ada_value_assign: Correct big-endian case to take into account the bitsize
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
c16158bc
JM
52@ifset VERSION_PACKAGE
53@value{VERSION_PACKAGE}
54@end ifset
9fe8321b 55Version @value{GDBVN}.
c906108c 56
8a037dd7 57Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 58 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 59 Free Software Foundation, Inc.
c906108c 60
e9c75b65
EZ
61Permission is granted to copy, distribute and/or modify this document
62under the terms of the GNU Free Documentation License, Version 1.1 or
63any later version published by the Free Software Foundation; with the
959acfd1
EZ
64Invariant Sections being ``Free Software'' and ``Free Software Needs
65Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
66and with the Back-Cover Texts as in (a) below.
c906108c 67
b8533aec
DJ
68(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
69this GNU Manual. Buying copies from GNU Press supports the FSF in
70developing GNU and promoting software freedom.''
c906108c
SS
71@end ifinfo
72
73@titlepage
74@title Debugging with @value{GDBN}
75@subtitle The @sc{gnu} Source-Level Debugger
c906108c 76@sp 1
c906108c 77@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
c16158bc
JM
78@ifset VERSION_PACKAGE
79@sp 1
80@subtitle @value{VERSION_PACKAGE}
81@end ifset
9e9c5ae7 82@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 83@page
c906108c
SS
84@tex
85{\parskip=0pt
c16158bc 86\hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
c906108c
SS
87\hfill {\it Debugging with @value{GDBN}}\par
88\hfill \TeX{}info \texinfoversion\par
89}
90@end tex
53a5351d 91
c906108c 92@vskip 0pt plus 1filll
8a037dd7 93Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 941996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 95Free Software Foundation, Inc.
c906108c 96@sp 2
c906108c 97Published by the Free Software Foundation @*
c02a867d
EZ
9851 Franklin Street, Fifth Floor,
99Boston, MA 02110-1301, USA@*
6d2ebf8b 100ISBN 1-882114-77-9 @*
e9c75b65
EZ
101
102Permission is granted to copy, distribute and/or modify this document
103under the terms of the GNU Free Documentation License, Version 1.1 or
104any later version published by the Free Software Foundation; with the
959acfd1
EZ
105Invariant Sections being ``Free Software'' and ``Free Software Needs
106Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
107and with the Back-Cover Texts as in (a) below.
e9c75b65 108
b8533aec
DJ
109(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
110this GNU Manual. Buying copies from GNU Press supports the FSF in
111developing GNU and promoting software freedom.''
3fb6a982
JB
112@page
113This edition of the GDB manual is dedicated to the memory of Fred
114Fish. Fred was a long-standing contributor to GDB and to Free
115software in general. We will miss him.
c906108c
SS
116@end titlepage
117@page
118
6c0e9fb3 119@ifnottex
6d2ebf8b
SS
120@node Top, Summary, (dir), (dir)
121
c906108c
SS
122@top Debugging with @value{GDBN}
123
124This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
125
c16158bc
JM
126This is the @value{EDITION} Edition, for @value{GDBN}
127@ifset VERSION_PACKAGE
128@value{VERSION_PACKAGE}
129@end ifset
130Version @value{GDBVN}.
c906108c 131
b620eb07 132Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 133
3fb6a982
JB
134This edition of the GDB manual is dedicated to the memory of Fred
135Fish. Fred was a long-standing contributor to GDB and to Free
136software in general. We will miss him.
137
6d2ebf8b
SS
138@menu
139* Summary:: Summary of @value{GDBN}
140* Sample Session:: A sample @value{GDBN} session
141
142* Invocation:: Getting in and out of @value{GDBN}
143* Commands:: @value{GDBN} commands
144* Running:: Running programs under @value{GDBN}
145* Stopping:: Stopping and continuing
146* Stack:: Examining the stack
147* Source:: Examining source files
148* Data:: Examining data
e2e0bcd1 149* Macros:: Preprocessor Macros
b37052ae 150* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 151* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
152
153* Languages:: Using @value{GDBN} with different languages
154
155* Symbols:: Examining the symbol table
156* Altering:: Altering execution
157* GDB Files:: @value{GDBN} files
158* Targets:: Specifying a debugging target
6b2f586d 159* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
160* Configurations:: Configuration-specific information
161* Controlling GDB:: Controlling @value{GDBN}
162* Sequences:: Canned sequences of commands
21c294e6 163* Interpreters:: Command Interpreters
c8f4133a 164* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 165* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 166* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 167* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
168
169* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
170
171* Command Line Editing:: Command Line Editing
172* Using History Interactively:: Using History Interactively
0869d01b 173* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 174* Installing GDB:: Installing GDB
eb12ee30 175* Maintenance Commands:: Maintenance Commands
e0ce93ac 176* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 177* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
178* Target Descriptions:: How targets can describe themselves to
179 @value{GDBN}
aab4e0ec
AC
180* Copying:: GNU General Public License says
181 how you can copy and share GDB
6826cf00 182* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
183* Index:: Index
184@end menu
185
6c0e9fb3 186@end ifnottex
c906108c 187
449f3b6c 188@contents
449f3b6c 189
6d2ebf8b 190@node Summary
c906108c
SS
191@unnumbered Summary of @value{GDBN}
192
193The purpose of a debugger such as @value{GDBN} is to allow you to see what is
194going on ``inside'' another program while it executes---or what another
195program was doing at the moment it crashed.
196
197@value{GDBN} can do four main kinds of things (plus other things in support of
198these) to help you catch bugs in the act:
199
200@itemize @bullet
201@item
202Start your program, specifying anything that might affect its behavior.
203
204@item
205Make your program stop on specified conditions.
206
207@item
208Examine what has happened, when your program has stopped.
209
210@item
211Change things in your program, so you can experiment with correcting the
212effects of one bug and go on to learn about another.
213@end itemize
214
49efadf5 215You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 216For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
217For more information, see @ref{C,,C and C++}.
218
cce74817 219@cindex Modula-2
e632838e
AC
220Support for Modula-2 is partial. For information on Modula-2, see
221@ref{Modula-2,,Modula-2}.
c906108c 222
cce74817
JM
223@cindex Pascal
224Debugging Pascal programs which use sets, subranges, file variables, or
225nested functions does not currently work. @value{GDBN} does not support
226entering expressions, printing values, or similar features using Pascal
227syntax.
c906108c 228
c906108c
SS
229@cindex Fortran
230@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 231it may be necessary to refer to some variables with a trailing
cce74817 232underscore.
c906108c 233
b37303ee
AF
234@value{GDBN} can be used to debug programs written in Objective-C,
235using either the Apple/NeXT or the GNU Objective-C runtime.
236
c906108c
SS
237@menu
238* Free Software:: Freely redistributable software
239* Contributors:: Contributors to GDB
240@end menu
241
6d2ebf8b 242@node Free Software
79a6e687 243@unnumberedsec Free Software
c906108c 244
5d161b24 245@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
246General Public License
247(GPL). The GPL gives you the freedom to copy or adapt a licensed
248program---but every person getting a copy also gets with it the
249freedom to modify that copy (which means that they must get access to
250the source code), and the freedom to distribute further copies.
251Typical software companies use copyrights to limit your freedoms; the
252Free Software Foundation uses the GPL to preserve these freedoms.
253
254Fundamentally, the General Public License is a license which says that
255you have these freedoms and that you cannot take these freedoms away
256from anyone else.
257
2666264b 258@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
259
260The biggest deficiency in the free software community today is not in
261the software---it is the lack of good free documentation that we can
262include with the free software. Many of our most important
263programs do not come with free reference manuals and free introductory
264texts. Documentation is an essential part of any software package;
265when an important free software package does not come with a free
266manual and a free tutorial, that is a major gap. We have many such
267gaps today.
268
269Consider Perl, for instance. The tutorial manuals that people
270normally use are non-free. How did this come about? Because the
271authors of those manuals published them with restrictive terms---no
272copying, no modification, source files not available---which exclude
273them from the free software world.
274
275That wasn't the first time this sort of thing happened, and it was far
276from the last. Many times we have heard a GNU user eagerly describe a
277manual that he is writing, his intended contribution to the community,
278only to learn that he had ruined everything by signing a publication
279contract to make it non-free.
280
281Free documentation, like free software, is a matter of freedom, not
282price. The problem with the non-free manual is not that publishers
283charge a price for printed copies---that in itself is fine. (The Free
284Software Foundation sells printed copies of manuals, too.) The
285problem is the restrictions on the use of the manual. Free manuals
286are available in source code form, and give you permission to copy and
287modify. Non-free manuals do not allow this.
288
289The criteria of freedom for a free manual are roughly the same as for
290free software. Redistribution (including the normal kinds of
291commercial redistribution) must be permitted, so that the manual can
292accompany every copy of the program, both on-line and on paper.
293
294Permission for modification of the technical content is crucial too.
295When people modify the software, adding or changing features, if they
296are conscientious they will change the manual too---so they can
297provide accurate and clear documentation for the modified program. A
298manual that leaves you no choice but to write a new manual to document
299a changed version of the program is not really available to our
300community.
301
302Some kinds of limits on the way modification is handled are
303acceptable. For example, requirements to preserve the original
304author's copyright notice, the distribution terms, or the list of
305authors, are ok. It is also no problem to require modified versions
306to include notice that they were modified. Even entire sections that
307may not be deleted or changed are acceptable, as long as they deal
308with nontechnical topics (like this one). These kinds of restrictions
309are acceptable because they don't obstruct the community's normal use
310of the manual.
311
312However, it must be possible to modify all the @emph{technical}
313content of the manual, and then distribute the result in all the usual
314media, through all the usual channels. Otherwise, the restrictions
315obstruct the use of the manual, it is not free, and we need another
316manual to replace it.
317
318Please spread the word about this issue. Our community continues to
319lose manuals to proprietary publishing. If we spread the word that
320free software needs free reference manuals and free tutorials, perhaps
321the next person who wants to contribute by writing documentation will
322realize, before it is too late, that only free manuals contribute to
323the free software community.
324
325If you are writing documentation, please insist on publishing it under
326the GNU Free Documentation License or another free documentation
327license. Remember that this decision requires your approval---you
328don't have to let the publisher decide. Some commercial publishers
329will use a free license if you insist, but they will not propose the
330option; it is up to you to raise the issue and say firmly that this is
331what you want. If the publisher you are dealing with refuses, please
332try other publishers. If you're not sure whether a proposed license
42584a72 333is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
334
335You can encourage commercial publishers to sell more free, copylefted
336manuals and tutorials by buying them, and particularly by buying
337copies from the publishers that paid for their writing or for major
338improvements. Meanwhile, try to avoid buying non-free documentation
339at all. Check the distribution terms of a manual before you buy it,
340and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
341Check the history of the book, and try to reward the publishers that
342have paid or pay the authors to work on it.
959acfd1
EZ
343
344The Free Software Foundation maintains a list of free documentation
345published by other publishers, at
346@url{http://www.fsf.org/doc/other-free-books.html}.
347
6d2ebf8b 348@node Contributors
96a2c332
SS
349@unnumberedsec Contributors to @value{GDBN}
350
351Richard Stallman was the original author of @value{GDBN}, and of many
352other @sc{gnu} programs. Many others have contributed to its
353development. This section attempts to credit major contributors. One
354of the virtues of free software is that everyone is free to contribute
355to it; with regret, we cannot actually acknowledge everyone here. The
356file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
357blow-by-blow account.
358
359Changes much prior to version 2.0 are lost in the mists of time.
360
361@quotation
362@emph{Plea:} Additions to this section are particularly welcome. If you
363or your friends (or enemies, to be evenhanded) have been unfairly
364omitted from this list, we would like to add your names!
365@end quotation
366
367So that they may not regard their many labors as thankless, we
368particularly thank those who shepherded @value{GDBN} through major
369releases:
7ba3cf9c 370Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
371Jim Blandy (release 4.18);
372Jason Molenda (release 4.17);
373Stan Shebs (release 4.14);
374Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
375Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
376John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
377Jim Kingdon (releases 3.5, 3.4, and 3.3);
378and Randy Smith (releases 3.2, 3.1, and 3.0).
379
380Richard Stallman, assisted at various times by Peter TerMaat, Chris
381Hanson, and Richard Mlynarik, handled releases through 2.8.
382
b37052ae
EZ
383Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
384in @value{GDBN}, with significant additional contributions from Per
385Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
386demangler. Early work on C@t{++} was by Peter TerMaat (who also did
387much general update work leading to release 3.0).
c906108c 388
b37052ae 389@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
390object-file formats; BFD was a joint project of David V.
391Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
392
393David Johnson wrote the original COFF support; Pace Willison did
394the original support for encapsulated COFF.
395
0179ffac 396Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
397
398Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
399Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
400support.
401Jean-Daniel Fekete contributed Sun 386i support.
402Chris Hanson improved the HP9000 support.
403Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
404David Johnson contributed Encore Umax support.
405Jyrki Kuoppala contributed Altos 3068 support.
406Jeff Law contributed HP PA and SOM support.
407Keith Packard contributed NS32K support.
408Doug Rabson contributed Acorn Risc Machine support.
409Bob Rusk contributed Harris Nighthawk CX-UX support.
410Chris Smith contributed Convex support (and Fortran debugging).
411Jonathan Stone contributed Pyramid support.
412Michael Tiemann contributed SPARC support.
413Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
414Pace Willison contributed Intel 386 support.
415Jay Vosburgh contributed Symmetry support.
a37295f9 416Marko Mlinar contributed OpenRISC 1000 support.
c906108c 417
1104b9e7 418Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
419
420Rich Schaefer and Peter Schauer helped with support of SunOS shared
421libraries.
422
423Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
424about several machine instruction sets.
425
426Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
427remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
428contributed remote debugging modules for the i960, VxWorks, A29K UDI,
429and RDI targets, respectively.
430
431Brian Fox is the author of the readline libraries providing
432command-line editing and command history.
433
7a292a7a
SS
434Andrew Beers of SUNY Buffalo wrote the language-switching code, the
435Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 436
5d161b24 437Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 438He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 439symbols.
c906108c 440
f24c5e49
KI
441Hitachi America (now Renesas America), Ltd. sponsored the support for
442H8/300, H8/500, and Super-H processors.
c906108c
SS
443
444NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
445
f24c5e49
KI
446Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
447processors.
c906108c
SS
448
449Toshiba sponsored the support for the TX39 Mips processor.
450
451Matsushita sponsored the support for the MN10200 and MN10300 processors.
452
96a2c332 453Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
454
455Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
456watchpoints.
457
458Michael Snyder added support for tracepoints.
459
460Stu Grossman wrote gdbserver.
461
462Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 463nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
464
465The following people at the Hewlett-Packard Company contributed
466support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 467(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
468compiler, and the Text User Interface (nee Terminal User Interface):
469Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
470Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
471provided HP-specific information in this manual.
c906108c 472
b37052ae
EZ
473DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
474Robert Hoehne made significant contributions to the DJGPP port.
475
96a2c332
SS
476Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
477development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
478fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
479Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
480Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
481Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
482Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
483addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
484JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
485Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
486Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
487Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
488Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
489Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
490Zuhn have made contributions both large and small.
c906108c 491
ffed4509
AC
492Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
493Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
494
e2e0bcd1
JB
495Jim Blandy added support for preprocessor macros, while working for Red
496Hat.
c906108c 497
a9967aef
AC
498Andrew Cagney designed @value{GDBN}'s architecture vector. Many
499people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
500Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
501Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
502Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
503with the migration of old architectures to this new framework.
504
c5e30d01
AC
505Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
506unwinder framework, this consisting of a fresh new design featuring
507frame IDs, independent frame sniffers, and the sentinel frame. Mark
508Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
509libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 510trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
511complete rewrite of the architecture's frame code, were carried out by
512Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
513Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
514Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
515Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
516Weigand.
517
ca3bf3bd
DJ
518Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
519Tensilica, Inc.@: contributed support for Xtensa processors. Others
520who have worked on the Xtensa port of @value{GDBN} in the past include
521Steve Tjiang, John Newlin, and Scott Foehner.
522
6d2ebf8b 523@node Sample Session
c906108c
SS
524@chapter A Sample @value{GDBN} Session
525
526You can use this manual at your leisure to read all about @value{GDBN}.
527However, a handful of commands are enough to get started using the
528debugger. This chapter illustrates those commands.
529
530@iftex
531In this sample session, we emphasize user input like this: @b{input},
532to make it easier to pick out from the surrounding output.
533@end iftex
534
535@c FIXME: this example may not be appropriate for some configs, where
536@c FIXME...primary interest is in remote use.
537
538One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
539processor) exhibits the following bug: sometimes, when we change its
540quote strings from the default, the commands used to capture one macro
541definition within another stop working. In the following short @code{m4}
542session, we define a macro @code{foo} which expands to @code{0000}; we
543then use the @code{m4} built-in @code{defn} to define @code{bar} as the
544same thing. However, when we change the open quote string to
545@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
546procedure fails to define a new synonym @code{baz}:
547
548@smallexample
549$ @b{cd gnu/m4}
550$ @b{./m4}
551@b{define(foo,0000)}
552
553@b{foo}
5540000
555@b{define(bar,defn(`foo'))}
556
557@b{bar}
5580000
559@b{changequote(<QUOTE>,<UNQUOTE>)}
560
561@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
562@b{baz}
c8aa23ab 563@b{Ctrl-d}
c906108c
SS
564m4: End of input: 0: fatal error: EOF in string
565@end smallexample
566
567@noindent
568Let us use @value{GDBN} to try to see what is going on.
569
c906108c
SS
570@smallexample
571$ @b{@value{GDBP} m4}
572@c FIXME: this falsifies the exact text played out, to permit smallbook
573@c FIXME... format to come out better.
574@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 575 of it under certain conditions; type "show copying" to see
c906108c 576 the conditions.
5d161b24 577There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
578 for details.
579
580@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
581(@value{GDBP})
582@end smallexample
c906108c
SS
583
584@noindent
585@value{GDBN} reads only enough symbol data to know where to find the
586rest when needed; as a result, the first prompt comes up very quickly.
587We now tell @value{GDBN} to use a narrower display width than usual, so
588that examples fit in this manual.
589
590@smallexample
591(@value{GDBP}) @b{set width 70}
592@end smallexample
593
594@noindent
595We need to see how the @code{m4} built-in @code{changequote} works.
596Having looked at the source, we know the relevant subroutine is
597@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
598@code{break} command.
599
600@smallexample
601(@value{GDBP}) @b{break m4_changequote}
602Breakpoint 1 at 0x62f4: file builtin.c, line 879.
603@end smallexample
604
605@noindent
606Using the @code{run} command, we start @code{m4} running under @value{GDBN}
607control; as long as control does not reach the @code{m4_changequote}
608subroutine, the program runs as usual:
609
610@smallexample
611(@value{GDBP}) @b{run}
612Starting program: /work/Editorial/gdb/gnu/m4/m4
613@b{define(foo,0000)}
614
615@b{foo}
6160000
617@end smallexample
618
619@noindent
620To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
621suspends execution of @code{m4}, displaying information about the
622context where it stops.
623
624@smallexample
625@b{changequote(<QUOTE>,<UNQUOTE>)}
626
5d161b24 627Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
628 at builtin.c:879
629879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
630@end smallexample
631
632@noindent
633Now we use the command @code{n} (@code{next}) to advance execution to
634the next line of the current function.
635
636@smallexample
637(@value{GDBP}) @b{n}
638882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
639 : nil,
640@end smallexample
641
642@noindent
643@code{set_quotes} looks like a promising subroutine. We can go into it
644by using the command @code{s} (@code{step}) instead of @code{next}.
645@code{step} goes to the next line to be executed in @emph{any}
646subroutine, so it steps into @code{set_quotes}.
647
648@smallexample
649(@value{GDBP}) @b{s}
650set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
651 at input.c:530
652530 if (lquote != def_lquote)
653@end smallexample
654
655@noindent
656The display that shows the subroutine where @code{m4} is now
657suspended (and its arguments) is called a stack frame display. It
658shows a summary of the stack. We can use the @code{backtrace}
659command (which can also be spelled @code{bt}), to see where we are
660in the stack as a whole: the @code{backtrace} command displays a
661stack frame for each active subroutine.
662
663@smallexample
664(@value{GDBP}) @b{bt}
665#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
666 at input.c:530
5d161b24 667#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
668 at builtin.c:882
669#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
670#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
671 at macro.c:71
672#4 0x79dc in expand_input () at macro.c:40
673#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
674@end smallexample
675
676@noindent
677We step through a few more lines to see what happens. The first two
678times, we can use @samp{s}; the next two times we use @code{n} to avoid
679falling into the @code{xstrdup} subroutine.
680
681@smallexample
682(@value{GDBP}) @b{s}
6830x3b5c 532 if (rquote != def_rquote)
684(@value{GDBP}) @b{s}
6850x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
686def_lquote : xstrdup(lq);
687(@value{GDBP}) @b{n}
688536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
689 : xstrdup(rq);
690(@value{GDBP}) @b{n}
691538 len_lquote = strlen(rquote);
692@end smallexample
693
694@noindent
695The last line displayed looks a little odd; we can examine the variables
696@code{lquote} and @code{rquote} to see if they are in fact the new left
697and right quotes we specified. We use the command @code{p}
698(@code{print}) to see their values.
699
700@smallexample
701(@value{GDBP}) @b{p lquote}
702$1 = 0x35d40 "<QUOTE>"
703(@value{GDBP}) @b{p rquote}
704$2 = 0x35d50 "<UNQUOTE>"
705@end smallexample
706
707@noindent
708@code{lquote} and @code{rquote} are indeed the new left and right quotes.
709To look at some context, we can display ten lines of source
710surrounding the current line with the @code{l} (@code{list}) command.
711
712@smallexample
713(@value{GDBP}) @b{l}
714533 xfree(rquote);
715534
716535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
717 : xstrdup (lq);
718536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
719 : xstrdup (rq);
720537
721538 len_lquote = strlen(rquote);
722539 len_rquote = strlen(lquote);
723540 @}
724541
725542 void
726@end smallexample
727
728@noindent
729Let us step past the two lines that set @code{len_lquote} and
730@code{len_rquote}, and then examine the values of those variables.
731
732@smallexample
733(@value{GDBP}) @b{n}
734539 len_rquote = strlen(lquote);
735(@value{GDBP}) @b{n}
736540 @}
737(@value{GDBP}) @b{p len_lquote}
738$3 = 9
739(@value{GDBP}) @b{p len_rquote}
740$4 = 7
741@end smallexample
742
743@noindent
744That certainly looks wrong, assuming @code{len_lquote} and
745@code{len_rquote} are meant to be the lengths of @code{lquote} and
746@code{rquote} respectively. We can set them to better values using
747the @code{p} command, since it can print the value of
748any expression---and that expression can include subroutine calls and
749assignments.
750
751@smallexample
752(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
753$5 = 7
754(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
755$6 = 9
756@end smallexample
757
758@noindent
759Is that enough to fix the problem of using the new quotes with the
760@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
761executing with the @code{c} (@code{continue}) command, and then try the
762example that caused trouble initially:
763
764@smallexample
765(@value{GDBP}) @b{c}
766Continuing.
767
768@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
769
770baz
7710000
772@end smallexample
773
774@noindent
775Success! The new quotes now work just as well as the default ones. The
776problem seems to have been just the two typos defining the wrong
777lengths. We allow @code{m4} exit by giving it an EOF as input:
778
779@smallexample
c8aa23ab 780@b{Ctrl-d}
c906108c
SS
781Program exited normally.
782@end smallexample
783
784@noindent
785The message @samp{Program exited normally.} is from @value{GDBN}; it
786indicates @code{m4} has finished executing. We can end our @value{GDBN}
787session with the @value{GDBN} @code{quit} command.
788
789@smallexample
790(@value{GDBP}) @b{quit}
791@end smallexample
c906108c 792
6d2ebf8b 793@node Invocation
c906108c
SS
794@chapter Getting In and Out of @value{GDBN}
795
796This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 797The essentials are:
c906108c 798@itemize @bullet
5d161b24 799@item
53a5351d 800type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 801@item
c8aa23ab 802type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
803@end itemize
804
805@menu
806* Invoking GDB:: How to start @value{GDBN}
807* Quitting GDB:: How to quit @value{GDBN}
808* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 809* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
810@end menu
811
6d2ebf8b 812@node Invoking GDB
c906108c
SS
813@section Invoking @value{GDBN}
814
c906108c
SS
815Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
816@value{GDBN} reads commands from the terminal until you tell it to exit.
817
818You can also run @code{@value{GDBP}} with a variety of arguments and options,
819to specify more of your debugging environment at the outset.
820
c906108c
SS
821The command-line options described here are designed
822to cover a variety of situations; in some environments, some of these
5d161b24 823options may effectively be unavailable.
c906108c
SS
824
825The most usual way to start @value{GDBN} is with one argument,
826specifying an executable program:
827
474c8240 828@smallexample
c906108c 829@value{GDBP} @var{program}
474c8240 830@end smallexample
c906108c 831
c906108c
SS
832@noindent
833You can also start with both an executable program and a core file
834specified:
835
474c8240 836@smallexample
c906108c 837@value{GDBP} @var{program} @var{core}
474c8240 838@end smallexample
c906108c
SS
839
840You can, instead, specify a process ID as a second argument, if you want
841to debug a running process:
842
474c8240 843@smallexample
c906108c 844@value{GDBP} @var{program} 1234
474c8240 845@end smallexample
c906108c
SS
846
847@noindent
848would attach @value{GDBN} to process @code{1234} (unless you also have a file
849named @file{1234}; @value{GDBN} does check for a core file first).
850
c906108c 851Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
852complete operating system; when you use @value{GDBN} as a remote
853debugger attached to a bare board, there may not be any notion of
854``process'', and there is often no way to get a core dump. @value{GDBN}
855will warn you if it is unable to attach or to read core dumps.
c906108c 856
aa26fa3a
TT
857You can optionally have @code{@value{GDBP}} pass any arguments after the
858executable file to the inferior using @code{--args}. This option stops
859option processing.
474c8240 860@smallexample
3f94c067 861@value{GDBP} --args gcc -O2 -c foo.c
474c8240 862@end smallexample
aa26fa3a
TT
863This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
864@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
865
96a2c332 866You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
867@value{GDBN}'s non-warranty, by specifying @code{-silent}:
868
869@smallexample
870@value{GDBP} -silent
871@end smallexample
872
873@noindent
874You can further control how @value{GDBN} starts up by using command-line
875options. @value{GDBN} itself can remind you of the options available.
876
877@noindent
878Type
879
474c8240 880@smallexample
c906108c 881@value{GDBP} -help
474c8240 882@end smallexample
c906108c
SS
883
884@noindent
885to display all available options and briefly describe their use
886(@samp{@value{GDBP} -h} is a shorter equivalent).
887
888All options and command line arguments you give are processed
889in sequential order. The order makes a difference when the
890@samp{-x} option is used.
891
892
893@menu
c906108c
SS
894* File Options:: Choosing files
895* Mode Options:: Choosing modes
6fc08d32 896* Startup:: What @value{GDBN} does during startup
c906108c
SS
897@end menu
898
6d2ebf8b 899@node File Options
79a6e687 900@subsection Choosing Files
c906108c 901
2df3850c 902When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
903specifying an executable file and core file (or process ID). This is
904the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 905@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
906first argument that does not have an associated option flag as
907equivalent to the @samp{-se} option followed by that argument; and the
908second argument that does not have an associated option flag, if any, as
909equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
910If the second argument begins with a decimal digit, @value{GDBN} will
911first attempt to attach to it as a process, and if that fails, attempt
912to open it as a corefile. If you have a corefile whose name begins with
b383017d 913a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 914prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
915
916If @value{GDBN} has not been configured to included core file support,
917such as for most embedded targets, then it will complain about a second
918argument and ignore it.
c906108c
SS
919
920Many options have both long and short forms; both are shown in the
921following list. @value{GDBN} also recognizes the long forms if you truncate
922them, so long as enough of the option is present to be unambiguous.
923(If you prefer, you can flag option arguments with @samp{--} rather
924than @samp{-}, though we illustrate the more usual convention.)
925
d700128c
EZ
926@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
927@c way, both those who look for -foo and --foo in the index, will find
928@c it.
929
c906108c
SS
930@table @code
931@item -symbols @var{file}
932@itemx -s @var{file}
d700128c
EZ
933@cindex @code{--symbols}
934@cindex @code{-s}
c906108c
SS
935Read symbol table from file @var{file}.
936
937@item -exec @var{file}
938@itemx -e @var{file}
d700128c
EZ
939@cindex @code{--exec}
940@cindex @code{-e}
7a292a7a
SS
941Use file @var{file} as the executable file to execute when appropriate,
942and for examining pure data in conjunction with a core dump.
c906108c
SS
943
944@item -se @var{file}
d700128c 945@cindex @code{--se}
c906108c
SS
946Read symbol table from file @var{file} and use it as the executable
947file.
948
c906108c
SS
949@item -core @var{file}
950@itemx -c @var{file}
d700128c
EZ
951@cindex @code{--core}
952@cindex @code{-c}
b383017d 953Use file @var{file} as a core dump to examine.
c906108c 954
19837790
MS
955@item -pid @var{number}
956@itemx -p @var{number}
957@cindex @code{--pid}
958@cindex @code{-p}
959Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
960
961@item -command @var{file}
962@itemx -x @var{file}
d700128c
EZ
963@cindex @code{--command}
964@cindex @code{-x}
c906108c
SS
965Execute @value{GDBN} commands from file @var{file}. @xref{Command
966Files,, Command files}.
967
8a5a3c82
AS
968@item -eval-command @var{command}
969@itemx -ex @var{command}
970@cindex @code{--eval-command}
971@cindex @code{-ex}
972Execute a single @value{GDBN} command.
973
974This option may be used multiple times to call multiple commands. It may
975also be interleaved with @samp{-command} as required.
976
977@smallexample
978@value{GDBP} -ex 'target sim' -ex 'load' \
979 -x setbreakpoints -ex 'run' a.out
980@end smallexample
981
c906108c
SS
982@item -directory @var{directory}
983@itemx -d @var{directory}
d700128c
EZ
984@cindex @code{--directory}
985@cindex @code{-d}
4b505b12 986Add @var{directory} to the path to search for source and script files.
c906108c 987
c906108c
SS
988@item -r
989@itemx -readnow
d700128c
EZ
990@cindex @code{--readnow}
991@cindex @code{-r}
c906108c
SS
992Read each symbol file's entire symbol table immediately, rather than
993the default, which is to read it incrementally as it is needed.
994This makes startup slower, but makes future operations faster.
53a5351d 995
c906108c
SS
996@end table
997
6d2ebf8b 998@node Mode Options
79a6e687 999@subsection Choosing Modes
c906108c
SS
1000
1001You can run @value{GDBN} in various alternative modes---for example, in
1002batch mode or quiet mode.
1003
1004@table @code
1005@item -nx
1006@itemx -n
d700128c
EZ
1007@cindex @code{--nx}
1008@cindex @code{-n}
96565e91 1009Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1010@value{GDBN} executes the commands in these files after all the command
1011options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1012Files}.
c906108c
SS
1013
1014@item -quiet
d700128c 1015@itemx -silent
c906108c 1016@itemx -q
d700128c
EZ
1017@cindex @code{--quiet}
1018@cindex @code{--silent}
1019@cindex @code{-q}
c906108c
SS
1020``Quiet''. Do not print the introductory and copyright messages. These
1021messages are also suppressed in batch mode.
1022
1023@item -batch
d700128c 1024@cindex @code{--batch}
c906108c
SS
1025Run in batch mode. Exit with status @code{0} after processing all the
1026command files specified with @samp{-x} (and all commands from
1027initialization files, if not inhibited with @samp{-n}). Exit with
1028nonzero status if an error occurs in executing the @value{GDBN} commands
1029in the command files.
1030
2df3850c
JM
1031Batch mode may be useful for running @value{GDBN} as a filter, for
1032example to download and run a program on another computer; in order to
1033make this more useful, the message
c906108c 1034
474c8240 1035@smallexample
c906108c 1036Program exited normally.
474c8240 1037@end smallexample
c906108c
SS
1038
1039@noindent
2df3850c
JM
1040(which is ordinarily issued whenever a program running under
1041@value{GDBN} control terminates) is not issued when running in batch
1042mode.
1043
1a088d06
AS
1044@item -batch-silent
1045@cindex @code{--batch-silent}
1046Run in batch mode exactly like @samp{-batch}, but totally silently. All
1047@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1048unaffected). This is much quieter than @samp{-silent} and would be useless
1049for an interactive session.
1050
1051This is particularly useful when using targets that give @samp{Loading section}
1052messages, for example.
1053
1054Note that targets that give their output via @value{GDBN}, as opposed to
1055writing directly to @code{stdout}, will also be made silent.
1056
4b0ad762
AS
1057@item -return-child-result
1058@cindex @code{--return-child-result}
1059The return code from @value{GDBN} will be the return code from the child
1060process (the process being debugged), with the following exceptions:
1061
1062@itemize @bullet
1063@item
1064@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1065internal error. In this case the exit code is the same as it would have been
1066without @samp{-return-child-result}.
1067@item
1068The user quits with an explicit value. E.g., @samp{quit 1}.
1069@item
1070The child process never runs, or is not allowed to terminate, in which case
1071the exit code will be -1.
1072@end itemize
1073
1074This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1075when @value{GDBN} is being used as a remote program loader or simulator
1076interface.
1077
2df3850c
JM
1078@item -nowindows
1079@itemx -nw
d700128c
EZ
1080@cindex @code{--nowindows}
1081@cindex @code{-nw}
2df3850c 1082``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1083(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1084interface. If no GUI is available, this option has no effect.
1085
1086@item -windows
1087@itemx -w
d700128c
EZ
1088@cindex @code{--windows}
1089@cindex @code{-w}
2df3850c
JM
1090If @value{GDBN} includes a GUI, then this option requires it to be
1091used if possible.
c906108c
SS
1092
1093@item -cd @var{directory}
d700128c 1094@cindex @code{--cd}
c906108c
SS
1095Run @value{GDBN} using @var{directory} as its working directory,
1096instead of the current directory.
1097
c906108c
SS
1098@item -fullname
1099@itemx -f
d700128c
EZ
1100@cindex @code{--fullname}
1101@cindex @code{-f}
7a292a7a
SS
1102@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1103subprocess. It tells @value{GDBN} to output the full file name and line
1104number in a standard, recognizable fashion each time a stack frame is
1105displayed (which includes each time your program stops). This
1106recognizable format looks like two @samp{\032} characters, followed by
1107the file name, line number and character position separated by colons,
1108and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1109@samp{\032} characters as a signal to display the source code for the
1110frame.
c906108c 1111
d700128c
EZ
1112@item -epoch
1113@cindex @code{--epoch}
1114The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1115@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1116routines so as to allow Epoch to display values of expressions in a
1117separate window.
1118
1119@item -annotate @var{level}
1120@cindex @code{--annotate}
1121This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1122effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1123(@pxref{Annotations}). The annotation @var{level} controls how much
1124information @value{GDBN} prints together with its prompt, values of
1125expressions, source lines, and other types of output. Level 0 is the
1126normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1127@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1128that control @value{GDBN}, and level 2 has been deprecated.
1129
265eeb58 1130The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1131(@pxref{GDB/MI}).
d700128c 1132
aa26fa3a
TT
1133@item --args
1134@cindex @code{--args}
1135Change interpretation of command line so that arguments following the
1136executable file are passed as command line arguments to the inferior.
1137This option stops option processing.
1138
2df3850c
JM
1139@item -baud @var{bps}
1140@itemx -b @var{bps}
d700128c
EZ
1141@cindex @code{--baud}
1142@cindex @code{-b}
c906108c
SS
1143Set the line speed (baud rate or bits per second) of any serial
1144interface used by @value{GDBN} for remote debugging.
c906108c 1145
f47b1503
AS
1146@item -l @var{timeout}
1147@cindex @code{-l}
1148Set the timeout (in seconds) of any communication used by @value{GDBN}
1149for remote debugging.
1150
c906108c 1151@item -tty @var{device}
d700128c
EZ
1152@itemx -t @var{device}
1153@cindex @code{--tty}
1154@cindex @code{-t}
c906108c
SS
1155Run using @var{device} for your program's standard input and output.
1156@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1157
53a5351d 1158@c resolve the situation of these eventually
c4555f82
SC
1159@item -tui
1160@cindex @code{--tui}
d0d5df6f
AC
1161Activate the @dfn{Text User Interface} when starting. The Text User
1162Interface manages several text windows on the terminal, showing
1163source, assembly, registers and @value{GDBN} command outputs
1164(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1165Text User Interface can be enabled by invoking the program
46ba6afa 1166@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1167Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1168
1169@c @item -xdb
d700128c 1170@c @cindex @code{--xdb}
53a5351d
JM
1171@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1172@c For information, see the file @file{xdb_trans.html}, which is usually
1173@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1174@c systems.
1175
d700128c
EZ
1176@item -interpreter @var{interp}
1177@cindex @code{--interpreter}
1178Use the interpreter @var{interp} for interface with the controlling
1179program or device. This option is meant to be set by programs which
94bbb2c0 1180communicate with @value{GDBN} using it as a back end.
21c294e6 1181@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1182
da0f9dcd 1183@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1184@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1185The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1186previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1187selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1188@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1189
1190@item -write
1191@cindex @code{--write}
1192Open the executable and core files for both reading and writing. This
1193is equivalent to the @samp{set write on} command inside @value{GDBN}
1194(@pxref{Patching}).
1195
1196@item -statistics
1197@cindex @code{--statistics}
1198This option causes @value{GDBN} to print statistics about time and
1199memory usage after it completes each command and returns to the prompt.
1200
1201@item -version
1202@cindex @code{--version}
1203This option causes @value{GDBN} to print its version number and
1204no-warranty blurb, and exit.
1205
c906108c
SS
1206@end table
1207
6fc08d32 1208@node Startup
79a6e687 1209@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1210@cindex @value{GDBN} startup
1211
1212Here's the description of what @value{GDBN} does during session startup:
1213
1214@enumerate
1215@item
1216Sets up the command interpreter as specified by the command line
1217(@pxref{Mode Options, interpreter}).
1218
1219@item
1220@cindex init file
1221Reads the @dfn{init file} (if any) in your home directory@footnote{On
1222DOS/Windows systems, the home directory is the one pointed to by the
1223@code{HOME} environment variable.} and executes all the commands in
1224that file.
1225
1226@item
1227Processes command line options and operands.
1228
1229@item
1230Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1231working directory. This is only done if the current directory is
1232different from your home directory. Thus, you can have more than one
1233init file, one generic in your home directory, and another, specific
1234to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1235@value{GDBN}.
1236
1237@item
1238Reads command files specified by the @samp{-x} option. @xref{Command
1239Files}, for more details about @value{GDBN} command files.
1240
1241@item
1242Reads the command history recorded in the @dfn{history file}.
d620b259 1243@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1244files where @value{GDBN} records it.
1245@end enumerate
1246
1247Init files use the same syntax as @dfn{command files} (@pxref{Command
1248Files}) and are processed by @value{GDBN} in the same way. The init
1249file in your home directory can set options (such as @samp{set
1250complaints}) that affect subsequent processing of command line options
1251and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1252option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1253
1254@cindex init file name
1255@cindex @file{.gdbinit}
119b882a 1256@cindex @file{gdb.ini}
8807d78b 1257The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1258The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1259the limitations of file names imposed by DOS filesystems. The Windows
1260ports of @value{GDBN} use the standard name, but if they find a
1261@file{gdb.ini} file, they warn you about that and suggest to rename
1262the file to the standard name.
1263
6fc08d32 1264
6d2ebf8b 1265@node Quitting GDB
c906108c
SS
1266@section Quitting @value{GDBN}
1267@cindex exiting @value{GDBN}
1268@cindex leaving @value{GDBN}
1269
1270@table @code
1271@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1272@kindex q @r{(@code{quit})}
96a2c332
SS
1273@item quit @r{[}@var{expression}@r{]}
1274@itemx q
1275To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1276@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1277do not supply @var{expression}, @value{GDBN} will terminate normally;
1278otherwise it will terminate using the result of @var{expression} as the
1279error code.
c906108c
SS
1280@end table
1281
1282@cindex interrupt
c8aa23ab 1283An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1284terminates the action of any @value{GDBN} command that is in progress and
1285returns to @value{GDBN} command level. It is safe to type the interrupt
1286character at any time because @value{GDBN} does not allow it to take effect
1287until a time when it is safe.
1288
c906108c
SS
1289If you have been using @value{GDBN} to control an attached process or
1290device, you can release it with the @code{detach} command
79a6e687 1291(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1292
6d2ebf8b 1293@node Shell Commands
79a6e687 1294@section Shell Commands
c906108c
SS
1295
1296If you need to execute occasional shell commands during your
1297debugging session, there is no need to leave or suspend @value{GDBN}; you can
1298just use the @code{shell} command.
1299
1300@table @code
1301@kindex shell
1302@cindex shell escape
1303@item shell @var{command string}
1304Invoke a standard shell to execute @var{command string}.
c906108c 1305If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1306shell to run. Otherwise @value{GDBN} uses the default shell
1307(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1308@end table
1309
1310The utility @code{make} is often needed in development environments.
1311You do not have to use the @code{shell} command for this purpose in
1312@value{GDBN}:
1313
1314@table @code
1315@kindex make
1316@cindex calling make
1317@item make @var{make-args}
1318Execute the @code{make} program with the specified
1319arguments. This is equivalent to @samp{shell make @var{make-args}}.
1320@end table
1321
79a6e687
BW
1322@node Logging Output
1323@section Logging Output
0fac0b41 1324@cindex logging @value{GDBN} output
9c16f35a 1325@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1326
1327You may want to save the output of @value{GDBN} commands to a file.
1328There are several commands to control @value{GDBN}'s logging.
1329
1330@table @code
1331@kindex set logging
1332@item set logging on
1333Enable logging.
1334@item set logging off
1335Disable logging.
9c16f35a 1336@cindex logging file name
0fac0b41
DJ
1337@item set logging file @var{file}
1338Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1339@item set logging overwrite [on|off]
1340By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1341you want @code{set logging on} to overwrite the logfile instead.
1342@item set logging redirect [on|off]
1343By default, @value{GDBN} output will go to both the terminal and the logfile.
1344Set @code{redirect} if you want output to go only to the log file.
1345@kindex show logging
1346@item show logging
1347Show the current values of the logging settings.
1348@end table
1349
6d2ebf8b 1350@node Commands
c906108c
SS
1351@chapter @value{GDBN} Commands
1352
1353You can abbreviate a @value{GDBN} command to the first few letters of the command
1354name, if that abbreviation is unambiguous; and you can repeat certain
1355@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1356key to get @value{GDBN} to fill out the rest of a word in a command (or to
1357show you the alternatives available, if there is more than one possibility).
1358
1359@menu
1360* Command Syntax:: How to give commands to @value{GDBN}
1361* Completion:: Command completion
1362* Help:: How to ask @value{GDBN} for help
1363@end menu
1364
6d2ebf8b 1365@node Command Syntax
79a6e687 1366@section Command Syntax
c906108c
SS
1367
1368A @value{GDBN} command is a single line of input. There is no limit on
1369how long it can be. It starts with a command name, which is followed by
1370arguments whose meaning depends on the command name. For example, the
1371command @code{step} accepts an argument which is the number of times to
1372step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1373with no arguments. Some commands do not allow any arguments.
c906108c
SS
1374
1375@cindex abbreviation
1376@value{GDBN} command names may always be truncated if that abbreviation is
1377unambiguous. Other possible command abbreviations are listed in the
1378documentation for individual commands. In some cases, even ambiguous
1379abbreviations are allowed; for example, @code{s} is specially defined as
1380equivalent to @code{step} even though there are other commands whose
1381names start with @code{s}. You can test abbreviations by using them as
1382arguments to the @code{help} command.
1383
1384@cindex repeating commands
41afff9a 1385@kindex RET @r{(repeat last command)}
c906108c 1386A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1387repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1388will not repeat this way; these are commands whose unintentional
1389repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1390repeat. User-defined commands can disable this feature; see
1391@ref{Define, dont-repeat}.
c906108c
SS
1392
1393The @code{list} and @code{x} commands, when you repeat them with
1394@key{RET}, construct new arguments rather than repeating
1395exactly as typed. This permits easy scanning of source or memory.
1396
1397@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1398output, in a way similar to the common utility @code{more}
79a6e687 1399(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1400@key{RET} too many in this situation, @value{GDBN} disables command
1401repetition after any command that generates this sort of display.
1402
41afff9a 1403@kindex # @r{(a comment)}
c906108c
SS
1404@cindex comment
1405Any text from a @kbd{#} to the end of the line is a comment; it does
1406nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1407Files,,Command Files}).
c906108c 1408
88118b3a 1409@cindex repeating command sequences
c8aa23ab
EZ
1410@kindex Ctrl-o @r{(operate-and-get-next)}
1411The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1412commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1413then fetches the next line relative to the current line from the history
1414for editing.
1415
6d2ebf8b 1416@node Completion
79a6e687 1417@section Command Completion
c906108c
SS
1418
1419@cindex completion
1420@cindex word completion
1421@value{GDBN} can fill in the rest of a word in a command for you, if there is
1422only one possibility; it can also show you what the valid possibilities
1423are for the next word in a command, at any time. This works for @value{GDBN}
1424commands, @value{GDBN} subcommands, and the names of symbols in your program.
1425
1426Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1427of a word. If there is only one possibility, @value{GDBN} fills in the
1428word, and waits for you to finish the command (or press @key{RET} to
1429enter it). For example, if you type
1430
1431@c FIXME "@key" does not distinguish its argument sufficiently to permit
1432@c complete accuracy in these examples; space introduced for clarity.
1433@c If texinfo enhancements make it unnecessary, it would be nice to
1434@c replace " @key" by "@key" in the following...
474c8240 1435@smallexample
c906108c 1436(@value{GDBP}) info bre @key{TAB}
474c8240 1437@end smallexample
c906108c
SS
1438
1439@noindent
1440@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1441the only @code{info} subcommand beginning with @samp{bre}:
1442
474c8240 1443@smallexample
c906108c 1444(@value{GDBP}) info breakpoints
474c8240 1445@end smallexample
c906108c
SS
1446
1447@noindent
1448You can either press @key{RET} at this point, to run the @code{info
1449breakpoints} command, or backspace and enter something else, if
1450@samp{breakpoints} does not look like the command you expected. (If you
1451were sure you wanted @code{info breakpoints} in the first place, you
1452might as well just type @key{RET} immediately after @samp{info bre},
1453to exploit command abbreviations rather than command completion).
1454
1455If there is more than one possibility for the next word when you press
1456@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1457characters and try again, or just press @key{TAB} a second time;
1458@value{GDBN} displays all the possible completions for that word. For
1459example, you might want to set a breakpoint on a subroutine whose name
1460begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1461just sounds the bell. Typing @key{TAB} again displays all the
1462function names in your program that begin with those characters, for
1463example:
1464
474c8240 1465@smallexample
c906108c
SS
1466(@value{GDBP}) b make_ @key{TAB}
1467@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1468make_a_section_from_file make_environ
1469make_abs_section make_function_type
1470make_blockvector make_pointer_type
1471make_cleanup make_reference_type
c906108c
SS
1472make_command make_symbol_completion_list
1473(@value{GDBP}) b make_
474c8240 1474@end smallexample
c906108c
SS
1475
1476@noindent
1477After displaying the available possibilities, @value{GDBN} copies your
1478partial input (@samp{b make_} in the example) so you can finish the
1479command.
1480
1481If you just want to see the list of alternatives in the first place, you
b37052ae 1482can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1483means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1484key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1485one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1486
1487@cindex quotes in commands
1488@cindex completion of quoted strings
1489Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1490parentheses or other characters that @value{GDBN} normally excludes from
1491its notion of a word. To permit word completion to work in this
1492situation, you may enclose words in @code{'} (single quote marks) in
1493@value{GDBN} commands.
c906108c 1494
c906108c 1495The most likely situation where you might need this is in typing the
b37052ae
EZ
1496name of a C@t{++} function. This is because C@t{++} allows function
1497overloading (multiple definitions of the same function, distinguished
1498by argument type). For example, when you want to set a breakpoint you
1499may need to distinguish whether you mean the version of @code{name}
1500that takes an @code{int} parameter, @code{name(int)}, or the version
1501that takes a @code{float} parameter, @code{name(float)}. To use the
1502word-completion facilities in this situation, type a single quote
1503@code{'} at the beginning of the function name. This alerts
1504@value{GDBN} that it may need to consider more information than usual
1505when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1506
474c8240 1507@smallexample
96a2c332 1508(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1509bubble(double,double) bubble(int,int)
1510(@value{GDBP}) b 'bubble(
474c8240 1511@end smallexample
c906108c
SS
1512
1513In some cases, @value{GDBN} can tell that completing a name requires using
1514quotes. When this happens, @value{GDBN} inserts the quote for you (while
1515completing as much as it can) if you do not type the quote in the first
1516place:
1517
474c8240 1518@smallexample
c906108c
SS
1519(@value{GDBP}) b bub @key{TAB}
1520@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1521(@value{GDBP}) b 'bubble(
474c8240 1522@end smallexample
c906108c
SS
1523
1524@noindent
1525In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1526you have not yet started typing the argument list when you ask for
1527completion on an overloaded symbol.
1528
79a6e687
BW
1529For more information about overloaded functions, see @ref{C Plus Plus
1530Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1531overload-resolution off} to disable overload resolution;
79a6e687 1532see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1533
1534
6d2ebf8b 1535@node Help
79a6e687 1536@section Getting Help
c906108c
SS
1537@cindex online documentation
1538@kindex help
1539
5d161b24 1540You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1541using the command @code{help}.
1542
1543@table @code
41afff9a 1544@kindex h @r{(@code{help})}
c906108c
SS
1545@item help
1546@itemx h
1547You can use @code{help} (abbreviated @code{h}) with no arguments to
1548display a short list of named classes of commands:
1549
1550@smallexample
1551(@value{GDBP}) help
1552List of classes of commands:
1553
2df3850c 1554aliases -- Aliases of other commands
c906108c 1555breakpoints -- Making program stop at certain points
2df3850c 1556data -- Examining data
c906108c 1557files -- Specifying and examining files
2df3850c
JM
1558internals -- Maintenance commands
1559obscure -- Obscure features
1560running -- Running the program
1561stack -- Examining the stack
c906108c
SS
1562status -- Status inquiries
1563support -- Support facilities
12c27660 1564tracepoints -- Tracing of program execution without
96a2c332 1565 stopping the program
c906108c 1566user-defined -- User-defined commands
c906108c 1567
5d161b24 1568Type "help" followed by a class name for a list of
c906108c 1569commands in that class.
5d161b24 1570Type "help" followed by command name for full
c906108c
SS
1571documentation.
1572Command name abbreviations are allowed if unambiguous.
1573(@value{GDBP})
1574@end smallexample
96a2c332 1575@c the above line break eliminates huge line overfull...
c906108c
SS
1576
1577@item help @var{class}
1578Using one of the general help classes as an argument, you can get a
1579list of the individual commands in that class. For example, here is the
1580help display for the class @code{status}:
1581
1582@smallexample
1583(@value{GDBP}) help status
1584Status inquiries.
1585
1586List of commands:
1587
1588@c Line break in "show" line falsifies real output, but needed
1589@c to fit in smallbook page size.
2df3850c 1590info -- Generic command for showing things
12c27660 1591 about the program being debugged
2df3850c 1592show -- Generic command for showing things
12c27660 1593 about the debugger
c906108c 1594
5d161b24 1595Type "help" followed by command name for full
c906108c
SS
1596documentation.
1597Command name abbreviations are allowed if unambiguous.
1598(@value{GDBP})
1599@end smallexample
1600
1601@item help @var{command}
1602With a command name as @code{help} argument, @value{GDBN} displays a
1603short paragraph on how to use that command.
1604
6837a0a2
DB
1605@kindex apropos
1606@item apropos @var{args}
09d4efe1 1607The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1608commands, and their documentation, for the regular expression specified in
1609@var{args}. It prints out all matches found. For example:
1610
1611@smallexample
1612apropos reload
1613@end smallexample
1614
b37052ae
EZ
1615@noindent
1616results in:
6837a0a2
DB
1617
1618@smallexample
6d2ebf8b
SS
1619@c @group
1620set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1621 multiple times in one run
6d2ebf8b 1622show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1623 multiple times in one run
6d2ebf8b 1624@c @end group
6837a0a2
DB
1625@end smallexample
1626
c906108c
SS
1627@kindex complete
1628@item complete @var{args}
1629The @code{complete @var{args}} command lists all the possible completions
1630for the beginning of a command. Use @var{args} to specify the beginning of the
1631command you want completed. For example:
1632
1633@smallexample
1634complete i
1635@end smallexample
1636
1637@noindent results in:
1638
1639@smallexample
1640@group
2df3850c
JM
1641if
1642ignore
c906108c
SS
1643info
1644inspect
c906108c
SS
1645@end group
1646@end smallexample
1647
1648@noindent This is intended for use by @sc{gnu} Emacs.
1649@end table
1650
1651In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1652and @code{show} to inquire about the state of your program, or the state
1653of @value{GDBN} itself. Each command supports many topics of inquiry; this
1654manual introduces each of them in the appropriate context. The listings
1655under @code{info} and under @code{show} in the Index point to
1656all the sub-commands. @xref{Index}.
1657
1658@c @group
1659@table @code
1660@kindex info
41afff9a 1661@kindex i @r{(@code{info})}
c906108c
SS
1662@item info
1663This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1664program. For example, you can show the arguments passed to a function
c906108c
SS
1665with @code{info args}, list the registers currently in use with @code{info
1666registers}, or list the breakpoints you have set with @code{info breakpoints}.
1667You can get a complete list of the @code{info} sub-commands with
1668@w{@code{help info}}.
1669
1670@kindex set
1671@item set
5d161b24 1672You can assign the result of an expression to an environment variable with
c906108c
SS
1673@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1674@code{set prompt $}.
1675
1676@kindex show
1677@item show
5d161b24 1678In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1679@value{GDBN} itself.
1680You can change most of the things you can @code{show}, by using the
1681related command @code{set}; for example, you can control what number
1682system is used for displays with @code{set radix}, or simply inquire
1683which is currently in use with @code{show radix}.
1684
1685@kindex info set
1686To display all the settable parameters and their current
1687values, you can use @code{show} with no arguments; you may also use
1688@code{info set}. Both commands produce the same display.
1689@c FIXME: "info set" violates the rule that "info" is for state of
1690@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1691@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1692@end table
1693@c @end group
1694
1695Here are three miscellaneous @code{show} subcommands, all of which are
1696exceptional in lacking corresponding @code{set} commands:
1697
1698@table @code
1699@kindex show version
9c16f35a 1700@cindex @value{GDBN} version number
c906108c
SS
1701@item show version
1702Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1703information in @value{GDBN} bug-reports. If multiple versions of
1704@value{GDBN} are in use at your site, you may need to determine which
1705version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1706commands are introduced, and old ones may wither away. Also, many
1707system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1708variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1709The version number is the same as the one announced when you start
1710@value{GDBN}.
c906108c
SS
1711
1712@kindex show copying
09d4efe1 1713@kindex info copying
9c16f35a 1714@cindex display @value{GDBN} copyright
c906108c 1715@item show copying
09d4efe1 1716@itemx info copying
c906108c
SS
1717Display information about permission for copying @value{GDBN}.
1718
1719@kindex show warranty
09d4efe1 1720@kindex info warranty
c906108c 1721@item show warranty
09d4efe1 1722@itemx info warranty
2df3850c 1723Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1724if your version of @value{GDBN} comes with one.
2df3850c 1725
c906108c
SS
1726@end table
1727
6d2ebf8b 1728@node Running
c906108c
SS
1729@chapter Running Programs Under @value{GDBN}
1730
1731When you run a program under @value{GDBN}, you must first generate
1732debugging information when you compile it.
7a292a7a
SS
1733
1734You may start @value{GDBN} with its arguments, if any, in an environment
1735of your choice. If you are doing native debugging, you may redirect
1736your program's input and output, debug an already running process, or
1737kill a child process.
c906108c
SS
1738
1739@menu
1740* Compilation:: Compiling for debugging
1741* Starting:: Starting your program
c906108c
SS
1742* Arguments:: Your program's arguments
1743* Environment:: Your program's environment
c906108c
SS
1744
1745* Working Directory:: Your program's working directory
1746* Input/Output:: Your program's input and output
1747* Attach:: Debugging an already-running process
1748* Kill Process:: Killing the child process
c906108c
SS
1749
1750* Threads:: Debugging programs with multiple threads
1751* Processes:: Debugging programs with multiple processes
5c95884b 1752* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1753@end menu
1754
6d2ebf8b 1755@node Compilation
79a6e687 1756@section Compiling for Debugging
c906108c
SS
1757
1758In order to debug a program effectively, you need to generate
1759debugging information when you compile it. This debugging information
1760is stored in the object file; it describes the data type of each
1761variable or function and the correspondence between source line numbers
1762and addresses in the executable code.
1763
1764To request debugging information, specify the @samp{-g} option when you run
1765the compiler.
1766
514c4d71
EZ
1767Programs that are to be shipped to your customers are compiled with
1768optimizations, using the @samp{-O} compiler option. However, many
1769compilers are unable to handle the @samp{-g} and @samp{-O} options
1770together. Using those compilers, you cannot generate optimized
c906108c
SS
1771executables containing debugging information.
1772
514c4d71 1773@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1774without @samp{-O}, making it possible to debug optimized code. We
1775recommend that you @emph{always} use @samp{-g} whenever you compile a
1776program. You may think your program is correct, but there is no sense
1777in pushing your luck.
c906108c
SS
1778
1779@cindex optimized code, debugging
1780@cindex debugging optimized code
1781When you debug a program compiled with @samp{-g -O}, remember that the
1782optimizer is rearranging your code; the debugger shows you what is
1783really there. Do not be too surprised when the execution path does not
1784exactly match your source file! An extreme example: if you define a
1785variable, but never use it, @value{GDBN} never sees that
1786variable---because the compiler optimizes it out of existence.
1787
1788Some things do not work as well with @samp{-g -O} as with just
1789@samp{-g}, particularly on machines with instruction scheduling. If in
1790doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1791please report it to us as a bug (including a test case!).
15387254 1792@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1793
1794Older versions of the @sc{gnu} C compiler permitted a variant option
1795@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1796format; if your @sc{gnu} C compiler has this option, do not use it.
1797
514c4d71
EZ
1798@value{GDBN} knows about preprocessor macros and can show you their
1799expansion (@pxref{Macros}). Most compilers do not include information
1800about preprocessor macros in the debugging information if you specify
1801the @option{-g} flag alone, because this information is rather large.
1802Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1803provides macro information if you specify the options
1804@option{-gdwarf-2} and @option{-g3}; the former option requests
1805debugging information in the Dwarf 2 format, and the latter requests
1806``extra information''. In the future, we hope to find more compact
1807ways to represent macro information, so that it can be included with
1808@option{-g} alone.
1809
c906108c 1810@need 2000
6d2ebf8b 1811@node Starting
79a6e687 1812@section Starting your Program
c906108c
SS
1813@cindex starting
1814@cindex running
1815
1816@table @code
1817@kindex run
41afff9a 1818@kindex r @r{(@code{run})}
c906108c
SS
1819@item run
1820@itemx r
7a292a7a
SS
1821Use the @code{run} command to start your program under @value{GDBN}.
1822You must first specify the program name (except on VxWorks) with an
1823argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1824@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1825(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1826
1827@end table
1828
c906108c
SS
1829If you are running your program in an execution environment that
1830supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1831that process run your program. In some environments without processes,
1832@code{run} jumps to the start of your program. Other targets,
1833like @samp{remote}, are always running. If you get an error
1834message like this one:
1835
1836@smallexample
1837The "remote" target does not support "run".
1838Try "help target" or "continue".
1839@end smallexample
1840
1841@noindent
1842then use @code{continue} to run your program. You may need @code{load}
1843first (@pxref{load}).
c906108c
SS
1844
1845The execution of a program is affected by certain information it
1846receives from its superior. @value{GDBN} provides ways to specify this
1847information, which you must do @emph{before} starting your program. (You
1848can change it after starting your program, but such changes only affect
1849your program the next time you start it.) This information may be
1850divided into four categories:
1851
1852@table @asis
1853@item The @emph{arguments.}
1854Specify the arguments to give your program as the arguments of the
1855@code{run} command. If a shell is available on your target, the shell
1856is used to pass the arguments, so that you may use normal conventions
1857(such as wildcard expansion or variable substitution) in describing
1858the arguments.
1859In Unix systems, you can control which shell is used with the
1860@code{SHELL} environment variable.
79a6e687 1861@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1862
1863@item The @emph{environment.}
1864Your program normally inherits its environment from @value{GDBN}, but you can
1865use the @value{GDBN} commands @code{set environment} and @code{unset
1866environment} to change parts of the environment that affect
79a6e687 1867your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1868
1869@item The @emph{working directory.}
1870Your program inherits its working directory from @value{GDBN}. You can set
1871the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1872@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1873
1874@item The @emph{standard input and output.}
1875Your program normally uses the same device for standard input and
1876standard output as @value{GDBN} is using. You can redirect input and output
1877in the @code{run} command line, or you can use the @code{tty} command to
1878set a different device for your program.
79a6e687 1879@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1880
1881@cindex pipes
1882@emph{Warning:} While input and output redirection work, you cannot use
1883pipes to pass the output of the program you are debugging to another
1884program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1885wrong program.
1886@end table
c906108c
SS
1887
1888When you issue the @code{run} command, your program begins to execute
79a6e687 1889immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1890of how to arrange for your program to stop. Once your program has
1891stopped, you may call functions in your program, using the @code{print}
1892or @code{call} commands. @xref{Data, ,Examining Data}.
1893
1894If the modification time of your symbol file has changed since the last
1895time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1896table, and reads it again. When it does this, @value{GDBN} tries to retain
1897your current breakpoints.
1898
4e8b0763
JB
1899@table @code
1900@kindex start
1901@item start
1902@cindex run to main procedure
1903The name of the main procedure can vary from language to language.
1904With C or C@t{++}, the main procedure name is always @code{main}, but
1905other languages such as Ada do not require a specific name for their
1906main procedure. The debugger provides a convenient way to start the
1907execution of the program and to stop at the beginning of the main
1908procedure, depending on the language used.
1909
1910The @samp{start} command does the equivalent of setting a temporary
1911breakpoint at the beginning of the main procedure and then invoking
1912the @samp{run} command.
1913
f018e82f
EZ
1914@cindex elaboration phase
1915Some programs contain an @dfn{elaboration} phase where some startup code is
1916executed before the main procedure is called. This depends on the
1917languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1918constructors for static and global objects are executed before
1919@code{main} is called. It is therefore possible that the debugger stops
1920before reaching the main procedure. However, the temporary breakpoint
1921will remain to halt execution.
1922
1923Specify the arguments to give to your program as arguments to the
1924@samp{start} command. These arguments will be given verbatim to the
1925underlying @samp{run} command. Note that the same arguments will be
1926reused if no argument is provided during subsequent calls to
1927@samp{start} or @samp{run}.
1928
1929It is sometimes necessary to debug the program during elaboration. In
1930these cases, using the @code{start} command would stop the execution of
1931your program too late, as the program would have already completed the
1932elaboration phase. Under these circumstances, insert breakpoints in your
1933elaboration code before running your program.
ccd213ac
DJ
1934
1935@kindex set exec-wrapper
1936@item set exec-wrapper @var{wrapper}
1937@itemx show exec-wrapper
1938@itemx unset exec-wrapper
1939When @samp{exec-wrapper} is set, the specified wrapper is used to
1940launch programs for debugging. @value{GDBN} starts your program
1941with a shell command of the form @kbd{exec @var{wrapper}
1942@var{program}}. Quoting is added to @var{program} and its
1943arguments, but not to @var{wrapper}, so you should add quotes if
1944appropriate for your shell. The wrapper runs until it executes
1945your program, and then @value{GDBN} takes control.
1946
1947You can use any program that eventually calls @code{execve} with
1948its arguments as a wrapper. Several standard Unix utilities do
1949this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1950with @code{exec "$@@"} will also work.
1951
1952For example, you can use @code{env} to pass an environment variable to
1953the debugged program, without setting the variable in your shell's
1954environment:
1955
1956@smallexample
1957(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1958(@value{GDBP}) run
1959@end smallexample
1960
1961This command is available when debugging locally on most targets, excluding
1962@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1963
4e8b0763
JB
1964@end table
1965
6d2ebf8b 1966@node Arguments
79a6e687 1967@section Your Program's Arguments
c906108c
SS
1968
1969@cindex arguments (to your program)
1970The arguments to your program can be specified by the arguments of the
5d161b24 1971@code{run} command.
c906108c
SS
1972They are passed to a shell, which expands wildcard characters and
1973performs redirection of I/O, and thence to your program. Your
1974@code{SHELL} environment variable (if it exists) specifies what shell
1975@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1976the default shell (@file{/bin/sh} on Unix).
1977
1978On non-Unix systems, the program is usually invoked directly by
1979@value{GDBN}, which emulates I/O redirection via the appropriate system
1980calls, and the wildcard characters are expanded by the startup code of
1981the program, not by the shell.
c906108c
SS
1982
1983@code{run} with no arguments uses the same arguments used by the previous
1984@code{run}, or those set by the @code{set args} command.
1985
c906108c 1986@table @code
41afff9a 1987@kindex set args
c906108c
SS
1988@item set args
1989Specify the arguments to be used the next time your program is run. If
1990@code{set args} has no arguments, @code{run} executes your program
1991with no arguments. Once you have run your program with arguments,
1992using @code{set args} before the next @code{run} is the only way to run
1993it again without arguments.
1994
1995@kindex show args
1996@item show args
1997Show the arguments to give your program when it is started.
1998@end table
1999
6d2ebf8b 2000@node Environment
79a6e687 2001@section Your Program's Environment
c906108c
SS
2002
2003@cindex environment (of your program)
2004The @dfn{environment} consists of a set of environment variables and
2005their values. Environment variables conventionally record such things as
2006your user name, your home directory, your terminal type, and your search
2007path for programs to run. Usually you set up environment variables with
2008the shell and they are inherited by all the other programs you run. When
2009debugging, it can be useful to try running your program with a modified
2010environment without having to start @value{GDBN} over again.
2011
2012@table @code
2013@kindex path
2014@item path @var{directory}
2015Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2016(the search path for executables) that will be passed to your program.
2017The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2018You may specify several directory names, separated by whitespace or by a
2019system-dependent separator character (@samp{:} on Unix, @samp{;} on
2020MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2021is moved to the front, so it is searched sooner.
c906108c
SS
2022
2023You can use the string @samp{$cwd} to refer to whatever is the current
2024working directory at the time @value{GDBN} searches the path. If you
2025use @samp{.} instead, it refers to the directory where you executed the
2026@code{path} command. @value{GDBN} replaces @samp{.} in the
2027@var{directory} argument (with the current path) before adding
2028@var{directory} to the search path.
2029@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2030@c document that, since repeating it would be a no-op.
2031
2032@kindex show paths
2033@item show paths
2034Display the list of search paths for executables (the @code{PATH}
2035environment variable).
2036
2037@kindex show environment
2038@item show environment @r{[}@var{varname}@r{]}
2039Print the value of environment variable @var{varname} to be given to
2040your program when it starts. If you do not supply @var{varname},
2041print the names and values of all environment variables to be given to
2042your program. You can abbreviate @code{environment} as @code{env}.
2043
2044@kindex set environment
53a5351d 2045@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2046Set environment variable @var{varname} to @var{value}. The value
2047changes for your program only, not for @value{GDBN} itself. @var{value} may
2048be any string; the values of environment variables are just strings, and
2049any interpretation is supplied by your program itself. The @var{value}
2050parameter is optional; if it is eliminated, the variable is set to a
2051null value.
2052@c "any string" here does not include leading, trailing
2053@c blanks. Gnu asks: does anyone care?
2054
2055For example, this command:
2056
474c8240 2057@smallexample
c906108c 2058set env USER = foo
474c8240 2059@end smallexample
c906108c
SS
2060
2061@noindent
d4f3574e 2062tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2063@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2064are not actually required.)
2065
2066@kindex unset environment
2067@item unset environment @var{varname}
2068Remove variable @var{varname} from the environment to be passed to your
2069program. This is different from @samp{set env @var{varname} =};
2070@code{unset environment} removes the variable from the environment,
2071rather than assigning it an empty value.
2072@end table
2073
d4f3574e
SS
2074@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2075the shell indicated
c906108c
SS
2076by your @code{SHELL} environment variable if it exists (or
2077@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2078that runs an initialization file---such as @file{.cshrc} for C-shell, or
2079@file{.bashrc} for BASH---any variables you set in that file affect
2080your program. You may wish to move setting of environment variables to
2081files that are only run when you sign on, such as @file{.login} or
2082@file{.profile}.
2083
6d2ebf8b 2084@node Working Directory
79a6e687 2085@section Your Program's Working Directory
c906108c
SS
2086
2087@cindex working directory (of your program)
2088Each time you start your program with @code{run}, it inherits its
2089working directory from the current working directory of @value{GDBN}.
2090The @value{GDBN} working directory is initially whatever it inherited
2091from its parent process (typically the shell), but you can specify a new
2092working directory in @value{GDBN} with the @code{cd} command.
2093
2094The @value{GDBN} working directory also serves as a default for the commands
2095that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2096Specify Files}.
c906108c
SS
2097
2098@table @code
2099@kindex cd
721c2651 2100@cindex change working directory
c906108c
SS
2101@item cd @var{directory}
2102Set the @value{GDBN} working directory to @var{directory}.
2103
2104@kindex pwd
2105@item pwd
2106Print the @value{GDBN} working directory.
2107@end table
2108
60bf7e09
EZ
2109It is generally impossible to find the current working directory of
2110the process being debugged (since a program can change its directory
2111during its run). If you work on a system where @value{GDBN} is
2112configured with the @file{/proc} support, you can use the @code{info
2113proc} command (@pxref{SVR4 Process Information}) to find out the
2114current working directory of the debuggee.
2115
6d2ebf8b 2116@node Input/Output
79a6e687 2117@section Your Program's Input and Output
c906108c
SS
2118
2119@cindex redirection
2120@cindex i/o
2121@cindex terminal
2122By default, the program you run under @value{GDBN} does input and output to
5d161b24 2123the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2124to its own terminal modes to interact with you, but it records the terminal
2125modes your program was using and switches back to them when you continue
2126running your program.
2127
2128@table @code
2129@kindex info terminal
2130@item info terminal
2131Displays information recorded by @value{GDBN} about the terminal modes your
2132program is using.
2133@end table
2134
2135You can redirect your program's input and/or output using shell
2136redirection with the @code{run} command. For example,
2137
474c8240 2138@smallexample
c906108c 2139run > outfile
474c8240 2140@end smallexample
c906108c
SS
2141
2142@noindent
2143starts your program, diverting its output to the file @file{outfile}.
2144
2145@kindex tty
2146@cindex controlling terminal
2147Another way to specify where your program should do input and output is
2148with the @code{tty} command. This command accepts a file name as
2149argument, and causes this file to be the default for future @code{run}
2150commands. It also resets the controlling terminal for the child
2151process, for future @code{run} commands. For example,
2152
474c8240 2153@smallexample
c906108c 2154tty /dev/ttyb
474c8240 2155@end smallexample
c906108c
SS
2156
2157@noindent
2158directs that processes started with subsequent @code{run} commands
2159default to do input and output on the terminal @file{/dev/ttyb} and have
2160that as their controlling terminal.
2161
2162An explicit redirection in @code{run} overrides the @code{tty} command's
2163effect on the input/output device, but not its effect on the controlling
2164terminal.
2165
2166When you use the @code{tty} command or redirect input in the @code{run}
2167command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2168for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2169for @code{set inferior-tty}.
2170
2171@cindex inferior tty
2172@cindex set inferior controlling terminal
2173You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2174display the name of the terminal that will be used for future runs of your
2175program.
2176
2177@table @code
2178@item set inferior-tty /dev/ttyb
2179@kindex set inferior-tty
2180Set the tty for the program being debugged to /dev/ttyb.
2181
2182@item show inferior-tty
2183@kindex show inferior-tty
2184Show the current tty for the program being debugged.
2185@end table
c906108c 2186
6d2ebf8b 2187@node Attach
79a6e687 2188@section Debugging an Already-running Process
c906108c
SS
2189@kindex attach
2190@cindex attach
2191
2192@table @code
2193@item attach @var{process-id}
2194This command attaches to a running process---one that was started
2195outside @value{GDBN}. (@code{info files} shows your active
2196targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2197find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2198or with the @samp{jobs -l} shell command.
2199
2200@code{attach} does not repeat if you press @key{RET} a second time after
2201executing the command.
2202@end table
2203
2204To use @code{attach}, your program must be running in an environment
2205which supports processes; for example, @code{attach} does not work for
2206programs on bare-board targets that lack an operating system. You must
2207also have permission to send the process a signal.
2208
2209When you use @code{attach}, the debugger finds the program running in
2210the process first by looking in the current working directory, then (if
2211the program is not found) by using the source file search path
79a6e687 2212(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2213the @code{file} command to load the program. @xref{Files, ,Commands to
2214Specify Files}.
2215
2216The first thing @value{GDBN} does after arranging to debug the specified
2217process is to stop it. You can examine and modify an attached process
53a5351d
JM
2218with all the @value{GDBN} commands that are ordinarily available when
2219you start processes with @code{run}. You can insert breakpoints; you
2220can step and continue; you can modify storage. If you would rather the
2221process continue running, you may use the @code{continue} command after
c906108c
SS
2222attaching @value{GDBN} to the process.
2223
2224@table @code
2225@kindex detach
2226@item detach
2227When you have finished debugging the attached process, you can use the
2228@code{detach} command to release it from @value{GDBN} control. Detaching
2229the process continues its execution. After the @code{detach} command,
2230that process and @value{GDBN} become completely independent once more, and you
2231are ready to @code{attach} another process or start one with @code{run}.
2232@code{detach} does not repeat if you press @key{RET} again after
2233executing the command.
2234@end table
2235
159fcc13
JK
2236If you exit @value{GDBN} while you have an attached process, you detach
2237that process. If you use the @code{run} command, you kill that process.
2238By default, @value{GDBN} asks for confirmation if you try to do either of these
2239things; you can control whether or not you need to confirm by using the
2240@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2241Messages}).
c906108c 2242
6d2ebf8b 2243@node Kill Process
79a6e687 2244@section Killing the Child Process
c906108c
SS
2245
2246@table @code
2247@kindex kill
2248@item kill
2249Kill the child process in which your program is running under @value{GDBN}.
2250@end table
2251
2252This command is useful if you wish to debug a core dump instead of a
2253running process. @value{GDBN} ignores any core dump file while your program
2254is running.
2255
2256On some operating systems, a program cannot be executed outside @value{GDBN}
2257while you have breakpoints set on it inside @value{GDBN}. You can use the
2258@code{kill} command in this situation to permit running your program
2259outside the debugger.
2260
2261The @code{kill} command is also useful if you wish to recompile and
2262relink your program, since on many systems it is impossible to modify an
2263executable file while it is running in a process. In this case, when you
2264next type @code{run}, @value{GDBN} notices that the file has changed, and
2265reads the symbol table again (while trying to preserve your current
2266breakpoint settings).
2267
6d2ebf8b 2268@node Threads
79a6e687 2269@section Debugging Programs with Multiple Threads
c906108c
SS
2270
2271@cindex threads of execution
2272@cindex multiple threads
2273@cindex switching threads
2274In some operating systems, such as HP-UX and Solaris, a single program
2275may have more than one @dfn{thread} of execution. The precise semantics
2276of threads differ from one operating system to another, but in general
2277the threads of a single program are akin to multiple processes---except
2278that they share one address space (that is, they can all examine and
2279modify the same variables). On the other hand, each thread has its own
2280registers and execution stack, and perhaps private memory.
2281
2282@value{GDBN} provides these facilities for debugging multi-thread
2283programs:
2284
2285@itemize @bullet
2286@item automatic notification of new threads
2287@item @samp{thread @var{threadno}}, a command to switch among threads
2288@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2289@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2290a command to apply a command to a list of threads
2291@item thread-specific breakpoints
93815fbf
VP
2292@item @samp{set print thread-events}, which controls printing of
2293messages on thread start and exit.
c906108c
SS
2294@end itemize
2295
c906108c
SS
2296@quotation
2297@emph{Warning:} These facilities are not yet available on every
2298@value{GDBN} configuration where the operating system supports threads.
2299If your @value{GDBN} does not support threads, these commands have no
2300effect. For example, a system without thread support shows no output
2301from @samp{info threads}, and always rejects the @code{thread} command,
2302like this:
2303
2304@smallexample
2305(@value{GDBP}) info threads
2306(@value{GDBP}) thread 1
2307Thread ID 1 not known. Use the "info threads" command to
2308see the IDs of currently known threads.
2309@end smallexample
2310@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2311@c doesn't support threads"?
2312@end quotation
c906108c
SS
2313
2314@cindex focus of debugging
2315@cindex current thread
2316The @value{GDBN} thread debugging facility allows you to observe all
2317threads while your program runs---but whenever @value{GDBN} takes
2318control, one thread in particular is always the focus of debugging.
2319This thread is called the @dfn{current thread}. Debugging commands show
2320program information from the perspective of the current thread.
2321
41afff9a 2322@cindex @code{New} @var{systag} message
c906108c
SS
2323@cindex thread identifier (system)
2324@c FIXME-implementors!! It would be more helpful if the [New...] message
2325@c included GDB's numeric thread handle, so you could just go to that
2326@c thread without first checking `info threads'.
2327Whenever @value{GDBN} detects a new thread in your program, it displays
2328the target system's identification for the thread with a message in the
2329form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2330whose form varies depending on the particular system. For example, on
8807d78b 2331@sc{gnu}/Linux, you might see
c906108c 2332
474c8240 2333@smallexample
8807d78b 2334[New Thread 46912507313328 (LWP 25582)]
474c8240 2335@end smallexample
c906108c
SS
2336
2337@noindent
2338when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2339the @var{systag} is simply something like @samp{process 368}, with no
2340further qualifier.
2341
2342@c FIXME!! (1) Does the [New...] message appear even for the very first
2343@c thread of a program, or does it only appear for the
6ca652b0 2344@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2345@c program?
2346@c (2) *Is* there necessarily a first thread always? Or do some
2347@c multithread systems permit starting a program with multiple
5d161b24 2348@c threads ab initio?
c906108c
SS
2349
2350@cindex thread number
2351@cindex thread identifier (GDB)
2352For debugging purposes, @value{GDBN} associates its own thread
2353number---always a single integer---with each thread in your program.
2354
2355@table @code
2356@kindex info threads
2357@item info threads
2358Display a summary of all threads currently in your
2359program. @value{GDBN} displays for each thread (in this order):
2360
2361@enumerate
09d4efe1
EZ
2362@item
2363the thread number assigned by @value{GDBN}
c906108c 2364
09d4efe1
EZ
2365@item
2366the target system's thread identifier (@var{systag})
c906108c 2367
09d4efe1
EZ
2368@item
2369the current stack frame summary for that thread
c906108c
SS
2370@end enumerate
2371
2372@noindent
2373An asterisk @samp{*} to the left of the @value{GDBN} thread number
2374indicates the current thread.
2375
5d161b24 2376For example,
c906108c
SS
2377@end table
2378@c end table here to get a little more width for example
2379
2380@smallexample
2381(@value{GDBP}) info threads
2382 3 process 35 thread 27 0x34e5 in sigpause ()
2383 2 process 35 thread 23 0x34e5 in sigpause ()
2384* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2385 at threadtest.c:68
2386@end smallexample
53a5351d
JM
2387
2388On HP-UX systems:
c906108c 2389
4644b6e3
EZ
2390@cindex debugging multithreaded programs (on HP-UX)
2391@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2392For debugging purposes, @value{GDBN} associates its own thread
2393number---a small integer assigned in thread-creation order---with each
2394thread in your program.
2395
41afff9a
EZ
2396@cindex @code{New} @var{systag} message, on HP-UX
2397@cindex thread identifier (system), on HP-UX
c906108c
SS
2398@c FIXME-implementors!! It would be more helpful if the [New...] message
2399@c included GDB's numeric thread handle, so you could just go to that
2400@c thread without first checking `info threads'.
2401Whenever @value{GDBN} detects a new thread in your program, it displays
2402both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2403form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2404whose form varies depending on the particular system. For example, on
2405HP-UX, you see
2406
474c8240 2407@smallexample
c906108c 2408[New thread 2 (system thread 26594)]
474c8240 2409@end smallexample
c906108c
SS
2410
2411@noindent
5d161b24 2412when @value{GDBN} notices a new thread.
c906108c
SS
2413
2414@table @code
4644b6e3 2415@kindex info threads (HP-UX)
c906108c
SS
2416@item info threads
2417Display a summary of all threads currently in your
2418program. @value{GDBN} displays for each thread (in this order):
2419
2420@enumerate
2421@item the thread number assigned by @value{GDBN}
2422
2423@item the target system's thread identifier (@var{systag})
2424
2425@item the current stack frame summary for that thread
2426@end enumerate
2427
2428@noindent
2429An asterisk @samp{*} to the left of the @value{GDBN} thread number
2430indicates the current thread.
2431
5d161b24 2432For example,
c906108c
SS
2433@end table
2434@c end table here to get a little more width for example
2435
474c8240 2436@smallexample
c906108c 2437(@value{GDBP}) info threads
6d2ebf8b
SS
2438 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2439 at quicksort.c:137
2440 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2441 from /usr/lib/libc.2
2442 1 system thread 27905 0x7b003498 in _brk () \@*
2443 from /usr/lib/libc.2
474c8240 2444@end smallexample
c906108c 2445
c45da7e6
EZ
2446On Solaris, you can display more information about user threads with a
2447Solaris-specific command:
2448
2449@table @code
2450@item maint info sol-threads
2451@kindex maint info sol-threads
2452@cindex thread info (Solaris)
2453Display info on Solaris user threads.
2454@end table
2455
c906108c
SS
2456@table @code
2457@kindex thread @var{threadno}
2458@item thread @var{threadno}
2459Make thread number @var{threadno} the current thread. The command
2460argument @var{threadno} is the internal @value{GDBN} thread number, as
2461shown in the first field of the @samp{info threads} display.
2462@value{GDBN} responds by displaying the system identifier of the thread
2463you selected, and its current stack frame summary:
2464
2465@smallexample
2466@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2467(@value{GDBP}) thread 2
c906108c 2468[Switching to process 35 thread 23]
c906108c
SS
24690x34e5 in sigpause ()
2470@end smallexample
2471
2472@noindent
2473As with the @samp{[New @dots{}]} message, the form of the text after
2474@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2475threads.
c906108c 2476
9c16f35a 2477@kindex thread apply
638ac427 2478@cindex apply command to several threads
839c27b7
EZ
2479@item thread apply [@var{threadno}] [@var{all}] @var{command}
2480The @code{thread apply} command allows you to apply the named
2481@var{command} to one or more threads. Specify the numbers of the
2482threads that you want affected with the command argument
2483@var{threadno}. It can be a single thread number, one of the numbers
2484shown in the first field of the @samp{info threads} display; or it
2485could be a range of thread numbers, as in @code{2-4}. To apply a
2486command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2487
2488@kindex set print thread-events
2489@cindex print messages on thread start and exit
2490@item set print thread-events
2491@itemx set print thread-events on
2492@itemx set print thread-events off
2493The @code{set print thread-events} command allows you to enable or
2494disable printing of messages when @value{GDBN} notices that new threads have
2495started or that threads have exited. By default, these messages will
2496be printed if detection of these events is supported by the target.
2497Note that these messages cannot be disabled on all targets.
2498
2499@kindex show print thread-events
2500@item show print thread-events
2501Show whether messages will be printed when @value{GDBN} detects that threads
2502have started and exited.
c906108c
SS
2503@end table
2504
2505@cindex automatic thread selection
2506@cindex switching threads automatically
2507@cindex threads, automatic switching
2508Whenever @value{GDBN} stops your program, due to a breakpoint or a
2509signal, it automatically selects the thread where that breakpoint or
2510signal happened. @value{GDBN} alerts you to the context switch with a
2511message of the form @samp{[Switching to @var{systag}]} to identify the
2512thread.
2513
79a6e687 2514@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2515more information about how @value{GDBN} behaves when you stop and start
2516programs with multiple threads.
2517
79a6e687 2518@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2519watchpoints in programs with multiple threads.
c906108c 2520
6d2ebf8b 2521@node Processes
79a6e687 2522@section Debugging Programs with Multiple Processes
c906108c
SS
2523
2524@cindex fork, debugging programs which call
2525@cindex multiple processes
2526@cindex processes, multiple
53a5351d
JM
2527On most systems, @value{GDBN} has no special support for debugging
2528programs which create additional processes using the @code{fork}
2529function. When a program forks, @value{GDBN} will continue to debug the
2530parent process and the child process will run unimpeded. If you have
2531set a breakpoint in any code which the child then executes, the child
2532will get a @code{SIGTRAP} signal which (unless it catches the signal)
2533will cause it to terminate.
c906108c
SS
2534
2535However, if you want to debug the child process there is a workaround
2536which isn't too painful. Put a call to @code{sleep} in the code which
2537the child process executes after the fork. It may be useful to sleep
2538only if a certain environment variable is set, or a certain file exists,
2539so that the delay need not occur when you don't want to run @value{GDBN}
2540on the child. While the child is sleeping, use the @code{ps} program to
2541get its process ID. Then tell @value{GDBN} (a new invocation of
2542@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2543the child process (@pxref{Attach}). From that point on you can debug
c906108c 2544the child process just like any other process which you attached to.
c906108c 2545
b51970ac
DJ
2546On some systems, @value{GDBN} provides support for debugging programs that
2547create additional processes using the @code{fork} or @code{vfork} functions.
2548Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2549only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2550
2551By default, when a program forks, @value{GDBN} will continue to debug
2552the parent process and the child process will run unimpeded.
2553
2554If you want to follow the child process instead of the parent process,
2555use the command @w{@code{set follow-fork-mode}}.
2556
2557@table @code
2558@kindex set follow-fork-mode
2559@item set follow-fork-mode @var{mode}
2560Set the debugger response to a program call of @code{fork} or
2561@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2562process. The @var{mode} argument can be:
c906108c
SS
2563
2564@table @code
2565@item parent
2566The original process is debugged after a fork. The child process runs
2df3850c 2567unimpeded. This is the default.
c906108c
SS
2568
2569@item child
2570The new process is debugged after a fork. The parent process runs
2571unimpeded.
2572
c906108c
SS
2573@end table
2574
9c16f35a 2575@kindex show follow-fork-mode
c906108c 2576@item show follow-fork-mode
2df3850c 2577Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2578@end table
2579
5c95884b
MS
2580@cindex debugging multiple processes
2581On Linux, if you want to debug both the parent and child processes, use the
2582command @w{@code{set detach-on-fork}}.
2583
2584@table @code
2585@kindex set detach-on-fork
2586@item set detach-on-fork @var{mode}
2587Tells gdb whether to detach one of the processes after a fork, or
2588retain debugger control over them both.
2589
2590@table @code
2591@item on
2592The child process (or parent process, depending on the value of
2593@code{follow-fork-mode}) will be detached and allowed to run
2594independently. This is the default.
2595
2596@item off
2597Both processes will be held under the control of @value{GDBN}.
2598One process (child or parent, depending on the value of
2599@code{follow-fork-mode}) is debugged as usual, while the other
2600is held suspended.
2601
2602@end table
2603
11310833
NR
2604@kindex show detach-on-fork
2605@item show detach-on-fork
2606Show whether detach-on-fork mode is on/off.
5c95884b
MS
2607@end table
2608
11310833 2609If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2610@value{GDBN} will retain control of all forked processes (including
2611nested forks). You can list the forked processes under the control of
2612@value{GDBN} by using the @w{@code{info forks}} command, and switch
2613from one fork to another by using the @w{@code{fork}} command.
2614
2615@table @code
2616@kindex info forks
2617@item info forks
2618Print a list of all forked processes under the control of @value{GDBN}.
2619The listing will include a fork id, a process id, and the current
2620position (program counter) of the process.
2621
5c95884b
MS
2622@kindex fork @var{fork-id}
2623@item fork @var{fork-id}
2624Make fork number @var{fork-id} the current process. The argument
2625@var{fork-id} is the internal fork number assigned by @value{GDBN},
2626as shown in the first field of the @samp{info forks} display.
2627
11310833
NR
2628@kindex process @var{process-id}
2629@item process @var{process-id}
2630Make process number @var{process-id} the current process. The
2631argument @var{process-id} must be one that is listed in the output of
2632@samp{info forks}.
2633
5c95884b
MS
2634@end table
2635
2636To quit debugging one of the forked processes, you can either detach
f73adfeb 2637from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2638run independently), or delete (and kill) it using the
b8db102d 2639@w{@code{delete fork}} command.
5c95884b
MS
2640
2641@table @code
f73adfeb
AS
2642@kindex detach fork @var{fork-id}
2643@item detach fork @var{fork-id}
5c95884b
MS
2644Detach from the process identified by @value{GDBN} fork number
2645@var{fork-id}, and remove it from the fork list. The process will be
2646allowed to run independently.
2647
b8db102d
MS
2648@kindex delete fork @var{fork-id}
2649@item delete fork @var{fork-id}
5c95884b
MS
2650Kill the process identified by @value{GDBN} fork number @var{fork-id},
2651and remove it from the fork list.
2652
2653@end table
2654
c906108c
SS
2655If you ask to debug a child process and a @code{vfork} is followed by an
2656@code{exec}, @value{GDBN} executes the new target up to the first
2657breakpoint in the new target. If you have a breakpoint set on
2658@code{main} in your original program, the breakpoint will also be set on
2659the child process's @code{main}.
2660
2661When a child process is spawned by @code{vfork}, you cannot debug the
2662child or parent until an @code{exec} call completes.
2663
2664If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2665call executes, the new target restarts. To restart the parent process,
2666use the @code{file} command with the parent executable name as its
2667argument.
2668
2669You can use the @code{catch} command to make @value{GDBN} stop whenever
2670a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2671Catchpoints, ,Setting Catchpoints}.
c906108c 2672
5c95884b 2673@node Checkpoint/Restart
79a6e687 2674@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2675
2676@cindex checkpoint
2677@cindex restart
2678@cindex bookmark
2679@cindex snapshot of a process
2680@cindex rewind program state
2681
2682On certain operating systems@footnote{Currently, only
2683@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2684program's state, called a @dfn{checkpoint}, and come back to it
2685later.
2686
2687Returning to a checkpoint effectively undoes everything that has
2688happened in the program since the @code{checkpoint} was saved. This
2689includes changes in memory, registers, and even (within some limits)
2690system state. Effectively, it is like going back in time to the
2691moment when the checkpoint was saved.
2692
2693Thus, if you're stepping thru a program and you think you're
2694getting close to the point where things go wrong, you can save
2695a checkpoint. Then, if you accidentally go too far and miss
2696the critical statement, instead of having to restart your program
2697from the beginning, you can just go back to the checkpoint and
2698start again from there.
2699
2700This can be especially useful if it takes a lot of time or
2701steps to reach the point where you think the bug occurs.
2702
2703To use the @code{checkpoint}/@code{restart} method of debugging:
2704
2705@table @code
2706@kindex checkpoint
2707@item checkpoint
2708Save a snapshot of the debugged program's current execution state.
2709The @code{checkpoint} command takes no arguments, but each checkpoint
2710is assigned a small integer id, similar to a breakpoint id.
2711
2712@kindex info checkpoints
2713@item info checkpoints
2714List the checkpoints that have been saved in the current debugging
2715session. For each checkpoint, the following information will be
2716listed:
2717
2718@table @code
2719@item Checkpoint ID
2720@item Process ID
2721@item Code Address
2722@item Source line, or label
2723@end table
2724
2725@kindex restart @var{checkpoint-id}
2726@item restart @var{checkpoint-id}
2727Restore the program state that was saved as checkpoint number
2728@var{checkpoint-id}. All program variables, registers, stack frames
2729etc.@: will be returned to the values that they had when the checkpoint
2730was saved. In essence, gdb will ``wind back the clock'' to the point
2731in time when the checkpoint was saved.
2732
2733Note that breakpoints, @value{GDBN} variables, command history etc.
2734are not affected by restoring a checkpoint. In general, a checkpoint
2735only restores things that reside in the program being debugged, not in
2736the debugger.
2737
b8db102d
MS
2738@kindex delete checkpoint @var{checkpoint-id}
2739@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2740Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2741
2742@end table
2743
2744Returning to a previously saved checkpoint will restore the user state
2745of the program being debugged, plus a significant subset of the system
2746(OS) state, including file pointers. It won't ``un-write'' data from
2747a file, but it will rewind the file pointer to the previous location,
2748so that the previously written data can be overwritten. For files
2749opened in read mode, the pointer will also be restored so that the
2750previously read data can be read again.
2751
2752Of course, characters that have been sent to a printer (or other
2753external device) cannot be ``snatched back'', and characters received
2754from eg.@: a serial device can be removed from internal program buffers,
2755but they cannot be ``pushed back'' into the serial pipeline, ready to
2756be received again. Similarly, the actual contents of files that have
2757been changed cannot be restored (at this time).
2758
2759However, within those constraints, you actually can ``rewind'' your
2760program to a previously saved point in time, and begin debugging it
2761again --- and you can change the course of events so as to debug a
2762different execution path this time.
2763
2764@cindex checkpoints and process id
2765Finally, there is one bit of internal program state that will be
2766different when you return to a checkpoint --- the program's process
2767id. Each checkpoint will have a unique process id (or @var{pid}),
2768and each will be different from the program's original @var{pid}.
2769If your program has saved a local copy of its process id, this could
2770potentially pose a problem.
2771
79a6e687 2772@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2773
2774On some systems such as @sc{gnu}/Linux, address space randomization
2775is performed on new processes for security reasons. This makes it
2776difficult or impossible to set a breakpoint, or watchpoint, on an
2777absolute address if you have to restart the program, since the
2778absolute location of a symbol will change from one execution to the
2779next.
2780
2781A checkpoint, however, is an @emph{identical} copy of a process.
2782Therefore if you create a checkpoint at (eg.@:) the start of main,
2783and simply return to that checkpoint instead of restarting the
2784process, you can avoid the effects of address randomization and
2785your symbols will all stay in the same place.
2786
6d2ebf8b 2787@node Stopping
c906108c
SS
2788@chapter Stopping and Continuing
2789
2790The principal purposes of using a debugger are so that you can stop your
2791program before it terminates; or so that, if your program runs into
2792trouble, you can investigate and find out why.
2793
7a292a7a
SS
2794Inside @value{GDBN}, your program may stop for any of several reasons,
2795such as a signal, a breakpoint, or reaching a new line after a
2796@value{GDBN} command such as @code{step}. You may then examine and
2797change variables, set new breakpoints or remove old ones, and then
2798continue execution. Usually, the messages shown by @value{GDBN} provide
2799ample explanation of the status of your program---but you can also
2800explicitly request this information at any time.
c906108c
SS
2801
2802@table @code
2803@kindex info program
2804@item info program
2805Display information about the status of your program: whether it is
7a292a7a 2806running or not, what process it is, and why it stopped.
c906108c
SS
2807@end table
2808
2809@menu
2810* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2811* Continuing and Stepping:: Resuming execution
c906108c 2812* Signals:: Signals
c906108c 2813* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2814@end menu
2815
6d2ebf8b 2816@node Breakpoints
79a6e687 2817@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2818
2819@cindex breakpoints
2820A @dfn{breakpoint} makes your program stop whenever a certain point in
2821the program is reached. For each breakpoint, you can add conditions to
2822control in finer detail whether your program stops. You can set
2823breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2824Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2825should stop by line number, function name or exact address in the
2826program.
2827
09d4efe1
EZ
2828On some systems, you can set breakpoints in shared libraries before
2829the executable is run. There is a minor limitation on HP-UX systems:
2830you must wait until the executable is run in order to set breakpoints
2831in shared library routines that are not called directly by the program
2832(for example, routines that are arguments in a @code{pthread_create}
2833call).
c906108c
SS
2834
2835@cindex watchpoints
fd60e0df 2836@cindex data breakpoints
c906108c
SS
2837@cindex memory tracing
2838@cindex breakpoint on memory address
2839@cindex breakpoint on variable modification
2840A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2841when the value of an expression changes. The expression may be a value
0ced0c34 2842of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2843combined by operators, such as @samp{a + b}. This is sometimes called
2844@dfn{data breakpoints}. You must use a different command to set
79a6e687 2845watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2846from that, you can manage a watchpoint like any other breakpoint: you
2847enable, disable, and delete both breakpoints and watchpoints using the
2848same commands.
c906108c
SS
2849
2850You can arrange to have values from your program displayed automatically
2851whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2852Automatic Display}.
c906108c
SS
2853
2854@cindex catchpoints
2855@cindex breakpoint on events
2856A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2857when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2858exception or the loading of a library. As with watchpoints, you use a
2859different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2860Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2861other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2862@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2863
2864@cindex breakpoint numbers
2865@cindex numbers for breakpoints
2866@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2867catchpoint when you create it; these numbers are successive integers
2868starting with one. In many of the commands for controlling various
2869features of breakpoints you use the breakpoint number to say which
2870breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2871@dfn{disabled}; if disabled, it has no effect on your program until you
2872enable it again.
2873
c5394b80
JM
2874@cindex breakpoint ranges
2875@cindex ranges of breakpoints
2876Some @value{GDBN} commands accept a range of breakpoints on which to
2877operate. A breakpoint range is either a single breakpoint number, like
2878@samp{5}, or two such numbers, in increasing order, separated by a
2879hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2880all breakpoints in that range are operated on.
c5394b80 2881
c906108c
SS
2882@menu
2883* Set Breaks:: Setting breakpoints
2884* Set Watchpoints:: Setting watchpoints
2885* Set Catchpoints:: Setting catchpoints
2886* Delete Breaks:: Deleting breakpoints
2887* Disabling:: Disabling breakpoints
2888* Conditions:: Break conditions
2889* Break Commands:: Breakpoint command lists
d4f3574e 2890* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2891* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2892@end menu
2893
6d2ebf8b 2894@node Set Breaks
79a6e687 2895@subsection Setting Breakpoints
c906108c 2896
5d161b24 2897@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2898@c consider in particular declaration with/without initialization.
2899@c
2900@c FIXME 2 is there stuff on this already? break at fun start, already init?
2901
2902@kindex break
41afff9a
EZ
2903@kindex b @r{(@code{break})}
2904@vindex $bpnum@r{, convenience variable}
c906108c
SS
2905@cindex latest breakpoint
2906Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2907@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2908number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2909Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2910convenience variables.
2911
c906108c 2912@table @code
2a25a5ba
EZ
2913@item break @var{location}
2914Set a breakpoint at the given @var{location}, which can specify a
2915function name, a line number, or an address of an instruction.
2916(@xref{Specify Location}, for a list of all the possible ways to
2917specify a @var{location}.) The breakpoint will stop your program just
2918before it executes any of the code in the specified @var{location}.
2919
c906108c 2920When using source languages that permit overloading of symbols, such as
2a25a5ba 2921C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2922@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2923that situation.
c906108c 2924
c906108c
SS
2925@item break
2926When called without any arguments, @code{break} sets a breakpoint at
2927the next instruction to be executed in the selected stack frame
2928(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2929innermost, this makes your program stop as soon as control
2930returns to that frame. This is similar to the effect of a
2931@code{finish} command in the frame inside the selected frame---except
2932that @code{finish} does not leave an active breakpoint. If you use
2933@code{break} without an argument in the innermost frame, @value{GDBN} stops
2934the next time it reaches the current location; this may be useful
2935inside loops.
2936
2937@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2938least one instruction has been executed. If it did not do this, you
2939would be unable to proceed past a breakpoint without first disabling the
2940breakpoint. This rule applies whether or not the breakpoint already
2941existed when your program stopped.
2942
2943@item break @dots{} if @var{cond}
2944Set a breakpoint with condition @var{cond}; evaluate the expression
2945@var{cond} each time the breakpoint is reached, and stop only if the
2946value is nonzero---that is, if @var{cond} evaluates as true.
2947@samp{@dots{}} stands for one of the possible arguments described
2948above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2949,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2950
2951@kindex tbreak
2952@item tbreak @var{args}
2953Set a breakpoint enabled only for one stop. @var{args} are the
2954same as for the @code{break} command, and the breakpoint is set in the same
2955way, but the breakpoint is automatically deleted after the first time your
79a6e687 2956program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2957
c906108c 2958@kindex hbreak
ba04e063 2959@cindex hardware breakpoints
c906108c 2960@item hbreak @var{args}
d4f3574e
SS
2961Set a hardware-assisted breakpoint. @var{args} are the same as for the
2962@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2963breakpoint requires hardware support and some target hardware may not
2964have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2965debugging, so you can set a breakpoint at an instruction without
2966changing the instruction. This can be used with the new trap-generation
09d4efe1 2967provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2968will generate traps when a program accesses some data or instruction
2969address that is assigned to the debug registers. However the hardware
2970breakpoint registers can take a limited number of breakpoints. For
2971example, on the DSU, only two data breakpoints can be set at a time, and
2972@value{GDBN} will reject this command if more than two are used. Delete
2973or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2974(@pxref{Disabling, ,Disabling Breakpoints}).
2975@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2976For remote targets, you can restrict the number of hardware
2977breakpoints @value{GDBN} will use, see @ref{set remote
2978hardware-breakpoint-limit}.
501eef12 2979
c906108c
SS
2980@kindex thbreak
2981@item thbreak @var{args}
2982Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2983are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2984the same way. However, like the @code{tbreak} command,
c906108c
SS
2985the breakpoint is automatically deleted after the
2986first time your program stops there. Also, like the @code{hbreak}
5d161b24 2987command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2988may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2989See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2990
2991@kindex rbreak
2992@cindex regular expression
c45da7e6
EZ
2993@cindex breakpoints in functions matching a regexp
2994@cindex set breakpoints in many functions
c906108c 2995@item rbreak @var{regex}
c906108c 2996Set breakpoints on all functions matching the regular expression
11cf8741
JM
2997@var{regex}. This command sets an unconditional breakpoint on all
2998matches, printing a list of all breakpoints it set. Once these
2999breakpoints are set, they are treated just like the breakpoints set with
3000the @code{break} command. You can delete them, disable them, or make
3001them conditional the same way as any other breakpoint.
3002
3003The syntax of the regular expression is the standard one used with tools
3004like @file{grep}. Note that this is different from the syntax used by
3005shells, so for instance @code{foo*} matches all functions that include
3006an @code{fo} followed by zero or more @code{o}s. There is an implicit
3007@code{.*} leading and trailing the regular expression you supply, so to
3008match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 3009
f7dc1244 3010@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3011When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3012breakpoints on overloaded functions that are not members of any special
3013classes.
c906108c 3014
f7dc1244
EZ
3015@cindex set breakpoints on all functions
3016The @code{rbreak} command can be used to set breakpoints in
3017@strong{all} the functions in a program, like this:
3018
3019@smallexample
3020(@value{GDBP}) rbreak .
3021@end smallexample
3022
c906108c
SS
3023@kindex info breakpoints
3024@cindex @code{$_} and @code{info breakpoints}
3025@item info breakpoints @r{[}@var{n}@r{]}
3026@itemx info break @r{[}@var{n}@r{]}
3027@itemx info watchpoints @r{[}@var{n}@r{]}
3028Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3029not deleted. Optional argument @var{n} means print information only
3030about the specified breakpoint (or watchpoint or catchpoint). For
3031each breakpoint, following columns are printed:
c906108c
SS
3032
3033@table @emph
3034@item Breakpoint Numbers
3035@item Type
3036Breakpoint, watchpoint, or catchpoint.
3037@item Disposition
3038Whether the breakpoint is marked to be disabled or deleted when hit.
3039@item Enabled or Disabled
3040Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3041that are not enabled.
c906108c 3042@item Address
fe6fbf8b 3043Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3044pending breakpoint whose address is not yet known, this field will
3045contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3046library that has the symbol or line referred by breakpoint is loaded.
3047See below for details. A breakpoint with several locations will
3b784c4f 3048have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3049@item What
3050Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3051line number. For a pending breakpoint, the original string passed to
3052the breakpoint command will be listed as it cannot be resolved until
3053the appropriate shared library is loaded in the future.
c906108c
SS
3054@end table
3055
3056@noindent
3057If a breakpoint is conditional, @code{info break} shows the condition on
3058the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3059are listed after that. A pending breakpoint is allowed to have a condition
3060specified for it. The condition is not parsed for validity until a shared
3061library is loaded that allows the pending breakpoint to resolve to a
3062valid location.
c906108c
SS
3063
3064@noindent
3065@code{info break} with a breakpoint
3066number @var{n} as argument lists only that breakpoint. The
3067convenience variable @code{$_} and the default examining-address for
3068the @code{x} command are set to the address of the last breakpoint
79a6e687 3069listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3070
3071@noindent
3072@code{info break} displays a count of the number of times the breakpoint
3073has been hit. This is especially useful in conjunction with the
3074@code{ignore} command. You can ignore a large number of breakpoint
3075hits, look at the breakpoint info to see how many times the breakpoint
3076was hit, and then run again, ignoring one less than that number. This
3077will get you quickly to the last hit of that breakpoint.
3078@end table
3079
3080@value{GDBN} allows you to set any number of breakpoints at the same place in
3081your program. There is nothing silly or meaningless about this. When
3082the breakpoints are conditional, this is even useful
79a6e687 3083(@pxref{Conditions, ,Break Conditions}).
c906108c 3084
2e9132cc
EZ
3085@cindex multiple locations, breakpoints
3086@cindex breakpoints, multiple locations
fcda367b 3087It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3088in your program. Examples of this situation are:
3089
3090@itemize @bullet
fe6fbf8b
VP
3091@item
3092For a C@t{++} constructor, the @value{NGCC} compiler generates several
3093instances of the function body, used in different cases.
3094
3095@item
3096For a C@t{++} template function, a given line in the function can
3097correspond to any number of instantiations.
3098
3099@item
3100For an inlined function, a given source line can correspond to
3101several places where that function is inlined.
fe6fbf8b
VP
3102@end itemize
3103
3104In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3105the relevant locations@footnote{
3106As of this writing, multiple-location breakpoints work only if there's
3107line number information for all the locations. This means that they
3108will generally not work in system libraries, unless you have debug
3109info with line numbers for them.}.
fe6fbf8b 3110
3b784c4f
EZ
3111A breakpoint with multiple locations is displayed in the breakpoint
3112table using several rows---one header row, followed by one row for
3113each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3114address column. The rows for individual locations contain the actual
3115addresses for locations, and show the functions to which those
3116locations belong. The number column for a location is of the form
fe6fbf8b
VP
3117@var{breakpoint-number}.@var{location-number}.
3118
3119For example:
3b784c4f 3120
fe6fbf8b
VP
3121@smallexample
3122Num Type Disp Enb Address What
31231 breakpoint keep y <MULTIPLE>
3124 stop only if i==1
3125 breakpoint already hit 1 time
31261.1 y 0x080486a2 in void foo<int>() at t.cc:8
31271.2 y 0x080486ca in void foo<double>() at t.cc:8
3128@end smallexample
3129
3130Each location can be individually enabled or disabled by passing
3131@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3132@code{enable} and @code{disable} commands. Note that you cannot
3133delete the individual locations from the list, you can only delete the
16bfc218 3134entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3135the @kbd{delete @var{num}} command, where @var{num} is the number of
3136the parent breakpoint, 1 in the above example). Disabling or enabling
3137the parent breakpoint (@pxref{Disabling}) affects all of the locations
3138that belong to that breakpoint.
fe6fbf8b 3139
2650777c 3140@cindex pending breakpoints
fe6fbf8b 3141It's quite common to have a breakpoint inside a shared library.
3b784c4f 3142Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3143and possibly repeatedly, as the program is executed. To support
3144this use case, @value{GDBN} updates breakpoint locations whenever
3145any shared library is loaded or unloaded. Typically, you would
fcda367b 3146set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3147debugging session, when the library is not loaded, and when the
3148symbols from the library are not available. When you try to set
3149breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3150a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3151is not yet resolved.
3152
3153After the program is run, whenever a new shared library is loaded,
3154@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3155shared library contains the symbol or line referred to by some
3156pending breakpoint, that breakpoint is resolved and becomes an
3157ordinary breakpoint. When a library is unloaded, all breakpoints
3158that refer to its symbols or source lines become pending again.
3159
3160This logic works for breakpoints with multiple locations, too. For
3161example, if you have a breakpoint in a C@t{++} template function, and
3162a newly loaded shared library has an instantiation of that template,
3163a new location is added to the list of locations for the breakpoint.
3164
3165Except for having unresolved address, pending breakpoints do not
3166differ from regular breakpoints. You can set conditions or commands,
3167enable and disable them and perform other breakpoint operations.
3168
3169@value{GDBN} provides some additional commands for controlling what
3170happens when the @samp{break} command cannot resolve breakpoint
3171address specification to an address:
dd79a6cf
JJ
3172
3173@kindex set breakpoint pending
3174@kindex show breakpoint pending
3175@table @code
3176@item set breakpoint pending auto
3177This is the default behavior. When @value{GDBN} cannot find the breakpoint
3178location, it queries you whether a pending breakpoint should be created.
3179
3180@item set breakpoint pending on
3181This indicates that an unrecognized breakpoint location should automatically
3182result in a pending breakpoint being created.
3183
3184@item set breakpoint pending off
3185This indicates that pending breakpoints are not to be created. Any
3186unrecognized breakpoint location results in an error. This setting does
3187not affect any pending breakpoints previously created.
3188
3189@item show breakpoint pending
3190Show the current behavior setting for creating pending breakpoints.
3191@end table
2650777c 3192
fe6fbf8b
VP
3193The settings above only affect the @code{break} command and its
3194variants. Once breakpoint is set, it will be automatically updated
3195as shared libraries are loaded and unloaded.
2650777c 3196
765dc015
VP
3197@cindex automatic hardware breakpoints
3198For some targets, @value{GDBN} can automatically decide if hardware or
3199software breakpoints should be used, depending on whether the
3200breakpoint address is read-only or read-write. This applies to
3201breakpoints set with the @code{break} command as well as to internal
3202breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3203breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3204breakpoints.
3205
3206You can control this automatic behaviour with the following commands::
3207
3208@kindex set breakpoint auto-hw
3209@kindex show breakpoint auto-hw
3210@table @code
3211@item set breakpoint auto-hw on
3212This is the default behavior. When @value{GDBN} sets a breakpoint, it
3213will try to use the target memory map to decide if software or hardware
3214breakpoint must be used.
3215
3216@item set breakpoint auto-hw off
3217This indicates @value{GDBN} should not automatically select breakpoint
3218type. If the target provides a memory map, @value{GDBN} will warn when
3219trying to set software breakpoint at a read-only address.
3220@end table
3221
74960c60
VP
3222@value{GDBN} normally implements breakpoints by replacing the program code
3223at the breakpoint address with a special instruction, which, when
3224executed, given control to the debugger. By default, the program
3225code is so modified only when the program is resumed. As soon as
3226the program stops, @value{GDBN} restores the original instructions. This
3227behaviour guards against leaving breakpoints inserted in the
3228target should gdb abrubptly disconnect. However, with slow remote
3229targets, inserting and removing breakpoint can reduce the performance.
3230This behavior can be controlled with the following commands::
3231
3232@kindex set breakpoint always-inserted
3233@kindex show breakpoint always-inserted
3234@table @code
3235@item set breakpoint always-inserted off
3236This is the default behaviour. All breakpoints, including newly added
3237by the user, are inserted in the target only when the target is
3238resumed. All breakpoints are removed from the target when it stops.
3239
3240@item set breakpoint always-inserted on
3241Causes all breakpoints to be inserted in the target at all times. If
3242the user adds a new breakpoint, or changes an existing breakpoint, the
3243breakpoints in the target are updated immediately. A breakpoint is
3244removed from the target only when breakpoint itself is removed.
3245@end table
765dc015 3246
c906108c
SS
3247@cindex negative breakpoint numbers
3248@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3249@value{GDBN} itself sometimes sets breakpoints in your program for
3250special purposes, such as proper handling of @code{longjmp} (in C
3251programs). These internal breakpoints are assigned negative numbers,
3252starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3253You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3254@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3255
3256
6d2ebf8b 3257@node Set Watchpoints
79a6e687 3258@subsection Setting Watchpoints
c906108c
SS
3259
3260@cindex setting watchpoints
c906108c
SS
3261You can use a watchpoint to stop execution whenever the value of an
3262expression changes, without having to predict a particular place where
fd60e0df
EZ
3263this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3264The expression may be as simple as the value of a single variable, or
3265as complex as many variables combined by operators. Examples include:
3266
3267@itemize @bullet
3268@item
3269A reference to the value of a single variable.
3270
3271@item
3272An address cast to an appropriate data type. For example,
3273@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3274address (assuming an @code{int} occupies 4 bytes).
3275
3276@item
3277An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3278expression can use any operators valid in the program's native
3279language (@pxref{Languages}).
3280@end itemize
c906108c 3281
fa4727a6
DJ
3282You can set a watchpoint on an expression even if the expression can
3283not be evaluated yet. For instance, you can set a watchpoint on
3284@samp{*global_ptr} before @samp{global_ptr} is initialized.
3285@value{GDBN} will stop when your program sets @samp{global_ptr} and
3286the expression produces a valid value. If the expression becomes
3287valid in some other way than changing a variable (e.g.@: if the memory
3288pointed to by @samp{*global_ptr} becomes readable as the result of a
3289@code{malloc} call), @value{GDBN} may not stop until the next time
3290the expression changes.
3291
82f2d802
EZ
3292@cindex software watchpoints
3293@cindex hardware watchpoints
c906108c 3294Depending on your system, watchpoints may be implemented in software or
2df3850c 3295hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3296program and testing the variable's value each time, which is hundreds of
3297times slower than normal execution. (But this may still be worth it, to
3298catch errors where you have no clue what part of your program is the
3299culprit.)
3300
37e4754d 3301On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3302x86-based targets, @value{GDBN} includes support for hardware
3303watchpoints, which do not slow down the running of your program.
c906108c
SS
3304
3305@table @code
3306@kindex watch
d8b2a693 3307@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3308Set a watchpoint for an expression. @value{GDBN} will break when the
3309expression @var{expr} is written into by the program and its value
3310changes. The simplest (and the most popular) use of this command is
3311to watch the value of a single variable:
3312
3313@smallexample
3314(@value{GDBP}) watch foo
3315@end smallexample
c906108c 3316
d8b2a693
JB
3317If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3318clause, @value{GDBN} breaks only when the thread identified by
3319@var{threadnum} changes the value of @var{expr}. If any other threads
3320change the value of @var{expr}, @value{GDBN} will not break. Note
3321that watchpoints restricted to a single thread in this way only work
3322with Hardware Watchpoints.
3323
c906108c 3324@kindex rwatch
d8b2a693 3325@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3326Set a watchpoint that will break when the value of @var{expr} is read
3327by the program.
c906108c
SS
3328
3329@kindex awatch
d8b2a693 3330@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3331Set a watchpoint that will break when @var{expr} is either read from
3332or written into by the program.
c906108c 3333
45ac1734 3334@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3335@item info watchpoints
3336This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3337it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3338@end table
3339
3340@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3341watchpoints execute very quickly, and the debugger reports a change in
3342value at the exact instruction where the change occurs. If @value{GDBN}
3343cannot set a hardware watchpoint, it sets a software watchpoint, which
3344executes more slowly and reports the change in value at the next
82f2d802
EZ
3345@emph{statement}, not the instruction, after the change occurs.
3346
82f2d802
EZ
3347@cindex use only software watchpoints
3348You can force @value{GDBN} to use only software watchpoints with the
3349@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3350zero, @value{GDBN} will never try to use hardware watchpoints, even if
3351the underlying system supports them. (Note that hardware-assisted
3352watchpoints that were set @emph{before} setting
3353@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3354mechanism of watching expression values.)
c906108c 3355
9c16f35a
EZ
3356@table @code
3357@item set can-use-hw-watchpoints
3358@kindex set can-use-hw-watchpoints
3359Set whether or not to use hardware watchpoints.
3360
3361@item show can-use-hw-watchpoints
3362@kindex show can-use-hw-watchpoints
3363Show the current mode of using hardware watchpoints.
3364@end table
3365
3366For remote targets, you can restrict the number of hardware
3367watchpoints @value{GDBN} will use, see @ref{set remote
3368hardware-breakpoint-limit}.
3369
c906108c
SS
3370When you issue the @code{watch} command, @value{GDBN} reports
3371
474c8240 3372@smallexample
c906108c 3373Hardware watchpoint @var{num}: @var{expr}
474c8240 3374@end smallexample
c906108c
SS
3375
3376@noindent
3377if it was able to set a hardware watchpoint.
3378
7be570e7
JM
3379Currently, the @code{awatch} and @code{rwatch} commands can only set
3380hardware watchpoints, because accesses to data that don't change the
3381value of the watched expression cannot be detected without examining
3382every instruction as it is being executed, and @value{GDBN} does not do
3383that currently. If @value{GDBN} finds that it is unable to set a
3384hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3385will print a message like this:
3386
3387@smallexample
3388Expression cannot be implemented with read/access watchpoint.
3389@end smallexample
3390
3391Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3392data type of the watched expression is wider than what a hardware
3393watchpoint on the target machine can handle. For example, some systems
3394can only watch regions that are up to 4 bytes wide; on such systems you
3395cannot set hardware watchpoints for an expression that yields a
3396double-precision floating-point number (which is typically 8 bytes
3397wide). As a work-around, it might be possible to break the large region
3398into a series of smaller ones and watch them with separate watchpoints.
3399
3400If you set too many hardware watchpoints, @value{GDBN} might be unable
3401to insert all of them when you resume the execution of your program.
3402Since the precise number of active watchpoints is unknown until such
3403time as the program is about to be resumed, @value{GDBN} might not be
3404able to warn you about this when you set the watchpoints, and the
3405warning will be printed only when the program is resumed:
3406
3407@smallexample
3408Hardware watchpoint @var{num}: Could not insert watchpoint
3409@end smallexample
3410
3411@noindent
3412If this happens, delete or disable some of the watchpoints.
3413
fd60e0df
EZ
3414Watching complex expressions that reference many variables can also
3415exhaust the resources available for hardware-assisted watchpoints.
3416That's because @value{GDBN} needs to watch every variable in the
3417expression with separately allocated resources.
3418
c906108c 3419If you call a function interactively using @code{print} or @code{call},
2df3850c 3420any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3421kind of breakpoint or the call completes.
3422
7be570e7
JM
3423@value{GDBN} automatically deletes watchpoints that watch local
3424(automatic) variables, or expressions that involve such variables, when
3425they go out of scope, that is, when the execution leaves the block in
3426which these variables were defined. In particular, when the program
3427being debugged terminates, @emph{all} local variables go out of scope,
3428and so only watchpoints that watch global variables remain set. If you
3429rerun the program, you will need to set all such watchpoints again. One
3430way of doing that would be to set a code breakpoint at the entry to the
3431@code{main} function and when it breaks, set all the watchpoints.
3432
c906108c
SS
3433@cindex watchpoints and threads
3434@cindex threads and watchpoints
d983da9c
DJ
3435In multi-threaded programs, watchpoints will detect changes to the
3436watched expression from every thread.
3437
3438@quotation
3439@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3440have only limited usefulness. If @value{GDBN} creates a software
3441watchpoint, it can only watch the value of an expression @emph{in a
3442single thread}. If you are confident that the expression can only
3443change due to the current thread's activity (and if you are also
3444confident that no other thread can become current), then you can use
3445software watchpoints as usual. However, @value{GDBN} may not notice
3446when a non-current thread's activity changes the expression. (Hardware
3447watchpoints, in contrast, watch an expression in all threads.)
c906108c 3448@end quotation
c906108c 3449
501eef12
AC
3450@xref{set remote hardware-watchpoint-limit}.
3451
6d2ebf8b 3452@node Set Catchpoints
79a6e687 3453@subsection Setting Catchpoints
d4f3574e 3454@cindex catchpoints, setting
c906108c
SS
3455@cindex exception handlers
3456@cindex event handling
3457
3458You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3459kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3460shared library. Use the @code{catch} command to set a catchpoint.
3461
3462@table @code
3463@kindex catch
3464@item catch @var{event}
3465Stop when @var{event} occurs. @var{event} can be any of the following:
3466@table @code
3467@item throw
4644b6e3 3468@cindex stop on C@t{++} exceptions
b37052ae 3469The throwing of a C@t{++} exception.
c906108c
SS
3470
3471@item catch
b37052ae 3472The catching of a C@t{++} exception.
c906108c 3473
8936fcda
JB
3474@item exception
3475@cindex Ada exception catching
3476@cindex catch Ada exceptions
3477An Ada exception being raised. If an exception name is specified
3478at the end of the command (eg @code{catch exception Program_Error}),
3479the debugger will stop only when this specific exception is raised.
3480Otherwise, the debugger stops execution when any Ada exception is raised.
3481
3482@item exception unhandled
3483An exception that was raised but is not handled by the program.
3484
3485@item assert
3486A failed Ada assertion.
3487
c906108c 3488@item exec
4644b6e3 3489@cindex break on fork/exec
5ee187d7
DJ
3490A call to @code{exec}. This is currently only available for HP-UX
3491and @sc{gnu}/Linux.
c906108c
SS
3492
3493@item fork
5ee187d7
DJ
3494A call to @code{fork}. This is currently only available for HP-UX
3495and @sc{gnu}/Linux.
c906108c
SS
3496
3497@item vfork
5ee187d7
DJ
3498A call to @code{vfork}. This is currently only available for HP-UX
3499and @sc{gnu}/Linux.
c906108c
SS
3500
3501@item load
3502@itemx load @var{libname}
4644b6e3 3503@cindex break on load/unload of shared library
c906108c
SS
3504The dynamic loading of any shared library, or the loading of the library
3505@var{libname}. This is currently only available for HP-UX.
3506
3507@item unload
3508@itemx unload @var{libname}
c906108c
SS
3509The unloading of any dynamically loaded shared library, or the unloading
3510of the library @var{libname}. This is currently only available for HP-UX.
3511@end table
3512
3513@item tcatch @var{event}
3514Set a catchpoint that is enabled only for one stop. The catchpoint is
3515automatically deleted after the first time the event is caught.
3516
3517@end table
3518
3519Use the @code{info break} command to list the current catchpoints.
3520
b37052ae 3521There are currently some limitations to C@t{++} exception handling
c906108c
SS
3522(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3523
3524@itemize @bullet
3525@item
3526If you call a function interactively, @value{GDBN} normally returns
3527control to you when the function has finished executing. If the call
3528raises an exception, however, the call may bypass the mechanism that
3529returns control to you and cause your program either to abort or to
3530simply continue running until it hits a breakpoint, catches a signal
3531that @value{GDBN} is listening for, or exits. This is the case even if
3532you set a catchpoint for the exception; catchpoints on exceptions are
3533disabled within interactive calls.
3534
3535@item
3536You cannot raise an exception interactively.
3537
3538@item
3539You cannot install an exception handler interactively.
3540@end itemize
3541
3542@cindex raise exceptions
3543Sometimes @code{catch} is not the best way to debug exception handling:
3544if you need to know exactly where an exception is raised, it is better to
3545stop @emph{before} the exception handler is called, since that way you
3546can see the stack before any unwinding takes place. If you set a
3547breakpoint in an exception handler instead, it may not be easy to find
3548out where the exception was raised.
3549
3550To stop just before an exception handler is called, you need some
b37052ae 3551knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3552raised by calling a library function named @code{__raise_exception}
3553which has the following ANSI C interface:
3554
474c8240 3555@smallexample
c906108c 3556 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3557 @var{id} is the exception identifier. */
3558 void __raise_exception (void **addr, void *id);
474c8240 3559@end smallexample
c906108c
SS
3560
3561@noindent
3562To make the debugger catch all exceptions before any stack
3563unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3564(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3565
79a6e687 3566With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3567that depends on the value of @var{id}, you can stop your program when
3568a specific exception is raised. You can use multiple conditional
3569breakpoints to stop your program when any of a number of exceptions are
3570raised.
3571
3572
6d2ebf8b 3573@node Delete Breaks
79a6e687 3574@subsection Deleting Breakpoints
c906108c
SS
3575
3576@cindex clearing breakpoints, watchpoints, catchpoints
3577@cindex deleting breakpoints, watchpoints, catchpoints
3578It is often necessary to eliminate a breakpoint, watchpoint, or
3579catchpoint once it has done its job and you no longer want your program
3580to stop there. This is called @dfn{deleting} the breakpoint. A
3581breakpoint that has been deleted no longer exists; it is forgotten.
3582
3583With the @code{clear} command you can delete breakpoints according to
3584where they are in your program. With the @code{delete} command you can
3585delete individual breakpoints, watchpoints, or catchpoints by specifying
3586their breakpoint numbers.
3587
3588It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3589automatically ignores breakpoints on the first instruction to be executed
3590when you continue execution without changing the execution address.
3591
3592@table @code
3593@kindex clear
3594@item clear
3595Delete any breakpoints at the next instruction to be executed in the
79a6e687 3596selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3597the innermost frame is selected, this is a good way to delete a
3598breakpoint where your program just stopped.
3599
2a25a5ba
EZ
3600@item clear @var{location}
3601Delete any breakpoints set at the specified @var{location}.
3602@xref{Specify Location}, for the various forms of @var{location}; the
3603most useful ones are listed below:
3604
3605@table @code
c906108c
SS
3606@item clear @var{function}
3607@itemx clear @var{filename}:@var{function}
09d4efe1 3608Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3609
3610@item clear @var{linenum}
3611@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3612Delete any breakpoints set at or within the code of the specified
3613@var{linenum} of the specified @var{filename}.
2a25a5ba 3614@end table
c906108c
SS
3615
3616@cindex delete breakpoints
3617@kindex delete
41afff9a 3618@kindex d @r{(@code{delete})}
c5394b80
JM
3619@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3620Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3621ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3622breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3623confirm off}). You can abbreviate this command as @code{d}.
3624@end table
3625
6d2ebf8b 3626@node Disabling
79a6e687 3627@subsection Disabling Breakpoints
c906108c 3628
4644b6e3 3629@cindex enable/disable a breakpoint
c906108c
SS
3630Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3631prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3632it had been deleted, but remembers the information on the breakpoint so
3633that you can @dfn{enable} it again later.
3634
3635You disable and enable breakpoints, watchpoints, and catchpoints with
3636the @code{enable} and @code{disable} commands, optionally specifying one
3637or more breakpoint numbers as arguments. Use @code{info break} or
3638@code{info watch} to print a list of breakpoints, watchpoints, and
3639catchpoints if you do not know which numbers to use.
3640
3b784c4f
EZ
3641Disabling and enabling a breakpoint that has multiple locations
3642affects all of its locations.
3643
c906108c
SS
3644A breakpoint, watchpoint, or catchpoint can have any of four different
3645states of enablement:
3646
3647@itemize @bullet
3648@item
3649Enabled. The breakpoint stops your program. A breakpoint set
3650with the @code{break} command starts out in this state.
3651@item
3652Disabled. The breakpoint has no effect on your program.
3653@item
3654Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3655disabled.
c906108c
SS
3656@item
3657Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3658immediately after it does so it is deleted permanently. A breakpoint
3659set with the @code{tbreak} command starts out in this state.
c906108c
SS
3660@end itemize
3661
3662You can use the following commands to enable or disable breakpoints,
3663watchpoints, and catchpoints:
3664
3665@table @code
c906108c 3666@kindex disable
41afff9a 3667@kindex dis @r{(@code{disable})}
c5394b80 3668@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3669Disable the specified breakpoints---or all breakpoints, if none are
3670listed. A disabled breakpoint has no effect but is not forgotten. All
3671options such as ignore-counts, conditions and commands are remembered in
3672case the breakpoint is enabled again later. You may abbreviate
3673@code{disable} as @code{dis}.
3674
c906108c 3675@kindex enable
c5394b80 3676@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3677Enable the specified breakpoints (or all defined breakpoints). They
3678become effective once again in stopping your program.
3679
c5394b80 3680@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3681Enable the specified breakpoints temporarily. @value{GDBN} disables any
3682of these breakpoints immediately after stopping your program.
3683
c5394b80 3684@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3685Enable the specified breakpoints to work once, then die. @value{GDBN}
3686deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3687Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3688@end table
3689
d4f3574e
SS
3690@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3691@c confusing: tbreak is also initially enabled.
c906108c 3692Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3693,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3694subsequently, they become disabled or enabled only when you use one of
3695the commands above. (The command @code{until} can set and delete a
3696breakpoint of its own, but it does not change the state of your other
3697breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3698Stepping}.)
c906108c 3699
6d2ebf8b 3700@node Conditions
79a6e687 3701@subsection Break Conditions
c906108c
SS
3702@cindex conditional breakpoints
3703@cindex breakpoint conditions
3704
3705@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3706@c in particular for a watchpoint?
c906108c
SS
3707The simplest sort of breakpoint breaks every time your program reaches a
3708specified place. You can also specify a @dfn{condition} for a
3709breakpoint. A condition is just a Boolean expression in your
3710programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3711a condition evaluates the expression each time your program reaches it,
3712and your program stops only if the condition is @emph{true}.
3713
3714This is the converse of using assertions for program validation; in that
3715situation, you want to stop when the assertion is violated---that is,
3716when the condition is false. In C, if you want to test an assertion expressed
3717by the condition @var{assert}, you should set the condition
3718@samp{! @var{assert}} on the appropriate breakpoint.
3719
3720Conditions are also accepted for watchpoints; you may not need them,
3721since a watchpoint is inspecting the value of an expression anyhow---but
3722it might be simpler, say, to just set a watchpoint on a variable name,
3723and specify a condition that tests whether the new value is an interesting
3724one.
3725
3726Break conditions can have side effects, and may even call functions in
3727your program. This can be useful, for example, to activate functions
3728that log program progress, or to use your own print functions to
3729format special data structures. The effects are completely predictable
3730unless there is another enabled breakpoint at the same address. (In
3731that case, @value{GDBN} might see the other breakpoint first and stop your
3732program without checking the condition of this one.) Note that
d4f3574e
SS
3733breakpoint commands are usually more convenient and flexible than break
3734conditions for the
c906108c 3735purpose of performing side effects when a breakpoint is reached
79a6e687 3736(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3737
3738Break conditions can be specified when a breakpoint is set, by using
3739@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3740Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3741with the @code{condition} command.
53a5351d 3742
c906108c
SS
3743You can also use the @code{if} keyword with the @code{watch} command.
3744The @code{catch} command does not recognize the @code{if} keyword;
3745@code{condition} is the only way to impose a further condition on a
3746catchpoint.
c906108c
SS
3747
3748@table @code
3749@kindex condition
3750@item condition @var{bnum} @var{expression}
3751Specify @var{expression} as the break condition for breakpoint,
3752watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3753breakpoint @var{bnum} stops your program only if the value of
3754@var{expression} is true (nonzero, in C). When you use
3755@code{condition}, @value{GDBN} checks @var{expression} immediately for
3756syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3757referents in the context of your breakpoint. If @var{expression} uses
3758symbols not referenced in the context of the breakpoint, @value{GDBN}
3759prints an error message:
3760
474c8240 3761@smallexample
d4f3574e 3762No symbol "foo" in current context.
474c8240 3763@end smallexample
d4f3574e
SS
3764
3765@noindent
c906108c
SS
3766@value{GDBN} does
3767not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3768command (or a command that sets a breakpoint with a condition, like
3769@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3770
3771@item condition @var{bnum}
3772Remove the condition from breakpoint number @var{bnum}. It becomes
3773an ordinary unconditional breakpoint.
3774@end table
3775
3776@cindex ignore count (of breakpoint)
3777A special case of a breakpoint condition is to stop only when the
3778breakpoint has been reached a certain number of times. This is so
3779useful that there is a special way to do it, using the @dfn{ignore
3780count} of the breakpoint. Every breakpoint has an ignore count, which
3781is an integer. Most of the time, the ignore count is zero, and
3782therefore has no effect. But if your program reaches a breakpoint whose
3783ignore count is positive, then instead of stopping, it just decrements
3784the ignore count by one and continues. As a result, if the ignore count
3785value is @var{n}, the breakpoint does not stop the next @var{n} times
3786your program reaches it.
3787
3788@table @code
3789@kindex ignore
3790@item ignore @var{bnum} @var{count}
3791Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3792The next @var{count} times the breakpoint is reached, your program's
3793execution does not stop; other than to decrement the ignore count, @value{GDBN}
3794takes no action.
3795
3796To make the breakpoint stop the next time it is reached, specify
3797a count of zero.
3798
3799When you use @code{continue} to resume execution of your program from a
3800breakpoint, you can specify an ignore count directly as an argument to
3801@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3802Stepping,,Continuing and Stepping}.
c906108c
SS
3803
3804If a breakpoint has a positive ignore count and a condition, the
3805condition is not checked. Once the ignore count reaches zero,
3806@value{GDBN} resumes checking the condition.
3807
3808You could achieve the effect of the ignore count with a condition such
3809as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3810is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3811Variables}.
c906108c
SS
3812@end table
3813
3814Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3815
3816
6d2ebf8b 3817@node Break Commands
79a6e687 3818@subsection Breakpoint Command Lists
c906108c
SS
3819
3820@cindex breakpoint commands
3821You can give any breakpoint (or watchpoint or catchpoint) a series of
3822commands to execute when your program stops due to that breakpoint. For
3823example, you might want to print the values of certain expressions, or
3824enable other breakpoints.
3825
3826@table @code
3827@kindex commands
ca91424e 3828@kindex end@r{ (breakpoint commands)}
c906108c
SS
3829@item commands @r{[}@var{bnum}@r{]}
3830@itemx @dots{} @var{command-list} @dots{}
3831@itemx end
3832Specify a list of commands for breakpoint number @var{bnum}. The commands
3833themselves appear on the following lines. Type a line containing just
3834@code{end} to terminate the commands.
3835
3836To remove all commands from a breakpoint, type @code{commands} and
3837follow it immediately with @code{end}; that is, give no commands.
3838
3839With no @var{bnum} argument, @code{commands} refers to the last
3840breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3841recently encountered).
3842@end table
3843
3844Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3845disabled within a @var{command-list}.
3846
3847You can use breakpoint commands to start your program up again. Simply
3848use the @code{continue} command, or @code{step}, or any other command
3849that resumes execution.
3850
3851Any other commands in the command list, after a command that resumes
3852execution, are ignored. This is because any time you resume execution
3853(even with a simple @code{next} or @code{step}), you may encounter
3854another breakpoint---which could have its own command list, leading to
3855ambiguities about which list to execute.
3856
3857@kindex silent
3858If the first command you specify in a command list is @code{silent}, the
3859usual message about stopping at a breakpoint is not printed. This may
3860be desirable for breakpoints that are to print a specific message and
3861then continue. If none of the remaining commands print anything, you
3862see no sign that the breakpoint was reached. @code{silent} is
3863meaningful only at the beginning of a breakpoint command list.
3864
3865The commands @code{echo}, @code{output}, and @code{printf} allow you to
3866print precisely controlled output, and are often useful in silent
79a6e687 3867breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3868
3869For example, here is how you could use breakpoint commands to print the
3870value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3871
474c8240 3872@smallexample
c906108c
SS
3873break foo if x>0
3874commands
3875silent
3876printf "x is %d\n",x
3877cont
3878end
474c8240 3879@end smallexample
c906108c
SS
3880
3881One application for breakpoint commands is to compensate for one bug so
3882you can test for another. Put a breakpoint just after the erroneous line
3883of code, give it a condition to detect the case in which something
3884erroneous has been done, and give it commands to assign correct values
3885to any variables that need them. End with the @code{continue} command
3886so that your program does not stop, and start with the @code{silent}
3887command so that no output is produced. Here is an example:
3888
474c8240 3889@smallexample
c906108c
SS
3890break 403
3891commands
3892silent
3893set x = y + 4
3894cont
3895end
474c8240 3896@end smallexample
c906108c 3897
c906108c 3898@c @ifclear BARETARGET
6d2ebf8b 3899@node Error in Breakpoints
d4f3574e 3900@subsection ``Cannot insert breakpoints''
c906108c
SS
3901@c
3902@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3903@c
d4f3574e
SS
3904Under some operating systems, breakpoints cannot be used in a program if
3905any other process is running that program. In this situation,
5d161b24 3906attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3907@value{GDBN} to print an error message:
3908
474c8240 3909@smallexample
d4f3574e
SS
3910Cannot insert breakpoints.
3911The same program may be running in another process.
474c8240 3912@end smallexample
d4f3574e
SS
3913
3914When this happens, you have three ways to proceed:
3915
3916@enumerate
3917@item
3918Remove or disable the breakpoints, then continue.
3919
3920@item
5d161b24 3921Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3922name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3923that @value{GDBN} should run your program under that name.
d4f3574e
SS
3924Then start your program again.
3925
3926@item
3927Relink your program so that the text segment is nonsharable, using the
3928linker option @samp{-N}. The operating system limitation may not apply
3929to nonsharable executables.
3930@end enumerate
c906108c
SS
3931@c @end ifclear
3932
d4f3574e
SS
3933A similar message can be printed if you request too many active
3934hardware-assisted breakpoints and watchpoints:
3935
3936@c FIXME: the precise wording of this message may change; the relevant
3937@c source change is not committed yet (Sep 3, 1999).
3938@smallexample
3939Stopped; cannot insert breakpoints.
3940You may have requested too many hardware breakpoints and watchpoints.
3941@end smallexample
3942
3943@noindent
3944This message is printed when you attempt to resume the program, since
3945only then @value{GDBN} knows exactly how many hardware breakpoints and
3946watchpoints it needs to insert.
3947
3948When this message is printed, you need to disable or remove some of the
3949hardware-assisted breakpoints and watchpoints, and then continue.
3950
79a6e687 3951@node Breakpoint-related Warnings
1485d690
KB
3952@subsection ``Breakpoint address adjusted...''
3953@cindex breakpoint address adjusted
3954
3955Some processor architectures place constraints on the addresses at
3956which breakpoints may be placed. For architectures thus constrained,
3957@value{GDBN} will attempt to adjust the breakpoint's address to comply
3958with the constraints dictated by the architecture.
3959
3960One example of such an architecture is the Fujitsu FR-V. The FR-V is
3961a VLIW architecture in which a number of RISC-like instructions may be
3962bundled together for parallel execution. The FR-V architecture
3963constrains the location of a breakpoint instruction within such a
3964bundle to the instruction with the lowest address. @value{GDBN}
3965honors this constraint by adjusting a breakpoint's address to the
3966first in the bundle.
3967
3968It is not uncommon for optimized code to have bundles which contain
3969instructions from different source statements, thus it may happen that
3970a breakpoint's address will be adjusted from one source statement to
3971another. Since this adjustment may significantly alter @value{GDBN}'s
3972breakpoint related behavior from what the user expects, a warning is
3973printed when the breakpoint is first set and also when the breakpoint
3974is hit.
3975
3976A warning like the one below is printed when setting a breakpoint
3977that's been subject to address adjustment:
3978
3979@smallexample
3980warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3981@end smallexample
3982
3983Such warnings are printed both for user settable and @value{GDBN}'s
3984internal breakpoints. If you see one of these warnings, you should
3985verify that a breakpoint set at the adjusted address will have the
3986desired affect. If not, the breakpoint in question may be removed and
b383017d 3987other breakpoints may be set which will have the desired behavior.
1485d690
KB
3988E.g., it may be sufficient to place the breakpoint at a later
3989instruction. A conditional breakpoint may also be useful in some
3990cases to prevent the breakpoint from triggering too often.
3991
3992@value{GDBN} will also issue a warning when stopping at one of these
3993adjusted breakpoints:
3994
3995@smallexample
3996warning: Breakpoint 1 address previously adjusted from 0x00010414
3997to 0x00010410.
3998@end smallexample
3999
4000When this warning is encountered, it may be too late to take remedial
4001action except in cases where the breakpoint is hit earlier or more
4002frequently than expected.
d4f3574e 4003
6d2ebf8b 4004@node Continuing and Stepping
79a6e687 4005@section Continuing and Stepping
c906108c
SS
4006
4007@cindex stepping
4008@cindex continuing
4009@cindex resuming execution
4010@dfn{Continuing} means resuming program execution until your program
4011completes normally. In contrast, @dfn{stepping} means executing just
4012one more ``step'' of your program, where ``step'' may mean either one
4013line of source code, or one machine instruction (depending on what
7a292a7a
SS
4014particular command you use). Either when continuing or when stepping,
4015your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4016it stops due to a signal, you may want to use @code{handle}, or use
4017@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4018
4019@table @code
4020@kindex continue
41afff9a
EZ
4021@kindex c @r{(@code{continue})}
4022@kindex fg @r{(resume foreground execution)}
c906108c
SS
4023@item continue @r{[}@var{ignore-count}@r{]}
4024@itemx c @r{[}@var{ignore-count}@r{]}
4025@itemx fg @r{[}@var{ignore-count}@r{]}
4026Resume program execution, at the address where your program last stopped;
4027any breakpoints set at that address are bypassed. The optional argument
4028@var{ignore-count} allows you to specify a further number of times to
4029ignore a breakpoint at this location; its effect is like that of
79a6e687 4030@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4031
4032The argument @var{ignore-count} is meaningful only when your program
4033stopped due to a breakpoint. At other times, the argument to
4034@code{continue} is ignored.
4035
d4f3574e
SS
4036The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4037debugged program is deemed to be the foreground program) are provided
4038purely for convenience, and have exactly the same behavior as
4039@code{continue}.
c906108c
SS
4040@end table
4041
4042To resume execution at a different place, you can use @code{return}
79a6e687 4043(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4044calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4045Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4046
4047A typical technique for using stepping is to set a breakpoint
79a6e687 4048(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4049beginning of the function or the section of your program where a problem
4050is believed to lie, run your program until it stops at that breakpoint,
4051and then step through the suspect area, examining the variables that are
4052interesting, until you see the problem happen.
4053
4054@table @code
4055@kindex step
41afff9a 4056@kindex s @r{(@code{step})}
c906108c
SS
4057@item step
4058Continue running your program until control reaches a different source
4059line, then stop it and return control to @value{GDBN}. This command is
4060abbreviated @code{s}.
4061
4062@quotation
4063@c "without debugging information" is imprecise; actually "without line
4064@c numbers in the debugging information". (gcc -g1 has debugging info but
4065@c not line numbers). But it seems complex to try to make that
4066@c distinction here.
4067@emph{Warning:} If you use the @code{step} command while control is
4068within a function that was compiled without debugging information,
4069execution proceeds until control reaches a function that does have
4070debugging information. Likewise, it will not step into a function which
4071is compiled without debugging information. To step through functions
4072without debugging information, use the @code{stepi} command, described
4073below.
4074@end quotation
4075
4a92d011
EZ
4076The @code{step} command only stops at the first instruction of a source
4077line. This prevents the multiple stops that could otherwise occur in
4078@code{switch} statements, @code{for} loops, etc. @code{step} continues
4079to stop if a function that has debugging information is called within
4080the line. In other words, @code{step} @emph{steps inside} any functions
4081called within the line.
c906108c 4082
d4f3574e
SS
4083Also, the @code{step} command only enters a function if there is line
4084number information for the function. Otherwise it acts like the
5d161b24 4085@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4086on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4087was any debugging information about the routine.
c906108c
SS
4088
4089@item step @var{count}
4090Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4091breakpoint is reached, or a signal not related to stepping occurs before
4092@var{count} steps, stepping stops right away.
c906108c
SS
4093
4094@kindex next
41afff9a 4095@kindex n @r{(@code{next})}
c906108c
SS
4096@item next @r{[}@var{count}@r{]}
4097Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4098This is similar to @code{step}, but function calls that appear within
4099the line of code are executed without stopping. Execution stops when
4100control reaches a different line of code at the original stack level
4101that was executing when you gave the @code{next} command. This command
4102is abbreviated @code{n}.
c906108c
SS
4103
4104An argument @var{count} is a repeat count, as for @code{step}.
4105
4106
4107@c FIX ME!! Do we delete this, or is there a way it fits in with
4108@c the following paragraph? --- Vctoria
4109@c
4110@c @code{next} within a function that lacks debugging information acts like
4111@c @code{step}, but any function calls appearing within the code of the
4112@c function are executed without stopping.
4113
d4f3574e
SS
4114The @code{next} command only stops at the first instruction of a
4115source line. This prevents multiple stops that could otherwise occur in
4a92d011 4116@code{switch} statements, @code{for} loops, etc.
c906108c 4117
b90a5f51
CF
4118@kindex set step-mode
4119@item set step-mode
4120@cindex functions without line info, and stepping
4121@cindex stepping into functions with no line info
4122@itemx set step-mode on
4a92d011 4123The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4124stop at the first instruction of a function which contains no debug line
4125information rather than stepping over it.
4126
4a92d011
EZ
4127This is useful in cases where you may be interested in inspecting the
4128machine instructions of a function which has no symbolic info and do not
4129want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4130
4131@item set step-mode off
4a92d011 4132Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4133debug information. This is the default.
4134
9c16f35a
EZ
4135@item show step-mode
4136Show whether @value{GDBN} will stop in or step over functions without
4137source line debug information.
4138
c906108c 4139@kindex finish
8dfa32fc 4140@kindex fin @r{(@code{finish})}
c906108c
SS
4141@item finish
4142Continue running until just after function in the selected stack frame
8dfa32fc
JB
4143returns. Print the returned value (if any). This command can be
4144abbreviated as @code{fin}.
c906108c
SS
4145
4146Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4147,Returning from a Function}).
c906108c
SS
4148
4149@kindex until
41afff9a 4150@kindex u @r{(@code{until})}
09d4efe1 4151@cindex run until specified location
c906108c
SS
4152@item until
4153@itemx u
4154Continue running until a source line past the current line, in the
4155current stack frame, is reached. This command is used to avoid single
4156stepping through a loop more than once. It is like the @code{next}
4157command, except that when @code{until} encounters a jump, it
4158automatically continues execution until the program counter is greater
4159than the address of the jump.
4160
4161This means that when you reach the end of a loop after single stepping
4162though it, @code{until} makes your program continue execution until it
4163exits the loop. In contrast, a @code{next} command at the end of a loop
4164simply steps back to the beginning of the loop, which forces you to step
4165through the next iteration.
4166
4167@code{until} always stops your program if it attempts to exit the current
4168stack frame.
4169
4170@code{until} may produce somewhat counterintuitive results if the order
4171of machine code does not match the order of the source lines. For
4172example, in the following excerpt from a debugging session, the @code{f}
4173(@code{frame}) command shows that execution is stopped at line
4174@code{206}; yet when we use @code{until}, we get to line @code{195}:
4175
474c8240 4176@smallexample
c906108c
SS
4177(@value{GDBP}) f
4178#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4179206 expand_input();
4180(@value{GDBP}) until
4181195 for ( ; argc > 0; NEXTARG) @{
474c8240 4182@end smallexample
c906108c
SS
4183
4184This happened because, for execution efficiency, the compiler had
4185generated code for the loop closure test at the end, rather than the
4186start, of the loop---even though the test in a C @code{for}-loop is
4187written before the body of the loop. The @code{until} command appeared
4188to step back to the beginning of the loop when it advanced to this
4189expression; however, it has not really gone to an earlier
4190statement---not in terms of the actual machine code.
4191
4192@code{until} with no argument works by means of single
4193instruction stepping, and hence is slower than @code{until} with an
4194argument.
4195
4196@item until @var{location}
4197@itemx u @var{location}
4198Continue running your program until either the specified location is
4199reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4200the forms described in @ref{Specify Location}.
4201This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4202hence is quicker than @code{until} without an argument. The specified
4203location is actually reached only if it is in the current frame. This
4204implies that @code{until} can be used to skip over recursive function
4205invocations. For instance in the code below, if the current location is
4206line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4207line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4208invocations have returned.
4209
4210@smallexample
421194 int factorial (int value)
421295 @{
421396 if (value > 1) @{
421497 value *= factorial (value - 1);
421598 @}
421699 return (value);
4217100 @}
4218@end smallexample
4219
4220
4221@kindex advance @var{location}
4222@itemx advance @var{location}
09d4efe1 4223Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4224required, which should be of one of the forms described in
4225@ref{Specify Location}.
4226Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4227frame. This command is similar to @code{until}, but @code{advance} will
4228not skip over recursive function calls, and the target location doesn't
4229have to be in the same frame as the current one.
4230
c906108c
SS
4231
4232@kindex stepi
41afff9a 4233@kindex si @r{(@code{stepi})}
c906108c 4234@item stepi
96a2c332 4235@itemx stepi @var{arg}
c906108c
SS
4236@itemx si
4237Execute one machine instruction, then stop and return to the debugger.
4238
4239It is often useful to do @samp{display/i $pc} when stepping by machine
4240instructions. This makes @value{GDBN} automatically display the next
4241instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4242Display,, Automatic Display}.
c906108c
SS
4243
4244An argument is a repeat count, as in @code{step}.
4245
4246@need 750
4247@kindex nexti
41afff9a 4248@kindex ni @r{(@code{nexti})}
c906108c 4249@item nexti
96a2c332 4250@itemx nexti @var{arg}
c906108c
SS
4251@itemx ni
4252Execute one machine instruction, but if it is a function call,
4253proceed until the function returns.
4254
4255An argument is a repeat count, as in @code{next}.
4256@end table
4257
6d2ebf8b 4258@node Signals
c906108c
SS
4259@section Signals
4260@cindex signals
4261
4262A signal is an asynchronous event that can happen in a program. The
4263operating system defines the possible kinds of signals, and gives each
4264kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4265signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4266@code{SIGSEGV} is the signal a program gets from referencing a place in
4267memory far away from all the areas in use; @code{SIGALRM} occurs when
4268the alarm clock timer goes off (which happens only if your program has
4269requested an alarm).
4270
4271@cindex fatal signals
4272Some signals, including @code{SIGALRM}, are a normal part of the
4273functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4274errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4275program has not specified in advance some other way to handle the signal.
4276@code{SIGINT} does not indicate an error in your program, but it is normally
4277fatal so it can carry out the purpose of the interrupt: to kill the program.
4278
4279@value{GDBN} has the ability to detect any occurrence of a signal in your
4280program. You can tell @value{GDBN} in advance what to do for each kind of
4281signal.
4282
4283@cindex handling signals
24f93129
EZ
4284Normally, @value{GDBN} is set up to let the non-erroneous signals like
4285@code{SIGALRM} be silently passed to your program
4286(so as not to interfere with their role in the program's functioning)
c906108c
SS
4287but to stop your program immediately whenever an error signal happens.
4288You can change these settings with the @code{handle} command.
4289
4290@table @code
4291@kindex info signals
09d4efe1 4292@kindex info handle
c906108c 4293@item info signals
96a2c332 4294@itemx info handle
c906108c
SS
4295Print a table of all the kinds of signals and how @value{GDBN} has been told to
4296handle each one. You can use this to see the signal numbers of all
4297the defined types of signals.
4298
45ac1734
EZ
4299@item info signals @var{sig}
4300Similar, but print information only about the specified signal number.
4301
d4f3574e 4302@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4303
4304@kindex handle
45ac1734 4305@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4306Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4307can be the number of a signal or its name (with or without the
24f93129 4308@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4309@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4310known signals. Optional arguments @var{keywords}, described below,
4311say what change to make.
c906108c
SS
4312@end table
4313
4314@c @group
4315The keywords allowed by the @code{handle} command can be abbreviated.
4316Their full names are:
4317
4318@table @code
4319@item nostop
4320@value{GDBN} should not stop your program when this signal happens. It may
4321still print a message telling you that the signal has come in.
4322
4323@item stop
4324@value{GDBN} should stop your program when this signal happens. This implies
4325the @code{print} keyword as well.
4326
4327@item print
4328@value{GDBN} should print a message when this signal happens.
4329
4330@item noprint
4331@value{GDBN} should not mention the occurrence of the signal at all. This
4332implies the @code{nostop} keyword as well.
4333
4334@item pass
5ece1a18 4335@itemx noignore
c906108c
SS
4336@value{GDBN} should allow your program to see this signal; your program
4337can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4338and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4339
4340@item nopass
5ece1a18 4341@itemx ignore
c906108c 4342@value{GDBN} should not allow your program to see this signal.
5ece1a18 4343@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4344@end table
4345@c @end group
4346
d4f3574e
SS
4347When a signal stops your program, the signal is not visible to the
4348program until you
c906108c
SS
4349continue. Your program sees the signal then, if @code{pass} is in
4350effect for the signal in question @emph{at that time}. In other words,
4351after @value{GDBN} reports a signal, you can use the @code{handle}
4352command with @code{pass} or @code{nopass} to control whether your
4353program sees that signal when you continue.
4354
24f93129
EZ
4355The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4356non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4357@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4358erroneous signals.
4359
c906108c
SS
4360You can also use the @code{signal} command to prevent your program from
4361seeing a signal, or cause it to see a signal it normally would not see,
4362or to give it any signal at any time. For example, if your program stopped
4363due to some sort of memory reference error, you might store correct
4364values into the erroneous variables and continue, hoping to see more
4365execution; but your program would probably terminate immediately as
4366a result of the fatal signal once it saw the signal. To prevent this,
4367you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4368Program a Signal}.
c906108c 4369
6d2ebf8b 4370@node Thread Stops
79a6e687 4371@section Stopping and Starting Multi-thread Programs
c906108c
SS
4372
4373When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4374Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4375breakpoints on all threads, or on a particular thread.
4376
4377@table @code
4378@cindex breakpoints and threads
4379@cindex thread breakpoints
4380@kindex break @dots{} thread @var{threadno}
4381@item break @var{linespec} thread @var{threadno}
4382@itemx break @var{linespec} thread @var{threadno} if @dots{}
4383@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4384writing them (@pxref{Specify Location}), but the effect is always to
4385specify some source line.
c906108c
SS
4386
4387Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4388to specify that you only want @value{GDBN} to stop the program when a
4389particular thread reaches this breakpoint. @var{threadno} is one of the
4390numeric thread identifiers assigned by @value{GDBN}, shown in the first
4391column of the @samp{info threads} display.
4392
4393If you do not specify @samp{thread @var{threadno}} when you set a
4394breakpoint, the breakpoint applies to @emph{all} threads of your
4395program.
4396
4397You can use the @code{thread} qualifier on conditional breakpoints as
4398well; in this case, place @samp{thread @var{threadno}} before the
4399breakpoint condition, like this:
4400
4401@smallexample
2df3850c 4402(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4403@end smallexample
4404
4405@end table
4406
4407@cindex stopped threads
4408@cindex threads, stopped
4409Whenever your program stops under @value{GDBN} for any reason,
4410@emph{all} threads of execution stop, not just the current thread. This
4411allows you to examine the overall state of the program, including
4412switching between threads, without worrying that things may change
4413underfoot.
4414
36d86913
MC
4415@cindex thread breakpoints and system calls
4416@cindex system calls and thread breakpoints
4417@cindex premature return from system calls
4418There is an unfortunate side effect. If one thread stops for a
4419breakpoint, or for some other reason, and another thread is blocked in a
4420system call, then the system call may return prematurely. This is a
4421consequence of the interaction between multiple threads and the signals
4422that @value{GDBN} uses to implement breakpoints and other events that
4423stop execution.
4424
4425To handle this problem, your program should check the return value of
4426each system call and react appropriately. This is good programming
4427style anyways.
4428
4429For example, do not write code like this:
4430
4431@smallexample
4432 sleep (10);
4433@end smallexample
4434
4435The call to @code{sleep} will return early if a different thread stops
4436at a breakpoint or for some other reason.
4437
4438Instead, write this:
4439
4440@smallexample
4441 int unslept = 10;
4442 while (unslept > 0)
4443 unslept = sleep (unslept);
4444@end smallexample
4445
4446A system call is allowed to return early, so the system is still
4447conforming to its specification. But @value{GDBN} does cause your
4448multi-threaded program to behave differently than it would without
4449@value{GDBN}.
4450
4451Also, @value{GDBN} uses internal breakpoints in the thread library to
4452monitor certain events such as thread creation and thread destruction.
4453When such an event happens, a system call in another thread may return
4454prematurely, even though your program does not appear to stop.
4455
c906108c
SS
4456@cindex continuing threads
4457@cindex threads, continuing
4458Conversely, whenever you restart the program, @emph{all} threads start
4459executing. @emph{This is true even when single-stepping} with commands
5d161b24 4460like @code{step} or @code{next}.
c906108c
SS
4461
4462In particular, @value{GDBN} cannot single-step all threads in lockstep.
4463Since thread scheduling is up to your debugging target's operating
4464system (not controlled by @value{GDBN}), other threads may
4465execute more than one statement while the current thread completes a
4466single step. Moreover, in general other threads stop in the middle of a
4467statement, rather than at a clean statement boundary, when the program
4468stops.
4469
4470You might even find your program stopped in another thread after
4471continuing or even single-stepping. This happens whenever some other
4472thread runs into a breakpoint, a signal, or an exception before the
4473first thread completes whatever you requested.
4474
4475On some OSes, you can lock the OS scheduler and thus allow only a single
4476thread to run.
4477
4478@table @code
4479@item set scheduler-locking @var{mode}
9c16f35a
EZ
4480@cindex scheduler locking mode
4481@cindex lock scheduler
c906108c
SS
4482Set the scheduler locking mode. If it is @code{off}, then there is no
4483locking and any thread may run at any time. If @code{on}, then only the
4484current thread may run when the inferior is resumed. The @code{step}
4485mode optimizes for single-stepping. It stops other threads from
4486``seizing the prompt'' by preempting the current thread while you are
4487stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4488when you step. They are more likely to run when you @samp{next} over a
c906108c 4489function call, and they are completely free to run when you use commands
d4f3574e 4490like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4491thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4492@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4493
4494@item show scheduler-locking
4495Display the current scheduler locking mode.
4496@end table
4497
c906108c 4498
6d2ebf8b 4499@node Stack
c906108c
SS
4500@chapter Examining the Stack
4501
4502When your program has stopped, the first thing you need to know is where it
4503stopped and how it got there.
4504
4505@cindex call stack
5d161b24
DB
4506Each time your program performs a function call, information about the call
4507is generated.
4508That information includes the location of the call in your program,
4509the arguments of the call,
c906108c 4510and the local variables of the function being called.
5d161b24 4511The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4512The stack frames are allocated in a region of memory called the @dfn{call
4513stack}.
4514
4515When your program stops, the @value{GDBN} commands for examining the
4516stack allow you to see all of this information.
4517
4518@cindex selected frame
4519One of the stack frames is @dfn{selected} by @value{GDBN} and many
4520@value{GDBN} commands refer implicitly to the selected frame. In
4521particular, whenever you ask @value{GDBN} for the value of a variable in
4522your program, the value is found in the selected frame. There are
4523special @value{GDBN} commands to select whichever frame you are
79a6e687 4524interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4525
4526When your program stops, @value{GDBN} automatically selects the
5d161b24 4527currently executing frame and describes it briefly, similar to the
79a6e687 4528@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4529
4530@menu
4531* Frames:: Stack frames
4532* Backtrace:: Backtraces
4533* Selection:: Selecting a frame
4534* Frame Info:: Information on a frame
c906108c
SS
4535
4536@end menu
4537
6d2ebf8b 4538@node Frames
79a6e687 4539@section Stack Frames
c906108c 4540
d4f3574e 4541@cindex frame, definition
c906108c
SS
4542@cindex stack frame
4543The call stack is divided up into contiguous pieces called @dfn{stack
4544frames}, or @dfn{frames} for short; each frame is the data associated
4545with one call to one function. The frame contains the arguments given
4546to the function, the function's local variables, and the address at
4547which the function is executing.
4548
4549@cindex initial frame
4550@cindex outermost frame
4551@cindex innermost frame
4552When your program is started, the stack has only one frame, that of the
4553function @code{main}. This is called the @dfn{initial} frame or the
4554@dfn{outermost} frame. Each time a function is called, a new frame is
4555made. Each time a function returns, the frame for that function invocation
4556is eliminated. If a function is recursive, there can be many frames for
4557the same function. The frame for the function in which execution is
4558actually occurring is called the @dfn{innermost} frame. This is the most
4559recently created of all the stack frames that still exist.
4560
4561@cindex frame pointer
4562Inside your program, stack frames are identified by their addresses. A
4563stack frame consists of many bytes, each of which has its own address; each
4564kind of computer has a convention for choosing one byte whose
4565address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4566in a register called the @dfn{frame pointer register}
4567(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4568
4569@cindex frame number
4570@value{GDBN} assigns numbers to all existing stack frames, starting with
4571zero for the innermost frame, one for the frame that called it,
4572and so on upward. These numbers do not really exist in your program;
4573they are assigned by @value{GDBN} to give you a way of designating stack
4574frames in @value{GDBN} commands.
4575
6d2ebf8b
SS
4576@c The -fomit-frame-pointer below perennially causes hbox overflow
4577@c underflow problems.
c906108c
SS
4578@cindex frameless execution
4579Some compilers provide a way to compile functions so that they operate
e22ea452 4580without stack frames. (For example, the @value{NGCC} option
474c8240 4581@smallexample
6d2ebf8b 4582@samp{-fomit-frame-pointer}
474c8240 4583@end smallexample
6d2ebf8b 4584generates functions without a frame.)
c906108c
SS
4585This is occasionally done with heavily used library functions to save
4586the frame setup time. @value{GDBN} has limited facilities for dealing
4587with these function invocations. If the innermost function invocation
4588has no stack frame, @value{GDBN} nevertheless regards it as though
4589it had a separate frame, which is numbered zero as usual, allowing
4590correct tracing of the function call chain. However, @value{GDBN} has
4591no provision for frameless functions elsewhere in the stack.
4592
4593@table @code
d4f3574e 4594@kindex frame@r{, command}
41afff9a 4595@cindex current stack frame
c906108c 4596@item frame @var{args}
5d161b24 4597The @code{frame} command allows you to move from one stack frame to another,
c906108c 4598and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4599address of the frame or the stack frame number. Without an argument,
4600@code{frame} prints the current stack frame.
c906108c
SS
4601
4602@kindex select-frame
41afff9a 4603@cindex selecting frame silently
c906108c
SS
4604@item select-frame
4605The @code{select-frame} command allows you to move from one stack frame
4606to another without printing the frame. This is the silent version of
4607@code{frame}.
4608@end table
4609
6d2ebf8b 4610@node Backtrace
c906108c
SS
4611@section Backtraces
4612
09d4efe1
EZ
4613@cindex traceback
4614@cindex call stack traces
c906108c
SS
4615A backtrace is a summary of how your program got where it is. It shows one
4616line per frame, for many frames, starting with the currently executing
4617frame (frame zero), followed by its caller (frame one), and on up the
4618stack.
4619
4620@table @code
4621@kindex backtrace
41afff9a 4622@kindex bt @r{(@code{backtrace})}
c906108c
SS
4623@item backtrace
4624@itemx bt
4625Print a backtrace of the entire stack: one line per frame for all
4626frames in the stack.
4627
4628You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4629character, normally @kbd{Ctrl-c}.
c906108c
SS
4630
4631@item backtrace @var{n}
4632@itemx bt @var{n}
4633Similar, but print only the innermost @var{n} frames.
4634
4635@item backtrace -@var{n}
4636@itemx bt -@var{n}
4637Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4638
4639@item backtrace full
0f061b69 4640@itemx bt full
dd74f6ae
NR
4641@itemx bt full @var{n}
4642@itemx bt full -@var{n}
e7109c7e 4643Print the values of the local variables also. @var{n} specifies the
286ba84d 4644number of frames to print, as described above.
c906108c
SS
4645@end table
4646
4647@kindex where
4648@kindex info stack
c906108c
SS
4649The names @code{where} and @code{info stack} (abbreviated @code{info s})
4650are additional aliases for @code{backtrace}.
4651
839c27b7
EZ
4652@cindex multiple threads, backtrace
4653In a multi-threaded program, @value{GDBN} by default shows the
4654backtrace only for the current thread. To display the backtrace for
4655several or all of the threads, use the command @code{thread apply}
4656(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4657apply all backtrace}, @value{GDBN} will display the backtrace for all
4658the threads; this is handy when you debug a core dump of a
4659multi-threaded program.
4660
c906108c
SS
4661Each line in the backtrace shows the frame number and the function name.
4662The program counter value is also shown---unless you use @code{set
4663print address off}. The backtrace also shows the source file name and
4664line number, as well as the arguments to the function. The program
4665counter value is omitted if it is at the beginning of the code for that
4666line number.
4667
4668Here is an example of a backtrace. It was made with the command
4669@samp{bt 3}, so it shows the innermost three frames.
4670
4671@smallexample
4672@group
5d161b24 4673#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4674 at builtin.c:993
4675#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4676#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4677 at macro.c:71
4678(More stack frames follow...)
4679@end group
4680@end smallexample
4681
4682@noindent
4683The display for frame zero does not begin with a program counter
4684value, indicating that your program has stopped at the beginning of the
4685code for line @code{993} of @code{builtin.c}.
4686
18999be5
EZ
4687@cindex value optimized out, in backtrace
4688@cindex function call arguments, optimized out
4689If your program was compiled with optimizations, some compilers will
4690optimize away arguments passed to functions if those arguments are
4691never used after the call. Such optimizations generate code that
4692passes arguments through registers, but doesn't store those arguments
4693in the stack frame. @value{GDBN} has no way of displaying such
4694arguments in stack frames other than the innermost one. Here's what
4695such a backtrace might look like:
4696
4697@smallexample
4698@group
4699#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4700 at builtin.c:993
4701#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4702#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4703 at macro.c:71
4704(More stack frames follow...)
4705@end group
4706@end smallexample
4707
4708@noindent
4709The values of arguments that were not saved in their stack frames are
4710shown as @samp{<value optimized out>}.
4711
4712If you need to display the values of such optimized-out arguments,
4713either deduce that from other variables whose values depend on the one
4714you are interested in, or recompile without optimizations.
4715
a8f24a35
EZ
4716@cindex backtrace beyond @code{main} function
4717@cindex program entry point
4718@cindex startup code, and backtrace
25d29d70
AC
4719Most programs have a standard user entry point---a place where system
4720libraries and startup code transition into user code. For C this is
d416eeec
EZ
4721@code{main}@footnote{
4722Note that embedded programs (the so-called ``free-standing''
4723environment) are not required to have a @code{main} function as the
4724entry point. They could even have multiple entry points.}.
4725When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4726it will terminate the backtrace, to avoid tracing into highly
4727system-specific (and generally uninteresting) code.
4728
4729If you need to examine the startup code, or limit the number of levels
4730in a backtrace, you can change this behavior:
95f90d25
DJ
4731
4732@table @code
25d29d70
AC
4733@item set backtrace past-main
4734@itemx set backtrace past-main on
4644b6e3 4735@kindex set backtrace
25d29d70
AC
4736Backtraces will continue past the user entry point.
4737
4738@item set backtrace past-main off
95f90d25
DJ
4739Backtraces will stop when they encounter the user entry point. This is the
4740default.
4741
25d29d70 4742@item show backtrace past-main
4644b6e3 4743@kindex show backtrace
25d29d70
AC
4744Display the current user entry point backtrace policy.
4745
2315ffec
RC
4746@item set backtrace past-entry
4747@itemx set backtrace past-entry on
a8f24a35 4748Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4749This entry point is encoded by the linker when the application is built,
4750and is likely before the user entry point @code{main} (or equivalent) is called.
4751
4752@item set backtrace past-entry off
d3e8051b 4753Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4754application. This is the default.
4755
4756@item show backtrace past-entry
4757Display the current internal entry point backtrace policy.
4758
25d29d70
AC
4759@item set backtrace limit @var{n}
4760@itemx set backtrace limit 0
4761@cindex backtrace limit
4762Limit the backtrace to @var{n} levels. A value of zero means
4763unlimited.
95f90d25 4764
25d29d70
AC
4765@item show backtrace limit
4766Display the current limit on backtrace levels.
95f90d25
DJ
4767@end table
4768
6d2ebf8b 4769@node Selection
79a6e687 4770@section Selecting a Frame
c906108c
SS
4771
4772Most commands for examining the stack and other data in your program work on
4773whichever stack frame is selected at the moment. Here are the commands for
4774selecting a stack frame; all of them finish by printing a brief description
4775of the stack frame just selected.
4776
4777@table @code
d4f3574e 4778@kindex frame@r{, selecting}
41afff9a 4779@kindex f @r{(@code{frame})}
c906108c
SS
4780@item frame @var{n}
4781@itemx f @var{n}
4782Select frame number @var{n}. Recall that frame zero is the innermost
4783(currently executing) frame, frame one is the frame that called the
4784innermost one, and so on. The highest-numbered frame is the one for
4785@code{main}.
4786
4787@item frame @var{addr}
4788@itemx f @var{addr}
4789Select the frame at address @var{addr}. This is useful mainly if the
4790chaining of stack frames has been damaged by a bug, making it
4791impossible for @value{GDBN} to assign numbers properly to all frames. In
4792addition, this can be useful when your program has multiple stacks and
4793switches between them.
4794
c906108c
SS
4795On the SPARC architecture, @code{frame} needs two addresses to
4796select an arbitrary frame: a frame pointer and a stack pointer.
4797
4798On the MIPS and Alpha architecture, it needs two addresses: a stack
4799pointer and a program counter.
4800
4801On the 29k architecture, it needs three addresses: a register stack
4802pointer, a program counter, and a memory stack pointer.
c906108c
SS
4803
4804@kindex up
4805@item up @var{n}
4806Move @var{n} frames up the stack. For positive numbers @var{n}, this
4807advances toward the outermost frame, to higher frame numbers, to frames
4808that have existed longer. @var{n} defaults to one.
4809
4810@kindex down
41afff9a 4811@kindex do @r{(@code{down})}
c906108c
SS
4812@item down @var{n}
4813Move @var{n} frames down the stack. For positive numbers @var{n}, this
4814advances toward the innermost frame, to lower frame numbers, to frames
4815that were created more recently. @var{n} defaults to one. You may
4816abbreviate @code{down} as @code{do}.
4817@end table
4818
4819All of these commands end by printing two lines of output describing the
4820frame. The first line shows the frame number, the function name, the
4821arguments, and the source file and line number of execution in that
5d161b24 4822frame. The second line shows the text of that source line.
c906108c
SS
4823
4824@need 1000
4825For example:
4826
4827@smallexample
4828@group
4829(@value{GDBP}) up
4830#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4831 at env.c:10
483210 read_input_file (argv[i]);
4833@end group
4834@end smallexample
4835
4836After such a printout, the @code{list} command with no arguments
4837prints ten lines centered on the point of execution in the frame.
87885426
FN
4838You can also edit the program at the point of execution with your favorite
4839editing program by typing @code{edit}.
79a6e687 4840@xref{List, ,Printing Source Lines},
87885426 4841for details.
c906108c
SS
4842
4843@table @code
4844@kindex down-silently
4845@kindex up-silently
4846@item up-silently @var{n}
4847@itemx down-silently @var{n}
4848These two commands are variants of @code{up} and @code{down},
4849respectively; they differ in that they do their work silently, without
4850causing display of the new frame. They are intended primarily for use
4851in @value{GDBN} command scripts, where the output might be unnecessary and
4852distracting.
4853@end table
4854
6d2ebf8b 4855@node Frame Info
79a6e687 4856@section Information About a Frame
c906108c
SS
4857
4858There are several other commands to print information about the selected
4859stack frame.
4860
4861@table @code
4862@item frame
4863@itemx f
4864When used without any argument, this command does not change which
4865frame is selected, but prints a brief description of the currently
4866selected stack frame. It can be abbreviated @code{f}. With an
4867argument, this command is used to select a stack frame.
79a6e687 4868@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4869
4870@kindex info frame
41afff9a 4871@kindex info f @r{(@code{info frame})}
c906108c
SS
4872@item info frame
4873@itemx info f
4874This command prints a verbose description of the selected stack frame,
4875including:
4876
4877@itemize @bullet
5d161b24
DB
4878@item
4879the address of the frame
c906108c
SS
4880@item
4881the address of the next frame down (called by this frame)
4882@item
4883the address of the next frame up (caller of this frame)
4884@item
4885the language in which the source code corresponding to this frame is written
4886@item
4887the address of the frame's arguments
4888@item
d4f3574e
SS
4889the address of the frame's local variables
4890@item
c906108c
SS
4891the program counter saved in it (the address of execution in the caller frame)
4892@item
4893which registers were saved in the frame
4894@end itemize
4895
4896@noindent The verbose description is useful when
4897something has gone wrong that has made the stack format fail to fit
4898the usual conventions.
4899
4900@item info frame @var{addr}
4901@itemx info f @var{addr}
4902Print a verbose description of the frame at address @var{addr}, without
4903selecting that frame. The selected frame remains unchanged by this
4904command. This requires the same kind of address (more than one for some
4905architectures) that you specify in the @code{frame} command.
79a6e687 4906@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4907
4908@kindex info args
4909@item info args
4910Print the arguments of the selected frame, each on a separate line.
4911
4912@item info locals
4913@kindex info locals
4914Print the local variables of the selected frame, each on a separate
4915line. These are all variables (declared either static or automatic)
4916accessible at the point of execution of the selected frame.
4917
c906108c 4918@kindex info catch
d4f3574e
SS
4919@cindex catch exceptions, list active handlers
4920@cindex exception handlers, how to list
c906108c
SS
4921@item info catch
4922Print a list of all the exception handlers that are active in the
4923current stack frame at the current point of execution. To see other
4924exception handlers, visit the associated frame (using the @code{up},
4925@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4926@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4927
c906108c
SS
4928@end table
4929
c906108c 4930
6d2ebf8b 4931@node Source
c906108c
SS
4932@chapter Examining Source Files
4933
4934@value{GDBN} can print parts of your program's source, since the debugging
4935information recorded in the program tells @value{GDBN} what source files were
4936used to build it. When your program stops, @value{GDBN} spontaneously prints
4937the line where it stopped. Likewise, when you select a stack frame
79a6e687 4938(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4939execution in that frame has stopped. You can print other portions of
4940source files by explicit command.
4941
7a292a7a 4942If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4943prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4944@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4945
4946@menu
4947* List:: Printing source lines
2a25a5ba 4948* Specify Location:: How to specify code locations
87885426 4949* Edit:: Editing source files
c906108c 4950* Search:: Searching source files
c906108c
SS
4951* Source Path:: Specifying source directories
4952* Machine Code:: Source and machine code
4953@end menu
4954
6d2ebf8b 4955@node List
79a6e687 4956@section Printing Source Lines
c906108c
SS
4957
4958@kindex list
41afff9a 4959@kindex l @r{(@code{list})}
c906108c 4960To print lines from a source file, use the @code{list} command
5d161b24 4961(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4962There are several ways to specify what part of the file you want to
4963print; see @ref{Specify Location}, for the full list.
c906108c
SS
4964
4965Here are the forms of the @code{list} command most commonly used:
4966
4967@table @code
4968@item list @var{linenum}
4969Print lines centered around line number @var{linenum} in the
4970current source file.
4971
4972@item list @var{function}
4973Print lines centered around the beginning of function
4974@var{function}.
4975
4976@item list
4977Print more lines. If the last lines printed were printed with a
4978@code{list} command, this prints lines following the last lines
4979printed; however, if the last line printed was a solitary line printed
4980as part of displaying a stack frame (@pxref{Stack, ,Examining the
4981Stack}), this prints lines centered around that line.
4982
4983@item list -
4984Print lines just before the lines last printed.
4985@end table
4986
9c16f35a 4987@cindex @code{list}, how many lines to display
c906108c
SS
4988By default, @value{GDBN} prints ten source lines with any of these forms of
4989the @code{list} command. You can change this using @code{set listsize}:
4990
4991@table @code
4992@kindex set listsize
4993@item set listsize @var{count}
4994Make the @code{list} command display @var{count} source lines (unless
4995the @code{list} argument explicitly specifies some other number).
4996
4997@kindex show listsize
4998@item show listsize
4999Display the number of lines that @code{list} prints.
5000@end table
5001
5002Repeating a @code{list} command with @key{RET} discards the argument,
5003so it is equivalent to typing just @code{list}. This is more useful
5004than listing the same lines again. An exception is made for an
5005argument of @samp{-}; that argument is preserved in repetition so that
5006each repetition moves up in the source file.
5007
c906108c
SS
5008In general, the @code{list} command expects you to supply zero, one or two
5009@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
5010of writing them (@pxref{Specify Location}), but the effect is always
5011to specify some source line.
5012
c906108c
SS
5013Here is a complete description of the possible arguments for @code{list}:
5014
5015@table @code
5016@item list @var{linespec}
5017Print lines centered around the line specified by @var{linespec}.
5018
5019@item list @var{first},@var{last}
5020Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5021linespecs. When a @code{list} command has two linespecs, and the
5022source file of the second linespec is omitted, this refers to
5023the same source file as the first linespec.
c906108c
SS
5024
5025@item list ,@var{last}
5026Print lines ending with @var{last}.
5027
5028@item list @var{first},
5029Print lines starting with @var{first}.
5030
5031@item list +
5032Print lines just after the lines last printed.
5033
5034@item list -
5035Print lines just before the lines last printed.
5036
5037@item list
5038As described in the preceding table.
5039@end table
5040
2a25a5ba
EZ
5041@node Specify Location
5042@section Specifying a Location
5043@cindex specifying location
5044@cindex linespec
c906108c 5045
2a25a5ba
EZ
5046Several @value{GDBN} commands accept arguments that specify a location
5047of your program's code. Since @value{GDBN} is a source-level
5048debugger, a location usually specifies some line in the source code;
5049for that reason, locations are also known as @dfn{linespecs}.
c906108c 5050
2a25a5ba
EZ
5051Here are all the different ways of specifying a code location that
5052@value{GDBN} understands:
c906108c 5053
2a25a5ba
EZ
5054@table @code
5055@item @var{linenum}
5056Specifies the line number @var{linenum} of the current source file.
c906108c 5057
2a25a5ba
EZ
5058@item -@var{offset}
5059@itemx +@var{offset}
5060Specifies the line @var{offset} lines before or after the @dfn{current
5061line}. For the @code{list} command, the current line is the last one
5062printed; for the breakpoint commands, this is the line at which
5063execution stopped in the currently selected @dfn{stack frame}
5064(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5065used as the second of the two linespecs in a @code{list} command,
5066this specifies the line @var{offset} lines up or down from the first
5067linespec.
5068
5069@item @var{filename}:@var{linenum}
5070Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5071
5072@item @var{function}
5073Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5074For example, in C, this is the line with the open brace.
c906108c
SS
5075
5076@item @var{filename}:@var{function}
2a25a5ba
EZ
5077Specifies the line that begins the body of the function @var{function}
5078in the file @var{filename}. You only need the file name with a
5079function name to avoid ambiguity when there are identically named
5080functions in different source files.
c906108c
SS
5081
5082@item *@var{address}
2a25a5ba
EZ
5083Specifies the program address @var{address}. For line-oriented
5084commands, such as @code{list} and @code{edit}, this specifies a source
5085line that contains @var{address}. For @code{break} and other
5086breakpoint oriented commands, this can be used to set breakpoints in
5087parts of your program which do not have debugging information or
5088source files.
5089
5090Here @var{address} may be any expression valid in the current working
5091language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5092address. In addition, as a convenience, @value{GDBN} extends the
5093semantics of expressions used in locations to cover the situations
5094that frequently happen during debugging. Here are the various forms
5095of @var{address}:
2a25a5ba
EZ
5096
5097@table @code
5098@item @var{expression}
5099Any expression valid in the current working language.
5100
5101@item @var{funcaddr}
5102An address of a function or procedure derived from its name. In C,
5103C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5104simply the function's name @var{function} (and actually a special case
5105of a valid expression). In Pascal and Modula-2, this is
5106@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5107(although the Pascal form also works).
5108
5109This form specifies the address of the function's first instruction,
5110before the stack frame and arguments have been set up.
5111
5112@item '@var{filename}'::@var{funcaddr}
5113Like @var{funcaddr} above, but also specifies the name of the source
5114file explicitly. This is useful if the name of the function does not
5115specify the function unambiguously, e.g., if there are several
5116functions with identical names in different source files.
c906108c
SS
5117@end table
5118
2a25a5ba
EZ
5119@end table
5120
5121
87885426 5122@node Edit
79a6e687 5123@section Editing Source Files
87885426
FN
5124@cindex editing source files
5125
5126@kindex edit
5127@kindex e @r{(@code{edit})}
5128To edit the lines in a source file, use the @code{edit} command.
5129The editing program of your choice
5130is invoked with the current line set to
5131the active line in the program.
5132Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5133want to print if you want to see other parts of the program:
87885426
FN
5134
5135@table @code
2a25a5ba
EZ
5136@item edit @var{location}
5137Edit the source file specified by @code{location}. Editing starts at
5138that @var{location}, e.g., at the specified source line of the
5139specified file. @xref{Specify Location}, for all the possible forms
5140of the @var{location} argument; here are the forms of the @code{edit}
5141command most commonly used:
87885426 5142
2a25a5ba 5143@table @code
87885426
FN
5144@item edit @var{number}
5145Edit the current source file with @var{number} as the active line number.
5146
5147@item edit @var{function}
5148Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5149@end table
87885426 5150
87885426
FN
5151@end table
5152
79a6e687 5153@subsection Choosing your Editor
87885426
FN
5154You can customize @value{GDBN} to use any editor you want
5155@footnote{
5156The only restriction is that your editor (say @code{ex}), recognizes the
5157following command-line syntax:
10998722 5158@smallexample
87885426 5159ex +@var{number} file
10998722 5160@end smallexample
15387254
EZ
5161The optional numeric value +@var{number} specifies the number of the line in
5162the file where to start editing.}.
5163By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5164by setting the environment variable @code{EDITOR} before using
5165@value{GDBN}. For example, to configure @value{GDBN} to use the
5166@code{vi} editor, you could use these commands with the @code{sh} shell:
5167@smallexample
87885426
FN
5168EDITOR=/usr/bin/vi
5169export EDITOR
15387254 5170gdb @dots{}
10998722 5171@end smallexample
87885426 5172or in the @code{csh} shell,
10998722 5173@smallexample
87885426 5174setenv EDITOR /usr/bin/vi
15387254 5175gdb @dots{}
10998722 5176@end smallexample
87885426 5177
6d2ebf8b 5178@node Search
79a6e687 5179@section Searching Source Files
15387254 5180@cindex searching source files
c906108c
SS
5181
5182There are two commands for searching through the current source file for a
5183regular expression.
5184
5185@table @code
5186@kindex search
5187@kindex forward-search
5188@item forward-search @var{regexp}
5189@itemx search @var{regexp}
5190The command @samp{forward-search @var{regexp}} checks each line,
5191starting with the one following the last line listed, for a match for
5d161b24 5192@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5193synonym @samp{search @var{regexp}} or abbreviate the command name as
5194@code{fo}.
5195
09d4efe1 5196@kindex reverse-search
c906108c
SS
5197@item reverse-search @var{regexp}
5198The command @samp{reverse-search @var{regexp}} checks each line, starting
5199with the one before the last line listed and going backward, for a match
5200for @var{regexp}. It lists the line that is found. You can abbreviate
5201this command as @code{rev}.
5202@end table
c906108c 5203
6d2ebf8b 5204@node Source Path
79a6e687 5205@section Specifying Source Directories
c906108c
SS
5206
5207@cindex source path
5208@cindex directories for source files
5209Executable programs sometimes do not record the directories of the source
5210files from which they were compiled, just the names. Even when they do,
5211the directories could be moved between the compilation and your debugging
5212session. @value{GDBN} has a list of directories to search for source files;
5213this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5214it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5215in the list, until it finds a file with the desired name.
5216
5217For example, suppose an executable references the file
5218@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5219@file{/mnt/cross}. The file is first looked up literally; if this
5220fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5221fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5222message is printed. @value{GDBN} does not look up the parts of the
5223source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5224Likewise, the subdirectories of the source path are not searched: if
5225the source path is @file{/mnt/cross}, and the binary refers to
5226@file{foo.c}, @value{GDBN} would not find it under
5227@file{/mnt/cross/usr/src/foo-1.0/lib}.
5228
5229Plain file names, relative file names with leading directories, file
5230names containing dots, etc.@: are all treated as described above; for
5231instance, if the source path is @file{/mnt/cross}, and the source file
5232is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5233@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5234that---@file{/mnt/cross/foo.c}.
5235
5236Note that the executable search path is @emph{not} used to locate the
cd852561 5237source files.
c906108c
SS
5238
5239Whenever you reset or rearrange the source path, @value{GDBN} clears out
5240any information it has cached about where source files are found and where
5241each line is in the file.
5242
5243@kindex directory
5244@kindex dir
d4f3574e
SS
5245When you start @value{GDBN}, its source path includes only @samp{cdir}
5246and @samp{cwd}, in that order.
c906108c
SS
5247To add other directories, use the @code{directory} command.
5248
4b505b12
AS
5249The search path is used to find both program source files and @value{GDBN}
5250script files (read using the @samp{-command} option and @samp{source} command).
5251
30daae6c
JB
5252In addition to the source path, @value{GDBN} provides a set of commands
5253that manage a list of source path substitution rules. A @dfn{substitution
5254rule} specifies how to rewrite source directories stored in the program's
5255debug information in case the sources were moved to a different
5256directory between compilation and debugging. A rule is made of
5257two strings, the first specifying what needs to be rewritten in
5258the path, and the second specifying how it should be rewritten.
5259In @ref{set substitute-path}, we name these two parts @var{from} and
5260@var{to} respectively. @value{GDBN} does a simple string replacement
5261of @var{from} with @var{to} at the start of the directory part of the
5262source file name, and uses that result instead of the original file
5263name to look up the sources.
5264
5265Using the previous example, suppose the @file{foo-1.0} tree has been
5266moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5267@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5268@file{/mnt/cross}. The first lookup will then be
5269@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5270of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5271substitution rule, use the @code{set substitute-path} command
5272(@pxref{set substitute-path}).
5273
5274To avoid unexpected substitution results, a rule is applied only if the
5275@var{from} part of the directory name ends at a directory separator.
5276For instance, a rule substituting @file{/usr/source} into
5277@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5278not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5279is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5280not be applied to @file{/root/usr/source/baz.c} either.
5281
5282In many cases, you can achieve the same result using the @code{directory}
5283command. However, @code{set substitute-path} can be more efficient in
5284the case where the sources are organized in a complex tree with multiple
5285subdirectories. With the @code{directory} command, you need to add each
5286subdirectory of your project. If you moved the entire tree while
5287preserving its internal organization, then @code{set substitute-path}
5288allows you to direct the debugger to all the sources with one single
5289command.
5290
5291@code{set substitute-path} is also more than just a shortcut command.
5292The source path is only used if the file at the original location no
5293longer exists. On the other hand, @code{set substitute-path} modifies
5294the debugger behavior to look at the rewritten location instead. So, if
5295for any reason a source file that is not relevant to your executable is
5296located at the original location, a substitution rule is the only
3f94c067 5297method available to point @value{GDBN} at the new location.
30daae6c 5298
c906108c
SS
5299@table @code
5300@item directory @var{dirname} @dots{}
5301@item dir @var{dirname} @dots{}
5302Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5303directory names may be given to this command, separated by @samp{:}
5304(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5305part of absolute file names) or
c906108c
SS
5306whitespace. You may specify a directory that is already in the source
5307path; this moves it forward, so @value{GDBN} searches it sooner.
5308
5309@kindex cdir
5310@kindex cwd
41afff9a 5311@vindex $cdir@r{, convenience variable}
d3e8051b 5312@vindex $cwd@r{, convenience variable}
c906108c
SS
5313@cindex compilation directory
5314@cindex current directory
5315@cindex working directory
5316@cindex directory, current
5317@cindex directory, compilation
5318You can use the string @samp{$cdir} to refer to the compilation
5319directory (if one is recorded), and @samp{$cwd} to refer to the current
5320working directory. @samp{$cwd} is not the same as @samp{.}---the former
5321tracks the current working directory as it changes during your @value{GDBN}
5322session, while the latter is immediately expanded to the current
5323directory at the time you add an entry to the source path.
5324
5325@item directory
cd852561 5326Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5327
5328@c RET-repeat for @code{directory} is explicitly disabled, but since
5329@c repeating it would be a no-op we do not say that. (thanks to RMS)
5330
5331@item show directories
5332@kindex show directories
5333Print the source path: show which directories it contains.
30daae6c
JB
5334
5335@anchor{set substitute-path}
5336@item set substitute-path @var{from} @var{to}
5337@kindex set substitute-path
5338Define a source path substitution rule, and add it at the end of the
5339current list of existing substitution rules. If a rule with the same
5340@var{from} was already defined, then the old rule is also deleted.
5341
5342For example, if the file @file{/foo/bar/baz.c} was moved to
5343@file{/mnt/cross/baz.c}, then the command
5344
5345@smallexample
5346(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5347@end smallexample
5348
5349@noindent
5350will tell @value{GDBN} to replace @samp{/usr/src} with
5351@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5352@file{baz.c} even though it was moved.
5353
5354In the case when more than one substitution rule have been defined,
5355the rules are evaluated one by one in the order where they have been
5356defined. The first one matching, if any, is selected to perform
5357the substitution.
5358
5359For instance, if we had entered the following commands:
5360
5361@smallexample
5362(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5363(@value{GDBP}) set substitute-path /usr/src /mnt/src
5364@end smallexample
5365
5366@noindent
5367@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5368@file{/mnt/include/defs.h} by using the first rule. However, it would
5369use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5370@file{/mnt/src/lib/foo.c}.
5371
5372
5373@item unset substitute-path [path]
5374@kindex unset substitute-path
5375If a path is specified, search the current list of substitution rules
5376for a rule that would rewrite that path. Delete that rule if found.
5377A warning is emitted by the debugger if no rule could be found.
5378
5379If no path is specified, then all substitution rules are deleted.
5380
5381@item show substitute-path [path]
5382@kindex show substitute-path
5383If a path is specified, then print the source path substitution rule
5384which would rewrite that path, if any.
5385
5386If no path is specified, then print all existing source path substitution
5387rules.
5388
c906108c
SS
5389@end table
5390
5391If your source path is cluttered with directories that are no longer of
5392interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5393versions of source. You can correct the situation as follows:
5394
5395@enumerate
5396@item
cd852561 5397Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5398
5399@item
5400Use @code{directory} with suitable arguments to reinstall the
5401directories you want in the source path. You can add all the
5402directories in one command.
5403@end enumerate
5404
6d2ebf8b 5405@node Machine Code
79a6e687 5406@section Source and Machine Code
15387254 5407@cindex source line and its code address
c906108c
SS
5408
5409You can use the command @code{info line} to map source lines to program
5410addresses (and vice versa), and the command @code{disassemble} to display
5411a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5412mode, the @code{info line} command causes the arrow to point to the
5d161b24 5413line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5414well as hex.
5415
5416@table @code
5417@kindex info line
5418@item info line @var{linespec}
5419Print the starting and ending addresses of the compiled code for
5420source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5421the ways documented in @ref{Specify Location}.
c906108c
SS
5422@end table
5423
5424For example, we can use @code{info line} to discover the location of
5425the object code for the first line of function
5426@code{m4_changequote}:
5427
d4f3574e
SS
5428@c FIXME: I think this example should also show the addresses in
5429@c symbolic form, as they usually would be displayed.
c906108c 5430@smallexample
96a2c332 5431(@value{GDBP}) info line m4_changequote
c906108c
SS
5432Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5433@end smallexample
5434
5435@noindent
15387254 5436@cindex code address and its source line
c906108c
SS
5437We can also inquire (using @code{*@var{addr}} as the form for
5438@var{linespec}) what source line covers a particular address:
5439@smallexample
5440(@value{GDBP}) info line *0x63ff
5441Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5442@end smallexample
5443
5444@cindex @code{$_} and @code{info line}
15387254 5445@cindex @code{x} command, default address
41afff9a 5446@kindex x@r{(examine), and} info line
c906108c
SS
5447After @code{info line}, the default address for the @code{x} command
5448is changed to the starting address of the line, so that @samp{x/i} is
5449sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5450,Examining Memory}). Also, this address is saved as the value of the
c906108c 5451convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5452Variables}).
c906108c
SS
5453
5454@table @code
5455@kindex disassemble
5456@cindex assembly instructions
5457@cindex instructions, assembly
5458@cindex machine instructions
5459@cindex listing machine instructions
5460@item disassemble
d14508fe 5461@itemx disassemble /m
c906108c 5462This specialized command dumps a range of memory as machine
d14508fe
DE
5463instructions. It can also print mixed source+disassembly by specifying
5464the @code{/m} modifier.
5465The default memory range is the function surrounding the
c906108c
SS
5466program counter of the selected frame. A single argument to this
5467command is a program counter value; @value{GDBN} dumps the function
5468surrounding this value. Two arguments specify a range of addresses
5469(first inclusive, second exclusive) to dump.
5470@end table
5471
c906108c
SS
5472The following example shows the disassembly of a range of addresses of
5473HP PA-RISC 2.0 code:
5474
5475@smallexample
5476(@value{GDBP}) disas 0x32c4 0x32e4
5477Dump of assembler code from 0x32c4 to 0x32e4:
54780x32c4 <main+204>: addil 0,dp
54790x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54800x32cc <main+212>: ldil 0x3000,r31
54810x32d0 <main+216>: ble 0x3f8(sr4,r31)
54820x32d4 <main+220>: ldo 0(r31),rp
54830x32d8 <main+224>: addil -0x800,dp
54840x32dc <main+228>: ldo 0x588(r1),r26
54850x32e0 <main+232>: ldil 0x3000,r31
5486End of assembler dump.
5487@end smallexample
c906108c 5488
d14508fe
DE
5489Here is an example showing mixed source+assembly for Intel x86:
5490
5491@smallexample
5492(@value{GDBP}) disas /m main
5493Dump of assembler code for function main:
54945 @{
54950x08048330 <main+0>: push %ebp
54960x08048331 <main+1>: mov %esp,%ebp
54970x08048333 <main+3>: sub $0x8,%esp
54980x08048336 <main+6>: and $0xfffffff0,%esp
54990x08048339 <main+9>: sub $0x10,%esp
5500
55016 printf ("Hello.\n");
55020x0804833c <main+12>: movl $0x8048440,(%esp)
55030x08048343 <main+19>: call 0x8048284 <puts@@plt>
5504
55057 return 0;
55068 @}
55070x08048348 <main+24>: mov $0x0,%eax
55080x0804834d <main+29>: leave
55090x0804834e <main+30>: ret
5510
5511End of assembler dump.
5512@end smallexample
5513
c906108c
SS
5514Some architectures have more than one commonly-used set of instruction
5515mnemonics or other syntax.
5516
76d17f34
EZ
5517For programs that were dynamically linked and use shared libraries,
5518instructions that call functions or branch to locations in the shared
5519libraries might show a seemingly bogus location---it's actually a
5520location of the relocation table. On some architectures, @value{GDBN}
5521might be able to resolve these to actual function names.
5522
c906108c 5523@table @code
d4f3574e 5524@kindex set disassembly-flavor
d4f3574e
SS
5525@cindex Intel disassembly flavor
5526@cindex AT&T disassembly flavor
5527@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5528Select the instruction set to use when disassembling the
5529program via the @code{disassemble} or @code{x/i} commands.
5530
5531Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5532can set @var{instruction-set} to either @code{intel} or @code{att}.
5533The default is @code{att}, the AT&T flavor used by default by Unix
5534assemblers for x86-based targets.
9c16f35a
EZ
5535
5536@kindex show disassembly-flavor
5537@item show disassembly-flavor
5538Show the current setting of the disassembly flavor.
c906108c
SS
5539@end table
5540
5541
6d2ebf8b 5542@node Data
c906108c
SS
5543@chapter Examining Data
5544
5545@cindex printing data
5546@cindex examining data
5547@kindex print
5548@kindex inspect
5549@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5550@c document because it is nonstandard... Under Epoch it displays in a
5551@c different window or something like that.
5552The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5553command (abbreviated @code{p}), or its synonym @code{inspect}. It
5554evaluates and prints the value of an expression of the language your
5555program is written in (@pxref{Languages, ,Using @value{GDBN} with
5556Different Languages}).
c906108c
SS
5557
5558@table @code
d4f3574e
SS
5559@item print @var{expr}
5560@itemx print /@var{f} @var{expr}
5561@var{expr} is an expression (in the source language). By default the
5562value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5563you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5564@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5565Formats}.
c906108c
SS
5566
5567@item print
5568@itemx print /@var{f}
15387254 5569@cindex reprint the last value
d4f3574e 5570If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5571@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5572conveniently inspect the same value in an alternative format.
5573@end table
5574
5575A more low-level way of examining data is with the @code{x} command.
5576It examines data in memory at a specified address and prints it in a
79a6e687 5577specified format. @xref{Memory, ,Examining Memory}.
c906108c 5578
7a292a7a 5579If you are interested in information about types, or about how the
d4f3574e
SS
5580fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5581command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5582Table}.
c906108c
SS
5583
5584@menu
5585* Expressions:: Expressions
6ba66d6a 5586* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5587* Variables:: Program variables
5588* Arrays:: Artificial arrays
5589* Output Formats:: Output formats
5590* Memory:: Examining memory
5591* Auto Display:: Automatic display
5592* Print Settings:: Print settings
5593* Value History:: Value history
5594* Convenience Vars:: Convenience variables
5595* Registers:: Registers
c906108c 5596* Floating Point Hardware:: Floating point hardware
53c69bd7 5597* Vector Unit:: Vector Unit
721c2651 5598* OS Information:: Auxiliary data provided by operating system
29e57380 5599* Memory Region Attributes:: Memory region attributes
16d9dec6 5600* Dump/Restore Files:: Copy between memory and a file
384ee23f 5601* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5602* Character Sets:: Debugging programs that use a different
5603 character set than GDB does
09d4efe1 5604* Caching Remote Data:: Data caching for remote targets
08388c79 5605* Searching Memory:: Searching memory for a sequence of bytes
c906108c
SS
5606@end menu
5607
6d2ebf8b 5608@node Expressions
c906108c
SS
5609@section Expressions
5610
5611@cindex expressions
5612@code{print} and many other @value{GDBN} commands accept an expression and
5613compute its value. Any kind of constant, variable or operator defined
5614by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5615@value{GDBN}. This includes conditional expressions, function calls,
5616casts, and string constants. It also includes preprocessor macros, if
5617you compiled your program to include this information; see
5618@ref{Compilation}.
c906108c 5619
15387254 5620@cindex arrays in expressions
d4f3574e
SS
5621@value{GDBN} supports array constants in expressions input by
5622the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5623you can use the command @code{print @{1, 2, 3@}} to create an array
5624of three integers. If you pass an array to a function or assign it
5625to a program variable, @value{GDBN} copies the array to memory that
5626is @code{malloc}ed in the target program.
c906108c 5627
c906108c
SS
5628Because C is so widespread, most of the expressions shown in examples in
5629this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5630Languages}, for information on how to use expressions in other
5631languages.
5632
5633In this section, we discuss operators that you can use in @value{GDBN}
5634expressions regardless of your programming language.
5635
15387254 5636@cindex casts, in expressions
c906108c
SS
5637Casts are supported in all languages, not just in C, because it is so
5638useful to cast a number into a pointer in order to examine a structure
5639at that address in memory.
5640@c FIXME: casts supported---Mod2 true?
c906108c
SS
5641
5642@value{GDBN} supports these operators, in addition to those common
5643to programming languages:
5644
5645@table @code
5646@item @@
5647@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5648@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5649
5650@item ::
5651@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5652function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5653
5654@cindex @{@var{type}@}
5655@cindex type casting memory
5656@cindex memory, viewing as typed object
5657@cindex casts, to view memory
5658@item @{@var{type}@} @var{addr}
5659Refers to an object of type @var{type} stored at address @var{addr} in
5660memory. @var{addr} may be any expression whose value is an integer or
5661pointer (but parentheses are required around binary operators, just as in
5662a cast). This construct is allowed regardless of what kind of data is
5663normally supposed to reside at @var{addr}.
5664@end table
5665
6ba66d6a
JB
5666@node Ambiguous Expressions
5667@section Ambiguous Expressions
5668@cindex ambiguous expressions
5669
5670Expressions can sometimes contain some ambiguous elements. For instance,
5671some programming languages (notably Ada, C@t{++} and Objective-C) permit
5672a single function name to be defined several times, for application in
5673different contexts. This is called @dfn{overloading}. Another example
5674involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5675templates and is typically instantiated several times, resulting in
5676the same function name being defined in different contexts.
5677
5678In some cases and depending on the language, it is possible to adjust
5679the expression to remove the ambiguity. For instance in C@t{++}, you
5680can specify the signature of the function you want to break on, as in
5681@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5682qualified name of your function often makes the expression unambiguous
5683as well.
5684
5685When an ambiguity that needs to be resolved is detected, the debugger
5686has the capability to display a menu of numbered choices for each
5687possibility, and then waits for the selection with the prompt @samp{>}.
5688The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5689aborts the current command. If the command in which the expression was
5690used allows more than one choice to be selected, the next option in the
5691menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5692choices.
5693
5694For example, the following session excerpt shows an attempt to set a
5695breakpoint at the overloaded symbol @code{String::after}.
5696We choose three particular definitions of that function name:
5697
5698@c FIXME! This is likely to change to show arg type lists, at least
5699@smallexample
5700@group
5701(@value{GDBP}) b String::after
5702[0] cancel
5703[1] all
5704[2] file:String.cc; line number:867
5705[3] file:String.cc; line number:860
5706[4] file:String.cc; line number:875
5707[5] file:String.cc; line number:853
5708[6] file:String.cc; line number:846
5709[7] file:String.cc; line number:735
5710> 2 4 6
5711Breakpoint 1 at 0xb26c: file String.cc, line 867.
5712Breakpoint 2 at 0xb344: file String.cc, line 875.
5713Breakpoint 3 at 0xafcc: file String.cc, line 846.
5714Multiple breakpoints were set.
5715Use the "delete" command to delete unwanted
5716 breakpoints.
5717(@value{GDBP})
5718@end group
5719@end smallexample
5720
5721@table @code
5722@kindex set multiple-symbols
5723@item set multiple-symbols @var{mode}
5724@cindex multiple-symbols menu
5725
5726This option allows you to adjust the debugger behavior when an expression
5727is ambiguous.
5728
5729By default, @var{mode} is set to @code{all}. If the command with which
5730the expression is used allows more than one choice, then @value{GDBN}
5731automatically selects all possible choices. For instance, inserting
5732a breakpoint on a function using an ambiguous name results in a breakpoint
5733inserted on each possible match. However, if a unique choice must be made,
5734then @value{GDBN} uses the menu to help you disambiguate the expression.
5735For instance, printing the address of an overloaded function will result
5736in the use of the menu.
5737
5738When @var{mode} is set to @code{ask}, the debugger always uses the menu
5739when an ambiguity is detected.
5740
5741Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5742an error due to the ambiguity and the command is aborted.
5743
5744@kindex show multiple-symbols
5745@item show multiple-symbols
5746Show the current value of the @code{multiple-symbols} setting.
5747@end table
5748
6d2ebf8b 5749@node Variables
79a6e687 5750@section Program Variables
c906108c
SS
5751
5752The most common kind of expression to use is the name of a variable
5753in your program.
5754
5755Variables in expressions are understood in the selected stack frame
79a6e687 5756(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5757
5758@itemize @bullet
5759@item
5760global (or file-static)
5761@end itemize
5762
5d161b24 5763@noindent or
c906108c
SS
5764
5765@itemize @bullet
5766@item
5767visible according to the scope rules of the
5768programming language from the point of execution in that frame
5d161b24 5769@end itemize
c906108c
SS
5770
5771@noindent This means that in the function
5772
474c8240 5773@smallexample
c906108c
SS
5774foo (a)
5775 int a;
5776@{
5777 bar (a);
5778 @{
5779 int b = test ();
5780 bar (b);
5781 @}
5782@}
474c8240 5783@end smallexample
c906108c
SS
5784
5785@noindent
5786you can examine and use the variable @code{a} whenever your program is
5787executing within the function @code{foo}, but you can only use or
5788examine the variable @code{b} while your program is executing inside
5789the block where @code{b} is declared.
5790
5791@cindex variable name conflict
5792There is an exception: you can refer to a variable or function whose
5793scope is a single source file even if the current execution point is not
5794in this file. But it is possible to have more than one such variable or
5795function with the same name (in different source files). If that
5796happens, referring to that name has unpredictable effects. If you wish,
5797you can specify a static variable in a particular function or file,
15387254 5798using the colon-colon (@code{::}) notation:
c906108c 5799
d4f3574e 5800@cindex colon-colon, context for variables/functions
12c27660 5801@ifnotinfo
c906108c 5802@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5803@cindex @code{::}, context for variables/functions
12c27660 5804@end ifnotinfo
474c8240 5805@smallexample
c906108c
SS
5806@var{file}::@var{variable}
5807@var{function}::@var{variable}
474c8240 5808@end smallexample
c906108c
SS
5809
5810@noindent
5811Here @var{file} or @var{function} is the name of the context for the
5812static @var{variable}. In the case of file names, you can use quotes to
5813make sure @value{GDBN} parses the file name as a single word---for example,
5814to print a global value of @code{x} defined in @file{f2.c}:
5815
474c8240 5816@smallexample
c906108c 5817(@value{GDBP}) p 'f2.c'::x
474c8240 5818@end smallexample
c906108c 5819
b37052ae 5820@cindex C@t{++} scope resolution
c906108c 5821This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5822use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5823scope resolution operator in @value{GDBN} expressions.
5824@c FIXME: Um, so what happens in one of those rare cases where it's in
5825@c conflict?? --mew
c906108c
SS
5826
5827@cindex wrong values
5828@cindex variable values, wrong
15387254
EZ
5829@cindex function entry/exit, wrong values of variables
5830@cindex optimized code, wrong values of variables
c906108c
SS
5831@quotation
5832@emph{Warning:} Occasionally, a local variable may appear to have the
5833wrong value at certain points in a function---just after entry to a new
5834scope, and just before exit.
5835@end quotation
5836You may see this problem when you are stepping by machine instructions.
5837This is because, on most machines, it takes more than one instruction to
5838set up a stack frame (including local variable definitions); if you are
5839stepping by machine instructions, variables may appear to have the wrong
5840values until the stack frame is completely built. On exit, it usually
5841also takes more than one machine instruction to destroy a stack frame;
5842after you begin stepping through that group of instructions, local
5843variable definitions may be gone.
5844
5845This may also happen when the compiler does significant optimizations.
5846To be sure of always seeing accurate values, turn off all optimization
5847when compiling.
5848
d4f3574e
SS
5849@cindex ``No symbol "foo" in current context''
5850Another possible effect of compiler optimizations is to optimize
5851unused variables out of existence, or assign variables to registers (as
5852opposed to memory addresses). Depending on the support for such cases
5853offered by the debug info format used by the compiler, @value{GDBN}
5854might not be able to display values for such local variables. If that
5855happens, @value{GDBN} will print a message like this:
5856
474c8240 5857@smallexample
d4f3574e 5858No symbol "foo" in current context.
474c8240 5859@end smallexample
d4f3574e
SS
5860
5861To solve such problems, either recompile without optimizations, or use a
5862different debug info format, if the compiler supports several such
15387254 5863formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5864usually supports the @option{-gstabs+} option. @option{-gstabs+}
5865produces debug info in a format that is superior to formats such as
5866COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5867an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5868for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5869Compiler Collection (GCC)}.
79a6e687 5870@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5871that are best suited to C@t{++} programs.
d4f3574e 5872
ab1adacd
EZ
5873If you ask to print an object whose contents are unknown to
5874@value{GDBN}, e.g., because its data type is not completely specified
5875by the debug information, @value{GDBN} will say @samp{<incomplete
5876type>}. @xref{Symbols, incomplete type}, for more about this.
5877
3a60f64e
JK
5878Strings are identified as arrays of @code{char} values without specified
5879signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5880printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5881@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5882defines literal string type @code{"char"} as @code{char} without a sign.
5883For program code
5884
5885@smallexample
5886char var0[] = "A";
5887signed char var1[] = "A";
5888@end smallexample
5889
5890You get during debugging
5891@smallexample
5892(gdb) print var0
5893$1 = "A"
5894(gdb) print var1
5895$2 = @{65 'A', 0 '\0'@}
5896@end smallexample
5897
6d2ebf8b 5898@node Arrays
79a6e687 5899@section Artificial Arrays
c906108c
SS
5900
5901@cindex artificial array
15387254 5902@cindex arrays
41afff9a 5903@kindex @@@r{, referencing memory as an array}
c906108c
SS
5904It is often useful to print out several successive objects of the
5905same type in memory; a section of an array, or an array of
5906dynamically determined size for which only a pointer exists in the
5907program.
5908
5909You can do this by referring to a contiguous span of memory as an
5910@dfn{artificial array}, using the binary operator @samp{@@}. The left
5911operand of @samp{@@} should be the first element of the desired array
5912and be an individual object. The right operand should be the desired length
5913of the array. The result is an array value whose elements are all of
5914the type of the left argument. The first element is actually the left
5915argument; the second element comes from bytes of memory immediately
5916following those that hold the first element, and so on. Here is an
5917example. If a program says
5918
474c8240 5919@smallexample
c906108c 5920int *array = (int *) malloc (len * sizeof (int));
474c8240 5921@end smallexample
c906108c
SS
5922
5923@noindent
5924you can print the contents of @code{array} with
5925
474c8240 5926@smallexample
c906108c 5927p *array@@len
474c8240 5928@end smallexample
c906108c
SS
5929
5930The left operand of @samp{@@} must reside in memory. Array values made
5931with @samp{@@} in this way behave just like other arrays in terms of
5932subscripting, and are coerced to pointers when used in expressions.
5933Artificial arrays most often appear in expressions via the value history
79a6e687 5934(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5935
5936Another way to create an artificial array is to use a cast.
5937This re-interprets a value as if it were an array.
5938The value need not be in memory:
474c8240 5939@smallexample
c906108c
SS
5940(@value{GDBP}) p/x (short[2])0x12345678
5941$1 = @{0x1234, 0x5678@}
474c8240 5942@end smallexample
c906108c
SS
5943
5944As a convenience, if you leave the array length out (as in
c3f6f71d 5945@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5946the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5947@smallexample
c906108c
SS
5948(@value{GDBP}) p/x (short[])0x12345678
5949$2 = @{0x1234, 0x5678@}
474c8240 5950@end smallexample
c906108c
SS
5951
5952Sometimes the artificial array mechanism is not quite enough; in
5953moderately complex data structures, the elements of interest may not
5954actually be adjacent---for example, if you are interested in the values
5955of pointers in an array. One useful work-around in this situation is
5956to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5957Variables}) as a counter in an expression that prints the first
c906108c
SS
5958interesting value, and then repeat that expression via @key{RET}. For
5959instance, suppose you have an array @code{dtab} of pointers to
5960structures, and you are interested in the values of a field @code{fv}
5961in each structure. Here is an example of what you might type:
5962
474c8240 5963@smallexample
c906108c
SS
5964set $i = 0
5965p dtab[$i++]->fv
5966@key{RET}
5967@key{RET}
5968@dots{}
474c8240 5969@end smallexample
c906108c 5970
6d2ebf8b 5971@node Output Formats
79a6e687 5972@section Output Formats
c906108c
SS
5973
5974@cindex formatted output
5975@cindex output formats
5976By default, @value{GDBN} prints a value according to its data type. Sometimes
5977this is not what you want. For example, you might want to print a number
5978in hex, or a pointer in decimal. Or you might want to view data in memory
5979at a certain address as a character string or as an instruction. To do
5980these things, specify an @dfn{output format} when you print a value.
5981
5982The simplest use of output formats is to say how to print a value
5983already computed. This is done by starting the arguments of the
5984@code{print} command with a slash and a format letter. The format
5985letters supported are:
5986
5987@table @code
5988@item x
5989Regard the bits of the value as an integer, and print the integer in
5990hexadecimal.
5991
5992@item d
5993Print as integer in signed decimal.
5994
5995@item u
5996Print as integer in unsigned decimal.
5997
5998@item o
5999Print as integer in octal.
6000
6001@item t
6002Print as integer in binary. The letter @samp{t} stands for ``two''.
6003@footnote{@samp{b} cannot be used because these format letters are also
6004used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 6005see @ref{Memory,,Examining Memory}.}
c906108c
SS
6006
6007@item a
6008@cindex unknown address, locating
3d67e040 6009@cindex locate address
c906108c
SS
6010Print as an address, both absolute in hexadecimal and as an offset from
6011the nearest preceding symbol. You can use this format used to discover
6012where (in what function) an unknown address is located:
6013
474c8240 6014@smallexample
c906108c
SS
6015(@value{GDBP}) p/a 0x54320
6016$3 = 0x54320 <_initialize_vx+396>
474c8240 6017@end smallexample
c906108c 6018
3d67e040
EZ
6019@noindent
6020The command @code{info symbol 0x54320} yields similar results.
6021@xref{Symbols, info symbol}.
6022
c906108c 6023@item c
51274035
EZ
6024Regard as an integer and print it as a character constant. This
6025prints both the numerical value and its character representation. The
6026character representation is replaced with the octal escape @samp{\nnn}
6027for characters outside the 7-bit @sc{ascii} range.
c906108c 6028
ea37ba09
DJ
6029Without this format, @value{GDBN} displays @code{char},
6030@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
6031constants. Single-byte members of vectors are displayed as integer
6032data.
6033
c906108c
SS
6034@item f
6035Regard the bits of the value as a floating point number and print
6036using typical floating point syntax.
ea37ba09
DJ
6037
6038@item s
6039@cindex printing strings
6040@cindex printing byte arrays
6041Regard as a string, if possible. With this format, pointers to single-byte
6042data are displayed as null-terminated strings and arrays of single-byte data
6043are displayed as fixed-length strings. Other values are displayed in their
6044natural types.
6045
6046Without this format, @value{GDBN} displays pointers to and arrays of
6047@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
6048strings. Single-byte members of a vector are displayed as an integer
6049array.
c906108c
SS
6050@end table
6051
6052For example, to print the program counter in hex (@pxref{Registers}), type
6053
474c8240 6054@smallexample
c906108c 6055p/x $pc
474c8240 6056@end smallexample
c906108c
SS
6057
6058@noindent
6059Note that no space is required before the slash; this is because command
6060names in @value{GDBN} cannot contain a slash.
6061
6062To reprint the last value in the value history with a different format,
6063you can use the @code{print} command with just a format and no
6064expression. For example, @samp{p/x} reprints the last value in hex.
6065
6d2ebf8b 6066@node Memory
79a6e687 6067@section Examining Memory
c906108c
SS
6068
6069You can use the command @code{x} (for ``examine'') to examine memory in
6070any of several formats, independently of your program's data types.
6071
6072@cindex examining memory
6073@table @code
41afff9a 6074@kindex x @r{(examine memory)}
c906108c
SS
6075@item x/@var{nfu} @var{addr}
6076@itemx x @var{addr}
6077@itemx x
6078Use the @code{x} command to examine memory.
6079@end table
6080
6081@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6082much memory to display and how to format it; @var{addr} is an
6083expression giving the address where you want to start displaying memory.
6084If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6085Several commands set convenient defaults for @var{addr}.
6086
6087@table @r
6088@item @var{n}, the repeat count
6089The repeat count is a decimal integer; the default is 1. It specifies
6090how much memory (counting by units @var{u}) to display.
6091@c This really is **decimal**; unaffected by 'set radix' as of GDB
6092@c 4.1.2.
6093
6094@item @var{f}, the display format
51274035
EZ
6095The display format is one of the formats used by @code{print}
6096(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6097@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6098The default is @samp{x} (hexadecimal) initially. The default changes
6099each time you use either @code{x} or @code{print}.
c906108c
SS
6100
6101@item @var{u}, the unit size
6102The unit size is any of
6103
6104@table @code
6105@item b
6106Bytes.
6107@item h
6108Halfwords (two bytes).
6109@item w
6110Words (four bytes). This is the initial default.
6111@item g
6112Giant words (eight bytes).
6113@end table
6114
6115Each time you specify a unit size with @code{x}, that size becomes the
6116default unit the next time you use @code{x}. (For the @samp{s} and
6117@samp{i} formats, the unit size is ignored and is normally not written.)
6118
6119@item @var{addr}, starting display address
6120@var{addr} is the address where you want @value{GDBN} to begin displaying
6121memory. The expression need not have a pointer value (though it may);
6122it is always interpreted as an integer address of a byte of memory.
6123@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6124@var{addr} is usually just after the last address examined---but several
6125other commands also set the default address: @code{info breakpoints} (to
6126the address of the last breakpoint listed), @code{info line} (to the
6127starting address of a line), and @code{print} (if you use it to display
6128a value from memory).
6129@end table
6130
6131For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6132(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6133starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6134words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6135@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6136
6137Since the letters indicating unit sizes are all distinct from the
6138letters specifying output formats, you do not have to remember whether
6139unit size or format comes first; either order works. The output
6140specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6141(However, the count @var{n} must come first; @samp{wx4} does not work.)
6142
6143Even though the unit size @var{u} is ignored for the formats @samp{s}
6144and @samp{i}, you might still want to use a count @var{n}; for example,
6145@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6146including any operands. For convenience, especially when used with
6147the @code{display} command, the @samp{i} format also prints branch delay
6148slot instructions, if any, beyond the count specified, which immediately
6149follow the last instruction that is within the count. The command
6150@code{disassemble} gives an alternative way of inspecting machine
6151instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6152
6153All the defaults for the arguments to @code{x} are designed to make it
6154easy to continue scanning memory with minimal specifications each time
6155you use @code{x}. For example, after you have inspected three machine
6156instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6157with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6158the repeat count @var{n} is used again; the other arguments default as
6159for successive uses of @code{x}.
6160
6161@cindex @code{$_}, @code{$__}, and value history
6162The addresses and contents printed by the @code{x} command are not saved
6163in the value history because there is often too much of them and they
6164would get in the way. Instead, @value{GDBN} makes these values available for
6165subsequent use in expressions as values of the convenience variables
6166@code{$_} and @code{$__}. After an @code{x} command, the last address
6167examined is available for use in expressions in the convenience variable
6168@code{$_}. The contents of that address, as examined, are available in
6169the convenience variable @code{$__}.
6170
6171If the @code{x} command has a repeat count, the address and contents saved
6172are from the last memory unit printed; this is not the same as the last
6173address printed if several units were printed on the last line of output.
6174
09d4efe1
EZ
6175@cindex remote memory comparison
6176@cindex verify remote memory image
6177When you are debugging a program running on a remote target machine
ea35711c 6178(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6179remote machine's memory against the executable file you downloaded to
6180the target. The @code{compare-sections} command is provided for such
6181situations.
6182
6183@table @code
6184@kindex compare-sections
6185@item compare-sections @r{[}@var{section-name}@r{]}
6186Compare the data of a loadable section @var{section-name} in the
6187executable file of the program being debugged with the same section in
6188the remote machine's memory, and report any mismatches. With no
6189arguments, compares all loadable sections. This command's
6190availability depends on the target's support for the @code{"qCRC"}
6191remote request.
6192@end table
6193
6d2ebf8b 6194@node Auto Display
79a6e687 6195@section Automatic Display
c906108c
SS
6196@cindex automatic display
6197@cindex display of expressions
6198
6199If you find that you want to print the value of an expression frequently
6200(to see how it changes), you might want to add it to the @dfn{automatic
6201display list} so that @value{GDBN} prints its value each time your program stops.
6202Each expression added to the list is given a number to identify it;
6203to remove an expression from the list, you specify that number.
6204The automatic display looks like this:
6205
474c8240 6206@smallexample
c906108c
SS
62072: foo = 38
62083: bar[5] = (struct hack *) 0x3804
474c8240 6209@end smallexample
c906108c
SS
6210
6211@noindent
6212This display shows item numbers, expressions and their current values. As with
6213displays you request manually using @code{x} or @code{print}, you can
6214specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6215whether to use @code{print} or @code{x} depending your format
6216specification---it uses @code{x} if you specify either the @samp{i}
6217or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6218
6219@table @code
6220@kindex display
d4f3574e
SS
6221@item display @var{expr}
6222Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6223each time your program stops. @xref{Expressions, ,Expressions}.
6224
6225@code{display} does not repeat if you press @key{RET} again after using it.
6226
d4f3574e 6227@item display/@var{fmt} @var{expr}
c906108c 6228For @var{fmt} specifying only a display format and not a size or
d4f3574e 6229count, add the expression @var{expr} to the auto-display list but
c906108c 6230arrange to display it each time in the specified format @var{fmt}.
79a6e687 6231@xref{Output Formats,,Output Formats}.
c906108c
SS
6232
6233@item display/@var{fmt} @var{addr}
6234For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6235number of units, add the expression @var{addr} as a memory address to
6236be examined each time your program stops. Examining means in effect
79a6e687 6237doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6238@end table
6239
6240For example, @samp{display/i $pc} can be helpful, to see the machine
6241instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6242is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6243
6244@table @code
6245@kindex delete display
6246@kindex undisplay
6247@item undisplay @var{dnums}@dots{}
6248@itemx delete display @var{dnums}@dots{}
6249Remove item numbers @var{dnums} from the list of expressions to display.
6250
6251@code{undisplay} does not repeat if you press @key{RET} after using it.
6252(Otherwise you would just get the error @samp{No display number @dots{}}.)
6253
6254@kindex disable display
6255@item disable display @var{dnums}@dots{}
6256Disable the display of item numbers @var{dnums}. A disabled display
6257item is not printed automatically, but is not forgotten. It may be
6258enabled again later.
6259
6260@kindex enable display
6261@item enable display @var{dnums}@dots{}
6262Enable display of item numbers @var{dnums}. It becomes effective once
6263again in auto display of its expression, until you specify otherwise.
6264
6265@item display
6266Display the current values of the expressions on the list, just as is
6267done when your program stops.
6268
6269@kindex info display
6270@item info display
6271Print the list of expressions previously set up to display
6272automatically, each one with its item number, but without showing the
6273values. This includes disabled expressions, which are marked as such.
6274It also includes expressions which would not be displayed right now
6275because they refer to automatic variables not currently available.
6276@end table
6277
15387254 6278@cindex display disabled out of scope
c906108c
SS
6279If a display expression refers to local variables, then it does not make
6280sense outside the lexical context for which it was set up. Such an
6281expression is disabled when execution enters a context where one of its
6282variables is not defined. For example, if you give the command
6283@code{display last_char} while inside a function with an argument
6284@code{last_char}, @value{GDBN} displays this argument while your program
6285continues to stop inside that function. When it stops elsewhere---where
6286there is no variable @code{last_char}---the display is disabled
6287automatically. The next time your program stops where @code{last_char}
6288is meaningful, you can enable the display expression once again.
6289
6d2ebf8b 6290@node Print Settings
79a6e687 6291@section Print Settings
c906108c
SS
6292
6293@cindex format options
6294@cindex print settings
6295@value{GDBN} provides the following ways to control how arrays, structures,
6296and symbols are printed.
6297
6298@noindent
6299These settings are useful for debugging programs in any language:
6300
6301@table @code
4644b6e3 6302@kindex set print
c906108c
SS
6303@item set print address
6304@itemx set print address on
4644b6e3 6305@cindex print/don't print memory addresses
c906108c
SS
6306@value{GDBN} prints memory addresses showing the location of stack
6307traces, structure values, pointer values, breakpoints, and so forth,
6308even when it also displays the contents of those addresses. The default
6309is @code{on}. For example, this is what a stack frame display looks like with
6310@code{set print address on}:
6311
6312@smallexample
6313@group
6314(@value{GDBP}) f
6315#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6316 at input.c:530
6317530 if (lquote != def_lquote)
6318@end group
6319@end smallexample
6320
6321@item set print address off
6322Do not print addresses when displaying their contents. For example,
6323this is the same stack frame displayed with @code{set print address off}:
6324
6325@smallexample
6326@group
6327(@value{GDBP}) set print addr off
6328(@value{GDBP}) f
6329#0 set_quotes (lq="<<", rq=">>") at input.c:530
6330530 if (lquote != def_lquote)
6331@end group
6332@end smallexample
6333
6334You can use @samp{set print address off} to eliminate all machine
6335dependent displays from the @value{GDBN} interface. For example, with
6336@code{print address off}, you should get the same text for backtraces on
6337all machines---whether or not they involve pointer arguments.
6338
4644b6e3 6339@kindex show print
c906108c
SS
6340@item show print address
6341Show whether or not addresses are to be printed.
6342@end table
6343
6344When @value{GDBN} prints a symbolic address, it normally prints the
6345closest earlier symbol plus an offset. If that symbol does not uniquely
6346identify the address (for example, it is a name whose scope is a single
6347source file), you may need to clarify. One way to do this is with
6348@code{info line}, for example @samp{info line *0x4537}. Alternately,
6349you can set @value{GDBN} to print the source file and line number when
6350it prints a symbolic address:
6351
6352@table @code
c906108c 6353@item set print symbol-filename on
9c16f35a
EZ
6354@cindex source file and line of a symbol
6355@cindex symbol, source file and line
c906108c
SS
6356Tell @value{GDBN} to print the source file name and line number of a
6357symbol in the symbolic form of an address.
6358
6359@item set print symbol-filename off
6360Do not print source file name and line number of a symbol. This is the
6361default.
6362
c906108c
SS
6363@item show print symbol-filename
6364Show whether or not @value{GDBN} will print the source file name and
6365line number of a symbol in the symbolic form of an address.
6366@end table
6367
6368Another situation where it is helpful to show symbol filenames and line
6369numbers is when disassembling code; @value{GDBN} shows you the line
6370number and source file that corresponds to each instruction.
6371
6372Also, you may wish to see the symbolic form only if the address being
6373printed is reasonably close to the closest earlier symbol:
6374
6375@table @code
c906108c 6376@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6377@cindex maximum value for offset of closest symbol
c906108c
SS
6378Tell @value{GDBN} to only display the symbolic form of an address if the
6379offset between the closest earlier symbol and the address is less than
5d161b24 6380@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6381to always print the symbolic form of an address if any symbol precedes it.
6382
c906108c
SS
6383@item show print max-symbolic-offset
6384Ask how large the maximum offset is that @value{GDBN} prints in a
6385symbolic address.
6386@end table
6387
6388@cindex wild pointer, interpreting
6389@cindex pointer, finding referent
6390If you have a pointer and you are not sure where it points, try
6391@samp{set print symbol-filename on}. Then you can determine the name
6392and source file location of the variable where it points, using
6393@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6394For example, here @value{GDBN} shows that a variable @code{ptt} points
6395at another variable @code{t}, defined in @file{hi2.c}:
6396
474c8240 6397@smallexample
c906108c
SS
6398(@value{GDBP}) set print symbol-filename on
6399(@value{GDBP}) p/a ptt
6400$4 = 0xe008 <t in hi2.c>
474c8240 6401@end smallexample
c906108c
SS
6402
6403@quotation
6404@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6405does not show the symbol name and filename of the referent, even with
6406the appropriate @code{set print} options turned on.
6407@end quotation
6408
6409Other settings control how different kinds of objects are printed:
6410
6411@table @code
c906108c
SS
6412@item set print array
6413@itemx set print array on
4644b6e3 6414@cindex pretty print arrays
c906108c
SS
6415Pretty print arrays. This format is more convenient to read,
6416but uses more space. The default is off.
6417
6418@item set print array off
6419Return to compressed format for arrays.
6420
c906108c
SS
6421@item show print array
6422Show whether compressed or pretty format is selected for displaying
6423arrays.
6424
3c9c013a
JB
6425@cindex print array indexes
6426@item set print array-indexes
6427@itemx set print array-indexes on
6428Print the index of each element when displaying arrays. May be more
6429convenient to locate a given element in the array or quickly find the
6430index of a given element in that printed array. The default is off.
6431
6432@item set print array-indexes off
6433Stop printing element indexes when displaying arrays.
6434
6435@item show print array-indexes
6436Show whether the index of each element is printed when displaying
6437arrays.
6438
c906108c 6439@item set print elements @var{number-of-elements}
4644b6e3 6440@cindex number of array elements to print
9c16f35a 6441@cindex limit on number of printed array elements
c906108c
SS
6442Set a limit on how many elements of an array @value{GDBN} will print.
6443If @value{GDBN} is printing a large array, it stops printing after it has
6444printed the number of elements set by the @code{set print elements} command.
6445This limit also applies to the display of strings.
d4f3574e 6446When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6447Setting @var{number-of-elements} to zero means that the printing is unlimited.
6448
c906108c
SS
6449@item show print elements
6450Display the number of elements of a large array that @value{GDBN} will print.
6451If the number is 0, then the printing is unlimited.
6452
b4740add
JB
6453@item set print frame-arguments @var{value}
6454@cindex printing frame argument values
6455@cindex print all frame argument values
6456@cindex print frame argument values for scalars only
6457@cindex do not print frame argument values
6458This command allows to control how the values of arguments are printed
6459when the debugger prints a frame (@pxref{Frames}). The possible
6460values are:
6461
6462@table @code
6463@item all
6464The values of all arguments are printed. This is the default.
6465
6466@item scalars
6467Print the value of an argument only if it is a scalar. The value of more
6468complex arguments such as arrays, structures, unions, etc, is replaced
6469by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6470
6471@smallexample
6472#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6473 at frame-args.c:23
6474@end smallexample
6475
6476@item none
6477None of the argument values are printed. Instead, the value of each argument
6478is replaced by @code{@dots{}}. In this case, the example above now becomes:
6479
6480@smallexample
6481#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6482 at frame-args.c:23
6483@end smallexample
6484@end table
6485
6486By default, all argument values are always printed. But this command
6487can be useful in several cases. For instance, it can be used to reduce
6488the amount of information printed in each frame, making the backtrace
6489more readable. Also, this command can be used to improve performance
6490when displaying Ada frames, because the computation of large arguments
6491can sometimes be CPU-intensive, especiallly in large applications.
6492Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6493avoids this computation, thus speeding up the display of each Ada frame.
6494
6495@item show print frame-arguments
6496Show how the value of arguments should be displayed when printing a frame.
6497
9c16f35a
EZ
6498@item set print repeats
6499@cindex repeated array elements
6500Set the threshold for suppressing display of repeated array
d3e8051b 6501elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6502array exceeds the threshold, @value{GDBN} prints the string
6503@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6504identical repetitions, instead of displaying the identical elements
6505themselves. Setting the threshold to zero will cause all elements to
6506be individually printed. The default threshold is 10.
6507
6508@item show print repeats
6509Display the current threshold for printing repeated identical
6510elements.
6511
c906108c 6512@item set print null-stop
4644b6e3 6513@cindex @sc{null} elements in arrays
c906108c 6514Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6515@sc{null} is encountered. This is useful when large arrays actually
c906108c 6516contain only short strings.
d4f3574e 6517The default is off.
c906108c 6518
9c16f35a
EZ
6519@item show print null-stop
6520Show whether @value{GDBN} stops printing an array on the first
6521@sc{null} character.
6522
c906108c 6523@item set print pretty on
9c16f35a
EZ
6524@cindex print structures in indented form
6525@cindex indentation in structure display
5d161b24 6526Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6527per line, like this:
6528
6529@smallexample
6530@group
6531$1 = @{
6532 next = 0x0,
6533 flags = @{
6534 sweet = 1,
6535 sour = 1
6536 @},
6537 meat = 0x54 "Pork"
6538@}
6539@end group
6540@end smallexample
6541
6542@item set print pretty off
6543Cause @value{GDBN} to print structures in a compact format, like this:
6544
6545@smallexample
6546@group
6547$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6548meat = 0x54 "Pork"@}
6549@end group
6550@end smallexample
6551
6552@noindent
6553This is the default format.
6554
c906108c
SS
6555@item show print pretty
6556Show which format @value{GDBN} is using to print structures.
6557
c906108c 6558@item set print sevenbit-strings on
4644b6e3
EZ
6559@cindex eight-bit characters in strings
6560@cindex octal escapes in strings
c906108c
SS
6561Print using only seven-bit characters; if this option is set,
6562@value{GDBN} displays any eight-bit characters (in strings or
6563character values) using the notation @code{\}@var{nnn}. This setting is
6564best if you are working in English (@sc{ascii}) and you use the
6565high-order bit of characters as a marker or ``meta'' bit.
6566
6567@item set print sevenbit-strings off
6568Print full eight-bit characters. This allows the use of more
6569international character sets, and is the default.
6570
c906108c
SS
6571@item show print sevenbit-strings
6572Show whether or not @value{GDBN} is printing only seven-bit characters.
6573
c906108c 6574@item set print union on
4644b6e3 6575@cindex unions in structures, printing
9c16f35a
EZ
6576Tell @value{GDBN} to print unions which are contained in structures
6577and other unions. This is the default setting.
c906108c
SS
6578
6579@item set print union off
9c16f35a
EZ
6580Tell @value{GDBN} not to print unions which are contained in
6581structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6582instead.
c906108c 6583
c906108c
SS
6584@item show print union
6585Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6586structures and other unions.
c906108c
SS
6587
6588For example, given the declarations
6589
6590@smallexample
6591typedef enum @{Tree, Bug@} Species;
6592typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6593typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6594 Bug_forms;
6595
6596struct thing @{
6597 Species it;
6598 union @{
6599 Tree_forms tree;
6600 Bug_forms bug;
6601 @} form;
6602@};
6603
6604struct thing foo = @{Tree, @{Acorn@}@};
6605@end smallexample
6606
6607@noindent
6608with @code{set print union on} in effect @samp{p foo} would print
6609
6610@smallexample
6611$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6612@end smallexample
6613
6614@noindent
6615and with @code{set print union off} in effect it would print
6616
6617@smallexample
6618$1 = @{it = Tree, form = @{...@}@}
6619@end smallexample
9c16f35a
EZ
6620
6621@noindent
6622@code{set print union} affects programs written in C-like languages
6623and in Pascal.
c906108c
SS
6624@end table
6625
c906108c
SS
6626@need 1000
6627@noindent
b37052ae 6628These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6629
6630@table @code
4644b6e3 6631@cindex demangling C@t{++} names
c906108c
SS
6632@item set print demangle
6633@itemx set print demangle on
b37052ae 6634Print C@t{++} names in their source form rather than in the encoded
c906108c 6635(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6636linkage. The default is on.
c906108c 6637
c906108c 6638@item show print demangle
b37052ae 6639Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6640
c906108c
SS
6641@item set print asm-demangle
6642@itemx set print asm-demangle on
b37052ae 6643Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6644in assembler code printouts such as instruction disassemblies.
6645The default is off.
6646
c906108c 6647@item show print asm-demangle
b37052ae 6648Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6649or demangled form.
6650
b37052ae
EZ
6651@cindex C@t{++} symbol decoding style
6652@cindex symbol decoding style, C@t{++}
a8f24a35 6653@kindex set demangle-style
c906108c
SS
6654@item set demangle-style @var{style}
6655Choose among several encoding schemes used by different compilers to
b37052ae 6656represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6657
6658@table @code
6659@item auto
6660Allow @value{GDBN} to choose a decoding style by inspecting your program.
6661
6662@item gnu
b37052ae 6663Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6664This is the default.
c906108c
SS
6665
6666@item hp
b37052ae 6667Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6668
6669@item lucid
b37052ae 6670Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6671
6672@item arm
b37052ae 6673Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6674@strong{Warning:} this setting alone is not sufficient to allow
6675debugging @code{cfront}-generated executables. @value{GDBN} would
6676require further enhancement to permit that.
6677
6678@end table
6679If you omit @var{style}, you will see a list of possible formats.
6680
c906108c 6681@item show demangle-style
b37052ae 6682Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6683
c906108c
SS
6684@item set print object
6685@itemx set print object on
4644b6e3 6686@cindex derived type of an object, printing
9c16f35a 6687@cindex display derived types
c906108c
SS
6688When displaying a pointer to an object, identify the @emph{actual}
6689(derived) type of the object rather than the @emph{declared} type, using
6690the virtual function table.
6691
6692@item set print object off
6693Display only the declared type of objects, without reference to the
6694virtual function table. This is the default setting.
6695
c906108c
SS
6696@item show print object
6697Show whether actual, or declared, object types are displayed.
6698
c906108c
SS
6699@item set print static-members
6700@itemx set print static-members on
4644b6e3 6701@cindex static members of C@t{++} objects
b37052ae 6702Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6703
6704@item set print static-members off
b37052ae 6705Do not print static members when displaying a C@t{++} object.
c906108c 6706
c906108c 6707@item show print static-members
9c16f35a
EZ
6708Show whether C@t{++} static members are printed or not.
6709
6710@item set print pascal_static-members
6711@itemx set print pascal_static-members on
d3e8051b
EZ
6712@cindex static members of Pascal objects
6713@cindex Pascal objects, static members display
9c16f35a
EZ
6714Print static members when displaying a Pascal object. The default is on.
6715
6716@item set print pascal_static-members off
6717Do not print static members when displaying a Pascal object.
6718
6719@item show print pascal_static-members
6720Show whether Pascal static members are printed or not.
c906108c
SS
6721
6722@c These don't work with HP ANSI C++ yet.
c906108c
SS
6723@item set print vtbl
6724@itemx set print vtbl on
4644b6e3 6725@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6726@cindex virtual functions (C@t{++}) display
6727@cindex VTBL display
b37052ae 6728Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6729(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6730ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6731
6732@item set print vtbl off
b37052ae 6733Do not pretty print C@t{++} virtual function tables.
c906108c 6734
c906108c 6735@item show print vtbl
b37052ae 6736Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6737@end table
c906108c 6738
6d2ebf8b 6739@node Value History
79a6e687 6740@section Value History
c906108c
SS
6741
6742@cindex value history
9c16f35a 6743@cindex history of values printed by @value{GDBN}
5d161b24
DB
6744Values printed by the @code{print} command are saved in the @value{GDBN}
6745@dfn{value history}. This allows you to refer to them in other expressions.
6746Values are kept until the symbol table is re-read or discarded
6747(for example with the @code{file} or @code{symbol-file} commands).
6748When the symbol table changes, the value history is discarded,
6749since the values may contain pointers back to the types defined in the
c906108c
SS
6750symbol table.
6751
6752@cindex @code{$}
6753@cindex @code{$$}
6754@cindex history number
6755The values printed are given @dfn{history numbers} by which you can
6756refer to them. These are successive integers starting with one.
6757@code{print} shows you the history number assigned to a value by
6758printing @samp{$@var{num} = } before the value; here @var{num} is the
6759history number.
6760
6761To refer to any previous value, use @samp{$} followed by the value's
6762history number. The way @code{print} labels its output is designed to
6763remind you of this. Just @code{$} refers to the most recent value in
6764the history, and @code{$$} refers to the value before that.
6765@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6766is the value just prior to @code{$$}, @code{$$1} is equivalent to
6767@code{$$}, and @code{$$0} is equivalent to @code{$}.
6768
6769For example, suppose you have just printed a pointer to a structure and
6770want to see the contents of the structure. It suffices to type
6771
474c8240 6772@smallexample
c906108c 6773p *$
474c8240 6774@end smallexample
c906108c
SS
6775
6776If you have a chain of structures where the component @code{next} points
6777to the next one, you can print the contents of the next one with this:
6778
474c8240 6779@smallexample
c906108c 6780p *$.next
474c8240 6781@end smallexample
c906108c
SS
6782
6783@noindent
6784You can print successive links in the chain by repeating this
6785command---which you can do by just typing @key{RET}.
6786
6787Note that the history records values, not expressions. If the value of
6788@code{x} is 4 and you type these commands:
6789
474c8240 6790@smallexample
c906108c
SS
6791print x
6792set x=5
474c8240 6793@end smallexample
c906108c
SS
6794
6795@noindent
6796then the value recorded in the value history by the @code{print} command
6797remains 4 even though the value of @code{x} has changed.
6798
6799@table @code
6800@kindex show values
6801@item show values
6802Print the last ten values in the value history, with their item numbers.
6803This is like @samp{p@ $$9} repeated ten times, except that @code{show
6804values} does not change the history.
6805
6806@item show values @var{n}
6807Print ten history values centered on history item number @var{n}.
6808
6809@item show values +
6810Print ten history values just after the values last printed. If no more
6811values are available, @code{show values +} produces no display.
6812@end table
6813
6814Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6815same effect as @samp{show values +}.
6816
6d2ebf8b 6817@node Convenience Vars
79a6e687 6818@section Convenience Variables
c906108c
SS
6819
6820@cindex convenience variables
9c16f35a 6821@cindex user-defined variables
c906108c
SS
6822@value{GDBN} provides @dfn{convenience variables} that you can use within
6823@value{GDBN} to hold on to a value and refer to it later. These variables
6824exist entirely within @value{GDBN}; they are not part of your program, and
6825setting a convenience variable has no direct effect on further execution
6826of your program. That is why you can use them freely.
6827
6828Convenience variables are prefixed with @samp{$}. Any name preceded by
6829@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6830the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6831(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6832by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6833
6834You can save a value in a convenience variable with an assignment
6835expression, just as you would set a variable in your program.
6836For example:
6837
474c8240 6838@smallexample
c906108c 6839set $foo = *object_ptr
474c8240 6840@end smallexample
c906108c
SS
6841
6842@noindent
6843would save in @code{$foo} the value contained in the object pointed to by
6844@code{object_ptr}.
6845
6846Using a convenience variable for the first time creates it, but its
6847value is @code{void} until you assign a new value. You can alter the
6848value with another assignment at any time.
6849
6850Convenience variables have no fixed types. You can assign a convenience
6851variable any type of value, including structures and arrays, even if
6852that variable already has a value of a different type. The convenience
6853variable, when used as an expression, has the type of its current value.
6854
6855@table @code
6856@kindex show convenience
9c16f35a 6857@cindex show all user variables
c906108c
SS
6858@item show convenience
6859Print a list of convenience variables used so far, and their values.
d4f3574e 6860Abbreviated @code{show conv}.
53e5f3cf
AS
6861
6862@kindex init-if-undefined
6863@cindex convenience variables, initializing
6864@item init-if-undefined $@var{variable} = @var{expression}
6865Set a convenience variable if it has not already been set. This is useful
6866for user-defined commands that keep some state. It is similar, in concept,
6867to using local static variables with initializers in C (except that
6868convenience variables are global). It can also be used to allow users to
6869override default values used in a command script.
6870
6871If the variable is already defined then the expression is not evaluated so
6872any side-effects do not occur.
c906108c
SS
6873@end table
6874
6875One of the ways to use a convenience variable is as a counter to be
6876incremented or a pointer to be advanced. For example, to print
6877a field from successive elements of an array of structures:
6878
474c8240 6879@smallexample
c906108c
SS
6880set $i = 0
6881print bar[$i++]->contents
474c8240 6882@end smallexample
c906108c 6883
d4f3574e
SS
6884@noindent
6885Repeat that command by typing @key{RET}.
c906108c
SS
6886
6887Some convenience variables are created automatically by @value{GDBN} and given
6888values likely to be useful.
6889
6890@table @code
41afff9a 6891@vindex $_@r{, convenience variable}
c906108c
SS
6892@item $_
6893The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6894the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6895commands which provide a default address for @code{x} to examine also
6896set @code{$_} to that address; these commands include @code{info line}
6897and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6898except when set by the @code{x} command, in which case it is a pointer
6899to the type of @code{$__}.
6900
41afff9a 6901@vindex $__@r{, convenience variable}
c906108c
SS
6902@item $__
6903The variable @code{$__} is automatically set by the @code{x} command
6904to the value found in the last address examined. Its type is chosen
6905to match the format in which the data was printed.
6906
6907@item $_exitcode
41afff9a 6908@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6909The variable @code{$_exitcode} is automatically set to the exit code when
6910the program being debugged terminates.
6911@end table
6912
53a5351d
JM
6913On HP-UX systems, if you refer to a function or variable name that
6914begins with a dollar sign, @value{GDBN} searches for a user or system
6915name first, before it searches for a convenience variable.
c906108c 6916
6d2ebf8b 6917@node Registers
c906108c
SS
6918@section Registers
6919
6920@cindex registers
6921You can refer to machine register contents, in expressions, as variables
6922with names starting with @samp{$}. The names of registers are different
6923for each machine; use @code{info registers} to see the names used on
6924your machine.
6925
6926@table @code
6927@kindex info registers
6928@item info registers
6929Print the names and values of all registers except floating-point
c85508ee 6930and vector registers (in the selected stack frame).
c906108c
SS
6931
6932@kindex info all-registers
6933@cindex floating point registers
6934@item info all-registers
6935Print the names and values of all registers, including floating-point
c85508ee 6936and vector registers (in the selected stack frame).
c906108c
SS
6937
6938@item info registers @var{regname} @dots{}
6939Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6940As discussed in detail below, register values are normally relative to
6941the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6942the machine you are using, with or without the initial @samp{$}.
6943@end table
6944
e09f16f9
EZ
6945@cindex stack pointer register
6946@cindex program counter register
6947@cindex process status register
6948@cindex frame pointer register
6949@cindex standard registers
c906108c
SS
6950@value{GDBN} has four ``standard'' register names that are available (in
6951expressions) on most machines---whenever they do not conflict with an
6952architecture's canonical mnemonics for registers. The register names
6953@code{$pc} and @code{$sp} are used for the program counter register and
6954the stack pointer. @code{$fp} is used for a register that contains a
6955pointer to the current stack frame, and @code{$ps} is used for a
6956register that contains the processor status. For example,
6957you could print the program counter in hex with
6958
474c8240 6959@smallexample
c906108c 6960p/x $pc
474c8240 6961@end smallexample
c906108c
SS
6962
6963@noindent
6964or print the instruction to be executed next with
6965
474c8240 6966@smallexample
c906108c 6967x/i $pc
474c8240 6968@end smallexample
c906108c
SS
6969
6970@noindent
6971or add four to the stack pointer@footnote{This is a way of removing
6972one word from the stack, on machines where stacks grow downward in
6973memory (most machines, nowadays). This assumes that the innermost
6974stack frame is selected; setting @code{$sp} is not allowed when other
6975stack frames are selected. To pop entire frames off the stack,
6976regardless of machine architecture, use @code{return};
79a6e687 6977see @ref{Returning, ,Returning from a Function}.} with
c906108c 6978
474c8240 6979@smallexample
c906108c 6980set $sp += 4
474c8240 6981@end smallexample
c906108c
SS
6982
6983Whenever possible, these four standard register names are available on
6984your machine even though the machine has different canonical mnemonics,
6985so long as there is no conflict. The @code{info registers} command
6986shows the canonical names. For example, on the SPARC, @code{info
6987registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6988can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6989is an alias for the @sc{eflags} register.
c906108c
SS
6990
6991@value{GDBN} always considers the contents of an ordinary register as an
6992integer when the register is examined in this way. Some machines have
6993special registers which can hold nothing but floating point; these
6994registers are considered to have floating point values. There is no way
6995to refer to the contents of an ordinary register as floating point value
6996(although you can @emph{print} it as a floating point value with
6997@samp{print/f $@var{regname}}).
6998
6999Some registers have distinct ``raw'' and ``virtual'' data formats. This
7000means that the data format in which the register contents are saved by
7001the operating system is not the same one that your program normally
7002sees. For example, the registers of the 68881 floating point
7003coprocessor are always saved in ``extended'' (raw) format, but all C
7004programs expect to work with ``double'' (virtual) format. In such
5d161b24 7005cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
7006that makes sense for your program), but the @code{info registers} command
7007prints the data in both formats.
7008
36b80e65
EZ
7009@cindex SSE registers (x86)
7010@cindex MMX registers (x86)
7011Some machines have special registers whose contents can be interpreted
7012in several different ways. For example, modern x86-based machines
7013have SSE and MMX registers that can hold several values packed
7014together in several different formats. @value{GDBN} refers to such
7015registers in @code{struct} notation:
7016
7017@smallexample
7018(@value{GDBP}) print $xmm1
7019$1 = @{
7020 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
7021 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
7022 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
7023 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
7024 v4_int32 = @{0, 20657912, 11, 13@},
7025 v2_int64 = @{88725056443645952, 55834574859@},
7026 uint128 = 0x0000000d0000000b013b36f800000000
7027@}
7028@end smallexample
7029
7030@noindent
7031To set values of such registers, you need to tell @value{GDBN} which
7032view of the register you wish to change, as if you were assigning
7033value to a @code{struct} member:
7034
7035@smallexample
7036 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
7037@end smallexample
7038
c906108c 7039Normally, register values are relative to the selected stack frame
79a6e687 7040(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
7041value that the register would contain if all stack frames farther in
7042were exited and their saved registers restored. In order to see the
7043true contents of hardware registers, you must select the innermost
7044frame (with @samp{frame 0}).
7045
7046However, @value{GDBN} must deduce where registers are saved, from the machine
7047code generated by your compiler. If some registers are not saved, or if
7048@value{GDBN} is unable to locate the saved registers, the selected stack
7049frame makes no difference.
7050
6d2ebf8b 7051@node Floating Point Hardware
79a6e687 7052@section Floating Point Hardware
c906108c
SS
7053@cindex floating point
7054
7055Depending on the configuration, @value{GDBN} may be able to give
7056you more information about the status of the floating point hardware.
7057
7058@table @code
7059@kindex info float
7060@item info float
7061Display hardware-dependent information about the floating
7062point unit. The exact contents and layout vary depending on the
7063floating point chip. Currently, @samp{info float} is supported on
7064the ARM and x86 machines.
7065@end table
c906108c 7066
e76f1f2e
AC
7067@node Vector Unit
7068@section Vector Unit
7069@cindex vector unit
7070
7071Depending on the configuration, @value{GDBN} may be able to give you
7072more information about the status of the vector unit.
7073
7074@table @code
7075@kindex info vector
7076@item info vector
7077Display information about the vector unit. The exact contents and
7078layout vary depending on the hardware.
7079@end table
7080
721c2651 7081@node OS Information
79a6e687 7082@section Operating System Auxiliary Information
721c2651
EZ
7083@cindex OS information
7084
7085@value{GDBN} provides interfaces to useful OS facilities that can help
7086you debug your program.
7087
7088@cindex @code{ptrace} system call
7089@cindex @code{struct user} contents
7090When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7091machines), it interfaces with the inferior via the @code{ptrace}
7092system call. The operating system creates a special sata structure,
7093called @code{struct user}, for this interface. You can use the
7094command @code{info udot} to display the contents of this data
7095structure.
7096
7097@table @code
7098@item info udot
7099@kindex info udot
7100Display the contents of the @code{struct user} maintained by the OS
7101kernel for the program being debugged. @value{GDBN} displays the
7102contents of @code{struct user} as a list of hex numbers, similar to
7103the @code{examine} command.
7104@end table
7105
b383017d
RM
7106@cindex auxiliary vector
7107@cindex vector, auxiliary
b383017d
RM
7108Some operating systems supply an @dfn{auxiliary vector} to programs at
7109startup. This is akin to the arguments and environment that you
7110specify for a program, but contains a system-dependent variety of
7111binary values that tell system libraries important details about the
7112hardware, operating system, and process. Each value's purpose is
7113identified by an integer tag; the meanings are well-known but system-specific.
7114Depending on the configuration and operating system facilities,
9c16f35a
EZ
7115@value{GDBN} may be able to show you this information. For remote
7116targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7117support of the @samp{qXfer:auxv:read} packet, see
7118@ref{qXfer auxiliary vector read}.
b383017d
RM
7119
7120@table @code
7121@kindex info auxv
7122@item info auxv
7123Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7124live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7125numerically, and also shows names and text descriptions for recognized
7126tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7127pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7128most appropriate form for a recognized tag, and in hexadecimal for
7129an unrecognized tag.
7130@end table
7131
721c2651 7132
29e57380 7133@node Memory Region Attributes
79a6e687 7134@section Memory Region Attributes
29e57380
C
7135@cindex memory region attributes
7136
b383017d 7137@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7138required by regions of your target's memory. @value{GDBN} uses
7139attributes to determine whether to allow certain types of memory
7140accesses; whether to use specific width accesses; and whether to cache
7141target memory. By default the description of memory regions is
7142fetched from the target (if the current target supports this), but the
7143user can override the fetched regions.
29e57380
C
7144
7145Defined memory regions can be individually enabled and disabled. When a
7146memory region is disabled, @value{GDBN} uses the default attributes when
7147accessing memory in that region. Similarly, if no memory regions have
7148been defined, @value{GDBN} uses the default attributes when accessing
7149all memory.
7150
b383017d 7151When a memory region is defined, it is given a number to identify it;
29e57380
C
7152to enable, disable, or remove a memory region, you specify that number.
7153
7154@table @code
7155@kindex mem
bfac230e 7156@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7157Define a memory region bounded by @var{lower} and @var{upper} with
7158attributes @var{attributes}@dots{}, and add it to the list of regions
7159monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7160case: it is treated as the target's maximum memory address.
bfac230e 7161(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7162
fd79ecee
DJ
7163@item mem auto
7164Discard any user changes to the memory regions and use target-supplied
7165regions, if available, or no regions if the target does not support.
7166
29e57380
C
7167@kindex delete mem
7168@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7169Remove memory regions @var{nums}@dots{} from the list of regions
7170monitored by @value{GDBN}.
29e57380
C
7171
7172@kindex disable mem
7173@item disable mem @var{nums}@dots{}
09d4efe1 7174Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7175A disabled memory region is not forgotten.
29e57380
C
7176It may be enabled again later.
7177
7178@kindex enable mem
7179@item enable mem @var{nums}@dots{}
09d4efe1 7180Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7181
7182@kindex info mem
7183@item info mem
7184Print a table of all defined memory regions, with the following columns
09d4efe1 7185for each region:
29e57380
C
7186
7187@table @emph
7188@item Memory Region Number
7189@item Enabled or Disabled.
b383017d 7190Enabled memory regions are marked with @samp{y}.
29e57380
C
7191Disabled memory regions are marked with @samp{n}.
7192
7193@item Lo Address
7194The address defining the inclusive lower bound of the memory region.
7195
7196@item Hi Address
7197The address defining the exclusive upper bound of the memory region.
7198
7199@item Attributes
7200The list of attributes set for this memory region.
7201@end table
7202@end table
7203
7204
7205@subsection Attributes
7206
b383017d 7207@subsubsection Memory Access Mode
29e57380
C
7208The access mode attributes set whether @value{GDBN} may make read or
7209write accesses to a memory region.
7210
7211While these attributes prevent @value{GDBN} from performing invalid
7212memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7213etc.@: from accessing memory.
29e57380
C
7214
7215@table @code
7216@item ro
7217Memory is read only.
7218@item wo
7219Memory is write only.
7220@item rw
6ca652b0 7221Memory is read/write. This is the default.
29e57380
C
7222@end table
7223
7224@subsubsection Memory Access Size
d3e8051b 7225The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7226accesses in the memory region. Often memory mapped device registers
7227require specific sized accesses. If no access size attribute is
7228specified, @value{GDBN} may use accesses of any size.
7229
7230@table @code
7231@item 8
7232Use 8 bit memory accesses.
7233@item 16
7234Use 16 bit memory accesses.
7235@item 32
7236Use 32 bit memory accesses.
7237@item 64
7238Use 64 bit memory accesses.
7239@end table
7240
7241@c @subsubsection Hardware/Software Breakpoints
7242@c The hardware/software breakpoint attributes set whether @value{GDBN}
7243@c will use hardware or software breakpoints for the internal breakpoints
7244@c used by the step, next, finish, until, etc. commands.
7245@c
7246@c @table @code
7247@c @item hwbreak
b383017d 7248@c Always use hardware breakpoints
29e57380
C
7249@c @item swbreak (default)
7250@c @end table
7251
7252@subsubsection Data Cache
7253The data cache attributes set whether @value{GDBN} will cache target
7254memory. While this generally improves performance by reducing debug
7255protocol overhead, it can lead to incorrect results because @value{GDBN}
7256does not know about volatile variables or memory mapped device
7257registers.
7258
7259@table @code
7260@item cache
b383017d 7261Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7262@item nocache
7263Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7264@end table
7265
4b5752d0
VP
7266@subsection Memory Access Checking
7267@value{GDBN} can be instructed to refuse accesses to memory that is
7268not explicitly described. This can be useful if accessing such
7269regions has undesired effects for a specific target, or to provide
7270better error checking. The following commands control this behaviour.
7271
7272@table @code
7273@kindex set mem inaccessible-by-default
7274@item set mem inaccessible-by-default [on|off]
7275If @code{on} is specified, make @value{GDBN} treat memory not
7276explicitly described by the memory ranges as non-existent and refuse accesses
7277to such memory. The checks are only performed if there's at least one
7278memory range defined. If @code{off} is specified, make @value{GDBN}
7279treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7280The default value is @code{on}.
4b5752d0
VP
7281@kindex show mem inaccessible-by-default
7282@item show mem inaccessible-by-default
7283Show the current handling of accesses to unknown memory.
7284@end table
7285
7286
29e57380 7287@c @subsubsection Memory Write Verification
b383017d 7288@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7289@c will re-reads data after each write to verify the write was successful.
7290@c
7291@c @table @code
7292@c @item verify
7293@c @item noverify (default)
7294@c @end table
7295
16d9dec6 7296@node Dump/Restore Files
79a6e687 7297@section Copy Between Memory and a File
16d9dec6
MS
7298@cindex dump/restore files
7299@cindex append data to a file
7300@cindex dump data to a file
7301@cindex restore data from a file
16d9dec6 7302
df5215a6
JB
7303You can use the commands @code{dump}, @code{append}, and
7304@code{restore} to copy data between target memory and a file. The
7305@code{dump} and @code{append} commands write data to a file, and the
7306@code{restore} command reads data from a file back into the inferior's
7307memory. Files may be in binary, Motorola S-record, Intel hex, or
7308Tektronix Hex format; however, @value{GDBN} can only append to binary
7309files.
7310
7311@table @code
7312
7313@kindex dump
7314@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7315@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7316Dump the contents of memory from @var{start_addr} to @var{end_addr},
7317or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7318
df5215a6 7319The @var{format} parameter may be any one of:
16d9dec6 7320@table @code
df5215a6
JB
7321@item binary
7322Raw binary form.
7323@item ihex
7324Intel hex format.
7325@item srec
7326Motorola S-record format.
7327@item tekhex
7328Tektronix Hex format.
7329@end table
7330
7331@value{GDBN} uses the same definitions of these formats as the
7332@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7333@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7334form.
7335
7336@kindex append
7337@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7338@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7339Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7340or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7341(@value{GDBN} can only append data to files in raw binary form.)
7342
7343@kindex restore
7344@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7345Restore the contents of file @var{filename} into memory. The
7346@code{restore} command can automatically recognize any known @sc{bfd}
7347file format, except for raw binary. To restore a raw binary file you
7348must specify the optional keyword @code{binary} after the filename.
16d9dec6 7349
b383017d 7350If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7351contained in the file. Binary files always start at address zero, so
7352they will be restored at address @var{bias}. Other bfd files have
7353a built-in location; they will be restored at offset @var{bias}
7354from that location.
7355
7356If @var{start} and/or @var{end} are non-zero, then only data between
7357file offset @var{start} and file offset @var{end} will be restored.
b383017d 7358These offsets are relative to the addresses in the file, before
16d9dec6
MS
7359the @var{bias} argument is applied.
7360
7361@end table
7362
384ee23f
EZ
7363@node Core File Generation
7364@section How to Produce a Core File from Your Program
7365@cindex dump core from inferior
7366
7367A @dfn{core file} or @dfn{core dump} is a file that records the memory
7368image of a running process and its process status (register values
7369etc.). Its primary use is post-mortem debugging of a program that
7370crashed while it ran outside a debugger. A program that crashes
7371automatically produces a core file, unless this feature is disabled by
7372the user. @xref{Files}, for information on invoking @value{GDBN} in
7373the post-mortem debugging mode.
7374
7375Occasionally, you may wish to produce a core file of the program you
7376are debugging in order to preserve a snapshot of its state.
7377@value{GDBN} has a special command for that.
7378
7379@table @code
7380@kindex gcore
7381@kindex generate-core-file
7382@item generate-core-file [@var{file}]
7383@itemx gcore [@var{file}]
7384Produce a core dump of the inferior process. The optional argument
7385@var{file} specifies the file name where to put the core dump. If not
7386specified, the file name defaults to @file{core.@var{pid}}, where
7387@var{pid} is the inferior process ID.
7388
7389Note that this command is implemented only for some systems (as of
7390this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7391@end table
7392
a0eb71c5
KB
7393@node Character Sets
7394@section Character Sets
7395@cindex character sets
7396@cindex charset
7397@cindex translating between character sets
7398@cindex host character set
7399@cindex target character set
7400
7401If the program you are debugging uses a different character set to
7402represent characters and strings than the one @value{GDBN} uses itself,
7403@value{GDBN} can automatically translate between the character sets for
7404you. The character set @value{GDBN} uses we call the @dfn{host
7405character set}; the one the inferior program uses we call the
7406@dfn{target character set}.
7407
7408For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7409uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7410remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7411running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7412then the host character set is Latin-1, and the target character set is
7413@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7414target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7415@sc{ebcdic} and Latin 1 as you print character or string values, or use
7416character and string literals in expressions.
7417
7418@value{GDBN} has no way to automatically recognize which character set
7419the inferior program uses; you must tell it, using the @code{set
7420target-charset} command, described below.
7421
7422Here are the commands for controlling @value{GDBN}'s character set
7423support:
7424
7425@table @code
7426@item set target-charset @var{charset}
7427@kindex set target-charset
7428Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7429character set names @value{GDBN} recognizes below, but if you type
7430@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7431list the target character sets it supports.
a0eb71c5
KB
7432@end table
7433
7434@table @code
7435@item set host-charset @var{charset}
7436@kindex set host-charset
7437Set the current host character set to @var{charset}.
7438
7439By default, @value{GDBN} uses a host character set appropriate to the
7440system it is running on; you can override that default using the
7441@code{set host-charset} command.
7442
7443@value{GDBN} can only use certain character sets as its host character
7444set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7445indicate which can be host character sets, but if you type
7446@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7447list the host character sets it supports.
a0eb71c5
KB
7448
7449@item set charset @var{charset}
7450@kindex set charset
e33d66ec
EZ
7451Set the current host and target character sets to @var{charset}. As
7452above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7453@value{GDBN} will list the name of the character sets that can be used
7454for both host and target.
7455
a0eb71c5
KB
7456
7457@item show charset
a0eb71c5 7458@kindex show charset
b383017d 7459Show the names of the current host and target charsets.
e33d66ec
EZ
7460
7461@itemx show host-charset
a0eb71c5 7462@kindex show host-charset
b383017d 7463Show the name of the current host charset.
e33d66ec
EZ
7464
7465@itemx show target-charset
a0eb71c5 7466@kindex show target-charset
b383017d 7467Show the name of the current target charset.
a0eb71c5
KB
7468
7469@end table
7470
7471@value{GDBN} currently includes support for the following character
7472sets:
7473
7474@table @code
7475
7476@item ASCII
7477@cindex ASCII character set
7478Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7479character set.
7480
7481@item ISO-8859-1
7482@cindex ISO 8859-1 character set
7483@cindex ISO Latin 1 character set
e33d66ec 7484The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7485characters needed for French, German, and Spanish. @value{GDBN} can use
7486this as its host character set.
7487
7488@item EBCDIC-US
7489@itemx IBM1047
7490@cindex EBCDIC character set
7491@cindex IBM1047 character set
7492Variants of the @sc{ebcdic} character set, used on some of IBM's
7493mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7494@value{GDBN} cannot use these as its host character set.
7495
7496@end table
7497
7498Note that these are all single-byte character sets. More work inside
3f94c067 7499@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7500encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7501
7502Here is an example of @value{GDBN}'s character set support in action.
7503Assume that the following source code has been placed in the file
7504@file{charset-test.c}:
7505
7506@smallexample
7507#include <stdio.h>
7508
7509char ascii_hello[]
7510 = @{72, 101, 108, 108, 111, 44, 32, 119,
7511 111, 114, 108, 100, 33, 10, 0@};
7512char ibm1047_hello[]
7513 = @{200, 133, 147, 147, 150, 107, 64, 166,
7514 150, 153, 147, 132, 90, 37, 0@};
7515
7516main ()
7517@{
7518 printf ("Hello, world!\n");
7519@}
10998722 7520@end smallexample
a0eb71c5
KB
7521
7522In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7523containing the string @samp{Hello, world!} followed by a newline,
7524encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7525
7526We compile the program, and invoke the debugger on it:
7527
7528@smallexample
7529$ gcc -g charset-test.c -o charset-test
7530$ gdb -nw charset-test
7531GNU gdb 2001-12-19-cvs
7532Copyright 2001 Free Software Foundation, Inc.
7533@dots{}
f7dc1244 7534(@value{GDBP})
10998722 7535@end smallexample
a0eb71c5
KB
7536
7537We can use the @code{show charset} command to see what character sets
7538@value{GDBN} is currently using to interpret and display characters and
7539strings:
7540
7541@smallexample
f7dc1244 7542(@value{GDBP}) show charset
e33d66ec 7543The current host and target character set is `ISO-8859-1'.
f7dc1244 7544(@value{GDBP})
10998722 7545@end smallexample
a0eb71c5
KB
7546
7547For the sake of printing this manual, let's use @sc{ascii} as our
7548initial character set:
7549@smallexample
f7dc1244
EZ
7550(@value{GDBP}) set charset ASCII
7551(@value{GDBP}) show charset
e33d66ec 7552The current host and target character set is `ASCII'.
f7dc1244 7553(@value{GDBP})
10998722 7554@end smallexample
a0eb71c5
KB
7555
7556Let's assume that @sc{ascii} is indeed the correct character set for our
7557host system --- in other words, let's assume that if @value{GDBN} prints
7558characters using the @sc{ascii} character set, our terminal will display
7559them properly. Since our current target character set is also
7560@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7561
7562@smallexample
f7dc1244 7563(@value{GDBP}) print ascii_hello
a0eb71c5 7564$1 = 0x401698 "Hello, world!\n"
f7dc1244 7565(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7566$2 = 72 'H'
f7dc1244 7567(@value{GDBP})
10998722 7568@end smallexample
a0eb71c5
KB
7569
7570@value{GDBN} uses the target character set for character and string
7571literals you use in expressions:
7572
7573@smallexample
f7dc1244 7574(@value{GDBP}) print '+'
a0eb71c5 7575$3 = 43 '+'
f7dc1244 7576(@value{GDBP})
10998722 7577@end smallexample
a0eb71c5
KB
7578
7579The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7580character.
7581
7582@value{GDBN} relies on the user to tell it which character set the
7583target program uses. If we print @code{ibm1047_hello} while our target
7584character set is still @sc{ascii}, we get jibberish:
7585
7586@smallexample
f7dc1244 7587(@value{GDBP}) print ibm1047_hello
a0eb71c5 7588$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7589(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7590$5 = 200 '\310'
f7dc1244 7591(@value{GDBP})
10998722 7592@end smallexample
a0eb71c5 7593
e33d66ec 7594If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7595@value{GDBN} tells us the character sets it supports:
7596
7597@smallexample
f7dc1244 7598(@value{GDBP}) set target-charset
b383017d 7599ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7600(@value{GDBP}) set target-charset
10998722 7601@end smallexample
a0eb71c5
KB
7602
7603We can select @sc{ibm1047} as our target character set, and examine the
7604program's strings again. Now the @sc{ascii} string is wrong, but
7605@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7606target character set, @sc{ibm1047}, to the host character set,
7607@sc{ascii}, and they display correctly:
7608
7609@smallexample
f7dc1244
EZ
7610(@value{GDBP}) set target-charset IBM1047
7611(@value{GDBP}) show charset
e33d66ec
EZ
7612The current host character set is `ASCII'.
7613The current target character set is `IBM1047'.
f7dc1244 7614(@value{GDBP}) print ascii_hello
a0eb71c5 7615$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7616(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7617$7 = 72 '\110'
f7dc1244 7618(@value{GDBP}) print ibm1047_hello
a0eb71c5 7619$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7620(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7621$9 = 200 'H'
f7dc1244 7622(@value{GDBP})
10998722 7623@end smallexample
a0eb71c5
KB
7624
7625As above, @value{GDBN} uses the target character set for character and
7626string literals you use in expressions:
7627
7628@smallexample
f7dc1244 7629(@value{GDBP}) print '+'
a0eb71c5 7630$10 = 78 '+'
f7dc1244 7631(@value{GDBP})
10998722 7632@end smallexample
a0eb71c5 7633
e33d66ec 7634The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7635character.
7636
09d4efe1
EZ
7637@node Caching Remote Data
7638@section Caching Data of Remote Targets
7639@cindex caching data of remote targets
7640
7641@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7642remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7643performance, because it reduces the overhead of the remote protocol by
7644bundling memory reads and writes into large chunks. Unfortunately,
7645@value{GDBN} does not currently know anything about volatile
7646registers, and thus data caching will produce incorrect results when
7647volatile registers are in use.
7648
7649@table @code
7650@kindex set remotecache
7651@item set remotecache on
7652@itemx set remotecache off
7653Set caching state for remote targets. When @code{ON}, use data
7654caching. By default, this option is @code{OFF}.
7655
7656@kindex show remotecache
7657@item show remotecache
7658Show the current state of data caching for remote targets.
7659
7660@kindex info dcache
7661@item info dcache
7662Print the information about the data cache performance. The
7663information displayed includes: the dcache width and depth; and for
7664each cache line, how many times it was referenced, and its data and
7665state (dirty, bad, ok, etc.). This command is useful for debugging
7666the data cache operation.
7667@end table
7668
08388c79
DE
7669@node Searching Memory
7670@section Search Memory
7671@cindex searching memory
7672
7673Memory can be searched for a particular sequence of bytes with the
7674@code{find} command.
7675
7676@table @code
7677@kindex find
7678@item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7679@itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7680Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
7681etc. The search begins at address @var{start_addr} and continues for either
7682@var{len} bytes or through to @var{end_addr} inclusive.
7683@end table
7684
7685@var{s} and @var{n} are optional parameters.
7686They may be specified in either order, apart or together.
7687
7688@table @r
7689@item @var{s}, search query size
7690The size of each search query value.
7691
7692@table @code
7693@item b
7694bytes
7695@item h
7696halfwords (two bytes)
7697@item w
7698words (four bytes)
7699@item g
7700giant words (eight bytes)
7701@end table
7702
7703All values are interpreted in the current language.
7704This means, for example, that if the current source language is C/C@t{++}
7705then searching for the string ``hello'' includes the trailing '\0'.
7706
7707If the value size is not specified, it is taken from the
7708value's type in the current language.
7709This is useful when one wants to specify the search
7710pattern as a mixture of types.
7711Note that this means, for example, that in the case of C-like languages
7712a search for an untyped 0x42 will search for @samp{(int) 0x42}
7713which is typically four bytes.
7714
7715@item @var{n}, maximum number of finds
7716The maximum number of matches to print. The default is to print all finds.
7717@end table
7718
7719You can use strings as search values. Quote them with double-quotes
7720 (@code{"}).
7721The string value is copied into the search pattern byte by byte,
7722regardless of the endianness of the target and the size specification.
7723
7724The address of each match found is printed as well as a count of the
7725number of matches found.
7726
7727The address of the last value found is stored in convenience variable
7728@samp{$_}.
7729A count of the number of matches is stored in @samp{$numfound}.
7730
7731For example, if stopped at the @code{printf} in this function:
7732
7733@smallexample
7734void
7735hello ()
7736@{
7737 static char hello[] = "hello-hello";
7738 static struct @{ char c; short s; int i; @}
7739 __attribute__ ((packed)) mixed
7740 = @{ 'c', 0x1234, 0x87654321 @};
7741 printf ("%s\n", hello);
7742@}
7743@end smallexample
7744
7745@noindent
7746you get during debugging:
7747
7748@smallexample
7749(gdb) find &hello[0], +sizeof(hello), "hello"
77500x804956d <hello.1620+6>
77511 pattern found
7752(gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
77530x8049567 <hello.1620>
77540x804956d <hello.1620+6>
77552 patterns found
7756(gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
77570x8049567 <hello.1620>
77581 pattern found
7759(gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
77600x8049560 <mixed.1625>
77611 pattern found
7762(gdb) print $numfound
7763$1 = 1
7764(gdb) print $_
7765$2 = (void *) 0x8049560
7766@end smallexample
a0eb71c5 7767
e2e0bcd1
JB
7768@node Macros
7769@chapter C Preprocessor Macros
7770
49efadf5 7771Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7772``preprocessor macros'' which expand into strings of tokens.
7773@value{GDBN} can evaluate expressions containing macro invocations, show
7774the result of macro expansion, and show a macro's definition, including
7775where it was defined.
7776
7777You may need to compile your program specially to provide @value{GDBN}
7778with information about preprocessor macros. Most compilers do not
7779include macros in their debugging information, even when you compile
7780with the @option{-g} flag. @xref{Compilation}.
7781
7782A program may define a macro at one point, remove that definition later,
7783and then provide a different definition after that. Thus, at different
7784points in the program, a macro may have different definitions, or have
7785no definition at all. If there is a current stack frame, @value{GDBN}
7786uses the macros in scope at that frame's source code line. Otherwise,
7787@value{GDBN} uses the macros in scope at the current listing location;
7788see @ref{List}.
7789
7790At the moment, @value{GDBN} does not support the @code{##}
7791token-splicing operator, the @code{#} stringification operator, or
7792variable-arity macros.
7793
7794Whenever @value{GDBN} evaluates an expression, it always expands any
7795macro invocations present in the expression. @value{GDBN} also provides
7796the following commands for working with macros explicitly.
7797
7798@table @code
7799
7800@kindex macro expand
7801@cindex macro expansion, showing the results of preprocessor
7802@cindex preprocessor macro expansion, showing the results of
7803@cindex expanding preprocessor macros
7804@item macro expand @var{expression}
7805@itemx macro exp @var{expression}
7806Show the results of expanding all preprocessor macro invocations in
7807@var{expression}. Since @value{GDBN} simply expands macros, but does
7808not parse the result, @var{expression} need not be a valid expression;
7809it can be any string of tokens.
7810
09d4efe1 7811@kindex macro exp1
e2e0bcd1
JB
7812@item macro expand-once @var{expression}
7813@itemx macro exp1 @var{expression}
4644b6e3 7814@cindex expand macro once
e2e0bcd1
JB
7815@i{(This command is not yet implemented.)} Show the results of
7816expanding those preprocessor macro invocations that appear explicitly in
7817@var{expression}. Macro invocations appearing in that expansion are
7818left unchanged. This command allows you to see the effect of a
7819particular macro more clearly, without being confused by further
7820expansions. Since @value{GDBN} simply expands macros, but does not
7821parse the result, @var{expression} need not be a valid expression; it
7822can be any string of tokens.
7823
475b0867 7824@kindex info macro
e2e0bcd1
JB
7825@cindex macro definition, showing
7826@cindex definition, showing a macro's
475b0867 7827@item info macro @var{macro}
e2e0bcd1
JB
7828Show the definition of the macro named @var{macro}, and describe the
7829source location where that definition was established.
7830
7831@kindex macro define
7832@cindex user-defined macros
7833@cindex defining macros interactively
7834@cindex macros, user-defined
7835@item macro define @var{macro} @var{replacement-list}
7836@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7837@i{(This command is not yet implemented.)} Introduce a definition for a
7838preprocessor macro named @var{macro}, invocations of which are replaced
7839by the tokens given in @var{replacement-list}. The first form of this
7840command defines an ``object-like'' macro, which takes no arguments; the
7841second form defines a ``function-like'' macro, which takes the arguments
7842given in @var{arglist}.
7843
7844A definition introduced by this command is in scope in every expression
7845evaluated in @value{GDBN}, until it is removed with the @command{macro
7846undef} command, described below. The definition overrides all
7847definitions for @var{macro} present in the program being debugged, as
7848well as any previous user-supplied definition.
7849
7850@kindex macro undef
7851@item macro undef @var{macro}
7852@i{(This command is not yet implemented.)} Remove any user-supplied
7853definition for the macro named @var{macro}. This command only affects
7854definitions provided with the @command{macro define} command, described
7855above; it cannot remove definitions present in the program being
7856debugged.
7857
09d4efe1
EZ
7858@kindex macro list
7859@item macro list
7860@i{(This command is not yet implemented.)} List all the macros
7861defined using the @code{macro define} command.
e2e0bcd1
JB
7862@end table
7863
7864@cindex macros, example of debugging with
7865Here is a transcript showing the above commands in action. First, we
7866show our source files:
7867
7868@smallexample
7869$ cat sample.c
7870#include <stdio.h>
7871#include "sample.h"
7872
7873#define M 42
7874#define ADD(x) (M + x)
7875
7876main ()
7877@{
7878#define N 28
7879 printf ("Hello, world!\n");
7880#undef N
7881 printf ("We're so creative.\n");
7882#define N 1729
7883 printf ("Goodbye, world!\n");
7884@}
7885$ cat sample.h
7886#define Q <
7887$
7888@end smallexample
7889
7890Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7891We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7892compiler includes information about preprocessor macros in the debugging
7893information.
7894
7895@smallexample
7896$ gcc -gdwarf-2 -g3 sample.c -o sample
7897$
7898@end smallexample
7899
7900Now, we start @value{GDBN} on our sample program:
7901
7902@smallexample
7903$ gdb -nw sample
7904GNU gdb 2002-05-06-cvs
7905Copyright 2002 Free Software Foundation, Inc.
7906GDB is free software, @dots{}
f7dc1244 7907(@value{GDBP})
e2e0bcd1
JB
7908@end smallexample
7909
7910We can expand macros and examine their definitions, even when the
7911program is not running. @value{GDBN} uses the current listing position
7912to decide which macro definitions are in scope:
7913
7914@smallexample
f7dc1244 7915(@value{GDBP}) list main
e2e0bcd1
JB
79163
79174 #define M 42
79185 #define ADD(x) (M + x)
79196
79207 main ()
79218 @{
79229 #define N 28
792310 printf ("Hello, world!\n");
792411 #undef N
792512 printf ("We're so creative.\n");
f7dc1244 7926(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7927Defined at /home/jimb/gdb/macros/play/sample.c:5
7928#define ADD(x) (M + x)
f7dc1244 7929(@value{GDBP}) info macro Q
e2e0bcd1
JB
7930Defined at /home/jimb/gdb/macros/play/sample.h:1
7931 included at /home/jimb/gdb/macros/play/sample.c:2
7932#define Q <
f7dc1244 7933(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7934expands to: (42 + 1)
f7dc1244 7935(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7936expands to: once (M + 1)
f7dc1244 7937(@value{GDBP})
e2e0bcd1
JB
7938@end smallexample
7939
7940In the example above, note that @command{macro expand-once} expands only
7941the macro invocation explicit in the original text --- the invocation of
7942@code{ADD} --- but does not expand the invocation of the macro @code{M},
7943which was introduced by @code{ADD}.
7944
3f94c067
BW
7945Once the program is running, @value{GDBN} uses the macro definitions in
7946force at the source line of the current stack frame:
e2e0bcd1
JB
7947
7948@smallexample
f7dc1244 7949(@value{GDBP}) break main
e2e0bcd1 7950Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7951(@value{GDBP}) run
b383017d 7952Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7953
7954Breakpoint 1, main () at sample.c:10
795510 printf ("Hello, world!\n");
f7dc1244 7956(@value{GDBP})
e2e0bcd1
JB
7957@end smallexample
7958
7959At line 10, the definition of the macro @code{N} at line 9 is in force:
7960
7961@smallexample
f7dc1244 7962(@value{GDBP}) info macro N
e2e0bcd1
JB
7963Defined at /home/jimb/gdb/macros/play/sample.c:9
7964#define N 28
f7dc1244 7965(@value{GDBP}) macro expand N Q M
e2e0bcd1 7966expands to: 28 < 42
f7dc1244 7967(@value{GDBP}) print N Q M
e2e0bcd1 7968$1 = 1
f7dc1244 7969(@value{GDBP})
e2e0bcd1
JB
7970@end smallexample
7971
7972As we step over directives that remove @code{N}'s definition, and then
7973give it a new definition, @value{GDBN} finds the definition (or lack
7974thereof) in force at each point:
7975
7976@smallexample
f7dc1244 7977(@value{GDBP}) next
e2e0bcd1
JB
7978Hello, world!
797912 printf ("We're so creative.\n");
f7dc1244 7980(@value{GDBP}) info macro N
e2e0bcd1
JB
7981The symbol `N' has no definition as a C/C++ preprocessor macro
7982at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7983(@value{GDBP}) next
e2e0bcd1
JB
7984We're so creative.
798514 printf ("Goodbye, world!\n");
f7dc1244 7986(@value{GDBP}) info macro N
e2e0bcd1
JB
7987Defined at /home/jimb/gdb/macros/play/sample.c:13
7988#define N 1729
f7dc1244 7989(@value{GDBP}) macro expand N Q M
e2e0bcd1 7990expands to: 1729 < 42
f7dc1244 7991(@value{GDBP}) print N Q M
e2e0bcd1 7992$2 = 0
f7dc1244 7993(@value{GDBP})
e2e0bcd1
JB
7994@end smallexample
7995
7996
b37052ae
EZ
7997@node Tracepoints
7998@chapter Tracepoints
7999@c This chapter is based on the documentation written by Michael
8000@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
8001
8002@cindex tracepoints
8003In some applications, it is not feasible for the debugger to interrupt
8004the program's execution long enough for the developer to learn
8005anything helpful about its behavior. If the program's correctness
8006depends on its real-time behavior, delays introduced by a debugger
8007might cause the program to change its behavior drastically, or perhaps
8008fail, even when the code itself is correct. It is useful to be able
8009to observe the program's behavior without interrupting it.
8010
8011Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
8012specify locations in the program, called @dfn{tracepoints}, and
8013arbitrary expressions to evaluate when those tracepoints are reached.
8014Later, using the @code{tfind} command, you can examine the values
8015those expressions had when the program hit the tracepoints. The
8016expressions may also denote objects in memory---structures or arrays,
8017for example---whose values @value{GDBN} should record; while visiting
8018a particular tracepoint, you may inspect those objects as if they were
8019in memory at that moment. However, because @value{GDBN} records these
8020values without interacting with you, it can do so quickly and
8021unobtrusively, hopefully not disturbing the program's behavior.
8022
8023The tracepoint facility is currently available only for remote
9d29849a
JB
8024targets. @xref{Targets}. In addition, your remote target must know
8025how to collect trace data. This functionality is implemented in the
8026remote stub; however, none of the stubs distributed with @value{GDBN}
8027support tracepoints as of this writing. The format of the remote
8028packets used to implement tracepoints are described in @ref{Tracepoint
8029Packets}.
b37052ae
EZ
8030
8031This chapter describes the tracepoint commands and features.
8032
8033@menu
b383017d
RM
8034* Set Tracepoints::
8035* Analyze Collected Data::
8036* Tracepoint Variables::
b37052ae
EZ
8037@end menu
8038
8039@node Set Tracepoints
8040@section Commands to Set Tracepoints
8041
8042Before running such a @dfn{trace experiment}, an arbitrary number of
8043tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
8044tracepoint has a number assigned to it by @value{GDBN}. Like with
8045breakpoints, tracepoint numbers are successive integers starting from
8046one. Many of the commands associated with tracepoints take the
8047tracepoint number as their argument, to identify which tracepoint to
8048work on.
8049
8050For each tracepoint, you can specify, in advance, some arbitrary set
8051of data that you want the target to collect in the trace buffer when
8052it hits that tracepoint. The collected data can include registers,
8053local variables, or global data. Later, you can use @value{GDBN}
8054commands to examine the values these data had at the time the
8055tracepoint was hit.
8056
8057This section describes commands to set tracepoints and associated
8058conditions and actions.
8059
8060@menu
b383017d
RM
8061* Create and Delete Tracepoints::
8062* Enable and Disable Tracepoints::
8063* Tracepoint Passcounts::
8064* Tracepoint Actions::
8065* Listing Tracepoints::
79a6e687 8066* Starting and Stopping Trace Experiments::
b37052ae
EZ
8067@end menu
8068
8069@node Create and Delete Tracepoints
8070@subsection Create and Delete Tracepoints
8071
8072@table @code
8073@cindex set tracepoint
8074@kindex trace
8075@item trace
8076The @code{trace} command is very similar to the @code{break} command.
8077Its argument can be a source line, a function name, or an address in
8078the target program. @xref{Set Breaks}. The @code{trace} command
8079defines a tracepoint, which is a point in the target program where the
8080debugger will briefly stop, collect some data, and then allow the
8081program to continue. Setting a tracepoint or changing its commands
8082doesn't take effect until the next @code{tstart} command; thus, you
8083cannot change the tracepoint attributes once a trace experiment is
8084running.
8085
8086Here are some examples of using the @code{trace} command:
8087
8088@smallexample
8089(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
8090
8091(@value{GDBP}) @b{trace +2} // 2 lines forward
8092
8093(@value{GDBP}) @b{trace my_function} // first source line of function
8094
8095(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
8096
8097(@value{GDBP}) @b{trace *0x2117c4} // an address
8098@end smallexample
8099
8100@noindent
8101You can abbreviate @code{trace} as @code{tr}.
8102
8103@vindex $tpnum
8104@cindex last tracepoint number
8105@cindex recent tracepoint number
8106@cindex tracepoint number
8107The convenience variable @code{$tpnum} records the tracepoint number
8108of the most recently set tracepoint.
8109
8110@kindex delete tracepoint
8111@cindex tracepoint deletion
8112@item delete tracepoint @r{[}@var{num}@r{]}
8113Permanently delete one or more tracepoints. With no argument, the
8114default is to delete all tracepoints.
8115
8116Examples:
8117
8118@smallexample
8119(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
8120
8121(@value{GDBP}) @b{delete trace} // remove all tracepoints
8122@end smallexample
8123
8124@noindent
8125You can abbreviate this command as @code{del tr}.
8126@end table
8127
8128@node Enable and Disable Tracepoints
8129@subsection Enable and Disable Tracepoints
8130
8131@table @code
8132@kindex disable tracepoint
8133@item disable tracepoint @r{[}@var{num}@r{]}
8134Disable tracepoint @var{num}, or all tracepoints if no argument
8135@var{num} is given. A disabled tracepoint will have no effect during
8136the next trace experiment, but it is not forgotten. You can re-enable
8137a disabled tracepoint using the @code{enable tracepoint} command.
8138
8139@kindex enable tracepoint
8140@item enable tracepoint @r{[}@var{num}@r{]}
8141Enable tracepoint @var{num}, or all tracepoints. The enabled
8142tracepoints will become effective the next time a trace experiment is
8143run.
8144@end table
8145
8146@node Tracepoint Passcounts
8147@subsection Tracepoint Passcounts
8148
8149@table @code
8150@kindex passcount
8151@cindex tracepoint pass count
8152@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
8153Set the @dfn{passcount} of a tracepoint. The passcount is a way to
8154automatically stop a trace experiment. If a tracepoint's passcount is
8155@var{n}, then the trace experiment will be automatically stopped on
8156the @var{n}'th time that tracepoint is hit. If the tracepoint number
8157@var{num} is not specified, the @code{passcount} command sets the
8158passcount of the most recently defined tracepoint. If no passcount is
8159given, the trace experiment will run until stopped explicitly by the
8160user.
8161
8162Examples:
8163
8164@smallexample
b383017d 8165(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8166@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8167
8168(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8169@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8170(@value{GDBP}) @b{trace foo}
8171(@value{GDBP}) @b{pass 3}
8172(@value{GDBP}) @b{trace bar}
8173(@value{GDBP}) @b{pass 2}
8174(@value{GDBP}) @b{trace baz}
8175(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8176@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8177@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8178@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8179@end smallexample
8180@end table
8181
8182@node Tracepoint Actions
8183@subsection Tracepoint Action Lists
8184
8185@table @code
8186@kindex actions
8187@cindex tracepoint actions
8188@item actions @r{[}@var{num}@r{]}
8189This command will prompt for a list of actions to be taken when the
8190tracepoint is hit. If the tracepoint number @var{num} is not
8191specified, this command sets the actions for the one that was most
8192recently defined (so that you can define a tracepoint and then say
8193@code{actions} without bothering about its number). You specify the
8194actions themselves on the following lines, one action at a time, and
8195terminate the actions list with a line containing just @code{end}. So
8196far, the only defined actions are @code{collect} and
8197@code{while-stepping}.
8198
8199@cindex remove actions from a tracepoint
8200To remove all actions from a tracepoint, type @samp{actions @var{num}}
8201and follow it immediately with @samp{end}.
8202
8203@smallexample
8204(@value{GDBP}) @b{collect @var{data}} // collect some data
8205
6826cf00 8206(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8207
6826cf00 8208(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8209@end smallexample
8210
8211In the following example, the action list begins with @code{collect}
8212commands indicating the things to be collected when the tracepoint is
8213hit. Then, in order to single-step and collect additional data
8214following the tracepoint, a @code{while-stepping} command is used,
8215followed by the list of things to be collected while stepping. The
8216@code{while-stepping} command is terminated by its own separate
8217@code{end} command. Lastly, the action list is terminated by an
8218@code{end} command.
8219
8220@smallexample
8221(@value{GDBP}) @b{trace foo}
8222(@value{GDBP}) @b{actions}
8223Enter actions for tracepoint 1, one per line:
8224> collect bar,baz
8225> collect $regs
8226> while-stepping 12
8227 > collect $fp, $sp
8228 > end
8229end
8230@end smallexample
8231
8232@kindex collect @r{(tracepoints)}
8233@item collect @var{expr1}, @var{expr2}, @dots{}
8234Collect values of the given expressions when the tracepoint is hit.
8235This command accepts a comma-separated list of any valid expressions.
8236In addition to global, static, or local variables, the following
8237special arguments are supported:
8238
8239@table @code
8240@item $regs
8241collect all registers
8242
8243@item $args
8244collect all function arguments
8245
8246@item $locals
8247collect all local variables.
8248@end table
8249
8250You can give several consecutive @code{collect} commands, each one
8251with a single argument, or one @code{collect} command with several
8252arguments separated by commas: the effect is the same.
8253
f5c37c66
EZ
8254The command @code{info scope} (@pxref{Symbols, info scope}) is
8255particularly useful for figuring out what data to collect.
8256
b37052ae
EZ
8257@kindex while-stepping @r{(tracepoints)}
8258@item while-stepping @var{n}
8259Perform @var{n} single-step traces after the tracepoint, collecting
8260new data at each step. The @code{while-stepping} command is
8261followed by the list of what to collect while stepping (followed by
8262its own @code{end} command):
8263
8264@smallexample
8265> while-stepping 12
8266 > collect $regs, myglobal
8267 > end
8268>
8269@end smallexample
8270
8271@noindent
8272You may abbreviate @code{while-stepping} as @code{ws} or
8273@code{stepping}.
8274@end table
8275
8276@node Listing Tracepoints
8277@subsection Listing Tracepoints
8278
8279@table @code
8280@kindex info tracepoints
09d4efe1 8281@kindex info tp
b37052ae
EZ
8282@cindex information about tracepoints
8283@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8284Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8285a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8286defined so far. For each tracepoint, the following information is
8287shown:
8288
8289@itemize @bullet
8290@item
8291its number
8292@item
8293whether it is enabled or disabled
8294@item
8295its address
8296@item
8297its passcount as given by the @code{passcount @var{n}} command
8298@item
8299its step count as given by the @code{while-stepping @var{n}} command
8300@item
8301where in the source files is the tracepoint set
8302@item
8303its action list as given by the @code{actions} command
8304@end itemize
8305
8306@smallexample
8307(@value{GDBP}) @b{info trace}
8308Num Enb Address PassC StepC What
83091 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
83102 y 0x0020dc64 0 0 in g_test at g_test.c:1375
83113 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8312(@value{GDBP})
8313@end smallexample
8314
8315@noindent
8316This command can be abbreviated @code{info tp}.
8317@end table
8318
79a6e687
BW
8319@node Starting and Stopping Trace Experiments
8320@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8321
8322@table @code
8323@kindex tstart
8324@cindex start a new trace experiment
8325@cindex collected data discarded
8326@item tstart
8327This command takes no arguments. It starts the trace experiment, and
8328begins collecting data. This has the side effect of discarding all
8329the data collected in the trace buffer during the previous trace
8330experiment.
8331
8332@kindex tstop
8333@cindex stop a running trace experiment
8334@item tstop
8335This command takes no arguments. It ends the trace experiment, and
8336stops collecting data.
8337
68c71a2e 8338@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8339automatically if any tracepoint's passcount is reached
8340(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8341
8342@kindex tstatus
8343@cindex status of trace data collection
8344@cindex trace experiment, status of
8345@item tstatus
8346This command displays the status of the current trace data
8347collection.
8348@end table
8349
8350Here is an example of the commands we described so far:
8351
8352@smallexample
8353(@value{GDBP}) @b{trace gdb_c_test}
8354(@value{GDBP}) @b{actions}
8355Enter actions for tracepoint #1, one per line.
8356> collect $regs,$locals,$args
8357> while-stepping 11
8358 > collect $regs
8359 > end
8360> end
8361(@value{GDBP}) @b{tstart}
8362 [time passes @dots{}]
8363(@value{GDBP}) @b{tstop}
8364@end smallexample
8365
8366
8367@node Analyze Collected Data
79a6e687 8368@section Using the Collected Data
b37052ae
EZ
8369
8370After the tracepoint experiment ends, you use @value{GDBN} commands
8371for examining the trace data. The basic idea is that each tracepoint
8372collects a trace @dfn{snapshot} every time it is hit and another
8373snapshot every time it single-steps. All these snapshots are
8374consecutively numbered from zero and go into a buffer, and you can
8375examine them later. The way you examine them is to @dfn{focus} on a
8376specific trace snapshot. When the remote stub is focused on a trace
8377snapshot, it will respond to all @value{GDBN} requests for memory and
8378registers by reading from the buffer which belongs to that snapshot,
8379rather than from @emph{real} memory or registers of the program being
8380debugged. This means that @strong{all} @value{GDBN} commands
8381(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8382behave as if we were currently debugging the program state as it was
8383when the tracepoint occurred. Any requests for data that are not in
8384the buffer will fail.
8385
8386@menu
8387* tfind:: How to select a trace snapshot
8388* tdump:: How to display all data for a snapshot
8389* save-tracepoints:: How to save tracepoints for a future run
8390@end menu
8391
8392@node tfind
8393@subsection @code{tfind @var{n}}
8394
8395@kindex tfind
8396@cindex select trace snapshot
8397@cindex find trace snapshot
8398The basic command for selecting a trace snapshot from the buffer is
8399@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8400counting from zero. If no argument @var{n} is given, the next
8401snapshot is selected.
8402
8403Here are the various forms of using the @code{tfind} command.
8404
8405@table @code
8406@item tfind start
8407Find the first snapshot in the buffer. This is a synonym for
8408@code{tfind 0} (since 0 is the number of the first snapshot).
8409
8410@item tfind none
8411Stop debugging trace snapshots, resume @emph{live} debugging.
8412
8413@item tfind end
8414Same as @samp{tfind none}.
8415
8416@item tfind
8417No argument means find the next trace snapshot.
8418
8419@item tfind -
8420Find the previous trace snapshot before the current one. This permits
8421retracing earlier steps.
8422
8423@item tfind tracepoint @var{num}
8424Find the next snapshot associated with tracepoint @var{num}. Search
8425proceeds forward from the last examined trace snapshot. If no
8426argument @var{num} is given, it means find the next snapshot collected
8427for the same tracepoint as the current snapshot.
8428
8429@item tfind pc @var{addr}
8430Find the next snapshot associated with the value @var{addr} of the
8431program counter. Search proceeds forward from the last examined trace
8432snapshot. If no argument @var{addr} is given, it means find the next
8433snapshot with the same value of PC as the current snapshot.
8434
8435@item tfind outside @var{addr1}, @var{addr2}
8436Find the next snapshot whose PC is outside the given range of
8437addresses.
8438
8439@item tfind range @var{addr1}, @var{addr2}
8440Find the next snapshot whose PC is between @var{addr1} and
8441@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8442
8443@item tfind line @r{[}@var{file}:@r{]}@var{n}
8444Find the next snapshot associated with the source line @var{n}. If
8445the optional argument @var{file} is given, refer to line @var{n} in
8446that source file. Search proceeds forward from the last examined
8447trace snapshot. If no argument @var{n} is given, it means find the
8448next line other than the one currently being examined; thus saying
8449@code{tfind line} repeatedly can appear to have the same effect as
8450stepping from line to line in a @emph{live} debugging session.
8451@end table
8452
8453The default arguments for the @code{tfind} commands are specifically
8454designed to make it easy to scan through the trace buffer. For
8455instance, @code{tfind} with no argument selects the next trace
8456snapshot, and @code{tfind -} with no argument selects the previous
8457trace snapshot. So, by giving one @code{tfind} command, and then
8458simply hitting @key{RET} repeatedly you can examine all the trace
8459snapshots in order. Or, by saying @code{tfind -} and then hitting
8460@key{RET} repeatedly you can examine the snapshots in reverse order.
8461The @code{tfind line} command with no argument selects the snapshot
8462for the next source line executed. The @code{tfind pc} command with
8463no argument selects the next snapshot with the same program counter
8464(PC) as the current frame. The @code{tfind tracepoint} command with
8465no argument selects the next trace snapshot collected by the same
8466tracepoint as the current one.
8467
8468In addition to letting you scan through the trace buffer manually,
8469these commands make it easy to construct @value{GDBN} scripts that
8470scan through the trace buffer and print out whatever collected data
8471you are interested in. Thus, if we want to examine the PC, FP, and SP
8472registers from each trace frame in the buffer, we can say this:
8473
8474@smallexample
8475(@value{GDBP}) @b{tfind start}
8476(@value{GDBP}) @b{while ($trace_frame != -1)}
8477> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8478 $trace_frame, $pc, $sp, $fp
8479> tfind
8480> end
8481
8482Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8483Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8484Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8485Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8486Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8487Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8488Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8489Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8490Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8491Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8492Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8493@end smallexample
8494
8495Or, if we want to examine the variable @code{X} at each source line in
8496the buffer:
8497
8498@smallexample
8499(@value{GDBP}) @b{tfind start}
8500(@value{GDBP}) @b{while ($trace_frame != -1)}
8501> printf "Frame %d, X == %d\n", $trace_frame, X
8502> tfind line
8503> end
8504
8505Frame 0, X = 1
8506Frame 7, X = 2
8507Frame 13, X = 255
8508@end smallexample
8509
8510@node tdump
8511@subsection @code{tdump}
8512@kindex tdump
8513@cindex dump all data collected at tracepoint
8514@cindex tracepoint data, display
8515
8516This command takes no arguments. It prints all the data collected at
8517the current trace snapshot.
8518
8519@smallexample
8520(@value{GDBP}) @b{trace 444}
8521(@value{GDBP}) @b{actions}
8522Enter actions for tracepoint #2, one per line:
8523> collect $regs, $locals, $args, gdb_long_test
8524> end
8525
8526(@value{GDBP}) @b{tstart}
8527
8528(@value{GDBP}) @b{tfind line 444}
8529#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8530at gdb_test.c:444
8531444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8532
8533(@value{GDBP}) @b{tdump}
8534Data collected at tracepoint 2, trace frame 1:
8535d0 0xc4aa0085 -995491707
8536d1 0x18 24
8537d2 0x80 128
8538d3 0x33 51
8539d4 0x71aea3d 119204413
8540d5 0x22 34
8541d6 0xe0 224
8542d7 0x380035 3670069
8543a0 0x19e24a 1696330
8544a1 0x3000668 50333288
8545a2 0x100 256
8546a3 0x322000 3284992
8547a4 0x3000698 50333336
8548a5 0x1ad3cc 1758156
8549fp 0x30bf3c 0x30bf3c
8550sp 0x30bf34 0x30bf34
8551ps 0x0 0
8552pc 0x20b2c8 0x20b2c8
8553fpcontrol 0x0 0
8554fpstatus 0x0 0
8555fpiaddr 0x0 0
8556p = 0x20e5b4 "gdb-test"
8557p1 = (void *) 0x11
8558p2 = (void *) 0x22
8559p3 = (void *) 0x33
8560p4 = (void *) 0x44
8561p5 = (void *) 0x55
8562p6 = (void *) 0x66
8563gdb_long_test = 17 '\021'
8564
8565(@value{GDBP})
8566@end smallexample
8567
8568@node save-tracepoints
8569@subsection @code{save-tracepoints @var{filename}}
8570@kindex save-tracepoints
8571@cindex save tracepoints for future sessions
8572
8573This command saves all current tracepoint definitions together with
8574their actions and passcounts, into a file @file{@var{filename}}
8575suitable for use in a later debugging session. To read the saved
8576tracepoint definitions, use the @code{source} command (@pxref{Command
8577Files}).
8578
8579@node Tracepoint Variables
8580@section Convenience Variables for Tracepoints
8581@cindex tracepoint variables
8582@cindex convenience variables for tracepoints
8583
8584@table @code
8585@vindex $trace_frame
8586@item (int) $trace_frame
8587The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8588snapshot is selected.
8589
8590@vindex $tracepoint
8591@item (int) $tracepoint
8592The tracepoint for the current trace snapshot.
8593
8594@vindex $trace_line
8595@item (int) $trace_line
8596The line number for the current trace snapshot.
8597
8598@vindex $trace_file
8599@item (char []) $trace_file
8600The source file for the current trace snapshot.
8601
8602@vindex $trace_func
8603@item (char []) $trace_func
8604The name of the function containing @code{$tracepoint}.
8605@end table
8606
8607Note: @code{$trace_file} is not suitable for use in @code{printf},
8608use @code{output} instead.
8609
8610Here's a simple example of using these convenience variables for
8611stepping through all the trace snapshots and printing some of their
8612data.
8613
8614@smallexample
8615(@value{GDBP}) @b{tfind start}
8616
8617(@value{GDBP}) @b{while $trace_frame != -1}
8618> output $trace_file
8619> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8620> tfind
8621> end
8622@end smallexample
8623
df0cd8c5
JB
8624@node Overlays
8625@chapter Debugging Programs That Use Overlays
8626@cindex overlays
8627
8628If your program is too large to fit completely in your target system's
8629memory, you can sometimes use @dfn{overlays} to work around this
8630problem. @value{GDBN} provides some support for debugging programs that
8631use overlays.
8632
8633@menu
8634* How Overlays Work:: A general explanation of overlays.
8635* Overlay Commands:: Managing overlays in @value{GDBN}.
8636* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8637 mapped by asking the inferior.
8638* Overlay Sample Program:: A sample program using overlays.
8639@end menu
8640
8641@node How Overlays Work
8642@section How Overlays Work
8643@cindex mapped overlays
8644@cindex unmapped overlays
8645@cindex load address, overlay's
8646@cindex mapped address
8647@cindex overlay area
8648
8649Suppose you have a computer whose instruction address space is only 64
8650kilobytes long, but which has much more memory which can be accessed by
8651other means: special instructions, segment registers, or memory
8652management hardware, for example. Suppose further that you want to
8653adapt a program which is larger than 64 kilobytes to run on this system.
8654
8655One solution is to identify modules of your program which are relatively
8656independent, and need not call each other directly; call these modules
8657@dfn{overlays}. Separate the overlays from the main program, and place
8658their machine code in the larger memory. Place your main program in
8659instruction memory, but leave at least enough space there to hold the
8660largest overlay as well.
8661
8662Now, to call a function located in an overlay, you must first copy that
8663overlay's machine code from the large memory into the space set aside
8664for it in the instruction memory, and then jump to its entry point
8665there.
8666
c928edc0
AC
8667@c NB: In the below the mapped area's size is greater or equal to the
8668@c size of all overlays. This is intentional to remind the developer
8669@c that overlays don't necessarily need to be the same size.
8670
474c8240 8671@smallexample
df0cd8c5 8672@group
c928edc0
AC
8673 Data Instruction Larger
8674Address Space Address Space Address Space
8675+-----------+ +-----------+ +-----------+
8676| | | | | |
8677+-----------+ +-----------+ +-----------+<-- overlay 1
8678| program | | main | .----| overlay 1 | load address
8679| variables | | program | | +-----------+
8680| and heap | | | | | |
8681+-----------+ | | | +-----------+<-- overlay 2
8682| | +-----------+ | | | load address
8683+-----------+ | | | .-| overlay 2 |
8684 | | | | | |
8685 mapped --->+-----------+ | | +-----------+
8686 address | | | | | |
8687 | overlay | <-' | | |
8688 | area | <---' +-----------+<-- overlay 3
8689 | | <---. | | load address
8690 +-----------+ `--| overlay 3 |
8691 | | | |
8692 +-----------+ | |
8693 +-----------+
8694 | |
8695 +-----------+
8696
8697 @anchor{A code overlay}A code overlay
df0cd8c5 8698@end group
474c8240 8699@end smallexample
df0cd8c5 8700
c928edc0
AC
8701The diagram (@pxref{A code overlay}) shows a system with separate data
8702and instruction address spaces. To map an overlay, the program copies
8703its code from the larger address space to the instruction address space.
8704Since the overlays shown here all use the same mapped address, only one
8705may be mapped at a time. For a system with a single address space for
8706data and instructions, the diagram would be similar, except that the
8707program variables and heap would share an address space with the main
8708program and the overlay area.
df0cd8c5
JB
8709
8710An overlay loaded into instruction memory and ready for use is called a
8711@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8712instruction memory. An overlay not present (or only partially present)
8713in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8714is its address in the larger memory. The mapped address is also called
8715the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8716called the @dfn{load memory address}, or @dfn{LMA}.
8717
8718Unfortunately, overlays are not a completely transparent way to adapt a
8719program to limited instruction memory. They introduce a new set of
8720global constraints you must keep in mind as you design your program:
8721
8722@itemize @bullet
8723
8724@item
8725Before calling or returning to a function in an overlay, your program
8726must make sure that overlay is actually mapped. Otherwise, the call or
8727return will transfer control to the right address, but in the wrong
8728overlay, and your program will probably crash.
8729
8730@item
8731If the process of mapping an overlay is expensive on your system, you
8732will need to choose your overlays carefully to minimize their effect on
8733your program's performance.
8734
8735@item
8736The executable file you load onto your system must contain each
8737overlay's instructions, appearing at the overlay's load address, not its
8738mapped address. However, each overlay's instructions must be relocated
8739and its symbols defined as if the overlay were at its mapped address.
8740You can use GNU linker scripts to specify different load and relocation
8741addresses for pieces of your program; see @ref{Overlay Description,,,
8742ld.info, Using ld: the GNU linker}.
8743
8744@item
8745The procedure for loading executable files onto your system must be able
8746to load their contents into the larger address space as well as the
8747instruction and data spaces.
8748
8749@end itemize
8750
8751The overlay system described above is rather simple, and could be
8752improved in many ways:
8753
8754@itemize @bullet
8755
8756@item
8757If your system has suitable bank switch registers or memory management
8758hardware, you could use those facilities to make an overlay's load area
8759contents simply appear at their mapped address in instruction space.
8760This would probably be faster than copying the overlay to its mapped
8761area in the usual way.
8762
8763@item
8764If your overlays are small enough, you could set aside more than one
8765overlay area, and have more than one overlay mapped at a time.
8766
8767@item
8768You can use overlays to manage data, as well as instructions. In
8769general, data overlays are even less transparent to your design than
8770code overlays: whereas code overlays only require care when you call or
8771return to functions, data overlays require care every time you access
8772the data. Also, if you change the contents of a data overlay, you
8773must copy its contents back out to its load address before you can copy a
8774different data overlay into the same mapped area.
8775
8776@end itemize
8777
8778
8779@node Overlay Commands
8780@section Overlay Commands
8781
8782To use @value{GDBN}'s overlay support, each overlay in your program must
8783correspond to a separate section of the executable file. The section's
8784virtual memory address and load memory address must be the overlay's
8785mapped and load addresses. Identifying overlays with sections allows
8786@value{GDBN} to determine the appropriate address of a function or
8787variable, depending on whether the overlay is mapped or not.
8788
8789@value{GDBN}'s overlay commands all start with the word @code{overlay};
8790you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8791
8792@table @code
8793@item overlay off
4644b6e3 8794@kindex overlay
df0cd8c5
JB
8795Disable @value{GDBN}'s overlay support. When overlay support is
8796disabled, @value{GDBN} assumes that all functions and variables are
8797always present at their mapped addresses. By default, @value{GDBN}'s
8798overlay support is disabled.
8799
8800@item overlay manual
df0cd8c5
JB
8801@cindex manual overlay debugging
8802Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8803relies on you to tell it which overlays are mapped, and which are not,
8804using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8805commands described below.
8806
8807@item overlay map-overlay @var{overlay}
8808@itemx overlay map @var{overlay}
df0cd8c5
JB
8809@cindex map an overlay
8810Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8811be the name of the object file section containing the overlay. When an
8812overlay is mapped, @value{GDBN} assumes it can find the overlay's
8813functions and variables at their mapped addresses. @value{GDBN} assumes
8814that any other overlays whose mapped ranges overlap that of
8815@var{overlay} are now unmapped.
8816
8817@item overlay unmap-overlay @var{overlay}
8818@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8819@cindex unmap an overlay
8820Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8821must be the name of the object file section containing the overlay.
8822When an overlay is unmapped, @value{GDBN} assumes it can find the
8823overlay's functions and variables at their load addresses.
8824
8825@item overlay auto
df0cd8c5
JB
8826Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8827consults a data structure the overlay manager maintains in the inferior
8828to see which overlays are mapped. For details, see @ref{Automatic
8829Overlay Debugging}.
8830
8831@item overlay load-target
8832@itemx overlay load
df0cd8c5
JB
8833@cindex reloading the overlay table
8834Re-read the overlay table from the inferior. Normally, @value{GDBN}
8835re-reads the table @value{GDBN} automatically each time the inferior
8836stops, so this command should only be necessary if you have changed the
8837overlay mapping yourself using @value{GDBN}. This command is only
8838useful when using automatic overlay debugging.
8839
8840@item overlay list-overlays
8841@itemx overlay list
8842@cindex listing mapped overlays
8843Display a list of the overlays currently mapped, along with their mapped
8844addresses, load addresses, and sizes.
8845
8846@end table
8847
8848Normally, when @value{GDBN} prints a code address, it includes the name
8849of the function the address falls in:
8850
474c8240 8851@smallexample
f7dc1244 8852(@value{GDBP}) print main
df0cd8c5 8853$3 = @{int ()@} 0x11a0 <main>
474c8240 8854@end smallexample
df0cd8c5
JB
8855@noindent
8856When overlay debugging is enabled, @value{GDBN} recognizes code in
8857unmapped overlays, and prints the names of unmapped functions with
8858asterisks around them. For example, if @code{foo} is a function in an
8859unmapped overlay, @value{GDBN} prints it this way:
8860
474c8240 8861@smallexample
f7dc1244 8862(@value{GDBP}) overlay list
df0cd8c5 8863No sections are mapped.
f7dc1244 8864(@value{GDBP}) print foo
df0cd8c5 8865$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8866@end smallexample
df0cd8c5
JB
8867@noindent
8868When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8869name normally:
8870
474c8240 8871@smallexample
f7dc1244 8872(@value{GDBP}) overlay list
b383017d 8873Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8874 mapped at 0x1016 - 0x104a
f7dc1244 8875(@value{GDBP}) print foo
df0cd8c5 8876$6 = @{int (int)@} 0x1016 <foo>
474c8240 8877@end smallexample
df0cd8c5
JB
8878
8879When overlay debugging is enabled, @value{GDBN} can find the correct
8880address for functions and variables in an overlay, whether or not the
8881overlay is mapped. This allows most @value{GDBN} commands, like
8882@code{break} and @code{disassemble}, to work normally, even on unmapped
8883code. However, @value{GDBN}'s breakpoint support has some limitations:
8884
8885@itemize @bullet
8886@item
8887@cindex breakpoints in overlays
8888@cindex overlays, setting breakpoints in
8889You can set breakpoints in functions in unmapped overlays, as long as
8890@value{GDBN} can write to the overlay at its load address.
8891@item
8892@value{GDBN} can not set hardware or simulator-based breakpoints in
8893unmapped overlays. However, if you set a breakpoint at the end of your
8894overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8895you are using manual overlay management), @value{GDBN} will re-set its
8896breakpoints properly.
8897@end itemize
8898
8899
8900@node Automatic Overlay Debugging
8901@section Automatic Overlay Debugging
8902@cindex automatic overlay debugging
8903
8904@value{GDBN} can automatically track which overlays are mapped and which
8905are not, given some simple co-operation from the overlay manager in the
8906inferior. If you enable automatic overlay debugging with the
8907@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8908looks in the inferior's memory for certain variables describing the
8909current state of the overlays.
8910
8911Here are the variables your overlay manager must define to support
8912@value{GDBN}'s automatic overlay debugging:
8913
8914@table @asis
8915
8916@item @code{_ovly_table}:
8917This variable must be an array of the following structures:
8918
474c8240 8919@smallexample
df0cd8c5
JB
8920struct
8921@{
8922 /* The overlay's mapped address. */
8923 unsigned long vma;
8924
8925 /* The size of the overlay, in bytes. */
8926 unsigned long size;
8927
8928 /* The overlay's load address. */
8929 unsigned long lma;
8930
8931 /* Non-zero if the overlay is currently mapped;
8932 zero otherwise. */
8933 unsigned long mapped;
8934@}
474c8240 8935@end smallexample
df0cd8c5
JB
8936
8937@item @code{_novlys}:
8938This variable must be a four-byte signed integer, holding the total
8939number of elements in @code{_ovly_table}.
8940
8941@end table
8942
8943To decide whether a particular overlay is mapped or not, @value{GDBN}
8944looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8945@code{lma} members equal the VMA and LMA of the overlay's section in the
8946executable file. When @value{GDBN} finds a matching entry, it consults
8947the entry's @code{mapped} member to determine whether the overlay is
8948currently mapped.
8949
81d46470 8950In addition, your overlay manager may define a function called
def71bfa 8951@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8952will silently set a breakpoint there. If the overlay manager then
8953calls this function whenever it has changed the overlay table, this
8954will enable @value{GDBN} to accurately keep track of which overlays
8955are in program memory, and update any breakpoints that may be set
b383017d 8956in overlays. This will allow breakpoints to work even if the
81d46470
MS
8957overlays are kept in ROM or other non-writable memory while they
8958are not being executed.
df0cd8c5
JB
8959
8960@node Overlay Sample Program
8961@section Overlay Sample Program
8962@cindex overlay example program
8963
8964When linking a program which uses overlays, you must place the overlays
8965at their load addresses, while relocating them to run at their mapped
8966addresses. To do this, you must write a linker script (@pxref{Overlay
8967Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8968since linker scripts are specific to a particular host system, target
8969architecture, and target memory layout, this manual cannot provide
8970portable sample code demonstrating @value{GDBN}'s overlay support.
8971
8972However, the @value{GDBN} source distribution does contain an overlaid
8973program, with linker scripts for a few systems, as part of its test
8974suite. The program consists of the following files from
8975@file{gdb/testsuite/gdb.base}:
8976
8977@table @file
8978@item overlays.c
8979The main program file.
8980@item ovlymgr.c
8981A simple overlay manager, used by @file{overlays.c}.
8982@item foo.c
8983@itemx bar.c
8984@itemx baz.c
8985@itemx grbx.c
8986Overlay modules, loaded and used by @file{overlays.c}.
8987@item d10v.ld
8988@itemx m32r.ld
8989Linker scripts for linking the test program on the @code{d10v-elf}
8990and @code{m32r-elf} targets.
8991@end table
8992
8993You can build the test program using the @code{d10v-elf} GCC
8994cross-compiler like this:
8995
474c8240 8996@smallexample
df0cd8c5
JB
8997$ d10v-elf-gcc -g -c overlays.c
8998$ d10v-elf-gcc -g -c ovlymgr.c
8999$ d10v-elf-gcc -g -c foo.c
9000$ d10v-elf-gcc -g -c bar.c
9001$ d10v-elf-gcc -g -c baz.c
9002$ d10v-elf-gcc -g -c grbx.c
9003$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
9004 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 9005@end smallexample
df0cd8c5
JB
9006
9007The build process is identical for any other architecture, except that
9008you must substitute the appropriate compiler and linker script for the
9009target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
9010
9011
6d2ebf8b 9012@node Languages
c906108c
SS
9013@chapter Using @value{GDBN} with Different Languages
9014@cindex languages
9015
c906108c
SS
9016Although programming languages generally have common aspects, they are
9017rarely expressed in the same manner. For instance, in ANSI C,
9018dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
9019Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 9020represented (and displayed) differently. Hex numbers in C appear as
c906108c 9021@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
9022
9023@cindex working language
9024Language-specific information is built into @value{GDBN} for some languages,
9025allowing you to express operations like the above in your program's
9026native language, and allowing @value{GDBN} to output values in a manner
9027consistent with the syntax of your program's native language. The
9028language you use to build expressions is called the @dfn{working
9029language}.
9030
9031@menu
9032* Setting:: Switching between source languages
9033* Show:: Displaying the language
c906108c 9034* Checks:: Type and range checks
79a6e687
BW
9035* Supported Languages:: Supported languages
9036* Unsupported Languages:: Unsupported languages
c906108c
SS
9037@end menu
9038
6d2ebf8b 9039@node Setting
79a6e687 9040@section Switching Between Source Languages
c906108c
SS
9041
9042There are two ways to control the working language---either have @value{GDBN}
9043set it automatically, or select it manually yourself. You can use the
9044@code{set language} command for either purpose. On startup, @value{GDBN}
9045defaults to setting the language automatically. The working language is
9046used to determine how expressions you type are interpreted, how values
9047are printed, etc.
9048
9049In addition to the working language, every source file that
9050@value{GDBN} knows about has its own working language. For some object
9051file formats, the compiler might indicate which language a particular
9052source file is in. However, most of the time @value{GDBN} infers the
9053language from the name of the file. The language of a source file
b37052ae 9054controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 9055show each frame appropriately for its own language. There is no way to
d4f3574e
SS
9056set the language of a source file from within @value{GDBN}, but you can
9057set the language associated with a filename extension. @xref{Show, ,
79a6e687 9058Displaying the Language}.
c906108c
SS
9059
9060This is most commonly a problem when you use a program, such
5d161b24 9061as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
9062another language. In that case, make the
9063program use @code{#line} directives in its C output; that way
9064@value{GDBN} will know the correct language of the source code of the original
9065program, and will display that source code, not the generated C code.
9066
9067@menu
9068* Filenames:: Filename extensions and languages.
9069* Manually:: Setting the working language manually
9070* Automatically:: Having @value{GDBN} infer the source language
9071@end menu
9072
6d2ebf8b 9073@node Filenames
79a6e687 9074@subsection List of Filename Extensions and Languages
c906108c
SS
9075
9076If a source file name ends in one of the following extensions, then
9077@value{GDBN} infers that its language is the one indicated.
9078
9079@table @file
e07c999f
PH
9080@item .ada
9081@itemx .ads
9082@itemx .adb
9083@itemx .a
9084Ada source file.
c906108c
SS
9085
9086@item .c
9087C source file
9088
9089@item .C
9090@itemx .cc
9091@itemx .cp
9092@itemx .cpp
9093@itemx .cxx
9094@itemx .c++
b37052ae 9095C@t{++} source file
c906108c 9096
b37303ee
AF
9097@item .m
9098Objective-C source file
9099
c906108c
SS
9100@item .f
9101@itemx .F
9102Fortran source file
9103
c906108c
SS
9104@item .mod
9105Modula-2 source file
c906108c
SS
9106
9107@item .s
9108@itemx .S
9109Assembler source file. This actually behaves almost like C, but
9110@value{GDBN} does not skip over function prologues when stepping.
9111@end table
9112
9113In addition, you may set the language associated with a filename
79a6e687 9114extension. @xref{Show, , Displaying the Language}.
c906108c 9115
6d2ebf8b 9116@node Manually
79a6e687 9117@subsection Setting the Working Language
c906108c
SS
9118
9119If you allow @value{GDBN} to set the language automatically,
9120expressions are interpreted the same way in your debugging session and
9121your program.
9122
9123@kindex set language
9124If you wish, you may set the language manually. To do this, issue the
9125command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 9126a language, such as
c906108c 9127@code{c} or @code{modula-2}.
c906108c
SS
9128For a list of the supported languages, type @samp{set language}.
9129
c906108c
SS
9130Setting the language manually prevents @value{GDBN} from updating the working
9131language automatically. This can lead to confusion if you try
9132to debug a program when the working language is not the same as the
9133source language, when an expression is acceptable to both
9134languages---but means different things. For instance, if the current
9135source file were written in C, and @value{GDBN} was parsing Modula-2, a
9136command such as:
9137
474c8240 9138@smallexample
c906108c 9139print a = b + c
474c8240 9140@end smallexample
c906108c
SS
9141
9142@noindent
9143might not have the effect you intended. In C, this means to add
9144@code{b} and @code{c} and place the result in @code{a}. The result
9145printed would be the value of @code{a}. In Modula-2, this means to compare
9146@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 9147
6d2ebf8b 9148@node Automatically
79a6e687 9149@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
9150
9151To have @value{GDBN} set the working language automatically, use
9152@samp{set language local} or @samp{set language auto}. @value{GDBN}
9153then infers the working language. That is, when your program stops in a
9154frame (usually by encountering a breakpoint), @value{GDBN} sets the
9155working language to the language recorded for the function in that
9156frame. If the language for a frame is unknown (that is, if the function
9157or block corresponding to the frame was defined in a source file that
9158does not have a recognized extension), the current working language is
9159not changed, and @value{GDBN} issues a warning.
9160
9161This may not seem necessary for most programs, which are written
9162entirely in one source language. However, program modules and libraries
9163written in one source language can be used by a main program written in
9164a different source language. Using @samp{set language auto} in this
9165case frees you from having to set the working language manually.
9166
6d2ebf8b 9167@node Show
79a6e687 9168@section Displaying the Language
c906108c
SS
9169
9170The following commands help you find out which language is the
9171working language, and also what language source files were written in.
9172
c906108c
SS
9173@table @code
9174@item show language
9c16f35a 9175@kindex show language
c906108c
SS
9176Display the current working language. This is the
9177language you can use with commands such as @code{print} to
9178build and compute expressions that may involve variables in your program.
9179
9180@item info frame
4644b6e3 9181@kindex info frame@r{, show the source language}
5d161b24 9182Display the source language for this frame. This language becomes the
c906108c 9183working language if you use an identifier from this frame.
79a6e687 9184@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9185information listed here.
9186
9187@item info source
4644b6e3 9188@kindex info source@r{, show the source language}
c906108c 9189Display the source language of this source file.
5d161b24 9190@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9191information listed here.
9192@end table
9193
9194In unusual circumstances, you may have source files with extensions
9195not in the standard list. You can then set the extension associated
9196with a language explicitly:
9197
c906108c 9198@table @code
09d4efe1 9199@item set extension-language @var{ext} @var{language}
9c16f35a 9200@kindex set extension-language
09d4efe1
EZ
9201Tell @value{GDBN} that source files with extension @var{ext} are to be
9202assumed as written in the source language @var{language}.
c906108c
SS
9203
9204@item info extensions
9c16f35a 9205@kindex info extensions
c906108c
SS
9206List all the filename extensions and the associated languages.
9207@end table
9208
6d2ebf8b 9209@node Checks
79a6e687 9210@section Type and Range Checking
c906108c
SS
9211
9212@quotation
9213@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9214checking are included, but they do not yet have any effect. This
9215section documents the intended facilities.
9216@end quotation
9217@c FIXME remove warning when type/range code added
9218
9219Some languages are designed to guard you against making seemingly common
9220errors through a series of compile- and run-time checks. These include
9221checking the type of arguments to functions and operators, and making
9222sure mathematical overflows are caught at run time. Checks such as
9223these help to ensure a program's correctness once it has been compiled
9224by eliminating type mismatches, and providing active checks for range
9225errors when your program is running.
9226
9227@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9228Although @value{GDBN} does not check the statements in your program,
9229it can check expressions entered directly into @value{GDBN} for
9230evaluation via the @code{print} command, for example. As with the
9231working language, @value{GDBN} can also decide whether or not to check
9232automatically based on your program's source language.
79a6e687 9233@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9234settings of supported languages.
c906108c
SS
9235
9236@menu
9237* Type Checking:: An overview of type checking
9238* Range Checking:: An overview of range checking
9239@end menu
9240
9241@cindex type checking
9242@cindex checks, type
6d2ebf8b 9243@node Type Checking
79a6e687 9244@subsection An Overview of Type Checking
c906108c
SS
9245
9246Some languages, such as Modula-2, are strongly typed, meaning that the
9247arguments to operators and functions have to be of the correct type,
9248otherwise an error occurs. These checks prevent type mismatch
9249errors from ever causing any run-time problems. For example,
9250
9251@smallexample
92521 + 2 @result{} 3
9253@exdent but
9254@error{} 1 + 2.3
9255@end smallexample
9256
9257The second example fails because the @code{CARDINAL} 1 is not
9258type-compatible with the @code{REAL} 2.3.
9259
5d161b24
DB
9260For the expressions you use in @value{GDBN} commands, you can tell the
9261@value{GDBN} type checker to skip checking;
9262to treat any mismatches as errors and abandon the expression;
9263or to only issue warnings when type mismatches occur,
c906108c
SS
9264but evaluate the expression anyway. When you choose the last of
9265these, @value{GDBN} evaluates expressions like the second example above, but
9266also issues a warning.
9267
5d161b24
DB
9268Even if you turn type checking off, there may be other reasons
9269related to type that prevent @value{GDBN} from evaluating an expression.
9270For instance, @value{GDBN} does not know how to add an @code{int} and
9271a @code{struct foo}. These particular type errors have nothing to do
9272with the language in use, and usually arise from expressions, such as
c906108c
SS
9273the one described above, which make little sense to evaluate anyway.
9274
9275Each language defines to what degree it is strict about type. For
9276instance, both Modula-2 and C require the arguments to arithmetical
9277operators to be numbers. In C, enumerated types and pointers can be
9278represented as numbers, so that they are valid arguments to mathematical
79a6e687 9279operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9280details on specific languages.
9281
9282@value{GDBN} provides some additional commands for controlling the type checker:
9283
c906108c
SS
9284@kindex set check type
9285@kindex show check type
9286@table @code
9287@item set check type auto
9288Set type checking on or off based on the current working language.
79a6e687 9289@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9290each language.
9291
9292@item set check type on
9293@itemx set check type off
9294Set type checking on or off, overriding the default setting for the
9295current working language. Issue a warning if the setting does not
9296match the language default. If any type mismatches occur in
d4f3574e 9297evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9298message and aborts evaluation of the expression.
9299
9300@item set check type warn
9301Cause the type checker to issue warnings, but to always attempt to
9302evaluate the expression. Evaluating the expression may still
9303be impossible for other reasons. For example, @value{GDBN} cannot add
9304numbers and structures.
9305
9306@item show type
5d161b24 9307Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9308is setting it automatically.
9309@end table
9310
9311@cindex range checking
9312@cindex checks, range
6d2ebf8b 9313@node Range Checking
79a6e687 9314@subsection An Overview of Range Checking
c906108c
SS
9315
9316In some languages (such as Modula-2), it is an error to exceed the
9317bounds of a type; this is enforced with run-time checks. Such range
9318checking is meant to ensure program correctness by making sure
9319computations do not overflow, or indices on an array element access do
9320not exceed the bounds of the array.
9321
9322For expressions you use in @value{GDBN} commands, you can tell
9323@value{GDBN} to treat range errors in one of three ways: ignore them,
9324always treat them as errors and abandon the expression, or issue
9325warnings but evaluate the expression anyway.
9326
9327A range error can result from numerical overflow, from exceeding an
9328array index bound, or when you type a constant that is not a member
9329of any type. Some languages, however, do not treat overflows as an
9330error. In many implementations of C, mathematical overflow causes the
9331result to ``wrap around'' to lower values---for example, if @var{m} is
9332the largest integer value, and @var{s} is the smallest, then
9333
474c8240 9334@smallexample
c906108c 9335@var{m} + 1 @result{} @var{s}
474c8240 9336@end smallexample
c906108c
SS
9337
9338This, too, is specific to individual languages, and in some cases
79a6e687
BW
9339specific to individual compilers or machines. @xref{Supported Languages, ,
9340Supported Languages}, for further details on specific languages.
c906108c
SS
9341
9342@value{GDBN} provides some additional commands for controlling the range checker:
9343
c906108c
SS
9344@kindex set check range
9345@kindex show check range
9346@table @code
9347@item set check range auto
9348Set range checking on or off based on the current working language.
79a6e687 9349@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9350each language.
9351
9352@item set check range on
9353@itemx set check range off
9354Set range checking on or off, overriding the default setting for the
9355current working language. A warning is issued if the setting does not
c3f6f71d
JM
9356match the language default. If a range error occurs and range checking is on,
9357then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9358
9359@item set check range warn
9360Output messages when the @value{GDBN} range checker detects a range error,
9361but attempt to evaluate the expression anyway. Evaluating the
9362expression may still be impossible for other reasons, such as accessing
9363memory that the process does not own (a typical example from many Unix
9364systems).
9365
9366@item show range
9367Show the current setting of the range checker, and whether or not it is
9368being set automatically by @value{GDBN}.
9369@end table
c906108c 9370
79a6e687
BW
9371@node Supported Languages
9372@section Supported Languages
c906108c 9373
9c16f35a
EZ
9374@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9375assembly, Modula-2, and Ada.
cce74817 9376@c This is false ...
c906108c
SS
9377Some @value{GDBN} features may be used in expressions regardless of the
9378language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9379and the @samp{@{type@}addr} construct (@pxref{Expressions,
9380,Expressions}) can be used with the constructs of any supported
9381language.
9382
9383The following sections detail to what degree each source language is
9384supported by @value{GDBN}. These sections are not meant to be language
9385tutorials or references, but serve only as a reference guide to what the
9386@value{GDBN} expression parser accepts, and what input and output
9387formats should look like for different languages. There are many good
9388books written on each of these languages; please look to these for a
9389language reference or tutorial.
9390
c906108c 9391@menu
b37303ee 9392* C:: C and C@t{++}
b383017d 9393* Objective-C:: Objective-C
09d4efe1 9394* Fortran:: Fortran
9c16f35a 9395* Pascal:: Pascal
b37303ee 9396* Modula-2:: Modula-2
e07c999f 9397* Ada:: Ada
c906108c
SS
9398@end menu
9399
6d2ebf8b 9400@node C
b37052ae 9401@subsection C and C@t{++}
7a292a7a 9402
b37052ae
EZ
9403@cindex C and C@t{++}
9404@cindex expressions in C or C@t{++}
c906108c 9405
b37052ae 9406Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9407to both languages. Whenever this is the case, we discuss those languages
9408together.
9409
41afff9a
EZ
9410@cindex C@t{++}
9411@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9412@cindex @sc{gnu} C@t{++}
9413The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9414compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9415effectively, you must compile your C@t{++} programs with a supported
9416C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9417compiler (@code{aCC}).
9418
0179ffac
DC
9419For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9420format; if it doesn't work on your system, try the stabs+ debugging
9421format. You can select those formats explicitly with the @code{g++}
9422command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9423@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9424gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9425
c906108c 9426@menu
b37052ae
EZ
9427* C Operators:: C and C@t{++} operators
9428* C Constants:: C and C@t{++} constants
79a6e687 9429* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9430* C Defaults:: Default settings for C and C@t{++}
9431* C Checks:: C and C@t{++} type and range checks
c906108c 9432* Debugging C:: @value{GDBN} and C
79a6e687 9433* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9434* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9435@end menu
c906108c 9436
6d2ebf8b 9437@node C Operators
79a6e687 9438@subsubsection C and C@t{++} Operators
7a292a7a 9439
b37052ae 9440@cindex C and C@t{++} operators
c906108c
SS
9441
9442Operators must be defined on values of specific types. For instance,
9443@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9444often defined on groups of types.
c906108c 9445
b37052ae 9446For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9447
9448@itemize @bullet
53a5351d 9449
c906108c 9450@item
c906108c 9451@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9452specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9453
9454@item
d4f3574e
SS
9455@emph{Floating-point types} include @code{float}, @code{double}, and
9456@code{long double} (if supported by the target platform).
c906108c
SS
9457
9458@item
53a5351d 9459@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9460
9461@item
9462@emph{Scalar types} include all of the above.
53a5351d 9463
c906108c
SS
9464@end itemize
9465
9466@noindent
9467The following operators are supported. They are listed here
9468in order of increasing precedence:
9469
9470@table @code
9471@item ,
9472The comma or sequencing operator. Expressions in a comma-separated list
9473are evaluated from left to right, with the result of the entire
9474expression being the last expression evaluated.
9475
9476@item =
9477Assignment. The value of an assignment expression is the value
9478assigned. Defined on scalar types.
9479
9480@item @var{op}=
9481Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9482and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9483@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9484@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9485@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9486
9487@item ?:
9488The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9489of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9490integral type.
9491
9492@item ||
9493Logical @sc{or}. Defined on integral types.
9494
9495@item &&
9496Logical @sc{and}. Defined on integral types.
9497
9498@item |
9499Bitwise @sc{or}. Defined on integral types.
9500
9501@item ^
9502Bitwise exclusive-@sc{or}. Defined on integral types.
9503
9504@item &
9505Bitwise @sc{and}. Defined on integral types.
9506
9507@item ==@r{, }!=
9508Equality and inequality. Defined on scalar types. The value of these
9509expressions is 0 for false and non-zero for true.
9510
9511@item <@r{, }>@r{, }<=@r{, }>=
9512Less than, greater than, less than or equal, greater than or equal.
9513Defined on scalar types. The value of these expressions is 0 for false
9514and non-zero for true.
9515
9516@item <<@r{, }>>
9517left shift, and right shift. Defined on integral types.
9518
9519@item @@
9520The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9521
9522@item +@r{, }-
9523Addition and subtraction. Defined on integral types, floating-point types and
9524pointer types.
9525
9526@item *@r{, }/@r{, }%
9527Multiplication, division, and modulus. Multiplication and division are
9528defined on integral and floating-point types. Modulus is defined on
9529integral types.
9530
9531@item ++@r{, }--
9532Increment and decrement. When appearing before a variable, the
9533operation is performed before the variable is used in an expression;
9534when appearing after it, the variable's value is used before the
9535operation takes place.
9536
9537@item *
9538Pointer dereferencing. Defined on pointer types. Same precedence as
9539@code{++}.
9540
9541@item &
9542Address operator. Defined on variables. Same precedence as @code{++}.
9543
b37052ae
EZ
9544For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9545allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9546to examine the address
b37052ae 9547where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9548stored.
c906108c
SS
9549
9550@item -
9551Negative. Defined on integral and floating-point types. Same
9552precedence as @code{++}.
9553
9554@item !
9555Logical negation. Defined on integral types. Same precedence as
9556@code{++}.
9557
9558@item ~
9559Bitwise complement operator. Defined on integral types. Same precedence as
9560@code{++}.
9561
9562
9563@item .@r{, }->
9564Structure member, and pointer-to-structure member. For convenience,
9565@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9566pointer based on the stored type information.
9567Defined on @code{struct} and @code{union} data.
9568
c906108c
SS
9569@item .*@r{, }->*
9570Dereferences of pointers to members.
c906108c
SS
9571
9572@item []
9573Array indexing. @code{@var{a}[@var{i}]} is defined as
9574@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9575
9576@item ()
9577Function parameter list. Same precedence as @code{->}.
9578
c906108c 9579@item ::
b37052ae 9580C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9581and @code{class} types.
c906108c
SS
9582
9583@item ::
7a292a7a
SS
9584Doubled colons also represent the @value{GDBN} scope operator
9585(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9586above.
c906108c
SS
9587@end table
9588
c906108c
SS
9589If an operator is redefined in the user code, @value{GDBN} usually
9590attempts to invoke the redefined version instead of using the operator's
9591predefined meaning.
c906108c 9592
6d2ebf8b 9593@node C Constants
79a6e687 9594@subsubsection C and C@t{++} Constants
c906108c 9595
b37052ae 9596@cindex C and C@t{++} constants
c906108c 9597
b37052ae 9598@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9599following ways:
c906108c
SS
9600
9601@itemize @bullet
9602@item
9603Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9604specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9605by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9606@samp{l}, specifying that the constant should be treated as a
9607@code{long} value.
9608
9609@item
9610Floating point constants are a sequence of digits, followed by a decimal
9611point, followed by a sequence of digits, and optionally followed by an
9612exponent. An exponent is of the form:
9613@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9614sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9615A floating-point constant may also end with a letter @samp{f} or
9616@samp{F}, specifying that the constant should be treated as being of
9617the @code{float} (as opposed to the default @code{double}) type; or with
9618a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9619constant.
c906108c
SS
9620
9621@item
9622Enumerated constants consist of enumerated identifiers, or their
9623integral equivalents.
9624
9625@item
9626Character constants are a single character surrounded by single quotes
9627(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9628(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9629be represented by a letter or by @dfn{escape sequences}, which are of
9630the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9631of the character's ordinal value; or of the form @samp{\@var{x}}, where
9632@samp{@var{x}} is a predefined special character---for example,
9633@samp{\n} for newline.
9634
9635@item
96a2c332
SS
9636String constants are a sequence of character constants surrounded by
9637double quotes (@code{"}). Any valid character constant (as described
9638above) may appear. Double quotes within the string must be preceded by
9639a backslash, so for instance @samp{"a\"b'c"} is a string of five
9640characters.
c906108c
SS
9641
9642@item
9643Pointer constants are an integral value. You can also write pointers
9644to constants using the C operator @samp{&}.
9645
9646@item
9647Array constants are comma-separated lists surrounded by braces @samp{@{}
9648and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9649integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9650and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9651@end itemize
9652
79a6e687
BW
9653@node C Plus Plus Expressions
9654@subsubsection C@t{++} Expressions
b37052ae
EZ
9655
9656@cindex expressions in C@t{++}
9657@value{GDBN} expression handling can interpret most C@t{++} expressions.
9658
0179ffac
DC
9659@cindex debugging C@t{++} programs
9660@cindex C@t{++} compilers
9661@cindex debug formats and C@t{++}
9662@cindex @value{NGCC} and C@t{++}
c906108c 9663@quotation
b37052ae 9664@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9665proper compiler and the proper debug format. Currently, @value{GDBN}
9666works best when debugging C@t{++} code that is compiled with
9667@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9668@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9669stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9670stabs+ as their default debug format, so you usually don't need to
9671specify a debug format explicitly. Other compilers and/or debug formats
9672are likely to work badly or not at all when using @value{GDBN} to debug
9673C@t{++} code.
c906108c 9674@end quotation
c906108c
SS
9675
9676@enumerate
9677
9678@cindex member functions
9679@item
9680Member function calls are allowed; you can use expressions like
9681
474c8240 9682@smallexample
c906108c 9683count = aml->GetOriginal(x, y)
474c8240 9684@end smallexample
c906108c 9685
41afff9a 9686@vindex this@r{, inside C@t{++} member functions}
b37052ae 9687@cindex namespace in C@t{++}
c906108c
SS
9688@item
9689While a member function is active (in the selected stack frame), your
9690expressions have the same namespace available as the member function;
9691that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9692pointer @code{this} following the same rules as C@t{++}.
c906108c 9693
c906108c 9694@cindex call overloaded functions
d4f3574e 9695@cindex overloaded functions, calling
b37052ae 9696@cindex type conversions in C@t{++}
c906108c
SS
9697@item
9698You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9699call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9700perform overload resolution involving user-defined type conversions,
9701calls to constructors, or instantiations of templates that do not exist
9702in the program. It also cannot handle ellipsis argument lists or
9703default arguments.
9704
9705It does perform integral conversions and promotions, floating-point
9706promotions, arithmetic conversions, pointer conversions, conversions of
9707class objects to base classes, and standard conversions such as those of
9708functions or arrays to pointers; it requires an exact match on the
9709number of function arguments.
9710
9711Overload resolution is always performed, unless you have specified
79a6e687
BW
9712@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9713,@value{GDBN} Features for C@t{++}}.
c906108c 9714
d4f3574e 9715You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9716explicit function signature to call an overloaded function, as in
9717@smallexample
9718p 'foo(char,int)'('x', 13)
9719@end smallexample
d4f3574e 9720
c906108c 9721The @value{GDBN} command-completion facility can simplify this;
79a6e687 9722see @ref{Completion, ,Command Completion}.
c906108c 9723
c906108c
SS
9724@cindex reference declarations
9725@item
b37052ae
EZ
9726@value{GDBN} understands variables declared as C@t{++} references; you can use
9727them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9728dereferenced.
9729
9730In the parameter list shown when @value{GDBN} displays a frame, the values of
9731reference variables are not displayed (unlike other variables); this
9732avoids clutter, since references are often used for large structures.
9733The @emph{address} of a reference variable is always shown, unless
9734you have specified @samp{set print address off}.
9735
9736@item
b37052ae 9737@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9738expressions can use it just as expressions in your program do. Since
9739one scope may be defined in another, you can use @code{::} repeatedly if
9740necessary, for example in an expression like
9741@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9742resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9743debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9744@end enumerate
9745
b37052ae 9746In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9747calling virtual functions correctly, printing out virtual bases of
9748objects, calling functions in a base subobject, casting objects, and
9749invoking user-defined operators.
c906108c 9750
6d2ebf8b 9751@node C Defaults
79a6e687 9752@subsubsection C and C@t{++} Defaults
7a292a7a 9753
b37052ae 9754@cindex C and C@t{++} defaults
c906108c 9755
c906108c
SS
9756If you allow @value{GDBN} to set type and range checking automatically, they
9757both default to @code{off} whenever the working language changes to
b37052ae 9758C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9759selects the working language.
c906108c
SS
9760
9761If you allow @value{GDBN} to set the language automatically, it
9762recognizes source files whose names end with @file{.c}, @file{.C}, or
9763@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9764these files, it sets the working language to C or C@t{++}.
79a6e687 9765@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9766for further details.
9767
c906108c
SS
9768@c Type checking is (a) primarily motivated by Modula-2, and (b)
9769@c unimplemented. If (b) changes, it might make sense to let this node
9770@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9771
6d2ebf8b 9772@node C Checks
79a6e687 9773@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9774
b37052ae 9775@cindex C and C@t{++} checks
c906108c 9776
b37052ae 9777By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9778is not used. However, if you turn type checking on, @value{GDBN}
9779considers two variables type equivalent if:
9780
9781@itemize @bullet
9782@item
9783The two variables are structured and have the same structure, union, or
9784enumerated tag.
9785
9786@item
9787The two variables have the same type name, or types that have been
9788declared equivalent through @code{typedef}.
9789
9790@ignore
9791@c leaving this out because neither J Gilmore nor R Pesch understand it.
9792@c FIXME--beers?
9793@item
9794The two @code{struct}, @code{union}, or @code{enum} variables are
9795declared in the same declaration. (Note: this may not be true for all C
9796compilers.)
9797@end ignore
9798@end itemize
9799
9800Range checking, if turned on, is done on mathematical operations. Array
9801indices are not checked, since they are often used to index a pointer
9802that is not itself an array.
c906108c 9803
6d2ebf8b 9804@node Debugging C
c906108c 9805@subsubsection @value{GDBN} and C
c906108c
SS
9806
9807The @code{set print union} and @code{show print union} commands apply to
9808the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9809inside a @code{struct} or @code{class} is also printed. Otherwise, it
9810appears as @samp{@{...@}}.
c906108c
SS
9811
9812The @code{@@} operator aids in the debugging of dynamic arrays, formed
9813with pointers and a memory allocation function. @xref{Expressions,
9814,Expressions}.
9815
79a6e687
BW
9816@node Debugging C Plus Plus
9817@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9818
b37052ae 9819@cindex commands for C@t{++}
7a292a7a 9820
b37052ae
EZ
9821Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9822designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9823
9824@table @code
9825@cindex break in overloaded functions
9826@item @r{breakpoint menus}
9827When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9828@value{GDBN} has the capability to display a menu of possible breakpoint
9829locations to help you specify which function definition you want.
9830@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9831
b37052ae 9832@cindex overloading in C@t{++}
c906108c
SS
9833@item rbreak @var{regex}
9834Setting breakpoints using regular expressions is helpful for setting
9835breakpoints on overloaded functions that are not members of any special
9836classes.
79a6e687 9837@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9838
b37052ae 9839@cindex C@t{++} exception handling
c906108c
SS
9840@item catch throw
9841@itemx catch catch
b37052ae 9842Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9843Catchpoints, , Setting Catchpoints}.
c906108c
SS
9844
9845@cindex inheritance
9846@item ptype @var{typename}
9847Print inheritance relationships as well as other information for type
9848@var{typename}.
9849@xref{Symbols, ,Examining the Symbol Table}.
9850
b37052ae 9851@cindex C@t{++} symbol display
c906108c
SS
9852@item set print demangle
9853@itemx show print demangle
9854@itemx set print asm-demangle
9855@itemx show print asm-demangle
b37052ae
EZ
9856Control whether C@t{++} symbols display in their source form, both when
9857displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9858@xref{Print Settings, ,Print Settings}.
c906108c
SS
9859
9860@item set print object
9861@itemx show print object
9862Choose whether to print derived (actual) or declared types of objects.
79a6e687 9863@xref{Print Settings, ,Print Settings}.
c906108c
SS
9864
9865@item set print vtbl
9866@itemx show print vtbl
9867Control the format for printing virtual function tables.
79a6e687 9868@xref{Print Settings, ,Print Settings}.
c906108c 9869(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9870ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9871
9872@kindex set overload-resolution
d4f3574e 9873@cindex overloaded functions, overload resolution
c906108c 9874@item set overload-resolution on
b37052ae 9875Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9876is on. For overloaded functions, @value{GDBN} evaluates the arguments
9877and searches for a function whose signature matches the argument types,
79a6e687
BW
9878using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9879Expressions, ,C@t{++} Expressions}, for details).
9880If it cannot find a match, it emits a message.
c906108c
SS
9881
9882@item set overload-resolution off
b37052ae 9883Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9884overloaded functions that are not class member functions, @value{GDBN}
9885chooses the first function of the specified name that it finds in the
9886symbol table, whether or not its arguments are of the correct type. For
9887overloaded functions that are class member functions, @value{GDBN}
9888searches for a function whose signature @emph{exactly} matches the
9889argument types.
c906108c 9890
9c16f35a
EZ
9891@kindex show overload-resolution
9892@item show overload-resolution
9893Show the current setting of overload resolution.
9894
c906108c
SS
9895@item @r{Overloaded symbol names}
9896You can specify a particular definition of an overloaded symbol, using
b37052ae 9897the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9898@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9899also use the @value{GDBN} command-line word completion facilities to list the
9900available choices, or to finish the type list for you.
79a6e687 9901@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9902@end table
c906108c 9903
febe4383
TJB
9904@node Decimal Floating Point
9905@subsubsection Decimal Floating Point format
9906@cindex decimal floating point format
9907
9908@value{GDBN} can examine, set and perform computations with numbers in
9909decimal floating point format, which in the C language correspond to the
9910@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9911specified by the extension to support decimal floating-point arithmetic.
9912
9913There are two encodings in use, depending on the architecture: BID (Binary
9914Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9915PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9916target.
9917
9918Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9919to manipulate decimal floating point numbers, it is not possible to convert
9920(using a cast, for example) integers wider than 32-bit to decimal float.
9921
9922In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9923point computations, error checking in decimal float operations ignores
9924underflow, overflow and divide by zero exceptions.
9925
4acd40f3
TJB
9926In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9927to inspect @code{_Decimal128} values stored in floating point registers. See
9928@ref{PowerPC,,PowerPC} for more details.
9929
b37303ee
AF
9930@node Objective-C
9931@subsection Objective-C
9932
9933@cindex Objective-C
9934This section provides information about some commands and command
721c2651
EZ
9935options that are useful for debugging Objective-C code. See also
9936@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9937few more commands specific to Objective-C support.
b37303ee
AF
9938
9939@menu
b383017d
RM
9940* Method Names in Commands::
9941* The Print Command with Objective-C::
b37303ee
AF
9942@end menu
9943
c8f4133a 9944@node Method Names in Commands
b37303ee
AF
9945@subsubsection Method Names in Commands
9946
9947The following commands have been extended to accept Objective-C method
9948names as line specifications:
9949
9950@kindex clear@r{, and Objective-C}
9951@kindex break@r{, and Objective-C}
9952@kindex info line@r{, and Objective-C}
9953@kindex jump@r{, and Objective-C}
9954@kindex list@r{, and Objective-C}
9955@itemize
9956@item @code{clear}
9957@item @code{break}
9958@item @code{info line}
9959@item @code{jump}
9960@item @code{list}
9961@end itemize
9962
9963A fully qualified Objective-C method name is specified as
9964
9965@smallexample
9966-[@var{Class} @var{methodName}]
9967@end smallexample
9968
c552b3bb
JM
9969where the minus sign is used to indicate an instance method and a
9970plus sign (not shown) is used to indicate a class method. The class
9971name @var{Class} and method name @var{methodName} are enclosed in
9972brackets, similar to the way messages are specified in Objective-C
9973source code. For example, to set a breakpoint at the @code{create}
9974instance method of class @code{Fruit} in the program currently being
9975debugged, enter:
b37303ee
AF
9976
9977@smallexample
9978break -[Fruit create]
9979@end smallexample
9980
9981To list ten program lines around the @code{initialize} class method,
9982enter:
9983
9984@smallexample
9985list +[NSText initialize]
9986@end smallexample
9987
c552b3bb
JM
9988In the current version of @value{GDBN}, the plus or minus sign is
9989required. In future versions of @value{GDBN}, the plus or minus
9990sign will be optional, but you can use it to narrow the search. It
9991is also possible to specify just a method name:
b37303ee
AF
9992
9993@smallexample
9994break create
9995@end smallexample
9996
9997You must specify the complete method name, including any colons. If
9998your program's source files contain more than one @code{create} method,
9999you'll be presented with a numbered list of classes that implement that
10000method. Indicate your choice by number, or type @samp{0} to exit if
10001none apply.
10002
10003As another example, to clear a breakpoint established at the
10004@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
10005
10006@smallexample
10007clear -[NSWindow makeKeyAndOrderFront:]
10008@end smallexample
10009
10010@node The Print Command with Objective-C
10011@subsubsection The Print Command With Objective-C
721c2651 10012@cindex Objective-C, print objects
c552b3bb
JM
10013@kindex print-object
10014@kindex po @r{(@code{print-object})}
b37303ee 10015
c552b3bb 10016The print command has also been extended to accept methods. For example:
b37303ee
AF
10017
10018@smallexample
c552b3bb 10019print -[@var{object} hash]
b37303ee
AF
10020@end smallexample
10021
10022@cindex print an Objective-C object description
c552b3bb
JM
10023@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
10024@noindent
10025will tell @value{GDBN} to send the @code{hash} message to @var{object}
10026and print the result. Also, an additional command has been added,
10027@code{print-object} or @code{po} for short, which is meant to print
10028the description of an object. However, this command may only work
10029with certain Objective-C libraries that have a particular hook
10030function, @code{_NSPrintForDebugger}, defined.
b37303ee 10031
09d4efe1
EZ
10032@node Fortran
10033@subsection Fortran
10034@cindex Fortran-specific support in @value{GDBN}
10035
814e32d7
WZ
10036@value{GDBN} can be used to debug programs written in Fortran, but it
10037currently supports only the features of Fortran 77 language.
10038
10039@cindex trailing underscore, in Fortran symbols
10040Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
10041among them) append an underscore to the names of variables and
10042functions. When you debug programs compiled by those compilers, you
10043will need to refer to variables and functions with a trailing
10044underscore.
10045
10046@menu
10047* Fortran Operators:: Fortran operators and expressions
10048* Fortran Defaults:: Default settings for Fortran
79a6e687 10049* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
10050@end menu
10051
10052@node Fortran Operators
79a6e687 10053@subsubsection Fortran Operators and Expressions
814e32d7
WZ
10054
10055@cindex Fortran operators and expressions
10056
10057Operators must be defined on values of specific types. For instance,
10058@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 10059arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
10060
10061@table @code
10062@item **
10063The exponentiation operator. It raises the first operand to the power
10064of the second one.
10065
10066@item :
10067The range operator. Normally used in the form of array(low:high) to
10068represent a section of array.
68837c9d
MD
10069
10070@item %
10071The access component operator. Normally used to access elements in derived
10072types. Also suitable for unions. As unions aren't part of regular Fortran,
10073this can only happen when accessing a register that uses a gdbarch-defined
10074union type.
814e32d7
WZ
10075@end table
10076
10077@node Fortran Defaults
10078@subsubsection Fortran Defaults
10079
10080@cindex Fortran Defaults
10081
10082Fortran symbols are usually case-insensitive, so @value{GDBN} by
10083default uses case-insensitive matches for Fortran symbols. You can
10084change that with the @samp{set case-insensitive} command, see
10085@ref{Symbols}, for the details.
10086
79a6e687
BW
10087@node Special Fortran Commands
10088@subsubsection Special Fortran Commands
814e32d7
WZ
10089
10090@cindex Special Fortran commands
10091
db2e3e2e
BW
10092@value{GDBN} has some commands to support Fortran-specific features,
10093such as displaying common blocks.
814e32d7 10094
09d4efe1
EZ
10095@table @code
10096@cindex @code{COMMON} blocks, Fortran
10097@kindex info common
10098@item info common @r{[}@var{common-name}@r{]}
10099This command prints the values contained in the Fortran @code{COMMON}
10100block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 10101all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
10102printed.
10103@end table
10104
9c16f35a
EZ
10105@node Pascal
10106@subsection Pascal
10107
10108@cindex Pascal support in @value{GDBN}, limitations
10109Debugging Pascal programs which use sets, subranges, file variables, or
10110nested functions does not currently work. @value{GDBN} does not support
10111entering expressions, printing values, or similar features using Pascal
10112syntax.
10113
10114The Pascal-specific command @code{set print pascal_static-members}
10115controls whether static members of Pascal objects are displayed.
10116@xref{Print Settings, pascal_static-members}.
10117
09d4efe1 10118@node Modula-2
c906108c 10119@subsection Modula-2
7a292a7a 10120
d4f3574e 10121@cindex Modula-2, @value{GDBN} support
c906108c
SS
10122
10123The extensions made to @value{GDBN} to support Modula-2 only support
10124output from the @sc{gnu} Modula-2 compiler (which is currently being
10125developed). Other Modula-2 compilers are not currently supported, and
10126attempting to debug executables produced by them is most likely
10127to give an error as @value{GDBN} reads in the executable's symbol
10128table.
10129
10130@cindex expressions in Modula-2
10131@menu
10132* M2 Operators:: Built-in operators
10133* Built-In Func/Proc:: Built-in functions and procedures
10134* M2 Constants:: Modula-2 constants
72019c9c 10135* M2 Types:: Modula-2 types
c906108c
SS
10136* M2 Defaults:: Default settings for Modula-2
10137* Deviations:: Deviations from standard Modula-2
10138* M2 Checks:: Modula-2 type and range checks
10139* M2 Scope:: The scope operators @code{::} and @code{.}
10140* GDB/M2:: @value{GDBN} and Modula-2
10141@end menu
10142
6d2ebf8b 10143@node M2 Operators
c906108c
SS
10144@subsubsection Operators
10145@cindex Modula-2 operators
10146
10147Operators must be defined on values of specific types. For instance,
10148@code{+} is defined on numbers, but not on structures. Operators are
10149often defined on groups of types. For the purposes of Modula-2, the
10150following definitions hold:
10151
10152@itemize @bullet
10153
10154@item
10155@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
10156their subranges.
10157
10158@item
10159@emph{Character types} consist of @code{CHAR} and its subranges.
10160
10161@item
10162@emph{Floating-point types} consist of @code{REAL}.
10163
10164@item
10165@emph{Pointer types} consist of anything declared as @code{POINTER TO
10166@var{type}}.
10167
10168@item
10169@emph{Scalar types} consist of all of the above.
10170
10171@item
10172@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10173
10174@item
10175@emph{Boolean types} consist of @code{BOOLEAN}.
10176@end itemize
10177
10178@noindent
10179The following operators are supported, and appear in order of
10180increasing precedence:
10181
10182@table @code
10183@item ,
10184Function argument or array index separator.
10185
10186@item :=
10187Assignment. The value of @var{var} @code{:=} @var{value} is
10188@var{value}.
10189
10190@item <@r{, }>
10191Less than, greater than on integral, floating-point, or enumerated
10192types.
10193
10194@item <=@r{, }>=
96a2c332 10195Less than or equal to, greater than or equal to
c906108c
SS
10196on integral, floating-point and enumerated types, or set inclusion on
10197set types. Same precedence as @code{<}.
10198
10199@item =@r{, }<>@r{, }#
10200Equality and two ways of expressing inequality, valid on scalar types.
10201Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10202available for inequality, since @code{#} conflicts with the script
10203comment character.
10204
10205@item IN
10206Set membership. Defined on set types and the types of their members.
10207Same precedence as @code{<}.
10208
10209@item OR
10210Boolean disjunction. Defined on boolean types.
10211
10212@item AND@r{, }&
d4f3574e 10213Boolean conjunction. Defined on boolean types.
c906108c
SS
10214
10215@item @@
10216The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10217
10218@item +@r{, }-
10219Addition and subtraction on integral and floating-point types, or union
10220and difference on set types.
10221
10222@item *
10223Multiplication on integral and floating-point types, or set intersection
10224on set types.
10225
10226@item /
10227Division on floating-point types, or symmetric set difference on set
10228types. Same precedence as @code{*}.
10229
10230@item DIV@r{, }MOD
10231Integer division and remainder. Defined on integral types. Same
10232precedence as @code{*}.
10233
10234@item -
10235Negative. Defined on @code{INTEGER} and @code{REAL} data.
10236
10237@item ^
10238Pointer dereferencing. Defined on pointer types.
10239
10240@item NOT
10241Boolean negation. Defined on boolean types. Same precedence as
10242@code{^}.
10243
10244@item .
10245@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10246precedence as @code{^}.
10247
10248@item []
10249Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10250
10251@item ()
10252Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10253as @code{^}.
10254
10255@item ::@r{, }.
10256@value{GDBN} and Modula-2 scope operators.
10257@end table
10258
10259@quotation
72019c9c 10260@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10261treats the use of the operator @code{IN}, or the use of operators
10262@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10263@code{<=}, and @code{>=} on sets as an error.
10264@end quotation
10265
cb51c4e0 10266
6d2ebf8b 10267@node Built-In Func/Proc
79a6e687 10268@subsubsection Built-in Functions and Procedures
cb51c4e0 10269@cindex Modula-2 built-ins
c906108c
SS
10270
10271Modula-2 also makes available several built-in procedures and functions.
10272In describing these, the following metavariables are used:
10273
10274@table @var
10275
10276@item a
10277represents an @code{ARRAY} variable.
10278
10279@item c
10280represents a @code{CHAR} constant or variable.
10281
10282@item i
10283represents a variable or constant of integral type.
10284
10285@item m
10286represents an identifier that belongs to a set. Generally used in the
10287same function with the metavariable @var{s}. The type of @var{s} should
10288be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10289
10290@item n
10291represents a variable or constant of integral or floating-point type.
10292
10293@item r
10294represents a variable or constant of floating-point type.
10295
10296@item t
10297represents a type.
10298
10299@item v
10300represents a variable.
10301
10302@item x
10303represents a variable or constant of one of many types. See the
10304explanation of the function for details.
10305@end table
10306
10307All Modula-2 built-in procedures also return a result, described below.
10308
10309@table @code
10310@item ABS(@var{n})
10311Returns the absolute value of @var{n}.
10312
10313@item CAP(@var{c})
10314If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10315equivalent, otherwise it returns its argument.
c906108c
SS
10316
10317@item CHR(@var{i})
10318Returns the character whose ordinal value is @var{i}.
10319
10320@item DEC(@var{v})
c3f6f71d 10321Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10322
10323@item DEC(@var{v},@var{i})
10324Decrements the value in the variable @var{v} by @var{i}. Returns the
10325new value.
10326
10327@item EXCL(@var{m},@var{s})
10328Removes the element @var{m} from the set @var{s}. Returns the new
10329set.
10330
10331@item FLOAT(@var{i})
10332Returns the floating point equivalent of the integer @var{i}.
10333
10334@item HIGH(@var{a})
10335Returns the index of the last member of @var{a}.
10336
10337@item INC(@var{v})
c3f6f71d 10338Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10339
10340@item INC(@var{v},@var{i})
10341Increments the value in the variable @var{v} by @var{i}. Returns the
10342new value.
10343
10344@item INCL(@var{m},@var{s})
10345Adds the element @var{m} to the set @var{s} if it is not already
10346there. Returns the new set.
10347
10348@item MAX(@var{t})
10349Returns the maximum value of the type @var{t}.
10350
10351@item MIN(@var{t})
10352Returns the minimum value of the type @var{t}.
10353
10354@item ODD(@var{i})
10355Returns boolean TRUE if @var{i} is an odd number.
10356
10357@item ORD(@var{x})
10358Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10359value of a character is its @sc{ascii} value (on machines supporting the
10360@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10361integral, character and enumerated types.
10362
10363@item SIZE(@var{x})
10364Returns the size of its argument. @var{x} can be a variable or a type.
10365
10366@item TRUNC(@var{r})
10367Returns the integral part of @var{r}.
10368
844781a1
GM
10369@item TSIZE(@var{x})
10370Returns the size of its argument. @var{x} can be a variable or a type.
10371
c906108c
SS
10372@item VAL(@var{t},@var{i})
10373Returns the member of the type @var{t} whose ordinal value is @var{i}.
10374@end table
10375
10376@quotation
10377@emph{Warning:} Sets and their operations are not yet supported, so
10378@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10379an error.
10380@end quotation
10381
10382@cindex Modula-2 constants
6d2ebf8b 10383@node M2 Constants
c906108c
SS
10384@subsubsection Constants
10385
10386@value{GDBN} allows you to express the constants of Modula-2 in the following
10387ways:
10388
10389@itemize @bullet
10390
10391@item
10392Integer constants are simply a sequence of digits. When used in an
10393expression, a constant is interpreted to be type-compatible with the
10394rest of the expression. Hexadecimal integers are specified by a
10395trailing @samp{H}, and octal integers by a trailing @samp{B}.
10396
10397@item
10398Floating point constants appear as a sequence of digits, followed by a
10399decimal point and another sequence of digits. An optional exponent can
10400then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10401@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10402digits of the floating point constant must be valid decimal (base 10)
10403digits.
10404
10405@item
10406Character constants consist of a single character enclosed by a pair of
10407like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10408also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10409followed by a @samp{C}.
10410
10411@item
10412String constants consist of a sequence of characters enclosed by a
10413pair of like quotes, either single (@code{'}) or double (@code{"}).
10414Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10415Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10416sequences.
10417
10418@item
10419Enumerated constants consist of an enumerated identifier.
10420
10421@item
10422Boolean constants consist of the identifiers @code{TRUE} and
10423@code{FALSE}.
10424
10425@item
10426Pointer constants consist of integral values only.
10427
10428@item
10429Set constants are not yet supported.
10430@end itemize
10431
72019c9c
GM
10432@node M2 Types
10433@subsubsection Modula-2 Types
10434@cindex Modula-2 types
10435
10436Currently @value{GDBN} can print the following data types in Modula-2
10437syntax: array types, record types, set types, pointer types, procedure
10438types, enumerated types, subrange types and base types. You can also
10439print the contents of variables declared using these type.
10440This section gives a number of simple source code examples together with
10441sample @value{GDBN} sessions.
10442
10443The first example contains the following section of code:
10444
10445@smallexample
10446VAR
10447 s: SET OF CHAR ;
10448 r: [20..40] ;
10449@end smallexample
10450
10451@noindent
10452and you can request @value{GDBN} to interrogate the type and value of
10453@code{r} and @code{s}.
10454
10455@smallexample
10456(@value{GDBP}) print s
10457@{'A'..'C', 'Z'@}
10458(@value{GDBP}) ptype s
10459SET OF CHAR
10460(@value{GDBP}) print r
1046121
10462(@value{GDBP}) ptype r
10463[20..40]
10464@end smallexample
10465
10466@noindent
10467Likewise if your source code declares @code{s} as:
10468
10469@smallexample
10470VAR
10471 s: SET ['A'..'Z'] ;
10472@end smallexample
10473
10474@noindent
10475then you may query the type of @code{s} by:
10476
10477@smallexample
10478(@value{GDBP}) ptype s
10479type = SET ['A'..'Z']
10480@end smallexample
10481
10482@noindent
10483Note that at present you cannot interactively manipulate set
10484expressions using the debugger.
10485
10486The following example shows how you might declare an array in Modula-2
10487and how you can interact with @value{GDBN} to print its type and contents:
10488
10489@smallexample
10490VAR
10491 s: ARRAY [-10..10] OF CHAR ;
10492@end smallexample
10493
10494@smallexample
10495(@value{GDBP}) ptype s
10496ARRAY [-10..10] OF CHAR
10497@end smallexample
10498
10499Note that the array handling is not yet complete and although the type
10500is printed correctly, expression handling still assumes that all
10501arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10502above.
72019c9c
GM
10503
10504Here are some more type related Modula-2 examples:
10505
10506@smallexample
10507TYPE
10508 colour = (blue, red, yellow, green) ;
10509 t = [blue..yellow] ;
10510VAR
10511 s: t ;
10512BEGIN
10513 s := blue ;
10514@end smallexample
10515
10516@noindent
10517The @value{GDBN} interaction shows how you can query the data type
10518and value of a variable.
10519
10520@smallexample
10521(@value{GDBP}) print s
10522$1 = blue
10523(@value{GDBP}) ptype t
10524type = [blue..yellow]
10525@end smallexample
10526
10527@noindent
10528In this example a Modula-2 array is declared and its contents
10529displayed. Observe that the contents are written in the same way as
10530their @code{C} counterparts.
10531
10532@smallexample
10533VAR
10534 s: ARRAY [1..5] OF CARDINAL ;
10535BEGIN
10536 s[1] := 1 ;
10537@end smallexample
10538
10539@smallexample
10540(@value{GDBP}) print s
10541$1 = @{1, 0, 0, 0, 0@}
10542(@value{GDBP}) ptype s
10543type = ARRAY [1..5] OF CARDINAL
10544@end smallexample
10545
10546The Modula-2 language interface to @value{GDBN} also understands
10547pointer types as shown in this example:
10548
10549@smallexample
10550VAR
10551 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10552BEGIN
10553 NEW(s) ;
10554 s^[1] := 1 ;
10555@end smallexample
10556
10557@noindent
10558and you can request that @value{GDBN} describes the type of @code{s}.
10559
10560@smallexample
10561(@value{GDBP}) ptype s
10562type = POINTER TO ARRAY [1..5] OF CARDINAL
10563@end smallexample
10564
10565@value{GDBN} handles compound types as we can see in this example.
10566Here we combine array types, record types, pointer types and subrange
10567types:
10568
10569@smallexample
10570TYPE
10571 foo = RECORD
10572 f1: CARDINAL ;
10573 f2: CHAR ;
10574 f3: myarray ;
10575 END ;
10576
10577 myarray = ARRAY myrange OF CARDINAL ;
10578 myrange = [-2..2] ;
10579VAR
10580 s: POINTER TO ARRAY myrange OF foo ;
10581@end smallexample
10582
10583@noindent
10584and you can ask @value{GDBN} to describe the type of @code{s} as shown
10585below.
10586
10587@smallexample
10588(@value{GDBP}) ptype s
10589type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10590 f1 : CARDINAL;
10591 f2 : CHAR;
10592 f3 : ARRAY [-2..2] OF CARDINAL;
10593END
10594@end smallexample
10595
6d2ebf8b 10596@node M2 Defaults
79a6e687 10597@subsubsection Modula-2 Defaults
c906108c
SS
10598@cindex Modula-2 defaults
10599
10600If type and range checking are set automatically by @value{GDBN}, they
10601both default to @code{on} whenever the working language changes to
d4f3574e 10602Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10603selected the working language.
10604
10605If you allow @value{GDBN} to set the language automatically, then entering
10606code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10607working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10608Infer the Source Language}, for further details.
c906108c 10609
6d2ebf8b 10610@node Deviations
79a6e687 10611@subsubsection Deviations from Standard Modula-2
c906108c
SS
10612@cindex Modula-2, deviations from
10613
10614A few changes have been made to make Modula-2 programs easier to debug.
10615This is done primarily via loosening its type strictness:
10616
10617@itemize @bullet
10618@item
10619Unlike in standard Modula-2, pointer constants can be formed by
10620integers. This allows you to modify pointer variables during
10621debugging. (In standard Modula-2, the actual address contained in a
10622pointer variable is hidden from you; it can only be modified
10623through direct assignment to another pointer variable or expression that
10624returned a pointer.)
10625
10626@item
10627C escape sequences can be used in strings and characters to represent
10628non-printable characters. @value{GDBN} prints out strings with these
10629escape sequences embedded. Single non-printable characters are
10630printed using the @samp{CHR(@var{nnn})} format.
10631
10632@item
10633The assignment operator (@code{:=}) returns the value of its right-hand
10634argument.
10635
10636@item
10637All built-in procedures both modify @emph{and} return their argument.
10638@end itemize
10639
6d2ebf8b 10640@node M2 Checks
79a6e687 10641@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10642@cindex Modula-2 checks
10643
10644@quotation
10645@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10646range checking.
10647@end quotation
10648@c FIXME remove warning when type/range checks added
10649
10650@value{GDBN} considers two Modula-2 variables type equivalent if:
10651
10652@itemize @bullet
10653@item
10654They are of types that have been declared equivalent via a @code{TYPE
10655@var{t1} = @var{t2}} statement
10656
10657@item
10658They have been declared on the same line. (Note: This is true of the
10659@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10660@end itemize
10661
10662As long as type checking is enabled, any attempt to combine variables
10663whose types are not equivalent is an error.
10664
10665Range checking is done on all mathematical operations, assignment, array
10666index bounds, and all built-in functions and procedures.
10667
6d2ebf8b 10668@node M2 Scope
79a6e687 10669@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10670@cindex scope
41afff9a 10671@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10672@cindex colon, doubled as scope operator
10673@ifinfo
41afff9a 10674@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10675@c Info cannot handle :: but TeX can.
10676@end ifinfo
10677@iftex
41afff9a 10678@vindex ::@r{, in Modula-2}
c906108c
SS
10679@end iftex
10680
10681There are a few subtle differences between the Modula-2 scope operator
10682(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10683similar syntax:
10684
474c8240 10685@smallexample
c906108c
SS
10686
10687@var{module} . @var{id}
10688@var{scope} :: @var{id}
474c8240 10689@end smallexample
c906108c
SS
10690
10691@noindent
10692where @var{scope} is the name of a module or a procedure,
10693@var{module} the name of a module, and @var{id} is any declared
10694identifier within your program, except another module.
10695
10696Using the @code{::} operator makes @value{GDBN} search the scope
10697specified by @var{scope} for the identifier @var{id}. If it is not
10698found in the specified scope, then @value{GDBN} searches all scopes
10699enclosing the one specified by @var{scope}.
10700
10701Using the @code{.} operator makes @value{GDBN} search the current scope for
10702the identifier specified by @var{id} that was imported from the
10703definition module specified by @var{module}. With this operator, it is
10704an error if the identifier @var{id} was not imported from definition
10705module @var{module}, or if @var{id} is not an identifier in
10706@var{module}.
10707
6d2ebf8b 10708@node GDB/M2
c906108c
SS
10709@subsubsection @value{GDBN} and Modula-2
10710
10711Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10712Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10713specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10714@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10715apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10716analogue in Modula-2.
10717
10718The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10719with any language, is not useful with Modula-2. Its
c906108c 10720intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10721created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10722address can be specified by an integral constant, the construct
d4f3574e 10723@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10724
10725@cindex @code{#} in Modula-2
10726In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10727interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10728
e07c999f
PH
10729@node Ada
10730@subsection Ada
10731@cindex Ada
10732
10733The extensions made to @value{GDBN} for Ada only support
10734output from the @sc{gnu} Ada (GNAT) compiler.
10735Other Ada compilers are not currently supported, and
10736attempting to debug executables produced by them is most likely
10737to be difficult.
10738
10739
10740@cindex expressions in Ada
10741@menu
10742* Ada Mode Intro:: General remarks on the Ada syntax
10743 and semantics supported by Ada mode
10744 in @value{GDBN}.
10745* Omissions from Ada:: Restrictions on the Ada expression syntax.
10746* Additions to Ada:: Extensions of the Ada expression syntax.
10747* Stopping Before Main Program:: Debugging the program during elaboration.
10748* Ada Glitches:: Known peculiarities of Ada mode.
10749@end menu
10750
10751@node Ada Mode Intro
10752@subsubsection Introduction
10753@cindex Ada mode, general
10754
10755The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10756syntax, with some extensions.
10757The philosophy behind the design of this subset is
10758
10759@itemize @bullet
10760@item
10761That @value{GDBN} should provide basic literals and access to operations for
10762arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10763leaving more sophisticated computations to subprograms written into the
10764program (which therefore may be called from @value{GDBN}).
10765
10766@item
10767That type safety and strict adherence to Ada language restrictions
10768are not particularly important to the @value{GDBN} user.
10769
10770@item
10771That brevity is important to the @value{GDBN} user.
10772@end itemize
10773
10774Thus, for brevity, the debugger acts as if there were
10775implicit @code{with} and @code{use} clauses in effect for all user-written
10776packages, making it unnecessary to fully qualify most names with
10777their packages, regardless of context. Where this causes ambiguity,
10778@value{GDBN} asks the user's intent.
10779
10780The debugger will start in Ada mode if it detects an Ada main program.
10781As for other languages, it will enter Ada mode when stopped in a program that
10782was translated from an Ada source file.
10783
10784While in Ada mode, you may use `@t{--}' for comments. This is useful
10785mostly for documenting command files. The standard @value{GDBN} comment
10786(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10787middle (to allow based literals).
10788
10789The debugger supports limited overloading. Given a subprogram call in which
10790the function symbol has multiple definitions, it will use the number of
10791actual parameters and some information about their types to attempt to narrow
10792the set of definitions. It also makes very limited use of context, preferring
10793procedures to functions in the context of the @code{call} command, and
10794functions to procedures elsewhere.
10795
10796@node Omissions from Ada
10797@subsubsection Omissions from Ada
10798@cindex Ada, omissions from
10799
10800Here are the notable omissions from the subset:
10801
10802@itemize @bullet
10803@item
10804Only a subset of the attributes are supported:
10805
10806@itemize @minus
10807@item
10808@t{'First}, @t{'Last}, and @t{'Length}
10809 on array objects (not on types and subtypes).
10810
10811@item
10812@t{'Min} and @t{'Max}.
10813
10814@item
10815@t{'Pos} and @t{'Val}.
10816
10817@item
10818@t{'Tag}.
10819
10820@item
10821@t{'Range} on array objects (not subtypes), but only as the right
10822operand of the membership (@code{in}) operator.
10823
10824@item
10825@t{'Access}, @t{'Unchecked_Access}, and
10826@t{'Unrestricted_Access} (a GNAT extension).
10827
10828@item
10829@t{'Address}.
10830@end itemize
10831
10832@item
10833The names in
10834@code{Characters.Latin_1} are not available and
10835concatenation is not implemented. Thus, escape characters in strings are
10836not currently available.
10837
10838@item
10839Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10840equality of representations. They will generally work correctly
10841for strings and arrays whose elements have integer or enumeration types.
10842They may not work correctly for arrays whose element
10843types have user-defined equality, for arrays of real values
10844(in particular, IEEE-conformant floating point, because of negative
10845zeroes and NaNs), and for arrays whose elements contain unused bits with
10846indeterminate values.
10847
10848@item
10849The other component-by-component array operations (@code{and}, @code{or},
10850@code{xor}, @code{not}, and relational tests other than equality)
10851are not implemented.
10852
10853@item
860701dc
PH
10854@cindex array aggregates (Ada)
10855@cindex record aggregates (Ada)
10856@cindex aggregates (Ada)
10857There is limited support for array and record aggregates. They are
10858permitted only on the right sides of assignments, as in these examples:
10859
10860@smallexample
10861set An_Array := (1, 2, 3, 4, 5, 6)
10862set An_Array := (1, others => 0)
10863set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10864set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10865set A_Record := (1, "Peter", True);
10866set A_Record := (Name => "Peter", Id => 1, Alive => True)
10867@end smallexample
10868
10869Changing a
10870discriminant's value by assigning an aggregate has an
10871undefined effect if that discriminant is used within the record.
10872However, you can first modify discriminants by directly assigning to
10873them (which normally would not be allowed in Ada), and then performing an
10874aggregate assignment. For example, given a variable @code{A_Rec}
10875declared to have a type such as:
10876
10877@smallexample
10878type Rec (Len : Small_Integer := 0) is record
10879 Id : Integer;
10880 Vals : IntArray (1 .. Len);
10881end record;
10882@end smallexample
10883
10884you can assign a value with a different size of @code{Vals} with two
10885assignments:
10886
10887@smallexample
10888set A_Rec.Len := 4
10889set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10890@end smallexample
10891
10892As this example also illustrates, @value{GDBN} is very loose about the usual
10893rules concerning aggregates. You may leave out some of the
10894components of an array or record aggregate (such as the @code{Len}
10895component in the assignment to @code{A_Rec} above); they will retain their
10896original values upon assignment. You may freely use dynamic values as
10897indices in component associations. You may even use overlapping or
10898redundant component associations, although which component values are
10899assigned in such cases is not defined.
e07c999f
PH
10900
10901@item
10902Calls to dispatching subprograms are not implemented.
10903
10904@item
10905The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10906than that of real Ada. It makes only limited use of the context in
10907which a subexpression appears to resolve its meaning, and it is much
10908looser in its rules for allowing type matches. As a result, some
10909function calls will be ambiguous, and the user will be asked to choose
10910the proper resolution.
e07c999f
PH
10911
10912@item
10913The @code{new} operator is not implemented.
10914
10915@item
10916Entry calls are not implemented.
10917
10918@item
10919Aside from printing, arithmetic operations on the native VAX floating-point
10920formats are not supported.
10921
10922@item
10923It is not possible to slice a packed array.
10924@end itemize
10925
10926@node Additions to Ada
10927@subsubsection Additions to Ada
10928@cindex Ada, deviations from
10929
10930As it does for other languages, @value{GDBN} makes certain generic
10931extensions to Ada (@pxref{Expressions}):
10932
10933@itemize @bullet
10934@item
ae21e955
BW
10935If the expression @var{E} is a variable residing in memory (typically
10936a local variable or array element) and @var{N} is a positive integer,
10937then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10938@var{N}-1 adjacent variables following it in memory as an array. In
10939Ada, this operator is generally not necessary, since its prime use is
10940in displaying parts of an array, and slicing will usually do this in
10941Ada. However, there are occasional uses when debugging programs in
10942which certain debugging information has been optimized away.
e07c999f
PH
10943
10944@item
ae21e955
BW
10945@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10946appears in function or file @var{B}.'' When @var{B} is a file name,
10947you must typically surround it in single quotes.
e07c999f
PH
10948
10949@item
10950The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10951@var{type} that appears at address @var{addr}.''
10952
10953@item
10954A name starting with @samp{$} is a convenience variable
10955(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10956@end itemize
10957
ae21e955
BW
10958In addition, @value{GDBN} provides a few other shortcuts and outright
10959additions specific to Ada:
e07c999f
PH
10960
10961@itemize @bullet
10962@item
10963The assignment statement is allowed as an expression, returning
10964its right-hand operand as its value. Thus, you may enter
10965
10966@smallexample
10967set x := y + 3
10968print A(tmp := y + 1)
10969@end smallexample
10970
10971@item
10972The semicolon is allowed as an ``operator,'' returning as its value
10973the value of its right-hand operand.
10974This allows, for example,
10975complex conditional breaks:
10976
10977@smallexample
10978break f
10979condition 1 (report(i); k += 1; A(k) > 100)
10980@end smallexample
10981
10982@item
10983Rather than use catenation and symbolic character names to introduce special
10984characters into strings, one may instead use a special bracket notation,
10985which is also used to print strings. A sequence of characters of the form
10986@samp{["@var{XX}"]} within a string or character literal denotes the
10987(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10988sequence of characters @samp{["""]} also denotes a single quotation mark
10989in strings. For example,
10990@smallexample
10991 "One line.["0a"]Next line.["0a"]"
10992@end smallexample
10993@noindent
ae21e955
BW
10994contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10995after each period.
e07c999f
PH
10996
10997@item
10998The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10999@t{'Max} is optional (and is ignored in any case). For example, it is valid
11000to write
11001
11002@smallexample
11003print 'max(x, y)
11004@end smallexample
11005
11006@item
11007When printing arrays, @value{GDBN} uses positional notation when the
11008array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
11009For example, a one-dimensional array of three integers with a lower bound
11010of 3 might print as
e07c999f
PH
11011
11012@smallexample
11013(3 => 10, 17, 1)
11014@end smallexample
11015
11016@noindent
11017That is, in contrast to valid Ada, only the first component has a @code{=>}
11018clause.
11019
11020@item
11021You may abbreviate attributes in expressions with any unique,
11022multi-character subsequence of
11023their names (an exact match gets preference).
11024For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
11025in place of @t{a'length}.
11026
11027@item
11028@cindex quoting Ada internal identifiers
11029Since Ada is case-insensitive, the debugger normally maps identifiers you type
11030to lower case. The GNAT compiler uses upper-case characters for
11031some of its internal identifiers, which are normally of no interest to users.
11032For the rare occasions when you actually have to look at them,
11033enclose them in angle brackets to avoid the lower-case mapping.
11034For example,
11035@smallexample
11036@value{GDBP} print <JMPBUF_SAVE>[0]
11037@end smallexample
11038
11039@item
11040Printing an object of class-wide type or dereferencing an
11041access-to-class-wide value will display all the components of the object's
11042specific type (as indicated by its run-time tag). Likewise, component
11043selection on such a value will operate on the specific type of the
11044object.
11045
11046@end itemize
11047
11048@node Stopping Before Main Program
11049@subsubsection Stopping at the Very Beginning
11050
11051@cindex breakpointing Ada elaboration code
11052It is sometimes necessary to debug the program during elaboration, and
11053before reaching the main procedure.
11054As defined in the Ada Reference
11055Manual, the elaboration code is invoked from a procedure called
11056@code{adainit}. To run your program up to the beginning of
11057elaboration, simply use the following two commands:
11058@code{tbreak adainit} and @code{run}.
11059
11060@node Ada Glitches
11061@subsubsection Known Peculiarities of Ada Mode
11062@cindex Ada, problems
11063
11064Besides the omissions listed previously (@pxref{Omissions from Ada}),
11065we know of several problems with and limitations of Ada mode in
11066@value{GDBN},
11067some of which will be fixed with planned future releases of the debugger
11068and the GNU Ada compiler.
11069
11070@itemize @bullet
11071@item
11072Currently, the debugger
11073has insufficient information to determine whether certain pointers represent
11074pointers to objects or the objects themselves.
11075Thus, the user may have to tack an extra @code{.all} after an expression
11076to get it printed properly.
11077
11078@item
11079Static constants that the compiler chooses not to materialize as objects in
11080storage are invisible to the debugger.
11081
11082@item
11083Named parameter associations in function argument lists are ignored (the
11084argument lists are treated as positional).
11085
11086@item
11087Many useful library packages are currently invisible to the debugger.
11088
11089@item
11090Fixed-point arithmetic, conversions, input, and output is carried out using
11091floating-point arithmetic, and may give results that only approximate those on
11092the host machine.
11093
11094@item
11095The type of the @t{'Address} attribute may not be @code{System.Address}.
11096
11097@item
11098The GNAT compiler never generates the prefix @code{Standard} for any of
11099the standard symbols defined by the Ada language. @value{GDBN} knows about
11100this: it will strip the prefix from names when you use it, and will never
11101look for a name you have so qualified among local symbols, nor match against
11102symbols in other packages or subprograms. If you have
11103defined entities anywhere in your program other than parameters and
11104local variables whose simple names match names in @code{Standard},
11105GNAT's lack of qualification here can cause confusion. When this happens,
11106you can usually resolve the confusion
11107by qualifying the problematic names with package
11108@code{Standard} explicitly.
11109@end itemize
11110
79a6e687
BW
11111@node Unsupported Languages
11112@section Unsupported Languages
4e562065
JB
11113
11114@cindex unsupported languages
11115@cindex minimal language
11116In addition to the other fully-supported programming languages,
11117@value{GDBN} also provides a pseudo-language, called @code{minimal}.
11118It does not represent a real programming language, but provides a set
11119of capabilities close to what the C or assembly languages provide.
11120This should allow most simple operations to be performed while debugging
11121an application that uses a language currently not supported by @value{GDBN}.
11122
11123If the language is set to @code{auto}, @value{GDBN} will automatically
11124select this language if the current frame corresponds to an unsupported
11125language.
11126
6d2ebf8b 11127@node Symbols
c906108c
SS
11128@chapter Examining the Symbol Table
11129
d4f3574e 11130The commands described in this chapter allow you to inquire about the
c906108c
SS
11131symbols (names of variables, functions and types) defined in your
11132program. This information is inherent in the text of your program and
11133does not change as your program executes. @value{GDBN} finds it in your
11134program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
11135(@pxref{File Options, ,Choosing Files}), or by one of the
11136file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
11137
11138@cindex symbol names
11139@cindex names of symbols
11140@cindex quoting names
11141Occasionally, you may need to refer to symbols that contain unusual
11142characters, which @value{GDBN} ordinarily treats as word delimiters. The
11143most frequent case is in referring to static variables in other
79a6e687 11144source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
11145are recorded in object files as debugging symbols, but @value{GDBN} would
11146ordinarily parse a typical file name, like @file{foo.c}, as the three words
11147@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
11148@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
11149
474c8240 11150@smallexample
c906108c 11151p 'foo.c'::x
474c8240 11152@end smallexample
c906108c
SS
11153
11154@noindent
11155looks up the value of @code{x} in the scope of the file @file{foo.c}.
11156
11157@table @code
a8f24a35
EZ
11158@cindex case-insensitive symbol names
11159@cindex case sensitivity in symbol names
11160@kindex set case-sensitive
11161@item set case-sensitive on
11162@itemx set case-sensitive off
11163@itemx set case-sensitive auto
11164Normally, when @value{GDBN} looks up symbols, it matches their names
11165with case sensitivity determined by the current source language.
11166Occasionally, you may wish to control that. The command @code{set
11167case-sensitive} lets you do that by specifying @code{on} for
11168case-sensitive matches or @code{off} for case-insensitive ones. If
11169you specify @code{auto}, case sensitivity is reset to the default
11170suitable for the source language. The default is case-sensitive
11171matches for all languages except for Fortran, for which the default is
11172case-insensitive matches.
11173
9c16f35a
EZ
11174@kindex show case-sensitive
11175@item show case-sensitive
a8f24a35
EZ
11176This command shows the current setting of case sensitivity for symbols
11177lookups.
11178
c906108c 11179@kindex info address
b37052ae 11180@cindex address of a symbol
c906108c
SS
11181@item info address @var{symbol}
11182Describe where the data for @var{symbol} is stored. For a register
11183variable, this says which register it is kept in. For a non-register
11184local variable, this prints the stack-frame offset at which the variable
11185is always stored.
11186
11187Note the contrast with @samp{print &@var{symbol}}, which does not work
11188at all for a register variable, and for a stack local variable prints
11189the exact address of the current instantiation of the variable.
11190
3d67e040 11191@kindex info symbol
b37052ae 11192@cindex symbol from address
9c16f35a 11193@cindex closest symbol and offset for an address
3d67e040
EZ
11194@item info symbol @var{addr}
11195Print the name of a symbol which is stored at the address @var{addr}.
11196If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11197nearest symbol and an offset from it:
11198
474c8240 11199@smallexample
3d67e040
EZ
11200(@value{GDBP}) info symbol 0x54320
11201_initialize_vx + 396 in section .text
474c8240 11202@end smallexample
3d67e040
EZ
11203
11204@noindent
11205This is the opposite of the @code{info address} command. You can use
11206it to find out the name of a variable or a function given its address.
11207
c906108c 11208@kindex whatis
62f3a2ba
FF
11209@item whatis [@var{arg}]
11210Print the data type of @var{arg}, which can be either an expression or
11211a data type. With no argument, print the data type of @code{$}, the
11212last value in the value history. If @var{arg} is an expression, it is
11213not actually evaluated, and any side-effecting operations (such as
11214assignments or function calls) inside it do not take place. If
11215@var{arg} is a type name, it may be the name of a type or typedef, or
11216for C code it may have the form @samp{class @var{class-name}},
11217@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11218@samp{enum @var{enum-tag}}.
c906108c
SS
11219@xref{Expressions, ,Expressions}.
11220
c906108c 11221@kindex ptype
62f3a2ba
FF
11222@item ptype [@var{arg}]
11223@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11224detailed description of the type, instead of just the name of the type.
11225@xref{Expressions, ,Expressions}.
c906108c
SS
11226
11227For example, for this variable declaration:
11228
474c8240 11229@smallexample
c906108c 11230struct complex @{double real; double imag;@} v;
474c8240 11231@end smallexample
c906108c
SS
11232
11233@noindent
11234the two commands give this output:
11235
474c8240 11236@smallexample
c906108c
SS
11237@group
11238(@value{GDBP}) whatis v
11239type = struct complex
11240(@value{GDBP}) ptype v
11241type = struct complex @{
11242 double real;
11243 double imag;
11244@}
11245@end group
474c8240 11246@end smallexample
c906108c
SS
11247
11248@noindent
11249As with @code{whatis}, using @code{ptype} without an argument refers to
11250the type of @code{$}, the last value in the value history.
11251
ab1adacd
EZ
11252@cindex incomplete type
11253Sometimes, programs use opaque data types or incomplete specifications
11254of complex data structure. If the debug information included in the
11255program does not allow @value{GDBN} to display a full declaration of
11256the data type, it will say @samp{<incomplete type>}. For example,
11257given these declarations:
11258
11259@smallexample
11260 struct foo;
11261 struct foo *fooptr;
11262@end smallexample
11263
11264@noindent
11265but no definition for @code{struct foo} itself, @value{GDBN} will say:
11266
11267@smallexample
ddb50cd7 11268 (@value{GDBP}) ptype foo
ab1adacd
EZ
11269 $1 = <incomplete type>
11270@end smallexample
11271
11272@noindent
11273``Incomplete type'' is C terminology for data types that are not
11274completely specified.
11275
c906108c
SS
11276@kindex info types
11277@item info types @var{regexp}
11278@itemx info types
09d4efe1
EZ
11279Print a brief description of all types whose names match the regular
11280expression @var{regexp} (or all types in your program, if you supply
11281no argument). Each complete typename is matched as though it were a
11282complete line; thus, @samp{i type value} gives information on all
11283types in your program whose names include the string @code{value}, but
11284@samp{i type ^value$} gives information only on types whose complete
11285name is @code{value}.
c906108c
SS
11286
11287This command differs from @code{ptype} in two ways: first, like
11288@code{whatis}, it does not print a detailed description; second, it
11289lists all source files where a type is defined.
11290
b37052ae
EZ
11291@kindex info scope
11292@cindex local variables
09d4efe1 11293@item info scope @var{location}
b37052ae 11294List all the variables local to a particular scope. This command
09d4efe1
EZ
11295accepts a @var{location} argument---a function name, a source line, or
11296an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11297to the scope defined by that location. (@xref{Specify Location}, for
11298details about supported forms of @var{location}.) For example:
b37052ae
EZ
11299
11300@smallexample
11301(@value{GDBP}) @b{info scope command_line_handler}
11302Scope for command_line_handler:
11303Symbol rl is an argument at stack/frame offset 8, length 4.
11304Symbol linebuffer is in static storage at address 0x150a18, length 4.
11305Symbol linelength is in static storage at address 0x150a1c, length 4.
11306Symbol p is a local variable in register $esi, length 4.
11307Symbol p1 is a local variable in register $ebx, length 4.
11308Symbol nline is a local variable in register $edx, length 4.
11309Symbol repeat is a local variable at frame offset -8, length 4.
11310@end smallexample
11311
f5c37c66
EZ
11312@noindent
11313This command is especially useful for determining what data to collect
11314during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11315collect}.
11316
c906108c
SS
11317@kindex info source
11318@item info source
919d772c
JB
11319Show information about the current source file---that is, the source file for
11320the function containing the current point of execution:
11321@itemize @bullet
11322@item
11323the name of the source file, and the directory containing it,
11324@item
11325the directory it was compiled in,
11326@item
11327its length, in lines,
11328@item
11329which programming language it is written in,
11330@item
11331whether the executable includes debugging information for that file, and
11332if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11333@item
11334whether the debugging information includes information about
11335preprocessor macros.
11336@end itemize
11337
c906108c
SS
11338
11339@kindex info sources
11340@item info sources
11341Print the names of all source files in your program for which there is
11342debugging information, organized into two lists: files whose symbols
11343have already been read, and files whose symbols will be read when needed.
11344
11345@kindex info functions
11346@item info functions
11347Print the names and data types of all defined functions.
11348
11349@item info functions @var{regexp}
11350Print the names and data types of all defined functions
11351whose names contain a match for regular expression @var{regexp}.
11352Thus, @samp{info fun step} finds all functions whose names
11353include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11354start with @code{step}. If a function name contains characters
c1468174 11355that conflict with the regular expression language (e.g.@:
1c5dfdad 11356@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11357
11358@kindex info variables
11359@item info variables
11360Print the names and data types of all variables that are declared
6ca652b0 11361outside of functions (i.e.@: excluding local variables).
c906108c
SS
11362
11363@item info variables @var{regexp}
11364Print the names and data types of all variables (except for local
11365variables) whose names contain a match for regular expression
11366@var{regexp}.
11367
b37303ee 11368@kindex info classes
721c2651 11369@cindex Objective-C, classes and selectors
b37303ee
AF
11370@item info classes
11371@itemx info classes @var{regexp}
11372Display all Objective-C classes in your program, or
11373(with the @var{regexp} argument) all those matching a particular regular
11374expression.
11375
11376@kindex info selectors
11377@item info selectors
11378@itemx info selectors @var{regexp}
11379Display all Objective-C selectors in your program, or
11380(with the @var{regexp} argument) all those matching a particular regular
11381expression.
11382
c906108c
SS
11383@ignore
11384This was never implemented.
11385@kindex info methods
11386@item info methods
11387@itemx info methods @var{regexp}
11388The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11389methods within C@t{++} program, or (with the @var{regexp} argument) a
11390specific set of methods found in the various C@t{++} classes. Many
11391C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11392from the @code{ptype} command can be overwhelming and hard to use. The
11393@code{info-methods} command filters the methods, printing only those
11394which match the regular-expression @var{regexp}.
11395@end ignore
11396
c906108c
SS
11397@cindex reloading symbols
11398Some systems allow individual object files that make up your program to
7a292a7a
SS
11399be replaced without stopping and restarting your program. For example,
11400in VxWorks you can simply recompile a defective object file and keep on
11401running. If you are running on one of these systems, you can allow
11402@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11403
11404@table @code
11405@kindex set symbol-reloading
11406@item set symbol-reloading on
11407Replace symbol definitions for the corresponding source file when an
11408object file with a particular name is seen again.
11409
11410@item set symbol-reloading off
6d2ebf8b
SS
11411Do not replace symbol definitions when encountering object files of the
11412same name more than once. This is the default state; if you are not
11413running on a system that permits automatic relinking of modules, you
11414should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11415may discard symbols when linking large programs, that may contain
11416several modules (from different directories or libraries) with the same
11417name.
c906108c
SS
11418
11419@kindex show symbol-reloading
11420@item show symbol-reloading
11421Show the current @code{on} or @code{off} setting.
11422@end table
c906108c 11423
9c16f35a 11424@cindex opaque data types
c906108c
SS
11425@kindex set opaque-type-resolution
11426@item set opaque-type-resolution on
11427Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11428declared as a pointer to a @code{struct}, @code{class}, or
11429@code{union}---for example, @code{struct MyType *}---that is used in one
11430source file although the full declaration of @code{struct MyType} is in
11431another source file. The default is on.
11432
11433A change in the setting of this subcommand will not take effect until
11434the next time symbols for a file are loaded.
11435
11436@item set opaque-type-resolution off
11437Tell @value{GDBN} not to resolve opaque types. In this case, the type
11438is printed as follows:
11439@smallexample
11440@{<no data fields>@}
11441@end smallexample
11442
11443@kindex show opaque-type-resolution
11444@item show opaque-type-resolution
11445Show whether opaque types are resolved or not.
c906108c
SS
11446
11447@kindex maint print symbols
11448@cindex symbol dump
11449@kindex maint print psymbols
11450@cindex partial symbol dump
11451@item maint print symbols @var{filename}
11452@itemx maint print psymbols @var{filename}
11453@itemx maint print msymbols @var{filename}
11454Write a dump of debugging symbol data into the file @var{filename}.
11455These commands are used to debug the @value{GDBN} symbol-reading code. Only
11456symbols with debugging data are included. If you use @samp{maint print
11457symbols}, @value{GDBN} includes all the symbols for which it has already
11458collected full details: that is, @var{filename} reflects symbols for
11459only those files whose symbols @value{GDBN} has read. You can use the
11460command @code{info sources} to find out which files these are. If you
11461use @samp{maint print psymbols} instead, the dump shows information about
11462symbols that @value{GDBN} only knows partially---that is, symbols defined in
11463files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11464@samp{maint print msymbols} dumps just the minimal symbol information
11465required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11466@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11467@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11468
5e7b2f39
JB
11469@kindex maint info symtabs
11470@kindex maint info psymtabs
44ea7b70
JB
11471@cindex listing @value{GDBN}'s internal symbol tables
11472@cindex symbol tables, listing @value{GDBN}'s internal
11473@cindex full symbol tables, listing @value{GDBN}'s internal
11474@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11475@item maint info symtabs @r{[} @var{regexp} @r{]}
11476@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11477
11478List the @code{struct symtab} or @code{struct partial_symtab}
11479structures whose names match @var{regexp}. If @var{regexp} is not
11480given, list them all. The output includes expressions which you can
11481copy into a @value{GDBN} debugging this one to examine a particular
11482structure in more detail. For example:
11483
11484@smallexample
5e7b2f39 11485(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11486@{ objfile /home/gnu/build/gdb/gdb
11487 ((struct objfile *) 0x82e69d0)
b383017d 11488 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11489 ((struct partial_symtab *) 0x8474b10)
11490 readin no
11491 fullname (null)
11492 text addresses 0x814d3c8 -- 0x8158074
11493 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11494 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11495 dependencies (none)
11496 @}
11497@}
5e7b2f39 11498(@value{GDBP}) maint info symtabs
44ea7b70
JB
11499(@value{GDBP})
11500@end smallexample
11501@noindent
11502We see that there is one partial symbol table whose filename contains
11503the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11504and we see that @value{GDBN} has not read in any symtabs yet at all.
11505If we set a breakpoint on a function, that will cause @value{GDBN} to
11506read the symtab for the compilation unit containing that function:
11507
11508@smallexample
11509(@value{GDBP}) break dwarf2_psymtab_to_symtab
11510Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11511line 1574.
5e7b2f39 11512(@value{GDBP}) maint info symtabs
b383017d 11513@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11514 ((struct objfile *) 0x82e69d0)
b383017d 11515 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11516 ((struct symtab *) 0x86c1f38)
11517 dirname (null)
11518 fullname (null)
11519 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11520 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11521 debugformat DWARF 2
11522 @}
11523@}
b383017d 11524(@value{GDBP})
44ea7b70 11525@end smallexample
c906108c
SS
11526@end table
11527
44ea7b70 11528
6d2ebf8b 11529@node Altering
c906108c
SS
11530@chapter Altering Execution
11531
11532Once you think you have found an error in your program, you might want to
11533find out for certain whether correcting the apparent error would lead to
11534correct results in the rest of the run. You can find the answer by
11535experiment, using the @value{GDBN} features for altering execution of the
11536program.
11537
11538For example, you can store new values into variables or memory
7a292a7a
SS
11539locations, give your program a signal, restart it at a different
11540address, or even return prematurely from a function.
c906108c
SS
11541
11542@menu
11543* Assignment:: Assignment to variables
11544* Jumping:: Continuing at a different address
c906108c 11545* Signaling:: Giving your program a signal
c906108c
SS
11546* Returning:: Returning from a function
11547* Calling:: Calling your program's functions
11548* Patching:: Patching your program
11549@end menu
11550
6d2ebf8b 11551@node Assignment
79a6e687 11552@section Assignment to Variables
c906108c
SS
11553
11554@cindex assignment
11555@cindex setting variables
11556To alter the value of a variable, evaluate an assignment expression.
11557@xref{Expressions, ,Expressions}. For example,
11558
474c8240 11559@smallexample
c906108c 11560print x=4
474c8240 11561@end smallexample
c906108c
SS
11562
11563@noindent
11564stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11565value of the assignment expression (which is 4).
c906108c
SS
11566@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11567information on operators in supported languages.
c906108c
SS
11568
11569@kindex set variable
11570@cindex variables, setting
11571If you are not interested in seeing the value of the assignment, use the
11572@code{set} command instead of the @code{print} command. @code{set} is
11573really the same as @code{print} except that the expression's value is
11574not printed and is not put in the value history (@pxref{Value History,
79a6e687 11575,Value History}). The expression is evaluated only for its effects.
c906108c 11576
c906108c
SS
11577If the beginning of the argument string of the @code{set} command
11578appears identical to a @code{set} subcommand, use the @code{set
11579variable} command instead of just @code{set}. This command is identical
11580to @code{set} except for its lack of subcommands. For example, if your
11581program has a variable @code{width}, you get an error if you try to set
11582a new value with just @samp{set width=13}, because @value{GDBN} has the
11583command @code{set width}:
11584
474c8240 11585@smallexample
c906108c
SS
11586(@value{GDBP}) whatis width
11587type = double
11588(@value{GDBP}) p width
11589$4 = 13
11590(@value{GDBP}) set width=47
11591Invalid syntax in expression.
474c8240 11592@end smallexample
c906108c
SS
11593
11594@noindent
11595The invalid expression, of course, is @samp{=47}. In
11596order to actually set the program's variable @code{width}, use
11597
474c8240 11598@smallexample
c906108c 11599(@value{GDBP}) set var width=47
474c8240 11600@end smallexample
53a5351d 11601
c906108c
SS
11602Because the @code{set} command has many subcommands that can conflict
11603with the names of program variables, it is a good idea to use the
11604@code{set variable} command instead of just @code{set}. For example, if
11605your program has a variable @code{g}, you run into problems if you try
11606to set a new value with just @samp{set g=4}, because @value{GDBN} has
11607the command @code{set gnutarget}, abbreviated @code{set g}:
11608
474c8240 11609@smallexample
c906108c
SS
11610@group
11611(@value{GDBP}) whatis g
11612type = double
11613(@value{GDBP}) p g
11614$1 = 1
11615(@value{GDBP}) set g=4
2df3850c 11616(@value{GDBP}) p g
c906108c
SS
11617$2 = 1
11618(@value{GDBP}) r
11619The program being debugged has been started already.
11620Start it from the beginning? (y or n) y
11621Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11622"/home/smith/cc_progs/a.out": can't open to read symbols:
11623 Invalid bfd target.
c906108c
SS
11624(@value{GDBP}) show g
11625The current BFD target is "=4".
11626@end group
474c8240 11627@end smallexample
c906108c
SS
11628
11629@noindent
11630The program variable @code{g} did not change, and you silently set the
11631@code{gnutarget} to an invalid value. In order to set the variable
11632@code{g}, use
11633
474c8240 11634@smallexample
c906108c 11635(@value{GDBP}) set var g=4
474c8240 11636@end smallexample
c906108c
SS
11637
11638@value{GDBN} allows more implicit conversions in assignments than C; you can
11639freely store an integer value into a pointer variable or vice versa,
11640and you can convert any structure to any other structure that is the
11641same length or shorter.
11642@comment FIXME: how do structs align/pad in these conversions?
11643@comment /doc@cygnus.com 18dec1990
11644
11645To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11646construct to generate a value of specified type at a specified address
11647(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11648to memory location @code{0x83040} as an integer (which implies a certain size
11649and representation in memory), and
11650
474c8240 11651@smallexample
c906108c 11652set @{int@}0x83040 = 4
474c8240 11653@end smallexample
c906108c
SS
11654
11655@noindent
11656stores the value 4 into that memory location.
11657
6d2ebf8b 11658@node Jumping
79a6e687 11659@section Continuing at a Different Address
c906108c
SS
11660
11661Ordinarily, when you continue your program, you do so at the place where
11662it stopped, with the @code{continue} command. You can instead continue at
11663an address of your own choosing, with the following commands:
11664
11665@table @code
11666@kindex jump
11667@item jump @var{linespec}
2a25a5ba
EZ
11668@itemx jump @var{location}
11669Resume execution at line @var{linespec} or at address given by
11670@var{location}. Execution stops again immediately if there is a
11671breakpoint there. @xref{Specify Location}, for a description of the
11672different forms of @var{linespec} and @var{location}. It is common
11673practice to use the @code{tbreak} command in conjunction with
11674@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11675
11676The @code{jump} command does not change the current stack frame, or
11677the stack pointer, or the contents of any memory location or any
11678register other than the program counter. If line @var{linespec} is in
11679a different function from the one currently executing, the results may
11680be bizarre if the two functions expect different patterns of arguments or
11681of local variables. For this reason, the @code{jump} command requests
11682confirmation if the specified line is not in the function currently
11683executing. However, even bizarre results are predictable if you are
11684well acquainted with the machine-language code of your program.
c906108c
SS
11685@end table
11686
c906108c 11687@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11688On many systems, you can get much the same effect as the @code{jump}
11689command by storing a new value into the register @code{$pc}. The
11690difference is that this does not start your program running; it only
11691changes the address of where it @emph{will} run when you continue. For
11692example,
c906108c 11693
474c8240 11694@smallexample
c906108c 11695set $pc = 0x485
474c8240 11696@end smallexample
c906108c
SS
11697
11698@noindent
11699makes the next @code{continue} command or stepping command execute at
11700address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11701@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11702
11703The most common occasion to use the @code{jump} command is to back
11704up---perhaps with more breakpoints set---over a portion of a program
11705that has already executed, in order to examine its execution in more
11706detail.
11707
c906108c 11708@c @group
6d2ebf8b 11709@node Signaling
79a6e687 11710@section Giving your Program a Signal
9c16f35a 11711@cindex deliver a signal to a program
c906108c
SS
11712
11713@table @code
11714@kindex signal
11715@item signal @var{signal}
11716Resume execution where your program stopped, but immediately give it the
11717signal @var{signal}. @var{signal} can be the name or the number of a
11718signal. For example, on many systems @code{signal 2} and @code{signal
11719SIGINT} are both ways of sending an interrupt signal.
11720
11721Alternatively, if @var{signal} is zero, continue execution without
11722giving a signal. This is useful when your program stopped on account of
11723a signal and would ordinary see the signal when resumed with the
11724@code{continue} command; @samp{signal 0} causes it to resume without a
11725signal.
11726
11727@code{signal} does not repeat when you press @key{RET} a second time
11728after executing the command.
11729@end table
11730@c @end group
11731
11732Invoking the @code{signal} command is not the same as invoking the
11733@code{kill} utility from the shell. Sending a signal with @code{kill}
11734causes @value{GDBN} to decide what to do with the signal depending on
11735the signal handling tables (@pxref{Signals}). The @code{signal} command
11736passes the signal directly to your program.
11737
c906108c 11738
6d2ebf8b 11739@node Returning
79a6e687 11740@section Returning from a Function
c906108c
SS
11741
11742@table @code
11743@cindex returning from a function
11744@kindex return
11745@item return
11746@itemx return @var{expression}
11747You can cancel execution of a function call with the @code{return}
11748command. If you give an
11749@var{expression} argument, its value is used as the function's return
11750value.
11751@end table
11752
11753When you use @code{return}, @value{GDBN} discards the selected stack frame
11754(and all frames within it). You can think of this as making the
11755discarded frame return prematurely. If you wish to specify a value to
11756be returned, give that value as the argument to @code{return}.
11757
11758This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11759Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11760innermost remaining frame. That frame becomes selected. The
11761specified value is stored in the registers used for returning values
11762of functions.
11763
11764The @code{return} command does not resume execution; it leaves the
11765program stopped in the state that would exist if the function had just
11766returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11767and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11768selected stack frame returns naturally.
11769
6d2ebf8b 11770@node Calling
79a6e687 11771@section Calling Program Functions
c906108c 11772
f8568604 11773@table @code
c906108c 11774@cindex calling functions
f8568604
EZ
11775@cindex inferior functions, calling
11776@item print @var{expr}
d3e8051b 11777Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11778@var{expr} may include calls to functions in the program being
11779debugged.
11780
c906108c 11781@kindex call
c906108c
SS
11782@item call @var{expr}
11783Evaluate the expression @var{expr} without displaying @code{void}
11784returned values.
c906108c
SS
11785
11786You can use this variant of the @code{print} command if you want to
f8568604
EZ
11787execute a function from your program that does not return anything
11788(a.k.a.@: @dfn{a void function}), but without cluttering the output
11789with @code{void} returned values that @value{GDBN} will otherwise
11790print. If the result is not void, it is printed and saved in the
11791value history.
11792@end table
11793
9c16f35a
EZ
11794It is possible for the function you call via the @code{print} or
11795@code{call} command to generate a signal (e.g., if there's a bug in
11796the function, or if you passed it incorrect arguments). What happens
11797in that case is controlled by the @code{set unwindonsignal} command.
11798
11799@table @code
11800@item set unwindonsignal
11801@kindex set unwindonsignal
11802@cindex unwind stack in called functions
11803@cindex call dummy stack unwinding
11804Set unwinding of the stack if a signal is received while in a function
11805that @value{GDBN} called in the program being debugged. If set to on,
11806@value{GDBN} unwinds the stack it created for the call and restores
11807the context to what it was before the call. If set to off (the
11808default), @value{GDBN} stops in the frame where the signal was
11809received.
11810
11811@item show unwindonsignal
11812@kindex show unwindonsignal
11813Show the current setting of stack unwinding in the functions called by
11814@value{GDBN}.
11815@end table
11816
f8568604
EZ
11817@cindex weak alias functions
11818Sometimes, a function you wish to call is actually a @dfn{weak alias}
11819for another function. In such case, @value{GDBN} might not pick up
11820the type information, including the types of the function arguments,
11821which causes @value{GDBN} to call the inferior function incorrectly.
11822As a result, the called function will function erroneously and may
11823even crash. A solution to that is to use the name of the aliased
11824function instead.
c906108c 11825
6d2ebf8b 11826@node Patching
79a6e687 11827@section Patching Programs
7a292a7a 11828
c906108c
SS
11829@cindex patching binaries
11830@cindex writing into executables
c906108c 11831@cindex writing into corefiles
c906108c 11832
7a292a7a
SS
11833By default, @value{GDBN} opens the file containing your program's
11834executable code (or the corefile) read-only. This prevents accidental
11835alterations to machine code; but it also prevents you from intentionally
11836patching your program's binary.
c906108c
SS
11837
11838If you'd like to be able to patch the binary, you can specify that
11839explicitly with the @code{set write} command. For example, you might
11840want to turn on internal debugging flags, or even to make emergency
11841repairs.
11842
11843@table @code
11844@kindex set write
11845@item set write on
11846@itemx set write off
7a292a7a
SS
11847If you specify @samp{set write on}, @value{GDBN} opens executable and
11848core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11849off} (the default), @value{GDBN} opens them read-only.
11850
11851If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11852@code{exec-file} or @code{core-file} command) after changing @code{set
11853write}, for your new setting to take effect.
c906108c
SS
11854
11855@item show write
11856@kindex show write
7a292a7a
SS
11857Display whether executable files and core files are opened for writing
11858as well as reading.
c906108c
SS
11859@end table
11860
6d2ebf8b 11861@node GDB Files
c906108c
SS
11862@chapter @value{GDBN} Files
11863
7a292a7a
SS
11864@value{GDBN} needs to know the file name of the program to be debugged,
11865both in order to read its symbol table and in order to start your
11866program. To debug a core dump of a previous run, you must also tell
11867@value{GDBN} the name of the core dump file.
c906108c
SS
11868
11869@menu
11870* Files:: Commands to specify files
5b5d99cf 11871* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11872* Symbol Errors:: Errors reading symbol files
11873@end menu
11874
6d2ebf8b 11875@node Files
79a6e687 11876@section Commands to Specify Files
c906108c 11877
7a292a7a 11878@cindex symbol table
c906108c 11879@cindex core dump file
7a292a7a
SS
11880
11881You may want to specify executable and core dump file names. The usual
11882way to do this is at start-up time, using the arguments to
11883@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11884Out of @value{GDBN}}).
c906108c
SS
11885
11886Occasionally it is necessary to change to a different file during a
397ca115
EZ
11887@value{GDBN} session. Or you may run @value{GDBN} and forget to
11888specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11889via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11890Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11891new files are useful.
c906108c
SS
11892
11893@table @code
11894@cindex executable file
11895@kindex file
11896@item file @var{filename}
11897Use @var{filename} as the program to be debugged. It is read for its
11898symbols and for the contents of pure memory. It is also the program
11899executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11900directory and the file is not found in the @value{GDBN} working directory,
11901@value{GDBN} uses the environment variable @code{PATH} as a list of
11902directories to search, just as the shell does when looking for a program
11903to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11904and your program, using the @code{path} command.
11905
fc8be69e
EZ
11906@cindex unlinked object files
11907@cindex patching object files
11908You can load unlinked object @file{.o} files into @value{GDBN} using
11909the @code{file} command. You will not be able to ``run'' an object
11910file, but you can disassemble functions and inspect variables. Also,
11911if the underlying BFD functionality supports it, you could use
11912@kbd{gdb -write} to patch object files using this technique. Note
11913that @value{GDBN} can neither interpret nor modify relocations in this
11914case, so branches and some initialized variables will appear to go to
11915the wrong place. But this feature is still handy from time to time.
11916
c906108c
SS
11917@item file
11918@code{file} with no argument makes @value{GDBN} discard any information it
11919has on both executable file and the symbol table.
11920
11921@kindex exec-file
11922@item exec-file @r{[} @var{filename} @r{]}
11923Specify that the program to be run (but not the symbol table) is found
11924in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11925if necessary to locate your program. Omitting @var{filename} means to
11926discard information on the executable file.
11927
11928@kindex symbol-file
11929@item symbol-file @r{[} @var{filename} @r{]}
11930Read symbol table information from file @var{filename}. @code{PATH} is
11931searched when necessary. Use the @code{file} command to get both symbol
11932table and program to run from the same file.
11933
11934@code{symbol-file} with no argument clears out @value{GDBN} information on your
11935program's symbol table.
11936
ae5a43e0
DJ
11937The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11938some breakpoints and auto-display expressions. This is because they may
11939contain pointers to the internal data recording symbols and data types,
11940which are part of the old symbol table data being discarded inside
11941@value{GDBN}.
c906108c
SS
11942
11943@code{symbol-file} does not repeat if you press @key{RET} again after
11944executing it once.
11945
11946When @value{GDBN} is configured for a particular environment, it
11947understands debugging information in whatever format is the standard
11948generated for that environment; you may use either a @sc{gnu} compiler, or
11949other compilers that adhere to the local conventions.
c906108c 11950Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11951using @code{@value{NGCC}} you can generate debugging information for
c906108c 11952optimized code.
c906108c
SS
11953
11954For most kinds of object files, with the exception of old SVR3 systems
11955using COFF, the @code{symbol-file} command does not normally read the
11956symbol table in full right away. Instead, it scans the symbol table
11957quickly to find which source files and which symbols are present. The
11958details are read later, one source file at a time, as they are needed.
11959
11960The purpose of this two-stage reading strategy is to make @value{GDBN}
11961start up faster. For the most part, it is invisible except for
11962occasional pauses while the symbol table details for a particular source
11963file are being read. (The @code{set verbose} command can turn these
11964pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11965Warnings and Messages}.)
c906108c 11966
c906108c
SS
11967We have not implemented the two-stage strategy for COFF yet. When the
11968symbol table is stored in COFF format, @code{symbol-file} reads the
11969symbol table data in full right away. Note that ``stabs-in-COFF''
11970still does the two-stage strategy, since the debug info is actually
11971in stabs format.
11972
11973@kindex readnow
11974@cindex reading symbols immediately
11975@cindex symbols, reading immediately
a94ab193
EZ
11976@item symbol-file @var{filename} @r{[} -readnow @r{]}
11977@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11978You can override the @value{GDBN} two-stage strategy for reading symbol
11979tables by using the @samp{-readnow} option with any of the commands that
11980load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11981entire symbol table available.
c906108c 11982
c906108c
SS
11983@c FIXME: for now no mention of directories, since this seems to be in
11984@c flux. 13mar1992 status is that in theory GDB would look either in
11985@c current dir or in same dir as myprog; but issues like competing
11986@c GDB's, or clutter in system dirs, mean that in practice right now
11987@c only current dir is used. FFish says maybe a special GDB hierarchy
11988@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11989@c files.
11990
c906108c 11991@kindex core-file
09d4efe1 11992@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11993@itemx core
c906108c
SS
11994Specify the whereabouts of a core dump file to be used as the ``contents
11995of memory''. Traditionally, core files contain only some parts of the
11996address space of the process that generated them; @value{GDBN} can access the
11997executable file itself for other parts.
11998
11999@code{core-file} with no argument specifies that no core file is
12000to be used.
12001
12002Note that the core file is ignored when your program is actually running
7a292a7a
SS
12003under @value{GDBN}. So, if you have been running your program and you
12004wish to debug a core file instead, you must kill the subprocess in which
12005the program is running. To do this, use the @code{kill} command
79a6e687 12006(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 12007
c906108c
SS
12008@kindex add-symbol-file
12009@cindex dynamic linking
12010@item add-symbol-file @var{filename} @var{address}
a94ab193 12011@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 12012@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
12013The @code{add-symbol-file} command reads additional symbol table
12014information from the file @var{filename}. You would use this command
12015when @var{filename} has been dynamically loaded (by some other means)
12016into the program that is running. @var{address} should be the memory
12017address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
12018this out for itself. You can additionally specify an arbitrary number
12019of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
12020section name and base address for that section. You can specify any
12021@var{address} as an expression.
c906108c
SS
12022
12023The symbol table of the file @var{filename} is added to the symbol table
12024originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
12025@code{add-symbol-file} command any number of times; the new symbol data
12026thus read keeps adding to the old. To discard all old symbol data
12027instead, use the @code{symbol-file} command without any arguments.
c906108c 12028
17d9d558
JB
12029@cindex relocatable object files, reading symbols from
12030@cindex object files, relocatable, reading symbols from
12031@cindex reading symbols from relocatable object files
12032@cindex symbols, reading from relocatable object files
12033@cindex @file{.o} files, reading symbols from
12034Although @var{filename} is typically a shared library file, an
12035executable file, or some other object file which has been fully
12036relocated for loading into a process, you can also load symbolic
12037information from relocatable @file{.o} files, as long as:
12038
12039@itemize @bullet
12040@item
12041the file's symbolic information refers only to linker symbols defined in
12042that file, not to symbols defined by other object files,
12043@item
12044every section the file's symbolic information refers to has actually
12045been loaded into the inferior, as it appears in the file, and
12046@item
12047you can determine the address at which every section was loaded, and
12048provide these to the @code{add-symbol-file} command.
12049@end itemize
12050
12051@noindent
12052Some embedded operating systems, like Sun Chorus and VxWorks, can load
12053relocatable files into an already running program; such systems
12054typically make the requirements above easy to meet. However, it's
12055important to recognize that many native systems use complex link
49efadf5 12056procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
12057assembly, for example) that make the requirements difficult to meet. In
12058general, one cannot assume that using @code{add-symbol-file} to read a
12059relocatable object file's symbolic information will have the same effect
12060as linking the relocatable object file into the program in the normal
12061way.
12062
c906108c
SS
12063@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
12064
c45da7e6
EZ
12065@kindex add-symbol-file-from-memory
12066@cindex @code{syscall DSO}
12067@cindex load symbols from memory
12068@item add-symbol-file-from-memory @var{address}
12069Load symbols from the given @var{address} in a dynamically loaded
12070object file whose image is mapped directly into the inferior's memory.
12071For example, the Linux kernel maps a @code{syscall DSO} into each
12072process's address space; this DSO provides kernel-specific code for
12073some system calls. The argument can be any expression whose
12074evaluation yields the address of the file's shared object file header.
12075For this command to work, you must have used @code{symbol-file} or
12076@code{exec-file} commands in advance.
12077
09d4efe1
EZ
12078@kindex add-shared-symbol-files
12079@kindex assf
12080@item add-shared-symbol-files @var{library-file}
12081@itemx assf @var{library-file}
12082The @code{add-shared-symbol-files} command can currently be used only
12083in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
12084alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
12085@value{GDBN} automatically looks for shared libraries, however if
12086@value{GDBN} does not find yours, you can invoke
12087@code{add-shared-symbol-files}. It takes one argument: the shared
12088library's file name. @code{assf} is a shorthand alias for
12089@code{add-shared-symbol-files}.
c906108c 12090
c906108c 12091@kindex section
09d4efe1
EZ
12092@item section @var{section} @var{addr}
12093The @code{section} command changes the base address of the named
12094@var{section} of the exec file to @var{addr}. This can be used if the
12095exec file does not contain section addresses, (such as in the
12096@code{a.out} format), or when the addresses specified in the file
12097itself are wrong. Each section must be changed separately. The
12098@code{info files} command, described below, lists all the sections and
12099their addresses.
c906108c
SS
12100
12101@kindex info files
12102@kindex info target
12103@item info files
12104@itemx info target
7a292a7a
SS
12105@code{info files} and @code{info target} are synonymous; both print the
12106current target (@pxref{Targets, ,Specifying a Debugging Target}),
12107including the names of the executable and core dump files currently in
12108use by @value{GDBN}, and the files from which symbols were loaded. The
12109command @code{help target} lists all possible targets rather than
12110current ones.
12111
fe95c787
MS
12112@kindex maint info sections
12113@item maint info sections
12114Another command that can give you extra information about program sections
12115is @code{maint info sections}. In addition to the section information
12116displayed by @code{info files}, this command displays the flags and file
12117offset of each section in the executable and core dump files. In addition,
12118@code{maint info sections} provides the following command options (which
12119may be arbitrarily combined):
12120
12121@table @code
12122@item ALLOBJ
12123Display sections for all loaded object files, including shared libraries.
12124@item @var{sections}
6600abed 12125Display info only for named @var{sections}.
fe95c787
MS
12126@item @var{section-flags}
12127Display info only for sections for which @var{section-flags} are true.
12128The section flags that @value{GDBN} currently knows about are:
12129@table @code
12130@item ALLOC
12131Section will have space allocated in the process when loaded.
12132Set for all sections except those containing debug information.
12133@item LOAD
12134Section will be loaded from the file into the child process memory.
12135Set for pre-initialized code and data, clear for @code{.bss} sections.
12136@item RELOC
12137Section needs to be relocated before loading.
12138@item READONLY
12139Section cannot be modified by the child process.
12140@item CODE
12141Section contains executable code only.
6600abed 12142@item DATA
fe95c787
MS
12143Section contains data only (no executable code).
12144@item ROM
12145Section will reside in ROM.
12146@item CONSTRUCTOR
12147Section contains data for constructor/destructor lists.
12148@item HAS_CONTENTS
12149Section is not empty.
12150@item NEVER_LOAD
12151An instruction to the linker to not output the section.
12152@item COFF_SHARED_LIBRARY
12153A notification to the linker that the section contains
12154COFF shared library information.
12155@item IS_COMMON
12156Section contains common symbols.
12157@end table
12158@end table
6763aef9 12159@kindex set trust-readonly-sections
9c16f35a 12160@cindex read-only sections
6763aef9
MS
12161@item set trust-readonly-sections on
12162Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12163really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12164In that case, @value{GDBN} can fetch values from these sections
12165out of the object file, rather than from the target program.
12166For some targets (notably embedded ones), this can be a significant
12167enhancement to debugging performance.
12168
12169The default is off.
12170
12171@item set trust-readonly-sections off
15110bc3 12172Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12173the contents of the section might change while the program is running,
12174and must therefore be fetched from the target when needed.
9c16f35a
EZ
12175
12176@item show trust-readonly-sections
12177Show the current setting of trusting readonly sections.
c906108c
SS
12178@end table
12179
12180All file-specifying commands allow both absolute and relative file names
12181as arguments. @value{GDBN} always converts the file name to an absolute file
12182name and remembers it that way.
12183
c906108c 12184@cindex shared libraries
9cceb671
DJ
12185@anchor{Shared Libraries}
12186@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12187and IBM RS/6000 AIX shared libraries.
53a5351d 12188
9cceb671
DJ
12189On MS-Windows @value{GDBN} must be linked with the Expat library to support
12190shared libraries. @xref{Expat}.
12191
c906108c
SS
12192@value{GDBN} automatically loads symbol definitions from shared libraries
12193when you use the @code{run} command, or when you examine a core file.
12194(Before you issue the @code{run} command, @value{GDBN} does not understand
12195references to a function in a shared library, however---unless you are
12196debugging a core file).
53a5351d
JM
12197
12198On HP-UX, if the program loads a library explicitly, @value{GDBN}
12199automatically loads the symbols at the time of the @code{shl_load} call.
12200
c906108c
SS
12201@c FIXME: some @value{GDBN} release may permit some refs to undef
12202@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12203@c FIXME...lib; check this from time to time when updating manual
12204
b7209cb4
FF
12205There are times, however, when you may wish to not automatically load
12206symbol definitions from shared libraries, such as when they are
12207particularly large or there are many of them.
12208
12209To control the automatic loading of shared library symbols, use the
12210commands:
12211
12212@table @code
12213@kindex set auto-solib-add
12214@item set auto-solib-add @var{mode}
12215If @var{mode} is @code{on}, symbols from all shared object libraries
12216will be loaded automatically when the inferior begins execution, you
12217attach to an independently started inferior, or when the dynamic linker
12218informs @value{GDBN} that a new library has been loaded. If @var{mode}
12219is @code{off}, symbols must be loaded manually, using the
12220@code{sharedlibrary} command. The default value is @code{on}.
12221
dcaf7c2c
EZ
12222@cindex memory used for symbol tables
12223If your program uses lots of shared libraries with debug info that
12224takes large amounts of memory, you can decrease the @value{GDBN}
12225memory footprint by preventing it from automatically loading the
12226symbols from shared libraries. To that end, type @kbd{set
12227auto-solib-add off} before running the inferior, then load each
12228library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12229@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12230the libraries whose symbols you want to be loaded.
12231
b7209cb4
FF
12232@kindex show auto-solib-add
12233@item show auto-solib-add
12234Display the current autoloading mode.
12235@end table
12236
c45da7e6 12237@cindex load shared library
b7209cb4
FF
12238To explicitly load shared library symbols, use the @code{sharedlibrary}
12239command:
12240
c906108c
SS
12241@table @code
12242@kindex info sharedlibrary
12243@kindex info share
12244@item info share
12245@itemx info sharedlibrary
12246Print the names of the shared libraries which are currently loaded.
12247
12248@kindex sharedlibrary
12249@kindex share
12250@item sharedlibrary @var{regex}
12251@itemx share @var{regex}
c906108c
SS
12252Load shared object library symbols for files matching a
12253Unix regular expression.
12254As with files loaded automatically, it only loads shared libraries
12255required by your program for a core file or after typing @code{run}. If
12256@var{regex} is omitted all shared libraries required by your program are
12257loaded.
c45da7e6
EZ
12258
12259@item nosharedlibrary
12260@kindex nosharedlibrary
12261@cindex unload symbols from shared libraries
12262Unload all shared object library symbols. This discards all symbols
12263that have been loaded from all shared libraries. Symbols from shared
12264libraries that were loaded by explicit user requests are not
12265discarded.
c906108c
SS
12266@end table
12267
721c2651
EZ
12268Sometimes you may wish that @value{GDBN} stops and gives you control
12269when any of shared library events happen. Use the @code{set
12270stop-on-solib-events} command for this:
12271
12272@table @code
12273@item set stop-on-solib-events
12274@kindex set stop-on-solib-events
12275This command controls whether @value{GDBN} should give you control
12276when the dynamic linker notifies it about some shared library event.
12277The most common event of interest is loading or unloading of a new
12278shared library.
12279
12280@item show stop-on-solib-events
12281@kindex show stop-on-solib-events
12282Show whether @value{GDBN} stops and gives you control when shared
12283library events happen.
12284@end table
12285
f5ebfba0
DJ
12286Shared libraries are also supported in many cross or remote debugging
12287configurations. A copy of the target's libraries need to be present on the
12288host system; they need to be the same as the target libraries, although the
12289copies on the target can be stripped as long as the copies on the host are
12290not.
12291
59b7b46f
EZ
12292@cindex where to look for shared libraries
12293For remote debugging, you need to tell @value{GDBN} where the target
12294libraries are, so that it can load the correct copies---otherwise, it
12295may try to load the host's libraries. @value{GDBN} has two variables
12296to specify the search directories for target libraries.
f5ebfba0
DJ
12297
12298@table @code
59b7b46f 12299@cindex prefix for shared library file names
f822c95b 12300@cindex system root, alternate
f5ebfba0 12301@kindex set solib-absolute-prefix
f822c95b
DJ
12302@kindex set sysroot
12303@item set sysroot @var{path}
12304Use @var{path} as the system root for the program being debugged. Any
12305absolute shared library paths will be prefixed with @var{path}; many
12306runtime loaders store the absolute paths to the shared library in the
12307target program's memory. If you use @code{set sysroot} to find shared
12308libraries, they need to be laid out in the same way that they are on
12309the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12310under @var{path}.
12311
12312The @code{set solib-absolute-prefix} command is an alias for @code{set
12313sysroot}.
12314
12315@cindex default system root
59b7b46f 12316@cindex @samp{--with-sysroot}
f822c95b
DJ
12317You can set the default system root by using the configure-time
12318@samp{--with-sysroot} option. If the system root is inside
12319@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12320@samp{--exec-prefix}), then the default system root will be updated
12321automatically if the installed @value{GDBN} is moved to a new
12322location.
12323
12324@kindex show sysroot
12325@item show sysroot
f5ebfba0
DJ
12326Display the current shared library prefix.
12327
12328@kindex set solib-search-path
12329@item set solib-search-path @var{path}
f822c95b
DJ
12330If this variable is set, @var{path} is a colon-separated list of
12331directories to search for shared libraries. @samp{solib-search-path}
12332is used after @samp{sysroot} fails to locate the library, or if the
12333path to the library is relative instead of absolute. If you want to
12334use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12335@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12336finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12337it to a nonexistent directory may interfere with automatic loading
f822c95b 12338of shared library symbols.
f5ebfba0
DJ
12339
12340@kindex show solib-search-path
12341@item show solib-search-path
12342Display the current shared library search path.
12343@end table
12344
5b5d99cf
JB
12345
12346@node Separate Debug Files
12347@section Debugging Information in Separate Files
12348@cindex separate debugging information files
12349@cindex debugging information in separate files
12350@cindex @file{.debug} subdirectories
12351@cindex debugging information directory, global
12352@cindex global debugging information directory
c7e83d54
EZ
12353@cindex build ID, and separate debugging files
12354@cindex @file{.build-id} directory
5b5d99cf
JB
12355
12356@value{GDBN} allows you to put a program's debugging information in a
12357file separate from the executable itself, in a way that allows
12358@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12359Since debugging information can be very large---sometimes larger
12360than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12361information for their executables in separate files, which users can
12362install only when they need to debug a problem.
12363
c7e83d54
EZ
12364@value{GDBN} supports two ways of specifying the separate debug info
12365file:
5b5d99cf
JB
12366
12367@itemize @bullet
12368@item
c7e83d54
EZ
12369The executable contains a @dfn{debug link} that specifies the name of
12370the separate debug info file. The separate debug file's name is
12371usually @file{@var{executable}.debug}, where @var{executable} is the
12372name of the corresponding executable file without leading directories
12373(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12374debug link specifies a CRC32 checksum for the debug file, which
12375@value{GDBN} uses to validate that the executable and the debug file
12376came from the same build.
12377
12378@item
7e27a47a 12379The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12380also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12381only on some operating systems, notably those which use the ELF format
12382for binary files and the @sc{gnu} Binutils.) For more details about
12383this feature, see the description of the @option{--build-id}
12384command-line option in @ref{Options, , Command Line Options, ld.info,
12385The GNU Linker}. The debug info file's name is not specified
12386explicitly by the build ID, but can be computed from the build ID, see
12387below.
d3750b24
JK
12388@end itemize
12389
c7e83d54
EZ
12390Depending on the way the debug info file is specified, @value{GDBN}
12391uses two different methods of looking for the debug file:
d3750b24
JK
12392
12393@itemize @bullet
12394@item
c7e83d54
EZ
12395For the ``debug link'' method, @value{GDBN} looks up the named file in
12396the directory of the executable file, then in a subdirectory of that
12397directory named @file{.debug}, and finally under the global debug
12398directory, in a subdirectory whose name is identical to the leading
12399directories of the executable's absolute file name.
12400
12401@item
83f83d7f 12402For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12403@file{.build-id} subdirectory of the global debug directory for a file
12404named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12405first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12406are the rest of the bit string. (Real build ID strings are 32 or more
12407hex characters, not 10.)
c7e83d54
EZ
12408@end itemize
12409
12410So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12411@file{/usr/bin/ls}, which has a debug link that specifies the
12412file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12413@code{abcdef1234}. If the global debug directory is
12414@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12415debug information files, in the indicated order:
12416
12417@itemize @minus
12418@item
12419@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12420@item
c7e83d54 12421@file{/usr/bin/ls.debug}
5b5d99cf 12422@item
c7e83d54 12423@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12424@item
c7e83d54 12425@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12426@end itemize
5b5d99cf
JB
12427
12428You can set the global debugging info directory's name, and view the
12429name @value{GDBN} is currently using.
12430
12431@table @code
12432
12433@kindex set debug-file-directory
12434@item set debug-file-directory @var{directory}
12435Set the directory which @value{GDBN} searches for separate debugging
12436information files to @var{directory}.
12437
12438@kindex show debug-file-directory
12439@item show debug-file-directory
12440Show the directory @value{GDBN} searches for separate debugging
12441information files.
12442
12443@end table
12444
12445@cindex @code{.gnu_debuglink} sections
c7e83d54 12446@cindex debug link sections
5b5d99cf
JB
12447A debug link is a special section of the executable file named
12448@code{.gnu_debuglink}. The section must contain:
12449
12450@itemize
12451@item
12452A filename, with any leading directory components removed, followed by
12453a zero byte,
12454@item
12455zero to three bytes of padding, as needed to reach the next four-byte
12456boundary within the section, and
12457@item
12458a four-byte CRC checksum, stored in the same endianness used for the
12459executable file itself. The checksum is computed on the debugging
12460information file's full contents by the function given below, passing
12461zero as the @var{crc} argument.
12462@end itemize
12463
12464Any executable file format can carry a debug link, as long as it can
12465contain a section named @code{.gnu_debuglink} with the contents
12466described above.
12467
d3750b24 12468@cindex @code{.note.gnu.build-id} sections
c7e83d54 12469@cindex build ID sections
7e27a47a
EZ
12470The build ID is a special section in the executable file (and in other
12471ELF binary files that @value{GDBN} may consider). This section is
12472often named @code{.note.gnu.build-id}, but that name is not mandatory.
12473It contains unique identification for the built files---the ID remains
12474the same across multiple builds of the same build tree. The default
12475algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12476content for the build ID string. The same section with an identical
12477value is present in the original built binary with symbols, in its
12478stripped variant, and in the separate debugging information file.
d3750b24 12479
5b5d99cf
JB
12480The debugging information file itself should be an ordinary
12481executable, containing a full set of linker symbols, sections, and
12482debugging information. The sections of the debugging information file
c7e83d54
EZ
12483should have the same names, addresses, and sizes as the original file,
12484but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12485in an ordinary executable.
12486
7e27a47a 12487The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12488@samp{objcopy} utility that can produce
12489the separated executable / debugging information file pairs using the
12490following commands:
12491
12492@smallexample
12493@kbd{objcopy --only-keep-debug foo foo.debug}
12494@kbd{strip -g foo}
c7e83d54
EZ
12495@end smallexample
12496
12497@noindent
12498These commands remove the debugging
83f83d7f
JK
12499information from the executable file @file{foo} and place it in the file
12500@file{foo.debug}. You can use the first, second or both methods to link the
12501two files:
12502
12503@itemize @bullet
12504@item
12505The debug link method needs the following additional command to also leave
12506behind a debug link in @file{foo}:
12507
12508@smallexample
12509@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12510@end smallexample
12511
12512Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12513a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12514foo.debug} has the same functionality as the two @code{objcopy} commands and
12515the @code{ln -s} command above, together.
12516
12517@item
12518Build ID gets embedded into the main executable using @code{ld --build-id} or
12519the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12520compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12521utilities (Binutils) package since version 2.18.
83f83d7f
JK
12522@end itemize
12523
12524@noindent
d3750b24 12525
c7e83d54
EZ
12526Since there are many different ways to compute CRC's for the debug
12527link (different polynomials, reversals, byte ordering, etc.), the
12528simplest way to describe the CRC used in @code{.gnu_debuglink}
12529sections is to give the complete code for a function that computes it:
5b5d99cf 12530
4644b6e3 12531@kindex gnu_debuglink_crc32
5b5d99cf
JB
12532@smallexample
12533unsigned long
12534gnu_debuglink_crc32 (unsigned long crc,
12535 unsigned char *buf, size_t len)
12536@{
12537 static const unsigned long crc32_table[256] =
12538 @{
12539 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12540 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12541 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12542 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12543 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12544 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12545 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12546 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12547 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12548 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12549 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12550 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12551 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12552 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12553 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12554 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12555 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12556 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12557 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12558 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12559 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12560 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12561 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12562 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12563 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12564 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12565 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12566 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12567 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12568 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12569 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12570 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12571 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12572 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12573 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12574 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12575 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12576 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12577 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12578 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12579 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12580 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12581 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12582 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12583 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12584 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12585 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12586 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12587 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12588 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12589 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12590 0x2d02ef8d
12591 @};
12592 unsigned char *end;
12593
12594 crc = ~crc & 0xffffffff;
12595 for (end = buf + len; buf < end; ++buf)
12596 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12597 return ~crc & 0xffffffff;
5b5d99cf
JB
12598@}
12599@end smallexample
12600
c7e83d54
EZ
12601@noindent
12602This computation does not apply to the ``build ID'' method.
12603
5b5d99cf 12604
6d2ebf8b 12605@node Symbol Errors
79a6e687 12606@section Errors Reading Symbol Files
c906108c
SS
12607
12608While reading a symbol file, @value{GDBN} occasionally encounters problems,
12609such as symbol types it does not recognize, or known bugs in compiler
12610output. By default, @value{GDBN} does not notify you of such problems, since
12611they are relatively common and primarily of interest to people
12612debugging compilers. If you are interested in seeing information
12613about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12614only one message about each such type of problem, no matter how many
12615times the problem occurs; or you can ask @value{GDBN} to print more messages,
12616to see how many times the problems occur, with the @code{set
79a6e687
BW
12617complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12618Messages}).
c906108c
SS
12619
12620The messages currently printed, and their meanings, include:
12621
12622@table @code
12623@item inner block not inside outer block in @var{symbol}
12624
12625The symbol information shows where symbol scopes begin and end
12626(such as at the start of a function or a block of statements). This
12627error indicates that an inner scope block is not fully contained
12628in its outer scope blocks.
12629
12630@value{GDBN} circumvents the problem by treating the inner block as if it had
12631the same scope as the outer block. In the error message, @var{symbol}
12632may be shown as ``@code{(don't know)}'' if the outer block is not a
12633function.
12634
12635@item block at @var{address} out of order
12636
12637The symbol information for symbol scope blocks should occur in
12638order of increasing addresses. This error indicates that it does not
12639do so.
12640
12641@value{GDBN} does not circumvent this problem, and has trouble
12642locating symbols in the source file whose symbols it is reading. (You
12643can often determine what source file is affected by specifying
79a6e687
BW
12644@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12645Messages}.)
c906108c
SS
12646
12647@item bad block start address patched
12648
12649The symbol information for a symbol scope block has a start address
12650smaller than the address of the preceding source line. This is known
12651to occur in the SunOS 4.1.1 (and earlier) C compiler.
12652
12653@value{GDBN} circumvents the problem by treating the symbol scope block as
12654starting on the previous source line.
12655
12656@item bad string table offset in symbol @var{n}
12657
12658@cindex foo
12659Symbol number @var{n} contains a pointer into the string table which is
12660larger than the size of the string table.
12661
12662@value{GDBN} circumvents the problem by considering the symbol to have the
12663name @code{foo}, which may cause other problems if many symbols end up
12664with this name.
12665
12666@item unknown symbol type @code{0x@var{nn}}
12667
7a292a7a
SS
12668The symbol information contains new data types that @value{GDBN} does
12669not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12670uncomprehended information, in hexadecimal.
c906108c 12671
7a292a7a
SS
12672@value{GDBN} circumvents the error by ignoring this symbol information.
12673This usually allows you to debug your program, though certain symbols
c906108c 12674are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12675debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12676on @code{complain}, then go up to the function @code{read_dbx_symtab}
12677and examine @code{*bufp} to see the symbol.
c906108c
SS
12678
12679@item stub type has NULL name
c906108c 12680
7a292a7a 12681@value{GDBN} could not find the full definition for a struct or class.
c906108c 12682
7a292a7a 12683@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12684The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12685information that recent versions of the compiler should have output for
12686it.
c906108c
SS
12687
12688@item info mismatch between compiler and debugger
12689
12690@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12691
c906108c
SS
12692@end table
12693
6d2ebf8b 12694@node Targets
c906108c 12695@chapter Specifying a Debugging Target
7a292a7a 12696
c906108c 12697@cindex debugging target
c906108c 12698A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12699
12700Often, @value{GDBN} runs in the same host environment as your program;
12701in that case, the debugging target is specified as a side effect when
12702you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12703flexibility---for example, running @value{GDBN} on a physically separate
12704host, or controlling a standalone system over a serial port or a
53a5351d
JM
12705realtime system over a TCP/IP connection---you can use the @code{target}
12706command to specify one of the target types configured for @value{GDBN}
79a6e687 12707(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12708
a8f24a35
EZ
12709@cindex target architecture
12710It is possible to build @value{GDBN} for several different @dfn{target
12711architectures}. When @value{GDBN} is built like that, you can choose
12712one of the available architectures with the @kbd{set architecture}
12713command.
12714
12715@table @code
12716@kindex set architecture
12717@kindex show architecture
12718@item set architecture @var{arch}
12719This command sets the current target architecture to @var{arch}. The
12720value of @var{arch} can be @code{"auto"}, in addition to one of the
12721supported architectures.
12722
12723@item show architecture
12724Show the current target architecture.
9c16f35a
EZ
12725
12726@item set processor
12727@itemx processor
12728@kindex set processor
12729@kindex show processor
12730These are alias commands for, respectively, @code{set architecture}
12731and @code{show architecture}.
a8f24a35
EZ
12732@end table
12733
c906108c
SS
12734@menu
12735* Active Targets:: Active targets
12736* Target Commands:: Commands for managing targets
c906108c 12737* Byte Order:: Choosing target byte order
c906108c
SS
12738@end menu
12739
6d2ebf8b 12740@node Active Targets
79a6e687 12741@section Active Targets
7a292a7a 12742
c906108c
SS
12743@cindex stacking targets
12744@cindex active targets
12745@cindex multiple targets
12746
c906108c 12747There are three classes of targets: processes, core files, and
7a292a7a
SS
12748executable files. @value{GDBN} can work concurrently on up to three
12749active targets, one in each class. This allows you to (for example)
12750start a process and inspect its activity without abandoning your work on
12751a core file.
c906108c
SS
12752
12753For example, if you execute @samp{gdb a.out}, then the executable file
12754@code{a.out} is the only active target. If you designate a core file as
12755well---presumably from a prior run that crashed and coredumped---then
12756@value{GDBN} has two active targets and uses them in tandem, looking
12757first in the corefile target, then in the executable file, to satisfy
12758requests for memory addresses. (Typically, these two classes of target
12759are complementary, since core files contain only a program's
12760read-write memory---variables and so on---plus machine status, while
12761executable files contain only the program text and initialized data.)
c906108c
SS
12762
12763When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12764target as well. When a process target is active, all @value{GDBN}
12765commands requesting memory addresses refer to that target; addresses in
12766an active core file or executable file target are obscured while the
12767process target is active.
c906108c 12768
7a292a7a 12769Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12770core file or executable target (@pxref{Files, ,Commands to Specify
12771Files}). To specify as a target a process that is already running, use
12772the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12773Process}).
c906108c 12774
6d2ebf8b 12775@node Target Commands
79a6e687 12776@section Commands for Managing Targets
c906108c
SS
12777
12778@table @code
12779@item target @var{type} @var{parameters}
7a292a7a
SS
12780Connects the @value{GDBN} host environment to a target machine or
12781process. A target is typically a protocol for talking to debugging
12782facilities. You use the argument @var{type} to specify the type or
12783protocol of the target machine.
c906108c
SS
12784
12785Further @var{parameters} are interpreted by the target protocol, but
12786typically include things like device names or host names to connect
12787with, process numbers, and baud rates.
c906108c
SS
12788
12789The @code{target} command does not repeat if you press @key{RET} again
12790after executing the command.
12791
12792@kindex help target
12793@item help target
12794Displays the names of all targets available. To display targets
12795currently selected, use either @code{info target} or @code{info files}
79a6e687 12796(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12797
12798@item help target @var{name}
12799Describe a particular target, including any parameters necessary to
12800select it.
12801
12802@kindex set gnutarget
12803@item set gnutarget @var{args}
5d161b24 12804@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12805knows whether it is reading an @dfn{executable},
5d161b24
DB
12806a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12807with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12808with @code{gnutarget} the @code{target} refers to a program, not a machine.
12809
d4f3574e 12810@quotation
c906108c
SS
12811@emph{Warning:} To specify a file format with @code{set gnutarget},
12812you must know the actual BFD name.
d4f3574e 12813@end quotation
c906108c 12814
d4f3574e 12815@noindent
79a6e687 12816@xref{Files, , Commands to Specify Files}.
c906108c 12817
5d161b24 12818@kindex show gnutarget
c906108c
SS
12819@item show gnutarget
12820Use the @code{show gnutarget} command to display what file format
12821@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12822@value{GDBN} will determine the file format for each file automatically,
12823and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12824@end table
12825
4644b6e3 12826@cindex common targets
c906108c
SS
12827Here are some common targets (available, or not, depending on the GDB
12828configuration):
c906108c
SS
12829
12830@table @code
4644b6e3 12831@kindex target
c906108c 12832@item target exec @var{program}
4644b6e3 12833@cindex executable file target
c906108c
SS
12834An executable file. @samp{target exec @var{program}} is the same as
12835@samp{exec-file @var{program}}.
12836
c906108c 12837@item target core @var{filename}
4644b6e3 12838@cindex core dump file target
c906108c
SS
12839A core dump file. @samp{target core @var{filename}} is the same as
12840@samp{core-file @var{filename}}.
c906108c 12841
1a10341b 12842@item target remote @var{medium}
4644b6e3 12843@cindex remote target
1a10341b
JB
12844A remote system connected to @value{GDBN} via a serial line or network
12845connection. This command tells @value{GDBN} to use its own remote
12846protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12847
12848For example, if you have a board connected to @file{/dev/ttya} on the
12849machine running @value{GDBN}, you could say:
12850
12851@smallexample
12852target remote /dev/ttya
12853@end smallexample
12854
12855@code{target remote} supports the @code{load} command. This is only
12856useful if you have some other way of getting the stub to the target
12857system, and you can put it somewhere in memory where it won't get
12858clobbered by the download.
c906108c 12859
c906108c 12860@item target sim
4644b6e3 12861@cindex built-in simulator target
2df3850c 12862Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12863In general,
474c8240 12864@smallexample
104c1213
JM
12865 target sim
12866 load
12867 run
474c8240 12868@end smallexample
d4f3574e 12869@noindent
104c1213 12870works; however, you cannot assume that a specific memory map, device
d4f3574e 12871drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12872provide these. For info about any processor-specific simulator details,
12873see the appropriate section in @ref{Embedded Processors, ,Embedded
12874Processors}.
12875
c906108c
SS
12876@end table
12877
104c1213 12878Some configurations may include these targets as well:
c906108c
SS
12879
12880@table @code
12881
c906108c 12882@item target nrom @var{dev}
4644b6e3 12883@cindex NetROM ROM emulator target
c906108c
SS
12884NetROM ROM emulator. This target only supports downloading.
12885
c906108c
SS
12886@end table
12887
5d161b24 12888Different targets are available on different configurations of @value{GDBN};
c906108c 12889your configuration may have more or fewer targets.
c906108c 12890
721c2651
EZ
12891Many remote targets require you to download the executable's code once
12892you've successfully established a connection. You may wish to control
3d00d119
DJ
12893various aspects of this process.
12894
12895@table @code
721c2651
EZ
12896
12897@item set hash
12898@kindex set hash@r{, for remote monitors}
12899@cindex hash mark while downloading
12900This command controls whether a hash mark @samp{#} is displayed while
12901downloading a file to the remote monitor. If on, a hash mark is
12902displayed after each S-record is successfully downloaded to the
12903monitor.
12904
12905@item show hash
12906@kindex show hash@r{, for remote monitors}
12907Show the current status of displaying the hash mark.
12908
12909@item set debug monitor
12910@kindex set debug monitor
12911@cindex display remote monitor communications
12912Enable or disable display of communications messages between
12913@value{GDBN} and the remote monitor.
12914
12915@item show debug monitor
12916@kindex show debug monitor
12917Show the current status of displaying communications between
12918@value{GDBN} and the remote monitor.
a8f24a35 12919@end table
c906108c
SS
12920
12921@table @code
12922
12923@kindex load @var{filename}
12924@item load @var{filename}
8edfe269 12925@anchor{load}
c906108c
SS
12926Depending on what remote debugging facilities are configured into
12927@value{GDBN}, the @code{load} command may be available. Where it exists, it
12928is meant to make @var{filename} (an executable) available for debugging
12929on the remote system---by downloading, or dynamic linking, for example.
12930@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12931the @code{add-symbol-file} command.
12932
12933If your @value{GDBN} does not have a @code{load} command, attempting to
12934execute it gets the error message ``@code{You can't do that when your
12935target is @dots{}}''
c906108c
SS
12936
12937The file is loaded at whatever address is specified in the executable.
12938For some object file formats, you can specify the load address when you
12939link the program; for other formats, like a.out, the object file format
12940specifies a fixed address.
12941@c FIXME! This would be a good place for an xref to the GNU linker doc.
12942
68437a39
DJ
12943Depending on the remote side capabilities, @value{GDBN} may be able to
12944load programs into flash memory.
12945
c906108c
SS
12946@code{load} does not repeat if you press @key{RET} again after using it.
12947@end table
12948
6d2ebf8b 12949@node Byte Order
79a6e687 12950@section Choosing Target Byte Order
7a292a7a 12951
c906108c
SS
12952@cindex choosing target byte order
12953@cindex target byte order
c906108c 12954
172c2a43 12955Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12956offer the ability to run either big-endian or little-endian byte
12957orders. Usually the executable or symbol will include a bit to
12958designate the endian-ness, and you will not need to worry about
12959which to use. However, you may still find it useful to adjust
d4f3574e 12960@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12961
12962@table @code
4644b6e3 12963@kindex set endian
c906108c
SS
12964@item set endian big
12965Instruct @value{GDBN} to assume the target is big-endian.
12966
c906108c
SS
12967@item set endian little
12968Instruct @value{GDBN} to assume the target is little-endian.
12969
c906108c
SS
12970@item set endian auto
12971Instruct @value{GDBN} to use the byte order associated with the
12972executable.
12973
12974@item show endian
12975Display @value{GDBN}'s current idea of the target byte order.
12976
12977@end table
12978
12979Note that these commands merely adjust interpretation of symbolic
12980data on the host, and that they have absolutely no effect on the
12981target system.
12982
ea35711c
DJ
12983
12984@node Remote Debugging
12985@chapter Debugging Remote Programs
c906108c
SS
12986@cindex remote debugging
12987
12988If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12989@value{GDBN} in the usual way, it is often useful to use remote debugging.
12990For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12991or on a small system which does not have a general purpose operating system
12992powerful enough to run a full-featured debugger.
12993
12994Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12995to make this work with particular debugging targets. In addition,
5d161b24 12996@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12997but not specific to any particular target system) which you can use if you
12998write the remote stubs---the code that runs on the remote system to
12999communicate with @value{GDBN}.
13000
13001Other remote targets may be available in your
13002configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 13003
6b2f586d 13004@menu
07f31aa6 13005* Connecting:: Connecting to a remote target
a6b151f1 13006* File Transfer:: Sending files to a remote system
6b2f586d 13007* Server:: Using the gdbserver program
79a6e687
BW
13008* Remote Configuration:: Remote configuration
13009* Remote Stub:: Implementing a remote stub
6b2f586d
AC
13010@end menu
13011
07f31aa6 13012@node Connecting
79a6e687 13013@section Connecting to a Remote Target
07f31aa6
DJ
13014
13015On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 13016your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
13017Start up @value{GDBN} as usual, using the name of the local copy of your
13018program as the first argument.
13019
86941c27
JB
13020@cindex @code{target remote}
13021@value{GDBN} can communicate with the target over a serial line, or
13022over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
13023each case, @value{GDBN} uses the same protocol for debugging your
13024program; only the medium carrying the debugging packets varies. The
13025@code{target remote} command establishes a connection to the target.
13026Its arguments indicate which medium to use:
13027
13028@table @code
13029
13030@item target remote @var{serial-device}
07f31aa6 13031@cindex serial line, @code{target remote}
86941c27
JB
13032Use @var{serial-device} to communicate with the target. For example,
13033to use a serial line connected to the device named @file{/dev/ttyb}:
13034
13035@smallexample
13036target remote /dev/ttyb
13037@end smallexample
13038
07f31aa6
DJ
13039If you're using a serial line, you may want to give @value{GDBN} the
13040@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 13041(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 13042@code{target} command.
07f31aa6 13043
86941c27
JB
13044@item target remote @code{@var{host}:@var{port}}
13045@itemx target remote @code{tcp:@var{host}:@var{port}}
13046@cindex @acronym{TCP} port, @code{target remote}
13047Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
13048The @var{host} may be either a host name or a numeric @acronym{IP}
13049address; @var{port} must be a decimal number. The @var{host} could be
13050the target machine itself, if it is directly connected to the net, or
13051it might be a terminal server which in turn has a serial line to the
13052target.
07f31aa6 13053
86941c27
JB
13054For example, to connect to port 2828 on a terminal server named
13055@code{manyfarms}:
07f31aa6
DJ
13056
13057@smallexample
13058target remote manyfarms:2828
13059@end smallexample
13060
86941c27
JB
13061If your remote target is actually running on the same machine as your
13062debugger session (e.g.@: a simulator for your target running on the
13063same host), you can omit the hostname. For example, to connect to
13064port 1234 on your local machine:
07f31aa6
DJ
13065
13066@smallexample
13067target remote :1234
13068@end smallexample
13069@noindent
13070
13071Note that the colon is still required here.
13072
86941c27
JB
13073@item target remote @code{udp:@var{host}:@var{port}}
13074@cindex @acronym{UDP} port, @code{target remote}
13075Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
13076connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
13077
13078@smallexample
13079target remote udp:manyfarms:2828
13080@end smallexample
13081
86941c27
JB
13082When using a @acronym{UDP} connection for remote debugging, you should
13083keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
13084can silently drop packets on busy or unreliable networks, which will
13085cause havoc with your debugging session.
13086
66b8c7f6
JB
13087@item target remote | @var{command}
13088@cindex pipe, @code{target remote} to
13089Run @var{command} in the background and communicate with it using a
13090pipe. The @var{command} is a shell command, to be parsed and expanded
13091by the system's command shell, @code{/bin/sh}; it should expect remote
13092protocol packets on its standard input, and send replies on its
13093standard output. You could use this to run a stand-alone simulator
13094that speaks the remote debugging protocol, to make net connections
13095using programs like @code{ssh}, or for other similar tricks.
13096
13097If @var{command} closes its standard output (perhaps by exiting),
13098@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
13099program has already exited, this will have no effect.)
13100
86941c27 13101@end table
07f31aa6 13102
86941c27 13103Once the connection has been established, you can use all the usual
8edfe269
DJ
13104commands to examine and change data. The remote program is already
13105running; you can use @kbd{step} and @kbd{continue}, and you do not
13106need to use @kbd{run}.
07f31aa6
DJ
13107
13108@cindex interrupting remote programs
13109@cindex remote programs, interrupting
13110Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 13111interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
13112program. This may or may not succeed, depending in part on the hardware
13113and the serial drivers the remote system uses. If you type the
13114interrupt character once again, @value{GDBN} displays this prompt:
13115
13116@smallexample
13117Interrupted while waiting for the program.
13118Give up (and stop debugging it)? (y or n)
13119@end smallexample
13120
13121If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
13122(If you decide you want to try again later, you can use @samp{target
13123remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
13124goes back to waiting.
13125
13126@table @code
13127@kindex detach (remote)
13128@item detach
13129When you have finished debugging the remote program, you can use the
13130@code{detach} command to release it from @value{GDBN} control.
13131Detaching from the target normally resumes its execution, but the results
13132will depend on your particular remote stub. After the @code{detach}
13133command, @value{GDBN} is free to connect to another target.
13134
13135@kindex disconnect
13136@item disconnect
13137The @code{disconnect} command behaves like @code{detach}, except that
13138the target is generally not resumed. It will wait for @value{GDBN}
13139(this instance or another one) to connect and continue debugging. After
13140the @code{disconnect} command, @value{GDBN} is again free to connect to
13141another target.
09d4efe1
EZ
13142
13143@cindex send command to remote monitor
fad38dfa
EZ
13144@cindex extend @value{GDBN} for remote targets
13145@cindex add new commands for external monitor
09d4efe1
EZ
13146@kindex monitor
13147@item monitor @var{cmd}
fad38dfa
EZ
13148This command allows you to send arbitrary commands directly to the
13149remote monitor. Since @value{GDBN} doesn't care about the commands it
13150sends like this, this command is the way to extend @value{GDBN}---you
13151can add new commands that only the external monitor will understand
13152and implement.
07f31aa6
DJ
13153@end table
13154
a6b151f1
DJ
13155@node File Transfer
13156@section Sending files to a remote system
13157@cindex remote target, file transfer
13158@cindex file transfer
13159@cindex sending files to remote systems
13160
13161Some remote targets offer the ability to transfer files over the same
13162connection used to communicate with @value{GDBN}. This is convenient
13163for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13164running @code{gdbserver} over a network interface. For other targets,
13165e.g.@: embedded devices with only a single serial port, this may be
13166the only way to upload or download files.
13167
13168Not all remote targets support these commands.
13169
13170@table @code
13171@kindex remote put
13172@item remote put @var{hostfile} @var{targetfile}
13173Copy file @var{hostfile} from the host system (the machine running
13174@value{GDBN}) to @var{targetfile} on the target system.
13175
13176@kindex remote get
13177@item remote get @var{targetfile} @var{hostfile}
13178Copy file @var{targetfile} from the target system to @var{hostfile}
13179on the host system.
13180
13181@kindex remote delete
13182@item remote delete @var{targetfile}
13183Delete @var{targetfile} from the target system.
13184
13185@end table
13186
6f05cf9f 13187@node Server
79a6e687 13188@section Using the @code{gdbserver} Program
6f05cf9f
AC
13189
13190@kindex gdbserver
13191@cindex remote connection without stubs
13192@code{gdbserver} is a control program for Unix-like systems, which
13193allows you to connect your program with a remote @value{GDBN} via
13194@code{target remote}---but without linking in the usual debugging stub.
13195
13196@code{gdbserver} is not a complete replacement for the debugging stubs,
13197because it requires essentially the same operating-system facilities
13198that @value{GDBN} itself does. In fact, a system that can run
13199@code{gdbserver} to connect to a remote @value{GDBN} could also run
13200@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13201because it is a much smaller program than @value{GDBN} itself. It is
13202also easier to port than all of @value{GDBN}, so you may be able to get
13203started more quickly on a new system by using @code{gdbserver}.
13204Finally, if you develop code for real-time systems, you may find that
13205the tradeoffs involved in real-time operation make it more convenient to
13206do as much development work as possible on another system, for example
13207by cross-compiling. You can use @code{gdbserver} to make a similar
13208choice for debugging.
13209
13210@value{GDBN} and @code{gdbserver} communicate via either a serial line
13211or a TCP connection, using the standard @value{GDBN} remote serial
13212protocol.
13213
2d717e4f
DJ
13214@quotation
13215@emph{Warning:} @code{gdbserver} does not have any built-in security.
13216Do not run @code{gdbserver} connected to any public network; a
13217@value{GDBN} connection to @code{gdbserver} provides access to the
13218target system with the same privileges as the user running
13219@code{gdbserver}.
13220@end quotation
13221
13222@subsection Running @code{gdbserver}
13223@cindex arguments, to @code{gdbserver}
13224
13225Run @code{gdbserver} on the target system. You need a copy of the
13226program you want to debug, including any libraries it requires.
6f05cf9f
AC
13227@code{gdbserver} does not need your program's symbol table, so you can
13228strip the program if necessary to save space. @value{GDBN} on the host
13229system does all the symbol handling.
13230
13231To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13232the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13233syntax is:
13234
13235@smallexample
13236target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13237@end smallexample
13238
13239@var{comm} is either a device name (to use a serial line) or a TCP
13240hostname and portnumber. For example, to debug Emacs with the argument
13241@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13242@file{/dev/com1}:
13243
13244@smallexample
13245target> gdbserver /dev/com1 emacs foo.txt
13246@end smallexample
13247
13248@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13249with it.
13250
13251To use a TCP connection instead of a serial line:
13252
13253@smallexample
13254target> gdbserver host:2345 emacs foo.txt
13255@end smallexample
13256
13257The only difference from the previous example is the first argument,
13258specifying that you are communicating with the host @value{GDBN} via
13259TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13260expect a TCP connection from machine @samp{host} to local TCP port 2345.
13261(Currently, the @samp{host} part is ignored.) You can choose any number
13262you want for the port number as long as it does not conflict with any
13263TCP ports already in use on the target system (for example, @code{23} is
13264reserved for @code{telnet}).@footnote{If you choose a port number that
13265conflicts with another service, @code{gdbserver} prints an error message
13266and exits.} You must use the same port number with the host @value{GDBN}
13267@code{target remote} command.
13268
2d717e4f
DJ
13269@subsubsection Attaching to a Running Program
13270
56460a61
DJ
13271On some targets, @code{gdbserver} can also attach to running programs.
13272This is accomplished via the @code{--attach} argument. The syntax is:
13273
13274@smallexample
2d717e4f 13275target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13276@end smallexample
13277
13278@var{pid} is the process ID of a currently running process. It isn't necessary
13279to point @code{gdbserver} at a binary for the running process.
13280
b1fe9455
DJ
13281@pindex pidof
13282@cindex attach to a program by name
13283You can debug processes by name instead of process ID if your target has the
13284@code{pidof} utility:
13285
13286@smallexample
2d717e4f 13287target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13288@end smallexample
13289
f822c95b 13290In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13291has multiple threads, most versions of @code{pidof} support the
13292@code{-s} option to only return the first process ID.
13293
2d717e4f
DJ
13294@subsubsection Multi-Process Mode for @code{gdbserver}
13295@cindex gdbserver, multiple processes
13296@cindex multiple processes with gdbserver
13297
13298When you connect to @code{gdbserver} using @code{target remote},
13299@code{gdbserver} debugs the specified program only once. When the
13300program exits, or you detach from it, @value{GDBN} closes the connection
13301and @code{gdbserver} exits.
13302
6e6c6f50 13303If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13304enters multi-process mode. When the debugged program exits, or you
13305detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13306though no program is running. The @code{run} and @code{attach}
13307commands instruct @code{gdbserver} to run or attach to a new program.
13308The @code{run} command uses @code{set remote exec-file} (@pxref{set
13309remote exec-file}) to select the program to run. Command line
13310arguments are supported, except for wildcard expansion and I/O
13311redirection (@pxref{Arguments}).
13312
13313To start @code{gdbserver} without supplying an initial command to run
13314or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13315Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13316the program you want to debug.
13317
13318@code{gdbserver} does not automatically exit in multi-process mode.
13319You can terminate it by using @code{monitor exit}
13320(@pxref{Monitor Commands for gdbserver}).
13321
13322@subsubsection Other Command-Line Arguments for @code{gdbserver}
13323
13324You can include @option{--debug} on the @code{gdbserver} command line.
13325@code{gdbserver} will display extra status information about the debugging
13326process. This option is intended for @code{gdbserver} development and
13327for bug reports to the developers.
13328
ccd213ac
DJ
13329The @option{--wrapper} option specifies a wrapper to launch programs
13330for debugging. The option should be followed by the name of the
13331wrapper, then any command-line arguments to pass to the wrapper, then
13332@kbd{--} indicating the end of the wrapper arguments.
13333
13334@code{gdbserver} runs the specified wrapper program with a combined
13335command line including the wrapper arguments, then the name of the
13336program to debug, then any arguments to the program. The wrapper
13337runs until it executes your program, and then @value{GDBN} gains control.
13338
13339You can use any program that eventually calls @code{execve} with
13340its arguments as a wrapper. Several standard Unix utilities do
13341this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13342with @code{exec "$@@"} will also work.
13343
13344For example, you can use @code{env} to pass an environment variable to
13345the debugged program, without setting the variable in @code{gdbserver}'s
13346environment:
13347
13348@smallexample
13349$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13350@end smallexample
13351
2d717e4f
DJ
13352@subsection Connecting to @code{gdbserver}
13353
13354Run @value{GDBN} on the host system.
13355
13356First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13357your application using the @code{file} command before you connect. Use
13358@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13359was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13360
13361The symbol file and target libraries must exactly match the executable
13362and libraries on the target, with one exception: the files on the host
13363system should not be stripped, even if the files on the target system
13364are. Mismatched or missing files will lead to confusing results
13365during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13366files may also prevent @code{gdbserver} from debugging multi-threaded
13367programs.
13368
79a6e687 13369Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13370For TCP connections, you must start up @code{gdbserver} prior to using
13371the @code{target remote} command. Otherwise you may get an error whose
13372text depends on the host system, but which usually looks something like
2d717e4f 13373@samp{Connection refused}. Don't use the @code{load}
397ca115 13374command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13375already on the target.
07f31aa6 13376
79a6e687 13377@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13378@cindex monitor commands, for @code{gdbserver}
2d717e4f 13379@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13380
13381During a @value{GDBN} session using @code{gdbserver}, you can use the
13382@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13383Here are the available commands.
c74d0ad8
DJ
13384
13385@table @code
13386@item monitor help
13387List the available monitor commands.
13388
13389@item monitor set debug 0
13390@itemx monitor set debug 1
13391Disable or enable general debugging messages.
13392
13393@item monitor set remote-debug 0
13394@itemx monitor set remote-debug 1
13395Disable or enable specific debugging messages associated with the remote
13396protocol (@pxref{Remote Protocol}).
13397
2d717e4f
DJ
13398@item monitor exit
13399Tell gdbserver to exit immediately. This command should be followed by
13400@code{disconnect} to close the debugging session. @code{gdbserver} will
13401detach from any attached processes and kill any processes it created.
13402Use @code{monitor exit} to terminate @code{gdbserver} at the end
13403of a multi-process mode debug session.
13404
c74d0ad8
DJ
13405@end table
13406
79a6e687
BW
13407@node Remote Configuration
13408@section Remote Configuration
501eef12 13409
9c16f35a
EZ
13410@kindex set remote
13411@kindex show remote
13412This section documents the configuration options available when
13413debugging remote programs. For the options related to the File I/O
fc320d37 13414extensions of the remote protocol, see @ref{system,
9c16f35a 13415system-call-allowed}.
501eef12
AC
13416
13417@table @code
9c16f35a 13418@item set remoteaddresssize @var{bits}
d3e8051b 13419@cindex address size for remote targets
9c16f35a
EZ
13420@cindex bits in remote address
13421Set the maximum size of address in a memory packet to the specified
13422number of bits. @value{GDBN} will mask off the address bits above
13423that number, when it passes addresses to the remote target. The
13424default value is the number of bits in the target's address.
13425
13426@item show remoteaddresssize
13427Show the current value of remote address size in bits.
13428
13429@item set remotebaud @var{n}
13430@cindex baud rate for remote targets
13431Set the baud rate for the remote serial I/O to @var{n} baud. The
13432value is used to set the speed of the serial port used for debugging
13433remote targets.
13434
13435@item show remotebaud
13436Show the current speed of the remote connection.
13437
13438@item set remotebreak
13439@cindex interrupt remote programs
13440@cindex BREAK signal instead of Ctrl-C
9a6253be 13441@anchor{set remotebreak}
9c16f35a 13442If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13443when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13444on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13445character instead. The default is off, since most remote systems
13446expect to see @samp{Ctrl-C} as the interrupt signal.
13447
13448@item show remotebreak
13449Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13450interrupt the remote program.
13451
23776285
MR
13452@item set remoteflow on
13453@itemx set remoteflow off
13454@kindex set remoteflow
13455Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13456on the serial port used to communicate to the remote target.
13457
13458@item show remoteflow
13459@kindex show remoteflow
13460Show the current setting of hardware flow control.
13461
9c16f35a
EZ
13462@item set remotelogbase @var{base}
13463Set the base (a.k.a.@: radix) of logging serial protocol
13464communications to @var{base}. Supported values of @var{base} are:
13465@code{ascii}, @code{octal}, and @code{hex}. The default is
13466@code{ascii}.
13467
13468@item show remotelogbase
13469Show the current setting of the radix for logging remote serial
13470protocol.
13471
13472@item set remotelogfile @var{file}
13473@cindex record serial communications on file
13474Record remote serial communications on the named @var{file}. The
13475default is not to record at all.
13476
13477@item show remotelogfile.
13478Show the current setting of the file name on which to record the
13479serial communications.
13480
13481@item set remotetimeout @var{num}
13482@cindex timeout for serial communications
13483@cindex remote timeout
13484Set the timeout limit to wait for the remote target to respond to
13485@var{num} seconds. The default is 2 seconds.
13486
13487@item show remotetimeout
13488Show the current number of seconds to wait for the remote target
13489responses.
13490
13491@cindex limit hardware breakpoints and watchpoints
13492@cindex remote target, limit break- and watchpoints
501eef12
AC
13493@anchor{set remote hardware-watchpoint-limit}
13494@anchor{set remote hardware-breakpoint-limit}
13495@item set remote hardware-watchpoint-limit @var{limit}
13496@itemx set remote hardware-breakpoint-limit @var{limit}
13497Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13498watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13499
13500@item set remote exec-file @var{filename}
13501@itemx show remote exec-file
13502@anchor{set remote exec-file}
13503@cindex executable file, for remote target
13504Select the file used for @code{run} with @code{target
13505extended-remote}. This should be set to a filename valid on the
13506target system. If it is not set, the target will use a default
13507filename (e.g.@: the last program run).
501eef12
AC
13508@end table
13509
427c3a89
DJ
13510@cindex remote packets, enabling and disabling
13511The @value{GDBN} remote protocol autodetects the packets supported by
13512your debugging stub. If you need to override the autodetection, you
13513can use these commands to enable or disable individual packets. Each
13514packet can be set to @samp{on} (the remote target supports this
13515packet), @samp{off} (the remote target does not support this packet),
13516or @samp{auto} (detect remote target support for this packet). They
13517all default to @samp{auto}. For more information about each packet,
13518see @ref{Remote Protocol}.
13519
13520During normal use, you should not have to use any of these commands.
13521If you do, that may be a bug in your remote debugging stub, or a bug
13522in @value{GDBN}. You may want to report the problem to the
13523@value{GDBN} developers.
13524
cfa9d6d9
DJ
13525For each packet @var{name}, the command to enable or disable the
13526packet is @code{set remote @var{name}-packet}. The available settings
13527are:
427c3a89 13528
cfa9d6d9 13529@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13530@item Command Name
13531@tab Remote Packet
13532@tab Related Features
13533
cfa9d6d9 13534@item @code{fetch-register}
427c3a89
DJ
13535@tab @code{p}
13536@tab @code{info registers}
13537
cfa9d6d9 13538@item @code{set-register}
427c3a89
DJ
13539@tab @code{P}
13540@tab @code{set}
13541
cfa9d6d9 13542@item @code{binary-download}
427c3a89
DJ
13543@tab @code{X}
13544@tab @code{load}, @code{set}
13545
cfa9d6d9 13546@item @code{read-aux-vector}
427c3a89
DJ
13547@tab @code{qXfer:auxv:read}
13548@tab @code{info auxv}
13549
cfa9d6d9 13550@item @code{symbol-lookup}
427c3a89
DJ
13551@tab @code{qSymbol}
13552@tab Detecting multiple threads
13553
2d717e4f
DJ
13554@item @code{attach}
13555@tab @code{vAttach}
13556@tab @code{attach}
13557
cfa9d6d9 13558@item @code{verbose-resume}
427c3a89
DJ
13559@tab @code{vCont}
13560@tab Stepping or resuming multiple threads
13561
2d717e4f
DJ
13562@item @code{run}
13563@tab @code{vRun}
13564@tab @code{run}
13565
cfa9d6d9 13566@item @code{software-breakpoint}
427c3a89
DJ
13567@tab @code{Z0}
13568@tab @code{break}
13569
cfa9d6d9 13570@item @code{hardware-breakpoint}
427c3a89
DJ
13571@tab @code{Z1}
13572@tab @code{hbreak}
13573
cfa9d6d9 13574@item @code{write-watchpoint}
427c3a89
DJ
13575@tab @code{Z2}
13576@tab @code{watch}
13577
cfa9d6d9 13578@item @code{read-watchpoint}
427c3a89
DJ
13579@tab @code{Z3}
13580@tab @code{rwatch}
13581
cfa9d6d9 13582@item @code{access-watchpoint}
427c3a89
DJ
13583@tab @code{Z4}
13584@tab @code{awatch}
13585
cfa9d6d9
DJ
13586@item @code{target-features}
13587@tab @code{qXfer:features:read}
13588@tab @code{set architecture}
13589
13590@item @code{library-info}
13591@tab @code{qXfer:libraries:read}
13592@tab @code{info sharedlibrary}
13593
13594@item @code{memory-map}
13595@tab @code{qXfer:memory-map:read}
13596@tab @code{info mem}
13597
13598@item @code{read-spu-object}
13599@tab @code{qXfer:spu:read}
13600@tab @code{info spu}
13601
13602@item @code{write-spu-object}
13603@tab @code{qXfer:spu:write}
13604@tab @code{info spu}
13605
13606@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13607@tab @code{qGetTLSAddr}
13608@tab Displaying @code{__thread} variables
13609
08388c79
DE
13610@item @code{search-memory}
13611@tab @code{qSearch:memory}
13612@tab @code{find}
13613
427c3a89
DJ
13614@item @code{supported-packets}
13615@tab @code{qSupported}
13616@tab Remote communications parameters
13617
cfa9d6d9 13618@item @code{pass-signals}
89be2091
DJ
13619@tab @code{QPassSignals}
13620@tab @code{handle @var{signal}}
13621
a6b151f1
DJ
13622@item @code{hostio-close-packet}
13623@tab @code{vFile:close}
13624@tab @code{remote get}, @code{remote put}
13625
13626@item @code{hostio-open-packet}
13627@tab @code{vFile:open}
13628@tab @code{remote get}, @code{remote put}
13629
13630@item @code{hostio-pread-packet}
13631@tab @code{vFile:pread}
13632@tab @code{remote get}, @code{remote put}
13633
13634@item @code{hostio-pwrite-packet}
13635@tab @code{vFile:pwrite}
13636@tab @code{remote get}, @code{remote put}
13637
13638@item @code{hostio-unlink-packet}
13639@tab @code{vFile:unlink}
13640@tab @code{remote delete}
427c3a89
DJ
13641@end multitable
13642
79a6e687
BW
13643@node Remote Stub
13644@section Implementing a Remote Stub
7a292a7a 13645
8e04817f
AC
13646@cindex debugging stub, example
13647@cindex remote stub, example
13648@cindex stub example, remote debugging
13649The stub files provided with @value{GDBN} implement the target side of the
13650communication protocol, and the @value{GDBN} side is implemented in the
13651@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13652these subroutines to communicate, and ignore the details. (If you're
13653implementing your own stub file, you can still ignore the details: start
13654with one of the existing stub files. @file{sparc-stub.c} is the best
13655organized, and therefore the easiest to read.)
13656
104c1213
JM
13657@cindex remote serial debugging, overview
13658To debug a program running on another machine (the debugging
13659@dfn{target} machine), you must first arrange for all the usual
13660prerequisites for the program to run by itself. For example, for a C
13661program, you need:
c906108c 13662
104c1213
JM
13663@enumerate
13664@item
13665A startup routine to set up the C runtime environment; these usually
13666have a name like @file{crt0}. The startup routine may be supplied by
13667your hardware supplier, or you may have to write your own.
96baa820 13668
5d161b24 13669@item
d4f3574e 13670A C subroutine library to support your program's
104c1213 13671subroutine calls, notably managing input and output.
96baa820 13672
104c1213
JM
13673@item
13674A way of getting your program to the other machine---for example, a
13675download program. These are often supplied by the hardware
13676manufacturer, but you may have to write your own from hardware
13677documentation.
13678@end enumerate
96baa820 13679
104c1213
JM
13680The next step is to arrange for your program to use a serial port to
13681communicate with the machine where @value{GDBN} is running (the @dfn{host}
13682machine). In general terms, the scheme looks like this:
96baa820 13683
104c1213
JM
13684@table @emph
13685@item On the host,
13686@value{GDBN} already understands how to use this protocol; when everything
13687else is set up, you can simply use the @samp{target remote} command
13688(@pxref{Targets,,Specifying a Debugging Target}).
13689
13690@item On the target,
13691you must link with your program a few special-purpose subroutines that
13692implement the @value{GDBN} remote serial protocol. The file containing these
13693subroutines is called a @dfn{debugging stub}.
13694
13695On certain remote targets, you can use an auxiliary program
13696@code{gdbserver} instead of linking a stub into your program.
79a6e687 13697@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13698@end table
96baa820 13699
104c1213
JM
13700The debugging stub is specific to the architecture of the remote
13701machine; for example, use @file{sparc-stub.c} to debug programs on
13702@sc{sparc} boards.
96baa820 13703
104c1213
JM
13704@cindex remote serial stub list
13705These working remote stubs are distributed with @value{GDBN}:
96baa820 13706
104c1213
JM
13707@table @code
13708
13709@item i386-stub.c
41afff9a 13710@cindex @file{i386-stub.c}
104c1213
JM
13711@cindex Intel
13712@cindex i386
13713For Intel 386 and compatible architectures.
13714
13715@item m68k-stub.c
41afff9a 13716@cindex @file{m68k-stub.c}
104c1213
JM
13717@cindex Motorola 680x0
13718@cindex m680x0
13719For Motorola 680x0 architectures.
13720
13721@item sh-stub.c
41afff9a 13722@cindex @file{sh-stub.c}
172c2a43 13723@cindex Renesas
104c1213 13724@cindex SH
172c2a43 13725For Renesas SH architectures.
104c1213
JM
13726
13727@item sparc-stub.c
41afff9a 13728@cindex @file{sparc-stub.c}
104c1213
JM
13729@cindex Sparc
13730For @sc{sparc} architectures.
13731
13732@item sparcl-stub.c
41afff9a 13733@cindex @file{sparcl-stub.c}
104c1213
JM
13734@cindex Fujitsu
13735@cindex SparcLite
13736For Fujitsu @sc{sparclite} architectures.
13737
13738@end table
13739
13740The @file{README} file in the @value{GDBN} distribution may list other
13741recently added stubs.
13742
13743@menu
13744* Stub Contents:: What the stub can do for you
13745* Bootstrapping:: What you must do for the stub
13746* Debug Session:: Putting it all together
104c1213
JM
13747@end menu
13748
6d2ebf8b 13749@node Stub Contents
79a6e687 13750@subsection What the Stub Can Do for You
104c1213
JM
13751
13752@cindex remote serial stub
13753The debugging stub for your architecture supplies these three
13754subroutines:
13755
13756@table @code
13757@item set_debug_traps
4644b6e3 13758@findex set_debug_traps
104c1213
JM
13759@cindex remote serial stub, initialization
13760This routine arranges for @code{handle_exception} to run when your
13761program stops. You must call this subroutine explicitly near the
13762beginning of your program.
13763
13764@item handle_exception
4644b6e3 13765@findex handle_exception
104c1213
JM
13766@cindex remote serial stub, main routine
13767This is the central workhorse, but your program never calls it
13768explicitly---the setup code arranges for @code{handle_exception} to
13769run when a trap is triggered.
13770
13771@code{handle_exception} takes control when your program stops during
13772execution (for example, on a breakpoint), and mediates communications
13773with @value{GDBN} on the host machine. This is where the communications
13774protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13775representative on the target machine. It begins by sending summary
104c1213
JM
13776information on the state of your program, then continues to execute,
13777retrieving and transmitting any information @value{GDBN} needs, until you
13778execute a @value{GDBN} command that makes your program resume; at that point,
13779@code{handle_exception} returns control to your own code on the target
5d161b24 13780machine.
104c1213
JM
13781
13782@item breakpoint
13783@cindex @code{breakpoint} subroutine, remote
13784Use this auxiliary subroutine to make your program contain a
13785breakpoint. Depending on the particular situation, this may be the only
13786way for @value{GDBN} to get control. For instance, if your target
13787machine has some sort of interrupt button, you won't need to call this;
13788pressing the interrupt button transfers control to
13789@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13790simply receiving characters on the serial port may also trigger a trap;
13791again, in that situation, you don't need to call @code{breakpoint} from
13792your own program---simply running @samp{target remote} from the host
5d161b24 13793@value{GDBN} session gets control.
104c1213
JM
13794
13795Call @code{breakpoint} if none of these is true, or if you simply want
13796to make certain your program stops at a predetermined point for the
13797start of your debugging session.
13798@end table
13799
6d2ebf8b 13800@node Bootstrapping
79a6e687 13801@subsection What You Must Do for the Stub
104c1213
JM
13802
13803@cindex remote stub, support routines
13804The debugging stubs that come with @value{GDBN} are set up for a particular
13805chip architecture, but they have no information about the rest of your
13806debugging target machine.
13807
13808First of all you need to tell the stub how to communicate with the
13809serial port.
13810
13811@table @code
13812@item int getDebugChar()
4644b6e3 13813@findex getDebugChar
104c1213
JM
13814Write this subroutine to read a single character from the serial port.
13815It may be identical to @code{getchar} for your target system; a
13816different name is used to allow you to distinguish the two if you wish.
13817
13818@item void putDebugChar(int)
4644b6e3 13819@findex putDebugChar
104c1213 13820Write this subroutine to write a single character to the serial port.
5d161b24 13821It may be identical to @code{putchar} for your target system; a
104c1213
JM
13822different name is used to allow you to distinguish the two if you wish.
13823@end table
13824
13825@cindex control C, and remote debugging
13826@cindex interrupting remote targets
13827If you want @value{GDBN} to be able to stop your program while it is
13828running, you need to use an interrupt-driven serial driver, and arrange
13829for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13830character). That is the character which @value{GDBN} uses to tell the
13831remote system to stop.
13832
13833Getting the debugging target to return the proper status to @value{GDBN}
13834probably requires changes to the standard stub; one quick and dirty way
13835is to just execute a breakpoint instruction (the ``dirty'' part is that
13836@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13837
13838Other routines you need to supply are:
13839
13840@table @code
13841@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13842@findex exceptionHandler
104c1213
JM
13843Write this function to install @var{exception_address} in the exception
13844handling tables. You need to do this because the stub does not have any
13845way of knowing what the exception handling tables on your target system
13846are like (for example, the processor's table might be in @sc{rom},
13847containing entries which point to a table in @sc{ram}).
13848@var{exception_number} is the exception number which should be changed;
13849its meaning is architecture-dependent (for example, different numbers
13850might represent divide by zero, misaligned access, etc). When this
13851exception occurs, control should be transferred directly to
13852@var{exception_address}, and the processor state (stack, registers,
13853and so on) should be just as it is when a processor exception occurs. So if
13854you want to use a jump instruction to reach @var{exception_address}, it
13855should be a simple jump, not a jump to subroutine.
13856
13857For the 386, @var{exception_address} should be installed as an interrupt
13858gate so that interrupts are masked while the handler runs. The gate
13859should be at privilege level 0 (the most privileged level). The
13860@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13861help from @code{exceptionHandler}.
13862
13863@item void flush_i_cache()
4644b6e3 13864@findex flush_i_cache
d4f3574e 13865On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13866instruction cache, if any, on your target machine. If there is no
13867instruction cache, this subroutine may be a no-op.
13868
13869On target machines that have instruction caches, @value{GDBN} requires this
13870function to make certain that the state of your program is stable.
13871@end table
13872
13873@noindent
13874You must also make sure this library routine is available:
13875
13876@table @code
13877@item void *memset(void *, int, int)
4644b6e3 13878@findex memset
104c1213
JM
13879This is the standard library function @code{memset} that sets an area of
13880memory to a known value. If you have one of the free versions of
13881@code{libc.a}, @code{memset} can be found there; otherwise, you must
13882either obtain it from your hardware manufacturer, or write your own.
13883@end table
13884
13885If you do not use the GNU C compiler, you may need other standard
13886library subroutines as well; this varies from one stub to another,
13887but in general the stubs are likely to use any of the common library
e22ea452 13888subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13889
13890
6d2ebf8b 13891@node Debug Session
79a6e687 13892@subsection Putting it All Together
104c1213
JM
13893
13894@cindex remote serial debugging summary
13895In summary, when your program is ready to debug, you must follow these
13896steps.
13897
13898@enumerate
13899@item
6d2ebf8b 13900Make sure you have defined the supporting low-level routines
79a6e687 13901(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13902@display
13903@code{getDebugChar}, @code{putDebugChar},
13904@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13905@end display
13906
13907@item
13908Insert these lines near the top of your program:
13909
474c8240 13910@smallexample
104c1213
JM
13911set_debug_traps();
13912breakpoint();
474c8240 13913@end smallexample
104c1213
JM
13914
13915@item
13916For the 680x0 stub only, you need to provide a variable called
13917@code{exceptionHook}. Normally you just use:
13918
474c8240 13919@smallexample
104c1213 13920void (*exceptionHook)() = 0;
474c8240 13921@end smallexample
104c1213 13922
d4f3574e 13923@noindent
104c1213 13924but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13925function in your program, that function is called when
104c1213
JM
13926@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13927error). The function indicated by @code{exceptionHook} is called with
13928one parameter: an @code{int} which is the exception number.
13929
13930@item
13931Compile and link together: your program, the @value{GDBN} debugging stub for
13932your target architecture, and the supporting subroutines.
13933
13934@item
13935Make sure you have a serial connection between your target machine and
13936the @value{GDBN} host, and identify the serial port on the host.
13937
13938@item
13939@c The "remote" target now provides a `load' command, so we should
13940@c document that. FIXME.
13941Download your program to your target machine (or get it there by
13942whatever means the manufacturer provides), and start it.
13943
13944@item
07f31aa6 13945Start @value{GDBN} on the host, and connect to the target
79a6e687 13946(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13947
104c1213
JM
13948@end enumerate
13949
8e04817f
AC
13950@node Configurations
13951@chapter Configuration-Specific Information
104c1213 13952
8e04817f
AC
13953While nearly all @value{GDBN} commands are available for all native and
13954cross versions of the debugger, there are some exceptions. This chapter
13955describes things that are only available in certain configurations.
104c1213 13956
8e04817f
AC
13957There are three major categories of configurations: native
13958configurations, where the host and target are the same, embedded
13959operating system configurations, which are usually the same for several
13960different processor architectures, and bare embedded processors, which
13961are quite different from each other.
104c1213 13962
8e04817f
AC
13963@menu
13964* Native::
13965* Embedded OS::
13966* Embedded Processors::
13967* Architectures::
13968@end menu
104c1213 13969
8e04817f
AC
13970@node Native
13971@section Native
104c1213 13972
8e04817f
AC
13973This section describes details specific to particular native
13974configurations.
6cf7e474 13975
8e04817f
AC
13976@menu
13977* HP-UX:: HP-UX
7561d450 13978* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13979* SVR4 Process Information:: SVR4 process information
13980* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13981* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13982* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13983* Neutrino:: Features specific to QNX Neutrino
8e04817f 13984@end menu
6cf7e474 13985
8e04817f
AC
13986@node HP-UX
13987@subsection HP-UX
104c1213 13988
8e04817f
AC
13989On HP-UX systems, if you refer to a function or variable name that
13990begins with a dollar sign, @value{GDBN} searches for a user or system
13991name first, before it searches for a convenience variable.
104c1213 13992
9c16f35a 13993
7561d450
MK
13994@node BSD libkvm Interface
13995@subsection BSD libkvm Interface
13996
13997@cindex libkvm
13998@cindex kernel memory image
13999@cindex kernel crash dump
14000
14001BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
14002interface that provides a uniform interface for accessing kernel virtual
14003memory images, including live systems and crash dumps. @value{GDBN}
14004uses this interface to allow you to debug live kernels and kernel crash
14005dumps on many native BSD configurations. This is implemented as a
14006special @code{kvm} debugging target. For debugging a live system, load
14007the currently running kernel into @value{GDBN} and connect to the
14008@code{kvm} target:
14009
14010@smallexample
14011(@value{GDBP}) @b{target kvm}
14012@end smallexample
14013
14014For debugging crash dumps, provide the file name of the crash dump as an
14015argument:
14016
14017@smallexample
14018(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
14019@end smallexample
14020
14021Once connected to the @code{kvm} target, the following commands are
14022available:
14023
14024@table @code
14025@kindex kvm
14026@item kvm pcb
721c2651 14027Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
14028
14029@item kvm proc
14030Set current context from proc address. This command isn't available on
14031modern FreeBSD systems.
14032@end table
14033
8e04817f 14034@node SVR4 Process Information
79a6e687 14035@subsection SVR4 Process Information
60bf7e09
EZ
14036@cindex /proc
14037@cindex examine process image
14038@cindex process info via @file{/proc}
104c1213 14039
60bf7e09
EZ
14040Many versions of SVR4 and compatible systems provide a facility called
14041@samp{/proc} that can be used to examine the image of a running
14042process using file-system subroutines. If @value{GDBN} is configured
14043for an operating system with this facility, the command @code{info
14044proc} is available to report information about the process running
14045your program, or about any process running on your system. @code{info
14046proc} works only on SVR4 systems that include the @code{procfs} code.
14047This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
14048Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 14049
8e04817f
AC
14050@table @code
14051@kindex info proc
60bf7e09 14052@cindex process ID
8e04817f 14053@item info proc
60bf7e09
EZ
14054@itemx info proc @var{process-id}
14055Summarize available information about any running process. If a
14056process ID is specified by @var{process-id}, display information about
14057that process; otherwise display information about the program being
14058debugged. The summary includes the debugged process ID, the command
14059line used to invoke it, its current working directory, and its
14060executable file's absolute file name.
14061
14062On some systems, @var{process-id} can be of the form
14063@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
14064within a process. If the optional @var{pid} part is missing, it means
14065a thread from the process being debugged (the leading @samp{/} still
14066needs to be present, or else @value{GDBN} will interpret the number as
14067a process ID rather than a thread ID).
6cf7e474 14068
8e04817f 14069@item info proc mappings
60bf7e09
EZ
14070@cindex memory address space mappings
14071Report the memory address space ranges accessible in the program, with
14072information on whether the process has read, write, or execute access
14073rights to each range. On @sc{gnu}/Linux systems, each memory range
14074includes the object file which is mapped to that range, instead of the
14075memory access rights to that range.
14076
14077@item info proc stat
14078@itemx info proc status
14079@cindex process detailed status information
14080These subcommands are specific to @sc{gnu}/Linux systems. They show
14081the process-related information, including the user ID and group ID;
14082how many threads are there in the process; its virtual memory usage;
14083the signals that are pending, blocked, and ignored; its TTY; its
14084consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 14085value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
14086(type @kbd{man 5 proc} from your shell prompt).
14087
14088@item info proc all
14089Show all the information about the process described under all of the
14090above @code{info proc} subcommands.
14091
8e04817f
AC
14092@ignore
14093@comment These sub-options of 'info proc' were not included when
14094@comment procfs.c was re-written. Keep their descriptions around
14095@comment against the day when someone finds the time to put them back in.
14096@kindex info proc times
14097@item info proc times
14098Starting time, user CPU time, and system CPU time for your program and
14099its children.
6cf7e474 14100
8e04817f
AC
14101@kindex info proc id
14102@item info proc id
14103Report on the process IDs related to your program: its own process ID,
14104the ID of its parent, the process group ID, and the session ID.
8e04817f 14105@end ignore
721c2651
EZ
14106
14107@item set procfs-trace
14108@kindex set procfs-trace
14109@cindex @code{procfs} API calls
14110This command enables and disables tracing of @code{procfs} API calls.
14111
14112@item show procfs-trace
14113@kindex show procfs-trace
14114Show the current state of @code{procfs} API call tracing.
14115
14116@item set procfs-file @var{file}
14117@kindex set procfs-file
14118Tell @value{GDBN} to write @code{procfs} API trace to the named
14119@var{file}. @value{GDBN} appends the trace info to the previous
14120contents of the file. The default is to display the trace on the
14121standard output.
14122
14123@item show procfs-file
14124@kindex show procfs-file
14125Show the file to which @code{procfs} API trace is written.
14126
14127@item proc-trace-entry
14128@itemx proc-trace-exit
14129@itemx proc-untrace-entry
14130@itemx proc-untrace-exit
14131@kindex proc-trace-entry
14132@kindex proc-trace-exit
14133@kindex proc-untrace-entry
14134@kindex proc-untrace-exit
14135These commands enable and disable tracing of entries into and exits
14136from the @code{syscall} interface.
14137
14138@item info pidlist
14139@kindex info pidlist
14140@cindex process list, QNX Neutrino
14141For QNX Neutrino only, this command displays the list of all the
14142processes and all the threads within each process.
14143
14144@item info meminfo
14145@kindex info meminfo
14146@cindex mapinfo list, QNX Neutrino
14147For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 14148@end table
104c1213 14149
8e04817f
AC
14150@node DJGPP Native
14151@subsection Features for Debugging @sc{djgpp} Programs
14152@cindex @sc{djgpp} debugging
14153@cindex native @sc{djgpp} debugging
14154@cindex MS-DOS-specific commands
104c1213 14155
514c4d71
EZ
14156@cindex DPMI
14157@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
14158MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
14159that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
14160top of real-mode DOS systems and their emulations.
104c1213 14161
8e04817f
AC
14162@value{GDBN} supports native debugging of @sc{djgpp} programs, and
14163defines a few commands specific to the @sc{djgpp} port. This
14164subsection describes those commands.
104c1213 14165
8e04817f
AC
14166@table @code
14167@kindex info dos
14168@item info dos
14169This is a prefix of @sc{djgpp}-specific commands which print
14170information about the target system and important OS structures.
f1251bdd 14171
8e04817f
AC
14172@kindex sysinfo
14173@cindex MS-DOS system info
14174@cindex free memory information (MS-DOS)
14175@item info dos sysinfo
14176This command displays assorted information about the underlying
14177platform: the CPU type and features, the OS version and flavor, the
14178DPMI version, and the available conventional and DPMI memory.
104c1213 14179
8e04817f
AC
14180@cindex GDT
14181@cindex LDT
14182@cindex IDT
14183@cindex segment descriptor tables
14184@cindex descriptor tables display
14185@item info dos gdt
14186@itemx info dos ldt
14187@itemx info dos idt
14188These 3 commands display entries from, respectively, Global, Local,
14189and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14190tables are data structures which store a descriptor for each segment
14191that is currently in use. The segment's selector is an index into a
14192descriptor table; the table entry for that index holds the
14193descriptor's base address and limit, and its attributes and access
14194rights.
104c1213 14195
8e04817f
AC
14196A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14197segment (used for both data and the stack), and a DOS segment (which
14198allows access to DOS/BIOS data structures and absolute addresses in
14199conventional memory). However, the DPMI host will usually define
14200additional segments in order to support the DPMI environment.
d4f3574e 14201
8e04817f
AC
14202@cindex garbled pointers
14203These commands allow to display entries from the descriptor tables.
14204Without an argument, all entries from the specified table are
14205displayed. An argument, which should be an integer expression, means
14206display a single entry whose index is given by the argument. For
14207example, here's a convenient way to display information about the
14208debugged program's data segment:
104c1213 14209
8e04817f
AC
14210@smallexample
14211@exdent @code{(@value{GDBP}) info dos ldt $ds}
14212@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14213@end smallexample
104c1213 14214
8e04817f
AC
14215@noindent
14216This comes in handy when you want to see whether a pointer is outside
14217the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14218
8e04817f
AC
14219@cindex page tables display (MS-DOS)
14220@item info dos pde
14221@itemx info dos pte
14222These two commands display entries from, respectively, the Page
14223Directory and the Page Tables. Page Directories and Page Tables are
14224data structures which control how virtual memory addresses are mapped
14225into physical addresses. A Page Table includes an entry for every
14226page of memory that is mapped into the program's address space; there
14227may be several Page Tables, each one holding up to 4096 entries. A
14228Page Directory has up to 4096 entries, one each for every Page Table
14229that is currently in use.
104c1213 14230
8e04817f
AC
14231Without an argument, @kbd{info dos pde} displays the entire Page
14232Directory, and @kbd{info dos pte} displays all the entries in all of
14233the Page Tables. An argument, an integer expression, given to the
14234@kbd{info dos pde} command means display only that entry from the Page
14235Directory table. An argument given to the @kbd{info dos pte} command
14236means display entries from a single Page Table, the one pointed to by
14237the specified entry in the Page Directory.
104c1213 14238
8e04817f
AC
14239@cindex direct memory access (DMA) on MS-DOS
14240These commands are useful when your program uses @dfn{DMA} (Direct
14241Memory Access), which needs physical addresses to program the DMA
14242controller.
104c1213 14243
8e04817f 14244These commands are supported only with some DPMI servers.
104c1213 14245
8e04817f
AC
14246@cindex physical address from linear address
14247@item info dos address-pte @var{addr}
14248This command displays the Page Table entry for a specified linear
514c4d71
EZ
14249address. The argument @var{addr} is a linear address which should
14250already have the appropriate segment's base address added to it,
14251because this command accepts addresses which may belong to @emph{any}
14252segment. For example, here's how to display the Page Table entry for
14253the page where a variable @code{i} is stored:
104c1213 14254
b383017d 14255@smallexample
8e04817f
AC
14256@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14257@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14258@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14259@end smallexample
104c1213 14260
8e04817f
AC
14261@noindent
14262This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14263whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14264attributes of that page.
104c1213 14265
8e04817f
AC
14266Note that you must cast the addresses of variables to a @code{char *},
14267since otherwise the value of @code{__djgpp_base_address}, the base
14268address of all variables and functions in a @sc{djgpp} program, will
14269be added using the rules of C pointer arithmetics: if @code{i} is
14270declared an @code{int}, @value{GDBN} will add 4 times the value of
14271@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14272
8e04817f
AC
14273Here's another example, it displays the Page Table entry for the
14274transfer buffer:
104c1213 14275
8e04817f
AC
14276@smallexample
14277@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14278@exdent @code{Page Table entry for address 0x29110:}
14279@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14280@end smallexample
104c1213 14281
8e04817f
AC
14282@noindent
14283(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
142843rd member of the @code{_go32_info_block} structure.) The output
14285clearly shows that this DPMI server maps the addresses in conventional
14286memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14287linear (@code{0x29110}) addresses are identical.
104c1213 14288
8e04817f
AC
14289This command is supported only with some DPMI servers.
14290@end table
104c1213 14291
c45da7e6 14292@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14293In addition to native debugging, the DJGPP port supports remote
14294debugging via a serial data link. The following commands are specific
14295to remote serial debugging in the DJGPP port of @value{GDBN}.
14296
14297@table @code
14298@kindex set com1base
14299@kindex set com1irq
14300@kindex set com2base
14301@kindex set com2irq
14302@kindex set com3base
14303@kindex set com3irq
14304@kindex set com4base
14305@kindex set com4irq
14306@item set com1base @var{addr}
14307This command sets the base I/O port address of the @file{COM1} serial
14308port.
14309
14310@item set com1irq @var{irq}
14311This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14312for the @file{COM1} serial port.
14313
14314There are similar commands @samp{set com2base}, @samp{set com3irq},
14315etc.@: for setting the port address and the @code{IRQ} lines for the
14316other 3 COM ports.
14317
14318@kindex show com1base
14319@kindex show com1irq
14320@kindex show com2base
14321@kindex show com2irq
14322@kindex show com3base
14323@kindex show com3irq
14324@kindex show com4base
14325@kindex show com4irq
14326The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14327display the current settings of the base address and the @code{IRQ}
14328lines used by the COM ports.
c45da7e6
EZ
14329
14330@item info serial
14331@kindex info serial
14332@cindex DOS serial port status
14333This command prints the status of the 4 DOS serial ports. For each
14334port, it prints whether it's active or not, its I/O base address and
14335IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14336counts of various errors encountered so far.
a8f24a35
EZ
14337@end table
14338
14339
78c47bea 14340@node Cygwin Native
79a6e687 14341@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14342@cindex MS Windows debugging
14343@cindex native Cygwin debugging
14344@cindex Cygwin-specific commands
14345
be448670 14346@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14347DLLs with and without symbolic debugging information. There are various
14348additional Cygwin-specific commands, described in this section.
14349Working with DLLs that have no debugging symbols is described in
14350@ref{Non-debug DLL Symbols}.
78c47bea
PM
14351
14352@table @code
14353@kindex info w32
14354@item info w32
db2e3e2e 14355This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14356information about the target system and important OS structures.
14357
14358@item info w32 selector
14359This command displays information returned by
14360the Win32 API @code{GetThreadSelectorEntry} function.
14361It takes an optional argument that is evaluated to
14362a long value to give the information about this given selector.
14363Without argument, this command displays information
d3e8051b 14364about the six segment registers.
78c47bea
PM
14365
14366@kindex info dll
14367@item info dll
db2e3e2e 14368This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14369
14370@kindex dll-symbols
14371@item dll-symbols
14372This command loads symbols from a dll similarly to
14373add-sym command but without the need to specify a base address.
14374
be90c084 14375@kindex set cygwin-exceptions
e16b02ee
EZ
14376@cindex debugging the Cygwin DLL
14377@cindex Cygwin DLL, debugging
be90c084 14378@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14379If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14380happen inside the Cygwin DLL. If @var{mode} is @code{off},
14381@value{GDBN} will delay recognition of exceptions, and may ignore some
14382exceptions which seem to be caused by internal Cygwin DLL
14383``bookkeeping''. This option is meant primarily for debugging the
14384Cygwin DLL itself; the default value is @code{off} to avoid annoying
14385@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14386
14387@kindex show cygwin-exceptions
14388@item show cygwin-exceptions
e16b02ee
EZ
14389Displays whether @value{GDBN} will break on exceptions that happen
14390inside the Cygwin DLL itself.
be90c084 14391
b383017d 14392@kindex set new-console
78c47bea 14393@item set new-console @var{mode}
b383017d 14394If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14395be started in a new console on next start.
14396If @var{mode} is @code{off}i, the debuggee will
14397be started in the same console as the debugger.
14398
14399@kindex show new-console
14400@item show new-console
14401Displays whether a new console is used
14402when the debuggee is started.
14403
14404@kindex set new-group
14405@item set new-group @var{mode}
14406This boolean value controls whether the debuggee should
14407start a new group or stay in the same group as the debugger.
14408This affects the way the Windows OS handles
c8aa23ab 14409@samp{Ctrl-C}.
78c47bea
PM
14410
14411@kindex show new-group
14412@item show new-group
14413Displays current value of new-group boolean.
14414
14415@kindex set debugevents
14416@item set debugevents
219eec71
EZ
14417This boolean value adds debug output concerning kernel events related
14418to the debuggee seen by the debugger. This includes events that
14419signal thread and process creation and exit, DLL loading and
14420unloading, console interrupts, and debugging messages produced by the
14421Windows @code{OutputDebugString} API call.
78c47bea
PM
14422
14423@kindex set debugexec
14424@item set debugexec
b383017d 14425This boolean value adds debug output concerning execute events
219eec71 14426(such as resume thread) seen by the debugger.
78c47bea
PM
14427
14428@kindex set debugexceptions
14429@item set debugexceptions
219eec71
EZ
14430This boolean value adds debug output concerning exceptions in the
14431debuggee seen by the debugger.
78c47bea
PM
14432
14433@kindex set debugmemory
14434@item set debugmemory
219eec71
EZ
14435This boolean value adds debug output concerning debuggee memory reads
14436and writes by the debugger.
78c47bea
PM
14437
14438@kindex set shell
14439@item set shell
14440This boolean values specifies whether the debuggee is called
14441via a shell or directly (default value is on).
14442
14443@kindex show shell
14444@item show shell
14445Displays if the debuggee will be started with a shell.
14446
14447@end table
14448
be448670 14449@menu
79a6e687 14450* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14451@end menu
14452
79a6e687
BW
14453@node Non-debug DLL Symbols
14454@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14455@cindex DLLs with no debugging symbols
14456@cindex Minimal symbols and DLLs
14457
14458Very often on windows, some of the DLLs that your program relies on do
14459not include symbolic debugging information (for example,
db2e3e2e 14460@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14461symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14462information contained in the DLL's export table. This section
be448670
CF
14463describes working with such symbols, known internally to @value{GDBN} as
14464``minimal symbols''.
14465
14466Note that before the debugged program has started execution, no DLLs
db2e3e2e 14467will have been loaded. The easiest way around this problem is simply to
be448670 14468start the program --- either by setting a breakpoint or letting the
db2e3e2e 14469program run once to completion. It is also possible to force
be448670 14470@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14471see the shared library information in @ref{Files}, or the
db2e3e2e 14472@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14473explicitly loading symbols from a DLL with no debugging information will
14474cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14475which may adversely affect symbol lookup performance.
14476
79a6e687 14477@subsubsection DLL Name Prefixes
be448670
CF
14478
14479In keeping with the naming conventions used by the Microsoft debugging
14480tools, DLL export symbols are made available with a prefix based on the
14481DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14482also entered into the symbol table, so @code{CreateFileA} is often
14483sufficient. In some cases there will be name clashes within a program
14484(particularly if the executable itself includes full debugging symbols)
14485necessitating the use of the fully qualified name when referring to the
14486contents of the DLL. Use single-quotes around the name to avoid the
14487exclamation mark (``!'') being interpreted as a language operator.
14488
14489Note that the internal name of the DLL may be all upper-case, even
14490though the file name of the DLL is lower-case, or vice-versa. Since
14491symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14492some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14493@code{info variables} commands or even @code{maint print msymbols}
14494(@pxref{Symbols}). Here's an example:
be448670
CF
14495
14496@smallexample
f7dc1244 14497(@value{GDBP}) info function CreateFileA
be448670
CF
14498All functions matching regular expression "CreateFileA":
14499
14500Non-debugging symbols:
145010x77e885f4 CreateFileA
145020x77e885f4 KERNEL32!CreateFileA
14503@end smallexample
14504
14505@smallexample
f7dc1244 14506(@value{GDBP}) info function !
be448670
CF
14507All functions matching regular expression "!":
14508
14509Non-debugging symbols:
145100x6100114c cygwin1!__assert
145110x61004034 cygwin1!_dll_crt0@@0
145120x61004240 cygwin1!dll_crt0(per_process *)
14513[etc...]
14514@end smallexample
14515
79a6e687 14516@subsubsection Working with Minimal Symbols
be448670
CF
14517
14518Symbols extracted from a DLL's export table do not contain very much
14519type information. All that @value{GDBN} can do is guess whether a symbol
14520refers to a function or variable depending on the linker section that
14521contains the symbol. Also note that the actual contents of the memory
14522contained in a DLL are not available unless the program is running. This
14523means that you cannot examine the contents of a variable or disassemble
14524a function within a DLL without a running program.
14525
14526Variables are generally treated as pointers and dereferenced
14527automatically. For this reason, it is often necessary to prefix a
14528variable name with the address-of operator (``&'') and provide explicit
14529type information in the command. Here's an example of the type of
14530problem:
14531
14532@smallexample
f7dc1244 14533(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14534$1 = 268572168
14535@end smallexample
14536
14537@smallexample
f7dc1244 14538(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
145390x10021610: "\230y\""
14540@end smallexample
14541
14542And two possible solutions:
14543
14544@smallexample
f7dc1244 14545(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14546$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14547@end smallexample
14548
14549@smallexample
f7dc1244 14550(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 145510x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14552(@value{GDBP}) x/x 0x10021608
be448670 145530x10021608: 0x0022fd98
f7dc1244 14554(@value{GDBP}) x/s 0x0022fd98
be448670
CF
145550x22fd98: "/cygdrive/c/mydirectory/myprogram"
14556@end smallexample
14557
14558Setting a break point within a DLL is possible even before the program
14559starts execution. However, under these circumstances, @value{GDBN} can't
14560examine the initial instructions of the function in order to skip the
14561function's frame set-up code. You can work around this by using ``*&''
14562to set the breakpoint at a raw memory address:
14563
14564@smallexample
f7dc1244 14565(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14566Breakpoint 1 at 0x1e04eff0
14567@end smallexample
14568
14569The author of these extensions is not entirely convinced that setting a
14570break point within a shared DLL like @file{kernel32.dll} is completely
14571safe.
14572
14d6dd68 14573@node Hurd Native
79a6e687 14574@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14575@cindex @sc{gnu} Hurd debugging
14576
14577This subsection describes @value{GDBN} commands specific to the
14578@sc{gnu} Hurd native debugging.
14579
14580@table @code
14581@item set signals
14582@itemx set sigs
14583@kindex set signals@r{, Hurd command}
14584@kindex set sigs@r{, Hurd command}
14585This command toggles the state of inferior signal interception by
14586@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14587affected by this command. @code{sigs} is a shorthand alias for
14588@code{signals}.
14589
14590@item show signals
14591@itemx show sigs
14592@kindex show signals@r{, Hurd command}
14593@kindex show sigs@r{, Hurd command}
14594Show the current state of intercepting inferior's signals.
14595
14596@item set signal-thread
14597@itemx set sigthread
14598@kindex set signal-thread
14599@kindex set sigthread
14600This command tells @value{GDBN} which thread is the @code{libc} signal
14601thread. That thread is run when a signal is delivered to a running
14602process. @code{set sigthread} is the shorthand alias of @code{set
14603signal-thread}.
14604
14605@item show signal-thread
14606@itemx show sigthread
14607@kindex show signal-thread
14608@kindex show sigthread
14609These two commands show which thread will run when the inferior is
14610delivered a signal.
14611
14612@item set stopped
14613@kindex set stopped@r{, Hurd command}
14614This commands tells @value{GDBN} that the inferior process is stopped,
14615as with the @code{SIGSTOP} signal. The stopped process can be
14616continued by delivering a signal to it.
14617
14618@item show stopped
14619@kindex show stopped@r{, Hurd command}
14620This command shows whether @value{GDBN} thinks the debuggee is
14621stopped.
14622
14623@item set exceptions
14624@kindex set exceptions@r{, Hurd command}
14625Use this command to turn off trapping of exceptions in the inferior.
14626When exception trapping is off, neither breakpoints nor
14627single-stepping will work. To restore the default, set exception
14628trapping on.
14629
14630@item show exceptions
14631@kindex show exceptions@r{, Hurd command}
14632Show the current state of trapping exceptions in the inferior.
14633
14634@item set task pause
14635@kindex set task@r{, Hurd commands}
14636@cindex task attributes (@sc{gnu} Hurd)
14637@cindex pause current task (@sc{gnu} Hurd)
14638This command toggles task suspension when @value{GDBN} has control.
14639Setting it to on takes effect immediately, and the task is suspended
14640whenever @value{GDBN} gets control. Setting it to off will take
14641effect the next time the inferior is continued. If this option is set
14642to off, you can use @code{set thread default pause on} or @code{set
14643thread pause on} (see below) to pause individual threads.
14644
14645@item show task pause
14646@kindex show task@r{, Hurd commands}
14647Show the current state of task suspension.
14648
14649@item set task detach-suspend-count
14650@cindex task suspend count
14651@cindex detach from task, @sc{gnu} Hurd
14652This command sets the suspend count the task will be left with when
14653@value{GDBN} detaches from it.
14654
14655@item show task detach-suspend-count
14656Show the suspend count the task will be left with when detaching.
14657
14658@item set task exception-port
14659@itemx set task excp
14660@cindex task exception port, @sc{gnu} Hurd
14661This command sets the task exception port to which @value{GDBN} will
14662forward exceptions. The argument should be the value of the @dfn{send
14663rights} of the task. @code{set task excp} is a shorthand alias.
14664
14665@item set noninvasive
14666@cindex noninvasive task options
14667This command switches @value{GDBN} to a mode that is the least
14668invasive as far as interfering with the inferior is concerned. This
14669is the same as using @code{set task pause}, @code{set exceptions}, and
14670@code{set signals} to values opposite to the defaults.
14671
14672@item info send-rights
14673@itemx info receive-rights
14674@itemx info port-rights
14675@itemx info port-sets
14676@itemx info dead-names
14677@itemx info ports
14678@itemx info psets
14679@cindex send rights, @sc{gnu} Hurd
14680@cindex receive rights, @sc{gnu} Hurd
14681@cindex port rights, @sc{gnu} Hurd
14682@cindex port sets, @sc{gnu} Hurd
14683@cindex dead names, @sc{gnu} Hurd
14684These commands display information about, respectively, send rights,
14685receive rights, port rights, port sets, and dead names of a task.
14686There are also shorthand aliases: @code{info ports} for @code{info
14687port-rights} and @code{info psets} for @code{info port-sets}.
14688
14689@item set thread pause
14690@kindex set thread@r{, Hurd command}
14691@cindex thread properties, @sc{gnu} Hurd
14692@cindex pause current thread (@sc{gnu} Hurd)
14693This command toggles current thread suspension when @value{GDBN} has
14694control. Setting it to on takes effect immediately, and the current
14695thread is suspended whenever @value{GDBN} gets control. Setting it to
14696off will take effect the next time the inferior is continued.
14697Normally, this command has no effect, since when @value{GDBN} has
14698control, the whole task is suspended. However, if you used @code{set
14699task pause off} (see above), this command comes in handy to suspend
14700only the current thread.
14701
14702@item show thread pause
14703@kindex show thread@r{, Hurd command}
14704This command shows the state of current thread suspension.
14705
14706@item set thread run
d3e8051b 14707This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14708
14709@item show thread run
14710Show whether the current thread is allowed to run.
14711
14712@item set thread detach-suspend-count
14713@cindex thread suspend count, @sc{gnu} Hurd
14714@cindex detach from thread, @sc{gnu} Hurd
14715This command sets the suspend count @value{GDBN} will leave on a
14716thread when detaching. This number is relative to the suspend count
14717found by @value{GDBN} when it notices the thread; use @code{set thread
14718takeover-suspend-count} to force it to an absolute value.
14719
14720@item show thread detach-suspend-count
14721Show the suspend count @value{GDBN} will leave on the thread when
14722detaching.
14723
14724@item set thread exception-port
14725@itemx set thread excp
14726Set the thread exception port to which to forward exceptions. This
14727overrides the port set by @code{set task exception-port} (see above).
14728@code{set thread excp} is the shorthand alias.
14729
14730@item set thread takeover-suspend-count
14731Normally, @value{GDBN}'s thread suspend counts are relative to the
14732value @value{GDBN} finds when it notices each thread. This command
14733changes the suspend counts to be absolute instead.
14734
14735@item set thread default
14736@itemx show thread default
14737@cindex thread default settings, @sc{gnu} Hurd
14738Each of the above @code{set thread} commands has a @code{set thread
14739default} counterpart (e.g., @code{set thread default pause}, @code{set
14740thread default exception-port}, etc.). The @code{thread default}
14741variety of commands sets the default thread properties for all
14742threads; you can then change the properties of individual threads with
14743the non-default commands.
14744@end table
14745
14746
a64548ea
EZ
14747@node Neutrino
14748@subsection QNX Neutrino
14749@cindex QNX Neutrino
14750
14751@value{GDBN} provides the following commands specific to the QNX
14752Neutrino target:
14753
14754@table @code
14755@item set debug nto-debug
14756@kindex set debug nto-debug
14757When set to on, enables debugging messages specific to the QNX
14758Neutrino support.
14759
14760@item show debug nto-debug
14761@kindex show debug nto-debug
14762Show the current state of QNX Neutrino messages.
14763@end table
14764
14765
8e04817f
AC
14766@node Embedded OS
14767@section Embedded Operating Systems
104c1213 14768
8e04817f
AC
14769This section describes configurations involving the debugging of
14770embedded operating systems that are available for several different
14771architectures.
d4f3574e 14772
8e04817f
AC
14773@menu
14774* VxWorks:: Using @value{GDBN} with VxWorks
14775@end menu
104c1213 14776
8e04817f
AC
14777@value{GDBN} includes the ability to debug programs running on
14778various real-time operating systems.
104c1213 14779
8e04817f
AC
14780@node VxWorks
14781@subsection Using @value{GDBN} with VxWorks
104c1213 14782
8e04817f 14783@cindex VxWorks
104c1213 14784
8e04817f 14785@table @code
104c1213 14786
8e04817f
AC
14787@kindex target vxworks
14788@item target vxworks @var{machinename}
14789A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14790is the target system's machine name or IP address.
104c1213 14791
8e04817f 14792@end table
104c1213 14793
8e04817f
AC
14794On VxWorks, @code{load} links @var{filename} dynamically on the
14795current target system as well as adding its symbols in @value{GDBN}.
104c1213 14796
8e04817f
AC
14797@value{GDBN} enables developers to spawn and debug tasks running on networked
14798VxWorks targets from a Unix host. Already-running tasks spawned from
14799the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14800both the Unix host and on the VxWorks target. The program
14801@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14802installed with the name @code{vxgdb}, to distinguish it from a
14803@value{GDBN} for debugging programs on the host itself.)
104c1213 14804
8e04817f
AC
14805@table @code
14806@item VxWorks-timeout @var{args}
14807@kindex vxworks-timeout
14808All VxWorks-based targets now support the option @code{vxworks-timeout}.
14809This option is set by the user, and @var{args} represents the number of
14810seconds @value{GDBN} waits for responses to rpc's. You might use this if
14811your VxWorks target is a slow software simulator or is on the far side
14812of a thin network line.
14813@end table
104c1213 14814
8e04817f
AC
14815The following information on connecting to VxWorks was current when
14816this manual was produced; newer releases of VxWorks may use revised
14817procedures.
104c1213 14818
4644b6e3 14819@findex INCLUDE_RDB
8e04817f
AC
14820To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14821to include the remote debugging interface routines in the VxWorks
14822library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14823VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14824kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14825source debugging task @code{tRdbTask} when VxWorks is booted. For more
14826information on configuring and remaking VxWorks, see the manufacturer's
14827manual.
14828@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14829
8e04817f
AC
14830Once you have included @file{rdb.a} in your VxWorks system image and set
14831your Unix execution search path to find @value{GDBN}, you are ready to
14832run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14833@code{vxgdb}, depending on your installation).
104c1213 14834
8e04817f 14835@value{GDBN} comes up showing the prompt:
104c1213 14836
474c8240 14837@smallexample
8e04817f 14838(vxgdb)
474c8240 14839@end smallexample
104c1213 14840
8e04817f
AC
14841@menu
14842* VxWorks Connection:: Connecting to VxWorks
14843* VxWorks Download:: VxWorks download
14844* VxWorks Attach:: Running tasks
14845@end menu
104c1213 14846
8e04817f
AC
14847@node VxWorks Connection
14848@subsubsection Connecting to VxWorks
104c1213 14849
8e04817f
AC
14850The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14851network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14852
474c8240 14853@smallexample
8e04817f 14854(vxgdb) target vxworks tt
474c8240 14855@end smallexample
104c1213 14856
8e04817f
AC
14857@need 750
14858@value{GDBN} displays messages like these:
104c1213 14859
8e04817f
AC
14860@smallexample
14861Attaching remote machine across net...
14862Connected to tt.
14863@end smallexample
104c1213 14864
8e04817f
AC
14865@need 1000
14866@value{GDBN} then attempts to read the symbol tables of any object modules
14867loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14868these files by searching the directories listed in the command search
79a6e687 14869path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14870to find an object file, it displays a message such as:
5d161b24 14871
474c8240 14872@smallexample
8e04817f 14873prog.o: No such file or directory.
474c8240 14874@end smallexample
104c1213 14875
8e04817f
AC
14876When this happens, add the appropriate directory to the search path with
14877the @value{GDBN} command @code{path}, and execute the @code{target}
14878command again.
104c1213 14879
8e04817f 14880@node VxWorks Download
79a6e687 14881@subsubsection VxWorks Download
104c1213 14882
8e04817f
AC
14883@cindex download to VxWorks
14884If you have connected to the VxWorks target and you want to debug an
14885object that has not yet been loaded, you can use the @value{GDBN}
14886@code{load} command to download a file from Unix to VxWorks
14887incrementally. The object file given as an argument to the @code{load}
14888command is actually opened twice: first by the VxWorks target in order
14889to download the code, then by @value{GDBN} in order to read the symbol
14890table. This can lead to problems if the current working directories on
14891the two systems differ. If both systems have NFS mounted the same
14892filesystems, you can avoid these problems by using absolute paths.
14893Otherwise, it is simplest to set the working directory on both systems
14894to the directory in which the object file resides, and then to reference
14895the file by its name, without any path. For instance, a program
14896@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14897and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14898program, type this on VxWorks:
104c1213 14899
474c8240 14900@smallexample
8e04817f 14901-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14902@end smallexample
104c1213 14903
8e04817f
AC
14904@noindent
14905Then, in @value{GDBN}, type:
104c1213 14906
474c8240 14907@smallexample
8e04817f
AC
14908(vxgdb) cd @var{hostpath}/vw/demo/rdb
14909(vxgdb) load prog.o
474c8240 14910@end smallexample
104c1213 14911
8e04817f 14912@value{GDBN} displays a response similar to this:
104c1213 14913
8e04817f
AC
14914@smallexample
14915Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14916@end smallexample
104c1213 14917
8e04817f
AC
14918You can also use the @code{load} command to reload an object module
14919after editing and recompiling the corresponding source file. Note that
14920this makes @value{GDBN} delete all currently-defined breakpoints,
14921auto-displays, and convenience variables, and to clear the value
14922history. (This is necessary in order to preserve the integrity of
14923debugger's data structures that reference the target system's symbol
14924table.)
104c1213 14925
8e04817f 14926@node VxWorks Attach
79a6e687 14927@subsubsection Running Tasks
104c1213
JM
14928
14929@cindex running VxWorks tasks
14930You can also attach to an existing task using the @code{attach} command as
14931follows:
14932
474c8240 14933@smallexample
104c1213 14934(vxgdb) attach @var{task}
474c8240 14935@end smallexample
104c1213
JM
14936
14937@noindent
14938where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14939or suspended when you attach to it. Running tasks are suspended at
14940the time of attachment.
14941
6d2ebf8b 14942@node Embedded Processors
104c1213
JM
14943@section Embedded Processors
14944
14945This section goes into details specific to particular embedded
14946configurations.
14947
c45da7e6
EZ
14948@cindex send command to simulator
14949Whenever a specific embedded processor has a simulator, @value{GDBN}
14950allows to send an arbitrary command to the simulator.
14951
14952@table @code
14953@item sim @var{command}
14954@kindex sim@r{, a command}
14955Send an arbitrary @var{command} string to the simulator. Consult the
14956documentation for the specific simulator in use for information about
14957acceptable commands.
14958@end table
14959
7d86b5d5 14960
104c1213 14961@menu
c45da7e6 14962* ARM:: ARM RDI
172c2a43 14963* M32R/D:: Renesas M32R/D
104c1213 14964* M68K:: Motorola M68K
104c1213 14965* MIPS Embedded:: MIPS Embedded
a37295f9 14966* OpenRISC 1000:: OpenRisc 1000
104c1213 14967* PA:: HP PA Embedded
4acd40f3 14968* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14969* Sparclet:: Tsqware Sparclet
14970* Sparclite:: Fujitsu Sparclite
104c1213 14971* Z8000:: Zilog Z8000
a64548ea
EZ
14972* AVR:: Atmel AVR
14973* CRIS:: CRIS
14974* Super-H:: Renesas Super-H
104c1213
JM
14975@end menu
14976
6d2ebf8b 14977@node ARM
104c1213 14978@subsection ARM
c45da7e6 14979@cindex ARM RDI
104c1213
JM
14980
14981@table @code
8e04817f
AC
14982@kindex target rdi
14983@item target rdi @var{dev}
14984ARM Angel monitor, via RDI library interface to ADP protocol. You may
14985use this target to communicate with both boards running the Angel
14986monitor, or with the EmbeddedICE JTAG debug device.
14987
14988@kindex target rdp
14989@item target rdp @var{dev}
14990ARM Demon monitor.
14991
14992@end table
14993
e2f4edfd
EZ
14994@value{GDBN} provides the following ARM-specific commands:
14995
14996@table @code
14997@item set arm disassembler
14998@kindex set arm
14999This commands selects from a list of disassembly styles. The
15000@code{"std"} style is the standard style.
15001
15002@item show arm disassembler
15003@kindex show arm
15004Show the current disassembly style.
15005
15006@item set arm apcs32
15007@cindex ARM 32-bit mode
15008This command toggles ARM operation mode between 32-bit and 26-bit.
15009
15010@item show arm apcs32
15011Display the current usage of the ARM 32-bit mode.
15012
15013@item set arm fpu @var{fputype}
15014This command sets the ARM floating-point unit (FPU) type. The
15015argument @var{fputype} can be one of these:
15016
15017@table @code
15018@item auto
15019Determine the FPU type by querying the OS ABI.
15020@item softfpa
15021Software FPU, with mixed-endian doubles on little-endian ARM
15022processors.
15023@item fpa
15024GCC-compiled FPA co-processor.
15025@item softvfp
15026Software FPU with pure-endian doubles.
15027@item vfp
15028VFP co-processor.
15029@end table
15030
15031@item show arm fpu
15032Show the current type of the FPU.
15033
15034@item set arm abi
15035This command forces @value{GDBN} to use the specified ABI.
15036
15037@item show arm abi
15038Show the currently used ABI.
15039
0428b8f5
DJ
15040@item set arm fallback-mode (arm|thumb|auto)
15041@value{GDBN} uses the symbol table, when available, to determine
15042whether instructions are ARM or Thumb. This command controls
15043@value{GDBN}'s default behavior when the symbol table is not
15044available. The default is @samp{auto}, which causes @value{GDBN} to
15045use the current execution mode (from the @code{T} bit in the @code{CPSR}
15046register).
15047
15048@item show arm fallback-mode
15049Show the current fallback instruction mode.
15050
15051@item set arm force-mode (arm|thumb|auto)
15052This command overrides use of the symbol table to determine whether
15053instructions are ARM or Thumb. The default is @samp{auto}, which
15054causes @value{GDBN} to use the symbol table and then the setting
15055of @samp{set arm fallback-mode}.
15056
15057@item show arm force-mode
15058Show the current forced instruction mode.
15059
e2f4edfd
EZ
15060@item set debug arm
15061Toggle whether to display ARM-specific debugging messages from the ARM
15062target support subsystem.
15063
15064@item show debug arm
15065Show whether ARM-specific debugging messages are enabled.
15066@end table
15067
c45da7e6
EZ
15068The following commands are available when an ARM target is debugged
15069using the RDI interface:
15070
15071@table @code
15072@item rdilogfile @r{[}@var{file}@r{]}
15073@kindex rdilogfile
15074@cindex ADP (Angel Debugger Protocol) logging
15075Set the filename for the ADP (Angel Debugger Protocol) packet log.
15076With an argument, sets the log file to the specified @var{file}. With
15077no argument, show the current log file name. The default log file is
15078@file{rdi.log}.
15079
15080@item rdilogenable @r{[}@var{arg}@r{]}
15081@kindex rdilogenable
15082Control logging of ADP packets. With an argument of 1 or @code{"yes"}
15083enables logging, with an argument 0 or @code{"no"} disables it. With
15084no arguments displays the current setting. When logging is enabled,
15085ADP packets exchanged between @value{GDBN} and the RDI target device
15086are logged to a file.
15087
15088@item set rdiromatzero
15089@kindex set rdiromatzero
15090@cindex ROM at zero address, RDI
15091Tell @value{GDBN} whether the target has ROM at address 0. If on,
15092vector catching is disabled, so that zero address can be used. If off
15093(the default), vector catching is enabled. For this command to take
15094effect, it needs to be invoked prior to the @code{target rdi} command.
15095
15096@item show rdiromatzero
15097@kindex show rdiromatzero
15098Show the current setting of ROM at zero address.
15099
15100@item set rdiheartbeat
15101@kindex set rdiheartbeat
15102@cindex RDI heartbeat
15103Enable or disable RDI heartbeat packets. It is not recommended to
15104turn on this option, since it confuses ARM and EPI JTAG interface, as
15105well as the Angel monitor.
15106
15107@item show rdiheartbeat
15108@kindex show rdiheartbeat
15109Show the setting of RDI heartbeat packets.
15110@end table
15111
e2f4edfd 15112
8e04817f 15113@node M32R/D
ba04e063 15114@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
15115
15116@table @code
8e04817f
AC
15117@kindex target m32r
15118@item target m32r @var{dev}
172c2a43 15119Renesas M32R/D ROM monitor.
8e04817f 15120
fb3e19c0
KI
15121@kindex target m32rsdi
15122@item target m32rsdi @var{dev}
15123Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
15124@end table
15125
15126The following @value{GDBN} commands are specific to the M32R monitor:
15127
15128@table @code
15129@item set download-path @var{path}
15130@kindex set download-path
15131@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 15132Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
15133
15134@item show download-path
15135@kindex show download-path
15136Show the default path for downloadable @sc{srec} files.
fb3e19c0 15137
721c2651
EZ
15138@item set board-address @var{addr}
15139@kindex set board-address
15140@cindex M32-EVA target board address
15141Set the IP address for the M32R-EVA target board.
15142
15143@item show board-address
15144@kindex show board-address
15145Show the current IP address of the target board.
15146
15147@item set server-address @var{addr}
15148@kindex set server-address
15149@cindex download server address (M32R)
15150Set the IP address for the download server, which is the @value{GDBN}'s
15151host machine.
15152
15153@item show server-address
15154@kindex show server-address
15155Display the IP address of the download server.
15156
15157@item upload @r{[}@var{file}@r{]}
15158@kindex upload@r{, M32R}
15159Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
15160upload capability. If no @var{file} argument is given, the current
15161executable file is uploaded.
15162
15163@item tload @r{[}@var{file}@r{]}
15164@kindex tload@r{, M32R}
15165Test the @code{upload} command.
8e04817f
AC
15166@end table
15167
ba04e063
EZ
15168The following commands are available for M32R/SDI:
15169
15170@table @code
15171@item sdireset
15172@kindex sdireset
15173@cindex reset SDI connection, M32R
15174This command resets the SDI connection.
15175
15176@item sdistatus
15177@kindex sdistatus
15178This command shows the SDI connection status.
15179
15180@item debug_chaos
15181@kindex debug_chaos
15182@cindex M32R/Chaos debugging
15183Instructs the remote that M32R/Chaos debugging is to be used.
15184
15185@item use_debug_dma
15186@kindex use_debug_dma
15187Instructs the remote to use the DEBUG_DMA method of accessing memory.
15188
15189@item use_mon_code
15190@kindex use_mon_code
15191Instructs the remote to use the MON_CODE method of accessing memory.
15192
15193@item use_ib_break
15194@kindex use_ib_break
15195Instructs the remote to set breakpoints by IB break.
15196
15197@item use_dbt_break
15198@kindex use_dbt_break
15199Instructs the remote to set breakpoints by DBT.
15200@end table
15201
8e04817f
AC
15202@node M68K
15203@subsection M68k
15204
7ce59000
DJ
15205The Motorola m68k configuration includes ColdFire support, and a
15206target command for the following ROM monitor.
8e04817f
AC
15207
15208@table @code
15209
8e04817f
AC
15210@kindex target dbug
15211@item target dbug @var{dev}
15212dBUG ROM monitor for Motorola ColdFire.
15213
8e04817f
AC
15214@end table
15215
8e04817f
AC
15216@node MIPS Embedded
15217@subsection MIPS Embedded
15218
15219@cindex MIPS boards
15220@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15221MIPS board attached to a serial line. This is available when
15222you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15223
8e04817f
AC
15224@need 1000
15225Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15226
8e04817f
AC
15227@table @code
15228@item target mips @var{port}
15229@kindex target mips @var{port}
15230To run a program on the board, start up @code{@value{GDBP}} with the
15231name of your program as the argument. To connect to the board, use the
15232command @samp{target mips @var{port}}, where @var{port} is the name of
15233the serial port connected to the board. If the program has not already
15234been downloaded to the board, you may use the @code{load} command to
15235download it. You can then use all the usual @value{GDBN} commands.
104c1213 15236
8e04817f
AC
15237For example, this sequence connects to the target board through a serial
15238port, and loads and runs a program called @var{prog} through the
15239debugger:
104c1213 15240
474c8240 15241@smallexample
8e04817f
AC
15242host$ @value{GDBP} @var{prog}
15243@value{GDBN} is free software and @dots{}
15244(@value{GDBP}) target mips /dev/ttyb
15245(@value{GDBP}) load @var{prog}
15246(@value{GDBP}) run
474c8240 15247@end smallexample
104c1213 15248
8e04817f
AC
15249@item target mips @var{hostname}:@var{portnumber}
15250On some @value{GDBN} host configurations, you can specify a TCP
15251connection (for instance, to a serial line managed by a terminal
15252concentrator) instead of a serial port, using the syntax
15253@samp{@var{hostname}:@var{portnumber}}.
104c1213 15254
8e04817f
AC
15255@item target pmon @var{port}
15256@kindex target pmon @var{port}
15257PMON ROM monitor.
104c1213 15258
8e04817f
AC
15259@item target ddb @var{port}
15260@kindex target ddb @var{port}
15261NEC's DDB variant of PMON for Vr4300.
104c1213 15262
8e04817f
AC
15263@item target lsi @var{port}
15264@kindex target lsi @var{port}
15265LSI variant of PMON.
104c1213 15266
8e04817f
AC
15267@kindex target r3900
15268@item target r3900 @var{dev}
15269Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15270
8e04817f
AC
15271@kindex target array
15272@item target array @var{dev}
15273Array Tech LSI33K RAID controller board.
104c1213 15274
8e04817f 15275@end table
104c1213 15276
104c1213 15277
8e04817f
AC
15278@noindent
15279@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15280
8e04817f 15281@table @code
8e04817f
AC
15282@item set mipsfpu double
15283@itemx set mipsfpu single
15284@itemx set mipsfpu none
a64548ea 15285@itemx set mipsfpu auto
8e04817f
AC
15286@itemx show mipsfpu
15287@kindex set mipsfpu
15288@kindex show mipsfpu
15289@cindex MIPS remote floating point
15290@cindex floating point, MIPS remote
15291If your target board does not support the MIPS floating point
15292coprocessor, you should use the command @samp{set mipsfpu none} (if you
15293need this, you may wish to put the command in your @value{GDBN} init
15294file). This tells @value{GDBN} how to find the return value of
15295functions which return floating point values. It also allows
15296@value{GDBN} to avoid saving the floating point registers when calling
15297functions on the board. If you are using a floating point coprocessor
15298with only single precision floating point support, as on the @sc{r4650}
15299processor, use the command @samp{set mipsfpu single}. The default
15300double precision floating point coprocessor may be selected using
15301@samp{set mipsfpu double}.
104c1213 15302
8e04817f
AC
15303In previous versions the only choices were double precision or no
15304floating point, so @samp{set mipsfpu on} will select double precision
15305and @samp{set mipsfpu off} will select no floating point.
104c1213 15306
8e04817f
AC
15307As usual, you can inquire about the @code{mipsfpu} variable with
15308@samp{show mipsfpu}.
104c1213 15309
8e04817f
AC
15310@item set timeout @var{seconds}
15311@itemx set retransmit-timeout @var{seconds}
15312@itemx show timeout
15313@itemx show retransmit-timeout
15314@cindex @code{timeout}, MIPS protocol
15315@cindex @code{retransmit-timeout}, MIPS protocol
15316@kindex set timeout
15317@kindex show timeout
15318@kindex set retransmit-timeout
15319@kindex show retransmit-timeout
15320You can control the timeout used while waiting for a packet, in the MIPS
15321remote protocol, with the @code{set timeout @var{seconds}} command. The
15322default is 5 seconds. Similarly, you can control the timeout used while
15323waiting for an acknowledgement of a packet with the @code{set
15324retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15325You can inspect both values with @code{show timeout} and @code{show
15326retransmit-timeout}. (These commands are @emph{only} available when
15327@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15328
8e04817f
AC
15329The timeout set by @code{set timeout} does not apply when @value{GDBN}
15330is waiting for your program to stop. In that case, @value{GDBN} waits
15331forever because it has no way of knowing how long the program is going
15332to run before stopping.
ba04e063
EZ
15333
15334@item set syn-garbage-limit @var{num}
15335@kindex set syn-garbage-limit@r{, MIPS remote}
15336@cindex synchronize with remote MIPS target
15337Limit the maximum number of characters @value{GDBN} should ignore when
15338it tries to synchronize with the remote target. The default is 10
15339characters. Setting the limit to -1 means there's no limit.
15340
15341@item show syn-garbage-limit
15342@kindex show syn-garbage-limit@r{, MIPS remote}
15343Show the current limit on the number of characters to ignore when
15344trying to synchronize with the remote system.
15345
15346@item set monitor-prompt @var{prompt}
15347@kindex set monitor-prompt@r{, MIPS remote}
15348@cindex remote monitor prompt
15349Tell @value{GDBN} to expect the specified @var{prompt} string from the
15350remote monitor. The default depends on the target:
15351@table @asis
15352@item pmon target
15353@samp{PMON}
15354@item ddb target
15355@samp{NEC010}
15356@item lsi target
15357@samp{PMON>}
15358@end table
15359
15360@item show monitor-prompt
15361@kindex show monitor-prompt@r{, MIPS remote}
15362Show the current strings @value{GDBN} expects as the prompt from the
15363remote monitor.
15364
15365@item set monitor-warnings
15366@kindex set monitor-warnings@r{, MIPS remote}
15367Enable or disable monitor warnings about hardware breakpoints. This
15368has effect only for the @code{lsi} target. When on, @value{GDBN} will
15369display warning messages whose codes are returned by the @code{lsi}
15370PMON monitor for breakpoint commands.
15371
15372@item show monitor-warnings
15373@kindex show monitor-warnings@r{, MIPS remote}
15374Show the current setting of printing monitor warnings.
15375
15376@item pmon @var{command}
15377@kindex pmon@r{, MIPS remote}
15378@cindex send PMON command
15379This command allows sending an arbitrary @var{command} string to the
15380monitor. The monitor must be in debug mode for this to work.
8e04817f 15381@end table
104c1213 15382
a37295f9
MM
15383@node OpenRISC 1000
15384@subsection OpenRISC 1000
15385@cindex OpenRISC 1000
15386
15387@cindex or1k boards
15388See OR1k Architecture document (@uref{www.opencores.org}) for more information
15389about platform and commands.
15390
15391@table @code
15392
15393@kindex target jtag
15394@item target jtag jtag://@var{host}:@var{port}
15395
15396Connects to remote JTAG server.
15397JTAG remote server can be either an or1ksim or JTAG server,
15398connected via parallel port to the board.
15399
15400Example: @code{target jtag jtag://localhost:9999}
15401
15402@kindex or1ksim
15403@item or1ksim @var{command}
15404If connected to @code{or1ksim} OpenRISC 1000 Architectural
15405Simulator, proprietary commands can be executed.
15406
15407@kindex info or1k spr
15408@item info or1k spr
15409Displays spr groups.
15410
15411@item info or1k spr @var{group}
15412@itemx info or1k spr @var{groupno}
15413Displays register names in selected group.
15414
15415@item info or1k spr @var{group} @var{register}
15416@itemx info or1k spr @var{register}
15417@itemx info or1k spr @var{groupno} @var{registerno}
15418@itemx info or1k spr @var{registerno}
15419Shows information about specified spr register.
15420
15421@kindex spr
15422@item spr @var{group} @var{register} @var{value}
15423@itemx spr @var{register @var{value}}
15424@itemx spr @var{groupno} @var{registerno @var{value}}
15425@itemx spr @var{registerno @var{value}}
15426Writes @var{value} to specified spr register.
15427@end table
15428
15429Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15430It is very similar to @value{GDBN} trace, except it does not interfere with normal
15431program execution and is thus much faster. Hardware breakpoints/watchpoint
15432triggers can be set using:
15433@table @code
15434@item $LEA/$LDATA
15435Load effective address/data
15436@item $SEA/$SDATA
15437Store effective address/data
15438@item $AEA/$ADATA
15439Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15440@item $FETCH
15441Fetch data
15442@end table
15443
15444When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15445@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15446
15447@code{htrace} commands:
15448@cindex OpenRISC 1000 htrace
15449@table @code
15450@kindex hwatch
15451@item hwatch @var{conditional}
d3e8051b 15452Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15453or Data. For example:
15454
15455@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15456
15457@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15458
4644b6e3 15459@kindex htrace
a37295f9
MM
15460@item htrace info
15461Display information about current HW trace configuration.
15462
a37295f9
MM
15463@item htrace trigger @var{conditional}
15464Set starting criteria for HW trace.
15465
a37295f9
MM
15466@item htrace qualifier @var{conditional}
15467Set acquisition qualifier for HW trace.
15468
a37295f9
MM
15469@item htrace stop @var{conditional}
15470Set HW trace stopping criteria.
15471
f153cc92 15472@item htrace record [@var{data}]*
a37295f9
MM
15473Selects the data to be recorded, when qualifier is met and HW trace was
15474triggered.
15475
a37295f9 15476@item htrace enable
a37295f9
MM
15477@itemx htrace disable
15478Enables/disables the HW trace.
15479
f153cc92 15480@item htrace rewind [@var{filename}]
a37295f9
MM
15481Clears currently recorded trace data.
15482
15483If filename is specified, new trace file is made and any newly collected data
15484will be written there.
15485
f153cc92 15486@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15487Prints trace buffer, using current record configuration.
15488
a37295f9
MM
15489@item htrace mode continuous
15490Set continuous trace mode.
15491
a37295f9
MM
15492@item htrace mode suspend
15493Set suspend trace mode.
15494
15495@end table
15496
4acd40f3
TJB
15497@node PowerPC Embedded
15498@subsection PowerPC Embedded
104c1213 15499
55eddb0f
DJ
15500@value{GDBN} provides the following PowerPC-specific commands:
15501
104c1213 15502@table @code
55eddb0f
DJ
15503@kindex set powerpc
15504@item set powerpc soft-float
15505@itemx show powerpc soft-float
15506Force @value{GDBN} to use (or not use) a software floating point calling
15507convention. By default, @value{GDBN} selects the calling convention based
15508on the selected architecture and the provided executable file.
15509
15510@item set powerpc vector-abi
15511@itemx show powerpc vector-abi
15512Force @value{GDBN} to use the specified calling convention for vector
15513arguments and return values. The valid options are @samp{auto};
15514@samp{generic}, to avoid vector registers even if they are present;
15515@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15516registers. By default, @value{GDBN} selects the calling convention
15517based on the selected architecture and the provided executable file.
15518
8e04817f
AC
15519@kindex target dink32
15520@item target dink32 @var{dev}
15521DINK32 ROM monitor.
104c1213 15522
8e04817f
AC
15523@kindex target ppcbug
15524@item target ppcbug @var{dev}
15525@kindex target ppcbug1
15526@item target ppcbug1 @var{dev}
15527PPCBUG ROM monitor for PowerPC.
104c1213 15528
8e04817f
AC
15529@kindex target sds
15530@item target sds @var{dev}
15531SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15532@end table
8e04817f 15533
c45da7e6 15534@cindex SDS protocol
d52fb0e9 15535The following commands specific to the SDS protocol are supported
55eddb0f 15536by @value{GDBN}:
c45da7e6
EZ
15537
15538@table @code
15539@item set sdstimeout @var{nsec}
15540@kindex set sdstimeout
15541Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15542default is 2 seconds.
15543
15544@item show sdstimeout
15545@kindex show sdstimeout
15546Show the current value of the SDS timeout.
15547
15548@item sds @var{command}
15549@kindex sds@r{, a command}
15550Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15551@end table
15552
c45da7e6 15553
8e04817f
AC
15554@node PA
15555@subsection HP PA Embedded
104c1213
JM
15556
15557@table @code
15558
8e04817f
AC
15559@kindex target op50n
15560@item target op50n @var{dev}
15561OP50N monitor, running on an OKI HPPA board.
15562
15563@kindex target w89k
15564@item target w89k @var{dev}
15565W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15566
15567@end table
15568
8e04817f
AC
15569@node Sparclet
15570@subsection Tsqware Sparclet
104c1213 15571
8e04817f
AC
15572@cindex Sparclet
15573
15574@value{GDBN} enables developers to debug tasks running on
15575Sparclet targets from a Unix host.
15576@value{GDBN} uses code that runs on
15577both the Unix host and on the Sparclet target. The program
15578@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15579
8e04817f
AC
15580@table @code
15581@item remotetimeout @var{args}
15582@kindex remotetimeout
15583@value{GDBN} supports the option @code{remotetimeout}.
15584This option is set by the user, and @var{args} represents the number of
15585seconds @value{GDBN} waits for responses.
104c1213
JM
15586@end table
15587
8e04817f
AC
15588@cindex compiling, on Sparclet
15589When compiling for debugging, include the options @samp{-g} to get debug
15590information and @samp{-Ttext} to relocate the program to where you wish to
15591load it on the target. You may also want to add the options @samp{-n} or
15592@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15593
474c8240 15594@smallexample
8e04817f 15595sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15596@end smallexample
104c1213 15597
8e04817f 15598You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15599
474c8240 15600@smallexample
8e04817f 15601sparclet-aout-objdump --headers --syms prog
474c8240 15602@end smallexample
104c1213 15603
8e04817f
AC
15604@cindex running, on Sparclet
15605Once you have set
15606your Unix execution search path to find @value{GDBN}, you are ready to
15607run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15608(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15609
8e04817f
AC
15610@value{GDBN} comes up showing the prompt:
15611
474c8240 15612@smallexample
8e04817f 15613(gdbslet)
474c8240 15614@end smallexample
104c1213
JM
15615
15616@menu
8e04817f
AC
15617* Sparclet File:: Setting the file to debug
15618* Sparclet Connection:: Connecting to Sparclet
15619* Sparclet Download:: Sparclet download
15620* Sparclet Execution:: Running and debugging
104c1213
JM
15621@end menu
15622
8e04817f 15623@node Sparclet File
79a6e687 15624@subsubsection Setting File to Debug
104c1213 15625
8e04817f 15626The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15627
474c8240 15628@smallexample
8e04817f 15629(gdbslet) file prog
474c8240 15630@end smallexample
104c1213 15631
8e04817f
AC
15632@need 1000
15633@value{GDBN} then attempts to read the symbol table of @file{prog}.
15634@value{GDBN} locates
15635the file by searching the directories listed in the command search
15636path.
12c27660 15637If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15638files will be searched as well.
15639@value{GDBN} locates
15640the source files by searching the directories listed in the directory search
79a6e687 15641path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15642If it fails
15643to find a file, it displays a message such as:
104c1213 15644
474c8240 15645@smallexample
8e04817f 15646prog: No such file or directory.
474c8240 15647@end smallexample
104c1213 15648
8e04817f
AC
15649When this happens, add the appropriate directories to the search paths with
15650the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15651@code{target} command again.
104c1213 15652
8e04817f
AC
15653@node Sparclet Connection
15654@subsubsection Connecting to Sparclet
104c1213 15655
8e04817f
AC
15656The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15657To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15658
474c8240 15659@smallexample
8e04817f
AC
15660(gdbslet) target sparclet /dev/ttya
15661Remote target sparclet connected to /dev/ttya
15662main () at ../prog.c:3
474c8240 15663@end smallexample
104c1213 15664
8e04817f
AC
15665@need 750
15666@value{GDBN} displays messages like these:
104c1213 15667
474c8240 15668@smallexample
8e04817f 15669Connected to ttya.
474c8240 15670@end smallexample
104c1213 15671
8e04817f 15672@node Sparclet Download
79a6e687 15673@subsubsection Sparclet Download
104c1213 15674
8e04817f
AC
15675@cindex download to Sparclet
15676Once connected to the Sparclet target,
15677you can use the @value{GDBN}
15678@code{load} command to download the file from the host to the target.
15679The file name and load offset should be given as arguments to the @code{load}
15680command.
15681Since the file format is aout, the program must be loaded to the starting
15682address. You can use @code{objdump} to find out what this value is. The load
15683offset is an offset which is added to the VMA (virtual memory address)
15684of each of the file's sections.
15685For instance, if the program
15686@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15687and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15688
474c8240 15689@smallexample
8e04817f
AC
15690(gdbslet) load prog 0x12010000
15691Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15692@end smallexample
104c1213 15693
8e04817f
AC
15694If the code is loaded at a different address then what the program was linked
15695to, you may need to use the @code{section} and @code{add-symbol-file} commands
15696to tell @value{GDBN} where to map the symbol table.
15697
15698@node Sparclet Execution
79a6e687 15699@subsubsection Running and Debugging
8e04817f
AC
15700
15701@cindex running and debugging Sparclet programs
15702You can now begin debugging the task using @value{GDBN}'s execution control
15703commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15704manual for the list of commands.
15705
474c8240 15706@smallexample
8e04817f
AC
15707(gdbslet) b main
15708Breakpoint 1 at 0x12010000: file prog.c, line 3.
15709(gdbslet) run
15710Starting program: prog
15711Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
157123 char *symarg = 0;
15713(gdbslet) step
157144 char *execarg = "hello!";
15715(gdbslet)
474c8240 15716@end smallexample
8e04817f
AC
15717
15718@node Sparclite
15719@subsection Fujitsu Sparclite
104c1213
JM
15720
15721@table @code
15722
8e04817f
AC
15723@kindex target sparclite
15724@item target sparclite @var{dev}
15725Fujitsu sparclite boards, used only for the purpose of loading.
15726You must use an additional command to debug the program.
15727For example: target remote @var{dev} using @value{GDBN} standard
15728remote protocol.
104c1213
JM
15729
15730@end table
15731
8e04817f
AC
15732@node Z8000
15733@subsection Zilog Z8000
104c1213 15734
8e04817f
AC
15735@cindex Z8000
15736@cindex simulator, Z8000
15737@cindex Zilog Z8000 simulator
104c1213 15738
8e04817f
AC
15739When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15740a Z8000 simulator.
15741
15742For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15743unsegmented variant of the Z8000 architecture) or the Z8001 (the
15744segmented variant). The simulator recognizes which architecture is
15745appropriate by inspecting the object code.
104c1213 15746
8e04817f
AC
15747@table @code
15748@item target sim @var{args}
15749@kindex sim
15750@kindex target sim@r{, with Z8000}
15751Debug programs on a simulated CPU. If the simulator supports setup
15752options, specify them via @var{args}.
104c1213
JM
15753@end table
15754
8e04817f
AC
15755@noindent
15756After specifying this target, you can debug programs for the simulated
15757CPU in the same style as programs for your host computer; use the
15758@code{file} command to load a new program image, the @code{run} command
15759to run your program, and so on.
15760
15761As well as making available all the usual machine registers
15762(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15763additional items of information as specially named registers:
104c1213
JM
15764
15765@table @code
15766
8e04817f
AC
15767@item cycles
15768Counts clock-ticks in the simulator.
104c1213 15769
8e04817f
AC
15770@item insts
15771Counts instructions run in the simulator.
104c1213 15772
8e04817f
AC
15773@item time
15774Execution time in 60ths of a second.
104c1213 15775
8e04817f 15776@end table
104c1213 15777
8e04817f
AC
15778You can refer to these values in @value{GDBN} expressions with the usual
15779conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15780conditional breakpoint that suspends only after at least 5000
15781simulated clock ticks.
104c1213 15782
a64548ea
EZ
15783@node AVR
15784@subsection Atmel AVR
15785@cindex AVR
15786
15787When configured for debugging the Atmel AVR, @value{GDBN} supports the
15788following AVR-specific commands:
15789
15790@table @code
15791@item info io_registers
15792@kindex info io_registers@r{, AVR}
15793@cindex I/O registers (Atmel AVR)
15794This command displays information about the AVR I/O registers. For
15795each register, @value{GDBN} prints its number and value.
15796@end table
15797
15798@node CRIS
15799@subsection CRIS
15800@cindex CRIS
15801
15802When configured for debugging CRIS, @value{GDBN} provides the
15803following CRIS-specific commands:
15804
15805@table @code
15806@item set cris-version @var{ver}
15807@cindex CRIS version
e22e55c9
OF
15808Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15809The CRIS version affects register names and sizes. This command is useful in
15810case autodetection of the CRIS version fails.
a64548ea
EZ
15811
15812@item show cris-version
15813Show the current CRIS version.
15814
15815@item set cris-dwarf2-cfi
15816@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15817Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15818Change to @samp{off} when using @code{gcc-cris} whose version is below
15819@code{R59}.
a64548ea
EZ
15820
15821@item show cris-dwarf2-cfi
15822Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15823
15824@item set cris-mode @var{mode}
15825@cindex CRIS mode
15826Set the current CRIS mode to @var{mode}. It should only be changed when
15827debugging in guru mode, in which case it should be set to
15828@samp{guru} (the default is @samp{normal}).
15829
15830@item show cris-mode
15831Show the current CRIS mode.
a64548ea
EZ
15832@end table
15833
15834@node Super-H
15835@subsection Renesas Super-H
15836@cindex Super-H
15837
15838For the Renesas Super-H processor, @value{GDBN} provides these
15839commands:
15840
15841@table @code
15842@item regs
15843@kindex regs@r{, Super-H}
15844Show the values of all Super-H registers.
c055b101
CV
15845
15846@item set sh calling-convention @var{convention}
15847@kindex set sh calling-convention
15848Set the calling-convention used when calling functions from @value{GDBN}.
15849Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
15850With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
15851convention. If the DWARF-2 information of the called function specifies
15852that the function follows the Renesas calling convention, the function
15853is called using the Renesas calling convention. If the calling convention
15854is set to @samp{renesas}, the Renesas calling convention is always used,
15855regardless of the DWARF-2 information. This can be used to override the
15856default of @samp{gcc} if debug information is missing, or the compiler
15857does not emit the DWARF-2 calling convention entry for a function.
15858
15859@item show sh calling-convention
15860@kindex show sh calling-convention
15861Show the current calling convention setting.
15862
a64548ea
EZ
15863@end table
15864
15865
8e04817f
AC
15866@node Architectures
15867@section Architectures
104c1213 15868
8e04817f
AC
15869This section describes characteristics of architectures that affect
15870all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15871
8e04817f 15872@menu
9c16f35a 15873* i386::
8e04817f
AC
15874* A29K::
15875* Alpha::
15876* MIPS::
a64548ea 15877* HPPA:: HP PA architecture
23d964e7 15878* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15879* PowerPC::
8e04817f 15880@end menu
104c1213 15881
9c16f35a 15882@node i386
db2e3e2e 15883@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15884
15885@table @code
15886@item set struct-convention @var{mode}
15887@kindex set struct-convention
15888@cindex struct return convention
15889@cindex struct/union returned in registers
15890Set the convention used by the inferior to return @code{struct}s and
15891@code{union}s from functions to @var{mode}. Possible values of
15892@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15893default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15894are returned on the stack, while @code{"reg"} means that a
15895@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15896be returned in a register.
15897
15898@item show struct-convention
15899@kindex show struct-convention
15900Show the current setting of the convention to return @code{struct}s
15901from functions.
15902@end table
15903
8e04817f
AC
15904@node A29K
15905@subsection A29K
104c1213
JM
15906
15907@table @code
104c1213 15908
8e04817f
AC
15909@kindex set rstack_high_address
15910@cindex AMD 29K register stack
15911@cindex register stack, AMD29K
15912@item set rstack_high_address @var{address}
15913On AMD 29000 family processors, registers are saved in a separate
15914@dfn{register stack}. There is no way for @value{GDBN} to determine the
15915extent of this stack. Normally, @value{GDBN} just assumes that the
15916stack is ``large enough''. This may result in @value{GDBN} referencing
15917memory locations that do not exist. If necessary, you can get around
15918this problem by specifying the ending address of the register stack with
15919the @code{set rstack_high_address} command. The argument should be an
15920address, which you probably want to precede with @samp{0x} to specify in
15921hexadecimal.
104c1213 15922
8e04817f
AC
15923@kindex show rstack_high_address
15924@item show rstack_high_address
15925Display the current limit of the register stack, on AMD 29000 family
15926processors.
104c1213 15927
8e04817f 15928@end table
104c1213 15929
8e04817f
AC
15930@node Alpha
15931@subsection Alpha
104c1213 15932
8e04817f 15933See the following section.
104c1213 15934
8e04817f
AC
15935@node MIPS
15936@subsection MIPS
104c1213 15937
8e04817f
AC
15938@cindex stack on Alpha
15939@cindex stack on MIPS
15940@cindex Alpha stack
15941@cindex MIPS stack
15942Alpha- and MIPS-based computers use an unusual stack frame, which
15943sometimes requires @value{GDBN} to search backward in the object code to
15944find the beginning of a function.
104c1213 15945
8e04817f
AC
15946@cindex response time, MIPS debugging
15947To improve response time (especially for embedded applications, where
15948@value{GDBN} may be restricted to a slow serial line for this search)
15949you may want to limit the size of this search, using one of these
15950commands:
104c1213 15951
8e04817f
AC
15952@table @code
15953@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15954@item set heuristic-fence-post @var{limit}
15955Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15956search for the beginning of a function. A value of @var{0} (the
15957default) means there is no limit. However, except for @var{0}, the
15958larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15959and therefore the longer it takes to run. You should only need to use
15960this command when debugging a stripped executable.
104c1213 15961
8e04817f
AC
15962@item show heuristic-fence-post
15963Display the current limit.
15964@end table
104c1213
JM
15965
15966@noindent
8e04817f
AC
15967These commands are available @emph{only} when @value{GDBN} is configured
15968for debugging programs on Alpha or MIPS processors.
104c1213 15969
a64548ea
EZ
15970Several MIPS-specific commands are available when debugging MIPS
15971programs:
15972
15973@table @code
a64548ea
EZ
15974@item set mips abi @var{arg}
15975@kindex set mips abi
15976@cindex set ABI for MIPS
15977Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15978values of @var{arg} are:
15979
15980@table @samp
15981@item auto
15982The default ABI associated with the current binary (this is the
15983default).
15984@item o32
15985@item o64
15986@item n32
15987@item n64
15988@item eabi32
15989@item eabi64
15990@item auto
15991@end table
15992
15993@item show mips abi
15994@kindex show mips abi
15995Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15996
15997@item set mipsfpu
15998@itemx show mipsfpu
15999@xref{MIPS Embedded, set mipsfpu}.
16000
16001@item set mips mask-address @var{arg}
16002@kindex set mips mask-address
16003@cindex MIPS addresses, masking
16004This command determines whether the most-significant 32 bits of 64-bit
16005MIPS addresses are masked off. The argument @var{arg} can be
16006@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
16007setting, which lets @value{GDBN} determine the correct value.
16008
16009@item show mips mask-address
16010@kindex show mips mask-address
16011Show whether the upper 32 bits of MIPS addresses are masked off or
16012not.
16013
16014@item set remote-mips64-transfers-32bit-regs
16015@kindex set remote-mips64-transfers-32bit-regs
16016This command controls compatibility with 64-bit MIPS targets that
16017transfer data in 32-bit quantities. If you have an old MIPS 64 target
16018that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
16019and 64 bits for other registers, set this option to @samp{on}.
16020
16021@item show remote-mips64-transfers-32bit-regs
16022@kindex show remote-mips64-transfers-32bit-regs
16023Show the current setting of compatibility with older MIPS 64 targets.
16024
16025@item set debug mips
16026@kindex set debug mips
16027This command turns on and off debugging messages for the MIPS-specific
16028target code in @value{GDBN}.
16029
16030@item show debug mips
16031@kindex show debug mips
16032Show the current setting of MIPS debugging messages.
16033@end table
16034
16035
16036@node HPPA
16037@subsection HPPA
16038@cindex HPPA support
16039
d3e8051b 16040When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
16041following special commands:
16042
16043@table @code
16044@item set debug hppa
16045@kindex set debug hppa
db2e3e2e 16046This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
16047messages are to be displayed.
16048
16049@item show debug hppa
16050Show whether HPPA debugging messages are displayed.
16051
16052@item maint print unwind @var{address}
16053@kindex maint print unwind@r{, HPPA}
16054This command displays the contents of the unwind table entry at the
16055given @var{address}.
16056
16057@end table
16058
104c1213 16059
23d964e7
UW
16060@node SPU
16061@subsection Cell Broadband Engine SPU architecture
16062@cindex Cell Broadband Engine
16063@cindex SPU
16064
16065When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
16066it provides the following special commands:
16067
16068@table @code
16069@item info spu event
16070@kindex info spu
16071Display SPU event facility status. Shows current event mask
16072and pending event status.
16073
16074@item info spu signal
16075Display SPU signal notification facility status. Shows pending
16076signal-control word and signal notification mode of both signal
16077notification channels.
16078
16079@item info spu mailbox
16080Display SPU mailbox facility status. Shows all pending entries,
16081in order of processing, in each of the SPU Write Outbound,
16082SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
16083
16084@item info spu dma
16085Display MFC DMA status. Shows all pending commands in the MFC
16086DMA queue. For each entry, opcode, tag, class IDs, effective
16087and local store addresses and transfer size are shown.
16088
16089@item info spu proxydma
16090Display MFC Proxy-DMA status. Shows all pending commands in the MFC
16091Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
16092and local store addresses and transfer size are shown.
16093
16094@end table
16095
4acd40f3
TJB
16096@node PowerPC
16097@subsection PowerPC
16098@cindex PowerPC architecture
16099
16100When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
16101pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
16102numbers stored in the floating point registers. These values must be stored
16103in two consecutive registers, always starting at an even register like
16104@code{f0} or @code{f2}.
16105
16106The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
16107by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
16108@code{f2} and @code{f3} for @code{$dl1} and so on.
16109
23d964e7 16110
8e04817f
AC
16111@node Controlling GDB
16112@chapter Controlling @value{GDBN}
16113
16114You can alter the way @value{GDBN} interacts with you by using the
16115@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 16116data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
16117described here.
16118
16119@menu
16120* Prompt:: Prompt
16121* Editing:: Command editing
d620b259 16122* Command History:: Command history
8e04817f
AC
16123* Screen Size:: Screen size
16124* Numbers:: Numbers
1e698235 16125* ABI:: Configuring the current ABI
8e04817f
AC
16126* Messages/Warnings:: Optional warnings and messages
16127* Debugging Output:: Optional messages about internal happenings
16128@end menu
16129
16130@node Prompt
16131@section Prompt
104c1213 16132
8e04817f 16133@cindex prompt
104c1213 16134
8e04817f
AC
16135@value{GDBN} indicates its readiness to read a command by printing a string
16136called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
16137can change the prompt string with the @code{set prompt} command. For
16138instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
16139the prompt in one of the @value{GDBN} sessions so that you can always tell
16140which one you are talking to.
104c1213 16141
8e04817f
AC
16142@emph{Note:} @code{set prompt} does not add a space for you after the
16143prompt you set. This allows you to set a prompt which ends in a space
16144or a prompt that does not.
104c1213 16145
8e04817f
AC
16146@table @code
16147@kindex set prompt
16148@item set prompt @var{newprompt}
16149Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 16150
8e04817f
AC
16151@kindex show prompt
16152@item show prompt
16153Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
16154@end table
16155
8e04817f 16156@node Editing
79a6e687 16157@section Command Editing
8e04817f
AC
16158@cindex readline
16159@cindex command line editing
104c1213 16160
703663ab 16161@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
16162@sc{gnu} library provides consistent behavior for programs which provide a
16163command line interface to the user. Advantages are @sc{gnu} Emacs-style
16164or @dfn{vi}-style inline editing of commands, @code{csh}-like history
16165substitution, and a storage and recall of command history across
16166debugging sessions.
104c1213 16167
8e04817f
AC
16168You may control the behavior of command line editing in @value{GDBN} with the
16169command @code{set}.
104c1213 16170
8e04817f
AC
16171@table @code
16172@kindex set editing
16173@cindex editing
16174@item set editing
16175@itemx set editing on
16176Enable command line editing (enabled by default).
104c1213 16177
8e04817f
AC
16178@item set editing off
16179Disable command line editing.
104c1213 16180
8e04817f
AC
16181@kindex show editing
16182@item show editing
16183Show whether command line editing is enabled.
104c1213
JM
16184@end table
16185
703663ab
EZ
16186@xref{Command Line Editing}, for more details about the Readline
16187interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
16188encouraged to read that chapter.
16189
d620b259 16190@node Command History
79a6e687 16191@section Command History
703663ab 16192@cindex command history
8e04817f
AC
16193
16194@value{GDBN} can keep track of the commands you type during your
16195debugging sessions, so that you can be certain of precisely what
16196happened. Use these commands to manage the @value{GDBN} command
16197history facility.
104c1213 16198
703663ab
EZ
16199@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
16200package, to provide the history facility. @xref{Using History
16201Interactively}, for the detailed description of the History library.
16202
d620b259 16203To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
16204the state which is seen by users, prefix it with @samp{server }
16205(@pxref{Server Prefix}). This
d620b259
NR
16206means that this command will not affect the command history, nor will it
16207affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16208pressed on a line by itself.
16209
16210@cindex @code{server}, command prefix
16211The server prefix does not affect the recording of values into the value
16212history; to print a value without recording it into the value history,
16213use the @code{output} command instead of the @code{print} command.
16214
703663ab
EZ
16215Here is the description of @value{GDBN} commands related to command
16216history.
16217
104c1213 16218@table @code
8e04817f
AC
16219@cindex history substitution
16220@cindex history file
16221@kindex set history filename
4644b6e3 16222@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16223@item set history filename @var{fname}
16224Set the name of the @value{GDBN} command history file to @var{fname}.
16225This is the file where @value{GDBN} reads an initial command history
16226list, and where it writes the command history from this session when it
16227exits. You can access this list through history expansion or through
16228the history command editing characters listed below. This file defaults
16229to the value of the environment variable @code{GDBHISTFILE}, or to
16230@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16231is not set.
104c1213 16232
9c16f35a
EZ
16233@cindex save command history
16234@kindex set history save
8e04817f
AC
16235@item set history save
16236@itemx set history save on
16237Record command history in a file, whose name may be specified with the
16238@code{set history filename} command. By default, this option is disabled.
104c1213 16239
8e04817f
AC
16240@item set history save off
16241Stop recording command history in a file.
104c1213 16242
8e04817f 16243@cindex history size
9c16f35a 16244@kindex set history size
6fc08d32 16245@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16246@item set history size @var{size}
16247Set the number of commands which @value{GDBN} keeps in its history list.
16248This defaults to the value of the environment variable
16249@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16250@end table
16251
8e04817f 16252History expansion assigns special meaning to the character @kbd{!}.
703663ab 16253@xref{Event Designators}, for more details.
8e04817f 16254
703663ab 16255@cindex history expansion, turn on/off
8e04817f
AC
16256Since @kbd{!} is also the logical not operator in C, history expansion
16257is off by default. If you decide to enable history expansion with the
16258@code{set history expansion on} command, you may sometimes need to
16259follow @kbd{!} (when it is used as logical not, in an expression) with
16260a space or a tab to prevent it from being expanded. The readline
16261history facilities do not attempt substitution on the strings
16262@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16263
16264The commands to control history expansion are:
104c1213
JM
16265
16266@table @code
8e04817f
AC
16267@item set history expansion on
16268@itemx set history expansion
703663ab 16269@kindex set history expansion
8e04817f 16270Enable history expansion. History expansion is off by default.
104c1213 16271
8e04817f
AC
16272@item set history expansion off
16273Disable history expansion.
104c1213 16274
8e04817f
AC
16275@c @group
16276@kindex show history
16277@item show history
16278@itemx show history filename
16279@itemx show history save
16280@itemx show history size
16281@itemx show history expansion
16282These commands display the state of the @value{GDBN} history parameters.
16283@code{show history} by itself displays all four states.
16284@c @end group
16285@end table
16286
16287@table @code
9c16f35a
EZ
16288@kindex show commands
16289@cindex show last commands
16290@cindex display command history
8e04817f
AC
16291@item show commands
16292Display the last ten commands in the command history.
104c1213 16293
8e04817f
AC
16294@item show commands @var{n}
16295Print ten commands centered on command number @var{n}.
16296
16297@item show commands +
16298Print ten commands just after the commands last printed.
104c1213
JM
16299@end table
16300
8e04817f 16301@node Screen Size
79a6e687 16302@section Screen Size
8e04817f
AC
16303@cindex size of screen
16304@cindex pauses in output
104c1213 16305
8e04817f
AC
16306Certain commands to @value{GDBN} may produce large amounts of
16307information output to the screen. To help you read all of it,
16308@value{GDBN} pauses and asks you for input at the end of each page of
16309output. Type @key{RET} when you want to continue the output, or @kbd{q}
16310to discard the remaining output. Also, the screen width setting
16311determines when to wrap lines of output. Depending on what is being
16312printed, @value{GDBN} tries to break the line at a readable place,
16313rather than simply letting it overflow onto the following line.
16314
16315Normally @value{GDBN} knows the size of the screen from the terminal
16316driver software. For example, on Unix @value{GDBN} uses the termcap data base
16317together with the value of the @code{TERM} environment variable and the
16318@code{stty rows} and @code{stty cols} settings. If this is not correct,
16319you can override it with the @code{set height} and @code{set
16320width} commands:
16321
16322@table @code
16323@kindex set height
16324@kindex set width
16325@kindex show width
16326@kindex show height
16327@item set height @var{lpp}
16328@itemx show height
16329@itemx set width @var{cpl}
16330@itemx show width
16331These @code{set} commands specify a screen height of @var{lpp} lines and
16332a screen width of @var{cpl} characters. The associated @code{show}
16333commands display the current settings.
104c1213 16334
8e04817f
AC
16335If you specify a height of zero lines, @value{GDBN} does not pause during
16336output no matter how long the output is. This is useful if output is to a
16337file or to an editor buffer.
104c1213 16338
8e04817f
AC
16339Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16340from wrapping its output.
9c16f35a
EZ
16341
16342@item set pagination on
16343@itemx set pagination off
16344@kindex set pagination
16345Turn the output pagination on or off; the default is on. Turning
16346pagination off is the alternative to @code{set height 0}.
16347
16348@item show pagination
16349@kindex show pagination
16350Show the current pagination mode.
104c1213
JM
16351@end table
16352
8e04817f
AC
16353@node Numbers
16354@section Numbers
16355@cindex number representation
16356@cindex entering numbers
104c1213 16357
8e04817f
AC
16358You can always enter numbers in octal, decimal, or hexadecimal in
16359@value{GDBN} by the usual conventions: octal numbers begin with
16360@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16361begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16362@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1636310; likewise, the default display for numbers---when no particular
16364format is specified---is base 10. You can change the default base for
16365both input and output with the commands described below.
104c1213 16366
8e04817f
AC
16367@table @code
16368@kindex set input-radix
16369@item set input-radix @var{base}
16370Set the default base for numeric input. Supported choices
16371for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16372specified either unambiguously or using the current input radix; for
8e04817f 16373example, any of
104c1213 16374
8e04817f 16375@smallexample
9c16f35a
EZ
16376set input-radix 012
16377set input-radix 10.
16378set input-radix 0xa
8e04817f 16379@end smallexample
104c1213 16380
8e04817f 16381@noindent
9c16f35a 16382sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16383leaves the input radix unchanged, no matter what it was, since
16384@samp{10}, being without any leading or trailing signs of its base, is
16385interpreted in the current radix. Thus, if the current radix is 16,
16386@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16387change the radix.
104c1213 16388
8e04817f
AC
16389@kindex set output-radix
16390@item set output-radix @var{base}
16391Set the default base for numeric display. Supported choices
16392for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16393specified either unambiguously or using the current input radix.
104c1213 16394
8e04817f
AC
16395@kindex show input-radix
16396@item show input-radix
16397Display the current default base for numeric input.
104c1213 16398
8e04817f
AC
16399@kindex show output-radix
16400@item show output-radix
16401Display the current default base for numeric display.
9c16f35a
EZ
16402
16403@item set radix @r{[}@var{base}@r{]}
16404@itemx show radix
16405@kindex set radix
16406@kindex show radix
16407These commands set and show the default base for both input and output
16408of numbers. @code{set radix} sets the radix of input and output to
16409the same base; without an argument, it resets the radix back to its
16410default value of 10.
16411
8e04817f 16412@end table
104c1213 16413
1e698235 16414@node ABI
79a6e687 16415@section Configuring the Current ABI
1e698235
DJ
16416
16417@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16418application automatically. However, sometimes you need to override its
16419conclusions. Use these commands to manage @value{GDBN}'s view of the
16420current ABI.
16421
98b45e30
DJ
16422@cindex OS ABI
16423@kindex set osabi
b4e9345d 16424@kindex show osabi
98b45e30
DJ
16425
16426One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16427system targets, either via remote debugging or native emulation.
98b45e30
DJ
16428@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16429but you can override its conclusion using the @code{set osabi} command.
16430One example where this is useful is in debugging of binaries which use
16431an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16432not have the same identifying marks that the standard C library for your
16433platform provides.
16434
16435@table @code
16436@item show osabi
16437Show the OS ABI currently in use.
16438
16439@item set osabi
16440With no argument, show the list of registered available OS ABI's.
16441
16442@item set osabi @var{abi}
16443Set the current OS ABI to @var{abi}.
16444@end table
16445
1e698235 16446@cindex float promotion
1e698235
DJ
16447
16448Generally, the way that an argument of type @code{float} is passed to a
16449function depends on whether the function is prototyped. For a prototyped
16450(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16451according to the architecture's convention for @code{float}. For unprototyped
16452(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16453@code{double} and then passed.
16454
16455Unfortunately, some forms of debug information do not reliably indicate whether
16456a function is prototyped. If @value{GDBN} calls a function that is not marked
16457as prototyped, it consults @kbd{set coerce-float-to-double}.
16458
16459@table @code
a8f24a35 16460@kindex set coerce-float-to-double
1e698235
DJ
16461@item set coerce-float-to-double
16462@itemx set coerce-float-to-double on
16463Arguments of type @code{float} will be promoted to @code{double} when passed
16464to an unprototyped function. This is the default setting.
16465
16466@item set coerce-float-to-double off
16467Arguments of type @code{float} will be passed directly to unprototyped
16468functions.
9c16f35a
EZ
16469
16470@kindex show coerce-float-to-double
16471@item show coerce-float-to-double
16472Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16473@end table
16474
f1212245
DJ
16475@kindex set cp-abi
16476@kindex show cp-abi
16477@value{GDBN} needs to know the ABI used for your program's C@t{++}
16478objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16479used to build your application. @value{GDBN} only fully supports
16480programs with a single C@t{++} ABI; if your program contains code using
16481multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16482program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16483Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16484before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16485``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16486use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16487``auto''.
16488
16489@table @code
16490@item show cp-abi
16491Show the C@t{++} ABI currently in use.
16492
16493@item set cp-abi
16494With no argument, show the list of supported C@t{++} ABI's.
16495
16496@item set cp-abi @var{abi}
16497@itemx set cp-abi auto
16498Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16499@end table
16500
8e04817f 16501@node Messages/Warnings
79a6e687 16502@section Optional Warnings and Messages
104c1213 16503
9c16f35a
EZ
16504@cindex verbose operation
16505@cindex optional warnings
8e04817f
AC
16506By default, @value{GDBN} is silent about its inner workings. If you are
16507running on a slow machine, you may want to use the @code{set verbose}
16508command. This makes @value{GDBN} tell you when it does a lengthy
16509internal operation, so you will not think it has crashed.
104c1213 16510
8e04817f
AC
16511Currently, the messages controlled by @code{set verbose} are those
16512which announce that the symbol table for a source file is being read;
79a6e687 16513see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16514
8e04817f
AC
16515@table @code
16516@kindex set verbose
16517@item set verbose on
16518Enables @value{GDBN} output of certain informational messages.
104c1213 16519
8e04817f
AC
16520@item set verbose off
16521Disables @value{GDBN} output of certain informational messages.
104c1213 16522
8e04817f
AC
16523@kindex show verbose
16524@item show verbose
16525Displays whether @code{set verbose} is on or off.
16526@end table
104c1213 16527
8e04817f
AC
16528By default, if @value{GDBN} encounters bugs in the symbol table of an
16529object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16530find this information useful (@pxref{Symbol Errors, ,Errors Reading
16531Symbol Files}).
104c1213 16532
8e04817f 16533@table @code
104c1213 16534
8e04817f
AC
16535@kindex set complaints
16536@item set complaints @var{limit}
16537Permits @value{GDBN} to output @var{limit} complaints about each type of
16538unusual symbols before becoming silent about the problem. Set
16539@var{limit} to zero to suppress all complaints; set it to a large number
16540to prevent complaints from being suppressed.
104c1213 16541
8e04817f
AC
16542@kindex show complaints
16543@item show complaints
16544Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16545
8e04817f 16546@end table
104c1213 16547
8e04817f
AC
16548By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16549lot of stupid questions to confirm certain commands. For example, if
16550you try to run a program which is already running:
104c1213 16551
474c8240 16552@smallexample
8e04817f
AC
16553(@value{GDBP}) run
16554The program being debugged has been started already.
16555Start it from the beginning? (y or n)
474c8240 16556@end smallexample
104c1213 16557
8e04817f
AC
16558If you are willing to unflinchingly face the consequences of your own
16559commands, you can disable this ``feature'':
104c1213 16560
8e04817f 16561@table @code
104c1213 16562
8e04817f
AC
16563@kindex set confirm
16564@cindex flinching
16565@cindex confirmation
16566@cindex stupid questions
16567@item set confirm off
16568Disables confirmation requests.
104c1213 16569
8e04817f
AC
16570@item set confirm on
16571Enables confirmation requests (the default).
104c1213 16572
8e04817f
AC
16573@kindex show confirm
16574@item show confirm
16575Displays state of confirmation requests.
16576
16577@end table
104c1213 16578
16026cd7
AS
16579@cindex command tracing
16580If you need to debug user-defined commands or sourced files you may find it
16581useful to enable @dfn{command tracing}. In this mode each command will be
16582printed as it is executed, prefixed with one or more @samp{+} symbols, the
16583quantity denoting the call depth of each command.
16584
16585@table @code
16586@kindex set trace-commands
16587@cindex command scripts, debugging
16588@item set trace-commands on
16589Enable command tracing.
16590@item set trace-commands off
16591Disable command tracing.
16592@item show trace-commands
16593Display the current state of command tracing.
16594@end table
16595
8e04817f 16596@node Debugging Output
79a6e687 16597@section Optional Messages about Internal Happenings
4644b6e3
EZ
16598@cindex optional debugging messages
16599
da316a69
EZ
16600@value{GDBN} has commands that enable optional debugging messages from
16601various @value{GDBN} subsystems; normally these commands are of
16602interest to @value{GDBN} maintainers, or when reporting a bug. This
16603section documents those commands.
16604
104c1213 16605@table @code
a8f24a35
EZ
16606@kindex set exec-done-display
16607@item set exec-done-display
16608Turns on or off the notification of asynchronous commands'
16609completion. When on, @value{GDBN} will print a message when an
16610asynchronous command finishes its execution. The default is off.
16611@kindex show exec-done-display
16612@item show exec-done-display
16613Displays the current setting of asynchronous command completion
16614notification.
4644b6e3
EZ
16615@kindex set debug
16616@cindex gdbarch debugging info
a8f24a35 16617@cindex architecture debugging info
8e04817f 16618@item set debug arch
a8f24a35 16619Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16620@kindex show debug
8e04817f
AC
16621@item show debug arch
16622Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16623@item set debug aix-thread
16624@cindex AIX threads
16625Display debugging messages about inner workings of the AIX thread
16626module.
16627@item show debug aix-thread
16628Show the current state of AIX thread debugging info display.
237fc4c9
PA
16629@item set debug displaced
16630@cindex displaced stepping debugging info
16631Turns on or off display of @value{GDBN} debugging info for the
16632displaced stepping support. The default is off.
16633@item show debug displaced
16634Displays the current state of displaying @value{GDBN} debugging info
16635related to displaced stepping.
8e04817f 16636@item set debug event
4644b6e3 16637@cindex event debugging info
a8f24a35 16638Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16639default is off.
8e04817f
AC
16640@item show debug event
16641Displays the current state of displaying @value{GDBN} event debugging
16642info.
8e04817f 16643@item set debug expression
4644b6e3 16644@cindex expression debugging info
721c2651
EZ
16645Turns on or off display of debugging info about @value{GDBN}
16646expression parsing. The default is off.
8e04817f 16647@item show debug expression
721c2651
EZ
16648Displays the current state of displaying debugging info about
16649@value{GDBN} expression parsing.
7453dc06 16650@item set debug frame
4644b6e3 16651@cindex frame debugging info
7453dc06
AC
16652Turns on or off display of @value{GDBN} frame debugging info. The
16653default is off.
7453dc06
AC
16654@item show debug frame
16655Displays the current state of displaying @value{GDBN} frame debugging
16656info.
30e91e0b
RC
16657@item set debug infrun
16658@cindex inferior debugging info
16659Turns on or off display of @value{GDBN} debugging info for running the inferior.
16660The default is off. @file{infrun.c} contains GDB's runtime state machine used
16661for implementing operations such as single-stepping the inferior.
16662@item show debug infrun
16663Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16664@item set debug lin-lwp
16665@cindex @sc{gnu}/Linux LWP debug messages
16666@cindex Linux lightweight processes
721c2651 16667Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16668@item show debug lin-lwp
16669Show the current state of Linux LWP debugging messages.
b84876c2
PA
16670@item set debug lin-lwp-async
16671@cindex @sc{gnu}/Linux LWP async debug messages
16672@cindex Linux lightweight processes
16673Turns on or off debugging messages from the Linux LWP async debug support.
16674@item show debug lin-lwp-async
16675Show the current state of Linux LWP async debugging messages.
2b4855ab 16676@item set debug observer
4644b6e3 16677@cindex observer debugging info
2b4855ab
AC
16678Turns on or off display of @value{GDBN} observer debugging. This
16679includes info such as the notification of observable events.
2b4855ab
AC
16680@item show debug observer
16681Displays the current state of observer debugging.
8e04817f 16682@item set debug overload
4644b6e3 16683@cindex C@t{++} overload debugging info
8e04817f 16684Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16685info. This includes info such as ranking of functions, etc. The default
8e04817f 16686is off.
8e04817f
AC
16687@item show debug overload
16688Displays the current state of displaying @value{GDBN} C@t{++} overload
16689debugging info.
8e04817f
AC
16690@cindex packets, reporting on stdout
16691@cindex serial connections, debugging
605a56cb
DJ
16692@cindex debug remote protocol
16693@cindex remote protocol debugging
16694@cindex display remote packets
8e04817f
AC
16695@item set debug remote
16696Turns on or off display of reports on all packets sent back and forth across
16697the serial line to the remote machine. The info is printed on the
16698@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16699@item show debug remote
16700Displays the state of display of remote packets.
8e04817f
AC
16701@item set debug serial
16702Turns on or off display of @value{GDBN} serial debugging info. The
16703default is off.
8e04817f
AC
16704@item show debug serial
16705Displays the current state of displaying @value{GDBN} serial debugging
16706info.
c45da7e6
EZ
16707@item set debug solib-frv
16708@cindex FR-V shared-library debugging
16709Turns on or off debugging messages for FR-V shared-library code.
16710@item show debug solib-frv
16711Display the current state of FR-V shared-library code debugging
16712messages.
8e04817f 16713@item set debug target
4644b6e3 16714@cindex target debugging info
8e04817f
AC
16715Turns on or off display of @value{GDBN} target debugging info. This info
16716includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16717default is 0. Set it to 1 to track events, and to 2 to also track the
16718value of large memory transfers. Changes to this flag do not take effect
16719until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16720@item show debug target
16721Displays the current state of displaying @value{GDBN} target debugging
16722info.
75feb17d
DJ
16723@item set debug timestamp
16724@cindex timestampping debugging info
16725Turns on or off display of timestamps with @value{GDBN} debugging info.
16726When enabled, seconds and microseconds are displayed before each debugging
16727message.
16728@item show debug timestamp
16729Displays the current state of displaying timestamps with @value{GDBN}
16730debugging info.
c45da7e6 16731@item set debugvarobj
4644b6e3 16732@cindex variable object debugging info
8e04817f
AC
16733Turns on or off display of @value{GDBN} variable object debugging
16734info. The default is off.
c45da7e6 16735@item show debugvarobj
8e04817f
AC
16736Displays the current state of displaying @value{GDBN} variable object
16737debugging info.
e776119f
DJ
16738@item set debug xml
16739@cindex XML parser debugging
16740Turns on or off debugging messages for built-in XML parsers.
16741@item show debug xml
16742Displays the current state of XML debugging messages.
8e04817f 16743@end table
104c1213 16744
8e04817f
AC
16745@node Sequences
16746@chapter Canned Sequences of Commands
104c1213 16747
8e04817f 16748Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16749Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16750commands for execution as a unit: user-defined commands and command
16751files.
104c1213 16752
8e04817f 16753@menu
fcc73fe3
EZ
16754* Define:: How to define your own commands
16755* Hooks:: Hooks for user-defined commands
16756* Command Files:: How to write scripts of commands to be stored in a file
16757* Output:: Commands for controlled output
8e04817f 16758@end menu
104c1213 16759
8e04817f 16760@node Define
79a6e687 16761@section User-defined Commands
104c1213 16762
8e04817f 16763@cindex user-defined command
fcc73fe3 16764@cindex arguments, to user-defined commands
8e04817f
AC
16765A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16766which you assign a new name as a command. This is done with the
16767@code{define} command. User commands may accept up to 10 arguments
16768separated by whitespace. Arguments are accessed within the user command
c03c782f 16769via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16770
8e04817f
AC
16771@smallexample
16772define adder
16773 print $arg0 + $arg1 + $arg2
c03c782f 16774end
8e04817f 16775@end smallexample
104c1213
JM
16776
16777@noindent
8e04817f 16778To execute the command use:
104c1213 16779
8e04817f
AC
16780@smallexample
16781adder 1 2 3
16782@end smallexample
104c1213 16783
8e04817f
AC
16784@noindent
16785This defines the command @code{adder}, which prints the sum of
16786its three arguments. Note the arguments are text substitutions, so they may
16787reference variables, use complex expressions, or even perform inferior
16788functions calls.
104c1213 16789
fcc73fe3
EZ
16790@cindex argument count in user-defined commands
16791@cindex how many arguments (user-defined commands)
c03c782f
AS
16792In addition, @code{$argc} may be used to find out how many arguments have
16793been passed. This expands to a number in the range 0@dots{}10.
16794
16795@smallexample
16796define adder
16797 if $argc == 2
16798 print $arg0 + $arg1
16799 end
16800 if $argc == 3
16801 print $arg0 + $arg1 + $arg2
16802 end
16803end
16804@end smallexample
16805
104c1213 16806@table @code
104c1213 16807
8e04817f
AC
16808@kindex define
16809@item define @var{commandname}
16810Define a command named @var{commandname}. If there is already a command
16811by that name, you are asked to confirm that you want to redefine it.
104c1213 16812
8e04817f
AC
16813The definition of the command is made up of other @value{GDBN} command lines,
16814which are given following the @code{define} command. The end of these
16815commands is marked by a line containing @code{end}.
104c1213 16816
8e04817f 16817@kindex document
ca91424e 16818@kindex end@r{ (user-defined commands)}
8e04817f
AC
16819@item document @var{commandname}
16820Document the user-defined command @var{commandname}, so that it can be
16821accessed by @code{help}. The command @var{commandname} must already be
16822defined. This command reads lines of documentation just as @code{define}
16823reads the lines of the command definition, ending with @code{end}.
16824After the @code{document} command is finished, @code{help} on command
16825@var{commandname} displays the documentation you have written.
104c1213 16826
8e04817f
AC
16827You may use the @code{document} command again to change the
16828documentation of a command. Redefining the command with @code{define}
16829does not change the documentation.
104c1213 16830
c45da7e6
EZ
16831@kindex dont-repeat
16832@cindex don't repeat command
16833@item dont-repeat
16834Used inside a user-defined command, this tells @value{GDBN} that this
16835command should not be repeated when the user hits @key{RET}
16836(@pxref{Command Syntax, repeat last command}).
16837
8e04817f
AC
16838@kindex help user-defined
16839@item help user-defined
16840List all user-defined commands, with the first line of the documentation
16841(if any) for each.
104c1213 16842
8e04817f
AC
16843@kindex show user
16844@item show user
16845@itemx show user @var{commandname}
16846Display the @value{GDBN} commands used to define @var{commandname} (but
16847not its documentation). If no @var{commandname} is given, display the
16848definitions for all user-defined commands.
104c1213 16849
fcc73fe3 16850@cindex infinite recursion in user-defined commands
20f01a46
DH
16851@kindex show max-user-call-depth
16852@kindex set max-user-call-depth
16853@item show max-user-call-depth
5ca0cb28
DH
16854@itemx set max-user-call-depth
16855The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16856levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16857infinite recursion and aborts the command.
104c1213
JM
16858@end table
16859
fcc73fe3
EZ
16860In addition to the above commands, user-defined commands frequently
16861use control flow commands, described in @ref{Command Files}.
16862
8e04817f
AC
16863When user-defined commands are executed, the
16864commands of the definition are not printed. An error in any command
16865stops execution of the user-defined command.
104c1213 16866
8e04817f
AC
16867If used interactively, commands that would ask for confirmation proceed
16868without asking when used inside a user-defined command. Many @value{GDBN}
16869commands that normally print messages to say what they are doing omit the
16870messages when used in a user-defined command.
104c1213 16871
8e04817f 16872@node Hooks
79a6e687 16873@section User-defined Command Hooks
8e04817f
AC
16874@cindex command hooks
16875@cindex hooks, for commands
16876@cindex hooks, pre-command
104c1213 16877
8e04817f 16878@kindex hook
8e04817f
AC
16879You may define @dfn{hooks}, which are a special kind of user-defined
16880command. Whenever you run the command @samp{foo}, if the user-defined
16881command @samp{hook-foo} exists, it is executed (with no arguments)
16882before that command.
104c1213 16883
8e04817f
AC
16884@cindex hooks, post-command
16885@kindex hookpost
8e04817f
AC
16886A hook may also be defined which is run after the command you executed.
16887Whenever you run the command @samp{foo}, if the user-defined command
16888@samp{hookpost-foo} exists, it is executed (with no arguments) after
16889that command. Post-execution hooks may exist simultaneously with
16890pre-execution hooks, for the same command.
104c1213 16891
8e04817f 16892It is valid for a hook to call the command which it hooks. If this
9f1c6395 16893occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16894
8e04817f
AC
16895@c It would be nice if hookpost could be passed a parameter indicating
16896@c if the command it hooks executed properly or not. FIXME!
104c1213 16897
8e04817f
AC
16898@kindex stop@r{, a pseudo-command}
16899In addition, a pseudo-command, @samp{stop} exists. Defining
16900(@samp{hook-stop}) makes the associated commands execute every time
16901execution stops in your program: before breakpoint commands are run,
16902displays are printed, or the stack frame is printed.
104c1213 16903
8e04817f
AC
16904For example, to ignore @code{SIGALRM} signals while
16905single-stepping, but treat them normally during normal execution,
16906you could define:
104c1213 16907
474c8240 16908@smallexample
8e04817f
AC
16909define hook-stop
16910handle SIGALRM nopass
16911end
104c1213 16912
8e04817f
AC
16913define hook-run
16914handle SIGALRM pass
16915end
104c1213 16916
8e04817f 16917define hook-continue
d3e8051b 16918handle SIGALRM pass
8e04817f 16919end
474c8240 16920@end smallexample
104c1213 16921
d3e8051b 16922As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16923command, and to add extra text to the beginning and end of the message,
8e04817f 16924you could define:
104c1213 16925
474c8240 16926@smallexample
8e04817f
AC
16927define hook-echo
16928echo <<<---
16929end
104c1213 16930
8e04817f
AC
16931define hookpost-echo
16932echo --->>>\n
16933end
104c1213 16934
8e04817f
AC
16935(@value{GDBP}) echo Hello World
16936<<<---Hello World--->>>
16937(@value{GDBP})
104c1213 16938
474c8240 16939@end smallexample
104c1213 16940
8e04817f
AC
16941You can define a hook for any single-word command in @value{GDBN}, but
16942not for command aliases; you should define a hook for the basic command
c1468174 16943name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16944@c FIXME! So how does Joe User discover whether a command is an alias
16945@c or not?
16946If an error occurs during the execution of your hook, execution of
16947@value{GDBN} commands stops and @value{GDBN} issues a prompt
16948(before the command that you actually typed had a chance to run).
104c1213 16949
8e04817f
AC
16950If you try to define a hook which does not match any known command, you
16951get a warning from the @code{define} command.
c906108c 16952
8e04817f 16953@node Command Files
79a6e687 16954@section Command Files
c906108c 16955
8e04817f 16956@cindex command files
fcc73fe3 16957@cindex scripting commands
6fc08d32
EZ
16958A command file for @value{GDBN} is a text file made of lines that are
16959@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16960also be included. An empty line in a command file does nothing; it
16961does not mean to repeat the last command, as it would from the
16962terminal.
c906108c 16963
6fc08d32
EZ
16964You can request the execution of a command file with the @code{source}
16965command:
c906108c 16966
8e04817f
AC
16967@table @code
16968@kindex source
ca91424e 16969@cindex execute commands from a file
16026cd7 16970@item source [@code{-v}] @var{filename}
8e04817f 16971Execute the command file @var{filename}.
c906108c
SS
16972@end table
16973
fcc73fe3
EZ
16974The lines in a command file are generally executed sequentially,
16975unless the order of execution is changed by one of the
16976@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16977printed as they are executed. An error in any command terminates
16978execution of the command file and control is returned to the console.
c906108c 16979
4b505b12
AS
16980@value{GDBN} searches for @var{filename} in the current directory and then
16981on the search path (specified with the @samp{directory} command).
16982
16026cd7
AS
16983If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16984each command as it is executed. The option must be given before
16985@var{filename}, and is interpreted as part of the filename anywhere else.
16986
8e04817f
AC
16987Commands that would ask for confirmation if used interactively proceed
16988without asking when used in a command file. Many @value{GDBN} commands that
16989normally print messages to say what they are doing omit the messages
16990when called from command files.
c906108c 16991
8e04817f
AC
16992@value{GDBN} also accepts command input from standard input. In this
16993mode, normal output goes to standard output and error output goes to
16994standard error. Errors in a command file supplied on standard input do
6fc08d32 16995not terminate execution of the command file---execution continues with
8e04817f 16996the next command.
c906108c 16997
474c8240 16998@smallexample
8e04817f 16999gdb < cmds > log 2>&1
474c8240 17000@end smallexample
c906108c 17001
8e04817f
AC
17002(The syntax above will vary depending on the shell used.) This example
17003will execute commands from the file @file{cmds}. All output and errors
17004would be directed to @file{log}.
c906108c 17005
fcc73fe3
EZ
17006Since commands stored on command files tend to be more general than
17007commands typed interactively, they frequently need to deal with
17008complicated situations, such as different or unexpected values of
17009variables and symbols, changes in how the program being debugged is
17010built, etc. @value{GDBN} provides a set of flow-control commands to
17011deal with these complexities. Using these commands, you can write
17012complex scripts that loop over data structures, execute commands
17013conditionally, etc.
17014
17015@table @code
17016@kindex if
17017@kindex else
17018@item if
17019@itemx else
17020This command allows to include in your script conditionally executed
17021commands. The @code{if} command takes a single argument, which is an
17022expression to evaluate. It is followed by a series of commands that
17023are executed only if the expression is true (its value is nonzero).
17024There can then optionally be an @code{else} line, followed by a series
17025of commands that are only executed if the expression was false. The
17026end of the list is marked by a line containing @code{end}.
17027
17028@kindex while
17029@item while
17030This command allows to write loops. Its syntax is similar to
17031@code{if}: the command takes a single argument, which is an expression
17032to evaluate, and must be followed by the commands to execute, one per
17033line, terminated by an @code{end}. These commands are called the
17034@dfn{body} of the loop. The commands in the body of @code{while} are
17035executed repeatedly as long as the expression evaluates to true.
17036
17037@kindex loop_break
17038@item loop_break
17039This command exits the @code{while} loop in whose body it is included.
17040Execution of the script continues after that @code{while}s @code{end}
17041line.
17042
17043@kindex loop_continue
17044@item loop_continue
17045This command skips the execution of the rest of the body of commands
17046in the @code{while} loop in whose body it is included. Execution
17047branches to the beginning of the @code{while} loop, where it evaluates
17048the controlling expression.
ca91424e
EZ
17049
17050@kindex end@r{ (if/else/while commands)}
17051@item end
17052Terminate the block of commands that are the body of @code{if},
17053@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
17054@end table
17055
17056
8e04817f 17057@node Output
79a6e687 17058@section Commands for Controlled Output
c906108c 17059
8e04817f
AC
17060During the execution of a command file or a user-defined command, normal
17061@value{GDBN} output is suppressed; the only output that appears is what is
17062explicitly printed by the commands in the definition. This section
17063describes three commands useful for generating exactly the output you
17064want.
c906108c
SS
17065
17066@table @code
8e04817f
AC
17067@kindex echo
17068@item echo @var{text}
17069@c I do not consider backslash-space a standard C escape sequence
17070@c because it is not in ANSI.
17071Print @var{text}. Nonprinting characters can be included in
17072@var{text} using C escape sequences, such as @samp{\n} to print a
17073newline. @strong{No newline is printed unless you specify one.}
17074In addition to the standard C escape sequences, a backslash followed
17075by a space stands for a space. This is useful for displaying a
17076string with spaces at the beginning or the end, since leading and
17077trailing spaces are otherwise trimmed from all arguments.
17078To print @samp{@w{ }and foo =@w{ }}, use the command
17079@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 17080
8e04817f
AC
17081A backslash at the end of @var{text} can be used, as in C, to continue
17082the command onto subsequent lines. For example,
c906108c 17083
474c8240 17084@smallexample
8e04817f
AC
17085echo This is some text\n\
17086which is continued\n\
17087onto several lines.\n
474c8240 17088@end smallexample
c906108c 17089
8e04817f 17090produces the same output as
c906108c 17091
474c8240 17092@smallexample
8e04817f
AC
17093echo This is some text\n
17094echo which is continued\n
17095echo onto several lines.\n
474c8240 17096@end smallexample
c906108c 17097
8e04817f
AC
17098@kindex output
17099@item output @var{expression}
17100Print the value of @var{expression} and nothing but that value: no
17101newlines, no @samp{$@var{nn} = }. The value is not entered in the
17102value history either. @xref{Expressions, ,Expressions}, for more information
17103on expressions.
c906108c 17104
8e04817f
AC
17105@item output/@var{fmt} @var{expression}
17106Print the value of @var{expression} in format @var{fmt}. You can use
17107the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 17108Formats}, for more information.
c906108c 17109
8e04817f 17110@kindex printf
82160952
EZ
17111@item printf @var{template}, @var{expressions}@dots{}
17112Print the values of one or more @var{expressions} under the control of
17113the string @var{template}. To print several values, make
17114@var{expressions} be a comma-separated list of individual expressions,
17115which may be either numbers or pointers. Their values are printed as
17116specified by @var{template}, exactly as a C program would do by
17117executing the code below:
c906108c 17118
474c8240 17119@smallexample
82160952 17120printf (@var{template}, @var{expressions}@dots{});
474c8240 17121@end smallexample
c906108c 17122
82160952
EZ
17123As in @code{C} @code{printf}, ordinary characters in @var{template}
17124are printed verbatim, while @dfn{conversion specification} introduced
17125by the @samp{%} character cause subsequent @var{expressions} to be
17126evaluated, their values converted and formatted according to type and
17127style information encoded in the conversion specifications, and then
17128printed.
17129
8e04817f 17130For example, you can print two values in hex like this:
c906108c 17131
8e04817f
AC
17132@smallexample
17133printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
17134@end smallexample
c906108c 17135
82160952
EZ
17136@code{printf} supports all the standard @code{C} conversion
17137specifications, including the flags and modifiers between the @samp{%}
17138character and the conversion letter, with the following exceptions:
17139
17140@itemize @bullet
17141@item
17142The argument-ordering modifiers, such as @samp{2$}, are not supported.
17143
17144@item
17145The modifier @samp{*} is not supported for specifying precision or
17146width.
17147
17148@item
17149The @samp{'} flag (for separation of digits into groups according to
17150@code{LC_NUMERIC'}) is not supported.
17151
17152@item
17153The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
17154supported.
17155
17156@item
17157The conversion letter @samp{n} (as in @samp{%n}) is not supported.
17158
17159@item
17160The conversion letters @samp{a} and @samp{A} are not supported.
17161@end itemize
17162
17163@noindent
17164Note that the @samp{ll} type modifier is supported only if the
17165underlying @code{C} implementation used to build @value{GDBN} supports
17166the @code{long long int} type, and the @samp{L} type modifier is
17167supported only if @code{long double} type is available.
17168
17169As in @code{C}, @code{printf} supports simple backslash-escape
17170sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
17171@samp{\a}, and @samp{\f}, that consist of backslash followed by a
17172single character. Octal and hexadecimal escape sequences are not
17173supported.
1a619819
LM
17174
17175Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
17176(@dfn{Decimal Floating Point}) types using the following length modifiers
17177together with a floating point specifier.
1a619819
LM
17178letters:
17179
17180@itemize @bullet
17181@item
17182@samp{H} for printing @code{Decimal32} types.
17183
17184@item
17185@samp{D} for printing @code{Decimal64} types.
17186
17187@item
17188@samp{DD} for printing @code{Decimal128} types.
17189@end itemize
17190
17191If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 17192support for the three length modifiers for DFP types, other modifiers
3b784c4f 17193such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
17194
17195In case there is no such @code{C} support, no additional modifiers will be
17196available and the value will be printed in the standard way.
17197
17198Here's an example of printing DFP types using the above conversion letters:
17199@smallexample
0aea4bf3 17200printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
17201@end smallexample
17202
c906108c
SS
17203@end table
17204
21c294e6
AC
17205@node Interpreters
17206@chapter Command Interpreters
17207@cindex command interpreters
17208
17209@value{GDBN} supports multiple command interpreters, and some command
17210infrastructure to allow users or user interface writers to switch
17211between interpreters or run commands in other interpreters.
17212
17213@value{GDBN} currently supports two command interpreters, the console
17214interpreter (sometimes called the command-line interpreter or @sc{cli})
17215and the machine interface interpreter (or @sc{gdb/mi}). This manual
17216describes both of these interfaces in great detail.
17217
17218By default, @value{GDBN} will start with the console interpreter.
17219However, the user may choose to start @value{GDBN} with another
17220interpreter by specifying the @option{-i} or @option{--interpreter}
17221startup options. Defined interpreters include:
17222
17223@table @code
17224@item console
17225@cindex console interpreter
17226The traditional console or command-line interpreter. This is the most often
17227used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17228@value{GDBN} will use this interpreter.
17229
17230@item mi
17231@cindex mi interpreter
17232The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17233by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17234or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17235Interface}.
17236
17237@item mi2
17238@cindex mi2 interpreter
17239The current @sc{gdb/mi} interface.
17240
17241@item mi1
17242@cindex mi1 interpreter
17243The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17244
17245@end table
17246
17247@cindex invoke another interpreter
17248The interpreter being used by @value{GDBN} may not be dynamically
17249switched at runtime. Although possible, this could lead to a very
17250precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17251enters the command "interpreter-set console" in a console view,
17252@value{GDBN} would switch to using the console interpreter, rendering
17253the IDE inoperable!
17254
17255@kindex interpreter-exec
17256Although you may only choose a single interpreter at startup, you may execute
17257commands in any interpreter from the current interpreter using the appropriate
17258command. If you are running the console interpreter, simply use the
17259@code{interpreter-exec} command:
17260
17261@smallexample
17262interpreter-exec mi "-data-list-register-names"
17263@end smallexample
17264
17265@sc{gdb/mi} has a similar command, although it is only available in versions of
17266@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17267
8e04817f
AC
17268@node TUI
17269@chapter @value{GDBN} Text User Interface
17270@cindex TUI
d0d5df6f 17271@cindex Text User Interface
c906108c 17272
8e04817f
AC
17273@menu
17274* TUI Overview:: TUI overview
17275* TUI Keys:: TUI key bindings
7cf36c78 17276* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17277* TUI Commands:: TUI-specific commands
8e04817f
AC
17278* TUI Configuration:: TUI configuration variables
17279@end menu
c906108c 17280
46ba6afa 17281The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17282interface which uses the @code{curses} library to show the source
17283file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17284commands in separate text windows. The TUI mode is supported only
17285on platforms where a suitable version of the @code{curses} library
17286is available.
d0d5df6f 17287
46ba6afa
BW
17288@pindex @value{GDBTUI}
17289The TUI mode is enabled by default when you invoke @value{GDBN} as
17290either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17291You can also switch in and out of TUI mode while @value{GDBN} runs by
17292using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17293@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17294
8e04817f 17295@node TUI Overview
79a6e687 17296@section TUI Overview
c906108c 17297
46ba6afa 17298In TUI mode, @value{GDBN} can display several text windows:
c906108c 17299
8e04817f
AC
17300@table @emph
17301@item command
17302This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17303prompt and the @value{GDBN} output. The @value{GDBN} input is still
17304managed using readline.
c906108c 17305
8e04817f
AC
17306@item source
17307The source window shows the source file of the program. The current
46ba6afa 17308line and active breakpoints are displayed in this window.
c906108c 17309
8e04817f
AC
17310@item assembly
17311The assembly window shows the disassembly output of the program.
c906108c 17312
8e04817f 17313@item register
46ba6afa
BW
17314This window shows the processor registers. Registers are highlighted
17315when their values change.
c906108c
SS
17316@end table
17317
269c21fe 17318The source and assembly windows show the current program position
46ba6afa
BW
17319by highlighting the current line and marking it with a @samp{>} marker.
17320Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17321indicates the breakpoint type:
17322
17323@table @code
17324@item B
17325Breakpoint which was hit at least once.
17326
17327@item b
17328Breakpoint which was never hit.
17329
17330@item H
17331Hardware breakpoint which was hit at least once.
17332
17333@item h
17334Hardware breakpoint which was never hit.
269c21fe
SC
17335@end table
17336
17337The second marker indicates whether the breakpoint is enabled or not:
17338
17339@table @code
17340@item +
17341Breakpoint is enabled.
17342
17343@item -
17344Breakpoint is disabled.
269c21fe
SC
17345@end table
17346
46ba6afa
BW
17347The source, assembly and register windows are updated when the current
17348thread changes, when the frame changes, or when the program counter
17349changes.
17350
17351These windows are not all visible at the same time. The command
17352window is always visible. The others can be arranged in several
17353layouts:
c906108c 17354
8e04817f
AC
17355@itemize @bullet
17356@item
46ba6afa 17357source only,
2df3850c 17358
8e04817f 17359@item
46ba6afa 17360assembly only,
8e04817f
AC
17361
17362@item
46ba6afa 17363source and assembly,
8e04817f
AC
17364
17365@item
46ba6afa 17366source and registers, or
c906108c 17367
8e04817f 17368@item
46ba6afa 17369assembly and registers.
8e04817f 17370@end itemize
c906108c 17371
46ba6afa 17372A status line above the command window shows the following information:
b7bb15bc
SC
17373
17374@table @emph
17375@item target
46ba6afa 17376Indicates the current @value{GDBN} target.
b7bb15bc
SC
17377(@pxref{Targets, ,Specifying a Debugging Target}).
17378
17379@item process
46ba6afa 17380Gives the current process or thread number.
b7bb15bc
SC
17381When no process is being debugged, this field is set to @code{No process}.
17382
17383@item function
17384Gives the current function name for the selected frame.
17385The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17386When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17387the string @code{??} is displayed.
17388
17389@item line
17390Indicates the current line number for the selected frame.
46ba6afa 17391When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17392
17393@item pc
17394Indicates the current program counter address.
b7bb15bc
SC
17395@end table
17396
8e04817f
AC
17397@node TUI Keys
17398@section TUI Key Bindings
17399@cindex TUI key bindings
c906108c 17400
8e04817f 17401The TUI installs several key bindings in the readline keymaps
46ba6afa 17402(@pxref{Command Line Editing}). The following key bindings
8e04817f 17403are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17404
8e04817f
AC
17405@table @kbd
17406@kindex C-x C-a
17407@item C-x C-a
17408@kindex C-x a
17409@itemx C-x a
17410@kindex C-x A
17411@itemx C-x A
46ba6afa
BW
17412Enter or leave the TUI mode. When leaving the TUI mode,
17413the curses window management stops and @value{GDBN} operates using
17414its standard mode, writing on the terminal directly. When reentering
17415the TUI mode, control is given back to the curses windows.
8e04817f 17416The screen is then refreshed.
c906108c 17417
8e04817f
AC
17418@kindex C-x 1
17419@item C-x 1
17420Use a TUI layout with only one window. The layout will
17421either be @samp{source} or @samp{assembly}. When the TUI mode
17422is not active, it will switch to the TUI mode.
2df3850c 17423
8e04817f 17424Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17425
8e04817f
AC
17426@kindex C-x 2
17427@item C-x 2
17428Use a TUI layout with at least two windows. When the current
46ba6afa 17429layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17430When a new layout is chosen, one window will always be common to the
17431previous layout and the new one.
c906108c 17432
8e04817f 17433Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17434
72ffddc9
SC
17435@kindex C-x o
17436@item C-x o
17437Change the active window. The TUI associates several key bindings
46ba6afa 17438(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17439gives the focus to the next TUI window.
17440
17441Think of it as the Emacs @kbd{C-x o} binding.
17442
7cf36c78
SC
17443@kindex C-x s
17444@item C-x s
46ba6afa
BW
17445Switch in and out of the TUI SingleKey mode that binds single
17446keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17447@end table
17448
46ba6afa 17449The following key bindings only work in the TUI mode:
5d161b24 17450
46ba6afa 17451@table @asis
8e04817f 17452@kindex PgUp
46ba6afa 17453@item @key{PgUp}
8e04817f 17454Scroll the active window one page up.
c906108c 17455
8e04817f 17456@kindex PgDn
46ba6afa 17457@item @key{PgDn}
8e04817f 17458Scroll the active window one page down.
c906108c 17459
8e04817f 17460@kindex Up
46ba6afa 17461@item @key{Up}
8e04817f 17462Scroll the active window one line up.
c906108c 17463
8e04817f 17464@kindex Down
46ba6afa 17465@item @key{Down}
8e04817f 17466Scroll the active window one line down.
c906108c 17467
8e04817f 17468@kindex Left
46ba6afa 17469@item @key{Left}
8e04817f 17470Scroll the active window one column left.
c906108c 17471
8e04817f 17472@kindex Right
46ba6afa 17473@item @key{Right}
8e04817f 17474Scroll the active window one column right.
c906108c 17475
8e04817f 17476@kindex C-L
46ba6afa 17477@item @kbd{C-L}
8e04817f 17478Refresh the screen.
8e04817f 17479@end table
c906108c 17480
46ba6afa
BW
17481Because the arrow keys scroll the active window in the TUI mode, they
17482are not available for their normal use by readline unless the command
17483window has the focus. When another window is active, you must use
17484other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17485and @kbd{C-f} to control the command window.
8e04817f 17486
7cf36c78
SC
17487@node TUI Single Key Mode
17488@section TUI Single Key Mode
17489@cindex TUI single key mode
17490
46ba6afa
BW
17491The TUI also provides a @dfn{SingleKey} mode, which binds several
17492frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17493switch into this mode, where the following key bindings are used:
7cf36c78
SC
17494
17495@table @kbd
17496@kindex c @r{(SingleKey TUI key)}
17497@item c
17498continue
17499
17500@kindex d @r{(SingleKey TUI key)}
17501@item d
17502down
17503
17504@kindex f @r{(SingleKey TUI key)}
17505@item f
17506finish
17507
17508@kindex n @r{(SingleKey TUI key)}
17509@item n
17510next
17511
17512@kindex q @r{(SingleKey TUI key)}
17513@item q
46ba6afa 17514exit the SingleKey mode.
7cf36c78
SC
17515
17516@kindex r @r{(SingleKey TUI key)}
17517@item r
17518run
17519
17520@kindex s @r{(SingleKey TUI key)}
17521@item s
17522step
17523
17524@kindex u @r{(SingleKey TUI key)}
17525@item u
17526up
17527
17528@kindex v @r{(SingleKey TUI key)}
17529@item v
17530info locals
17531
17532@kindex w @r{(SingleKey TUI key)}
17533@item w
17534where
7cf36c78
SC
17535@end table
17536
17537Other keys temporarily switch to the @value{GDBN} command prompt.
17538The key that was pressed is inserted in the editing buffer so that
17539it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17540with the TUI SingleKey mode. Once the command is entered the TUI
17541SingleKey mode is restored. The only way to permanently leave
7f9087cb 17542this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17543
17544
8e04817f 17545@node TUI Commands
db2e3e2e 17546@section TUI-specific Commands
8e04817f
AC
17547@cindex TUI commands
17548
17549The TUI has specific commands to control the text windows.
46ba6afa
BW
17550These commands are always available, even when @value{GDBN} is not in
17551the TUI mode. When @value{GDBN} is in the standard mode, most
17552of these commands will automatically switch to the TUI mode.
c906108c
SS
17553
17554@table @code
3d757584
SC
17555@item info win
17556@kindex info win
17557List and give the size of all displayed windows.
17558
8e04817f 17559@item layout next
4644b6e3 17560@kindex layout
8e04817f 17561Display the next layout.
2df3850c 17562
8e04817f 17563@item layout prev
8e04817f 17564Display the previous layout.
c906108c 17565
8e04817f 17566@item layout src
8e04817f 17567Display the source window only.
c906108c 17568
8e04817f 17569@item layout asm
8e04817f 17570Display the assembly window only.
c906108c 17571
8e04817f 17572@item layout split
8e04817f 17573Display the source and assembly window.
c906108c 17574
8e04817f 17575@item layout regs
8e04817f
AC
17576Display the register window together with the source or assembly window.
17577
46ba6afa 17578@item focus next
8e04817f 17579@kindex focus
46ba6afa
BW
17580Make the next window active for scrolling.
17581
17582@item focus prev
17583Make the previous window active for scrolling.
17584
17585@item focus src
17586Make the source window active for scrolling.
17587
17588@item focus asm
17589Make the assembly window active for scrolling.
17590
17591@item focus regs
17592Make the register window active for scrolling.
17593
17594@item focus cmd
17595Make the command window active for scrolling.
c906108c 17596
8e04817f
AC
17597@item refresh
17598@kindex refresh
7f9087cb 17599Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17600
6a1b180d
SC
17601@item tui reg float
17602@kindex tui reg
17603Show the floating point registers in the register window.
17604
17605@item tui reg general
17606Show the general registers in the register window.
17607
17608@item tui reg next
17609Show the next register group. The list of register groups as well as
17610their order is target specific. The predefined register groups are the
17611following: @code{general}, @code{float}, @code{system}, @code{vector},
17612@code{all}, @code{save}, @code{restore}.
17613
17614@item tui reg system
17615Show the system registers in the register window.
17616
8e04817f
AC
17617@item update
17618@kindex update
17619Update the source window and the current execution point.
c906108c 17620
8e04817f
AC
17621@item winheight @var{name} +@var{count}
17622@itemx winheight @var{name} -@var{count}
17623@kindex winheight
17624Change the height of the window @var{name} by @var{count}
17625lines. Positive counts increase the height, while negative counts
17626decrease it.
2df3850c 17627
46ba6afa
BW
17628@item tabset @var{nchars}
17629@kindex tabset
c45da7e6 17630Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17631@end table
17632
8e04817f 17633@node TUI Configuration
79a6e687 17634@section TUI Configuration Variables
8e04817f 17635@cindex TUI configuration variables
c906108c 17636
46ba6afa 17637Several configuration variables control the appearance of TUI windows.
c906108c 17638
8e04817f
AC
17639@table @code
17640@item set tui border-kind @var{kind}
17641@kindex set tui border-kind
17642Select the border appearance for the source, assembly and register windows.
17643The possible values are the following:
17644@table @code
17645@item space
17646Use a space character to draw the border.
c906108c 17647
8e04817f 17648@item ascii
46ba6afa 17649Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17650
8e04817f
AC
17651@item acs
17652Use the Alternate Character Set to draw the border. The border is
17653drawn using character line graphics if the terminal supports them.
8e04817f 17654@end table
c78b4128 17655
8e04817f
AC
17656@item set tui border-mode @var{mode}
17657@kindex set tui border-mode
46ba6afa
BW
17658@itemx set tui active-border-mode @var{mode}
17659@kindex set tui active-border-mode
17660Select the display attributes for the borders of the inactive windows
17661or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17662@table @code
17663@item normal
17664Use normal attributes to display the border.
c906108c 17665
8e04817f
AC
17666@item standout
17667Use standout mode.
c906108c 17668
8e04817f
AC
17669@item reverse
17670Use reverse video mode.
c906108c 17671
8e04817f
AC
17672@item half
17673Use half bright mode.
c906108c 17674
8e04817f
AC
17675@item half-standout
17676Use half bright and standout mode.
c906108c 17677
8e04817f
AC
17678@item bold
17679Use extra bright or bold mode.
c78b4128 17680
8e04817f
AC
17681@item bold-standout
17682Use extra bright or bold and standout mode.
8e04817f 17683@end table
8e04817f 17684@end table
c78b4128 17685
8e04817f
AC
17686@node Emacs
17687@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17688
8e04817f
AC
17689@cindex Emacs
17690@cindex @sc{gnu} Emacs
17691A special interface allows you to use @sc{gnu} Emacs to view (and
17692edit) the source files for the program you are debugging with
17693@value{GDBN}.
c906108c 17694
8e04817f
AC
17695To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17696executable file you want to debug as an argument. This command starts
17697@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17698created Emacs buffer.
17699@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17700
5e252a2e 17701Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17702things:
c906108c 17703
8e04817f
AC
17704@itemize @bullet
17705@item
5e252a2e
NR
17706All ``terminal'' input and output goes through an Emacs buffer, called
17707the GUD buffer.
c906108c 17708
8e04817f
AC
17709This applies both to @value{GDBN} commands and their output, and to the input
17710and output done by the program you are debugging.
bf0184be 17711
8e04817f
AC
17712This is useful because it means that you can copy the text of previous
17713commands and input them again; you can even use parts of the output
17714in this way.
bf0184be 17715
8e04817f
AC
17716All the facilities of Emacs' Shell mode are available for interacting
17717with your program. In particular, you can send signals the usual
17718way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17719stop.
bf0184be
ND
17720
17721@item
8e04817f 17722@value{GDBN} displays source code through Emacs.
bf0184be 17723
8e04817f
AC
17724Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17725source file for that frame and puts an arrow (@samp{=>}) at the
17726left margin of the current line. Emacs uses a separate buffer for
17727source display, and splits the screen to show both your @value{GDBN} session
17728and the source.
bf0184be 17729
8e04817f
AC
17730Explicit @value{GDBN} @code{list} or search commands still produce output as
17731usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17732@end itemize
17733
17734We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17735a graphical mode, enabled by default, which provides further buffers
17736that can control the execution and describe the state of your program.
17737@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17738
64fabec2
AC
17739If you specify an absolute file name when prompted for the @kbd{M-x
17740gdb} argument, then Emacs sets your current working directory to where
17741your program resides. If you only specify the file name, then Emacs
17742sets your current working directory to to the directory associated
17743with the previous buffer. In this case, @value{GDBN} may find your
17744program by searching your environment's @code{PATH} variable, but on
17745some operating systems it might not find the source. So, although the
17746@value{GDBN} input and output session proceeds normally, the auxiliary
17747buffer does not display the current source and line of execution.
17748
17749The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17750line of the GUD buffer and this serves as a default for the commands
17751that specify files for @value{GDBN} to operate on. @xref{Files,
17752,Commands to Specify Files}.
64fabec2
AC
17753
17754By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17755need to call @value{GDBN} by a different name (for example, if you
17756keep several configurations around, with different names) you can
17757customize the Emacs variable @code{gud-gdb-command-name} to run the
17758one you want.
8e04817f 17759
5e252a2e 17760In the GUD buffer, you can use these special Emacs commands in
8e04817f 17761addition to the standard Shell mode commands:
c906108c 17762
8e04817f
AC
17763@table @kbd
17764@item C-h m
5e252a2e 17765Describe the features of Emacs' GUD Mode.
c906108c 17766
64fabec2 17767@item C-c C-s
8e04817f
AC
17768Execute to another source line, like the @value{GDBN} @code{step} command; also
17769update the display window to show the current file and location.
c906108c 17770
64fabec2 17771@item C-c C-n
8e04817f
AC
17772Execute to next source line in this function, skipping all function
17773calls, like the @value{GDBN} @code{next} command. Then update the display window
17774to show the current file and location.
c906108c 17775
64fabec2 17776@item C-c C-i
8e04817f
AC
17777Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17778display window accordingly.
c906108c 17779
8e04817f
AC
17780@item C-c C-f
17781Execute until exit from the selected stack frame, like the @value{GDBN}
17782@code{finish} command.
c906108c 17783
64fabec2 17784@item C-c C-r
8e04817f
AC
17785Continue execution of your program, like the @value{GDBN} @code{continue}
17786command.
b433d00b 17787
64fabec2 17788@item C-c <
8e04817f
AC
17789Go up the number of frames indicated by the numeric argument
17790(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17791like the @value{GDBN} @code{up} command.
b433d00b 17792
64fabec2 17793@item C-c >
8e04817f
AC
17794Go down the number of frames indicated by the numeric argument, like the
17795@value{GDBN} @code{down} command.
8e04817f 17796@end table
c906108c 17797
7f9087cb 17798In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17799tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17800
5e252a2e
NR
17801In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17802separate frame which shows a backtrace when the GUD buffer is current.
17803Move point to any frame in the stack and type @key{RET} to make it
17804become the current frame and display the associated source in the
17805source buffer. Alternatively, click @kbd{Mouse-2} to make the
17806selected frame become the current one. In graphical mode, the
17807speedbar displays watch expressions.
64fabec2 17808
8e04817f
AC
17809If you accidentally delete the source-display buffer, an easy way to get
17810it back is to type the command @code{f} in the @value{GDBN} buffer, to
17811request a frame display; when you run under Emacs, this recreates
17812the source buffer if necessary to show you the context of the current
17813frame.
c906108c 17814
8e04817f
AC
17815The source files displayed in Emacs are in ordinary Emacs buffers
17816which are visiting the source files in the usual way. You can edit
17817the files with these buffers if you wish; but keep in mind that @value{GDBN}
17818communicates with Emacs in terms of line numbers. If you add or
17819delete lines from the text, the line numbers that @value{GDBN} knows cease
17820to correspond properly with the code.
b383017d 17821
5e252a2e
NR
17822A more detailed description of Emacs' interaction with @value{GDBN} is
17823given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17824Emacs Manual}).
c906108c 17825
8e04817f
AC
17826@c The following dropped because Epoch is nonstandard. Reactivate
17827@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17828@ignore
17829@kindex Emacs Epoch environment
17830@kindex Epoch
17831@kindex inspect
c906108c 17832
8e04817f
AC
17833Version 18 of @sc{gnu} Emacs has a built-in window system
17834called the @code{epoch}
17835environment. Users of this environment can use a new command,
17836@code{inspect} which performs identically to @code{print} except that
17837each value is printed in its own window.
17838@end ignore
c906108c 17839
922fbb7b
AC
17840
17841@node GDB/MI
17842@chapter The @sc{gdb/mi} Interface
17843
17844@unnumberedsec Function and Purpose
17845
17846@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17847@sc{gdb/mi} is a line based machine oriented text interface to
17848@value{GDBN} and is activated by specifying using the
17849@option{--interpreter} command line option (@pxref{Mode Options}). It
17850is specifically intended to support the development of systems which
17851use the debugger as just one small component of a larger system.
922fbb7b
AC
17852
17853This chapter is a specification of the @sc{gdb/mi} interface. It is written
17854in the form of a reference manual.
17855
17856Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17857features described below are incomplete and subject to change
17858(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17859
17860@unnumberedsec Notation and Terminology
17861
17862@cindex notational conventions, for @sc{gdb/mi}
17863This chapter uses the following notation:
17864
17865@itemize @bullet
17866@item
17867@code{|} separates two alternatives.
17868
17869@item
17870@code{[ @var{something} ]} indicates that @var{something} is optional:
17871it may or may not be given.
17872
17873@item
17874@code{( @var{group} )*} means that @var{group} inside the parentheses
17875may repeat zero or more times.
17876
17877@item
17878@code{( @var{group} )+} means that @var{group} inside the parentheses
17879may repeat one or more times.
17880
17881@item
17882@code{"@var{string}"} means a literal @var{string}.
17883@end itemize
17884
17885@ignore
17886@heading Dependencies
17887@end ignore
17888
922fbb7b
AC
17889@menu
17890* GDB/MI Command Syntax::
17891* GDB/MI Compatibility with CLI::
af6eff6f 17892* GDB/MI Development and Front Ends::
922fbb7b 17893* GDB/MI Output Records::
ef21caaf 17894* GDB/MI Simple Examples::
922fbb7b 17895* GDB/MI Command Description Format::
ef21caaf 17896* GDB/MI Breakpoint Commands::
a2c02241
NR
17897* GDB/MI Program Context::
17898* GDB/MI Thread Commands::
17899* GDB/MI Program Execution::
17900* GDB/MI Stack Manipulation::
17901* GDB/MI Variable Objects::
922fbb7b 17902* GDB/MI Data Manipulation::
a2c02241
NR
17903* GDB/MI Tracepoint Commands::
17904* GDB/MI Symbol Query::
351ff01a 17905* GDB/MI File Commands::
922fbb7b
AC
17906@ignore
17907* GDB/MI Kod Commands::
17908* GDB/MI Memory Overlay Commands::
17909* GDB/MI Signal Handling Commands::
17910@end ignore
922fbb7b 17911* GDB/MI Target Manipulation::
a6b151f1 17912* GDB/MI File Transfer Commands::
ef21caaf 17913* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17914@end menu
17915
17916@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17917@node GDB/MI Command Syntax
17918@section @sc{gdb/mi} Command Syntax
17919
17920@menu
17921* GDB/MI Input Syntax::
17922* GDB/MI Output Syntax::
922fbb7b
AC
17923@end menu
17924
17925@node GDB/MI Input Syntax
17926@subsection @sc{gdb/mi} Input Syntax
17927
17928@cindex input syntax for @sc{gdb/mi}
17929@cindex @sc{gdb/mi}, input syntax
17930@table @code
17931@item @var{command} @expansion{}
17932@code{@var{cli-command} | @var{mi-command}}
17933
17934@item @var{cli-command} @expansion{}
17935@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17936@var{cli-command} is any existing @value{GDBN} CLI command.
17937
17938@item @var{mi-command} @expansion{}
17939@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17940@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17941
17942@item @var{token} @expansion{}
17943"any sequence of digits"
17944
17945@item @var{option} @expansion{}
17946@code{"-" @var{parameter} [ " " @var{parameter} ]}
17947
17948@item @var{parameter} @expansion{}
17949@code{@var{non-blank-sequence} | @var{c-string}}
17950
17951@item @var{operation} @expansion{}
17952@emph{any of the operations described in this chapter}
17953
17954@item @var{non-blank-sequence} @expansion{}
17955@emph{anything, provided it doesn't contain special characters such as
17956"-", @var{nl}, """ and of course " "}
17957
17958@item @var{c-string} @expansion{}
17959@code{""" @var{seven-bit-iso-c-string-content} """}
17960
17961@item @var{nl} @expansion{}
17962@code{CR | CR-LF}
17963@end table
17964
17965@noindent
17966Notes:
17967
17968@itemize @bullet
17969@item
17970The CLI commands are still handled by the @sc{mi} interpreter; their
17971output is described below.
17972
17973@item
17974The @code{@var{token}}, when present, is passed back when the command
17975finishes.
17976
17977@item
17978Some @sc{mi} commands accept optional arguments as part of the parameter
17979list. Each option is identified by a leading @samp{-} (dash) and may be
17980followed by an optional argument parameter. Options occur first in the
17981parameter list and can be delimited from normal parameters using
17982@samp{--} (this is useful when some parameters begin with a dash).
17983@end itemize
17984
17985Pragmatics:
17986
17987@itemize @bullet
17988@item
17989We want easy access to the existing CLI syntax (for debugging).
17990
17991@item
17992We want it to be easy to spot a @sc{mi} operation.
17993@end itemize
17994
17995@node GDB/MI Output Syntax
17996@subsection @sc{gdb/mi} Output Syntax
17997
17998@cindex output syntax of @sc{gdb/mi}
17999@cindex @sc{gdb/mi}, output syntax
18000The output from @sc{gdb/mi} consists of zero or more out-of-band records
18001followed, optionally, by a single result record. This result record
18002is for the most recent command. The sequence of output records is
594fe323 18003terminated by @samp{(gdb)}.
922fbb7b
AC
18004
18005If an input command was prefixed with a @code{@var{token}} then the
18006corresponding output for that command will also be prefixed by that same
18007@var{token}.
18008
18009@table @code
18010@item @var{output} @expansion{}
594fe323 18011@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
18012
18013@item @var{result-record} @expansion{}
18014@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
18015
18016@item @var{out-of-band-record} @expansion{}
18017@code{@var{async-record} | @var{stream-record}}
18018
18019@item @var{async-record} @expansion{}
18020@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
18021
18022@item @var{exec-async-output} @expansion{}
18023@code{[ @var{token} ] "*" @var{async-output}}
18024
18025@item @var{status-async-output} @expansion{}
18026@code{[ @var{token} ] "+" @var{async-output}}
18027
18028@item @var{notify-async-output} @expansion{}
18029@code{[ @var{token} ] "=" @var{async-output}}
18030
18031@item @var{async-output} @expansion{}
18032@code{@var{async-class} ( "," @var{result} )* @var{nl}}
18033
18034@item @var{result-class} @expansion{}
18035@code{"done" | "running" | "connected" | "error" | "exit"}
18036
18037@item @var{async-class} @expansion{}
18038@code{"stopped" | @var{others}} (where @var{others} will be added
18039depending on the needs---this is still in development).
18040
18041@item @var{result} @expansion{}
18042@code{ @var{variable} "=" @var{value}}
18043
18044@item @var{variable} @expansion{}
18045@code{ @var{string} }
18046
18047@item @var{value} @expansion{}
18048@code{ @var{const} | @var{tuple} | @var{list} }
18049
18050@item @var{const} @expansion{}
18051@code{@var{c-string}}
18052
18053@item @var{tuple} @expansion{}
18054@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
18055
18056@item @var{list} @expansion{}
18057@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
18058@var{result} ( "," @var{result} )* "]" }
18059
18060@item @var{stream-record} @expansion{}
18061@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
18062
18063@item @var{console-stream-output} @expansion{}
18064@code{"~" @var{c-string}}
18065
18066@item @var{target-stream-output} @expansion{}
18067@code{"@@" @var{c-string}}
18068
18069@item @var{log-stream-output} @expansion{}
18070@code{"&" @var{c-string}}
18071
18072@item @var{nl} @expansion{}
18073@code{CR | CR-LF}
18074
18075@item @var{token} @expansion{}
18076@emph{any sequence of digits}.
18077@end table
18078
18079@noindent
18080Notes:
18081
18082@itemize @bullet
18083@item
18084All output sequences end in a single line containing a period.
18085
18086@item
721c02de
VP
18087The @code{@var{token}} is from the corresponding request. Note that
18088for all async output, while the token is allowed by the grammar and
18089may be output by future versions of @value{GDBN} for select async
18090output messages, it is generally omitted. Frontends should treat
18091all async output as reporting general changes in the state of the
18092target and there should be no need to associate async output to any
18093prior command.
922fbb7b
AC
18094
18095@item
18096@cindex status output in @sc{gdb/mi}
18097@var{status-async-output} contains on-going status information about the
18098progress of a slow operation. It can be discarded. All status output is
18099prefixed by @samp{+}.
18100
18101@item
18102@cindex async output in @sc{gdb/mi}
18103@var{exec-async-output} contains asynchronous state change on the target
18104(stopped, started, disappeared). All async output is prefixed by
18105@samp{*}.
18106
18107@item
18108@cindex notify output in @sc{gdb/mi}
18109@var{notify-async-output} contains supplementary information that the
18110client should handle (e.g., a new breakpoint information). All notify
18111output is prefixed by @samp{=}.
18112
18113@item
18114@cindex console output in @sc{gdb/mi}
18115@var{console-stream-output} is output that should be displayed as is in the
18116console. It is the textual response to a CLI command. All the console
18117output is prefixed by @samp{~}.
18118
18119@item
18120@cindex target output in @sc{gdb/mi}
18121@var{target-stream-output} is the output produced by the target program.
18122All the target output is prefixed by @samp{@@}.
18123
18124@item
18125@cindex log output in @sc{gdb/mi}
18126@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
18127instance messages that should be displayed as part of an error log. All
18128the log output is prefixed by @samp{&}.
18129
18130@item
18131@cindex list output in @sc{gdb/mi}
18132New @sc{gdb/mi} commands should only output @var{lists} containing
18133@var{values}.
18134
18135
18136@end itemize
18137
18138@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
18139details about the various output records.
18140
922fbb7b
AC
18141@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18142@node GDB/MI Compatibility with CLI
18143@section @sc{gdb/mi} Compatibility with CLI
18144
18145@cindex compatibility, @sc{gdb/mi} and CLI
18146@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 18147
a2c02241
NR
18148For the developers convenience CLI commands can be entered directly,
18149but there may be some unexpected behaviour. For example, commands
18150that query the user will behave as if the user replied yes, breakpoint
18151command lists are not executed and some CLI commands, such as
18152@code{if}, @code{when} and @code{define}, prompt for further input with
18153@samp{>}, which is not valid MI output.
ef21caaf
NR
18154
18155This feature may be removed at some stage in the future and it is
a2c02241
NR
18156recommended that front ends use the @code{-interpreter-exec} command
18157(@pxref{-interpreter-exec}).
922fbb7b 18158
af6eff6f
NR
18159@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18160@node GDB/MI Development and Front Ends
18161@section @sc{gdb/mi} Development and Front Ends
18162@cindex @sc{gdb/mi} development
18163
18164The application which takes the MI output and presents the state of the
18165program being debugged to the user is called a @dfn{front end}.
18166
18167Although @sc{gdb/mi} is still incomplete, it is currently being used
18168by a variety of front ends to @value{GDBN}. This makes it difficult
18169to introduce new functionality without breaking existing usage. This
18170section tries to minimize the problems by describing how the protocol
18171might change.
18172
18173Some changes in MI need not break a carefully designed front end, and
18174for these the MI version will remain unchanged. The following is a
18175list of changes that may occur within one level, so front ends should
18176parse MI output in a way that can handle them:
18177
18178@itemize @bullet
18179@item
18180New MI commands may be added.
18181
18182@item
18183New fields may be added to the output of any MI command.
18184
36ece8b3
NR
18185@item
18186The range of values for fields with specified values, e.g.,
9f708cb2 18187@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 18188
af6eff6f
NR
18189@c The format of field's content e.g type prefix, may change so parse it
18190@c at your own risk. Yes, in general?
18191
18192@c The order of fields may change? Shouldn't really matter but it might
18193@c resolve inconsistencies.
18194@end itemize
18195
18196If the changes are likely to break front ends, the MI version level
18197will be increased by one. This will allow the front end to parse the
18198output according to the MI version. Apart from mi0, new versions of
18199@value{GDBN} will not support old versions of MI and it will be the
18200responsibility of the front end to work with the new one.
18201
18202@c Starting with mi3, add a new command -mi-version that prints the MI
18203@c version?
18204
18205The best way to avoid unexpected changes in MI that might break your front
18206end is to make your project known to @value{GDBN} developers and
7a9a6b69 18207follow development on @email{gdb@@sourceware.org} and
fa0f268d 18208@email{gdb-patches@@sourceware.org}.
af6eff6f
NR
18209@cindex mailing lists
18210
922fbb7b
AC
18211@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18212@node GDB/MI Output Records
18213@section @sc{gdb/mi} Output Records
18214
18215@menu
18216* GDB/MI Result Records::
18217* GDB/MI Stream Records::
82f68b1c 18218* GDB/MI Async Records::
922fbb7b
AC
18219@end menu
18220
18221@node GDB/MI Result Records
18222@subsection @sc{gdb/mi} Result Records
18223
18224@cindex result records in @sc{gdb/mi}
18225@cindex @sc{gdb/mi}, result records
18226In addition to a number of out-of-band notifications, the response to a
18227@sc{gdb/mi} command includes one of the following result indications:
18228
18229@table @code
18230@findex ^done
18231@item "^done" [ "," @var{results} ]
18232The synchronous operation was successful, @code{@var{results}} are the return
18233values.
18234
18235@item "^running"
18236@findex ^running
18237@c Is this one correct? Should it be an out-of-band notification?
18238The asynchronous operation was successfully started. The target is
18239running.
18240
ef21caaf
NR
18241@item "^connected"
18242@findex ^connected
3f94c067 18243@value{GDBN} has connected to a remote target.
ef21caaf 18244
922fbb7b
AC
18245@item "^error" "," @var{c-string}
18246@findex ^error
18247The operation failed. The @code{@var{c-string}} contains the corresponding
18248error message.
ef21caaf
NR
18249
18250@item "^exit"
18251@findex ^exit
3f94c067 18252@value{GDBN} has terminated.
ef21caaf 18253
922fbb7b
AC
18254@end table
18255
18256@node GDB/MI Stream Records
18257@subsection @sc{gdb/mi} Stream Records
18258
18259@cindex @sc{gdb/mi}, stream records
18260@cindex stream records in @sc{gdb/mi}
18261@value{GDBN} internally maintains a number of output streams: the console, the
18262target, and the log. The output intended for each of these streams is
18263funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18264
18265Each stream record begins with a unique @dfn{prefix character} which
18266identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18267Syntax}). In addition to the prefix, each stream record contains a
18268@code{@var{string-output}}. This is either raw text (with an implicit new
18269line) or a quoted C string (which does not contain an implicit newline).
18270
18271@table @code
18272@item "~" @var{string-output}
18273The console output stream contains text that should be displayed in the
18274CLI console window. It contains the textual responses to CLI commands.
18275
18276@item "@@" @var{string-output}
18277The target output stream contains any textual output from the running
ef21caaf
NR
18278target. This is only present when GDB's event loop is truly
18279asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18280
18281@item "&" @var{string-output}
18282The log stream contains debugging messages being produced by @value{GDBN}'s
18283internals.
18284@end table
18285
82f68b1c
VP
18286@node GDB/MI Async Records
18287@subsection @sc{gdb/mi} Async Records
922fbb7b 18288
82f68b1c
VP
18289@cindex async records in @sc{gdb/mi}
18290@cindex @sc{gdb/mi}, async records
18291@dfn{Async} records are used to notify the @sc{gdb/mi} client of
922fbb7b 18292additional changes that have occurred. Those changes can either be a
82f68b1c 18293consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
922fbb7b
AC
18294target activity (e.g., target stopped).
18295
8eb41542 18296The following is the list of possible async records:
922fbb7b
AC
18297
18298@table @code
034dad6f 18299
82f68b1c
VP
18300@item *stopped,reason="@var{reason}"
18301The target has stopped. The @var{reason} field can have one of the
18302following values:
034dad6f
BR
18303
18304@table @code
18305@item breakpoint-hit
18306A breakpoint was reached.
18307@item watchpoint-trigger
18308A watchpoint was triggered.
18309@item read-watchpoint-trigger
18310A read watchpoint was triggered.
18311@item access-watchpoint-trigger
18312An access watchpoint was triggered.
18313@item function-finished
18314An -exec-finish or similar CLI command was accomplished.
18315@item location-reached
18316An -exec-until or similar CLI command was accomplished.
18317@item watchpoint-scope
18318A watchpoint has gone out of scope.
18319@item end-stepping-range
18320An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18321similar CLI command was accomplished.
18322@item exited-signalled
18323The inferior exited because of a signal.
18324@item exited
18325The inferior exited.
18326@item exited-normally
18327The inferior exited normally.
18328@item signal-received
18329A signal was received by the inferior.
922fbb7b
AC
18330@end table
18331
82f68b1c
VP
18332@item =thread-created,id="@var{id}"
18333@itemx =thread-exited,id="@var{id}"
18334A thread either was created, or has exited. The @var{id} field
18335contains the @value{GDBN} identifier of the thread.
18336@end table
18337
18338
922fbb7b 18339
ef21caaf
NR
18340@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18341@node GDB/MI Simple Examples
18342@section Simple Examples of @sc{gdb/mi} Interaction
18343@cindex @sc{gdb/mi}, simple examples
18344
18345This subsection presents several simple examples of interaction using
18346the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18347following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18348the output received from @sc{gdb/mi}.
18349
d3e8051b 18350Note the line breaks shown in the examples are here only for
ef21caaf
NR
18351readability, they don't appear in the real output.
18352
79a6e687 18353@subheading Setting a Breakpoint
ef21caaf
NR
18354
18355Setting a breakpoint generates synchronous output which contains detailed
18356information of the breakpoint.
18357
18358@smallexample
18359-> -break-insert main
18360<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18361 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18362 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18363<- (gdb)
18364@end smallexample
18365
18366@subheading Program Execution
18367
18368Program execution generates asynchronous records and MI gives the
18369reason that execution stopped.
18370
18371@smallexample
18372-> -exec-run
18373<- ^running
18374<- (gdb)
a47ec5fe 18375<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18376 frame=@{addr="0x08048564",func="main",
18377 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18378 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18379<- (gdb)
18380-> -exec-continue
18381<- ^running
18382<- (gdb)
18383<- *stopped,reason="exited-normally"
18384<- (gdb)
18385@end smallexample
18386
3f94c067 18387@subheading Quitting @value{GDBN}
ef21caaf 18388
3f94c067 18389Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18390
18391@smallexample
18392-> (gdb)
18393<- -gdb-exit
18394<- ^exit
18395@end smallexample
18396
a2c02241 18397@subheading A Bad Command
ef21caaf
NR
18398
18399Here's what happens if you pass a non-existent command:
18400
18401@smallexample
18402-> -rubbish
18403<- ^error,msg="Undefined MI command: rubbish"
594fe323 18404<- (gdb)
ef21caaf
NR
18405@end smallexample
18406
18407
922fbb7b
AC
18408@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18409@node GDB/MI Command Description Format
18410@section @sc{gdb/mi} Command Description Format
18411
18412The remaining sections describe blocks of commands. Each block of
18413commands is laid out in a fashion similar to this section.
18414
922fbb7b
AC
18415@subheading Motivation
18416
18417The motivation for this collection of commands.
18418
18419@subheading Introduction
18420
18421A brief introduction to this collection of commands as a whole.
18422
18423@subheading Commands
18424
18425For each command in the block, the following is described:
18426
18427@subsubheading Synopsis
18428
18429@smallexample
18430 -command @var{args}@dots{}
18431@end smallexample
18432
922fbb7b
AC
18433@subsubheading Result
18434
265eeb58 18435@subsubheading @value{GDBN} Command
922fbb7b 18436
265eeb58 18437The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18438
18439@subsubheading Example
18440
ef21caaf
NR
18441Example(s) formatted for readability. Some of the described commands have
18442not been implemented yet and these are labeled N.A.@: (not available).
18443
18444
922fbb7b 18445@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18446@node GDB/MI Breakpoint Commands
18447@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18448
18449@cindex breakpoint commands for @sc{gdb/mi}
18450@cindex @sc{gdb/mi}, breakpoint commands
18451This section documents @sc{gdb/mi} commands for manipulating
18452breakpoints.
18453
18454@subheading The @code{-break-after} Command
18455@findex -break-after
18456
18457@subsubheading Synopsis
18458
18459@smallexample
18460 -break-after @var{number} @var{count}
18461@end smallexample
18462
18463The breakpoint number @var{number} is not in effect until it has been
18464hit @var{count} times. To see how this is reflected in the output of
18465the @samp{-break-list} command, see the description of the
18466@samp{-break-list} command below.
18467
18468@subsubheading @value{GDBN} Command
18469
18470The corresponding @value{GDBN} command is @samp{ignore}.
18471
18472@subsubheading Example
18473
18474@smallexample
594fe323 18475(gdb)
922fbb7b 18476-break-insert main
a47ec5fe
AR
18477^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18478enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18479fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18480(gdb)
922fbb7b
AC
18481-break-after 1 3
18482~
18483^done
594fe323 18484(gdb)
922fbb7b
AC
18485-break-list
18486^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18487hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18488@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18489@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18490@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18491@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18492@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18493body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18494addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18495line="5",times="0",ignore="3"@}]@}
594fe323 18496(gdb)
922fbb7b
AC
18497@end smallexample
18498
18499@ignore
18500@subheading The @code{-break-catch} Command
18501@findex -break-catch
18502
18503@subheading The @code{-break-commands} Command
18504@findex -break-commands
18505@end ignore
18506
18507
18508@subheading The @code{-break-condition} Command
18509@findex -break-condition
18510
18511@subsubheading Synopsis
18512
18513@smallexample
18514 -break-condition @var{number} @var{expr}
18515@end smallexample
18516
18517Breakpoint @var{number} will stop the program only if the condition in
18518@var{expr} is true. The condition becomes part of the
18519@samp{-break-list} output (see the description of the @samp{-break-list}
18520command below).
18521
18522@subsubheading @value{GDBN} Command
18523
18524The corresponding @value{GDBN} command is @samp{condition}.
18525
18526@subsubheading Example
18527
18528@smallexample
594fe323 18529(gdb)
922fbb7b
AC
18530-break-condition 1 1
18531^done
594fe323 18532(gdb)
922fbb7b
AC
18533-break-list
18534^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18535hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18536@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18537@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18538@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18539@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18540@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18541body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18542addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18543line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18544(gdb)
922fbb7b
AC
18545@end smallexample
18546
18547@subheading The @code{-break-delete} Command
18548@findex -break-delete
18549
18550@subsubheading Synopsis
18551
18552@smallexample
18553 -break-delete ( @var{breakpoint} )+
18554@end smallexample
18555
18556Delete the breakpoint(s) whose number(s) are specified in the argument
18557list. This is obviously reflected in the breakpoint list.
18558
79a6e687 18559@subsubheading @value{GDBN} Command
922fbb7b
AC
18560
18561The corresponding @value{GDBN} command is @samp{delete}.
18562
18563@subsubheading Example
18564
18565@smallexample
594fe323 18566(gdb)
922fbb7b
AC
18567-break-delete 1
18568^done
594fe323 18569(gdb)
922fbb7b
AC
18570-break-list
18571^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18572hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18573@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18574@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18575@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18576@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18577@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18578body=[]@}
594fe323 18579(gdb)
922fbb7b
AC
18580@end smallexample
18581
18582@subheading The @code{-break-disable} Command
18583@findex -break-disable
18584
18585@subsubheading Synopsis
18586
18587@smallexample
18588 -break-disable ( @var{breakpoint} )+
18589@end smallexample
18590
18591Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18592break list is now set to @samp{n} for the named @var{breakpoint}(s).
18593
18594@subsubheading @value{GDBN} Command
18595
18596The corresponding @value{GDBN} command is @samp{disable}.
18597
18598@subsubheading Example
18599
18600@smallexample
594fe323 18601(gdb)
922fbb7b
AC
18602-break-disable 2
18603^done
594fe323 18604(gdb)
922fbb7b
AC
18605-break-list
18606^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18607hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18608@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18609@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18610@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18611@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18612@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18613body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18614addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18615line="5",times="0"@}]@}
594fe323 18616(gdb)
922fbb7b
AC
18617@end smallexample
18618
18619@subheading The @code{-break-enable} Command
18620@findex -break-enable
18621
18622@subsubheading Synopsis
18623
18624@smallexample
18625 -break-enable ( @var{breakpoint} )+
18626@end smallexample
18627
18628Enable (previously disabled) @var{breakpoint}(s).
18629
18630@subsubheading @value{GDBN} Command
18631
18632The corresponding @value{GDBN} command is @samp{enable}.
18633
18634@subsubheading Example
18635
18636@smallexample
594fe323 18637(gdb)
922fbb7b
AC
18638-break-enable 2
18639^done
594fe323 18640(gdb)
922fbb7b
AC
18641-break-list
18642^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18643hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18644@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18645@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18646@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18647@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18648@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18649body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18650addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18651line="5",times="0"@}]@}
594fe323 18652(gdb)
922fbb7b
AC
18653@end smallexample
18654
18655@subheading The @code{-break-info} Command
18656@findex -break-info
18657
18658@subsubheading Synopsis
18659
18660@smallexample
18661 -break-info @var{breakpoint}
18662@end smallexample
18663
18664@c REDUNDANT???
18665Get information about a single breakpoint.
18666
79a6e687 18667@subsubheading @value{GDBN} Command
922fbb7b
AC
18668
18669The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18670
18671@subsubheading Example
18672N.A.
18673
18674@subheading The @code{-break-insert} Command
18675@findex -break-insert
18676
18677@subsubheading Synopsis
18678
18679@smallexample
afe8ab22 18680 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18681 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18682 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18683@end smallexample
18684
18685@noindent
afe8ab22 18686If specified, @var{location}, can be one of:
922fbb7b
AC
18687
18688@itemize @bullet
18689@item function
18690@c @item +offset
18691@c @item -offset
18692@c @item linenum
18693@item filename:linenum
18694@item filename:function
18695@item *address
18696@end itemize
18697
18698The possible optional parameters of this command are:
18699
18700@table @samp
18701@item -t
948d5102 18702Insert a temporary breakpoint.
922fbb7b
AC
18703@item -h
18704Insert a hardware breakpoint.
18705@item -c @var{condition}
18706Make the breakpoint conditional on @var{condition}.
18707@item -i @var{ignore-count}
18708Initialize the @var{ignore-count}.
afe8ab22
VP
18709@item -f
18710If @var{location} cannot be parsed (for example if it
18711refers to unknown files or functions), create a pending
18712breakpoint. Without this flag, @value{GDBN} will report
18713an error, and won't create a breakpoint, if @var{location}
18714cannot be parsed.
922fbb7b
AC
18715@end table
18716
18717@subsubheading Result
18718
18719The result is in the form:
18720
18721@smallexample
948d5102
NR
18722^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18723enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18724fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18725times="@var{times}"@}
922fbb7b
AC
18726@end smallexample
18727
18728@noindent
948d5102
NR
18729where @var{number} is the @value{GDBN} number for this breakpoint,
18730@var{funcname} is the name of the function where the breakpoint was
18731inserted, @var{filename} is the name of the source file which contains
18732this function, @var{lineno} is the source line number within that file
18733and @var{times} the number of times that the breakpoint has been hit
18734(always 0 for -break-insert but may be greater for -break-info or -break-list
18735which use the same output).
922fbb7b
AC
18736
18737Note: this format is open to change.
18738@c An out-of-band breakpoint instead of part of the result?
18739
18740@subsubheading @value{GDBN} Command
18741
18742The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18743@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18744
18745@subsubheading Example
18746
18747@smallexample
594fe323 18748(gdb)
922fbb7b 18749-break-insert main
948d5102
NR
18750^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18751fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18752(gdb)
922fbb7b 18753-break-insert -t foo
948d5102
NR
18754^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18755fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18756(gdb)
922fbb7b
AC
18757-break-list
18758^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18759hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18760@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18761@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18762@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18763@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18764@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18765body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18766addr="0x0001072c", func="main",file="recursive2.c",
18767fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18768bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18769addr="0x00010774",func="foo",file="recursive2.c",
18770fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18771(gdb)
922fbb7b
AC
18772-break-insert -r foo.*
18773~int foo(int, int);
948d5102
NR
18774^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18775"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18776(gdb)
922fbb7b
AC
18777@end smallexample
18778
18779@subheading The @code{-break-list} Command
18780@findex -break-list
18781
18782@subsubheading Synopsis
18783
18784@smallexample
18785 -break-list
18786@end smallexample
18787
18788Displays the list of inserted breakpoints, showing the following fields:
18789
18790@table @samp
18791@item Number
18792number of the breakpoint
18793@item Type
18794type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18795@item Disposition
18796should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18797or @samp{nokeep}
18798@item Enabled
18799is the breakpoint enabled or no: @samp{y} or @samp{n}
18800@item Address
18801memory location at which the breakpoint is set
18802@item What
18803logical location of the breakpoint, expressed by function name, file
18804name, line number
18805@item Times
18806number of times the breakpoint has been hit
18807@end table
18808
18809If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18810@code{body} field is an empty list.
18811
18812@subsubheading @value{GDBN} Command
18813
18814The corresponding @value{GDBN} command is @samp{info break}.
18815
18816@subsubheading Example
18817
18818@smallexample
594fe323 18819(gdb)
922fbb7b
AC
18820-break-list
18821^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18822hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18823@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18824@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18825@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18826@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18827@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18828body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18829addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18830bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18831addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18832line="13",times="0"@}]@}
594fe323 18833(gdb)
922fbb7b
AC
18834@end smallexample
18835
18836Here's an example of the result when there are no breakpoints:
18837
18838@smallexample
594fe323 18839(gdb)
922fbb7b
AC
18840-break-list
18841^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18842hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18843@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18844@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18845@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18846@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18847@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18848body=[]@}
594fe323 18849(gdb)
922fbb7b
AC
18850@end smallexample
18851
18852@subheading The @code{-break-watch} Command
18853@findex -break-watch
18854
18855@subsubheading Synopsis
18856
18857@smallexample
18858 -break-watch [ -a | -r ]
18859@end smallexample
18860
18861Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18862@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18863read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18864option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18865trigger only when the memory location is accessed for reading. Without
18866either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18867i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18868@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18869
18870Note that @samp{-break-list} will report a single list of watchpoints and
18871breakpoints inserted.
18872
18873@subsubheading @value{GDBN} Command
18874
18875The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18876@samp{rwatch}.
18877
18878@subsubheading Example
18879
18880Setting a watchpoint on a variable in the @code{main} function:
18881
18882@smallexample
594fe323 18883(gdb)
922fbb7b
AC
18884-break-watch x
18885^done,wpt=@{number="2",exp="x"@}
594fe323 18886(gdb)
922fbb7b
AC
18887-exec-continue
18888^running
0869d01b
NR
18889(gdb)
18890*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18891value=@{old="-268439212",new="55"@},
76ff342d 18892frame=@{func="main",args=[],file="recursive2.c",
948d5102 18893fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18894(gdb)
922fbb7b
AC
18895@end smallexample
18896
18897Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18898the program execution twice: first for the variable changing value, then
18899for the watchpoint going out of scope.
18900
18901@smallexample
594fe323 18902(gdb)
922fbb7b
AC
18903-break-watch C
18904^done,wpt=@{number="5",exp="C"@}
594fe323 18905(gdb)
922fbb7b
AC
18906-exec-continue
18907^running
0869d01b
NR
18908(gdb)
18909*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18910wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18911frame=@{func="callee4",args=[],
76ff342d
DJ
18912file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18913fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18914(gdb)
922fbb7b
AC
18915-exec-continue
18916^running
0869d01b
NR
18917(gdb)
18918*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18919frame=@{func="callee3",args=[@{name="strarg",
18920value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18921file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18922fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18923(gdb)
922fbb7b
AC
18924@end smallexample
18925
18926Listing breakpoints and watchpoints, at different points in the program
18927execution. Note that once the watchpoint goes out of scope, it is
18928deleted.
18929
18930@smallexample
594fe323 18931(gdb)
922fbb7b
AC
18932-break-watch C
18933^done,wpt=@{number="2",exp="C"@}
594fe323 18934(gdb)
922fbb7b
AC
18935-break-list
18936^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18937hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18938@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18939@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18940@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18941@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18942@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18943body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18944addr="0x00010734",func="callee4",
948d5102
NR
18945file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18946fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18947bkpt=@{number="2",type="watchpoint",disp="keep",
18948enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18949(gdb)
922fbb7b
AC
18950-exec-continue
18951^running
0869d01b
NR
18952(gdb)
18953*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18954value=@{old="-276895068",new="3"@},
18955frame=@{func="callee4",args=[],
76ff342d
DJ
18956file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18957fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18958(gdb)
922fbb7b
AC
18959-break-list
18960^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18961hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18962@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18963@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18964@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18965@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18966@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18967body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18968addr="0x00010734",func="callee4",
948d5102
NR
18969file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18970fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18971bkpt=@{number="2",type="watchpoint",disp="keep",
18972enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18973(gdb)
922fbb7b
AC
18974-exec-continue
18975^running
18976^done,reason="watchpoint-scope",wpnum="2",
18977frame=@{func="callee3",args=[@{name="strarg",
18978value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18979file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18980fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18981(gdb)
922fbb7b
AC
18982-break-list
18983^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18984hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18985@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18986@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18987@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18988@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18989@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18990body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18991addr="0x00010734",func="callee4",
948d5102
NR
18992file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18993fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18994times="1"@}]@}
594fe323 18995(gdb)
922fbb7b
AC
18996@end smallexample
18997
18998@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18999@node GDB/MI Program Context
19000@section @sc{gdb/mi} Program Context
922fbb7b 19001
a2c02241
NR
19002@subheading The @code{-exec-arguments} Command
19003@findex -exec-arguments
922fbb7b 19004
922fbb7b
AC
19005
19006@subsubheading Synopsis
19007
19008@smallexample
a2c02241 19009 -exec-arguments @var{args}
922fbb7b
AC
19010@end smallexample
19011
a2c02241
NR
19012Set the inferior program arguments, to be used in the next
19013@samp{-exec-run}.
922fbb7b 19014
a2c02241 19015@subsubheading @value{GDBN} Command
922fbb7b 19016
a2c02241 19017The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 19018
a2c02241 19019@subsubheading Example
922fbb7b 19020
a2c02241
NR
19021@c FIXME!
19022Don't have one around.
922fbb7b 19023
a2c02241
NR
19024
19025@subheading The @code{-exec-show-arguments} Command
19026@findex -exec-show-arguments
19027
19028@subsubheading Synopsis
19029
19030@smallexample
19031 -exec-show-arguments
19032@end smallexample
19033
19034Print the arguments of the program.
922fbb7b
AC
19035
19036@subsubheading @value{GDBN} Command
19037
a2c02241 19038The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
19039
19040@subsubheading Example
a2c02241 19041N.A.
922fbb7b 19042
922fbb7b 19043
a2c02241
NR
19044@subheading The @code{-environment-cd} Command
19045@findex -environment-cd
922fbb7b 19046
a2c02241 19047@subsubheading Synopsis
922fbb7b
AC
19048
19049@smallexample
a2c02241 19050 -environment-cd @var{pathdir}
922fbb7b
AC
19051@end smallexample
19052
a2c02241 19053Set @value{GDBN}'s working directory.
922fbb7b 19054
a2c02241 19055@subsubheading @value{GDBN} Command
922fbb7b 19056
a2c02241
NR
19057The corresponding @value{GDBN} command is @samp{cd}.
19058
19059@subsubheading Example
922fbb7b
AC
19060
19061@smallexample
594fe323 19062(gdb)
a2c02241
NR
19063-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19064^done
594fe323 19065(gdb)
922fbb7b
AC
19066@end smallexample
19067
19068
a2c02241
NR
19069@subheading The @code{-environment-directory} Command
19070@findex -environment-directory
922fbb7b
AC
19071
19072@subsubheading Synopsis
19073
19074@smallexample
a2c02241 19075 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19076@end smallexample
19077
a2c02241
NR
19078Add directories @var{pathdir} to beginning of search path for source files.
19079If the @samp{-r} option is used, the search path is reset to the default
19080search path. If directories @var{pathdir} are supplied in addition to the
19081@samp{-r} option, the search path is first reset and then addition
19082occurs as normal.
19083Multiple directories may be specified, separated by blanks. Specifying
19084multiple directories in a single command
19085results in the directories added to the beginning of the
19086search path in the same order they were presented in the command.
19087If blanks are needed as
19088part of a directory name, double-quotes should be used around
19089the name. In the command output, the path will show up separated
d3e8051b 19090by the system directory-separator character. The directory-separator
a2c02241
NR
19091character must not be used
19092in any directory name.
19093If no directories are specified, the current search path is displayed.
922fbb7b
AC
19094
19095@subsubheading @value{GDBN} Command
19096
a2c02241 19097The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
19098
19099@subsubheading Example
19100
922fbb7b 19101@smallexample
594fe323 19102(gdb)
a2c02241
NR
19103-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19104^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19105(gdb)
a2c02241
NR
19106-environment-directory ""
19107^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19108(gdb)
a2c02241
NR
19109-environment-directory -r /home/jjohnstn/src/gdb /usr/src
19110^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 19111(gdb)
a2c02241
NR
19112-environment-directory -r
19113^done,source-path="$cdir:$cwd"
594fe323 19114(gdb)
922fbb7b
AC
19115@end smallexample
19116
19117
a2c02241
NR
19118@subheading The @code{-environment-path} Command
19119@findex -environment-path
922fbb7b
AC
19120
19121@subsubheading Synopsis
19122
19123@smallexample
a2c02241 19124 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19125@end smallexample
19126
a2c02241
NR
19127Add directories @var{pathdir} to beginning of search path for object files.
19128If the @samp{-r} option is used, the search path is reset to the original
19129search path that existed at gdb start-up. If directories @var{pathdir} are
19130supplied in addition to the
19131@samp{-r} option, the search path is first reset and then addition
19132occurs as normal.
19133Multiple directories may be specified, separated by blanks. Specifying
19134multiple directories in a single command
19135results in the directories added to the beginning of the
19136search path in the same order they were presented in the command.
19137If blanks are needed as
19138part of a directory name, double-quotes should be used around
19139the name. In the command output, the path will show up separated
d3e8051b 19140by the system directory-separator character. The directory-separator
a2c02241
NR
19141character must not be used
19142in any directory name.
19143If no directories are specified, the current path is displayed.
19144
922fbb7b
AC
19145
19146@subsubheading @value{GDBN} Command
19147
a2c02241 19148The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
19149
19150@subsubheading Example
19151
922fbb7b 19152@smallexample
594fe323 19153(gdb)
a2c02241
NR
19154-environment-path
19155^done,path="/usr/bin"
594fe323 19156(gdb)
a2c02241
NR
19157-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
19158^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 19159(gdb)
a2c02241
NR
19160-environment-path -r /usr/local/bin
19161^done,path="/usr/local/bin:/usr/bin"
594fe323 19162(gdb)
922fbb7b
AC
19163@end smallexample
19164
19165
a2c02241
NR
19166@subheading The @code{-environment-pwd} Command
19167@findex -environment-pwd
922fbb7b
AC
19168
19169@subsubheading Synopsis
19170
19171@smallexample
a2c02241 19172 -environment-pwd
922fbb7b
AC
19173@end smallexample
19174
a2c02241 19175Show the current working directory.
922fbb7b 19176
79a6e687 19177@subsubheading @value{GDBN} Command
922fbb7b 19178
a2c02241 19179The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
19180
19181@subsubheading Example
19182
922fbb7b 19183@smallexample
594fe323 19184(gdb)
a2c02241
NR
19185-environment-pwd
19186^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 19187(gdb)
922fbb7b
AC
19188@end smallexample
19189
a2c02241
NR
19190@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19191@node GDB/MI Thread Commands
19192@section @sc{gdb/mi} Thread Commands
19193
19194
19195@subheading The @code{-thread-info} Command
19196@findex -thread-info
922fbb7b
AC
19197
19198@subsubheading Synopsis
19199
19200@smallexample
8e8901c5 19201 -thread-info [ @var{thread-id} ]
922fbb7b
AC
19202@end smallexample
19203
8e8901c5
VP
19204Reports information about either a specific thread, if
19205the @var{thread-id} parameter is present, or about all
19206threads. When printing information about all threads,
19207also reports the current thread.
19208
79a6e687 19209@subsubheading @value{GDBN} Command
922fbb7b 19210
8e8901c5
VP
19211The @samp{info thread} command prints the same information
19212about all threads.
922fbb7b
AC
19213
19214@subsubheading Example
922fbb7b
AC
19215
19216@smallexample
8e8901c5
VP
19217-thread-info
19218^done,threads=[
19219@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19220 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19221@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19222 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19223 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19224current-thread-id="1"
19225(gdb)
922fbb7b
AC
19226@end smallexample
19227
a2c02241
NR
19228@subheading The @code{-thread-list-ids} Command
19229@findex -thread-list-ids
922fbb7b 19230
a2c02241 19231@subsubheading Synopsis
922fbb7b 19232
a2c02241
NR
19233@smallexample
19234 -thread-list-ids
19235@end smallexample
922fbb7b 19236
a2c02241
NR
19237Produces a list of the currently known @value{GDBN} thread ids. At the
19238end of the list it also prints the total number of such threads.
922fbb7b
AC
19239
19240@subsubheading @value{GDBN} Command
19241
a2c02241 19242Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19243
19244@subsubheading Example
19245
a2c02241 19246No threads present, besides the main process:
922fbb7b
AC
19247
19248@smallexample
594fe323 19249(gdb)
a2c02241
NR
19250-thread-list-ids
19251^done,thread-ids=@{@},number-of-threads="0"
594fe323 19252(gdb)
922fbb7b
AC
19253@end smallexample
19254
922fbb7b 19255
a2c02241 19256Several threads:
922fbb7b
AC
19257
19258@smallexample
594fe323 19259(gdb)
a2c02241
NR
19260-thread-list-ids
19261^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19262number-of-threads="3"
594fe323 19263(gdb)
922fbb7b
AC
19264@end smallexample
19265
a2c02241
NR
19266
19267@subheading The @code{-thread-select} Command
19268@findex -thread-select
922fbb7b
AC
19269
19270@subsubheading Synopsis
19271
19272@smallexample
a2c02241 19273 -thread-select @var{threadnum}
922fbb7b
AC
19274@end smallexample
19275
a2c02241
NR
19276Make @var{threadnum} the current thread. It prints the number of the new
19277current thread, and the topmost frame for that thread.
922fbb7b
AC
19278
19279@subsubheading @value{GDBN} Command
19280
a2c02241 19281The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19282
19283@subsubheading Example
922fbb7b
AC
19284
19285@smallexample
594fe323 19286(gdb)
a2c02241
NR
19287-exec-next
19288^running
594fe323 19289(gdb)
a2c02241
NR
19290*stopped,reason="end-stepping-range",thread-id="2",line="187",
19291file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19292(gdb)
a2c02241
NR
19293-thread-list-ids
19294^done,
19295thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19296number-of-threads="3"
594fe323 19297(gdb)
a2c02241
NR
19298-thread-select 3
19299^done,new-thread-id="3",
19300frame=@{level="0",func="vprintf",
19301args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19302@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19303(gdb)
922fbb7b
AC
19304@end smallexample
19305
a2c02241
NR
19306@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19307@node GDB/MI Program Execution
19308@section @sc{gdb/mi} Program Execution
922fbb7b 19309
ef21caaf 19310These are the asynchronous commands which generate the out-of-band
3f94c067 19311record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19312asynchronously with remote targets and this interaction is mimicked in
19313other cases.
922fbb7b 19314
922fbb7b
AC
19315@subheading The @code{-exec-continue} Command
19316@findex -exec-continue
19317
19318@subsubheading Synopsis
19319
19320@smallexample
19321 -exec-continue
19322@end smallexample
19323
ef21caaf
NR
19324Resumes the execution of the inferior program until a breakpoint is
19325encountered, or until the inferior exits.
922fbb7b
AC
19326
19327@subsubheading @value{GDBN} Command
19328
19329The corresponding @value{GDBN} corresponding is @samp{continue}.
19330
19331@subsubheading Example
19332
19333@smallexample
19334-exec-continue
19335^running
594fe323 19336(gdb)
922fbb7b 19337@@Hello world
a47ec5fe
AR
19338*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19339func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19340line="13"@}
594fe323 19341(gdb)
922fbb7b
AC
19342@end smallexample
19343
19344
19345@subheading The @code{-exec-finish} Command
19346@findex -exec-finish
19347
19348@subsubheading Synopsis
19349
19350@smallexample
19351 -exec-finish
19352@end smallexample
19353
ef21caaf
NR
19354Resumes the execution of the inferior program until the current
19355function is exited. Displays the results returned by the function.
922fbb7b
AC
19356
19357@subsubheading @value{GDBN} Command
19358
19359The corresponding @value{GDBN} command is @samp{finish}.
19360
19361@subsubheading Example
19362
19363Function returning @code{void}.
19364
19365@smallexample
19366-exec-finish
19367^running
594fe323 19368(gdb)
922fbb7b
AC
19369@@hello from foo
19370*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19371file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19372(gdb)
922fbb7b
AC
19373@end smallexample
19374
19375Function returning other than @code{void}. The name of the internal
19376@value{GDBN} variable storing the result is printed, together with the
19377value itself.
19378
19379@smallexample
19380-exec-finish
19381^running
594fe323 19382(gdb)
922fbb7b
AC
19383*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19384args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19385file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19386gdb-result-var="$1",return-value="0"
594fe323 19387(gdb)
922fbb7b
AC
19388@end smallexample
19389
19390
19391@subheading The @code{-exec-interrupt} Command
19392@findex -exec-interrupt
19393
19394@subsubheading Synopsis
19395
19396@smallexample
19397 -exec-interrupt
19398@end smallexample
19399
ef21caaf
NR
19400Interrupts the background execution of the target. Note how the token
19401associated with the stop message is the one for the execution command
19402that has been interrupted. The token for the interrupt itself only
19403appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19404interrupt a non-running program, an error message will be printed.
19405
19406@subsubheading @value{GDBN} Command
19407
19408The corresponding @value{GDBN} command is @samp{interrupt}.
19409
19410@subsubheading Example
19411
19412@smallexample
594fe323 19413(gdb)
922fbb7b
AC
19414111-exec-continue
19415111^running
19416
594fe323 19417(gdb)
922fbb7b
AC
19418222-exec-interrupt
19419222^done
594fe323 19420(gdb)
922fbb7b 19421111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19422frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19423fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19424(gdb)
922fbb7b 19425
594fe323 19426(gdb)
922fbb7b
AC
19427-exec-interrupt
19428^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19429(gdb)
922fbb7b
AC
19430@end smallexample
19431
19432
19433@subheading The @code{-exec-next} Command
19434@findex -exec-next
19435
19436@subsubheading Synopsis
19437
19438@smallexample
19439 -exec-next
19440@end smallexample
19441
ef21caaf
NR
19442Resumes execution of the inferior program, stopping when the beginning
19443of the next source line is reached.
922fbb7b
AC
19444
19445@subsubheading @value{GDBN} Command
19446
19447The corresponding @value{GDBN} command is @samp{next}.
19448
19449@subsubheading Example
19450
19451@smallexample
19452-exec-next
19453^running
594fe323 19454(gdb)
922fbb7b 19455*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19456(gdb)
922fbb7b
AC
19457@end smallexample
19458
19459
19460@subheading The @code{-exec-next-instruction} Command
19461@findex -exec-next-instruction
19462
19463@subsubheading Synopsis
19464
19465@smallexample
19466 -exec-next-instruction
19467@end smallexample
19468
ef21caaf
NR
19469Executes one machine instruction. If the instruction is a function
19470call, continues until the function returns. If the program stops at an
19471instruction in the middle of a source line, the address will be
19472printed as well.
922fbb7b
AC
19473
19474@subsubheading @value{GDBN} Command
19475
19476The corresponding @value{GDBN} command is @samp{nexti}.
19477
19478@subsubheading Example
19479
19480@smallexample
594fe323 19481(gdb)
922fbb7b
AC
19482-exec-next-instruction
19483^running
19484
594fe323 19485(gdb)
922fbb7b
AC
19486*stopped,reason="end-stepping-range",
19487addr="0x000100d4",line="5",file="hello.c"
594fe323 19488(gdb)
922fbb7b
AC
19489@end smallexample
19490
19491
19492@subheading The @code{-exec-return} Command
19493@findex -exec-return
19494
19495@subsubheading Synopsis
19496
19497@smallexample
19498 -exec-return
19499@end smallexample
19500
19501Makes current function return immediately. Doesn't execute the inferior.
19502Displays the new current frame.
19503
19504@subsubheading @value{GDBN} Command
19505
19506The corresponding @value{GDBN} command is @samp{return}.
19507
19508@subsubheading Example
19509
19510@smallexample
594fe323 19511(gdb)
922fbb7b
AC
19512200-break-insert callee4
19513200^done,bkpt=@{number="1",addr="0x00010734",
19514file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19515(gdb)
922fbb7b
AC
19516000-exec-run
19517000^running
594fe323 19518(gdb)
a47ec5fe 19519000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19520frame=@{func="callee4",args=[],
76ff342d
DJ
19521file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19522fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19523(gdb)
922fbb7b
AC
19524205-break-delete
19525205^done
594fe323 19526(gdb)
922fbb7b
AC
19527111-exec-return
19528111^done,frame=@{level="0",func="callee3",
19529args=[@{name="strarg",
19530value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19531file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19532fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19533(gdb)
922fbb7b
AC
19534@end smallexample
19535
19536
19537@subheading The @code{-exec-run} Command
19538@findex -exec-run
19539
19540@subsubheading Synopsis
19541
19542@smallexample
19543 -exec-run
19544@end smallexample
19545
ef21caaf
NR
19546Starts execution of the inferior from the beginning. The inferior
19547executes until either a breakpoint is encountered or the program
19548exits. In the latter case the output will include an exit code, if
19549the program has exited exceptionally.
922fbb7b
AC
19550
19551@subsubheading @value{GDBN} Command
19552
19553The corresponding @value{GDBN} command is @samp{run}.
19554
ef21caaf 19555@subsubheading Examples
922fbb7b
AC
19556
19557@smallexample
594fe323 19558(gdb)
922fbb7b
AC
19559-break-insert main
19560^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19561(gdb)
922fbb7b
AC
19562-exec-run
19563^running
594fe323 19564(gdb)
a47ec5fe 19565*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19566frame=@{func="main",args=[],file="recursive2.c",
948d5102 19567fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19568(gdb)
922fbb7b
AC
19569@end smallexample
19570
ef21caaf
NR
19571@noindent
19572Program exited normally:
19573
19574@smallexample
594fe323 19575(gdb)
ef21caaf
NR
19576-exec-run
19577^running
594fe323 19578(gdb)
ef21caaf
NR
19579x = 55
19580*stopped,reason="exited-normally"
594fe323 19581(gdb)
ef21caaf
NR
19582@end smallexample
19583
19584@noindent
19585Program exited exceptionally:
19586
19587@smallexample
594fe323 19588(gdb)
ef21caaf
NR
19589-exec-run
19590^running
594fe323 19591(gdb)
ef21caaf
NR
19592x = 55
19593*stopped,reason="exited",exit-code="01"
594fe323 19594(gdb)
ef21caaf
NR
19595@end smallexample
19596
19597Another way the program can terminate is if it receives a signal such as
19598@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19599
19600@smallexample
594fe323 19601(gdb)
ef21caaf
NR
19602*stopped,reason="exited-signalled",signal-name="SIGINT",
19603signal-meaning="Interrupt"
19604@end smallexample
19605
922fbb7b 19606
a2c02241
NR
19607@c @subheading -exec-signal
19608
19609
19610@subheading The @code{-exec-step} Command
19611@findex -exec-step
922fbb7b
AC
19612
19613@subsubheading Synopsis
19614
19615@smallexample
a2c02241 19616 -exec-step
922fbb7b
AC
19617@end smallexample
19618
a2c02241
NR
19619Resumes execution of the inferior program, stopping when the beginning
19620of the next source line is reached, if the next source line is not a
19621function call. If it is, stop at the first instruction of the called
19622function.
922fbb7b
AC
19623
19624@subsubheading @value{GDBN} Command
19625
a2c02241 19626The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19627
19628@subsubheading Example
19629
19630Stepping into a function:
19631
19632@smallexample
19633-exec-step
19634^running
594fe323 19635(gdb)
922fbb7b
AC
19636*stopped,reason="end-stepping-range",
19637frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19638@{name="b",value="0"@}],file="recursive2.c",
948d5102 19639fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19640(gdb)
922fbb7b
AC
19641@end smallexample
19642
19643Regular stepping:
19644
19645@smallexample
19646-exec-step
19647^running
594fe323 19648(gdb)
922fbb7b 19649*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19650(gdb)
922fbb7b
AC
19651@end smallexample
19652
19653
19654@subheading The @code{-exec-step-instruction} Command
19655@findex -exec-step-instruction
19656
19657@subsubheading Synopsis
19658
19659@smallexample
19660 -exec-step-instruction
19661@end smallexample
19662
ef21caaf
NR
19663Resumes the inferior which executes one machine instruction. The
19664output, once @value{GDBN} has stopped, will vary depending on whether
19665we have stopped in the middle of a source line or not. In the former
19666case, the address at which the program stopped will be printed as
922fbb7b
AC
19667well.
19668
19669@subsubheading @value{GDBN} Command
19670
19671The corresponding @value{GDBN} command is @samp{stepi}.
19672
19673@subsubheading Example
19674
19675@smallexample
594fe323 19676(gdb)
922fbb7b
AC
19677-exec-step-instruction
19678^running
19679
594fe323 19680(gdb)
922fbb7b 19681*stopped,reason="end-stepping-range",
76ff342d 19682frame=@{func="foo",args=[],file="try.c",
948d5102 19683fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19684(gdb)
922fbb7b
AC
19685-exec-step-instruction
19686^running
19687
594fe323 19688(gdb)
922fbb7b 19689*stopped,reason="end-stepping-range",
76ff342d 19690frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19691fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19692(gdb)
922fbb7b
AC
19693@end smallexample
19694
19695
19696@subheading The @code{-exec-until} Command
19697@findex -exec-until
19698
19699@subsubheading Synopsis
19700
19701@smallexample
19702 -exec-until [ @var{location} ]
19703@end smallexample
19704
ef21caaf
NR
19705Executes the inferior until the @var{location} specified in the
19706argument is reached. If there is no argument, the inferior executes
19707until a source line greater than the current one is reached. The
19708reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19709
19710@subsubheading @value{GDBN} Command
19711
19712The corresponding @value{GDBN} command is @samp{until}.
19713
19714@subsubheading Example
19715
19716@smallexample
594fe323 19717(gdb)
922fbb7b
AC
19718-exec-until recursive2.c:6
19719^running
594fe323 19720(gdb)
922fbb7b
AC
19721x = 55
19722*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19723file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19724(gdb)
922fbb7b
AC
19725@end smallexample
19726
19727@ignore
19728@subheading -file-clear
19729Is this going away????
19730@end ignore
19731
351ff01a 19732@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19733@node GDB/MI Stack Manipulation
19734@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19735
922fbb7b 19736
a2c02241
NR
19737@subheading The @code{-stack-info-frame} Command
19738@findex -stack-info-frame
922fbb7b
AC
19739
19740@subsubheading Synopsis
19741
19742@smallexample
a2c02241 19743 -stack-info-frame
922fbb7b
AC
19744@end smallexample
19745
a2c02241 19746Get info on the selected frame.
922fbb7b
AC
19747
19748@subsubheading @value{GDBN} Command
19749
a2c02241
NR
19750The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19751(without arguments).
922fbb7b
AC
19752
19753@subsubheading Example
19754
19755@smallexample
594fe323 19756(gdb)
a2c02241
NR
19757-stack-info-frame
19758^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19759file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19760fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19761(gdb)
922fbb7b
AC
19762@end smallexample
19763
a2c02241
NR
19764@subheading The @code{-stack-info-depth} Command
19765@findex -stack-info-depth
922fbb7b
AC
19766
19767@subsubheading Synopsis
19768
19769@smallexample
a2c02241 19770 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19771@end smallexample
19772
a2c02241
NR
19773Return the depth of the stack. If the integer argument @var{max-depth}
19774is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19775
19776@subsubheading @value{GDBN} Command
19777
a2c02241 19778There's no equivalent @value{GDBN} command.
922fbb7b
AC
19779
19780@subsubheading Example
19781
a2c02241
NR
19782For a stack with frame levels 0 through 11:
19783
922fbb7b 19784@smallexample
594fe323 19785(gdb)
a2c02241
NR
19786-stack-info-depth
19787^done,depth="12"
594fe323 19788(gdb)
a2c02241
NR
19789-stack-info-depth 4
19790^done,depth="4"
594fe323 19791(gdb)
a2c02241
NR
19792-stack-info-depth 12
19793^done,depth="12"
594fe323 19794(gdb)
a2c02241
NR
19795-stack-info-depth 11
19796^done,depth="11"
594fe323 19797(gdb)
a2c02241
NR
19798-stack-info-depth 13
19799^done,depth="12"
594fe323 19800(gdb)
922fbb7b
AC
19801@end smallexample
19802
a2c02241
NR
19803@subheading The @code{-stack-list-arguments} Command
19804@findex -stack-list-arguments
922fbb7b
AC
19805
19806@subsubheading Synopsis
19807
19808@smallexample
a2c02241
NR
19809 -stack-list-arguments @var{show-values}
19810 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19811@end smallexample
19812
a2c02241
NR
19813Display a list of the arguments for the frames between @var{low-frame}
19814and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19815@var{high-frame} are not provided, list the arguments for the whole
19816call stack. If the two arguments are equal, show the single frame
19817at the corresponding level. It is an error if @var{low-frame} is
19818larger than the actual number of frames. On the other hand,
19819@var{high-frame} may be larger than the actual number of frames, in
19820which case only existing frames will be returned.
a2c02241
NR
19821
19822The @var{show-values} argument must have a value of 0 or 1. A value of
198230 means that only the names of the arguments are listed, a value of 1
19824means that both names and values of the arguments are printed.
922fbb7b
AC
19825
19826@subsubheading @value{GDBN} Command
19827
a2c02241
NR
19828@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19829@samp{gdb_get_args} command which partially overlaps with the
19830functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19831
19832@subsubheading Example
922fbb7b 19833
a2c02241 19834@smallexample
594fe323 19835(gdb)
a2c02241
NR
19836-stack-list-frames
19837^done,
19838stack=[
19839frame=@{level="0",addr="0x00010734",func="callee4",
19840file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19841fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19842frame=@{level="1",addr="0x0001076c",func="callee3",
19843file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19844fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19845frame=@{level="2",addr="0x0001078c",func="callee2",
19846file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19847fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19848frame=@{level="3",addr="0x000107b4",func="callee1",
19849file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19850fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19851frame=@{level="4",addr="0x000107e0",func="main",
19852file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19853fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19854(gdb)
a2c02241
NR
19855-stack-list-arguments 0
19856^done,
19857stack-args=[
19858frame=@{level="0",args=[]@},
19859frame=@{level="1",args=[name="strarg"]@},
19860frame=@{level="2",args=[name="intarg",name="strarg"]@},
19861frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19862frame=@{level="4",args=[]@}]
594fe323 19863(gdb)
a2c02241
NR
19864-stack-list-arguments 1
19865^done,
19866stack-args=[
19867frame=@{level="0",args=[]@},
19868frame=@{level="1",
19869 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19870frame=@{level="2",args=[
19871@{name="intarg",value="2"@},
19872@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19873@{frame=@{level="3",args=[
19874@{name="intarg",value="2"@},
19875@{name="strarg",value="0x11940 \"A string argument.\""@},
19876@{name="fltarg",value="3.5"@}]@},
19877frame=@{level="4",args=[]@}]
594fe323 19878(gdb)
a2c02241
NR
19879-stack-list-arguments 0 2 2
19880^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19881(gdb)
a2c02241
NR
19882-stack-list-arguments 1 2 2
19883^done,stack-args=[frame=@{level="2",
19884args=[@{name="intarg",value="2"@},
19885@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19886(gdb)
a2c02241
NR
19887@end smallexample
19888
19889@c @subheading -stack-list-exception-handlers
922fbb7b 19890
a2c02241
NR
19891
19892@subheading The @code{-stack-list-frames} Command
19893@findex -stack-list-frames
1abaf70c
BR
19894
19895@subsubheading Synopsis
19896
19897@smallexample
a2c02241 19898 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19899@end smallexample
19900
a2c02241
NR
19901List the frames currently on the stack. For each frame it displays the
19902following info:
19903
19904@table @samp
19905@item @var{level}
d3e8051b 19906The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19907@item @var{addr}
19908The @code{$pc} value for that frame.
19909@item @var{func}
19910Function name.
19911@item @var{file}
19912File name of the source file where the function lives.
19913@item @var{line}
19914Line number corresponding to the @code{$pc}.
19915@end table
19916
19917If invoked without arguments, this command prints a backtrace for the
19918whole stack. If given two integer arguments, it shows the frames whose
19919levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19920are equal, it shows the single frame at the corresponding level. It is
19921an error if @var{low-frame} is larger than the actual number of
a5451f4e 19922frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19923actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19924
19925@subsubheading @value{GDBN} Command
19926
a2c02241 19927The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19928
19929@subsubheading Example
19930
a2c02241
NR
19931Full stack backtrace:
19932
1abaf70c 19933@smallexample
594fe323 19934(gdb)
a2c02241
NR
19935-stack-list-frames
19936^done,stack=
19937[frame=@{level="0",addr="0x0001076c",func="foo",
19938 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19939frame=@{level="1",addr="0x000107a4",func="foo",
19940 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19941frame=@{level="2",addr="0x000107a4",func="foo",
19942 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19943frame=@{level="3",addr="0x000107a4",func="foo",
19944 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19945frame=@{level="4",addr="0x000107a4",func="foo",
19946 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19947frame=@{level="5",addr="0x000107a4",func="foo",
19948 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19949frame=@{level="6",addr="0x000107a4",func="foo",
19950 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19951frame=@{level="7",addr="0x000107a4",func="foo",
19952 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19953frame=@{level="8",addr="0x000107a4",func="foo",
19954 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19955frame=@{level="9",addr="0x000107a4",func="foo",
19956 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19957frame=@{level="10",addr="0x000107a4",func="foo",
19958 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19959frame=@{level="11",addr="0x00010738",func="main",
19960 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19961(gdb)
1abaf70c
BR
19962@end smallexample
19963
a2c02241 19964Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19965
a2c02241 19966@smallexample
594fe323 19967(gdb)
a2c02241
NR
19968-stack-list-frames 3 5
19969^done,stack=
19970[frame=@{level="3",addr="0x000107a4",func="foo",
19971 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19972frame=@{level="4",addr="0x000107a4",func="foo",
19973 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19974frame=@{level="5",addr="0x000107a4",func="foo",
19975 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19976(gdb)
a2c02241 19977@end smallexample
922fbb7b 19978
a2c02241 19979Show a single frame:
922fbb7b
AC
19980
19981@smallexample
594fe323 19982(gdb)
a2c02241
NR
19983-stack-list-frames 3 3
19984^done,stack=
19985[frame=@{level="3",addr="0x000107a4",func="foo",
19986 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19987(gdb)
922fbb7b
AC
19988@end smallexample
19989
922fbb7b 19990
a2c02241
NR
19991@subheading The @code{-stack-list-locals} Command
19992@findex -stack-list-locals
57c22c6c 19993
a2c02241 19994@subsubheading Synopsis
922fbb7b
AC
19995
19996@smallexample
a2c02241 19997 -stack-list-locals @var{print-values}
922fbb7b
AC
19998@end smallexample
19999
a2c02241
NR
20000Display the local variable names for the selected frame. If
20001@var{print-values} is 0 or @code{--no-values}, print only the names of
20002the variables; if it is 1 or @code{--all-values}, print also their
20003values; and if it is 2 or @code{--simple-values}, print the name,
20004type and value for simple data types and the name and type for arrays,
20005structures and unions. In this last case, a frontend can immediately
20006display the value of simple data types and create variable objects for
d3e8051b 20007other data types when the user wishes to explore their values in
a2c02241 20008more detail.
922fbb7b
AC
20009
20010@subsubheading @value{GDBN} Command
20011
a2c02241 20012@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
20013
20014@subsubheading Example
922fbb7b
AC
20015
20016@smallexample
594fe323 20017(gdb)
a2c02241
NR
20018-stack-list-locals 0
20019^done,locals=[name="A",name="B",name="C"]
594fe323 20020(gdb)
a2c02241
NR
20021-stack-list-locals --all-values
20022^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
20023 @{name="C",value="@{1, 2, 3@}"@}]
20024-stack-list-locals --simple-values
20025^done,locals=[@{name="A",type="int",value="1"@},
20026 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 20027(gdb)
922fbb7b
AC
20028@end smallexample
20029
922fbb7b 20030
a2c02241
NR
20031@subheading The @code{-stack-select-frame} Command
20032@findex -stack-select-frame
922fbb7b
AC
20033
20034@subsubheading Synopsis
20035
20036@smallexample
a2c02241 20037 -stack-select-frame @var{framenum}
922fbb7b
AC
20038@end smallexample
20039
a2c02241
NR
20040Change the selected frame. Select a different frame @var{framenum} on
20041the stack.
922fbb7b
AC
20042
20043@subsubheading @value{GDBN} Command
20044
a2c02241
NR
20045The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
20046@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
20047
20048@subsubheading Example
20049
20050@smallexample
594fe323 20051(gdb)
a2c02241 20052-stack-select-frame 2
922fbb7b 20053^done
594fe323 20054(gdb)
922fbb7b
AC
20055@end smallexample
20056
20057@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
20058@node GDB/MI Variable Objects
20059@section @sc{gdb/mi} Variable Objects
922fbb7b 20060
a1b5960f 20061@ignore
922fbb7b 20062
a2c02241 20063@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 20064
a2c02241
NR
20065For the implementation of a variable debugger window (locals, watched
20066expressions, etc.), we are proposing the adaptation of the existing code
20067used by @code{Insight}.
922fbb7b 20068
a2c02241 20069The two main reasons for that are:
922fbb7b 20070
a2c02241
NR
20071@enumerate 1
20072@item
20073It has been proven in practice (it is already on its second generation).
922fbb7b 20074
a2c02241
NR
20075@item
20076It will shorten development time (needless to say how important it is
20077now).
20078@end enumerate
922fbb7b 20079
a2c02241
NR
20080The original interface was designed to be used by Tcl code, so it was
20081slightly changed so it could be used through @sc{gdb/mi}. This section
20082describes the @sc{gdb/mi} operations that will be available and gives some
20083hints about their use.
922fbb7b 20084
a2c02241
NR
20085@emph{Note}: In addition to the set of operations described here, we
20086expect the @sc{gui} implementation of a variable window to require, at
20087least, the following operations:
922fbb7b 20088
a2c02241
NR
20089@itemize @bullet
20090@item @code{-gdb-show} @code{output-radix}
20091@item @code{-stack-list-arguments}
20092@item @code{-stack-list-locals}
20093@item @code{-stack-select-frame}
20094@end itemize
922fbb7b 20095
a1b5960f
VP
20096@end ignore
20097
c8b2f53c 20098@subheading Introduction to Variable Objects
922fbb7b 20099
a2c02241 20100@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
20101
20102Variable objects are "object-oriented" MI interface for examining and
20103changing values of expressions. Unlike some other MI interfaces that
20104work with expressions, variable objects are specifically designed for
20105simple and efficient presentation in the frontend. A variable object
20106is identified by string name. When a variable object is created, the
20107frontend specifies the expression for that variable object. The
20108expression can be a simple variable, or it can be an arbitrary complex
20109expression, and can even involve CPU registers. After creating a
20110variable object, the frontend can invoke other variable object
20111operations---for example to obtain or change the value of a variable
20112object, or to change display format.
20113
20114Variable objects have hierarchical tree structure. Any variable object
20115that corresponds to a composite type, such as structure in C, has
20116a number of child variable objects, for example corresponding to each
20117element of a structure. A child variable object can itself have
20118children, recursively. Recursion ends when we reach
25d5ea92
VP
20119leaf variable objects, which always have built-in types. Child variable
20120objects are created only by explicit request, so if a frontend
20121is not interested in the children of a particular variable object, no
20122child will be created.
c8b2f53c
VP
20123
20124For a leaf variable object it is possible to obtain its value as a
20125string, or set the value from a string. String value can be also
20126obtained for a non-leaf variable object, but it's generally a string
20127that only indicates the type of the object, and does not list its
20128contents. Assignment to a non-leaf variable object is not allowed.
20129
20130A frontend does not need to read the values of all variable objects each time
20131the program stops. Instead, MI provides an update command that lists all
20132variable objects whose values has changed since the last update
20133operation. This considerably reduces the amount of data that must
25d5ea92
VP
20134be transferred to the frontend. As noted above, children variable
20135objects are created on demand, and only leaf variable objects have a
20136real value. As result, gdb will read target memory only for leaf
20137variables that frontend has created.
20138
20139The automatic update is not always desirable. For example, a frontend
20140might want to keep a value of some expression for future reference,
20141and never update it. For another example, fetching memory is
20142relatively slow for embedded targets, so a frontend might want
20143to disable automatic update for the variables that are either not
20144visible on the screen, or ``closed''. This is possible using so
20145called ``frozen variable objects''. Such variable objects are never
20146implicitly updated.
922fbb7b 20147
a2c02241
NR
20148The following is the complete set of @sc{gdb/mi} operations defined to
20149access this functionality:
922fbb7b 20150
a2c02241
NR
20151@multitable @columnfractions .4 .6
20152@item @strong{Operation}
20153@tab @strong{Description}
922fbb7b 20154
a2c02241
NR
20155@item @code{-var-create}
20156@tab create a variable object
20157@item @code{-var-delete}
22d8a470 20158@tab delete the variable object and/or its children
a2c02241
NR
20159@item @code{-var-set-format}
20160@tab set the display format of this variable
20161@item @code{-var-show-format}
20162@tab show the display format of this variable
20163@item @code{-var-info-num-children}
20164@tab tells how many children this object has
20165@item @code{-var-list-children}
20166@tab return a list of the object's children
20167@item @code{-var-info-type}
20168@tab show the type of this variable object
20169@item @code{-var-info-expression}
02142340
VP
20170@tab print parent-relative expression that this variable object represents
20171@item @code{-var-info-path-expression}
20172@tab print full expression that this variable object represents
a2c02241
NR
20173@item @code{-var-show-attributes}
20174@tab is this variable editable? does it exist here?
20175@item @code{-var-evaluate-expression}
20176@tab get the value of this variable
20177@item @code{-var-assign}
20178@tab set the value of this variable
20179@item @code{-var-update}
20180@tab update the variable and its children
25d5ea92
VP
20181@item @code{-var-set-frozen}
20182@tab set frozeness attribute
a2c02241 20183@end multitable
922fbb7b 20184
a2c02241
NR
20185In the next subsection we describe each operation in detail and suggest
20186how it can be used.
922fbb7b 20187
a2c02241 20188@subheading Description And Use of Operations on Variable Objects
922fbb7b 20189
a2c02241
NR
20190@subheading The @code{-var-create} Command
20191@findex -var-create
ef21caaf 20192
a2c02241 20193@subsubheading Synopsis
ef21caaf 20194
a2c02241
NR
20195@smallexample
20196 -var-create @{@var{name} | "-"@}
20197 @{@var{frame-addr} | "*"@} @var{expression}
20198@end smallexample
20199
20200This operation creates a variable object, which allows the monitoring of
20201a variable, the result of an expression, a memory cell or a CPU
20202register.
ef21caaf 20203
a2c02241
NR
20204The @var{name} parameter is the string by which the object can be
20205referenced. It must be unique. If @samp{-} is specified, the varobj
20206system will generate a string ``varNNNNNN'' automatically. It will be
20207unique provided that one does not specify @var{name} on that format.
20208The command fails if a duplicate name is found.
ef21caaf 20209
a2c02241
NR
20210The frame under which the expression should be evaluated can be
20211specified by @var{frame-addr}. A @samp{*} indicates that the current
20212frame should be used.
922fbb7b 20213
a2c02241
NR
20214@var{expression} is any expression valid on the current language set (must not
20215begin with a @samp{*}), or one of the following:
922fbb7b 20216
a2c02241
NR
20217@itemize @bullet
20218@item
20219@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20220
a2c02241
NR
20221@item
20222@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20223
a2c02241
NR
20224@item
20225@samp{$@var{regname}} --- a CPU register name
20226@end itemize
922fbb7b 20227
a2c02241 20228@subsubheading Result
922fbb7b 20229
a2c02241
NR
20230This operation returns the name, number of children and the type of the
20231object created. Type is returned as a string as the ones generated by
20232the @value{GDBN} CLI:
922fbb7b
AC
20233
20234@smallexample
a2c02241 20235 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20236@end smallexample
20237
a2c02241
NR
20238
20239@subheading The @code{-var-delete} Command
20240@findex -var-delete
922fbb7b
AC
20241
20242@subsubheading Synopsis
20243
20244@smallexample
22d8a470 20245 -var-delete [ -c ] @var{name}
922fbb7b
AC
20246@end smallexample
20247
a2c02241 20248Deletes a previously created variable object and all of its children.
22d8a470 20249With the @samp{-c} option, just deletes the children.
922fbb7b 20250
a2c02241 20251Returns an error if the object @var{name} is not found.
922fbb7b 20252
922fbb7b 20253
a2c02241
NR
20254@subheading The @code{-var-set-format} Command
20255@findex -var-set-format
922fbb7b 20256
a2c02241 20257@subsubheading Synopsis
922fbb7b
AC
20258
20259@smallexample
a2c02241 20260 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20261@end smallexample
20262
a2c02241
NR
20263Sets the output format for the value of the object @var{name} to be
20264@var{format-spec}.
20265
de051565 20266@anchor{-var-set-format}
a2c02241
NR
20267The syntax for the @var{format-spec} is as follows:
20268
20269@smallexample
20270 @var{format-spec} @expansion{}
20271 @{binary | decimal | hexadecimal | octal | natural@}
20272@end smallexample
20273
c8b2f53c
VP
20274The natural format is the default format choosen automatically
20275based on the variable type (like decimal for an @code{int}, hex
20276for pointers, etc.).
20277
20278For a variable with children, the format is set only on the
20279variable itself, and the children are not affected.
a2c02241
NR
20280
20281@subheading The @code{-var-show-format} Command
20282@findex -var-show-format
922fbb7b
AC
20283
20284@subsubheading Synopsis
20285
20286@smallexample
a2c02241 20287 -var-show-format @var{name}
922fbb7b
AC
20288@end smallexample
20289
a2c02241 20290Returns the format used to display the value of the object @var{name}.
922fbb7b 20291
a2c02241
NR
20292@smallexample
20293 @var{format} @expansion{}
20294 @var{format-spec}
20295@end smallexample
922fbb7b 20296
922fbb7b 20297
a2c02241
NR
20298@subheading The @code{-var-info-num-children} Command
20299@findex -var-info-num-children
20300
20301@subsubheading Synopsis
20302
20303@smallexample
20304 -var-info-num-children @var{name}
20305@end smallexample
20306
20307Returns the number of children of a variable object @var{name}:
20308
20309@smallexample
20310 numchild=@var{n}
20311@end smallexample
20312
20313
20314@subheading The @code{-var-list-children} Command
20315@findex -var-list-children
20316
20317@subsubheading Synopsis
20318
20319@smallexample
20320 -var-list-children [@var{print-values}] @var{name}
20321@end smallexample
20322@anchor{-var-list-children}
20323
20324Return a list of the children of the specified variable object and
20325create variable objects for them, if they do not already exist. With
20326a single argument or if @var{print-values} has a value for of 0 or
20327@code{--no-values}, print only the names of the variables; if
20328@var{print-values} is 1 or @code{--all-values}, also print their
20329values; and if it is 2 or @code{--simple-values} print the name and
20330value for simple data types and just the name for arrays, structures
20331and unions.
922fbb7b
AC
20332
20333@subsubheading Example
20334
20335@smallexample
594fe323 20336(gdb)
a2c02241
NR
20337 -var-list-children n
20338 ^done,numchild=@var{n},children=[@{name=@var{name},
20339 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20340(gdb)
a2c02241
NR
20341 -var-list-children --all-values n
20342 ^done,numchild=@var{n},children=[@{name=@var{name},
20343 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20344@end smallexample
20345
922fbb7b 20346
a2c02241
NR
20347@subheading The @code{-var-info-type} Command
20348@findex -var-info-type
922fbb7b 20349
a2c02241
NR
20350@subsubheading Synopsis
20351
20352@smallexample
20353 -var-info-type @var{name}
20354@end smallexample
20355
20356Returns the type of the specified variable @var{name}. The type is
20357returned as a string in the same format as it is output by the
20358@value{GDBN} CLI:
20359
20360@smallexample
20361 type=@var{typename}
20362@end smallexample
20363
20364
20365@subheading The @code{-var-info-expression} Command
20366@findex -var-info-expression
922fbb7b
AC
20367
20368@subsubheading Synopsis
20369
20370@smallexample
a2c02241 20371 -var-info-expression @var{name}
922fbb7b
AC
20372@end smallexample
20373
02142340
VP
20374Returns a string that is suitable for presenting this
20375variable object in user interface. The string is generally
20376not valid expression in the current language, and cannot be evaluated.
20377
20378For example, if @code{a} is an array, and variable object
20379@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20380
a2c02241 20381@smallexample
02142340
VP
20382(gdb) -var-info-expression A.1
20383^done,lang="C",exp="1"
a2c02241 20384@end smallexample
922fbb7b 20385
a2c02241 20386@noindent
02142340
VP
20387Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20388
20389Note that the output of the @code{-var-list-children} command also
20390includes those expressions, so the @code{-var-info-expression} command
20391is of limited use.
20392
20393@subheading The @code{-var-info-path-expression} Command
20394@findex -var-info-path-expression
20395
20396@subsubheading Synopsis
20397
20398@smallexample
20399 -var-info-path-expression @var{name}
20400@end smallexample
20401
20402Returns an expression that can be evaluated in the current
20403context and will yield the same value that a variable object has.
20404Compare this with the @code{-var-info-expression} command, which
20405result can be used only for UI presentation. Typical use of
20406the @code{-var-info-path-expression} command is creating a
20407watchpoint from a variable object.
20408
20409For example, suppose @code{C} is a C@t{++} class, derived from class
20410@code{Base}, and that the @code{Base} class has a member called
20411@code{m_size}. Assume a variable @code{c} is has the type of
20412@code{C} and a variable object @code{C} was created for variable
20413@code{c}. Then, we'll get this output:
20414@smallexample
20415(gdb) -var-info-path-expression C.Base.public.m_size
20416^done,path_expr=((Base)c).m_size)
20417@end smallexample
922fbb7b 20418
a2c02241
NR
20419@subheading The @code{-var-show-attributes} Command
20420@findex -var-show-attributes
922fbb7b 20421
a2c02241 20422@subsubheading Synopsis
922fbb7b 20423
a2c02241
NR
20424@smallexample
20425 -var-show-attributes @var{name}
20426@end smallexample
922fbb7b 20427
a2c02241 20428List attributes of the specified variable object @var{name}:
922fbb7b
AC
20429
20430@smallexample
a2c02241 20431 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20432@end smallexample
20433
a2c02241
NR
20434@noindent
20435where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20436
20437@subheading The @code{-var-evaluate-expression} Command
20438@findex -var-evaluate-expression
20439
20440@subsubheading Synopsis
20441
20442@smallexample
de051565 20443 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20444@end smallexample
20445
20446Evaluates the expression that is represented by the specified variable
de051565
MK
20447object and returns its value as a string. The format of the string
20448can be specified with the @samp{-f} option. The possible values of
20449this option are the same as for @code{-var-set-format}
20450(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20451the current display format will be used. The current display format
20452can be changed using the @code{-var-set-format} command.
a2c02241
NR
20453
20454@smallexample
20455 value=@var{value}
20456@end smallexample
20457
20458Note that one must invoke @code{-var-list-children} for a variable
20459before the value of a child variable can be evaluated.
20460
20461@subheading The @code{-var-assign} Command
20462@findex -var-assign
20463
20464@subsubheading Synopsis
20465
20466@smallexample
20467 -var-assign @var{name} @var{expression}
20468@end smallexample
20469
20470Assigns the value of @var{expression} to the variable object specified
20471by @var{name}. The object must be @samp{editable}. If the variable's
20472value is altered by the assign, the variable will show up in any
20473subsequent @code{-var-update} list.
20474
20475@subsubheading Example
922fbb7b
AC
20476
20477@smallexample
594fe323 20478(gdb)
a2c02241
NR
20479-var-assign var1 3
20480^done,value="3"
594fe323 20481(gdb)
a2c02241
NR
20482-var-update *
20483^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20484(gdb)
922fbb7b
AC
20485@end smallexample
20486
a2c02241
NR
20487@subheading The @code{-var-update} Command
20488@findex -var-update
20489
20490@subsubheading Synopsis
20491
20492@smallexample
20493 -var-update [@var{print-values}] @{@var{name} | "*"@}
20494@end smallexample
20495
c8b2f53c
VP
20496Reevaluate the expressions corresponding to the variable object
20497@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20498list of variable objects whose values have changed; @var{name} must
20499be a root variable object. Here, ``changed'' means that the result of
20500@code{-var-evaluate-expression} before and after the
20501@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20502object names, all existing variable objects are updated, except
20503for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20504@var{print-values} determines whether both names and values, or just
de051565 20505names are printed. The possible values of this option are the same
36ece8b3
NR
20506as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20507recommended to use the @samp{--all-values} option, to reduce the
20508number of MI commands needed on each program stop.
c8b2f53c 20509
a2c02241
NR
20510
20511@subsubheading Example
922fbb7b
AC
20512
20513@smallexample
594fe323 20514(gdb)
a2c02241
NR
20515-var-assign var1 3
20516^done,value="3"
594fe323 20517(gdb)
a2c02241
NR
20518-var-update --all-values var1
20519^done,changelist=[@{name="var1",value="3",in_scope="true",
20520type_changed="false"@}]
594fe323 20521(gdb)
922fbb7b
AC
20522@end smallexample
20523
9f708cb2 20524@anchor{-var-update}
36ece8b3
NR
20525The field in_scope may take three values:
20526
20527@table @code
20528@item "true"
20529The variable object's current value is valid.
20530
20531@item "false"
20532The variable object does not currently hold a valid value but it may
20533hold one in the future if its associated expression comes back into
20534scope.
20535
20536@item "invalid"
20537The variable object no longer holds a valid value.
20538This can occur when the executable file being debugged has changed,
20539either through recompilation or by using the @value{GDBN} @code{file}
20540command. The front end should normally choose to delete these variable
20541objects.
20542@end table
20543
20544In the future new values may be added to this list so the front should
20545be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20546
25d5ea92
VP
20547@subheading The @code{-var-set-frozen} Command
20548@findex -var-set-frozen
9f708cb2 20549@anchor{-var-set-frozen}
25d5ea92
VP
20550
20551@subsubheading Synopsis
20552
20553@smallexample
9f708cb2 20554 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20555@end smallexample
20556
9f708cb2 20557Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20558@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20559frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20560frozen, then neither itself, nor any of its children, are
9f708cb2 20561implicitly updated by @code{-var-update} of
25d5ea92
VP
20562a parent variable or by @code{-var-update *}. Only
20563@code{-var-update} of the variable itself will update its value and
20564values of its children. After a variable object is unfrozen, it is
20565implicitly updated by all subsequent @code{-var-update} operations.
20566Unfreezing a variable does not update it, only subsequent
20567@code{-var-update} does.
20568
20569@subsubheading Example
20570
20571@smallexample
20572(gdb)
20573-var-set-frozen V 1
20574^done
20575(gdb)
20576@end smallexample
20577
20578
a2c02241
NR
20579@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20580@node GDB/MI Data Manipulation
20581@section @sc{gdb/mi} Data Manipulation
922fbb7b 20582
a2c02241
NR
20583@cindex data manipulation, in @sc{gdb/mi}
20584@cindex @sc{gdb/mi}, data manipulation
20585This section describes the @sc{gdb/mi} commands that manipulate data:
20586examine memory and registers, evaluate expressions, etc.
20587
20588@c REMOVED FROM THE INTERFACE.
20589@c @subheading -data-assign
20590@c Change the value of a program variable. Plenty of side effects.
79a6e687 20591@c @subsubheading GDB Command
a2c02241
NR
20592@c set variable
20593@c @subsubheading Example
20594@c N.A.
20595
20596@subheading The @code{-data-disassemble} Command
20597@findex -data-disassemble
922fbb7b
AC
20598
20599@subsubheading Synopsis
20600
20601@smallexample
a2c02241
NR
20602 -data-disassemble
20603 [ -s @var{start-addr} -e @var{end-addr} ]
20604 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20605 -- @var{mode}
922fbb7b
AC
20606@end smallexample
20607
a2c02241
NR
20608@noindent
20609Where:
20610
20611@table @samp
20612@item @var{start-addr}
20613is the beginning address (or @code{$pc})
20614@item @var{end-addr}
20615is the end address
20616@item @var{filename}
20617is the name of the file to disassemble
20618@item @var{linenum}
20619is the line number to disassemble around
20620@item @var{lines}
d3e8051b 20621is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20622the whole function will be disassembled, in case no @var{end-addr} is
20623specified. If @var{end-addr} is specified as a non-zero value, and
20624@var{lines} is lower than the number of disassembly lines between
20625@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20626displayed; if @var{lines} is higher than the number of lines between
20627@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20628are displayed.
20629@item @var{mode}
20630is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20631disassembly).
20632@end table
20633
20634@subsubheading Result
20635
20636The output for each instruction is composed of four fields:
20637
20638@itemize @bullet
20639@item Address
20640@item Func-name
20641@item Offset
20642@item Instruction
20643@end itemize
20644
20645Note that whatever included in the instruction field, is not manipulated
d3e8051b 20646directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20647
20648@subsubheading @value{GDBN} Command
20649
a2c02241 20650There's no direct mapping from this command to the CLI.
922fbb7b
AC
20651
20652@subsubheading Example
20653
a2c02241
NR
20654Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20655
922fbb7b 20656@smallexample
594fe323 20657(gdb)
a2c02241
NR
20658-data-disassemble -s $pc -e "$pc + 20" -- 0
20659^done,
20660asm_insns=[
20661@{address="0x000107c0",func-name="main",offset="4",
20662inst="mov 2, %o0"@},
20663@{address="0x000107c4",func-name="main",offset="8",
20664inst="sethi %hi(0x11800), %o2"@},
20665@{address="0x000107c8",func-name="main",offset="12",
20666inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20667@{address="0x000107cc",func-name="main",offset="16",
20668inst="sethi %hi(0x11800), %o2"@},
20669@{address="0x000107d0",func-name="main",offset="20",
20670inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20671(gdb)
a2c02241
NR
20672@end smallexample
20673
20674Disassemble the whole @code{main} function. Line 32 is part of
20675@code{main}.
20676
20677@smallexample
20678-data-disassemble -f basics.c -l 32 -- 0
20679^done,asm_insns=[
20680@{address="0x000107bc",func-name="main",offset="0",
20681inst="save %sp, -112, %sp"@},
20682@{address="0x000107c0",func-name="main",offset="4",
20683inst="mov 2, %o0"@},
20684@{address="0x000107c4",func-name="main",offset="8",
20685inst="sethi %hi(0x11800), %o2"@},
20686[@dots{}]
20687@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20688@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20689(gdb)
922fbb7b
AC
20690@end smallexample
20691
a2c02241 20692Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20693
a2c02241 20694@smallexample
594fe323 20695(gdb)
a2c02241
NR
20696-data-disassemble -f basics.c -l 32 -n 3 -- 0
20697^done,asm_insns=[
20698@{address="0x000107bc",func-name="main",offset="0",
20699inst="save %sp, -112, %sp"@},
20700@{address="0x000107c0",func-name="main",offset="4",
20701inst="mov 2, %o0"@},
20702@{address="0x000107c4",func-name="main",offset="8",
20703inst="sethi %hi(0x11800), %o2"@}]
594fe323 20704(gdb)
a2c02241
NR
20705@end smallexample
20706
20707Disassemble 3 instructions from the start of @code{main} in mixed mode:
20708
20709@smallexample
594fe323 20710(gdb)
a2c02241
NR
20711-data-disassemble -f basics.c -l 32 -n 3 -- 1
20712^done,asm_insns=[
20713src_and_asm_line=@{line="31",
20714file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20715 testsuite/gdb.mi/basics.c",line_asm_insn=[
20716@{address="0x000107bc",func-name="main",offset="0",
20717inst="save %sp, -112, %sp"@}]@},
20718src_and_asm_line=@{line="32",
20719file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20720 testsuite/gdb.mi/basics.c",line_asm_insn=[
20721@{address="0x000107c0",func-name="main",offset="4",
20722inst="mov 2, %o0"@},
20723@{address="0x000107c4",func-name="main",offset="8",
20724inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20725(gdb)
a2c02241
NR
20726@end smallexample
20727
20728
20729@subheading The @code{-data-evaluate-expression} Command
20730@findex -data-evaluate-expression
922fbb7b
AC
20731
20732@subsubheading Synopsis
20733
20734@smallexample
a2c02241 20735 -data-evaluate-expression @var{expr}
922fbb7b
AC
20736@end smallexample
20737
a2c02241
NR
20738Evaluate @var{expr} as an expression. The expression could contain an
20739inferior function call. The function call will execute synchronously.
20740If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20741
20742@subsubheading @value{GDBN} Command
20743
a2c02241
NR
20744The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20745@samp{call}. In @code{gdbtk} only, there's a corresponding
20746@samp{gdb_eval} command.
922fbb7b
AC
20747
20748@subsubheading Example
20749
a2c02241
NR
20750In the following example, the numbers that precede the commands are the
20751@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20752Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20753output.
20754
922fbb7b 20755@smallexample
a2c02241
NR
20756211-data-evaluate-expression A
20757211^done,value="1"
594fe323 20758(gdb)
a2c02241
NR
20759311-data-evaluate-expression &A
20760311^done,value="0xefffeb7c"
594fe323 20761(gdb)
a2c02241
NR
20762411-data-evaluate-expression A+3
20763411^done,value="4"
594fe323 20764(gdb)
a2c02241
NR
20765511-data-evaluate-expression "A + 3"
20766511^done,value="4"
594fe323 20767(gdb)
a2c02241 20768@end smallexample
922fbb7b
AC
20769
20770
a2c02241
NR
20771@subheading The @code{-data-list-changed-registers} Command
20772@findex -data-list-changed-registers
922fbb7b
AC
20773
20774@subsubheading Synopsis
20775
20776@smallexample
a2c02241 20777 -data-list-changed-registers
922fbb7b
AC
20778@end smallexample
20779
a2c02241 20780Display a list of the registers that have changed.
922fbb7b
AC
20781
20782@subsubheading @value{GDBN} Command
20783
a2c02241
NR
20784@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20785has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20786
20787@subsubheading Example
922fbb7b 20788
a2c02241 20789On a PPC MBX board:
922fbb7b
AC
20790
20791@smallexample
594fe323 20792(gdb)
a2c02241
NR
20793-exec-continue
20794^running
922fbb7b 20795
594fe323 20796(gdb)
a47ec5fe
AR
20797*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20798func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20799line="5"@}
594fe323 20800(gdb)
a2c02241
NR
20801-data-list-changed-registers
20802^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20803"10","11","13","14","15","16","17","18","19","20","21","22","23",
20804"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20805(gdb)
a2c02241 20806@end smallexample
922fbb7b
AC
20807
20808
a2c02241
NR
20809@subheading The @code{-data-list-register-names} Command
20810@findex -data-list-register-names
922fbb7b
AC
20811
20812@subsubheading Synopsis
20813
20814@smallexample
a2c02241 20815 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20816@end smallexample
20817
a2c02241
NR
20818Show a list of register names for the current target. If no arguments
20819are given, it shows a list of the names of all the registers. If
20820integer numbers are given as arguments, it will print a list of the
20821names of the registers corresponding to the arguments. To ensure
20822consistency between a register name and its number, the output list may
20823include empty register names.
922fbb7b
AC
20824
20825@subsubheading @value{GDBN} Command
20826
a2c02241
NR
20827@value{GDBN} does not have a command which corresponds to
20828@samp{-data-list-register-names}. In @code{gdbtk} there is a
20829corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20830
20831@subsubheading Example
922fbb7b 20832
a2c02241
NR
20833For the PPC MBX board:
20834@smallexample
594fe323 20835(gdb)
a2c02241
NR
20836-data-list-register-names
20837^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20838"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20839"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20840"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20841"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20842"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20843"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20844(gdb)
a2c02241
NR
20845-data-list-register-names 1 2 3
20846^done,register-names=["r1","r2","r3"]
594fe323 20847(gdb)
a2c02241 20848@end smallexample
922fbb7b 20849
a2c02241
NR
20850@subheading The @code{-data-list-register-values} Command
20851@findex -data-list-register-values
922fbb7b
AC
20852
20853@subsubheading Synopsis
20854
20855@smallexample
a2c02241 20856 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20857@end smallexample
20858
a2c02241
NR
20859Display the registers' contents. @var{fmt} is the format according to
20860which the registers' contents are to be returned, followed by an optional
20861list of numbers specifying the registers to display. A missing list of
20862numbers indicates that the contents of all the registers must be returned.
20863
20864Allowed formats for @var{fmt} are:
20865
20866@table @code
20867@item x
20868Hexadecimal
20869@item o
20870Octal
20871@item t
20872Binary
20873@item d
20874Decimal
20875@item r
20876Raw
20877@item N
20878Natural
20879@end table
922fbb7b
AC
20880
20881@subsubheading @value{GDBN} Command
20882
a2c02241
NR
20883The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20884all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20885
20886@subsubheading Example
922fbb7b 20887
a2c02241
NR
20888For a PPC MBX board (note: line breaks are for readability only, they
20889don't appear in the actual output):
20890
20891@smallexample
594fe323 20892(gdb)
a2c02241
NR
20893-data-list-register-values r 64 65
20894^done,register-values=[@{number="64",value="0xfe00a300"@},
20895@{number="65",value="0x00029002"@}]
594fe323 20896(gdb)
a2c02241
NR
20897-data-list-register-values x
20898^done,register-values=[@{number="0",value="0xfe0043c8"@},
20899@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20900@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20901@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20902@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20903@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20904@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20905@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20906@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20907@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20908@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20909@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20910@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20911@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20912@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20913@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20914@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20915@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20916@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20917@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20918@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20919@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20920@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20921@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20922@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20923@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20924@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20925@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20926@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20927@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20928@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20929@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20930@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20931@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20932@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20933@{number="69",value="0x20002b03"@}]
594fe323 20934(gdb)
a2c02241 20935@end smallexample
922fbb7b 20936
a2c02241
NR
20937
20938@subheading The @code{-data-read-memory} Command
20939@findex -data-read-memory
922fbb7b
AC
20940
20941@subsubheading Synopsis
20942
20943@smallexample
a2c02241
NR
20944 -data-read-memory [ -o @var{byte-offset} ]
20945 @var{address} @var{word-format} @var{word-size}
20946 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20947@end smallexample
20948
a2c02241
NR
20949@noindent
20950where:
922fbb7b 20951
a2c02241
NR
20952@table @samp
20953@item @var{address}
20954An expression specifying the address of the first memory word to be
20955read. Complex expressions containing embedded white space should be
20956quoted using the C convention.
922fbb7b 20957
a2c02241
NR
20958@item @var{word-format}
20959The format to be used to print the memory words. The notation is the
20960same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20961,Output Formats}).
922fbb7b 20962
a2c02241
NR
20963@item @var{word-size}
20964The size of each memory word in bytes.
922fbb7b 20965
a2c02241
NR
20966@item @var{nr-rows}
20967The number of rows in the output table.
922fbb7b 20968
a2c02241
NR
20969@item @var{nr-cols}
20970The number of columns in the output table.
922fbb7b 20971
a2c02241
NR
20972@item @var{aschar}
20973If present, indicates that each row should include an @sc{ascii} dump. The
20974value of @var{aschar} is used as a padding character when a byte is not a
20975member of the printable @sc{ascii} character set (printable @sc{ascii}
20976characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20977
a2c02241
NR
20978@item @var{byte-offset}
20979An offset to add to the @var{address} before fetching memory.
20980@end table
922fbb7b 20981
a2c02241
NR
20982This command displays memory contents as a table of @var{nr-rows} by
20983@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20984@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20985(returned as @samp{total-bytes}). Should less than the requested number
20986of bytes be returned by the target, the missing words are identified
20987using @samp{N/A}. The number of bytes read from the target is returned
20988in @samp{nr-bytes} and the starting address used to read memory in
20989@samp{addr}.
20990
20991The address of the next/previous row or page is available in
20992@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20993@samp{prev-page}.
922fbb7b
AC
20994
20995@subsubheading @value{GDBN} Command
20996
a2c02241
NR
20997The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20998@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20999
21000@subsubheading Example
32e7087d 21001
a2c02241
NR
21002Read six bytes of memory starting at @code{bytes+6} but then offset by
21003@code{-6} bytes. Format as three rows of two columns. One byte per
21004word. Display each word in hex.
32e7087d
JB
21005
21006@smallexample
594fe323 21007(gdb)
a2c02241
NR
210089-data-read-memory -o -6 -- bytes+6 x 1 3 2
210099^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
21010next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
21011prev-page="0x0000138a",memory=[
21012@{addr="0x00001390",data=["0x00","0x01"]@},
21013@{addr="0x00001392",data=["0x02","0x03"]@},
21014@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 21015(gdb)
32e7087d
JB
21016@end smallexample
21017
a2c02241
NR
21018Read two bytes of memory starting at address @code{shorts + 64} and
21019display as a single word formatted in decimal.
32e7087d 21020
32e7087d 21021@smallexample
594fe323 21022(gdb)
a2c02241
NR
210235-data-read-memory shorts+64 d 2 1 1
210245^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
21025next-row="0x00001512",prev-row="0x0000150e",
21026next-page="0x00001512",prev-page="0x0000150e",memory=[
21027@{addr="0x00001510",data=["128"]@}]
594fe323 21028(gdb)
32e7087d
JB
21029@end smallexample
21030
a2c02241
NR
21031Read thirty two bytes of memory starting at @code{bytes+16} and format
21032as eight rows of four columns. Include a string encoding with @samp{x}
21033used as the non-printable character.
922fbb7b
AC
21034
21035@smallexample
594fe323 21036(gdb)
a2c02241
NR
210374-data-read-memory bytes+16 x 1 8 4 x
210384^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
21039next-row="0x000013c0",prev-row="0x0000139c",
21040next-page="0x000013c0",prev-page="0x00001380",memory=[
21041@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
21042@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
21043@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
21044@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
21045@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
21046@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
21047@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
21048@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 21049(gdb)
922fbb7b
AC
21050@end smallexample
21051
a2c02241
NR
21052@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21053@node GDB/MI Tracepoint Commands
21054@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 21055
a2c02241 21056The tracepoint commands are not yet implemented.
922fbb7b 21057
a2c02241 21058@c @subheading -trace-actions
922fbb7b 21059
a2c02241 21060@c @subheading -trace-delete
922fbb7b 21061
a2c02241 21062@c @subheading -trace-disable
922fbb7b 21063
a2c02241 21064@c @subheading -trace-dump
922fbb7b 21065
a2c02241 21066@c @subheading -trace-enable
922fbb7b 21067
a2c02241 21068@c @subheading -trace-exists
922fbb7b 21069
a2c02241 21070@c @subheading -trace-find
922fbb7b 21071
a2c02241 21072@c @subheading -trace-frame-number
922fbb7b 21073
a2c02241 21074@c @subheading -trace-info
922fbb7b 21075
a2c02241 21076@c @subheading -trace-insert
922fbb7b 21077
a2c02241 21078@c @subheading -trace-list
922fbb7b 21079
a2c02241 21080@c @subheading -trace-pass-count
922fbb7b 21081
a2c02241 21082@c @subheading -trace-save
922fbb7b 21083
a2c02241 21084@c @subheading -trace-start
922fbb7b 21085
a2c02241 21086@c @subheading -trace-stop
922fbb7b 21087
922fbb7b 21088
a2c02241
NR
21089@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21090@node GDB/MI Symbol Query
21091@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
21092
21093
a2c02241
NR
21094@subheading The @code{-symbol-info-address} Command
21095@findex -symbol-info-address
922fbb7b
AC
21096
21097@subsubheading Synopsis
21098
21099@smallexample
a2c02241 21100 -symbol-info-address @var{symbol}
922fbb7b
AC
21101@end smallexample
21102
a2c02241 21103Describe where @var{symbol} is stored.
922fbb7b
AC
21104
21105@subsubheading @value{GDBN} Command
21106
a2c02241 21107The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
21108
21109@subsubheading Example
21110N.A.
21111
21112
a2c02241
NR
21113@subheading The @code{-symbol-info-file} Command
21114@findex -symbol-info-file
922fbb7b
AC
21115
21116@subsubheading Synopsis
21117
21118@smallexample
a2c02241 21119 -symbol-info-file
922fbb7b
AC
21120@end smallexample
21121
a2c02241 21122Show the file for the symbol.
922fbb7b 21123
a2c02241 21124@subsubheading @value{GDBN} Command
922fbb7b 21125
a2c02241
NR
21126There's no equivalent @value{GDBN} command. @code{gdbtk} has
21127@samp{gdb_find_file}.
922fbb7b
AC
21128
21129@subsubheading Example
21130N.A.
21131
21132
a2c02241
NR
21133@subheading The @code{-symbol-info-function} Command
21134@findex -symbol-info-function
922fbb7b
AC
21135
21136@subsubheading Synopsis
21137
21138@smallexample
a2c02241 21139 -symbol-info-function
922fbb7b
AC
21140@end smallexample
21141
a2c02241 21142Show which function the symbol lives in.
922fbb7b
AC
21143
21144@subsubheading @value{GDBN} Command
21145
a2c02241 21146@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
21147
21148@subsubheading Example
21149N.A.
21150
21151
a2c02241
NR
21152@subheading The @code{-symbol-info-line} Command
21153@findex -symbol-info-line
922fbb7b
AC
21154
21155@subsubheading Synopsis
21156
21157@smallexample
a2c02241 21158 -symbol-info-line
922fbb7b
AC
21159@end smallexample
21160
a2c02241 21161Show the core addresses of the code for a source line.
922fbb7b 21162
a2c02241 21163@subsubheading @value{GDBN} Command
922fbb7b 21164
a2c02241
NR
21165The corresponding @value{GDBN} command is @samp{info line}.
21166@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
21167
21168@subsubheading Example
a2c02241 21169N.A.
922fbb7b
AC
21170
21171
a2c02241
NR
21172@subheading The @code{-symbol-info-symbol} Command
21173@findex -symbol-info-symbol
07f31aa6
DJ
21174
21175@subsubheading Synopsis
21176
a2c02241
NR
21177@smallexample
21178 -symbol-info-symbol @var{addr}
21179@end smallexample
07f31aa6 21180
a2c02241 21181Describe what symbol is at location @var{addr}.
07f31aa6 21182
a2c02241 21183@subsubheading @value{GDBN} Command
07f31aa6 21184
a2c02241 21185The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
21186
21187@subsubheading Example
a2c02241 21188N.A.
07f31aa6
DJ
21189
21190
a2c02241
NR
21191@subheading The @code{-symbol-list-functions} Command
21192@findex -symbol-list-functions
922fbb7b
AC
21193
21194@subsubheading Synopsis
21195
21196@smallexample
a2c02241 21197 -symbol-list-functions
922fbb7b
AC
21198@end smallexample
21199
a2c02241 21200List the functions in the executable.
922fbb7b
AC
21201
21202@subsubheading @value{GDBN} Command
21203
a2c02241
NR
21204@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
21205@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21206
21207@subsubheading Example
a2c02241 21208N.A.
922fbb7b
AC
21209
21210
a2c02241
NR
21211@subheading The @code{-symbol-list-lines} Command
21212@findex -symbol-list-lines
922fbb7b
AC
21213
21214@subsubheading Synopsis
21215
21216@smallexample
a2c02241 21217 -symbol-list-lines @var{filename}
922fbb7b
AC
21218@end smallexample
21219
a2c02241
NR
21220Print the list of lines that contain code and their associated program
21221addresses for the given source filename. The entries are sorted in
21222ascending PC order.
922fbb7b
AC
21223
21224@subsubheading @value{GDBN} Command
21225
a2c02241 21226There is no corresponding @value{GDBN} command.
922fbb7b
AC
21227
21228@subsubheading Example
a2c02241 21229@smallexample
594fe323 21230(gdb)
a2c02241
NR
21231-symbol-list-lines basics.c
21232^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21233(gdb)
a2c02241 21234@end smallexample
922fbb7b
AC
21235
21236
a2c02241
NR
21237@subheading The @code{-symbol-list-types} Command
21238@findex -symbol-list-types
922fbb7b
AC
21239
21240@subsubheading Synopsis
21241
21242@smallexample
a2c02241 21243 -symbol-list-types
922fbb7b
AC
21244@end smallexample
21245
a2c02241 21246List all the type names.
922fbb7b
AC
21247
21248@subsubheading @value{GDBN} Command
21249
a2c02241
NR
21250The corresponding commands are @samp{info types} in @value{GDBN},
21251@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21252
21253@subsubheading Example
21254N.A.
21255
21256
a2c02241
NR
21257@subheading The @code{-symbol-list-variables} Command
21258@findex -symbol-list-variables
922fbb7b
AC
21259
21260@subsubheading Synopsis
21261
21262@smallexample
a2c02241 21263 -symbol-list-variables
922fbb7b
AC
21264@end smallexample
21265
a2c02241 21266List all the global and static variable names.
922fbb7b
AC
21267
21268@subsubheading @value{GDBN} Command
21269
a2c02241 21270@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21271
21272@subsubheading Example
21273N.A.
21274
21275
a2c02241
NR
21276@subheading The @code{-symbol-locate} Command
21277@findex -symbol-locate
922fbb7b
AC
21278
21279@subsubheading Synopsis
21280
21281@smallexample
a2c02241 21282 -symbol-locate
922fbb7b
AC
21283@end smallexample
21284
922fbb7b
AC
21285@subsubheading @value{GDBN} Command
21286
a2c02241 21287@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21288
21289@subsubheading Example
21290N.A.
21291
21292
a2c02241
NR
21293@subheading The @code{-symbol-type} Command
21294@findex -symbol-type
922fbb7b
AC
21295
21296@subsubheading Synopsis
21297
21298@smallexample
a2c02241 21299 -symbol-type @var{variable}
922fbb7b
AC
21300@end smallexample
21301
a2c02241 21302Show type of @var{variable}.
922fbb7b 21303
a2c02241 21304@subsubheading @value{GDBN} Command
922fbb7b 21305
a2c02241
NR
21306The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21307@samp{gdb_obj_variable}.
21308
21309@subsubheading Example
21310N.A.
21311
21312
21313@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21314@node GDB/MI File Commands
21315@section @sc{gdb/mi} File Commands
21316
21317This section describes the GDB/MI commands to specify executable file names
21318and to read in and obtain symbol table information.
21319
21320@subheading The @code{-file-exec-and-symbols} Command
21321@findex -file-exec-and-symbols
21322
21323@subsubheading Synopsis
922fbb7b
AC
21324
21325@smallexample
a2c02241 21326 -file-exec-and-symbols @var{file}
922fbb7b
AC
21327@end smallexample
21328
a2c02241
NR
21329Specify the executable file to be debugged. This file is the one from
21330which the symbol table is also read. If no file is specified, the
21331command clears the executable and symbol information. If breakpoints
21332are set when using this command with no arguments, @value{GDBN} will produce
21333error messages. Otherwise, no output is produced, except a completion
21334notification.
21335
922fbb7b
AC
21336@subsubheading @value{GDBN} Command
21337
a2c02241 21338The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21339
21340@subsubheading Example
21341
21342@smallexample
594fe323 21343(gdb)
a2c02241
NR
21344-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21345^done
594fe323 21346(gdb)
922fbb7b
AC
21347@end smallexample
21348
922fbb7b 21349
a2c02241
NR
21350@subheading The @code{-file-exec-file} Command
21351@findex -file-exec-file
922fbb7b
AC
21352
21353@subsubheading Synopsis
21354
21355@smallexample
a2c02241 21356 -file-exec-file @var{file}
922fbb7b
AC
21357@end smallexample
21358
a2c02241
NR
21359Specify the executable file to be debugged. Unlike
21360@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21361from this file. If used without argument, @value{GDBN} clears the information
21362about the executable file. No output is produced, except a completion
21363notification.
922fbb7b 21364
a2c02241
NR
21365@subsubheading @value{GDBN} Command
21366
21367The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21368
21369@subsubheading Example
a2c02241
NR
21370
21371@smallexample
594fe323 21372(gdb)
a2c02241
NR
21373-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21374^done
594fe323 21375(gdb)
a2c02241 21376@end smallexample
922fbb7b
AC
21377
21378
a2c02241
NR
21379@subheading The @code{-file-list-exec-sections} Command
21380@findex -file-list-exec-sections
922fbb7b
AC
21381
21382@subsubheading Synopsis
21383
21384@smallexample
a2c02241 21385 -file-list-exec-sections
922fbb7b
AC
21386@end smallexample
21387
a2c02241
NR
21388List the sections of the current executable file.
21389
922fbb7b
AC
21390@subsubheading @value{GDBN} Command
21391
a2c02241
NR
21392The @value{GDBN} command @samp{info file} shows, among the rest, the same
21393information as this command. @code{gdbtk} has a corresponding command
21394@samp{gdb_load_info}.
922fbb7b
AC
21395
21396@subsubheading Example
21397N.A.
21398
21399
a2c02241
NR
21400@subheading The @code{-file-list-exec-source-file} Command
21401@findex -file-list-exec-source-file
922fbb7b
AC
21402
21403@subsubheading Synopsis
21404
21405@smallexample
a2c02241 21406 -file-list-exec-source-file
922fbb7b
AC
21407@end smallexample
21408
a2c02241 21409List the line number, the current source file, and the absolute path
44288b44
NR
21410to the current source file for the current executable. The macro
21411information field has a value of @samp{1} or @samp{0} depending on
21412whether or not the file includes preprocessor macro information.
922fbb7b
AC
21413
21414@subsubheading @value{GDBN} Command
21415
a2c02241 21416The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21417
21418@subsubheading Example
21419
922fbb7b 21420@smallexample
594fe323 21421(gdb)
a2c02241 21422123-file-list-exec-source-file
44288b44 21423123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21424(gdb)
922fbb7b
AC
21425@end smallexample
21426
21427
a2c02241
NR
21428@subheading The @code{-file-list-exec-source-files} Command
21429@findex -file-list-exec-source-files
922fbb7b
AC
21430
21431@subsubheading Synopsis
21432
21433@smallexample
a2c02241 21434 -file-list-exec-source-files
922fbb7b
AC
21435@end smallexample
21436
a2c02241
NR
21437List the source files for the current executable.
21438
3f94c067
BW
21439It will always output the filename, but only when @value{GDBN} can find
21440the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21441
21442@subsubheading @value{GDBN} Command
21443
a2c02241
NR
21444The @value{GDBN} equivalent is @samp{info sources}.
21445@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21446
21447@subsubheading Example
922fbb7b 21448@smallexample
594fe323 21449(gdb)
a2c02241
NR
21450-file-list-exec-source-files
21451^done,files=[
21452@{file=foo.c,fullname=/home/foo.c@},
21453@{file=/home/bar.c,fullname=/home/bar.c@},
21454@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21455(gdb)
922fbb7b
AC
21456@end smallexample
21457
a2c02241
NR
21458@subheading The @code{-file-list-shared-libraries} Command
21459@findex -file-list-shared-libraries
922fbb7b 21460
a2c02241 21461@subsubheading Synopsis
922fbb7b 21462
a2c02241
NR
21463@smallexample
21464 -file-list-shared-libraries
21465@end smallexample
922fbb7b 21466
a2c02241 21467List the shared libraries in the program.
922fbb7b 21468
a2c02241 21469@subsubheading @value{GDBN} Command
922fbb7b 21470
a2c02241 21471The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21472
a2c02241
NR
21473@subsubheading Example
21474N.A.
922fbb7b
AC
21475
21476
a2c02241
NR
21477@subheading The @code{-file-list-symbol-files} Command
21478@findex -file-list-symbol-files
922fbb7b 21479
a2c02241 21480@subsubheading Synopsis
922fbb7b 21481
a2c02241
NR
21482@smallexample
21483 -file-list-symbol-files
21484@end smallexample
922fbb7b 21485
a2c02241 21486List symbol files.
922fbb7b 21487
a2c02241 21488@subsubheading @value{GDBN} Command
922fbb7b 21489
a2c02241 21490The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21491
a2c02241
NR
21492@subsubheading Example
21493N.A.
922fbb7b 21494
922fbb7b 21495
a2c02241
NR
21496@subheading The @code{-file-symbol-file} Command
21497@findex -file-symbol-file
922fbb7b 21498
a2c02241 21499@subsubheading Synopsis
922fbb7b 21500
a2c02241
NR
21501@smallexample
21502 -file-symbol-file @var{file}
21503@end smallexample
922fbb7b 21504
a2c02241
NR
21505Read symbol table info from the specified @var{file} argument. When
21506used without arguments, clears @value{GDBN}'s symbol table info. No output is
21507produced, except for a completion notification.
922fbb7b 21508
a2c02241 21509@subsubheading @value{GDBN} Command
922fbb7b 21510
a2c02241 21511The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21512
a2c02241 21513@subsubheading Example
922fbb7b 21514
a2c02241 21515@smallexample
594fe323 21516(gdb)
a2c02241
NR
21517-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21518^done
594fe323 21519(gdb)
a2c02241 21520@end smallexample
922fbb7b 21521
a2c02241 21522@ignore
a2c02241
NR
21523@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21524@node GDB/MI Memory Overlay Commands
21525@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21526
a2c02241 21527The memory overlay commands are not implemented.
922fbb7b 21528
a2c02241 21529@c @subheading -overlay-auto
922fbb7b 21530
a2c02241 21531@c @subheading -overlay-list-mapping-state
922fbb7b 21532
a2c02241 21533@c @subheading -overlay-list-overlays
922fbb7b 21534
a2c02241 21535@c @subheading -overlay-map
922fbb7b 21536
a2c02241 21537@c @subheading -overlay-off
922fbb7b 21538
a2c02241 21539@c @subheading -overlay-on
922fbb7b 21540
a2c02241 21541@c @subheading -overlay-unmap
922fbb7b 21542
a2c02241
NR
21543@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21544@node GDB/MI Signal Handling Commands
21545@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21546
a2c02241 21547Signal handling commands are not implemented.
922fbb7b 21548
a2c02241 21549@c @subheading -signal-handle
922fbb7b 21550
a2c02241 21551@c @subheading -signal-list-handle-actions
922fbb7b 21552
a2c02241
NR
21553@c @subheading -signal-list-signal-types
21554@end ignore
922fbb7b 21555
922fbb7b 21556
a2c02241
NR
21557@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21558@node GDB/MI Target Manipulation
21559@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21560
21561
a2c02241
NR
21562@subheading The @code{-target-attach} Command
21563@findex -target-attach
922fbb7b
AC
21564
21565@subsubheading Synopsis
21566
21567@smallexample
a2c02241 21568 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21569@end smallexample
21570
a2c02241 21571Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21572
79a6e687 21573@subsubheading @value{GDBN} Command
922fbb7b 21574
a2c02241 21575The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21576
a2c02241
NR
21577@subsubheading Example
21578N.A.
922fbb7b 21579
a2c02241
NR
21580
21581@subheading The @code{-target-compare-sections} Command
21582@findex -target-compare-sections
922fbb7b
AC
21583
21584@subsubheading Synopsis
21585
21586@smallexample
a2c02241 21587 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21588@end smallexample
21589
a2c02241
NR
21590Compare data of section @var{section} on target to the exec file.
21591Without the argument, all sections are compared.
922fbb7b 21592
a2c02241 21593@subsubheading @value{GDBN} Command
922fbb7b 21594
a2c02241 21595The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21596
a2c02241
NR
21597@subsubheading Example
21598N.A.
21599
21600
21601@subheading The @code{-target-detach} Command
21602@findex -target-detach
922fbb7b
AC
21603
21604@subsubheading Synopsis
21605
21606@smallexample
a2c02241 21607 -target-detach
922fbb7b
AC
21608@end smallexample
21609
a2c02241
NR
21610Detach from the remote target which normally resumes its execution.
21611There's no output.
21612
79a6e687 21613@subsubheading @value{GDBN} Command
a2c02241
NR
21614
21615The corresponding @value{GDBN} command is @samp{detach}.
21616
21617@subsubheading Example
922fbb7b
AC
21618
21619@smallexample
594fe323 21620(gdb)
a2c02241
NR
21621-target-detach
21622^done
594fe323 21623(gdb)
922fbb7b
AC
21624@end smallexample
21625
21626
a2c02241
NR
21627@subheading The @code{-target-disconnect} Command
21628@findex -target-disconnect
922fbb7b
AC
21629
21630@subsubheading Synopsis
21631
123dc839 21632@smallexample
a2c02241 21633 -target-disconnect
123dc839 21634@end smallexample
922fbb7b 21635
a2c02241
NR
21636Disconnect from the remote target. There's no output and the target is
21637generally not resumed.
21638
79a6e687 21639@subsubheading @value{GDBN} Command
a2c02241
NR
21640
21641The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21642
21643@subsubheading Example
922fbb7b
AC
21644
21645@smallexample
594fe323 21646(gdb)
a2c02241
NR
21647-target-disconnect
21648^done
594fe323 21649(gdb)
922fbb7b
AC
21650@end smallexample
21651
21652
a2c02241
NR
21653@subheading The @code{-target-download} Command
21654@findex -target-download
922fbb7b
AC
21655
21656@subsubheading Synopsis
21657
21658@smallexample
a2c02241 21659 -target-download
922fbb7b
AC
21660@end smallexample
21661
a2c02241
NR
21662Loads the executable onto the remote target.
21663It prints out an update message every half second, which includes the fields:
21664
21665@table @samp
21666@item section
21667The name of the section.
21668@item section-sent
21669The size of what has been sent so far for that section.
21670@item section-size
21671The size of the section.
21672@item total-sent
21673The total size of what was sent so far (the current and the previous sections).
21674@item total-size
21675The size of the overall executable to download.
21676@end table
21677
21678@noindent
21679Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21680@sc{gdb/mi} Output Syntax}).
21681
21682In addition, it prints the name and size of the sections, as they are
21683downloaded. These messages include the following fields:
21684
21685@table @samp
21686@item section
21687The name of the section.
21688@item section-size
21689The size of the section.
21690@item total-size
21691The size of the overall executable to download.
21692@end table
21693
21694@noindent
21695At the end, a summary is printed.
21696
21697@subsubheading @value{GDBN} Command
21698
21699The corresponding @value{GDBN} command is @samp{load}.
21700
21701@subsubheading Example
21702
21703Note: each status message appears on a single line. Here the messages
21704have been broken down so that they can fit onto a page.
922fbb7b
AC
21705
21706@smallexample
594fe323 21707(gdb)
a2c02241
NR
21708-target-download
21709+download,@{section=".text",section-size="6668",total-size="9880"@}
21710+download,@{section=".text",section-sent="512",section-size="6668",
21711total-sent="512",total-size="9880"@}
21712+download,@{section=".text",section-sent="1024",section-size="6668",
21713total-sent="1024",total-size="9880"@}
21714+download,@{section=".text",section-sent="1536",section-size="6668",
21715total-sent="1536",total-size="9880"@}
21716+download,@{section=".text",section-sent="2048",section-size="6668",
21717total-sent="2048",total-size="9880"@}
21718+download,@{section=".text",section-sent="2560",section-size="6668",
21719total-sent="2560",total-size="9880"@}
21720+download,@{section=".text",section-sent="3072",section-size="6668",
21721total-sent="3072",total-size="9880"@}
21722+download,@{section=".text",section-sent="3584",section-size="6668",
21723total-sent="3584",total-size="9880"@}
21724+download,@{section=".text",section-sent="4096",section-size="6668",
21725total-sent="4096",total-size="9880"@}
21726+download,@{section=".text",section-sent="4608",section-size="6668",
21727total-sent="4608",total-size="9880"@}
21728+download,@{section=".text",section-sent="5120",section-size="6668",
21729total-sent="5120",total-size="9880"@}
21730+download,@{section=".text",section-sent="5632",section-size="6668",
21731total-sent="5632",total-size="9880"@}
21732+download,@{section=".text",section-sent="6144",section-size="6668",
21733total-sent="6144",total-size="9880"@}
21734+download,@{section=".text",section-sent="6656",section-size="6668",
21735total-sent="6656",total-size="9880"@}
21736+download,@{section=".init",section-size="28",total-size="9880"@}
21737+download,@{section=".fini",section-size="28",total-size="9880"@}
21738+download,@{section=".data",section-size="3156",total-size="9880"@}
21739+download,@{section=".data",section-sent="512",section-size="3156",
21740total-sent="7236",total-size="9880"@}
21741+download,@{section=".data",section-sent="1024",section-size="3156",
21742total-sent="7748",total-size="9880"@}
21743+download,@{section=".data",section-sent="1536",section-size="3156",
21744total-sent="8260",total-size="9880"@}
21745+download,@{section=".data",section-sent="2048",section-size="3156",
21746total-sent="8772",total-size="9880"@}
21747+download,@{section=".data",section-sent="2560",section-size="3156",
21748total-sent="9284",total-size="9880"@}
21749+download,@{section=".data",section-sent="3072",section-size="3156",
21750total-sent="9796",total-size="9880"@}
21751^done,address="0x10004",load-size="9880",transfer-rate="6586",
21752write-rate="429"
594fe323 21753(gdb)
922fbb7b
AC
21754@end smallexample
21755
21756
a2c02241
NR
21757@subheading The @code{-target-exec-status} Command
21758@findex -target-exec-status
922fbb7b
AC
21759
21760@subsubheading Synopsis
21761
21762@smallexample
a2c02241 21763 -target-exec-status
922fbb7b
AC
21764@end smallexample
21765
a2c02241
NR
21766Provide information on the state of the target (whether it is running or
21767not, for instance).
922fbb7b 21768
a2c02241 21769@subsubheading @value{GDBN} Command
922fbb7b 21770
a2c02241
NR
21771There's no equivalent @value{GDBN} command.
21772
21773@subsubheading Example
21774N.A.
922fbb7b 21775
a2c02241
NR
21776
21777@subheading The @code{-target-list-available-targets} Command
21778@findex -target-list-available-targets
922fbb7b
AC
21779
21780@subsubheading Synopsis
21781
21782@smallexample
a2c02241 21783 -target-list-available-targets
922fbb7b
AC
21784@end smallexample
21785
a2c02241 21786List the possible targets to connect to.
922fbb7b 21787
a2c02241 21788@subsubheading @value{GDBN} Command
922fbb7b 21789
a2c02241 21790The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21791
a2c02241
NR
21792@subsubheading Example
21793N.A.
21794
21795
21796@subheading The @code{-target-list-current-targets} Command
21797@findex -target-list-current-targets
922fbb7b
AC
21798
21799@subsubheading Synopsis
21800
21801@smallexample
a2c02241 21802 -target-list-current-targets
922fbb7b
AC
21803@end smallexample
21804
a2c02241 21805Describe the current target.
922fbb7b 21806
a2c02241 21807@subsubheading @value{GDBN} Command
922fbb7b 21808
a2c02241
NR
21809The corresponding information is printed by @samp{info file} (among
21810other things).
922fbb7b 21811
a2c02241
NR
21812@subsubheading Example
21813N.A.
21814
21815
21816@subheading The @code{-target-list-parameters} Command
21817@findex -target-list-parameters
922fbb7b
AC
21818
21819@subsubheading Synopsis
21820
21821@smallexample
a2c02241 21822 -target-list-parameters
922fbb7b
AC
21823@end smallexample
21824
a2c02241
NR
21825@c ????
21826
21827@subsubheading @value{GDBN} Command
21828
21829No equivalent.
922fbb7b
AC
21830
21831@subsubheading Example
a2c02241
NR
21832N.A.
21833
21834
21835@subheading The @code{-target-select} Command
21836@findex -target-select
21837
21838@subsubheading Synopsis
922fbb7b
AC
21839
21840@smallexample
a2c02241 21841 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21842@end smallexample
21843
a2c02241 21844Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21845
a2c02241
NR
21846@table @samp
21847@item @var{type}
75c99385 21848The type of target, for instance @samp{remote}, etc.
a2c02241
NR
21849@item @var{parameters}
21850Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21851Commands for Managing Targets}, for more details.
a2c02241
NR
21852@end table
21853
21854The output is a connection notification, followed by the address at
21855which the target program is, in the following form:
922fbb7b
AC
21856
21857@smallexample
a2c02241
NR
21858^connected,addr="@var{address}",func="@var{function name}",
21859 args=[@var{arg list}]
922fbb7b
AC
21860@end smallexample
21861
a2c02241
NR
21862@subsubheading @value{GDBN} Command
21863
21864The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21865
21866@subsubheading Example
922fbb7b 21867
265eeb58 21868@smallexample
594fe323 21869(gdb)
75c99385 21870-target-select remote /dev/ttya
a2c02241 21871^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21872(gdb)
265eeb58 21873@end smallexample
ef21caaf 21874
a6b151f1
DJ
21875@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21876@node GDB/MI File Transfer Commands
21877@section @sc{gdb/mi} File Transfer Commands
21878
21879
21880@subheading The @code{-target-file-put} Command
21881@findex -target-file-put
21882
21883@subsubheading Synopsis
21884
21885@smallexample
21886 -target-file-put @var{hostfile} @var{targetfile}
21887@end smallexample
21888
21889Copy file @var{hostfile} from the host system (the machine running
21890@value{GDBN}) to @var{targetfile} on the target system.
21891
21892@subsubheading @value{GDBN} Command
21893
21894The corresponding @value{GDBN} command is @samp{remote put}.
21895
21896@subsubheading Example
21897
21898@smallexample
21899(gdb)
21900-target-file-put localfile remotefile
21901^done
21902(gdb)
21903@end smallexample
21904
21905
1763a388 21906@subheading The @code{-target-file-get} Command
a6b151f1
DJ
21907@findex -target-file-get
21908
21909@subsubheading Synopsis
21910
21911@smallexample
21912 -target-file-get @var{targetfile} @var{hostfile}
21913@end smallexample
21914
21915Copy file @var{targetfile} from the target system to @var{hostfile}
21916on the host system.
21917
21918@subsubheading @value{GDBN} Command
21919
21920The corresponding @value{GDBN} command is @samp{remote get}.
21921
21922@subsubheading Example
21923
21924@smallexample
21925(gdb)
21926-target-file-get remotefile localfile
21927^done
21928(gdb)
21929@end smallexample
21930
21931
21932@subheading The @code{-target-file-delete} Command
21933@findex -target-file-delete
21934
21935@subsubheading Synopsis
21936
21937@smallexample
21938 -target-file-delete @var{targetfile}
21939@end smallexample
21940
21941Delete @var{targetfile} from the target system.
21942
21943@subsubheading @value{GDBN} Command
21944
21945The corresponding @value{GDBN} command is @samp{remote delete}.
21946
21947@subsubheading Example
21948
21949@smallexample
21950(gdb)
21951-target-file-delete remotefile
21952^done
21953(gdb)
21954@end smallexample
21955
21956
ef21caaf
NR
21957@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21958@node GDB/MI Miscellaneous Commands
21959@section Miscellaneous @sc{gdb/mi} Commands
21960
21961@c @subheading -gdb-complete
21962
21963@subheading The @code{-gdb-exit} Command
21964@findex -gdb-exit
21965
21966@subsubheading Synopsis
21967
21968@smallexample
21969 -gdb-exit
21970@end smallexample
21971
21972Exit @value{GDBN} immediately.
21973
21974@subsubheading @value{GDBN} Command
21975
21976Approximately corresponds to @samp{quit}.
21977
21978@subsubheading Example
21979
21980@smallexample
594fe323 21981(gdb)
ef21caaf
NR
21982-gdb-exit
21983^exit
21984@end smallexample
21985
a2c02241
NR
21986
21987@subheading The @code{-exec-abort} Command
21988@findex -exec-abort
21989
21990@subsubheading Synopsis
21991
21992@smallexample
21993 -exec-abort
21994@end smallexample
21995
21996Kill the inferior running program.
21997
21998@subsubheading @value{GDBN} Command
21999
22000The corresponding @value{GDBN} command is @samp{kill}.
22001
22002@subsubheading Example
22003N.A.
22004
22005
ef21caaf
NR
22006@subheading The @code{-gdb-set} Command
22007@findex -gdb-set
22008
22009@subsubheading Synopsis
22010
22011@smallexample
22012 -gdb-set
22013@end smallexample
22014
22015Set an internal @value{GDBN} variable.
22016@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
22017
22018@subsubheading @value{GDBN} Command
22019
22020The corresponding @value{GDBN} command is @samp{set}.
22021
22022@subsubheading Example
22023
22024@smallexample
594fe323 22025(gdb)
ef21caaf
NR
22026-gdb-set $foo=3
22027^done
594fe323 22028(gdb)
ef21caaf
NR
22029@end smallexample
22030
22031
22032@subheading The @code{-gdb-show} Command
22033@findex -gdb-show
22034
22035@subsubheading Synopsis
22036
22037@smallexample
22038 -gdb-show
22039@end smallexample
22040
22041Show the current value of a @value{GDBN} variable.
22042
79a6e687 22043@subsubheading @value{GDBN} Command
ef21caaf
NR
22044
22045The corresponding @value{GDBN} command is @samp{show}.
22046
22047@subsubheading Example
22048
22049@smallexample
594fe323 22050(gdb)
ef21caaf
NR
22051-gdb-show annotate
22052^done,value="0"
594fe323 22053(gdb)
ef21caaf
NR
22054@end smallexample
22055
22056@c @subheading -gdb-source
22057
22058
22059@subheading The @code{-gdb-version} Command
22060@findex -gdb-version
22061
22062@subsubheading Synopsis
22063
22064@smallexample
22065 -gdb-version
22066@end smallexample
22067
22068Show version information for @value{GDBN}. Used mostly in testing.
22069
22070@subsubheading @value{GDBN} Command
22071
22072The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
22073default shows this information when you start an interactive session.
22074
22075@subsubheading Example
22076
22077@c This example modifies the actual output from GDB to avoid overfull
22078@c box in TeX.
22079@smallexample
594fe323 22080(gdb)
ef21caaf
NR
22081-gdb-version
22082~GNU gdb 5.2.1
22083~Copyright 2000 Free Software Foundation, Inc.
22084~GDB is free software, covered by the GNU General Public License, and
22085~you are welcome to change it and/or distribute copies of it under
22086~ certain conditions.
22087~Type "show copying" to see the conditions.
22088~There is absolutely no warranty for GDB. Type "show warranty" for
22089~ details.
22090~This GDB was configured as
22091 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
22092^done
594fe323 22093(gdb)
ef21caaf
NR
22094@end smallexample
22095
084344da
VP
22096@subheading The @code{-list-features} Command
22097@findex -list-features
22098
22099Returns a list of particular features of the MI protocol that
22100this version of gdb implements. A feature can be a command,
22101or a new field in an output of some command, or even an
22102important bugfix. While a frontend can sometimes detect presence
22103of a feature at runtime, it is easier to perform detection at debugger
22104startup.
22105
22106The command returns a list of strings, with each string naming an
22107available feature. Each returned string is just a name, it does not
22108have any internal structure. The list of possible feature names
22109is given below.
22110
22111Example output:
22112
22113@smallexample
22114(gdb) -list-features
22115^done,result=["feature1","feature2"]
22116@end smallexample
22117
22118The current list of features is:
22119
22120@itemize @minus
22121@item
22122@samp{frozen-varobjs}---indicates presence of the
22123@code{-var-set-frozen} command, as well as possible presense of the
22124@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
22125@item
22126@samp{pending-breakpoints}---indicates presence of the @code{-f}
22127option to the @code{-break-insert} command.
8e8901c5
VP
22128@item
22129@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 22130
084344da
VP
22131@end itemize
22132
ef21caaf
NR
22133@subheading The @code{-interpreter-exec} Command
22134@findex -interpreter-exec
22135
22136@subheading Synopsis
22137
22138@smallexample
22139-interpreter-exec @var{interpreter} @var{command}
22140@end smallexample
a2c02241 22141@anchor{-interpreter-exec}
ef21caaf
NR
22142
22143Execute the specified @var{command} in the given @var{interpreter}.
22144
22145@subheading @value{GDBN} Command
22146
22147The corresponding @value{GDBN} command is @samp{interpreter-exec}.
22148
22149@subheading Example
22150
22151@smallexample
594fe323 22152(gdb)
ef21caaf
NR
22153-interpreter-exec console "break main"
22154&"During symbol reading, couldn't parse type; debugger out of date?.\n"
22155&"During symbol reading, bad structure-type format.\n"
22156~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
22157^done
594fe323 22158(gdb)
ef21caaf
NR
22159@end smallexample
22160
22161@subheading The @code{-inferior-tty-set} Command
22162@findex -inferior-tty-set
22163
22164@subheading Synopsis
22165
22166@smallexample
22167-inferior-tty-set /dev/pts/1
22168@end smallexample
22169
22170Set terminal for future runs of the program being debugged.
22171
22172@subheading @value{GDBN} Command
22173
22174The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
22175
22176@subheading Example
22177
22178@smallexample
594fe323 22179(gdb)
ef21caaf
NR
22180-inferior-tty-set /dev/pts/1
22181^done
594fe323 22182(gdb)
ef21caaf
NR
22183@end smallexample
22184
22185@subheading The @code{-inferior-tty-show} Command
22186@findex -inferior-tty-show
22187
22188@subheading Synopsis
22189
22190@smallexample
22191-inferior-tty-show
22192@end smallexample
22193
22194Show terminal for future runs of program being debugged.
22195
22196@subheading @value{GDBN} Command
22197
22198The corresponding @value{GDBN} command is @samp{show inferior-tty}.
22199
22200@subheading Example
22201
22202@smallexample
594fe323 22203(gdb)
ef21caaf
NR
22204-inferior-tty-set /dev/pts/1
22205^done
594fe323 22206(gdb)
ef21caaf
NR
22207-inferior-tty-show
22208^done,inferior_tty_terminal="/dev/pts/1"
594fe323 22209(gdb)
ef21caaf 22210@end smallexample
922fbb7b 22211
a4eefcd8
NR
22212@subheading The @code{-enable-timings} Command
22213@findex -enable-timings
22214
22215@subheading Synopsis
22216
22217@smallexample
22218-enable-timings [yes | no]
22219@end smallexample
22220
22221Toggle the printing of the wallclock, user and system times for an MI
22222command as a field in its output. This command is to help frontend
22223developers optimize the performance of their code. No argument is
22224equivalent to @samp{yes}.
22225
22226@subheading @value{GDBN} Command
22227
22228No equivalent.
22229
22230@subheading Example
22231
22232@smallexample
22233(gdb)
22234-enable-timings
22235^done
22236(gdb)
22237-break-insert main
22238^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22239addr="0x080484ed",func="main",file="myprog.c",
22240fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22241time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22242(gdb)
22243-enable-timings no
22244^done
22245(gdb)
22246-exec-run
22247^running
22248(gdb)
a47ec5fe 22249*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22250frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22251@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22252fullname="/home/nickrob/myprog.c",line="73"@}
22253(gdb)
22254@end smallexample
22255
922fbb7b
AC
22256@node Annotations
22257@chapter @value{GDBN} Annotations
22258
086432e2
AC
22259This chapter describes annotations in @value{GDBN}. Annotations were
22260designed to interface @value{GDBN} to graphical user interfaces or other
22261similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22262relatively high level.
22263
d3e8051b 22264The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22265(@pxref{GDB/MI}).
22266
922fbb7b
AC
22267@ignore
22268This is Edition @value{EDITION}, @value{DATE}.
22269@end ignore
22270
22271@menu
22272* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22273* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22274* Prompting:: Annotations marking @value{GDBN}'s need for input.
22275* Errors:: Annotations for error messages.
922fbb7b
AC
22276* Invalidation:: Some annotations describe things now invalid.
22277* Annotations for Running::
22278 Whether the program is running, how it stopped, etc.
22279* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22280@end menu
22281
22282@node Annotations Overview
22283@section What is an Annotation?
22284@cindex annotations
22285
922fbb7b
AC
22286Annotations start with a newline character, two @samp{control-z}
22287characters, and the name of the annotation. If there is no additional
22288information associated with this annotation, the name of the annotation
22289is followed immediately by a newline. If there is additional
22290information, the name of the annotation is followed by a space, the
22291additional information, and a newline. The additional information
22292cannot contain newline characters.
22293
22294Any output not beginning with a newline and two @samp{control-z}
22295characters denotes literal output from @value{GDBN}. Currently there is
22296no need for @value{GDBN} to output a newline followed by two
22297@samp{control-z} characters, but if there was such a need, the
22298annotations could be extended with an @samp{escape} annotation which
22299means those three characters as output.
22300
086432e2
AC
22301The annotation @var{level}, which is specified using the
22302@option{--annotate} command line option (@pxref{Mode Options}), controls
22303how much information @value{GDBN} prints together with its prompt,
22304values of expressions, source lines, and other types of output. Level 0
d3e8051b 22305is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22306subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22307for programs that control @value{GDBN}, and level 2 annotations have
22308been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22309Interface, annotate, GDB's Obsolete Annotations}).
22310
22311@table @code
22312@kindex set annotate
22313@item set annotate @var{level}
e09f16f9 22314The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22315annotations to the specified @var{level}.
9c16f35a
EZ
22316
22317@item show annotate
22318@kindex show annotate
22319Show the current annotation level.
09d4efe1
EZ
22320@end table
22321
22322This chapter describes level 3 annotations.
086432e2 22323
922fbb7b
AC
22324A simple example of starting up @value{GDBN} with annotations is:
22325
22326@smallexample
086432e2
AC
22327$ @kbd{gdb --annotate=3}
22328GNU gdb 6.0
22329Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22330GDB is free software, covered by the GNU General Public License,
22331and you are welcome to change it and/or distribute copies of it
22332under certain conditions.
22333Type "show copying" to see the conditions.
22334There is absolutely no warranty for GDB. Type "show warranty"
22335for details.
086432e2 22336This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22337
22338^Z^Zpre-prompt
f7dc1244 22339(@value{GDBP})
922fbb7b 22340^Z^Zprompt
086432e2 22341@kbd{quit}
922fbb7b
AC
22342
22343^Z^Zpost-prompt
b383017d 22344$
922fbb7b
AC
22345@end smallexample
22346
22347Here @samp{quit} is input to @value{GDBN}; the rest is output from
22348@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22349denotes a @samp{control-z} character) are annotations; the rest is
22350output from @value{GDBN}.
22351
9e6c4bd5
NR
22352@node Server Prefix
22353@section The Server Prefix
22354@cindex server prefix
22355
22356If you prefix a command with @samp{server } then it will not affect
22357the command history, nor will it affect @value{GDBN}'s notion of which
22358command to repeat if @key{RET} is pressed on a line by itself. This
22359means that commands can be run behind a user's back by a front-end in
22360a transparent manner.
22361
22362The server prefix does not affect the recording of values into the value
22363history; to print a value without recording it into the value history,
22364use the @code{output} command instead of the @code{print} command.
22365
922fbb7b
AC
22366@node Prompting
22367@section Annotation for @value{GDBN} Input
22368
22369@cindex annotations for prompts
22370When @value{GDBN} prompts for input, it annotates this fact so it is possible
22371to know when to send output, when the output from a given command is
22372over, etc.
22373
22374Different kinds of input each have a different @dfn{input type}. Each
22375input type has three annotations: a @code{pre-} annotation, which
22376denotes the beginning of any prompt which is being output, a plain
22377annotation, which denotes the end of the prompt, and then a @code{post-}
22378annotation which denotes the end of any echo which may (or may not) be
22379associated with the input. For example, the @code{prompt} input type
22380features the following annotations:
22381
22382@smallexample
22383^Z^Zpre-prompt
22384^Z^Zprompt
22385^Z^Zpost-prompt
22386@end smallexample
22387
22388The input types are
22389
22390@table @code
e5ac9b53
EZ
22391@findex pre-prompt annotation
22392@findex prompt annotation
22393@findex post-prompt annotation
922fbb7b
AC
22394@item prompt
22395When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22396
e5ac9b53
EZ
22397@findex pre-commands annotation
22398@findex commands annotation
22399@findex post-commands annotation
922fbb7b
AC
22400@item commands
22401When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22402command. The annotations are repeated for each command which is input.
22403
e5ac9b53
EZ
22404@findex pre-overload-choice annotation
22405@findex overload-choice annotation
22406@findex post-overload-choice annotation
922fbb7b
AC
22407@item overload-choice
22408When @value{GDBN} wants the user to select between various overloaded functions.
22409
e5ac9b53
EZ
22410@findex pre-query annotation
22411@findex query annotation
22412@findex post-query annotation
922fbb7b
AC
22413@item query
22414When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22415
e5ac9b53
EZ
22416@findex pre-prompt-for-continue annotation
22417@findex prompt-for-continue annotation
22418@findex post-prompt-for-continue annotation
922fbb7b
AC
22419@item prompt-for-continue
22420When @value{GDBN} is asking the user to press return to continue. Note: Don't
22421expect this to work well; instead use @code{set height 0} to disable
22422prompting. This is because the counting of lines is buggy in the
22423presence of annotations.
22424@end table
22425
22426@node Errors
22427@section Errors
22428@cindex annotations for errors, warnings and interrupts
22429
e5ac9b53 22430@findex quit annotation
922fbb7b
AC
22431@smallexample
22432^Z^Zquit
22433@end smallexample
22434
22435This annotation occurs right before @value{GDBN} responds to an interrupt.
22436
e5ac9b53 22437@findex error annotation
922fbb7b
AC
22438@smallexample
22439^Z^Zerror
22440@end smallexample
22441
22442This annotation occurs right before @value{GDBN} responds to an error.
22443
22444Quit and error annotations indicate that any annotations which @value{GDBN} was
22445in the middle of may end abruptly. For example, if a
22446@code{value-history-begin} annotation is followed by a @code{error}, one
22447cannot expect to receive the matching @code{value-history-end}. One
22448cannot expect not to receive it either, however; an error annotation
22449does not necessarily mean that @value{GDBN} is immediately returning all the way
22450to the top level.
22451
e5ac9b53 22452@findex error-begin annotation
922fbb7b
AC
22453A quit or error annotation may be preceded by
22454
22455@smallexample
22456^Z^Zerror-begin
22457@end smallexample
22458
22459Any output between that and the quit or error annotation is the error
22460message.
22461
22462Warning messages are not yet annotated.
22463@c If we want to change that, need to fix warning(), type_error(),
22464@c range_error(), and possibly other places.
22465
922fbb7b
AC
22466@node Invalidation
22467@section Invalidation Notices
22468
22469@cindex annotations for invalidation messages
22470The following annotations say that certain pieces of state may have
22471changed.
22472
22473@table @code
e5ac9b53 22474@findex frames-invalid annotation
922fbb7b
AC
22475@item ^Z^Zframes-invalid
22476
22477The frames (for example, output from the @code{backtrace} command) may
22478have changed.
22479
e5ac9b53 22480@findex breakpoints-invalid annotation
922fbb7b
AC
22481@item ^Z^Zbreakpoints-invalid
22482
22483The breakpoints may have changed. For example, the user just added or
22484deleted a breakpoint.
22485@end table
22486
22487@node Annotations for Running
22488@section Running the Program
22489@cindex annotations for running programs
22490
e5ac9b53
EZ
22491@findex starting annotation
22492@findex stopping annotation
922fbb7b 22493When the program starts executing due to a @value{GDBN} command such as
b383017d 22494@code{step} or @code{continue},
922fbb7b
AC
22495
22496@smallexample
22497^Z^Zstarting
22498@end smallexample
22499
b383017d 22500is output. When the program stops,
922fbb7b
AC
22501
22502@smallexample
22503^Z^Zstopped
22504@end smallexample
22505
22506is output. Before the @code{stopped} annotation, a variety of
22507annotations describe how the program stopped.
22508
22509@table @code
e5ac9b53 22510@findex exited annotation
922fbb7b
AC
22511@item ^Z^Zexited @var{exit-status}
22512The program exited, and @var{exit-status} is the exit status (zero for
22513successful exit, otherwise nonzero).
22514
e5ac9b53
EZ
22515@findex signalled annotation
22516@findex signal-name annotation
22517@findex signal-name-end annotation
22518@findex signal-string annotation
22519@findex signal-string-end annotation
922fbb7b
AC
22520@item ^Z^Zsignalled
22521The program exited with a signal. After the @code{^Z^Zsignalled}, the
22522annotation continues:
22523
22524@smallexample
22525@var{intro-text}
22526^Z^Zsignal-name
22527@var{name}
22528^Z^Zsignal-name-end
22529@var{middle-text}
22530^Z^Zsignal-string
22531@var{string}
22532^Z^Zsignal-string-end
22533@var{end-text}
22534@end smallexample
22535
22536@noindent
22537where @var{name} is the name of the signal, such as @code{SIGILL} or
22538@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22539as @code{Illegal Instruction} or @code{Segmentation fault}.
22540@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22541user's benefit and have no particular format.
22542
e5ac9b53 22543@findex signal annotation
922fbb7b
AC
22544@item ^Z^Zsignal
22545The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22546just saying that the program received the signal, not that it was
22547terminated with it.
22548
e5ac9b53 22549@findex breakpoint annotation
922fbb7b
AC
22550@item ^Z^Zbreakpoint @var{number}
22551The program hit breakpoint number @var{number}.
22552
e5ac9b53 22553@findex watchpoint annotation
922fbb7b
AC
22554@item ^Z^Zwatchpoint @var{number}
22555The program hit watchpoint number @var{number}.
22556@end table
22557
22558@node Source Annotations
22559@section Displaying Source
22560@cindex annotations for source display
22561
e5ac9b53 22562@findex source annotation
922fbb7b
AC
22563The following annotation is used instead of displaying source code:
22564
22565@smallexample
22566^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22567@end smallexample
22568
22569where @var{filename} is an absolute file name indicating which source
22570file, @var{line} is the line number within that file (where 1 is the
22571first line in the file), @var{character} is the character position
22572within the file (where 0 is the first character in the file) (for most
22573debug formats this will necessarily point to the beginning of a line),
22574@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22575line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22576@var{addr} is the address in the target program associated with the
22577source which is being displayed. @var{addr} is in the form @samp{0x}
22578followed by one or more lowercase hex digits (note that this does not
22579depend on the language).
22580
8e04817f
AC
22581@node GDB Bugs
22582@chapter Reporting Bugs in @value{GDBN}
22583@cindex bugs in @value{GDBN}
22584@cindex reporting bugs in @value{GDBN}
c906108c 22585
8e04817f 22586Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22587
8e04817f
AC
22588Reporting a bug may help you by bringing a solution to your problem, or it
22589may not. But in any case the principal function of a bug report is to help
22590the entire community by making the next version of @value{GDBN} work better. Bug
22591reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22592
8e04817f
AC
22593In order for a bug report to serve its purpose, you must include the
22594information that enables us to fix the bug.
c4555f82
SC
22595
22596@menu
8e04817f
AC
22597* Bug Criteria:: Have you found a bug?
22598* Bug Reporting:: How to report bugs
c4555f82
SC
22599@end menu
22600
8e04817f 22601@node Bug Criteria
79a6e687 22602@section Have You Found a Bug?
8e04817f 22603@cindex bug criteria
c4555f82 22604
8e04817f 22605If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22606
22607@itemize @bullet
8e04817f
AC
22608@cindex fatal signal
22609@cindex debugger crash
22610@cindex crash of debugger
c4555f82 22611@item
8e04817f
AC
22612If the debugger gets a fatal signal, for any input whatever, that is a
22613@value{GDBN} bug. Reliable debuggers never crash.
22614
22615@cindex error on valid input
22616@item
22617If @value{GDBN} produces an error message for valid input, that is a
22618bug. (Note that if you're cross debugging, the problem may also be
22619somewhere in the connection to the target.)
c4555f82 22620
8e04817f 22621@cindex invalid input
c4555f82 22622@item
8e04817f
AC
22623If @value{GDBN} does not produce an error message for invalid input,
22624that is a bug. However, you should note that your idea of
22625``invalid input'' might be our idea of ``an extension'' or ``support
22626for traditional practice''.
22627
22628@item
22629If you are an experienced user of debugging tools, your suggestions
22630for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22631@end itemize
22632
8e04817f 22633@node Bug Reporting
79a6e687 22634@section How to Report Bugs
8e04817f
AC
22635@cindex bug reports
22636@cindex @value{GDBN} bugs, reporting
22637
22638A number of companies and individuals offer support for @sc{gnu} products.
22639If you obtained @value{GDBN} from a support organization, we recommend you
22640contact that organization first.
22641
22642You can find contact information for many support companies and
22643individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22644distribution.
22645@c should add a web page ref...
22646
c16158bc
JM
22647@ifset BUGURL
22648@ifset BUGURL_DEFAULT
129188f6 22649In any event, we also recommend that you submit bug reports for
d3e8051b 22650@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22651@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22652page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22653be used.
8e04817f
AC
22654
22655@strong{Do not send bug reports to @samp{info-gdb}, or to
22656@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22657not want to receive bug reports. Those that do have arranged to receive
22658@samp{bug-gdb}.
22659
22660The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22661serves as a repeater. The mailing list and the newsgroup carry exactly
22662the same messages. Often people think of posting bug reports to the
22663newsgroup instead of mailing them. This appears to work, but it has one
22664problem which can be crucial: a newsgroup posting often lacks a mail
22665path back to the sender. Thus, if we need to ask for more information,
22666we may be unable to reach you. For this reason, it is better to send
22667bug reports to the mailing list.
c16158bc
JM
22668@end ifset
22669@ifclear BUGURL_DEFAULT
22670In any event, we also recommend that you submit bug reports for
22671@value{GDBN} to @value{BUGURL}.
22672@end ifclear
22673@end ifset
c4555f82 22674
8e04817f
AC
22675The fundamental principle of reporting bugs usefully is this:
22676@strong{report all the facts}. If you are not sure whether to state a
22677fact or leave it out, state it!
c4555f82 22678
8e04817f
AC
22679Often people omit facts because they think they know what causes the
22680problem and assume that some details do not matter. Thus, you might
22681assume that the name of the variable you use in an example does not matter.
22682Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22683stray memory reference which happens to fetch from the location where that
22684name is stored in memory; perhaps, if the name were different, the contents
22685of that location would fool the debugger into doing the right thing despite
22686the bug. Play it safe and give a specific, complete example. That is the
22687easiest thing for you to do, and the most helpful.
c4555f82 22688
8e04817f
AC
22689Keep in mind that the purpose of a bug report is to enable us to fix the
22690bug. It may be that the bug has been reported previously, but neither
22691you nor we can know that unless your bug report is complete and
22692self-contained.
c4555f82 22693
8e04817f
AC
22694Sometimes people give a few sketchy facts and ask, ``Does this ring a
22695bell?'' Those bug reports are useless, and we urge everyone to
22696@emph{refuse to respond to them} except to chide the sender to report
22697bugs properly.
22698
22699To enable us to fix the bug, you should include all these things:
c4555f82
SC
22700
22701@itemize @bullet
22702@item
8e04817f
AC
22703The version of @value{GDBN}. @value{GDBN} announces it if you start
22704with no arguments; you can also print it at any time using @code{show
22705version}.
c4555f82 22706
8e04817f
AC
22707Without this, we will not know whether there is any point in looking for
22708the bug in the current version of @value{GDBN}.
c4555f82
SC
22709
22710@item
8e04817f
AC
22711The type of machine you are using, and the operating system name and
22712version number.
c4555f82
SC
22713
22714@item
c1468174 22715What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22716``@value{GCC}--2.8.1''.
c4555f82
SC
22717
22718@item
8e04817f 22719What compiler (and its version) was used to compile the program you are
c1468174 22720debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22721C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22722to get this information; for other compilers, see the documentation for
22723those compilers.
c4555f82 22724
8e04817f
AC
22725@item
22726The command arguments you gave the compiler to compile your example and
22727observe the bug. For example, did you use @samp{-O}? To guarantee
22728you will not omit something important, list them all. A copy of the
22729Makefile (or the output from make) is sufficient.
c4555f82 22730
8e04817f
AC
22731If we were to try to guess the arguments, we would probably guess wrong
22732and then we might not encounter the bug.
c4555f82 22733
8e04817f
AC
22734@item
22735A complete input script, and all necessary source files, that will
22736reproduce the bug.
c4555f82 22737
8e04817f
AC
22738@item
22739A description of what behavior you observe that you believe is
22740incorrect. For example, ``It gets a fatal signal.''
c4555f82 22741
8e04817f
AC
22742Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22743will certainly notice it. But if the bug is incorrect output, we might
22744not notice unless it is glaringly wrong. You might as well not give us
22745a chance to make a mistake.
c4555f82 22746
8e04817f
AC
22747Even if the problem you experience is a fatal signal, you should still
22748say so explicitly. Suppose something strange is going on, such as, your
22749copy of @value{GDBN} is out of synch, or you have encountered a bug in
22750the C library on your system. (This has happened!) Your copy might
22751crash and ours would not. If you told us to expect a crash, then when
22752ours fails to crash, we would know that the bug was not happening for
22753us. If you had not told us to expect a crash, then we would not be able
22754to draw any conclusion from our observations.
c4555f82 22755
e0c07bf0
MC
22756@pindex script
22757@cindex recording a session script
22758To collect all this information, you can use a session recording program
22759such as @command{script}, which is available on many Unix systems.
22760Just run your @value{GDBN} session inside @command{script} and then
22761include the @file{typescript} file with your bug report.
22762
22763Another way to record a @value{GDBN} session is to run @value{GDBN}
22764inside Emacs and then save the entire buffer to a file.
22765
8e04817f
AC
22766@item
22767If you wish to suggest changes to the @value{GDBN} source, send us context
22768diffs. If you even discuss something in the @value{GDBN} source, refer to
22769it by context, not by line number.
c4555f82 22770
8e04817f
AC
22771The line numbers in our development sources will not match those in your
22772sources. Your line numbers would convey no useful information to us.
c4555f82 22773
8e04817f 22774@end itemize
c4555f82 22775
8e04817f 22776Here are some things that are not necessary:
c4555f82 22777
8e04817f
AC
22778@itemize @bullet
22779@item
22780A description of the envelope of the bug.
c4555f82 22781
8e04817f
AC
22782Often people who encounter a bug spend a lot of time investigating
22783which changes to the input file will make the bug go away and which
22784changes will not affect it.
c4555f82 22785
8e04817f
AC
22786This is often time consuming and not very useful, because the way we
22787will find the bug is by running a single example under the debugger
22788with breakpoints, not by pure deduction from a series of examples.
22789We recommend that you save your time for something else.
c4555f82 22790
8e04817f
AC
22791Of course, if you can find a simpler example to report @emph{instead}
22792of the original one, that is a convenience for us. Errors in the
22793output will be easier to spot, running under the debugger will take
22794less time, and so on.
c4555f82 22795
8e04817f
AC
22796However, simplification is not vital; if you do not want to do this,
22797report the bug anyway and send us the entire test case you used.
c4555f82 22798
8e04817f
AC
22799@item
22800A patch for the bug.
c4555f82 22801
8e04817f
AC
22802A patch for the bug does help us if it is a good one. But do not omit
22803the necessary information, such as the test case, on the assumption that
22804a patch is all we need. We might see problems with your patch and decide
22805to fix the problem another way, or we might not understand it at all.
c4555f82 22806
8e04817f
AC
22807Sometimes with a program as complicated as @value{GDBN} it is very hard to
22808construct an example that will make the program follow a certain path
22809through the code. If you do not send us the example, we will not be able
22810to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22811
8e04817f
AC
22812And if we cannot understand what bug you are trying to fix, or why your
22813patch should be an improvement, we will not install it. A test case will
22814help us to understand.
c4555f82 22815
8e04817f
AC
22816@item
22817A guess about what the bug is or what it depends on.
c4555f82 22818
8e04817f
AC
22819Such guesses are usually wrong. Even we cannot guess right about such
22820things without first using the debugger to find the facts.
22821@end itemize
c4555f82 22822
8e04817f
AC
22823@c The readline documentation is distributed with the readline code
22824@c and consists of the two following files:
22825@c rluser.texinfo
22826@c inc-hist.texinfo
22827@c Use -I with makeinfo to point to the appropriate directory,
22828@c environment var TEXINPUTS with TeX.
5bdf8622 22829@include rluser.texi
8e04817f 22830@include inc-hist.texinfo
c4555f82 22831
c4555f82 22832
8e04817f
AC
22833@node Formatting Documentation
22834@appendix Formatting Documentation
c4555f82 22835
8e04817f
AC
22836@cindex @value{GDBN} reference card
22837@cindex reference card
22838The @value{GDBN} 4 release includes an already-formatted reference card, ready
22839for printing with PostScript or Ghostscript, in the @file{gdb}
22840subdirectory of the main source directory@footnote{In
22841@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22842release.}. If you can use PostScript or Ghostscript with your printer,
22843you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22844
8e04817f
AC
22845The release also includes the source for the reference card. You
22846can format it, using @TeX{}, by typing:
c4555f82 22847
474c8240 22848@smallexample
8e04817f 22849make refcard.dvi
474c8240 22850@end smallexample
c4555f82 22851
8e04817f
AC
22852The @value{GDBN} reference card is designed to print in @dfn{landscape}
22853mode on US ``letter'' size paper;
22854that is, on a sheet 11 inches wide by 8.5 inches
22855high. You will need to specify this form of printing as an option to
22856your @sc{dvi} output program.
c4555f82 22857
8e04817f 22858@cindex documentation
c4555f82 22859
8e04817f
AC
22860All the documentation for @value{GDBN} comes as part of the machine-readable
22861distribution. The documentation is written in Texinfo format, which is
22862a documentation system that uses a single source file to produce both
22863on-line information and a printed manual. You can use one of the Info
22864formatting commands to create the on-line version of the documentation
22865and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22866
8e04817f
AC
22867@value{GDBN} includes an already formatted copy of the on-line Info
22868version of this manual in the @file{gdb} subdirectory. The main Info
22869file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22870subordinate files matching @samp{gdb.info*} in the same directory. If
22871necessary, you can print out these files, or read them with any editor;
22872but they are easier to read using the @code{info} subsystem in @sc{gnu}
22873Emacs or the standalone @code{info} program, available as part of the
22874@sc{gnu} Texinfo distribution.
c4555f82 22875
8e04817f
AC
22876If you want to format these Info files yourself, you need one of the
22877Info formatting programs, such as @code{texinfo-format-buffer} or
22878@code{makeinfo}.
c4555f82 22879
8e04817f
AC
22880If you have @code{makeinfo} installed, and are in the top level
22881@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22882version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22883
474c8240 22884@smallexample
8e04817f
AC
22885cd gdb
22886make gdb.info
474c8240 22887@end smallexample
c4555f82 22888
8e04817f
AC
22889If you want to typeset and print copies of this manual, you need @TeX{},
22890a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22891Texinfo definitions file.
c4555f82 22892
8e04817f
AC
22893@TeX{} is a typesetting program; it does not print files directly, but
22894produces output files called @sc{dvi} files. To print a typeset
22895document, you need a program to print @sc{dvi} files. If your system
22896has @TeX{} installed, chances are it has such a program. The precise
22897command to use depends on your system; @kbd{lpr -d} is common; another
22898(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22899require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22900
8e04817f
AC
22901@TeX{} also requires a macro definitions file called
22902@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22903written in Texinfo format. On its own, @TeX{} cannot either read or
22904typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22905and is located in the @file{gdb-@var{version-number}/texinfo}
22906directory.
c4555f82 22907
8e04817f 22908If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22909typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22910subdirectory of the main source directory (for example, to
22911@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22912
474c8240 22913@smallexample
8e04817f 22914make gdb.dvi
474c8240 22915@end smallexample
c4555f82 22916
8e04817f 22917Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22918
8e04817f
AC
22919@node Installing GDB
22920@appendix Installing @value{GDBN}
8e04817f 22921@cindex installation
c4555f82 22922
7fa2210b
DJ
22923@menu
22924* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22925* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22926* Separate Objdir:: Compiling @value{GDBN} in another directory
22927* Config Names:: Specifying names for hosts and targets
22928* Configure Options:: Summary of options for configure
22929@end menu
22930
22931@node Requirements
79a6e687 22932@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22933@cindex building @value{GDBN}, requirements for
22934
22935Building @value{GDBN} requires various tools and packages to be available.
22936Other packages will be used only if they are found.
22937
79a6e687 22938@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22939@table @asis
22940@item ISO C90 compiler
22941@value{GDBN} is written in ISO C90. It should be buildable with any
22942working C90 compiler, e.g.@: GCC.
22943
22944@end table
22945
79a6e687 22946@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22947@table @asis
22948@item Expat
123dc839 22949@anchor{Expat}
7fa2210b
DJ
22950@value{GDBN} can use the Expat XML parsing library. This library may be
22951included with your operating system distribution; if it is not, you
22952can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22953The @file{configure} script will search for this library in several
7fa2210b
DJ
22954standard locations; if it is installed in an unusual path, you can
22955use the @option{--with-libexpat-prefix} option to specify its location.
22956
9cceb671
DJ
22957Expat is used for:
22958
22959@itemize @bullet
22960@item
22961Remote protocol memory maps (@pxref{Memory Map Format})
22962@item
22963Target descriptions (@pxref{Target Descriptions})
22964@item
22965Remote shared library lists (@pxref{Library List Format})
22966@item
22967MS-Windows shared libraries (@pxref{Shared Libraries})
22968@end itemize
7fa2210b 22969
31fffb02
CS
22970@item zlib
22971@cindex compressed debug sections
22972@value{GDBN} will use the @samp{zlib} library, if available, to read
22973compressed debug sections. Some linkers, such as GNU gold, are capable
22974of producing binaries with compressed debug sections. If @value{GDBN}
22975is compiled with @samp{zlib}, it will be able to read the debug
22976information in such binaries.
22977
22978The @samp{zlib} library is likely included with your operating system
22979distribution; if it is not, you can get the latest version from
22980@url{http://zlib.net}.
22981
7fa2210b
DJ
22982@end table
22983
22984@node Running Configure
db2e3e2e 22985@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22986@cindex configuring @value{GDBN}
db2e3e2e 22987@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22988of preparing @value{GDBN} for installation; you can then use @code{make} to
22989build the @code{gdb} program.
22990@iftex
22991@c irrelevant in info file; it's as current as the code it lives with.
22992@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22993look at the @file{README} file in the sources; we may have improved the
22994installation procedures since publishing this manual.}
22995@end iftex
c4555f82 22996
8e04817f
AC
22997The @value{GDBN} distribution includes all the source code you need for
22998@value{GDBN} in a single directory, whose name is usually composed by
22999appending the version number to @samp{gdb}.
c4555f82 23000
8e04817f
AC
23001For example, the @value{GDBN} version @value{GDBVN} distribution is in the
23002@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 23003
8e04817f
AC
23004@table @code
23005@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
23006script for configuring @value{GDBN} and all its supporting libraries
c4555f82 23007
8e04817f
AC
23008@item gdb-@value{GDBVN}/gdb
23009the source specific to @value{GDBN} itself
c4555f82 23010
8e04817f
AC
23011@item gdb-@value{GDBVN}/bfd
23012source for the Binary File Descriptor library
c906108c 23013
8e04817f
AC
23014@item gdb-@value{GDBVN}/include
23015@sc{gnu} include files
c906108c 23016
8e04817f
AC
23017@item gdb-@value{GDBVN}/libiberty
23018source for the @samp{-liberty} free software library
c906108c 23019
8e04817f
AC
23020@item gdb-@value{GDBVN}/opcodes
23021source for the library of opcode tables and disassemblers
c906108c 23022
8e04817f
AC
23023@item gdb-@value{GDBVN}/readline
23024source for the @sc{gnu} command-line interface
c906108c 23025
8e04817f
AC
23026@item gdb-@value{GDBVN}/glob
23027source for the @sc{gnu} filename pattern-matching subroutine
c906108c 23028
8e04817f
AC
23029@item gdb-@value{GDBVN}/mmalloc
23030source for the @sc{gnu} memory-mapped malloc package
23031@end table
c906108c 23032
db2e3e2e 23033The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
23034from the @file{gdb-@var{version-number}} source directory, which in
23035this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 23036
8e04817f 23037First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 23038if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
23039identifier for the platform on which @value{GDBN} will run as an
23040argument.
c906108c 23041
8e04817f 23042For example:
c906108c 23043
474c8240 23044@smallexample
8e04817f
AC
23045cd gdb-@value{GDBVN}
23046./configure @var{host}
23047make
474c8240 23048@end smallexample
c906108c 23049
8e04817f
AC
23050@noindent
23051where @var{host} is an identifier such as @samp{sun4} or
23052@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 23053(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 23054correct value by examining your system.)
c906108c 23055
8e04817f
AC
23056Running @samp{configure @var{host}} and then running @code{make} builds the
23057@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
23058libraries, then @code{gdb} itself. The configured source files, and the
23059binaries, are left in the corresponding source directories.
c906108c 23060
8e04817f 23061@need 750
db2e3e2e 23062@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
23063system does not recognize this automatically when you run a different
23064shell, you may need to run @code{sh} on it explicitly:
c906108c 23065
474c8240 23066@smallexample
8e04817f 23067sh configure @var{host}
474c8240 23068@end smallexample
c906108c 23069
db2e3e2e 23070If you run @file{configure} from a directory that contains source
8e04817f 23071directories for multiple libraries or programs, such as the
db2e3e2e
BW
23072@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
23073@file{configure}
8e04817f
AC
23074creates configuration files for every directory level underneath (unless
23075you tell it not to, with the @samp{--norecursion} option).
23076
db2e3e2e 23077You should run the @file{configure} script from the top directory in the
94e91d6d 23078source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 23079@file{configure} from one of the subdirectories, you will configure only
94e91d6d 23080that subdirectory. That is usually not what you want. In particular,
db2e3e2e 23081if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
23082of the @file{gdb-@var{version-number}} directory, you will omit the
23083configuration of @file{bfd}, @file{readline}, and other sibling
23084directories of the @file{gdb} subdirectory. This leads to build errors
23085about missing include files such as @file{bfd/bfd.h}.
c906108c 23086
8e04817f
AC
23087You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
23088However, you should make sure that the shell on your path (named by
23089the @samp{SHELL} environment variable) is publicly readable. Remember
23090that @value{GDBN} uses the shell to start your program---some systems refuse to
23091let @value{GDBN} debug child processes whose programs are not readable.
c906108c 23092
8e04817f 23093@node Separate Objdir
79a6e687 23094@section Compiling @value{GDBN} in Another Directory
c906108c 23095
8e04817f
AC
23096If you want to run @value{GDBN} versions for several host or target machines,
23097you need a different @code{gdb} compiled for each combination of
db2e3e2e 23098host and target. @file{configure} is designed to make this easy by
8e04817f
AC
23099allowing you to generate each configuration in a separate subdirectory,
23100rather than in the source directory. If your @code{make} program
23101handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
23102@code{make} in each of these directories builds the @code{gdb}
23103program specified there.
c906108c 23104
db2e3e2e 23105To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 23106with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
23107(You also need to specify a path to find @file{configure}
23108itself from your working directory. If the path to @file{configure}
8e04817f
AC
23109would be the same as the argument to @samp{--srcdir}, you can leave out
23110the @samp{--srcdir} option; it is assumed.)
c906108c 23111
8e04817f
AC
23112For example, with version @value{GDBVN}, you can build @value{GDBN} in a
23113separate directory for a Sun 4 like this:
c906108c 23114
474c8240 23115@smallexample
8e04817f
AC
23116@group
23117cd gdb-@value{GDBVN}
23118mkdir ../gdb-sun4
23119cd ../gdb-sun4
23120../gdb-@value{GDBVN}/configure sun4
23121make
23122@end group
474c8240 23123@end smallexample
c906108c 23124
db2e3e2e 23125When @file{configure} builds a configuration using a remote source
8e04817f
AC
23126directory, it creates a tree for the binaries with the same structure
23127(and using the same names) as the tree under the source directory. In
23128the example, you'd find the Sun 4 library @file{libiberty.a} in the
23129directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
23130@file{gdb-sun4/gdb}.
c906108c 23131
94e91d6d
MC
23132Make sure that your path to the @file{configure} script has just one
23133instance of @file{gdb} in it. If your path to @file{configure} looks
23134like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
23135one subdirectory of @value{GDBN}, not the whole package. This leads to
23136build errors about missing include files such as @file{bfd/bfd.h}.
23137
8e04817f
AC
23138One popular reason to build several @value{GDBN} configurations in separate
23139directories is to configure @value{GDBN} for cross-compiling (where
23140@value{GDBN} runs on one machine---the @dfn{host}---while debugging
23141programs that run on another machine---the @dfn{target}).
23142You specify a cross-debugging target by
db2e3e2e 23143giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 23144
8e04817f
AC
23145When you run @code{make} to build a program or library, you must run
23146it in a configured directory---whatever directory you were in when you
db2e3e2e 23147called @file{configure} (or one of its subdirectories).
c906108c 23148
db2e3e2e 23149The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
23150directory also runs recursively. If you type @code{make} in a source
23151directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
23152directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
23153will build all the required libraries, and then build GDB.
c906108c 23154
8e04817f
AC
23155When you have multiple hosts or targets configured in separate
23156directories, you can run @code{make} on them in parallel (for example,
23157if they are NFS-mounted on each of the hosts); they will not interfere
23158with each other.
c906108c 23159
8e04817f 23160@node Config Names
79a6e687 23161@section Specifying Names for Hosts and Targets
c906108c 23162
db2e3e2e 23163The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
23164script are based on a three-part naming scheme, but some short predefined
23165aliases are also supported. The full naming scheme encodes three pieces
23166of information in the following pattern:
c906108c 23167
474c8240 23168@smallexample
8e04817f 23169@var{architecture}-@var{vendor}-@var{os}
474c8240 23170@end smallexample
c906108c 23171
8e04817f
AC
23172For example, you can use the alias @code{sun4} as a @var{host} argument,
23173or as the value for @var{target} in a @code{--target=@var{target}}
23174option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 23175
db2e3e2e 23176The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 23177any query facility to list all supported host and target names or
db2e3e2e 23178aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
23179@code{config.sub} to map abbreviations to full names; you can read the
23180script, if you wish, or you can use it to test your guesses on
23181abbreviations---for example:
c906108c 23182
8e04817f
AC
23183@smallexample
23184% sh config.sub i386-linux
23185i386-pc-linux-gnu
23186% sh config.sub alpha-linux
23187alpha-unknown-linux-gnu
23188% sh config.sub hp9k700
23189hppa1.1-hp-hpux
23190% sh config.sub sun4
23191sparc-sun-sunos4.1.1
23192% sh config.sub sun3
23193m68k-sun-sunos4.1.1
23194% sh config.sub i986v
23195Invalid configuration `i986v': machine `i986v' not recognized
23196@end smallexample
c906108c 23197
8e04817f
AC
23198@noindent
23199@code{config.sub} is also distributed in the @value{GDBN} source
23200directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 23201
8e04817f 23202@node Configure Options
db2e3e2e 23203@section @file{configure} Options
c906108c 23204
db2e3e2e
BW
23205Here is a summary of the @file{configure} options and arguments that
23206are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 23207several other options not listed here. @inforef{What Configure
db2e3e2e 23208Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 23209
474c8240 23210@smallexample
8e04817f
AC
23211configure @r{[}--help@r{]}
23212 @r{[}--prefix=@var{dir}@r{]}
23213 @r{[}--exec-prefix=@var{dir}@r{]}
23214 @r{[}--srcdir=@var{dirname}@r{]}
23215 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
23216 @r{[}--target=@var{target}@r{]}
23217 @var{host}
474c8240 23218@end smallexample
c906108c 23219
8e04817f
AC
23220@noindent
23221You may introduce options with a single @samp{-} rather than
23222@samp{--} if you prefer; but you may abbreviate option names if you use
23223@samp{--}.
c906108c 23224
8e04817f
AC
23225@table @code
23226@item --help
db2e3e2e 23227Display a quick summary of how to invoke @file{configure}.
c906108c 23228
8e04817f
AC
23229@item --prefix=@var{dir}
23230Configure the source to install programs and files under directory
23231@file{@var{dir}}.
c906108c 23232
8e04817f
AC
23233@item --exec-prefix=@var{dir}
23234Configure the source to install programs under directory
23235@file{@var{dir}}.
c906108c 23236
8e04817f
AC
23237@c avoid splitting the warning from the explanation:
23238@need 2000
23239@item --srcdir=@var{dirname}
23240@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23241@code{make} that implements the @code{VPATH} feature.}@*
23242Use this option to make configurations in directories separate from the
23243@value{GDBN} source directories. Among other things, you can use this to
23244build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23245directories. @file{configure} writes configuration-specific files in
8e04817f 23246the current directory, but arranges for them to use the source in the
db2e3e2e 23247directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23248the working directory in parallel to the source directories below
23249@var{dirname}.
c906108c 23250
8e04817f 23251@item --norecursion
db2e3e2e 23252Configure only the directory level where @file{configure} is executed; do not
8e04817f 23253propagate configuration to subdirectories.
c906108c 23254
8e04817f
AC
23255@item --target=@var{target}
23256Configure @value{GDBN} for cross-debugging programs running on the specified
23257@var{target}. Without this option, @value{GDBN} is configured to debug
23258programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23259
8e04817f 23260There is no convenient way to generate a list of all available targets.
c906108c 23261
8e04817f
AC
23262@item @var{host} @dots{}
23263Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23264
8e04817f
AC
23265There is no convenient way to generate a list of all available hosts.
23266@end table
c906108c 23267
8e04817f
AC
23268There are many other options available as well, but they are generally
23269needed for special purposes only.
c906108c 23270
8e04817f
AC
23271@node Maintenance Commands
23272@appendix Maintenance Commands
23273@cindex maintenance commands
23274@cindex internal commands
c906108c 23275
8e04817f 23276In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23277includes a number of commands intended for @value{GDBN} developers,
23278that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23279provided here for reference. (For commands that turn on debugging
23280messages, see @ref{Debugging Output}.)
c906108c 23281
8e04817f 23282@table @code
09d4efe1
EZ
23283@kindex maint agent
23284@item maint agent @var{expression}
23285Translate the given @var{expression} into remote agent bytecodes.
23286This command is useful for debugging the Agent Expression mechanism
23287(@pxref{Agent Expressions}).
23288
8e04817f
AC
23289@kindex maint info breakpoints
23290@item @anchor{maint info breakpoints}maint info breakpoints
23291Using the same format as @samp{info breakpoints}, display both the
23292breakpoints you've set explicitly, and those @value{GDBN} is using for
23293internal purposes. Internal breakpoints are shown with negative
23294breakpoint numbers. The type column identifies what kind of breakpoint
23295is shown:
c906108c 23296
8e04817f
AC
23297@table @code
23298@item breakpoint
23299Normal, explicitly set breakpoint.
c906108c 23300
8e04817f
AC
23301@item watchpoint
23302Normal, explicitly set watchpoint.
c906108c 23303
8e04817f
AC
23304@item longjmp
23305Internal breakpoint, used to handle correctly stepping through
23306@code{longjmp} calls.
c906108c 23307
8e04817f
AC
23308@item longjmp resume
23309Internal breakpoint at the target of a @code{longjmp}.
c906108c 23310
8e04817f
AC
23311@item until
23312Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23313
8e04817f
AC
23314@item finish
23315Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23316
8e04817f
AC
23317@item shlib events
23318Shared library events.
c906108c 23319
8e04817f 23320@end table
c906108c 23321
237fc4c9
PA
23322@kindex maint set can-use-displaced-stepping
23323@kindex maint show can-use-displaced-stepping
23324@cindex displaced stepping support
23325@cindex out-of-line single-stepping
23326@item maint set can-use-displaced-stepping
23327@itemx maint show can-use-displaced-stepping
23328Control whether or not @value{GDBN} will do @dfn{displaced stepping}
23329if the target supports it. The default is on. Displaced stepping is
23330a way to single-step over breakpoints without removing them from the
23331inferior, by executing an out-of-line copy of the instruction that was
23332originally at the breakpoint location. It is also known as
23333out-of-line single-stepping.
23334
09d4efe1
EZ
23335@kindex maint check-symtabs
23336@item maint check-symtabs
23337Check the consistency of psymtabs and symtabs.
23338
23339@kindex maint cplus first_component
23340@item maint cplus first_component @var{name}
23341Print the first C@t{++} class/namespace component of @var{name}.
23342
23343@kindex maint cplus namespace
23344@item maint cplus namespace
23345Print the list of possible C@t{++} namespaces.
23346
23347@kindex maint demangle
23348@item maint demangle @var{name}
d3e8051b 23349Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23350
23351@kindex maint deprecate
23352@kindex maint undeprecate
23353@cindex deprecated commands
23354@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23355@itemx maint undeprecate @var{command}
23356Deprecate or undeprecate the named @var{command}. Deprecated commands
23357cause @value{GDBN} to issue a warning when you use them. The optional
23358argument @var{replacement} says which newer command should be used in
23359favor of the deprecated one; if it is given, @value{GDBN} will mention
23360the replacement as part of the warning.
23361
23362@kindex maint dump-me
23363@item maint dump-me
721c2651 23364@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23365Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23366This is supported only on systems which support aborting a program
23367with the @code{SIGQUIT} signal.
09d4efe1 23368
8d30a00d
AC
23369@kindex maint internal-error
23370@kindex maint internal-warning
09d4efe1
EZ
23371@item maint internal-error @r{[}@var{message-text}@r{]}
23372@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23373Cause @value{GDBN} to call the internal function @code{internal_error}
23374or @code{internal_warning} and hence behave as though an internal error
23375or internal warning has been detected. In addition to reporting the
23376internal problem, these functions give the user the opportunity to
23377either quit @value{GDBN} or create a core file of the current
23378@value{GDBN} session.
23379
09d4efe1
EZ
23380These commands take an optional parameter @var{message-text} that is
23381used as the text of the error or warning message.
23382
d3e8051b 23383Here's an example of using @code{internal-error}:
09d4efe1 23384
8d30a00d 23385@smallexample
f7dc1244 23386(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23387@dots{}/maint.c:121: internal-error: testing, 1, 2
23388A problem internal to GDB has been detected. Further
23389debugging may prove unreliable.
23390Quit this debugging session? (y or n) @kbd{n}
23391Create a core file? (y or n) @kbd{n}
f7dc1244 23392(@value{GDBP})
8d30a00d
AC
23393@end smallexample
23394
09d4efe1
EZ
23395@kindex maint packet
23396@item maint packet @var{text}
23397If @value{GDBN} is talking to an inferior via the serial protocol,
23398then this command sends the string @var{text} to the inferior, and
23399displays the response packet. @value{GDBN} supplies the initial
23400@samp{$} character, the terminating @samp{#} character, and the
23401checksum.
23402
23403@kindex maint print architecture
23404@item maint print architecture @r{[}@var{file}@r{]}
23405Print the entire architecture configuration. The optional argument
23406@var{file} names the file where the output goes.
8d30a00d 23407
81adfced
DJ
23408@kindex maint print c-tdesc
23409@item maint print c-tdesc
23410Print the current target description (@pxref{Target Descriptions}) as
23411a C source file. The created source file can be used in @value{GDBN}
23412when an XML parser is not available to parse the description.
23413
00905d52
AC
23414@kindex maint print dummy-frames
23415@item maint print dummy-frames
00905d52
AC
23416Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23417
23418@smallexample
f7dc1244 23419(@value{GDBP}) @kbd{b add}
00905d52 23420@dots{}
f7dc1244 23421(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23422Breakpoint 2, add (a=2, b=3) at @dots{}
2342358 return (a + b);
23424The program being debugged stopped while in a function called from GDB.
23425@dots{}
f7dc1244 23426(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
234270x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23428 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23429 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23430(@value{GDBP})
00905d52
AC
23431@end smallexample
23432
23433Takes an optional file parameter.
23434
0680b120
AC
23435@kindex maint print registers
23436@kindex maint print raw-registers
23437@kindex maint print cooked-registers
617073a9 23438@kindex maint print register-groups
09d4efe1
EZ
23439@item maint print registers @r{[}@var{file}@r{]}
23440@itemx maint print raw-registers @r{[}@var{file}@r{]}
23441@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23442@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23443Print @value{GDBN}'s internal register data structures.
23444
617073a9
AC
23445The command @code{maint print raw-registers} includes the contents of
23446the raw register cache; the command @code{maint print cooked-registers}
23447includes the (cooked) value of all registers; and the command
23448@code{maint print register-groups} includes the groups that each
23449register is a member of. @xref{Registers,, Registers, gdbint,
23450@value{GDBN} Internals}.
0680b120 23451
09d4efe1
EZ
23452These commands take an optional parameter, a file name to which to
23453write the information.
0680b120 23454
617073a9 23455@kindex maint print reggroups
09d4efe1
EZ
23456@item maint print reggroups @r{[}@var{file}@r{]}
23457Print @value{GDBN}'s internal register group data structures. The
23458optional argument @var{file} tells to what file to write the
23459information.
617073a9 23460
09d4efe1 23461The register groups info looks like this:
617073a9
AC
23462
23463@smallexample
f7dc1244 23464(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23465 Group Type
23466 general user
23467 float user
23468 all user
23469 vector user
23470 system user
23471 save internal
23472 restore internal
617073a9
AC
23473@end smallexample
23474
09d4efe1
EZ
23475@kindex flushregs
23476@item flushregs
23477This command forces @value{GDBN} to flush its internal register cache.
23478
23479@kindex maint print objfiles
23480@cindex info for known object files
23481@item maint print objfiles
23482Print a dump of all known object files. For each object file, this
23483command prints its name, address in memory, and all of its psymtabs
23484and symtabs.
23485
23486@kindex maint print statistics
23487@cindex bcache statistics
23488@item maint print statistics
23489This command prints, for each object file in the program, various data
23490about that object file followed by the byte cache (@dfn{bcache})
23491statistics for the object file. The objfile data includes the number
d3e8051b 23492of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23493defined by the objfile, the number of as yet unexpanded psym tables,
23494the number of line tables and string tables, and the amount of memory
23495used by the various tables. The bcache statistics include the counts,
23496sizes, and counts of duplicates of all and unique objects, max,
23497average, and median entry size, total memory used and its overhead and
23498savings, and various measures of the hash table size and chain
23499lengths.
23500
c7ba131e
JB
23501@kindex maint print target-stack
23502@cindex target stack description
23503@item maint print target-stack
23504A @dfn{target} is an interface between the debugger and a particular
23505kind of file or process. Targets can be stacked in @dfn{strata},
23506so that more than one target can potentially respond to a request.
23507In particular, memory accesses will walk down the stack of targets
23508until they find a target that is interested in handling that particular
23509address.
23510
23511This command prints a short description of each layer that was pushed on
23512the @dfn{target stack}, starting from the top layer down to the bottom one.
23513
09d4efe1
EZ
23514@kindex maint print type
23515@cindex type chain of a data type
23516@item maint print type @var{expr}
23517Print the type chain for a type specified by @var{expr}. The argument
23518can be either a type name or a symbol. If it is a symbol, the type of
23519that symbol is described. The type chain produced by this command is
23520a recursive definition of the data type as stored in @value{GDBN}'s
23521data structures, including its flags and contained types.
23522
23523@kindex maint set dwarf2 max-cache-age
23524@kindex maint show dwarf2 max-cache-age
23525@item maint set dwarf2 max-cache-age
23526@itemx maint show dwarf2 max-cache-age
23527Control the DWARF 2 compilation unit cache.
23528
23529@cindex DWARF 2 compilation units cache
23530In object files with inter-compilation-unit references, such as those
23531produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23532reader needs to frequently refer to previously read compilation units.
23533This setting controls how long a compilation unit will remain in the
23534cache if it is not referenced. A higher limit means that cached
23535compilation units will be stored in memory longer, and more total
23536memory will be used. Setting it to zero disables caching, which will
23537slow down @value{GDBN} startup, but reduce memory consumption.
23538
e7ba9c65
DJ
23539@kindex maint set profile
23540@kindex maint show profile
23541@cindex profiling GDB
23542@item maint set profile
23543@itemx maint show profile
23544Control profiling of @value{GDBN}.
23545
23546Profiling will be disabled until you use the @samp{maint set profile}
23547command to enable it. When you enable profiling, the system will begin
23548collecting timing and execution count data; when you disable profiling or
23549exit @value{GDBN}, the results will be written to a log file. Remember that
23550if you use profiling, @value{GDBN} will overwrite the profiling log file
23551(often called @file{gmon.out}). If you have a record of important profiling
23552data in a @file{gmon.out} file, be sure to move it to a safe location.
23553
23554Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23555compiled with the @samp{-pg} compiler option.
e7ba9c65 23556
b84876c2
PA
23557@kindex maint set linux-async
23558@kindex maint show linux-async
23559@cindex asynchronous support
23560@item maint set linux-async
23561@itemx maint show linux-async
23562Control the GNU/Linux native asynchronous support of @value{GDBN}.
23563
23564GNU/Linux native asynchronous support will be disabled until you use
23565the @samp{maint set linux-async} command to enable it.
23566
75c99385
PA
23567@kindex maint set remote-async
23568@kindex maint show remote-async
23569@cindex asynchronous support
23570@item maint set remote-async
23571@itemx maint show remote-async
23572Control the remote asynchronous support of @value{GDBN}.
23573
23574Remote asynchronous support will be disabled until you use
23575the @samp{maint set remote-async} command to enable it.
23576
09d4efe1
EZ
23577@kindex maint show-debug-regs
23578@cindex x86 hardware debug registers
23579@item maint show-debug-regs
23580Control whether to show variables that mirror the x86 hardware debug
23581registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23582enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23583removes a hardware breakpoint or watchpoint, and when the inferior
23584triggers a hardware-assisted breakpoint or watchpoint.
23585
23586@kindex maint space
23587@cindex memory used by commands
23588@item maint space
23589Control whether to display memory usage for each command. If set to a
23590nonzero value, @value{GDBN} will display how much memory each command
23591took, following the command's own output. This can also be requested
23592by invoking @value{GDBN} with the @option{--statistics} command-line
23593switch (@pxref{Mode Options}).
23594
23595@kindex maint time
23596@cindex time of command execution
23597@item maint time
23598Control whether to display the execution time for each command. If
23599set to a nonzero value, @value{GDBN} will display how much time it
23600took to execute each command, following the command's own output.
e2b7ddea
VP
23601The time is not printed for the commands that run the target, since
23602there's no mechanism currently to compute how much time was spend
23603by @value{GDBN} and how much time was spend by the program been debugged.
23604it's not possibly currently
09d4efe1
EZ
23605This can also be requested by invoking @value{GDBN} with the
23606@option{--statistics} command-line switch (@pxref{Mode Options}).
23607
23608@kindex maint translate-address
23609@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23610Find the symbol stored at the location specified by the address
23611@var{addr} and an optional section name @var{section}. If found,
23612@value{GDBN} prints the name of the closest symbol and an offset from
23613the symbol's location to the specified address. This is similar to
23614the @code{info address} command (@pxref{Symbols}), except that this
23615command also allows to find symbols in other sections.
ae038cb0 23616
8e04817f 23617@end table
c906108c 23618
9c16f35a
EZ
23619The following command is useful for non-interactive invocations of
23620@value{GDBN}, such as in the test suite.
23621
23622@table @code
23623@item set watchdog @var{nsec}
23624@kindex set watchdog
23625@cindex watchdog timer
23626@cindex timeout for commands
23627Set the maximum number of seconds @value{GDBN} will wait for the
23628target operation to finish. If this time expires, @value{GDBN}
23629reports and error and the command is aborted.
23630
23631@item show watchdog
23632Show the current setting of the target wait timeout.
23633@end table
c906108c 23634
e0ce93ac 23635@node Remote Protocol
8e04817f 23636@appendix @value{GDBN} Remote Serial Protocol
c906108c 23637
ee2d5c50
AC
23638@menu
23639* Overview::
23640* Packets::
23641* Stop Reply Packets::
23642* General Query Packets::
23643* Register Packet Format::
9d29849a 23644* Tracepoint Packets::
a6b151f1 23645* Host I/O Packets::
9a6253be 23646* Interrupts::
ee2d5c50 23647* Examples::
79a6e687 23648* File-I/O Remote Protocol Extension::
cfa9d6d9 23649* Library List Format::
79a6e687 23650* Memory Map Format::
ee2d5c50
AC
23651@end menu
23652
23653@node Overview
23654@section Overview
23655
8e04817f
AC
23656There may be occasions when you need to know something about the
23657protocol---for example, if there is only one serial port to your target
23658machine, you might want your program to do something special if it
23659recognizes a packet meant for @value{GDBN}.
c906108c 23660
d2c6833e 23661In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23662transmitted and received data, respectively.
c906108c 23663
8e04817f
AC
23664@cindex protocol, @value{GDBN} remote serial
23665@cindex serial protocol, @value{GDBN} remote
23666@cindex remote serial protocol
23667All @value{GDBN} commands and responses (other than acknowledgments) are
23668sent as a @var{packet}. A @var{packet} is introduced with the character
23669@samp{$}, the actual @var{packet-data}, and the terminating character
23670@samp{#} followed by a two-digit @var{checksum}:
c906108c 23671
474c8240 23672@smallexample
8e04817f 23673@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23674@end smallexample
8e04817f 23675@noindent
c906108c 23676
8e04817f
AC
23677@cindex checksum, for @value{GDBN} remote
23678@noindent
23679The two-digit @var{checksum} is computed as the modulo 256 sum of all
23680characters between the leading @samp{$} and the trailing @samp{#} (an
23681eight bit unsigned checksum).
c906108c 23682
8e04817f
AC
23683Implementors should note that prior to @value{GDBN} 5.0 the protocol
23684specification also included an optional two-digit @var{sequence-id}:
c906108c 23685
474c8240 23686@smallexample
8e04817f 23687@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23688@end smallexample
c906108c 23689
8e04817f
AC
23690@cindex sequence-id, for @value{GDBN} remote
23691@noindent
23692That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23693has never output @var{sequence-id}s. Stubs that handle packets added
23694since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23695
8e04817f
AC
23696@cindex acknowledgment, for @value{GDBN} remote
23697When either the host or the target machine receives a packet, the first
23698response expected is an acknowledgment: either @samp{+} (to indicate
23699the package was received correctly) or @samp{-} (to request
23700retransmission):
c906108c 23701
474c8240 23702@smallexample
d2c6833e
AC
23703-> @code{$}@var{packet-data}@code{#}@var{checksum}
23704<- @code{+}
474c8240 23705@end smallexample
8e04817f 23706@noindent
53a5351d 23707
8e04817f
AC
23708The host (@value{GDBN}) sends @var{command}s, and the target (the
23709debugging stub incorporated in your program) sends a @var{response}. In
23710the case of step and continue @var{command}s, the response is only sent
23711when the operation has completed (the target has again stopped).
c906108c 23712
8e04817f
AC
23713@var{packet-data} consists of a sequence of characters with the
23714exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23715exceptions).
c906108c 23716
ee2d5c50 23717@cindex remote protocol, field separator
0876f84a 23718Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23719@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23720@sc{hex} with leading zeros suppressed.
c906108c 23721
8e04817f
AC
23722Implementors should note that prior to @value{GDBN} 5.0, the character
23723@samp{:} could not appear as the third character in a packet (as it
23724would potentially conflict with the @var{sequence-id}).
c906108c 23725
0876f84a
DJ
23726@cindex remote protocol, binary data
23727@anchor{Binary Data}
23728Binary data in most packets is encoded either as two hexadecimal
23729digits per byte of binary data. This allowed the traditional remote
23730protocol to work over connections which were only seven-bit clean.
23731Some packets designed more recently assume an eight-bit clean
23732connection, and use a more efficient encoding to send and receive
23733binary data.
23734
23735The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23736as an escape character. Any escaped byte is transmitted as the escape
23737character followed by the original character XORed with @code{0x20}.
23738For example, the byte @code{0x7d} would be transmitted as the two
23739bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23740@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23741@samp{@}}) must always be escaped. Responses sent by the stub
23742must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23743is not interpreted as the start of a run-length encoded sequence
23744(described next).
23745
1d3811f6
DJ
23746Response @var{data} can be run-length encoded to save space.
23747Run-length encoding replaces runs of identical characters with one
23748instance of the repeated character, followed by a @samp{*} and a
23749repeat count. The repeat count is itself sent encoded, to avoid
23750binary characters in @var{data}: a value of @var{n} is sent as
23751@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23752produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23753code 32) for a repeat count of 3. (This is because run-length
23754encoding starts to win for counts 3 or more.) Thus, for example,
23755@samp{0* } is a run-length encoding of ``0000'': the space character
23756after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
237573}} more times.
23758
23759The printable characters @samp{#} and @samp{$} or with a numeric value
23760greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23761seven repeats (@samp{$}) can be expanded using a repeat count of only
23762five (@samp{"}). For example, @samp{00000000} can be encoded as
23763@samp{0*"00}.
c906108c 23764
8e04817f
AC
23765The error response returned for some packets includes a two character
23766error number. That number is not well defined.
c906108c 23767
f8da2bff 23768@cindex empty response, for unsupported packets
8e04817f
AC
23769For any @var{command} not supported by the stub, an empty response
23770(@samp{$#00}) should be returned. That way it is possible to extend the
23771protocol. A newer @value{GDBN} can tell if a packet is supported based
23772on that response.
c906108c 23773
b383017d
RM
23774A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23775@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23776optional.
c906108c 23777
ee2d5c50
AC
23778@node Packets
23779@section Packets
23780
23781The following table provides a complete list of all currently defined
23782@var{command}s and their corresponding response @var{data}.
79a6e687 23783@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23784I/O extension of the remote protocol.
ee2d5c50 23785
b8ff78ce
JB
23786Each packet's description has a template showing the packet's overall
23787syntax, followed by an explanation of the packet's meaning. We
23788include spaces in some of the templates for clarity; these are not
23789part of the packet's syntax. No @value{GDBN} packet uses spaces to
23790separate its components. For example, a template like @samp{foo
23791@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23792bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23793@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23794@samp{foo} and the @var{bar}, or between the @var{bar} and the
23795@var{baz}.
23796
8ffe2530
JB
23797Note that all packet forms beginning with an upper- or lower-case
23798letter, other than those described here, are reserved for future use.
23799
b8ff78ce 23800Here are the packet descriptions.
ee2d5c50 23801
b8ff78ce 23802@table @samp
ee2d5c50 23803
b8ff78ce
JB
23804@item !
23805@cindex @samp{!} packet
2d717e4f 23806@anchor{extended mode}
8e04817f
AC
23807Enable extended mode. In extended mode, the remote server is made
23808persistent. The @samp{R} packet is used to restart the program being
23809debugged.
ee2d5c50
AC
23810
23811Reply:
23812@table @samp
23813@item OK
8e04817f 23814The remote target both supports and has enabled extended mode.
ee2d5c50 23815@end table
c906108c 23816
b8ff78ce
JB
23817@item ?
23818@cindex @samp{?} packet
ee2d5c50
AC
23819Indicate the reason the target halted. The reply is the same as for
23820step and continue.
c906108c 23821
ee2d5c50
AC
23822Reply:
23823@xref{Stop Reply Packets}, for the reply specifications.
23824
b8ff78ce
JB
23825@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23826@cindex @samp{A} packet
23827Initialized @code{argv[]} array passed into program. @var{arglen}
23828specifies the number of bytes in the hex encoded byte stream
23829@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23830
23831Reply:
23832@table @samp
23833@item OK
b8ff78ce
JB
23834The arguments were set.
23835@item E @var{NN}
23836An error occurred.
ee2d5c50
AC
23837@end table
23838
b8ff78ce
JB
23839@item b @var{baud}
23840@cindex @samp{b} packet
23841(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23842Change the serial line speed to @var{baud}.
23843
23844JTC: @emph{When does the transport layer state change? When it's
23845received, or after the ACK is transmitted. In either case, there are
23846problems if the command or the acknowledgment packet is dropped.}
23847
23848Stan: @emph{If people really wanted to add something like this, and get
23849it working for the first time, they ought to modify ser-unix.c to send
23850some kind of out-of-band message to a specially-setup stub and have the
23851switch happen "in between" packets, so that from remote protocol's point
23852of view, nothing actually happened.}
23853
b8ff78ce
JB
23854@item B @var{addr},@var{mode}
23855@cindex @samp{B} packet
8e04817f 23856Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23857breakpoint at @var{addr}.
23858
b8ff78ce 23859Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23860(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23861
4f553f88 23862@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23863@cindex @samp{c} packet
23864Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23865resume at current address.
c906108c 23866
ee2d5c50
AC
23867Reply:
23868@xref{Stop Reply Packets}, for the reply specifications.
23869
4f553f88 23870@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23871@cindex @samp{C} packet
8e04817f 23872Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23873@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23874
ee2d5c50
AC
23875Reply:
23876@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23877
b8ff78ce
JB
23878@item d
23879@cindex @samp{d} packet
ee2d5c50
AC
23880Toggle debug flag.
23881
b8ff78ce
JB
23882Don't use this packet; instead, define a general set packet
23883(@pxref{General Query Packets}).
ee2d5c50 23884
b8ff78ce
JB
23885@item D
23886@cindex @samp{D} packet
ee2d5c50 23887Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23888before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23889
23890Reply:
23891@table @samp
10fac096
NW
23892@item OK
23893for success
b8ff78ce 23894@item E @var{NN}
10fac096 23895for an error
ee2d5c50 23896@end table
c906108c 23897
b8ff78ce
JB
23898@item F @var{RC},@var{EE},@var{CF};@var{XX}
23899@cindex @samp{F} packet
23900A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23901This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23902Remote Protocol Extension}, for the specification.
ee2d5c50 23903
b8ff78ce 23904@item g
ee2d5c50 23905@anchor{read registers packet}
b8ff78ce 23906@cindex @samp{g} packet
ee2d5c50
AC
23907Read general registers.
23908
23909Reply:
23910@table @samp
23911@item @var{XX@dots{}}
8e04817f
AC
23912Each byte of register data is described by two hex digits. The bytes
23913with the register are transmitted in target byte order. The size of
b8ff78ce 23914each register and their position within the @samp{g} packet are
4a9bb1df
UW
23915determined by the @value{GDBN} internal gdbarch functions
23916@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23917specification of several standard @samp{g} packets is specified below.
23918@item E @var{NN}
ee2d5c50
AC
23919for an error.
23920@end table
c906108c 23921
b8ff78ce
JB
23922@item G @var{XX@dots{}}
23923@cindex @samp{G} packet
23924Write general registers. @xref{read registers packet}, for a
23925description of the @var{XX@dots{}} data.
ee2d5c50
AC
23926
23927Reply:
23928@table @samp
23929@item OK
23930for success
b8ff78ce 23931@item E @var{NN}
ee2d5c50
AC
23932for an error
23933@end table
23934
b8ff78ce
JB
23935@item H @var{c} @var{t}
23936@cindex @samp{H} packet
8e04817f 23937Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23938@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23939should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23940operations. The thread designator @var{t} may be @samp{-1}, meaning all
23941the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23942
23943Reply:
23944@table @samp
23945@item OK
23946for success
b8ff78ce 23947@item E @var{NN}
ee2d5c50
AC
23948for an error
23949@end table
c906108c 23950
8e04817f
AC
23951@c FIXME: JTC:
23952@c 'H': How restrictive (or permissive) is the thread model. If a
23953@c thread is selected and stopped, are other threads allowed
23954@c to continue to execute? As I mentioned above, I think the
23955@c semantics of each command when a thread is selected must be
23956@c described. For example:
23957@c
23958@c 'g': If the stub supports threads and a specific thread is
23959@c selected, returns the register block from that thread;
23960@c otherwise returns current registers.
23961@c
23962@c 'G' If the stub supports threads and a specific thread is
23963@c selected, sets the registers of the register block of
23964@c that thread; otherwise sets current registers.
c906108c 23965
b8ff78ce 23966@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23967@anchor{cycle step packet}
b8ff78ce
JB
23968@cindex @samp{i} packet
23969Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23970present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23971step starting at that address.
c906108c 23972
b8ff78ce
JB
23973@item I
23974@cindex @samp{I} packet
23975Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23976step packet}.
ee2d5c50 23977
b8ff78ce
JB
23978@item k
23979@cindex @samp{k} packet
23980Kill request.
c906108c 23981
ac282366 23982FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23983thread context has been selected (i.e.@: does 'k' kill only that
23984thread?)}.
c906108c 23985
b8ff78ce
JB
23986@item m @var{addr},@var{length}
23987@cindex @samp{m} packet
8e04817f 23988Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23989Note that @var{addr} may not be aligned to any particular boundary.
23990
23991The stub need not use any particular size or alignment when gathering
23992data from memory for the response; even if @var{addr} is word-aligned
23993and @var{length} is a multiple of the word size, the stub is free to
23994use byte accesses, or not. For this reason, this packet may not be
23995suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23996@cindex alignment of remote memory accesses
23997@cindex size of remote memory accesses
23998@cindex memory, alignment and size of remote accesses
c906108c 23999
ee2d5c50
AC
24000Reply:
24001@table @samp
24002@item @var{XX@dots{}}
599b237a 24003Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
24004number. The reply may contain fewer bytes than requested if the
24005server was able to read only part of the region of memory.
24006@item E @var{NN}
ee2d5c50
AC
24007@var{NN} is errno
24008@end table
24009
b8ff78ce
JB
24010@item M @var{addr},@var{length}:@var{XX@dots{}}
24011@cindex @samp{M} packet
8e04817f 24012Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 24013@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 24014hexadecimal number.
ee2d5c50
AC
24015
24016Reply:
24017@table @samp
24018@item OK
24019for success
b8ff78ce 24020@item E @var{NN}
8e04817f
AC
24021for an error (this includes the case where only part of the data was
24022written).
ee2d5c50 24023@end table
c906108c 24024
b8ff78ce
JB
24025@item p @var{n}
24026@cindex @samp{p} packet
24027Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
24028@xref{read registers packet}, for a description of how the returned
24029register value is encoded.
ee2d5c50
AC
24030
24031Reply:
24032@table @samp
2e868123
AC
24033@item @var{XX@dots{}}
24034the register's value
b8ff78ce 24035@item E @var{NN}
2e868123
AC
24036for an error
24037@item
24038Indicating an unrecognized @var{query}.
ee2d5c50
AC
24039@end table
24040
b8ff78ce 24041@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 24042@anchor{write register packet}
b8ff78ce
JB
24043@cindex @samp{P} packet
24044Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 24045number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 24046digits for each byte in the register (target byte order).
c906108c 24047
ee2d5c50
AC
24048Reply:
24049@table @samp
24050@item OK
24051for success
b8ff78ce 24052@item E @var{NN}
ee2d5c50
AC
24053for an error
24054@end table
24055
5f3bebba
JB
24056@item q @var{name} @var{params}@dots{}
24057@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 24058@cindex @samp{q} packet
b8ff78ce 24059@cindex @samp{Q} packet
5f3bebba
JB
24060General query (@samp{q}) and set (@samp{Q}). These packets are
24061described fully in @ref{General Query Packets}.
c906108c 24062
b8ff78ce
JB
24063@item r
24064@cindex @samp{r} packet
8e04817f 24065Reset the entire system.
c906108c 24066
b8ff78ce 24067Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 24068
b8ff78ce
JB
24069@item R @var{XX}
24070@cindex @samp{R} packet
8e04817f 24071Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 24072This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 24073
8e04817f 24074The @samp{R} packet has no reply.
ee2d5c50 24075
4f553f88 24076@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
24077@cindex @samp{s} packet
24078Single step. @var{addr} is the address at which to resume. If
24079@var{addr} is omitted, resume at same address.
c906108c 24080
ee2d5c50
AC
24081Reply:
24082@xref{Stop Reply Packets}, for the reply specifications.
24083
4f553f88 24084@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 24085@anchor{step with signal packet}
b8ff78ce
JB
24086@cindex @samp{S} packet
24087Step with signal. This is analogous to the @samp{C} packet, but
24088requests a single-step, rather than a normal resumption of execution.
c906108c 24089
ee2d5c50
AC
24090Reply:
24091@xref{Stop Reply Packets}, for the reply specifications.
24092
b8ff78ce
JB
24093@item t @var{addr}:@var{PP},@var{MM}
24094@cindex @samp{t} packet
8e04817f 24095Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
24096@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
24097@var{addr} must be at least 3 digits.
c906108c 24098
b8ff78ce
JB
24099@item T @var{XX}
24100@cindex @samp{T} packet
ee2d5c50 24101Find out if the thread XX is alive.
c906108c 24102
ee2d5c50
AC
24103Reply:
24104@table @samp
24105@item OK
24106thread is still alive
b8ff78ce 24107@item E @var{NN}
ee2d5c50
AC
24108thread is dead
24109@end table
24110
b8ff78ce
JB
24111@item v
24112Packets starting with @samp{v} are identified by a multi-letter name,
24113up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 24114
2d717e4f
DJ
24115@item vAttach;@var{pid}
24116@cindex @samp{vAttach} packet
24117Attach to a new process with the specified process ID. @var{pid} is a
d0d064df
PA
24118hexadecimal integer identifying the process. The attached process is
24119stopped.
2d717e4f
DJ
24120
24121This packet is only available in extended mode (@pxref{extended mode}).
24122
24123Reply:
24124@table @samp
24125@item E @var{nn}
24126for an error
24127@item @r{Any stop packet}
24128for success (@pxref{Stop Reply Packets})
24129@end table
24130
b8ff78ce
JB
24131@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
24132@cindex @samp{vCont} packet
24133Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
24134If an action is specified with no @var{tid}, then it is applied to any
24135threads that don't have a specific action specified; if no default action is
24136specified then other threads should remain stopped. Specifying multiple
24137default actions is an error; specifying no actions is also an error.
24138Thread IDs are specified in hexadecimal. Currently supported actions are:
24139
b8ff78ce 24140@table @samp
86d30acc
DJ
24141@item c
24142Continue.
b8ff78ce 24143@item C @var{sig}
86d30acc
DJ
24144Continue with signal @var{sig}. @var{sig} should be two hex digits.
24145@item s
24146Step.
b8ff78ce 24147@item S @var{sig}
86d30acc
DJ
24148Step with signal @var{sig}. @var{sig} should be two hex digits.
24149@end table
24150
24151The optional @var{addr} argument normally associated with these packets is
b8ff78ce 24152not supported in @samp{vCont}.
86d30acc
DJ
24153
24154Reply:
24155@xref{Stop Reply Packets}, for the reply specifications.
24156
b8ff78ce
JB
24157@item vCont?
24158@cindex @samp{vCont?} packet
d3e8051b 24159Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
24160
24161Reply:
24162@table @samp
b8ff78ce
JB
24163@item vCont@r{[};@var{action}@dots{}@r{]}
24164The @samp{vCont} packet is supported. Each @var{action} is a supported
24165command in the @samp{vCont} packet.
86d30acc 24166@item
b8ff78ce 24167The @samp{vCont} packet is not supported.
86d30acc 24168@end table
ee2d5c50 24169
a6b151f1
DJ
24170@item vFile:@var{operation}:@var{parameter}@dots{}
24171@cindex @samp{vFile} packet
24172Perform a file operation on the target system. For details,
24173see @ref{Host I/O Packets}.
24174
68437a39
DJ
24175@item vFlashErase:@var{addr},@var{length}
24176@cindex @samp{vFlashErase} packet
24177Direct the stub to erase @var{length} bytes of flash starting at
24178@var{addr}. The region may enclose any number of flash blocks, but
24179its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
24180flash block size appearing in the memory map (@pxref{Memory Map
24181Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
24182together, and sends a @samp{vFlashDone} request after each group; the
24183stub is allowed to delay erase operation until the @samp{vFlashDone}
24184packet is received.
24185
24186Reply:
24187@table @samp
24188@item OK
24189for success
24190@item E @var{NN}
24191for an error
24192@end table
24193
24194@item vFlashWrite:@var{addr}:@var{XX@dots{}}
24195@cindex @samp{vFlashWrite} packet
24196Direct the stub to write data to flash address @var{addr}. The data
24197is passed in binary form using the same encoding as for the @samp{X}
24198packet (@pxref{Binary Data}). The memory ranges specified by
24199@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
24200not overlap, and must appear in order of increasing addresses
24201(although @samp{vFlashErase} packets for higher addresses may already
24202have been received; the ordering is guaranteed only between
24203@samp{vFlashWrite} packets). If a packet writes to an address that was
24204neither erased by a preceding @samp{vFlashErase} packet nor by some other
24205target-specific method, the results are unpredictable.
24206
24207
24208Reply:
24209@table @samp
24210@item OK
24211for success
24212@item E.memtype
24213for vFlashWrite addressing non-flash memory
24214@item E @var{NN}
24215for an error
24216@end table
24217
24218@item vFlashDone
24219@cindex @samp{vFlashDone} packet
24220Indicate to the stub that flash programming operation is finished.
24221The stub is permitted to delay or batch the effects of a group of
24222@samp{vFlashErase} and @samp{vFlashWrite} packets until a
24223@samp{vFlashDone} packet is received. The contents of the affected
24224regions of flash memory are unpredictable until the @samp{vFlashDone}
24225request is completed.
24226
2d717e4f
DJ
24227@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
24228@cindex @samp{vRun} packet
24229Run the program @var{filename}, passing it each @var{argument} on its
24230command line. The file and arguments are hex-encoded strings. If
24231@var{filename} is an empty string, the stub may use a default program
24232(e.g.@: the last program run). The program is created in the stopped
9b562ab8 24233state.
2d717e4f
DJ
24234
24235This packet is only available in extended mode (@pxref{extended mode}).
24236
24237Reply:
24238@table @samp
24239@item E @var{nn}
24240for an error
24241@item @r{Any stop packet}
24242for success (@pxref{Stop Reply Packets})
24243@end table
24244
b8ff78ce 24245@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 24246@anchor{X packet}
b8ff78ce
JB
24247@cindex @samp{X} packet
24248Write data to memory, where the data is transmitted in binary.
24249@var{addr} is address, @var{length} is number of bytes,
0876f84a 24250@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 24251
ee2d5c50
AC
24252Reply:
24253@table @samp
24254@item OK
24255for success
b8ff78ce 24256@item E @var{NN}
ee2d5c50
AC
24257for an error
24258@end table
24259
b8ff78ce
JB
24260@item z @var{type},@var{addr},@var{length}
24261@itemx Z @var{type},@var{addr},@var{length}
2f870471 24262@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24263@cindex @samp{z} packet
24264@cindex @samp{Z} packets
24265Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24266watchpoint starting at address @var{address} and covering the next
24267@var{length} bytes.
ee2d5c50 24268
2f870471
AC
24269Each breakpoint and watchpoint packet @var{type} is documented
24270separately.
24271
512217c7
AC
24272@emph{Implementation notes: A remote target shall return an empty string
24273for an unrecognized breakpoint or watchpoint packet @var{type}. A
24274remote target shall support either both or neither of a given
b8ff78ce 24275@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24276avoid potential problems with duplicate packets, the operations should
24277be implemented in an idempotent way.}
24278
b8ff78ce
JB
24279@item z0,@var{addr},@var{length}
24280@itemx Z0,@var{addr},@var{length}
24281@cindex @samp{z0} packet
24282@cindex @samp{Z0} packet
24283Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24284@var{addr} of size @var{length}.
2f870471
AC
24285
24286A memory breakpoint is implemented by replacing the instruction at
24287@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24288@var{length} is used by targets that indicates the size of the
2f870471
AC
24289breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24290@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24291
2f870471
AC
24292@emph{Implementation note: It is possible for a target to copy or move
24293code that contains memory breakpoints (e.g., when implementing
24294overlays). The behavior of this packet, in the presence of such a
24295target, is not defined.}
c906108c 24296
ee2d5c50
AC
24297Reply:
24298@table @samp
2f870471
AC
24299@item OK
24300success
24301@item
24302not supported
b8ff78ce 24303@item E @var{NN}
ee2d5c50 24304for an error
2f870471
AC
24305@end table
24306
b8ff78ce
JB
24307@item z1,@var{addr},@var{length}
24308@itemx Z1,@var{addr},@var{length}
24309@cindex @samp{z1} packet
24310@cindex @samp{Z1} packet
24311Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24312address @var{addr} of size @var{length}.
2f870471
AC
24313
24314A hardware breakpoint is implemented using a mechanism that is not
24315dependant on being able to modify the target's memory.
24316
24317@emph{Implementation note: A hardware breakpoint is not affected by code
24318movement.}
24319
24320Reply:
24321@table @samp
ee2d5c50 24322@item OK
2f870471
AC
24323success
24324@item
24325not supported
b8ff78ce 24326@item E @var{NN}
2f870471
AC
24327for an error
24328@end table
24329
b8ff78ce
JB
24330@item z2,@var{addr},@var{length}
24331@itemx Z2,@var{addr},@var{length}
24332@cindex @samp{z2} packet
24333@cindex @samp{Z2} packet
24334Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24335
24336Reply:
24337@table @samp
24338@item OK
24339success
24340@item
24341not supported
b8ff78ce 24342@item E @var{NN}
2f870471
AC
24343for an error
24344@end table
24345
b8ff78ce
JB
24346@item z3,@var{addr},@var{length}
24347@itemx Z3,@var{addr},@var{length}
24348@cindex @samp{z3} packet
24349@cindex @samp{Z3} packet
24350Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24351
24352Reply:
24353@table @samp
24354@item OK
24355success
24356@item
24357not supported
b8ff78ce 24358@item E @var{NN}
2f870471
AC
24359for an error
24360@end table
24361
b8ff78ce
JB
24362@item z4,@var{addr},@var{length}
24363@itemx Z4,@var{addr},@var{length}
24364@cindex @samp{z4} packet
24365@cindex @samp{Z4} packet
24366Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24367
24368Reply:
24369@table @samp
24370@item OK
24371success
24372@item
24373not supported
b8ff78ce 24374@item E @var{NN}
2f870471 24375for an error
ee2d5c50
AC
24376@end table
24377
24378@end table
c906108c 24379
ee2d5c50
AC
24380@node Stop Reply Packets
24381@section Stop Reply Packets
24382@cindex stop reply packets
c906108c 24383
8e04817f
AC
24384The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24385receive any of the below as a reply. In the case of the @samp{C},
24386@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24387when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24388number} is defined by the header @file{include/gdb/signals.h} in the
24389@value{GDBN} source code.
c906108c 24390
b8ff78ce
JB
24391As in the description of request packets, we include spaces in the
24392reply templates for clarity; these are not part of the reply packet's
24393syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24394components.
c906108c 24395
b8ff78ce 24396@table @samp
ee2d5c50 24397
b8ff78ce 24398@item S @var{AA}
599b237a 24399The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24400number). This is equivalent to a @samp{T} response with no
24401@var{n}:@var{r} pairs.
c906108c 24402
b8ff78ce
JB
24403@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24404@cindex @samp{T} packet reply
599b237a 24405The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24406number). This is equivalent to an @samp{S} response, except that the
24407@samp{@var{n}:@var{r}} pairs can carry values of important registers
24408and other information directly in the stop reply packet, reducing
24409round-trip latency. Single-step and breakpoint traps are reported
24410this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24411
24412@itemize @bullet
b8ff78ce 24413@item
599b237a 24414If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24415corresponding @var{r} gives that register's value. @var{r} is a
24416series of bytes in target byte order, with each byte given by a
24417two-digit hex number.
cfa9d6d9 24418
b8ff78ce
JB
24419@item
24420If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24421hex.
cfa9d6d9 24422
b8ff78ce 24423@item
cfa9d6d9
DJ
24424If @var{n} is a recognized @dfn{stop reason}, it describes a more
24425specific event that stopped the target. The currently defined stop
24426reasons are listed below. @var{aa} should be @samp{05}, the trap
24427signal. At most one stop reason should be present.
24428
b8ff78ce
JB
24429@item
24430Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24431and go on to the next; this allows us to extend the protocol in the
24432future.
cfa9d6d9
DJ
24433@end itemize
24434
24435The currently defined stop reasons are:
24436
24437@table @samp
24438@item watch
24439@itemx rwatch
24440@itemx awatch
24441The packet indicates a watchpoint hit, and @var{r} is the data address, in
24442hex.
24443
24444@cindex shared library events, remote reply
24445@item library
24446The packet indicates that the loaded libraries have changed.
24447@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24448list of loaded libraries. @var{r} is ignored.
24449@end table
ee2d5c50 24450
b8ff78ce 24451@item W @var{AA}
8e04817f 24452The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24453applicable to certain targets.
24454
b8ff78ce 24455@item X @var{AA}
8e04817f 24456The process terminated with signal @var{AA}.
c906108c 24457
b8ff78ce
JB
24458@item O @var{XX}@dots{}
24459@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24460written as the program's console output. This can happen at any time
24461while the program is running and the debugger should continue to wait
24462for @samp{W}, @samp{T}, etc.
0ce1b118 24463
b8ff78ce 24464@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24465@var{call-id} is the identifier which says which host system call should
24466be called. This is just the name of the function. Translation into the
24467correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24468@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24469system calls.
24470
b8ff78ce
JB
24471@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24472this very system call.
0ce1b118 24473
b8ff78ce
JB
24474The target replies with this packet when it expects @value{GDBN} to
24475call a host system call on behalf of the target. @value{GDBN} replies
24476with an appropriate @samp{F} packet and keeps up waiting for the next
24477reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24478or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24479Protocol Extension}, for more details.
0ce1b118 24480
ee2d5c50
AC
24481@end table
24482
24483@node General Query Packets
24484@section General Query Packets
9c16f35a 24485@cindex remote query requests
c906108c 24486
5f3bebba
JB
24487Packets starting with @samp{q} are @dfn{general query packets};
24488packets starting with @samp{Q} are @dfn{general set packets}. General
24489query and set packets are a semi-unified form for retrieving and
24490sending information to and from the stub.
24491
24492The initial letter of a query or set packet is followed by a name
24493indicating what sort of thing the packet applies to. For example,
24494@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24495definitions with the stub. These packet names follow some
24496conventions:
24497
24498@itemize @bullet
24499@item
24500The name must not contain commas, colons or semicolons.
24501@item
24502Most @value{GDBN} query and set packets have a leading upper case
24503letter.
24504@item
24505The names of custom vendor packets should use a company prefix, in
24506lower case, followed by a period. For example, packets designed at
24507the Acme Corporation might begin with @samp{qacme.foo} (for querying
24508foos) or @samp{Qacme.bar} (for setting bars).
24509@end itemize
24510
aa56d27a
JB
24511The name of a query or set packet should be separated from any
24512parameters by a @samp{:}; the parameters themselves should be
24513separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24514full packet name, and check for a separator or the end of the packet,
24515in case two packet names share a common prefix. New packets should not begin
24516with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24517packets predate these conventions, and have arguments without any terminator
24518for the packet name; we suspect they are in widespread use in places that
24519are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24520existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24521packet.}.
c906108c 24522
b8ff78ce
JB
24523Like the descriptions of the other packets, each description here
24524has a template showing the packet's overall syntax, followed by an
24525explanation of the packet's meaning. We include spaces in some of the
24526templates for clarity; these are not part of the packet's syntax. No
24527@value{GDBN} packet uses spaces to separate its components.
24528
5f3bebba
JB
24529Here are the currently defined query and set packets:
24530
b8ff78ce 24531@table @samp
c906108c 24532
b8ff78ce 24533@item qC
9c16f35a 24534@cindex current thread, remote request
b8ff78ce 24535@cindex @samp{qC} packet
ee2d5c50
AC
24536Return the current thread id.
24537
24538Reply:
24539@table @samp
b8ff78ce 24540@item QC @var{pid}
599b237a 24541Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24542@item @r{(anything else)}
ee2d5c50
AC
24543Any other reply implies the old pid.
24544@end table
24545
b8ff78ce 24546@item qCRC:@var{addr},@var{length}
ff2587ec 24547@cindex CRC of memory block, remote request
b8ff78ce
JB
24548@cindex @samp{qCRC} packet
24549Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24550Reply:
24551@table @samp
b8ff78ce 24552@item E @var{NN}
ff2587ec 24553An error (such as memory fault)
b8ff78ce
JB
24554@item C @var{crc32}
24555The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24556@end table
24557
b8ff78ce
JB
24558@item qfThreadInfo
24559@itemx qsThreadInfo
9c16f35a 24560@cindex list active threads, remote request
b8ff78ce
JB
24561@cindex @samp{qfThreadInfo} packet
24562@cindex @samp{qsThreadInfo} packet
24563Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24564may be too many active threads to fit into one reply packet, this query
24565works iteratively: it may require more than one query/reply sequence to
24566obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24567be the @samp{qfThreadInfo} query; subsequent queries in the
24568sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24569
b8ff78ce 24570NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24571
24572Reply:
24573@table @samp
b8ff78ce 24574@item m @var{id}
ee2d5c50 24575A single thread id
b8ff78ce 24576@item m @var{id},@var{id}@dots{}
ee2d5c50 24577a comma-separated list of thread ids
b8ff78ce
JB
24578@item l
24579(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24580@end table
24581
24582In response to each query, the target will reply with a list of one or
e1aac25b
JB
24583more thread ids, in big-endian unsigned hex, separated by commas.
24584@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24585ids (using the @samp{qs} form of the query), until the target responds
24586with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24587
b8ff78ce 24588@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24589@cindex get thread-local storage address, remote request
b8ff78ce 24590@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24591Fetch the address associated with thread local storage specified
24592by @var{thread-id}, @var{offset}, and @var{lm}.
24593
24594@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24595thread for which to fetch the TLS address.
24596
24597@var{offset} is the (big endian, hex encoded) offset associated with the
24598thread local variable. (This offset is obtained from the debug
24599information associated with the variable.)
24600
db2e3e2e 24601@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24602the load module associated with the thread local storage. For example,
24603a @sc{gnu}/Linux system will pass the link map address of the shared
24604object associated with the thread local storage under consideration.
24605Other operating environments may choose to represent the load module
24606differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24607
24608Reply:
b8ff78ce
JB
24609@table @samp
24610@item @var{XX}@dots{}
ff2587ec
WZ
24611Hex encoded (big endian) bytes representing the address of the thread
24612local storage requested.
24613
b8ff78ce
JB
24614@item E @var{nn}
24615An error occurred. @var{nn} are hex digits.
ff2587ec 24616
b8ff78ce
JB
24617@item
24618An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24619@end table
24620
b8ff78ce 24621@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24622Obtain thread information from RTOS. Where: @var{startflag} (one hex
24623digit) is one to indicate the first query and zero to indicate a
24624subsequent query; @var{threadcount} (two hex digits) is the maximum
24625number of threads the response packet can contain; and @var{nextthread}
24626(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24627returned in the response as @var{argthread}.
ee2d5c50 24628
b8ff78ce 24629Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24630
24631Reply:
24632@table @samp
b8ff78ce 24633@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24634Where: @var{count} (two hex digits) is the number of threads being
24635returned; @var{done} (one hex digit) is zero to indicate more threads
24636and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24637digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24638is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24639digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24640@end table
c906108c 24641
b8ff78ce 24642@item qOffsets
9c16f35a 24643@cindex section offsets, remote request
b8ff78ce 24644@cindex @samp{qOffsets} packet
31d99776
DJ
24645Get section offsets that the target used when relocating the downloaded
24646image.
c906108c 24647
ee2d5c50
AC
24648Reply:
24649@table @samp
31d99776
DJ
24650@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24651Relocate the @code{Text} section by @var{xxx} from its original address.
24652Relocate the @code{Data} section by @var{yyy} from its original address.
24653If the object file format provides segment information (e.g.@: @sc{elf}
24654@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24655segments by the supplied offsets.
24656
24657@emph{Note: while a @code{Bss} offset may be included in the response,
24658@value{GDBN} ignores this and instead applies the @code{Data} offset
24659to the @code{Bss} section.}
24660
24661@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24662Relocate the first segment of the object file, which conventionally
24663contains program code, to a starting address of @var{xxx}. If
24664@samp{DataSeg} is specified, relocate the second segment, which
24665conventionally contains modifiable data, to a starting address of
24666@var{yyy}. @value{GDBN} will report an error if the object file
24667does not contain segment information, or does not contain at least
24668as many segments as mentioned in the reply. Extra segments are
24669kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24670@end table
24671
b8ff78ce 24672@item qP @var{mode} @var{threadid}
9c16f35a 24673@cindex thread information, remote request
b8ff78ce 24674@cindex @samp{qP} packet
8e04817f
AC
24675Returns information on @var{threadid}. Where: @var{mode} is a hex
24676encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24677
aa56d27a
JB
24678Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24679(see below).
24680
b8ff78ce 24681Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24682
89be2091
DJ
24683@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24684@cindex pass signals to inferior, remote request
24685@cindex @samp{QPassSignals} packet
23181151 24686@anchor{QPassSignals}
89be2091
DJ
24687Each listed @var{signal} should be passed directly to the inferior process.
24688Signals are numbered identically to continue packets and stop replies
24689(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24690strictly greater than the previous item. These signals do not need to stop
24691the inferior, or be reported to @value{GDBN}. All other signals should be
24692reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24693combine; any earlier @samp{QPassSignals} list is completely replaced by the
24694new list. This packet improves performance when using @samp{handle
24695@var{signal} nostop noprint pass}.
24696
24697Reply:
24698@table @samp
24699@item OK
24700The request succeeded.
24701
24702@item E @var{nn}
24703An error occurred. @var{nn} are hex digits.
24704
24705@item
24706An empty reply indicates that @samp{QPassSignals} is not supported by
24707the stub.
24708@end table
24709
24710Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24711command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24712This packet is not probed by default; the remote stub must request it,
24713by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24714
b8ff78ce 24715@item qRcmd,@var{command}
ff2587ec 24716@cindex execute remote command, remote request
b8ff78ce 24717@cindex @samp{qRcmd} packet
ff2587ec 24718@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24719execution. Invalid commands should be reported using the output
24720string. Before the final result packet, the target may also respond
24721with a number of intermediate @samp{O@var{output}} console output
24722packets. @emph{Implementors should note that providing access to a
24723stubs's interpreter may have security implications}.
fa93a9d8 24724
ff2587ec
WZ
24725Reply:
24726@table @samp
24727@item OK
24728A command response with no output.
24729@item @var{OUTPUT}
24730A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24731@item E @var{NN}
ff2587ec 24732Indicate a badly formed request.
b8ff78ce
JB
24733@item
24734An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24735@end table
fa93a9d8 24736
aa56d27a
JB
24737(Note that the @code{qRcmd} packet's name is separated from the
24738command by a @samp{,}, not a @samp{:}, contrary to the naming
24739conventions above. Please don't use this packet as a model for new
24740packets.)
24741
08388c79
DE
24742@item qSearch:memory:@var{address};@var{length};@var{search-pattern}
24743@cindex searching memory, in remote debugging
24744@cindex @samp{qSearch:memory} packet
24745@anchor{qSearch memory}
24746Search @var{length} bytes at @var{address} for @var{search-pattern}.
24747@var{address} and @var{length} are encoded in hex.
24748@var{search-pattern} is a sequence of bytes, hex encoded.
24749
24750Reply:
24751@table @samp
24752@item 0
24753The pattern was not found.
24754@item 1,address
24755The pattern was found at @var{address}.
24756@item E @var{NN}
24757A badly formed request or an error was encountered while searching memory.
24758@item
24759An empty reply indicates that @samp{qSearch:memory} is not recognized.
24760@end table
24761
be2a5f71
DJ
24762@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24763@cindex supported packets, remote query
24764@cindex features of the remote protocol
24765@cindex @samp{qSupported} packet
0876f84a 24766@anchor{qSupported}
be2a5f71
DJ
24767Tell the remote stub about features supported by @value{GDBN}, and
24768query the stub for features it supports. This packet allows
24769@value{GDBN} and the remote stub to take advantage of each others'
24770features. @samp{qSupported} also consolidates multiple feature probes
24771at startup, to improve @value{GDBN} performance---a single larger
24772packet performs better than multiple smaller probe packets on
24773high-latency links. Some features may enable behavior which must not
24774be on by default, e.g.@: because it would confuse older clients or
24775stubs. Other features may describe packets which could be
24776automatically probed for, but are not. These features must be
24777reported before @value{GDBN} will use them. This ``default
24778unsupported'' behavior is not appropriate for all packets, but it
24779helps to keep the initial connection time under control with new
24780versions of @value{GDBN} which support increasing numbers of packets.
24781
24782Reply:
24783@table @samp
24784@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24785The stub supports or does not support each returned @var{stubfeature},
24786depending on the form of each @var{stubfeature} (see below for the
24787possible forms).
24788@item
24789An empty reply indicates that @samp{qSupported} is not recognized,
24790or that no features needed to be reported to @value{GDBN}.
24791@end table
24792
24793The allowed forms for each feature (either a @var{gdbfeature} in the
24794@samp{qSupported} packet, or a @var{stubfeature} in the response)
24795are:
24796
24797@table @samp
24798@item @var{name}=@var{value}
24799The remote protocol feature @var{name} is supported, and associated
24800with the specified @var{value}. The format of @var{value} depends
24801on the feature, but it must not include a semicolon.
24802@item @var{name}+
24803The remote protocol feature @var{name} is supported, and does not
24804need an associated value.
24805@item @var{name}-
24806The remote protocol feature @var{name} is not supported.
24807@item @var{name}?
24808The remote protocol feature @var{name} may be supported, and
24809@value{GDBN} should auto-detect support in some other way when it is
24810needed. This form will not be used for @var{gdbfeature} notifications,
24811but may be used for @var{stubfeature} responses.
24812@end table
24813
24814Whenever the stub receives a @samp{qSupported} request, the
24815supplied set of @value{GDBN} features should override any previous
24816request. This allows @value{GDBN} to put the stub in a known
24817state, even if the stub had previously been communicating with
24818a different version of @value{GDBN}.
24819
24820No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24821are defined yet. Stubs should ignore any unknown values for
24822@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24823packet supports receiving packets of unlimited length (earlier
24824versions of @value{GDBN} may reject overly long responses). Values
24825for @var{gdbfeature} may be defined in the future to let the stub take
24826advantage of new features in @value{GDBN}, e.g.@: incompatible
24827improvements in the remote protocol---support for unlimited length
24828responses would be a @var{gdbfeature} example, if it were not implied by
24829the @samp{qSupported} query. The stub's reply should be independent
24830of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24831describes all the features it supports, and then the stub replies with
24832all the features it supports.
24833
24834Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24835responses, as long as each response uses one of the standard forms.
24836
24837Some features are flags. A stub which supports a flag feature
24838should respond with a @samp{+} form response. Other features
24839require values, and the stub should respond with an @samp{=}
24840form response.
24841
24842Each feature has a default value, which @value{GDBN} will use if
24843@samp{qSupported} is not available or if the feature is not mentioned
24844in the @samp{qSupported} response. The default values are fixed; a
24845stub is free to omit any feature responses that match the defaults.
24846
24847Not all features can be probed, but for those which can, the probing
24848mechanism is useful: in some cases, a stub's internal
24849architecture may not allow the protocol layer to know some information
24850about the underlying target in advance. This is especially common in
24851stubs which may be configured for multiple targets.
24852
24853These are the currently defined stub features and their properties:
24854
cfa9d6d9 24855@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24856@c NOTE: The first row should be @headitem, but we do not yet require
24857@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24858@item Feature Name
be2a5f71
DJ
24859@tab Value Required
24860@tab Default
24861@tab Probe Allowed
24862
24863@item @samp{PacketSize}
24864@tab Yes
24865@tab @samp{-}
24866@tab No
24867
0876f84a
DJ
24868@item @samp{qXfer:auxv:read}
24869@tab No
24870@tab @samp{-}
24871@tab Yes
24872
23181151
DJ
24873@item @samp{qXfer:features:read}
24874@tab No
24875@tab @samp{-}
24876@tab Yes
24877
cfa9d6d9
DJ
24878@item @samp{qXfer:libraries:read}
24879@tab No
24880@tab @samp{-}
24881@tab Yes
24882
68437a39
DJ
24883@item @samp{qXfer:memory-map:read}
24884@tab No
24885@tab @samp{-}
24886@tab Yes
24887
0e7f50da
UW
24888@item @samp{qXfer:spu:read}
24889@tab No
24890@tab @samp{-}
24891@tab Yes
24892
24893@item @samp{qXfer:spu:write}
24894@tab No
24895@tab @samp{-}
24896@tab Yes
24897
89be2091
DJ
24898@item @samp{QPassSignals}
24899@tab No
24900@tab @samp{-}
24901@tab Yes
24902
be2a5f71
DJ
24903@end multitable
24904
24905These are the currently defined stub features, in more detail:
24906
24907@table @samp
24908@cindex packet size, remote protocol
24909@item PacketSize=@var{bytes}
24910The remote stub can accept packets up to at least @var{bytes} in
24911length. @value{GDBN} will send packets up to this size for bulk
24912transfers, and will never send larger packets. This is a limit on the
24913data characters in the packet, including the frame and checksum.
24914There is no trailing NUL byte in a remote protocol packet; if the stub
24915stores packets in a NUL-terminated format, it should allow an extra
24916byte in its buffer for the NUL. If this stub feature is not supported,
24917@value{GDBN} guesses based on the size of the @samp{g} packet response.
24918
0876f84a
DJ
24919@item qXfer:auxv:read
24920The remote stub understands the @samp{qXfer:auxv:read} packet
24921(@pxref{qXfer auxiliary vector read}).
24922
23181151
DJ
24923@item qXfer:features:read
24924The remote stub understands the @samp{qXfer:features:read} packet
24925(@pxref{qXfer target description read}).
24926
cfa9d6d9
DJ
24927@item qXfer:libraries:read
24928The remote stub understands the @samp{qXfer:libraries:read} packet
24929(@pxref{qXfer library list read}).
24930
23181151
DJ
24931@item qXfer:memory-map:read
24932The remote stub understands the @samp{qXfer:memory-map:read} packet
24933(@pxref{qXfer memory map read}).
24934
0e7f50da
UW
24935@item qXfer:spu:read
24936The remote stub understands the @samp{qXfer:spu:read} packet
24937(@pxref{qXfer spu read}).
24938
24939@item qXfer:spu:write
24940The remote stub understands the @samp{qXfer:spu:write} packet
24941(@pxref{qXfer spu write}).
24942
23181151
DJ
24943@item QPassSignals
24944The remote stub understands the @samp{QPassSignals} packet
24945(@pxref{QPassSignals}).
24946
be2a5f71
DJ
24947@end table
24948
b8ff78ce 24949@item qSymbol::
ff2587ec 24950@cindex symbol lookup, remote request
b8ff78ce 24951@cindex @samp{qSymbol} packet
ff2587ec
WZ
24952Notify the target that @value{GDBN} is prepared to serve symbol lookup
24953requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24954
24955Reply:
ff2587ec 24956@table @samp
b8ff78ce 24957@item OK
ff2587ec 24958The target does not need to look up any (more) symbols.
b8ff78ce 24959@item qSymbol:@var{sym_name}
ff2587ec
WZ
24960The target requests the value of symbol @var{sym_name} (hex encoded).
24961@value{GDBN} may provide the value by using the
b8ff78ce
JB
24962@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24963below.
ff2587ec 24964@end table
83761cbd 24965
b8ff78ce 24966@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24967Set the value of @var{sym_name} to @var{sym_value}.
24968
24969@var{sym_name} (hex encoded) is the name of a symbol whose value the
24970target has previously requested.
24971
24972@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24973@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24974will be empty.
24975
24976Reply:
24977@table @samp
b8ff78ce 24978@item OK
ff2587ec 24979The target does not need to look up any (more) symbols.
b8ff78ce 24980@item qSymbol:@var{sym_name}
ff2587ec
WZ
24981The target requests the value of a new symbol @var{sym_name} (hex
24982encoded). @value{GDBN} will continue to supply the values of symbols
24983(if available), until the target ceases to request them.
fa93a9d8 24984@end table
0abb7bc7 24985
9d29849a
JB
24986@item QTDP
24987@itemx QTFrame
24988@xref{Tracepoint Packets}.
24989
b8ff78ce 24990@item qThreadExtraInfo,@var{id}
ff2587ec 24991@cindex thread attributes info, remote request
b8ff78ce
JB
24992@cindex @samp{qThreadExtraInfo} packet
24993Obtain a printable string description of a thread's attributes from
24994the target OS. @var{id} is a thread-id in big-endian hex. This
24995string may contain anything that the target OS thinks is interesting
24996for @value{GDBN} to tell the user about the thread. The string is
24997displayed in @value{GDBN}'s @code{info threads} display. Some
24998examples of possible thread extra info strings are @samp{Runnable}, or
24999@samp{Blocked on Mutex}.
ff2587ec
WZ
25000
25001Reply:
25002@table @samp
b8ff78ce
JB
25003@item @var{XX}@dots{}
25004Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
25005comprising the printable string containing the extra information about
25006the thread's attributes.
ff2587ec 25007@end table
814e32d7 25008
aa56d27a
JB
25009(Note that the @code{qThreadExtraInfo} packet's name is separated from
25010the command by a @samp{,}, not a @samp{:}, contrary to the naming
25011conventions above. Please don't use this packet as a model for new
25012packets.)
25013
9d29849a
JB
25014@item QTStart
25015@itemx QTStop
25016@itemx QTinit
25017@itemx QTro
25018@itemx qTStatus
25019@xref{Tracepoint Packets}.
25020
0876f84a
DJ
25021@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
25022@cindex read special object, remote request
25023@cindex @samp{qXfer} packet
68437a39 25024@anchor{qXfer read}
0876f84a
DJ
25025Read uninterpreted bytes from the target's special data area
25026identified by the keyword @var{object}. Request @var{length} bytes
25027starting at @var{offset} bytes into the data. The content and
0e7f50da 25028encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
25029additional details about what data to access.
25030
25031Here are the specific requests of this form defined so far. All
25032@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
25033formats, listed below.
25034
25035@table @samp
25036@item qXfer:auxv:read::@var{offset},@var{length}
25037@anchor{qXfer auxiliary vector read}
25038Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 25039auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
25040
25041This packet is not probed by default; the remote stub must request it,
89be2091 25042by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 25043
23181151
DJ
25044@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
25045@anchor{qXfer target description read}
25046Access the @dfn{target description}. @xref{Target Descriptions}. The
25047annex specifies which XML document to access. The main description is
25048always loaded from the @samp{target.xml} annex.
25049
25050This packet is not probed by default; the remote stub must request it,
25051by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25052
cfa9d6d9
DJ
25053@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
25054@anchor{qXfer library list read}
25055Access the target's list of loaded libraries. @xref{Library List Format}.
25056The annex part of the generic @samp{qXfer} packet must be empty
25057(@pxref{qXfer read}).
25058
25059Targets which maintain a list of libraries in the program's memory do
25060not need to implement this packet; it is designed for platforms where
25061the operating system manages the list of loaded libraries.
25062
25063This packet is not probed by default; the remote stub must request it,
25064by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25065
68437a39
DJ
25066@item qXfer:memory-map:read::@var{offset},@var{length}
25067@anchor{qXfer memory map read}
79a6e687 25068Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
25069annex part of the generic @samp{qXfer} packet must be empty
25070(@pxref{qXfer read}).
25071
0e7f50da
UW
25072This packet is not probed by default; the remote stub must request it,
25073by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25074
25075@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
25076@anchor{qXfer spu read}
25077Read contents of an @code{spufs} file on the target system. The
25078annex specifies which file to read; it must be of the form
25079@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25080in the target process, and @var{name} identifes the @code{spufs} file
25081in that context to be accessed.
25082
68437a39
DJ
25083This packet is not probed by default; the remote stub must request it,
25084by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25085@end table
25086
0876f84a
DJ
25087Reply:
25088@table @samp
25089@item m @var{data}
25090Data @var{data} (@pxref{Binary Data}) has been read from the
25091target. There may be more data at a higher address (although
25092it is permitted to return @samp{m} even for the last valid
25093block of data, as long as at least one byte of data was read).
25094@var{data} may have fewer bytes than the @var{length} in the
25095request.
25096
25097@item l @var{data}
25098Data @var{data} (@pxref{Binary Data}) has been read from the target.
25099There is no more data to be read. @var{data} may have fewer bytes
25100than the @var{length} in the request.
25101
25102@item l
25103The @var{offset} in the request is at the end of the data.
25104There is no more data to be read.
25105
25106@item E00
25107The request was malformed, or @var{annex} was invalid.
25108
25109@item E @var{nn}
25110The offset was invalid, or there was an error encountered reading the data.
25111@var{nn} is a hex-encoded @code{errno} value.
25112
25113@item
25114An empty reply indicates the @var{object} string was not recognized by
25115the stub, or that the object does not support reading.
25116@end table
25117
25118@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25119@cindex write data into object, remote request
25120Write uninterpreted bytes into the target's special data area
25121identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 25122into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 25123(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 25124is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
25125to access.
25126
0e7f50da
UW
25127Here are the specific requests of this form defined so far. All
25128@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
25129formats, listed below.
25130
25131@table @samp
25132@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25133@anchor{qXfer spu write}
25134Write @var{data} to an @code{spufs} file on the target system. The
25135annex specifies which file to write; it must be of the form
25136@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25137in the target process, and @var{name} identifes the @code{spufs} file
25138in that context to be accessed.
25139
25140This packet is not probed by default; the remote stub must request it,
25141by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25142@end table
0876f84a
DJ
25143
25144Reply:
25145@table @samp
25146@item @var{nn}
25147@var{nn} (hex encoded) is the number of bytes written.
25148This may be fewer bytes than supplied in the request.
25149
25150@item E00
25151The request was malformed, or @var{annex} was invalid.
25152
25153@item E @var{nn}
25154The offset was invalid, or there was an error encountered writing the data.
25155@var{nn} is a hex-encoded @code{errno} value.
25156
25157@item
25158An empty reply indicates the @var{object} string was not
25159recognized by the stub, or that the object does not support writing.
25160@end table
25161
25162@item qXfer:@var{object}:@var{operation}:@dots{}
25163Requests of this form may be added in the future. When a stub does
25164not recognize the @var{object} keyword, or its support for
25165@var{object} does not recognize the @var{operation} keyword, the stub
25166must respond with an empty packet.
25167
ee2d5c50
AC
25168@end table
25169
25170@node Register Packet Format
25171@section Register Packet Format
eb12ee30 25172
b8ff78ce 25173The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
25174In the below, some thirty-two bit registers are transferred as
25175sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
25176to fill the space allocated. Register bytes are transferred in target
25177byte order. The two nibbles within a register byte are transferred
ee2d5c50 25178most-significant - least-significant.
eb12ee30 25179
ee2d5c50 25180@table @r
eb12ee30 25181
8e04817f 25182@item MIPS32
ee2d5c50 25183
599b237a 25184All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2518532 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
25186registers; fsr; fir; fp.
eb12ee30 25187
8e04817f 25188@item MIPS64
ee2d5c50 25189
599b237a 25190All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
25191thirty-two bit registers such as @code{sr}). The ordering is the same
25192as @code{MIPS32}.
eb12ee30 25193
ee2d5c50
AC
25194@end table
25195
9d29849a
JB
25196@node Tracepoint Packets
25197@section Tracepoint Packets
25198@cindex tracepoint packets
25199@cindex packets, tracepoint
25200
25201Here we describe the packets @value{GDBN} uses to implement
25202tracepoints (@pxref{Tracepoints}).
25203
25204@table @samp
25205
25206@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
25207Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
25208is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
25209the tracepoint is disabled. @var{step} is the tracepoint's step
25210count, and @var{pass} is its pass count. If the trailing @samp{-} is
25211present, further @samp{QTDP} packets will follow to specify this
25212tracepoint's actions.
25213
25214Replies:
25215@table @samp
25216@item OK
25217The packet was understood and carried out.
25218@item
25219The packet was not recognized.
25220@end table
25221
25222@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
25223Define actions to be taken when a tracepoint is hit. @var{n} and
25224@var{addr} must be the same as in the initial @samp{QTDP} packet for
25225this tracepoint. This packet may only be sent immediately after
25226another @samp{QTDP} packet that ended with a @samp{-}. If the
25227trailing @samp{-} is present, further @samp{QTDP} packets will follow,
25228specifying more actions for this tracepoint.
25229
25230In the series of action packets for a given tracepoint, at most one
25231can have an @samp{S} before its first @var{action}. If such a packet
25232is sent, it and the following packets define ``while-stepping''
25233actions. Any prior packets define ordinary actions --- that is, those
25234taken when the tracepoint is first hit. If no action packet has an
25235@samp{S}, then all the packets in the series specify ordinary
25236tracepoint actions.
25237
25238The @samp{@var{action}@dots{}} portion of the packet is a series of
25239actions, concatenated without separators. Each action has one of the
25240following forms:
25241
25242@table @samp
25243
25244@item R @var{mask}
25245Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 25246a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
25247@var{i} should be collected. (The least significant bit is numbered
25248zero.) Note that @var{mask} may be any number of digits long; it may
25249not fit in a 32-bit word.
25250
25251@item M @var{basereg},@var{offset},@var{len}
25252Collect @var{len} bytes of memory starting at the address in register
25253number @var{basereg}, plus @var{offset}. If @var{basereg} is
25254@samp{-1}, then the range has a fixed address: @var{offset} is the
25255address of the lowest byte to collect. The @var{basereg},
599b237a 25256@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
25257values (the @samp{-1} value for @var{basereg} is a special case).
25258
25259@item X @var{len},@var{expr}
25260Evaluate @var{expr}, whose length is @var{len}, and collect memory as
25261it directs. @var{expr} is an agent expression, as described in
25262@ref{Agent Expressions}. Each byte of the expression is encoded as a
25263two-digit hex number in the packet; @var{len} is the number of bytes
25264in the expression (and thus one-half the number of hex digits in the
25265packet).
25266
25267@end table
25268
25269Any number of actions may be packed together in a single @samp{QTDP}
25270packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
25271length (400 bytes, for many stubs). There may be only one @samp{R}
25272action per tracepoint, and it must precede any @samp{M} or @samp{X}
25273actions. Any registers referred to by @samp{M} and @samp{X} actions
25274must be collected by a preceding @samp{R} action. (The
25275``while-stepping'' actions are treated as if they were attached to a
25276separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25277
25278Replies:
25279@table @samp
25280@item OK
25281The packet was understood and carried out.
25282@item
25283The packet was not recognized.
25284@end table
25285
25286@item QTFrame:@var{n}
25287Select the @var{n}'th tracepoint frame from the buffer, and use the
25288register and memory contents recorded there to answer subsequent
25289request packets from @value{GDBN}.
25290
25291A successful reply from the stub indicates that the stub has found the
25292requested frame. The response is a series of parts, concatenated
25293without separators, describing the frame we selected. Each part has
25294one of the following forms:
25295
25296@table @samp
25297@item F @var{f}
25298The selected frame is number @var{n} in the trace frame buffer;
599b237a 25299@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25300was no frame matching the criteria in the request packet.
25301
25302@item T @var{t}
25303The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25304@var{t} is a hexadecimal number.
9d29849a
JB
25305
25306@end table
25307
25308@item QTFrame:pc:@var{addr}
25309Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25310currently selected frame whose PC is @var{addr};
599b237a 25311@var{addr} is a hexadecimal number.
9d29849a
JB
25312
25313@item QTFrame:tdp:@var{t}
25314Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25315currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25316is a hexadecimal number.
9d29849a
JB
25317
25318@item QTFrame:range:@var{start}:@var{end}
25319Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25320currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25321and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25322numbers.
25323
25324@item QTFrame:outside:@var{start}:@var{end}
25325Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25326frame @emph{outside} the given range of addresses.
25327
25328@item QTStart
25329Begin the tracepoint experiment. Begin collecting data from tracepoint
25330hits in the trace frame buffer.
25331
25332@item QTStop
25333End the tracepoint experiment. Stop collecting trace frames.
25334
25335@item QTinit
25336Clear the table of tracepoints, and empty the trace frame buffer.
25337
25338@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25339Establish the given ranges of memory as ``transparent''. The stub
25340will answer requests for these ranges from memory's current contents,
25341if they were not collected as part of the tracepoint hit.
25342
25343@value{GDBN} uses this to mark read-only regions of memory, like those
25344containing program code. Since these areas never change, they should
25345still have the same contents they did when the tracepoint was hit, so
25346there's no reason for the stub to refuse to provide their contents.
25347
25348@item qTStatus
25349Ask the stub if there is a trace experiment running right now.
25350
25351Replies:
25352@table @samp
25353@item T0
25354There is no trace experiment running.
25355@item T1
25356There is a trace experiment running.
25357@end table
25358
25359@end table
25360
25361
a6b151f1
DJ
25362@node Host I/O Packets
25363@section Host I/O Packets
25364@cindex Host I/O, remote protocol
25365@cindex file transfer, remote protocol
25366
25367The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25368operations on the far side of a remote link. For example, Host I/O is
25369used to upload and download files to a remote target with its own
25370filesystem. Host I/O uses the same constant values and data structure
25371layout as the target-initiated File-I/O protocol. However, the
25372Host I/O packets are structured differently. The target-initiated
25373protocol relies on target memory to store parameters and buffers.
25374Host I/O requests are initiated by @value{GDBN}, and the
25375target's memory is not involved. @xref{File-I/O Remote Protocol
25376Extension}, for more details on the target-initiated protocol.
25377
25378The Host I/O request packets all encode a single operation along with
25379its arguments. They have this format:
25380
25381@table @samp
25382
25383@item vFile:@var{operation}: @var{parameter}@dots{}
25384@var{operation} is the name of the particular request; the target
25385should compare the entire packet name up to the second colon when checking
25386for a supported operation. The format of @var{parameter} depends on
25387the operation. Numbers are always passed in hexadecimal. Negative
25388numbers have an explicit minus sign (i.e.@: two's complement is not
25389used). Strings (e.g.@: filenames) are encoded as a series of
25390hexadecimal bytes. The last argument to a system call may be a
25391buffer of escaped binary data (@pxref{Binary Data}).
25392
25393@end table
25394
25395The valid responses to Host I/O packets are:
25396
25397@table @samp
25398
25399@item F @var{result} [, @var{errno}] [; @var{attachment}]
25400@var{result} is the integer value returned by this operation, usually
25401non-negative for success and -1 for errors. If an error has occured,
25402@var{errno} will be included in the result. @var{errno} will have a
25403value defined by the File-I/O protocol (@pxref{Errno Values}). For
25404operations which return data, @var{attachment} supplies the data as a
25405binary buffer. Binary buffers in response packets are escaped in the
25406normal way (@pxref{Binary Data}). See the individual packet
25407documentation for the interpretation of @var{result} and
25408@var{attachment}.
25409
25410@item
25411An empty response indicates that this operation is not recognized.
25412
25413@end table
25414
25415These are the supported Host I/O operations:
25416
25417@table @samp
25418@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25419Open a file at @var{pathname} and return a file descriptor for it, or
25420return -1 if an error occurs. @var{pathname} is a string,
25421@var{flags} is an integer indicating a mask of open flags
25422(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25423of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25424@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25425
25426@item vFile:close: @var{fd}
25427Close the open file corresponding to @var{fd} and return 0, or
25428-1 if an error occurs.
25429
25430@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25431Read data from the open file corresponding to @var{fd}. Up to
25432@var{count} bytes will be read from the file, starting at @var{offset}
25433relative to the start of the file. The target may read fewer bytes;
25434common reasons include packet size limits and an end-of-file
25435condition. The number of bytes read is returned. Zero should only be
25436returned for a successful read at the end of the file, or if
25437@var{count} was zero.
25438
25439The data read should be returned as a binary attachment on success.
25440If zero bytes were read, the response should include an empty binary
25441attachment (i.e.@: a trailing semicolon). The return value is the
25442number of target bytes read; the binary attachment may be longer if
25443some characters were escaped.
25444
25445@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25446Write @var{data} (a binary buffer) to the open file corresponding
25447to @var{fd}. Start the write at @var{offset} from the start of the
25448file. Unlike many @code{write} system calls, there is no
25449separate @var{count} argument; the length of @var{data} in the
25450packet is used. @samp{vFile:write} returns the number of bytes written,
25451which may be shorter than the length of @var{data}, or -1 if an
25452error occurred.
25453
25454@item vFile:unlink: @var{pathname}
25455Delete the file at @var{pathname} on the target. Return 0,
25456or -1 if an error occurs. @var{pathname} is a string.
25457
25458@end table
25459
9a6253be
KB
25460@node Interrupts
25461@section Interrupts
25462@cindex interrupts (remote protocol)
25463
25464When a program on the remote target is running, @value{GDBN} may
25465attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25466control of which is specified via @value{GDBN}'s @samp{remotebreak}
25467setting (@pxref{set remotebreak}).
25468
25469The precise meaning of @code{BREAK} is defined by the transport
25470mechanism and may, in fact, be undefined. @value{GDBN} does
25471not currently define a @code{BREAK} mechanism for any of the network
25472interfaces.
25473
25474@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25475transport mechanisms. It is represented by sending the single byte
25476@code{0x03} without any of the usual packet overhead described in
25477the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25478transmitted as part of a packet, it is considered to be packet data
25479and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25480(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25481@code{0x03} as part of its packet.
25482
25483Stubs are not required to recognize these interrupt mechanisms and the
25484precise meaning associated with receipt of the interrupt is
25485implementation defined. If the stub is successful at interrupting the
25486running program, it is expected that it will send one of the Stop
25487Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25488of successfully stopping the program. Interrupts received while the
25489program is stopped will be discarded.
25490
ee2d5c50
AC
25491@node Examples
25492@section Examples
eb12ee30 25493
8e04817f
AC
25494Example sequence of a target being re-started. Notice how the restart
25495does not get any direct output:
eb12ee30 25496
474c8240 25497@smallexample
d2c6833e
AC
25498-> @code{R00}
25499<- @code{+}
8e04817f 25500@emph{target restarts}
d2c6833e 25501-> @code{?}
8e04817f 25502<- @code{+}
d2c6833e
AC
25503<- @code{T001:1234123412341234}
25504-> @code{+}
474c8240 25505@end smallexample
eb12ee30 25506
8e04817f 25507Example sequence of a target being stepped by a single instruction:
eb12ee30 25508
474c8240 25509@smallexample
d2c6833e 25510-> @code{G1445@dots{}}
8e04817f 25511<- @code{+}
d2c6833e
AC
25512-> @code{s}
25513<- @code{+}
25514@emph{time passes}
25515<- @code{T001:1234123412341234}
8e04817f 25516-> @code{+}
d2c6833e 25517-> @code{g}
8e04817f 25518<- @code{+}
d2c6833e
AC
25519<- @code{1455@dots{}}
25520-> @code{+}
474c8240 25521@end smallexample
eb12ee30 25522
79a6e687
BW
25523@node File-I/O Remote Protocol Extension
25524@section File-I/O Remote Protocol Extension
0ce1b118
CV
25525@cindex File-I/O remote protocol extension
25526
25527@menu
25528* File-I/O Overview::
79a6e687
BW
25529* Protocol Basics::
25530* The F Request Packet::
25531* The F Reply Packet::
25532* The Ctrl-C Message::
0ce1b118 25533* Console I/O::
79a6e687 25534* List of Supported Calls::
db2e3e2e 25535* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25536* Constants::
25537* File-I/O Examples::
25538@end menu
25539
25540@node File-I/O Overview
25541@subsection File-I/O Overview
25542@cindex file-i/o overview
25543
9c16f35a 25544The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25545target to use the host's file system and console I/O to perform various
0ce1b118 25546system calls. System calls on the target system are translated into a
fc320d37
SL
25547remote protocol packet to the host system, which then performs the needed
25548actions and returns a response packet to the target system.
0ce1b118
CV
25549This simulates file system operations even on targets that lack file systems.
25550
fc320d37
SL
25551The protocol is defined to be independent of both the host and target systems.
25552It uses its own internal representation of datatypes and values. Both
0ce1b118 25553@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25554translating the system-dependent value representations into the internal
25555protocol representations when data is transmitted.
0ce1b118 25556
fc320d37
SL
25557The communication is synchronous. A system call is possible only when
25558@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25559or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25560the target is stopped to allow deterministic access to the target's
fc320d37
SL
25561memory. Therefore File-I/O is not interruptible by target signals. On
25562the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25563(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25564
25565The target's request to perform a host system call does not finish
25566the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25567after finishing the system call, the target returns to continuing the
25568previous activity (continue, step). No additional continue or step
25569request from @value{GDBN} is required.
25570
25571@smallexample
f7dc1244 25572(@value{GDBP}) continue
0ce1b118
CV
25573 <- target requests 'system call X'
25574 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25575 -> @value{GDBN} returns result
25576 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25577 <- target hits breakpoint and sends a Txx packet
25578@end smallexample
25579
fc320d37
SL
25580The protocol only supports I/O on the console and to regular files on
25581the host file system. Character or block special devices, pipes,
25582named pipes, sockets or any other communication method on the host
0ce1b118
CV
25583system are not supported by this protocol.
25584
79a6e687
BW
25585@node Protocol Basics
25586@subsection Protocol Basics
0ce1b118
CV
25587@cindex protocol basics, file-i/o
25588
fc320d37
SL
25589The File-I/O protocol uses the @code{F} packet as the request as well
25590as reply packet. Since a File-I/O system call can only occur when
25591@value{GDBN} is waiting for a response from the continuing or stepping target,
25592the File-I/O request is a reply that @value{GDBN} has to expect as a result
25593of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25594This @code{F} packet contains all information needed to allow @value{GDBN}
25595to call the appropriate host system call:
25596
25597@itemize @bullet
b383017d 25598@item
0ce1b118
CV
25599A unique identifier for the requested system call.
25600
25601@item
25602All parameters to the system call. Pointers are given as addresses
25603in the target memory address space. Pointers to strings are given as
b383017d 25604pointer/length pair. Numerical values are given as they are.
db2e3e2e 25605Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25606
25607@end itemize
25608
fc320d37 25609At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25610
25611@itemize @bullet
b383017d 25612@item
fc320d37
SL
25613If the parameters include pointer values to data needed as input to a
25614system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25615standard @code{m} packet request. This additional communication has to be
25616expected by the target implementation and is handled as any other @code{m}
25617packet.
25618
25619@item
25620@value{GDBN} translates all value from protocol representation to host
25621representation as needed. Datatypes are coerced into the host types.
25622
25623@item
fc320d37 25624@value{GDBN} calls the system call.
0ce1b118
CV
25625
25626@item
25627It then coerces datatypes back to protocol representation.
25628
25629@item
fc320d37
SL
25630If the system call is expected to return data in buffer space specified
25631by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25632target using a @code{M} or @code{X} packet. This packet has to be expected
25633by the target implementation and is handled as any other @code{M} or @code{X}
25634packet.
25635
25636@end itemize
25637
25638Eventually @value{GDBN} replies with another @code{F} packet which contains all
25639necessary information for the target to continue. This at least contains
25640
25641@itemize @bullet
25642@item
25643Return value.
25644
25645@item
25646@code{errno}, if has been changed by the system call.
25647
25648@item
25649``Ctrl-C'' flag.
25650
25651@end itemize
25652
25653After having done the needed type and value coercion, the target continues
25654the latest continue or step action.
25655
79a6e687
BW
25656@node The F Request Packet
25657@subsection The @code{F} Request Packet
0ce1b118
CV
25658@cindex file-i/o request packet
25659@cindex @code{F} request packet
25660
25661The @code{F} request packet has the following format:
25662
25663@table @samp
fc320d37 25664@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25665
25666@var{call-id} is the identifier to indicate the host system call to be called.
25667This is just the name of the function.
25668
fc320d37
SL
25669@var{parameter@dots{}} are the parameters to the system call.
25670Parameters are hexadecimal integer values, either the actual values in case
25671of scalar datatypes, pointers to target buffer space in case of compound
25672datatypes and unspecified memory areas, or pointer/length pairs in case
25673of string parameters. These are appended to the @var{call-id} as a
25674comma-delimited list. All values are transmitted in ASCII
25675string representation, pointer/length pairs separated by a slash.
0ce1b118 25676
b383017d 25677@end table
0ce1b118 25678
fc320d37 25679
0ce1b118 25680
79a6e687
BW
25681@node The F Reply Packet
25682@subsection The @code{F} Reply Packet
0ce1b118
CV
25683@cindex file-i/o reply packet
25684@cindex @code{F} reply packet
25685
25686The @code{F} reply packet has the following format:
25687
25688@table @samp
25689
d3bdde98 25690@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25691
25692@var{retcode} is the return code of the system call as hexadecimal value.
25693
db2e3e2e
BW
25694@var{errno} is the @code{errno} set by the call, in protocol-specific
25695representation.
0ce1b118
CV
25696This parameter can be omitted if the call was successful.
25697
fc320d37
SL
25698@var{Ctrl-C flag} is only sent if the user requested a break. In this
25699case, @var{errno} must be sent as well, even if the call was successful.
25700The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25701
25702@smallexample
25703F0,0,C
25704@end smallexample
25705
25706@noindent
fc320d37 25707or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25708
25709@smallexample
25710F-1,4,C
25711@end smallexample
25712
25713@noindent
db2e3e2e 25714assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25715
25716@end table
25717
0ce1b118 25718
79a6e687
BW
25719@node The Ctrl-C Message
25720@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25721@cindex ctrl-c message, in file-i/o protocol
25722
c8aa23ab 25723If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25724reply packet (@pxref{The F Reply Packet}),
fc320d37 25725the target should behave as if it had
0ce1b118 25726gotten a break message. The meaning for the target is ``system call
fc320d37 25727interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25728(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25729packet.
fc320d37
SL
25730
25731It's important for the target to know in which
25732state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25733
25734@itemize @bullet
25735@item
25736The system call hasn't been performed on the host yet.
25737
25738@item
25739The system call on the host has been finished.
25740
25741@end itemize
25742
25743These two states can be distinguished by the target by the value of the
25744returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25745call hasn't been performed. This is equivalent to the @code{EINTR} handling
25746on POSIX systems. In any other case, the target may presume that the
fc320d37 25747system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25748as if the break message arrived right after the system call.
25749
fc320d37 25750@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25751yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25752@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25753before the user requests a break, the full action must be finished by
25754@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25755The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25756or the full action has been completed.
25757
25758@node Console I/O
25759@subsection Console I/O
25760@cindex console i/o as part of file-i/o
25761
d3e8051b 25762By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25763descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25764on the @value{GDBN} console is handled as any other file output operation
25765(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25766by @value{GDBN} so that after the target read request from file descriptor
257670 all following typing is buffered until either one of the following
25768conditions is met:
25769
25770@itemize @bullet
25771@item
c8aa23ab 25772The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25773@code{read}
25774system call is treated as finished.
25775
25776@item
7f9087cb 25777The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25778newline.
0ce1b118
CV
25779
25780@item
c8aa23ab
EZ
25781The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25782character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25783
25784@end itemize
25785
fc320d37
SL
25786If the user has typed more characters than fit in the buffer given to
25787the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25788either another @code{read(0, @dots{})} is requested by the target, or debugging
25789is stopped at the user's request.
0ce1b118 25790
0ce1b118 25791
79a6e687
BW
25792@node List of Supported Calls
25793@subsection List of Supported Calls
0ce1b118
CV
25794@cindex list of supported file-i/o calls
25795
25796@menu
25797* open::
25798* close::
25799* read::
25800* write::
25801* lseek::
25802* rename::
25803* unlink::
25804* stat/fstat::
25805* gettimeofday::
25806* isatty::
25807* system::
25808@end menu
25809
25810@node open
25811@unnumberedsubsubsec open
25812@cindex open, file-i/o system call
25813
fc320d37
SL
25814@table @asis
25815@item Synopsis:
0ce1b118 25816@smallexample
0ce1b118
CV
25817int open(const char *pathname, int flags);
25818int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25819@end smallexample
25820
fc320d37
SL
25821@item Request:
25822@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25823
0ce1b118 25824@noindent
fc320d37 25825@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25826
25827@table @code
b383017d 25828@item O_CREAT
0ce1b118
CV
25829If the file does not exist it will be created. The host
25830rules apply as far as file ownership and time stamps
25831are concerned.
25832
b383017d 25833@item O_EXCL
fc320d37 25834When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25835an error and open() fails.
25836
b383017d 25837@item O_TRUNC
0ce1b118 25838If the file already exists and the open mode allows
fc320d37
SL
25839writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25840truncated to zero length.
0ce1b118 25841
b383017d 25842@item O_APPEND
0ce1b118
CV
25843The file is opened in append mode.
25844
b383017d 25845@item O_RDONLY
0ce1b118
CV
25846The file is opened for reading only.
25847
b383017d 25848@item O_WRONLY
0ce1b118
CV
25849The file is opened for writing only.
25850
b383017d 25851@item O_RDWR
0ce1b118 25852The file is opened for reading and writing.
fc320d37 25853@end table
0ce1b118
CV
25854
25855@noindent
fc320d37 25856Other bits are silently ignored.
0ce1b118 25857
0ce1b118
CV
25858
25859@noindent
fc320d37 25860@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25861
25862@table @code
b383017d 25863@item S_IRUSR
0ce1b118
CV
25864User has read permission.
25865
b383017d 25866@item S_IWUSR
0ce1b118
CV
25867User has write permission.
25868
b383017d 25869@item S_IRGRP
0ce1b118
CV
25870Group has read permission.
25871
b383017d 25872@item S_IWGRP
0ce1b118
CV
25873Group has write permission.
25874
b383017d 25875@item S_IROTH
0ce1b118
CV
25876Others have read permission.
25877
b383017d 25878@item S_IWOTH
0ce1b118 25879Others have write permission.
fc320d37 25880@end table
0ce1b118
CV
25881
25882@noindent
fc320d37 25883Other bits are silently ignored.
0ce1b118 25884
0ce1b118 25885
fc320d37
SL
25886@item Return value:
25887@code{open} returns the new file descriptor or -1 if an error
25888occurred.
0ce1b118 25889
fc320d37 25890@item Errors:
0ce1b118
CV
25891
25892@table @code
b383017d 25893@item EEXIST
fc320d37 25894@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25895
b383017d 25896@item EISDIR
fc320d37 25897@var{pathname} refers to a directory.
0ce1b118 25898
b383017d 25899@item EACCES
0ce1b118
CV
25900The requested access is not allowed.
25901
25902@item ENAMETOOLONG
fc320d37 25903@var{pathname} was too long.
0ce1b118 25904
b383017d 25905@item ENOENT
fc320d37 25906A directory component in @var{pathname} does not exist.
0ce1b118 25907
b383017d 25908@item ENODEV
fc320d37 25909@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25910
b383017d 25911@item EROFS
fc320d37 25912@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25913write access was requested.
25914
b383017d 25915@item EFAULT
fc320d37 25916@var{pathname} is an invalid pointer value.
0ce1b118 25917
b383017d 25918@item ENOSPC
0ce1b118
CV
25919No space on device to create the file.
25920
b383017d 25921@item EMFILE
0ce1b118
CV
25922The process already has the maximum number of files open.
25923
b383017d 25924@item ENFILE
0ce1b118
CV
25925The limit on the total number of files open on the system
25926has been reached.
25927
b383017d 25928@item EINTR
0ce1b118
CV
25929The call was interrupted by the user.
25930@end table
25931
fc320d37
SL
25932@end table
25933
0ce1b118
CV
25934@node close
25935@unnumberedsubsubsec close
25936@cindex close, file-i/o system call
25937
fc320d37
SL
25938@table @asis
25939@item Synopsis:
0ce1b118 25940@smallexample
0ce1b118 25941int close(int fd);
fc320d37 25942@end smallexample
0ce1b118 25943
fc320d37
SL
25944@item Request:
25945@samp{Fclose,@var{fd}}
0ce1b118 25946
fc320d37
SL
25947@item Return value:
25948@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25949
fc320d37 25950@item Errors:
0ce1b118
CV
25951
25952@table @code
b383017d 25953@item EBADF
fc320d37 25954@var{fd} isn't a valid open file descriptor.
0ce1b118 25955
b383017d 25956@item EINTR
0ce1b118
CV
25957The call was interrupted by the user.
25958@end table
25959
fc320d37
SL
25960@end table
25961
0ce1b118
CV
25962@node read
25963@unnumberedsubsubsec read
25964@cindex read, file-i/o system call
25965
fc320d37
SL
25966@table @asis
25967@item Synopsis:
0ce1b118 25968@smallexample
0ce1b118 25969int read(int fd, void *buf, unsigned int count);
fc320d37 25970@end smallexample
0ce1b118 25971
fc320d37
SL
25972@item Request:
25973@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25974
fc320d37 25975@item Return value:
0ce1b118
CV
25976On success, the number of bytes read is returned.
25977Zero indicates end of file. If count is zero, read
b383017d 25978returns zero as well. On error, -1 is returned.
0ce1b118 25979
fc320d37 25980@item Errors:
0ce1b118
CV
25981
25982@table @code
b383017d 25983@item EBADF
fc320d37 25984@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25985reading.
25986
b383017d 25987@item EFAULT
fc320d37 25988@var{bufptr} is an invalid pointer value.
0ce1b118 25989
b383017d 25990@item EINTR
0ce1b118
CV
25991The call was interrupted by the user.
25992@end table
25993
fc320d37
SL
25994@end table
25995
0ce1b118
CV
25996@node write
25997@unnumberedsubsubsec write
25998@cindex write, file-i/o system call
25999
fc320d37
SL
26000@table @asis
26001@item Synopsis:
0ce1b118 26002@smallexample
0ce1b118 26003int write(int fd, const void *buf, unsigned int count);
fc320d37 26004@end smallexample
0ce1b118 26005
fc320d37
SL
26006@item Request:
26007@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 26008
fc320d37 26009@item Return value:
0ce1b118
CV
26010On success, the number of bytes written are returned.
26011Zero indicates nothing was written. On error, -1
26012is returned.
26013
fc320d37 26014@item Errors:
0ce1b118
CV
26015
26016@table @code
b383017d 26017@item EBADF
fc320d37 26018@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
26019writing.
26020
b383017d 26021@item EFAULT
fc320d37 26022@var{bufptr} is an invalid pointer value.
0ce1b118 26023
b383017d 26024@item EFBIG
0ce1b118 26025An attempt was made to write a file that exceeds the
db2e3e2e 26026host-specific maximum file size allowed.
0ce1b118 26027
b383017d 26028@item ENOSPC
0ce1b118
CV
26029No space on device to write the data.
26030
b383017d 26031@item EINTR
0ce1b118
CV
26032The call was interrupted by the user.
26033@end table
26034
fc320d37
SL
26035@end table
26036
0ce1b118
CV
26037@node lseek
26038@unnumberedsubsubsec lseek
26039@cindex lseek, file-i/o system call
26040
fc320d37
SL
26041@table @asis
26042@item Synopsis:
0ce1b118 26043@smallexample
0ce1b118 26044long lseek (int fd, long offset, int flag);
0ce1b118
CV
26045@end smallexample
26046
fc320d37
SL
26047@item Request:
26048@samp{Flseek,@var{fd},@var{offset},@var{flag}}
26049
26050@var{flag} is one of:
0ce1b118
CV
26051
26052@table @code
b383017d 26053@item SEEK_SET
fc320d37 26054The offset is set to @var{offset} bytes.
0ce1b118 26055
b383017d 26056@item SEEK_CUR
fc320d37 26057The offset is set to its current location plus @var{offset}
0ce1b118
CV
26058bytes.
26059
b383017d 26060@item SEEK_END
fc320d37 26061The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
26062bytes.
26063@end table
26064
fc320d37 26065@item Return value:
0ce1b118
CV
26066On success, the resulting unsigned offset in bytes from
26067the beginning of the file is returned. Otherwise, a
26068value of -1 is returned.
26069
fc320d37 26070@item Errors:
0ce1b118
CV
26071
26072@table @code
b383017d 26073@item EBADF
fc320d37 26074@var{fd} is not a valid open file descriptor.
0ce1b118 26075
b383017d 26076@item ESPIPE
fc320d37 26077@var{fd} is associated with the @value{GDBN} console.
0ce1b118 26078
b383017d 26079@item EINVAL
fc320d37 26080@var{flag} is not a proper value.
0ce1b118 26081
b383017d 26082@item EINTR
0ce1b118
CV
26083The call was interrupted by the user.
26084@end table
26085
fc320d37
SL
26086@end table
26087
0ce1b118
CV
26088@node rename
26089@unnumberedsubsubsec rename
26090@cindex rename, file-i/o system call
26091
fc320d37
SL
26092@table @asis
26093@item Synopsis:
0ce1b118 26094@smallexample
0ce1b118 26095int rename(const char *oldpath, const char *newpath);
fc320d37 26096@end smallexample
0ce1b118 26097
fc320d37
SL
26098@item Request:
26099@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 26100
fc320d37 26101@item Return value:
0ce1b118
CV
26102On success, zero is returned. On error, -1 is returned.
26103
fc320d37 26104@item Errors:
0ce1b118
CV
26105
26106@table @code
b383017d 26107@item EISDIR
fc320d37 26108@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
26109directory.
26110
b383017d 26111@item EEXIST
fc320d37 26112@var{newpath} is a non-empty directory.
0ce1b118 26113
b383017d 26114@item EBUSY
fc320d37 26115@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
26116process.
26117
b383017d 26118@item EINVAL
0ce1b118
CV
26119An attempt was made to make a directory a subdirectory
26120of itself.
26121
b383017d 26122@item ENOTDIR
fc320d37
SL
26123A component used as a directory in @var{oldpath} or new
26124path is not a directory. Or @var{oldpath} is a directory
26125and @var{newpath} exists but is not a directory.
0ce1b118 26126
b383017d 26127@item EFAULT
fc320d37 26128@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 26129
b383017d 26130@item EACCES
0ce1b118
CV
26131No access to the file or the path of the file.
26132
26133@item ENAMETOOLONG
b383017d 26134
fc320d37 26135@var{oldpath} or @var{newpath} was too long.
0ce1b118 26136
b383017d 26137@item ENOENT
fc320d37 26138A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 26139
b383017d 26140@item EROFS
0ce1b118
CV
26141The file is on a read-only filesystem.
26142
b383017d 26143@item ENOSPC
0ce1b118
CV
26144The device containing the file has no room for the new
26145directory entry.
26146
b383017d 26147@item EINTR
0ce1b118
CV
26148The call was interrupted by the user.
26149@end table
26150
fc320d37
SL
26151@end table
26152
0ce1b118
CV
26153@node unlink
26154@unnumberedsubsubsec unlink
26155@cindex unlink, file-i/o system call
26156
fc320d37
SL
26157@table @asis
26158@item Synopsis:
0ce1b118 26159@smallexample
0ce1b118 26160int unlink(const char *pathname);
fc320d37 26161@end smallexample
0ce1b118 26162
fc320d37
SL
26163@item Request:
26164@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 26165
fc320d37 26166@item Return value:
0ce1b118
CV
26167On success, zero is returned. On error, -1 is returned.
26168
fc320d37 26169@item Errors:
0ce1b118
CV
26170
26171@table @code
b383017d 26172@item EACCES
0ce1b118
CV
26173No access to the file or the path of the file.
26174
b383017d 26175@item EPERM
0ce1b118
CV
26176The system does not allow unlinking of directories.
26177
b383017d 26178@item EBUSY
fc320d37 26179The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
26180being used by another process.
26181
b383017d 26182@item EFAULT
fc320d37 26183@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
26184
26185@item ENAMETOOLONG
fc320d37 26186@var{pathname} was too long.
0ce1b118 26187
b383017d 26188@item ENOENT
fc320d37 26189A directory component in @var{pathname} does not exist.
0ce1b118 26190
b383017d 26191@item ENOTDIR
0ce1b118
CV
26192A component of the path is not a directory.
26193
b383017d 26194@item EROFS
0ce1b118
CV
26195The file is on a read-only filesystem.
26196
b383017d 26197@item EINTR
0ce1b118
CV
26198The call was interrupted by the user.
26199@end table
26200
fc320d37
SL
26201@end table
26202
0ce1b118
CV
26203@node stat/fstat
26204@unnumberedsubsubsec stat/fstat
26205@cindex fstat, file-i/o system call
26206@cindex stat, file-i/o system call
26207
fc320d37
SL
26208@table @asis
26209@item Synopsis:
0ce1b118 26210@smallexample
0ce1b118
CV
26211int stat(const char *pathname, struct stat *buf);
26212int fstat(int fd, struct stat *buf);
fc320d37 26213@end smallexample
0ce1b118 26214
fc320d37
SL
26215@item Request:
26216@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
26217@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 26218
fc320d37 26219@item Return value:
0ce1b118
CV
26220On success, zero is returned. On error, -1 is returned.
26221
fc320d37 26222@item Errors:
0ce1b118
CV
26223
26224@table @code
b383017d 26225@item EBADF
fc320d37 26226@var{fd} is not a valid open file.
0ce1b118 26227
b383017d 26228@item ENOENT
fc320d37 26229A directory component in @var{pathname} does not exist or the
0ce1b118
CV
26230path is an empty string.
26231
b383017d 26232@item ENOTDIR
0ce1b118
CV
26233A component of the path is not a directory.
26234
b383017d 26235@item EFAULT
fc320d37 26236@var{pathnameptr} is an invalid pointer value.
0ce1b118 26237
b383017d 26238@item EACCES
0ce1b118
CV
26239No access to the file or the path of the file.
26240
26241@item ENAMETOOLONG
fc320d37 26242@var{pathname} was too long.
0ce1b118 26243
b383017d 26244@item EINTR
0ce1b118
CV
26245The call was interrupted by the user.
26246@end table
26247
fc320d37
SL
26248@end table
26249
0ce1b118
CV
26250@node gettimeofday
26251@unnumberedsubsubsec gettimeofday
26252@cindex gettimeofday, file-i/o system call
26253
fc320d37
SL
26254@table @asis
26255@item Synopsis:
0ce1b118 26256@smallexample
0ce1b118 26257int gettimeofday(struct timeval *tv, void *tz);
fc320d37 26258@end smallexample
0ce1b118 26259
fc320d37
SL
26260@item Request:
26261@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 26262
fc320d37 26263@item Return value:
0ce1b118
CV
26264On success, 0 is returned, -1 otherwise.
26265
fc320d37 26266@item Errors:
0ce1b118
CV
26267
26268@table @code
b383017d 26269@item EINVAL
fc320d37 26270@var{tz} is a non-NULL pointer.
0ce1b118 26271
b383017d 26272@item EFAULT
fc320d37
SL
26273@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26274@end table
26275
0ce1b118
CV
26276@end table
26277
26278@node isatty
26279@unnumberedsubsubsec isatty
26280@cindex isatty, file-i/o system call
26281
fc320d37
SL
26282@table @asis
26283@item Synopsis:
0ce1b118 26284@smallexample
0ce1b118 26285int isatty(int fd);
fc320d37 26286@end smallexample
0ce1b118 26287
fc320d37
SL
26288@item Request:
26289@samp{Fisatty,@var{fd}}
0ce1b118 26290
fc320d37
SL
26291@item Return value:
26292Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26293
fc320d37 26294@item Errors:
0ce1b118
CV
26295
26296@table @code
b383017d 26297@item EINTR
0ce1b118
CV
26298The call was interrupted by the user.
26299@end table
26300
fc320d37
SL
26301@end table
26302
26303Note that the @code{isatty} call is treated as a special case: it returns
263041 to the target if the file descriptor is attached
26305to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26306would require implementing @code{ioctl} and would be more complex than
26307needed.
26308
26309
0ce1b118
CV
26310@node system
26311@unnumberedsubsubsec system
26312@cindex system, file-i/o system call
26313
fc320d37
SL
26314@table @asis
26315@item Synopsis:
0ce1b118 26316@smallexample
0ce1b118 26317int system(const char *command);
fc320d37 26318@end smallexample
0ce1b118 26319
fc320d37
SL
26320@item Request:
26321@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26322
fc320d37 26323@item Return value:
5600ea19
NS
26324If @var{len} is zero, the return value indicates whether a shell is
26325available. A zero return value indicates a shell is not available.
26326For non-zero @var{len}, the value returned is -1 on error and the
26327return status of the command otherwise. Only the exit status of the
26328command is returned, which is extracted from the host's @code{system}
26329return value by calling @code{WEXITSTATUS(retval)}. In case
26330@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26331
fc320d37 26332@item Errors:
0ce1b118
CV
26333
26334@table @code
b383017d 26335@item EINTR
0ce1b118
CV
26336The call was interrupted by the user.
26337@end table
26338
fc320d37
SL
26339@end table
26340
26341@value{GDBN} takes over the full task of calling the necessary host calls
26342to perform the @code{system} call. The return value of @code{system} on
26343the host is simplified before it's returned
26344to the target. Any termination signal information from the child process
26345is discarded, and the return value consists
26346entirely of the exit status of the called command.
26347
26348Due to security concerns, the @code{system} call is by default refused
26349by @value{GDBN}. The user has to allow this call explicitly with the
26350@code{set remote system-call-allowed 1} command.
26351
26352@table @code
26353@item set remote system-call-allowed
26354@kindex set remote system-call-allowed
26355Control whether to allow the @code{system} calls in the File I/O
26356protocol for the remote target. The default is zero (disabled).
26357
26358@item show remote system-call-allowed
26359@kindex show remote system-call-allowed
26360Show whether the @code{system} calls are allowed in the File I/O
26361protocol.
26362@end table
26363
db2e3e2e
BW
26364@node Protocol-specific Representation of Datatypes
26365@subsection Protocol-specific Representation of Datatypes
26366@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26367
26368@menu
79a6e687
BW
26369* Integral Datatypes::
26370* Pointer Values::
26371* Memory Transfer::
0ce1b118
CV
26372* struct stat::
26373* struct timeval::
26374@end menu
26375
79a6e687
BW
26376@node Integral Datatypes
26377@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26378@cindex integral datatypes, in file-i/o protocol
26379
fc320d37
SL
26380The integral datatypes used in the system calls are @code{int},
26381@code{unsigned int}, @code{long}, @code{unsigned long},
26382@code{mode_t}, and @code{time_t}.
0ce1b118 26383
fc320d37 26384@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26385implemented as 32 bit values in this protocol.
26386
fc320d37 26387@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26388
0ce1b118
CV
26389@xref{Limits}, for corresponding MIN and MAX values (similar to those
26390in @file{limits.h}) to allow range checking on host and target.
26391
26392@code{time_t} datatypes are defined as seconds since the Epoch.
26393
26394All integral datatypes transferred as part of a memory read or write of a
26395structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26396byte order.
26397
79a6e687
BW
26398@node Pointer Values
26399@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26400@cindex pointer values, in file-i/o protocol
26401
26402Pointers to target data are transmitted as they are. An exception
26403is made for pointers to buffers for which the length isn't
26404transmitted as part of the function call, namely strings. Strings
26405are transmitted as a pointer/length pair, both as hex values, e.g.@:
26406
26407@smallexample
26408@code{1aaf/12}
26409@end smallexample
26410
26411@noindent
26412which is a pointer to data of length 18 bytes at position 0x1aaf.
26413The length is defined as the full string length in bytes, including
fc320d37
SL
26414the trailing null byte. For example, the string @code{"hello world"}
26415at address 0x123456 is transmitted as
0ce1b118
CV
26416
26417@smallexample
fc320d37 26418@code{123456/d}
0ce1b118
CV
26419@end smallexample
26420
79a6e687
BW
26421@node Memory Transfer
26422@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26423@cindex memory transfer, in file-i/o protocol
26424
26425Structured data which is transferred using a memory read or write (for
db2e3e2e 26426example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26427with all scalar multibyte datatypes being big endian. Translation to
26428this representation needs to be done both by the target before the @code{F}
26429packet is sent, and by @value{GDBN} before
26430it transfers memory to the target. Transferred pointers to structured
26431data should point to the already-coerced data at any time.
0ce1b118 26432
0ce1b118
CV
26433
26434@node struct stat
26435@unnumberedsubsubsec struct stat
26436@cindex struct stat, in file-i/o protocol
26437
fc320d37
SL
26438The buffer of type @code{struct stat} used by the target and @value{GDBN}
26439is defined as follows:
0ce1b118
CV
26440
26441@smallexample
26442struct stat @{
26443 unsigned int st_dev; /* device */
26444 unsigned int st_ino; /* inode */
26445 mode_t st_mode; /* protection */
26446 unsigned int st_nlink; /* number of hard links */
26447 unsigned int st_uid; /* user ID of owner */
26448 unsigned int st_gid; /* group ID of owner */
26449 unsigned int st_rdev; /* device type (if inode device) */
26450 unsigned long st_size; /* total size, in bytes */
26451 unsigned long st_blksize; /* blocksize for filesystem I/O */
26452 unsigned long st_blocks; /* number of blocks allocated */
26453 time_t st_atime; /* time of last access */
26454 time_t st_mtime; /* time of last modification */
26455 time_t st_ctime; /* time of last change */
26456@};
26457@end smallexample
26458
fc320d37 26459The integral datatypes conform to the definitions given in the
79a6e687 26460appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26461structure is of size 64 bytes.
26462
26463The values of several fields have a restricted meaning and/or
26464range of values.
26465
fc320d37 26466@table @code
0ce1b118 26467
fc320d37
SL
26468@item st_dev
26469A value of 0 represents a file, 1 the console.
0ce1b118 26470
fc320d37
SL
26471@item st_ino
26472No valid meaning for the target. Transmitted unchanged.
0ce1b118 26473
fc320d37
SL
26474@item st_mode
26475Valid mode bits are described in @ref{Constants}. Any other
26476bits have currently no meaning for the target.
0ce1b118 26477
fc320d37
SL
26478@item st_uid
26479@itemx st_gid
26480@itemx st_rdev
26481No valid meaning for the target. Transmitted unchanged.
0ce1b118 26482
fc320d37
SL
26483@item st_atime
26484@itemx st_mtime
26485@itemx st_ctime
26486These values have a host and file system dependent
26487accuracy. Especially on Windows hosts, the file system may not
26488support exact timing values.
26489@end table
0ce1b118 26490
fc320d37
SL
26491The target gets a @code{struct stat} of the above representation and is
26492responsible for coercing it to the target representation before
0ce1b118
CV
26493continuing.
26494
fc320d37
SL
26495Note that due to size differences between the host, target, and protocol
26496representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26497get truncated on the target.
26498
26499@node struct timeval
26500@unnumberedsubsubsec struct timeval
26501@cindex struct timeval, in file-i/o protocol
26502
fc320d37 26503The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26504is defined as follows:
26505
26506@smallexample
b383017d 26507struct timeval @{
0ce1b118
CV
26508 time_t tv_sec; /* second */
26509 long tv_usec; /* microsecond */
26510@};
26511@end smallexample
26512
fc320d37 26513The integral datatypes conform to the definitions given in the
79a6e687 26514appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26515structure is of size 8 bytes.
26516
26517@node Constants
26518@subsection Constants
26519@cindex constants, in file-i/o protocol
26520
26521The following values are used for the constants inside of the
fc320d37 26522protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26523values before and after the call as needed.
26524
26525@menu
79a6e687
BW
26526* Open Flags::
26527* mode_t Values::
26528* Errno Values::
26529* Lseek Flags::
0ce1b118
CV
26530* Limits::
26531@end menu
26532
79a6e687
BW
26533@node Open Flags
26534@unnumberedsubsubsec Open Flags
0ce1b118
CV
26535@cindex open flags, in file-i/o protocol
26536
26537All values are given in hexadecimal representation.
26538
26539@smallexample
26540 O_RDONLY 0x0
26541 O_WRONLY 0x1
26542 O_RDWR 0x2
26543 O_APPEND 0x8
26544 O_CREAT 0x200
26545 O_TRUNC 0x400
26546 O_EXCL 0x800
26547@end smallexample
26548
79a6e687
BW
26549@node mode_t Values
26550@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26551@cindex mode_t values, in file-i/o protocol
26552
26553All values are given in octal representation.
26554
26555@smallexample
26556 S_IFREG 0100000
26557 S_IFDIR 040000
26558 S_IRUSR 0400
26559 S_IWUSR 0200
26560 S_IXUSR 0100
26561 S_IRGRP 040
26562 S_IWGRP 020
26563 S_IXGRP 010
26564 S_IROTH 04
26565 S_IWOTH 02
26566 S_IXOTH 01
26567@end smallexample
26568
79a6e687
BW
26569@node Errno Values
26570@unnumberedsubsubsec Errno Values
0ce1b118
CV
26571@cindex errno values, in file-i/o protocol
26572
26573All values are given in decimal representation.
26574
26575@smallexample
26576 EPERM 1
26577 ENOENT 2
26578 EINTR 4
26579 EBADF 9
26580 EACCES 13
26581 EFAULT 14
26582 EBUSY 16
26583 EEXIST 17
26584 ENODEV 19
26585 ENOTDIR 20
26586 EISDIR 21
26587 EINVAL 22
26588 ENFILE 23
26589 EMFILE 24
26590 EFBIG 27
26591 ENOSPC 28
26592 ESPIPE 29
26593 EROFS 30
26594 ENAMETOOLONG 91
26595 EUNKNOWN 9999
26596@end smallexample
26597
fc320d37 26598 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26599 any error value not in the list of supported error numbers.
26600
79a6e687
BW
26601@node Lseek Flags
26602@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26603@cindex lseek flags, in file-i/o protocol
26604
26605@smallexample
26606 SEEK_SET 0
26607 SEEK_CUR 1
26608 SEEK_END 2
26609@end smallexample
26610
26611@node Limits
26612@unnumberedsubsubsec Limits
26613@cindex limits, in file-i/o protocol
26614
26615All values are given in decimal representation.
26616
26617@smallexample
26618 INT_MIN -2147483648
26619 INT_MAX 2147483647
26620 UINT_MAX 4294967295
26621 LONG_MIN -9223372036854775808
26622 LONG_MAX 9223372036854775807
26623 ULONG_MAX 18446744073709551615
26624@end smallexample
26625
26626@node File-I/O Examples
26627@subsection File-I/O Examples
26628@cindex file-i/o examples
26629
26630Example sequence of a write call, file descriptor 3, buffer is at target
26631address 0x1234, 6 bytes should be written:
26632
26633@smallexample
26634<- @code{Fwrite,3,1234,6}
26635@emph{request memory read from target}
26636-> @code{m1234,6}
26637<- XXXXXX
26638@emph{return "6 bytes written"}
26639-> @code{F6}
26640@end smallexample
26641
26642Example sequence of a read call, file descriptor 3, buffer is at target
26643address 0x1234, 6 bytes should be read:
26644
26645@smallexample
26646<- @code{Fread,3,1234,6}
26647@emph{request memory write to target}
26648-> @code{X1234,6:XXXXXX}
26649@emph{return "6 bytes read"}
26650-> @code{F6}
26651@end smallexample
26652
26653Example sequence of a read call, call fails on the host due to invalid
fc320d37 26654file descriptor (@code{EBADF}):
0ce1b118
CV
26655
26656@smallexample
26657<- @code{Fread,3,1234,6}
26658-> @code{F-1,9}
26659@end smallexample
26660
c8aa23ab 26661Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26662host is called:
26663
26664@smallexample
26665<- @code{Fread,3,1234,6}
26666-> @code{F-1,4,C}
26667<- @code{T02}
26668@end smallexample
26669
c8aa23ab 26670Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26671host is called:
26672
26673@smallexample
26674<- @code{Fread,3,1234,6}
26675-> @code{X1234,6:XXXXXX}
26676<- @code{T02}
26677@end smallexample
26678
cfa9d6d9
DJ
26679@node Library List Format
26680@section Library List Format
26681@cindex library list format, remote protocol
26682
26683On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26684same process as your application to manage libraries. In this case,
26685@value{GDBN} can use the loader's symbol table and normal memory
26686operations to maintain a list of shared libraries. On other
26687platforms, the operating system manages loaded libraries.
26688@value{GDBN} can not retrieve the list of currently loaded libraries
26689through memory operations, so it uses the @samp{qXfer:libraries:read}
26690packet (@pxref{qXfer library list read}) instead. The remote stub
26691queries the target's operating system and reports which libraries
26692are loaded.
26693
26694The @samp{qXfer:libraries:read} packet returns an XML document which
26695lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26696associated name and one or more segment or section base addresses,
26697which report where the library was loaded in memory.
26698
26699For the common case of libraries that are fully linked binaries, the
26700library should have a list of segments. If the target supports
26701dynamic linking of a relocatable object file, its library XML element
26702should instead include a list of allocated sections. The segment or
26703section bases are start addresses, not relocation offsets; they do not
26704depend on the library's link-time base addresses.
cfa9d6d9 26705
9cceb671
DJ
26706@value{GDBN} must be linked with the Expat library to support XML
26707library lists. @xref{Expat}.
26708
cfa9d6d9
DJ
26709A simple memory map, with one loaded library relocated by a single
26710offset, looks like this:
26711
26712@smallexample
26713<library-list>
26714 <library name="/lib/libc.so.6">
26715 <segment address="0x10000000"/>
26716 </library>
26717</library-list>
26718@end smallexample
26719
1fddbabb
PA
26720Another simple memory map, with one loaded library with three
26721allocated sections (.text, .data, .bss), looks like this:
26722
26723@smallexample
26724<library-list>
26725 <library name="sharedlib.o">
26726 <section address="0x10000000"/>
26727 <section address="0x20000000"/>
26728 <section address="0x30000000"/>
26729 </library>
26730</library-list>
26731@end smallexample
26732
cfa9d6d9
DJ
26733The format of a library list is described by this DTD:
26734
26735@smallexample
26736<!-- library-list: Root element with versioning -->
26737<!ELEMENT library-list (library)*>
26738<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26739<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26740<!ATTLIST library name CDATA #REQUIRED>
26741<!ELEMENT segment EMPTY>
26742<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26743<!ELEMENT section EMPTY>
26744<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26745@end smallexample
26746
1fddbabb
PA
26747In addition, segments and section descriptors cannot be mixed within a
26748single library element, and you must supply at least one segment or
26749section for each library.
26750
79a6e687
BW
26751@node Memory Map Format
26752@section Memory Map Format
68437a39
DJ
26753@cindex memory map format
26754
26755To be able to write into flash memory, @value{GDBN} needs to obtain a
26756memory map from the target. This section describes the format of the
26757memory map.
26758
26759The memory map is obtained using the @samp{qXfer:memory-map:read}
26760(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26761lists memory regions.
26762
26763@value{GDBN} must be linked with the Expat library to support XML
26764memory maps. @xref{Expat}.
26765
26766The top-level structure of the document is shown below:
68437a39
DJ
26767
26768@smallexample
26769<?xml version="1.0"?>
26770<!DOCTYPE memory-map
26771 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26772 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26773<memory-map>
26774 region...
26775</memory-map>
26776@end smallexample
26777
26778Each region can be either:
26779
26780@itemize
26781
26782@item
26783A region of RAM starting at @var{addr} and extending for @var{length}
26784bytes from there:
26785
26786@smallexample
26787<memory type="ram" start="@var{addr}" length="@var{length}"/>
26788@end smallexample
26789
26790
26791@item
26792A region of read-only memory:
26793
26794@smallexample
26795<memory type="rom" start="@var{addr}" length="@var{length}"/>
26796@end smallexample
26797
26798
26799@item
26800A region of flash memory, with erasure blocks @var{blocksize}
26801bytes in length:
26802
26803@smallexample
26804<memory type="flash" start="@var{addr}" length="@var{length}">
26805 <property name="blocksize">@var{blocksize}</property>
26806</memory>
26807@end smallexample
26808
26809@end itemize
26810
26811Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26812by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26813packets to write to addresses in such ranges.
26814
26815The formal DTD for memory map format is given below:
26816
26817@smallexample
26818<!-- ................................................... -->
26819<!-- Memory Map XML DTD ................................ -->
26820<!-- File: memory-map.dtd .............................. -->
26821<!-- .................................... .............. -->
26822<!-- memory-map.dtd -->
26823<!-- memory-map: Root element with versioning -->
26824<!ELEMENT memory-map (memory | property)>
26825<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26826<!ELEMENT memory (property)>
26827<!-- memory: Specifies a memory region,
26828 and its type, or device. -->
26829<!ATTLIST memory type CDATA #REQUIRED
26830 start CDATA #REQUIRED
26831 length CDATA #REQUIRED
26832 device CDATA #IMPLIED>
26833<!-- property: Generic attribute tag -->
26834<!ELEMENT property (#PCDATA | property)*>
26835<!ATTLIST property name CDATA #REQUIRED>
26836@end smallexample
26837
f418dd93
DJ
26838@include agentexpr.texi
26839
23181151
DJ
26840@node Target Descriptions
26841@appendix Target Descriptions
26842@cindex target descriptions
26843
26844@strong{Warning:} target descriptions are still under active development,
26845and the contents and format may change between @value{GDBN} releases.
26846The format is expected to stabilize in the future.
26847
26848One of the challenges of using @value{GDBN} to debug embedded systems
26849is that there are so many minor variants of each processor
26850architecture in use. It is common practice for vendors to start with
26851a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26852and then make changes to adapt it to a particular market niche. Some
26853architectures have hundreds of variants, available from dozens of
26854vendors. This leads to a number of problems:
26855
26856@itemize @bullet
26857@item
26858With so many different customized processors, it is difficult for
26859the @value{GDBN} maintainers to keep up with the changes.
26860@item
26861Since individual variants may have short lifetimes or limited
26862audiences, it may not be worthwhile to carry information about every
26863variant in the @value{GDBN} source tree.
26864@item
26865When @value{GDBN} does support the architecture of the embedded system
26866at hand, the task of finding the correct architecture name to give the
26867@command{set architecture} command can be error-prone.
26868@end itemize
26869
26870To address these problems, the @value{GDBN} remote protocol allows a
26871target system to not only identify itself to @value{GDBN}, but to
26872actually describe its own features. This lets @value{GDBN} support
26873processor variants it has never seen before --- to the extent that the
26874descriptions are accurate, and that @value{GDBN} understands them.
26875
9cceb671
DJ
26876@value{GDBN} must be linked with the Expat library to support XML
26877target descriptions. @xref{Expat}.
123dc839 26878
23181151
DJ
26879@menu
26880* Retrieving Descriptions:: How descriptions are fetched from a target.
26881* Target Description Format:: The contents of a target description.
123dc839
DJ
26882* Predefined Target Types:: Standard types available for target
26883 descriptions.
26884* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26885@end menu
26886
26887@node Retrieving Descriptions
26888@section Retrieving Descriptions
26889
26890Target descriptions can be read from the target automatically, or
26891specified by the user manually. The default behavior is to read the
26892description from the target. @value{GDBN} retrieves it via the remote
26893protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26894qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26895@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26896XML document, of the form described in @ref{Target Description
26897Format}.
26898
26899Alternatively, you can specify a file to read for the target description.
26900If a file is set, the target will not be queried. The commands to
26901specify a file are:
26902
26903@table @code
26904@cindex set tdesc filename
26905@item set tdesc filename @var{path}
26906Read the target description from @var{path}.
26907
26908@cindex unset tdesc filename
26909@item unset tdesc filename
26910Do not read the XML target description from a file. @value{GDBN}
26911will use the description supplied by the current target.
26912
26913@cindex show tdesc filename
26914@item show tdesc filename
26915Show the filename to read for a target description, if any.
26916@end table
26917
26918
26919@node Target Description Format
26920@section Target Description Format
26921@cindex target descriptions, XML format
26922
26923A target description annex is an @uref{http://www.w3.org/XML/, XML}
26924document which complies with the Document Type Definition provided in
26925the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26926means you can use generally available tools like @command{xmllint} to
26927check that your feature descriptions are well-formed and valid.
26928However, to help people unfamiliar with XML write descriptions for
26929their targets, we also describe the grammar here.
26930
123dc839
DJ
26931Target descriptions can identify the architecture of the remote target
26932and (for some architectures) provide information about custom register
26933sets. @value{GDBN} can use this information to autoconfigure for your
26934target, or to warn you if you connect to an unsupported target.
23181151
DJ
26935
26936Here is a simple target description:
26937
123dc839 26938@smallexample
1780a0ed 26939<target version="1.0">
23181151
DJ
26940 <architecture>i386:x86-64</architecture>
26941</target>
123dc839 26942@end smallexample
23181151
DJ
26943
26944@noindent
26945This minimal description only says that the target uses
26946the x86-64 architecture.
26947
123dc839
DJ
26948A target description has the following overall form, with [ ] marking
26949optional elements and @dots{} marking repeatable elements. The elements
26950are explained further below.
23181151 26951
123dc839 26952@smallexample
23181151
DJ
26953<?xml version="1.0"?>
26954<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26955<target version="1.0">
123dc839
DJ
26956 @r{[}@var{architecture}@r{]}
26957 @r{[}@var{feature}@dots{}@r{]}
23181151 26958</target>
123dc839 26959@end smallexample
23181151
DJ
26960
26961@noindent
26962The description is generally insensitive to whitespace and line
26963breaks, under the usual common-sense rules. The XML version
26964declaration and document type declaration can generally be omitted
26965(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26966useful for XML validation tools. The @samp{version} attribute for
26967@samp{<target>} may also be omitted, but we recommend
26968including it; if future versions of @value{GDBN} use an incompatible
26969revision of @file{gdb-target.dtd}, they will detect and report
26970the version mismatch.
23181151 26971
108546a0
DJ
26972@subsection Inclusion
26973@cindex target descriptions, inclusion
26974@cindex XInclude
26975@ifnotinfo
26976@cindex <xi:include>
26977@end ifnotinfo
26978
26979It can sometimes be valuable to split a target description up into
26980several different annexes, either for organizational purposes, or to
26981share files between different possible target descriptions. You can
26982divide a description into multiple files by replacing any element of
26983the target description with an inclusion directive of the form:
26984
123dc839 26985@smallexample
108546a0 26986<xi:include href="@var{document}"/>
123dc839 26987@end smallexample
108546a0
DJ
26988
26989@noindent
26990When @value{GDBN} encounters an element of this form, it will retrieve
26991the named XML @var{document}, and replace the inclusion directive with
26992the contents of that document. If the current description was read
26993using @samp{qXfer}, then so will be the included document;
26994@var{document} will be interpreted as the name of an annex. If the
26995current description was read from a file, @value{GDBN} will look for
26996@var{document} as a file in the same directory where it found the
26997original description.
26998
123dc839
DJ
26999@subsection Architecture
27000@cindex <architecture>
27001
27002An @samp{<architecture>} element has this form:
27003
27004@smallexample
27005 <architecture>@var{arch}</architecture>
27006@end smallexample
27007
27008@var{arch} is an architecture name from the same selection
27009accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
27010Debugging Target}).
27011
27012@subsection Features
27013@cindex <feature>
27014
27015Each @samp{<feature>} describes some logical portion of the target
27016system. Features are currently used to describe available CPU
27017registers and the types of their contents. A @samp{<feature>} element
27018has this form:
27019
27020@smallexample
27021<feature name="@var{name}">
27022 @r{[}@var{type}@dots{}@r{]}
27023 @var{reg}@dots{}
27024</feature>
27025@end smallexample
27026
27027@noindent
27028Each feature's name should be unique within the description. The name
27029of a feature does not matter unless @value{GDBN} has some special
27030knowledge of the contents of that feature; if it does, the feature
27031should have its standard name. @xref{Standard Target Features}.
27032
27033@subsection Types
27034
27035Any register's value is a collection of bits which @value{GDBN} must
27036interpret. The default interpretation is a two's complement integer,
27037but other types can be requested by name in the register description.
27038Some predefined types are provided by @value{GDBN} (@pxref{Predefined
27039Target Types}), and the description can define additional composite types.
27040
27041Each type element must have an @samp{id} attribute, which gives
27042a unique (within the containing @samp{<feature>}) name to the type.
27043Types must be defined before they are used.
27044
27045@cindex <vector>
27046Some targets offer vector registers, which can be treated as arrays
27047of scalar elements. These types are written as @samp{<vector>} elements,
27048specifying the array element type, @var{type}, and the number of elements,
27049@var{count}:
27050
27051@smallexample
27052<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
27053@end smallexample
27054
27055@cindex <union>
27056If a register's value is usefully viewed in multiple ways, define it
27057with a union type containing the useful representations. The
27058@samp{<union>} element contains one or more @samp{<field>} elements,
27059each of which has a @var{name} and a @var{type}:
27060
27061@smallexample
27062<union id="@var{id}">
27063 <field name="@var{name}" type="@var{type}"/>
27064 @dots{}
27065</union>
27066@end smallexample
27067
27068@subsection Registers
27069@cindex <reg>
27070
27071Each register is represented as an element with this form:
27072
27073@smallexample
27074<reg name="@var{name}"
27075 bitsize="@var{size}"
27076 @r{[}regnum="@var{num}"@r{]}
27077 @r{[}save-restore="@var{save-restore}"@r{]}
27078 @r{[}type="@var{type}"@r{]}
27079 @r{[}group="@var{group}"@r{]}/>
27080@end smallexample
27081
27082@noindent
27083The components are as follows:
27084
27085@table @var
27086
27087@item name
27088The register's name; it must be unique within the target description.
27089
27090@item bitsize
27091The register's size, in bits.
27092
27093@item regnum
27094The register's number. If omitted, a register's number is one greater
27095than that of the previous register (either in the current feature or in
27096a preceeding feature); the first register in the target description
27097defaults to zero. This register number is used to read or write
27098the register; e.g.@: it is used in the remote @code{p} and @code{P}
27099packets, and registers appear in the @code{g} and @code{G} packets
27100in order of increasing register number.
27101
27102@item save-restore
27103Whether the register should be preserved across inferior function
27104calls; this must be either @code{yes} or @code{no}. The default is
27105@code{yes}, which is appropriate for most registers except for
27106some system control registers; this is not related to the target's
27107ABI.
27108
27109@item type
27110The type of the register. @var{type} may be a predefined type, a type
27111defined in the current feature, or one of the special types @code{int}
27112and @code{float}. @code{int} is an integer type of the correct size
27113for @var{bitsize}, and @code{float} is a floating point type (in the
27114architecture's normal floating point format) of the correct size for
27115@var{bitsize}. The default is @code{int}.
27116
27117@item group
27118The register group to which this register belongs. @var{group} must
27119be either @code{general}, @code{float}, or @code{vector}. If no
27120@var{group} is specified, @value{GDBN} will not display the register
27121in @code{info registers}.
27122
27123@end table
27124
27125@node Predefined Target Types
27126@section Predefined Target Types
27127@cindex target descriptions, predefined types
27128
27129Type definitions in the self-description can build up composite types
27130from basic building blocks, but can not define fundamental types. Instead,
27131standard identifiers are provided by @value{GDBN} for the fundamental
27132types. The currently supported types are:
27133
27134@table @code
27135
27136@item int8
27137@itemx int16
27138@itemx int32
27139@itemx int64
7cc46491 27140@itemx int128
123dc839
DJ
27141Signed integer types holding the specified number of bits.
27142
27143@item uint8
27144@itemx uint16
27145@itemx uint32
27146@itemx uint64
7cc46491 27147@itemx uint128
123dc839
DJ
27148Unsigned integer types holding the specified number of bits.
27149
27150@item code_ptr
27151@itemx data_ptr
27152Pointers to unspecified code and data. The program counter and
27153any dedicated return address register may be marked as code
27154pointers; printing a code pointer converts it into a symbolic
27155address. The stack pointer and any dedicated address registers
27156may be marked as data pointers.
27157
6e3bbd1a
PB
27158@item ieee_single
27159Single precision IEEE floating point.
27160
27161@item ieee_double
27162Double precision IEEE floating point.
27163
123dc839
DJ
27164@item arm_fpa_ext
27165The 12-byte extended precision format used by ARM FPA registers.
27166
27167@end table
27168
27169@node Standard Target Features
27170@section Standard Target Features
27171@cindex target descriptions, standard features
27172
27173A target description must contain either no registers or all the
27174target's registers. If the description contains no registers, then
27175@value{GDBN} will assume a default register layout, selected based on
27176the architecture. If the description contains any registers, the
27177default layout will not be used; the standard registers must be
27178described in the target description, in such a way that @value{GDBN}
27179can recognize them.
27180
27181This is accomplished by giving specific names to feature elements
27182which contain standard registers. @value{GDBN} will look for features
27183with those names and verify that they contain the expected registers;
27184if any known feature is missing required registers, or if any required
27185feature is missing, @value{GDBN} will reject the target
27186description. You can add additional registers to any of the
27187standard features --- @value{GDBN} will display them just as if
27188they were added to an unrecognized feature.
27189
27190This section lists the known features and their expected contents.
27191Sample XML documents for these features are included in the
27192@value{GDBN} source tree, in the directory @file{gdb/features}.
27193
27194Names recognized by @value{GDBN} should include the name of the
27195company or organization which selected the name, and the overall
27196architecture to which the feature applies; so e.g.@: the feature
27197containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
27198
ff6f572f
DJ
27199The names of registers are not case sensitive for the purpose
27200of recognizing standard features, but @value{GDBN} will only display
27201registers using the capitalization used in the description.
27202
e9c17194
VP
27203@menu
27204* ARM Features::
1e26b4f8 27205* MIPS Features::
e9c17194 27206* M68K Features::
1e26b4f8 27207* PowerPC Features::
e9c17194
VP
27208@end menu
27209
27210
27211@node ARM Features
123dc839
DJ
27212@subsection ARM Features
27213@cindex target descriptions, ARM features
27214
27215The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
27216It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
27217@samp{lr}, @samp{pc}, and @samp{cpsr}.
27218
27219The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
27220should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
27221
ff6f572f
DJ
27222The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
27223it should contain at least registers @samp{wR0} through @samp{wR15} and
27224@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
27225@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 27226
1e26b4f8 27227@node MIPS Features
f8b73d13
DJ
27228@subsection MIPS Features
27229@cindex target descriptions, MIPS features
27230
27231The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
27232It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
27233@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
27234on the target.
27235
27236The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
27237contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
27238registers. They may be 32-bit or 64-bit depending on the target.
27239
27240The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
27241it may be optional in a future version of @value{GDBN}. It should
27242contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
27243@samp{fir}. They may be 32-bit or 64-bit depending on the target.
27244
822b6570
DJ
27245The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
27246contain a single register, @samp{restart}, which is used by the
27247Linux kernel to control restartable syscalls.
27248
e9c17194
VP
27249@node M68K Features
27250@subsection M68K Features
27251@cindex target descriptions, M68K features
27252
27253@table @code
27254@item @samp{org.gnu.gdb.m68k.core}
27255@itemx @samp{org.gnu.gdb.coldfire.core}
27256@itemx @samp{org.gnu.gdb.fido.core}
27257One of those features must be always present.
27258The feature that is present determines which flavor of m86k is
27259used. The feature that is present should contain registers
27260@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
27261@samp{sp}, @samp{ps} and @samp{pc}.
27262
27263@item @samp{org.gnu.gdb.coldfire.fp}
27264This feature is optional. If present, it should contain registers
27265@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
27266@samp{fpiaddr}.
27267@end table
27268
1e26b4f8 27269@node PowerPC Features
7cc46491
DJ
27270@subsection PowerPC Features
27271@cindex target descriptions, PowerPC features
27272
27273The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27274targets. It should contain registers @samp{r0} through @samp{r31},
27275@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27276@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27277
27278The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27279contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27280
27281The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27282contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27283and @samp{vrsave}.
27284
27285The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27286contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27287@samp{spefscr}. SPE targets should provide 32-bit registers in
27288@samp{org.gnu.gdb.power.core} and provide the upper halves in
27289@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27290these to present registers @samp{ev0} through @samp{ev31} to the
27291user.
27292
aab4e0ec 27293@include gpl.texi
eb12ee30 27294
2154891a 27295@raisesections
6826cf00 27296@include fdl.texi
2154891a 27297@lowersections
6826cf00 27298
6d2ebf8b 27299@node Index
c906108c
SS
27300@unnumbered Index
27301
27302@printindex cp
27303
27304@tex
27305% I think something like @colophon should be in texinfo. In the
27306% meantime:
27307\long\def\colophon{\hbox to0pt{}\vfill
27308\centerline{The body of this manual is set in}
27309\centerline{\fontname\tenrm,}
27310\centerline{with headings in {\bf\fontname\tenbf}}
27311\centerline{and examples in {\tt\fontname\tentt}.}
27312\centerline{{\it\fontname\tenit\/},}
27313\centerline{{\bf\fontname\tenbf}, and}
27314\centerline{{\sl\fontname\tensl\/}}
27315\centerline{are used for emphasis.}\vfill}
27316\page\colophon
27317% Blame: doc@cygnus.com, 1991.
27318@end tex
27319
c906108c 27320@bye
This page took 3.73029 seconds and 4 git commands to generate.