes
24836starting at @var{offset} bytes into the data. The content and
0e7f50da 24837encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24838additional details about what data to access.
24839
24840Here are the specific requests of this form defined so far. All
24841@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24842formats, listed below.
24843
24844@table @samp
24845@item qXfer:auxv:read::@var{offset},@var{length}
24846@anchor{qXfer auxiliary vector read}
24847Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24848auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24849
24850This packet is not probed by default; the remote stub must request it,
89be2091 24851by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24852
23181151
DJ
24853@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24854@anchor{qXfer target description read}
24855Access the @dfn{target description}. @xref{Target Descriptions}. The
24856annex specifies which XML document to access. The main description is
24857always loaded from the @samp{target.xml} annex.
24858
24859This packet is not probed by default; the remote stub must request it,
24860by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24861
cfa9d6d9
DJ
24862@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24863@anchor{qXfer library list read}
24864Access the target's list of loaded libraries. @xref{Library List Format}.
24865The annex part of the generic @samp{qXfer} packet must be empty
24866(@pxref{qXfer read}).
24867
24868Targets which maintain a list of libraries in the program's memory do
24869not need to implement this packet; it is designed for platforms where
24870the operating system manages the list of loaded libraries.
24871
24872This packet is not probed by default; the remote stub must request it,
24873by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24874
68437a39
DJ
24875@item qXfer:memory-map:read::@var{offset},@var{length}
24876@anchor{qXfer memory map read}
79a6e687 24877Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24878annex part of the generic @samp{qXfer} packet must be empty
24879(@pxref{qXfer read}).
24880
0e7f50da
UW
24881This packet is not probed by default; the remote stub must request it,
24882by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24883
24884@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24885@anchor{qXfer spu read}
24886Read contents of an @code{spufs} file on the target system. The
24887annex specifies which file to read; it must be of the form
24888@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24889in the target process, and @var{name} identifes the @code{spufs} file
24890in that context to be accessed.
24891
68437a39
DJ
24892This packet is not probed by default; the remote stub must request it,
24893by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24894@end table
24895
0876f84a
DJ
24896Reply:
24897@table @samp
24898@item m @var{data}
24899Data @var{data} (@pxref{Binary Data}) has been read from the
24900target. There may be more data at a higher address (although
24901it is permitted to return @samp{m} even for the last valid
24902block of data, as long as at least one byte of data was read).
24903@var{data} may have fewer bytes than the @var{length} in the
24904request.
24905
24906@item l @var{data}
24907Data @var{data} (@pxref{Binary Data}) has been read from the target.
24908There is no more data to be read. @var{data} may have fewer bytes
24909than the @var{length} in the request.
24910
24911@item l
24912The @var{offset} in the request is at the end of the data.
24913There is no more data to be read.
24914
24915@item E00
24916The request was malformed, or @var{annex} was invalid.
24917
24918@item E @var{nn}
24919The offset was invalid, or there was an error encountered reading the data.
24920@var{nn} is a hex-encoded @code{errno} value.
24921
24922@item
24923An empty reply indicates the @var{object} string was not recognized by
24924the stub, or that the object does not support reading.
24925@end table
24926
24927@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24928@cindex write data into object, remote request
24929Write uninterpreted bytes into the target's special data area
24930identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24931into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24932(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24933is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24934to access.
24935
0e7f50da
UW
24936Here are the specific requests of this form defined so far. All
24937@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24938formats, listed below.
24939
24940@table @samp
24941@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24942@anchor{qXfer spu write}
24943Write @var{data} to an @code{spufs} file on the target system. The
24944annex specifies which file to write; it must be of the form
24945@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24946in the target process, and @var{name} identifes the @code{spufs} file
24947in that context to be accessed.
24948
24949This packet is not probed by default; the remote stub must request it,
24950by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24951@end table
0876f84a
DJ
24952
24953Reply:
24954@table @samp
24955@item @var{nn}
24956@var{nn} (hex encoded) is the number of bytes written.
24957This may be fewer bytes than supplied in the request.
24958
24959@item E00
24960The request was malformed, or @var{annex} was invalid.
24961
24962@item E @var{nn}
24963The offset was invalid, or there was an error encountered writing the data.
24964@var{nn} is a hex-encoded @code{errno} value.
24965
24966@item
24967An empty reply indicates the @var{object} string was not
24968recognized by the stub, or that the object does not support writing.
24969@end table
24970
24971@item qXfer:@var{object}:@var{operation}:@dots{}
24972Requests of this form may be added in the future. When a stub does
24973not recognize the @var{object} keyword, or its support for
24974@var{object} does not recognize the @var{operation} keyword, the stub
24975must respond with an empty packet.
24976
ee2d5c50
AC
24977@end table
24978
24979@node Register Packet Format
24980@section Register Packet Format
eb12ee30 24981
b8ff78ce 24982The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24983In the below, some thirty-two bit registers are transferred as
24984sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24985to fill the space allocated. Register bytes are transferred in target
24986byte order. The two nibbles within a register byte are transferred
ee2d5c50 24987most-significant - least-significant.
eb12ee30 24988
ee2d5c50 24989@table @r
eb12ee30 24990
8e04817f 24991@item MIPS32
ee2d5c50 24992
599b237a 24993All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2499432 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24995registers; fsr; fir; fp.
eb12ee30 24996
8e04817f 24997@item MIPS64
ee2d5c50 24998
599b237a 24999All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
25000thirty-two bit registers such as @code{sr}). The ordering is the same
25001as @code{MIPS32}.
eb12ee30 25002
ee2d5c50
AC
25003@end table
25004
9d29849a
JB
25005@node Tracepoint Packets
25006@section Tracepoint Packets
25007@cindex tracepoint packets
25008@cindex packets, tracepoint
25009
25010Here we describe the packets @value{GDBN} uses to implement
25011tracepoints (@pxref{Tracepoints}).
25012
25013@table @samp
25014
25015@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
25016Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
25017is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
25018the tracepoint is disabled. @var{step} is the tracepoint's step
25019count, and @var{pass} is its pass count. If the trailing @samp{-} is
25020present, further @samp{QTDP} packets will follow to specify this
25021tracepoint's actions.
25022
25023Replies:
25024@table @samp
25025@item OK
25026The packet was understood and carried out.
25027@item
25028The packet was not recognized.
25029@end table
25030
25031@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
25032Define actions to be taken when a tracepoint is hit. @var{n} and
25033@var{addr} must be the same as in the initial @samp{QTDP} packet for
25034this tracepoint. This packet may only be sent immediately after
25035another @samp{QTDP} packet that ended with a @samp{-}. If the
25036trailing @samp{-} is present, further @samp{QTDP} packets will follow,
25037specifying more actions for this tracepoint.
25038
25039In the series of action packets for a given tracepoint, at most one
25040can have an @samp{S} before its first @var{action}. If such a packet
25041is sent, it and the following packets define ``while-stepping''
25042actions. Any prior packets define ordinary actions --- that is, those
25043taken when the tracepoint is first hit. If no action packet has an
25044@samp{S}, then all the packets in the series specify ordinary
25045tracepoint actions.
25046
25047The @samp{@var{action}@dots{}} portion of the packet is a series of
25048actions, concatenated without separators. Each action has one of the
25049following forms:
25050
25051@table @samp
25052
25053@item R @var{mask}
25054Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 25055a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
25056@var{i} should be collected. (The least significant bit is numbered
25057zero.) Note that @var{mask} may be any number of digits long; it may
25058not fit in a 32-bit word.
25059
25060@item M @var{basereg},@var{offset},@var{len}
25061Collect @var{len} bytes of memory starting at the address in register
25062number @var{basereg}, plus @var{offset}. If @var{basereg} is
25063@samp{-1}, then the range has a fixed address: @var{offset} is the
25064address of the lowest byte to collect. The @var{basereg},
599b237a 25065@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
25066values (the @samp{-1} value for @var{basereg} is a special case).
25067
25068@item X @var{len},@var{expr}
25069Evaluate @var{expr}, whose length is @var{len}, and collect memory as
25070it directs. @var{expr} is an agent expression, as described in
25071@ref{Agent Expressions}. Each byte of the expression is encoded as a
25072two-digit hex number in the packet; @var{len} is the number of bytes
25073in the expression (and thus one-half the number of hex digits in the
25074packet).
25075
25076@end table
25077
25078Any number of actions may be packed together in a single @samp{QTDP}
25079packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
25080length (400 bytes, for many stubs). There may be only one @samp{R}
25081action per tracepoint, and it must precede any @samp{M} or @samp{X}
25082actions. Any registers referred to by @samp{M} and @samp{X} actions
25083must be collected by a preceding @samp{R} action. (The
25084``while-stepping'' actions are treated as if they were attached to a
25085separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25086
25087Replies:
25088@table @samp
25089@item OK
25090The packet was understood and carried out.
25091@item
25092The packet was not recognized.
25093@end table
25094
25095@item QTFrame:@var{n}
25096Select the @var{n}'th tracepoint frame from the buffer, and use the
25097register and memory contents recorded there to answer subsequent
25098request packets from @value{GDBN}.
25099
25100A successful reply from the stub indicates that the stub has found the
25101requested frame. The response is a series of parts, concatenated
25102without separators, describing the frame we selected. Each part has
25103one of the following forms:
25104
25105@table @samp
25106@item F @var{f}
25107The selected frame is number @var{n} in the trace frame buffer;
599b237a 25108@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25109was no frame matching the criteria in the request packet.
25110
25111@item T @var{t}
25112The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25113@var{t} is a hexadecimal number.
9d29849a
JB
25114
25115@end table
25116
25117@item QTFrame:pc:@var{addr}
25118Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25119currently selected frame whose PC is @var{addr};
599b237a 25120@var{addr} is a hexadecimal number.
9d29849a
JB
25121
25122@item QTFrame:tdp:@var{t}
25123Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25124currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25125is a hexadecimal number.
9d29849a
JB
25126
25127@item QTFrame:range:@var{start}:@var{end}
25128Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25129currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25130and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25131numbers.
25132
25133@item QTFrame:outside:@var{start}:@var{end}
25134Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25135frame @emph{outside} the given range of addresses.
25136
25137@item QTStart
25138Begin the tracepoint experiment. Begin collecting data from tracepoint
25139hits in the trace frame buffer.
25140
25141@item QTStop
25142End the tracepoint experiment. Stop collecting trace frames.
25143
25144@item QTinit
25145Clear the table of tracepoints, and empty the trace frame buffer.
25146
25147@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25148Establish the given ranges of memory as ``transparent''. The stub
25149will answer requests for these ranges from memory's current contents,
25150if they were not collected as part of the tracepoint hit.
25151
25152@value{GDBN} uses this to mark read-only regions of memory, like those
25153containing program code. Since these areas never change, they should
25154still have the same contents they did when the tracepoint was hit, so
25155there's no reason for the stub to refuse to provide their contents.
25156
25157@item qTStatus
25158Ask the stub if there is a trace experiment running right now.
25159
25160Replies:
25161@table @samp
25162@item T0
25163There is no trace experiment running.
25164@item T1
25165There is a trace experiment running.
25166@end table
25167
25168@end table
25169
25170
a6b151f1
DJ
25171@node Host I/O Packets
25172@section Host I/O Packets
25173@cindex Host I/O, remote protocol
25174@cindex file transfer, remote protocol
25175
25176The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25177operations on the far side of a remote link. For example, Host I/O is
25178used to upload and download files to a remote target with its own
25179filesystem. Host I/O uses the same constant values and data structure
25180layout as the target-initiated File-I/O protocol. However, the
25181Host I/O packets are structured differently. The target-initiated
25182protocol relies on target memory to store parameters and buffers.
25183Host I/O requests are initiated by @value{GDBN}, and the
25184target's memory is not involved. @xref{File-I/O Remote Protocol
25185Extension}, for more details on the target-initiated protocol.
25186
25187The Host I/O request packets all encode a single operation along with
25188its arguments. They have this format:
25189
25190@table @samp
25191
25192@item vFile:@var{operation}: @var{parameter}@dots{}
25193@var{operation} is the name of the particular request; the target
25194should compare the entire packet name up to the second colon when checking
25195for a supported operation. The format of @var{parameter} depends on
25196the operation. Numbers are always passed in hexadecimal. Negative
25197numbers have an explicit minus sign (i.e.@: two's complement is not
25198used). Strings (e.g.@: filenames) are encoded as a series of
25199hexadecimal bytes. The last argument to a system call may be a
25200buffer of escaped binary data (@pxref{Binary Data}).
25201
25202@end table
25203
25204The valid responses to Host I/O packets are:
25205
25206@table @samp
25207
25208@item F @var{result} [, @var{errno}] [; @var{attachment}]
25209@var{result} is the integer value returned by this operation, usually
25210non-negative for success and -1 for errors. If an error has occured,
25211@var{errno} will be included in the result. @var{errno} will have a
25212value defined by the File-I/O protocol (@pxref{Errno Values}). For
25213operations which return data, @var{attachment} supplies the data as a
25214binary buffer. Binary buffers in response packets are escaped in the
25215normal way (@pxref{Binary Data}). See the individual packet
25216documentation for the interpretation of @var{result} and
25217@var{attachment}.
25218
25219@item
25220An empty response indicates that this operation is not recognized.
25221
25222@end table
25223
25224These are the supported Host I/O operations:
25225
25226@table @samp
25227@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25228Open a file at @var{pathname} and return a file descriptor for it, or
25229return -1 if an error occurs. @var{pathname} is a string,
25230@var{flags} is an integer indicating a mask of open flags
25231(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25232of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25233@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25234
25235@item vFile:close: @var{fd}
25236Close the open file corresponding to @var{fd} and return 0, or
25237-1 if an error occurs.
25238
25239@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25240Read data from the open file corresponding to @var{fd}. Up to
25241@var{count} bytes will be read from the file, starting at @var{offset}
25242relative to the start of the file. The target may read fewer bytes;
25243common reasons include packet size limits and an end-of-file
25244condition. The number of bytes read is returned. Zero should only be
25245returned for a successful read at the end of the file, or if
25246@var{count} was zero.
25247
25248The data read should be returned as a binary attachment on success.
25249If zero bytes were read, the response should include an empty binary
25250attachment (i.e.@: a trailing semicolon). The return value is the
25251number of target bytes read; the binary attachment may be longer if
25252some characters were escaped.
25253
25254@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25255Write @var{data} (a binary buffer) to the open file corresponding
25256to @var{fd}. Start the write at @var{offset} from the start of the
25257file. Unlike many @code{write} system calls, there is no
25258separate @var{count} argument; the length of @var{data} in the
25259packet is used. @samp{vFile:write} returns the number of bytes written,
25260which may be shorter than the length of @var{data}, or -1 if an
25261error occurred.
25262
25263@item vFile:unlink: @var{pathname}
25264Delete the file at @var{pathname} on the target. Return 0,
25265or -1 if an error occurs. @var{pathname} is a string.
25266
25267@end table
25268
9a6253be
KB
25269@node Interrupts
25270@section Interrupts
25271@cindex interrupts (remote protocol)
25272
25273When a program on the remote target is running, @value{GDBN} may
25274attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25275control of which is specified via @value{GDBN}'s @samp{remotebreak}
25276setting (@pxref{set remotebreak}).
25277
25278The precise meaning of @code{BREAK} is defined by the transport
25279mechanism and may, in fact, be undefined. @value{GDBN} does
25280not currently define a @code{BREAK} mechanism for any of the network
25281interfaces.
25282
25283@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25284transport mechanisms. It is represented by sending the single byte
25285@code{0x03} without any of the usual packet overhead described in
25286the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25287transmitted as part of a packet, it is considered to be packet data
25288and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25289(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25290@code{0x03} as part of its packet.
25291
25292Stubs are not required to recognize these interrupt mechanisms and the
25293precise meaning associated with receipt of the interrupt is
25294implementation defined. If the stub is successful at interrupting the
25295running program, it is expected that it will send one of the Stop
25296Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25297of successfully stopping the program. Interrupts received while the
25298program is stopped will be discarded.
25299
ee2d5c50
AC
25300@node Examples
25301@section Examples
eb12ee30 25302
8e04817f
AC
25303Example sequence of a target being re-started. Notice how the restart
25304does not get any direct output:
eb12ee30 25305
474c8240 25306@smallexample
d2c6833e
AC
25307-> @code{R00}
25308<- @code{+}
8e04817f 25309@emph{target restarts}
d2c6833e 25310-> @code{?}
8e04817f 25311<- @code{+}
d2c6833e
AC
25312<- @code{T001:1234123412341234}
25313-> @code{+}
474c8240 25314@end smallexample
eb12ee30 25315
8e04817f 25316Example sequence of a target being stepped by a single instruction:
eb12ee30 25317
474c8240 25318@smallexample
d2c6833e 25319-> @code{G1445@dots{}}
8e04817f 25320<- @code{+}
d2c6833e
AC
25321-> @code{s}
25322<- @code{+}
25323@emph{time passes}
25324<- @code{T001:1234123412341234}
8e04817f 25325-> @code{+}
d2c6833e 25326-> @code{g}
8e04817f 25327<- @code{+}
d2c6833e
AC
25328<- @code{1455@dots{}}
25329-> @code{+}
474c8240 25330@end smallexample
eb12ee30 25331
79a6e687
BW
25332@node File-I/O Remote Protocol Extension
25333@section File-I/O Remote Protocol Extension
0ce1b118
CV
25334@cindex File-I/O remote protocol extension
25335
25336@menu
25337* File-I/O Overview::
79a6e687
BW
25338* Protocol Basics::
25339* The F Request Packet::
25340* The F Reply Packet::
25341* The Ctrl-C Message::
0ce1b118 25342* Console I/O::
79a6e687 25343* List of Supported Calls::
db2e3e2e 25344* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25345* Constants::
25346* File-I/O Examples::
25347@end menu
25348
25349@node File-I/O Overview
25350@subsection File-I/O Overview
25351@cindex file-i/o overview
25352
9c16f35a 25353The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25354target to use the host's file system and console I/O to perform various
0ce1b118 25355system calls. System calls on the target system are translated into a
fc320d37
SL
25356remote protocol packet to the host system, which then performs the needed
25357actions and returns a response packet to the target system.
0ce1b118
CV
25358This simulates file system operations even on targets that lack file systems.
25359
fc320d37
SL
25360The protocol is defined to be independent of both the host and target systems.
25361It uses its own internal representation of datatypes and values. Both
0ce1b118 25362@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25363translating the system-dependent value representations into the internal
25364protocol representations when data is transmitted.
0ce1b118 25365
fc320d37
SL
25366The communication is synchronous. A system call is possible only when
25367@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25368or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25369the target is stopped to allow deterministic access to the target's
fc320d37
SL
25370memory. Therefore File-I/O is not interruptible by target signals. On
25371the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25372(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25373
25374The target's request to perform a host system call does not finish
25375the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25376after finishing the system call, the target returns to continuing the
25377previous activity (continue, step). No additional continue or step
25378request from @value{GDBN} is required.
25379
25380@smallexample
f7dc1244 25381(@value{GDBP}) continue
0ce1b118
CV
25382 <- target requests 'system call X'
25383 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25384 -> @value{GDBN} returns result
25385 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25386 <- target hits breakpoint and sends a Txx packet
25387@end smallexample
25388
fc320d37
SL
25389The protocol only supports I/O on the console and to regular files on
25390the host file system. Character or block special devices, pipes,
25391named pipes, sockets or any other communication method on the host
0ce1b118
CV
25392system are not supported by this protocol.
25393
79a6e687
BW
25394@node Protocol Basics
25395@subsection Protocol Basics
0ce1b118
CV
25396@cindex protocol basics, file-i/o
25397
fc320d37
SL
25398The File-I/O protocol uses the @code{F} packet as the request as well
25399as reply packet. Since a File-I/O system call can only occur when
25400@value{GDBN} is waiting for a response from the continuing or stepping target,
25401the File-I/O request is a reply that @value{GDBN} has to expect as a result
25402of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25403This @code{F} packet contains all information needed to allow @value{GDBN}
25404to call the appropriate host system call:
25405
25406@itemize @bullet
b383017d 25407@item
0ce1b118
CV
25408A unique identifier for the requested system call.
25409
25410@item
25411All parameters to the system call. Pointers are given as addresses
25412in the target memory address space. Pointers to strings are given as
b383017d 25413pointer/length pair. Numerical values are given as they are.
db2e3e2e 25414Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25415
25416@end itemize
25417
fc320d37 25418At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25419
25420@itemize @bullet
b383017d 25421@item
fc320d37
SL
25422If the parameters include pointer values to data needed as input to a
25423system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25424standard @code{m} packet request. This additional communication has to be
25425expected by the target implementation and is handled as any other @code{m}
25426packet.
25427
25428@item
25429@value{GDBN} translates all value from protocol representation to host
25430representation as needed. Datatypes are coerced into the host types.
25431
25432@item
fc320d37 25433@value{GDBN} calls the system call.
0ce1b118
CV
25434
25435@item
25436It then coerces datatypes back to protocol representation.
25437
25438@item
fc320d37
SL
25439If the system call is expected to return data in buffer space specified
25440by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25441target using a @code{M} or @code{X} packet. This packet has to be expected
25442by the target implementation and is handled as any other @code{M} or @code{X}
25443packet.
25444
25445@end itemize
25446
25447Eventually @value{GDBN} replies with another @code{F} packet which contains all
25448necessary information for the target to continue. This at least contains
25449
25450@itemize @bullet
25451@item
25452Return value.
25453
25454@item
25455@code{errno}, if has been changed by the system call.
25456
25457@item
25458``Ctrl-C'' flag.
25459
25460@end itemize
25461
25462After having done the needed type and value coercion, the target continues
25463the latest continue or step action.
25464
79a6e687
BW
25465@node The F Request Packet
25466@subsection The @code{F} Request Packet
0ce1b118
CV
25467@cindex file-i/o request packet
25468@cindex @code{F} request packet
25469
25470The @code{F} request packet has the following format:
25471
25472@table @samp
fc320d37 25473@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25474
25475@var{call-id} is the identifier to indicate the host system call to be called.
25476This is just the name of the function.
25477
fc320d37
SL
25478@var{parameter@dots{}} are the parameters to the system call.
25479Parameters are hexadecimal integer values, either the actual values in case
25480of scalar datatypes, pointers to target buffer space in case of compound
25481datatypes and unspecified memory areas, or pointer/length pairs in case
25482of string parameters. These are appended to the @var{call-id} as a
25483comma-delimited list. All values are transmitted in ASCII
25484string representation, pointer/length pairs separated by a slash.
0ce1b118 25485
b383017d 25486@end table
0ce1b118 25487
fc320d37 25488
0ce1b118 25489
79a6e687
BW
25490@node The F Reply Packet
25491@subsection The @code{F} Reply Packet
0ce1b118
CV
25492@cindex file-i/o reply packet
25493@cindex @code{F} reply packet
25494
25495The @code{F} reply packet has the following format:
25496
25497@table @samp
25498
d3bdde98 25499@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25500
25501@var{retcode} is the return code of the system call as hexadecimal value.
25502
db2e3e2e
BW
25503@var{errno} is the @code{errno} set by the call, in protocol-specific
25504representation.
0ce1b118
CV
25505This parameter can be omitted if the call was successful.
25506
fc320d37
SL
25507@var{Ctrl-C flag} is only sent if the user requested a break. In this
25508case, @var{errno} must be sent as well, even if the call was successful.
25509The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25510
25511@smallexample
25512F0,0,C
25513@end smallexample
25514
25515@noindent
fc320d37 25516or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25517
25518@smallexample
25519F-1,4,C
25520@end smallexample
25521
25522@noindent
db2e3e2e 25523assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25524
25525@end table
25526
0ce1b118 25527
79a6e687
BW
25528@node The Ctrl-C Message
25529@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25530@cindex ctrl-c message, in file-i/o protocol
25531
c8aa23ab 25532If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25533reply packet (@pxref{The F Reply Packet}),
fc320d37 25534the target should behave as if it had
0ce1b118 25535gotten a break message. The meaning for the target is ``system call
fc320d37 25536interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25537(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25538packet.
fc320d37
SL
25539
25540It's important for the target to know in which
25541state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25542
25543@itemize @bullet
25544@item
25545The system call hasn't been performed on the host yet.
25546
25547@item
25548The system call on the host has been finished.
25549
25550@end itemize
25551
25552These two states can be distinguished by the target by the value of the
25553returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25554call hasn't been performed. This is equivalent to the @code{EINTR} handling
25555on POSIX systems. In any other case, the target may presume that the
fc320d37 25556system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25557as if the break message arrived right after the system call.
25558
fc320d37 25559@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25560yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25561@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25562before the user requests a break, the full action must be finished by
25563@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25564The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25565or the full action has been completed.
25566
25567@node Console I/O
25568@subsection Console I/O
25569@cindex console i/o as part of file-i/o
25570
d3e8051b 25571By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25572descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25573on the @value{GDBN} console is handled as any other file output operation
25574(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25575by @value{GDBN} so that after the target read request from file descriptor
255760 all following typing is buffered until either one of the following
25577conditions is met:
25578
25579@itemize @bullet
25580@item
c8aa23ab 25581The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25582@code{read}
25583system call is treated as finished.
25584
25585@item
7f9087cb 25586The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25587newline.
0ce1b118
CV
25588
25589@item
c8aa23ab
EZ
25590The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25591character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25592
25593@end itemize
25594
fc320d37
SL
25595If the user has typed more characters than fit in the buffer given to
25596the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25597either another @code{read(0, @dots{})} is requested by the target, or debugging
25598is stopped at the user's request.
0ce1b118 25599
0ce1b118 25600
79a6e687
BW
25601@node List of Supported Calls
25602@subsection List of Supported Calls
0ce1b118
CV
25603@cindex list of supported file-i/o calls
25604
25605@menu
25606* open::
25607* close::
25608* read::
25609* write::
25610* lseek::
25611* rename::
25612* unlink::
25613* stat/fstat::
25614* gettimeofday::
25615* isatty::
25616* system::
25617@end menu
25618
25619@node open
25620@unnumberedsubsubsec open
25621@cindex open, file-i/o system call
25622
fc320d37
SL
25623@table @asis
25624@item Synopsis:
0ce1b118 25625@smallexample
0ce1b118
CV
25626int open(const char *pathname, int flags);
25627int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25628@end smallexample
25629
fc320d37
SL
25630@item Request:
25631@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25632
0ce1b118 25633@noindent
fc320d37 25634@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25635
25636@table @code
b383017d 25637@item O_CREAT
0ce1b118
CV
25638If the file does not exist it will be created. The host
25639rules apply as far as file ownership and time stamps
25640are concerned.
25641
b383017d 25642@item O_EXCL
fc320d37 25643When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25644an error and open() fails.
25645
b383017d 25646@item O_TRUNC
0ce1b118 25647If the file already exists and the open mode allows
fc320d37
SL
25648writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25649truncated to zero length.
0ce1b118 25650
b383017d 25651@item O_APPEND
0ce1b118
CV
25652The file is opened in append mode.
25653
b383017d 25654@item O_RDONLY
0ce1b118
CV
25655The file is opened for reading only.
25656
b383017d 25657@item O_WRONLY
0ce1b118
CV
25658The file is opened for writing only.
25659
b383017d 25660@item O_RDWR
0ce1b118 25661The file is opened for reading and writing.
fc320d37 25662@end table
0ce1b118
CV
25663
25664@noindent
fc320d37 25665Other bits are silently ignored.
0ce1b118 25666
0ce1b118
CV
25667
25668@noindent
fc320d37 25669@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25670
25671@table @code
b383017d 25672@item S_IRUSR
0ce1b118
CV
25673User has read permission.
25674
b383017d 25675@item S_IWUSR
0ce1b118
CV
25676User has write permission.
25677
b383017d 25678@item S_IRGRP
0ce1b118
CV
25679Group has read permission.
25680
b383017d 25681@item S_IWGRP
0ce1b118
CV
25682Group has write permission.
25683
b383017d 25684@item S_IROTH
0ce1b118
CV
25685Others have read permission.
25686
b383017d 25687@item S_IWOTH
0ce1b118 25688Others have write permission.
fc320d37 25689@end table
0ce1b118
CV
25690
25691@noindent
fc320d37 25692Other bits are silently ignored.
0ce1b118 25693
0ce1b118 25694
fc320d37
SL
25695@item Return value:
25696@code{open} returns the new file descriptor or -1 if an error
25697occurred.
0ce1b118 25698
fc320d37 25699@item Errors:
0ce1b118
CV
25700
25701@table @code
b383017d 25702@item EEXIST
fc320d37 25703@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25704
b383017d 25705@item EISDIR
fc320d37 25706@var{pathname} refers to a directory.
0ce1b118 25707
b383017d 25708@item EACCES
0ce1b118
CV
25709The requested access is not allowed.
25710
25711@item ENAMETOOLONG
fc320d37 25712@var{pathname} was too long.
0ce1b118 25713
b383017d 25714@item ENOENT
fc320d37 25715A directory component in @var{pathname} does not exist.
0ce1b118 25716
b383017d 25717@item ENODEV
fc320d37 25718@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25719
b383017d 25720@item EROFS
fc320d37 25721@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25722write access was requested.
25723
b383017d 25724@item EFAULT
fc320d37 25725@var{pathname} is an invalid pointer value.
0ce1b118 25726
b383017d 25727@item ENOSPC
0ce1b118
CV
25728No space on device to create the file.
25729
b383017d 25730@item EMFILE
0ce1b118
CV
25731The process already has the maximum number of files open.
25732
b383017d 25733@item ENFILE
0ce1b118
CV
25734The limit on the total number of files open on the system
25735has been reached.
25736
b383017d 25737@item EINTR
0ce1b118
CV
25738The call was interrupted by the user.
25739@end table
25740
fc320d37
SL
25741@end table
25742
0ce1b118
CV
25743@node close
25744@unnumberedsubsubsec close
25745@cindex close, file-i/o system call
25746
fc320d37
SL
25747@table @asis
25748@item Synopsis:
0ce1b118 25749@smallexample
0ce1b118 25750int close(int fd);
fc320d37 25751@end smallexample
0ce1b118 25752
fc320d37
SL
25753@item Request:
25754@samp{Fclose,@var{fd}}
0ce1b118 25755
fc320d37
SL
25756@item Return value:
25757@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25758
fc320d37 25759@item Errors:
0ce1b118
CV
25760
25761@table @code
b383017d 25762@item EBADF
fc320d37 25763@var{fd} isn't a valid open file descriptor.
0ce1b118 25764
b383017d 25765@item EINTR
0ce1b118
CV
25766The call was interrupted by the user.
25767@end table
25768
fc320d37
SL
25769@end table
25770
0ce1b118
CV
25771@node read
25772@unnumberedsubsubsec read
25773@cindex read, file-i/o system call
25774
fc320d37
SL
25775@table @asis
25776@item Synopsis:
0ce1b118 25777@smallexample
0ce1b118 25778int read(int fd, void *buf, unsigned int count);
fc320d37 25779@end smallexample
0ce1b118 25780
fc320d37
SL
25781@item Request:
25782@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25783
fc320d37 25784@item Return value:
0ce1b118
CV
25785On success, the number of bytes read is returned.
25786Zero indicates end of file. If count is zero, read
b383017d 25787returns zero as well. On error, -1 is returned.
0ce1b118 25788
fc320d37 25789@item Errors:
0ce1b118
CV
25790
25791@table @code
b383017d 25792@item EBADF
fc320d37 25793@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25794reading.
25795
b383017d 25796@item EFAULT
fc320d37 25797@var{bufptr} is an invalid pointer value.
0ce1b118 25798
b383017d 25799@item EINTR
0ce1b118
CV
25800The call was interrupted by the user.
25801@end table
25802
fc320d37
SL
25803@end table
25804
0ce1b118
CV
25805@node write
25806@unnumberedsubsubsec write
25807@cindex write, file-i/o system call
25808
fc320d37
SL
25809@table @asis
25810@item Synopsis:
0ce1b118 25811@smallexample
0ce1b118 25812int write(int fd, const void *buf, unsigned int count);
fc320d37 25813@end smallexample
0ce1b118 25814
fc320d37
SL
25815@item Request:
25816@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25817
fc320d37 25818@item Return value:
0ce1b118
CV
25819On success, the number of bytes written are returned.
25820Zero indicates nothing was written. On error, -1
25821is returned.
25822
fc320d37 25823@item Errors:
0ce1b118
CV
25824
25825@table @code
b383017d 25826@item EBADF
fc320d37 25827@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25828writing.
25829
b383017d 25830@item EFAULT
fc320d37 25831@var{bufptr} is an invalid pointer value.
0ce1b118 25832
b383017d 25833@item EFBIG
0ce1b118 25834An attempt was made to write a file that exceeds the
db2e3e2e 25835host-specific maximum file size allowed.
0ce1b118 25836
b383017d 25837@item ENOSPC
0ce1b118
CV
25838No space on device to write the data.
25839
b383017d 25840@item EINTR
0ce1b118
CV
25841The call was interrupted by the user.
25842@end table
25843
fc320d37
SL
25844@end table
25845
0ce1b118
CV
25846@node lseek
25847@unnumberedsubsubsec lseek
25848@cindex lseek, file-i/o system call
25849
fc320d37
SL
25850@table @asis
25851@item Synopsis:
0ce1b118 25852@smallexample
0ce1b118 25853long lseek (int fd, long offset, int flag);
0ce1b118
CV
25854@end smallexample
25855
fc320d37
SL
25856@item Request:
25857@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25858
25859@var{flag} is one of:
0ce1b118
CV
25860
25861@table @code
b383017d 25862@item SEEK_SET
fc320d37 25863The offset is set to @var{offset} bytes.
0ce1b118 25864
b383017d 25865@item SEEK_CUR
fc320d37 25866The offset is set to its current location plus @var{offset}
0ce1b118
CV
25867bytes.
25868
b383017d 25869@item SEEK_END
fc320d37 25870The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25871bytes.
25872@end table
25873
fc320d37 25874@item Return value:
0ce1b118
CV
25875On success, the resulting unsigned offset in bytes from
25876the beginning of the file is returned. Otherwise, a
25877value of -1 is returned.
25878
fc320d37 25879@item Errors:
0ce1b118
CV
25880
25881@table @code
b383017d 25882@item EBADF
fc320d37 25883@var{fd} is not a valid open file descriptor.
0ce1b118 25884
b383017d 25885@item ESPIPE
fc320d37 25886@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25887
b383017d 25888@item EINVAL
fc320d37 25889@var{flag} is not a proper value.
0ce1b118 25890
b383017d 25891@item EINTR
0ce1b118
CV
25892The call was interrupted by the user.
25893@end table
25894
fc320d37
SL
25895@end table
25896
0ce1b118
CV
25897@node rename
25898@unnumberedsubsubsec rename
25899@cindex rename, file-i/o system call
25900
fc320d37
SL
25901@table @asis
25902@item Synopsis:
0ce1b118 25903@smallexample
0ce1b118 25904int rename(const char *oldpath, const char *newpath);
fc320d37 25905@end smallexample
0ce1b118 25906
fc320d37
SL
25907@item Request:
25908@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25909
fc320d37 25910@item Return value:
0ce1b118
CV
25911On success, zero is returned. On error, -1 is returned.
25912
fc320d37 25913@item Errors:
0ce1b118
CV
25914
25915@table @code
b383017d 25916@item EISDIR
fc320d37 25917@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25918directory.
25919
b383017d 25920@item EEXIST
fc320d37 25921@var{newpath} is a non-empty directory.
0ce1b118 25922
b383017d 25923@item EBUSY
fc320d37 25924@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25925process.
25926
b383017d 25927@item EINVAL
0ce1b118
CV
25928An attempt was made to make a directory a subdirectory
25929of itself.
25930
b383017d 25931@item ENOTDIR
fc320d37
SL
25932A component used as a directory in @var{oldpath} or new
25933path is not a directory. Or @var{oldpath} is a directory
25934and @var{newpath} exists but is not a directory.
0ce1b118 25935
b383017d 25936@item EFAULT
fc320d37 25937@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25938
b383017d 25939@item EACCES
0ce1b118
CV
25940No access to the file or the path of the file.
25941
25942@item ENAMETOOLONG
b383017d 25943
fc320d37 25944@var{oldpath} or @var{newpath} was too long.
0ce1b118 25945
b383017d 25946@item ENOENT
fc320d37 25947A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25948
b383017d 25949@item EROFS
0ce1b118
CV
25950The file is on a read-only filesystem.
25951
b383017d 25952@item ENOSPC
0ce1b118
CV
25953The device containing the file has no room for the new
25954directory entry.
25955
b383017d 25956@item EINTR
0ce1b118
CV
25957The call was interrupted by the user.
25958@end table
25959
fc320d37
SL
25960@end table
25961
0ce1b118
CV
25962@node unlink
25963@unnumberedsubsubsec unlink
25964@cindex unlink, file-i/o system call
25965
fc320d37
SL
25966@table @asis
25967@item Synopsis:
0ce1b118 25968@smallexample
0ce1b118 25969int unlink(const char *pathname);
fc320d37 25970@end smallexample
0ce1b118 25971
fc320d37
SL
25972@item Request:
25973@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25974
fc320d37 25975@item Return value:
0ce1b118
CV
25976On success, zero is returned. On error, -1 is returned.
25977
fc320d37 25978@item Errors:
0ce1b118
CV
25979
25980@table @code
b383017d 25981@item EACCES
0ce1b118
CV
25982No access to the file or the path of the file.
25983
b383017d 25984@item EPERM
0ce1b118
CV
25985The system does not allow unlinking of directories.
25986
b383017d 25987@item EBUSY
fc320d37 25988The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25989being used by another process.
25990
b383017d 25991@item EFAULT
fc320d37 25992@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25993
25994@item ENAMETOOLONG
fc320d37 25995@var{pathname} was too long.
0ce1b118 25996
b383017d 25997@item ENOENT
fc320d37 25998A directory component in @var{pathname} does not exist.
0ce1b118 25999
b383017d 26000@item ENOTDIR
0ce1b118
CV
26001A component of the path is not a directory.
26002
b383017d 26003@item EROFS
0ce1b118
CV
26004The file is on a read-only filesystem.
26005
b383017d 26006@item EINTR
0ce1b118
CV
26007The call was interrupted by the user.
26008@end table
26009
fc320d37
SL
26010@end table
26011
0ce1b118
CV
26012@node stat/fstat
26013@unnumberedsubsubsec stat/fstat
26014@cindex fstat, file-i/o system call
26015@cindex stat, file-i/o system call
26016
fc320d37
SL
26017@table @asis
26018@item Synopsis:
0ce1b118 26019@smallexample
0ce1b118
CV
26020int stat(const char *pathname, struct stat *buf);
26021int fstat(int fd, struct stat *buf);
fc320d37 26022@end smallexample
0ce1b118 26023
fc320d37
SL
26024@item Request:
26025@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
26026@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 26027
fc320d37 26028@item Return value:
0ce1b118
CV
26029On success, zero is returned. On error, -1 is returned.
26030
fc320d37 26031@item Errors:
0ce1b118
CV
26032
26033@table @code
b383017d 26034@item EBADF
fc320d37 26035@var{fd} is not a valid open file.
0ce1b118 26036
b383017d 26037@item ENOENT
fc320d37 26038A directory component in @var{pathname} does not exist or the
0ce1b118
CV
26039path is an empty string.
26040
b383017d 26041@item ENOTDIR
0ce1b118
CV
26042A component of the path is not a directory.
26043
b383017d 26044@item EFAULT
fc320d37 26045@var{pathnameptr} is an invalid pointer value.
0ce1b118 26046
b383017d 26047@item EACCES
0ce1b118
CV
26048No access to the file or the path of the file.
26049
26050@item ENAMETOOLONG
fc320d37 26051@var{pathname} was too long.
0ce1b118 26052
b383017d 26053@item EINTR
0ce1b118
CV
26054The call was interrupted by the user.
26055@end table
26056
fc320d37
SL
26057@end table
26058
0ce1b118
CV
26059@node gettimeofday
26060@unnumberedsubsubsec gettimeofday
26061@cindex gettimeofday, file-i/o system call
26062
fc320d37
SL
26063@table @asis
26064@item Synopsis:
0ce1b118 26065@smallexample
0ce1b118 26066int gettimeofday(struct timeval *tv, void *tz);
fc320d37 26067@end smallexample
0ce1b118 26068
fc320d37
SL
26069@item Request:
26070@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 26071
fc320d37 26072@item Return value:
0ce1b118
CV
26073On success, 0 is returned, -1 otherwise.
26074
fc320d37 26075@item Errors:
0ce1b118
CV
26076
26077@table @code
b383017d 26078@item EINVAL
fc320d37 26079@var{tz} is a non-NULL pointer.
0ce1b118 26080
b383017d 26081@item EFAULT
fc320d37
SL
26082@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26083@end table
26084
0ce1b118
CV
26085@end table
26086
26087@node isatty
26088@unnumberedsubsubsec isatty
26089@cindex isatty, file-i/o system call
26090
fc320d37
SL
26091@table @asis
26092@item Synopsis:
0ce1b118 26093@smallexample
0ce1b118 26094int isatty(int fd);
fc320d37 26095@end smallexample
0ce1b118 26096
fc320d37
SL
26097@item Request:
26098@samp{Fisatty,@var{fd}}
0ce1b118 26099
fc320d37
SL
26100@item Return value:
26101Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26102
fc320d37 26103@item Errors:
0ce1b118
CV
26104
26105@table @code
b383017d 26106@item EINTR
0ce1b118
CV
26107The call was interrupted by the user.
26108@end table
26109
fc320d37
SL
26110@end table
26111
26112Note that the @code{isatty} call is treated as a special case: it returns
261131 to the target if the file descriptor is attached
26114to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26115would require implementing @code{ioctl} and would be more complex than
26116needed.
26117
26118
0ce1b118
CV
26119@node system
26120@unnumberedsubsubsec system
26121@cindex system, file-i/o system call
26122
fc320d37
SL
26123@table @asis
26124@item Synopsis:
0ce1b118 26125@smallexample
0ce1b118 26126int system(const char *command);
fc320d37 26127@end smallexample
0ce1b118 26128
fc320d37
SL
26129@item Request:
26130@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26131
fc320d37 26132@item Return value:
5600ea19
NS
26133If @var{len} is zero, the return value indicates whether a shell is
26134available. A zero return value indicates a shell is not available.
26135For non-zero @var{len}, the value returned is -1 on error and the
26136return status of the command otherwise. Only the exit status of the
26137command is returned, which is extracted from the host's @code{system}
26138return value by calling @code{WEXITSTATUS(retval)}. In case
26139@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26140
fc320d37 26141@item Errors:
0ce1b118
CV
26142
26143@table @code
b383017d 26144@item EINTR
0ce1b118
CV
26145The call was interrupted by the user.
26146@end table
26147
fc320d37
SL
26148@end table
26149
26150@value{GDBN} takes over the full task of calling the necessary host calls
26151to perform the @code{system} call. The return value of @code{system} on
26152the host is simplified before it's returned
26153to the target. Any termination signal information from the child process
26154is discarded, and the return value consists
26155entirely of the exit status of the called command.
26156
26157Due to security concerns, the @code{system} call is by default refused
26158by @value{GDBN}. The user has to allow this call explicitly with the
26159@code{set remote system-call-allowed 1} command.
26160
26161@table @code
26162@item set remote system-call-allowed
26163@kindex set remote system-call-allowed
26164Control whether to allow the @code{system} calls in the File I/O
26165protocol for the remote target. The default is zero (disabled).
26166
26167@item show remote system-call-allowed
26168@kindex show remote system-call-allowed
26169Show whether the @code{system} calls are allowed in the File I/O
26170protocol.
26171@end table
26172
db2e3e2e
BW
26173@node Protocol-specific Representation of Datatypes
26174@subsection Protocol-specific Representation of Datatypes
26175@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26176
26177@menu
79a6e687
BW
26178* Integral Datatypes::
26179* Pointer Values::
26180* Memory Transfer::
0ce1b118
CV
26181* struct stat::
26182* struct timeval::
26183@end menu
26184
79a6e687
BW
26185@node Integral Datatypes
26186@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26187@cindex integral datatypes, in file-i/o protocol
26188
fc320d37
SL
26189The integral datatypes used in the system calls are @code{int},
26190@code{unsigned int}, @code{long}, @code{unsigned long},
26191@code{mode_t}, and @code{time_t}.
0ce1b118 26192
fc320d37 26193@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26194implemented as 32 bit values in this protocol.
26195
fc320d37 26196@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26197
0ce1b118
CV
26198@xref{Limits}, for corresponding MIN and MAX values (similar to those
26199in @file{limits.h}) to allow range checking on host and target.
26200
26201@code{time_t} datatypes are defined as seconds since the Epoch.
26202
26203All integral datatypes transferred as part of a memory read or write of a
26204structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26205byte order.
26206
79a6e687
BW
26207@node Pointer Values
26208@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26209@cindex pointer values, in file-i/o protocol
26210
26211Pointers to target data are transmitted as they are. An exception
26212is made for pointers to buffers for which the length isn't
26213transmitted as part of the function call, namely strings. Strings
26214are transmitted as a pointer/length pair, both as hex values, e.g.@:
26215
26216@smallexample
26217@code{1aaf/12}
26218@end smallexample
26219
26220@noindent
26221which is a pointer to data of length 18 bytes at position 0x1aaf.
26222The length is defined as the full string length in bytes, including
fc320d37
SL
26223the trailing null byte. For example, the string @code{"hello world"}
26224at address 0x123456 is transmitted as
0ce1b118
CV
26225
26226@smallexample
fc320d37 26227@code{123456/d}
0ce1b118
CV
26228@end smallexample
26229
79a6e687
BW
26230@node Memory Transfer
26231@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26232@cindex memory transfer, in file-i/o protocol
26233
26234Structured data which is transferred using a memory read or write (for
db2e3e2e 26235example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26236with all scalar multibyte datatypes being big endian. Translation to
26237this representation needs to be done both by the target before the @code{F}
26238packet is sent, and by @value{GDBN} before
26239it transfers memory to the target. Transferred pointers to structured
26240data should point to the already-coerced data at any time.
0ce1b118 26241
0ce1b118
CV
26242
26243@node struct stat
26244@unnumberedsubsubsec struct stat
26245@cindex struct stat, in file-i/o protocol
26246
fc320d37
SL
26247The buffer of type @code{struct stat} used by the target and @value{GDBN}
26248is defined as follows:
0ce1b118
CV
26249
26250@smallexample
26251struct stat @{
26252 unsigned int st_dev; /* device */
26253 unsigned int st_ino; /* inode */
26254 mode_t st_mode; /* protection */
26255 unsigned int st_nlink; /* number of hard links */
26256 unsigned int st_uid; /* user ID of owner */
26257 unsigned int st_gid; /* group ID of owner */
26258 unsigned int st_rdev; /* device type (if inode device) */
26259 unsigned long st_size; /* total size, in bytes */
26260 unsigned long st_blksize; /* blocksize for filesystem I/O */
26261 unsigned long st_blocks; /* number of blocks allocated */
26262 time_t st_atime; /* time of last access */
26263 time_t st_mtime; /* time of last modification */
26264 time_t st_ctime; /* time of last change */
26265@};
26266@end smallexample
26267
fc320d37 26268The integral datatypes conform to the definitions given in the
79a6e687 26269appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26270structure is of size 64 bytes.
26271
26272The values of several fields have a restricted meaning and/or
26273range of values.
26274
fc320d37 26275@table @code
0ce1b118 26276
fc320d37
SL
26277@item st_dev
26278A value of 0 represents a file, 1 the console.
0ce1b118 26279
fc320d37
SL
26280@item st_ino
26281No valid meaning for the target. Transmitted unchanged.
0ce1b118 26282
fc320d37
SL
26283@item st_mode
26284Valid mode bits are described in @ref{Constants}. Any other
26285bits have currently no meaning for the target.
0ce1b118 26286
fc320d37
SL
26287@item st_uid
26288@itemx st_gid
26289@itemx st_rdev
26290No valid meaning for the target. Transmitted unchanged.
0ce1b118 26291
fc320d37
SL
26292@item st_atime
26293@itemx st_mtime
26294@itemx st_ctime
26295These values have a host and file system dependent
26296accuracy. Especially on Windows hosts, the file system may not
26297support exact timing values.
26298@end table
0ce1b118 26299
fc320d37
SL
26300The target gets a @code{struct stat} of the above representation and is
26301responsible for coercing it to the target representation before
0ce1b118
CV
26302continuing.
26303
fc320d37
SL
26304Note that due to size differences between the host, target, and protocol
26305representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26306get truncated on the target.
26307
26308@node struct timeval
26309@unnumberedsubsubsec struct timeval
26310@cindex struct timeval, in file-i/o protocol
26311
fc320d37 26312The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26313is defined as follows:
26314
26315@smallexample
b383017d 26316struct timeval @{
0ce1b118
CV
26317 time_t tv_sec; /* second */
26318 long tv_usec; /* microsecond */
26319@};
26320@end smallexample
26321
fc320d37 26322The integral datatypes conform to the definitions given in the
79a6e687 26323appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26324structure is of size 8 bytes.
26325
26326@node Constants
26327@subsection Constants
26328@cindex constants, in file-i/o protocol
26329
26330The following values are used for the constants inside of the
fc320d37 26331protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26332values before and after the call as needed.
26333
26334@menu
79a6e687
BW
26335* Open Flags::
26336* mode_t Values::
26337* Errno Values::
26338* Lseek Flags::
0ce1b118
CV
26339* Limits::
26340@end menu
26341
79a6e687
BW
26342@node Open Flags
26343@unnumberedsubsubsec Open Flags
0ce1b118
CV
26344@cindex open flags, in file-i/o protocol
26345
26346All values are given in hexadecimal representation.
26347
26348@smallexample
26349 O_RDONLY 0x0
26350 O_WRONLY 0x1
26351 O_RDWR 0x2
26352 O_APPEND 0x8
26353 O_CREAT 0x200
26354 O_TRUNC 0x400
26355 O_EXCL 0x800
26356@end smallexample
26357
79a6e687
BW
26358@node mode_t Values
26359@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26360@cindex mode_t values, in file-i/o protocol
26361
26362All values are given in octal representation.
26363
26364@smallexample
26365 S_IFREG 0100000
26366 S_IFDIR 040000
26367 S_IRUSR 0400
26368 S_IWUSR 0200
26369 S_IXUSR 0100
26370 S_IRGRP 040
26371 S_IWGRP 020
26372 S_IXGRP 010
26373 S_IROTH 04
26374 S_IWOTH 02
26375 S_IXOTH 01
26376@end smallexample
26377
79a6e687
BW
26378@node Errno Values
26379@unnumberedsubsubsec Errno Values
0ce1b118
CV
26380@cindex errno values, in file-i/o protocol
26381
26382All values are given in decimal representation.
26383
26384@smallexample
26385 EPERM 1
26386 ENOENT 2
26387 EINTR 4
26388 EBADF 9
26389 EACCES 13
26390 EFAULT 14
26391 EBUSY 16
26392 EEXIST 17
26393 ENODEV 19
26394 ENOTDIR 20
26395 EISDIR 21
26396 EINVAL 22
26397 ENFILE 23
26398 EMFILE 24
26399 EFBIG 27
26400 ENOSPC 28
26401 ESPIPE 29
26402 EROFS 30
26403 ENAMETOOLONG 91
26404 EUNKNOWN 9999
26405@end smallexample
26406
fc320d37 26407 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26408 any error value not in the list of supported error numbers.
26409
79a6e687
BW
26410@node Lseek Flags
26411@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26412@cindex lseek flags, in file-i/o protocol
26413
26414@smallexample
26415 SEEK_SET 0
26416 SEEK_CUR 1
26417 SEEK_END 2
26418@end smallexample
26419
26420@node Limits
26421@unnumberedsubsubsec Limits
26422@cindex limits, in file-i/o protocol
26423
26424All values are given in decimal representation.
26425
26426@smallexample
26427 INT_MIN -2147483648
26428 INT_MAX 2147483647
26429 UINT_MAX 4294967295
26430 LONG_MIN -9223372036854775808
26431 LONG_MAX 9223372036854775807
26432 ULONG_MAX 18446744073709551615
26433@end smallexample
26434
26435@node File-I/O Examples
26436@subsection File-I/O Examples
26437@cindex file-i/o examples
26438
26439Example sequence of a write call, file descriptor 3, buffer is at target
26440address 0x1234, 6 bytes should be written:
26441
26442@smallexample
26443<- @code{Fwrite,3,1234,6}
26444@emph{request memory read from target}
26445-> @code{m1234,6}
26446<- XXXXXX
26447@emph{return "6 bytes written"}
26448-> @code{F6}
26449@end smallexample
26450
26451Example sequence of a read call, file descriptor 3, buffer is at target
26452address 0x1234, 6 bytes should be read:
26453
26454@smallexample
26455<- @code{Fread,3,1234,6}
26456@emph{request memory write to target}
26457-> @code{X1234,6:XXXXXX}
26458@emph{return "6 bytes read"}
26459-> @code{F6}
26460@end smallexample
26461
26462Example sequence of a read call, call fails on the host due to invalid
fc320d37 26463file descriptor (@code{EBADF}):
0ce1b118
CV
26464
26465@smallexample
26466<- @code{Fread,3,1234,6}
26467-> @code{F-1,9}
26468@end smallexample
26469
c8aa23ab 26470Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26471host is called:
26472
26473@smallexample
26474<- @code{Fread,3,1234,6}
26475-> @code{F-1,4,C}
26476<- @code{T02}
26477@end smallexample
26478
c8aa23ab 26479Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26480host is called:
26481
26482@smallexample
26483<- @code{Fread,3,1234,6}
26484-> @code{X1234,6:XXXXXX}
26485<- @code{T02}
26486@end smallexample
26487
cfa9d6d9
DJ
26488@node Library List Format
26489@section Library List Format
26490@cindex library list format, remote protocol
26491
26492On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26493same process as your application to manage libraries. In this case,
26494@value{GDBN} can use the loader's symbol table and normal memory
26495operations to maintain a list of shared libraries. On other
26496platforms, the operating system manages loaded libraries.
26497@value{GDBN} can not retrieve the list of currently loaded libraries
26498through memory operations, so it uses the @samp{qXfer:libraries:read}
26499packet (@pxref{qXfer library list read}) instead. The remote stub
26500queries the target's operating system and reports which libraries
26501are loaded.
26502
26503The @samp{qXfer:libraries:read} packet returns an XML document which
26504lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26505associated name and one or more segment or section base addresses,
26506which report where the library was loaded in memory.
26507
26508For the common case of libraries that are fully linked binaries, the
26509library should have a list of segments. If the target supports
26510dynamic linking of a relocatable object file, its library XML element
26511should instead include a list of allocated sections. The segment or
26512section bases are start addresses, not relocation offsets; they do not
26513depend on the library's link-time base addresses.
cfa9d6d9 26514
9cceb671
DJ
26515@value{GDBN} must be linked with the Expat library to support XML
26516library lists. @xref{Expat}.
26517
cfa9d6d9
DJ
26518A simple memory map, with one loaded library relocated by a single
26519offset, looks like this:
26520
26521@smallexample
26522<library-list>
26523 <library name="/lib/libc.so.6">
26524 <segment address="0x10000000"/>
26525 </library>
26526</library-list>
26527@end smallexample
26528
1fddbabb
PA
26529Another simple memory map, with one loaded library with three
26530allocated sections (.text, .data, .bss), looks like this:
26531
26532@smallexample
26533<library-list>
26534 <library name="sharedlib.o">
26535 <section address="0x10000000"/>
26536 <section address="0x20000000"/>
26537 <section address="0x30000000"/>
26538 </library>
26539</library-list>
26540@end smallexample
26541
cfa9d6d9
DJ
26542The format of a library list is described by this DTD:
26543
26544@smallexample
26545<!-- library-list: Root element with versioning -->
26546<!ELEMENT library-list (library)*>
26547<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26548<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26549<!ATTLIST library name CDATA #REQUIRED>
26550<!ELEMENT segment EMPTY>
26551<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26552<!ELEMENT section EMPTY>
26553<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26554@end smallexample
26555
1fddbabb
PA
26556In addition, segments and section descriptors cannot be mixed within a
26557single library element, and you must supply at least one segment or
26558section for each library.
26559
79a6e687
BW
26560@node Memory Map Format
26561@section Memory Map Format
68437a39
DJ
26562@cindex memory map format
26563
26564To be able to write into flash memory, @value{GDBN} needs to obtain a
26565memory map from the target. This section describes the format of the
26566memory map.
26567
26568The memory map is obtained using the @samp{qXfer:memory-map:read}
26569(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26570lists memory regions.
26571
26572@value{GDBN} must be linked with the Expat library to support XML
26573memory maps. @xref{Expat}.
26574
26575The top-level structure of the document is shown below:
68437a39
DJ
26576
26577@smallexample
26578<?xml version="1.0"?>
26579<!DOCTYPE memory-map
26580 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26581 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26582<memory-map>
26583 region...
26584</memory-map>
26585@end smallexample
26586
26587Each region can be either:
26588
26589@itemize
26590
26591@item
26592A region of RAM starting at @var{addr} and extending for @var{length}
26593bytes from there:
26594
26595@smallexample
26596<memory type="ram" start="@var{addr}" length="@var{length}"/>
26597@end smallexample
26598
26599
26600@item
26601A region of read-only memory:
26602
26603@smallexample
26604<memory type="rom" start="@var{addr}" length="@var{length}"/>
26605@end smallexample
26606
26607
26608@item
26609A region of flash memory, with erasure blocks @var{blocksize}
26610bytes in length:
26611
26612@smallexample
26613<memory type="flash" start="@var{addr}" length="@var{length}">
26614 <property name="blocksize">@var{blocksize}</property>
26615</memory>
26616@end smallexample
26617
26618@end itemize
26619
26620Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26621by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26622packets to write to addresses in such ranges.
26623
26624The formal DTD for memory map format is given below:
26625
26626@smallexample
26627<!-- ................................................... -->
26628<!-- Memory Map XML DTD ................................ -->
26629<!-- File: memory-map.dtd .............................. -->
26630<!-- .................................... .............. -->
26631<!-- memory-map.dtd -->
26632<!-- memory-map: Root element with versioning -->
26633<!ELEMENT memory-map (memory | property)>
26634<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26635<!ELEMENT memory (property)>
26636<!-- memory: Specifies a memory region,
26637 and its type, or device. -->
26638<!ATTLIST memory type CDATA #REQUIRED
26639 start CDATA #REQUIRED
26640 length CDATA #REQUIRED
26641 device CDATA #IMPLIED>
26642<!-- property: Generic attribute tag -->
26643<!ELEMENT property (#PCDATA | property)*>
26644<!ATTLIST property name CDATA #REQUIRED>
26645@end smallexample
26646
f418dd93
DJ
26647@include agentexpr.texi
26648
23181151
DJ
26649@node Target Descriptions
26650@appendix Target Descriptions
26651@cindex target descriptions
26652
26653@strong{Warning:} target descriptions are still under active development,
26654and the contents and format may change between @value{GDBN} releases.
26655The format is expected to stabilize in the future.
26656
26657One of the challenges of using @value{GDBN} to debug embedded systems
26658is that there are so many minor variants of each processor
26659architecture in use. It is common practice for vendors to start with
26660a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26661and then make changes to adapt it to a particular market niche. Some
26662architectures have hundreds of variants, available from dozens of
26663vendors. This leads to a number of problems:
26664
26665@itemize @bullet
26666@item
26667With so many different customized processors, it is difficult for
26668the @value{GDBN} maintainers to keep up with the changes.
26669@item
26670Since individual variants may have short lifetimes or limited
26671audiences, it may not be worthwhile to carry information about every
26672variant in the @value{GDBN} source tree.
26673@item
26674When @value{GDBN} does support the architecture of the embedded system
26675at hand, the task of finding the correct architecture name to give the
26676@command{set architecture} command can be error-prone.
26677@end itemize
26678
26679To address these problems, the @value{GDBN} remote protocol allows a
26680target system to not only identify itself to @value{GDBN}, but to
26681actually describe its own features. This lets @value{GDBN} support
26682processor variants it has never seen before --- to the extent that the
26683descriptions are accurate, and that @value{GDBN} understands them.
26684
9cceb671
DJ
26685@value{GDBN} must be linked with the Expat library to support XML
26686target descriptions. @xref{Expat}.
123dc839 26687
23181151
DJ
26688@menu
26689* Retrieving Descriptions:: How descriptions are fetched from a target.
26690* Target Description Format:: The contents of a target description.
123dc839
DJ
26691* Predefined Target Types:: Standard types available for target
26692 descriptions.
26693* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26694@end menu
26695
26696@node Retrieving Descriptions
26697@section Retrieving Descriptions
26698
26699Target descriptions can be read from the target automatically, or
26700specified by the user manually. The default behavior is to read the
26701description from the target. @value{GDBN} retrieves it via the remote
26702protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26703qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26704@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26705XML document, of the form described in @ref{Target Description
26706Format}.
26707
26708Alternatively, you can specify a file to read for the target description.
26709If a file is set, the target will not be queried. The commands to
26710specify a file are:
26711
26712@table @code
26713@cindex set tdesc filename
26714@item set tdesc filename @var{path}
26715Read the target description from @var{path}.
26716
26717@cindex unset tdesc filename
26718@item unset tdesc filename
26719Do not read the XML target description from a file. @value{GDBN}
26720will use the description supplied by the current target.
26721
26722@cindex show tdesc filename
26723@item show tdesc filename
26724Show the filename to read for a target description, if any.
26725@end table
26726
26727
26728@node Target Description Format
26729@section Target Description Format
26730@cindex target descriptions, XML format
26731
26732A target description annex is an @uref{http://www.w3.org/XML/, XML}
26733document which complies with the Document Type Definition provided in
26734the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26735means you can use generally available tools like @command{xmllint} to
26736check that your feature descriptions are well-formed and valid.
26737However, to help people unfamiliar with XML write descriptions for
26738their targets, we also describe the grammar here.
26739
123dc839
DJ
26740Target descriptions can identify the architecture of the remote target
26741and (for some architectures) provide information about custom register
26742sets. @value{GDBN} can use this information to autoconfigure for your
26743target, or to warn you if you connect to an unsupported target.
23181151
DJ
26744
26745Here is a simple target description:
26746
123dc839 26747@smallexample
1780a0ed 26748<target version="1.0">
23181151
DJ
26749 <architecture>i386:x86-64</architecture>
26750</target>
123dc839 26751@end smallexample
23181151
DJ
26752
26753@noindent
26754This minimal description only says that the target uses
26755the x86-64 architecture.
26756
123dc839
DJ
26757A target description has the following overall form, with [ ] marking
26758optional elements and @dots{} marking repeatable elements. The elements
26759are explained further below.
23181151 26760
123dc839 26761@smallexample
23181151
DJ
26762<?xml version="1.0"?>
26763<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26764<target version="1.0">
123dc839
DJ
26765 @r{[}@var{architecture}@r{]}
26766 @r{[}@var{feature}@dots{}@r{]}
23181151 26767</target>
123dc839 26768@end smallexample
23181151
DJ
26769
26770@noindent
26771The description is generally insensitive to whitespace and line
26772breaks, under the usual common-sense rules. The XML version
26773declaration and document type declaration can generally be omitted
26774(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26775useful for XML validation tools. The @samp{version} attribute for
26776@samp{<target>} may also be omitted, but we recommend
26777including it; if future versions of @value{GDBN} use an incompatible
26778revision of @file{gdb-target.dtd}, they will detect and report
26779the version mismatch.
23181151 26780
108546a0
DJ
26781@subsection Inclusion
26782@cindex target descriptions, inclusion
26783@cindex XInclude
26784@ifnotinfo
26785@cindex <xi:include>
26786@end ifnotinfo
26787
26788It can sometimes be valuable to split a target description up into
26789several different annexes, either for organizational purposes, or to
26790share files between different possible target descriptions. You can
26791divide a description into multiple files by replacing any element of
26792the target description with an inclusion directive of the form:
26793
123dc839 26794@smallexample
108546a0 26795<xi:include href="@var{document}"/>
123dc839 26796@end smallexample
108546a0
DJ
26797
26798@noindent
26799When @value{GDBN} encounters an element of this form, it will retrieve
26800the named XML @var{document}, and replace the inclusion directive with
26801the contents of that document. If the current description was read
26802using @samp{qXfer}, then so will be the included document;
26803@var{document} will be interpreted as the name of an annex. If the
26804current description was read from a file, @value{GDBN} will look for
26805@var{document} as a file in the same directory where it found the
26806original description.
26807
123dc839
DJ
26808@subsection Architecture
26809@cindex <architecture>
26810
26811An @samp{<architecture>} element has this form:
26812
26813@smallexample
26814 <architecture>@var{arch}</architecture>
26815@end smallexample
26816
26817@var{arch} is an architecture name from the same selection
26818accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26819Debugging Target}).
26820
26821@subsection Features
26822@cindex <feature>
26823
26824Each @samp{<feature>} describes some logical portion of the target
26825system. Features are currently used to describe available CPU
26826registers and the types of their contents. A @samp{<feature>} element
26827has this form:
26828
26829@smallexample
26830<feature name="@var{name}">
26831 @r{[}@var{type}@dots{}@r{]}
26832 @var{reg}@dots{}
26833</feature>
26834@end smallexample
26835
26836@noindent
26837Each feature's name should be unique within the description. The name
26838of a feature does not matter unless @value{GDBN} has some special
26839knowledge of the contents of that feature; if it does, the feature
26840should have its standard name. @xref{Standard Target Features}.
26841
26842@subsection Types
26843
26844Any register's value is a collection of bits which @value{GDBN} must
26845interpret. The default interpretation is a two's complement integer,
26846but other types can be requested by name in the register description.
26847Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26848Target Types}), and the description can define additional composite types.
26849
26850Each type element must have an @samp{id} attribute, which gives
26851a unique (within the containing @samp{<feature>}) name to the type.
26852Types must be defined before they are used.
26853
26854@cindex <vector>
26855Some targets offer vector registers, which can be treated as arrays
26856of scalar elements. These types are written as @samp{<vector>} elements,
26857specifying the array element type, @var{type}, and the number of elements,
26858@var{count}:
26859
26860@smallexample
26861<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26862@end smallexample
26863
26864@cindex <union>
26865If a register's value is usefully viewed in multiple ways, define it
26866with a union type containing the useful representations. The
26867@samp{<union>} element contains one or more @samp{<field>} elements,
26868each of which has a @var{name} and a @var{type}:
26869
26870@smallexample
26871<union id="@var{id}">
26872 <field name="@var{name}" type="@var{type}"/>
26873 @dots{}
26874</union>
26875@end smallexample
26876
26877@subsection Registers
26878@cindex <reg>
26879
26880Each register is represented as an element with this form:
26881
26882@smallexample
26883<reg name="@var{name}"
26884 bitsize="@var{size}"
26885 @r{[}regnum="@var{num}"@r{]}
26886 @r{[}save-restore="@var{save-restore}"@r{]}
26887 @r{[}type="@var{type}"@r{]}
26888 @r{[}group="@var{group}"@r{]}/>
26889@end smallexample
26890
26891@noindent
26892The components are as follows:
26893
26894@table @var
26895
26896@item name
26897The register's name; it must be unique within the target description.
26898
26899@item bitsize
26900The register's size, in bits.
26901
26902@item regnum
26903The register's number. If omitted, a register's number is one greater
26904than that of the previous register (either in the current feature or in
26905a preceeding feature); the first register in the target description
26906defaults to zero. This register number is used to read or write
26907the register; e.g.@: it is used in the remote @code{p} and @code{P}
26908packets, and registers appear in the @code{g} and @code{G} packets
26909in order of increasing register number.
26910
26911@item save-restore
26912Whether the register should be preserved across inferior function
26913calls; this must be either @code{yes} or @code{no}. The default is
26914@code{yes}, which is appropriate for most registers except for
26915some system control registers; this is not related to the target's
26916ABI.
26917
26918@item type
26919The type of the register. @var{type} may be a predefined type, a type
26920defined in the current feature, or one of the special types @code{int}
26921and @code{float}. @code{int} is an integer type of the correct size
26922for @var{bitsize}, and @code{float} is a floating point type (in the
26923architecture's normal floating point format) of the correct size for
26924@var{bitsize}. The default is @code{int}.
26925
26926@item group
26927The register group to which this register belongs. @var{group} must
26928be either @code{general}, @code{float}, or @code{vector}. If no
26929@var{group} is specified, @value{GDBN} will not display the register
26930in @code{info registers}.
26931
26932@end table
26933
26934@node Predefined Target Types
26935@section Predefined Target Types
26936@cindex target descriptions, predefined types
26937
26938Type definitions in the self-description can build up composite types
26939from basic building blocks, but can not define fundamental types. Instead,
26940standard identifiers are provided by @value{GDBN} for the fundamental
26941types. The currently supported types are:
26942
26943@table @code
26944
26945@item int8
26946@itemx int16
26947@itemx int32
26948@itemx int64
7cc46491 26949@itemx int128
123dc839
DJ
26950Signed integer types holding the specified number of bits.
26951
26952@item uint8
26953@itemx uint16
26954@itemx uint32
26955@itemx uint64
7cc46491 26956@itemx uint128
123dc839
DJ
26957Unsigned integer types holding the specified number of bits.
26958
26959@item code_ptr
26960@itemx data_ptr
26961Pointers to unspecified code and data. The program counter and
26962any dedicated return address register may be marked as code
26963pointers; printing a code pointer converts it into a symbolic
26964address. The stack pointer and any dedicated address registers
26965may be marked as data pointers.
26966
6e3bbd1a
PB
26967@item ieee_single
26968Single precision IEEE floating point.
26969
26970@item ieee_double
26971Double precision IEEE floating point.
26972
123dc839
DJ
26973@item arm_fpa_ext
26974The 12-byte extended precision format used by ARM FPA registers.
26975
26976@end table
26977
26978@node Standard Target Features
26979@section Standard Target Features
26980@cindex target descriptions, standard features
26981
26982A target description must contain either no registers or all the
26983target's registers. If the description contains no registers, then
26984@value{GDBN} will assume a default register layout, selected based on
26985the architecture. If the description contains any registers, the
26986default layout will not be used; the standard registers must be
26987described in the target description, in such a way that @value{GDBN}
26988can recognize them.
26989
26990This is accomplished by giving specific names to feature elements
26991which contain standard registers. @value{GDBN} will look for features
26992with those names and verify that they contain the expected registers;
26993if any known feature is missing required registers, or if any required
26994feature is missing, @value{GDBN} will reject the target
26995description. You can add additional registers to any of the
26996standard features --- @value{GDBN} will display them just as if
26997they were added to an unrecognized feature.
26998
26999This section lists the known features and their expected contents.
27000Sample XML documents for these features are included in the
27001@value{GDBN} source tree, in the directory @file{gdb/features}.
27002
27003Names recognized by @value{GDBN} should include the name of the
27004company or organization which selected the name, and the overall
27005architecture to which the feature applies; so e.g.@: the feature
27006containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
27007
ff6f572f
DJ
27008The names of registers are not case sensitive for the purpose
27009of recognizing standard features, but @value{GDBN} will only display
27010registers using the capitalization used in the description.
27011
e9c17194
VP
27012@menu
27013* ARM Features::
1e26b4f8 27014* MIPS Features::
e9c17194 27015* M68K Features::
1e26b4f8 27016* PowerPC Features::
e9c17194
VP
27017@end menu
27018
27019
27020@node ARM Features
123dc839
DJ
27021@subsection ARM Features
27022@cindex target descriptions, ARM features
27023
27024The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
27025It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
27026@samp{lr}, @samp{pc}, and @samp{cpsr}.
27027
27028The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
27029should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
27030
ff6f572f
DJ
27031The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
27032it should contain at least registers @samp{wR0} through @samp{wR15} and
27033@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
27034@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 27035
1e26b4f8 27036@node MIPS Features
f8b73d13
DJ
27037@subsection MIPS Features
27038@cindex target descriptions, MIPS features
27039
27040The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
27041It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
27042@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
27043on the target.
27044
27045The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
27046contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
27047registers. They may be 32-bit or 64-bit depending on the target.
27048
27049The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
27050it may be optional in a future version of @value{GDBN}. It should
27051contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
27052@samp{fir}. They may be 32-bit or 64-bit depending on the target.
27053
822b6570
DJ
27054The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
27055contain a single register, @samp{restart}, which is used by the
27056Linux kernel to control restartable syscalls.
27057
e9c17194
VP
27058@node M68K Features
27059@subsection M68K Features
27060@cindex target descriptions, M68K features
27061
27062@table @code
27063@item @samp{org.gnu.gdb.m68k.core}
27064@itemx @samp{org.gnu.gdb.coldfire.core}
27065@itemx @samp{org.gnu.gdb.fido.core}
27066One of those features must be always present.
27067The feature that is present determines which flavor of m86k is
27068used. The feature that is present should contain registers
27069@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
27070@samp{sp}, @samp{ps} and @samp{pc}.
27071
27072@item @samp{org.gnu.gdb.coldfire.fp}
27073This feature is optional. If present, it should contain registers
27074@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
27075@samp{fpiaddr}.
27076@end table
27077
1e26b4f8 27078@node PowerPC Features
7cc46491
DJ
27079@subsection PowerPC Features
27080@cindex target descriptions, PowerPC features
27081
27082The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27083targets. It should contain registers @samp{r0} through @samp{r31},
27084@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27085@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27086
27087The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27088contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27089
27090The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27091contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27092and @samp{vrsave}.
27093
27094The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27095contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27096@samp{spefscr}. SPE targets should provide 32-bit registers in
27097@samp{org.gnu.gdb.power.core} and provide the upper halves in
27098@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27099these to present registers @samp{ev0} through @samp{ev31} to the
27100user.
27101
aab4e0ec 27102@include gpl.texi
eb12ee30 27103
2154891a 27104@raisesections
6826cf00 27105@include fdl.texi
2154891a 27106@lowersections
6826cf00 27107
6d2ebf8b 27108@node Index
c906108c
SS
27109@unnumbered Index
27110
27111@printindex cp
27112
27113@tex
27114% I think something like @colophon should be in texinfo. In the
27115% meantime:
27116\long\def\colophon{\hbox to0pt{}\vfill
27117\centerline{The body of this manual is set in}
27118\centerline{\fontname\tenrm,}
27119\centerline{with headings in {\bf\fontname\tenbf}}
27120\centerline{and examples in {\tt\fontname\tentt}.}
27121\centerline{{\it\fontname\tenit\/},}
27122\centerline{{\bf\fontname\tenbf}, and}
27123\centerline{{\sl\fontname\tensl\/}}
27124\centerline{are used for emphasis.}\vfill}
27125\page\colophon
27126% Blame: doc@cygnus.com, 1991.
27127@end tex
27128
c906108c 27129@bye
This page took 3.164778 seconds and 4 git commands to generate.